
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Semantic Optimizations in Modern Hybrid Stores

Permalink
https://escholarship.org/uc/item/1ww2f7sc

Author
Alotaibi, Rana

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1ww2f7sc
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Semantic Optimizations in Modern Hybrid Stores

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Rana Bijad M Alotaibi

Committee in charge:

Professor Alin Deutsch, Chair
Professor Michael J. Carey
Professor Ranjit Jhala
Professor Arun Kumar
Professor Ramesh Rao

2022



Copyright

Rana Bijad M Alotaibi, 2022

All rights reserved.



The dissertation of Rana Bijad M Alotaibi is approved, and it

is acceptable in quality and form for publication on microfilm

and electronically.

University of California San Diego

2022

iii



DEDICATION

This dissertation is gratefully dedicated to

My beloved parents, Bijad Alotaibi and Hussah Alzyadi

My siblings, Norah, Mohammed, Fares, and Rose.

iv



EPIGRAPH

It is good to have an end to journey towards; but it is the journey that matters, in the end.

—Ursula K.Leguin, The Left Hand of Darkness, 1969.

v



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Summary of Research Contributions . . . . . . . . . . . . . . . . . 3

1.1.1 ESTOCADA: Bringing Semantic Optimization to Hybrid Stores 3
1.1.2 HADAD: Extending Benefits of Semantic Optimization to

Hybrid Relational and Linear Algebra Computation . . . . . 4
1.2 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2 Heterogeneous Data Management . . . . . . . . . . . . . . . . . . . . . 7
2.1 Mediator: Data Integration and Federated Systems . . . . . . . . . 7
2.2 Hybrid Warehouses . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Modern Hybrid Stores . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Relationship to This Work . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Conjunctive Query . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Query Containment and Equivalence . . . . . . . . . . . . . 15

3.2 Integrity Constraints (Dependencies) . . . . . . . . . . . . . . . . . 16
3.2.1 Expressing Constraints in First-Order Logic . . . . . . . . . 16
3.2.2 Reasoning With Integrity Constraints: The Chase . . . . . . 17

3.3 Query Reformulation Under Integrity Constraints . . . . . . . . . . 20
3.3.1 The Chase&Backchase (C&B) Algorithm . . . . . . . . . . 20
3.3.2 The Provenance-Directed C&B: PACB . . . . . . . . . . . 23

vi



Chapter 4 ESTOCADA: Bringing Semantic Optimization to Hybrid Stores . . . . . . 26
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Motivating example . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 ESTOCADA Overview . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 The QBT XM Language . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.1 Query Block Trees (QBT) . . . . . . . . . . . . . . . . . . 35
4.4.2 Integration Language: QBT XM . . . . . . . . . . . . . . . . 37

4.5 Reduction from Cross-Model to Single-Model Setting . . . . . . . . 38
4.5.1 JSON Model . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.2 Key-Value Model . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.3 Graph Model . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5.4 XML Model . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5.5 Relational Model . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.6 Binding Patterns . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.7 Equality and Multiple Treatment of Nulls . . . . . . . . . . 54
4.5.8 Comparison and Arithmetic Operators . . . . . . . . . . . . 56
4.5.9 Denial Constraints . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Encoding QBT XM Queries into the Pivot Language . . . . . . . . . 58
4.7 Encoding QBT XM Views as Constraints . . . . . . . . . . . . . . . 59
4.8 From Rewritings to Integration Plans . . . . . . . . . . . . . . . . . 60
4.9 PACB Optimization and Extension . . . . . . . . . . . . . . . . . . 63

4.9.1 PACBOP T : Optimized PACB . . . . . . . . . . . . . . . . 64
4.10 Extending PACBOP T to Bag Semantics . . . . . . . . . . . . . . . 66
4.11 PACBOP T

Q BT : Extending PACBOP T to QBTs . . . . . . . . . . . . . 67
4.12 Guarantees on the Reduction . . . . . . . . . . . . . . . . . . . . . 67
4.13 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 69

4.13.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . 70
4.13.2 Cross-Store Rewritings Evaluation . . . . . . . . . . . . . . . 71
4.13.3 PACB vs. PACBOP T . . . . . . . . . . . . . . . . . . . . . 78
4.13.4 Summary of Experimental Findings . . . . . . . . . . . . . 80

4.14 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.15 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 5 HADAD: Extending Benefits of Semantic Optimization to Hybrid Relational
and Linear Algebra Computation . . . . . . . . . . . . . . . . . . . . . . 82
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 HADAD Optimizations . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 LA Pipeline Optimization . . . . . . . . . . . . . . . . . . 83
5.2.2 Hybrid RA-LA Optimization . . . . . . . . . . . . . . . . . 84

5.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 HADAD Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 LA Reduction to the Relational Model . . . . . . . . . . . . . . . . 90

vii



5.5.1 Supported Matrix Algebra . . . . . . . . . . . . . . . . . . 90
5.5.2 VREM Schema and Relational Encoding . . . . . . . . . . . 91
5.5.3 LA Relational Rewriting Using Constraints . . . . . . . . . 98

5.6 Choice of an Efficient Rewriting . . . . . . . . . . . . . . . . . . . 99
5.7 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7.1 LA-based Sparsity Estimators . . . . . . . . . . . . . . . . 100
5.7.2 Pruning Rewritings: PACB++ . . . . . . . . . . . . . . . . . 101

5.8 Guarantees on the Reduction . . . . . . . . . . . . . . . . . . . . . 105
5.9 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 107

5.9.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . 107
5.9.2 LA-based Experiments . . . . . . . . . . . . . . . . . . . . 108
5.9.3 Hybrid (RA and LA) Experiments . . . . . . . . . . . . . . 118
5.9.4 Experiments Takeaway . . . . . . . . . . . . . . . . . . . . 127

5.10 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.12 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Chapter 6 Related Wrok . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.1 Related Work for ESTOCADA . . . . . . . . . . . . . . . . . . . . . . 131
6.2 Related Work for HADAD . . . . . . . . . . . . . . . . . . . . . . . 133
6.3 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Chapter 7 Conclusion and Future Directions . . . . . . . . . . . . . . . . . . . . . 136

Appendix A Appendix: ESTOCADA . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.1 Query Templates Example . . . . . . . . . . . . . . . . . . . . . . 138
A.2 Snippet of QBT XM Query Language Grammar . . . . . . . . . . . . 140
A.3 Encoding of QBT XM Views: V1 and V2 . . . . . . . . . . . . . . . . 142
A.4 Encoding of QBT XM Query Q1 and Decoding RWQ1 . . . . . . . . 143

Appendix B Appendix: HADAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
B.1 LA Operators Encoding Relations . . . . . . . . . . . . . . . . . . 144
B.2 Key Constraints of LA Encoding Relations . . . . . . . . . . . . . 146
B.3 Properties of LA Operations Encoded as Constraints . . . . . . . . 148
B.4 SystemML Rewrite Rules Encoded as Constraints . . . . . . . . . . 153
B.5 Additional Results: P¬Opt and PViews Pipelines Rewrites . . . . . . 157
B.6 Additional Results: P¬Opt Pipelines: Naı̈ve Cost Model . . . . . . . 159
B.7 Additional Results: P¬Opt Pipelines: MNC Cost Model . . . . . . . 184
B.8 Additional Results: PViews Pipelines . . . . . . . . . . . . . . . . . 199

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

viii



LIST OF FIGURES

Figure 4.1: ESTOCADA reduction outline. . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 4.2: QBT query example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 4.3: View definitions expressed in QBT XM. . . . . . . . . . . . . . . . . . . . . 38
Figure 4.4: JSON view V and query Q. . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 4.5: Graph view V and query Q. . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 4.6: Snippet of supported denail constraints. . . . . . . . . . . . . . . . . . . . 58
Figure 4.7: Motivating scenario QBT XM query Q1. . . . . . . . . . . . . . . . . . . . 59
Figure 4.8: Relational encoding of QBT XM view V2 defined in Figure 4.3. . . . . . . . 59
Figure 4.9: Rewriting RWQ1 of QBT XM query Q1. . . . . . . . . . . . . . . . . . . . 60
Figure 4.10: Integration plan of the motivating scenario using Tatooine hybrid engine. . . 61
Figure 4.11: Rewriting time (28 relevant views). . . . . . . . . . . . . . . . . . . . . . 72
Figure 4.12: Rewriting time (128 relevant views). . . . . . . . . . . . . . . . . . . . . . 73
Figure 4.13: ESTOCADA (Relational and JSON views in PostgreSQL, text view in Solr)

vs. single-store evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 4.14: ESTOCADA (Relational and JSON views in PostgreSQL) vs. single-store

evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 4.16: PACB vs PACBOP T rewriting performance. . . . . . . . . . . . . . . . . . 78
Figure 4.15: Queries and rewritings evaluation in polystore engines. . . . . . . . . . . 79

Figure 5.1: HADAD reduction outline. . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 5.2: Snippet of M M C LAprop constraints . . . . . . . . . . . . . . . . . . . . . 94
Figure 5.3: Relational encoding of view V . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 5.4: Equivalent rewritings of Q p. . . . . . . . . . . . . . . . . . . . . . . . . . 99
Figure 5.5: Relational equivalent rewritings of Q p. . . . . . . . . . . . . . . . . . . . 99
Figure 5.6: Naı̈ve sparsity estimation scheme. . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 5.7: P1.1, P1.4, P1.15, and P2.12 evaluation before and after rewriting. . . . . . 112
Figure 5.8: P1.13, and P1.25 evaluation before and after rewriting. . . . . . . . . . . . 113
Figure 5.9: R speedup on P¬Opt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 5.10: P2.14, P2.21, P2.25 and P2.27 evaluation before and after rewriting using Vexp.116
Figure 5.11: Speedups of MorpheusR (with HADAD rewrites) over MorpheusR (without

HADAD Rewrites) for pipelines P1.12, P2.10, P2.11 and P2.15 on synthetic
data for a PK-FK join. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Figure 5.12: HADAD RWf ind overhead as a percentage (%) of the total time (Qexec +
RWf ind) for pipelines P1.10, P1.16, and P1.18 running on MorpheusR. . . . 119

Figure 5.13: Results of micro-hybrid benchmark using Twitter dataset. . . . . . . . . . . 121
Figure 5.14: Results of micro-hybrid benchmark using MIMIC dataset. . . . . . . . . . 126

Figure A.1: Query templates QT0, QT1 and QT2. . . . . . . . . . . . . . . . . . . . . . 138
Figure A.2: Query Q produced from combining templates QT0, QT1 and QT2. . . . . . 139
Figure A.3: Query Q (in AsterixDB SQL++ syntax) produced from combining QT0, QT1

and QT2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

ix



Figure A.4: View V1 forward and backward constraints. . . . . . . . . . . . . . . . . . 142
Figure A.5: View V2 backward constraint. . . . . . . . . . . . . . . . . . . . . . . . . 142
Figure A.6: Relational encoding of QBT XM query Q1. . . . . . . . . . . . . . . . . . . 143
Figure A.7: Decoding of rewriting RWQ1. . . . . . . . . . . . . . . . . . . . . . . . . 143

Figure B.1: P1.2 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 159
Figure B.2: P1.2 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 160
Figure B.3: P1.6 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 160
Figure B.4: P1.8 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . . 161
Figure B.5: P1.8 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 162
Figure B.6: P1.9 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 162
Figure B.7: P1.10 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 163
Figure B.8: P1.10 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 164
Figure B.9: P1.11 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 165
Figure B.10: P1.11 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 166
Figure B.11: P1.12 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 167
Figure B.12: P1.14 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 167
Figure B.13: P1.15 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 168
Figure B.14: P1.16 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 168
Figure B.15: P1.16 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 169
Figure B.16: P1.17 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 169
Figure B.17: P1.18 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 170
Figure B.18: P1.18 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 171
Figure B.19: P1.25 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 171
Figure B.20: P2.1 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 172
Figure B.21: P2.2 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 172
Figure B.22: P2.3 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 172
Figure B.23: P2.4 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 173
Figure B.24: P2.4 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 174
Figure B.25: P2.5, P2.6 and P2.8 evaluation before and after rewriting. . . . . . . . . . . 175
Figure B.26: P2.9 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 175
Figure B.27: P2.10 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 176
Figure B.28: P2.11 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 177
Figure B.29: P2.11 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 178
Figure B.30: P2.13 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 179
Figure B.31: P2.14 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 179
Figure B.32: P2.15 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 180
Figure B.33: P2.15 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 181
Figure B.34: P2.16 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 181
Figure B.35: P2.18 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 182
Figure B.36: P2.18 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 183
Figure B.37: P1.2 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 184
Figure B.38: P1.6 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 184

x



Figure B.39: P1.8 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 185
Figure B.40: P1.9 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 185
Figure B.41: P1.10 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 186
Figure B.42: P1.11 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 187
Figure B.43: P1.12 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 188
Figure B.44: P1.14 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 188
Figure B.45: P1.15 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 189
Figure B.46: P1.16 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 189
Figure B.47: P1.17 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 190
Figure B.48: P1.18 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 190
Figure B.49: P1.25 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 191
Figure B.50: P2.1 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . . 191
Figure B.51: P2.4 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . . 192
Figure B.52: P2.5, P2.6, P2.8 and P2.9 evaluation before and after rewriting. . . . . . . 193
Figure B.53: P2.10 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 194
Figure B.54: P2.11 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 195
Figure B.55: P2.13 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 196
Figure B.56: P2.14 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 196
Figure B.57: P2.15 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 197
Figure B.58: P2.16 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 197
Figure B.59: P2.18 evaluation before and after rewriting. . . . . . . . . . . . . . . . . . 198
Figure B.60: P1.2 and P1.3 evaluation before and after rewriting. . . . . . . . . . . . . . 199
Figure B.61: P1.4 and P1.11 evaluation before and after rewriting. . . . . . . . . . . . . 200
Figure B.62: P1.17, P1.19, P1.20 and P1.21 evaluation before and after rewriting. . . . . . 201
Figure B.63: P1.22, P1.23, P1.24 and P1.29 evaluation before and after rewriting. . . . . 202
Figure B.64: P2.2, P2.4 and P2.5 evaluation before and after rewriting. . . . . . . . . . . 203
Figure B.65: P2.9, P2.11 and P2.16 evaluation before and after rewriting. . . . . . . . . 204

xi



LIST OF TABLES

Table 4.1: Models and languages supported by ESTOCADA. . . . . . . . . . . . . . . . 29
Table 4.2: Snippet of V R EJ schema. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 4.3: Snippet of V R EG schema. . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 4.4: Snippet of V R EX schema. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 5.1: Snippet of the V R EM schema. . . . . . . . . . . . . . . . . . . . . . . . 90
Table 5.2: LA benchmark pipelines (part 1). . . . . . . . . . . . . . . . . . . . . . . . 108
Table 5.3: LA benchmark pipelines (part 2). . . . . . . . . . . . . . . . . . . . . . . . 109
Table 5.4: Overview of used real datasets. . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 5.5: Syntactically generated dense datasets. . . . . . . . . . . . . . . . . . . . . 109
Table 5.6: Matrices used for each matrix name in a pipeline. . . . . . . . . . . . . . . 110
Table 5.7: LA pipelines used in micro-hybrid benchmark. . . . . . . . . . . . . . . . . 122

Table B.1: The V R EM schema (part 1). . . . . . . . . . . . . . . . . . . . . . . . . 144
Table B.2: The V R EM schema (part 2). . . . . . . . . . . . . . . . . . . . . . . . . 145
Table B.3: Key constraints of LA operators relations (part 1). . . . . . . . . . . . . . . 146
Table B.4: Key constraints of LA encoding relations (part 2). . . . . . . . . . . . . . . 147
Table B.5: Properties of addition of matrices encoded as integrity constraints. . . . . . 148
Table B.6: Properties of addition and transposition of matrices encoded as integrity

constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table B.7: Properties of inverse, determinant and trace of matrices encoded as integrity

constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table B.8: Properties of direct sum and exponential of matrices encoded as integrity

constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table B.9: Matrix decompositions properties captured as integrity constraints (part1). . . 151
Table B.10: Matrix decompositions properties captured as integrity constraints (part2). . 152
Table B.11: UnnecessaryAggregates rewrite rules encoded as integrity constraints. . . . 153
Table B.12: PushdownUnaryAggTransposeOp rewrite rules encoded as integrity constraints.154
Table B.13: SimplifyTraceMatrixMult rewrite rules encoded as integrity constraint. . . . 154
Table B.14: SimplifySumMatrixMult rewrite rules encoded as integrity constraints. . . . 155
Table B.15: SimplifyColWiseAgg rewrite rules encoded as integrity constraints. . . . . . 155
Table B.16: SimplifyRowWiseAgg rewrite rules encoded as integrity constraints. . . . . 156
Table B.17: PushdownSumOnAdd rewrite rules encoded as integrity constraints. . . . . 156
Table B.18: ColSums/rowSumsMVMult rewrite rules encoded as integrity constraints. . 156
Table B.19: P¬Opt pipelines rewrites (part 1). . . . . . . . . . . . . . . . . . . . . . . . 157
Table B.20: P¬Opt pipelines rewrites (part 2). . . . . . . . . . . . . . . . . . . . . . . . 157
Table B.21: The set of views Vexp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table B.22: PViews pipelines rewrites. . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

xii



ACKNOWLEDGEMENTS

This dissertation would not have been possible without the help of many people.

First and foremost, I am deeply thankful for the mentorship and support that my advisor

Professor Alin Deutsch provided over the past several years. Through his mentorship, he

challenged me to think about the practical implications and impact of my research. He has been

instrumental in my development as a researcher. Despite his busy schedule, his door has always

been open to me every time I need his advice. Alin leads by example and makes sure his students

thrive not just as researchers but as individuals. He is an exceptional advisor and a wonderful

human being. I could not have asked for a better Ph.D. advisor and role model during this period

of my professional development.

I would like to profoundly thank Professor Ioana Manolescu for her involvement in my

research and her commitment to this work. She is a dedicated and caring mentor who always sets

the bars high. She is supportive, always there for me, and willing to help. It has been an immense

pleasure working with her, and I look forward to having an opportunity to collaborate with her in

the future.

I was also fortunate to have productive collaborations with Bogdan Cautis, Damian

Bursztyn, and Stamatis Zampetakis. Their collaborations helped immensely in making progress

towards this thesis. Working with them has been indeed a pleasure and an amazing experience.

None of this would have been possible without them, and I have learned so much from them.

Thank you, Damian and Stamatis for the great time I spent with you and your families in Paris.

My sincere thanks also go to my committee members: Professor Arun Kumar, Professor

Michael Carey, Professor Ramesh Rao, and Professor Ranjit Jhala, for agreeing to be on my

thesis committee. I thank them for their constructive feedback and comments during my thesis

proposal. I also thank Professor Yannis Papakonstantinou and Professor Victor Vianu for their

valuable feedback about my work and presentations during UCSD’s database lab seminars.

I have had the privilege of working with some world-class researchers in their respective

xiii



fields: Abdul Quamar, Alekh Jindal, Brandon Haynes, Carlo Curino, Chuan Lei, Fatma Ozcan,
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In recent years, big data applications often involve dealing with diverse datasets in terms

of structure: relations flat or nested, complex-structure graphs, documents (JSON or XML),

poorly structured logs, or even text data. To handle the heterogeneity of the data, application

designers usually rely on several data stores used side-by-side, each supporting a different data

model, associated query language (or data access API), and very efficient for some, but not all,

kinds of processing on the data. Systems capable of querying disparate data in this fashion are

advocated by the database community under terms such as hybrid- or poly-stores.

These systems provide no support for semantic query optimizations, which include (i)

exploiting possible data redundancy when the same data may be accessible (with different
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performance) from distinct data stores; (ii) taking advantage of partial query results (in the style of

materialized views), which may be available in the stores; and (iii) reasoning semantically about

various data models and query operations’ properties, which can enhance the hybrid workload

performance. Motivated by these optimization opportunities, this dissertation makes the following

two main contributions:

We design and demonstrate ESTOCADA, an extensible lightweight framework for pro-

viding semantic query optimization on top of hybrid stores without modifying their internals.

ESTOCADA transparently enables each query to benefit from the best combination of stored data

and available processing capabilities. It leverages recent advances in the area of view-based query

rewriting under constraints, which we use to describe various data models and stored data. We

demonstrate the effectiveness of our approach with an experimental evaluation using the MIMIC

real-world dataset and show significant performance gains achieved by ESTOCADA.

Going beyond query workloads covering a variety of data models (relational, JSON,

Graph, XML) in hybrid stores, modern applications increasingly need to blend querying and

learning on the data, which is primarily expressed using a mix of relational algebra (RA)- and

linear algebra (LA)-based languages. Existing specialized solutions for evaluating such hybrid

analytical tasks either optimize RA and LA tasks separately, exploiting only RA properties while

leaving LA-specific optimizations unexploited, or focus heavily on physical optimizations, leaving

semantic query optimization opportunities unexplored. In our second contribution, we take a

major step towards filling this gap by proposing HADAD. The novelty of HADAD is to extend the

benefits of semantic query rewriting and view-based optimization introduced in ESTOCADA to LA

computations, crucial for ML hybrid analytical tasks. Our solution can be naturally and portably

applied on top of pure LA and hybrid RA-LA platforms. An extensive empirical evaluation

shows that HADAD yields significant performance gains on diverse workloads, ranging from

LA-centered to hybrid RA-LA workloads.

xix



Chapter 1

Introduction

Nowadays, big data applications often involve dealing with diverse datasets in terms of

structure: relations flat or nested, complex-structure graphs, documents (JSON or XML), poorly

structured logs, or even text data. Such datasets are routinely hosted in heterogeneous stores. One

reason is that the fast pace of application development prevents consolidating all the sources into

a single data format and loading them into a single store. In addition, a system efficient on some

tasks may perform poorly or not support other tasks, making it impossible to use a single data

management system for a given application. Instead, the data model often dictates the choice of

the store, e.g., relational data gets loaded into a relational or “Big Table”-style system, JSON

documents in a JSON store [4, 11], graphs in a Graph store [14]. Heterogeneous stores also

“accumulate” in an application along the time, e.g., at some point, one decision is made to host

dataset D1 in PostgreSQL and D2 in MongoDB. Later on, another application needs to use D1 and

D2 together. The database community advocates systems capable of exploiting diverse big data

systems in this fashion under the term hybrid stores1 (a.k.a. polystores) [68, 136, 27, 95, 35, 55].

Current hybrid stores support multiple query languages to seamlessly query datasets that

reside in multiple backends. This feature distinguishes them from previous federations [49, 134],

1We use the terms hybrid stores, hybrid systems and polystores interchangeably in this monograph.
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which were based mainly on SQL. Users are often wedded to SQL for querying structured data,

semi-structured language for querying JSON data, path-oriented language for querying Graph

data, etc. Such mixed query notations workload is often referred to as a hybrid worklaod [68].

Query evaluation in hybrid systems recalls, to some extent, mediator systems [49, 134,

41, 103, 64, 110, 139]; in both cases, sub-queries, each expressed in its own query language, are

delegated to their corresponding underlying stores, while the remaining operations are applied

in the upper integration layer. Hybrid systems process a query assuming that each of its input

datasets is available in exactly one store (often chosen for its support of a given data model).

Further, going beyond query workloads covering a variety of data models (relational,

JSON, Graph, XML) in hybrid stores, modern applications increasingly need to blend querying

and learning on the data, which is primarily expressed using a mix of relational algebra (RA)- and

linear algebra (LA)-based languages. To run such hybrid RA-LA analytical tasks, various works

propose specialized hybrid RA-LA integration solutions, where both algebraic styles can be used

together [105, 52, 18, 94, 97, 137, 44]. Some solutions [105, 94, 18] suggest extending RDBMS

to treat LA objects as first-class citizens by using built-in functions to express LA operations.

Others offer to call LA packages through user-defined functions (UDFs), where libraries like

NumPy are embedded in the host language. Moreover, some systems [137, 44] only optimize LA

expressions by converting them into RA expressions, optimizing the latter, and then converting

the result back to an (optimized) LA expression. They only focus on optimizing LA pipelines

containing operations that can be expressed in RA. More advanced hybrid RA-LA soultion [52]

speeds up LA pipelines over large joins by pushing computation into each joined table, thereby

avoiding expensive materialization. Recently, several soultions [97] focus on low-level physical

optimization by exploiting data layouts (e.g., column-wise) to choose LA operators’ physical

implementations.

This dissertation identifies optimization opportunities in the scope of hybrid solutions/sys-

tems, of which special hybrid RA-LA integration systems are a subset. These solutions provide
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no support for cross-models semantic query optimization. Semantic optimization uses semantic

knowledge about the data and query operations to rewrite a query into another equivalent form

that can be executed more efficiently than the original query [26]. In a hybrid setting, this includes

(i) exploiting possible data redundancy: the same data could be stored in several stores, some of

which may support a query operation much more efficiently than others; (ii) taking advantage

of the presence of partially computed query results (in the style of materialized views), which

may be available in one or several stores, when the data model of the queried dataset differs from

the data model of the store hosting the view; and (iii) reasoning semantically about various data

models and query operations supported by them, which can enhance hybrid queries performance.

Enabling semantic query optimizations in a hybrid setting is challenging since user queries,

views, and query rewritings are expressed across different data models and query languages.

Existing semantic query optimization solutions were designed to work within a single data model

and query language (i.e., mostly relational or XML) [103, 34, 64, 26].

1.1 Summary of Research Contributions

We critically need a new and innovative solution to enable the aforementioned optimization

opportunities and tackle challenges in a hybrid setting. With this in mind, this dissertation presents

new innovations in enabling cross-models semantic query optimization on top of hybrid systems,

with no need to modify their internals. In the following subsections, we describe the contributions

of this dissertation in further detail.

1.1.1 ESTOCADA: Bringing Semantic Optimization to Hybrid Stores

We propose ESTOCADA (Chapter 4), a novel approach for allowing an application to

transparently exploit data stored in a set of heterogeneous stores (in a hybrid setting) as a set

of potentially overlapping data fragments (views). Further, if fragments store results of partial
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computations applied on the data, we show how to speed up queries using them as materialized

views. This reduces query processing time and seeks to take the maximum advantage of each

store’s efficient query processing features. Importantly, our approach does not require any change

to the application code. ESTOCADA enables such semantic optimization based on a common

abstraction that facilitates unified reasoning: a relational model endowed with integrity constraints,

which we use to capture the key aspects of the data models in circulation today, properties of

query operation, and stored views. The system fully appeared in SIGMOD’19 [31] and later was

demonstrated in PVLDB’20 [32]. The technical contributions we make in ESTOCADA can be

summarized as follows:

• We propose an extensible lightweight approach for bringing semantic query optimization

to hybrid systems.

• We formalize the cross-models rewriting problem in the context of hybrid systems.

• We design a reduction from cross-models view-based rewriting to relational rewriting under

integrity constraints.

• We prototype our cross-models views-based rewriting approach on top of some existing

hybrid systems.

• We optimize the state-of-the-art rewriting algorithm to scale to a hybrid setting.

• We show that our approach improves the performance in natural scenarios for both cross-

models and single model user queries.

1.1.2 HADAD: Extending Benefits of Semantic Optimization to Hybrid Re-

lational and Linear Algebra Computation

As described previously, existing specialized hybrid RA-LA solutions do not support

semantic query optimization, which includes views-based, integrity constraint-based, and LA
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property-based rewriting and can bring significant performance saving in hybrid RA-LA and even

plain LA settings.

To enable such fruitful optimizations, we introduce HADAD (Chapter 5), which extends

the benefits of semantic query rewriting and view-based optimization introduced in ESTOCADA

to LA computations, which are crucial for ML-hybrid workloads. Our solution can be naturally

and portably applied on top of hybrid RA-LA and pure LA platforms. The system was partially

demonstrated at PVLDB’20 [32] and later fully appeared in SIGMOD’21 [33]. The technical

contributions we make in this work can be summarized as follows:

• We propose an extension to ESTOCADA [31] (Chapter 4). In particular, we extend ESTO-

CADA’s intermediate relational abstraction to support reasoning about LA operations. The

RA part is already captured in the target formalism.

• To the best of our knowledge, our approach is the first work that brings views-based

rewriting under integrity constraints in the context of LA-based pipelines and hybrid

analytical tasks.

• We extend the query rewriting engine, integrating two different cost models, to help prune

out inefficient rewritings at the early stages of the rewriting candidates’ search phase.

• We prototype our approach on top of popular LA-oriented and hybrid RA-LA platforms.

• We conduct an extensive set of empirical experiments on typical LA- and hybrid-based

expressions, which show the benefits of HADAD.

1.2 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 briefly gives an

overview of heterogeneous data management systems and their relationship to this work. In
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Chapter 3, we describe the necessary background to understand the details in this monograph.

Chapter 4 introduces ESTOCADA, a novel lightweight framework that enables semantic query

optimization on top of hybrid systems. Chapter 4 describes HADAD, which capitalizes on

ESTOCADA and extends its benefits of semantic query rewriting and view-based optimization

to LA computations. We discuss ESTOCADA and HADAD related work in Chapter 6. Finally,

Chapter 7 concludes this dissertation and discusses potential future research directions.

1.3 Acknowledgement

This chapter contains material from “Towards Scalable Hybrid Stores: Constraint-Based

Rewriting to the Rescue” by Rana Alotaibi, Damian Bursztyn, Alin Deutsch, Ioana Manolescu,

and Stamatis Zampetakis, which appears in Proceedings of the 2019 International Conference on

Management of Data (SIGMOD 2019). The dissertation author was the primary investigator of

this paper.

This chapter contains material from “HADAD: A Lightweight Approach for Optimizing

Hybrid Complex Analytics Queries” by Rana Alotaibi, Bogdan Cautis, Alin Deutsch, and Ioana

Manolescu, which appears in Proceedings of the 2019 International Conference on Management

of Data (SIGMOD 2021). The dissertation author was the primary investigator of this paper.
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Chapter 2

Heterogeneous Data Management

Since the 1970’s, the data management field has faced several challenges raised by

dealing with heterogeneous data sources, yielding a proliferation of approaches and systems

which range from mediator systems [49, 134, 41, 103, 64, 110, 139, 47], of which federated

database systems (FDSs) are a subset, and some of which use XML or Ontology as the integration

model [64, 110, 116, 139] to hybrid warehouses [132, 133, 66, 99], which are special FDSs

providing an integration between Hadoop-like big data platforms and parallel data warehouses

and finally modern hybrid stores (a.k.a. polystores) [68, 136, 27, 95, 35, 55] (also called hybrid

systems).

This chapter briefly gives an overview of the evolution of heterogeneous data management

systems over the years. This overview is not intended to be comprehensive, and we refer a reader

to a more robust treatment of these topics [126, 96, 119, 140, 46] for details beyond the scope of

this thesis.

2.1 Mediator: Data Integration and Federated Systems

Traditional heterogeneous data management systems aim at providing transparent access

to a collection of autonomous (i.e., managed independently) heterogeneous data sources. Two
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main centralized system architectures were devised for that purpose: data warehouse [86] and

mediator [67]. They both rely on the design of a global integration schema (global schema

in short), which provides an homogeneous view of the source data, and w.r.t. which queries

are formulated in a single language (e.g., SQL, XQuery). This way, the existence of multiple

heterogeneous data sources is hidden from applications and users. However, the two architectures

significantly differ in how they answer queries based on the source data. In a warehouse, data

is first extracted from the sources and then transformed so as to be loaded as a global schema

instance within a database. Thus, the warehouse approach eliminates heterogeneity by bringing

all the data into a single store. In contrast, in a mediator, data remains in the heterogeneous

sources, and every incoming query is decomposed into subqueries to be evaluated by the sources.

Possible post-processing steps are usually applied in the mediator to integrate their results and

provide the final query answer to the user.

Mediator systems follow mediator-wrapper architecture. In this architecture, each data

source has a wrapper that passes on information about the source query processing capabilities

and the local schema to the mediator (middleware). Wrappers translate queries received from the

mediator, expressed in a common query language, to the query language of the source. Moreover,

they reformat answers of each subquery from the source to conform to the internal data model of

the middleware.

In mediator systems, the data is stored in the data sources and organized under local

schemas. Hence, in order to for the mediator system to answer queries, there must be some

descriptions (or explicit mapping rules) of how the relations in the sources are related to the

ones in the global schema. These mapping rules virtually specify the global schema instance

that applications and users can access through the mediator. There are two main types of

mapping [101]:

Global-As-View (GAV). The global schema is defined as a set of views over the data

source schemas. These view definitions indicate how the tuples (i.e., elements) of the global
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schema relations can be derived from the tuples of the data source schemas. That is, for each

relation R in the global schema, we write a query over the source relations specifying how to

obtain R’s tuples from the data sources schema. In a GAV mediator [101, 49, 134, 41, 79, 47], a

query reformulation is simply unfolding, i.e., replacing each global schema relation in the query

with its view definition. The reason is that relations in the global schema are defined in terms of

the source relations; we only need to unfold the definitions of the global schema relations.

Local-As-View (LAV). The LAV approach is the opposite of the GAV approach. In a

LAV mediator [103, 64, 110, 102], the global schema definition exists, and each data source

schema is defined as a view over it. In other words, the contents of a data source are described as

a query over the global schema. The query reformulation in LAV is not relatively straightforward

as in GAV because it is not possible to simply unfold the definitions of the relations in the global

schema. It amounts to finding combinations of views, hence of local schema tuples, that satisfy

the query.

In [75], the authors describe the GLAV language that combines the expressive power of

LAV and GLAV. They show that the query reformulation complexity is the same as for LAV.

Data Integration vs. Federated Systems. Data integration systems offer a level of

data integration beyond what FDSs provide in that their global schema relation’s tuples can be

combined from multiple data sources’ relations. In contrast, FDSs do not offer the ability to

create such a composite “virtual” relation. Instead, the global schema in FDSs is just a collection

of data sources’ relations conforming to the schema model (primarily relational).

2.2 Hybrid Warehouses

With the emergence of Hadoop and its advantages in high-volume data processing, there

has been a substantial move towards “Big Data” systems for massive data storage (i.e., HDFS)

and analysis. Many applications (e.g., healthcare and enterprise businesses) require co-analyzing
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data stored in HDFS and parallel relational database management systems (RDBMS), which have

long been a superior storage and query processing engine for data warehousing applications. This

has created a need for a special integration between Hadoop-like big data processing platforms

(e.g., SQL-on- Hadoop) and parallel RDBMS.

