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ABSTRACT OF THE DISSERTATION

Convex Optimization Methods for System Identification with

Applications to Noninvasive Intracranial Pressure Estimation

by

Cameron Allan Gunn

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2018

Professor Lieven Vandenberghe, Chair

After a traumatic brain injury, it is important for some patients’ intracranial pressure (ICP)

to be measured while they are in intensive care. However, monitoring ICP first requires

an invasive surgical procedure, an impediment that has prompted research on noninvasive

ICP (NICP) estimation. This dissertation examines NICP estimation from the perspective

of linear dynamical systems, and presents methods to address some of the challenges that

have limited the success of NICP estimators. Examples of these challenges include the

unreliability of corrupted signal data, and a large inter-patient variability that limits the

ability to compare new patients to past patients.

Three sets of methods are presented in this dissertation. The first methods mitigate the

effect of corruptions in cerebral blood flow velocity signals, which are strong predictors of

ICP, but often contain artifacts or sections of missing data. These methods find completed

approximations of these signals that produce low-order systems. The second family of meth-

ods provide an approach for clustering linear dynamical systems by their behavior. This

framework can be used to determine a subset of past patients with similar signal dynamics

to a new patient. The final methods are a novel approach to NICP estimation in which the

partially-available data of a new patient is combined with information from past patients

whose ICP was invasively measured.

The methods presented are flexible in two respects. First, they are developed for general
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linear dynamical systems, and so can be adapted to any new applications where these models

are used. Second, they are posed as convex optimization problems, which can be easily

extended to new scenarios through the use of new weights, constraints, and penalty functions.

The methods are solved using proximal algorithms, a family of first-order convex optimization

algorithms, which result in computationally tractable formulations.
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CHAPTER 1

Introduction

Traumatic brain injury (TBI) is the leading cause of death in young people in the United

States [FGC12]. Defined as a blow, bump, jolt, or penetration of the head that disrupts nor-

mal brain function, TBI accounts for 1.7 million injuries, 275,000 hospitalizations, and 52,000

deaths in the US annually [RLT06]. Studies have estimated the annual costs associated with

TBI to be $64 billion in the US [FGC12] and $40 billion in Europe [OGS12].

The total effect of neurological damage from TBI can continue for hours or days after the

initial injury [BMW77, HA12]. Sources for this ongoing damage include swelling or bleeding

in the brain, infection, and seizures [CMK93, USK04]. So, the critical care of TBI patients

is important to their recovery; studies have shown that targeted care protocols can reduce

mortality and improve patient outcomes [FTW04, AHT10].

One important quantity to measure during TBI care is intracranial pressure (ICP), the

fluid pressure inside the skull [CP04]. Elevated ICP, or intracranial hypertension, can indicate

swelling, lesions, or worsened cerebral perfusion of the resources necessary for recovery, and

can prompt decisive clinical action to correct [SM14]. However, the process of measuring ICP

is particularly invasive, and involves the insertion of a catheter through the skull and brain

tissue, carrying a level of clinical risk [AKG86]. Physicians are therefore given a tradeoff

between performing this invasive procedure or not knowing a patient’s ICP. This tradeoff

has given rise to a new, ongoing field of research: noninvasive ICP (NICP) estimation.

NICP estimation has proven to be a difficult problem, and no solutions exist that have

met a clinical standard of accuracy [RBA12]. There are many approaches that have given

reasonable estimates, however, from clinical heuristics to computer-driven models [RAS03,

TA07, KVN12].
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This dissertation will examine the NICP estimation problem from the perspective of

linear dynamical systems theory. New methods will be developed around this framework to

address some of the challenges that have limited the success of NICP estimators. Examples

of these issues include the unreliability of corrupted signal data, and a large inter-patient

variability that limits the opportunity to compare new patients to past patients.

1.1 Framing the NICP estimation problem

The scope of the NICP problem, as it is considered in this work, is as follows. A patient’s

ICP is an unknown, time-varying signal. The aim of the task is to estimate this signal.

All that is measured of a patient are two ‘noninvasive’ time-varying signals: their cerebal

blood flow velocity (CBFV), and their arterial blood pressure (ABP). It is assumed that the

relationship between ABP, CBFV, and ICP can be accurately modeled by a low-order (that

is, low-complexity) linear dynamical system, in which ABP and CBFV are the inputs, and

ICP is the output. However, this system is unknown. Because only the system inputs are

measured, and the system and its output are both unknown, this is a blind signal estimation

problem that requires additional information or assumptions to solve.

Also available is a dictionary of past patient information. These patients had their ICP

measured by invasive means, and so a complete picture is available: their input data, output

(ICP) data, and system model are all known. So, the NICP problem is to combine (a) the

incomplete information on a patient and (b) the complete information of other patients.

Figure 1.1 provides a simple diagram of this framework.

There are also additional practical challenges that are specific to this data set. First, the

known CBFV signals are not reliable, as they are often corrupted by artifacts or missing

data due to patient motion and clinical disturbances. Second, there is large inter-patient

variability across the population, and so ‘one size fits all’ population-wide models do not

provide accurate ICP estimates. Because of these challenges, this task is a hard, unsolved

problem.
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Figure 1.1: An overview of the NICP estimation problem. A patient’s ABP, CBFV, and ICP

signals can be treated as a linear dynamical system. However, both the output (ICP) signal

and the system itself are missing. A dictionary of models Σ1, . . . ,ΣL from past patients with

complete information is used to help estimate the missing ICP signal.
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1.2 Contributions of this dissertation

The primary aim of this dissertation is to develop a framework of data methods that add

value to NICP estimators and the associated field of research. The secondary aim is to frame

these data methods as more general problems that can be applied to many different scenarios

and fields of work, maximizing their usefulness. Through these aims, the main contributions

of the dissertation are in three suites of methods for operating on time series data and linear

dynamical models, and their application to both the NICP problem and ICP data.

The first set of methods are designed to mitigate the effect of corruptions in biomedical

signal data. These corruptions, such as large artifacts and missing data, are common in

cerebral blood flow velocity (CBFV) signals, which are frequently used in NICP estimators.

The new methods implicitly model available biomedical signals with a linear dynamical

system. Approximations of these signals are then found that are complete and have dynamics

of low complexity.

The second group of methods are designed to overcome the substantial inter-patient vari-

ability observed in this population. This variability has substantially limited the usefulness

of population-wide predictive models, increasing the complexity of the NICP estimation task.

The new methods are able to cluster patient models by the similarity of their dynamics. By

using these methods, more-targeted models of new patients can be estimated by comparing

their behavior to just a subset of similar past patients.

The final set of methods are a simple, new approach to estimating ICP noninvasively.

They operate by considering both the partial information known about the current patient—

that is, what can be measured noninvaively—alongside the complete information about a

dictionary of past patients whose ICP was invasively measured.

All of the methods presented in the following chapters are flexible in two important

respects. First, they are expressed in the language of linear dynamical systems, and can

be readily adapted to other applications, from engineering to the social sciences, that use

these models for time series data. Second, the methods are posed as convex optimization

problems. It is often easy to extend these convex formulations to new scenarios through new
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weights, penalties, and constraints. Furthermore, the convexity of these problems leads to

tractable solutions.

1.3 Outline of this dissertation

The next two chapters will review background material on both the ICP problem and the

technical tools that will be used. Specifically:

• Chapter 2 will review ICP monitoring from a clinical standpoint. The need for ICP

monitoring, and the associated risks, will be discussed. A range of available ICP mon-

itoring techniques are reviewed, including traditional invasive methods, noninvasive

clinical heuristics, and recent work on model-based noninvasive estimators.

• Chapter 3 will review some underlying technical topics that are used throughout this

dissertation. This includes a review of linear dynamical systems, and the family of

subspace system identification methods that can be used to identify them from data

using the subspaces of matrices.

The three chapters that follow will present the main contributions of this dissertation:

• Chapter 4 presents a suite of methods to remove artifacts and impute sections of

missing data in biomedical signals. The methods exploit low-order dynamical relation-

ships between signals, fitting ‘simple’ models to the data using convex regularization

terms that are robust to large artifacts and missing data. The methods are applied to

CBFV signals, which are frequently used in NICP estimators, but are susceptible to

such corruptions.

• Chapter 5 presents a methodology for clustering dynamical systems. The methods

compare systems by the columns spaces spanned by their observability matrices. This

approach is tested on models of ICP dynamics and simple NICP estimators.

• Chapter 6 proposes an approach for estimating ICP called dictionary-based signal

estimation, that combines patient data with that of a dictionary of past patients.
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These methods are applied to NICP estimation as well as other benchmark time series

data.

The final body chapter provides implementation details that apply across the dissertation:

• Chapter 7 reviews a class of convex optimization algorithms called proximal algo-

rithms, and demonstrates how they can be used to realize the methods in Chapters

4–6.
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CHAPTER 2

Review of noninvasive ICP estimation

The key motivation for this dissertation is to improve noninvasive intracranial pressure

estimation in the critical care setting, particularly for TBI patients. This chapter will provide

the clinical background to this problem: why intracranial pressure is important to measure

in this population, the drawbacks of its invasive measurement process, and the progress of

noninvasive alternatives that are of current research interest.

2.1 ICP monitoring in critical care

2.1.1 Clinical need for ICP monitoring

TBI results in neurological damage. Significant damage does not only occur during the

trauma but also over several days following the event, damage that is referred to as secondary

effects. These effects can be mitigated or prevented with targeted care protocols [HA12,

BMW77]. The Brain Trauma Foundation (BTF) [CTO17] guidelines for TBI care suggest

that three values should be monitored: arterial blood pressure (ABP), intracranial pressure

(ICP), and cerebral perfusion pressure (CPP). ABP is the pressure exerted throughout the

body’s arterial system. ICP is the pressure exerted on the fluids in the skull, which comprise

around 5% of total skull volume, as shown in Fig. 2.1. CPP is the pressure gradient of

blood flow between the arterial and cerebral systems that drives blood delivery to the brain

[Neu00].

ABP measurement is routine in clinical care and so its monitoring does not introduce an

additional clinical decision [LST13]. ICP monitoring however is not routine, and requires

specific indication before it is performed [NKB82]. CPP is a function of ABP and ICP, and
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Figure 2.1: Anatomy of cerebral spinal fluid (CSF) around the brain, and in the ventricu-

lar space. Source: Blausen.com staff (2014). “Medical Gallery of Blausen Medical 2014”.

WikiJournal of Medicine.

can be calculated when both measurements are present [Neu00].

ICP is in itself a useful measurement, for understanding swelling and detecting intracra-

nial lesions. However, it is primarily measured because it facilitates therapies to improve

CPP and maintain adequate supply of resources to the brain during recovery [HA12]. Low

cerebral perfusion can be treated through a variety of methods: draining the cerebrospinal

fluid (CSF) to reduce ICP, administering vasopressors to raise ABP, and where necessary,

giving mannitol to further reduce ICP [RRJ95]. Hence, ICP monitoring can lead to action-

able steps during care.

2.1.2 Intraventricular catheterization

Intraventricular catheterization (IVC) is the most widely-used method of ICP monitoring

[DJS12]. It is accurate, and is used as the gold standard to benchmark all other measurement

devices and methods [ZDP13].
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IVC is performed by inserting a catheter through the skull and brain tissue, into the

ventricular system of cavities in the brain, which are responsible for production of CSF and

autoregulation of blood flow to the brain. The gradient between intracranial pressure and

atmospheric pressure causes the CSF to flow through the catheter, which is then measured

by a calibrated strain gauge to determine ICP. An IVC can also be used for CSF management

by draining excess fluid, meaning that high ICP readings are immediately actionable. IVC

has been widely adopted because of its high accuracy, low cost, and ability to drain or test

CSF [CTO17].

Despite the benefits of using IVC, the deep penetration of the brain carries risk to the

patient, dissuading its universal practice. The incidence of this risk is unclear: Park et

al. surveyed reports that claim between 0–45% infection rates attributed to the catheteriza-

tion process [PGK04]. While there is a body of literature reporting increased infection from

ICP monitoring [MAL84, AKG86, KWP85], recent studies have found more limited evidence

[WRK93]. Other reported risks include hemorrhage, meningitis, and complications from

misuse, malfunction, or malpositioning [GDD98, PT94, SNS88, NKB82, MWS98, Neu11].

The risks associated with ICP monitoring are reported to be heightened in patients with

liver failure [KSB12], fulminant hepatic failure [ABK08, LSK00], or pregnant women with

preeclampsia [SBH02]. Additionally, IVC is not guaranteed to succeed, and can fail due to

blood clots, air bubbles, and other debris in the skull that were caused by the TBI [ZDP13].

Because of these risks, the BTF recommends ICP monitoring only when patients are at

risk of elevated ICP, the data is useful, and monitoring and treatment would improve out-

comes [CTO17]. Specifically, the BTF guidelines indicate ICP monitoring for TBI patients

with an abnormal CT scan (revealing contusions or swelling, for example) and a Glasgow

Coma Scale (GCS) score of 3–8, which is taken from a possible range of 3 (deep comatose)

to 15 (fully awake) [TJ74]. Clinical options are also suggested for a subset of similar cases.
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2.1.3 Invasive alternatives to IVC

While IVC is the most prevalent invasive means to measure ICP, alternatives exist. These

devices typically insert a measurement device at a shallower distance, which carries a lower

risk of infection or complication, but reduces accuracy and precision. The methods essentially

vary by depth of penetration. Examples include intraparenchymal sensors which are inserted

into the brain tissue [Lev77]; subarachnoic screws inserted into the fluid space between the

brain and skull [VBY73]; and subdural and epidural sensors inserted in the protective meninx

layers of the skull [RSC79]. With the exception of subarachnoic screws, these methods do

not allow CSF drainage, and so they are less actionable.

2.1.4 Clinical analysis of ICP

ICP varies with body position, and so reference values are taken from the supine (flat)

position in critical care. In this position, a healthy range of mean ICP is around 7–15

mmHg. A reading above 15 mmHg is regarded as elevated; 20 mmHg is abnormal for a

TBI patient; and 25 mmHg requires aggressive treatment [CP04]. ICP varies over time, and

mean ICP is typically taken over longer timescales, such as 30 minutes [CP04].

The periodic dynamics of ICP signals are also used for wavefrom analysis. These analyses

range from heuristics that can be clinically calculated to dynamical system modeling. An

example heuristic is RAP, the correlation coefficient (R) between the amplitude of the ICP

signal at the heart rate frequency (A), and the mean ICP (P) [CP04]. A low RAP value,

indicating low correlation, demonstrates a lack of synchronization between the arterial system

pumping blood and the pressure of fluid in the skull. This lack of synchronization shows that

autoregulation of fluid pressure is adequate. By contract, a high correlation value shows that

ICP is strongly influenced by the cardiac cycle of the heart, indicating low compensation

ability. In this case, high blood pressure will cause high ICP, which requires intervention.

As such, RAP gives a measure of the robustness to patient condition to changes in blood

pressure. Model-based analyses will be discussed in detail later in this chapter.
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2.2 Noninvasive ICP estimation

Several noninvasive alternatives to ICP monitoring have been proposed. These methods

reduce patient risk, and in many cases can be performed without a neurosurgeon present.

These key properties may in future extend ICP monitoring to new patient populations that

are not currently indicated, including ischemic stroke and hemorrhage patients, or facilitate

on-site TBI testing at car accidents or sports venues [KVN12].

However, no noninvasive ICP (NICP) estimators have yet reached the accuracy and

precision necessary for clinical acceptance or the standard set by the Association for the

Advancement of Medical Instrumentation [Med15]. This standard stipulates that an ICP

measurement device must report mean ICP accurately to within ±2 mmHg for 0–20 mmHg,

and ±10% for 20–100 mmHg. NICP methods are however a subject of ongoing research,

and are already useful for preliminary screening, to determine if invasive ICP monitoring is

necessary.

This section will discuss a key technology for NICP estimation, transcranial Doppler

ultrasonography, and then review recent model-based approaches. Many other NICP esti-

mation technologies exist, but are omitted as they do not readily interface with the methods

presented in this dissertation. These additional technologies include tympanic membrane

displacement [TA07]; optic nerve sheath diameter [KSM08]; magnetic resonance imaging

[MMS08]; and computed tomography [MBG81].

