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Abstract

Tides in Close Binary Systems

by

Joshua Burkart

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Eliot Quataert, Chair

We consider three aspects of tidal interactions in close binary systems. 1) We first develop a
framework for predicting and interpreting photometric observations of eccentric binaries, which
we term tidal asteroseismology. In such systems, the Fourier transform of the observed lightcurve
is expected to consist of pulsations at harmonics of the orbital frequency. We use linear stellar
perturbation theory to predict the expected pulsation amplitude spectra. Our numerical model does
not assume adiabaticity, and accounts for stellar rotation in the traditional approximation. We
apply our model to the recently discovered Kepler system KOI-54, a 42-day face-on stellar binary
with e = 0.83. Our modeling yields pulsation spectra that are semi-quantitatively consistent with
observations of KOI-54. KOI-54’s spectrum also contains several nonharmonic pulsations, which
can be explained by nonlinear three-mode coupling. 2) We next consider the situation of a white
dwarf (WD) binary inspiraling due to the emission of gravitational waves. We show that resonance
locks, previously considered in binaries with an early-type star, occur universally in WD binaries.
In a resonance lock, the orbital and spin frequencies evolve in lockstep, so that the tidal forcing
frequency is approximately constant and a particular normal mode remains resonant, producing
efficient tidal dissipation and nearly synchronous rotation. We derive analytic formulas for the
tidal quality factor and tidal heating rate during a g-mode resonance lock, and verify our results
numerically. We apply our analysis to the 13-minute double-WD binary J0651, and show that our
predictions are roughly consistent with observations. 3) Lastly, we examine the general dynamics
of resonance locking in more detail. Previous analyses of resonance locking, including my own
earlier work, invoke the adiabatic (a.k.a. Lorentzian) approximation for the mode amplitude, valid
only in the limit of relatively strong mode damping. We relax this approximation, analytically
derive conditions under which the fixed point associated with resonance locking is stable, and
further check our analytic results with numerical integration of the coupled mode, spin, and orbital
evolution equations. These show that resonance locking can sometimes take the form of complex
limit cycles or even chaotic trajectories. We also show that resonance locks can accelerate the
course of tidal evolution in eccentric systems.
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Chapter 1

Introduction

Newton, using his law of gravity, showed that two isolated point-like celestial bodies travel on
stable elliptical orbits that do not change with time. As such, a binary is an extremely stable and
ubiquitous phenomenon. One of the primary ways by which binaries evolve is by the influence of
tides.

The first theoretical analysis of tides also dates to Newton, who correctly explained their oc-
currence on the Earth as resulting from the differential gravity of both the Sun and Moon. Tides
only cause secular orbital evolution when they lag behind the perturbing gravitational potential,
which can occur as a result of internal dissipation acting on the tidal bulge or equilibrium tide.
G.H. Darwin (son of Charles Darwin) used this observation to develop a quantitative theory of the
tidal evolution of moons orbiting a planet (see e.g. Darwin 2010).

Darwin, along with many subsequent authors, parameterized a given body’s internal dissipation
via the so-called tidal quality factor or “tidal Q” (Goldreich & Soter 1966) by analogy with a simple
harmonic oscillator. Zahn (1977) performed the first a priori calculation of tidal dissipation on the
equilibrium tide for stellar binaries, and thus the first theoretical prediction of the tidal Q. Zahn
(1977) relied on the influence of turbulent convection to retard the equilibrium tide.

The equilibrium tide can be thought of as the set of internal oscillation modes that are spa-
tially commensurate with the tidal potential. There is another source of tidal dissipation, however,
known as the dynamical tide, which corresponds to the set of internal oscillation modes that are
instead temporally commensurate with the tidal potential. In other words, the dynamical tide com-
prises internal waves with frequencies comparable to a binary’s orbital frequency that can thus be
resonantly excited. Although the equilibrium tide contains the majority of the tidal energy, it also
possesses a very long effective wavelength, and thus is weakly damped. The dynamical tide, on the
other hand, typically possesses less energy (except in the case of extreme resonances), but involves
smaller-wavelength modes that can thus be damped more effectively. Whether the dynamical or
equilibrium tide provides the dominant source of tidal dissipation depends upon the application in
question.

The first a priori theoretical calculation of the dynamical tide’s dissipation efficiency in stars
was performed by Zahn (1975), who computed the linear fluid response of a star to periodic tidal
forcing. Witte & Savonije (1999) took this a step further, and integrated the coupled orbital and
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spin evolution equations in response to a time-varying tidal torque. In so doing, they discovered
the phenomenon of resonance locking, which will be described in great detail in chapters 3 and 4.

This dissertation extends tidal theory in several ways. First, chapter 2, which was separately
published as Burkart et al. (2012), develops a theoretical framework for predicting and interpreting
photometric observations of tides in eccentric binaries, and applies these theoretical results to the
Kepler system KOI-54 (Welsh et al. 2011).

Chapter 3 focuses on the tidal evolution of a white dwarf binary inspiraling due to the emission
of gravitational waves, and was separately published as Burkart et al. (2013). Prior work applied
the theory of the equilibrium tide to this problem (Willems et al. 2010); we extend these results
to model the dynamical tide, which we find to be far more important than the equilibrium tide
in white dwarf binaries. One of our key questions is whether tides cause white dwarfs to rotate
synchronously even as their orbital motion speeds up due to gravitational wave induced orbital
decay. Another question is how much orbital energy is dissipated as heat in each white dwarf, and
what happens to this thermal energy. These results are important for interpreting observations of
close white dwarf binaries and for understanding their thermal and rotational state prior to merger.

Lastly, in chapter 4 we give a detailed description and theoretical analysis of tidal resonance
locking. In prior calculations of resonance locking, studies such as Witte & Savonije (1999) in-
voked approximations in order to determine the amplitudes of stellar eigenmodes (see § 4.6.1);
these approximations correspond to assuming that each eigenmode is relatively rapidly damped.
We instead allow eigenmodes to possess fully dynamical mode amplitudes that are self-consistently
coupled to the orbital and spin evolution of the body in question, and determine what form reso-
nance locking takes with these more realistic assumptions. These results are applicable to many
different astrophysical systems, including white dwarf binaries, eccentric stellar binaries, and ec-
centric planetary companions.
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Chapter 2

Tidal asteroseismology: Kepler’s KOI-54

2.1 Introduction
The recently discovered Kepler system KOI-54 (Welsh et al. 2011; henceforth W11) is a highly

eccentric stellar binary with a striking lightcurve: a 20-hour 0.6% brightening occurs with a peri-
odicity of 41.8 days, with lower-amplitude perfectly sinusoidal oscillations occurring in between.
Such observations were only possible due to the unprecedented photometric precision afforded by
Kepler. W11 arrived at the following interpretation of these phenomena: during the periastron pas-
sage of the binary, each of its two similar A stars is maximally subjected to both its companion’s
tidal force and radiation field. The tidal force causes a prolate ellipsoidal distortion of each star
known as the equilibrium tide, so that the resulting perturbations to both the stellar cross section
and the emitted stellar flux produce a change in the observed flux. Along with the effects of irra-
diation, this then creates the large brightening at periastron. Secondly, the strong tidal force also
resonantly excites stellar eigenmodes during periastron, which continue to oscillate throughout the
binary’s orbit due to their long damping times; this resonant response is known as the dynamical
tide.

W11 successfully exploited KOI-54’s periastron flux variations, known traditionally as ellip-
soidal variability, by optimizing a detailed model against this component of KOI-54’s lightcurve
(Orosz & Hauschildt 2000). In this way, W11 were able to produce much tighter constraints on
stellar and orbital parameters than could be inferred through traditional spectroscopic methods
alone. W11 also provided data on the dynamical tide oscillations. Thirty such pulsations were re-
ported, of which roughly two-thirds have frequencies at exact harmonics of the orbital frequency.
It is the analysis of these and similar future data that forms the basis of our work.

In close binary systems, tides provide a key mechanism to circularize orbits and synchronize
stellar rotation with orbital motion. An extensive literature exists on the theory of stellar tides
(e.g., Zahn 1975; Goodman & Dickson 1998; Witte & Savonije 1999). We have synthesized this
theoretical formalism, together with other aspects of stellar oscillation theory, in order to model the
dynamical tide of KOI-54 as well as to provide a framework for interpreting other similar systems.

The methods we have begun to develop are a new form of asteroseismology, a long-standing
subject with broad utility. In traditional asteroseismology, we observe stars in which internal stellar
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processes (e.g., turbulent convection or the kappa mechanism) drive stellar eigenmodes, allowing
them to achieve large amplitudes (Christensen-Dalsgaard 2003). In this scenario, modes ring at
their natural frequencies irrespective of the excitation mechanism. The observed frequencies (and
linewidths) thus constitute the key information in traditional asteroseismology, and an extensive
set of theoretical techniques exist to invert such data in order to infer stellar parameters and probe
different aspects of stellar structure (Unno et al. 1989).

In tidal asteroseismology of systems like KOI-54, however, we observe modes excited by a pe-
riodic tidal potential from an eccentric orbit; tidal excitation occurs predominantly at l = 2 (§ 2.3.2).
Since orbital periods are well below a star’s dynamical timescale, it is g-modes (buoyancy waves)
rather than higher-frequency p-modes (sound waves) that primarily concern us. Furthermore, since
modes in our case are forced oscillators, they do not ring at their natural eigenfrequencies, but in-
stead at pure harmonics of the orbital frequency. (We discuss nonharmonic pulsations in § 2.6.5.)
It is thus pulsation amplitudes and phases that provide the key data in tidal asteroseismology.

This set of harmonic amplitudes and phases in principle contains a large amount of information.
One of the goals for future study is to determine exactly how the amplitudes can be optimally used
to constrain stellar properties, e.g., the radial profile of the Brunt-Väisälä frequency. In this work,
however, we focus on the more modest tasks of delineating the physical mechanisms at work
in eccentric binaries and constructing a coherent theoretical model and corresponding numerical
method capable of quantitatively modeling their dynamical tidal pulsations.

This paper is organized as follows. In § 2.2 we give essential background on KOI-54. In
§ 2.3 we give various theoretical results that we rely on in later sections, including background on
tidal excitation of stellar eigenmodes (§ 2.3.2), techniques for computing disk-averaged observed
flux perturbations (§ 2.3.3), and background on including the Coriolis force using the traditional
approximation (§ 2.3.4). In § 2.4 we use these results to qualitatively explain the pulsation spectra
of eccentric stellar binaries, particularly what governs the range of harmonics excited. In § 2.5 we
confront the rotational evolution of KOI-54’s stars, showing that they are expected to have achieved
a state of stochastic pseudosynchronization.

In § 2.6 we present the results of our more detailed modeling. This includes an analytic model
of ellipsoidal variability (§ 2.6.1), the effects of nonadiabaticity (§ 2.6.2), the effects of fast rota-
tion (§ 2.6.3), and a preliminary optimization of our nonadiabatic method against KOI-54’s pulsa-
tion data (§ 2.6.4). We show in § 2.6.5 that the observed nonharmonic pulsations in KOI-54 are
well explained by nonlinear three-mode coupling, and perform estimates of instability thresholds,
which may limit the amplitudes modes can attain. We also address whether the highest-amplitude
observed harmonics in KOI-54 are signatures of resonant synchronization locks in § 2.6.6. We
present our conclusions and prospects for future work in § 2.7.

A few weeks prior to the completion of this manuscript, we became aware of a complementary
study of KOI-54’s pulsations (Fuller & Lai 2011).
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Table 2.1: List of KOI-54 system parameters as determined by W11. Selected from Table 2 of W11. The top
rows contain standard observables from stellar spectroscopy, whereas the bottom rows result from W11’s
modeling of photometric and radial velocity data. Symbols either have their conventional definitions, or are
defined in § 2.3.1. Note that W11’s convention is to use the less-massive star as the primary.

parameter value error unit

O
bs

er
va

tio
ns

T1 8500 200 K
T2 8800 200 K
L2/L1 1.22 0.04
vrot,1 sin i1 7.5 4.5 km/s
vrot,2 sin i2 7.5 4.5 km/s
[Fe/H]1 0.4 0.2
[Fe/H]2 0.4 0.2

L
ig

ht
cu

rv
e/

RV
m

od
el

in
g M2/M1 1.025 0.013

Porb 41.8051 0.0003 days
e 0.8342 0.0005
ω 36.22 0.90 degrees
i 5.52 0.10 degrees
a 0.395 0.008 AU
M1 2.32 0.10 M�
M2 2.38 0.12 M�
R1 2.19 0.03 R�
R2 2.33 0.03 R�

2.2 Background on KOI-54
Table 2.1 gives various parameters for KOI-54 resulting from W11’s observations and modeling

efforts. Table 2.2 gives a list of the pulsations W11 reported, including both frequencies and
amplitudes.

2.2.1 Initial rotation
KOI-54’s two components are inferred to be A stars. Isolated A stars are observed to rotate

much more rapidly than e.g. the Sun, with typical surface velocities of∼ 100 km/s and rotation pe-
riods of∼ 1 day (Adelman 2004). This results from their lack of a significant convective envelope,
which means they experience less-significant magnetic braking, allowing them to retain more of
their initial angular momentum as they evolve onto the main sequence. We thus operate under the
assumption that both component stars of KOI-54 were born with rotation periods of roughly

Pbirth ≈ 1 day.
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Table 2.2: Thirty largest KOI-54 pulsations. Originally Table 3 from W11. Asterisks (∗) denote pulsations
which are not obvious harmonics of the orbital frequency.

ID amp. (µmag) ω/Ωorb

F1 297.7 90.00
F2 229.4 91.00
F3 97.2 44.00
F4 82.9 40.00
F5 82.9 22.42 ∗
F6 49.3 68.58 ∗
F7 30.2 72.00
F8 17.3 63.07 ∗
F9 15.9 57.58 ∗
F10 14.6 28.00
F11 13.6 53.00
F12 13.4 46.99
F13 12.5 39.00
F14 11.6 59.99
F15 11.5 37.00
F16 11.4 71.00
F17 11.1 25.85 ∗
F18 9.8 75.99
F19 9.3 35.84 ∗
F20 9.1 27.00
F21 8.4 42.99
F22 8.3 45.01
F23 8.1 63.09 ∗
F24 6.9 35.99
F25 6.8 60.42 ∗
F26 6.4 52.00
F27 6.3 42.13 ∗
F28 5.9 33.00
F29 5.8 29.00
F30 5.7 48.00
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2.2.2 Rotational inclination
W11 constrained both stars’ rotation, via line broadening, to be vrot sin i∗ = 7.5±4.5 km/s (the

same for both stars). Using the mean values of R1 and R2 obtained from W11’s modeling, we can
translate this into the following constraints on rotation periods (in days):

9.2< P1/sin i1 < 37 and 9.8< P2/sin i2 < 39,

where (i1, i2) and (P1,P2) are the rotational angular momentum inclinations with respect to the
observer and the stellar rotation periods, respectively. If we assume that tidal interactions cause
both stellar rotation periods to be approximately equal to the pseudosynchronous period of Pps ∼
1.8 days derived in § 2.5, we can constrain i1 and i2:

2.8◦ < i1 < 11◦ and 2.6◦ < i2 < 11◦.

W11 obtained iorb = 5.52◦± 0.10 by fitting the lightcurve’s ellipsoidal variation together with
radial velocity measurements, so the constraints just derived are consistent with alignment of rota-
tional and orbital angular momenta,

i = iorb = i1 = i2. (2.1)

Tides act to drive these three inclinations to be mutually parallel or antiparallel, so such an align-
ment once achieved is expected to persist indefinitely. In order to simplify the analytical formalism
as well as reduce the computational expense of modeling the observed pulsations, we will adopt
equation (2.1) as an assumption for the rest of our analysis.

2.3 Theoretical Background
In this section we review various heterogeneous theoretical results that we rely on in later

sections. In § 2.3.1 we summarize the conventions and definitions used in our analysis. In § 2.3.2
we review the theory of tidally forced adiabatic stellar eigenmodes. Later (§ 2.4), we use this
formalism to explain qualitative features of the lightcurves of eccentric binaries like KOI-54. We
also use adiabatic normal modes to compute tidal torques (§ 2.5 and Appendix A.3), as well as to
perform a nonlinear saturation calculation (§ 2.6.5). However, our detailed quantitative modeling
of the observations of KOI-54 utilizes a nonadiabatic tidally forced stellar oscillation method that
we introduce and employ in § 2.6.

In § 2.3.3 we summarize how perturbed quantities at the stellar photosphere, specifically the
radial displacement and Lagrangian flux perturbation, can be averaged over the stellar disk and
translated into an observed flux variation. Lastly, in § 2.3.4 we review the traditional approxima-
tion, a way of simplifying the stellar oscillation equations in the presence of rapid rotation.
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2.3.1 Conventions and definitions
We label the two stars as per Table 2.1, consistent with W11; note that the primary/star 1 is

taken to be the smaller and less massive star. In the following, we focus our analysis on star 1,
since the results for star 2 are similar. We assume that both stars’ rotational angular momentum
vectors are perpendicular to the orbital plane (§ 2.2.2), and work in spherical coordinates (r,θ,φ)
centered on star 1 where θ = 0 aligns with the system’s orbital angular momentum and φ = 0 points
from star 1 to star 2 at periastron.

We write the stellar separation as D(t) and the true anomaly as f (t), so that the position of star
2 is D = (D,π/2, f ). We write the semi-major axis as a and the eccentricity as e. The angular
position of the observer in these coordinates is n̂o = (θo,φo), where these angles are related to the
traditional inclination i and argument of periastron ω by (Arras et al. 2012)

θo = i and φo =
π

2
−ω mod 2π. (2.2)

The orbital period [angular frequency] is Porb [Ωorb], while a rotation period [angular frequency]
is P∗ [Ω∗]. The effective orbital frequency at periastron is

Ωperi =
d f
dt

∣∣∣∣
f =0

=
Ωorb

1 − e

√
1 + e
1 − e

, (2.3)

which is Ωperi = 20.×Ωorb for KOI-54. The stellar dynamical frequency is

ωdyn =

√
GM
R3 , (2.4)

which is ωdyn ≈ 1.1 rad/hr for KOI-54’s stars.

2.3.2 Tidal excitation of stellar eigenmodes
Although we ultimately use an inhomogeneous, nonadiabatic code including the Coriolis force

to model the pulsations in eccentric binaries (§ 2.6.2), the well known normal mode formalism
provides an excellent qualitative explanation for many of the features in the lightcurve power spec-
tra of systems such as KOI-54. Here we will review the salient results of this standard theory; we
demonstrate their application to KOI-54 and related systems in §§ 2.4 – 2.5. The remainder of the
paper after § 2.5 primarily uses our nonadiabatic method described in § 2.6.2.

Working exclusively to linear order and operating in the coordinates specified in the previous
section, we can represent the response of star 1 (and similarly for star 2)—all oscillation variables
such as the radial displacement ξr, the Lagrangian pressure perturbation ∆p, etc.—to a perturb-
ing tidal potential by a spatial expansion in normal modes and a temporal expansion in orbital
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harmonics (e.g., Kumar et al. 1995):

δX =
∑
nlmk

AnlmkδXnl(r)e−ikΩorbtYlm(θ,φ). (2.5)

Here, 2 ≤ l <∞ and −l ≤ m ≤ l are the spherical harmonic quantum numbers, and index the
angular expansion; |n| <∞ is an eigenfunction’s number of radial nodes, and indexes the radial
expansion;1 and |k| < ∞ is the orbital Fourier harmonic number, which indexes the temporal
expansion.