Several solutions have emerged and most of these solutions statically pre-load HDFS

data into the relational databases [22, 7, 23] through connectors [8, 22], bulk loading [7, 23]

or external tables [1, 7], whereas some other solutions move the relational database data to the

HDFS side [23, 22]. As stated in [133, 132], it is not always feasible to move the HDFS data

into the relational database side since the HDFS data is typically very large, and bulk reading of

the HDFS data into the database might incur an unnecessary load for the RDBMS resources [66].

Moreover, the parallel RDBMS data gets updated frequently. Thus, it is not beneficial to move

the data to the HDFS side since it does not support updates properly.

Hybrid warehouses [132, 133, 66, 99, 38] propose to leave data in the storage engine

where the data was originally located and allow splitting the query processing between the parallel

RDBMS and HDFS side (i.e., Hadoop-like big data processing platform). They share some

similarities with federated database systems. Both provide a global schema that conforms to a

single data model (relational) and describes the data stored in RDBMS and HDFS. Further, they

feature a single standard query language to the application layer. However, the key feature that

distinguishes hybrid warehouses from other federation systems is that they follow the lightweight-

middleware principle [46]. They mainly utilize the parallel RDBMS query engine as a middleware

to orchestrate the query processing between two massively parallel systems.

2.3 Modern Hybrid Stores

Recently, we have witnessed a proliferation of data sources of different data models and

query languages, which has rendered a mediator approach [10, 130, 80, 46], where using a single
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global schema to interact with all data sources is unfeasible. Developed specifically for this

setting, hybrid systems (a.k.a. polystores) [68, 136, 27, 95, 35, 55] do not hide the heterogeneity

of the data sources and are proposed to combine domain-specific databases that specialize in

specific data models and execution. They provide integrated access to a number of heterogeneous

data stores through one or more query languages [10, 46]. For example, BigDAWG [68], at its

core, is the abstraction of an island, a collection of data stores of a common data model, which

can be accessed with a single query language. For instance, SQL is used to pose queries in

the scope of the relational island. CloudMDSQL [95] and SparkSQL [35] support SQL-like

queries with the extended capabilities for subqueries expressed in terms of each data store’s

native query interface/language. Myria [136] provides an imperative-declarative hybrid language

called MyriaL. The language resembles relational queries but with an imperative extension.

RHEEM [27] supports a dataflow language for users to specify their tasks in an imperative form.

The language can be seen as an extension of PigLatin for cross-platform settings, where users can

specify which platform to execute their queries (or sub-queries).

Moreover, these systems utilize (or extend) various query processing techniques from

classical distributed database systems (e.g., data/function shipping, query decomposition). Query

optimization is also supported by either a cost- or heuristics-based approach [46].

2.4 Relationship to This Work

Our work mainly focuses on enabling semantic query optimization (including cross-

models views- and integrity constraints-based rewriting) on top of hybrid systems. Mediator

systems [103, 64, 110, 139] that follow the LAV approach address semantic optimization mostly

in a single-model (typically relational or XML) setting, where cross-models query rewriting

does not occur. Moreover, several information integration systems [102, 81] focus on finding

not-necessarily equivalent (but maximally-contained) rewritings. In contrast, this thesis targets
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equivalent query rewriting, which leads to a very different algorithm. Further, setting our work

apart is the scale and usage of integrity constraints.
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Chapter 3

Background

In this chapter, we provide a brief introduction to conjunctive queries [50, 26], query

containment and equivalence [50, 26], integrity constraints [26] and query reformulation under

constraints [84]. These concepts are at the core of the approaches proposed in this monograph.

3.1 Conjunctive Query

A conjunctive query (or simply CQ) is an expression of the form:

Q(~x):- R1(~y1), . . . ,Rn(~yn)

where each Ri for every i = 1, ...,n is a predicate (relation) of some finite arity, and Q is a

fresh relation name, and it is called intensional relation since its content is given by definition

through the query. ~x,~y1, . . . ,~yn are free tuples of variables or constants. Each Ri(~yi) is called a

relational atom or subgoal. It is also called extensional relation since it is provided as input to the

query.

The expression Q(~x) is the head of the query, while the conjunction of relational atoms

R1(~y1), . . . ,Rn(~yn) is its body. The body can contain a conjunction (possibly empty) of relational
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equality atoms of the form y = y′. All variables in the head are called distinguished variables.

Also, every variable in~x (~x can be empty) must appear at least once in~y1, . . . ,~yn tuples. Below

some examples of conjunctive queries.

Example 3.1.1 (Examples of Conjunctive Query).

Q1(x,z):- R(x,y),S(y,z)

Q2(x,z):- R(x,y),S(y,z),R(x,e)

Q3():- R(x,y),S(y,z),T (y)

Q4(x,y):- R(x,y),y = c,where c is a constant

Q3 is a boolean conjunctive query since its head is empty. In other words, its head is in

the form of Q(). Equivalently, a conjunctive query is a query expressible by a SQL expression of

the form: SELECT-FROM-WHERE.

3.1.1 Semantics

Given a database instance D, a valuation v from Q to D is a total function (defined for all

possible input values) that maps the variables of Q to constants in D and is the identity on the

constants in Q. Moreover, the image of every relational atom R of Q under v is an R-tuple in D,

and for every equality atom u = v of Q, u, v have the same image under v.

Example 3.1.2 (Valuation From the Query to a Database Instance). For query Q1 (shown in

Example 3.1.1), the function v, where v(x) = x′, v(y) = y′, v(z) = z′, and v(〈x,y〉) = 〈v(x),v(y)〉=

〈x′,y′〉, is a valuation.

The answer of a conjunctive query Q on an instance D, denoted Q(D), is the set of all

tuples t for which there is a valuation v from Q into D, such that the image of the head tuple under

v is t.
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3.1.2 Query Containment and Equivalence

We now formally define query containment and equivalence [50, 26] for conjunctive

queries:

Definition 1 (Query Containment). We say that query Q1 is contained in query Q2, denoted

Q1 ⊆ Q2, if for every database instance D, we have Q1(D)⊆ Q2(D) (the set Q1(D) is included

in the set Q2(D)).

Definition 2 (Query Equivalence). We say that query Q1 is equivalent to query Q2, denoted

Q1 ≡ Q2, if for every database instance D, we have Q1(D)≡ Q2(D)

Two queries Q1 and Q2 are equivalent if and only if they are contained in each other

(Q1 ⊆ Q2 and Q2 ⊆ Q1).

To check whether Q1 ⊆ Q2, we need to introduce the following core concepts:

Definition 3 (Canonical Instance). Given a conjunctive query Q, the canonical database DQ is

the database instance where each atom in Q becomes a fact in the instance.

Example 3.1.3 (Canonical Instance). The canonical database for the query Q2 in Example 3.1.1

is the instance DQ2 = {R(x,y),S(y,z),R(x,e)}.

Definition 4 (Homomorphism). A homomorphism h (a.k.a. containment mapping) from Q2 to Q1

is a function h: var(Q2)→ var(Q1) ∪ const(Q1) such that:

(i) for every atom R(x1,x2, . . .) in Q2, there is an atom R(h(x1),h(x2), . . .) in Q1

(ii) h(head(Q2)) = head(Q1)

where var denotes the set of variables in a query Q and head denotes the denotes the

head variables of Q.

Example 3.1.4 (Homomorphism Example). Consider the following two queries Q1 and Q′1:
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Q1(x,y):- R(x,y),S(y,y),R(x,e)

Q′1(u,d):- R(u,d),S(d, f ),R(u,w)

There is a homomorphism h1 = {u→ x,d→ y, f → y,w→ e} from Q′1 to Q1.

We now state the core theorem for query containment.

Theorem 3.1.1 (Query Containment [50]). Given two conjunctive queries Q1, Q2, the following

statements are equivalent:

(i) Q1 ⊆ Q2

(ii) There is a homomorphism h from Q2 to Q1.

(iii) head(Q1) ∈ Q2(DQ1)

3.2 Integrity Constraints (Dependencies)

Different forms of integrity constraints (a.k.a. database dependencies in the relational

model) have been introduced and studied in the literature [53, 69, 72]. They are used to express

properties that must be satisfied by all instances of a database schema. These properties arise in a

specific application domain. We refer a reader to several survey papers [72, 90, 135] for more

details on constraints and their history.

3.2.1 Expressing Constraints in First-Order Logic

Constraints can be expressed using a fragment of the language of first-order logic, known

as the class of embedded dependencies [26].

∀x1, . . .xnφ(x1, . . .xn)→∃z1, . . . ,zkψ(y1, . . . ,ym)
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where {z1, . . . ,zk}= {y1, . . . ,ym}\{x1, . . . ,xn}. The constraint’s premise φ is a conjunction (pos-

sibly empty) of relational atoms over variables x1, . . . ,xn or constants. The constraint’s conclusion

ψ is a non-empty conjunction of relational atoms and/or equality atoms – of the form w = w′

– over variables y1, . . . ,ym or constants. The case when all atoms in ψ are relational atoms is

called Tuple Generating Dependencies (TGDs), while the case when all atoms in ψ are equalities

defines Equality Generating Dependencies (EGDs).

Example 3.2.1 (Example of Dependencies From [58]). Consider a relation Review(paper, re-

viewer, track) listing reviewers of papers submitted to a conference’s tracks, and a relation PC

(member, affiliation) listing the affiliation of every program committee member. The fact that a

paper can only be submitted to a single track is captured by the following EGD:

∀p∀r∀t∀r′∀t ′Review(p,r, t)∧Review(p,r′, t ′)→ t = t ′

We can also express that papers be reviewed only by PC members by the following TGD:

∀p∀r∀t Review(p,r, t)→∃a PC(r,a)

3.2.2 Reasoning With Integrity Constraints: The Chase

The chase procedure is a fundamental algorithm for tackling the implication problem of

data dependencies [108, 40, 26] and optimizing conjunctive queries under data dependencies [89].

The algorithm has played a central role in semantic query optimizations [122, 63, 124, 101, 71] for

a variety of database applications such as query answering using views [122, 63], data integration

and exchange [101, 71] and probabilistic databases [117].

The core concept of the chase is that it fixes constraint violations for a given fixed database

instance D and a set of data dependencies Σ.

Chase Application. Given a conjunction of atoms A and an embedded dependency σ ∈ Σ

of the from: ∀~x~y φ(~x,~y) →∃~z ψ(~x,~z), then σ is applicable to A with a premise homomorphism h
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iff h is a homomorphism from φ to A (i.e., the premise holds in A), such that h cannot be extended

to cover φ (i.e., the conclusion is not already satisfied). We then apply the dependency σ by

adding its conclusion to A.

A chase step adds ψ(h(~x), f (~z)) to A, where h is the premise homomorphism, and f

creates “fresh” variables, known as fresh null value or skolems for all of existential variables~z.

Example 3.2.2 (Example of the Chase Application From [111]). Consider two atoms S(X) and

E(X ,Y ), where E stores directed edges from node x to node y, and S contains nodes with some

distinguished properties, which are enforced by constraints. Now, suppose we have only the

following constraint Σ and database instance D:

Σ : ∀x S(x)→∃y E(x,y)

D = {S(x1),S(x2),E(x1,x2)}

The constraint Σ states that each node in S has at least one outgoing edge. The example

shows that the instance D does not satisfy the constraint Σ since it does not contain an outgoing

edge from node x2. The chase would fix the constraint violation in D by creating the tuple

t = E(x2,y′), where y′ is a “fresh” variable. After applying the chase, the resulting database

instance D′ = D∪{t} satisfies the constraint Σ. At this point, the chase terminates and returns

the database instance D′.

The standard chase is a series of chase steps. These steps may be finite or infinite

depending on the constraints. One well-known termination condition is weak acyclicity [70].

Weak Acyclicity. The key idea of weak acyclicity [70] is to assert that no “fresh” values

are created over and over again during the execution of the chase.

Definition 5 (Weakly Acyclic Set of TGDs [70]). Let Σ be a set of TGDs over a fixed schema.

Construct a directed graph, called the dependency graph, as follows: (i) there is a node for every
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pair (R,a), where R is a relation symbol of the schema and a is an attribute of R; we call such

pair (R,a) a position;(ii) for every TGD: ∀~x φ(~x) →∃~y ψ(~x,~y) ∈ Σ and for every and for every x

in~x that occurs in ψ add the following edges:

• For every occurrence of x in φ in position (R,ai);

1. for every occurrence of x in ψ in position (S,b j), add an edge (R,ai)→ (S,b j (if it

does not already exist)

2. for every existentially quantified variable y ∈~y and for every occurrence of y in ψ in

position (E,ck), add a special edge (R,ai)
∗−→ (E,ck)

A set Σ of embedded dependencies is called weakly acyclic iff the dependency graph of Σ has no

cycles going through a special edge.

Example 3.2.3 (Example of Weakly and Not Weakly Acyclic Constraints Adopted From [70]).

Consider a schema S that has a relation DEPT (D ID,E ID,MGR N), listing departments with

their manager IDs and names, and a separate relation for EMP(E ID,D ID). The following

set of constraints using DEPT and EMP relations is not weakly acyclic since finite chase may

not exist. The first constraint states that each manager of a department is an employee of some

department (not necessarily the one they manage).

∀D∀E∀N DEPT (D,E,N)→∃d EMP(E,d)

∀E∀D EMP(E,D)→∃e∃n DEPT (D,e,n)

However, if we assume that we know that each manager of a department is employed by

the same department, then we have the following weakly acyclic constraints where it is guaranteed

that every chase setp is finite.

∀D∀E∀N DEPT (D,E,N)→ EMP(E,D)

∀E∀D EMP(E,D)→∃e∃n DEPT (D,e,n)
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We refer a reader to [111, 70] for more details on the chase termination under other

permissive and sufficient conditions.

3.3 Query Reformulation Under Integrity Constraints

One of the main problems in query processing is reformulating a query Q expressed

against a source schema S to an equivalent query R against a target schema T , by exploiting the

relationship between S and T . Examples of query reformulation problems include semantic query

optimization (e.g., eliminating redundant joins and reformulating queries under integrity con-

straints), rewriting queries using views and physical access path selection in query optimization.

In [62], the authors introduce a uniform solution for these problems in the form of the

Chase & Backchase (C&B) algorithm for query reformulation under constraints. They show

how the above query reformulation problems can be expressed as particular query reformulation

instances where the relationship between the schemas S and T is expressed by constraints.

In the following sections, we first give an overview of the C&B algorithm (Section 3.3.1),

and then we briefly introduce the Provenance-Directed C&B [84] (Section 3.3.2), which is an

improved version of the C&B algorithm.

3.3.1 The Chase&Backchase (C&B) Algorithm

The Chase&Backchase (C&B) is an algorithm for rewriting queries under integrity

constraints [62]. We illustrate the algorithm on a very restricted case of a query reformulation

problem, which is finding total rewriting (i.e., base tables are disallowed) of queries using

materialized views.

Reformulation Under Constraints. We write D |= Σ if a database instance D satisfies

all the constraints in a set Σ. Query Q1 is contained in query Q2 under the set Σ of constraints

(denoted Q1vΣ Q2) if and only if Q1(D)⊆Q2(D) for every database D |= Σ, where Q(D) denotes
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the result of Q on D. Q1 is equivalent to Q2 under C (denoted Q1 ≡Σ Q2) if and only if Q1 vΣ Q2

and Q2 vΣ Q1.

Let S and T be relational schemas related by set Σ of constraints, and Q a query formulated

against S. A reformulation of Q under Σ is a query R formulated against T , such that Q≡Σ R

The C&B algorithm is based on expressing queries as conjunctive queries and the view

definitions as a set CV of embedded dependencies. Then, chasing with CV as well as with other

integrity constraints I. We denote the result of chasing a query Q with Σ = CV ∪ I as QΣ.

Phases of The C&B algorithm: The algorithm proceeds in two phases:

Chase: The input query Q is chased with Σ, to obtain a chase result QΣ. Then, the

subquery U of QΣ is obtained by restricting QΣ to the schema of the views (a.k.a. target schema).

U is called the universal plan.

Backchase: In this phase, the subqueries of the universal plan U are checked for equiva-

lence (under Σ) to Q. The output of this phase is all minimal-equivalent subqueries (i.e., contain

no subqueries that are already equivalent to Q). This equivalence check is performed by chasing

“back” each subquery sq in U , and checking whether Q has a containment mapping into sqΣ.

We illustrate the algorithm on the following running example (the example adopted from

[84, 59]). For simplicity, we discuss the example in the absence of integrity constraints I and only

use CV constraints.

Example 3.3.1 (Example of The C&B Algorithm from [84, 59]). Consider the query

Q(x) :−R(x,w,y),S(y,z),T (z,e)

and assume that we have the following views defined:

VR(x,y) :−R(x,w,y)

VS(y,z) :−S(y,z)
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VRS(x,z) :−R(x,w,y),S(y,z)

VT (z,e) :−T (z,e)

The reader realizes easily that

R1(x) :−VRS(x,z),VT (z,e)

R2(x) :−VR(x,y),VS(y,z),VT (z,e)

are equivalent views-based rewritings of Q. In addition, R1 and R2 are minimal rewritings since

non of them contain subqueries that are already equivalent to Q.

In order to find these two rewritings, the algorithm requires capturing the view definitions

by a set CV of embedded dependencies. CV is obtained by stating the inclusion (in both directions)

between the result of the query defining each view and the view’s extent [34]. For example, CV is

the following set of embedded dependencies:

V IO
R : ∀x∀w∀y R(x,w,y)→VR(x,y)

V OI
R : ∀x∀y VR(x,y)→∃w R(x,w,y)

V IO
S : ∀y∀z S(y,z)→VS(y,z)

V OI
S : ∀y∀z VS(y,z)→ S(y,z))

V IO
RS : ∀x∀w∀y∀z R(x,w,y),S(y,z)→VRS(x,z)

V OI
RS : ∀x∀z VRS(x,z)→∃w∃y R(x,w,y),S(y,z)

V IO
T : ∀z∀e T (z,e)→VT (z,e)

V OI
T : ∀z∀e VT (z,e)→ T (z,e)

The Chase Phase: When chasing Q with CV , the only applicable chase steps involve V IO
R ,

V IO
S , V IO

T and V IO
RS , yielding the following chase result:

22



QCV (x) :−R(x,w,y),S(y,z),T (z,e),VR(x,y),VS(y,z),VT (z,e),VRS(x,z)

Restricting QCV to the schema of the views results into the following universal plan U:

U(x) :−VR(x,y),VS(y,z),VT (z,e),VRS(x,z)

The Backchase Phase: Now, the input to the backchase is U, where the subqueries of U

are inspected for equivalence with Q. The rewritings R1 and R2 above are among these subqueries.

To determine that a subquery sq in U is equivalent to Q, we chase sq back with CV , and we search

for a containment mapping from Q into sqCV . In this example, we illustrate only for the subquery

of U corresponding to R1. The only applicable chase steps involve V OI
RS and V OI

T , which yields:

RCV
1 (x) :−VRS(x,z),VT (z,e),R(x,w,y),S(y,z),T (z,e)

Since there is a containment mapping h(Q) from Q into RCV
1 , R1 is an equivalent and

minimal rewriting of Q.

One major problem with the backchase is that it inspects exponentially many subqueries

of U , even when there were only very few minimal rewritings. In the next section, we briefly

introduce the PACB algorithm [84], which employs much more goal-directed search techniques

and inspects up to exponentially fewer reformulation candidates than the C&B algorithm. PACB

is provably sound and complete for conjunctive queries and large classes of constraints and has

been shown to outperform by orders of magnitude the commercial optimizer of a major relational

vendor even when limited to the key and foreign key constraints that commercial optimizers

understand.

3.3.2 The Provenance-Directed C&B: PACB

The C&B algorithm enumerates the subqueries of the universal plan U in a bottom-

up fashion and chases each of them in isolation to determine equivalence to the query Q. This
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approach leads to redundant chasing of the atoms, and it also leads to useless chasing of subqueries

that are not equivalent to Q.

The goal of the PACB algorithm [84] is to replace the many isolated subqueries chases

with a single chase of the universal plan U . To do so, PACB keeps track of the provenance of each

atom, where the provenance of an atom a gives the set of subqueries of U , whose chasing led to

the creation of a. We illustrate the algorithm by revisiting Example 3.3.1 from Section 3.3.1.

Example 3.3.2 (The Example of PACB Approch From [84]). Revisiting Example 3.3.1, applica-

ble chase steps of U with CV involve V OI
R , V OI

S , V OI
T and V OI

RS , yielding

UCV (x) :− VR(x,y),VS(y,z),VT (z,u),VRS(x,z),

R(x,w1,y),S(y,z),T (z,e),R(x,w2,y1),S(y1,z)

Notice that they query Q has two containment mappings into UCV :

h1 = {x→ x,y→ y1,w→ w2,z→ z,e→ e}

h2 = {x→ x,y→ y,w→ w1,z→ z,e→ e}

Now, we show UCV , this time annotating its atoms with a unique ID called a provenance

term. The provenance annotations appear as superscripts:

UCV (x) :− VR(x,y)VR,VS(y,z)VS ,VT (z,u)VT ,VRS(x,z)VRS ,

R(x,w1,y)VR ,S(y,z)VS ,T (z,e)VT ,R(x,w2,y1)
VRS ,S(y1,z)VRS

The view atoms in UCV are annotated by themselves since they are not introduced by

chasing. The R, S and T atoms are introduced by chasing V OI
R , V OI

S , V OI
T and V OI

RS . For instance,

the first R atom: R(x,w1,y) is introduced by chasing VR(x,y) with the dependency V OI
R , while

the second R atom: R(x,w2,y1) is introduced by chasing VRS(x,z) with V OI
RS . The provenance

formula 1 π(h1) of the first image h1 of Q is VRS∧VT , which corresponds to the rewriting R1 in

1Provenance formulas are constructed from provenance terms using logical conjunction and disjunction with
their expected properties such as commutativity, distributivity, idempotency and absorption.
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Example 3.3.1, while the provenance formula π(h2) of the second image h2 of Q is VR∧VS∧VT ,

which corresponds to the rewriting R2 in the same running example.

Notice that we immediately identify the two rewritings of Q by reading them off directly

from the provenance formulas: π(h1) and π(h2) of Q images in UCV . With this approach, the

PACB algorithm avoids fruitless individual chases of the subqueries in U.
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Chapter 4

ESTOCADA: Bringing Semantic

Optimization to Hybrid Stores

4.1 Introduction

This chapter presents ESTOCADA, an extensible lightweight framework for bringing

semantic query optimization on top of hybrid stores. The novelty of ESTOCADA is to find a

semantically equivalent views-based rewriting of a given hybrid query via a reduction from

multi-models views-based query rewriting to relational rewriting under integrity constraints. We

formalize our guarantees in terms of soundness and completeness and show that ESTOCADA

improves the performance in natural scenarios for both cross-models and single model user

queries.

4.1.1 Motivating example

Consider the Medical Information Mart for Intensive Care III (MIMIC-III) [88] dataset,

comprising health data for more than 40.000 Intensive Care Unit (ICU) patients from 2001 to

2012. The total size of 46.6 GB, and it consists of : (i) all charted data for all patients and
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their hospital admission information, ICU stays, laboratory measurements, caregivers’ notes,

and prescriptions; (ii) the role of caregivers (e.g., MD stands for “medical doctor”), (iii) lab

measurements (e.g., ABG stands for “arterial blood gas”) and (iv) diagnosis-related groups (DRG)

codes descriptions.

Our motivation query Q1 is: “for the patients transferred into the ICU due to “coronary

artery” issues, with abnormal blood test results, find the date/time of admission, their previous

location (e.g., emergency room, clinic referral), and the drugs of type “additive” prescribed to

them”. Evaluating this query through the AsterixDB JSON store (v9.4) [4] took more than 25

minutes; this is because the system does not support full-text search by an index if the text occurs

within a JSON array. In SparkSQL (v2.3.2), the query took more than an hour due to its lack of

indexes for selective data access. In the MongoDB JSON store (v4.0.2) [11], it took more than

17 minutes due to its limited join capability. Finally, in PostgreSQL with JSON support (v9.6),

denoted Postgres in the sequel, Q1 took ≈ 12.6 minutes.

Now, consider we had at our disposal three materialized views which pre-compute partial

results for Q1. SOLR is a well-known highly efficient full-text server. It is also capable of

handling JSON documents. Consider a SOLR server that stores a view V1 storing the IDs of

patients, their hospital admission IDs, and the caregivers’ reports, including notes on the patients’

stay (e.g., detailed diagnosis). Full-text search on V1 for ”coronary artery” allows retrieving the

IDs of the respective patients efficiently. Further, consider that a Postgres server stores a view

V2 with the patient’s meta-data information and their hospital admission information, such as

admission time and patients’ location prior to admission. Finally, assume available a view V3,

which stores all drugs that are prescribed for each patient that has “abnormal blood” test results

as a JSON document stored in Postgres.

Now, we are able to evaluate Q1 by a full-text search on V1 followed by a BindJoin [123]

with the result of filtering V3, and projecting prescribed drugs as well as patients’ admission

time and prior location from V2. Using Tatooine [45], a Java-based hybrid execution engine
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(implementing select, project, join, etc.), to access the views and join them, this takes about ≈ 5.7

mins, or a speedup of 5× w.r.t. plain JSON query evaluation in SparkSQL and AsterixDB. This

is also a speedup of 2× and speedup of 3× w.r.t. plain JSON query evaluation in Postgres and

MongoDB, respectively.

Lessons learned. We can draw the following conclusions from the above example.

(1.) Unsurprisingly, materialized views drastically improve query performance since they pre-

compute partial query results. (2.) More interestingly: materialized views can strongly improve

performance even when stored across several data stores, although such a hybrid scenario incurs

a certain performance penalty due to the marshaling of data from one data model/store to another.

In fact, exploiting the different strengths of each system (e.g., SOLR’s text search, Postgres’

efficient join algorithms, etc.) is the second reason (together with materialized view usage) for

our performance gains. (3.) Different system combinations work best for different queries; thus it

must be easy to add/remove a view in one system, without disrupting other queries that may be

currently well-served. As known from classical data integration research [81], such flexibility

is attained through the “local-as-view” (LAV) approach (see Chapter 2), where the content of

each data source is described as a view. Thus, adding or removing a data source from the system

is easily implemented by adding or removing the respective view definition. (4.) Application

data sets may come in a variety of formats, e.g., Apache log data is often represented in CSV.

However, while the storage model may change as data migrates, applications should not be

disrupted. A simple way of achieving this is to guarantee them access to the data in its native

format, regardless of where it is stored.

Observe that the combination of 2., 3. and 4. above goes well beyond the-state-of-the-art.

Most LAV systems assume both the application data and the views are organized according

to the same data model (mostly relational or XML). Thus, their view-based query rewriting

algorithms are designed specifically within the bounds of that model, e.g., relational [102], or

XML [51, 120, 118]. Different from these, some LAV systems [109, 64] allow different data
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Table 4.1: Models and languages supported by ESTOCADA.

Data model Query language/API Systems
Relational SQL Major vendors

JSON SparkSQL Spark [35]
JSON AQL/SQL++ AsterixDB [4]
JSON SQLw/JSON Postgres

Key-value Redis API Redis
Full-text and JSON Solr API Solr

XML XQuery, XPath Saxon [19]
Property Graph Cypher Neo4j [14]

models for the stored views but consider only the case when the application data model is XML.

Consequently, the query answering approach adopted in these systems is tailored toward the

XML data model and query language. In contrast, we aim at a unified approach, supporting

any data model both at the application and at the view level. The core technical question to be

answered in order to attain such performance benefits without disrupting applications is view-

based query rewriting across an arbitrary set of data models. We introduce a novel approach for

cross-models view-based rewriting. Our approach is currently capable of handling the systems

listed in Table 4.1, together with their data models and query languages.

Chapter Outline. The chapter is organized as follows. Section 4.2 formalizes the

rewriting problem we solve. Section 4.3 outlines our approach; at its core is a view-based query

rewriting algorithm based on an internal relational model, invisible to users and applications, but

which crucially supports rewriting under integrity constraints. Section 4.4 describes the language

we use for (potentially cross-models) views and queries. Section 4.5 shows how we reduce

the multi-data model rewriting problem to one within this internal pivot model, then transform

rewritings obtained there into a hybrid integration query. Section 4.9 describes a set of extensions

we contributed to the rewriting engine at the core of our approach to make it scale in a hybrid

setting. Section 4.12 formalizes the guarantees of our approach. We present our experimental

evaluation in Section 4.13, and conclude in Section 4.14.
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4.2 Problem statement

We assume a set of data model-query language pairs P = {(M1,L1),(M2,L2), . . . ,(Mn,Ln)}

such that for each i≥ 1, an Li query evaluated against an Mi instance returns an answer which is

also an Mi instance. The same model may be associated to several query languages; for instance,

AsterixDB, MongoDB and Postgres have different query languages for JSON. As we shall see,

we consider expressive languages for realistic settings, supporting conjunctive querying, nesting,

aggregation, and object creation. Without loss of generality, we consider that a language is paired

with one data model only.

We consider a hybrid setting comprising a set of stores S = {S1,S2, . . . ,Sn} such that each

store S ∈ S is characterized by a pair (MS,LS) ∈ P , indicating that S can store instances of the

model MS and evaluate queries expressed in LS.

We consider a set of datasets D = {D1,D2, . . . ,Dn}, such that each data set D ∈ D is

an instance of a data model MD. A dataset D is stored as a set of (potentially overlapping)

materialized views V ={V 1
D,V

2
D . . .}, such that for every j ≥ 1, V j

D is stored within the storage

system S j
D ∈ S . Thus, V j

D is an instance of a data model supported by S j
D

1.

We consider a hybrid integration language IL , capable of expressing computations to be

made within each store and across all of them, as follows:

• For every store S and query qS ∈ LS, IL allows that qS should be evaluated over S directly;

• Further, IL allows expressing powerful processing over the results of one or several such

source queries (e.g., join results).

Such integration language has been proposed in several hybrid systems [95, 68]; we use it

to express queries and computations over the views. An IL expression bears obvious similarities

with an execution plan in a wrapper-mediator system (see Chapter 2); its evaluation is split

1For uniformity, we describe any collection of stored data as a view, e.g., a table stored in an RDBMS is an
(identity) view over itself.
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Figure 4.1: ESTOCADA reduction outline.

between computations pushed to the stores and subsequent operations applied by the mediator on

top of their results. The main distinction is that IL remains declarative, abstracting the details of

each in-store computation, which is simply specified by a query in the store’s language.

We assume available a cost model which, given an IL expression e, returns an estimation

of the cost of evaluating e (including the cost of its source sub-queries). The cost may reflect

e.g., disk I/O, memory needs, CPU time, transfer time between distributed sites. Devising a

cost-based model for a hybrid setting is beyond the scope of this work.

We term a rewriting of a query q as an integration query expressed in IL , which is

equivalent to q. We consider the following rewriting problem:

Definition 6 (Cross-Model Rewriting Problem). Given a query q ∈ IL over several datasets Di,

1≤ i≤ n, and a set of views V materialized over these datasets, find the minimum-cost equivalent

rewriting RW of q using the views.

Most modern query languages include primitives such as arithmetic operations, aggrega-

tion, and calls to arbitrary UDFs; these suffice to preclude the decidability of checking whether

two queries are equivalent. Therefore, we aim at finding rewritings under black-box (uninter-

preted) function semantics (UFS): we seek rewritings that make the same function calls, with the

same arguments as the original query.
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4.3 ESTOCADA Overview

We outline here our approach for solving the problem introduced in Section 4.2:

Our integration language: QBT XM. We devised QBT XM, a concrete integration lan-

guage which supports queries over several data stores, each with its own data model and query

language. QBT XM follows a block-based design, with blocks organized into a tree in the spirit

of the classical Query Block Trees (QBT) introduced in System R [125], slightly adapted to

accommodate subsequent SQL developments, in particular, the ability to nest sub-queries within

the select clause [85]. The main difference in our setting is that each block may be expressed in a

different query language and carried over data of a different data model (e.g., SQL for relational

data, key-based search API for key-value data, different JSON query languages). We call the

resulting language QBT XM, for cross-models QBT (detailed in Section 4.4.2). We note that exiting

hybrid query languages [95, 68] resembles QBT XM, and they can be translated directly to QBT XM,

as demonstrated in [32]. Excerpts of QBT XM grammar are delegated to Appendix A.2.

QBT XM Views. Each materialized view V is defined by an QBT XM query (or other

hybrid integration languages); it may draw data from one or several data sources of the same or

different data models. Each view returns (holds) data following one data model, and is stored in a

data store supporting that model.

Encoding into a Single Pivot Model. We reduce the cross-models rewriting problem

to a single-model setting, namely relational constraint-based query reformulation, as follows

(see also Figure 5.1; yellow background identifies the areas where we bring contributions in this

work.). First, we encode relationally: the structure of original datasets, the view specifications,

and the application query.

Note that the relations used in the encoding are virtual, i.e., no data is migrated into them;

they are also hidden, i.e., invisible to both the application designers and to users. They only serve

to support query rewriting via relational techniques.
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The virtual relations are accompanied by integrity constraints that reflect the features of

the underlying data models (for each model M, a set enc(M) of constraints). For instance, we

describe the organization of a JSON document data model using a small set of relations such

as Child(parentID, childID, key, type) together with the constraint specifying that every child

has just one parent. Such modeling had first been introduced in local-as-view XML integration

works [109, 64]. The constraints are TGDs and EGDs (see Chapter 3), extended with such

well-researched constraints as denial constraints [77] and disjunctive constraints [76]. We detail

the pivot model in Section 4.5.

Reduction From Cross-Model to Single-Model Rewriting. Our reduction translates

the declaration of each view V to additional constraints enc(V ) that reflect the correspondence

between V ’s input data and its output. Constraints have been used to encode single-model

views [65] and correspondences between source and target schemas in data exchange [71]. The

novelty here is the rich collection of supported models, and the cross-models character of the

views.

An incoming query Q over the original datasets DS1, . . . ,DSl , whose data models re-

spectively are M1, . . . ,Ml , is encoded as a relational query enc(Q) over the dataset’s relational

encoding. enc(Q) is centered around conjunctive queries, with extensions such as aggregates,

UDFs, and nested sub-queries.

The reformulation problem is thus reduced to a purely relational setting: given a relational

query enc(Q), a set of relational integrity constraints encoding the views, enc(V1)∪ . . .∪ enc(Vn),

and the set of relational constraints obtained by encoding the data models M1, . . . ,Ml , find the

queries RW i
r expressed over the relational views, for some integer k and 1≤ i≤ k, such that each

RW i
r is equivalent to enc(Q) under these constraints.