2.2.1 TCD ultrasonography

Among the most popular NICP methods is the use of transcranial Doppler (TCD) ultra-

sonography. These devices measure cerebral blood flow velocity (CBFV), the speed of blood

flowing through the middle cerebral artery in the brain. TCDs operate by emitting ultrasonic

waves at the temple in the head; the waves are reflected off of the flowing blood and are

frequency shifted as per the Doppler effect. The echoes are measured by the device, so that

CBFV can be calculated [RBA12]. An example of a CBFV waveform is shown in Fig. 2.2.
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Figure 2.2: A CBFV waveform measured by transcranial Doppler ultrasonography.

A popular clinical heuristic derived from CBFV is the pulsatility index (PI), the ratio of

the amplitude of the CBFV wave to its mean value:

PI =
Systolic CBFV−Diastolic CBFV

Mean CBFV
=

max(CBFV)−min(CBFV)

avg(CBFV)
. (2.1)

PI is correlated with ICP. Bellner et al. [BRR04] found a strong linear correlation with

R2 = 0.733. 95% of points were able to be classified within a range of 4.2 mmHg, for

measurements below 30 mmHg. Similarly, Behrens et al. [BLA10] found a 95% confidence

interval of 3.8 mmHg in this region. PI has been favored by researchers because it is a

ratio, rather than absolute value, removing some dependency on anatomical variation seen

in TCD measurements [BRR04]. However, the methods have overall shown variability that

make them unsuitable for clinical ICP use [BRR04, BBS10].

TCDs are also subject to noise, large artifacts, and occasional signal dropout from mis-

measurement and patient motion [RBN06]. While noise can be filtered out [VSR96], sparse

artifacts are more problematic [KL13]. For manually-computed PI-based metrics, these er-

rors can be identified by clinical annotation and ignored. However, the presence of these

corruptions is problematic for autonomous methods of TCD analysis.

TCD ultrasonography is noninvasive and easily repeated [BRR04], although 11% of pa-

tients cannot provide this measurement at all due to anatomical variability [RBA12]. Overall,

TCD estimates can provide reasonably accurate noninvasive estimates of ICP, but they are
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Figure 2.3: A popular input–output configuration for model-based NICP estimators.

not consistent enough to replace invasive methods.

2.2.2 Model-based NICP estimators

Recent literature has sought to replace clinical heuristics for NICP estimation with model-

based approaches. Many of these methods rely on physiological input data that can be

monitored continuously and can be easily interfaced with bedside computer technology. This

integration removes the need for clinicians to manually read data or perform calculations,

and allows for real-time estimates of ICP.

Model-based NICP estimators have widely adopted a configuration in which CBFV and

ABP are predictive inputs. This black box model is shown in Fig. 2.3. A simple justification

for this choice is that CBFV is strongly correlated to ICP, while ABP provides a useful

pressure baseline in the body, and is used in CPP calculations. Both signals can be measured

continuously, routintely, and noninvasively.

The usage of CBFV and ABP as NICP estimators predates dynamical models. Static

relationships based on these signals was studied throughout the 80s and 90s [ALL86, CMS98,

CMD92, KCB88]. This work led to the development of early dynamical models with these in-

puts. Common approaches included compartment flow models [MMW87, UIS95] and analo-

gies to electrical circuits [TKI86].

The three perhaps most widely-cited model-based estimators use CBFV and ABP as their

primary inputs. One model by Schmidt et al. [SKS97] proposed a transfer function between
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linear transformations of CBFV and ABP to predict ICP. This generalized approach, which

does not attempt to describe internal physiology, achieved mean absolute ICP errors around

4.1 mmHg [SKS97, SWS16]. Another successful model by Heldt et al. [KVN12, MFH16] uses

an electrical analogy and has a mean (bias) error of 1.6 mmHg under certain conditions.1

Finally, a series of models from Hu et al. have also extended dynamical modeling by

using machine learning techniques. These approaches include nonlinear [HNG06] and kernel

regression [XKB10], data mining mapping functions [HNB06], and semisupervised learning

[KHP13]. These methods have shown continuous improvement towards an NICP protocol

with median errors below 6 mmHg, but are yet to meet total clinical needs. Neural network–

based methods have also been proposed [MMK08].

1Note that this quantity is distinct from mean absolute error.
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CHAPTER 3

Review of subspace system identification

This chapter will review some selected technical topics from the field of subspace system

identification that are useful for studying linear dynamical systems and their low-order ap-

proximations. These topics will underpin the new methods in this dissertation.

The first section provides a structural overview of the systems that will be used. In the

second section, the family of subspace system identification methods will be introduced. An

important result from this field is highlighted, which relates the order of a system to the

rank of certain data matrices. The third section then discusses an efficient convex heuristic

for approximately minimizing over the rank of a matrix.

3.1 Linear time-invariant systems

In this work, ICP dynamics will be modeled by linear time-invariant (LTI) systems, a subset

of linear dynamical systems. LTI systems have different possible representations; the most

widely-used is the state space representation [FPE94]:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k),
(3.1)

where u(k) ∈ Rm is the input signal,1 y(k) ∈ Rp is the output signal, x(k) ∈ Rn is the

unobserved state vector, and (A,B,C,D) are the matrices that define the system. The

system is sampled at k = {0, 1, 2, . . .}. The dimension of the state vector n is called the

order of the system, and is a measure of its complexity.

1In most practical cases, u(k) will actually be a collection of multiple, scalar (1-dimensional) signals.
However, for the sake of analysis it is easier to treat the inputs as a single, multi-variable signal. So, ‘input’
and ‘inputs’ will be used interchangeably based on context. This same idea also applies to the output, y(k).
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State space structures are well-studied and have numerous advantages [OY02]. However,

they require signals to be labeled as inputs and outputs. This partitioning has its roots

in control systems theory, where inputs are classified as the signals chosen directly by the

user [FPE94]. In physiological models, there is no clear notion of a system ‘input’; while

some labels can be argued from a physiological standpoint (such as heartbeats as inputs),

others can be ambiguous. For these cases, it can be useful to consider a more general system

representation of the form

R0w(k) +R1w(k + 1) + · · ·+R`w(k + `) = 0, (3.2)

where w(k) ∈ Rd is a signal for which there is a linear relationship between up to ` + 1

consecutive observations [MWV06]. The matrices Ri define the system.

This general representation is much less useful in practical settings, and will not be used

explicitly. However, all state space systems can be represented in this form and, in turn, for

every LTI system of form (3.2) there is a causal partitioning of w(k) into input and output

signals [MWV06]:

w(k) = P>

 u(k)

y(k)

 . (3.3)

The relationship between these two representations is useful when results for a state space

system can be extended to cases where data can be unlabeled.

3.2 Subspace system identification

System identification is the process of fitting models of dynamical systems to data. There

are two broad classes of methods to solve this problem. The first are prediction error mini-

mization methods, which operate by minimizing some function of model error, such as the

difference between the measured signals and those produced by a simulation of the model

[Lju98, Pel15]. These methods will not be used here. Subspace system identification, which

is leveraged in this dissertation, is a fundamentally different approach in which input–output

data is used to construct matrices with linear algebraic properties that reveal the system

structure [Lju98].
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This section will review some key principles of subspace methods. This includes a basic

overview of how they are used to identify systems from data, and a review of an important

result on system order. As this dissertation will only use a subset of the theory from this

field, it is not a comprehensive review; interested readers can refer to [VV07, VD12, Lju98]

for further details.

A note on block Hankel matrix notation. The upcoming sections will frequently use

block Hankel matrices constructed from a sequence of vectors. Such a matrix H with r

columns that contains N vector blocks h(·) ∈ Rd, starting at h(0) through h(N − 1), will be

labeled Hr,N . That is,

Hr,N =



h(0) h(1) · · · h(r − 1)

h(1) h(2) · · · h(r)

h(2) h(3) · · · h(r + 1)
...

...
. . .

...

h(N − r) h(N − r + 1) · · · h(N − 1)


∈ R(N−r+1)d×r. (3.4)

3.2.1 Overview of subspace identification process

Subspace identification methods retrieve approximations of the system matrices (A,B,C,D)

and the initial system state x(0). This is done in two steps. First, the observability matrix

Or of the system is estimated. This reveals the matrices A and C. Then, system equations

are linear in the remaining unknowns, B, D, and x(0), and so these can be solved using least

squares.

Classically, the derivation of subspace methods begins by noting that the state space

equations (3.1) can be rearranged to give the input–output equation:

Yr,N = OrXN,N + TrUr,N , (3.5)
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where Or and Tr are the matrices

Or =



C

CA

CA2

...

CAr−1


, Tr =



D 0 0 · · · 0

CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . . . . .

CAr−1B CAr−3B CAr−4B · · · D


, (3.6)

and Ur,N , Yr,N and XN,N are block Hankel matrices of u(k), y(k), and x(k) using the notation

in (3.4). Note that Or is the observability matrix of the system.

The aim of the system identification task is to estimate Or and Tr in (3.5)—which contain

the system matrices—using Yr,N and Ur,N from the measurement data. This problem is

nontrivial because XN,N is also unknown. So, several methods exist to first estimate Or.

In one short example, the term TrUr,N is removed from (3.5) by applying Π⊥Ur,N
, the

projection onto the nullspace of Ur,N , to both sides of the equation:

Yr,NΠ⊥Ur,N
= OrXN,NΠ⊥Ur,N

. (3.7)

(This projection can be computed from Ur,N using a singular value decomposition; see [Lau05]

for details).

The next steps of analysis assume that the following condition holds [LHV13]:

rank

 XN,N

Ur,N

 = n+ rank(Ur,N). (3.8)

This condition is called the persistency of excitation of a sufficient order, and can be thought

of as the requirement for the input u(k) to be sufficiently complex as to excite all of the modes

of the system. Because XN,N and n are not known, the condition cannot be verified, although

it is realistic for real input data and low-order systems. See [VV07, §10.2.4.2] and [JW98]

for further details.

If (3.8) holds, then from (3.7) it follows that

rank(Yr,NΠ⊥Ur,N
) = n, (3.9)
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and

range(Yr,NΠ⊥Ur,N
) = range(OrXN,NΠ⊥Ur,N

)

= range(Or).
(3.10)

The first result (3.9) states that the rank of Yr,NΠ⊥Ur,N
is equal to the order of the system

[VV07]. When the data is corrupted by noise, this rank deficiency does not perfectly occur.

In this scenario, a low-rank approximation of Yr,NΠ⊥Ur,N
can be found by taking its SVD

and truncating its singular values, which produces a low-order approximation of the system

[LHV13].

The second result (3.10) demonstrates that the the column space (or range) of Or can

be determined from the data matrix Yr,NΠ⊥Ur,N
. Because LTI system matrices are unique up

to a similarity transform [OY02], any basis of this column space is suitable as a realization

of Or. (One way to realize this matrix is to take the SVD of Yr,NΠ⊥Ur,N
; again, see [Lau05]

for details).

Once Or and hence A and C are known, the input–output equation (3.5) is linear in its

unknowns. So, B, D, and x(0) can be estimated using least squares [BV18].

There are many variations of subspace methods, which largely differ in how Or is cal-

culated. Examples include N4SID, MOESP, IVC, CVA, and, most recently, N2SID; details

can be found in [VD94, Lju98, VH15, VH16].

3.2.2 Data matrices that reveal system order

Equation (3.9) is an important result: it demonstrates that data matrices can be designed

whose rank provides insight on the the order of the system. A consequence of this idea is

that a low-rank estimate of such a matrix will provide a low-order approximation of this

system.

Another data matrix with a similar property is

F (u, y) =

 Ur,N

Yr,N

 , (3.11)
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which is simply the block Hankel matrix of inputs, Ur,N stacked above the block Hankel

matrix of outputs Yr,N . If (3.8) holds then [MDV89, MV90]:

rank(F (u, y)) = n+ rank(Ur,N). (3.12)

If Ur,N is full row rank then this becomes

rank(F (u, y)) = n+m(N − r + 1), (3.13)

and so the rank of F (u, y) is the system order, plus a constant.

Both Yr,NΠ⊥Ur,N
and F (u, y) are interesting to consider as candidates for a rank/order

minimization problem. Of these two choices, however, F (u, y) has two distinct benefits. Its

most immediate advantage is that it is linear in both u(k) and y(k), so all of the measured

signals can be treated as variables in an estimation problem with ease.

Another benefit to using F (u, y) is perhaps less obvious. Consider the unlabeled signal

format

w(k) = P>

 u(k)

y(k)

 , (3.14)

where P is again the permutation that partitions the unordered signals into inputs and

outputs. Then, the block Hankel matrix

Wr,N =



w(0) w(1) · · · w(r − 1)

w(1) w(2) · · · w(r)

w(2) w(3) · · · w(r + 1)
...

...
. . .

...

w(N − r) w(N − r + 1) · · · w(N − 1)


(3.15)

is simply a row permutation of F (u, y). Because rank is a unitarily invariant function,

rank(Wr,N) = rank(F (u, y))

= n+m(N − r + 1)
(3.16)

when Ur,N is full rank. So, when the input–output partitioning of the signals is not known

or defined, there is still a relationship between the rank of the data matrix Wr,N and the
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order of the system. While the actual rank cannot be determined without choosing m, the

dimension of the input signal, there is still a monotonically increasing relationship between

the rank of Wr,N and n. So, a low-rank approximation of Wr,N should still produce low-order-

inducing signals, even if the inputs and outputs of the system are not explicitly declared.

This more relaxed view is useful for physiological models in which input–output partitioning

is ambiguous.

3.3 Trace norm minimization

An important takeaway from Section 3.2 is that in certain instances, the rank of a data matrix

can infer the order of an LTI system. So, the task of finding low-order approximations of a

system is closely related to that of finding low-rank approximations of a matrix.

However, it is difficult to compute low-rank approximations of matrices in many cases—

for example in the presence of constraints on its structure—because rank minimization is

a nonconvex problem [Faz02]. A popular alternative is trace norm minimization [FHB01].

The trace norm (or nuclear norm) ‖X‖∗ of a matrix X ∈ Rm×n is the sum of its singular

values:

‖X‖∗ = ‖σ‖1 =

min(m,n)∑
i=1

σi, for the SVD X =

min(m,n)∑
i=1

σiuiv
>
i . (3.17)

It is the tightest convex relaxation of rank over the unit spectral norm ball [Faz02]. Applying

trace norm minimization to a matrix is equivalent to applying `1-norm to the vector of its

singular values. This process tends to produce a sparse set of singular values, and, in turn,

a low-rank matrix. Minimizing the trace norm of a matrix, subject to constraints, is a very

effective, indirect heuristic for finding a low-rank solution to a problem.

Techniques exist to improve upon the trace norm relaxation. Grussler et al. [GRG18,

GR15] present an approach to solving rank-constrained optimization problems using a convex

relaxation with certain verifiable guarantees on rank, ensuring a low-rank solution. This

approach is useful when the desired rank of the variable matrix is known. Another simple

technique is to iteratively re-weight the terms in the norm [MF10].
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3.3.1 Applications of trace norm minimization

System identification. There are several instances of trace norm minimization being

applied to subspace system identification. A common theme in these methods is to replace

the rank minimization step, which is traditionally done by truncating the singular values of

a data matrix [VV07], with a convex optimization problem.

For example, Liu & Vandenberghe [LV09] proposed solving the convex problem

minimize ‖Yr,NΠ⊥Ur,N
‖∗ + λ

∑
k∈T

‖y(k)− ymeas(k)‖22 (3.18)

to identify low-rank systems. The problem computes y(k), an approximation of measure-

ments ymeas(k) that typically produces a low-order system. A system realization can then be

quickly found by applying the results (3.9)–(3.10). While (3.18) is similar in effect to trun-

cating the singular values of Yr,NΠ⊥Ur,N
, its convex formulation is much more flexible. For

example, it is allowable for ymeas(k) to have missing elements. Another variation [LHV13] is

minimize ‖F (u, y)‖∗ + λ
∑
k∈T0

‖y(k)− ymeas(k)‖22 + γ
∑
k∈T1

‖u(k)− umeas(k)‖22, (3.19)

where missing input data umeas(k) is also allowable. These methods have been successfully

applied to data from the DaISy benchmark dataset [DDD97] to identify LTI models with

some missing data.