Each (n, l,m) pair formally corresponds to a distinct mode, although the eigenspectrum is de-
generate in m since for now we are ignoring the influence of rotation on the eigenmodes. Each
mode has associated with it a set of eigenfunctions for the various perturbation variables, e.g., ξr,
δp, etc., as well as a frequency ωnl and a damping rate γnl . For stars and modes of interest, γnl is
set by radiative diffusion; see the discussion after equation (2.17). Figure 2.1 gives a propagation
diagram for a stellar model consistent with W11’s mean parameters for star 1 (Table 2.1). The
frequencies of g-modes behave asymptotically for n� 0 and hence ωnl � ωdyn as (Christensen-
Dalsgaard 2003)

ωnl ∼ ω0
l
n
, (2.6)

where ω0 ≈ 4 rad/hr for KOI-54’s stars.
The amplitudes Anlmk appearing in equation (2.5) each represent the pairing of a stellar eigen-

mode with an orbital harmonic. Their values are set by the tidal potential, and can be expressed
analytically:

Anlmk =
2εl Qnl X̃ k

lmWlm ∆nlmk

Enl
. (2.7)

The coefficients appearing in equation (2.7) are as follows.

1. The tidal parameter εl is given by

εl =
(

M2

M1

)(
R1

Dperi

)l+1

, (2.8)

where Dperi = a(1 − e) is the binary separation at periastron. This factor represents the overall
strength of the tide; due to its dependence on R1/Dperi, which is a small number in cases of
interest, it is often acceptable to consider only l = 2.

1Conventionally, n> 0 corresponds to p-modes while n< 0 corresponds to g-modes; however, since we are mostly
concerned with g-modes in this paper, we will report g-mode n values as > 0.
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Figure 2.1: Propagation diagram for a MESA stellar model consistent with W11’s mean parameters for
star 1 of KOI-54, showing the radial profiles of the Brunt-Väisälä frequency N, the Lamb frequency
Sl =
√

l(l + 1)cs/r for l = 2 (where cs is the sound speed), and the inverse thermal time 1/ttherm (defined
in equation 2.16). (N is dashed where N2 < 0.) Propagation of g-modes occurs where the squared mode
frequency ω2

nl is less than both N2 and S2
l (Christensen-Dalsgaard 2003). Nonadiabatic effects become im-

portant when ωnl · ttherm < 2π. Several important frequencies for KOI-54 are also plotted, which are defined
in § 2.3.1. The 90th harmonic is the largest pulsation observed (Table 2.2).
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2. The linear overlap integral Qnl (Press & Teukolsky 1977), given by

Qnl =
1

M1Rl
1

∫ R1

0
l
(
ξr,nl + (l + 1)ξh,nl

)
ρrl+1dr

=
1

M1Rl
1

∫ R1

0
δρnl rl+2dr

= −
R1

GM1
· 2l + 1

4π
· δφ(R1),

(2.9)

represents the spatial coupling of the tidal potential to a given eigenmode; it is largest for
modes with low |n| and hence for eigenfrequencies close to the dynamical frequency ωdyn =√

GM1/R3
1, but falls off as a power law for |n| � 0.

3. We define our mode normalization/energy Enl as

Enl = 2
(
ω2

nlR1

GM2
1

)∫ R1

0

(
ξ2

r,nl + l(l + 1)ξ2
h,nl

)
ρr2dr, (2.10)

where ξh is the horizontal displacement (Christensen-Dalsgaard 2003).

4. The unit-normalized Hansen coefficients X̃ k
lm are the Fourier series expansion of the orbital

motion (Murray & Dermott 1999), and are defined implicitly by(
Dperi

D(t)

)l+1

e−im f (t) =
∞∑

k=−∞

X̃ k
lm(e)e−ikΩorbt . (2.11)

They are related to the traditional Hansen coefficients X k
lm by X k

lm = X̃ k
lm/(1 − e)l+1 and satisfy

the sum rule
∞∑

k=−∞

X̃ k
lm(e) = 1, (2.12)

which can be verified using equation (2.11). (An explicit expression for X k
lm is given in

equation A.6.) The Hansen coefficients represent the temporal coupling of the tidal potential
to a given orbital harmonic. They peak near kpeak ∼mΩperi/Ωorb but fall off exponentially for
larger |k|.

5. The Lorentzian factor ∆nlmk is

∆nlmk =
ω2

nl(
ω2

nl −σ2
km

)
− 2iγnlσkm

(2.13)

where σkm = kΩorb −mΩ∗, and represents the temporal coupling of a given harmonic to a given
mode. When its corresponding mode/harmonic pair approach resonance, i.e. ωnl ≈ σkm, ∆nlmk
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can become very large; its maximum, for a perfect resonance, is half the simple harmonic
oscillator quality factor, qnl: ∆pr = iωnl/2γnl = iqnl/2.

6. Wlm is defined in equation (A.3) and represents the angular coupling of the tidal potential to
a given mode; it is nonzero only for mod(l + m,2) = 0. In particular, W2,±1 = 0, meaning that
l = 2, |m| = 1 modes are not excited by the tidal potential.

7. To calculate the quasiadiabatic damping rate γnl within the adiabatic normal mode formal-
ism,2 we average the product of the thermal diffusivity χwith a mode’s squared wavenumber
k2, weighted by the mode energy:

γnl =

∫ rc

0 k2χ(ξ2
r + l(l + 1)ξ2

h)ρr2dr∫ rc

0 (ξ2
r + l(l + 1)ξ2

h)ρr2dr
, (2.14)

where the thermal diffusivity χ is

χ =
16σT 3

3κρ2cp
. (2.15)

The cutoff radius rc is determined by the minimum of the mode’s outer turning point and the
point where ωnl · ttherm = 2π (Christensen-Dalsgaard 2003), where the thermal time is

ttherm =
pcpT
gF

. (2.16)

When this cutoff is restricted by the mode period intersecting the thermal time, so that strong
nonadiabatic effects are present inside the mode’s propagation cavity, the mode becomes a
traveling wave at the surface, and the standing wave/adiabatic normal mode approximation
becomes less realistic. This begins to occur at a frequency (in the rest frame of the star) of
∼ 50×Ωorb for KOI-54, as can be seen in Figure 2.1. Fortunately, our calculations involving
the normal mode formalism (§§ 2.5 & 2.6.5) center primarily on low-order modes that are
firmly within the standing wave limit.

The g-mode damping rate scales roughly as

γnl ∼ γ0 ns ∼ γ0

[
l
(
ω0

ωnl

)]s

, (2.17)

where we have used the asymptotic g-mode frequency scaling from equation (2.6). In the
standing wave regime, i.e. for ωnl & 50×Ωorb, we find that γ0 ∼ 1 Myr−1 and s ∼ 4. This
large value for s results from the fact that most of the damping occurs at the surface, and the
cutoff radius is limited by the outer turning point where the mode frequency intersects the
Lamb frequency. As the mode frequency declines, the cutoff radius moves outward toward

2We only use this approximate method of calculating damping rates when employing the adiabatic normal mode
formalism; our nonadiabatic method introduced in § 2.6.2 fully includes radiative diffusion.
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smaller Lamb frequency and stronger damping, as can be seen in Figure 2.1. Without this
behavior of the turning point, we would expect s∼ 2 since k2 ∝ n2 in equation (2.14).

2.3.3 Observed flux perturbation
Throughout this work, perturbations to the emitted flux ∆F are understood to be bolometric,

i.e. integrated over the entire electromagnetic spectrum. We correct for Kepler’s bandpass to first
order as follows. We define the bandpass correction coefficient β(T ) as the ratio of the bandpass-
corrected flux perturbation (∆F/F)bpc to the bolometric perturbation (∆F/F), so that(

∆F
F

)
bpc

= β(T )
(

∆F
F

)
. (2.18)

We assume Kepler is perfectly sensitive to the wavelength band (λ1,λ2) = (400,865) nm (Koch
et al. 2010), and is completely insensitive to all other wavelengths. Then β(T ) is given to first order
by

β(T )≈
∫ λ2

λ1
(∂Bλ/∂ lnT )dλ

4
∫ λ2

λ1
Bλdλ

, (2.19)

where Bλ(T ) is the Planck function. Using W11’s mean parameters for KOI-54 (Table 2.1), we
have β(T1) = 0.81 and β(T2) = 0.79. Note that employing β alone amounts to ignoring bandpass
corrections due to limb darkening. We have also ignored the fact that in realistic atmospheres, the
perturbed specific intensity depends on perturbations to gravity in addition to temperature; this is
a small effect, however, as shown e.g. in Robinson et al. (1982).

For completeness, we transcribe several results from Pfahl et al. (2008), which allow a radial
displacement field ξr and a Lagrangian perturbation to the emitted flux ∆F , both evaluated at the
stellar surface, to be translated into a corresponding disk-averaged observed flux perturbation δJ,
as seen e.g. by a telescope (Dziembowski 1977). While an emitted flux perturbation alters the
observed flux directly, a radial displacement field contributes by perturbing a star’s cross section.3

Given ξr and ∆F expanded in spherical harmonics as

ξr =
∞∑
l=0

l∑
m=−l

ξr,lm(t)Ylm(θ,φ) (2.20)

∆F =
∞∑
l=0

l∑
m=−l

∆Flm(t)Ylm(θ,φ), (2.21)

3A horizontal displacement field ξh produces no net effect to first order—its influence cancels against perturbations
to limb darkening, all of which is included in equation (2.22).
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Table 2.3: First six disk-integral factors bl and cl from equations (2.23) and (2.24) for linear Eddington limb
darkening, h(µ) = 1 + (3/2)µ.

l bl cl

0 1 0
1 17/24 17/12
2 13/40 39/20
3 1/16 3/4
4 −1/48 −5/12
5 −1/128 −15/64

we can translate these into a fractional observed flux variation δJ/J to first order by

δJ
J

=
∞∑
l=0

l∑
m=−l

[
(2bl − cl)

ξr,lm(t)
R

+β(T )bl
∆Flm(t)

F(R)

]
Ylm(θo,φo), (2.22)

where the disk-integral factors are

bl =
∫ 1

0
µPl(µ)h(µ)dµ (2.23)

cl =
∫ 1

0

[
2µ2 dPl

dµ
− (µ−µ3)

d2Pl

dµ2

]
h(µ)dµ, (2.24)

Pl(µ) is a Legendre polynomial, and h(µ) is the limb darkening function, normalized as
∫ 1

0 µh(µ)dµ=
1. For simplicity, we use Eddington limb darkening for all of our analysis, with h(µ) = 1 +3µ/2; bl

and cl in this case are given in Table 2.3 for 0≤ l ≤ 5.
Since Y2,±2 ∝ sin2 θ and Y2,0 ∝ (3cos2 θ − 1), and since KOI-54 has θo = i ≈ 5.5◦ (Table 2.1),

equation (2.22) shows that m = ±2 eigenmodes are a factor of ∼ 200 less observable than m = 0
modes. It is thus likely that nearly all of the observed pulsations in KOI-54 have m = 0; the
exceptions may be F1 and F2, as we discuss in § 2.6.6.

2.3.4 Rotation in the traditional approximation
Stellar rotation manifests itself in a star’s corotating frame as the fictitious centrifugal and Cori-

olis forces (Unno et al. 1989). The centrifugal force directly affects the equilibrium structure of
a star, which can then consequently affect stellar oscillations. Its importance, however, is charac-
terized by (Ω∗/ωdyn)2, which is ∼ 10−2 for rotation periods and stellar parameters of interest here
(§ 2.2). As such we neglect rotational modification of the equilibrium stellar structure (Ipser &
Lindblom 1990).

The Coriolis force, on the other hand, affects stellar oscillations directly. Given a frequency
of oscillation σ, the influence of the Coriolis force is characterized by the dimensionless rotation
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parameter q given by
q = 2Ω∗/σ, (2.25)

where large values of |q| imply that rotation is an important effect that must be accounted for.
Note that for simplicity we assume rigid-body rotation throughout. For the pulsations observed in
KOI-54’s lightcurve (Table 2.2), assuming both stars rotate at near the pseudosynchronous rotation
period Pps∼ 1.8 days discussed in § 2.5.1 and that m = 0 (justified in the previous section), q ranges
from 0.5 for k = σ/Ωorb = 90 to 1.5 for k = 30. Thus lower harmonics fall in the nonperturbative
rotation regime, where rotation is a critical effect that must be fully included.

The “traditional approximation” (Chapman & Lindzen 1970) greatly simplifies the required
analysis when the Coriolis force is included in the momentum equation. In the case of g-modes, it
is applicable for

1� 2
q
· R

Hp
·
(

Ω∗
|N|

)2

, (2.26)

where Hp = ρg/p is the pressure scale height; outside of the convective cores of models we are con-
cerned with in this work (where g-modes are evanescent anyway), equation (2.26) is well satisfied
whenever rotation is significant. Here we will give a brief overview of the traditional approxima-
tion; we refer to Bildsten et al. (1996) for a more thorough discussion.

The traditional approximation changes the angular Laplacian, which occurs when deriving the
nonrotating stellar oscillation equations, into the Laplace tidal operator Lq

m. (Without the traditional
approximation, the oscillation equations for a rotating star are generally not separable.) It is thus
necessary to perform the polar expansion of oscillation variables in eigenfunctions of Lq

m, known
as the Hough functions Hq

λm(µ) (where µ = cosθ), rather than associated Legendre functions; the
azimuthal expansion is still in eimφ. The eigenvalues of Lq

m are denoted λ, and depend on m, the az-
imuthal wavenumber. In the limit that q→ 0, the Hough functions become ordinary (appropriately
normalized) associated Legendre functions, while λ→ l(l + 1).

We present the inhomogeneous, tidally driven stellar oscillation equations in the traditional ap-
proximation in Appendix A.1.2. The principal difference relative to the standard stellar oscillation
equations is that terms involving l(l + 1) either are approximated to zero, or have l(l + 1)→ λ. This
replacement changes the effective angular wavenumber. E.g., since the primary λ for m = 0 in-
creases with increasing rotation, fast rotation leads to increased damping of m = 0 g-modes at fixed
frequency, as discussed in § 2.6.3.

For strong rotation, |q| > 1, the Hough eigenvalues λ can be both positive and negative. The
case of λ> 0 produces rotationally modified traditional g-modes, which evanesce for cos2 θ> 1/q2.
(Rossby waves or r-modes are also confined near the equator and have a small positive value of λ.)
Instead, for λ < 0, polar modes are produced that propagate near the poles for cos2 θ > 1/q2, but
evanesce radially from the surface since they have an imaginary Lamb frequency Sλ = λ1/2cs/r (as
explained further in Figure 2.1).
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2.4 Qualitative discussion of tidal asteroseismology
It is helpful conceptually to divide the tidal response of a star into two components, the equi-

librium tide and the dynamical tide (Zahn 1975). Note that in this section we will again use the
normal mode formalism described in § 2.3.2, even though our subsequent more detailed modeling
of KOI-54 uses the inhomogeneous, nonadiabatic formalism introduced in § 2.6.2.

2.4.1 Equilibrium tide
The equilibrium tide is the “static” response of a star to a perturbing tidal potential, i.e., the

large-scale prolation due to differential gravity from a companion. In terms of lightcurves, the
equilibrium tide corresponds to ellipsoidal variability (along with the irradiation component of this
effect discussed in Appendix A.2.1). In the case of an eccentric binary this manifests itself as a
large variation in the observed flux from the binary during periastron. KOI-54’s equilibrium tide
was successfully modeled in W11, enabling precise constraints to be placed on various stellar and
orbital parameters (Table 2.1).

In terms of the normal mode formalism developed in § 2.3.2, the equilibrium tide corresponds
to the amplitudes from equation (2.7) tied to large overlaps Qnl and large Hansen coefficients X k

lm;
in other words, to pairings of low-|n| modes with low-|k| orbital harmonics. The Lorentzian factor
∆nlmk is typically ∼ 1 for the equilibrium tide since it is not a resonant phenomenon.

In practice, however, it is much simpler and more convenient to use other mathematical for-
malisms to model the equilibrium tide, like taking the zero-frequency stellar response as in Ap-
pendix A.2.2, or filling Roche potentials as in W11’s simulations. We show in § 2.6.1 that our
simple analytical treatment of the equilibrium tide verifies the results from the sophisticated simu-
lation code employed in W11.

2.4.2 Dynamical tide
The dynamical tide, on the other hand, corresponds to resonantly excited pulsations with fre-

quencies equal to harmonics of the orbital frequency, kΩorb. W11 observed at least 21 such har-
monics (Table 2.2).

For a circular orbit, the tidal potential has all its power in the k = ±2 orbital harmonics; in
this case the only modes that can be resonantly excited are those with frequencies close to twice
the Doppler-shifted orbital frequency: ωnl ≈ 2|Ωorb −Ω∗|; this is typically only a single mode. This
corresponds to the fact that the Hansen coefficients from equation (2.11) become a Kronecker delta
at zero eccentricity: X̃ k

lm(0) = δk
m. However, for a highly eccentric orbit, the distribution of power

in the Hansen coefficients, and hence the stellar response, can be much broader; as a result a wide
array of different harmonics can be excited, allowing for a rich pulsation spectrum.

Mode excitation due to a tidal harmonic kΩorb is modulated by the Doppler-shifted frequency
σkm = kΩorb − mΩ∗. However, the frequencies at which modes are observed to oscillate, viewed
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from an inertial frame, are indeed pure harmonics of the orbital frequency, kΩorb.4 We demon-
strate this mathematically in Appendix A.1; intuitively, although a driving frequency experiences
a Doppler shift upon switching to a star’s corotating frame, the star’s response is then Doppler
shifted back upon observation from an inertial frame. In general, any time a linear system is driven
at a particular frequency, it then also oscillates at that frequency, with its internal structure reflected
only in the oscillation’s amplitude and phase.

Whether a given mode is excited to a large amplitude is contingent on several conditions—
essentially all the terms in equation (2.7). First, the overall strength of the tide, and hence the
magnitude of observed flux variations, is determined by the tidal factor εl from equation (2.8).
The dominant multipole order is l = 2, so we have ε2 = (M2/M1)(R1/Dperi)3, where Dperi = a(1 − e)
is the binary separation at periastron, and we are focusing our analysis on star 1. For KOI-54,
ε2 ' 4×10−3 for both stars.

Next, the strength of a mode’s resonant temporal coupling to the tidal potential is given by the
Lorentzian factor ∆nlmk in equation (2.13). Since this factor is set by how close a mode’s frequency
is to the nearest orbital harmonic, its effect is intrinsically random. The degree of resonance has an
enormous effect on a mode’s contribution to the observed flux perturbation, meaning that modeling
the dynamical tide amounts on some level to adjusting stellar and system parameters in order to
align eigenfrequencies against orbital harmonics so that the array of Lorentzian factors conspire to
reproduce observational data.

Moreover, given a single observed pulsation amplitude together with theoretical knowledge of
the likely responsible mode, i.e. the first four factors in equation (2.7), equating theoretical and ob-
served pulsation amplitudes in principle yields direct determination of the mode’s eigenfrequency,
independently of the degree of resonance. This line of reasoning of course neglects the consider-
able theoretical uncertainties present, but serves to illustrate tidal asteroseismology’s potential to
constrain stellar parameters.

Despite the inherent unpredictability, a lightcurve’s Fourier spectrum is still subject to restric-
tions imposed primarily by the remaining two factors in equation (2.7). These terms, the linear
overlap integral Qnl and the unit-normalized Hansen coefficient X̃ k

lm(e) (respectively equations 2.9
and 2.11), restrict the range in k over which harmonics can be excited; Figure 2.2 shows profiles of
both. As discussed in § 2.3.2, Qnl peaks for modes with frequencies near the dynamical frequency
of the star ωdyn and falls off as a power law in frequency, whereas X̃ k

lm peaks for harmonics near
mΩperi/Ωorb and falls off for higher k:

Qnl ∝ ωp
nl ωnl � ωdyn (2.27)

X̃ k
lm(e)∝ exp(−k/r) |k| � mΩperi/Ωorb. (2.28)

The power-law index p is 11/6 for g-modes in stars with a convective core and a radiative envelope
or vice versa (Zahn 1970), and for KOI-54’s eccentricity and l = 2 we find r ∼ 15.