The challenge in coming up with the reduction consists in designing a faithful encoding,

i.e., one in which rewritings found by (i) encoding relationally, (ii) solving the resulting relational

reformulation problem, and (iii) decoding each reformulation RW i
r into a QBT XM query R =
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dec(RW i
r ) over the views in the polystore, correspond to rewritings found by solving the original

problem. That is, R is a rewriting of Q given the views {V1, . . . ,Vn} if R = dec(RW i
r ), where RW i

r

is a relational reformulation of enc(Q) under the constraints obtained from encoding V1, . . . ,Vn,

M1, . . . ,Ml . The reduction is detailed in Sections 4.5, 4.6 and 4.7 .

Relational Rewriting Under Constraints. To solve the single-model rewriting problem,

we need to reformulate relational queries under constraints. The algorithm of choice is known

as Chase & Backchase (C&B, in short, see Chapter 3), introduced in [63] and improved in [84]

to yield the Provenance-Aware C&B algorithm (PACB, in short, see Chapter 3). PACB was

designed to work with relatively few views and constraints. In contrast, in the hybrid setting, each

of the many data sources is described by a view, and each view is encoded by many constraints.

For instance, the JSON views in our experiments (Section 4.13) are encoded via ≈ 45 TGDs

involving 10-way joins in the premise. To cope with this complexity, we incorporated into PACB

novel scale-up techniques (discussed in Section 4.9.1) to make it scalable in a hybrid setting.

PACB was designed for conjunctive queries under set semantics. Towards supporting a richer

class of queries, we extended it to bag semantics (Section 4.10) and QBTs (Section 4.11).

Decoding the Relational Rewritings. On any relational reformulation RW i
r issued by

our modified PACB rewriting, a decoding step dec(RW i
r ) is performed to:

(i) Group the reformulation atoms by the view they pertain to by following the connections

among atoms and knowledge of the encoded data model.

(ii) Reformulate each such atom group into a query that can be completely evaluated over

a single view.

(iii) If several views reside in the same store, identify the largest subquery that can be

delegated to that store, along the lines of query evaluation in wrapper-mediator systems [79].

Evaluation of Non-Delegated Operations. A decoded rewriting may be unable to push

(delegate) some query operations to the store hosting a view if the store does not support them; for

instance, most key-value stores do not support joins. In this case, operations have to be executed
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outside of that store. For instance, to evaluate such “last-step” operations, our lightweight

execution (hybrid) engine [45] supports many logical and physical operators, including bind

joins [123] (with sideways information passing) to evaluate nested subqueries, and many other

operators.

Choice of the Most Efficient Rewriting. Decoding may lead to several rewritings

R1, . . . ,Rk; for each Ri, several evaluation plans may lead to different performance. The problem

of choosing the best rewriting and best evaluation plan in this setting recalls query optimization in

distributed mediator systems [119]. For each rewriting Ri, we denote by c(Ri) the lowest cost of

an evaluation plan that we can find for Ri; we choose the rewriting Rbest that minimizes this cost.

While devising cost models for hybrid settings is beyond the scope of this paper, we architected

ESTOCADA to take the cost model as a configuration parameter (using the hybrid engine’s own

cost estimator, typically accessible via an API).

4.4 The QBT XM Language

We present here the language we use for views and queries. First, we recall the classical

Query Block Trees (QBTs), then we extend them to cross-model views and queries.

4.4.1 Query Block Trees (QBT)

Since many of the languages that ESTOCADA supports allow for nested queries and

functions (user-defined or built-in such as aggregates), our pivot language Query Block Trees

(QBTs) also supports these features. These are essentially the classical System R QBTs [125],

slightly adapted to accommodate subsequent SQL extensions, such as nesting in the select clause

(introduced in SQL-1999 [85]). We first illustrate QBTs on a SQL example.

Example 4.4.1 (QBT Query). Consider the SQL query in Figure 4.2, which computes for each

student who is not enrolled in any course for the Spring’16 quarter, the number of Spring’16
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SELECT s.ssn, COUNT (SELECT w.cno
FROM Waitlist w
WHERE w.ssn = s.ssn

AND w.qtr = ’Spring 2016’
) AS cnt

FROM Student s

WHERE NOT EXISTS (SELECT c.no
FROM Course c, Enrollment e
WHERE c.no = e.cno

AND s.ssn = e.ssn
AND e.qtr = ’Spring 2016’)

Figure 4.2: QBT query example.

courses she is waitlisted for (a count of 0 is expected if the student is not waitlisted). While this

query could be written using joins, outer joins, and group by operations, we show a natural

alternative featuring nesting (which illustrates how we systematically normalize away such

operations):

This query consists of three blocks. The outermost SELECT-FROM-WHERE expression

corresponds to the root block; call it B0. The two nested SELECT-FROM-WHERE expressions

are modeled as children blocks of the root block, call them B00 and B01 for the block nested in the

SELECT clause and the block nested in the WHERE clause, respectively

The variables occurring in a block B can be either defined by B (in which case we call

them bound in B), or by one of its ancestors (in which case they are called free in B). We assume

W.l.o.g. that the bound variables of B have fresh names, i.e., they share no names with variables

bound in B’s ancestors. For example, variable s is bound in B0, but it occurs free in both B00 and

B01.

QBTs model SELECT-FROM-WHERE expressions as blocks, organized into a tree whose

parent-child relationship reflects block nesting. Nested blocks always appear as arguments to

functions, be they built-in (e.g., COUNT for B00 and NOT EXISTS for B01 in Example 4.4.1)

or user-defined. While not shown in Example 4.4.1, the case of blocks nested within the FROM

clause corresponds to the identity function.
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4.4.2 Integration Language: QBT XM

To specify cross-model queries and views, we adopted a block-based design, similar to

QBTs, but in which each block is expressed in its own language, signaled by an annotation on

the block. We call the resulting language QBT XM, which stands for cross-model QBT. QBT XM

queries comprise FOR and RETURN clauses. The FOR clause introduces several variables and

specifies their legal bindings. The RETURN clause specifies what data should be constructed for

each binding of the variables. Variables can range over different data models, which is expressed

by possibly several successive blocks, each pertaining to its own model. In SQL style, this defines

a Cartesian product of the variable bindings computed by each block from the FOR clause; this

Cartesian product can be filtered through WHERE clause. We impose the restriction that variables

shared by blocks spanning different data models must be of text or numeric type, so as to avoid

dealing with conversions of complex values across models. While there is no conceptual obstacle

to handle such conversions automatically, the topic is beyond the scope of this work. We describe

QBT XM informally, by examples; the grammar of QBT XM is delegated to Appendix A.2.

Example 4.4.2 (View Definition Expressed in QBT XM). We illustrate the QBT XM definition of

views V1 and V2 from Section 4.1 in Figure 4.3, using AsterixDB’s SQL++ syntax (easier to read

than the JSON syntax of PostgreSQL). FOR clauses bind variables, while RETURN clauses

specify how to construct new data based on the variable bindings. Blocks are delimited by braces

annotated by the language whose syntax they conform to. The annotations AJ, PR, and SJ stand

for the SQL++ language of AsterixDB, the languages of Postgres and Solr, respectively. Also,

below, PJ and RK stand respectively for PostgreSQL’ JSON query language and for a simple

declarative key-value query language that we designed for Redis.
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View V1:
FOR AJ:{SELECT M.PATIENTID AS patientID ,

A.ADMISSIONID AS admissionID ,
NE.REPORT AS report

FROM MIMIC M, M.ADMISSIONS A, A.NOTEEVENTS NE}

RETURN SJ:{"PATIENTID":patientID , "ADMISSIONID":admissionID , "REPORT":report}

View V2:
FOR AJ:{SELECT M.PATIENTID AS patientID ,

A.ADMISSIONID AS admissionID ,
A.ADMISSIONLOC AS admissionLoc
A.ADMISSIONTIME AS admissionTime

FROM MIMIC M, M.ADMISSIONS A}

RETURN PR:{patientID , admissionID , admissionLoc , admissionTime}

Figure 4.3: View definitions expressed in QBT XM.

4.5 Reduction from Cross-Model to Single-Model Setting

A key requirement in our setting is the ability to reason about queries and views involving

multiple data models and query languages. This is challenging for several reasons. First, not every

data model/query language setting supported in ESTOCADA comes with a known view-based

query rewriting (VBQR, in short) algorithm: consider key-value pairs as the data model and

declarative languages over them, or JSON data and its query languages in circulation, etc. Second,

even if we had these algorithms for each model/language pair, neither would readily extend to a

solution of the cross-model VBQR setting in which views may be defined over data from various

models, materializing their result in yet again distinct models, and in which query rewritings

access data from potentially different models than the original query. Third, for the feasibility

of development and maintenance as the set of supported model/language pairs evolves, any

cross-model VBQR solution needs to be modularly extensible to additional models/languages,

in the sense that no modification to the existing code is required and it suffices to just add code

dealing with the new model/language pair. Moreover, the developer of this additional code should

not need to understand any of the other model/language pairs already supported in ESTOCADA.

To address these challenges, we reduce the cross-model VBQR problem to a single-
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Table 4.2: Snippet of V R EJ schema.

CollectionNameJ(ID)

ChildJ(parentID,childID,key, type)
EqJ(x,y)

Value(x,y)

model VBQR problem. That is, we propose a unique pivot data model, on which QBT (Sec-

tion 4.4.1) serves as a pivot query language. Together, they allow us to capture data models,

queries, and views so that cross-model rewritings can be found by searching for rewritings in the

single-model pivot setting instead.

Our pivot model is relational, and it makes prominent use of expressive integrity con-

straints. This is sufficiently expressive to capture the key aspects of the data models in circulation

today, including: freely nested collections and objects, object identity (e.g., for XML element

nodes and JSON objects), limited binding patterns (as required by key-value stores), relationships

(in the E/R and ODL sense), functional dependencies, and much more. The integrity constraints

we use are TGDs or EGDs (see Chapter 3), extended to denial constraints [77] and disjunctive

constraints [76].

4.5.1 JSON Model

We represent JSON documents as relational instances conforming to the schema V R EJ

(Virtual Relational Encoding of JSON) in Table 4.2. We emphasize that these relational instances

are virtual, i.e., the JSON data is not stored as such. Regardless of the physical storage of the

JSON data, we only use V R EJ to encode JSON queries and views relationally, in order to

reason about them.

V R EJ constraints express the fact that JSON databases are organized into named

collections of JSON values, which in turn can be objects (consisting of a set of key-value pairs),

arrays of values, and scalar values (numeric or text).
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We model objects, arrays, and values in an object-oriented fashion, i.e. they have identities.

This is because some JSON stores, e.g., MongoDB and AsterixDB, support query languages that

refer to identity and/or distinguish between equality by value versus equality by identity. Our

modeling supports both the identity-aware and the identity-agnostic view of JSON via appropriate

translation of queries and views into pivot language expressions over the V R EJ schema.

Relation CollectionNameJ (see Table 4.2) attaches to each persistent collection name an

ID. ValueJ attaches a scalar value y to a given variable x. ChildJ states that the value identified

by childID is immediately nested within the value identified by parentID. The type attribute

records the type of the parent (array “a” or object “o”) and determines the kind of nesting and

the interpretation of the key attribute: if the parent is an array, key holds the position at which the

child occurs; if the parent is an object, then key holds the name of the key whose associated value

is the child.

Our modeling of the parent-child (immediate nesting) relationship between JSON values

provides the type of value only in conjunction with a navigation step where this value is a parent,

and the step leads to a child value of undetermined type. This modeling reflects the information

one can glean statically (at query rewriting time, as opposed to query runtime) from JSON query

languages in circulation today.

Recall that JSON data is semi-structured, i.e., it may lack a schema. Queries can, therefore,

express navigation leading to values whose type cannot be determined statically if these values

are not further navigated into. The type of a value can be inferred only from the type of navigation

step into it.

Example 4.5.1 (JSON Navigation). If query navigation starts from a named JSON collection

“coll” and proceeds to the fifth element e therein, we can infer that “coll” is of array type, but we

do not know the type of e. Only if the query specifies an ensuing lookup of the value v associated

to key “k” in e can we infer e’s type (object). However, absent further navigation steps, we cannot

tell the type of the child value v.
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Importantly, we assume that fields’ values are homogenous in this work. The reason is

that different systems have different semantics and behavior on handling queries that access fields

with heterogeneous types (e.g., failing, warning, returning null, or missing (see Section 4.5.9)).

We leave capturing such different semantics to future work.

Finally, relation EqJ is intended to model value-based equality for JSON (id-based equality

is captured directly as equality of the id attributes).

We capture the intended meaning of the V R EJ relations via constraints that are inherent

in the data model (i.e. they would hold if we actually stored JSON data as a V R EJ instance).

We illustrate a few of these below:

The fact that a persistent name uniquely refers to a value is expressed by the EGD (4.1)

below. EGD (4.2) states that an object cannot have two distinct key-value pairs sharing the same

key, or that an array cannot have two distinct elements at the same position. TGDs (4.3) and (4.4)

state that value-based equality is symmetric, respectively transitive, and TGD (4.5) states that

value-equal parents must have value-equal children for each parent-child navigation step. EGD

(4.6) states that no two distinct scalar values may correspond to a given id.

∀x∀y CollectionNameJ(x)∧CollectionNameJ(y) → x = y (4.1)

∀p∀c1∀c2∀k∀t ChildJ(p,c1,k, t)∧ChildJ(p,c2,k, t) → c1 = c2 (4.2)

∀x∀y EqJ(x,y) → EqJ(y,x) (4.3)

∀x∀y∀z EqJ(x,y)∧EqJ(y,z) → EqJ(x,z) (4.4)

∀p∀p′∀c∀k∀t EqJ(p, p′)∧ChildJ(p,c,k, t) →

∃c′ EqJ(c,c′)∧ChildJ(p′,c′,k, t) (4.5)

∀x∀v1∀v2 Value(x,v1)∧Value(x,v2) → v1 = v2 (4.6)

Encoding JSON Views and Queries. We present in this subsection how we encode

JSON queries and views using the V R EJ schema. JSON queries (or views) can be nested:
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V :
SELECT VALUE {"CAaddresses": (SELECT VALUE D

FROM P.Addresses AS D
WHERE D.state="CA")}

FROM persons AS P

Q:
SELECT D.zip, D.street
FROM persons AS P, P.Addresses AS D
WHERE D.state="CA"

Figure 4.4: JSON view V and query Q.

the SELECT clause (a.k.a. RETURN clause in some languages [4]) may (i) constructs fresh

elements (i.e., JSON objects), (ii) refers to variables bound in the FROM clause, (iii) contains

SELECT-FROM-WHERE2 expressions (a.k.a. FWR expressions in some languages.)

We call a block b, a fragment of a nested JSON query delimited as follows: it has the

“FROM” clause, “WHERE” clause (if present), and “SELECT” clause. If a JSON object is

created in the SELECT clause, we refer to it hereafter as a return template for a block b, denoted

as rt(b). The local variables of a block b, denoted as localDe fVars(b), represent a collection

of variables introduced in b. Moreover, free variables of b, denoted as f reeVars(b), represent

variables mentioned in b but introduced in its ancestors. We call a collection of variables in a

block b visible, denoted as visibleVars(b) if other blocks use them.

In the example below, we show how we encode a JSON query relationally using the

V R EJ schema, and translate a JSON view into additional relational integrity constraints,

capturing the correspondence between the view input and output, with the knowledge of each

block information described above.

Example 4.5.2. (Encoding JSON View and Query). Consider the JSON query Q and view V

(using AsterixDB’s SQL++ syntax) in Figure 4.4; the query Q asks to find the zip code and street

name of “CA” addresses for each person. The nested view V constructs a JSON object that has

a list of “CA” addresses for each person. The view V consists of two blocks. The outermost

2The fragment of the supported JSON language in this work includes select-project-join queries with nested
blocks, JSON object navigation, array unnest and object construction.
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SELECT-FROM expression corresponds to the root block; call it V0. The nested SELECT-FROM-

WHERE block in the SELECT clause is modeled as a child block of V0; call it V00. Notice that

finding the rewriting of Q using V requires reasoning about the nested blocks and the construction

of a new JSON object in the SELECT clause of V . The view V cannot be directly matched against

Q.

Encoding of View V as a Set of Constraints. The view V will be partitioned into two

blocks: V0 and V00. For each block b, we capture rt(b), localDe fVars(b), f reeVars(b), and

visibleVars(b). For example, for the block V0, we have:

rt(V0) = {{“CAaddresses” :}}

localDe fVars(V0) = {P}

f reeVars(V0) = /0

visibleVars(V0) = {P}

Notice that f reeVars(V0) is empty since V0 is the root block. However, visibleVars(V0) =

{P} since P is visiable to the block V00. In the same fashion, we capture the following information

for the block V00:

rt(V00) = /0

localDe fVars(V00) = {D}

f reeVars(V00) = {P}

visibleVars(V00) = /0

rt(V00) is empty since there is no object creation in the SELECT clause in V00.

Now, given the information above for each block b, b will be encoded as a set of constraints.

First, we encode the root block V0, the following constraints are introduced for V0:

43



∀P persons(P)→V0ExtrJ(P) (4.7)

∀P V0ExtrJ(P)→∃ d0∃d1 V0CreateJ(d0,d1)∧V0SkJ0(d0,P)∧V0SkJ1(d1,P) (4.8)

∀ d0∀ d1V0 CreateJ(d0,d1)→V (d0)∧ChildJ(d0,d1,“CAaddresses”,“o”) (4.9)

The TGD (4.7) extracts the visible variable P to be accessed later by the constraint of

the child block V00. To enable rewriting, we would like the view V head exposes the ID of the

constructed JSON object in the SELECT clause (rt(V0)). This can be achieved by introducing

the TGDs (4.8) and (4.9). The TGD (4.8) creates two IDs: d0 and d1, the former represents the

ID of the constructed JSON object, and the latter represents the ID of the array “CAaddresses”,

which is immediately nested within the parent ID d0. These IDs are created using the Skolem

functions, which are modeled relationally using the relations V0SkJ0 and V0SkJ1. The variable P

in both relations corresponds to arguments of the Skolem call. Furthermore, we need to express

the fact that these relations model function and injective functions. We do this by means of key

constraints, basically stating that:

∀d1
0∀d2

0∀P V0SkJ0(d1
0 ,P)∧V0SkJ0(d2

0 ,P)→ d1
0 = d2

0 (function)

∀d0∀P1∀P2 V0SkJ0(d0,P1)∧V0SkJ0(d0,P2)→ P1 = P2 (injective)

Now, we encode the nested block V00 by introducing the following constraint:

V0ExtrJ(P)∧V0SkJ1(d1,P)∧ChildJ(P,A,“addresses”,“o”)∧ChildJ(A,D,“∗ ”,“a”)∧

ChildJ(D,S,“state”,“o”)∧Value(S,“CA”)→

ChildJ(d1,D,“∗ ”,“a”)

The nested block V00 is created within the return template rt(V0) of the root block V0.

The result of the nested block V00 is an array of “CA” addresses for each person P. The ID of

the array is d1, created by the Skolem function V0SkJ1(d1,P). The constraint encodes the fact

that each element in d1 is represented by the variable D obtained from unnesting the “addresses”

array and applying the condition (state=“CA”), as shown in the premise of the constraint. To
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encode the unnest operator, we use the ChildJ relation, where we specify the key attribute as ∗.

For example, the relation ChildJ(d1,D,“ ∗ ”,“a”) indicates that d1 is an array and D binds to

each element in d1.

Encoding of Query Q. The following is the relational encoding of the query Q using the

V R EJ schema:

Q(Z,ST ) :−persons(P),ChildJ(P,A,“addresses”,”o”),

ChildJ(A,D,“∗ ”,“a”),ChildJ(D,S,“state”,“o”),

Value(S,“CA”),ChildJ(D,ST,“street”,“o”),ChildJ(D,Z,“zip”,“o”);

Taking as input the query Q, set of the view V constraints, and constraints of V R EJ

relations, the constraints-based rewriting algorithm (see Chapter 3) finds the following equivalent

relational V -based rewriting of Q:

R(Z,ST ) :−V (d0),ChildJ(d0,d1,“CAaddresses”,“o”),

ChildJ(d1,D,“∗ ”,“a”),ChildJ(D,ST,“street”,“o”),ChildJ(D,Z,“zip”,“o”);

For brevity, we omit introducing the encoding of the unnest operator hereafter.

4.5.2 Key-Value Model

Our interpretation of the key-value pairs model is compatible with many current systems,

in particular Redis, supported by ESTOCADA. Calling a map a set of key-value pairs, the store

accommodates a set of persistently named maps (called outer maps). Within each outer map, the

value associated to a key may be either a map (called an inner map), or a scalar value. In the case

of an inner map, the value associated to a key is a scalar value.

Given the analogy between key-value and JSON maps, we model the former simi-

larly to the latter, as instances of the relational schema V R EK , consisting of the relations:

MapKV (name,mapId), ChildKV (parentID,childID,key, type) and EqKV (x,y). Here, MapKV
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Table 4.3: Snippet of V R EG schema.

ConnectionG(sID,dID, lID)

LabelG(lID,name)
PropertyG(lID,key,vID)

KindG(lID, type)
Value(x,y)

models the association between a persistent name and (the id of) an outer map. ChildKV reflects

the immediate nesting relationship between a map (the parent) and a value associated to one of

its keys (the child). The type attribute tells us whether the parent map is an outer or an inner

map (these are treated asymmetrically in some systems). The EqKV relation models value-based

equality, analogously to EqJ for JSON.

The intended semantics of these relations is enforced by similar constraints to the JSON

model, e.g., in a map, there is only one value for a key

∀p∀c1∀c2∀k∀t ChildKV (p,c1,k, t), ChildKV (p,c2,k, t)→ c1 = c2

persistent map names are unique

∀n∀x∀y MapKV (n,x), MapKV (n,y)→ x = y

4.5.3 Graph Model

We discuss in this subsection our relational encoding of property graph queries and views

using the schema V R EG (Virtual Relational Encoding of Graph) in Table 4.3. The relation

ConnectionG states that there is a relationship between a source node sID and a destination node

dID with the label ID lID. Every label in a graph has a name, and we capture that using the

LabelG relation. In addition, a label in a graph can be an “edge” (relationship) or a “node”, and the

type of a label is modeled using the KindG relation, where lID is the label ID, and type indicates

whether lID is an edge or a node. Nodes and relationships can have properties (key-value pairs).
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V :
MATCH (po:Post)<-[:REPLY -OF]-(m:Message)-[:HAS-CREATOR]->

(p:Person {firstName: "Amelie"})

CREATE (po)<-[:REPLY -OF-V]-(:Message_V
{creationDate:m.creationDate})

-[:HAS-CREATOR -V]->(p)
Q:
MATCH (:Person {firstName: "Amelie"})<-[:HAS_CREATOR]-

(m:Message)-[:REPLY_OF]->(p:Post)
MATCH (p)-[:HAS_CREATOR]->(c)
RETURN

m.creationDate AS mCreationDate ,
p.postId AS pPostId ,
c.personId AS originalPostAuthorId ,
c.lastName AS originalPostAuthorLastName

Figure 4.5: Graph view V and query Q.

Property attached to a label lID is encoded using the PropertyG relation, where vID is the value

associated with the key key.

We currently support a fragment of Cypher graph-based language. This fragment includes

(i) pattern-matching (MATCH), (ii) WHERE clause, containing simple predicates, and (ii) con-

struction of a new node and a relationship between nodes. We note that we currently do not

support the encoding of “Variable-length pattern matching” in the form: (n1)-[*]→(n2). This kind

of matching can not be expressed directly in a conjunctive query form. In addition, we do not

support filtering on patterns in the WHERE clause. We leave the investigation of addressing these

limitations to future work.

Example 4.5.3 (Encoding Graph View and Query). Consider the Gypher query Q and view V in

Figure 4.5; the query Q asks to find the IDs of all posts that “Amelie” replies to, the information

of the creators of these posts, and the creation dates of “Amelie”’s replies. The view V creates

a new node “Message−V ” that stores the creation date of “Amelie”’s reply “m” to a post

“po”. In addition, the view creates the “REPLY-OF-V” relationship that connects the new node

“Message−V ” with the original post “po” and the “HAS-CREATOR-V” relationship, which

indicates that “Amelie” is the creator of the “Message−V ” message. 3

3We note that the query Q is a simplified version of the query “interactive-short-2.cypher” in idbc benchmark.
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Encoding of View V as a Constraint. The view V is translated into the following TGD

using the set of relations in V R EG schema:

LabelG(po,“Post”),LabelG(m,“Message”),LabelG(id0,“REPLY −OF”),

ConnectionG(m, po, id0),LabelG(p,“Person”),PropertyG(p,“ f irstName”,vID0),

LabelG(id1,“HAS−CREATOR”),ConnectionG(m, p, id1),Value(vId0,“Amelie”),

PropertyG(m,“creationDate”,vID1)→

LabelG(id2,“Message−V ”),PropertyG(id2,“creationDate”,vID1),

LabelG(id3,“REPLY −OF−V ”),ConnectionG(id2, po, id3),

LabelG(id4,“HAS−CREATOR−V ”),ConnectionG(id2, p, id4)

Encoding of Query Q. The following conjunctive query is the relational encoding of the

query Q:

Q(vID1,vID2,vID2,vID4) :−LabelG(id0,“Person”),PropertyG(id0,“ f irstName”,vId0),

Value(vId0,“Amelie”),LabelG(m,“Message”),LabelG(id1,“HAS−CREATOR”),

ConnectionG(m, id0, id1),LabelG(p,“Post”),LabelG(id2,“REPLY −OF”),

ConnectionG(m, p, id2), LabelG(id3,“HAS−CREATOR”),ConnectionG(p,c, id3),

PropertyG(m,“creationDate”,vID1),PropertyG(p,“postId”,vID2),

PropertyG(c,“personId”,vID3),PropertyG(c,“lastName”,vID4);

The query Q is equivalent to the V -based relational rewriting R:

R < vID1,vID2,vID3,vID4 >:−PropertyG(p,“postId”,vID2),

PropertyG(c,“personId”,vID3),PropertyG(c,“ f irstName”,vID0),

PropertyG(c,“lastName”,vID4),PropertyG(id4,“creationDate”,vID1),

ConnectionG(p,c, id3),ConnectionG(id4, p, id5), ConnectionG(id4, id0, id6),

LabelG(id3,“HAS−CREATOR”),LabelG(id4,“Message−V ”),

LabelG(id5,“REPLY −OF−V ”),LabelG(id6,“HAS−CREATOR−V ”);
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Table 4.4: Snippet of V R EX schema.

Root(x) Elem(x)
ChildX(x,y) DescOrSel f (x,y)
Attrib(x,n,v) Tag(x,n,v)

4.5.4 XML Model

Query reformulation for XML has already been reduced in prior work to a purely relational

setting using constraints. We refer the reader to [65, 64] for more details. At high-level, an XML

document was represented as a virtual instance of the relational schema V R EX consisting of the

relations: {Root, Elem, ChildX , DescOrSel f , Tag, Attrib, Id, Text} (their schemas are shown in

Table 4.4).

The intended meaning of the relations in V R EX reflects the fact that XML data is a

tagged tree. The unary predicate Root denotes the root element of the XML document, and the

unary relation Elem is the set of all elements. ChildX and DescOrSel f are subsets of Elem ×

Elem and they say that their second component is a child, respectively a descendant of the first

component. Tag⊆ Elem × string associates the tag in the second component to the element in

the first. Attrib⊆ Elem × string × string gives the element, attribute name and attribute value

in its first, second, respectively third component. Id ⊆ string×Elem associates the element in

the second component to a string attribute in the first that uniquely identifies it (if DTD-specified

ID-type attributes exist, their values can be used for this). Text⊆ Elem × string associates to the

element in its first component the string in its second component.

[65] shows that some of the intended meaning of schema V R EX is captured by a set

T IX (True In XML) of constraints expressible as TGDs and EGDs, in some cases extended with

disjunction. We list below the most interesting ones:

(base) ∀x∀y ChildX(x,y)→ DescOrSel f (x,y)

(trans) ∀x∀y∀z DescOrSel f (x,y) ∧ DescOrSel f (y,z)→ DescOrSel f (x,z)
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(refl) ∀x Elem(x)→ DescOrSel f (x,x)

(someTag) ∀x Elem(x)→∃tTag(x, t)

(oneTag) ∀x∀t1∀t2 Tag(x, t1)∧Tag(x, t2)→ t1 = t2

(keyID) ∀x∀t1∀t2 Id(s,e1)∧ Id(s,e2)→ t1 = t2

(oneAttrib) ∀x∀n∀v1∀v2 Attrib(x,n,v1)∧Attrib(x,n,v2)→ v1 = v2

(oneLoop) DescOrSel f (x,y) ∧ DescOrSel f (y,x)→ y = x

(oneParent) ∀x∀y∀z ChildX(x,z)∧ChildX(y,z)→ x = y

(oneRoot) ∀x∀y Root(x)∧Root(y)→ x = y

(topRoot) ∀x∀y DescOrSel f (x,y) ∧ Root(y)→ Root(x)

Intuitively, (oneRoot) states that the root of the XML tree is unique, and by (topRoot) has

no ancestors beside itself. (someTag) and (oneTag) say that every element has precisely one tag.

The treeness of the data model is (partially) enforced by such constraints as (oneParent)

(every element has at most one parent), (noLoop) (only trivial cycles are allowed). Observe that

(base), (trans), (refl) above only guarantee that DescOrSel f contains its intended interpretation,

namely the reflexive, transitive closure of the Child relation.

There are many models satisfying these constraints, in which DescOrSel f is interpreted

as a proper superset of its intended interpretation, and it is well-known that we have no way of

ruling them out using first-order constraints because transitive closure is not first-order definable.

Similarly, the “treeness” property of the ChildX relation cannot be fully captured in first-order

logic.

Example 4.5.4 (Relational Encoding of XML Tree Navigation). Consider an XPath expression

Q defined as //a, which returns the set of nodes reachable by navigating to a descendant of the

root and from there to a child tagged “a”. Assume also that we materialize the view v defined as

//.//a, i.e. which contains all “a”-children of descendants of descendants of the root. We can

encode q, v as conjunctive queries Q = enc(q), V = enc(v) over schema V R EX .
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Q(y) :−Root(r),DescOrSel f (r,x),Child(x,y),Tag(y,“a”)

V (y) :−Root(r),DescOrSel f (r,u),DescOrSel f (u,x),Child(x,y),Tag(y,“a”)

It is easy to see that the decoding operation, which takes a relational query over V R EX

back to XQuery/XPath syntax, is straightforward.

Clearly, under arbitrary interpretations of the DescOrSel f relation, the two encodings

are not equivalent, and Q cannot be reformulated to use V . But on intended interpretations, the

DescOrSel f relation is transitive and reflexive, therefore v itself is equivalent to q and

R(y):- V(y)

is a relatioanl reformulation of Q using V .

4.5.5 Relational Model

It is well known that the relational data model endowed with key, uniqueness and foreign

key constraints is captured by our pivot model (see Chapter 3): key/uniqueness constraints are

expressible by EGDs, and foreign key constraints by TGDs.

4.5.6 Binding Patterns

We have seen above a natural way to model sets of key-value pairs using a relation. To

simplify the discussion, we abstract from the parentId and type attributes of relation ChildKV

above, focusing on the binary relationship between keys and values:

KV (key,value).

Note that typical key-values store APIs require that values can be looked up only given

their key, but not conversely. If we do not capture this limitation, the rewriting algorithm may
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produce rewritings that correspond to no executable plan. For instance, consider a rewriting of

the form:
R(v) :−KV (k,v).

R corresponds to no legal plan given the access limitation of KV, because R requires the

direct extraction of all values stored in the store, without looking them up by key.

This setting involving relations with limited lookup access is well-known in the literature

and is modeled via the concept of relations adorned with binding patterns [123]. Binding patterns

are strings over the alphabet {i,o}. If position pth in the pattern holds character i, this signals

that the pth attribute must be provided as input in a lookup. An o at position p signals that the pth

attribute can be extracted by the lookup.

In the key-value store modeling example, one would use KSio to specify the lookup

limitation, and the candidate rewriting would turn to a conjunctive query over binding-pattern-

annotated atoms:

R′(v) :−KV io(k,v).

The binding pattern now carries sufficient information to determine that R′ requires k as input in

order to look up v.

In a relational setting, query rewriting when access to the views is limited by binding

patterns has been studied for conjunctive queries and views [74, 115], yet complete rewriting

under both integrity constraints and binding patterns was not considered until [60]. [60] shows

how to encode binding patterns using TGD constraints, which fit nicely into our pivot model. The

idea is to introduce a unary relation, say D(x) to state that x is accessible, and for each binding

pattern a TGD stating that when all required input attributes of a relation are accessible, then

the output attributes are accessible as well. This allows the chase with such TGDs to determine

which attributes of a rewriting are accessible.

Example 4.5.5 (Binding Pattern Constraints). This example shows a query Q(y,z) :−R(x,y,z)

that can be rendered executable only after exploiting an integrity constraint and a binding pattern.
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Let us consider a store S that imposes a binding access constraint on a relation R(x,y,z), which

requires that y and z can be extracted (projected) only when x is given. Given this constraint, Q is

not executable as such. Moreover, consider that we have a constraint that states an inclusion,

which guarantees that all values of R’s first column (x) are among those in the relation S’s first

column.

∀x∀y∀z R(x,y,z)→ S(x)

In order to make the query executable, we first introduce a view for each access pattern

on a given relation:

∀x∀y∀z R(x,y,z)→ Rioo(x,y,z)

∀x S(x)→ So(x)

The above constraints state that x is required as input to project y and z from the relation

R, and x is always accessible (can be extracted) from the relation S, respectively. Then, we need

to introduce extractability constraints for access pattern modeling:

∀x So(x)→ D(x) (4.10)

∀x∀y∀z Rioo(x,y,z)∧D(x)→ D(y)∧D(z) (4.11)

The extractability constraint 4.11 states that when x is accessible, then the attributes y

and z are accessible as well.

The access pattern modeling above reduces the problem from rewriting under binding

patterns to rewriting only under constraints. This means that if we have an algorithm for

rewriting under constraints, we can “trick” it into rewriting under binding patterns even though it

is unaware of them and does not treat them as first-class citizens. As a result, the found rewriting

(the executable version of Q) is:

R′(y,z)− : Rioo(x,y,z),So(x)
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which extracts all x values from the relation S, and uses these values as a look-up key to extract y

and z from the relation R.