Verhaegen & Hansson [VH14, VH16] present a similar method that minimizes the trace

norm of a variation on the input–output equation (3.5). Smith [Smi12] uses trace norm

minimization to perform subspace system identification in the frequency domain instead

of the time domain. Sznaier & Ayazoglu [AS12, SAI14] apply the idea to robust system

identification, to find low-order system estimates with guarantees on stability and error

bounds.

Other applications. There are numerous applications for trace norm minimization be-

yond system identification. Candès & Plan overview in [CP10] its role in matrix completion

and collaborative filtering, where a data matrix can be recovered using only a small sample

22



of its entries. An example of its use in robust principal component analysis is provided in

[XCS10], where it is used to recover a low-dimensional subspace in the data that is expressed

as a low-rank matrix. Applications for trace norm minimization also appear in computer

vision, where low-rank matrices can model the background in a video sequence [CLM11], or

used to estimate the motion of an object when it is temporarily obscured [AYS13].
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CHAPTER 4

Enhancing corrupted physiological signals by trace

norm regularization

Note: A variation of this chapter has been submitted to IEEE Transactions on Biomedical

Engineering as Artifact Rejection and Missing Data Imputation in Cerebral Blood Flow Ve-

locity Signals via Trace Norm Minimization (Gunn, C.A., Hu, X., Vandenberghe, L.). An

earlier version was presented at the 16th International Symposium of Intracranial Pressure

and Neuromonitoring as A Novel Signal and Model Enhancement Algorithm Improves Sim-

ulation of ICP Signals using CBFV and ABP Signals (Gunn, C.A., Vandenberghe, L., Hu,

X.).

4.1 Introduction

4.1.1 Motivation

Many physiological signals are degraded by significant corruptions that limit their clinical

usefulness. An example that is pertinent to NICP estimation is the use of CBFV signals that

are measured by transcranial Doppler ultrasonography. The TCD measurement process uses

ultrasonic probes that are either placed by hand or fixed on an elastic headframe that is fit

around the skull [Aas12]. Patient motion and clinical disruptions can cause relative move-

ment or even dislodgement of these probes, introducing large artifacts that dominate the

desired signal in the measurement, or sections of entirely missing data [RBN06]. Some ex-

amples of these errors are shown in Fig. 4.1. In traditional clinical settings these corruptions

can be problematic, but generally can be manually identified and ignored. In automated
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settings, such as the model-based NICP estimators described in Section 2.2.2, there may be

no human intervention step, and the effect of these corruptions on ICP estimates may not

be obvious.

This chapter will present a suite of methods to remove artifacts and impute sections

of missing data in corrupted CBFV signals. The methods exploit the knowledge that the

relationship between CBFV, ABP, and ICP can be well-approximated by low-order LTI

systems. Measured signals are enhanced by fitting them to low-order dynamical models,

using convex regularization terms that improve robustness to large deviations and missing

data. The methods are based on convex optimization formulations, and utilize the results

outlined in Chapter 3 in subspace system identification and trace norm minimization. Sim-

ulations demonstrate that the method successfully removes real CBFV artifacts, and can

impute missing data of with reasonable accuracy. The methods are presented in a general

context, and are applicable to other signal processing applications that meet the necessary

assumptions.

4.1.2 Background on current methods

The tasks of artifact rejection and missing data imputation are in general distinct. Artifact

rejection is the task of removing artifacts from a signal, which are here defined as measure-

ment errors that are large, sparse, and often occur in groups of successive measurements

[SPH08]. Missing data imputation is simply the process of estimating missing elements from

an ordered data set, such as time series data [Efr94].

Artifact rejection. Popular mechanisms for artifact rejection include smoothing and sta-

tistical approaches. Smoothing-type approaches assume that artifacts are equivalent to sharp

signal transitions, and attempt to remove them by smoothing the signal. Examples include

median filtering [RL05] and sparse quadratic smoothing [BV04]. These methods are com-

putationally efficient and require little information. However, the assumption that all sharp

transitions are erroneous measurements is often unrealistic. For example, many physiological

signals, including CBFV, are driven by heartbeats and experience sharp changes at the be-
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Figure 4.1: Examples of CBFV waveforms with various types of large artifacts.

26



ginning of systole [Hal15] (see, for example, the clean sections of Fig. 4.1). Other approaches

that are more statistically-driven include statistical thresholding [NWR10] and independent

component analysis [JHL98]. These particular methods have been successfully been applied

to physiological applications. However, they rely on stationary data and are not robust to

systematic shifts that may occur across a set of related signals.

The methods produced in this dissertation are distinct from the above approaches by

their strong reliance on system dynamics. They assume that artifacts are sparse events that

increase the complexity of dynamics between signals in a low-order system. This approach

notes that if multiple signals that form a low-order dynamical system are measured together,

then the presence of a corruption in any of the signals will introduce unexplained, complex

dynamics to this relationship. This approach is robust to many limitations of the previous

methods because it compares behavior between signals to differentiate artifacts from system-

wide external events.

Missing data imputation. Current tools for missing data imputation are largely suitable

for physiological signal processing applications. Given a set of signals that are related by

a linear dynamical system, Kalman filters can be used to estimate the unobserved state

sequence and then reconstruct the signals [SSF04, KA86]. This approach relies on the

dynamics between signals, although it requires user selection of a model. Approaches without

a foundation in dynamics, such as interpolation and multiple imputation [KHJ01], should

be avoided in these contexts.

4.2 Model validation

A key assumption in this dissertation is that the relationship between ABP, CBFV, and ICP

can be accurately described by a low-order LTI system. This section verifies this assumption

with data. First, the physiological data used will be described. Then, two LTI models are

proposed that will be frequently used: the ICP model and the CBFV model. Finally, the

accuracy of these models is validated.
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4.2.1 ICP data

Analysis was performed using retrospective clinical data collected for the previous studies

reported in [KSB12, KHP13]. The dataset contains 75 patients, recorded at the University

of California, Los Angeles (UCLA) Medical Center. 38 patients had TBI, 27 had aneurysmal

subarachnoid haemorrhage (aSAH), and 10 had normal pressure hydrocephalus (NPH). Data

was separated into a total of 169 episodes, each 360 heartbeats in length. CBFV, ABP, and

ICP signals were recorded at 400 Hz, and downsampled to 40 Hz. CBFV was measured

noninvasively via transcranial Doppler. ABP was measured routinely by catheter.1 ICP was

measured invasively by IVC. Patients had a median age of 34 with interquartile range (IQR)

24–56, and a total range of 18–89.

4.2.2 Model configurations

Two related clinical model configurations will be used: the CBFV model, and the ICP model.

Both cases arise in TBI care. Their configurations are shown in Fig. 4.2. The CBFV model

uses ABP as its input, and CBFV as its output:

u(k) = ABP(k) ∈ R, y(k) = CBFV(k) ∈ R. (4.1)

As both of these quantities are routinely measured in critical care, this model is readily

computable. An example of such an LTI model is analyzed in [KCS98].

The ICP model uses ABP and CBFV as inputs, and ICP as its output:

u(k) =

 ABP(k)

CBFV(k)

 ∈ R2, y(k) = ICP(k) ∈ R. (4.2)

This configuration is useful when a patient’s ICP is measured invasively via IVC. Examples

of LTI systems with this configuration can be found in [SKS97, KVN12].

1While this process is technically invasive, its measurement is standard practice in intensive care [WL07],
and for simplicity will be classified as ‘noninvasive’ in the sense that it does not require the patient undergo
an additional invasive procedure for the information to be available.
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Figure 4.2: Input–output configurations of the CBFV and ICP models.

4.2.3 Simulation and results

LTI models were fit to training data, and validated on testing data. The following process

was repeated for each of the 169 episodes, for both the CBFV model and the ICP model.

First, the signal data was split into a training sequence and a testing sequence, each equal

in length. A patient-specific LTI model was fit to the training data using the N4SID method

(as implemeneted in [Lju07]). Then, the input data from the testing sequence was applied

to the model, which produced a simulated output sequence. This simulation was compared

to the true, measured output of the testing sequence. An example of the simulation output

of both model configurations is provided in Fig. 4.3.

The ICP model had a median [IQR] absolute error of 1.02 [0.46–2.10] mmHg (1.13%).

These simulations compare favorably to the ANSI/AAMI standard for measurement devices

(±2.0 mmHg for 0–20 mmHg, and ±10% in the range 20–100 mmHg [Med15]). For the

CBFV model, the median [IQR] absolute error was 6.57 [2.85–14.49] cm/s (7.38%).

Additionally, population-wide models were also constructed by fitting a model over the

entire training set, and validating both over the entire testing set. These models performed

poorly, with median absolute errors of 5.44% and 32.74% for the ICP and CBFV models

respectively. Results of these simulations are summarized in Table 4.1.

These results demonstrate that the patient-specific ICP model is an excellent choice for
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episodes.

Table 4.1: Simulation error the CBFV and ICP models, for both patient-specific and

population-wide modeling cases. Errors are given in median absolute error, expressed as

a percentage.

Model data ICP model (%) CBFV model (%)

Patient-specific 1.13 7.38

Population-wide 5.44 32.74
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modeling ICP dynamics. While the patient-specific CBFV model gave inferior performance,

its error was reasonable for a single-input-single-output LTI model of a complex physiolog-

ical process. These results validate the assumption that the data in this dissertation can

be accurately modeled by LTI systems. For both configurations, population-wide models

substantially underperformed, so these will be mostly ignored.

The results also suggest an upper-limit on future performance goals. For example, if an

ICP model is constructed without knowing a patient’s ICP—because it was not measured—

then the resulting model should underperform the results in the above experiment, specifi-

cally, a median [IQR] absolute error of 1.02 [0.46–2.10] mmHg. Hence, this result serves as

a performance benchmark for NICP estimation methods that use LTI models.

4.3 Methods for artifact rejection and missing data imputation

4.3.1 Basic method

Consider a set of signal measurements wmeas(k) ∈ Rd, with k = 0, . . . , N − 1. If the signals

are labeled as inputs umeas(k) and ymeas(k) then

wmeas(k) =

 umeas(k)

ymeas(k)

 . (4.3)

The signals may contain artifacts or sections of missing data. Elements that were measured

are indexed by the index set Ki ⊆ {0, . . . , N − 1}, where i = 1, . . . , d. It is assumed that the

input data umeas(k) is persistently exciting of sufficient order as to satisfy the rank condition

(3.8) (even if the input–output labels of wmeas(k) are not explicitly known). If all of the

measurements are available for the ith signal, it can notated as wi,meas ∈ RN .

The aim of this method is to determine an optimized signal w(k) ∈ Rd with artifacts

removed and missing data imputed. The signal w(k) will be the optimization variable in

the method. The cost function combines two objectives. The first is to minimize ‖Wr,N‖∗,

as a penalty on values of w(k) that increase the order of the model dynamics. The second

term penalizes deviation of w(k) from the measured data. The tradeoff between the terms
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is controlled by regularization parameters λi > 0 that correspond to each signal i. Hence,

the following convex optimization problem is posed:

minimize ‖Wr,N‖∗ +
d∑
i=1

∑
k∈Ki

λi|wi(k)− wi,meas(k)|. (4.4)

When there is no data missing this problem becomes

minimize ‖Wr,N‖∗ +
d∑
i=1

λi‖wi − wi,meas‖1. (4.5)

The second term in both (4.4) and (4.5) are weighted `1-norm data-dissimilarity penalties,

and are chosen for their robustness against outliers. They allow for large corrections to

be made to the signal that reasonably reduce ‖Wr,N‖∗, and so provide the desired artifact

rejection property.

When imputing missing data is the only goal, without modifying the the measured signals,

the following constrained formulation can be used:

minimize ‖Wr,N‖∗

subject to wi(k) = wi,meas(k), i = 1, . . . , d, k ∈ Ki.
(4.6)

This problem can be interpreted as a structured low-rank matrix completion problem [RFP10],

that is, the missing entries that comprise the block Hankel matrix Wr,N are completed.

4.3.2 Structured artifact rejection

A limitation of the method expressed in (4.4) is that it penalizes each residual element

wi(k) − wi,meas(k) independently, without respect to their ordering. In practice, however,

artifacts occur in blocks of successive measurements. These block artifacts can be removed

using overlapping group sparsity penalties. Such penalties have been proposed by Yuan and

Lin [YL06], Obozinski et al. [OJV11], and others [PF11, BJM12, KX10].

The structured blocks in question may be just a few measurements in length, each repre-

senting a singular artifact. Alternatively, they may be as long as several minutes, representing

periods of care in which there was clinical disruption. This choice is left to the user, based

on their needs.
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To simplify discussion, this section will assume that only one signal l ∈ {1, . . . , d} (specif-

ically, CBFV) is corrupted by artifacts, and that it is complete. Measurements of the other

signals are assumed to be exact, although may be missing. By the approaches of (4.4)–(4.6),

a good choice of signal enhancement method for this scenario would be

minimize ‖Wr,N‖∗ + λ
N−1∑
k=0

|wl(k)− wl,meas(k)|

subject to wi(k) = wi,meas(k), i 6= l, k ∈ Ki.

(4.7)

The aim of this approach is to replace the element-wise penalty on wl(k) − wl,meas(k) with

an overlapping group sparsity penalty.

Consider a scalar signal x ∈ RN , and its measurement xmeas which is corrupted by block

artifacts of maximum length q. The aim is to find a residual vector e = x − xmeas that can

be written as a sum of a small number of contiguous nonzero sections (or atoms) of length

q. This is written as

e = Pz =
[
P 0 · · · PN−q

]
z(0)

...

z(N − q)

 , (4.8)

where each atom z(k) is a signal of length q. Each block P k ∈ RN×q maps the atom z(k)

to positions k, . . . , k + q − 1 in the residual e, forming an overlapping structure. These

overlapping blocks are then combined to yield e. For example, when q = 2,

P =



1 0 0 0 · · · 0 0 0 0

0 1 1 0 · · · 0 0 0 0

0 0 0 1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 1 0 0 0

0 0 0 0 · · · 0 1 1 0

0 0 0 0 · · · 0 0 0 1


. (4.9)

The number of atoms in this representation can be made small by minimizing an `1/`2-norm

penalty on the set of each z(k). This motivates the overlapping group sparsity penalty
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function

Ω(e) = min
z

{
N−q∑
k=0

‖z(k)‖2
∣∣∣∣e = Pz

}
. (4.10)

Replacing the element-wise penalty of (4.7) with Ω, it becomes

minimize ‖Wr,N‖∗ + λΩ(wl − wlmeas)

subject to wi(k) = wi,meas(k), i 6= l, k ∈ Ki.
(4.11)

To handle the function Ω algorithmically, the problem is expanded and auxiliary variables

z(k) are introduced to obtain

minimize ‖Wr,N‖∗ + λ

N−q∑
k=0

‖z(k)‖2

subject to wl − wlmeas = Pz

wi(k) = wi,meas(k), i 6= l, k ∈ Ki.

(4.12)

It is worth noting that this method is not restricted to the simple shifting structure of

artifact groups that has been suggested. In fact, arbitrary groups can be defined by the user

by choice of the matrix P . One systematic choice that users may also find useful is to penalize

every contiguous sequence up to length q, rather than of exact length q. Alternatively, groups

with length qmin ≤ q ≤ qmax could be used.

4.3.3 Data-dissimilarity penalties

Because (4.4) is framed as convex optimization problem, it is easy to extend it to new cases

by introducing penalties and constraints to capture prior information or different scenarios.

For example, the artifact rejection property can be replaced with noise rejection by instead

solving

minimize ‖Wr,N‖∗ +
d∑
i=1

∑
k∈Ki

λi
2

(wi(k)− wi,meas(k))2 , (4.13)

or, for data without missing elements,

minimize ‖Wr,N‖∗ +
d∑
i=1

λi
2
‖wi − wi,meas‖22. (4.14)
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In fact, the data-dissimilarity penalty on wi − wi,meas for each signal i can be uniquely

chosen. This is useful if one signal (e.g. CBFV) is corrupted by artifacts, while other signals

(e.g. ABP and ICP) are affected by noise, and so different penalties are appropriate. In

addition to the `1- and `2-norms, another useful choice is the Huber loss function [Hub64].