As a result, modes that can be excited are those with frequencies in the intervening region

4Welsh et al. (2011) incorrectly attributed nonharmonic pulsations to rotational splitting; we return to nonharmonic
pulsations in § 2.6.5.
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Figure 2.2: The linear overlap integral Qnl and unit-normalized Hansen coefficients X̃k
lm(e) as a function of

k = ω/Ωorb for l = 2 and m = 0,2 (note the identity X̃k
lm = X̃−k

l,−m). Stellar and orbital parameters are fixed to
W11’s mean values for star 1; in particular, e = 0.8342. Each point on the curve for Q represents a normal
mode with frequency ωnl ' kΩorb, thus neglecting any Doppler shift due to rotation. (See § 2.6.3 for a
discussion of the influence of Doppler shifts.) Modes of a given m can be excited near where the overlap
curve intersects the Hansen curve, at log10(k)≈ 2.0 in this plot.

between the peaks of Qnl and X k
lm, i.e.,

|m|Ωperi < ωnl < ωdyn. (2.29)

This is a necessary but not sufficient condition; Figure 2.3 shows the product QnlX k
lm(e) at various

eccentricities with stellar parameters as well as the periastron distance Dperi fixed to the mean values
in W11, and hence with fixed tidal parameter εl (but consequently allowing the orbital period to
vary). Although a chance close resonance can yield a large Lorentzian factor ∆nlmk, excitation of
modes far from the peak of QnlX̃ k

lm becomes less and less likely, since this quantity falls off sharply,
especially towards larger |k|.

There are two other constraints on the range of harmonic pulsations that can be excited. First,
the eigenmode density for g-modes scales asymptotically as∣∣∣∣dn

dk

∣∣∣∣∼ l
k2 ·

ωdyn

Ωorb
, (2.30)

which shows that fewer modes exist at higher k. This can be seen by the spacing of points (which
denote normal modes) in Figures 2.2 and 2.3, as well as by the spacing of peaks in Figure 2.6.
This further limits the number of harmonics that can be excited at large k, in addition to the expo-
nential decay of the Hansen coefficients discussed earlier, and thus effectively shifts the curves in
Figure 2.3 toward lower k.

In addition, the Lorentzian factor ∆nlmk is attenuated by mode damping γnl , which is set by
radiative diffusion for high-order g-modes. Damping becomes larger with decreasing g-mode fre-
quency due to increasing wavenumber; an asymptotic scaling is given in equation (2.17). Be-
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Figure 2.3: Plot of QnlX̃k
lm(e) as a function of k = ω/Ωorb for several eccentricities with l = 2, m = 0, and all

stellar parameters as well as the periastron separation Dperi fixed to W11’s mean values for star 1 (Table 2.1).
Fixing Dperi fixes the tidal factor εl from equation (2.8) and hence the overall strength of the tide (although
the orbital period consequently varies). Each point represents a normal mode; Hansen coefficients are
evaluated with k given by the integer nearest to ωnl/Ωorb for each eigenmode. Solid vertical lines denote
the n = 7 g-mode (the g-mode with 7 radial nodes), while dashed vertical lines are n = 14. Note that the
finer eigenfrequency spacing at small k allows for larger amplitudes, which is not accounted for in this plot;
including this effect would shift the curves toward lower k.
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cause the Lorentzian response is proportional to γ−1
nl at perfect resonance, the amplitudes of lower-

frequency modes/harmonics are diminished by increased damping, in addition to the power-law
decay of the tidal overlap. This effect is critical for understanding the influence of rotation on
lightcurve power spectra, as we investigate in § 2.6.3.

2.4.3 Pulsation phases
Pulsation phases in eccentric binaries are essential information which should be fully modeled,

in addition to the pulsation amplitudes reported in W11. For simplicity, we focus on a particular
harmonic amplitude Anlmk from equations (2.5) and (2.7) and assume it results from a close reso-
nance so that ωnl ≈ σkm = kΩorb − mΩ∗, assuming without loss of generality that σkm > 0. We can
then evaluate its phase ψnlmk relative to periastron, modulo π (since we are temporarily ignoring
other factors contributing to the amplitude, which could introduce a minus sign), as

ψnlmk = arg(Anlmk)

= π/2 − arctan
(
δω(ωnl +σkm)

2γnlσkm

)
mod π

≈ π/2 − arctan(δω/γnl) mod π,

(2.31)

where δω = ωnl −σkm is the detuning frequency.
For a near-perfect resonance, where |δω| . γnl , ψnlmk approaches π/2 (modulo π). However,

if eigenmode damping rates are much smaller than the orbital frequency, then this intrinsic phase
should instead be near 0. This is the case for KOI-54, where Ωorb/γnl > 103 for modes of interest.
Indeed, theoretically modeling the largest-amplitude 90th and 91st harmonics of KOI-54 assuming
they are m = 0 modes requires only |δω|/γnl ∼ 20, so that even these phases should be within∼ 1%
of zero (modulo π).

The phase of the corresponding observed harmonic flux perturbation can be obtained from
equation (2.31) by further including the phase of the spherical harmonic factor in the disk-averaging
formula, equation (2.22):

arg(δJk/J) = ψnlmk + mφo. (2.32)

Summing over the complex conjugate pair, the observed time dependence is then cos[kΩorbt +

(ψnlmk + mφo)], where t = 0 corresponds to periastron. Thus if the observed pulsation’s (cosine)
phase is δ, the comparison to make is

δ = (ψnlmk + mφo) mod π. (2.33)

Nonetheless, since we have argued that ψnlmk ≈ 0, this becomes

δ ≈ mφo mod π. (2.34)

Given determination of φo (related to the argument of periastron ω by equation 2.2) by mod-
eling of RV data or ellipsoidal variation, the phase of a resonant harmonic thus directly gives the
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mode’s value of |m| (which is very likely 0 or 2 for tidally excited modes, since l = 2 dominates).
For KOI-54, phase information on harmonics 90 and 91 would thus determine whether they result
from resonance locks, as discussed in the next section, or are simply chance resonances. Fur-
thermore, knowing |m| allows mφo to be removed from equation (2.33), yielding the pulsation’s
damping-to-detuning ratio.

However, the preceding treatment is only valid if the eigenfunction itself has a small phase:
although eigenfunctions are purely real for adiabatic normal modes, local phases are introduced in
a fully nonadiabatic calculation, as in § 2.6.2. Thus equations (2.32) – (2.34) are only applicable
in the standing wave regime, where the imaginary part of the flux perturbation is small relative
to the real part. In the traveling wave regime, the local wave phase near the surface becomes
significant, and can overwhelm the contribution from global damping; see § 2.6.2. For KOI-54,
this corresponds to |k| below ∼ 30, although this depends on the rotation rate (§ 2.6.3).

2.5 Rotational synchronization in KOI-54
Here we will discuss a priori theoretical expectations for KOI-54’s stars’ rotation. Later, in

§ 2.6.3, we will compare the results derived here with constraints imposed by the observed pulsa-
tion spectrum.

2.5.1 Pseudosynchronization
In binary systems, the influence of tides causes each component of the binary to eventually

synchronize its rotational and orbital motions, just as with Earth’s moon. Tides also circularize
orbits, sending e→ 0, but the circularization timescale tcirc is much greater than the synchronization
timescale tsync; their ratio is roughly given by the ratio of orbital to rotational angular momenta:

tcirc

tsync
∼ Lorb

L∗
=
µa2

I∗
· Ωorb

Ω∗
·
√

1 − e2

∼
( a

R

)2
(

M∗R2
∗

I∗

)
(1 − e)2,

(2.35)

where I∗ is the stellar moment of inertia, µ is the reduced mass, and we have assumed for simplicity
that the stars rotate at the periastron frequency Ωperi (§ 2.3.1). For KOI-54, this ratio is ∼ 103.

Due to the disparity of these timescales, a star in an eccentric binary will first synchronize to a
pseudosynchronous period Pps, defined as a rotation period such that no average tidal torque is ex-
erted on either star over a sufficiently long timescale. If only the torque due to the equilibrium tide
is used, and thus eigenmode resonances are neglected, then only one unique pseudosynchronous
period exists, Pnr

ps , as derived in Hut (1981) and employed in W11. Its value for KOI-54 is (equa-
tion A.48)

Pnr
ps = (2.53±0.01) days.

Inclusion of eigenmode resonances, however, complicates the situation. Figure 2.4 shows the



2.5. ROTATIONAL SYNCHRONIZATION IN KOI-54 22

secular tidal torque (averaged over one rotation period) for star 1 of KOI-54 plotted as a function
of rotation frequency/period including contributions from both the equilibrium and dynamical tide.
Although the general torque profile tends to zero at Pnr

ps , numerous other roots exist (displayed as
vertical lines), where the torque due to a single resonantly excited eigenmode of the dynamical
tide cancels against that due to the equilibrium tide. To produce this plot, we directly evaluated the
secular tidal torque (Appendix A.3.1) using an expansion over the quadrupolar adiabatic normal
modes of a MESA stellar model (Paxton et al. 2011) with parameters set by W11’s mean values for
star 1 of KOI-54 (Table 2.1). In our calculation we include both radiative (§ 2.3.2) and turbulent
convective damping (Willems et al. 2010), but neglect rotational modification of the eigenmodes.

Next, of the many zeroes of the secular torque available, which are applicable? Continuing with
the assumption that KOI-54’s stars were born with rotation periods of Pbirth ∼ 1 day (§ 2.2.1), with
the same orientation as the orbital motion, one might naively posit that the first zero encountered
by each star should constitute a pseudosynchronous period—it is an ostensibly stable spin state
since small changes to either the stellar eigenmodes (via stellar evolution) or the orbital parameters
(via circularization and orbital decay) induce a restoring torque. This is the basic idea behind a
resonance lock (Witte & Savonije 1999).

However, this conception of resonance locking neglects two important factors. First, although
the dynamical and equilibrium tidal torques may cancel, their energy deposition rates do not (in
general); see Appendix A.3.1. Thus during a resonance lock the orbital frequency must continue
to evolve, allowing other modes to come into resonance, potentially capable of breaking the lock.
Second, as shown by Fuller & Lai (2011), it is necessary that the orbital frequency not evolve
so quickly that the restoring torque mentioned earlier be insufficient to maintain the resonance
lock. This restricts the range of modes capable of resonantly locking, introducing an upper bound
on their inertial-frame frequencies and hence their orbital harmonic numbers (values of k in our
notation).

Consequently, pseudosynchronization is in reality a complicated and dynamical process, con-
sisting of a chain of resonance locks persisting until eventually e→ 0 and P∗ = Porb. Such reso-
nance lock chains were studied in much greater detail by Witte & Savonije (1999) for eccentric
binaries broadly similar to KOI-54. As a result of the inherent complexity, a full simulation of
KOI-54’s orbital and rotational evolution is required in order to address the phenomenon of reso-
nance locking and to derive theoretical predictions for the stars’ spins. To perform such simula-
tions, we again expanded the secular tidal torque and energy deposition rate over normal modes
(detailed in Appendix A.3.1) using two MESA stellar models consistent with W11’s mean param-
eters for KOI-54’s two stars. We then numerically integrated the orbital evolution equations (Witte
& Savonije 1999) assuming rigid-body rotation. We did not include the Coriolis force, nor did we
address whether the eigenmode amplitudes required to produce the various resonance locks that
arise are stable to nonlinear processes (§ 2.6.5).

Our simulations indicate that both stars should have reached pseudosynchronization states with
rotation periods of Pps ∼ 1.8 days; we discuss the synchronization timescale in more detail in
§ 2.5.2. These periods are ∼ 30% faster than Hut’s value of Pnr

ps = 2.5 days. The pseudosynchro-
nization mechanism that operates is stochastic in nature, in which the dynamical tide’s prograde
resonance locks balance the equilibrium tide in a temporally averaged sense. This result appears
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Figure 2.4: Plot of the secular tidal synchronization torque τ as a function of the rotational frequency
f∗ = 1/P∗ for star 1, using W11’s parameters (Table 2.1). Top panel: Black indicates a positive torque
(meaning increasing stellar spin), while red indicates a negative torque (decreasing stellar spin). The overall
profile of τ goes to zero at Hut’s value for the nonresonant pseudosynchronous period, Pnr

ps = 2.53 days for
KOI-54, but eigenmode resonances create many additional zeroes, displayed as light gray vertical lines.
(Determination of zeroes in this plot is limited by its grid resolution. Many more exist; see bottom panel.)
Bottom panel: Zoom in, showing how narrow resonance spikes can cause the otherwise negative torque to
become zero. The torque pattern roughly repeats at half the orbital frequency, forb/2 = 0.012 day−1, due to
the fact that eigenmodes resonate with Doppler-shifted driving frequencies σkm = kΩorb − mΩ∗, with m =±2
and k ∈ Z.
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independently of the initial rotation rates used; in other words, it is an attractor.
As described above, when a star is locked in resonance, it is the torque from a single highly res-

onant eigenmode that acts to oppose the equilibrium tide’s nonzero torque. Such a high-amplitude
mode should be easily observable. At first glance, this line of reasoning seems to provide a natural
explanation for the presence of the large-amplitude 90th and 91st observed harmonics in KOI-54
(F1 and F2 from Table 2.2), namely that each is the photometric signature of the highly resonant
eigenmode that produces a resonance lock for its respective star. There are several problems with
this idea, however, which we elucidate in § 2.6.6.

2.5.2 Synchronization timescale
Where between the stars’ putative birth rotation periods, Pbirth = 1.0 day, and the pseudosyn-

chronous period from our simulations, Pps ∼ 1.8 days, do we a priori expect the rotation periods
of KOI-54’s stars to fall? To this end, we can roughly estimate the synchronization timescale tsync

by integrating IΩ̇∗ = τ (Ω∗) to find

tsync ∼ I
∫ Ωps

Ωbirth

d Ω∗
τ (Ω∗)

, (2.36)

where I is the stellar moment of inertia, Ωps = 2π/Pps, and the tidal torque τ can as before be
calculated as a function of the spin frequency Ω∗ using an expansion over normal modes (Ap-
pendix A.3.1).

Using this approximation, we find tsync ∼ 80 Myr, which is less than the inferred system age of
tage ∼ 200 Myr. This is consistent with our orbital evolution simulations (§ 2.5.1). Although stellar
evolution was ignored in this calculation, a rough estimate of its effect can be made using only
the fact that tsync scales as R−3 (since the torque scales as R5 while the moment of inertia scales as
R2). Given that both stars had 10% smaller radii at ZAMS (indicated by our modeling), this would
lead to only at most a 3× 10% = 30% increase in tsync. Furthermore, both stars had much larger
radii before reaching the main sequence, which would imply an even shorter synchronization time.
Lastly, an important effect that arises when rotation is fully included is the existence of retrograde
r-modes, which would also enhance the rate of stellar spindown (Witte & Savonije 1999). Thus
the inequality

tage > tsync

seems to be well satisfied, and we expect that both stars’ rotation periods should be close to the
value of Pps ∼ 1.8 days from § 2.5.1.
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Figure 2.5: Simple analytic model of ellipsoidal variability detailed in Appendix A.2, including both
the equilibrium tide (red dotted lines) and “reflection”/irradiation (blue dashed lines) components of the
lightcurve. We used the best-fit parameters from W11 in all three panels (Table 2.1), except that we show
two examples of edge-on orientations (ignoring the possibility of eclipses) in (b) & (c), effectively present-
ing KOI-54’s lightcurve as it would be observed from different angles. (We used ω = (80◦,20◦) for (b, c) in
order to demonstrate the asymmetric lightcurves possible depending on the binary’s orientation.) Panel (a)
reproduces W11’s modeling and the data for KOI-54 to ∼ 20%. Our analytic model is easily applicable to
many other systems. In § 2.6.3 we show that the dynamical tidal response, ignored here, may be larger than
that due to the equilibrium tide for edge-on systems.
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2.6 Results

2.6.1 Ellipsoidal variation
Figure 2.5.a shows our simple model of KOI-54’s ellipsoidal variation; we adopted the best-fit

parameters from W11’s modeling (Table 2.1) to produce our lightcurve. Our irradiation (Ap-
pendix A.2.1, blue dashed line) and equilibrium tide (Appendix A.2.2, red dotted line) models are
larger than W11’s results by 24% and 14% respectively. The shapes of both curves are, however,
essentially indistinguishable from W11’s much more detailed calculations.

We attribute the small difference between our results and those of W11 to our simple model of
the bandpass correction (equation 2.19) which ignores bandpass variations due to limb darkening.
Such details could easily be incorporated into our analytical formalism, however, by introducing a
wavelength-dependent limb darkening function hλ(µ) in the disk integrals in equations (2.23) and
(2.24) (Robinson et al. 1982). We thus believe that the models provided in Appendix A.2 should be
quite useful for modeling other systems like KOI-54, due in particular to their analytic simplicity.

We also show in Figure 2.5.b & c what KOI-54’s equilibrium tide and irradiation would look
like for two edge-on orientations, demonstrating the more complicated, asymmetric lightcurve
morphologies possible in eccentric binaries (see also the earlier work by Kumar et al. 1995). Future
searches for eccentric binaries using Kepler and other telescopes with high-precision photometry
should allow for the wide range of lightcurve shapes shown in Figure 2.5. We note, however,
that that the dynamical tidal response, ignored in this section, may be larger than that due to the
equilibrium tide for edge-on systems, as we show in § 2.6.3.

2.6.2 Nonadiabatic inhomogeneous method
Thus far our theoretical results have primarily utilized the tidally forced adiabatic normal mode

formalism. Although this framework provides excellent intuition for the key physics in eccen-
tric binaries, it is insufficient for producing detailed theoretical lightcurves, since this necessitates
tracking a star’s tidal response all the way to the photosphere where nonadiabatic effects are crit-
ical. To account for this, we employ the nonadiabatic inhomogeneous formalism originally used
by Pfahl et al. (2008) (Appendix A.1.1), which we have extended to account for rotation in the
traditional approximation (Appendix A.1.2).

Rather than decompose the response of the star into normal modes, the inhomogeneous method
directly solves for the full linear response of the star to an external tidal force produced by a com-
panion at a given forcing frequency. Given a stellar model, an orbital period, a set of orbital
harmonics to act as driving frequencies, and a rigid-body rotation period, we solve the numerical
problem described in Appendix A.1.2 for each star. This determines the various physical pertur-
bation variables of the star as a function of radius, such as the radial displacement and the flux
perturbation. For stars of interest we can safely ignore perturbations to the convective flux, so the
only nonadiabatic effect is that produced by radiative diffusion.