4.5.7 Equality and Multiple Treatment of Nulls

An important issue raised by the polystore context is the fact that the notion of null values

is treated differently across the spectrum of data models/stores, which in turn has implications

on such fundamental primitives as equality and hence equi-joins, etc. Even in the single-model

relational scenario, the classical theory of conjunctive queries, constraints, and view-based

rewritings defines this real-life problem away by focusing on idealized relations without null

values.

Direct application of classical theory would result in potentially unsound reformulation

algorithms, because they would ignore the fact that for instance a MongoDB query joining 4

JSON data has a different semantics of equality from a SQL query joining two relations. For

example, in MongoDB, join variables can match null values, but this is not the case in SQL.

Such null-agnostic algorithms would generate a spurious reformulation of the query using the

view.

To mitigate this issue, our current idea is to model each equality flavor by its own relational

predicate, capturing as much as possible of their intended semantics using constraints. We use

constraints to capture relationships between various equality flavors. For instance, the fact that

whenever two values are equal according to flavor EqS1 (e.g., Store S1) they are also equal

according to flavor EqS2 (e.g., Store S2), but only if they are both non-null could be captured as

follows:

∀x∀y EqS1(x,y)∧notnull(x)∧notnull(y)→ EqS2(x,y) (4.12)

∀x∀y EqS2(x,y)→ EqS1(x,y)∧notnull(x)∧notnull(y) (4.13)

4Whenever we mention join, we refer to equi-join.
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We introduce an isnull predicate, as well as a notnull predicate, relating them to

equality. To correctly model the fact that null and notnull are mutually exclusive, we add

denial constraints (see Section 4.5.9) such as :

∀x isnull(x)∧notnull(x)→ false

Example 4.5.6 (Null Treatment Accross Different Equality Flavors). Consider the query

Q(y,z) :−R(x1,y),S(x2,z),EqS2(x1,x2)

which joins R and S relations (in the store S2) on x1 and x2 using the equality flavor EqS2, where

join variables cannot match null values (the standard SQL semantics).

Now, suppose we have the following two views, which are materialized in the store S1,

where join variables can match null values (i.e., null = null is evaluated to true):

V S1
1 (x1,y) :−R(x1,y)

V S1
2 (x2,z) :−S(x2,z)

Taking as inputs Q, V S1
1 , V S1

2 , and the set of constraints 4.12 and 4.13, the relational

rewriting algorithm under integrity constraints will find the following rewriting:

R(y,z) :−V S1
1 (x1,y),V

S1
2 (x2,z),EqS1(x1,x2),notnull(x1),notnull(x2)

which joins V S1
1 and V S1

1 (in the store S1) using the equality flavor EqS1 and filtering out the null

values of x1 and x2.

The rewriting R is equivalent to Q under null-aware semantics. Now, suppose that we

do not appropriately capture different null-semantics across stores, in other words, we treat

equality similarly across stores. For example, the constraint EqS2(x,y)→ EqS1(x,y) indicates

that the semantic of equality in S1 is the same as the one in S2. This will result in the following

rewriting:

R′(y,z) :−V S1
1 (x1,y),V

S1
2 (x2,z),EqS1(x1,x2)
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which is not equivalent to Q under null-aware semantic. The reason is that join variables can

match null values when using the equality flavor EqS1, which is different from the equality

flavor used in the original query.

We use isnull and notnull predicates not only to model equality constraints but also to

translate “is null” and “is not null” conditions in a query. For example, consider the SQL WHERE

clause: “r.b is null AND s.b is null”, it will be translated to :

R(b1,y),S(b2,x),isnull(b1),isnull(b2)

Given a rewriting with isnull and notnull predicates, they will be decoded to “is null” and “is

not null” conditions, respectively.

In addition to supporting null value, JSON stores have a notion of missing data value [4,

11], which is produced by attempts to access non-existent fields or out-of-bound array elements.

We leave the investigation of how far this constraint-based approach can be used to capture

missing semantics across these stores to future work.

4.5.8 Comparison and Arithmetic Operators

To maintain extensibility, we adopt a uniform way to incorporate any additional language

primitives by treating them as user-defined functions with worst-case black-box semantics, at-

tempting to “make the box more transparent” by adding constraints that capture some of their

intended semantics.

Comparison Operators. We use the relations Lt(x,y), Gt(x,y), Lte(x,y), and Gte(x,y)

to encode “x is less than y”, “x is greator than y”, “x is less than or equal y”, “x is greator than

or equal y” comparison operators, respectively. We capture capture some of their properties via
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constraints as follows:

∀x∀y∀z Lt(x,y)∧Lt(y,z)→ Lt(x,z) (4.14)

∀x∀y∀z Gt(x,y)∧Gt(y,z)→ Gt(x,z) (4.15)

∀x∀y∀z Lte(x,y)∧Lte(y,z)→ Lte(x,z) (4.16)

∀x∀y∀z Gte(x,y)∧Gte(y,z)→ Gte(x,z) (4.17)

∀x∀y Lt(x,y)→ Gt(y,x) (4.18)

∀x∀y Gt(x,y)→ Lt(y,x) (4.19)

The constraints from (4.14) to (4.17) capture the transitive property, and the constraints

from (4.18) to 4.18) capture the reversal property.

Arithmetic Operators. The arithmetic operators such as addition operator would be

modeled as a relation add(arg1,arg2,res) with intended meaning res = arg1 +arg2, which one

could partially capture with constraints stating that add is a functional relation:

∀x∀y∀res1∀res2 add(x,y,res1)∧add(x,y,res2)→ res1 = res2

that is commutative, associative, and has zero:

(comm) ∀x∀y∀res1 add(x,y,res1)→ add(y,x,res1)

(asso) ∀x∀y∀res1∀z∀res3 add(x,y,res1)∧add(res1,z,res3)→

∃res4 add(y,z,res4)∧add(x,res4,res3)

(identity) ∀x∀res add(x,0,res)→ res = x

4.5.9 Denial Constraints

A natural way of handling mutual exclusion of domains in the various models considered

is by extending our pivot model to support denial constraints. They are constraints whose premise
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∀x∀y Eq(x,y)∧Lt(x,y)→ false

∀x∀y Eq(x,y)∧Gt(x,y)→ false

∀x∀y Lt(x,y)∧Gt(x,y)→ false

∀x∀y Lte(x,y)∧Gt(x,y)→ false

∀x∀y Gte(x,y)∧Lt(x,y)→ false

∀x∀y Lt(x,y)∧Lt(y,x)→ false

∀x∀y Gt(x,y)∧Gt(y,x)→ false

∀x notnull(x)∧null(x)→ false

Figure 4.6: Snippet of supported denail constraints.

has the same form as that of TGDs and EGDs, but whose conclusion contains simply the boolean

value false.

Example 4.5.7 (Denail Constraints). Let us consider the relations Gt(x,y) and Lt(x,y), which

we use to encode that x is greator than y, and x is less than y, respectively. Then to state that x

cannot be both greator than y and less than y, we would use the denial constraint ∀x,y Gt(x,y)∧

Lt(x,y)→ false. Chasing with this denial constraint, a query Q that attempts to specify a

condition, where x is greator than y and x is less than y, would add the atom false to its body,

thus signaling Q’s unsatisfiability (the query returns an empty answer).

Figure 4.6 illustrates a snippet of denial constraints that ESTOCADA currently supports.

4.6 Encoding QBT XM Queries into the Pivot Language

The purpose of the pivot language is to reduce the VBQR problem to a single-model

setting. The pivot model enables us to represent relationally queries expressed in the various

languages supported in our system (recall Table 4.1), and which can be combined into a single

QBT XM query. As shown in Figure 4.1, an incoming query Q is encoded as a relational conjunctive

enc(Q) over the relational encoding of the datasets it refers to (with extensions such as aggregates,
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FOR AJ:{SELECT M.PATIENTID AS patientID ,
A.ADMISSIONLOC AS admissionLoc ,
A.ADMISSIONTIME AS admissionTime ,
P.DRUG AS drug

FROM LABITEM L, MIMIC M, M.ADMISSIONS A,
A.LABEVENTS LE, A.NOTEEVENTS NE, A.PRESCRIPTIONS P

WHERE L.ITEMID=LE.LABITEMID AND
L.CATEGORY=‘blood’ AND
L.FLAG =‘abnormal’ AND
P.DRUGTYPE=‘additive’ AND
contains(NE.REPORT ,‘coronary artery’)}

RETURN patientID , admissionLoc , admissionTime , drug

Figure 4.7: Motivating scenario QBT XM query Q1.

MIMIC(M),
ChildJ(M,PID,"PATIENTID","o"),
ChildJ(M,A,"ADMISSIONS","o"),
ChildJ(A,AID,"ADMISSIONID","o"),
ChildJ(A,ALOC ,"ADMISSIONLOC","o"),
ChildJ(A,ATIME ,"ADMISSIONTIME","o")->
V2(PID,AID,ALOC ,ATIME);

Figure 4.8: Relational encoding of QBT XM view V2 defined in Figure 4.3.

user-defined functions, and nested queries). Figure 4.7 shows the QBT XM query Q1 of the

motivating scenario, and its relational encoding enc(Q1) appears in Appendix A.4.

4.7 Encoding QBT XM Views as Constraints

We translate each view definition V expressed in QBT XM into additional relational integrity

constraints enc(V ) showing how the view inputs are related to its output. Figure 4.8 illustrates

the relational encoding of QBT XM view V2 from Section 4.4, and constraints resulting from V1

appears in Appendix A.3. We note that QBT XM view definitions do not have aggregation. We

leave the investigation of extending the rewriting algorithm to reason about views involving

aggregations to future work.
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4.8 From Rewritings to Integration Plans

We translate each query rewriting into a logical plan specifying (i) the (native) query to

be evaluated within each store, and (ii) the remaining logical operations to be executed within the

integration engine. The translation first decodes RWr into QBT XM syntax. Based on the heuristic

that the store where a view resides is more efficient than the middleware, and thus it should be

preferred for all the operations it can apply, decoding tries to delegated to the stores as much as

possible.

To that end, the decoding phase first partitions each rewriting RWr into view-level sub-

queries, which are sets of atoms referring to the virtual relations of a same view. If a group of

view-level subqueries pertains to the same store (we record the store reference where each view

is stored in a catalog) and if the store supports joins, we translate the group to a single query to be

pushed to the store.

RWQ1<PID,ALOC ,ATIME ,DRUG >:-
V1(d1),
ChildJ(d1,PID,"PATIENTID","o"),
ChildJ(d1,AID,"ADMISSIONID","o"),
ChildJ(d1,REPORT ,"REPORT","o"),

Value(report ,"contains -coronary artery"),

V2(PID,AID,ALOC ,ATIME),

V3(d2),
ChildJ(d2,PID,"PATIENTID","o"),
ChildJ(d2,AID,"ADMISSIONID","o"),
ChildJ(A,P,"PRESCRIPTIONS","o"),
ChildJ(P,DRUG ,"DRUG","o"),
ChildJ(P,DRUGTYPE ,"DRUGTYPE","o"),

Value(DRUGTYPE ,"additive");

Figure 4.9: Rewriting RWQ1 of QBT XM query Q1.

Example 4.8.1 (Delegation-Aware Decoding). Consider the rewriting RWQ1 of QBT XM query

Q1 shown in Figure 4.9. First, we delimit the view-wide subqueries (delimited by empty lines in

the figure), calling them RWQ1
1,RWQ2

1 and RWQ3
1 in order from the top. The subquery heads

contain variables from the head of RWQ1 and join variables shared with other subqueries. For
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Π1,2,5,6,9

Π1,2,5,6

./l.1=r.1&l.2=r.2

./l.1=r.1&l.2=r.2

V1/query?q=
REPORT:‘coronary artery’
&fl=PID1:PATIENTID,
AID1:ADMISSIONID

SELECT patientID AS PID2,
admissionID AS AID2,
admissionLoc AS ALOC,
admissionTime AS ATIME
FROM V2

SELECT v3−>>‘PATIENTID’ AS PID3,
v3−>>‘ADMISSIONID’ AS AID3,
D−>>‘DRUG’ AS drug
FROM V3 v3,
jsonb array elements(v3−>‘PRESCRIPTIONS’) D
WHERE −>>‘DRUGTYPE’=‘additive’

Figure 4.10: Integration plan of the motivating scenario using Tatooine hybrid engine.

example, the head of RWQ2
1 contains the variables ALOC and AT IME (in the head of RWQ1),

and also PID, AID, needed to join with RWQ1
1, and RWQ3

1. These relational subqueries are then

decoded to the native syntax of their respective stores, each constituting a block of the resulting

QBT XM rewriting dec(RWQ1) (shown in Appendix A.4).

ESTOCADA’s plan generator next translates the decoded QBT XM rewriting to a logical

plan that pushes leaf blocks to their native store, applying last-step operators on the results. The

integration plan for RWQ1 is shown in Figure 4.10. We note that when using ESTOCADA’s

polystore engine Tatooine [45], the results of sources’ subqueries are translated into Tatooine’s

internal nested-valued tuple-based model (nested relation [57]).
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Algorithm 1: Delegation-aware decoding QBT XM.

Input :CQ rw(x̄) :−a1∧·· ·∧an, Catalog c
Output :Delegation-Aware Decoded Rewriting into QBT XM

1 cqs← split rw atoms by store reference
2 foreach cq1 ∈ cqs,cq2 ∈ cqs do
3 if cq1 6= cq2 and cq1, cq2 share variables and cq1, cq2 are in the same store s and

s supports join then
4 remove cq1 from cqs;
5 remove cq2 from cqs;
6 add cq1∪ cq2 to cqs;
7 end
8 end
9 returnClause← /0;

10 foreach x ∈ x̄ do
11 add x to returnClause;
12 end
13 whereClause← /0;
14 foreach (cq1,s1) ∈ cqs, (cq2,s2) ∈ cqs, do
15 if head(cq1) share same variable z in head(cq2) then
16 (cq′2,s2)← rename z in head(cq2) and body(cq2) to zi;
17 remove (cq2,s2) from cqs;
18 add (cq′2,s2) to cqs;
19 add z = zi to whereClause;
20 end
21 end
22 f orBlocks← /0;
23 foreach (cq,s) ∈ cqs do
24 add decode(cq,s) to blocks;
25 end
26 decodedRW ← concat( f orBlocks,whereClause,returnClause)
27 return plan;
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4.9 PACB Optimization and Extension

We detail below just enough of the PACB algorithm’s inner working to explain our

optimization. Then, Section 4.9.1 introduces our optimization in the original PACB setting

(conjunctive relational queries and set semantics). Section 4.10 extends this to bag semantics,

Section 4.11 extends it to QBT XM.

A key ingredient of the PACB algorithm is to capture views as constraints, in particular

TGDs, thus reducing the view-based rewriting problem to constraints-only rewriting. For a given

view V , the constraint VIO states that for every match of the view body against the input data there

is a corresponding tuple in the view output; the constraint VOI states the converse inclusion, i.e.,

each view tuple is due to a view body match. Then, given a set V of view definitions, PACB

defines a set of view constraints CV = {VIO,VOI | V ∈ V }.

The constraints-only rewriting problem thus becomes: given the source schema σ with a

set of integrity constraints I , a set V of view definitions over σ and the target schema τ which

includes V , given a conjunctive query Q expressed over σ, find reformulations ρ expressed over

τ that are equivalent to Q under the constraints I ∪CV .

For instance, if σ = {R,S}, I = /0, τ = {V} and view V materializes the join of tables R

and S, V (x,y) :−R(x,z),S(z,y), the constraints capturing V are:

VIO : R(x,z)∧S(z,y)→V (x,y)

VOI : V (x,y)→∃z R(x,z)∧S(z,y).

For input σ-query Q(x,y) : −R(x,z),S(z,y), PACB finds the τ-reformulation ρ(x,y) :

−V (x,y). Algorithmically, this is achieved by:

(i) chasing Q with the set of constraints I ∪CIO
V where CIO

V = {VIO | V ∈ V };

(ii) restricting the chase result to only the τ-atoms (the result is the universal plan) U ;

(iii) chasing U with the constraints in I ∪COI
V , where COI

V = {VOI | V ∈ V }; the result is
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denoted B and called the backchase; finally:

(iv) matching Q against B and outputting as rewritings those subsets of U that are respon-

sible for the introduction (during the backchase) of the atoms in the image of Q. 5

In our example, I is empty, CIO
V = {VIO}, and the result of the chase in phase (i) is Q1(x,y) :

−R(x,z),S(z,y),V (x,y). The universal plan obtained in phase (ii) by restricting Q1 to τ is U(x,y) :

−V (x,y). The result of backchasing U with COI
V in phase (iii) is B(x,y) :−V (x,y),R(x,z),S(z,y)

and in phase (iv) we find a match from Q’s body into the R and S atoms of B, introduced during

the backchase due to U’s atom V (x,y). This allows us to conclude that ρ(x,y) : −V (x,y) is an

equivalent rewriting of Q.

4.9.1 PACBOP T : Optimized PACB

The idea for our optimization was sparked by the following observation. The backchase

phase (step (iii)) involves the VOI constraints for all V ∈ V . The backchase attempts to match the

left-hand side of each VOI for each V repeatedly, leading to wasted computation for those views

that have no match. In a polystore setting, the large number of data sources and stores lead to a

high number of views, most of which are often irrelevant for a given query Q.

This observation leads to the following modified algorithm. Define the set of views

mentioned in the universal plan U as relevant to Q under I , denoted relevI (Q). Define the

optimized PACB algorithm PACBOP T identical with PACB except phase (iii) where PACBOP T

replaces COI
V with COI

relevI (Q). That is, PACBOP T performs the backchase only with the OI-

constraints of the views determined in phase (i) to be relevant to Q, ignoring all others. This

modification is likely to save significant computation when the polystore includes many views. In

our example assume that, besides V , V contained 1000 other views {V i}1≤i≤1000, each irrelevant

to Q. Then the universal plan obtained by PACB would be the same as U above, and yet

5Recall that a chase step s with constraint c matches c’s premise against existing atoms e and adds new atoms n
corresponding to c’s conclusion. To support fast detection of responsible atoms in Phase (iv), s records that the e
atoms are responsible for the introduction of the n atoms [84]. Our optimization does not affect Phase (iv).
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{V i
OI}1≤i≤1000 would still be considered by the backchase phase, which would attempt at every

step to apply each of these 1000 constraints. In contrast, PACBOP T would save this work in

particular, in our setting, where the premises of VOI views can have up to 10-way joins.

In general, ignoring even a single constraint c during backchase may lead to missed

rewritings [121]. This may happen even when c mentions elements of schema σ that are disjoint

from those mentioned in U, if the backchase with I exposes semantic connections between these

elements. In our setting, we prove that this is not the case:

Theorem 4.9.1. Algorithm PACBOP T finds the exact same rewritings as the original PACB.

This is because we only ignore some view-capturing constraints, which can be shown (by

analyzing the backchase evolution) never to apply, regardless of the constraints in I .

Proof. Assume for the sake of contradiction that the set R W OP T of rewritings found by

PACBOP T is not the same as the set R W of rewritings found by the original PACB (R W OP T 6=

R W ). Let V be the set of views and Virr ∈ V be the set of irrelevant views to the query Q.

By applying the PACBOP T algorithm, the chase introduces the relevant views Vrel ∈

V (i.e., Vrel = V −Virr ) into the universal plan U . Now, in the backchase phase, only the premise

of each backward constraint v ∈Vrel can be fully matched against U . This makes the chase step

applicable, where the conclusion of each v will be added to the evolving backchase instance

B. When no further chase steps are applied, the query Q will be matched against B, and the

output will be the rewritings R W OP T , which are those subsets of U that are responsible for the

introduction (during the backchase) of the atoms in the image of Q in B. When applying the

original PACB, similarly, the chase phase introduces only Vrel into U . During the backchase

phase, Virr will never be applied since their premises cannot be fully matched into U , resulting

into the same instance B as in the PACBOP T algorithm. Thus, when Q is matched against B, this

outputs the rewritings R W , which are exactly the same as R W OP T . However, this contradicts

that R W OP T 6= R W . Hence, our original statement is true that the algorithm PACBOP T finds
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the exact same rewritings as the original PACB.

Combined with the main result from [84], Theorem 4.9.1 yields the completeness of

PACBOP T in the following sense:

Corollary 4.9.1. Whenever the chase of input conjunctive query Q with the constraints in I

terminates6, we have:

(a) algorithm PACBOP T without a cost model enumerates all join-minimal7 V -based

rewritings of Q under I , and

(b) algorithm PACBOP T equipped with a cost model c finds the c-optimal join-minimal

rewritings of Q.

In Section 4.13.3, we evaluate the performance gains of PACBOP T over the original

PACB, measuring up to 40x speedup when operating in the polystore regime.

4.10 Extending PACBOP T to Bag Semantics

We extended PACBOP T to find equivalent rewritings of an input conjunctive query under

bag semantics (the original PACB only addresses set semantics). The extension involves a

modification to phase (iv). In its original form, the matches from Q into the backchase result B

are not necessarily injective, being based on homomorphisms [26]. These allow multiple atoms

from Q to map into the same atom of B. To find bag-equivalent rewritings, we disallow such

matches, requiring match homomorphisms to be injective.

6Termination of the chase with TGDs is undecidable [61], but many sufficient conditions for termination are
known, starting with weak acyclicity [70]. Our constraints are chosen so as to ensure termination.

7A rewriting of Q is join-minimal if none of its joins can be removed while preserving equivalence to Q.
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4.11 PACBOP T
Q BT : Extending PACBOP T to QBTs

The original PACB algorithm (and our extensions thereof) have so far been defined for

conjunctive queries only. However, recall that QBTs (Section 4.4.1) are nested.

We extend the PACBOP T algorithm to nested QBTs as follows. Each block B is rewritten

in the context of its ancestor blocks A1, . . . ,An, to take into account the fact that the free variables

of B are instantiated with the results of the query corresponding to the conjunction of its ancestor

blocks. We therefore replace B with the rewriting of the query A1∧A2∧ . . .∧An∧B. We call the

resulting algorithm PACBOP T
Q BT , using the notation PACBOP T

Q BT 〈C,c〉 to emphasise the fact that it

is parameterized by the constraints C and the cost model c.

Recalling the uninterpreted (black-box) function semantics from Section 4.2, Corol-

lary 4.9.1 implies:

Corollary 4.11.1. Under uninterpreted-function semantics, Corollary 4.9.1 still holds when we

replace conjunctive queries with QBT queries and PACBOP T with PACBOP T
Q BT .

4.12 Guarantees on the Reduction

We provide the following formal guarantees for our solution to the cross-model rewriting

problem based on the reduction to single-model rewriting. Recall from Section 5.4 that enc(M)

are the relational constraints used to encode M ∈Mi in virtual relations, enc(Q) encodes a QBT XM

query Q as a QBT query over the virtual relations, and dec(R) decodes a QBT query over the

virtual relations into a QBT XM query. Also recall from Section 4.9 that given a set V of QBT XM

views, CV are the relational constraints used to capture V . We have:

Theorem 4.12.1 (Soundness of the reduction). Let Q be a QBT XM query over a polystore over the

set of data models Mi. Let I be a set of integrity constraints satisfied by the data in the polystore
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and enc(I ) be their relational encoding. For every rewriting R obtained via our reduction, i.e.

R = dec(PACBOP T
Q BT 〈enc(I )∪

⋃
M∈Mi

enc(M)∪CV ,c〉(enc(Q))),

R is a c-optimal V -based rewriting equivalent to Q under I , assuming black-box function

semantics (Section 4.2).

In the above, enc(I )∪
⋃

M∈Mi enc(M)∪CV is the set of constraints used by the PACBOP T
Q BT

algorithm; Theorem 4.12.1 states the correction of our approach, outlined in Figure 5.1.

Proof sketch. Let Fr be a family of virtual relations detailed in Section 4.5. The core strategy of

our approach is to compile the operations in a query Q and a set of views V to virtual relations in

Fr. The relations in Fr may not fully specify the exact properties of the operations they capture.

They are interpreted as a proper superset of their intended interpretations. However, they can

satisfy some constraints I. In other words, this large class of relations can contain the intended

relations interpretations, which we capture via constraints enc(I). While the encoded constraints

enc(I) do not contradict the intended operations interpretations and properties (this holds for

our encoded constraints enc(I)), the theoretical result in [65] combined with the soundness of

PACB [84] and Thereom 4.9.1 guarantee that soundness is preserved for any query Q that is

compilable relationally. If a relational reformulation is found, then it is the encoding of QBT XM

rewriting, which can be retrieved by the decoding phase that follows the connections among

atoms and knowledge of the encoded data models.

Completeness Discussion. The natural question to be asked is whether we capture all

constraints that follow from the original data model. If we miss some constraints, then our

rewriting approach, which includes encoding, rewriting with constraints, and finally decoding the

rewriting, remains sound, returning only equivalent rewritings. It may not be complete, meaning

that it may miss existing rewritings.
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The question has to be answered in a nuanced way because of the following reason:

classical results from logic [129] tell us that for any tree-like models (including XML and JSON)

the the answer is no, and it is impossible to capture all constraints that follow from these models

even when using full-fledged first-order logic to express constraints (TGDs and EGDs are merely

particular cases of first-order constraints).

But it is possible to capture all constraints that matter to a certain language L, in the

sense that L does not have sufficient expressivity to distinguish among models that satisfy all

constraints and models that satisfy only the ones we capture. For practicality, we support the

entire language via black-box encodings of the primitives with undecidable/ computationally

expensive reasoning, giving up on the completeness guarantee while adopting a solution that

allows progressive enhancements of a best-effort approach to completeness. In other words, the

more relevant constraints we add, the fewer rewritings we miss, allowing progressive refinement

of the rewriting algorithm without changing code, simply by adding constraints.

Not guaranteeing completeness has no discernible practical impact, since already for

SQL absolute completeness of the rewriting procedure is precluded by the undecidability of

reasoning about primitives that render SQL (and related languages) Turing-complete (e.g., user-

defined functions and arithmetic). In practice, completeness is not attained by commercial SQL

optimizers, even when the user queries fall in a restricted class with theoretically feasible rewriting

completeness, due to the combinatorial explosion of searching for all possible plans and the

imperfection of the cost model.

4.13 Experimental Evaluation

In this section, we describe our experimental evaluation to show the effectiveness of

our cross-models rewriting technique. Section 4.13.1 describes our experiment setup. In Sec-

tions 4.13.2 and 4.13.3, we discuss the results of our noval cross-models rewriting approach. We
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summarize our experimental finding and takeaways in Section 4.13.4.

4.13.1 Experiment Setup

We use a single machine with an Intel(R) Xeon(R) CPU E5-2640 v4@2.40GHz, 20

physical cores (40 logical cores), and 123GB RAM of main memory. The machine is equipped

with a 1TB SSD storage device, where the read speed is 616 MB/s, and the write speed is 455

MB/s (interesting since some systems write intermediate results to disk).

Polystore Configuration. For our main polystore setting (called “ESTOCADA polystore

engine” hereafter), we use Tatooine [45], a lightweight execution engine and a set of data stores,

selected for their capabilities and popularity: an RDBMS (PotsgreSQL v9.6), JSON document

stores/engines (PostgreSQL v9.6, MongoDB v4.0.2 , AsterixDB v0.9.4, and SparkSQL v2.3.2)

and a text search engine (Solr v6.1). We set a memory budget of 60GB for all systems. We

configure the number of utilizable cores to 40 (for systems with such a configurable parameter).

We set the compiler frame size of AsterixDB (for its batch-at-a-time query processor) to 6MB.

Dataset. We use the real-life 46.6 GB MIMIC-III dataset [88] described in Section 4.1.1.

Generating Query and View Families. We create a micro-benchmark based on MIMIC

dataset. We define a set QT of 25 query templates, each checking meaningful conditions against

patients’ data. These are parameterized by selection constants, and they involve navigation into

the JSON document structure. Each query/view is obtained by joining a subset of QT and picking

values for the selection constants, leading to an exponential space of meaningful queries and

views. Among them, we identify those with non-empty results: first, non-empty instantiations

of QT queries then join of two such queries, then three etc., in an adaptation of the Apriori

algorithm [29].

Example 4.13.1 (Generating Queries/Views based on Query Templates). Consider the query

templates QT0, QT1 and QT2 in Appendix A, shown directly in relationally encoded form. QT0

asks for patients’ information including patient’s PATIENTID, DOB, and GENDER. QT1 asks
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for all “abnormal” lab measurement results for patients. QT2 asks for bloodwork-related lab

measurements. The natural join of QT0, QT1 and QT2 yields a query Q which seeks information

on patients with abnormal blood test results. The query Q and its translation in AsterixDB SQL++

syntax appear in Appendix A.

The Queries. We choose 50 queries QEXP among those described above. 58% of the

queries (Q01, . . . ,Q29) contain full-text operations; all involve joins, selections, and at least

two-level-deep navigation into the JSON document structure.

The Views. We materialized a set of views VEXP as follows: We store in PostgreSQL six

relational views VPostgreSQL⊂VEXP of the MIMIC-III dataset, comprising the uniformly structured

part of the dataset (including all patient metadata and admission under specific services such as

Cardiac Surgery, Neurologic Medical, etc).

We also stored in PostgreSQL a set VPostgresJSON ⊂ VEXP of 21 views which are most

naturally represented as nested JSON documents. These views store for instance: (i) lab tests

conducted for each patient with “abnormal” test results (e.g., blood gas, Cerebrospinal Fluid

(CSF)); (ii) data about drugs prescribed to patients sensitive to certain types of antibiotics (e.g.,

CEFEPIME); (iii) data about drugs and lab tests prescribed to each patient who underwent specific

types of procedures (e.g., carotid endarterectomy); (iv) microbiology tests were conducted for

each patient; (v) lab tests for each patient who was prescribed certain drug types (e.g. additive,

base); etc. We placed in Solr a view VSolr ∈VEXP, storing for each admitted patient the caregivers’

reports (unstructured text). The usage of AsterixDB, SparkSQL, and MongoDB is detailed below.

4.13.2 Cross-Store Rewritings Evaluation

In this section, we study the effectiveness of ESTOCADA cross-store query rewriting:

(i) compared to single-store query evaluation and (ii) improving performance in the pre-existing

polystore engines: BigDAWG [68] and ESTOCADA polystore engine (Tatooine) [45].
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Figure 4.11: Rewriting time (28 relevant views).

Single-Store Evaluation Comparison. Figure 4.11 shows the rewriting time for the

query set using the views described above. Notice that most queries are rewritten within 100ms,

and the few outliers require at most 190ms, which is negligible compared to the query execution

time (in the order of minutes, as seen in Figures 4.13 and 4.14). Figure 4.12 shows the distribution

of rewriting time over the same query set when we scale up the number of relevant views (we did

not materialize them) to 128 views (this is for stress-test purposes, as 128 views relevant to the

data touched by a single query is implausible).

Queries with Text Search Predicates. Figure 4.13 reports the total execution time plus

rewriting time of ESTOCADA using the views VEXP for Q01 to Q29, all of which feature a text

search predicate against the text notes in the caregiver’s report. For each query, cross-model

rewriting and evaluation significantly improve the performance of a direct query evaluation in a

single store.

For SparkSQL and AsterixDB, queries (Q01,. . . , Q29) took over 25 minutes (the timeout

value we used). The bottleneck is the text search operation, and a JSON array unnest operator:

full-text indexing is lacking in SparkSQL, and limited to exclude text occurring within JSON

arrays in AsterixDB 8. This confirms our thesis that cross-models redundant storage of data into

8AsterixDB v9.8 supports array indexing.
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Figure 4.12: Rewriting time (128 relevant views).

the stores most suited for an expected operation is worthwhile.

For MongoDB and PostgreSQL, the execution time is correlated with the number of JSON

array unnest operators. For instance, query Q25 has five unnest operators, whereas query Q17

has 2. PostgreSQL outperforms MongoDB because the latter lacks join-reordering optimization,

and it does not natively support inner joins. These must be simulated by left outer joins – using

the $lookup operator – followed by a scan and selection for non-null values –using the $match

operator.

Queries without Text Search Predicates. Figure 4.14 repeats this experiment for queries

Q30,. . . ,Q50, which do not perform a text search. These queries each feature join, selection and

navigation into the JSON document structure (at least two levels deep). The relevant views

for these queries are VPostgreSQL ∪VPostgresJSON ; again, exploiting them improves single-store

evaluation. SparkSQL has the highest query execution time; this is because it supports navigation

into JSON arrays through the EXPLODE function, which is highly inefficient. We observe that

in a single-store evaluation, PostgreSQL is more efficient; this is why we choose it to store

VPostgresJSON .
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Polystore Evaluation Comparison. We study the benefits that ESTOCADA can bring

to an existing polystore system by transparently rewriting queries using materialized views

stored across different stores. We used two polystore engines: (i) ESTOCADA polystore engine

instantiated with two PostgreSQL servers (instances), one stores relational data while the other

stores JSON, and Solr v6.1 for storing text; (ii) the latest release of the BigDAWG polystore. A

key BigDAWG concept is an island, or collection of data stores accessed with a single query

language. BigDAWG supports islands for relational, array, and text data, based on the PostgreSQL,

SciDB [20] and Apache Accumulo [3] stores, respectively. BigDAWG queries use explicit CAST

operators to migrate an intermediary result from one island to another.

To work with BigDAWG, we extended it with two new CAST operators: (i) to migrate

Solr query results to PostgreSQL; (ii) to migrate PostgreSQL JSON query results to a PostgreSQL

relational instance and vice-versa. The main difference between our ESTOCADA polystore engine

and BigDAWG is that we join subquery results in the mediator using a BindJoin[123], whereas

BigDAWG migrates such results to a store in an island capable of performing the join.

Data Storage. We store the MIMIC-III dataset (in both systems) as follows: patient

metadata in PostgreSQL relational instance; caregivers’ reports in Solr; patients’ lab events,

prescriptions, microbiology events, and procedures information in the PostgreSQL JSON instance.

Polystore Queries. We rewrite Q01,. . . , Q29 in BigDAWG syntax, referring to each

part of the data from its respective island (as BigDAWG requires); we refer to the resulting

query set as QBigDAWG. We have the same set of queries in QBT XMsyntax; we call these queries

QESTOCADA Polystore.

The Views. To the view set VEXP introduced above, we have added a new set of views

VNEW which can benefit QBigDAWG and QESTOCADA Polystore queries as we detail below.