4.3.4 Smoothing penalties

Users are also able to add smoothing penalties to w(k) if desired. Two common choices

of smoothing penalties are quadratic smoothing [BV04] and total variation regularization

[ROF92]. For complete signal data corrupted by artifacts, quadratic smoothing can be

achieved by solving

min. ‖Wr,N‖∗ +
d∑
i=1

λi‖wi(k)− wi,meas(k)‖1 +
d∑
i=1

N−1∑
k=1

γi
2

(wi(k)− wi(k − 1))2 , (4.15)

and, total variation regularization by

min. ‖Wr,N‖∗ +
d∑
i=1

λi‖wi(k)− wi,meas(k)‖1 +
d∑
i=1

N−1∑
k=1

γi|wi(k)− wi(k − 1)|. (4.16)

In both cases γi > 0 are constants controlling the amount of smoothing applied to signal i.

Both methods penalize the rate of change of the signal via wi(k)− wi(k − 1).

4.3.5 Exploiting prior information

Prior information on corruptions can be exploited by choice of penalties and weights. One

such case is when the sections of corrupted signal are known a priori. If the clean elements

of wi(k) are described by the index set Ci ⊆ {0, . . . , N − 1}, and the data is complete, then

it is appropriate to fix different weights for these measurements:

minimize ‖Wr,N‖∗ +
d∑
i=1

∑
k∈Ci

λcleani |wi(k)− wi,meas(k)|

+
d∑
i=1

∑
k/∈Ci

λcorrupti |wi(k)− wi,meas(k)|,

(4.17)

with λcleani > 0 and λcorrupti > 0 the weights applied to the clean and corrupt data in the

ith signal respectively. In an extreme case, each term wi(k) − wi,meas(k) can be weighted
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individually by some λi(k) ∈ R, with k = 0, . . . , N − 1.

A constrained variation of (4.17) is

minimize ‖Wr,N‖∗ +
d∑
i=1

∑
k/∈Ci

λi|wi(k)− wi,meas(k)|

subject to wi(k) = wi,meas(k), i = 1, . . . , d, k ∈ Ci,

(4.18)

where the clean data is treated as exact, and the corrupted data is corrected.

4.3.6 System identification

The key idea of (4.4) is to find signal estimates for the measurements wmeas(k) that can be

modeled by a low-order dynamical system. However, the low-order system that the estimate

w(k) corresponds to is never explicitly computed. This is generally beneficial, as the details

of the model do not need to be considered in order to accomplish the signal processing

task. If it is however useful to compute the underlying system, this can done using subspace

methods.

This section will demonstrate how to compute systems in their state space representation

(introduced in Section 3.1) because of their popularity and usefulness. So, the aim of this

task is to find estimates for the system matrices (A,B,C,D) and the initial state x(0). The

system identification process can be summarized by the following steps, adapted from the

MOESP method [VV07, VVB07]:

1. Partition the signals into inputs u(k) and outputs y(k) as

w(k) =

 u(k)

y(k)

 . (4.19)

2. Solve any of the above methods, for example (4.4), while replacing Wr,N with

F (u, y) =

 Ur,N

Yr,N

 . (4.20)

Because Wr,N and F (u, y) are row permutations of each other, they have the same rank

and trace norm, that is, ‖Wr,N‖∗ = ‖F (u, y)‖∗.
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3. Compute the LQ factorization Ur,N

Yr,N

 =

 L11 0

L21 L22

 Q1

Q2

 (4.21)

such that Q>1 Q1 = I, Q>2 Q2 = I, and Q>1 Q2 = 0.

4. Compute the SVD

L22 =
[
Ū1 Ū2

] S 0

0 0

 V̄ >1

V̄ >2

 . (4.22)

5. Noting that range(L22) = range(Or), estimate matrices A and C from

Ū1 =


C

CA
...

CAr−1

 . (4.23)

Van Overschee [VD12] provides efficient algorithms to do this using least squares. It

is possible to constrain A to have eigenvalues |λi(A)| < 1, so that the system is stable.

6. Now that the input–output equation (3.5) is linear in its unknowns, estimate B, D,

and x(0) using least squares minimization. For example,

(B,D, x(0)) = argmin
B̂,D̂,x̂(0)

N−1∑
k=0

‖ymeas(k)− ymodel(k)‖22 , (4.24)

where

ymodel(k) = CAkx̂(0)− D̂u(k)−

[
k−1∑
j=0

CAk−1−jB̂u(j)

]
. (4.25)

4.3.7 Algorithms

The data methods presented in this chapter are posed as convex optimization problems

that do not have closed-form solutions; they are instead solved using iterative algorithms.

Importantly, the problems have a special structure by which they can be solved efficiently

using a class of optimization algorithms called proximal algorithms. Chapter 7 reviews the

theory of these algorithms. Section 7.4 provides the specific steps to apply these algorithms

to the problems of this chapter.
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4.4 Simulations

4.4.1 Missing data

Imputation quality was measured by removing CBFV sections from measured data, imputing

an estimate by solving (4.6), and comparing this estimate to the measured section that was

removed. This process was repeated over 169 patient episodes for missing sections of 2 s

in length. The element-wise median [IQR] absolute error for the CBFV model was 4.77

[2.00–10.38] cm/s (5.87%), and for the ICP model, 4.00 [1.68–8.32] cm/s (4.87%).

Example reconstructions using the CBFV model are shown in Fig. 4.4. Because this

model only requires ABP and CBFV, these results can be achieved without knowledge of

ICP. The same examples are also reconstructed using the ICP model in Fig. 4.5. The results

show improvement, which is expected given that there is additional useful data available to

the model. Imputation quality degrades gracefully as the length of missing data increases.

This relationship is shown for the CBFV model in Fig. 4.6.

4.4.2 Artifact rejection

Artifacts in the 169 patients were removed by solving (4.4). The method is capable of remov-

ing artifactual sections of data without degrading the quality of clean sections. Examples

of artifact rejection outcomes for different scenarios using the CBFV model are shown in

Figs. 4.7, 4.8, and 4.9.

Because the true uncorrupted CBFV signal is not known, it is difficult to quantify the

results of the algorithm, although visual results are satisfactory. For the same reason, it is also

difficult to cross-validate an ‘optimal’ value of λ. The effect of varying λ is demonstrated in

Fig. 4.10; higher values more closely resemble measurements, while lower values aggressively

remove higher-order dynamics from the signal. ‘Optimal’ values of λ depend on signal length,

because the two terms in (4.4) do not scale similarly as N increases. Otherwise, visually

tuning a value of λ is a brief task.

The advantage of knowing prior location of artifacts is demonstrated in Fig. 4.11. By
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Figure 4.4: Imputation of missing CBFV using the CBFV model. Data was removed between

3–5 s. These results can be achieved without knowing patient ICP.
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Figure 4.5: Imputation of missing CBFV using the ICP model. Data was removed between

3–5 s. These results require knowledge of patient ICP.
40



10
−2

10
−1

10
0

10
1

0

2

4

6

8

10

Length of missing section (s)

M
e
d
ia

n
 a

b
s
o
lu

te
 e

rr
o
r 

(c
m

/s
)

Imputation error for different lengths of missing sections

Figure 4.6: Median absolute imputation error by the CBFV and ICP models for different

lengths of missing data.

visually examining the CBFV signal, it is apparent that an artifact occurs in the section

t ∈ (4.5, 6.5) s. For this section, λcorrupti = 0.001. The problem is solved using (4.18).

Because the artifact is aggressively adjusted while preserving the waveform in the clean

section, this approach provides the best results. However, it requires users to define the

section of corrupted data in a priori.

4.4.3 Structured artifact rejection

An example of structure artifact removal is given in Fig. 4.12 and Fig. 4.13 using a block

length of q = 20 (0.5 s), and λ = 0.35. The method decomposes the measured CBFV signal

into the sum of a CBFV estimate, generated from a low-order dynamical system, and a small

set of nonzero elementary artifact terms of length 0.5 s. The result produces six nonzero

residual terms, demonstrating the expected block-sparse correction structure.

Although the output of this method has a useful interpretation, in that each of the

artifacts can be retrieved as individual objects (see Fig. 4.13), there was no evidence that this

approach improved upon artifact rejection from the `1-norm approach of (4.4). Additionally,

the introduction of an additional parameter to tune, q, suggests that this method is more
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Figure 4.7: Removal of a large artifact using the CBFV model. Only ABP and CBFV are

required to achieve this quality of rejection.
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Figure 4.8: Removal of a sparse, sharp artifact using the CBFV model.
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Figure 4.9: Removal of frequent disturbances using the CBFV model.
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Figure 4.10: Artifact rejection for varying values of λ, using the CBFV model. Lower values

of λ produce signals with lower-order dynamics, while higher values more closely resemble

the measured data.
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Figure 4.11: Outcomes with prior knowledge that an artifact occurs in the range t ∈ (4.5, 6.5)

s, using the CBFV model. The clean data is kept exact, and the corrupted section is

optimized over.
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Figure 4.12: Overview of CBFV structured artifact removal via (4.12), using q = 20 and

λ = 0.35.
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Figure 4.13: Structure of nonzero residual atoms produced by the CBFV struc-

tural artifact rejection method (4.12). These six nonzero residuals start at t =

0.25, 1.43, 2.28, 3.13, 3.85, 4.68 s and are 0.5 s in length.
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difficult to quickly adopt for new use cases.

4.5 Discussion

This chapter presented a suite of convex optimization methods to reject artifacts and impute

missing data from CBFV signals. The key principle of these methods was to impose the

prior assumption that the signals were well-approximated by a low-order dynamical model.

Because of the flexibility of the convex optimization framework, the approach was easily

extended to a variety of scenarios. Simulations performed the artifact rejection and missing

data imputation tasks well on clinical data.

As a standalone method, future steps will focus on validation using a large-scale data

set. The approaches should be tested on a large body of patient data to confirm its robust-

ness to different clinical scenarios. Possible research questions include determining whether

additional physiological signals improve outcomes; whether differences in diagnosis (TBI,

aSAH, etc.) affect quality of signal enhancement; determining clinically-optimal values of

λ, and the conditions in which it varies; suggesting a suitable signal length N over which

to perform operations; and, for structured artifact rejection, a clinically-optimal value of q.

While these questions must be investigated before the approach is relevant at point-of-care,

it is immediately useful to researchers working with physiological signals.

In the context of this dissertation, the takeaways of this chapter are that (a) ICP can

be accurately modeled as a low-order LTI system driven by ABP and CBFV, and (b) the

regularization penalty ‖Wr,N‖∗ can accurately impute missing data in this relationship by

finding values that imply a low-order system.
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CHAPTER 5

Methods to cluster patient models as dynamical

systems

Note: An earlier version of this chapter was presented at the IEEE Biomedical and Health In-

formatics Conference, 2018, as Clustering Patient Models of Intracranial Pressure Dynamics

(Gunn, C.A., Hu, X., Vandenberghe, L.).

5.1 Introduction

Clustering is one of the principal tasks in machine learning, in which objects are categorized

into groups by a similarity or distance metric. This idea has been applied to a variety of

objects: clustering numerical data is a classical topic [DHS12], and kernel methods have

extended early approaches to more complex objects, such as strings of text, and images

[SC04]. Less attention has however been given to clustering models of dynamical systems,

such as LTI models.

In the setting of biomedical signal processing, it is common to work with dictionaries

of patient-specific LTI models. These models typically share the same structure—such as

model representation and signal channels—but have unique parameterizations. Clustering

these patient-specific models by their dynamics therefore has the potential to group patients,

past or present, by a new metric that may reveal unique information on diagnosis or progress.

NICP estimation provides a key motivation for such a method. Chapter 4 demonstrated

that patient-specific models can accurately predict patient ICP using only noninvasive sig-

nals, but it is not possible to fit these models without prior ICP information. In contrast,
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models fit across the entire population performed poorly due to large inter-patient variabil-

ity. Interestingly, it has been noted from clinical anecdote that patients’ ICP dynamics may

be classified into relatively few patterns [CP04]. This observation suggests that it may be

possible to cluster such patients using their available LTI dynamics so that more patient-

targeted ICP models can be constructed, improving ICP estimation without the need for

any invasive measurements.

There are many other biomedical examples of patient-specific LTI models, typically

autoregressive-moving-average (ARMA) models, where such a clustering method could be

applied to patient dictionaries. Examples of applications to existing models include MRI

time series data [FHP95], electrocardiogram (ECG) analysis [Ste02], blood glucose measure-

ment [LGB10] and hyperglycemia detection [DNZ13], and respiratory monitoring [LC11].

This approach is also relevant to numerous applications beyond physiology. In finance,

ARMA models of a publicly-traded company’s financial signals can be clustered to find

stocks with similar dynamics [LL95]. In economics, models can be constructed around a

country’s microeconomic signals, to determine how similar two countries’ response would be

to unprecedented economic events [KT02]. In biology, a wide array of time series models

can be used—from gait [LBP09] to population growth [FSP98]—to compare the dynamics

of species or colonies.

This chapter introduces a method to cluster LTI models by the similarity of their dy-

namics. The method is based on an extension of the sparse subspace clustering proposed

method by Elhamifar & Vidal [EV09], and clusters models by their observability matrices.

The approach is validated and tested on models of ICP dynamics, and shown in a short

example to add value to an NICP estimator. Finally, several variations of the method are

proposed and tested.
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5.2 Background

5.2.1 Data model

This chapter considers a dictionary of L LTI models Σ1, . . . ,ΣL. Each models takes the form

Σi :

 x(k + 1) = Aix(k) +Kie(k)

y(k) = Cix(k),
. (5.1)

where y(k) ∈ Rp contains the p observed signals, x(k) ∈ Rn is the unobserved state vector,

and e(k) ∼ N (0, 1) is a noise perturbation. All models are assumed to have a uniform order

n. The matrices (Ai, Ki, Ci) define the system parameters. The extended observability matrix

of Σi is

Oi =



Ci

CiAi

CiA
2
i

...

CiA
q−1
i


∈ Rpq×n. (5.2)

This matrix has a useful interpretation: consider that in the noise-free case (e(k) = 0), with

an initial state x(0), the system trajectory is given by
y(0)

y(1)
...

y(q − 1)

 =


Ci

CiAi
...

CiA
q−1
i

x(0) = Oix(0). (5.3)

So, the column space of Or is the subspace that possible trajectories lie in.

5.2.2 Metrics to compare dynamical systems

One of the challenges to clustering LTI models is that there is no widely-accepted metric for

the ‘distance’ between two models. This section will review the established options. A small

number have been proposed; an overview of them is given in [KB14]. Two interesting choices

are the Martin distance [Mar00, DD02], and Cauchy–Binet kernels [VSV07]. Both of these
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methods operate on ARMA models, and measure generalized notions of output trajectories

to quantify model similarity.

Martin distance. In its original interpretation, the Martin distance [Mar00] compares

the cepstra of two models. Martin notes that the metric has several consistent properties

that suggest that it is a ‘natural’ metric for comparing these systems. One interpretation

is that the method computes a filter to ‘whiten’ the spectrum of the first model, and then

applies this filter to the second model. If the models are similar, the second model’s spectrum

should also be nearly whitened. The Martin distance measures this deviation from a white

spectrum.

De Kock & De Moor [DD00, DD02] demonstrated that this metric has another important

interpretation that is related to the principal angles between subspaces. Given two systems

Σi and Σj with extended observability matrices Oi and Oj respectively, the subspaces of

which forming the principal angles θ1, . . . , θp, then the Martin distance can be expressed as

dM(Σ1,Σ2) =

√√√√ln

p∏
i=1

1

cos2 θi
. (5.4)

This interpretation is interesting because it demonstrates that the column spaces of the

observability matrices of two systems can be used as a principled metric for their comparison.

As noted above, these matrices represent generalized trajectories. Hence, the Martin distance

can also be thought of as measuring the difference in trajectories between systems subjected

to arbitrary initial conditions.