Figure 2.6 shows the surface radial displacement ξr and Lagrangian emitted flux perturbation
∆F computed on a fine frequency grid, temporarily ignoring rotation; normal mode frequencies
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Figure 2.6: Amplitude of both the radial displacement ξr and Lagrangian flux perturbation ∆F evaluated at
the photosphere as a function of k = ω/Ωorb for a MESA model of star 1, using W11’s best-fit parameters
(Table 2.1). As a result of its larger amplitude, the Lagrangian flux perturbation has a much larger effect than
the surface displacement on observed flux variations. Rotation is not included in this calculation. The radial
dependence of the tidal potential is set to U = −(GM1/R1)(r/R1)l with l = 2, which determines the vertical
scale. Normal mode eigenfrequencies correspond to peaks in the curves. See the text for a discussion of the
different regimes present in the stellar response for different forcing frequencies.

correspond to the resonant peaks in these curves. The surface radial displacement should approach
its equilibrium tide value as the driving frequency tends to zero. Quantitatively, we find that this
is true for orbital harmonics k . 30; note that in the units employed in Figure 2.6, this equilibrium
tide value for ξr is (ξr/R)eq

phot = 1 (Appendix A.2.2).
The surface flux perturbation shown in Figure 2.6, on the other hand, more clearly demonstrates

the three qualitatively different regimes possible at the surface. First, the weakly damped stand-
ing wave regime, k & 30, is characterized by strong eigenmode resonances and all perturbation
variables having small imaginary parts. In Figure 2.1, this corresponds to the outer turning point,
where the mode frequency intersects the Lamb frequency, lying inside the point where the mode
frequency becomes comparable to the thermal frequency, so that the mode becomes evanescent
before it becomes strongly nonadiabatic.

Next, the traveling wave regime, 5 . k . 30, arises when modes instead propagate beyond
where the mode and thermal frequencies become comparable, leading to rapid radiative diffusion
near the surface. In the traveling wave limit, resonances become severely attenuated as waves are
increasingly unable to reflect at the surface, and all perturbation variables have comparable real
and imaginary parts (not including their equilibrium tide values).

Lastly, just as with the radial displacement, the flux perturbation also asymptotes to its over-
damped equilibrium tide/von Zeipel value of (∆F/F)eq,vZ

phot = −(l + 2)(ξr/R)eq
phot (Appendix A.2.2) in

the low-frequency limit, which is |∆F/F |eq,vZ
phot = |− l − 2| = 4 in Figure 2.6’s units. Quantitatively,

however, this only occurs for k . 5. At first glance, this suggests that the equilibrium tide model-
ing of KOI-54 in W11 and Figure 2.5 is invalid, since the equilibrium tide in KOI-54 has orbital
power out to at least k∼ 30 (as can be seen e.g. in the plot of the Hansen coefficients for KOI-54’s
eccentricity in Figure 2.2).

Fortunately, as we describe in the next section, including rotation with a face-on inclination
effectively stretches the graph in Figure 2.6 towards higher k. E.g., for P∗ = 2.0 days, we find the
equilibrium tide/von Zeipel approximation to hold for k . 30, justifying the simplifications used
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in W11 and Appendix A.2.2, although this may not apply for edge-on systems.

2.6.3 Effect of rotation on the dynamical tidal response
The most important effects of rotation in the context of tidal asteroseismology can be seen in

Figure 2.7. Here we show the predicted flux perturbation for KOI-54 as a function of orbital har-
monic k for four different rotation periods, having subtracted the equilibrium tide (Appendix A.2.2)
to focus on resonant effects. 5 In Figure 2.7.a we use KOI-54’s face-on inclination of i = 5.5◦, while
in Figure 2.7.b we use an inclination of i = 90◦ to illustrate how a system like KOI-54 would ap-
pear if seen edge on; all other parameters are fixed to those from W11’s modeling (and are thus
not intended to quantitatively reproduce the data; see Figure 2.8 for an optimized model). The
details of which specific higher harmonics have the most power vary as rotation changes mode
eigenfrequencies, moving eigenmodes into and out of resonance. Nonetheless, several qualitative
features can be observed.

For KOI-54’s actual face-on orientation, as in Figure 2.7.a, rotation tends to suppress power in
lower harmonics. This can be understood as follows. Primarily m = 0 modes are observable face
on (§ 2.3.3). At fixed driving frequency σ, as the stellar rotation frequency Ω∗, and hence the Cori-
olis parameter q = 2Ω∗/σ, increases in magnitude, m = 0 g-modes become progressively confined
to the stellar equator (§ 2.3.4). As a result, these rotationally modified modes angularly couple
more weakly to the tidal potential, diminishing their intrinsic amplitudes. Moreover, equatorial
compression also corresponds to an increase in the effective multipole l, where l ∼

√
λ, and λ is a

Hough eigenvalue from § 2.3.4 (e.g., Fig. 2 of Bildsten et al. 1996). Consequently, since g-modes
asymptotically satisfy equation (2.6), the number of radial nodes n must increase commensurately.
Larger n increases the radial wavenumber, which enhances the damping rate, further suppressing
the resonant response of the modes and hence their contribution to the observed flux variation.
This effectively corresponds to extending the highly damped traveling wave regime toward higher
k in Figure 2.6.

As described in § 2.3.4, when the magnitude of the Coriolis parameter becomes greater than
unity, a new branch of eigenmodes develops with negative Hough eigenvalues, λ < 0. These
modes are confined to the stellar poles rather than the equator (Lindzen 1966). They also have an
imaginary Lamb frequency, so that they are radially evanescent (explained further in Figure 2.1),
and couple weakly to the tidal potential. We found negative-λ modes to produce only a small
contribution to the stellar response, which increased with increasing rotation rate but which was
roughly constant as a function of forcing frequency, thus mimicking the equilibrium tide. The role
of these modes in the context of tidal asteroseismology should be investigated further, but for now
we have neglected them in Figure 2.7.

For edge-on orbits, as in Figure 2.7.b, the situation is more complicated, and there are high-
amplitude pulsations observable at all rotation periods. First, m = 0 modes very weakly affect
edge-on lightcurves, since their Hansen coefficients (which peak at k = 0) do not intersect with the
linear overlap integrals as strongly as for m = 2 modes (explained further in § 2.4.2 and shown in

5We assume that rotation is in the same sense as orbital motion throughout this section.
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(a) Face on: i = 5.5◦, ω = 36◦ (KOI-54’s orientation)[
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Figure 2.7: Influence of rotation on the lightcurve temporal power spectra of eccentric binaries. The eight
leftmost plots show theoretical power spectra using fiducial stellar models and orbital parameters consistent
with W11’s mean values (Table 2.1), each as a function of orbital harmonic k. The top row uses KOI-54’s
known face-on inclination of i = 5.5◦; the bottom row instead uses an edge-on inclination of i = 90◦, show-
ing how a system like KOI-54 would appear if viewed edge on. The vertical axis has different scales in the
two rows. The effects of rotation on the stellar pulsations are included using the traditional approximation
(§ 2.3.4). The equilibrium tide (Appendix A.2.2) has been subtracted in order to focus on resonant effects.
We have not included negative-λ modes, as discussed in the text. (Note that parameters here have not been
optimized to reproduce KOI-54’s lightcurve; see Figure 2.8 for such a model.) The four leftmost columns
show four different rigid-body rotation periods. (a) For a perfectly face-on orientation, only m = 0 modes
can be observed (§ 2.3.3); however, larger rotation rates lead to equatorial compression of lower-frequency
m = 0 g-modes, which increases the effective l and hence enhances the dissipation, leading to attenuated am-
plitudes. The rightmost panel shows the data for KOI-54, which is qualitatively most consistent with shorter
rotation periods of 1.0 – 2.0 days, comparable to the pseudosynchronous period of ∼ 1.8 days calculated
in § 2.5. (b) For edge-on systems, a similar argument regarding rotational suppression of mode amplitudes
applies, but instead near the Doppler-shifted harmonic k = 2Porb/P∗, rather than for k near zero for the m = 0
modes observable face on (see text for details). Comparison of the four left panels to the rightmost panel,
which shows our simple analytical equilibrium tide model’s harmonic decomposition (Appendix A.2.2),
demonstrates that the dynamical tide can dominate the lightcurve in edge-on systems.
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Figure 2.2). Similarly, modes with m = −2 have Hansen coefficients which peak near −2Ωperi/Ωorb

and are very small for k ≥ 0.6 Thus regardless of rotation, only m = +2 modes make significant
lightcurve contributions.

Within the m = +2 modes, there are two regimes to consider: prograde modes excited by
harmonics k > 2Ω∗/Ωorb and retrograde modes with k < 2Ω∗/Ωorb (see Appendix A.3.1). Pro-
grade modes at a given corotating frame frequency are Doppler shifted toward large k, whereas the
Hansen coefficients peak near 2Ωperi/Ωorb, so their contribution to lightcurves is marginalized for
fast rotation.

Retrograde, m = +2 g-modes with small corotating-frame frequencies σkm = kΩorb − mΩ∗ are
subject to the same effect described earlier in the face-on case: they are suppressed by fast ro-
tation due to weaker angular tidal coupling and stronger damping. The difference, however, is
that although small driving frequencies are equivalent to small values of k for m = 0 modes, the
Doppler shift experienced by m = 2 modes means that rotational suppression instead occurs for
k∼ 2Ω∗/Ωorb, which is 84× (day/P∗) for KOI-54’s orbital period of 42 days. Figure 2.7.b demon-
strates this, where e.g. little power can be observed near k = 84 for P∗ = 1 day.

Furthermore, rotational suppression does not act on low-k harmonics in edge-on systems, as
Figure 2.7.b also shows. Indeed, since fast rotation Doppler shifts lower-order retrograde modes—
which radially couple more strongly to the tidal potential—toward values of k nearer to the Hansen
peak of ∼ 2Ωperi/Ωorb, the power in lower harmonics can even be enhanced by sufficiently fast
rotation rates.

The rightmost panel of Figure 2.7.b shows the harmonic decomposition of our simple equilib-
rium tide model for an edge-on orientation, not including irradiation (§ 2.6.1; Appendix A.2.2).
Comparing this plot to the left four panels shows in particular that, in edge-on orbits, the dynamical
tide is not rotationally suppressed for harmonics where the equilibrium tide has large amplitudes,
unlike for face-on orientations. Thus the ellipsoidal variation of edge-on systems may be buried
beneath the dynamical tidal response. This implies that full dynamical modeling may be necessary
to constrain system parameters for edge-on binaries, and that care must be taken in searches for ec-
centric binaries, since it cannot be assumed that their lightcurves will be dominated by ellipsoidal
modulations.

2.6.4 Lightcurve power spectrum modeling
We performed preliminary quantitative modeling of the pulsation data in Table 2.2. As noted

before, tidally driven pulsations should have frequencies which are pure harmonics of the orbital
frequency, ω = kΩorb for k ∈ Z. Although most of the pulsations W11 report are of this form,
some clearly are not, and are as such unaccounted for in linear perturbation theory. Hence we
only attempted to model pulsations within 0.03 in k of a harmonic (set arbitrarily); this limited our
sample to 21 harmonics, as shown in Table 2.2. We provide an explanation for the nonharmonic
pulsations in § 2.6.5.

6It is sufficient to consider only nonnegative k, i.e. to use a unimodal Fourier series, since the Fourier coefficient of
orbital harmonic k must be the complex conjugate of that for −k, since the lightcurve is real valued.
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There are eight primary parameters entering into our modeling of the remaining observed har-
monics: stellar masses M1,2, radii R1,2, ZAMS metallicities Z1,2, and rigid-body rotation periods
P1,2. To explore a range of stellar parameters, we used the stellar evolution code MESA (Paxton
et al. 2011) to create two large sets of stellar models, one for each star, with ranges in M and R
determined by W11’s constraints (Table 2.1). We set both stars’ metallicities to 0.04. The other
two parameters, P1 and P2, were treated within our nonadiabatic code using the traditional approx-
imation. We set P1 = P2 = 1.5 days, comparable to the expected pseudosynchronous rotation period
(§ 2.5.1) and qualitatively consistent with the small-amplitude flux perturbations of lower harmon-
ics seen in KOI-54 (§ 2.6.3). We fixed all of the orbital parameters to the mean values given in
W11.

As discussed in § 2.6.6, it is possible that the 90th and 91st harmonics observed in KOI-54
are m = ±2 modes responsible for resonance locks, and are thus in states of nearly perfect reso-
nance. Indeed, even if they are m = 0 chance resonances, which are ∼ 200 times easier to observe
with KOI-54’s face-on orbital inclination than m = ±2 modes (§ 2.3.3), we find that a detuning
of |δω/Ωorb| ∼ 10−2 is required to reproduce the amplitude of either harmonic, where δω is the
difference between the eigenmode and driving frequencies (with δω = 0 representing a perfect
resonance).

Such a close resonance represents a precise eigenfrequency measurement, and should place
stringent constraints on stellar parameters. However, this degree of resonance is also very difficult
to capture in a grid of stellar models because even changes in (say) mass of ∆M/M∼ 10−4 can alter
the mode frequencies enough to significantly change the degree of resonance; future alternative
modeling approaches may obviate this difficulty (§ 2.7). A second problem with trying to directly
model the 90th and 91st harmonics is that the amplitudes of both of these harmonics may be set
by nonlinear processes, as addressed in § 2.6.5. If correct, this implies that these particular modes
strictly cannot be modeled using the linear methods we focus on in this paper.

We are thus justified in restricting our analysis to only those integral harmonics in the range
35≤ k ≤ 89. We chose k = 35 as our lower bound to avoid modeling harmonics that contribute to
ellipsoidal variation. We set m = 0 for all of our analysis for the reason stated above. We also only
used l = 2 for the tidal potential, since additional l terms are suppressed by a) further powers of
R/Dperi ∼ 0.16, and b) smaller disk-integral factors from § 2.3.3 (e.g., b3/b2 = 0.2).

To find a reasonable fit to the harmonic power observed in KOI-54, we attempted a simplistic,
brute-force optimization of our model against the data: we first modeled the linear response of
each stellar model in our grid separately, ignoring its companion, and calculated the resulting
observed flux perturbations as a function of k. We then compared the absolute values of these flux
perturbations to the observations of KOI-54 and selected the best 103 parameter choices (M,R)
for each star. (In future work, pulsation phases should be modeled in addition to the amplitudes
reported by W11, since this doubles the information content of the data; see also further discussion
of phases in § 2.4.2.) Given this restricted set of stellar models, we computed the theoretical
Fourier spectra for all 106 possible pairings of models.

Figure 2.8 shows one of our best fits to the observations of KOI-54; Table 2.4 gives the asso-
ciated stellar parameters. We obtained many reasonable fits similar to Figure 2.8 with dissimilar
stellar parameters, demonstrating that many local minima exist in this optimization problem. As a
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Figure 2.8: Exploratory modeling of the Fourier power spectrum of KOI-54’s lightcurve. Our inhomoge-
neous theoretical model, including nonadiabaticity and rotation in the traditional approximation, is plotted
above the graph’s horizontal axis, while the data for KOI-54 (Table 2.2) is plotted below. Parameters cor-
responding to this plot are in Table 2.4. Since harmonics 90 & 91 represent extreme resonances, they are
difficult to resolve in a given stellar model grid, and fits which reproduce their amplitudes cannot reproduce
other parts of the Fourier spectrum. Thus we attempted to fit only 35 ≤ k ≤ 89 and not the shaded region.
Our fitting process was simplistic (see text), and we did not approach a full optimization, although our best
fit does agree reasonably well with the data. Figure 2.9 shows the observed flux perturbation from this plot
for both stars separately on a fine frequency grid.

Table 2.4: Stellar parameters used in Figures 2.8 and 2.9.
star M/M� R/R� Z P∗/day
1 2.278 2.204 0.04 1.5
2 2.329 2.395 0.04 1.5

result, Figure 2.8 and Table 2.4 should not be interpreted as true best fits but rather as an example
of a model that can semi-quantitatively explain the observed harmonic power in KOI-54. We leave
the task of using the observed pulsation data to quantitatively constrain the structure of the stars in
KOI-54 to future work, as we discuss in § 2.7.

Responses from both stars were used to create the plot in Figure 2.8. Figure 2.9, on the other
hand, uses the same parameters, but instead shows each star’s observed flux perturbation separately
and evaluated on a fine grid in frequency rather than only at integral orbital harmonics. As a result,
Figure 2.9 exposes the position of normal modes (which correspond to peaks in the black curves) in
relation to observed harmonics (shown as red vertical lines), as well as other features not captured
in Figure 2.8’s raw spectrum. Figure 2.9 also shows that harmonics 90 and 91 must come from
different stars if they are indeed m = 0 g-modes (although this may not be the case; see § 2.6.6),
since the g-mode spacing near k ∼ 90 is much larger than the orbital period (with the same logic
applying for harmonics 71 and 72).
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Figure 2.9: Individual stars’ contributions to the Fourier spectrum from Figure 2.8 (black curves), evaluated
on a fine grid in k = ω/Ωorb. The actual Fourier series decomposition (Figure 2.8) is obtained by adding
both stellar responses (together with phases) at each integer value of k. Observed harmonics are displayed
as red vertical lines, with short red horizontal lines indicating their amplitudes. We used a mesh of 50 points
per unity increment in k to produce these plots, and find that the highest peaks of the eigenmode resonances
nearest k∼ 90 are then at the same amplitude level as the observed 90th and 91st harmonics; this means that
a detuning of ∆k = δω/Ωorb ∼ 0.02 is required to explain these pulsations if they have m = 0 (see text). The
regions below the minimum amplitude reported by W11 (Table 2.2) are shaded.

2.6.5 Nonharmonic pulsations: three-mode coupling
W11 report nine pulsations which are not obvious harmonics of the orbital frequency; these

have asterisks next to them in Table 2.2. As we showed previously (§ 2.4.2 and Appendix A.1.1),
these cannot be linearly driven modes. Here we present one possible explanation for the excitation
of these pulsations.

To begin, we point out the following curious fact: the two highest-amplitude nonharmonic
pulsations in Table 2.2 (F5 and F6) have frequencies which sum to 91.00 in units of the orbital
frequency—precisely the harmonic with the second-largest amplitude (F2). (This is the only such
instance, as we discuss below.)

Although this occurrence could be a numerical coincidence, it is strongly suggestive of para-
metric decay by nonlinear three-mode coupling, the essential features of which we now describe.
First, however, we emphasize that the treatment we present here is only approximate. In reality,
the process of nonlinear saturation is much more complicated, and a more complete calculation
would involve fully coupling a large number of eigenmodes simultaneously (Weinberg & Quataert
2008).

If a parent eigenmode is linearly excited by the tidal potential to an amplitude that surpasses its
three-mode-coupling threshold amplitude Sa, any energy fed into it above that value will be bled
away into daughter mode pairs, each with frequencies that sum to the parent’s oscillation frequency
(Weinberg et al. 2012). In a tidally driven system, the sum of the daughter modes’ frequencies must
thus be a harmonic of the orbital frequency.
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For a parent with indices a = (n, l,m) linearly driven at a frequency σ, the threshold is given by

|Sa|2 'min
bc

(
Tabc
)
, (2.37)

where

Tabc =
γbγc

4ωbωc|κabc|2

(
1 +

δω2
bc

(γa +γb)2

)
, (2.38)

ωi is a mode frequency, γi is a mode damping rate, κabc is the normalization-dependent nonlinear
coupling coefficient (Schenk et al. 2002), δωbc = σ −ωb −ωc is the detuning frequency, and the
minimization is over all possible daughter eigenmodes b and c (each short for an (n, l,m) triplet).7

The nonlinear coupling coefficient κabc is nonzero only when the selection rules

0 = mod(la + lb + lc, 2), (2.39)
0 = ma + mb + mc, (2.40)
|lb − lc|< la < lb + lc (2.41)

are satisfied. Due to the second of these rules, any Doppler shifts due to rotation do not affect the
detuning since they must cancel.

For a simple system of three modes, the nonlinear coupling’s saturation can be determined
analytically. The parent saturates at the threshold amplitude Sa, and the ratio of daughter energies
within each pair is given by the ratio of the daughters’ quality factors:

Eb

Ec
=

qb

qc
=
ωb/γb

ωc/γc
. (2.42)

Equations (2.37) and (2.38) exhibit a competition that determines which daughter pair will al-
low for the lowest threshold. At larger daughter l, modes are more finely spaced in frequency, since
g-mode frequencies roughly satisfy the asymptotic scaling from equation (2.6); hence, the detun-
ing δωbc becomes smaller (statistically) with increasing l. However, higher daughter l also leads to
increased damping rates at fixed frequency (equation 2.17). As such, the minimum threshold will
occur at a balance between these two effects.