The queries vary in terms of full-text search predicates selectivity. ≈ 60% of QBigDAWG

and QESTOCADA queries consist of full-text search predicates, which are not highly selective

(e.g., “low blood pressure”). We refer to these queries as Q 60%
BigDAWG and Q 60%

ESTOCADA Polystore. We
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observed that the cost of such queries in BigDAWG is dominated by moving and ingesting the

results of Solr queries in PostgreSQL (JSON instance) to join them with the results of other

sub-queries. To alleviate this overhead, we materialized in the PostgreSQL instance storing JSON

a set of 6 views VNEW , which join the data from Solr (using those full-text predicates in the views

definitions) with JSON data from the PostgreSQL JSON instance.

Given the Q 60%
BigDAWG queries, VPostgresJSON , VPostgreSQL and VNEW , our cross-model views-

based rewriting approach finds rewritings using views from PostgreSQL (relational instance) and

PostgreSQL (JSON instance). The performance saving is due to the fact that we no longer have to

move data from Solr to a PostgreSQL instance (see Figure 4.15 for queries labeled *). Although

ESTOCADA polystore engine does not require any data movement, it still benefits from utilizing

VPostgresJSON , VPostgreSQL and VNEW to answer Q 60%
ESTOCADA Polystore queries as shown in Figure 4.15

(queries labeled with *). In contrast, the remaining 40% of QBigDAWG and QESTOCADA Polystore

queries have highly selective full-text search predicates (we refer to these as queries Q 40%
BigDAWG

and Q 40%
ESTOCADA Polystore).

The high selectivity of these queries reduces the overhead of moving the data from Solr to

PostgreSQL in BigDAWG, and in general the data movement is not a bottleneck for these queries.

However, both systems can benefit from the materialized views VEXP to evaluate these queries, as

shown in Figure 4.15 (queries labeled with +).

As mentioned earlier, ESTOCADA polystore engine and BigDAWG differ in terms of

multi-store join evaluation strategies, leading to different performance variations when the queries

and/or views change. On the queries Q 60%
BigDAWG and Q 60%

ESTOCADA Polystore, where the full-text search

predicates are not very selective, BigDAWG execution time is dominated by moving partial results

to the join server. In contrast, ESTOCADA polystore engine performs better since it computes the

join in memory in the mediator; thus, it does not need to pay the intermediary result storage cost.

For the other 40% of queries (with very selective full-text search predicates), BigDAWG

data movement cost is negligible; thus its evaluation time is dominated by evaluating the join
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Figure 4.16: PACB vs PACBOP T rewriting performance.

between sub-queries results in the PostgreSQL island, where join algorithms and orders may be

better chosen than in the ESTOCADA polystore engine (the two platform support different sets of

join algorithms). However, the differences are negligible. The main conclusion of this experiment,

however, is that our cross models views-based rewriting approach improves performance in both

polystore engines.

4.13.3 PACB vs. PACBOP T

This experiment demonstrates the performance gains of PACBOP T over PACB in a

polystore setting. We consider the queries QEXP and the 28 views VEXP that can be utilized to

answer QEXP, introduced above. We add to VEXP some irrelevant views Virrel ⊆ (V −VEXP).

The backward constraints of Virrel can partially match against the universal plan of chasing each

query in the benchmark. However, they cannot be used to answer a query; therefore, we call

them “irrelevant”. The premises of the backward constraints of Virrel can have up to 10-way

joins. PACBOP T would save attempts performed by PACB at every step to apply each of these

constraints. We scale the size of Virrel from 1000 to 4000 (from 2000 to 4000, the premises

(backward) of the newly added constraints have up to 3-ways joins). Figure 4.16 presents the

average rewriting time of QEXP in the presence of VEXP∪Virrel; the y axis is in log scale.
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4.13.4 Summary of Experimental Findings

We have shown that our cross-models views-based rewriting approach is portable across

polystore engines. Moreover, it is worthwhile, as it improves their performance in natural

scenarios for both cross-models and even single-model user queries; the latter are improved by

rewritings using a cross-store (and cross-models) set of materialized views (even when accounting

for the time it takes to find the rewriting). We have also shown that the time spent searching for

rewritings is a small fraction of the query execution time and hence a worthwhile investment.

As we confirm experimentally, the performance of the rewriting search is due to our optimized

PACBOP T algorithm, shown to outperform standard PACB by up to 40×.

4.14 Conclusion

We have shown that multi-store architectures have the potential to significantly speed

up query evaluation by materializing views in the systems most suited to expected workload

operations, even when these views are distributed across stores and data models. ESTOCADA

supports this functionality by a local-as-view approach whose immediate benefit is flexibility since

it requires no work when the underlying data storage changes. In our experiments, we achieve

performance gains by simply placing the materialized views according to a few common-sense

guidelines (e.g., place large unstructured text collections in a store with good full-text indexing

support, and place inherently nested data in JSON document stores).
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Chapter 5

HADAD: Extending Benefits of Semantic

Optimization to Hybrid Relational and

Linear Algebra Computation

5.1 Introduction

This chapter presents HADAD, which capitalizes on ESTOCADA framework previously

introduced in [31] (Chapter 4) for rewriting queries across many data models, using materialized

views in a hybrid setting that does not include the LA model. The novelty of HADAD is to extend

the benefits of semantic rewriting and views optimizations under integrity constraints to pure LA

and hybrid RA-LA computations, which are crucial for ML-hybrid workloads.

This approach makes it very easy to extend HADAD’s semantic knowledge of LA oper-

ations, RA-LA, or LA rewrite rules by simply declaring appropriate constraints, with no need

to change HADAD code. Moreover, as we will show, constraints are sufficiently expressive to

declare (and thus allow HADAD to exploit) more properties of LA operations than previous work

could consider.
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Chapter Outline. The rest of this chapter is organized as follows: Section 5.2 highlights

HADAD’s optimizations that go beyond the state-of-the-art based on real-world scenarios. In

Section 5.3, we formalize the query optimization problem in the context of pure LA and hybrid

RA-LA settings. Section 5.4 provides an end-to-end overview of our approach. We present our

novel reduction of the rewriting problem, focusing on LA computation, into one that can be

solved by existing techniques from the relational setting (Chapter 4) in Section 5.5. Section 5.6

describes our extension to the query rewriting engine, integrating two different cost models to

help prune out inefficient rewritings as soon as they are enumerated. We formalize our guarantees

in Section 5.8 and present the experiments in Section 5.9. We conclude in Section 5.11.

5.2 HADAD Optimizations

We highlight below examples of performance-enhancing opportunities that are exploited

by HADAD and not being addressed by LA-oriented and cross RA-LA existing solutions.

5.2.1 LA Pipeline Optimization

Example 5.2.1. Consider the Ordinary Least Squares Regression (OLS) pipeline: (XT X)−1(XT y),

where X is a square matrix of size 10K×10K and y is a vector of size 10K×1. Suppose available

a materialized view V = X−1.

HADAD rewrites the pipeline to (V (V T (XT y)), by exploiting the LA properties (CD)−1 =

D−1C−1, (CD)E =C(DE) and (DT )−1 = (D−1)T as well as the view V . The rewriting is more

efficient than the original pipeline since it avoids computing the expensive inverse operation.

Moreover, it optimizes the matrix chain multiplication order to minimize the intermediate result

size. This leads to a 70× speedup on R. Current popular LA-oriented systems [17, 16, 42, 25, 112]

are not capable of exploiting such rewrites due to the lack of systematic exploration of standard

LA properties and views.

83



5.2.2 Hybrid RA-LA Optimization

Cross RA-LA platforms such as MorpheusR [52], SparkSQL [35] and others [97, 91] can

greatly benefit from HADAD’s cross-model optimizations, which can find rewrites that they miss.

Example 5.2.2 (Factorization of LA Operations over Joins). Morpheus R [52] implements a

powerful optimization that factorizes an LA operation on a matrix M obtained by joining tables

R and S and casting the join result as a matrix. Factorization pushes the LA operation on M to

operate on R and S, cast as matrices.

Consider a specific instantiation of factorization: colSums(MN), where matrix M has

size 20M× 120 and N has size 120×100; both matrices are dense. The colSums operation sums

up the elements in each column, returning the vector of these sums (the operation is common in

ML algorithms such as K-means clustering [107]). On this pipeline, MorpheusR applies a left

matrix multiplication factorization rule to push the multiplication by N down to R and S. The size

of MN intermediate result is 20M×100. Finally, colSums is applied to the intermediate result,

reducing to a 1×100 vector.

HADAD can help MorpheusR do better by pushing the colSums operator to R and S

(instead of the multiplication with N), then concatenating the resulting vectors. This leads to much

smaller intermediate results, since the combined size of vectors colSums(R) and colSums(S)

is only 1×120.

To this end, HADAD rewrites the pipeline to colSums(M)N by exploiting the property

colSums(AB) =colSums(A)B and applying its cost estimator, which favors rewritings with

a small intermediate result size. Evaluating this HADAD-produced rewriting, MorpheusR’s

multiplication pushdown rule no longer applies, while the colSums pushdown rule is now

enabled, leading to 125× speedup.

Example 5.2.3 (Cross-Model Optimizations). Consider another hybrid example on a Twitter

dataset [24]. The JSON dataset contains tweet ids, extended tweets, entities including hashtags,
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filter-level, media, URL, tweet text, etc. We implemented it on SparkSQL (with SystemML [42]).

In the preprocessing stage, our SparkSQL query constructs a tweet-hashtag filter-level matrix N

of size 2M×1000, for all tweets posted from “USA” mentioning “covid”, where rows are tweets,

columns are hashtags, and values are filter-levels1.

N is then loaded into SystemML, where rows with filter-level less than four are selected.

The result undergoes an Alternating Least Square (ALS) [114] computation. A core building

block of the ALS computation is the LA pipeline (uvT− N)v. In our example, u is a tweet feature

vector (of size 2M×1) and v is a hashtag feature vector (of size 1000×1).

We have two materialized views available: V1 stores the tweet id and text as a text data

source in Solr, and V2 stores tweet id, hashtag id, and filter-level for all tweets posted from

“USA”, and is materialized on disk as CSV file. The rewriting modifies the preprocessing of N

by introducing V1 and V2; it also pushes the filter-level selection from the LA pipeline into the

preprocessing stage. To this end, it rewrites (uvT− N)v to uvT v−Nv, which is more efficient

for two reasons. First, N is ultra sparse (0.00018% non-zero), which renders the computation

of Nv extremely efficient. Second, SystemML evaluates the chain uvT v efficiently, computing

vT v first, which results in a scalar, instead of computing uvT , which results in a dense matrix of

size 2M×1000 (HADAD’s cost model realizes this). Without the rewriting help from HADAD,

SystemML is unable to exploit its own efficient operations for lack of awareness of the distributivity

property of vector multiplication over matrix addition, Av+Bv= (A+B)v. The rewriting achieves

14× speedup.

HADAD detects and applies all the above-mentioned optimizations combined. It captures

RA-, LA-, and cross-model optimizations precisely because it reduces all rewrites to a single

setting in which they can interact and synergize: relational rewrites under integrity constraints.

1Matrix N is represented in MatrixMarket Format (MTX) since it is sparse.
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5.3 Problem Statement

We consider a set of value domains Di, e.g., D1 denotes integers, D2 denotes real numbers,

and two basic data types: relations (sets of tuples) and matrices (bi-dimensional arrays). Any

attribute in a tuple or cell in a matrix is a value from some Di. We assume each tuple would

become a matrix line, in some order that is unknown, unless the relation was explicitly sorted

before the conversion. In other words, resulting relations are cast as matrices.

We consider a hybrid RA-LA language L , comprising a set Rops of (unary or binary) RA

operators; concretely, Rops comprises the standard relational selection, projection, and join. We

also consider a set Lops of LA operators, comprising: unary (e.g., inversion and transposition) and

binary (e.g., matrix product) operators. The full set Lops of LA operations we support is detailed

in Section 5.5.1. A hybrid expression in L is defined as follows:

• any value from a domain Di, any matrix, and any relation, is an expression;

• (RA operators): given some expressions E,E ′, ro1(E) is also an expression, where ro1 ∈

Rops is a unary relational operator, and E’s type matches ro1’s expected input type. The

same holds for ro2(E,E ′), where ro2 ∈ Rops is a binary relational operator (i.e., the join);

• (LA operators): given some expressions E,E ′ that are either numeric matrices or numbers

(which can be seen as 1× 1 matrices), and some real number r, the following are also

expressions: lo1(E) where lo1 ∈ Lops is a unary operator, and lo2(E,E ′) where lo2 ∈ Lops

is a binary operator (again, provided that E,E ′ match the expected input types of the

operators).

Clearly, an important set of equivalence rules that we focus on in this work are LA

equivalence rules (i.e., properties of LA operations). These equivalences lead to alternative

evaluation strategies for each expression. Further, we assume given a (possibly empty) set of

materialized views V ∈ L , which have been previously computed over some inputs (matrices
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and/or relations), and whose results are directly available (e.g., as a file on disk). Detecting when

a materialized view can be used instead of evaluating (part of) an expression is another important

source of alternative evaluation strategies.

Given an expression E and a cost model that assigns a cost (a real number) to an ex-

pression, we consider the problem of identifying the most efficient rewrite derived from E by:

(i) exploiting integrity constraints, (ii) exploiting equivalence rules, and/or (iii) replacing part of

an expression with a scan of a materialized view equivalent to that expression.

Below, we detail our approach, the equivalence rules we capture, and two alternative cost

models we devised for this setting. Importantly, our solution (based on a relational encoding

with integrity constraints) capitalizes on ESTOCADA framework previously introduced in (Chap-

ter 4) [31], where it was used to rewrite queries using materialized views in a polystore setting,

where the data, views and queries cover a variety of data models (relational, JSON, XML, etc. ).

Those queries can be expressed in a combination of query languages, including SQL, JSON query

languages, etc. The ability to rewrite such queries using heterogeneous views directly and

fully transfers to HADAD: thus, instead of a relation, we could have the (tuple-structured) results

of an XML or JSON query; views materialized by joining an XML document with a JSON one

and a relational database could also be used. The novelty of HADAD is to extend the benefits of

rewriting and view-based optimization to LA computations, crucial for ML workloads. In

Section 5.5, we focus on capturing matrix data and LA computations in the relational framework,

along with relational data naturally; this enables our novel, holistic optimization.

5.4 HADAD Overview

We outline here our approach as an extension to ESTOCADA [31] (see Chapter4) for

solving the rewriting problem introduced in Section 5.3.

RA-LA Hybrid Expressions and Views. A hybrid RA-LA expression (whether asked
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E E ′≡

encLA(E) RWe

decLA(RWe)

PACB++

C V M M C

Figure 5.1: HADAD reduction outline.

as a query or describing a materialized view) can be purely relational (RA), in which case we

assume it is specified as a conjunctive query [50]. Other expressions are purely LA ones; we

assume that they are defined in a dedicated LA language such as R [17], DML [42], etc. , using

LA operators from our set Lops (see Section 5.5.1), commonly used in real-world ML workloads.

Finally, a hybrid expression can combine RA and LA, e.g., an RA expression (resulting in a

relation) is treated as a matrix input by an LA operator.

Our approach is based on a reduction to a relational model. Below, we focus on showing

how to bring LA components under a relational form (the RA part of each expression is already

in the target formalism, see Chapter4).

Encoding of LA Operations into the Relational Model. Let E be an LA expression

(query), and V be a set of materialized views. We reduce the LA views-based rewriting problem

to the relational rewriting problem under integrity constraints, as follows (see Figure 5.1). First,

we encode relationally E, V , and the set Lops of LA operators. Note that the relations used in

the encoding are virtual and hidden. They only serve to support query rewriting via relational

techniques, as we show in Chpater 4. These virtual relations are accompanied by a set of relational

integrity constraints encLA(LAprop) that reflect a set LAprop of LA properties of the supported Lops

operations. For instance, we model the matrix addition operation using a relation addM(M,N,R),

denoting that R is the result of M+N, together with a set of constraints (see Section 5.5.2) stating

that addM is a functional relation that is commutative, associative, etc. We detail our relational

encoding in Section 5.5.

Reduction From LA-based to Relational Rewriting. Our reduction translates the dec-
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laration of each view V ∈ V to constraint encLA(V ) that reflects the correspondence between V ’s

input data and its output. Separately, E is also encoded as a relational query encLA(E) over the

relational encodings of Lops and its matrices.

The reformulation problem is reduced to a purely relational setting (as shown before

in Chapter 4) as follows. We are given a (purely LA or RA-LA hybrid) query expression

E ∈ L and a set V ⊆ L views. We encode E as the relational query encLA(E), the views as the

relational integrity constraints C V = encLA(V1)∪ . . .∪ encLA(Vn). We add as further input the

set of relational constraints encLA(LAprop) mentioned above, which specify properties of the LA

operators. We call them Matrix-Model encoding Constraints, or M M C in short. We must find a

rewriting RWe expressed over the relational views C V , such that RWe is equivalent to encLA(E)

under the constraints (C V
⋃

M M C ) and is optimal according to our cost model. Note that RWe

is a relationally encoded rewriting of E; a final decoding step is needed to obtain E ′ ∈ L , the (LA

or hybrid) rewriting of E.

The challenge in coming up with the reduction consists in designing an encoding, i.e.,

one in which rewritings found by (i) encoding relationally, (ii) solving the resulting relational

rewriting problem, and (iii) decoding a resulting rewriting over the views is guaranteed to produce

an equivalent expression E ′ (see Section 5.5).

Relational Rewriting Using Constraints. To solve the relational rewriting problem

under constraints, the engine of choice is PACB [84] (previously used in ESTOCADA, see

Chapter 4). We extend PACB engine (PACB++ hereafter) to utilize the Prunedprov algorithm

discussed in [83], which prunes inefficient rewritings during the equivalent rewritings search

phase, based on simple cost models (see Section 5.6).

Decoding of the Relational Rewriting. In a similar fashion as what we have seen in

Chapter 4, the selected relational reformulation RWe found by PACB++, a decoding step dec(RWe)

is performed to translate RWe into the native syntax of its respective underlying system language

(e.g., R, DML, etc.).
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Table 5.1: Snippet of the V R EM schema.

Operation Encoding Operation Encoding
Matrix scan name(M,n) Inversion invM(M,R)

Multiplication multiM(M,N,R)
Scalar

Multiplication multiMS(s,M,R)

Addition addM(M,N,R) Cells Sum sum(M,s)
Division divM(M,N,R) Trace trace(M,s)

Hadamard
product multiE(M,N,R) Row sum rowSums(M,R)

Transposition tr(M,R) Colsums colSums(M,R)

5.5 LA Reduction to the Relational Model

Our internal model is relational, and it makes prominent use of expressive integrity

constraints. This framework suffices to describe the features and properties of most data models

used today, notably including relational, XML, JSON, graph, etc [31, 32] (see Chapter 4).

Going beyond, in this section, we present a novel way to reason relationally about LA

operations by treating them as un-interpreted functions with black-box semantics and adding

constraints that capture their important properties. First, we give an overview of a wide range of

LA operations that we consider (Section 5.5.1). Then, in Section 5.5.2, we show how matrices and

their operations can be encoded using a set of virtual relations, part of a schema we call V R EM

(for Virtual Relational Encoding of Matrices), together with the integrity constraints M M C that

capture the properties of these operations. Section 5.5.3 exemplifies relational rewritings obtained

via our reduction.

5.5.1 Supported Matrix Algebra

We consider a wide range of matrix operations [98, 37], which are common in real-

world ML algorithms [9]: element-wise multiplication (multiE), matrix-scalar multiplication

(multiMS), matrix multiplication (multiM), addition (addM), division (divM), transposition

(tr), inversion (invM), determinant (det), trace (trace), diagonal (diag), exponential (exp),
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adjoints (adj), direct sum (sumD), direct product (productD), summation (sum), rows/columns

summation (rowSums, colSums, respectively), QR (QR), Cholesky (CHO), LU (LU), and pivoted

LU (LUP) decompositions. The full list of supported operations appear in Appendix B.1.

5.5.2 VREM Schema and Relational Encoding

To model LA operations on the V R EM relational schema (part of which appears in

Table 5.1), we also rely on a set of integrity constraints M M C , which are encoded using relations

in V R EM . We detail the encoding below.

Base Matrices and Dimensionality Modeling. We denote by Mk×z(D) a matrix of k

rows and z columns, whose values come from a domain D, e.g., the domain of real numbers

R. For brevity we just use Mk×z. We define a virtual relation name(M,n) ∈ V R EM attaching

a unique ID M to any matrix identified by a name denoted n (which may be e.g., of the form

“/M.csv”). This relation (shown at the top left in Table 5.1) is accompanied by an EGD key

constraint Iname ∈M M C m, where M M C m ⊂M M C , stating that two matrices with the same

name n have the same ID:

Iname: ∀M∀N name(M,n)∧name(N,n)→M = N

Note that the matrix ID in name relation (and all the other virtual relations used in our

encoding) are not IDs of individual matrix objects: rather, each identifies an equivalence class

(induced by value equality) of expressions. That is, two expressions are assigned the same ID iff

they yield value-based-equal matrices. In Table 5.1, we use M and N to denote input matrices’

IDs, R for the resulting matrix ID, and s for scalar input and output.

Accessing a particular cell in matirx M can be modeled using a cell(M, i, j,v) relation,

where i is the row, j is the column and v is the cell value. To state that there is no cell that has two

distinct values, we need to introduce the following EGD:

Icell: ∀M∀i∀ j∀v1∀v2 cell(M, i, j,v1)∧ cell(M, i, j,v2)→ v1 = v2
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Currently, we do not support encoding matrix slicing operator, which involves selecting certain

rows and columns of a matrix, and forming a new matrix, possibly in a different dimension from

the original. We leave this to future work.

The dimensions of a matrix are captured by a size(M,k,z) relation, where k and z are the

number of rows, resp. columns and M is an ID. An EGD constraint Isize ∈M M C m holds on the

size relation, stating that the ID determines the dimensions:

Isize: ∀M∀k1∀z1∀k2∀z2 size(M,k1,z1)∧ size(M,k2,z2)→ k1 = k2∧ z1 = z2

The identity and zero matrices are captured by Zero(O) and Identity(I) relations, where

O and I denote their IDs, respectively. They are accompanied by EGD constraints Iiden, Izero ∈

M M C m, stating that zero matrices with the same sizes have the same IDs, and this also applies

for identity matrices with the same size:

Izero: ∀O1∀O2∀k∀z Zero(O1)∧ size(O1,k,z)∧Zero(O2)∧ size(O2,k,z)→ O1 = O2

Iiden: ∀I1∀I2 Identity(I1)∧ size(I1,k,k)∧ Identity(I2)∧ size(I2,k,k)→ I1 = I2

Encoding Matrix Algebra Expressions. LA operations are encoded into dedicated

relations, as shown in Table 5.1. We now illustrate the encoding of an LA expression on the

V R EM schema. The full list of encoding relations appears in Appendix B.1.

Example 5.5.1 (Encoding LA Expression Using V R EM Schema). Consider the LA expression

E: ((MN)T ), where the two matrices M100×1 and N1×10 are stored as “M.csv” and “N.csv”,

respectively. The encoding function encLA(E) takes as argument the LA expression E and returns

a conjunctive query whose: (i) body is the relational encoding of E using V R EM (see below),

and (ii) head has one distinguished variable, denoting the equivalence class of the result. For

instance:
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enc(((MN)T ) =

Let enc(MN) =

Let enc(M) = Q 0(M):- name(M,“M.csv”);

enc(N) = Q 1(N):- name(N,“N.csv”);

R1 = freshId()

in

Q 2(R1):- multiM(M,N,R1),Q 0(M), Q 1(N);

R2 = freshId()

in

Q (R2):- tr(R1,R2), Q 2(R1);

In the above, nesting is dictated by the syntax of E. From the inner (most indented) to

the outer, we first encode M and N as small queries using the name relation, then their product

(to whom we assign the newly created identifier R1 ), using the multiM relation and encoding

the relationship between this product and its inputs in the definition of Q 2(R1). Next, we create

a fresh ID R2 used to encode the full E (the transposed of Q 2) via relation tr, in Q (R2). For

brevity, we omit the matrices’ size relations in this example and hereafter. Unfolding Q 2(R1) in

the body of Q yields:

Q (R2) :- tr(R1,R2), multiM(M,N,R1),Q (R2) Q 0(M),Q 1(N);

Now, by unfolding Q 0 and Q 1 in Q , we obtain the final encoding of ((MN)T ) as a

conjunctive query Q :

Q (R2) :− tr(R1,R2), multiM(M,N,R1),Q (R2),name(M,“M.csv”),name(N,“N.csv”);

Encoding LA Properties as Integrity Constraints. Figure 5.2 shows some of the

constraints M M C LAprop ⊂M M C , which capture textbook LA properties [98, 37] of our LA

operations (Section 5.5.1). The TGDs (5.1), (5.2) and (5.3) state that matrix addition is commu-

tative, matrix transposition is distributive with respect to addition, and the transposition of the
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∀M∀N∀R addM(M,N,R)→ addM(N,M,R) (5.1)
∀M∀N∀R1∀R2 addM(M,N,R1)∧tr(R1,R2)→
∃R3∃R4 tr(M,R3)∧tr(N,R4)∧addM(R3,R4,R2) (5.2)
∀M∀R1∀R2 invM(M,R1)∧tr(R1,R2)→
∃R3 tr(M,R3)∧invM(R3,R2) (5.3)

Figure 5.2: Snippet of M M C LAprop constraints

∀M∀N∀R1∀R2∀R3∀R4
name(M,“M.csv”)∧ name(N,“N.csv”)∧

tr(N,R1)∧ tr(M,R2)∧
invM(R2,R3)∧ addM(R1,R3,R4)→ name(R4,“V.csv”)

Figure 5.3: Relational encoding of view V

inverse of matrix M is equivalent to the inverse of the transposition of M, respectively. We also

express that the virtual relations are functional by using EGD key constraints. For example, the

following ImultiM ∈M M C LAprop constraint states that multiM is functional, that is the products

of pairwise equal matrices are equal.

ImultiM : ∀M∀N∀R1∀R2

multiM(M,N,R1)∧multiM(M,N,R2)→ R1 = R2

Other properties [37, 98] of the LA operations we consider are similarly encoded (See

Appendix B.3).

Encoding LA Views as Constraints. We translate each view definition V (defined

in LA language) into relational constraints encLA(V ) ∈ C V , where C V is the set of relational

constraints used to capture the views V . These constraints show how the view’s inputs are related

to its output over the V R EM schema. Figure 5.3 illustrates the encoding as a TGD constraint

of the view V : (N)T +(MT )−1 stored in a file “V .csv” and computed using matrices N and M

(e.g., stored as “N.csv” and “M.csv”, respectively).
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Encoding Matrix Decompositions. Matrix decompositions play a crucial role in many

LA computations. For instance, for every symmetric positive definite matrix M there exists a

unique Cholesky Decomposition (CD) of the form M = LLT , where L is a lower triangular matrix.

We model CD, as well as other well-known decompositions (LU, QR, and Pivoted LU or PLU)

as a set of virtual relations V R EM dec, which we add to V R EM . For instance, for CD, we

associate a relation CHO(M,L), which denotes that L is the output of the CD decomposition for a

given matrix M whose ID is M. CHO is a functional relation, meaning every symmetric positive

definite matrix has a unique CD decomposition. This functional aspect is captured by an EGD,

conceptually similar to the constraint ImultiM (Section 5.5.2). The property M = LLT is captured

as a TGD constraint Icho ∈M M C LAprop:

Icho : ∀M type(M,“S”)→∃ L1∃L2 cho(M,L1)∧

type(L1,“L”)∧ tr(L1,L2)∧multiM(L1,L2,M) (5.4)

The atom type(M,“S”) indicates the type of matrix M, where the constant “S” denotes a

matrix that is symmetric positive definite; similarly, type(L1,“L”) denotes that the matrix L1 is

a lower triangular matrix. For each base matrix, its type (if available) (e.g., symmetric, upper

triangular, etc. ) is specified as TGD constraint. For example, we state that a certain matrix M

(and any other matrix value-equal to M) is symmetric positive definite as follows:

∀M name(M,“M.csv”)→ type(M,“S”) (5.5)

Example 5.5.2 (Cholesky Decomposition Rewriting). Consider a view V =N + LLT , where

L = cho(M) and M is a symmetric positive definite matrix encoded as in (5.5). Let E be the LA

expression M+N. The reader realizes easily that V can be used to answer E directly, thanks to

the specific property of the CD decomposition (5.4), and since M+N = N +M, which is encoded
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in (5.1). However, at the syntactic level, V and E are very dissimilar. Knowledge of (5.1) and

(5.4) and the ability to reason about them is crucial in order to efficiently answer E based on V .

The output matrix of CD decomposition is a lower triangular matrix L, which is not

necessarily a symmetric positive definite matrix, meaning that CD decomposition can not be

applied again on L. For other decompositions, such as QR(M) = [Q,R] decomposition, where

M is a real square matrix, Q is an orthogonal matrix [98] and R is an upper triangular matrix,

there exists a QR decomposition for the orthogonal matrix Q such that QR(Q) = [Q, I], where

I is an identity matrix and QR(R) = [I,R]. We say the fixed point of the QR decomposition

is QR(I) = [I, I]. These properties of the Q decompositions are captured with the following

constraints, which are part of M M C LAprop:

∀M∀n∀k name(M,n)∧ size(M,k,k)→ ∃Q∃R

QR(M,Q,R)∧ type(Q,“O”)∧ type(R,“U”)∧multiM(Q,R,M) (5.6)

∀Q type(Q,“O”)→∃I QR(Q,Q, I)∧ identity(I)∧multiM(Q, I,Q) (5.7)

∀R type(R,“U”)→∃I QR(R, I,R)∧ identity(I)∧multiM(I,R,R) (5.8)

∀I identity(I)→ QR(I, I, I) (5.9)

Known LA properties of the other matrix decompositions (LU and PLU) are similarly

encoded in Appendix B.3.

Encoding LA-Oriented System Specific Rewrite Rules. Most LA-oriented systems [17,

16] execute an incoming LA expression as-is, that is: run operations in a sequence, whose order

is dictated by the expression syntax. Such systems do not exploit basic LA properties, e.g.,

reordering a chain of multiplied matrices in order to reduce the intermediate size. SystemML [42]

is the only system that models some LA properties as static rewrite rules. It also comprises a set

of rewrite rules which modify the given expressions to avoid large intermediates for aggregation

and statistical operations such as rowSums(M), sum(M), etc. For example, SystemML uses the
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following rule to rewrite sum(MN) (summing all cells in the matrix product), where � is a matrix

element-wise multiplication, to avoid actually computing MN and materializing it.

sum(MN) = sum(colSums(M)T � rowSums(N)) (i)

However, the performance benefits of rewriting depend on the rewriting power (or, in other words,

on how much the system understands the semantics of the incoming expression), as the following

example shows.

Example 5.5.3. Consider an LA expression E=((MT )k(M+N)T ), where M and N are square

matrixes, and expression E ′=sum(E), which computes the sum of all cells in E. E ′ can be

rewritten to

RW1 : sum(colSums(M+N)T � rowSums(Mk))

Failure to exploit the LA properties MT NT =(NM)T , (Mn)T =(MT )n and sum((MN)T )=

sum(MN) together prevents from finding the rewriting RW1.

E ′ admits the alternative rewriting:

RW2: sum((colSums((MT )k))T � (colSums(M+N)T ))

which can be obtained by directly applying the rewrite rule (i) given previously and the LA

property rowSums(MT )=colSums(M)T . However, RW2 creates more intermediate results

than RW1.

To fully exploit the potential of rewrite rules (for statistical or aggregation operations),

they should be accompanied by sufficient knowledge of, and reasoning on, known properties of

LA operations.

To bring such fruitful optimization to other LA-oriented systems lacking support of such

rewrite rules, we have incorporated SystemML’s rewrite rules into our framework, encoding
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them as a set of integrity constraints over the virtual relations in the schema V R EM , denoted

M M C StatAgg ⊂M M C . Thus, these rewrite rules can be exploited together with other LA

properties. For instance, the rewrite rule (i) is modeled by the following constraint:

Isum : ∀M∀N∀R multiM(M,N,R)∧sum(R,s)→

∃R1∃R2∃R3∃R4colSums(M,R1)∧tr(R1,R2)

∧rowSums(N,R3)∧multiE(R2,R3,R4)∧sum(R4,s)

We refer the reader to Appendix B.4 for a list of supported SystemML’s rewrite rules and

their encoding into integrity constraints.

5.5.3 LA Relational Rewriting Using Constraints

With the set of views constraints C V and M M C =M M C m∪M M C LAprop∪M M C StatAgg,

we rely on PACB++ to rewrite a given expression under integrity constraints. We exemplify this

below, and detail PACB++’s inner workings in Section 5.6.

Example 5.5.4 (LA View-based Rewriting). The view V shown in Figure 5.3 can be used to

fully rewrite (return the answer for) the pipeline Q p = (M−1 +N)T by exploiting the TGDs

(5.1), (5.2) and (5.3) listed in Figure 5.2, which describe the following three LA properties,

denoted LAprop1: M+N = M+N; ((M+N))T = (M)T +(N)T and ((M)−1)T = ((M)T )−1. The

relational rewriting RW0 of Q p using the view V is RW0(R4):- name(R4,“V.csv”). In this example,

RW0 is the only views-based rewriting of Q P. However, five other rewritings exist (shown in

Figure 5.4 and their relational form in Figure 5.5), which reorder its operations just by exploiting

the set LAprop1 of LA properties.

Rewritings have different evaluation costs. We discuss next how we estimate which among

these alternatives (including evaluating Q p directly) is likely the most efficient.
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RW1 : (M−1)T +NT RW2 : (MT )−1 +NT

RW3 : NT +(M−1)T RW4 : NT +(MT )−1

RW5 : (N +M−1)T

Figure 5.4: Equivalent rewritings of Q p.

RW1(R4) :−name(M,“M.csv”),name(N,“N.csv”),
tr(N,R1),invM(M,R2), tr(R2,R3),addM(R3,R1,R4)

RW2(R4) :−name(M,“M.csv”),name(N,“N.csv”),
tr(N,R1),tr(M,R2),invM(R2,R3),addM(R3,R1,R4)

RW3(R4) :−name(M,“M.csv”),name(N,“N.csv”),
tr(N,R1),invM(M,R2), tr(R2,R3),addM(R1,R3,R4)

RW4(R4) :−name(M,“M.csv”),name(N,“N.csv”),
tr(N,R1),tr(M,R2),invM(R2,R3),addM(R1,R3,R4)

RW5(R4) :−name(M,“M.csv”),name(N,“N.csv”),
invM(M,R1),addM(N,R1,R2),tr(R2,R4)

Figure 5.5: Relational equivalent rewritings of Q p.