Cauchy–Binet kernels. Another related metric of system similarity is the family of

Cauchy–Binet kernels [VSV07]. These kernels model the inner product of two ARMA sys-

tems as the inner product of their trajectories. There are several variations; one example

is the trace kernel, which compares (Σi,Σj) as a converging weighted inner product of their

outputs yi(k) and yj(k) over an infinite horizon:

dBC(Σ1,Σ2) = Ee(k)

[
∞∑
k=0

e−λkyi(k)>Wyj(k)

]
, (5.5)
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where W > 0 is a user-defined weight matrix. These kernels share a similar motivation to

the Martin distance and have some interesting theoretical properties, but they are less easily

applied to datasets in practice.

5.2.3 Background on system clustering and classification

A framework for clustering and classifying ARMA models has been developed by Ravichan-

dran et al. [RCV09, RCV13] for the problem of dynamic texture recognition. In this problem,

videos of textures, such as smoke, water, or fire, are modeled by ARMA processes. The au-

thors integrate the Martin distance with a sampling-based mapping function to construct

features that lie in a Euclidean space. These features could then be clustered using classical

centroid-based techniques, such as k-means clustering [Har75, HW79].

5.2.4 Outline of new approach

This chapter will introduce a new framework for clustering LTI models. As with the Martin

distance, this new metric will compare observability matrices of systems—specifically, the

column spaces of these matrices. The clustering step of this framework is a novel extension

to a previously reported method for clustering vector subspaces.

Additionally, a new metric is derived from this approach which will be called the subspace

reconstruction distance between two matrices. This metric will be compared to the Martin

distance and used in a baseline clustering method against which to compare results.

5.3 Method development

5.3.1 Review: Clustering vectors by subspace

Elhamifar & Vidal [EV09, EV13] proposed a method to cluster vector-valued elements that

lie in a union of low-dimensional subspaces. The method is called sparse subspace clustering

(SSC). Multiple extensions have been proposed in literature [CMS14, SEC14, SC12].
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The SSC approach exploits the self-expressiveness property of data, which states that el-

ements that lie in the same subspace can be expressed as linear combinations of one another.

The method uses this principle to find a sparse and unique representation of each element

as a linear combination of other elements, revealing which elements share subspaces. Be-

cause finding the most-sparse reconstruction, equivalent to `0-norm minimization, is a hard

problem, the method uses an `1-norm convex relaxation.

Given L vector-valued data objects y(i) ∈ Rn, for i = 1, . . . , L, SSC seeks to assign each

of the L objects into k < L clusters. To do this, first the data is arranged in the matrix form

Y =
[
y(1) · · · y(L)

]
∈ Rn×L. (5.6)

For each y(i), a weight vector gi ∈ RL is introduced such that

y(i) = Y gi, (5.7)

which specifies that y(i) is a linear combination of the set of vectors y(1), . . . , y(L). Addi-

tionally, y(i) should not be used to reconstruct itself, so gii = 0. The following optimization

problem then seeks a sparse representation of gi given these constraints:

minimize ‖gi‖1

subject to y(i) = Y gi

gii = 0.

(5.8)

When repeatedly solved for i = 1, . . . , L, the problem can be written in matrix form:

minimize ‖G‖11

subject to Y = Y G

diag(G) = 0,

(5.9)

where ‖ · ‖11 is the sum of the absolute values of every matrix entry, and

G =


g11 · · · gL1
...

. . .
...

g1L · · · gLL

 ∈ RL×L. (5.10)
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The authors provide details on how to solve these optimization problems using the ADMM

algorithm [EV13].

When data is corrupted by noise or artifacts, it is unlikely to fall exactly in a small set

of subspaces. In this case, the reconstruction equation Y = Y G can be approximated. A

general form for this is

minimize ‖G‖11 + γ‖E‖11 +
λ

2
‖Z‖2F

subject to Y = Y G+ E + Z

diag(G) = 0,

(5.11)

where E and Z are residual or correction variables to solve, and (γ, λ) > 0 are constants.

This combination of penalties using the `11-norm and Frobenius norm is similar to elastic

net regularization [ZH05]. When the data is only corrupted by noise, (5.11) can be simplified

to the convenient form

minimize ‖G‖11 +
λ

2
‖Y − Y G‖2F

subject to diag(G) = 0.

(5.12)

The value of λ can be loosely interpreted as a tolerance for correcting the data from noise

corruption; lower values will allow greater deviations from Y = Y G in order to promote

sparsity in G.

The remaining steps of the SSC method are reasonably simple. First, a symmetric weight

matrix V = |G|+ |G|> ∈ SL×L is constructed to remove the directionality of the weights in

G. This choice of V can be interpreted as a sparse proximity graph between the elements

y(1), . . . , y(L). Then, a spectral clustering method is applied to V to identify k distinct

clusters in the data. These methods often require a user-defined choice of k.

Spectral clustering algorithms are used to cluster nodes that are connected over a graph.

In the SSC method, each data element y(i) is a node on a graph, and the weight vij > 0 is

the edge weight between nodes y(i) and y(j). Spectral clustering algorithms attempt to find

a partition of this graph that will cut lesser-weighted edges while preserving greater-weighted

edges [Von07]. The final number of clusters k is defined by the user.
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The general spectral clustering procedure is concisely summarized by Von Luxburg in

[Von07]. Two common variations of the method are Shi & Malik clustering [SM00], and Ng,

Jordan and Weiss clustering [NJW02]. The methods differ essentially by unique choices of

the Laplacian matrix of the graph. This dissertation will use Shi & Malik clustering.

5.3.2 Clustering matrices by column space

The first contribution of this chapter is to extend the SSC method to the matrix case. The

method is called sparse column space clustering. In this scenario, the L data elements are

matrices Y (i) ∈ Rm×n whose column spaces lie in the union of p subspaces. The aim of this

method is to again assign each of the L objects into k < L clusters. This extension will be

achieved by using a group sparsity approach.

First, the data matrix is redefined as

Ŷ =
[
Y (1) · · · Y (L)

]
∈ Rm×nL, (5.13)

and the weight matrix as

G =


G11 · · · GL1

...
. . .

...

G1L · · · GLL

 ∈ RnL×nL. (5.14)

Here, each Gij ∈ Rn×n is a submatrix defining the weights to reconstruct Y (i) as a linear

combination of each Y (j). At a per column level, each element [Gij]k` is the weight to

reconstruct the column [Y (i)]k as a linear combination of each column [Y (j)]`. The first step

of the SSC problem can then be rewritten with a group sparsity approach as

minimize
L∑
i=1

L∑
j=1

‖Gij‖F

subject to Ŷ = Ŷ G

Gii = 0, i = 1, . . . , L.

(5.15)

As in (5.12), data that is corrupted by noise may not lie exactly in a union of subspaces. In
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these cases, the reconstruction equation Ŷ = Ŷ G is approximated, giving

minimize
L∑
i=1

L∑
j=1

‖Gij‖F +
λ

2
‖Ŷ − Ŷ G‖2F

subject to Gii = 0, i = 1, . . . , L,

(5.16)

for λ > 0.

The sums of Frobenius norms ‖ · ‖F in (5.16) are the matrix equivalent of the `1/`2-norm

used on vector data to promote group sparsity. This penalty promotes a sparsity pattern

between each matrix Gij, but not within the individual entries of Gij itself. Other choices

of norm penalty are possible; the effect of this choice is investigated in Section 5.5.2. An

algorithm to solve problems of the form of (5.16) will be outlined in Section 5.3.4.

In this scenario, the symmetric matrix |G|+ |G|> provides the bidirectional edge weights

between every pair of columns in the data. To compute edge weights between pairs of

matrices (Y (i), Y (j)) in the data, V ∈ RL×L is found by collapsing the group sparsity

structure:

Vij = ‖Gij‖2F + ‖Gji‖2F . (5.17)

In the final step, spectral clustering can be applied to this V , as in the original SSC

method.

5.3.3 LTI model clustering method

Finally, to cluster LTI models by their dynamics, the sparse column space clustering method

is applied to the observability matrices of the models. Hence, models are clustered by the

column space of their observability mappings, as in [RCV13].

Consider the systems Σ1, . . . ,ΣL that are of the same order n. Given their observability

matrices O1, . . . ,OL, define

O =
[
O1 · · · OL

]
∈ Rpq×nL, (5.18)

and apply the sparse column space clustering method (5.16) to the data. The problem then
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becomes

minimize
L∑
i=1

L∑
j=1

‖Gij‖F +
λ

2
‖O −OG‖2F

subject to Gii = 0, i = 1, . . . , L.

(5.19)

The resulting steps to compute the model clusters are then summarized in Algorithm 1.

Algorithm 1 LTI model clustering

1: Given the models Σ1, . . . ,ΣL, compute the observability matrices O1, . . . ,OL and the

stacked observability matrix (5.18).

2: Select the constant λ > 0 and solve (5.19) to obtain G.

3: Compute the per-model weight matrix Vij = ‖Gij‖2F + ‖Gji‖2F .

4: Apply spectral clustering to V to retrieve the assignment of the models to k clusters.

5.3.4 Algorithm

The most expensive step of this new approach to system clustering is solving the convex

optimization problem (5.19). The solution to this problem must be found using iterative

convex optimization algorithms. Fortunately, (5.19) has special that can be exploited: it

is separable (that is, it can be solved as multiple smaller problems in parallel), and it has

a structure that can be solved efficiently using proximal algorithms. These algorithms are

reviewed in Chapter 7. The algorithmic details to compute the solution to (5.19) are then

given in Section 7.5.

5.4 Simulations

5.4.1 Clustering validation

The method is validated by testing it on a dataset with a known ground truth. Specifically,

it is applied to a dictionary that contains multiple models per patient. The aim of the

experiment is to determine whether the method clusters these same-patient models together.

The dictionary was constructed by randomly selecting 10 patients and dividing their time
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series data into 10 episodes each, 36 heartbeats in length. This produced L = 100 episodes.

For each episode, an LTI model of the form (5.1) was fit with the output signals

y(k) =


ABP(k)

CBFV(k)

ICP(k)

 ∈ R3, (5.20)

and order n = 3 using the N4SID method [Lju07].

The 100 models were clustered into k = 10 groups. The method was found to be largely

robust to choice of λ, so long as extreme values (i.e., extremely sparse matrices V ) were

avoided. Simulations used λ = 1, which produced a sparsity in V of 78%. The edge weights

in V and the resulting cluster assignments are shown in Fig. 5.1. 92% of the models were

correctly clustered. An example of how V represents edge weights in a graph, for a similar

case with L = 60 models from 6 patients, is given in Fig. 5.2.

5.4.2 NICP estimation

The second experiment is a simple demonstration of how patient clustering adds value to

NICP estimation. In the simulation, two NICP estimators are compared. The first is con-

structed from population-wide data. For the second, patients are first clustered, and cluster-

specific estimators are constructed.

Both estimators predict a patient’s mean ICP as an affine function of their mean CBFV,

and were fit using robust linear regression (minimizing `1-norm error). The baseline estimator

was trained and tested on two independent sets randomly drawn from the complete L = 75

patient dictionary. For the clustered estimator, patients were clustered a priori, and then

estimators were constructed for each cluster. First, a patient-specific LTI model was fit to

each of the patients using only the noninvasively-measured signals

y(k) =

 ABP(k)

CBFV(k)

 ∈ R2, (5.21)

and order n = 3. Then, system clustering was applied to the models to retrieve k = 3

clusters. Finally, estimators of the same form were trained and tested on independent sets
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Figure 5.1: Edge weights between each model and corresponding cluster assignments. Models

1, . . . , 10 correspond to Patient 1, 11, . . . , 20 to Patient 2, etc.. 92% of the models were

correctly clustered.
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x

Figure 5.2: Adjacency of episodes in V via the Fruchterman–Reingold force–directed algo-

rithm [FR91]. Nodes are colored by patient ID. The incorrectly-clustered nodes are marked

by red crosses. Some lower-weight edges are omitted for clarity. This diagram was con-

structed using the NetworkX package [HSS08].
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Table 5.1: NICP estimation error from two linear predictors. The first is trained and tested

on independent patients in the population. The second is trained and tested on independent

patients in each of k = 3 clusters. The latter improved performance.

Estimator Median [IQR] error (mmHg)

Baseline 5.69 [1.47–8.30]

Clustered 3.21 [1.92–6.51]

within in cluster.

Testing error is summarized in Table 5.1. The median [IQR] error of the baseline predictor

was 5.69 [1.47–8.30] mmHg, and of the clustered predictors, this was reduced to 3.21 [1.92–

6.51]. The basis for this improvement can be seen in Fig. 5.3: there is minimal correlation

between mean CBFV and mean ICP across the population, but there is moderate correlation

within each cluster.

5.5 Extensions

5.5.1 Effect of λ

As noted in Section 5.4.1, the clustering method is robust to changes in the tradeoff constant

λ. There is a reasonable explanation for this behavior. In (5.19), λ controls the tolerance

for modifying the data in order to retrieve a group-sparse graph G. When λ is very large,

the ‖O − OG‖2F penalty closely resembles the O = OG constraint, and V will recover the

‘true’ clusters of models lying in the same subspace. As λ decreases, more emphasis is

placed on finding a group-sparse encoding for G by allowing more deviation from the data in

‖O−OG‖2F . So, λ plays an important role in regulating the sparsity in G and, by extension,

V . This relationship is demonstrated in Fig. 5.4.

However, the actual number of cluster assignments is determined by the user-defined k.

So, if V contains less than k subspaces, additional cuts to the graph will be made during

the spectral clustering step until there are k disconnected graphs remaining. Because of
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Figure 5.3: The relationship between mean CBFV and mean ICP is in general poorly corre-

lated. However, the intra-cluster correlations reveal moderately improved correlations. This

result suggests that applying system clustering as a preprocessing step to NICP estimation

can improve outcomes.
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Figure 5.4: Effect of λ on the sparsity pattern of V for L = 60 models drawn from 6 patients.
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this process, the choice of k typically dominates the choice of λ. However, if λ is extremely

small, the graph may be too sparse to find a reasonable reconstruction, producing undesired

results.

It is worth noting that the graph V is useful for understanding the relationship between

the clustered patient models. The weights may also be used directly to describe similarities

between patients without assigning Boolean cluster memberships. In these cases, the choice

of λ plays a more important role in the problem.

5.5.2 Choice of group sparsity penalty

In problem (5.19), the sum-of-Frobenius-norms penalty

L∑
i=1

L∑
j=1

‖Gij‖F (5.22)

is the Schatten (matrix) norm analogue of the `1/`2-norm that is used to promote group

sparsity in vectors. Although this is a reasonable default choice, there are other interesting

choices of composite norms to induce different properties into this group sparsity in G.

Possible alternatives include the sum-of-spectral-norms

L∑
i=1

L∑
j=1

‖Gij‖2, (5.23)

and the sum-of-trace-norms
L∑
i=1

L∑
j=1

‖Gij‖∗. (5.24)

It is not obvious which norm is the best choice; however, some differences can be antic-

ipated. For example, the sum-of-trace-norms will produce low-rank blocks Gij, which may

be advantageous for certain circumstances—for example, when solving the sparse column

space clustering method (5.16) for low-rank data that has been corrupted by noise. Another

difference is that the sum-of-spectral-norms does not have a closed-form proximal operator,

and so is a more computationally expensive choice.

For the application of ICP dynamics, comparisons between the choice of norm are made

by comparing clustering accuracy. The simulations in Section 5.4.1 of L = 100 models are
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Figure 5.5: The accuracy of system clustering for three different choices of group sparsity

norm penalty, and models of order n = 1, . . . , 6. The L = 100 models were constructed

from 10 different patients for this experiment. While the trace norm underperforms its

alternatives, there is otherwise no strong trends in the choices. Low-order models appear to

work acceptably, and require substantially less computation than higher-order models.

repeated for the above norm choices (5.22)–(5.24), and for models of order n = 1, . . . , 6.

Results are shown in Fig. 5.5. There is no clear distinction between the three choices,

suggesting that the default option, the sum-of-Frobenius-norms, is a reasonable choice for

the case of ICP dynamics.
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5.5.3 Data matrix methods

Section 3.2 demonstrated that a row permutation of the block Hankel matrix

W i
r,N =


wi(0) wi(1) · · · wi(r − 1)

wi(1) wi(2) · · · wi(r)
...