In order to semi-quantitatively address the phenomenon of three-mode coupling in KOI-54, we
produced an example calculation of Sa together with a list of best-coupled daughter pairs. To this
end, we used a MESA stellar model (Paxton et al. 2011) consistent with the mean values of star 1’s
properties reported in W11 (Table 2.1). We computed this model’s adiabatic normal modes using
the ADIPLS code (Christensen-Dalsgaard 2008), and calculated each mode’s global quasiadiabatic
damping rate γnl due to radiative diffusion (§ 2.3.2).

We focus on the second-highest-amplitude k = 91 harmonic present in the data (F1 from Ta-
ble 2.2) and set σ = 91×Ωorb; as pointed out in W11, for ma = 0 the quadrupolar eigenmode with
natural frequency closest to the 91st orbital harmonic is the g14 mode, i.e., the g-mode with 14

7This section uses the normalization of Weinberg et al. (2012), whereas the rest of the paper uses the normalization
given in § 2.3.2. We of course account for this when giving observable quantities.
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Table 2.5: Ten best-coupled daughter mode pairs resulting from the procedure outlined in steps (i – iv) of
§ 2.6.5. This is an example calculation and is not meant to quantitatively predict the nonharmonic compo-
nents of KOI-54’s lightcurve. All frequencies and damping rates are in units of Ωorb. The square root of
the daughter quality factor ratio,

√
qb/qc, gives an estimate of the ratio of daughter mode amplitudes, and

hence of their potential relative lightcurve contributions.

ID (lb,nb) : (lc,nc) ωb ωc
1
2 log10(qb/qc) log10 |δωbc| log10(2

√
γbγc)

P1 (2, -37) : (2, -23) 35.3 55.8 0.66 -1.4 -2.1
P2 (1, -25) : (3, -30) 29.9 61.0 0.057 -1.5 -2.5
P3 (1, -28) : (1, -11) 26.8 64.1 0.69 -1.3 -3.1
P4 (1, -50) : (3, -24) 15.3 75.7 1.2 -1.4 -1.7
P5 (1, -27) : (3, -29) 27.8 63.2 0.031 -1.4 -2.5
P6 (1, -42) : (3, -25) 18.0 73.1 1.2 -1.6 -1.7
P7 (1, -36) : (1, -10) 20.9 69.8 1.3 -0.61 -2.7
P8 (2, -35) : (2, -24) 37.2 53.7 0.51 -0.87 -2.2
P9 (2, -29) : (2, -28) 44.7 46.4 0.038 -0.99 -2.5
P10 (1, -35) : (1, -10) 21.5 69.8 1.2 -0.51 -2.8

radial nodes. We thus take this as our parent mode.
The minimization in equation (2.37) is over all normal modes, of which there is an infinite num-

ber. To make this problem tractable numerically, we essentially followed the procedure described
in Weinberg & Quataert (2008):

1. We restricted daughter modes to 1 ≤ l ≤ 6. There is no reason a priori to suggest l should
be in this range, but, as shown in Table 2.5, 1≤ l ≤ 3 turns out to be the optimum range for
minimization in this particular situation, and modes with l > 6 are irrelevant.

2. The quantity to be minimized in equation (2.37), Tabc, achieves its minimum at fixed δωbc and
κabc for ωb ≈ ωc, given the scaling from equation (2.17). As such, we computed all normal
modes b with frequencies in the range f < ωb/ωa < 1 − f ; we took f = 1/10, which yielded
344,479 potential pairs, but trying f = 1/5, which yielded 61,623, did not change the result.

3. We computed Tabc, not including the three-mode-coupling coefficient κabc (since it is com-
putationally expensive to evaluate), for all possible pairs of modes satisfying (i) and (ii) as
well as the selection rules in equations (2.39) – (2.41).

4. From the results of (iii), we selected the N = 5000 smallest threshold energies, and then
recomputed Tabc for these pairs this time including κabc (Weinberg et al. 2012). (Trying
N = 1000 did not change the results.) We set mb = mc = 0 = ma for simplicity, since κabc

depends only weakly on the values of m so long as equation (2.40) is satisfied. Sorting
again then yielded the best-coupled daughter pairs and an approximation for the saturation
amplitude Sa.
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Table 2.5 shows the best-coupled daughter mode pairs resulting from this procedure. It is inter-
esting to note that most daughter pairs a) involve an l = 1 mode coupled to an l = 3 mode (P2, P4, P5,
P6), and/or b) have a large quality-factor ratio (all except P2, P5, & P9 have |12 log10(qb/qc)|> 0.5).

For daughter pairs satisfying (a), the l = 3 mode would be much harder to observe in a lightcurve
since disk averaging involves strong cancellation for larger-l modes—indeed, Table 2.3 shows
b3/b1 ∼ 0.1 for Eddington limb darkening, where bl is a disk-integral factor defined in equa-
tion (2.23). (The other disk-integral factor, cl , does not decline as sharply with increasing l, but
corresponds to cross-section perturbations, which are small relative to emitted flux perturbations
as discussed below.) For daughter pairs satisfying (b), since the ratio of daughter amplitudes scales
as the square root of the ratio of their quality factors, one of the modes would again be difficult to
observe.

Furthermore, if the parent had ma =±2 instead of ma = 0 (see § 2.6.6), each daughter pair would
have several options for mb and mc, introducing the possibility of |mb| 6= |mc|. This would mean
daughters would experience even greater disparity in disk-integral cancellation due to the presence
of Ylm(θo,φo) in equation (2.22); e.g., |Y10(θo,φo)/Y32(θo,φo)| ∼ 0.02 for KOI-54.

The above results provide a reasonable explanation for why there is only one instance of two
nonharmonic pulsations adding up to an observed harmonic in the data for KOI-54—only P9 from
Table 2.5 has the potential to mimic pulsations F5 and F6 from W11. Nonetheless, the nonlinear
interpretation of the nonharmonic pulsations in KOI-54 predicts that every nonharmonic pulsation
should be paired with a lower-amplitude sister such that their two frequencies sum to an exact
harmonic of the orbital frequency. This prediction may be testable given a sufficient signal-to-
noise ratio, which may be possible with further observations of KOI-54.

Lastly, we can attempt to translate our estimate of the parent threshold amplitude Sa into an
observed flux perturbation, δJsat/J, using the techniques of § 2.3.3. Since our nonlinear saturation
calculation was performed with adiabatic normal modes, we strictly can only calculate the observed
flux variation due to cross-section perturbations, δJcs (the ξr component of equation 2.22), and not
that due to emitted flux perturbations, δJef (the ∆F component of equation 2.22). It evaluates to∣∣∣∣δJcs

J

∣∣∣∣ = |Sa× (2bl − cl)× ξr,a(R)×Y20(θo,φo)|

' 1.7 mmag,

However, we can employ our nonadiabatic code to calibrate the ratio of δJcs to δJef, which we find
to be δJef/δJcs' 9 for the 91st harmonic. We can then estimate the total saturated flux perturbation:∣∣∣∣δJsat

J

∣∣∣∣ =
(
δJef

δJcs
+ 1
)∣∣∣∣δJcs

J

∣∣∣∣' 17 mmag.

This result is a factor of ∼ 100 too large relative to the observed amplitude of 229 µmag
for the 91st harmonic (Table 2.2). Taken at face value, this would mean that the inferred mode
amplitude is below threshold, and should not be subject to nonlinear processes, despite evidence
to the contrary. There are several possible explanations for this discrepancy. If the 91st harmonic



2.6. RESULTS 37

is actually an m =±2 mode, which we proposed in § 2.5.1, then the intrinsic amplitude required to
produce a given observed flux perturbation is a factor of ∼ 200 times larger than for m = 0 modes
given KOI-54’s face-on inclination (§ 2.3.3). This would make the observed flux perturbation
of the 91st harmonic comparable to that corresponding to the threshold for three-mode coupling,
consistent with the existence of nonharmonic pulsations in the lightcurve. We discuss this further
in § 2.6.6.

Alternatively, if the 91st harmonic is in fact an m = 0 mode, many daughter modes may coher-
ently contribute to the parametric resonance, reducing the threshold considerably, as in Weinberg
et al. (2012). A more detailed calculation, coupling many relevant daughter and potentially grand-
daughter pairs simultaneously, should be able to address this more quantitatively.

2.6.6 Are harmonics 90 and 91 caused by prograde, resonance-locking, |m|=
2 g-modes?

As introduced in § 2.5.1, having two pseudosynchronized stars presents an ostensibly appealing
explanation for the large-amplitude 90th and 91st harmonics observed in KOI-54 (henceforth F1
and F2; Table 2.2): each is the manifestation of a different highly resonant eigenmode effecting a
resonance lock for its respective star by opposing the equilibrium tide’s torque.

We discuss the viability of this interpretation below. First, however, what alternate explanation
is available? The most plausible would be that F1 and F2 are completely independent, resonantly
excited m = 0 modes. Each coincidence would require a detuning of |ωnl −σkm|/Ωorb ∼ 2× 10−2

(Figure 2.9), which is equivalent to |ωnl −σkm|/ωnl ∼ 10−4, where ωnl is the nearest eigenfrequency
and σkm = kΩorb − mΩ∗ is the driving frequency. The probability of having a detuning equal to
or smaller than this value, given ∼ 10 available modes (Figure 2.9), is ∼ 10%, so the combined
probability if the resonances are independent is ∼ 1%. Moreover, in § 2.6.4 we show that in this
m = 0 interpretation, F1 and F2 must come from different stars, yet there is no explanation for why
the two excited modes are so similar.

If instead F1 and F2 are due to highly resonant m = ±2 resonance locking modes, several
observations are naturally explained. The high degree of resonance is an essential feature of the
inevitable pseudosynchronous state reached when the torque due to the dynamical tide cancels that
due to the equilibrium tide (§ 2.5.1). The fact that the resonant modes correspond to similar k
would be largely a consequence of the fact that the two stars in the KOI-54 system are similar in
mass and radius to ∼ 10%, so that a similar mode produces the dynamical tide torque in each star
(although a corresponding ∼ 10% difference in k would be equally possible in this interpretation).

In addition, we showed in § 2.6.5 that the observed amplitudes of F1 and F2 are a factor of up to
∼ 100 smaller than their nonlinear threshold values assuming m = 0. There is also strong evidence
that at least F2 has its amplitude set by nonlinear saturation. Having m 6= 0 would help to resolve
this discrepancy because the intrinsic amplitude of m = ±2 modes would need to be ∼ 200 times
larger to produce the observed flux perturbation. This would then imply that the amplitudes of F1
and F2 are indeed above the threshold for three-mode coupling, naturally explaining the presence
of the nonharmonic pulsations in the KOI-54 lightcurve.

However, several significant problems with the resonance-locking interpretation arise upon
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closer examination. Assume that F1 and F2 indeed correspond to m = ±2 g-modes that generate
large torques effecting Pps ∼ 1.8 days pseudosynchronization locks. In order to create positive
torques, equation (A.39) shows that we must have m(kΩorb − mΩ∗)> 0, which reduces to

(k/m)Ωorb > Ω∗. (2.43)

In order to determine which modes correspond to F1 and F2, we can enforce a close resonance by
setting

ωnl ' 90Ωorb − 2Ω∗, (2.44)

where we have used the fact that equation (2.43) requires k and m to have the same sign for a
positive torque. For l = 2 and using a MESA stellar model consistent with W11’s mean modeled
parameters for star 1 (Table 2.1), equation (2.44) yields n' 30, neglecting rotational modification
of the modes (i.e., not employing the traditional approximation).

However, in our calculations in § 2.5.1 we find that the resonant torque due to the dynamical
tide is instead typically caused by g-modes with n of 8 – 15 (basically set by the intersection of
the Hansen coefficient and linear overlap curves, as discussed in § 2.4.2 in the context of flux
perturbations). Using equation (2.44) again, this would mean we would expect k of 140 – 200.
Furthermore, we find that even a perfectly resonant n = 30 g-mode makes a negligible contribution
to the torque. This is true both for ZAMS models and for evolved models consistent with the
observed radii in KOI-54, indicating that there is little uncertainty introduced by the details of
the stellar model. This result suggests that the g-modes inferred to correspond to F1 and F2 are
inconsistent with what would be expected from our torque calculation if the rotation rate is indeed
∼ 1.8 days.

If we account for rotation in the traditional approximation (§ 2.3.4), the n of a prograde mode of
a given frequency can be at most a factor of

√
4/6 times smaller than its corresponding nonrotating

value; this follows from the fact that the angular eigenvalue λ asymptotes to m2 = 4 in the limit
ωnl � Ω∗ for prograde modes, instead of λ = l(l + 1) = 6 in the nonrotating limit. This reduces the
n of the 90th harmonic from n' 30 to n' 24, still insufficient to yield a significant torque.

Another major problem with the resonance lock interpretation is that although our orbital evo-
lution simulations described in § 2.5.1 ubiquitously produce resonance locks, they always occur in
only one star at a time. This is because if a mode is in a resonance lock in one star and a mode
in the other star tries to simultaneously resonance lock, the first lock typically breaks since the
orbital frequency begins to evolve too quickly for the lock to persist. Although it is possible for
simultaneous resonance locks in both stars to occur, such a state is very improbable. Similar orbital
evolution simulations presented in Fuller & Lai (2011) did produce simultaneous resonance locks,
but only because they simulated only one star and simply doubled the energy deposition rate and
torque, thus not allowing for the effect just described.

Finally, we point out one last inconsistency in the resonance lock interpretation of F1 and F2.
It is straightforward to calculate the predicted flux perturbation associated with perfectly resonant
|m| = 2 g-modes in resonance locks (using, e.g., the calibration discussed at the end of § 2.6.5):
for modes ranging from n ∼ 8 – 15, we find that the predicted flux perturbation for KOI-54’s
parameters is∼ 10 – 30 µmag. This is a factor of∼ 10 smaller than the observed flux perturbations,
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yet somewhat larger than the smallest-amplitude pulsation reported by W11. It is also a factor of
∼ 2 smaller than the nonlinear coupling threshold for an m = 2 mode (which we determined using
the same procedure as in § 2.6.5, extended to allow for an m 6= 0 parent), although the uncertainties
involved in our nonlinear estimates are significant enough that we do not consider this to be a
substantial problem.

Thus even if F1 and F2 can be attributed to modes undergoing resonance locks (which is highly
nontrivial, as we have seen), the observed amplitudes are larger than those we predict. Conversely,
if F1 and F2 are simply chance m = 0 resonances, it appears that if a resonance lock existed, it would
have been detected, although the possibility exists that the resonant mode’s flux perturbation was
marginally smaller than those of the 30 reported pulsations due to uncertainties in our calculations.
Firmer constraints on the flux perturbations in KOI-54 at k ∼ 140 – 200 would be very valuable
in constraining the existence of such m =±2 modes, as would information about the phases of the
90th and 91st harmonics (see § 2.4.2).

2.7 Discussion
We have developed a set of theoretical tools for understanding and modeling photometric ob-

servations of eccentric stellar binaries. This work is motivated by the phenomenal photometry of
the Kepler satellite and, in particular, by the discovery of the remarkable eccentric binary system
KOI-54 (Welsh et al. 2011; henceforth W11). This system consists of two similar A stars exhibiting
strong ellipsoidal lightcurve variation near periastron passage due to the system’s large (e = 0.83)
eccentricity. W11 successfully modeled this phenomenon, and also reported the detection of at
least 30 distinct sinusoidal pulsations in KOI-54’s lightcurve (§ 2.2), ∼ 20 at exact harmonics of
the orbital frequency and another ∼ 10 nonharmonic pulsations. Although our work has focused
on modeling KOI-54, our methods and techniques are more general, and are applicable to other
similar systems.

We developed a simple model of KOI-54’s periastron brightening, including both the irradiation
and equilibrium tide components of this effect, which agrees at the ∼ 20% level with the results
W11 obtained using a much more detailed simulation (§ 2.6.1). Our model may be useful for
analysis of other eccentric stellar binaries, allowing determination of orbital and stellar parameters;
its simplicity should enable it to be implemented in an automated search of Kepler data.

In § 2.4 we used the adiabatic normal mode formalism (see § 2.3.2 and, e.g., Christensen-
Dalsgaard 2003; Kumar et al. 1995), to establish a qualitative connection between the range of
stellar modes excited in a given binary system and the system’s orbital properties. For more de-
tailed quantitative modeling of the harmonic pulsation spectrum of a given binary system, we
further developed the nonadiabatic, inhomogeneous tidal method from Pfahl et al. (2008) by in-
cluding the Coriolis force in the traditional approximation (§ 2.6.2; Appendix A.1).

In § 2.6.3 we used this method to show that fast rotation tends to suppress power in the lower
harmonics of a face-on binary system’s lightcurve (Figure 2.7). This can qualitatively explain why
there is a scarcity of large-amplitude, lower-harmonic pulsations in KOI-54’s lightcurve, relative
to predictions for nonrotating stars (Figure 2.3). We also showed in § 2.6.3, however, that the
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dynamical tidal response may be much larger than ellipsoidal variation in edge-on binaries, unlike
in KOI-54 (which has an inclination of i = 5.5◦; see Table 2.1). For such systems, simultaneous
modeling of the dynamical and equilibrium tides may be required in order to constrain system
properties.

Moreover, in § 2.5 we showed that rapid rotation periods of ∼ 1.8 days are expected for the
A stars in KOI-54, due to pseudosynchronization with the orbital motion near periastron. This
pseudosynchronous rotation period is shorter than the value of 2.53 days assumed by W11. The
latter value is appropriate if the only appreciable torque is that produced by the equilibrium tide
(Appendix A.3.2). Since resonantly excited stellar g-modes can produce a torque comparable to
that of the equilibrium tide, pseudosynchronous rotation can occur at even shorter rotation periods
(Figure 2.4). This involves a stochastic equilibrium between prograde resonance locks and the
equilibrium tide. These same rapid rotation periods (∼ 1.8 days) yield predicted lightcurve power
spectra that are the most qualitatively consistent with the pulsation data for KOI-54 (Figure 2.7).

In § 2.6.4 we performed a preliminary optimization of our nonadiabatic model by comparing its
results in detail to the Fourier decomposition of KOI-54’s lightcurve (Table 2.2). We searched over
an extensive grid of stellar masses and radii, assuming a metallicity of twice solar and a rotation
period of 1.5 days. We also set m = 0, since KOI-54’s nearly face-on orientation implies that this
is the case for almost all of the pulsations we modeled (§ 2.3.3). The modeling challenge in tidal
asteroseismology contrasts with that of standard asteroseismology in that a) we must simultane-
ously model both stars, and b) pulsation amplitudes and phases contain the key information in our
case, since we are considering a forced system, whereas pulsation frequencies constitute the data
in traditional asteroseismology. Moreover, stellar rotation is sufficiently rapid in eccentric binaries
that its effect on stellar g-modes cannot be treated perturbatively.

Although our minimization procedure was quite simple, we were able to obtain stellar models
with power spectra semi-quantitatively consistent with the observations of KOI-54 (Figure 2.8 &
Figure 2.9). The resulting model in Figure 2.8 is not formally a good fit, but this is not surprising
given that two of the key parameters (metallicity and rotation period) were not varied in our anal-
ysis. Moreover, in our preliminary optimization we found that there were many local minima that
produced comparably good lightcurves.