5.6 Choice of an Efficient Rewriting

We introduce our cost model in Section 5.7, which can take two different sparsity estima-

tors (Section 5.7.1). Then, we detail our extension to the PACB rewriting engine based on the

Pruneprov algorithm (Section 5.7.2) to prune out inefficient rewritings.

5.7 Cost Model

We estimate the cost of an expression E, denoted γ(E), as the sum of the intermediate

result sizes if one evaluates E “as stated”, in the syntactic order dictated by the expression.

Real-world matrices may be dense (most or all elements are non-zero) or sparse (a majority of

zero elements). The latter admits more economical representations that do not store zero elements,
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which our intermediate result size measure excludes. To estimate the number of non-zeros (nnz,

in short), we incorporated two different sparsity estimators from the literature (discussed in

Section 5.7.1) into our framework.

Example 5.7.1. Consider E1 = (MN)M and E2 = M(NM), where we assume the matrices

M50K×100 and N100×50K are dense. The total cost of E1 is γ(E1) = 50K× 50K and γ(E2) =

100×100 .

5.7.1 LA-based Sparsity Estimators

We outline below two existing sparsity estimators [137, 42] that we have incorporated

into our framework to estimate nnz2.

Naı̈ve Metadata Estimator. The naı̈ve metadata estimator [43, 137] derives the sparsity

of the output of LA expression solely from the base matrices’ sparsity. This incurs no runtime

overhead since metadata about the base matrices, including the nnz, columns and rows are

available before runtime in a specific metadata file. The most common estimator is the worst-case

estimator [43, 137, 44], which aims to provide an upper bound for worst-case memory estimates.

Figure 5.6 illustrates the naı̈ve worst-case sparsity estimation scheme that we use3. SE denotes

the estimated sparsity of an input LA expression. We define sparsity = nnz/size. We note that

we assign “zero” as the sparsity of the scalar output (e.g., SE[trace(D)] = 0, SE[sum(M)] = 0,

SE[det(D)] = 0, etc. ). The operator � denotes a matrix-element wise multiplication. For complex

operations such as inverse, we assume the sparsity of the output matrix is the same as the sparsity

of the input matrix4.

Matrix Non-zero Count (MNC) Estimator. The MNC estimator [128] exploits matrix

structural properties such as single non-zero per row or columns with varying sparsity for efficient,

2Solving the problem of sparsity estimation is beyond the scope of this work.
3The figure illustrates the sparsity estimation for LA operators used in our experiments (Section 5.9)
4Most of the existing sparsity estimators focus on basic matrix operations such as matrix products, transportation,

element-wise multiply, etc. To the best of our knowledge, we are not aware of existing work on estimating the
sparsity of matrices resulting from complex operators (e.g., inverse)
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SE[cM] = SE [M]

where c is a non -zero scalar

SE[MT ] = SE [M]

SE[M�N] = min(SE [M],SE [N])
SE[M+N] = min(1,(SE [M]+SE [N]))
SE[M−N] = min(1,(SE [M]+SE [N]))
SE[M/N] = min(1,(SE [M]+ (1−SE [N])))
SE[MN] = min(1,(SE [M]∗n)∗min(1,(SE [N]∗n)

where n is the common dimension of M and N
SE[rowSums(M)] = min (1,m∗SE [M])

where m is the number of rows of M
SE[colSums(M)] = min (1,n∗SE [M])

where n is the number of columns of M

Figure 5.6: Naı̈ve sparsity estimation scheme.

accurate, and general sparsity estimation. It relies on count-based histograms that exploit these

properties. We have also adopted this framework into our approach, and compute histograms

about the base matrices offline. However, the MNC framework still needs to derive and construct

histograms for intermediate results online (during rewriting cost estimation). We study this

overhead in our experiments (Section 5.9). MNC also lacks the support of estimating the sparsity

of complex matrix operations. For this reason, we made the same assumptions discussed in the

naı̈ve metadata estimator.

5.7.2 Pruning Rewritings: PACB++

We extended the PACB rewriting engine with the Pruneprov algorithm discussed in

[83, 84], to eliminate inefficient rewritings during the rewriting search phase. The naı̈ve PACB

algorithm generates all minimal (by join count) rewritings before choosing a minimum-cost one.

While this suffices on the scenarios considered in [84, 31], the settings we obtain from our LA

encoding stress-test the naı̈ve algorithm, as commutativity, associativity, etc. blow up the space
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of alternate rewritings exponentially. Scalability considerations forced us to further optimize

naı̈ve PACB to find only minimum-cost rewritings, aggressively pruning the others during the

generation phase. In this Section, we recall below just enough of the PACB’s inner working to

explain Pruneprov (see Section 3.3.2 for details).

Provenance-Directed Rewritings Search. Given a source schema σ with a set of in-

tegrity constraints I , a set V of views defined over σ, and a conjunctive query Q over σ, the

rewriting problem thus becomes: find every reformulation query ρ over the schema of view

names V that is equivalent to Q under the constraints I ∪CV .

Example 5.7.2. For instance, if σ = {R,S}, I = /0, τ = {V} and we have a view V materializing

the join of relations R and S, V (x,y):- R(x,z)∧S(z,y), the pair of constraints capturing V is the

following:

VIO : ∀x∀z∀y R(x,z)∧S(z,y)→V (x,y)

VOI : ∀x∀yV (x,y)→∃z R(x,z)∧S(z,y)

Given the query Q(x,y):- R(x,z)∧ S(z,y), PACB finds the rewriting RW (x,y):- V (x,y).

Algorithmically, this is achieved by:

(i) chasing Q with the constraints I ∪CIO
V , where CIO

V = {VIO | V ∈ V }; intuitively, this

enriches (extends) Q with all the consequences that follow from its atoms and the constraints

I ∪CIO
V .

(ii) restricting the chase result to only V -atoms; the result is called a universal plan U.

(iii) annotating each atom of U with a unique ID called a provenance term.

(iv) chasing U with the constraints in I ∪COI
V , where COI

V = {VOI |V ∈V }, and annotating

each relational atom a introduced by these chase steps with a provenance formula π(a), which

gives the set of U-subqueries whose chasing led to the creation of a; the result of this phase,

called the backchase, is denoted B.

(v) matching Q against B and outputting as rewritings the subsets of U that are responsible
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for the introduction (during the backchase) of the atoms in the image h(Q) of Q; these rewritings

are read off directly from the provenance formula π(h(Q)).

In our example, I is empty, CIO
V = {VIO}, and the result of the chase in phase (i) is

Q1(x,y):- R(x,z)∧S(z,y)∧V (x,y). The universal plan obtained in (ii) by restricting Q1 to the

schema of view names is U(x,y):- V (x,y)p0 , where p0 denotes the provenance term of atom V (x,y).

The result of backchasing U with COI
V in phase (iv) is B(x,y):- V (x,y)p0∧ R(x,z)p0 ∧ S(z,y)p0 .

Note that the π(R) and π(S) of the R and S atoms (a simple term p0, in this example) are

introduced by chasing the view V . Finally, in phase (v) we find one match image given by h from

Q’s body into the R and S atoms from B’s body. The provenance π(h(Q)) of the image h of Q is

p0, which corresponds to an equivalent rewriting: RW (x,y):- V (x,y).

Pruneprov Minimum-Cost Rewriting. The minimal rewritings of a query Q are obtained

by first finding the set H of all matches (i.e., containment mappings) from Q to the result B

of backchasing the universal plan U . Denoting with π(A) the provenance formula of a set of

atoms A, PACB computes the DNF form D of
∨

h∈H π(h(Q)). Each conjunct c of D determines a

subquery sq(c) of U which is guaranteed to be a rewriting of Q.

The idea behind cost-based pruning is that, whenever the naı̈ve PACB backchase would

add a provenance conjunct c to an existing atom a’s provenance formula π(a), Pruneprov does

so more conservatively: if the cost γ(sq(c)) is larger than the minimum cost threshold T found

so far, then c will never participate in a minimum-cost rewriting and need not be added to π(a).

Moreover, atom a itself need not be chased into B in the first place if all its provenance conjuncts

have above-threshold cost.

Example 5.7.3 (Applying Pruneprov). Let E = M(NM), where we assume for simplicity that

M50K×100 and N100×50K are dense. Exploiting the associativity of matrix-multiplication (MN)M =

M(NM) during the chase leads to the following universal plan U annotated with provenance

terms:
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U(R2) :−name(M,“M.csv”)p0,size(M,“50000”,“100”)p1,name(N,“N.csv”)p2,

size(N,“100”,“50000”)p3 , multiM(M,N,R1)
p4, multiM(R1,M,R2)

p5,

multiM(N,M,R3)
p6, multiM(M,R3,R2)

p7

Now, consider in the backchase the associativity constraint C:

∀M∀N∀R1∀R2

multiM(M,N,R1)∧multiM(R1,M,R2)→

∃R4multiM(N,M,R4)∧multiM(M,R4,R2)

There exists a match h embedding the two atoms in the premise P of C into the U atoms

whose provenance annotations are p4 and p5. The provenance conjunct collected from P’s image

is π(h(P))=p4∧ p5.

Without pruning, the backchase would chase U with the constraint C, yielding U ′ which

has additional π(h(P))-annotated atoms: multiM(N,M,R4)
p4∧p5∧ multiM(M,R4,R2)

p4∧p5 .

E has precisely two matches h1,h2 into U ′. h1(E) involves the newly added atoms as well as those

annotated with p0, p1, p2, p3. Collecting all their provenance annotations yields the conjunct

c1 = p0 ∧ p1 ∧ p2 ∧ p3 ∧ p4 ∧ p5. c1 determines the U-subquery sq(c1) corresponding to the

rewriting (MN)M, of cost (50K)2.

h2(E)’s image yields the provenance conjunct c2 = p0 ∧ p1 ∧ p2 ∧ p3 ∧ p6 ∧ p7, which

determines the rewriting M(NM) that happens to be the original expression E of cost 1002.

The naı̈ve PACB would find both rewritings, cost them, and drop the former ,which

introduces a large intermediate result (γ(sq(π(h(P))) = (50K)2), above the threshold, in favor of

the latter.

With pruning, the threshold T is the cost of the original expression 1002. The chase

step with C is never applied, as it would introduce the provenance conjunct π(h(P)) which

determines U-subquery sq(π(h(P)) = multiM(M,N,R1)
p4 ∧ multiM(R1,M,R2)

p5 of cost

(50K)2 exceeding T . The atoms needed as an image of E under h1 are thus never produced while
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backchasing U, so the expensive rewriting is never discovered. This leaves only the match image

h2(E), which corresponds to the efficient rewriting: M(NM).

Our improvements on Pruneprov. Whenever the pruned chase step is applicable and

applied for each constraint, the original algorithm searches for all minimal-rewritings R W that

can be found “so far”, then it costs each rw ∈ R W to find the “so far” minimum-cost one rwe

and adjusts the threshold T to the cost of rwe. However, this strategy can cause redundant costing

of rw ∈ R W whenever the pruned chase step is applied again for another constraint.

To address this issue, in our modified version of Pruneprov, we keep track of the rewritings

that their costs are already estimated to prevent such redundant work. Additionally, the search for

minimal-rewritings “so far” (matches of the query Q into the evolving universal plan instance

U ′), whenever the pruned chase step is applied, is modeled as a query evaluation of Q against U ′

(viewed as a symbolic/canonical database [26]). This involves repeatedly evaluating the same

query plan. However, the query is evaluated over evolutions of the same instance. Each pruned

chase step adds a few new tuples to the evolving instance, corresponding to atoms introduced by

that step, while most of the instance is unchanged. Therefore, instead of evaluating the query plan

from scratch, we employ incremental evaluation as in [84]. The plan is kept in memory along

with the populated hash tables and, whenever new tuples are added to the evolving instance, we

push them to the plan.

5.8 Guarantees on the Reduction

We detail the conditions under which we guarantee that our approach is sound (i.e., gener-

ates only equivalent, cost-optimal rewritings), and complete (i.e., finds all equivalent cost-optimal

rewritings).

Let V ⊆ L be a set of materialized view definitions, where L is the language of hybrid

expressions described in Section 5.3.
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Let LAprop be a set of properties of the LA operations in Lops that admits relational

encoding over V R EM . We say that LAprop is terminating if it corresponds to a set of TGDs

and EGDs with terminating chase (this holds for our choice of LAprop).

Denote with γ a cost model for expressions from L . We say that γ is monotonic if

expressions are never assigned a lower cost than their subexpressions (this is true for both models

we used).

We call E ∈ L (γ,LAprop,V )-optimal if for every E ′ ∈ L that is (LAprop,V )-equivalent to

E we have γ(E ′)≥ γ(E).

Let Eqγ〈LAprop,V 〉(E) denote the set of all (γ,LAprop,V )-optimal expressions that are

(LAprop,V )-equivalent to E.

We denote with HADAD〈LAprop,V ,γ〉 our parameterized solution based on relational en-

coding followed by PACB++ rewriting and next by decoding all the relational rewritings generated

by the cost-based pruning PACB++ (recall Figure 5.1). Given E ∈ L , HADAD〈LAprop,V ,γ〉(E)

denotes all expressions returned by HADAD〈LAprop,V ,γ〉 on input E.

Theorem 5.8.1 (Soundness). If the cost model γ is monotonic, then for every E ∈ L and every

rw ∈ HADAD〈LAprop,V ,γ〉(E), we have rw ∈ Eqγ〈LAprop,V 〉(E).

The proof sketch parallels that of Theorem 4.12.1 (shown in Section 4.12).The only

difference is that we extended HADAD to use Pruneprov, where the soundness still holds.

Completeness Discussion. We state that our approach is complete within theoretically

imposed limitations, meaning if γ is monotonic and LAprop is terminating, then for every E ∈ L

and every rw ∈ Eqγ〈LAprop,V 〉(E), we have rw ∈ HADAD〈LAprop,V ,γ〉(E). The completeness

of PACB Pruneprov [83] (which was proven under terminating chase and monotonic cost function)

guarantees that it returns all and precisely the minimum-cost reformulations of enc(E) under

C V ∪ encLA(LAprop)). However, LA operations can satisfy more properties that we cannot fully

capture with our class of constraints. The rewriting algorithm will not exploit those properties.
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Thus, with respect to those properties, our approach is incomplete necessarily so because these

tasks are undecidable.

5.9 Experimental Evaluation

We evaluate HADAD to answer the research questions below about our approach:

• Section 5.9.2 and Section 5.9.3: Can HADAD find rewrites with/without views that lead to

a greater performance improvement than original pipelines without modifying the internals

of the existing systems?. Are the identified rewrites found by state-of-the-art platforms?.

• Section 5.9.2 and Section 5.9.3: Is HADAD’s optimization overhead compensated by the

performance gains in execution?.

We evaluate our approach, first on LA-based pipelines (Section 5.9.2), then on hybrid

expressions (Section 5.9.3).

5.9.1 Experiment Setup

We use a single machine with an Intel(R) Xeon(R) CPU E5-2640 v4@2.40GHz, 20

physical cores (40 logical cores) and 123GB RAM, running CentOS Linux release 7.9.2009. The

machine is equipped with a 1TB SSD storage device, where the disk read and write speeds are

616 MB/s and 455 MB/s, respectively. We run our PACB++ engine on OpenJDK Java 8 VM.

As for LA systems/libraries, we use R 3.6.0, Numpy 1.16.6 (python 2.7), TensorFlow r1.4.2,

Spark 2.4.5 (MLlib), SystemML 1.2.0. For hybrid experiments, we use MorpheusR [12] and

SparkSQL [35]. We use Scala version 2.11.12 for SparkMLlib and SystemML.

We use a JVM-based linear algebra library for SystemML as recommended in [131], at

the optimization level 4. Additionally, we enable multi-threaded matrix operations in a single

node. We run Spark in a single node setting and configure Spark to import OpenBLAS (we
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Table 5.2: LA benchmark pipelines (part 1).

No. Expression No. Expression No. Expression
P1.1 (MN)T P1.2 AT +BT P1.3 C−1D−1

P1.4 (A+B)v1 P1.5 ((D)−1)−1 P1.6 trace(s1D)
P1.7 ((A)T )T P1.8 s1A+ s2A P1.9 det(DT )

P1.10 rowSums(AT ) P1.11 rowSums(AT +BT ) P1.12 colSums((MN))

P1.13 sum(MN) P1.14
sum(colSums((

NT MT ))
P1.15 (MN)M

P1.16 sum(AT ) P1.17 det(CDC) P1.18 sum(colSums((A))
P1.19 (CT )−1 P1.20 trace(C−1) P1.21 (C+D−1)T

P1.22 trace((C+D)−1) P1.23 det((CD)−1)+D) P1.24
trace((CD)−1))

+trace(D)

P1.25
M� (NT/
(MNNT ))

P1.26 N� (MT/(MT MN)) P1.27 trace(D(CD)T )

P1.28 A� (A�B+A) P1.29 DCCC P1.30 NM�NMRT

compiled from the source as detailed in [13]) as a linear algebra backend library to take advantage

of its accelerations [131]. SparkMLlib’s datatypes do not support many basic LA operations,

such as scalar-matrix multiplication, Hadamard-product. To support them, we use the Breeze

Scala library [5], convert MLlib’s datatypes to Breeze types and express the basic LA operations.

The driver memory allocated for Spark and SystemML is 115GB.

To maximize TensorFlow performance, we compile it from the source to enable architecture-

specific optimizations (e.g., SMID instructions). For all systems/libraries, we set the number

of cores to 24 (i.e., we use the command taskset -c 0-23 when running R, NumPy and

TensorFlow scripts, as used in [131]). All system use double precision numbers (double) by

default, while TensorFlow uses single precision floating point numbers (float). To enable fair

companion with other systems, we use a double precision (tf.float64) for Tensorflow.

5.9.2 LA-based Experiments

In this experiment, we study the performance benefits of our approach on LA-based

pipelines as well as our optimization overhead.
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Table 5.3: LA benchmark pipelines (part 2).

No. Expression No. Expression No. Expression
P2.1 trace(C+D) P2.2 det(D−1) P2.3 trace(DT )

P2.4 s1A+ s1B P2.5 det((C+D)−1) P2.6 CT (DT )−1

P2.7 DD−1C P2.8 det(CT D) P2.9 trace(CT DT +D)
P2.10 rowSums(MN) P2.11 sum(A+B) P2.12 sum(rowSums(NT MT ))
P2.13 ((MN)M)T P2.14 ((MN)M)N P2.15 sum(rowSums(A))

P2.16
trace(C−1D−1)
+trace(D)

P2.17
((((C+D)−1)T )
((D−1)−1)C−1C

P2.18 colSums((AT +BT )

P2.19 (CT D)−1 P2.20 (M(NM))T P2.21 (DT D)−1(DT v1)

P2.22 exp((C+D)T ) P2.23
det(C)∗det(D)
∗det(C)

P2.24 (D−1C)T

P2.25 (u1vT
2 −X)v2 P2.26 exp((C+D)−1) P2.27 ((((C+D)T )−1)D)C

Table 5.4: Overview of used real datasets.

Name Rows n Colsm Nnz ||X ||0 SX

Amazon/(AS) 50K 100 378 0.0075%
Amazon/(AM) 100K 100 673 0.0067%
Amazon/(AL1) 1M 100 6539 0.0065%
Amazon/(AL2) 10M 100 11897 0.0011%
Amazon/(AL3) 100K 50K 103557 0.0020%
Netflix/(NS) 50K 100 69559 1.3911%
Netflix/(NM) 100K 100 139344 1.3934%
Netflix/(NL1) 1M 100 665445 0.6654%
Netflix/(NL2) 10M 100 665445 0.0665%
Netflix/(NL3) 100K 50K 15357418 0.307%

Table 5.5: Syntactically generated dense datasets.

Name Rows n Colsm

Syn1 50K 100
Syn2 100 50K
Syn3 1M 100
Syn4 5M 100
Syn5 10K 10K

Name Rows n Colsm
Syn6 20K 20K
Syn7 100 1
Syn8 50K 1
Syn9 100K 1
Syn10 100 100

Datasets. We used several real-world, sparse matrices, for which Table 5.4 lists the

dimensions and the sparsity (SX ): (i) we used several subsets of an Amazon books review

dataset [2] (in JSON), and similarly (ii) subsets of a Netflix movie rating dataset [15]. They
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Table 5.6: Matrices used for each matrix name in a pipeline.

Matrix Name Used Data

A and B
AM, AL1, AL2, NM, NL1, NL2,

Syn3 or Syn4
C and D Syn5 or Syn6

M AS, NS, or Syn1
N Syn2
R Syn10
X AL3 or NL3

v1,v2 and u1 Syn7, Syn8 and Syn9, respectively.

were easily converted into matrices where columns are items and rows are customers [137]; we

extracted smaller subsets of all real datasets to ensure the various computations applied on them

fit in memory (e.g., Amazon/(AS) denotes the small version of the Amazon dataset). We also

used a set of synthetic, dense matrices, described in Table 5.5.

LA benchmark. We use a set P of 57 LA pipelines used in prior studies and/or frequently

occurring in real-world LA computations, as follows:

• Real-world Pipelines (10): include: a chain of matrix self products used for reachability

queries and other graph analytics [128] (P1.29 in Table 5.2); expressions used in Alter-

nating Least Square Factorization (ALS) [137] (P2.25 in Table 5.3); Poisson Nonnegative

Matrix Factorization (PNMF)(P1.13 in Table 5.2) [137]; Nonnegative Matrix Factorization

(NMF)(P1.25 and P1.26 in Table 5.2) [131]; recommendation computation [128] (P1.30

in Table 5.2); finally, Ordinary Least Squares Regression (OLS) [131] (P2.21 in Table 5.3).

• Synthetic Pipelines (47): were also generated, based on a set of basic matrix operations

(inverse, multiplication, addition, etc.), and a set of combination templates, written as a

Rule-Iterated Context-Free Grammar (RI-CFG) [113]. Examples of synthetic pipelines

include P2.16, P2.16, P2.23, P2.24 in Table 5.2. Expressions thus generated include P2.16,

P2.16, P2.23, P2.24 in Table 5.3.

Methodology. We first show the performance benefits of our approach to LA-oriented
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systems/tools mentioned above using a set P¬Opt ⊂ P of 38 pipelines in Table 5.2 and Table 5.3,

and the matrices in Table 5.6. The performance of these pipelines can be improved just by

exploiting LA properties (in the absence of views). For TensorFlow and NumPy, we present

the results only for dense matrices due to limited support for sparse matrices. Then, we show

how our approach improves the performance of 30 pipelines from P , denoted PViews, using

pre-materialized views. Finally, we study our rewriting performance and optimization overhead

for the set P Opt = P \P¬Opt of 19 pipelines that are already optimized. For the purpose of the

discussion, we discuss a selection of these experiments below. The detailed set of results appears

in Appendix B.5, Appendix B.6, Appendix B.7, and Appendix B.8.

Effectiveness of LA Rewriting (No Views). For each system, we run the original

pipeline and our rewriting five times; we report the average of the last four running times.

We exclude the data loading time [131]. For fairness, we ensure SparkMLib and SystemML

compute the entire pipeline (despite their lazy evaluation mode). So, we print a random matrix

cell value to force the systems to compute the entire pipeline. Additionally, for SystemML,

we insert a “break block” (e.g., WHILE(FALSE)) after each pipeline and before the cell print

statement to prevent computing only the value of a single cell and force it to compute all the

outputs.

Discussion. Figure 5.7 illustrates the original pipeline execution time Qexec and the

selected rewriting execution time RWexec for P1.1, P1.3, P1.4, and P1.15, including the rewriting

time RWf ind , using the MNC cost model. For each pipeline, the used datasets are on top of the

figure. For brevity in the figures, we use SM for SystemML, NP for NumPy, TF for Tensorflow,

and SP for SparkMLlib.

For P1.1 (see Figure 5.7(a)), both matrices are dense. The speedup (1.3× to 4×) comes

from rewriting (MN)T (intermediate result size to (50K)2) into NT MT , much cheaper since both

NT and MT are of size 50K× 100. We exclude MLlib from this experiment since it failed to

allocate memory for the intermediate matrix (Spark/MLLib limits the maximum size of a dense
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Figure 5.7: P1.1, P1.4, P1.15, and P2.12 evaluation before and after rewriting.

matrix). As a variation (not plotted in the Figure), we run the same pipeline with the ultra-sparse

AS matrix (0.0075% non-zeros) used as M. The Qexec and RWexec time are very comparable using

SystemML because we avoid large dense intermediates. In R, this scenario leads to a runtime

exception, and to avoid it, we cast M during load time to a dense matrix type. Thus, the speedup

achieved is the same as if M and N were both dense. If, instead, NS (1.3911% non-zeros) plays

the role of M, our rewrite achieves ≈ 1.8× speedup for SystemML.

For P1.4 (Figure 5.7(b)), we rewrite (A+B)v1 to Av1 +Bv1. Adding Amazon sparse

matrix AL1 (0.0065% nnz) used as A to a dense matrix B results into a dense intermediate of size

1M×100. Instead, Av1 +Bv1 has intermediate results of sizes 1M×1 and 1M×1, respectively.
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Figure 5.8: P1.13, and P1.25 evaluation before and after rewriting.

In addition, Av1 can be computed efficiently thanks to the sparsity in A. The MNC sparsity

estimator has a noticeable overhead. We run the same pipeline, where the dense 5M×100 matrix

plays both A and B (not shown in the Figure). This leads to speedup of up to 2.7× for SystemML,

1.4× for R, and 9× for MLlib, which does not natively support matrix addition; thus, we convert

its matrices to Breeze types in order to perform it [131].

P1.15 (Figure 5.7(c)) is a matrix chain multiplication. The naı̈ve left-to-right evaluation

plan (MN)M computes an intermediate matrix of size O(n2), where n is 50K. Instead, the

rewriting M(NM) only needs an O(m2) intermediate matrix, where m is 100, and is much faster.

To avoid MLLib memory failure on P1.15, we use the distributed matrix of type BlockMatrix,

which we can run locally for both matrices. While M thus converted has the same sparsity, Spark

views it as being of a dense type ( multiplication on BlockMatrix is considered to always produce

dense matrices) [21]. SystemML does optimize the multiplication order if the user does not

enforce it (based on our experiments). Further (not shown in the Figure), we run P.15 with AS in

the role of M. This is 4× faster in SystemML since with an ultra sparse M, multiplication is more

efficient. This is not the case for MLlib which views it as dense. For R, we again had to densify

M during loading to prevent crashes (discussed earlier).

Figure 5.7(d) shows speedups of up to 42×when rewriting P2.12 into sum((colSums(M))T
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�rowSums(N)). This exploits several properties:

(i) (MN)T = NT MT ,

(ii) sum(MT ) =sum(M),

(iii) sum(rowSums(M)) = sum(M), and

(iv) sum(MN)=sum((colSums(M))T� rowSums(N)).

SystemML captures (ii), (iii), and (iv) as rewrite rules, however, it is unable to find this rewrite

since it is unaware of (i). Other systems do not exploit these properties. In this experiment and

subsequently, whenever MLlib is absent, this is due to its lack of support for LA operations (here,

sum of all cells in a matrix) on BlockMatrix.

Figures 5.8(a) and 5.8(b) study P1.13 and P1.25, two real-world pipelines involved

in ML algorithms, using the MNC cost model; note the log-scale y axis. Rewriting P1.13 to

sum(t(colSums((M))∗rowSums(N)) yields a speedup of 50×; while SystemML has this rewrite

as a dynamic rewrite rule, it did not apply it during optimization. In addition, our rewrite allows

other systems to benefit from it. Not shown in the Figure, we re-run this pipeline with M

ultra sparse (using AS) and SystemML: the rewrite did not bring benefits, since MN is already

efficient. For P1.25, the important optimization is selecting the multiplication order in MNNT

(Figure 5.8(b)). SystemML is efficient here, due to its dedicated operator tsmm for transpose-self

matrix multiplication and mmchain for matrix multiply chains. MLlib is excluded as it does not

support divisions on BlockMatrixes.

Figure 5.9 shows the distribution of the significant rewriting speedup on P¬Opt running

on R, and using the MNC-based cost model. For clarity, we split the distribution into two figures:

on the left, 25 P¬Opt pipelines with speedup lower than 10×; on the right, the remaining 13 with

greater speedup. Among the former, 87% achieved at least 1.5× speedup. The latter are sped up

by 12× to 58×. P1.5 is an extreme case here (not plotted): it is sped up by about 1000×, simply

by rewriting ((D)−1)−1 into D.

Effectiveness of Views-based LA Rewriting. We define a set Vexp of 12 views that

114



Figure 5.9: R speedup on P¬Opt .

pre-compute the result of some expensive operations (multiplication, inverse, determinant, etc. ),

which can be used to answer our PViews pipelines and materialize them on disk as CSV files. The

experiments outlined below used the naı̈ve cost model; all graphs have a log-scale y axis. The list

of all view definitions appears in Appendix B.5.

Discussion. For P2.14 (Figure 5.10(a)), using the view V3 =NM by and the multiplication

associativity leads to up to 2.8× speedup.

Figure 5.10(b) shows the performance gain due to using the view V1 = D−1, for the

ordinary-least regression (OLS) pipeline P2.21. It has 8 rewritings, 4 of which use V1; they

are found thanks to the properties (CD)−1 = D−1C−1, (CD)E =C(DE) and (DT )−1 = (D−1)T

among others. The cheapest rewriting is V (V T (DT v1)), since it introduces small intermediate

results due to the optimal matrix chain multiplication order. This rewrite leads to 70×, 55×,

115×, and 150× speedups on R, NumPy, TensorFlow, and MLlib, respectively; On SystemML,

the original pipeline timed out (> 1000 seconds).

Pipeline P2.25 (Figure 5.10(c)) benefits from the view V4 = u1vT
2 , which pre-computes

a dense intermediate vector multiplication result. The rewrite of (u1vT
2 −X)v2 to V4v2−Xv2 is
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Figure 5.10: P2.14, P2.21, P2.25 and P2.27 evaluation before and after rewriting using Vexp.

based on exploiting the property (A+B)v = Av+Bv, which leads to 65× speedup in SystemML.

For MLlib, as discussed before, to avoid memory failure, we used BlockMatrix types. for all

matrices and vectors, thus they were treated as dense. In R, the original pipeline triggers a memory

allocation failure for the intermediate result, which the rewriting avoids.

Figure 5.10(d) shows that for P2.27 exploiting the views V9 = (D+C)−1 and V5 = DC

leads to speedups of 4× to 41× on different systems. Properties enabling rewriting here are

C+D = D+C, (DT )−1 = (D−1)T and (CD)E =C(DE). The matrix multiplication order does

not have an effect for this pipeline since all matrices are squares.

Rewriting Performance and Overhead. We now study the running time RWf ind of our
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rewriting algorithm, and the rewrite overhead defined as:

RWf ind/(Qexec+ RWf ind)

where Qexec is the time to run the pipeline “as stated”.

We run each experiment 100 times and report the average of the last 99 times. The global

trends are as follows. (i) For a fixed pipeline and set of data matrices, the overhead is slightly

higher using the MNC cost model, since histograms are built during optimization. (ii) For a fixed

pipeline and cost model, sparse matrices lead to a higher overhead simply because Qexec tends

to be smaller. (iii) Some (system, pipeline) pairs lead to a low Qexec when the system applies

internally the same optimization that HADAD finds “outside” of the system.

Concretely, for the P¬Opt pipelines, on the dense and sparse matrices listed in Table 5.6,

using the naı̈ve cost model, 64% of the RWf ind times are under 25ms (50% are under 20ms), and

the longest is about 200m. Using the MNC estimator, 55% took less than 20ms, and the longest

(outlier) took about 300ms. Among the 38 P¬Opt pipelines, SystemML finds efficient rewritings

for a set of 9, denoted P¬Opt
SM , while TensorFlow optimizes a different set of 11, denoted P¬Opt

T F .

On these subsets, where HADAD’s optimization is redundant, using dense matrices, the rewriting

overhead is very low: with the MNC model, 0.48% to 1.12% on P¬Opt
SM (0.64% on average), and

0.0051% to 3.51% on P¬Opt
T F (1.38% on average). Using the naı̈ve estimator slightly reduces this

overhead, but across P¬Opt , this model misses 4 efficient rewritings. On sparse matrices, the

overhead is at most 4.86% with the naı̈ve estimator and up to 5.11% with the MNC one.

Among the already-optimal pipelines P Opt , 70% involve expensive operations such as

inverse, determinant, and matrix exponential, leading to rather long Qexec times. Thus, the

rewriting overhead is less than 1% of the total time on all systems, using sparse or dense matrices,

and the naı̈ve or the MNC-based cost models. For the other P Opt pipelines with short Qexec,

mostly matrix multiplications chains already in the optimal order, on dense matrices, the overhead

reaches 0.143% (SparkMlLib) to 9.8% (TensorFlow) using the naı̈ve cost model, while the MNC

cost model leads to an overhead of 0.45% (SparkMlib) up to 10.26% (TensorFlow). On sparse
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(d) P2.15

Figure 5.11: Speedups of MorpheusR (with HADAD rewrites) over MorpheusR (without HADAD

Rewrites) for pipelines P1.12, P2.10, P2.11 and P2.15 on synthetic data for a PK-FK join.

matrices, using the naı̈ve and MNC cost models, the overhead reaches up to 0.18% (SparkMLlib)

to 1.94% (SystemML), and 0.5% (SparkMLlib) to 2.61% (SystemML), respectively.

5.9.3 Hybrid (RA and LA) Experiments

We now study the benefits of rewriting on hybrid scenarios combining RA and LA

operations. We first show the performance benefits of HADAD to a cross RA-LA platform,

MorpheusR [12]. We then evaluate our hybrid micro-benchmark on SparkSQL+SystemML.
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Figure 5.12: HADAD RWf ind overhead as a percentage (%) of the total time (Qexec +RWf ind) for
pipelines P1.10, P1.16, and P1.18 running on MorpheusR.

MorpheusR Experiments. We use the same experimental setup introduced in [52] for

generating synthetic datasets for the PK-FK join of tables R and S. The quantities varied are the

tuple ratio (nS/nR) and feature ratio (dR/dS), where nS and nR are the number of rows and dR and

dS are the number of columns (features) in R and S, respectively. We fix nR = 1M and dS = 20.