...
. . .

...

wi(N − r) wi(N − r + 1) · · · wi(N − 1)

 ∈ R(N−r+1)d×r (5.25)

could be used to estimate the column space of Oi of an LTI system, where wi(k) ∈ Rd is the

concatenation of observed signals from Σi, sampled at k = 0, . . . , N − 1. So, it is natural to

suggest that W i
r,N could replace Oi in (5.19) to cluster these systems:

minimize
L∑
i=1

L∑
j=1

‖Gij‖F +
λ

2
‖W −WG‖2F

subject to Gii = 0, i = 1, . . . , L,

(5.26)

where

W =
[
W 1
r,N · · · WL

r,N

]
. (5.27)

This formulation is impractical for many situations. Typically, the number of elements

in W i
r,N is substantially larger than the number of data measurements N , which is itself

large. In contrast, for a low-order system, Oi can be just a small number of elements. The

increase in computational burden of clustering W i
r,N in place of Oi makes it an impractical

alternative.

Simulations were conducted by reducing the size of the problem. Data was limited to

N = 500 samples (12.5 s of time series data at 40 Hz), and the number of columns in each

W i
r,N was set to r = 3 to significantly reduce the size of the optimization variable G ∈ RrL×rL.

The method was able to cluster L = 100 models into their correct 10 patient labels with 85%

accuracy, underperforming the observability matrix approach (5.19), and being 33× slower

to compute this small problem. Additional simulations that instead used the sum-of-trace-

norms and sum-of-spectral-norms for group sparsity each achieved 81% accuracy. So, this

variation is not in itself competitive with the original method (5.19) that was proposed.
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The use of W i
r,N is interesting to consider for potential future use because of a special

property: it is a linear function of the measurement data wi(k). So, clustering systems by

the column space of this alternative matrix suggests a possible extension in which wi(k) is

a variable in an optimization problem similar to (5.26). One example of how this could be

useful is if the ICP signal of a new patient is treated as missing data. In such a problem,

the patient would be clustered and have their ICP estimated simultaneously by constraining

known elements of wi(k) to be equal to their measurement, and including a regularization

term such as ‖W i
r,N‖∗ to enforce low-order dynamics.

However, there are major limitations to implementing such a method. Such an approach

would result in a nonconvex optimization problem, even further exacerbating the computa-

tional issues of (5.26). Due to these substantial challenges and limited benefit, a tractable

solution to this idea is outside of the scope of this dissertation.

5.6 Comparison to distance matrix–based methods

This section will compare the performance of the new method (5.19) to a baseline approach.

Because there is no current method for general-purpose time series data, a simple clustering

method based is proposed for comparison. In this approach, pairwise distances between

models are used to construct distance matrices, which can be clustered using existing tools.

Two distance metrics will be considered. The first is the Martin distance, which was

first given in (5.4). For two systems (Σi,Σj) forming principal angles θ1, . . . , θp, the Martin

distance is

dM(Σi,Σj) =

√√√√ln

p∏
i=1

1

cos2 θi
. (5.28)

The metric second is novel, and is inspired by (5.19):

dR(Σi,Σj) = min
G

{
1

2
‖Oi −OjG‖2F

}
+ min

G

{
1

2
‖Oj −OiG‖2F

}
. (5.29)

This metric will be called the subspace reconstruction distance, and measures the residual

between an attempted reconstruction of (Oi,Oj) to the same subspace. It is a least squares
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problem with the closed form solution

dR(Σi,Σj) =
1

2
‖(1− P(Oj))Oi‖2F +

1

2
‖(1− P(Oi))Oj‖2F

=
1

2
‖Oi −Oj

(
O>j Oj

)−1O>j Oi‖2F +
1

2
‖Oj −Oi

(
O>i Oi

)−1O>i Oj‖2F . (5.30)

Distance matrices can be used to cluster objects whose pairwise distances can be mea-

sured, even if they do not have absolute coordinates. One popular example is to use hier-

archical clustering methods [Joh67]. In the context of clustering LTI systems, two distance

matrices DM ∈ SL×L and DR ∈ SL×L are proposed, each defined by having the elements

[DM ]ij = dM(Σi,Σj),

[DR]ij = dR(Σi,Σj).
(5.31)

In a simulation, DM and DR were constructed for the L = 100 models taken from episodes

from 10 patients. Clusters were constructed (k = 10) using MATLAB’s agglomerative hi-

erarchical clustering toolbox [Jon97]. Results of the simulation are shown in Fig. 5.6. The

approach was unable to recover the underlying per-patient clusters for neither choice of dis-

tance matrix. This result provides additional evidence towards the usefulness of the new

subspace-based system clustering method.

5.7 Discussion

This chapter presented a new method for clustering LTI systems by the similarity of their

dynamics. It operates by comparing the column space of the systems’ observability matrices,

and can be computed by solving a separable convex optimization problem. Simulations

validated the method and demonstrated its value.

As a standalone method, potential future work would be driven by new applications.

Such cases may facilitate or necessitate new extensions to the clustering approach that do

not arise in the NICP estimation problem. One example is the concept of imputing missing

values during clustering, which is infeasible for the purposes of this dissertation.

In the next chapter, this new framework will be applied to the NICP problem. New
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Figure 5.6: Distance matrices DM and DR, and the corresponding clusters that were assigned

via agglomerative hierarchical clustering. Neither of the cluster assignments is able to recover

the underlying per-patient clusters, severely underperforming the method of (5.19) based on

sparse column space clustering.
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patients will be clustered with with a dictionary using noninvasive data to find a subset of

the population with similar dynamics to base NICP estimates on.
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CHAPTER 6

Dictionary-based signal estimation

with application to NICP estimation

6.1 Introduction

This chapter presents a new method for blind signal estimation called dictionary-based signal

estimation (DBSE). The problem it solves was first stated in Section 1.1; it is repeated here

for convenience:

A patient’s ICP is an unknown, time-varying signal. The aim of the task is

to estimate this signal. All that is measured of a patient are two ‘noninvasive’

time-varying signals: their cerebal blood flow velocity (CBFV), and their arterial

blood pressure (ABP). It is assumed that the relationship between ABP, CBFV,

and ICP can be accurately modeled by a low-order (that is, low-complexity)

linear dynamical system, in which ABP and CBFV are the inputs, and ICP is

the output. However, this system is unknown. Because only the system inputs

are measured, and the system and its output are both unknown, this is a blind

signal estimation problem that requires additional information or assumptions

to solve.

Also available is a dictionary of past patient information. These patients had

their ICP measured by invasive means, and so a complete picture is available:

their input data, output (ICP) data, and system model are all known. So, the

NICP problem is to combine (a) the incomplete information on a patient and (b)

the complete information of other patients.

73



This chapter will first review other model-based NICP estimation schemes in literature.

Then, the DBSE method will be presented. Finally, the method is simulated on ICP data.

6.1.1 Background on current methods

Mapping functions between models. A family of methods by Schmidt et al. were first

proposed in [SKS97] and further developed in [SCS00, SCR03, SWS16]. This approach con-

siders two single-input-single-output models. The first has the configuration ABP→CBFV

(this is the same configuration as the CBFV model used in this dissertation), and the second

model has the configuration ABP→ICP. Both models are implemented as moving average

(MA) processes, that is, the output is simply a linear combination of a finite number of past

inputs.

A central component of the authors’ approach is that they compute a mapping function

from training data that maps the coefficients of a patient’s ABP→CBFV model to those

of their ABP→ICP model. Because the ABP→CBFV model can be fit to noninvasively-

measured patient data, this mapping function can be used to estimate a patient-specific ICP

model. The authors reported a mean absolute error of these resulting models to be 4.1 ±

2.2 mmHg [SCS00].

Circuit analogy. Another set of methods was developed by Kashif et al. [KHV08, KVN12],

which are based on the ICP modeling work of Ursino & Lodi [UL97, Urs88a, Urs88b]. These

models describe the physiology of ICP dynamics using an electrical circuit analogy. Circuit

parameters are fit and ICP, modeled as a voltage, is estimated from ABP and CBFV data

in a single step. This approach is distinct from other NICP estimators in that it explicitly

models physiological processes, rather than using a black box LTI model determined purely

by the input–output data. The method has reported a mean (bias) error of 1.5 ± 5.9 mmHg.1

1Note that this quantity is distinct from mean absolute error.
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Machine learning approaches. A final family of interesting methods has been developed

by Hu et al. using a variety of machine learning approaches. These approaches include

using nonlinear regression to describe the dependency of ABP and CBFV as predictors

[HNG06]; kernel spectral regression and support vector machines [XKB10]; autonomously

extracting important morphological features from waveforms [HXS09]; and supervised and

semi-supervised techniques for binary classification of intracranial hypertension [KHP13].

Additionally, a data mining approach has been presented that creates a mapping function

to provide a means to select ‘similar’ patient models from a dictionary [HNB06, HXW10].

These methods have resulted in mean absolute ICP errors of around 6.0 ± 5.5 mmHg, and

intracranial hypertension predictions with 92% accuracy.

6.2 Dictionary-based signal estimation

6.2.1 The DBSE framework

Consider an input signal ûmeas(k) ∈ Rm with measurements at k = 0, 1 . . . , N−1. This input

is applied to an unknown low-order LTI system Σ̂ to produce an unobserved (scalar-valued)

output signal ŷ(k) ∈ R. Available is a dictionary of L systems Σ1,. . . ,ΣL that are similar to

Σ̂, each with the same number of inputs and a single output. The systems need not be of the

same order. The task is to estimate the missing output ŷ(k). An overview of this problem

setup is shown in Fig. 6.1.

The dictionary-based signal estimation (DBSE) method to solve this task is posed as

a convex optimization problem that minimizes the tradeoff of two terms. The first term

penalizes outputs ŷ(k) that produce high-order systems. The second term penalizes outputs

that deviate from the behavior of the dictionary systems Σ1, . . . ,ΣL.

The basis for the first term is the assumption that a low-order LTI system can accurately

model the relationship between ûmeas(k) and ŷ(k). Because ûmeas(k) is known, the estimate

for ŷ(k) is restricted to the set of signals that could be produced by low-order dynamics.

Specifically, it is expected that ‖F (ûmeas, ŷ)‖∗ is small, where again F (·, ·) is the stacked
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Figure 6.1: An overview of the dictionary-based signal estimation problem setup. Input

signals ûmeas(k) ∈ Rm are measured, but the system Σ̂ and the output ŷ(k) ∈ R are not. A

dictionary of L similar systems Σ1, . . . ,ΣL with complete information is available. Estimates

of these systems’ outputs can be generated by subjecting them to the known input ûmeas(k);

these simulated outputs are each denoted yi,sim(k).
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block Hankel matrix of the form

F (û, ŷ) =

 Ûr,N

Ŷr,N

 , (6.1)

that satisfies the persistency of excitation condition in (3.8).

The second term minimized in the optimization problem is based on the assumption that

the system Σ̂ exhibits similar dynamics to those in the dictionary, Σ1, . . . ,ΣL. So, if these

dictionary systems are subjected to the same input ûmeas(k), then their outputs should be

similar to ŷ(k). This idea can be realized in two steps. First, the input measurement ûmeas(k)

is applied to each system Σi to produce some simulated output yi,sim(k). Then, the target

signal ŷ(k) is penalized by its deviation from each yi,sim(k).

If each system Σi has a state space representation with matrices (Ai, Bi, Ci, Di), then its

dictionary simulation yi,sim(k) can be evaluated by

yi,sim(k) = CiA
k
i x(0) +

[
k−1∑
j=0

CiA
k−1−j
i Biûmeas(j)

]
+Diûmeas(k). (6.2)

In the case of zero initial conditions, that is, x(0) = 0, then yi,sim(k) can be solved a priori

from the known data as

yi,sim(k) =

[
k−1∑
j=0

CiA
k−1−j
i Biûmeas(j)

]
+Diûmeas(k), (6.3)

and then treated as constant in the steps that follow. (See Section 6.2.3 for a discussion on

how to handle initial conditions otherwise). For compactness, the following vector notation

will be used:

ŷ =


ŷ(0)

...

ŷ(N − 1)

 ∈ RN , yi,sim =


yi,sim(0)

...

yi,sim(N − 1)

 ∈ RN . (6.4)

There are numerous convex penalties h(ŷ − yi,sim) that can be applied to the output

deviations, for example the `2-norm, the `1-norm, and the Huber loss [Hub64]. Furthermore,

there are multiple ways to collect the error terms for each of the L systems. One simple
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choice is the weighted-sum-of-penalties

L∑
i=1

γ2i h(ŷ − yi,sim),

with weights γi > 0 and
∑L

i=1 γi = 1. Another choice is the maximum penalty:

max
i=1,...,L

(h(ŷ − yi,sim)) .

Combining these two terms to form an optimization problem, using the weighted-sums-

of-penalties example, the DBSE method is

minimize ‖F (ûmeas, ŷ)‖∗ +
ζ

2

L∑
i=1

γ2i h(ŷ − yi,sim), (6.5)

where ζ > 0 is a tradeoff constant. One interesting example arises when h(x) = ‖x‖22, that

is,

minimize ‖F (ûmeas, ŷ)‖∗ +
ζ

2

L∑
i=1

γ2i ‖ŷ − yi,sim‖22. (6.6)

This problem is equivalent to the more compact expression

minimize ‖F (ûmeas, ŷ)‖∗ +
ζ

2
‖ŷ − ysim‖22, (6.7)

in which ysim is the weighted average of the dictionary simulations,

ysim =
L∑
i=1

γi yi,sim, (6.8)

with
∑L

i=1 γi = 1. This simplified formulation will be used in the sections that follow.

When ζ is large, the problem (6.7) tends towards choosing ŷ = ysim, the weighted average

of the dictionary simulations. As ζ is reduced, the problem produces solutions ŷ that tend

towards a lower-order relationship with the input data. In this sense, ‖F (ûmeas, ŷ))‖∗ acts

as an approximate low-order regularization term to Σ̂. A summary of this basic version of

the DBSE method is given in Algorithm 2.
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Algorithm 2 Dictionary-based signal estimation, basic case

1: Compute ysim by subjecting the dictionary systems to ûmeas(k) via (6.3) and the deter-

mining a weighted-average using (6.8).

2: Solve the optimization problem (6.7) to recover an estimate for ŷ.

6.2.2 Choosing simulation weights

DBSE methods such as (6.7) require the user to choose weights γi that regulate the influence

of each system Σi on the simulated output ysim. This choice of weights is important, and

a simple uniform weight strategy (i.e. γi = 1/L for i = 1, . . . , L) is unlikely to be the best

choice for practical applications. A better approach is to determine, a priori, which dictionary

systems have most similar dynamical properties to Σ̂, and weight them accordingly. This

approach typically requires additional assumptions on the available data.

Target systems and related systems. Consider a low-order LTI system Σi, which is

called the target system. The output of the target system is y(k) ∈ R. If y(k) is omitted

from the dataset, and the remaining signals can still be accurately modeled by a low-order

LTI system, then this new system is labeled Γi and is called the related system.2

This scenario arises in NICP estimation. Here, the CBFV model is the related system Γ,

with the input–output structure

u(k) = ABP(k), y(k) = CBFV(k), (6.9)

and the ICP model is the target system Σ, with structure

u(k) =

 ABP(k)

CBFV(k)

 , y(k) = ICP(k). (6.10)

The accuracy of these relationships as low-order LTI models was verified in Section 4.2.

This property is important for choosing the simulation weights γ. Although the target

system Σ̂ is unknown, and so cannot be compared to Σ1, . . . ,ΣL, the related system Γ̂ can be

2These names are inspired by the target time series and related time series used in [HNB06, KSB12].
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fit to the available data, and compared to Γ1, . . . ,ΓL. One idea for comparing these related

systems is to use the system clustering methods introduced in Chapter 5.

System clustering. As suggested, system clustering can be applied to the related systems

(Γ̂,Γ1, . . . ,ΓL). To do this, these systems are first fit to the available time series data using a

routine system identification tool (e.g. N4SID [VD94]). Next, the system clustering method

described in Algorithm 1 is applied to the L+ 1 systems (Γ̂,Γ1, . . . ,ΓL). This step requires

the user to choose the number of clusters k. This process produces a subset of the dictionary

systems Γi that are assigned to the same cluster as Γ̂, and are expected to exhibit the

most-similar dynamical behavior.