As noted above, a priori calculations suggest that both stars in the KOI-54 system should
have achieved a pseudosynchronous state at rotation periods of ∼ 1.8 days. This requires frequent
resonance locks to occur, when a single |m| = 2 eigenmode comes into a near-perfect prograde res-
onance. A natural question is whether such a highly resonant mode could contribute to the KOI-54
lightcurve; this possibility is particularly attractive for the two largest-amplitude harmonics ob-
served, the 90th and 91st. (See also our calculation of nonlinear saturation from § 2.6.5, discussed
below.)

However, we find quantitative problems with this interpretation (§ 2.6.6). First, our orbital evo-
lution simulations (§ 2.5.1) indicate that only one resonance lock should exist at a time, meaning
that only one of the two large-amplitude harmonics could be explained in this way. This result is
in disagreement with the simulations performed by Fuller & Lai (2011), since they did not simul-
taneously model both stars.

Further, in our calculations, the g-modes capable of producing torques large enough to effect
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resonance locks have n typically in the range of 8 – 15 (where n is the number of radial nodes),
while the 90th harmonic corresponds to n of 25 – 40 for m = ±2 and rotation periods of 2.0 – 1.5
days. Also, we predict that g-modes producing resonance locks should have k of 140 – 200, much
larger than∼ 90, and flux perturbations of 10 – 30 µmag. The latter values are a factor of∼ 10 less
than that observed for the 90th and 91st harmonics, but slightly larger than the smallest observed
pulsations.

It thus seems quantitatively difficult to interpret harmonics 90 and 91 in KOI-54 as manifesta-
tions of m =±2 modes in resonance locks, although we cannot conclusively rule out this possibility.
Instead, it seems likely that they are simply chance m = 0 resonances (as is almost certainly the case
for the overwhelming majority of the other observed pulsations in KOI-54). One theoretical uncer-
tainty resides in our omission of rotational modification of the stellar eigenmodes when computing
tidal torques. Our estimates suggest that this is a modest effect and is unlikely to qualitatively
change our conclusions, but more detailed calculations are clearly warranted.

We note that in future work, pulsation phases should be modeled in addition to the amplitudes
reported by W11, since this effectively doubles the information content of the data. Indeed, we
showed in § 2.4.2 that a resonant pulsation’s phase is strongly influenced by the mode’s value
of m. In particular, since harmonics 90 and 91 are likely standing waves, as can be seen in the
propagation diagram in Figure 2.1, measurement of their phases could help to resolve the uncer-
tainties pointed out above by supplying direct information about their degrees of resonance, thus
potentially confirming or disproving the m =±2 resonance lock interpretation.

In § 2.6.5 we pointed out evidence for nonlinear mode coupling in KOI-54’s observed pulsa-
tions: the existence of nonharmonic pulsations (which does not accord with linear theory; § 2.4.2)
and the fact that two of them have frequencies that sum to exactly the frequency of the 91st har-
monic, the second-largest-amplitude harmonic pulsation in KOI-54’s lightcurve. This is consistent
with parametric resonance, the leading-order nonlinear correction to linear stellar oscillation theory
(Weinberg et al. 2012).

Motivated by this observation, we performed a nonlinear stability calculation that qualitatively
explains why no other similar instance of a nonharmonic pair summing to an observed harmonic
is present in the data: for the majority of daughter pairs likely to be nonlinearly excited, there are
sufficient differences in the l and m values of the daughter pair members, or sufficient differences
in their predicted saturated energies, that only one member of the pair would be observable given
current sensitivity. Nonetheless, the nonlinear interpretation makes the strong prediction that every
nonharmonic pulsation should be paired with a lower-amplitude sister such that their two frequen-
cies sum to an exact harmonic. This prediction may well be testable given a better signal-to-noise
ratio.

One additional feature of the nonlinear interpretation is that if the nonlinearly unstable parent
is an m = 0 mode, then the threshold amplitude for a linearly excited mode to be unstable to
parametric resonance, which we have just argued exists in KOI-54, implies flux perturbations that
are a factor of ∼ 100 larger than those observed. In contrast, the parent being an m = ±2 mode
ameliorates this discrepancy because the parent’s intrinsic amplitude must be ∼ 200 times larger
for a given flux perturbation due to KOI-54’s face-on orientation. This result thus argues in favor
of the 91st harmonic in KOI-54 being an m = ±2 mode caught in a resonance lock, as discussed
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above.
There are many prospects for further development of the analysis begun in this paper. For

example, in traditional asteroseismology, standard methods have been developed allowing a set
of observed frequencies to be inverted uniquely, yielding direct constraints on stellar parameters,
including the internal sound speed profile (Unno et al. 1989). The essential modeling difficulty in
tidal asteroseismology is our inability to assign each observed pulsation amplitude to either star of
a given binary a priori, hindering our attempts to develop a direct inversion technique. We leave
the existence of such a technique as an open question.

Future observations of eccentric binaries may avoid this difficulty if one star is substantially
more luminous than the other. However, for eccentric binaries with similar stars, in the absence
of a means of direct inversion, we are left with a large parameter space over which to optimize,
consisting at minimum of eight quantities: both stars’ masses, radii/ages, metallicities, and rotation
periods. Even this parameter set may ultimately prove insufficient, if modeling of tidally forced
pulsations is found to be sensitive to the details of e.g. chemical mixing or convective overshoot,
which can modify the Brunt-Väisälä frequency and thus g-mode frequencies.

One possible approach that should be explored in future work is to apply standard numerical
optimization algorithms such as simulated annealing to this parameter space, attempting to mini-
mize the χ2 of our nonadiabatic code’s theoretical Fourier spectrum against the observed harmonic
pulsation data. In practice, it may be preferable to develop interpolation techniques over a grid
of models given the high resolution in stellar parameters needed to resolve the close resonances
responsible for large-amplitude pulsations.

Although KOI-54’s stars lie near the instability strip, this fact is unimportant for the tidal as-
teroseismology theory presented in this work. Consequently, future high-precision photometric
observations of other eccentric binaries may supply a window into the structure of stars previ-
ously inaccessible by the techniques of asteroseismology. Constructing a data pipeline capable
of reliably flagging eccentric binary candidates—e.g., finding efficient ways of searching for the
equilibrium tide/irradiation lightcurve morphologies shown in Figure 2.5 (Appendix A.2)—is also
an important, complementary prospect for future work.
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Chapter 3

Linear tides in inspiraling white dwarf
binaries: resonance locks

3.1 Introduction
In this work, we consider the effect of tides in detached white dwarf (WD) binaries inspiraling

due to energy and angular momentum loss by gravitational waves. Our analysis is motivated by
several important questions. For example, to what degree should short-period WD binaries exhibit
synchronized rotational and orbital motion? Should WDs in close binaries be systematically hotter
than their isolated counterparts, as a result of tidal dissipation? What is the thermal state of WDs
prior to the onset of mass transfer?

Several past studies have applied linear perturbation theory to the problem considered in this
work. Campbell (1984) and Iben et al. (1998) applied the theory of the equilibrium tide to WD
binaries, using parameterized viscosities to estimate the tidal torque. Willems et al. (2010) con-
sidered turbulent convective damping acting on the equilibrium tide, as originally considered by
Zahn (1977) for late-type stars, and showed that this effect is not able to synchronize a WD binary
within its gravitational wave inspiral time.

Rathore et al. (2005) and Fuller & Lai (2011) moved beyond the large-scale, nonresonant equi-
librium tide, and considered the tidal excitation of standing g-modes during inspiral, analyzing
the behavior of wave amplitudes as a system sweeps through resonances. However, neither study
allowed the WD’s spin rate to evolve, an assumption that eliminated the physics highlighted in this
work.

In this paper we also focus on tidally excited g-modes in WD binaries; one of our goals is to
assess whether the resonantly excited “dynamical tide” represents a traveling or standing wave.
This amounts to whether a tidally generated wave is able to reflect at its inner and outer radial
turning points. If reflection cannot occur, then a damping time of order the group travel time
across the mode propagation cavity results; if reflection does occur, then the wave amplitude can
build up significantly during close resonances between g-mode frequencies and the tidal forcing
frequency.

This question has been addressed before in the context of main-sequence stars. Zahn (1975)
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employed a traveling wave description of the dynamical tide in the context of early-type stars with
radiative envelopes, assuming waves would be absorbed near the surface by rapid radiative diffu-
sion. Goldreich & Nicholson (1989a) enhanced this argument, showing that dynamical tides first
cause tidal synchronization in such a star’s outer regions, leading to the development of critical
layers and even stronger radiative damping. However, they did not assess whether angular mo-
mentum redistribution could enforce solid-body rotation and thereby eliminate critical layers; we
address this important point in § 3.6.2. In the absence of critical layers, Witte & Savonije (1999)
introduced the phenomenon of resonance locks (§ 3.4), which rely on the large wave amplitudes
produced during eigenmode resonances. We will show that similar resonance locks occur ubiqui-
tously in close WD binaries.

Goodman & Dickson (1998) considered the case of late-type stars with convective envelopes,
and showed that tidally generated waves excited at the edge of the convection zone steepen and
break near the cores of such stars. Fuller & Lai (2012a), in their study of the tidal evolution of
WD binaries, found that the dynamical tide in a carbon/oxygen WD instead breaks near the outer
turning point. As such, they invoked an outgoing-wave boundary condition in their analysis. We
find that their assumption may not be generally applicable due to an overestimate of the degree of
wave breaking; see § 3.6.1. As a result the dynamical tide may represent a standing wave for a
substantial portion of a WD binary’s inspiral epoch.

This paper is organized as follows. In § 3.2 we provide pertinent background information on
WDs and tidal effects that our subsequent results rely on. In § 3.3 we give a broad overview of the
results we derive in more detail in §§ 3.4 – 3.8. In § 3.4 we consider the case of resonance locks
created by standing waves. We analyze the resulting tidal efficiency and energetics in § 3.5. In
§ 3.6 we analyze whether standing waves are able to occur, considering wave breaking in § 3.6.1
and critical layers in § 3.6.2. In § 3.7 we turn our attention to traveling waves, discussing wave
excitation and interference in § 3.7.1 and showing that traveling waves can also create resonance
locks in § 3.7.2. In § 3.8 we then employ numerical simulations to combine our standing and
traveling wave results. In § 3.9 we compare our results to observational constraints and discuss
physical effects that need to be considered in future work. We then conclude in § 3.10 with a
summary of our salient results.

3.2 Background
A short-period compact object binary efficiently emits gravitational waves that carry off energy

and angular momentum. This process causes its orbit to circularize; as such, we will restrict
our attention to circular WD binaries in this work (however, see Thompson 2011). Gravitational
waves also cause such a binary’s orbit to decay according to Ω̇ = Ω/tgw, where the characteristic
gravitational wave inspiral timescale for a circular orbit is (Peters 1964)

tgw = ω−1
dyn

5
96

(
1 + M′/M

)1/3

M′/M
β−5
∗

(ωdyn

Ω

)8/3
. (3.1)
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Figure 3.1: Propagation diagrams for several of our WD models listed in Table 3.1. The top two panels are
our 0.2M� He10 and He5 helium WDs, with Teff = 9,900 and 5,100 K respectively; the bottom two panels
are our 0.6M� CO12 and CO6 carbon/oxygen WDs, with Teff = 12,000 and 5,500 K respectively. Each
plot shows the Brunt-Väisälä frequency N (green line; dashed indicates N2 < 0), the quadrupolar Lamb
frequency S (thick blue line), and inverse local thermal time 1/tth = gF/pcpT (red dot-dashed line). A g-
mode is able to propagate where its frequency is less than both N and S. In the bottom panel showing our
CO6model, the shaded region at high pressure indicates the plasma interaction parameter Γ> 220, implying
crystallization occurs (which is not included in our model); see § 3.9.3.
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Table 3.1: WD models. Masses of the helium models (top three) are 0.2M�; masses of the carbon/oxygen
models (bottom two) are 0.6M�. Helium models each have a hydrogen layer of mass 0.0033M, and were
generated with MESA (Paxton et al. 2011); carbon/oxygen models each have a helium layer of mass 0.017M
and a hydrogen layer of mass 0.0017M. Further details on white dwarf models are given in Appendix B.4;
Figure 3.1 provides propagation diagrams for several models. The dynamical time is t2

∗ = R3/GM; the
thermal time at the radiative-convective boundary (RCB) is tth|rcb = pcpT/gF |rcb, where we take 2π/N =
100 min to define the RCB; the WD cooling time is tcool = Eth/L, where Eth =

∫
cpT dM approximates the

total thermal energy; Mconv is the mass in the outer convection zone, which increases in size by many
orders of magnitude as a WD cools (see Figure 3.1); the plasma interaction parameter at the center of
the WD is Γcore = Z2e2/kT di|r=0, where Ze is the mean ion charge, di is the ion spacing, and the value of Γ
corresponding to the onset of crystallization is discussed in § 3.9.3; the relativity parameter is β2

∗ = GM/Rc2;
and I∗ is the WD moment of inertia.

ID Teff (K) L/L� R/R� t∗ (sec) tth|rcb (yr) tcool (Gyr) Mconv/M Γcore β∗/10−2 I∗/MR2

He10 9,900 1.3×10−2 0.038 26. 7.7×10−8 0.36 3×10−14 1.2 0.34 0.085

He7 7,000 1.9×10−3 0.029 18. 5.1×101 0.98 1×10−7 2.7 0.38 0.11

He5 5,100 3.9×10−4 0.025 14. 1.3×106 2.5 2×10−4 5.1 0.41 0.14

CO12 12,000 3.0×10−3 0.013 3.1 6.5×10−9 0.59 1×10−16 71. 0.99 0.16

CO6 5,500 1.3×10−4 0.013 2.9 7.3×102 4.5 3×10−8 260. 1.0 0.18

Here ω2
dyn = GM/R3 is the dynamical frequency of the primary, M′ is the mass of the companion,

β2
∗ = GM/Rc2 is the relativity parameter of the primary, and Ω is the orbital frequency. The time

a binary will take until it begins to transfer mass is given by tmerge = 3tgw/8. For a 0.6M� WD
with an equal-mass companion, orbital periods of less than ∼ 530 min imply the binary will begin
mass transfer within 10 Gyr; this restriction reduces to Porb . 270 min for a 0.2M� WD with an
equal-mass companion.

During the process of inspiral, the tidal force acting on each element of the binary steadily
grows. The tidal response on a star is typically divided conceptually into two components: the
equilibrium tide and the dynamical tide. The equilibrium tide represents the large-scale distortion
of a star by a companion’s tidal force (Zahn 1977); it is often theoretically modeled as the filling
of an equipotential surface, but can also be treated as the collective nonresonant response of all of
a star’s eigenmodes. The two viewpoints are equivalent, as in both the tidal forcing frequency is
set to zero. Except near very strong resonances, the equilibrium tide contains the great majority of
the tidal energy. Nonetheless, whether it produces a strong torque is also influenced by the degree
to which it lags behind the tidal potential, which is determined by how strongly the equilibrium
tide is damped. For WDs, Willems et al. (2010) showed that turbulent convection acting on the
equilibrium tide does not cause significant synchronization (Appendix B.2.2).

The dynamical tide, on the other hand, corresponds to the tidal excitation of internal stellar
waves (Zahn 1975). In particular, given that tidal forcing periods are much longer than the stel-
lar dynamical timescale, buoyancy-supported gravity waves or g-modes are predominantly excited
(although rotationally supported modes become important when the rotation and tidal forcing fre-
quencies become comparable; see § 3.9.2). Propagation of gravity waves is primarily determined
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by the Brunt-Väisälä frequency N, given by

N2 =
1
g

(
1
Γ1

d ln p
dr

−
d lnρ

dr

)
, (3.2)

where Γ1 is the adiabatic index. A g-mode is able to propagate where its frequency lies below both
N as well as the Lamb frequency S2

l = l(l + 1)c2
s/r2. Plots of both N and Sl for several helium and

carbon/oxygen WD models are provided in Figure 3.1.
Degeneracy pressure satisfies p ∝ ρΓ1; substituting this into equation (3.2) yields N = 0. Thus

the Brunt-Väisälä frequency becomes very small in the WD core where degeneracy pressure dom-
inates gas pressure, scaling as N2 ∝ kT/EF, where EF is the Fermi energy. Moreover, WDs also
often possess outer convection zones with N2 < 0. As a result, a typical tidally excited g-mode in
a WD possesses both an inner turning point near the core as well as an outer turning point near the
radiative-convective boundary.

Lastly, temporarily ignoring degeneracy pressure and assuming an ideal gas equation of state,
equation (3.2) can be expressed as (Hansen et al. 2004)

N2 =
∇adρ

2g2cpT
p2 (∇ad −∇) − g

d lnµ
dr

, (3.3)

where µ is the mean molecular weight. From this expression we can see that the Brunt-Väisälä
frequency becomes larger in composition gradient zones, where µ decreases with radius. This can
be seen in Figure 3.1, where a “bump” in N occurs in helium models due to the helium to hydro-
gen transition; two bumps are present in carbon/oxygen models, resulting from carbon/oxygen→
helium and helium→ hydrogen.

3.3 Dynamical tide regimes in white dwarfs
Here we will give a general overview of the results covered in §§ 3.4 – 3.8 by enumerating four

essential regimes of the dynamical tide in WDs, which comprises the wavelike tidal response. The
two basic distinctions made by our four regimes are a) whether tidally excited gravity waves can
reflect and become large-amplitude standing modes, or whether they instead represent traveling
waves; and b) whether or not a resonance lock can be created. Resonance locks are described
in detail in §§ 3.4 & 3.7.2; they occur when the tidal torque causes the tidal forcing frequency
σ = 2(Ω − Ωspin) to remain constant even as the orbit shrinks.

First, the two regimes where standing waves exclusively occur are:

S1) In this regime the dynamical tide represents a purely standing wave, but with a resulting
torque that is insufficient to effect a resonance lock even during a perfect resonance. This
occurs for long orbital periods or small companion masses. As such, the system quickly
sweeps through resonances, and the time-averaged torque is dominated by its value away
from resonances. This nonresonant torque is proportional to the eigenmode damping rate,
and is thus very small for WDs, due to their long thermal times. As a consequence the
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average tidal quality factor is very large, tidal heating is negligible, and the spin rate remains
essentially constant.

S2) Here the dynamical tide is again a standing wave, but with eigenmode amplitudes large
enough to create resonance locks. This regime is addressed in detail in § 3.4; we estimate
the orbital period corresponding to its onset in equation (3.10). During a resonance lock,
tides become efficient: due to strong tidal torques, the spin frequency changes at the same
rate as the orbit decays due to gravitation wave emission. Definite predictions result for the
tidal energy deposition rate (equation 3.20) and tidal quality factor (equation 3.17).

Next, the regimes strongly influenced by traveling waves are:

T1) In this regime, the off-resonance dynamical tide is still a standing wave, but near resonances
the wave amplitude becomes so large that reflection near the surface cannot occur due to
wave breaking (§ 3.6.1). Furthermore, the traveling wave torque is too weak to cause a
resonance lock. Since the typical torque experienced by the WD is once again the off-
resonance standing wave value, the synchronization and tidal heating scenario is very similar
to regime (S1)—in other words, tides are ineffective.

T2) Just as with regime (T1), the standing wave torque is capped at resonances, becoming a
traveling wave; however in this regime the traveling wave torque itself is strong enough to
create a resonance lock (terminology discussed further in footnote 5), as addressed in § 3.7.
We estimate the onset of this regime in equation (3.33). The predictions for the tidal energy
deposition rate and quality factor are the same as in (S2).

Although we consider only these four regimes in this work, at shorter orbital periods and nearly
synchronous rotation, physical effects such as Coriolis modification of stellar eigenmodes and
nonlinear tidal excitation mechanisms are likely to become very important; see § 3.9.2.