The join of R and S outputs ns× (dR + dS) matrix M, which is always dense. We evaluate on

MorpheusR a set of 8 pipelines and their rewritings found by HADAD using the naı̈ve cost model.

Discussion. P1.12: colSums(MN) is the example from Section 5.2, with M the output
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(viewed as dense matrix) of joining tables R and S generated as described above. N is a

ncol(M)×100 dense matrix. HADAD’s rewriting yields up to 125× speedup (see Figure 5.11(a)).

Figure 5.11(b) shows up to 15× speedup for P2.10: rowSums(NM), where the size of N

is 100×nrow(M). This is due to HADAD’s rewriting: NrowSums(M), which enables MorpheusR

to push the rowSums operator to R and S instead of computing the matrix multiplication.

P2.11: sum(N+M) is run as-is by MorpheusR since it does not factorize element-wise

operations, e.g., addition. However, HADAD rewrites P2.11 into sum(N)+sum(M), which avoids

the (large and dense) intermediate result of the element-wise matrix addition. The HADAD rewrite

enables MorpheusR to execute sum(M) by pushing sum to R and S, for up to 20× speedup (see

Figure 5.11(c)).

MorpheusR evaluates P2.15: sum(rowSums(M)) by pushing the rowSums operator to R

and S. HADAD finds the rewriting sum(M), which enables MorpheusR to push the sum operation

instead, achieving up to 4.5× speedup (see Figure 5.11(d)).

Since MorpheusR does not exploit the associative property of matrix multiplication, it

cannot reorder multiplication chains to avoid large intermediate results, which leads to runtime

exception in R (MorpheusR’s backend). For example, for the chain NT NM (variation of P1.26),

when the size of M is 1M×40 and the size of N is 40×1M, the size of the NT N intermediate

result is 1M×1M, which causes out of memory in R. HADAD exploits associativity and selects

the rewriting NT (NM) of intermediate result size (40×40).

For pipelines P1.14 and P2.12, that involve transpose operator, MorpheusR applies its

special rewrite rules that replace an operation on MT with an operation on M before pushing the

operation to the base tables. HADAD rewrites both pipelines to sum(NM), enabling MorpheusR

to apply its factorized rewrite rule on NM. This rewrite achieves speedup from 1.3× up to 1.5×.

Rewriting Overhead. For pipelines that are already optimized or MorpheusR finds the

same rewriting found by HADAD, the rewriting overhead is very negligible compared to Qexec.

For example, for pipelines that contain matrix multiplication expressions, the rewriting time is
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Figure 5.13: Results of micro-hybrid benchmark using Twitter dataset.

generally less than 0.1% of the total time. However, for the other pipelines, such as P1.10, P1.16,

and P1.18, which contain only aggregate operations, the rewriting time is up to 9% of the total

time (when the data size is very small (0.32GB), and the computation is extremely efficient) and

less than 1% (when the data size is large (19.2GB), and the computation is expensive) as shown

in Figure 5.12.

Micro-hybrid Benchmark Experiments. In this experiment, we create a micro-hybrid

benchmark on Twitter[24] and MIMIC [88] datasets to empirically study HADAD’s rewriting

benefits in a hybrid setting (SparkSQL+SystemML). The benchmark comprises ten different

queries combining relational and linear algebra expressions.

Twitter Dataset Preparation. We obtain from Twitter API [24] 16GB of tweets (in
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Table 5.7: LA pipelines used in micro-hybrid benchmark.

No. Expression
P3.1 rowSums(XM)+(uvT+ NT )v
P3.2 ucolSums((XM)T )+N
P3.3 ((N+X)v)colSums(M)
P3.4 sum(C+NrowSums(XM)v)
P3.5 ucolSums(MX)+N
P3.6 rowSums((MX)T )+(uvT+ N)v
P3.7 XNu+rowSums((M)T )
P3.8 N�trace(C+ vcolSums(MX)C)
P3.9 X�sum(colSums(C)T�rowSums(M))+N
P3.10 N� sum((X +C)M)

JSON). We extract the structural parts of the dataset, which include user and tweet information,

and store them in tables User (U) and Tweet (T), linked via PK-FK relationships. The dataset

is detailed in Section 5.2. The tables User and Tweet as well as TweetJSON (TJ) are stored in

Parquet format.

Twitter Queries and Views. Queries consist of two parts: (i) RA preprocessing (QRA)

and (ii) LA analysis (QLA). In the QRA part, queries construct two matrices: M and N. The

matrix M (2M×12; dense) is the output of joining T and U. The construction of matrix N is

described in Section 5.2. We fix the QRA part across all queries and vary the QLA part using a set

of LA pipelines detailed below. In addition to the views defined in Section 5.2, we define three

hybrid RA-LA materialized views: V H
1 , V H

2 and V H
3 , which store the result of applying rowSums,

colSums and matrix multiplication operations over base tables T and U (viewed as matrices),

respectively. Importantly, rewritings based on these views can only be found by exploiting

together LA properties and Morpheus’s rewrites rules (we incorporated them in our framework as

a set of integrity constraints).

Discussion. After construction of M and N by the QRA part in SparkSQL, both matrices

are loaded to SystemML to be used in the QLA part. Before evaluating an LA pipeline on M

and N, all queries select N’s rows (QFLA) with filter-level less than 4 (medium). For all of them,
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HADAD rewrites the QRA part of N as described in Section 5.2.

Q1: For the QLA part, the query runs P3.1 (see Table 5.7). HADAD applies several

optimizations: (i) it rewrites (uvT+ N T )v to uvT v+NT v, where u and v are synthetic vectors of

size 1000×1 and 2M×1. First, N is ultra sparse, which makes the computation of NT v extremely

efficient. Second, SystemML evaluates uvT v efficiently in one go without intermediates, taking

advantage of tsmm operator (discussed earlier) and mmchain for matrix multiply chains, where

the best way to evaluate it computes vT v first, which results in a scalar, instead of computing

uvT , which results in a dense matrix of size 2M×1000. Alone, SystemML is unable to exploit

its own efficient operations for lack of awareness of the LA property Av+Bv = (A+B)v; (ii)

HADAD also rewrites rowSums(XM) into XV H
1 , where V H

1 =rowSums(T) +KrowSums(U), by

exploiting the property rowSums(XM) = XrowSums(M) together with Morpheus’s rewrite rule:

rowSums(M)→ rowSums(T)+KrowSums(U)5 . The rewriting achieves up to 16.5× speedup.

Q2: The speedup of 2.5× comes from rewriting the pre-processing part and turning

P3.2: ucolSums((XM)T )+N to u(XV H
1 )T +N, where u and X are synthetic matrices of size

2M×1 and 1000×2M, respectively. HADAD exploits colSums((XM)T ) =(rowSums(XM))T

and rowSums(XM) = XrowSums(M) together with Morpheus’s rewrite rule: rowSums(M)→

rowSums(T)+KrowSums(U). Both the rewriting and the original LA pipeline introduce an

unavoidable large dense intermediate of size 2M×1000.

Q3: The query runs ((N+X)v)colSums(M) in the QLA part, where dense matrices X and

v are of size 2M×1000 and 1000×1, respectively. HADAD avoids the dense intermediate (N+X)

by distributing the multiplication by v and realizing that the sparsity of N yields efficient multipli-

cation. It also directly rewrites colSums(M) to V H
2 , where V H

2 = [colSums(T),colSums(K)U]

by utilizing one of Morpheus’s rewrite rules: colSums(M)→[colSums(T),colSums(K)U]. The

rewriting (Nv+Xv) V H
2 and including the rewriting of the QRA part of N, achieves 9.2× speedup

(Figure 5.13(a)-Q3).

5K is the unique sparse indicator matrix that captures the primary/foreign key dependencies between T and U,
introduced by Morpheus’s rewrite rules [52].
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Q4: In the QLA part, the query runs P3.4: sum(C+NrowSums(XM)v) (inspired by the

COX proportional hazard regression model used in SystemML’s test suite [6]) , where synthetic

dense matrices C, X and v have size 2M×1000,1000×2M and 1×1000, respectively. HADAD (i)

distributes the sum operation to avoid introducing the dense result of the addition (SystemML

includes this rewrite rule but fails to apply it); (ii) rewrites rowSums(XM) to XV H
1 , where

V H
1 =rowSums(T) +KrowSums(U), by exploiting rowSums(XM)=XrowSums(M) together with

Morpheus’s rewrite rule rowSums(M)→ rowSums(T)+KrowSums(U). The multiplication chain

in the rewriting and the query is efficient since N is sparse. The rewriting of this query (including

the rewriting of the QRA part of N ) achieves 3.63× speedup (Figure 5.13(a)-Q4).

Q5: HADAD’s rewriting speeds up this query by 2.3×. It rewrites ucolSums(MX) in

P3.5 to uV H
2 X (see Q3 for V H

2 ’s definition). The view is exploited by HADAD due to utilizing

colSums(MX) = colSums(M)X together with the Morpheus’s rewrite rule (shown in Q3) for

pushing the colSums to the base tables (viewed as matrices) U and T. With the found rewriting,

SystemML optimizes the matrix-chain multiplication by computing V H
2 X first, resulting in the

intermediate 1×1000 matrix (X is 12×1000 dense matrix) instead of computing uV H
2 (u is a

dense vector of size 2M×1), which results in the intermediate of size 2M×12. The rewriting and

the original pipeline still introduce an unprevented dense intermediate of size 2M×1000.

Q6: The LA pipeline (P3.6) in this query is a variation of P3.1. In addition to distributing

the multiplication of v, HADAD rewrites rowSums((M X)T ) to (V H
2 X)T (see Q3 for V H

2 ’s defi-

nition) by exploiting rowSums((MX)T ) = colSums(MX)T and colSums(MX) = colSums(M)X ,

all together with Morpheus’s rewrite rule as illustrated in Q3. The obtained rewriting, including

the rewriting of QRA part, achieves a speedup of 13.4×.

Q7: In the QLA part, the query runs the pipeline P3.7: XNu+rowSums((M)T ), where sizes

of synthetic dense matrices X and u are 12×2M and 1000×1, respectively. HADAD rewrites the

pipeline to XNu+(V H
2 )T . It discovers the view V H

2 by exploiting the property rowSums((M)T ) =

(colSums(M))T and Morpheus rewrite rule colSums(M)→[colSums(T),colSums(K)U]. Notice
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that SystemML computes XNu (in the rewriting and the original query) efficiently since N is ultra

sparse.

Q8: The QLA part executes N�trace(C+ vcolSums(MX)C), where the size of v, X and

C are 20K×1, 12×20K and 20K×20K, respectively. First, HADAD distributes the trace opera-

tion (which SystemML does not apply) to avoid the dense intermediate addition. Second, HADAD

enables the exploitation of view V H
2 (see Q2) by utilizing colSums(MX) = colSums(M)X . The

resulting multiplication chain is optimized by the order v((V H
2 X)C). The final element-wise

multiplication with N is efficient since N is ultra-sparse. The combined QRA and QLA rewriting

speeds up Q8 by 5.94× (Figure 5.13(a)-Q8).

Q9: In addition to the rewriting of the QRA part, the speedup of 3× also attributes to

turning sum(colSums(C)T�rowSums(M)) in P3.9 to sum(V H
3 ), where V H

3 = [CT,(CK)U]. The

view V H
3 is utilized by exploiting the property sum(CM) =sum(colSums(C)T� rowSums(M))

together with Morpheus’s rewrite rule: CM→ [CT,(CK)U]. The result of an element-wise

multiplication with the dense matrix X in the rewriting and the original pipelines is a dene

intermediate (see Figure 5.13(a)-Q9).

Q10: HADAD’s rewrite the QLA: N�sum((X +C)M), where X and C are dense matrices

of size 1000×1M, to N�(sum(XM)+sum(V H
3 )). The V H

3 = [CT,(CK)U] is utilized by exploit-

ing (X +C)M= XM+CM together with Morpheus’s rewrite rule: CM→ [CT,(CK)U]. This

optimization goes beyond SystemML’s optimization since it does not consider distributing the

multiplication of M, which then enables exploiting the view and distributing the sum operation

to avoid a dense intermediate. The obtained rewriting (with the rewriting of the QRA part of N)

achieves 3.91× (Figure 5.13(a)-Q8).

Twitter Varying Filter Selectivity. We repeat the benchmark for two different text-

search selection conditions: “Trump” and “US election”, obtaining 1M and 0.5M rows for N,

respectively (we adjust the size of the synthetic matrices for dimensional compatibility). As

shown in Figures 5.13(b) and 5.13(c), the benefit of the combined QRA and QLA stage rewriting
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Figure 5.14: Results of micro-hybrid benchmark using MIMIC dataset.

increases with data size, remaining significant across the spectrum.

MIMIC Dataset Preparation. MIMIC dataset [88] comprises health data for patients.

The total size of the dataset is 46.6 GB, and it consists of : (i) all charted data for all patients

and their hospital admission information, ICU stays, laboratory measurements, caregivers’ notes,

and prescriptions; (ii) the role of caregivers (e.g., MD stands for “medical doctor”), (iii) lab

measurements (e.g., ABG stands for “arterial blood gas”) and (iv) diagnosis-related groups (DRG)

codes descriptions. We use a subset of the dataset, which includes Patients (P), Admission (A),

Service (S), and Callout (C) tables. Using one-hot encoding, we convert tables’ categorical

features (columns) to numeric.
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MIMIC Queries and Views. Similar to the Twitter’s dataset benchmark, queries consist

of two parts: (i) pre-processing (QRA) and (ii) analysis (QLA). In the QRA part, the queries

construct two main matrices: M and N. The matrix M (40K×82; dense) is the output of joining

tables P and A. The matrix N (40K×30K; ultra-sparse) is patient-service outcome (e.g., cancelled

(1), serving (2), etc) matrix, constructed from joining C and S for all patients who are in “CCU”

care unit. We fix the QRA part across all queries and vary the QLA part using a set of LA pipelines

in Table 5.7. For views, we define three cross RA-LA materialized views: V H
4 , V H

5 and V H
6 ,

which store the result of applying rowSums, colSums and matrix multiplication operations over P

and A base tables (matrices), respectively. These views can only be found by exploiting together

LA properties and Morpheus rewrites’ rules in the same fashion as we detailed in the Twitter’s

dataset experiment.

Discussion. The results exhibit similar trends to Twitter’s benchmark. The first run of

the benchmark is shown in Figure 5.14(a); both matrices M and N are loaded in SystemML to

be used for the analysis part (varied using the set of pipelines in Table 5.7). Before evaluating

an LA pipeline, all queries filter N’s rows, where the outcome is equal to 2. HADAD applies the

same set of optimizations as described in Twitter’s benchmark. For the second and third runs of

the queries (see Figures 5.14(b) and 5.14(c)), we construct the N matrix for patients who are in

“TSICU” and “MICU” care units, where N’s rows are 20K and 10K, respectively.

5.9.4 Experiments Takeaway

Our experiments with both real-life and synthetic datasets show performance gains across

the board, for small rewriting overhead, in both pure LA and hybrid RA-LA settings. This is

due to the fact that HADAD’s rewriting power strictly subsumes that of optimizers of reference

platforms like R, Numpy, TensorFlow, Spark (MLlib), SystemML and MorpheusR. Moreover,

HADAD enables optimization where it was not previously feasible, such as across a cascade of

unintegrated tools, e.g., SparkSQL for pre-processing followed by SystemML for analytics.
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5.10 Limitations

In our LA relational-based reduction, we primarily focus on treating matrices and LA

operations expressed over them as a block-box, where we capture important properties of LA

operators via integrity constraints. However, it turns out that we can discover more interesting

rewrites by opening this block-box, as we show in the example below:

Example 5.10.1 (LA Rewriting Follows From Standard Properties of Operations Over Numeric

Values). Consider an LA expression E = sum((X−UV )2), which defines a typical loss function

for approximating a matrix X with a low-rank matrix UV T [137], and a view B = XV . After

applying standard LA properties, which include expanding the square and distributing the sum,

we obtain the following expression:

sum(X2)-2sum(X�UV T )+ sum((UV T )2)

Interestingly, the expression sum(X �UV T ) can be rewritten as sum(U �XV ), where we can

match the view B. However, this rewrite does not seem to follow from just using standard LA

properties, where we treat matrices as a black box. The equivalence of expressions sum(X�UV T )

and sum(U�XV ) follows from standard properties of operations over numeric values.

sum(X�UV T ) = ∑
i

∑
k

xik ◦ (∑
j

ui j ◦ vk j)

= ∑
i

∑
k

∑
j

xik ◦ (ui j ◦ vk j) by distributivity of product over addition

= ∑
i

∑
j
∑
k

ui j ◦ (vk j ◦ xik) by associativity and commutativity of product

= ∑
i

∑
j

ui j ◦ (∑
k

xik ◦ vk j) by distributivity of product over addition

= sum(U�XV )

= sum(U�B)
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To obtain the rewriting in the example above, this requires extending HADAD rewriting

capabilities to rewrite nested conjunctive queries with aggregation under integrity constraints

where the body of views can have nested aggregation. Existing studies [54] consider rewriting

conjunctive queries with aggregation in the absence of constraints.

Moreover, LA expressions can contain matrix slicing operations. Rewriting such oper-

ations requires complex index bounds analysis. Further, some complex analytics tasks can be

naturally expressed by iterative LA programs, or LA expressions can be recursively rewritten

given special constraints imposed over base matrices. We leave these extensions and investi-

gations to future work. We plan to start from existing work on the safety and equivalence of

index-based queries [106] and recent work on recursive query rewriting and optimization [138]

and study their applicability in the presence of integrity constraints.

5.11 Conclusion

In this chapter, we presented HADAD, an extensible lightweight framework for optimizing

hybrid analytics queries, based on the powerful intermediate abstraction of a relational model

with integrity constraints. HADAD extends the capability of [31] (Chapter 4) with a reduction

from LA (or LA view)-based rewriting to relational rewriting under constraints. It enables

a full exploration of rewrites using a large set of LA operations, with no modification to the

execution platform. Our experiments show significant performance gains on various LA and

hybrid workloads across popular LA and cross RA-LA platforms.
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Chapter 6

Related Wrok

6.1 Related Work for ESTOCADA

Heterogeneous data integration is an old topic [102, 81, 79, 109] addressed mostly in a

single-model (typically relational) setting (see Chapter 2), where cross-models query rewriting

was therefore not an issue in these settings. The reference federated Garlic system [79] considered

true multi-model settings, but the non-relational stores did not support their own declarative query

language (they included, for instance, text documents, spreadsheets, etc.), being instead wrapped

to provide an SQL API. Consequently, works on federated databases did not need cross-models

rewriting.

The remark “one-size does not fit all” [130] has been recently revisited [104, 87] for het-

erogeneous stores. [99] uses a relational database as a “cache” for partial results of a MapReduce

computation, while [100] considers view-based rewriting in a MapReduce setting. Unlike our

work, these algorithms need the data, views, and queries to be in the same data model.

Polystores [68, 27] allow querying heterogeneous stores by grouping similar-model

platform into “islands” and explicitly sending queries to one store or another; datasets can also be

migrated by the users. Our Local-as-View (LAV) (see Chapter 3 for an overview of LAV systems)
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approach is novel and, as we have shown, enables improving the performance of such stores also.

The integration of “NoSQL” stores has been considered e.g., in [36] again in a Global-as-View

(GAV) (see Chapter 3 for an overview of GAV systems) approach, without the benefits of LAV

view-based rewriting.

Adaptive stores for a single data model have been studied e.g., in [82, 30, 56, 93, 92];

views have been also used in [127, 28] to improve the performance of a large-scale distributed

relational store. The novelty of ESTOCADA here is to support multiple data models by relying on

powerful query reformulation techniques under constraints.

Data exchange tools such as Clio [70, 78] allow migrating data between two different

schemas of the same (typically relational and sometimes XML) model (and thus not focused on

cross-models rewriting). View-based rewriting and view selection are grounded in the seminal

works [102, 81]; the latter focuses on maximally contained rewritings, while we target exact

query rewriting, which leads to very different algorithms. Further setting our work apart is the

scale and usage of integrity constraints. Our pivot model recalls the ones described in [64, 109]

but ESTOCADA generalizes these works by allowing multiple data models both at the application

and storage level.

CloudMdsQL [95] is an integration language resembling QBT XM, and our cross-models

view-based rewriting approach could be easily adapted to use CloudMdsQL as its integration lan-

guage, just like we adapted it to use BigDAWG’s. The polystore engine supporting CloudMdsQL

does not feature our cross-models view-based query rewriting functionality.

Works on publishing relational data as XML [73] followed the GAV paradigm thus did

not raise the (cross-models) view-based rewriting problem we address here.
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6.2 Related Work for HADAD

LA Systems/Libraries. SystemML [42] offers high-level R-like LA language, called

Declarative Machine Learning (DML). The language offers physical data independence, where the

users do not need to specify any data layout or formats. It applies some logical LA pattern-based

rewrites and physical execution optimizations based on cost estimates for the latter. The system

also supports sparse and dense matrices. SparkMLlib [112] provides LA operations and built-in

function implementations of popular ML algorithms on Spark RDDs. The library supports sparse

and dense matrices, but the user has to select this type explicitly.

R [17] and NumPy [16] are two of the most popular computing environments for statistical

data analysis, widely used in academia and industry. They provide a high-level abstraction that

can simplify the programming of numerical and statistical computations by treating matrices as

first-class citizens and providing a rich set of built-in LA operations. However, LA properties in

most of these systems remain unexploited, which makes them miss opportunities to use their own

highly efficient operators (recall the scenario in Section 5.2). Our experiments (Section 5.9.2)

show that evaluation of LA pipelines in these systems can be sped up by more than 10× using

our rewriting that utilizes: (i) LA properties and (ii) materialized views.

Bridging the Gap: RA and LA. There has been a recent increase in research for unifying

the execution of RA and LA expressions [105, 18, 94, 52]. A key limitation of these approaches is

that the semantics of LA operations remains hidden behind built-in functions or UDFs, preventing

performance-enhancing rewrites, as shown in Section 5.9.3.

SPORES [137], SPOOF [44], LARA [97] and RAVEN [91] are closer to our work.

SPORES and SPOOF optimize LA expressions by converting them into RA, optimizing the latter,

and then converting the result back to an (optimized) LA expression. They are restricted to a

small set of selected LA operations (the ones that can only be expressed in RA), while we support

significantly more (Section 5.5.1) and model properties, allowing to optimize with them.
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LARA relies on a declarative domain-specific language for collections and matrices,

which can enable optimization (i.e., selection pushdown) across the two algebraic abstractions.

It heavily focuses on low-level optimization, such as exploiting the choice of data layouts for

physical LA operators’ optimization. RAVEN takes a step forward by providing intermediate

representation to enable cross-optimization between ML and database operators and enhance

in-database model inferencing performance. It transforms many classical ML models (e.g.,

decision tree) into equivalent neural networks (NN) to leverage highly optimized ML engines on

CPU/GPU. [39, 48] study the expressive power of cross RA−LA [39] / LA [48] query languages,

but do not address semantic optimizations / rewriting under integrity constraints and/or views.

In contrast to HADAD, as all aforementioned solutions do not reason with constraints,

they provide no capabilities for holistic semantic query optimizations, including RA/LA views-

based and LA pure rewritings; such optimizations can bring large performance savings, as shown

in Section 5.9. We see HADAD as complementary to all of these platforms, on top of which it can

be naturally and portably applied, providing an algorithm for RA/LA views- and constraint-based

rewriting.
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Chapter 7

Conclusion and Future Directions

In this dissertation, we first presented ESTOCADA (see Chapter 4), which is an extensible-

lightweight framework designed to enable semantics query optimizations (including cross-models

views-based and integrity constraint-based rewriting) in a polystores context. At the core of ES-

TOCADA lies a powerful intermediate abstraction of a relational model with integrity constraints,

which we used to describe various data models’ properties and cross model views. The novelty

of ESTOCADA is to reduce the multi-data model rewriting problem to one within the internal

relational pivot model, then transform rewritings obtained there into hybrid integration plans. For

scalability, we presented a set of optimizations and extensions we contributed to the rewriting

engine at the core of ESTOCADA, making it scalable in a polystore setting. Our experiments

showed that ESTOCADA improves the performance in natural scenarios for both cross-models

and single model user queries.

Then, in Chapter 5, we introduced HADAD, a framework that extends the benefits of

semantic query optimizations introduced in ESTOCADA to LA computations, which are crucial for

hybrid complex workloads. HADAD is the first framework that brings views-based rewriting under

integrity constraints in the context of LA pipelines. It extends the intermediate abstraction used in

ESTOCADA to enable reasoning about LA and cross RA-LA computations. This approach makes
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it very easy to extend HADAD’s semantic knowledge of LA operations or RA-LA rewrite rules

by simply declaring appropriate constraints, with no need to change HADAD code, and ensures

portability across pure LA and cross RA-LA platforms. Our extensive empirical evaluation

showed significant performance gains on diverse LA and RA-LA workloads.

As a natural future work step in the space of hybrid systems, we are targeting the cost-

based recommendation of optimal cross-models views placement, which suggests views to

materialize within each underlying data store to obtain the best performance for a given hybrid

workload. This task is related to the field of automatic view selection, with the significant

difference that prior work was conducted in a single-model setting. View selection starts from

an expected query workload and proposes a collection of views to materialize to best support

the workload, subject to cost constraints (e.g., the available space). A majority of view selection

results were developed for the relational model but mostly abstract away from integrity constraints

and thus do not apply directly to our context, in which expressive constraints are prominent and

views are expressed as a particular case of constraints. Extending these results to the presence of

constraints is a fertile research proposition. Moreover, an interesting follow-up work would be

designing efficient incremental maintenance of fragments as the native dataset is updated in a

cross-models setting.
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Appendix A

Appendix: ESTOCADA

A.1 Query Templates Example

QT0<PID,DOD,GENDER > :-
MIMIC(M),
ChildJ(M,PID ,"PATIENTID","o"),
ChildJ(M,DOB ,"DOB","o"),
ChildJ(M,DOD ,"DOD","o"),
ChildJ(M,GENDER ,"GENDER","o");

QT2<ITID >:-
LABITEMS(L),
ChildJ(L, ITID , "ITEMID","o"),
ChildJ(L,FLUID , "FLUID","o"),

ValueJ(FLUID ,"Blood");

QT1<PID,ITID ,VAL,CHT> :-
MIMIC(M),
ChildJ(M,PID ,"PATIENTID","o"),
ChildJ(M,A, "ADMISSIONS","o"),
ChildJ(A,LE,"LABEVENTS","o"),
ChildJ(LE,ITID ,"ITEMID","o"),
ChildJ(LE,VAL, "VALUE","o"),
ChildJ(LE,CHT, "CHART","o"),
ChildJ(LE,FLAG , "FLAG","o"),

ValueJ(FLAG ,"abnormal");

Figure A.1: Query templates QT0, QT1 and QT2.
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Q<PID,DOB,GENDER ,ITID ,VAL,CHT> :-
MIMIC(M),
ChildJ(M,PID ,"PATIENTID","o"),
ChildJ(M,DOB ,"DOB","o"),
ChildJ(M,DOD ,"DOD","o"),
ChildJ(M,GENDER ,"GENDER","o"),
ChildJ(M,A,"ADMISSIONS","o"),
ChildJ(A,LE,"LABEVENTS","o"),
ChildJ(LE,ITID , "ITEMID","o"),
ChildJ(LE,VAL, "VALUE","o"),
ChildJ(LE,CHT, "CHARTTIME","o"),
ChildJ(LE,FLAG , "FLAG","o"),

ValueJ(FLAG ,"abnormal");
LABITEMS(L),
ChildJ(L, ITID , "ITEMID","o"),
ChildJ(L,FLUID , "FLUID","o"),

ValueJ(FLUID ,"Blood");

Figure A.2: Query Q produced from combining templates QT0, QT1 and QT2.

SELECT M.PATIENTID AS PID,
M.DOB AS DOB,
M.GENDER AS GENDER ,
L.ITEMID AS ITID ,
LE.VALUE AS VAL,
LE.CHARTTIME AS CHT

FROM MIMIC AS M, LABITEMS AS L,
M.ADMISSIONS AS A,
A.LABEVENTS AS LE

WHERE LE.ITEMID=L.ITEMID AND
LE.FLAG="abnormal" AND
L.FLUID ="Blood"

Figure A.3: Query Q (in AsterixDB SQL++ syntax) produced from combining QT0,
QT1 and QT2.
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A.2 Snippet of QBT XM Query Language Grammar
〈Query〉 ::= 〈ForClause〉 〈WhereClause〉? 〈ReturnClause〉

〈ForClause〉 ::= ‘FOR’ 〈Block〉 (‘,’ 〈Block〉)*

〈WhereClause〉 ::= ‘WHERE’ 〈Condition〉

〈ReturnClause〉 ::= ‘RETURN’ 〈ReturnStatement〉

〈Block〉 ::= 〈Annotation〉 ‘:’ ‘{’〈ModelBlock〉‘}’

〈Annotation〉 ::= ‘PR’ | ‘RK’ | ‘PJ’ | ‘AJ’ ...

〈ModelBlock〉 ::= 〈PRModelBlock〉

| 〈RKModelBlock〉

| 〈PJModelBlock〉

| 〈AJModelBlock〉

| ...

〈Condition〉 ::= 〈Atom〉

| ‘(’〈Condition〉‘)’

| 〈Condition〉 ‘AND’ 〈Condition〉

〈Atom〉 ::= 〈Term〉 ‘=’ 〈Term〉

〈Term〉 ::= 〈Constant〉

| 〈Variable〉

〈Constant〉 ::= 〈StringConstant〉

| 〈NumericConstant〉

〈ReturnStatement〉 ::= 〈ModelConstructor〉

| 〈Variable〉 (’,’ 〈Variable〉 )*

〈PRModelBlock〉 ::= 〈PR-Syntax-Specific〉

〈RKModelBlock〉 ::= 〈RK-Syntax-Specific〉
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〈PJModelBlock〉 ::= 〈PJ-Syntax-Specific〉

〈AJModelBlock〉 ::= 〈AJ-Syntax-Specific〉

〈ModelConstructor〉 ::= 〈RKModelConstructor〉

| 〈PJModelConstructor〉

| 〈AJModelConstructor〉

| ...

〈RKModelConstructor〉 ::= 〈RK-Syntax-Specific-Constructor〉

〈PJModelConstructor〉 ::= 〈PJ-Syntax-Specific-Constructor〉

〈AJModelConstructor〉 ::= 〈AJ-Syntax-Specific-Constructor〉

Notes. Whenever mentioned ”syntax-specific,” the understanding is that the parser of the sup-

ported fragment of the language corresponding to the annotation will be called. Importantly, the

comparison between variables of the same data model conforms to that data model. However, the

comparisons between variables of distinct data models are only legal when both variables have

string or numeric types.
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A.3 Encoding of QBT XM Views: V1 and V2

V1 Forward (IO) Constraints
MIMIC(M),
ChildJ(M,PID ,"PATIENTID","o"),
ChildJ(M,A,"ADMISSIONS","o"),
ChildJ(A,AID ,"ADMISSIONID","o"),
ChildJ(A,NE,"NOTEEVENTS","o"),
ChildJ(A,REPORT ,"REPORT","o")->
V1(d1),
ChildJ(d1,PID ,"PATIENTID","o"),
ChildJ(d1,AID ,"ADMISSIONID","o"),
ChildJ(d1,REPORT ,"REPORT","o");

V1 BACKWARD (OI) CONSTRAINTS:
V1(d1),
ChildJ(d1,PID ,"PATIENTID","o"),
ChildJ(d1,AID ,"ADMISSIONID","o"),
ChildJ(d1,REPORT ,"REPORT","o")->
MIMIC(M),
ChildJ(M,PID ,"PATIENTID","o"),
ChildJ(M,A,"ADMISSIONS","o"),
ChildJ(A,AID ,"ADMISSIONID","o"),
ChildJ(A,NE,"NOTEEVENTS","o"),
ChildJ(NE,REPORT ,"REPORT","o")

Figure A.4: View V1 forward and backward constraints.

V2(PID,AID,ALOC ,ATIME)->
MIMIC(M),
ChildJ(M,PID ,"PATIENTID","o"),
ChildJ(M,A,"ADMISSIONS","o"),
ChildJ(A,AID ,"ADMISSIONID","o"),
ChildJ(A,ALOC ,"ADMISSIONLOC","o"),
ChildJ(A,ATIME ,"ADMISSIONTIME","o");

Figure A.5: View V2 backward constraint.
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A.4 Encoding of QBT XM Query Q1 and Decoding RWQ1

Q1<PID,ALOC ,ATIME ,DRUG >:-
MIMIC(M),
ChildJ(M,PID ,"PATIENTID","o"),
ChildJ(M,A,"ADMISSIONS","o"),
ChildJ(A,AID ,"ADMISSIONID","o"),
ChildJ(A,NE,"NOTEEVENTS","o"),
ChildJ(NE,REPORT ,"REPORT","o"),

Value(REPORT ,"contains -coronary artery"),
ChildJ(A,ALOC ,"ADMISSIONLOC","o"),
ChildJ(A,ATIME ,"ADMISSIONTIME","o"),
ChildJ(A,LE,"LABEVENTS","o"),
ChildJ(LE,FLAG ,"FLAG","o"),

Value(FLAG ,"abnormal"),
ChildJ(LE,ITEMID ,"LABITEMID","o"),
ChildJ(A,P,"PRESCRIPTIONS","o"),
ChildJ(P,DRUG ,"DRUG","o"),
ChildJ(P,DRUGTYPE ,"DRUGTYPE","o"),

Value(DRUGTYPE ,"additive"),
LABITEMS(L),
ChildJ(L, ITEMID , "ITEMID","o"),
ChildJ(L,CATEGORY , "CATEGORY","o"),

Value(CATEGORY ,"blood");

Figure A.6: Relational encoding of QBT XM query Q1.

FOR SJ:{V1/query?q=REPORT:‘coronary artery ’&
fl=PID1:PATIENTID ,AID1:ADMISSIONID},

PR:{SELECT patientID AS PID2,
admissionID AS AID2,
admissionLoc AS ALOC ,
admissionTime AS ATIME

FROM V2},
PJ:{SELECT v3->‘PATIENTID ’ AS PID3,

v3->‘ADMISSIONID ’ AS AID3,
D->‘DRUG ’ AS DRUG

FROM V3 v3,
jsonb_array_elements(v3->‘PRESCRIPTIONS ’) D
WHERE D->>‘DRUGTYPE ’=‘additive ’}

WHERE PID1=PID2 AND
AID1=AID2 AND
PID2=PID3 AND
AID2=AID2

RETURN PID1, AID1, ALOC , ALOC , DRUG

Figure A.7: Decoding of rewriting RWQ1.
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Appendix B

Appendix: HADAD

B.1 LA Operators Encoding Relations

Table B.1: The V R EM schema (part 1).