A simple way to use this dictionary subset for weight selection is to uniformly include

only those dictionary systems that are within the same cluster as Γ̂. For example, if L̂

elements reside in the same cluster as Γ̂, then

γi =

 1/L̂, Γi clustered with Γ̂

0, else
. (6.11)

Another alternative to this scheme is to weight each γi by the edge weight between (Γ̂,Γi),

which given in the matrix V in (5.17), and then normalizing these weights such that
∑L

i=1 γi =

1.

Other approaches. Numerous other schemes for weighting the dictionary simulations

are possible, particularly by comparing each pairing of the related systems (Γ̂,Γi). Ideas

include weighting by the Martin distance between the systems [DD02], or developing an

error mapping function between systems to measure their expected simulation error, as in

[KSB12].

6.2.3 Extensions

Initial conditions. The method (6.7) assumes that each simulation yi,sim(k) has zero ini-

tial conditions, that is, x(0) = 0. This is unrealistic for most cases, and can result in a
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Figure 6.2: Simulation of an ICP signal, assuming zero initial conditions. The transient

region t ∈ (0, 3) s is identified and excluded when solving (6.7).

transient response period before the system settles to a steady state response [FPE94]. Per-

haps the simplest way to overcome this issue is to simulate yi,sim(k) without initial conditions,

identify the transient response region of this simulation, and then exclude this section of data

when solving the optimization problem (6.7). For an example, see Fig. 6.2. This is a prac-

tical solution because it preserves the ability to treat ysim as a constant in the optimization

problem. Simulations in this chapter will take this approach.

A more sophisticated approach is to fit, for each simulation yi,meas(k), an optimal choice

of x(0). For example, consider the problem

minimize ‖F (ûmeas, ŷ)‖∗ +
ζ

2

L∑
i=1

γi‖ŷ − y′i,sim‖22. (6.12)

where y′i,sim(k) is the variable

y′i,sim(k) = CiA
k
i x(0) +

[
k−1∑
j=0

CiA
k−1−j
i Biûmeas(j)

]
+Diûmeas(k)

= CiA
k
i x(0) + yi,sim(k).

(6.13)

That is, y′i,sim(k) is the sum of a transient term CiA
k
i x(0), in which x(0) is a variable,

and the original term yi,meas(k), which can be computed a priori via (6.3) and treated as a

constant. So, solving (6.12) then additionally fits an optimal x(0) for each of the L dictionary
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simulations that further minimizes the difference between ŷ(k) and yi,sim(k), in the `2-norm

sense.

Corrupted inputs. If the input data umeas(k) is corrupted, it may not be desirable to

solve (6.7) with exact data. This may be the case in NICP estimation, because the input

CBFV signals can be corrupted, an issue that was discussed in Chapter 4. A simple way

to overcome this issue is to remove the effects of these corruptions a priori. For example,

simulations in Section 4.4 demonstrated that the methods in this dissertation can accurately

remove these artifacts and impute missing sections using only the routinely-measured ABP

and CBFV data.

However, these approaches can also be integrated into the DBSE problem in (6.7). In

one scenario, if the input data is exact but some measurements are missing, these missing

elements can simply be omitted from the constraints. If elements that were measured in each

scalar signal ûi,meas(k) are indexed by the index set Ki ⊆ {0, . . . , N − 1}, for i = 1, . . . ,m,

then this becomes

minimize ‖F (û, ŷ)‖∗ +
ζ

2
‖ŷ − ysim‖22

subject to ûi(k) = ûi,meas(k), i = 1, . . . ,m, k ∈ Ki.
(6.14)

The missing elements in ûmeas(k) will be imputed with values û(k) that keep the system

order low.

If the data contains other corruptions, the constraints can again be replaced with a

penalty function, for example

minimize ‖F (u, y)‖∗ +
ζ

2
‖ŷ − ysim‖22 +

ρ

2

m∑
i=1

∑
k∈Ki

‖ûi(k)− ûi,meas(k)‖1, (6.15)

or any other useful choice of loss function on û(k) − ûmeas(k). In this scenario, ysim(k) is

a linear function of û(k) and so it is also a variable. Caution should be taken with this

approach: unless ρ � ζ, the simulated output data from the other dictionary systems may

provide more influence to the solution than the measured inputs of the current system, which

could lead to undesired outcomes.
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6.2.4 Algorithm

The central step to the DBSE method is to solve the convex optimization problem (6.7). This

problem does not have a closed-form solution, but can be solved efficiently using proximal

algorithms. The steps to apply such algorithms to the DBSE method are covered in Section

7.6.

6.3 Simulations

In this section, the DBSE method is used to design a simple NICP estimator. In this scenario,

the target system Σ̂ represents a patient whose ABP and CBFV have been measured, but

their ICP, the output, is unknown. The L = 75 dictionary systems Σ1, . . . ,ΣL represent past

patients whose ICP was invasively measured via IVC. Systems have the structure of the ICP

model, that is,

u(k) =

 ABP(k)

CBFV(k)

 , y(k) = ICP(k). (6.16)

The inputs to the current patient model Σ̂, ûmeas(k), are known because they were measured

by noninvasive means. The related system Γ̂ has the structure of the CBFV model: u(k) =

ABP and y(k) = CBFV, a model that can be constructed using noninvasive signals only.

The DBSE method (6.7) is applied to this data to estimate patients’ ICP. Three differ-

ent weighting schemes are used to choose γ. The first is a uniform scheme, γi = 1/L for

i = 1 . . . , L. For the second scheme, the related system models (Γ̂,Γ1, . . . ,ΓL) are first clus-

tered. The dictionary systems that are assigned to the same cluster as Γ̂ are then uniformly

weighted. (See Section 6.2.2). The third scheme similarly first clusters (Γ̂,Γ1, . . . ,ΓL), and

instead selects each γi proportional to the edge weights in V between (Γ̂,Γi). The parameters

k, λ, and ζ are chosen using a training dictionary independent of the test dictionary results.

An example NICP estimate is provided in Fig. 6.3.

Simulation results are shown in Table 6.1. The uniform weighting scheme had a median

[IQR] absolute error of 5.05 [2.86–10.57] mmHg. Both clustering-based weighting schemes
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Figure 6.3: Example of an NICP estimate using the DBSE method.

Table 6.1: Median [IQR] absolute error of ICP estimates of the DBSE method in the testing

set, for different weighting schemes.

Weighting Error (mmHg)

Uniform 5.05 [2.86–10.57]

Clustered 4.71 [2.28–8.17]

V -weighted 4.54 [2.60–9.24]

improved NICP estimation error, with 4.71 [2.28–8.17] mmHg for uniform in-cluster weights,

and 4.54 [2.60–9.24] mmHg when γ was set proportional to the edge weights in the graph

matrix V . These results are comparable to literature, but do not offer any decisive improve-

ment.

6.4 Discussion

This chapter has presented the dictionary-based signal estimation (DBSE) method, which

can be used to estimate the output of an unknown LTI system if a dictionary of similar

systems is available. The method operates by considering simulated outputs that would

have been produced by each of the dictionary systems, with an additional regularization
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term that promotes a low-order system.

Simulations demonstrated that the DBSE produced NICP estimators with comparable

performance to what is in the literature. While no distinctive improvement was made over

the state of the art, this approach has value in its flexible formulation. The experiments

also showed that the choice of dictionary simulation weights is important, and results were

improved by first clustering patient models by their noninvasive signal dynamics. So, the

promise of this method is most likely as a modular component of a larger, more complex

NICP framework.
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CHAPTER 7

Algorithms

7.1 Introduction

Throughout this dissertation, data methods have been presented that require convex opti-

mization problems to be solved in order to compute a solution. This chapter provides the

algorithmic details necessary to solve these problems. In particular, the problems will be

solved using proximal algorithms, a family of convex optimization algorithms. First, the nec-

essary background material will be discussed. Then, three specific algorithms are described:

the alternating direction method of multipliers (ADMM), the primal–dual Douglas–Rachford

(PDDR) algorithm, and the Chambolle–Pock algorithm. Finally, details are provided to

compute the solutions to the data methods presented in Chapters 4–6.

Solving convex optimization problems is in general a mature field [BV04], and many

problems can be easily solved using off-the-shelf software with minimal experience. Examples

of such packages include CVX [GB] and Mosek [Mos10]. Convex optimization problems are

frequently solved with second-order methods, which use both the first and second derivative

of the objective function at each iteration. Second-order methods such as Newton’s method

have been very successful, solving problems with high precision in just a few iterations

[BV04]. However, the cost of calculating the second derivative matrix or Hessian becomes

increasingly prohibitive for problems with a large number of variables. Therefore research

interest has moved to first-order methods, which rely on only first derivatives, to instead

solve the problem in many inexpensive steps [RB16, PB13].

Off-the-shelf optimization tools are unsuitable for the methods in this dissertation. This

is because the problems presented are large-scale, with a significant number of variables,
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and so need to be treated deliberately with first-order methods that exploit their structure

to ensure tractable computation. In particular, the optimization problems in Chapters 4–6

have a consistently special form:

minimize f(x) + g(Ax), (7.1)

where A is a linear transformation expressed as a matrix, and f and g are convex functions

that have simple proximal operators. Such problems can be solved efficiently using Douglas–

Rachford splitting algorithms.

7.2 Review of proximal operators

Proximal algorithms are a class of first-order convex optimization algorithms that use prox-

imal operators to compute their descent step. Proximal algorithms are particularly useful

for minimizing objective functions with nondifferentiable terms. This section will define

proximal operators and introduce some of their useful properties.

7.2.1 Definition and interpretation

The proximal operator of a closed proper convex function f ,

proxtf : Rn → Rn, (7.2)

is defined

proxtf (v) = argmin
x

{
f(x) +

1

2t
‖x− v‖22

}
, (7.3)

where t > 0 is a constant [Mor65, Roc76]. Proximal operators can be interpreted in different

ways. Simply from the definition it can be seen that the proximal operator of f is some

tradeoff between the minimum of f and argument v, regulated by the parameter t. One

useful perspective of proximal operators is as a generalized projection. The proximal operator

of the indicator function of a convex set C,

f(x) = IC(x) =

 0, x ∈ C

+∞, x /∈ C
, (7.4)
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is the Euclidean projection onto the set:

proxtf (v) = argmin
x∈C

‖x− v‖22. (7.5)

Parikh and Boyd [PB13] also note that under some additional assumptions, the proximal

operator has the approximation

proxtf (v) ≈ v − t∇f(v), (7.6)

for small t, which suggests that it also acts like type of gradient descent step.

7.2.2 Useful properties of proximal operators

There is a well-established body of properties that can be used to manipulate proximal

operators. This section reviews some important ones, which can be used to quickly evaluate

the proximal operators used in this dissertation. More detailed explanations can be found

in [PB13].

Pre- and post-composition The pre-composition property states that if f(x) = φ(ax+

b), then

proxtf (v) =
1

a

(
proxa2tφ(av + b)− b

)
. (7.7)

Similarly, the post-composition property states that if f(x) = aφ(x) + b, then

proxtf (v) = proxatφ(v). (7.8)

Separability. Proximal operators of separable functions are also separable. That is, if

f(x) =
n∑
i=1

fi(xi), (7.9)

then each proximal operator can be calculated independently as

proxtf (x) =


proxtf1(x1)

proxtf2(x2)
...

proxtfn(xn)

 . (7.10)

The separability property can allow complex choices of f to retain simple proximal operators.
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Moreau decomposition. An important property that relates f to its conjugate function

f ∗(y) = sup
x

(
y>x− f(x)

)
, (7.11)

is the Moreau decomposition [PB13]:

x = proxtf (x) + tproxt−1f∗(t−1x). (7.12)

A useful application of this result is that if the proximal operator of f is known, then it is

easy to compute the proximal operator of f ∗:

proxtf∗(x) = x− tproxt−1f (t
−1x). (7.13)

These conjugate functions appear frequently in proximal methods.

7.2.3 Examples of proximal operators

Because proximal operators involve a minimization step, it is important to identify functions

that admit closed-form solutions, so that they can be iterated over efficiently. Some examples

that will be used in this chapter are presented here.

Indicator function. As previously mentioned, an indicator function onto the set C has

the operator

f(x) = IC(x) =

 0, x ∈ C

+∞, x /∈ C
=⇒ proxtf (v) = ΠC(v) = argmin

x∈C
‖x− v‖22. (7.14)

Quadratic function. For a quadratic function with A ∈ Sn+,

f(x) =
1

2
x>Ax+ b>x+ c =⇒ proxtf (v) = (I + λA)−1(v − λb). (7.15)

`1-norm. The proximal operator of an `1-norm is

f(x) = ‖x‖1 =
n∑
i=1

|xi| =⇒
(
proxtf (v)

)
i

=


vi − t, vi ≥ t

0, |vi| ≤ t

vi + t, vi ≤ −t

, (7.16)

for i = 1, . . . , n. This function is called soft thresholding [Don95], and is shown in Fig. 7.1.
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Figure 7.1: Shape of the soft thresholding function, which is the element-wise proximal

operator for the `1-norm.

Trace norm. The final proximal operator of interest is for the trace norm, with X ∈ Rm×n:

f(X) = ‖X‖∗ =⇒ proxtf (V ) =

min(m,n)∑
i=1

(σi − t)+uiv>i , for V =

min(m,n)∑
i=1

σiuiv
>
i , (7.17)

where

(σi − t)+ =

 0, σi − t ≤ 0

σi − t, σi − t ≥ 0
. (7.18)

To interpret this operator, recall that the trace norm is the sum of the singular values of a

matrix

‖X‖∗ =

min(m,n)∑
i=1

σi, (7.19)

and that these values are nonnegative σi ≥ 0. Hence, ‖X‖∗ = ‖σ‖1. As expected, (7.17)

can then be understood as the soft thresholding function, applied to the singular values σ.

Note that this proximal operator requires the singular value decomposition of its argument,

which can be computationally expensive for large matrices V .
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7.3 Review of Douglas–Rachford splitting algorithms

Douglas–Rachford splitting algorithms [DR56, LM79, EB92] are a class of proximal algo-

rithms that can efficiently solve the problem

minimize f(x) + g(Ax), (7.20)

when f and g are convex functions with simple proximal operators and A ∈ Rm×n is some

linear transformation expressed as a matrix. These algorithms have found broad applica-

tion in recent years, with applications to image processing [OV14, CP11], signal processing

[WBA12], blind source separation [BF10], computer resource allocation [Bir14], matrix de-

composition [SAJ14], dictionary learning [CB17, RMN18], matrix and tensor completion

[RP13], and distributed optimization [ZLS12, ZH18].

This section overviews a selection of the splitting algorithms that are used in this dis-

sertation. An overview of how these algorithms can be derived in general can be found in

[RB16, OV14].

7.3.1 Alternating direction method of multipliers

The most widely-used algorithm in this class is the alternating direction method of multipliers

(ADMM) [GM76]. ADMM is sometimes analyzed in the context of augmented Lagrangian

methods, although it also falls into the Douglas–Rachford framework [EB92]. In the classical

approach, (7.20) is rewritten as the equivalent constrained problem

minimize f(x) + g(y)

subject to y = Ax,
(7.21)

which has the augmented Lagrangian function

Lρ(x, y, v) = f(x) + g(y) + v>(y − Ax) +
ρ

2
‖y − Ax‖22, (7.22)

91



with dual variable v and constant ρ > 0. The ADMM step is

xk+1 = argmin
x̂

Lρ(x̂, y
k, vk)

yk+1 = argmin
ŷ

Lρ(x
k+1, ŷ, vk)

vk+1 = vk + ρ(yk+1 − Axk+1).

(7.23)

This algorithm converges linearly; details on convergence and parameter selection can be

found in [NLR15, SLY14, WYZ15, GTS15].