The archetypal scenario is as follows. A WD binary with a sufficiently long orbital period
begins in regime (S1). Eventually, as the orbit shrinks due to gravitational radiation and the tidal
force correspondingly increases in magnitude, the dynamical tide becomes strong enough that a
resonance lock takes effect and regime (S2) is reached. However, as inspiral accelerates, the torque
necessary to maintain the resonance lock becomes larger, requiring larger wave amplitudes. When
the amplitude becomes too great, the wave begins to break near the outer turning point, and the
system enters regime (T1). Finally, when the traveling wave torque becomes large enough to create
a resonance lock, it enters regime (T2). In § 3.8, we verify this picture numerically.

3.4 Resonance locks by standing waves
We assume in this section that the dynamical tide is a superposition of standing waves and

proceed to predict the tidal evolution of a WD binary. We discuss the applicability of the standing
wave limit in § 3.6.
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Assuming a circular orbit and alignment of spin and orbital angular momenta, the secular tidal
torque on a star can be expressed as a sum over quadrupolar (l = 2) eigenmodes indexed by their
number of radial nodes n (Appendix B.2.2):

τ = 8mE∗ε2W 2
∑

n

Q2
n

[
ω2

nσγn

(ω2
n −σ2)2 + 4σ2γ2

n

]
. (3.4)

Here σ = m(Ω − Ωspin) is the tidal driving frequency in the corotating frame, Ω is the orbital fre-
quency, Ωspin is the solid-body rotation rate, m = 2, E∗ = GM2/R is the WD energy scale, ε =
(M′/M)(R/a)3 is the tidal factor, M′ is the companion mass, a is the orbital separation, W 2 = 3π/10,
and γn is an eigenmode damping rate (Appendix B.2.3). Our eigenfunction normalization conven-
tion is given in equation (B.17); physical quantities such as the torque are of course independent
of the choice of normalization.

The linear overlap integral Qn appearing in equation (3.4) represents the spatial coupling
strength of an eigenmode to the tidal potential, and is normalization dependent. Since the tidal po-
tential spatially varies only gradually, Qn is large for low-order modes, and becomes much smaller
for high-order, short-wavelength modes. We describe various methods of computing Qn in Ap-
pendix B.2.4.

The factor in brackets in equation (3.4) describes the temporal coupling of an eigenmode to
the tidal potential, and becomes very large during resonances, when the tidal driving frequency
becomes close to a stellar eigenfrequency. The nonresonant limit of this factor, which corresponds
to the equilibrium tide, increases with stronger damping. Paradoxically, however, the torque during
a resonance is inversely proportional to the damping rate, since damping limits the maximum
energy a resonant mode attains.

We note that by invoking steady-state solutions to the mode amplitude equations, as we have
done here, we fail to account for the energy and angular momentum transfer required to bring a
mode’s amplitude up to the steady-state value. Additionally, the steady-state solution itself may
fail to model the behavior of mode amplitudes very close to resonances correctly; we address this
in § 3.6.3. Correctly accounting for these two considerations would involve simultaneously solving
both the mode amplitude equations for all relevant modes as well as the orbital evolution equations,
a task we leave to future study.

Continuing, we focus on resonant tidal effects, and consider the case of a particular eigenmode
with a frequency close to the tidal driving frequency, i.e. ωn≈ σ. We can then make this substitution
everywhere in equation (3.4) other than in the detuning frequency δωn = ωn −σ to find

τ ≈ 2mE∗ε2W 2Q2
n

(
ωnγn

δω2
n +γ2

n

)
, (3.5)

having dropped nonresonant terms. One might expect that since the strongest torques are achieved
very near resonance, where δωn ∼ 0, a system should evolve quickly through resonances, and they
should have little effect on the long-term orbital and spin evolution. This is often accounted for by
using a “harmonic mean” of the torque to produce a synchronization time, i.e., tsync =

∫
I∗dΩ/τ ,
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where I∗ is the moment of inertia (Goodman & Dickson 1998).
Under particular circumstances, however, it is possible to achieve a resonance lock, where

an eigenmode remains in a highly resonant state for an extended period of time, as originally
proposed by Witte & Savonije (1999). Very near a resonance, the torque depends very strongly on
the detuning frequency δωn, and very weakly on the orbital period by itself; as a result, the essential
criterion that must be satisfied for a resonance lock to occur is that the detuning frequency must
remain constant:

0 = δ̇ωn = m
(

(1 −Cn)Ω̇spin − Ω̇
)
, (3.6)

where ∂ωn/∂Ωspin = −mCn accounts for rotational modification of the stellar eigenmodes, Cn ≈ 1/6
for high-order l = 2 g-modes and slow rotation (Unno et al. 1989), and we have assumed the WD
rotates as a solid body. (We justify the solid-body rotation assumption in § 3.6.2.)

For simplicity, we will henceforth ignore rotational modification of the stellar eigenfrequencies,
so that Cn→ 0. This limits the quantitative applicability of our results to where Ω − Ωspin & Ωspin.
We also neglect progressive WD cooling, which decreases the Brunt-Väisälä frequency and con-
sequently lowers eigenmode frequencies; this is valid so long as the cooling time tcool, which is
on the order of ∼ Gyr for the models listed in Table 3.1, is much longer than the gravitational
wave decay time tgw (equation 3.1). Subject to these simplifications, equation (3.6) then reduces
to Ω̇ = Ω̇spin, i.e., that the orbital and spin frequencies evolve at the same rate. Since the orbital
frequency increases due to the emission of gravitational waves, and the spin frequency increases
due to tidal synchronization, this phenomenon is plausible at first glance. We now work out the
mathematical details.

The evolution of Ωspin and Ω proceed as(
Ω̇spin/Ωspin

Ω̇/Ω

)
=
(

τ/I∗Ωspin

1/tgw + (3/2)(Ėtide/|Eorb|)

)
, (3.7)

where Ėtide is the secular tidal energy transfer rate1 and the gravitational wave inspiral time tgw is
given in equation (3.1). Here we have failed to account for tidal effects in the companion, which
would provide an extra contribution to Ėtide; see below.

Using equations (3.7) and (B.20), equation (3.6) becomes

Ω

tgw
= τ
(

1
I∗

−
3
2

1
µa2

)
, (3.8)

where µ = MM′/(M +M′) is the reduced mass. Since µa2� I∗, in the present context we can neglect
any tidal influence on Ω̇ even in this extreme-resonance scenario; this also now justifies dropping

1Our convention is that τ > 0 or Ėtide > 0 implies that orbital angular momentum or energy is being transfered to
the WD(s).
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Figure 3.2: Plot schematically illustrating the dynamics of a resonance lock. The abscissa is the orbital
frequency Ω, which increases due to gravitational wave radiation, and the ordinate is the Doppler-shifted
l = m = 2 tidal driving frequency σ = 2(Ω−Ωspin). The arrows depict the vector field describing the orbital
evolution equations (equation 3.7). The eigenfrequency of the included mode is ω, which is flanked by stable
and unstable fixed points of the evolution equations: ω− and ω+, respectively. The dashed red horizontal lines
show these three frequencies, while the blue curves are example system trajectories. The stable point ω−

corresponds to a resonance lock, while the unstable fixed point ω+ corresponds to the upper boundary of the
stable fixed point’s basin of attraction (shaded region). In producing this plot, the correct functional form of
the equation of motion has been used, except with tgw and ε taken as constant, and with artificially chosen
values of the various germane parameters. In particular, for realistic resonance lock situations in WDs, the
three frequencies shown are very close together, and the basin of attraction barely extends beyond ω−.

the companion’s contribution to Ėtide. We can then approximate the resonance lock criterion as

Ω

tgw
=
τ

I∗
. (3.9)

This implies that in a resonance lock, the torque increases as τ ∝ Ω11/3 as the orbit decays.
Once equation (3.9) is satisfied, the lock can persist for a long period of time, since the quan-

tities in equation (3.5) affecting the magnitude of the torque other than δωn change only very
gradually in time. (We verify this using numerical orbital evolution simulations in § 3.8.) In other
words, a resonance lock represents a dynamical attractor; Figure 3.2 provides an illustration of
the nonlinear dynamics behind a resonance lock. The lock could eventually be destroyed if the
mode responsible began to break near its outer turning point, which would drastically increase the
effective damping rate. This phenomenon is explained in § 3.6.
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If we assume that the system begins completely unsynchronized, so that σ = 2Ω, we can deter-
mine the orbital period where a lock first occurs, which we denote Prl, by substituting equations
(3.5) and (3.1) into (3.9), setting ωn = σ and hence δωn = 0, and then solving for the orbital period.
To this end, we invoke the following approximate scalings for the eigenmode linear tidal overlap
integral Q and damping rate γ:

Q≈ Q0(σ/ωdyn)a and γ ≈ γ0(σ/ωdyn)−b,

where values of the various parameters in these expressions are listed in Table 3.3 for our fiducial
WD models. Scaling parameter values to those for our CO6 model, we have

Prl ∼ 170 min
( t∗

2.9 s

)
F p

rl , (3.10)

where t∗ = (R3/GM)1/2 is the WD’s dynamical time, the factor Frl is

Frl ∼
(

M′

M

)(
1 + M′/M

2

)−5/3

×
(

β∗
0.010

)−5( I∗
0.18MR2

)−1

×
(

Q0

27

)2(
γ0

2.9×10−14ωdyn

)−1

×
(
2.15×1026) (0.00327)1/p,

(3.11)

the power p is in general

p =
1

4/3 + 2a + b
� 1, (3.12)

and p = 0.094 for our CO6 model (Table 3.3). (The last line of equation 3.11 is equal to unity for
p = 0.094.)

For comparison, direct numerical evaluation of eigenmode properties with our CO6 WD model
yields Prl = 170 min for an equal-mass companion, due to an n = 122 g-mode. This is in very
good agreement with the analytic approximation in equation (3.10), and is also consistent with our
numerical results in § 3.8. We provide values of Prl for each of our fiducial models in Table 3.2.
These results show that resonance locks begin at longer orbital periods for cooler WD models,
due to larger outer convective zones and longer overall diffusive damping times (smaller γn; see
Table 3.3 & Figure B.1). This increases the maximum possible tidal torque, which is proportional
to 1/γn (equation 3.5).
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Table 3.2: WD tidal parameters. For each of our fiducial WD models from Table 3.1, we list the orbital
period Prl of its first resonance lock (§ 3.4, equation 3.10), the orbital period Ptrl below which traveling wave
resonance locks can occur (§ 3.7.2, equation 3.33), its value of λ (§ 3.5, equation 3.14), and the tidal quality
factor Qt|100 min for a resonance lock (§ 3.5.1, equation 3.17) evaluated at Porb = 100 min. All values are
for an equal-mass companion. We determined Prl and Ptrl by directly searching over numerically computed
eigenmode properties.

ID Prl (min) Ptrl (min) λ/10−2 Qt|100 min

He10 67 49 1.2 2×109

He7 270 49 2.4 1×109

He5 1,400 90 4.6 1×109

CO12 31 22 6.3 1×107

CO6 170 40 7.4 1×107

3.5 Energetics

3.5.1 Tidal quality factor
A star’s tidal quality factor Qt can be defined as

Qt =
ΩEtide

Ėtide
, (3.13)

where the energy content of the tide Etide is approximately given by (Appendix B.2.2)

Etide = λε2E∗, (3.14)

λ = 2W 2∑
n Q2

n, and values of λ for various WD models are given in Table 3.2. Using the relation-
ship between the tidal torque and energy transfer rate from equation (B.20), we see that the tidal
torque can be expressed in terms of Qt by

τ =
Etide

Qt
. (3.15)

Since Etide ∼ λFtide h, where h ∼ εR is the height of the equilibrium tide and Ftide ∼ εE∗/R is the
tidal force, we see that our definition of Qt is consistent with 1/Qt representing an effective tidal
lag angle; see e.g. Goldreich & Soter (1966). Note that since Qt parameterizes the total tidal
energy deposition rate, which includes mechanical energy transfer associated with increasing the
WD spin, the value of Qt alone does not fully determine the tidal heating rate; see § 3.5.2.

Using the previous three equations along with the resonance lock condition from equation (3.9),
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we have that the value of Qt during a resonance lock is

Qt =
λε2tgwE∗

I∗Ω
. (3.16)

Substituting further yields

Qt ≈ 9.7×106
(

Porb

100 min

)−1/3( t∗
2.9 s

)1/3

×
(

M′

M

)(
1 + M′/M

2

)−5/3(
λ

0.074

)
×
(

I∗
0.18MR2

)−1(
β∗

0.010

)−5

.

(3.17)

Here I∗ is the moment of inertia, β2
∗ = GM/Rc2, and all values have been scaled to those appropriate

for our CO6 model (Tables 3.1 & 3.2).
Equation (3.17) is a central result of this paper. It is independent of eigenmode properties

and is only weakly dependent on the orbital period, although it depends strongly on the mass,
radius, and companion mass. Eigenmode properties do of course dictate when this value of Qt

is applicable, i.e., when resonance locks are able to occur. We will further show in § 3.7.2 that
equation (3.17) can hold even when the dynamical tide is a traveling wave, and the standing wave
formalism presented thus far is invalid.

Values of the various quantities entering into equation (3.17) are provided for a selection of
helium and carbon/oxygen WD models in Table 3.1. In particular, since the inspiral time is much
longer for low-mass helium WDs than for more massive carbon/oxygen WDs, equation (3.17)
predicts that the tidal quality factorQt should be much larger (∼ 100×) for helium WDs, as shown
in Table 3.2, meaning tidal effects are more efficient in carbon/oxygen WDs.

3.5.2 Tidal heating
The rate at which heat is dissipated in the WD assuming solid-body rotation can be derived

using equation (B.20):

Ėheat = Ėtide − Ėmech

= Ωτ −
d
dt

(
1
2

I∗Ω2
spin

)
= I∗Ω̇spinδΩ =

Etide δΩ

Qt
,

(3.18)
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where δΩ = Ω − Ωspin. During a resonance lock we have Ω̇spin ≈ Ω̇ = Ω/tgw, so that

Ėheat ≈
I∗Ω δΩ

tgw
, (3.19)

with δΩ then being approximately constant (having neglected rotational modification of WD eigen-
modes; see § 3.9.2). Defining the asynchronicity period as δP = 2π/δΩ, we can evaluate this further
as

Ėheat ≈ 1.4×10−2 L�

(
M′

M

)(
1 + M′/M

2

)−1/3

×
(

Porb

10 min

)−11/3(
δP

200 min

)−1

×
(

I∗
0.18MR2

)(
M

0.6M�

)8/3( R
0.013R�

)2

,

(3.20)

again scaling variables to our CO6 model’s properties (Table 3.1).
As a simple analytical estimate, consider the example of a resonance lock beginning with the

WD unsynchronized at an orbital period P0 and continuing until the Roche period of PRoche ∼ t∗�
P0. The total orbital energy dissipated in the WD as heat in this example is

∆Eheat =
2πI∗
P0

∫
Ω

tgw
dt

≈ 4π2I∗
t∗P0

∼ 7.0E∗

(
t∗
P0

)(
I∗

0.18MR2

)
,

(3.21)

which could be very large depending on the value of P0. If for P0 we use our estimate from § 3.4
of Prl ∼ 170 min appropriate for our CO6 model, we have ∆Eheat ∼ 2× 1047 ergs, a factor of ∼ 3
larger than the CO6 model’s thermal energy.

Tidal heating can directly add to a WD’s luminosity and minimally affect its thermal structure if
a) the thermal time tth = pcpT/gF at the outer turning point, where wave damping is most efficient,
is smaller than tgw, and b) Ėheat � L. The outer turning point occurs due to the outer convection
zone, so tth|rcb (radiative-convective boundary) is an appropriate value to use. We find tth|rcb . 106

years for all of our WD models, as shown in Table 3.1; this is� tgw for Porb & 10 min, implying
that criterion (a) is satisfied. Moreover, for all models other than our Teff = 5,100 K helium and
Teff = 5,500 K carbon/oxygen WDs, tth|rcb . 50 years, and tth|rcb . tgw is satisfied even directly prior
to mass transfer.

Criterion (b) above is more restrictive: examining equation (3.20) shows that near orbital pe-
riods of ∼ 10 min, the tidal heating rate approaches typical WD luminosities. The orbital period
where this occurs depends weakly on the various parameters appearing in equation (3.20), since
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Ėheat ∝ P−11/3
orb . Thus the thermal structure of WDs in close binaries may adjust significantly to

accommodate the additional heat input for Porb . 10 min. We discuss the consequences of tidal
heating further in § 3.9.2.

3.5.3 Tidally enhanced orbital decay
Although the rate Ṗorb at which the orbital period of an inspiraling WD binary decays is domi-

nated by the gravitational wave term Ṗgw = −Porb/tgw, tidal energy dissipation implies a small devi-
ation from this value (see also Piro 2011).2 We can compute this difference for a system consisting
of two WDs both undergoing resonance locks by using equations (3.6), (3.7), and (B.20), which
yield

Ṗorb = Ṗgw + Ṗtide, (3.22)

where

Ṗtide =
(

S
1 − S

)
Ṗgw, S≈ 3

(
I1 + I2

µa2

)
, (3.23)

I1,2 are the moments of inertia of the two WDs, µ = M1M2/(M1 + M2) is the reduced mass, a is
the semi-major axis, and we have again neglected rotational modification of WD eigenmodes (i.e.
∂ωn/∂Ωspin = 0, where ωn is a corotating-frame eigenfrequency; see § 3.9.2). This effect may be
detectable in future observations of close WD binaries, as discussed in § 3.9.1.

3.6 Applicability of standing waves

3.6.1 Wave breaking
It is important to determine whether the dynamical tide we are attempting to study represents

a standing wave or a traveling wave. If it is a standing wave, meaning it is able to reflect at its
inner and outer turning points without being absorbed, then it can achieve large amplitudes due
to resonances with tidal forcing frequencies (as assumed in § 3.4). In the absence of nonlinear
effects that can occur at large amplitudes, a standing wave’s damping rate is well approximated by
the quasiadiabatic value (Appendix B.2.3), which is small for WDs due to their high densities and
long thermal times (see Figure B.1). On the other hand, if the dynamical tide instead behaves as a
traveling wave, resulting from absorption prior to reflection, then its damping time is approximately
a group travel time.

In this section we determine whether the nonlinear process of gravity wave breaking causes
tidally excited g-modes in WDs to be absorbed near the surface and hence to become traveling
waves, as has been suggested in recent studies (Fuller & Lai 2011, 2012a). Gravity wave breaking
has been considered extensively in the atmospheric science community, since it occurs in Earth’s

2Note that the purpose of this section is to determine the influence of the tidal energy deposition term Ėtide on the
rate of orbital decay, even though this term is neglected everywhere else in this work, as justified in § 3.4.
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Figure 3.3: The maximum value of |krξr| attained throughout the propagation cavity of our CO6 (black line)
and He7 (red line) WD models (Table 3.1), assuming adiabatic standing waves, Ωspin = Ω/2, and an equal-
mass companion. Where |krξr|max > 1, wave breaking occurs (§ 3.6.1), and the effective wave damping time
becomes roughly the group travel time across the WD. This occurs very near resonances for Porb . 0.5 – 1
hr.

atmosphere; see e.g. Lindzen (1981). It is also thought to occur in the cores of solar-type stars
(Goodman & Dickson 1998; Barker & Ogilvie 2010).