Operator Input(s) Output Relational Encoding
Multiplication Matrices M and N Matrix R multiM(M,N,R)

Hadamard Product Matrices M and N Matrix R multiE(M,N,R)
Matrix-Scalar
Multiplication Scalar s and Matrix M Matrix R multiMS(s,M,R)

Addition Matrices M and N Matrix R addM(M,N,R)
Scalar Addition Scalars s1 and s2 Scalar r addS(s1,s2,r)

Division Matrices M and N Matrix R divM(M,N,R)
Transposition Matrix M Matrices R tr(M,R)

Inversion Matrix M Matrices R invM(M,R)
Scalar Inversion Scalar s Scalar r invS(s,r)

Trace Matrix M Scalar s trace(M,s)
Matrix Sum Matrix M Scalar s sum(M,s)
Matrix mean Matrix M Scalar s mean(M,s)
Matrix max Matrix M Scalar s max(M,s)
Matrix min Matrix M Scalar s min(M,s)
Row sum Matrix M Vector R rowSums(M,R)

Column sum Matrix M Vector R colSums(M,R)
Row Min Matrix M Vector R rowMin(M,R)
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Table B.2: The V R EM schema (part 2).

Operator Input(s) Output Relational Encoding
Column Min Matrix M Vector R colMin(M,R)

Row Max Matrix M Vector R rowMax(M,R)
Column Max Matrix M Vector R colMax(M,R)
Row Mean Matrix M Vector R rowMean(M,R)

Column Mean Matrix M Vector R colMean(M,R)
Row Variance Matrix M Vector R rowVar(M,R)

Column Variance Matrix M Vector R colVar(M,R)
Determinant Matrix M Scalar s det(M,s)
Exponential Matrix M Matrix R exp(M,R)

Direct Product Matrices M and N Matrix R productD(M,N,R)
Direct Sum Matrices M and N Matrix R sumD(M,N,R)

Adjoints Matrix M Matrix R adj(M,R)
Diagonal Matrix M Matrix R diag(M,R)
Cholesky

Decomposition Matrix M Matrix L CHO(M,L)

QR
Decomposition Matrix M Matrices Q and R QR(M,Q,R)

LU
Decomposition Matrix M Matrices L and U LU(M,L,U)

Pvioted LU
Decomposition Matrix M Matrices L, U and P LUP(M,L,U,P)
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B.2 Key Constraints of LA Encoding Relations

Table B.3: Key constraints of LA operators relations (part 1).

LA Encoding
Relation Key Constraint

name(M,n) ∀n,M1,M2 name(M1,n)∧name(M2,n)→M1 = M2
size(M,r,c) ∀M,r1,r2,c1,r1 size(M,r1,c1)∧ size(M,r2,c2)→ r1 = r2∧ c1 = c2

multiM(M,N,R) ∀M,N,R1,R2 multiM(M,N,R1)∧multiM(M,N,R2)→ R1 = R2
multiE(M,N,R) ∀M,N,R1,R2 multiE(M,N,R1)∧multiE(M,N,R2)→ R1 = R2
multiMS(s,M,R) ∀s,M,R1,R2 multiMS(s,M,R1)∧multiMS(s,M,R2)→ R1 = R2
addM(M,N,R) ∀M,N,R1,R2 addM(M,N,R1)∧addM(M,N,R2)→ R1 = R2
addS(s1,s2,r) ∀s1,s2,r1,r2 addS(s1,s2,r1)∧addS(s1,s2,r2)→ r1 = r2
divM(M,N,R) ∀M,N,R1,R2 divM(M,N,R1)∧divM(M,N,R2)→ R1 = R2

tr(M,R) ∀M,R1,R2 tr(M,R1)∧tr(M,R2)→ R1 = R2
invM(M,R) ∀M,R1,R2 invM(M,R1)∧invM(M,R2)→ R1 = R2
invS(s,r) ∀s,r1,r2 invS(s,r1)∧invS(s,r2)→ r1 = r2

trace(M,s) ∀M,s1,s2 trace(M,s1)∧trace(M,s2)→ s1 = s2
sum(M,s) ∀M,s1,s2 sum(M,s1)∧sum(M,s2)→ s1 = s2
mean(M,s) ∀M,s1,s2 mean(M,s1)∧mean(M,s2)→ s1 = s2
max(M,s) ∀M,s1,s2 max(M,s1)∧max(M,s2)→ s1 = s2
min(M,s) ∀M,s1,s2 min(M,s1)∧min(M,s2)→ s1 = s2

rowSums(M,R) ∀M,R1,R2 rowSums(M,R1)∧rowSums(M,R2)→ R1 = R2
colSums(M,R) ∀M,R1,R2 colSums(M,R1)∧colSums(M,R2)→ R1 = R2
rowMin(M,R) ∀M,R1,R2 rowMin(M,R1)∧rowMin(M,R2)→ R1 = R2
colMin(M,R) ∀M,R1,R2 colMin(M,R1)∧colMin(M,R2)→ R1 = R2
rowMax(M,R) ∀M,R1,R2 rowMax(M,R1)∧rowMax(M,R2)→ R1 = R2
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Table B.4: Key constraints of LA encoding relations (part 2).

LA Encoding
Relation Key Constraint

colMax(M,R) ∀M,R1,R2 colMax(M,R1)∧colMax(M,R2)→
R1 = R2

rowMean(M,R) ∀M,R1,R2 rowMean(M,R1)∧rowMean(M,R2)→
R1 = R2

colMean(M,R) ∀M,R1,R2 colMean(M,R1)∧colMean(M,R2)→
R1 = R2

rowVar(M,R) ∀M,R1,R2 rowVar(M,R1)∧rowVar(M,R2)→
R1 = R2

colVar(M,R) ∀M,R1,R2 colVar(M,R1)∧colVar(M,R2)→
R1 = R2

det(M,s) ∀M,s1,s2 diag(M,s1)∧diag(M,s2)→
s1 = s2

exp(M,R) ∀M,R1,R2 exp(M,R1)∧exp(M,R2)→
R1 = R2

productD(M,N,R) ∀M,N,R1,R2 productD(M,N,R1)∧productD(M,N,R2)→
R1 = R2

sumD(M,N,R) ∀M,N,R1,R2 sumD(M,N,R1)∧sumD(M,N,R2)→
R1 = R2

adj(M,R) ∀M,R1,R2 adj(M,R1)∧adj(M,R2)→
R1 = R2

diag(M,R) ∀M,R1,R2 diag(M,R1)∧diag(M,R2)→
R1 = R2

CHO(M,L) ∀M,L1,L2 CHO(M,L1)∧CHO(M,L2)→
L1 = L2

CHO(M,L) ∀M,L1,L2 CHO(M,L1)∧CHO(M,L2)→
L1 = L2

QR(M,Q,R) ∀M,Q1,Q2,R1,R2 QR(M,Q1,R1)∧QR(M,Q2,R2)→
Q1 = Q2∧R1 = R2

LU(M,L,U) ∀M,L1,L2,U1,U2 LU(M,L1,U1)∧LU(M,L2,U2)→
L1 = L2∧U1 =U2

LUP(M,L,U,P) ∀M,L1,L2,U1,U2,P1,P2 LU(M,L1,U1,P1)∧LU(M,L2,U2,P2)→
L1 = L2∧U1 =U2∧P1 = P2
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B.3 Properties of LA Operations Encoded as Constraints

Table B.5: Properties of addition of matrices encoded as integrity constraints.

LA Property Integrity Constraint
Addition of Matrices

M+N = N +M ∀M,N,R addM(M,N,R)→ addM(N,M,R)
(M+N)+D = M+(N +D) ∀M,N,D,R1,R2 addM(M,N,R1)∧ addM(R1,D,R2)

→ ∃R3 addM(N,D,R3)∧ addM(M,R3,R2)
c(M+N) = cM+ cN ∀c,M,N,R1,R2 addM(M,N,R1)∧ multiMS(c,R1,R2)

→ ∃R3,R4multiMS(c,M,R3)∧multiMS(c,N,R4)∧
addM(R3,R4,R2)

(c+d)M = cM+dM ∀c,d,s,M,R1addS(c,d,s)∧multiMS(s,M,R1)
→ ∃R2,R3multiMS(c,M,R2)∧multiMS(d,M,R3)∧

addM(R2,R3,R1)
M+0 = M →∃Zero(O)

∀M,n,O name(M,n)∧Zero(O)→ addM(M,O,M)
∀O Zero(O)→ addM(O,O,O)

148



Table B.6: Properties of addition and transposition of matrices encoded as integrity
constraints.

LA Property Integrity Constraint
Multiplication of Matrices

(MN)D = M(ND) ∀M,N,D,R1,R2 multiM(M,N,R1)∧
multiM(R1,D,R2)

→ ∃R3multiM(N,D,R3)∧multiM(M,R3,R2)
M(N +D) = MN +MD ∀M,N,D,R1,R2 addM(N,D,R1)∧

multiM(M,R1,R2)
→ ∃R3,R4 multiM(M,N,R3)∧multiM(M,D,R4)∧

addM(R3,R4,R2)
(M+N)D = MD+MD ∀M,N,D,R1,R2 addM(M,N,R1)∧

multiM(R1,D,R2)→
∃R3,R4multiM(M,D,R3)∧multiM(N,D,R4)∧

addM(R3,R4,R2)
d(MN) = (dM)N ∀d,M,N,R1,R2 multiM(M,N,R1)∧

multiMS(d,R1,R2)→
∃R3multiMS(d,M,R3)∧multiM(R3,N,R2)

c(dM) = (cd)M ∀c,dM,R1,R2
multiMS(d,M,R1)∧multiMS(c,R1,R2)→
∃s multiS(c,d,s)∧multiMS(s,M,R2)

IkM = M = MIz ∀M,n,k,z name(M,n)∧ size(M,k,z)→
∃I Identity(I)∧ size(I,k,k)

∀M,n,k,z name(M,n)∧ size(M,k,z)→
∃I1 Identity(I1)∧ size(I,z,z)

∀M, I1,n,k,z name(M,n)∧ size(M,k,z)∧
Identity(I)∧ size(I1,k,k)→

multiM(I,M,M)
∀M, I1,n,k,z name(M,n),∧size(M,k,z)∧

Identity(I)∧ size(I1,z,z)→
multiM(M, I,M)

Transposition of Matrices
(MN)T = NT MT ∀M,N,R1,R2multiM(M,N,R1)∧tr(R1,R2)→

∃R3,R4tr(M,R3)∧tr(N,R4)∧multiM(R4,R3,R2)
(M+N)T = MT +NT ∀M,N,R1,R2 addM(M,N,R1)∧tr(R1,R2)

→ ∃R3,R4tr(M,R3)∧tr(N,R4)∧addM(R3,R4,R2)
(cM)T = c(M)T ∀c,M,R1,R2 multiMS(c,M,R1)∧tr(R1,R2)

→∃R3tr(M,R3)∧multiMS(c,R3,R2)
((M)T )T = M ∀n,M name(M,n)→∃R1tr(M,R1)∧tr(R1,M)
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Table B.7: Properties of inverse, determinant and trace of matrices encoded as
integrity constraints.

LA Property Integrity Constraint
Inverses of Matrices

((M)−1)−1 = M ∀n,M name(M,n)
→∃R1invM(M,R1)∧invM(R1,M)

(MN)−1 = N−1M−1 ∀M,N,R1,R2 multiM(M,N,R1)∧invM(R1,R2)
→ ∃R3,R4invM(M,R3)∧invM(N,R4)∧

multiM(R4,R3,R2)

((M)T )−1 = ((M)−1)T ∀M,R1,R2tr(M,R1)∧invM(R1,R2)
→ ∃R3invM(M,R3)∧tr(R3,R2)

((kM))−1 = k−1M−1 ∀k,M,R1,R2 multiMS(k,M,R1)∧invM(R1,R2)
→ ∃R3,s invS(k,s)∧invM(M,R3)∧

multiMS(s,R3,R2)

M−1M = I = MM−1 ∀M,R1,R2 invM(M,R1)∧multiM(R1,M,R2)
→ Identity(R2)

∀M,R1,R2 invM(M,R1)∧multiM(M,R1,R2)
→ Identity(R2)

Determinant of Matrices
det(MN) = det(M)∗det(N) ∀M,N,R1,d multiM(M,N,R1)∧det(R1,d)

→ ∃d1,d2det(M,d1)∧det(N,d2)∧
multiS(d1,d2,d)

det((M)T ) = det(M) ∀M,R1,d tr(M,R1)∧det(R1,d)→ det(M,d)
det((M)−1) = (det(M))−1 ∀M,R1,d invM(M,R1)∧det(R1,d)→

∃d1det(M,d1)∧ invS(d1,d)
det((cM)) = ckdet(M) ∀M,c,k,d size(M,k,k)∧multiMS(c,M,d)→

∃s1,s2 pow(c,k,s1)∧det(M,s2)∧multiS(s1,s2,d)
det((I)) = 1 ∀I1,d Identity(I1)∧det(I1,d)→ d = 1

Trace of Matrices
trace(M+N) = trace(M)

+trace(N)
∀M,N,R1,s1 addM(M,N,R1)∧

trace(R1,s1)→ ∃s2,s3 trace(M,s2)∧
trace(N,s3)∧addS(s2,s3,s1)

trace(MN) = trace(NM) ∀M,N,R1,s1 multiM(M,N,R1)∧
trace(R1,s1)→ ∃R2 multiM(N,M,R2)∧

trace(R2,s1)
trace(MT ) = trace(M) ∀M,R1,s1 tr(M,R1)∧trace(R1,s1)→

trace(M,s1)
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Table B.8: Properties of direct sum and exponential of matrices encoded as integrity
constraints.

LA Property Integrity Constraint
Direct Sum

(M⊕N)+(C⊕D) =
(M+C)⊕ (N +D)

∀M,N,R1,C,D,R2,R3 sumD(M,N,R1)

∧sumD(C,D,R2)∧addM(R1,R2,R3)→
∃R4,R5addM(M,C,R4)∧addM(N,D,R5)

∧sumD(R5,R3)
(M⊕N)(C⊕D) = (MC)⊕ (ND) ∀M,N,R1,C,D,R2,R3 sumD(M,N,R1)

∧sumD(C,D,R2)∧multiM(R1,R2,R3)→
∃R4,R5multiM(M,C,R4)∧multiM(N,D,R5)

∧sumD(R5,R3)
Exponential of Matrices

exp(0) = I ∀O,R1 Zero(O)∧exp(O,R1)→ Identity(R1)
exp(MT ) = exp(M)T ∀M,R1,R2tr(M,R1)∧exp(R1,R2)→

∃R3exp(M,R3)∧exp(R3,R2)

Table B.9: Matrix decompositions properties captured as integrity constraints
(part1).

Decomposition Property Integrity Constraint
Cholesky Decomposition (CD)

CHO(M) = L
such that M = LLT ,

where M is SPD
∀M type(M,“S”)→∃ L1∃L2 CHO(M,L1)∧

type(L1,“L”)∧tr(L1,L2)∧multiM(L1,L2,M)
QR Decomposition

QR(M) = [Q,R] such that M = QR ∀M∀n∀k name(M,n)∧ size(M,k,k)→ ∃Q,R
QR(M,Q,R)∧ type(Q,“O”)∧ type(R,“U”)∧

multiM(Q,R,M)

∀Q type(Q,“O”)→∃I QR(Q,Q, I)∧ identity(I)
∧multiM(Q, I,Q)

∀R type(R,“U”)→∃I QR(R, I,R)∧ identity(I)
∧multiM(I,R,R)

∀I identity(I)→ QR(I, I, I)
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Table B.10: Matrix decompositions properties captured as integrity constraints
(part2).

Decomposition Property Integrity Constraint
LU Decomposition

LU(M) = [L,U ]
such that M = LU ∀M∀n∀k name(M,n)∧ size(M,k,k)→ ∃L,U

LU(M,L,U)∧ type(L,“L”)∧ type(U,“U”)∧
multiM(L,U,M)

∀L type(L,“L”)→∃I LU(L,L, I)∧ identity(I)
∧multiM(L, I,L)

∀U type(U,“U”)→∃I LU(U, I,U)∧ identity(I)

∧multiM(I,U,U)

∀I identity(I)→ LU(I, I, I)
Pivoted LU Decomposition

LUP(M) = [L,U,P]
such that PM = LU ,

where M is a square matrix
∀M∀n∀k name(M,n)∧ size(M,k,z)→ ∃L,U,P,R

LUP(M,L,U,P)∧ type(L,“L”)∧ type(U,“U”)∧
type(P,“P”)∧multiM(L,U,R)∧multiM(P,M,R)

∀L type(L,“L”)∧ size(L,k,z)→∃I LUP(L,L, I, I)∧
identity(I) ∧multiM(L, I,L)∧multiM(I,L,L)

∀U type(U,“U”)→∃I LUP(U, I,U, I)∧
identity(I)∧multiM(I,U,U)

∀I identity(I)→ LU(I, I, I)
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B.4 SystemML Rewrite Rules Encoded as Constraints

Table B.11: UnnecessaryAggregates rewrite rules encoded as integrity
constraints.

Rule Integrity Constraint
sum(tr(M))→ sum(M) ∀M,R1,s tr(M,R1),sum(R1,s)→

sum(M,s)
sum(rowSums(M))→ sum(M) ∀M,R1,s rowSums(M,R1),sum(R1,s)→

sum(M,s)
sum(colSums(M))→ sum(M) ∀M,R1,s colSums(M,R1),sum(R1,s)→

sum(M,s)
min(tr(M))→ min(M) ∀M,R1,s tr(M,R1),min(R1,s)→

min(M,s)
min(rowMin(M))→ min(M) ∀M,R1,s rowMin(M,R1),min(R1,s)→

min(M,s)
min(colMin(M))→ min(M) ∀M,R1,s colMin(M,R1),min(R1,s)→

min(M,s)
max(tr(M))→ max(M) ∀M,R1,s tr(M,R1),max(R1,s)→

max(M,s)
max(colMax(M))→ max(M) ∀M,R1,s colMax(M,R1),max(R1,s)→

max(M,s)
max(rowMax(M))→ max(M) ∀M,R1,s rowMax(M,R1),max(R1,s)→

max(M,s)
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Table B.12: PushdownUnaryAggTransposeOp rewrite rules encoded as
integrity constraints.

Rule Integrity Constraint
rowSums(tr(M))→tr(colSums(M)) ∀M,R1,R2 tr(M,R1)∧rowSums(R1,R2)

→ ∃R3 colSums(M,R3)∧tr(R3,R2)
colSums(tr(M))→tr(rowSums(M)) ∀M,R1,R2 tr(M,R1)∧colSums(R1,R2

→ ∃R3 rowSums(M,R3)∧tr(R3,R2)
rowMean(tr(M))→tr(colMean(M)) ∀M,R1,R2 tr(M,R1)∧colMean(R1,R2)

→ ∃R3 rowMean(M,R3)∧tr(R3,R2)
colMean(tr(M))→tr(rowMean(M)) ∀M,R1,R2 tr(M,R1)∧rowMean(R1,R2)

→ ∃R3 colMean(M,R3)∧tr(R3,R2)
rowVar(tr(M))→tr(colVar(M)) ∀M,R1,R2 tr(M,R1)∧rowVar(R1,R2)

→ ∃R3 colVar(M,R3)∧tr(R3,R2)
colVar(tr(X))→tr(rowVar(X)) ∀M,R1,R2 tr(M,R1)∧colVar(R1,R2)

→ ∃R3 rowVar(M,R3)∧tr(R3,R2)
rowMax(tr(M))→tr(colMax(M)) ∀M,R1,R2 tr(M,R1)∧rowMax(R1,R2)

→ ∃R3 colMax(M,R3)∧tr(R3,R2)
colMax(tr(M))→tr(rowMax(M)) ∀M,R1,R2 tr(M,R1)∧colMax(R1,R2)

→ ∃R3 rowMax(M,R3)∧tr(R3,R2)
rowMin(tr(M))→tr(colMin(M)) ∀M,R1,R2 tr(M,R1)∧rowMin(R1,R2)

→ ∃R3 colMin(M,R3)∧tr(R3,R2)
colMin(tr(M))→tr(rowMin(M)) ∀M,R1,R2 tr(M,R1)∧colMin(R1,R2)

→ ∃R3 rowMin(M,R3)∧tr(R3,R2)

Table B.13: SimplifyTraceMatrixMult rewrite rules encoded as integrity
constraint.

Rule Integrity Constraint
trace(MN)→sum(M�tr(N)) ∀M,N,R1,r multiM(M,N,R1)∧trace(R1,r)

→∃R3,R4tr(N,R3)∧multiE(M,R3,R4)
∧sum(R4,r)
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Table B.14: SimplifySumMatrixMult rewrite rules encoded as integrity
constraints.

Rule Integrity Constraint
sum(MN)→

sum(tr(colSums(M))�rowSums(N)) ∀M,N,R1,r multiM(M,N,R1)∧sum(R1,r)→

∃R2,R3,R4,R5 colSums(M,R2)∧tr(R2,R3)∧
rowSums(N,R4)∧multiE(R3,R4,R5)

∧sum(R5,r)
colSums(MN)→ colSums(M)N ∀M,N,R1,R2 multiM(M,N,R1)∧

colSums(R1,R2)→
∃R3 colSums(M,R3)∧multiM(R3,N,R2)

rowSums(MN)→MrowSums(N) ∀M,N,R1,R2 multiM(M,N,R1)∧
rowSums(R1,R2)→

∃R3 rowSums(N,R3)∧multiM(M,R3,R2)

Table B.15: SimplifyColWiseAgg rewrite rules encoded as integrity constraints.

Rule Integrity Constraint
colSums(M)→M if x is row vector ∀M,n, j name(M,n)∧ size(M,“1”, j)

→colSums(M,M)
colMean(M)→M if x is row vector ∀M,n, j name(M,n)∧ size(M,“1”, j)

→colSums(M,M)
colVar(M)→M if x is row vector ∀M,n, j name(M,n)∧ size(M,“1”, j)

→colVar(M,M)
colMax(M)→M if x is row vector ∀M,n, j name(M,n)∧ size(M,“1”, j)

→colMax(M,M)
colMin(M)→M if x is row vector ∀M,n, j name(M,n)∧ size(M,“1”, j)

→ colMin(M,M)
colSums(M)→sum(M) if x is col vector ∀M, i,R1 colSums(M,R1)∧ size(M, i,“1”)

→sum(M,R1)
colMean(M)→mean(M) if x is col vector ∀M, i,R1 colMean(M,R1)∧ size(M, i,“1”)

→mean(M,R1)
colMax(X)→max(M) if x is col vector ∀M, i,R1 colMax(M,R1)∧ size(M, i,“1”)

→max(M,R1)
colMin(M)→min(X) if x is col vector ∀M, i,R1 colMin(M,R1)∧ size(M, i,“1”)

→min(M,R1)
colVar(M)→var(M) if x is col vector ∀M, i,R1 colVar(M,R1)∧ size(M, i,“1”)

→var(M,R1)
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Table B.16: SimplifyRowWiseAgg rewrite rules encoded as integrity constraints.

Rule Integrity Constraint
rowSums(M)→M, if x is col vector ∀M,n, i name(M,n)∧ size(M, i,“1”)

→rowSums(M,M)
rowMean(M)→M, if x is col vector ∀M,n, i name(M,n)∧ size(M, i,“1”)

→rowSums(M,M)
rowVar(M)→M, if x is col vector ∀M,n, i name(M,n)∧ size(M, i,“1”)

→rowVar(M,M)
rowMax(M)→M, if x is col vector ∀M,n, i name(M,n)∧ size(M, i,“1”)

→rowMax(M,M)
rowMin(M)→M, if x is col vector ∀M,n, i name(M,n)∧ size(M, i,“1”)

→ rowMin(M,M)
rowSums(M)→sum(M), if x is row vector ∀M, j,R1 rowSums(M,R1)∧

size(M,“1”, j)→ sum(M,R1)
rowMean(M)→mean(M), if x is row vector ∀M, j,R1 rowMean(M,R1)∧

size(M,“1”, j)→mean(M,R1)
rowMax(X)→max(M), if x is row vector ∀M, j,R1 rowMax(M,R1)∧

size(M,“1”, j)→max(M,R1)
rowMin(M)→min(X), if x is row vector ∀M, j,R1 rowMin(M,R1)∧

size(M,“1”, j)→min(M,R1)
rowVar(M)→var(M), if x is row vector ∀M, j,R1 rowVar(M,R1)∧

size(M,“1”, j)→var(M,R1)

Table B.17: PushdownSumOnAdd rewrite rules encoded as integrity constraints.

Rule Integrity Constraint
sum(M+N)→ sum(A)+sum(B) ∀M,N,s addMM,N,s1)∧sum(M,s1)→

∃s2,s3 sum(M,s2)∧sum(N,s3)∧
adds(s2,s3,s1)

Table B.18: ColSums/rowSumsMVMult rewrite rules encoded as integrity
constraints.

Rule Integrity Constraint
colSums(M ∗N)→ tr(N)M,

if N is col vector ∀M,N,R1,R2, i size(N, i,“1”)∧
multiE(M,N,R1)∧ colSums(R1,R2)→
∃R3tr(N,R3)∧multiM(R3,M,R2)

rowSums(M ∗N)→Mtr(N),
if N is row vector ∀M,N,R1,R2, j size(N,“1”, j)∧

multiE(M,N,R1)∧ rowSums(R1,R2)→
∃R3tr(N,R3)∧multiM(M,R3,R2)
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B.5 Additional Results: P¬Opt and PViews Pipelines Rewrites

Table B.19: P¬Opt pipelines rewrites (part 1).

No. Rewrite No. Rewrite No. Rewrite
P1.1 NT MT P1.2 (A+B)T P1.3 (DC)−1

P1.4 Av1 +Bv1 P1.5 D P1.6 s1trace(D)
P1.7 A P1.8 (s1 + s2)A P1.9 det(D)

P1.10 colSums(A)T P1.11 colSums(A+B)T P1.12 colSums(M)N

P1.13
sum(colSums(M)T∗

rowSums(N)) P1.14
sum(colSums(M)T∗

rowSums(N)) P1.15 M(NM)

P1.16 sum(A) P1.17
det(C)∗det(D)∗

det(C)
P1.18 sum(A)

P1.25 M� (NT/(M(NNT )))

Table B.20: P¬Opt pipelines rewrites (part 2).

No. Rewrite No. Rewrite No. Rewrite

P2.1
trace(C)+
trace(D)

P2.2 1/det(D) P2.3 trace(D)

P2.4 s1(A+B) P2.5 1/det((C+D)) P2.6 (D−1C)T

P2.7 C P2.8 det(C)∗det(D) P2.9
trace(DC)+
trace(D)

P2.10 MrowSums(N) P2.11 sum(A)+sum(B) P2.12
sum(colSums(M)T∗

rowSums(N))
P2.13 (M(NM))T P2.14 (M(NM))N P2.15 sum(A)

P2.16
trace((DC)−1)+

trace(D)
P2.17 ((((C+D)−1)T )D P2.18 rowSums(A+B)T

P2.25 u1vT
2 v2−Xv2

Table B.21: The set of views Vexp.

No. Expression No. Expression No. Expression
V1 (D)−1 V2 (CT )−1 V3 NM
V4 u1vT

2 V5 DC V6 A+B
V7 C−1 V8 CT D V9 (D+C)−1

V10 det(CD) V11 det(DC) V12 (DC)T
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Table B.22: PViews pipelines rewrites.

No. Rewrite No. Rewrite No. Rewrite
P1.2 (V6)

T P1.3 V7V1 P1.4 (V6)v1
P1.11 colSums(V6)

T P1.15 M(V3) P1.17 V10 ∗det(C)
P1.19 V2 P1.20 trace(V7) P1.21 (C+V1)

T

P1.22 trace(V9) P1.24
trace(V1V7)+
trace(D)

P1.29 V5CCC

P1.30 V3�V3RT P2.2 det(V1) P2.4 s1(V 6)

P2.5 det(V9) P2.6 (V1C)T P2.9
trace(V12)+
trace(D)

P2.11 sum(V6) P2.13 (MV3)
T P2.14 MV3N

P2.16
trace(V7V1)
+traceD)

P2.17 (V T
9 )D P2.18 rowSums(V6)

T

P2.20 (MV3)
T P2.21 V1(V T

1 (DT v1)) P2.25 V4v1−Xv1
P1.23 det((V7V1)+D) P2.26 exp(V9) P2.27 V T

9 V5
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B.6 Additional Results: P¬Opt Pipelines: Naı̈ve Cost Model
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Figure B.1: P1.2 evaluation before and after rewriting.
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Figure B.2: P1.2 evaluation before and after rewriting.
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Figure B.3: P1.6 evaluation before and after rewriting.
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Figure B.4: P1.8 evaluation before and after rewriting.
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Figure B.5: P1.8 evaluation before and after rewriting.
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Figure B.6: P1.9 evaluation before and after rewriting.
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Figure B.7: P1.10 evaluation before and after rewriting.
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Figure B.8: P1.10 evaluation before and after rewriting.
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Figure B.9: P1.11 evaluation before and after rewriting.
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Figure B.10: P1.11 evaluation before and after rewriting.
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Figure B.11: P1.12 evaluation before and after rewriting.
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Figure B.12: P1.14 evaluation before and after rewriting.
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Figure B.13: P1.15 evaluation before and after rewriting.
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Figure B.14: P1.16 evaluation before and after rewriting.
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Figure B.15: P1.16 evaluation before and after rewriting.
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Figure B.16: P1.17 evaluation before and after rewriting.
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Figure B.17: P1.18 evaluation before and after rewriting.
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Figure B.18: P1.18 evaluation before and after rewriting.
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Figure B.19: P1.25 evaluation before and after rewriting.
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Figure B.20: P2.1 evaluation before and after rewriting.
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Figure B.21: P2.2 evaluation before and after rewriting.
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Figure B.22: P2.3 evaluation before and after rewriting.
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Figure B.23: P2.4 evaluation before and after rewriting.
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Figure B.24: P2.4 evaluation before and after rewriting.
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Figure B.25: P2.5, P2.6 and P2.8 evaluation before and after rewriting.
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Figure B.26: P2.9 evaluation before and after rewriting.
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Figure B.27: P2.10 evaluation before and after rewriting.
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Figure B.28: P2.11 evaluation before and after rewriting.
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Figure B.29: P2.11 evaluation before and after rewriting.
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Figure B.30: P2.13 evaluation before and after rewriting.
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Figure B.31: P2.14 evaluation before and after rewriting.

179



 0.001

 0.01

 0.1

 1

SM R SP

T
o
ta
l E
xe
cu
tio
n

 T
im
e

 (
lo
g
sc
a
le
) 
-[
s]

A:AL1

(a) P2.15

 0.001

 0.01

 0.1

 1

 10

SM R SP

T
o
ta
l E
xe
cu
tio
n

 T
im
e

 (
lo
g
sc
a
le
) 
-[
s]

A:AL2

(b) P2.15

 0.001

 0.01

 0.1

SM R

T
o
ta
l E
xe
cu
tio
n

 T
im
e

 (
lo
g
sc
a
le
) 
-[
s]

A:NL1

(c) P2.15

Figure B.32: P2.15 evaluation before and after rewriting.
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Figure B.33: P2.15 evaluation before and after rewriting.
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Figure B.34: P2.16 evaluation before and after rewriting.
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Figure B.35: P2.18 evaluation before and after rewriting.
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Figure B.36: P2.18 evaluation before and after rewriting.

183



B.7 Additional Results: P¬Opt Pipelines: MNC Cost Model
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Figure B.37: P1.2 evaluation before and after rewriting.
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Figure B.38: P1.6 evaluation before and after rewriting.
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Figure B.39: P1.8 evaluation before and after rewriting.
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Figure B.40: P1.9 evaluation before and after rewriting.
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Figure B.41: P1.10 evaluation before and after rewriting.
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Figure B.42: P1.11 evaluation before and after rewriting.
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Figure B.43: P1.12 evaluation before and after rewriting.
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Figure B.44: P1.14 evaluation before and after rewriting.
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Figure B.45: P1.15 evaluation before and after rewriting.
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Figure B.46: P1.16 evaluation before and after rewriting.
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Figure B.47: P1.17 evaluation before and after rewriting.
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Figure B.48: P1.18 evaluation before and after rewriting.
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Figure B.49: P1.25 evaluation before and after rewriting.
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Figure B.50: P2.1 evaluation before and after rewriting.
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Figure B.51: P2.4 evaluation before and after rewriting.
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Figure B.52: P2.5, P2.6, P2.8 and P2.9 evaluation before and after rewriting.
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Figure B.53: P2.10 evaluation before and after rewriting.
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Figure B.54: P2.11 evaluation before and after rewriting.
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Figure B.55: P2.13 evaluation before and after rewriting.
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Figure B.56: P2.14 evaluation before and after rewriting.
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Figure B.57: P2.15 evaluation before and after rewriting.
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Figure B.58: P2.16 evaluation before and after rewriting.
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Figure B.59: P2.18 evaluation before and after rewriting.
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B.8 Additional Results: PViews Pipelines
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Figure B.60: P1.2 and P1.3 evaluation before and after rewriting.
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Figure B.61: P1.4 and P1.11 evaluation before and after rewriting.
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Figure B.62: P1.17, P1.19, P1.20 and P1.21 evaluation before and after rewriting.
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Figure B.63: P1.22, P1.23, P1.24 and P1.29 evaluation before and after rewriting.
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Figure B.64: P2.2, P2.4 and P2.5 evaluation before and after rewriting.
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Figure B.65: P2.9, P2.11 and P2.16 evaluation before and after rewriting.
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[99] J. LeFevre, J. Sankaranarayanan, H. Hacigümüs, J. Tatemura, N. Polyzotis, and M. J. Carey.
MISO: Souping Up Big Data Query Processing with a Multistore System. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, pages 1591–1602,
2014.

[100] J. LeFevre, J. Sankaranarayanan, H. Hacigümüs, J. Tatemura, N. Polyzotis, and M. J.
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