The classical formulation of the algorithm in (7.23) is only efficient if the minimization

steps are inexpensive, for example if they have closed-form solutions. When this is not true,

one popular workaround is to use a dummy variable. This is achieved by rewriting (7.20) as

minimize f(x) + g(y)

subject to y = Az

x = z,

(7.24)

for which the augmented Lagrangian, with dual variables v and w, is

Lρ(x, y, z, v, w) = f(x) + g(y) + v>(y−Az) +w>(x− z) +
ρ

2
‖y−Az‖22 +

ρ

2
‖x− z‖22. (7.25)

For this alternative problem configuration, the ADMM algorithm is equivalent to

xk+1 = proxρ−1f

(
zk − ρ−1wk

)
yk+1 = proxρ−1g

(
Azk + ρ−1vk

)
zk+1 =

(
ρA>A+ ρI

)−1 (
ρ
(
A>yk+1 + xk+1

)
+ A>vk + wk

)
vk+1 = vk + ρ

(
Azk+1 − yk+1

)
wk+1 = wk + ρ

(
xk+1 − zk+1

)
.

(7.26)

This variation is useful when the proximal operators of f and g can be easily computed.

Because ρ(A>A+I) is positive definite and constant at each iteration, zk+1 can be computed

efficiently by computing a single Cholesky factorization, and then using factor–solve method

at each iteration [Van18, BV18].
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7.3.2 Primal–dual Douglas–Rachford algorithm

A method that uses proximal operators directly is the primal–dual Douglas–Rachford (PDDR)

algorithm [OV14]. The PDDR step is:

xk = proxtf (θ
k−1)

zk = proxtg∗(φk−1) uk

vk

 =

 I tA>

−tA I

−1  2xk − θk−1

2zk − φk−1


θk = θk−1 + ρ(uk − xk)

φk = φk−1 + ρ(vk − zk).

(7.27)

This method uses the proximal operators of f and g∗ directly, and so is efficient when they

admit closed-form solutions and A is not prohibitively large. The matrix I tA>

−tA I

 (7.28)

is constant at each iteration, and so can be factorized exactly once. This significantly reduces

the computational burden of the method.

7.3.3 Chambolle–Pock algorithm

The Chambolle–Pock algorithm [CP11] is another variation that also directly employs the

proximal operators of f and g∗, but does not require a linear system to be solved at each

iteration. The Chambolle–Pock step is

xk = proxtf
(
xk−1 − tA>zk−1

)
zk = proxsg∗

(
zk−1 + sA(2xk − xk−1)

)
.

(7.29)

The primal and dual step sizes, t and s respectively, can differ, so long as they satisfy

‖A‖
√
st ≤ 1 to guarantee convergence.
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7.4 Artifact rejection and missing data imputation

This section demonstrates how to compute solutions to the methods of Chapter 4 for artifact

rejection and missing data imputation. Many of these methods can be solved directly using

the PDDR algorithm; the necessary details are provided. One exception is the method

for removing structured artifacts, which contains a penalty without a closed-form proximal

operator. This problem is solved using ADMM.

7.4.1 Basic method

The basic method for artifact rejection and missing data imputation, which was presented

in Section 4.3.1, is

minimize ‖Wr,N‖∗ +
d∑
i=1

∑
k∈K

λi|wi(k)− wi,meas(k)|. (7.30)

To solve this problem, first the optimization variable is defined as

x =


w1

...

wd

 ∈ RNd, (7.31)

with xmeas similarly defined. The problem (7.30) can be rewritten with this choice of variables

as

minimize ‖mat(Ax)‖∗ +
∑

i measured

λ̂i|xi − xi,meas|. (7.32)

In this representation, ‘i measured’ refers to the elements for which there exists a measure-

ment xi,meas, and λ̂ is an element-wise weight vector, that is,

λ̂ =


λ11N

...

λd1N

 ∈ RNd. (7.33)

The operation mat(Ax) is the linear mapping of the elements in x to the block Hankel matrix

used in (7.30), expressed as a matrix multiplication followed by a reshaping operator.
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Problem (7.32) is of the form

minimize f(x) + g(Ax), (7.34)

where

f(x) =
∑

i measured

λ̂i|xi − xi,meas|, (7.35)

g(y) = ‖mat(y)‖∗. (7.36)

The proximal operator for f is defined, for each element i = 1, . . . , Nd, by

[
proxtf (v)

]
i

=



vi − tλ̂i, vi > tλ̂i + xi,meas

xi,meas, −tλ̂i + xi,meas ≤ vi ≤ tλ̂i + xi,meas

vi + tλ̂i, vi < −tλ̂i + xi,meas

vi, xi,meas missing

. (7.37)

The proximal operator for g∗ is

proxtg∗(z) = z − t · vec

[
r∑
i=1

(
σi − t−1

)
+
uiv
>
i

]
, (7.38)

given the SVD

mat(t−1z) =
r∑
i=1

σiuiv
>
i , (7.39)

where r is the number of nonzero singular values. Given these proximal operators, problem

(7.30) can be then immediately solved using the PDDR steps given in Section 7.3.2.

The above approach is easily extended to other problems. For example, in the `2-norm

variation

minimize ‖Wr,N‖∗ +
d∑
i=1

∑
k∈K

λi
2

(wi(k)− wi,meas(k))2 , (7.40)

where the corresponding penalty function

f(x) =
∑

i measured

λ̂i
2

(xi − xi,meas)
2 , (7.41)

has the proximal operator

[
proxtf (v)

]
i

=


(

1

λ̂i + t−1

)(
λ̂ixi,meas + t−1vi

)
, xi,meas measured

vi, xi,meas missing

. (7.42)
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In general, because the above penalties are separable in x, the separability property of

proximal operators (7.10) can be exploited so that the proximal operator of each residual

xi − xi,meas can be determined independently. So, different penalty functions can be applied

to each signal wi(k) in the original problem (7.30).

7.4.2 Structured artifact rejection

In the structured artifact rejection problem

minimize ‖Wr,N‖∗ + λ

N−q∑
k=0

‖z(k)‖2

subject to wl − wlmeas = Pz

wi(k) = wi,meas(k), i 6= l, k ∈ Ki,

(7.43)

the overlapping group sparsity penalty does not have a closed-form proximal operator [OJV11,

YLY11]. The PDDR algorithm, which was used in Section 7.4.1, is most efficient when these

proximal operators can be easily computed, and so is a poor choice here. The problem is

instead solved using ADMM.

First, (7.43) is expressed in terms of a vector optimization variable x as

minimize ‖mat(Ax)‖∗ + λ

N−q∑
k=0

‖z(k)‖2

subject to C(x− xmeas) = Pz

D(x− xmeas) = 0,

(7.44)

where C ∈ RN×Nd is the binary matrix that selects the elements of wl from x, and D ∈

RNmeas×Nd is the binary matrix that selects the Nmeas ≤ N(d − 1) measured elements from

wi, i 6= l. Next, dummy variables X and v are introduced that will facilitate the splitting of
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the problem:

minimize ‖X‖∗ + λ

N−q∑
k=0

‖z(k)‖2

subject to C(x− xmeas) = Pv

D(x− xmeas) = 0

v = z

X = mat(Ax).

(7.45)

This problem has the augmented Lagrangian

Lρ(x, z,X, v, y, u, ω,Γ) = ‖X‖∗ + λ

N−q∑
k=0

‖z(k)‖2 + y>(C(x− xmeas)− Pv)

+ u>(D(x− xmeas)) + ω>(v − z) + tr
[
Γ>(X −mat(Ax))

]
+
ρ

2
‖C(x− xmeas)− Pv‖22 +

ρ

2
‖D(x− xmeas)‖22

+
ρ

2
‖v − z‖22 +

ρ

2
‖X −mat(Ax)‖2F .

(7.46)

Because of the choice of dummy variables in (7.45), the Lagrangian is separable in (x, z) and

(X, v). So, ADMM can be applied with the steps

(x+, z+) = argmin
x̂,ẑ

Lρ(x̂, ẑ, X, v, y, u, ω,Γ)

(X+, v+) = argmin
X̂,v̂

Lρ(x+, z+, X̂, v̂, y, u, ω,Γ)

y+ = y + ρ(C(x+ − xmeas)− Pv+)

u+ = u+ ρ(D(x+ − xmeas))

ω+ = ω + ρ(v+ − z+)

Γ+ = Γ + ρ(X+ −mat(Ax+)).

(7.47)
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The minimization steps have closed form solutions. They are:

x+ =
[
C>C +D>D + A>A

]−1
[
C>Cxmeas + C>Pv +D>Dxmeas + A>vec(X) + ρ−1

(
a− C>y −D>u

)]
,

z(k)+ =

(
1− λ

ρ‖v + ρ−1ω‖2

)
+

·
(
v + ρ−1ω

)
, k = 0, . . . , N − q,

X+ =
r∑
i=1

(σi − ρ−1)+uiv>i , given the SVD
r∑
i=1

σiuiv
>
i = mat(Ax)− ρ−1Γ,

v+ = z + ρ−1
(
P>y − ω

)
,

(7.48)

where a is the vector constant such that

a>x = tr
[
Γ>mat(Ax)

]
. (7.49)

7.5 System clustering

This section demonstrates how to solve the LTI system clustering method of Chapter 5,

specifically, the convex optimization problem

minimize
L∑
i=1

L∑
j=1

‖Gij‖F +
λ

2
‖O −OG‖2F

subject to Gii = 0, i = 1, . . . , L,

(7.50)

for G, where

O =
[
O1 · · · OL

]
, G =


G11 · · · GL1

...
. . .

...

G1L · · · GLL

 . (7.51)

7.5.1 Problem rearrangement

The problem (7.50) is rearranged in three steps. First, it is separated by noting that each

block column of G can be computed independently. So, the problem can be rewritten as L
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smaller subproblems of the form

minimize
L∑
j=1

‖X(j)‖F +
λ

2
‖Oi −OX‖2F

subject to X(i) = 0,

(7.52)

for i = 1, . . . , L, where X is the optimization variable that corresponds to

X =


X(1)

...

X(L)

 =


Gi1

...

GiL

 ∈ RnL×n. (7.53)

Each of these problems can be solved in parallel, and the complete solution G reconstructed

by simply aggregating the block columns of each X.

The second step is to vectorize the problem. Equation (7.52) can be rewritten with a

vector variable x as

minimize
L∑
j=1

‖x(j)‖2 +
λ

2
‖Ax− b‖22

subject to x(i) = 0

(7.54)

by choosing

x =


x(1)

...

x(L)

 =


vec(X(1))

...

vec(X(L))

 ∈ Rn2L, (7.55)

A =
[

(In ⊗O1) · · · (In ⊗OL)
]
∈ Rnpr×n2L, (7.56)

b = vec(Oi) ∈ Rnpr. (7.57)

The final step in the rearrangement is to incorporate the constraint in (7.54) into the

objective function, as

minimize I0(x(i)) +
L∑

j=1,
j 6=i

‖x(j)‖2 +
λ

2
‖Ax− b‖22, (7.58)

where I0(·) is again the convex indicator on the set {0}.
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7.5.2 Proximal operators

The rearranged problem (7.58) is of the form

minimize f(x) + g(Ax), (7.59)

where

f(x) = I0(x(i)) +
L∑

j=1,
j 6=i

‖x(j)‖2,

g(y) =
λ

2
‖y − b‖22.

(7.60)

The proximal operators for f and g∗ have closed form solutions, and so the Chambolle–Pock

algorithm is an ideal choice for solving this problem. The proximal operator of f can be

found by noting that the function is separable in x(i):

f(x) =
L∑
j=1

fj(x(j)) =⇒ proxtf (v) =


proxtf1(v(1))

...

proxtfL(v(L))

 . (7.61)

Hence,

proxtfi(v(i)) = 0,

proxtfj(v(j)) =

 1− t/‖v(j)‖2, ‖v(j)‖2 ≥ t

0, ‖v(j)‖2 < t
, j 6= i.

(7.62)

The proximal operator of g∗ is

proxtg∗(z) =

(
λ

λ+ t

)
(z − tb). (7.63)

These proximal operators, and choice of A, can then be directly applied to the Chambolle–

Pock steps outlined in Section 7.3.3 in order to efficiently solve the problem.

7.6 Dictionary-based signal estimation

This final section provides details on how to solve the DBSE problem presented in Chapter

6:

minimize ‖F (ûmeas, ŷ)‖∗ +
ζ

2
‖ŷ − ysim‖22, (7.64)
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where ŷ ∈ RN is the optimization variable. Using the results of Sections 7.4–7.5, this

algorithm can be quickly evaluated. For simplicity, the following variation is solved

minimize ‖F (û, ŷ)‖∗ +
ζ

2
‖ŷ − ysim‖22 +

m∑
i=1

I0(ûi − ûi,meas), (7.65)

in which û is a variable.

First, by defining

x =

 xu

xy

 =


û1
...

ûm

ŷ

 , a =


û1,meas

...

ûm,meas

 , b = ysim, (7.66)

the problem is expressed as

minimize ‖mat(Ax)‖∗ +
ζ

2
‖xy − b‖22 + I0(xu − a). (7.67)

This problem has the form

minimize f(x) + g(Ax) (7.68)

where

f(x) =
ζ

2
‖xy − b‖22 + I0(xu − a),

g(y) = ‖mat(y)‖∗.
(7.69)

The proximal operator for g∗ is

proxtg∗(z) = z − t · vec

[
r∑
i=1

(
σi − t−1

)
+
uiv
>
i

]
. (7.70)

The proximal operator for f is found using the separability property:

proxtf (v) =

 proxtfu(vu)

proxtfy(vy)

 , (7.71)

where

proxtfu(vu) = a,

proxtfy(vy) =

(
1

ζ + t−1

)(
ζb+ t−1vy

)
.

(7.72)

With the proximal operators for f and g∗ known, (7.67) can be solved using the Chambolle–

Pock algorithm. The steps in this algorithm are provided in Section 7.3.3.
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CHAPTER 8

Conclusions

This dissertation has examined the problem of noninvasive intracranial pressure (NICP)

estimation from the perspective of linear dynamical systems. By leveraging past work in

subspace system identification and convex optimization, new and modular methods have

been presented that add value to this larger research problem. These methods were framed

using models and notation that are typical in linear systems theory, and so they apply to a

large variety of applications beyond NICP estimation.

The first set of methods provide a way to find approximations of signals that exhibit

dynamics of low complexity. Specifically, these signal approximations typically produce low-

order linear dynamical systems. The main use cases of these methods are when signals are

corrupted by artifacts, or contain missing data. Both of these scenarios are common for

cerebral blood flow velocity (CBFV) signals, which are widely used in NICP estimators.

The suite of methods was able to remove real CBFV artifacts and impute sections of missing

data with accuracy.

The second set of methods can be used to cluster dynamical systems. In NICP estimation

this process can be used to group patients by the similarity of their signal dynamics. These

methods are important for mitigating the effect of large inter-patient variability: dynamical

models can be constructed across a small, targeted group of patients, rather than across an

entire patient population. The method was able to correctly cluster patient models with

their labels removed, demonstrating that it is effective on models of ICP dynamics.

The final set of methods, called dictionary-based signal estimation, can be used to esti-

mate missing signals of a dynamical system when a dictionary of similar systems is known.

The process combines the incomplete information on the current system with the complete
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information on these past systems. This method can be applied to NICP estimation, where

the dictionary is of past patients who have had their ICP measured after an invasive proce-

dure, and the current system is a patient whose ICP signal is missing.

The methods presented above are posed as convex optimization problems, which are

well-understood and so provide some key advantages. For example, it is easy to extend these

methods to new scenarios by introducing new penalty functions, constraints, or weights to

their formulation. Also, because there are ongoing advances to improve the algorithms that

compute the output of the methods, their efficiency will improve as the literature does.

There are two main directions for future work. The first is to continue to move this work

towards future clinical application. Because the components of this dissertation have been

constructed in a modular manner, they can be integrated into a variety of different existing

NICP estimation frameworks, for example. In order to advance these approaches closer to

true clinical applicability, a larger body of NICP data will also be necessary, including a

variety of diagnoses, clinical settings, and geographic locations.

The second direction is to apply these data methods to new applications. The technical

content of this dissertation has been written in the language of linear dynamical systems,

which are widely used, from engineering to the social sciences. So, the methods of this

dissertation can be readily applied to a variety of problems, and will hopefully provide new

and useful steps forward across different fields.
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