Breaking occurs when a wave’s amplitude becomes large enough to disrupt the stable back-
ground stratification. One way to derive the condition under which this happens is to deter-
mine when a wave would produce its own convective instability, which is equivalent to the per-
turbed Brunt-Väisälä frequency (squared) becoming comparable to the background value—this
then makes the total value negative, implying convection. The Eulerian perturbation to N2 is given
in linear theory by

δN2

N2 ≈ krξr −
δp
p

−
ξr

Hρ

+
δg
g
, (3.24)

where Hρ is the density scale height and kr is the wavenumber in the direction of gravity. Since
krξr is much larger in magnitude than the other terms for g-modes, the wave breaking condition
thus becomes

|krξr| ∼ 1. (3.25)

Other nonlinear processes also come into play when |krξr| ∼ 1. Indeed, this criterion is equiv-
alent to Ri ∼ 1/4, where Ri is the Richardson number due to the wave’s shear, which implies the
wave is Kelvin-Helmholtz unstable. Equation (3.25) is also similar to the condition under which
surface ocean waves break: when the vertical displacement becomes comparable to the wave-
length.

To determine whether g-modes break, we evaluated the linear, quadrupolar tidal fluid response
assuming global adiabatic normal modes and an equal-mass companion; see Appendix B.2. Under
these assumptions, we find that for both our helium and carbon/oxygen WD models, the dynamical
tide breaks for close resonances at orbital periods as large as ∼ 1 hr, as shown in Figure 3.3. The
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off-resonance dynamical tide begins to break more generically at Porb . 10 – 20 min.3 Furthermore,
for all of the WD models we have considered (Table 3.1), we find that at sufficiently long orbital
periods, the dynamical tide doesn’t break even for a perfect resonance, and thus that standing wave
resonance locks should be able to occur. As such, we expect wave breaking not to operate during
a significant portion of the inspiral epoch, in which case the analysis presented in § 3.4 may be
valid. We address this in more detail in § 3.8.

3.6.2 Differential rotation and critical layers
The possibility of differential rotation represents a significant challenge to the standing wave

assumption we utilized in § 3.4. Indeed, tidal angular momentum is preferentially deposited in the
outer layers of a WD, since that is where damping times are shortest and waves are able to com-
municate their energy and angular momentum content to the background stellar profile (Goldreich
& Nicholson 1989b). Thus tides do not naturally induce solid-body rotation, and instead tend to
first synchronize layers near the outer part of the gravity wave propagation cavity (Goldreich &
Nicholson 1989a), absent the influence of efficient internal angular momentum transport.

The presence of a synchronized or “critical” layer at the edge of a mode propagation cav-
ity implies that the mode’s corotating frequency tends to zero at that location, which in turn
means its radial wavenumber becomes very large due to the asymptotic g-mode dispersion re-
lation ω ∼ N(kh/kr), where kh and kr are respectively the perpendicular and radial wavenumbers.
As a result, the mode’s local damping time becomes very short, and it is absorbed rather than re-
flected, eliminating the possibility of achieving resonant amplitudes (although traveling waves can
also effect resonance locks at short orbital periods; § 3.7).

In Appendix B.1 we analyze angular momentum redistribution by fossil magnetic fields, pos-
sibly generated by a progenitor star’s convective core (during hydrogen or helium fusion) and am-
plified by flux freezing as the core contracts. We calculate that a field strength of only ∼ 200 G is
required to maintain solid-body rotation during a resonance lock for an orbital period of∼ 100 min
in our CO6 model, and only ∼ 20 G in our He7 model (Table 3.1). Liebert et al. (2003) conclude
that at least ∼ 10% of WDs have fields & 106 G, and speculate that this fraction could be substan-
tially higher; field strengths in WD interiors may be even more significant. With a field of 106 G,
our calculations indicate that critical layers should not occur until orbital periods of less than 1 min,
or even less if the field can wind up significantly without becoming unstable.

3.6.3 Validity of the secular approximation
The Lorentzian mode amplitude solutions invoked in Appendix B.2 to produce the standing

wave torque in equation (3.4) are strictly valid only when a mode’s amplitude changes slowly

3This is in conflict with the claims made in Fuller & Lai (2012a), since that work used kr|ξ| ∼ 1 to assess wave
breaking, instead of equation (3.25). The total displacement |ξ| = (ξ2

r + ξ2
h)1/2 includes horizontal motion, which is

perpendicular to the stratification and thus does not contribute to breaking. As a g-mode’s horizontal motion is much
greater than its vertical motion, Fuller & Lai (2012a) overestimated the degree of breaking by a factor of ∼ ξh/ξr ∼
ωdyn/σ� 1, where σ = 2(Ω−Ωspin) is the l = m = 2 tidal driving frequency.
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relative to its damping time. Further examining equation (3.5), we see that near a perfect resonance
the amplitude changes by a factor of∼ 2 as the detuning frequency changes by of order the damping
rate γn. Thus the Lorentzian solution is applicable near a perfect resonance only when

γ−1
n . tgw

γn

Ω
, (3.26)

which evaluates to

Porb & 90 min
(

M
0.6M�

)5/11

Fsec, (3.27)

where

Fsec =
(

M′

M

)3/11(1 + M′/M
2

)−1/11(
γ−1

n

80 yr

)6/11

.

Equation (3.27) is scaled to values for our CO6 model (Figure 3.6); the restriction instead
evaluates to Porb & 50 min for our He7 model, using a damping time of γ−1

n ∼ 60 yr appropriate
for the initial resonance lock. Below these periods, the Lorentzian solution becomes invalid and
the exact outcome is unclear, although our preliminary numerical integrations of fully coupled
mode amplitude and orbital evolution equations indicate that resonance locks can still occur even
beyond the validity of the Lorentzian solution. (We address a similar concern relating to angular
momentum transport in Appendix B.1.2.) Nonetheless, we find that the initial standing wave
resonance lock occurs at orbital periods larger than the critical value from equation (3.27) in our
CO6 and He7 models (Table 3.2), meaning resonance locks should proceed as expected.

3.7 Traveling waves

3.7.1 Excitation and interference
In this section, we will describe two different mechanisms of tidal gravity wave excitation con-

sidered in the literature. We will then compare both sets of theoretical predictions to our numerical
results to assess which mechanism predominantly operates in our fiducial WD models.

Zahn (1975) showed that when a gravity wave is well described by its WKB solution, a con-
served wave energy flux results. Thus gravity waves must be excited where the WKB approxi-
mation is invalid: where the background stellar model—particularly the Brunt-Väisälä frequency
N—changes rapidly relative to a wavelength.

One natural candidate for wave excitation, then, is at a radiative-convective boundary (RCB),
where N2 abruptly becomes negative. WDs possess convective envelopes near their surfaces (Fig-
ure 3.1), so this mechanism is plausible. The resulting theoretical prediction (Zahn 1975; Good-
man & Dickson 1998) is that the traveling wave tidal torque should scale as τ ∝ σ8/3, where
σ = 2(Ω − Ωspin) is the m = 2 tidal driving frequency. Using our calculation of the traveling wave
torque in equation (3.32) from § 3.7.2, we see that this in turn implies that the linear overlap
integral (Appendix B.2.4) should scale as Qn ∝ ω11/6

n , given our normalization convention in equa-
tion (B.17).
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Figure 3.4: Plots of the linear tidal overlap integral Qn, which characterizes the spatial coupling strength
between the tidal potential and a given mode (Appendix B.2.4), as a function of the eigenmode frequency
ωn and radial order n, for the first 500 g-modes in four of our fiducial WD models (Table 3.1). Panels 1
– 3 are helium WDs ordered by increasing temperature; panel 4 is a carbon/oxygen WD. A smooth power
law scaling of Qn ∝ ω11/6

n implies that gravity wave excitation by the tidal potential occurs at the interface
between a WD’s outer convection zone and its inner radiative core (§ 3.7.1); this can be seen in the cooler
helium models from panels 1 & 2. Hotter WDs have smaller convective regions, and wave excitation instead
may occur at composition gradient zones (Fuller & Lai 2012a); this mechanism predicts steeper, more
jagged profiles of Qn with ωn, as in panels 3 & 4.
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Table 3.3: WD l = 2 eigenmode properties. Asymptotic fits to numerically computed eigenmode properties
for the WD models from Table 3.1. The linear overlap integral Qn (Appendix B.2.4 & Figure 3.4) is fit
as Qn = Q0(ωn/ωdyn)a; the damping rate γn (Appendix B.2.3 & Figure B.1) is fit as γn = γ0(ωn/ωdyn)−b;
and the inverse group travel time αn = 2π/tgroup,n (Appendix B.2.3) is fit as αn = α0(ωn/ωdyn)c. †Note
that rapid thermal diffusion near the outer turning point causes g-modes of radial order n & 50 to become
traveling waves in our CO12 and He10 models, meaning our fits for γn are not relevant in this regime; see
Appendix B.2.3 and Figure B.1.

ID Q0 a γ0/ωdyn b α0/ωdyn c

He10† 9.6×10−6 2.61 1.5×10−11 6.16 0.0891 2.00

He7 3.6×10−6 1.83 2.1×10−12 2.00 0.158 2.00

He5 7.8×10−4 1.90 7.7×10−15 1.99 0.298 2.00

CO12† 7.2×101 4.40 1.2×10−14 6.41 0.403 2.00

CO6 2.7×101 3.69 2.9×10−14 1.88 0.743 2.00

More recently, Fuller & Lai (2012a) showed that excitation can also proceed near the spike
in the Brunt-Väisälä frequency that occurs at the transition between carbon/oxygen and helium in
a carbon/oxygen WD (see Figure 3.1). Their corresponding prediction for the torque scaling is
τ ∝ σ5, implying Qn ∝ ω3

n . Thus this mechanism predicts a steeper overlap scaling with frequency
than for excitation at the RCB.

An additional feature of excitation at a composition boundary is that waves originate from a
location inside the propagation cavity, meaning both an ingoing and outgoing wave are created.
Since the ingoing wave reflects at the inner turning point, interference occurs between the reflected
ingoing wave and the purely outgoing wave. Constructive interference implies a large overlap
integral Qn, whereas destructive interference makes the overlap small, thus this mechanism predicts
a jagged overlap profile with respect to the wave frequency ωn.

With these theoretical predictions in hand, the essential question to answer is which excitation
mechanism—RCB or composition gradient—is most efficient in a given WD model.4 The answer
hinges on the properties of the convective envelope. Table 3.1 and Figure 3.1 show that this enve-
lope is very small in hot WDs, and exists at very low densities, but that its extent increases rapidly
as a WD cools. Thus it seems possible that excitation at the RCB may occur for cooler WDs,
whereas hotter WDs must rely on the composition gradient mechanism.

One method we can utilize to distinguish between the two mechanisms is simply to observe the
power law scaling Qn ∝ ωa

n of numerically computed linear overlap integrals for our various WD
models, given in Table 3.3. Consistent with our expectations, cooler helium WDs have a power
law index a ∼ 1.83 ≈ 11/6, implying excitation at the RCB, while hotter helium WDs and our
carbon/oxygen models have larger values of a. Furthermore, Figure 3.4 shows that models with

4This question was not addressed in Fuller & Lai (2012a) since they adopted an absorbing boundary condition near
the outer turning point, and thus did not include the convection zone in their calculations.
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steeper overlap power laws also show jagged variation of Qn with frequency, thus demonstrating
the interference predicted by composition gradient excitation.

Note that if a gravity wave in a cool helium WD begins to break near its outer turning point
(§ 3.6.1), this implies that the tidal excitation and wave breaking regions would be almost directly
adjacent. It might then be possible for breaking to inhibit excitation, meaning that the composition
gradient mechanism would again dominate. A more sophisticated hydrodynamical calculation is
required to address this concern.

3.7.2 Traveling wave resonance locks
The resonance lock scenario we described in § 3.4 relied on resonances between standing WD

eigenmodes and the tidal driving frequency. However, resonance locks are in fact a more general
phenomenon that does not explicitly require standing waves.5 In the context of WD binary inspiral,
the two essential requirements on the tidal torque function τ in order for a resonance lock to occur
are:

a) The torque profile must be a jagged function of the l = m = 2 tidal driving frequency σ =
2(Ω − Ωspin) (equation 3.31 below).

b) The magnitude of the tidal torque must be large enough that it can satisfy equation (3.9):
τ = I∗Ω/tgw.

When these conditions are satisfied and a resonance lock occurs, the tidal quality factor Qt and
heating rate are given by equations (3.17) and (3.20), respectively.

We first address criterion (a). Dropping the tidal energy deposition term from equation (3.7),
as justified in § 3.4, yields the simplified orbital evolution equation

1
m

dσ
dΩ

= 1 −
tgwτ

I∗Ω
, (3.28)

where the gravitational wave decay time tgw(Ω) is defined in equation (3.1).
Let us assume that the tidal torque satisfies criterion (b) at an orbital frequency Ω0 and a tidal

driving frequency σ0, so that dσ/dΩ = 0 and equation (3.28) reduces to

I∗Ω0 = tgw(Ω0)τ (Ω0,σ0). (3.29)

As long as τ increases with σ, equation (3.29) represents a stable fixed point of the evolution
equations; see Figure 3.2. Next, since the orbital frequency steadily increases due to the emission
of gravitational waves, we examine what happens to this fixed point when Ω changes by a small

5In the traveling wave regime, true “resonances” do not occur. Nonetheless, we continue using the term “resonance
lock” in this context due to the many similarities between standing wave and traveling wave results. In particular, the
tidal evolution scenario associated with what we call a traveling wave resonance lock is identical to that associated
with a true resonance lock in the standing wave regime, and the transition between standing and traveling wave torques
introduced by wave breaking occurs near would-be standing wave resonances.



3.7. TRAVELING WAVES 63

amount +∆Ω. In order to preserve equation (3.29), the tidal driving frequency must commensu-
rately change by an amount ∆σ given by

∆σ

σ
= −

1
3

(
∆Ω

Ω

)(
∂ logτ
∂ logσ

)−1

, (3.30)

which can be derived by differentiating equation (3.29) and substituting equation (3.1).
Equation (3.30) allows us to appropriately quantify the “jagged” variation of the torque function

required by criterion (a): if ∣∣∣∣∂ logτ
∂ logσ

∣∣∣∣� 1, (3.31)

then the fixed point can be maintained by only a minimal change in the forcing frequency for a
given increase in the orbital frequency, thus constituting a resonance lock. Any general power law
trend of τ with σ will fail to satisfy this condition—additional sharp features are required.6

Torque profiles consistent with equation (3.31) can be provided in several ways. For standing
waves, the comb of Lorentzians produced by resonances with eigenmodes (see equation 3.4 and
Figure 3.3) easily satisfies equation (3.31), since WD eigenmodes are weakly damped, meaning
on- and off-resonance torque values differ by many orders of magnitude. For traveling waves, if
the composition gradient mechanism of Fuller & Lai (2012a) discussed in § 3.7.1 is the dominant
source of wave excitation, it naturally provides sharp features in the torque function due to wave
interference. This can also be observed in Figure 3.5, where the traveling wave torque changes by
a factor of ∼ 5 as σ = 2δΩ changes by only ∼ 10%, implying |d logτ/d logσ| ∼ 50.

Lastly, wave breaking can also provide rapid variation in the torque profile due to a sudden
transition between standing and traveling wave torques that occurs near resonances at short orbital
periods. Specifically, as the tidal driving frequency σ sweeps towards a resonance due to orbital
decay by gravitational waves, a tidally excited g-mode’s amplitude can become large enough to
induce wave breaking (§ 3.6.1), which causes the effective damping rate and hence the resulting
torque to increase enormously (see the blue curve in Figure 3.5).

The precise shape of this transition requires hydrodynamical simulations to ascertain. For-
tunately, we find that essentially any transition between a nonresonant standing wave torque in
between resonances and a traveling wave torque near resonance will satisfy equation (3.31) for
WDs, due to the large disparity between typical damping times associated with standing waves
and the group travel time, which approximates the damping time for a traveling wave (Table 3.3 &
Figure B.1). We discuss this further in § 3.8.

Next, we address criterion (b) for a resonance lock stated at the beginning of this section by
estimating the magnitude of the traveling wave torque τtrav. Goodman & Dickson (1998) computed
τtrav caused by dynamical tides raised in solar-type stars by semi-analytically solving for the trav-

6Fuller & Lai (2012a) also noticed that σ ≈ constant occurred in their simulations, although they attributed this to
the overall power law trend of their torque function with σ. Indeed, their results possess sharp interference-generated
features that provide a much larger contribution to |d logτ/d logσ| than the trend, meaning a resonance lock was likely
responsible for maintaining σ ≈ constant.
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eling wave tidal response.7 Then, to approximate the effect of discrete resonances, they attached
Lorentzian profiles to their formula for τtrav. We reverse this procedure, and instead approximate
τtrav by our standing wave formula in the limit that the mode damping time approaches the group
travel time. We establish the fidelity of this approximation in Appendix B.3.

We thus compute τtrav by first using equation (3.5) with the tidal driving frequency σ set to a
particular eigenfrequency ωn, γn replaced by αn = 2π/tgroup,n (where tgroup is the group travel time;
see Appendix B.2.3), and δωn set to zero. This yields

τtrav(σ = ωn,Ω)∼ 4E∗ε2Q2
nωn/αn, (3.32)

where we have approximated W 2 ≈ 1. Then, in order to evaluate an effective traveling wave torque
for arbitrary σ, we simply interpolate over values computed using equation (3.32).

To estimate the first orbital period Ptrl at which traveling wave resonance locks can occur, we
follow the same procedure as in § 3.4 and again invoke approximate scalings for the eigenmode
linear tidal overlap integral Q (Appendix B.2.4) and the effective traveling wave damping rate α
(Appendix B.2.3):

Q≈ Q0(σ/ωdyn)a and α≈ α0(σ/ωdyn)c,

where c = 2; see Table 3.3 and Figure B.1. The resulting formula, scaled to values for our CO6
model (Table 3.1), is

Ptrl ∼ 43 min
( t∗

2.9 s

)
Fq

trl, (3.33)

where t∗ = (R3/GM)1/2 is the WD’s dynamical time, the factor Ftrl is

Ftrl ∼
(

M′

M

)(
1 + M′/M

2

)−5/3

×
(

β∗
0.010

)−5( I∗
0.18MR2

)−1

×
(

Q0

27

)2(
α0

0.74ωdyn

)−1

×
(
8.41×1012) (0.0119)1/q,

(3.34)

the power q is in general

q =
1

−1/3 + 2a
< 1, (3.35)

and q = 0.15 for our CO6 model (Table 3.3). (The last line of equation 3.34 is equal to unity for
q = 0.15.) Equation (3.33) assumes the WD begins completely unsynchronized; it is equivalent to
equation (79) of Fuller & Lai (2012a).

7Goodman & Dickson (1998) explicitly computed the tidal energy deposition rate Ėtide; this can be converted to a
torque using equation (B.20).
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Direct numerical evaluation of eigenmode properties with our CO6 WD model yields Ptrl =
40 min for an equal-mass companion, due to an n = 27 g-mode, which agrees well with equa-
tion (3.33). Values of Ptrl for each of our fiducial models are provided in Table 3.2. Note, however,
that in deriving these results for Ptrl we have assumed that the WD spin is much smaller than the
orbital frequency; if significant synchronization has already occurred, the true value of Ptrl will
deviate from our prediction by an order-unity factor.

3.8 Numerical simulations
To address the tidal evolution of an inspiraling WD binary undergoing resonance locks, we

aim to combine the standing and traveling wave results from §§ 3.4 & 3.7 numerically. To this
end, we evaluate the complete standing wave tidal torque from equation (3.4) and solve for the
spin and orbital evolution using equation (3.7). To account for wave breaking, we check that all
eigenmodes satisfy |krξr|max < 1 throughout the WD (§ 3.6.1); when an eigenmode exceeds unit
shear, we instead set its damping rate to αn = 2π/tgroup,n (Appendix B.2.3), which approximates the
traveling wave regime (Goodman & Dickson 1998). We smoothly transition between the standing
and traveling wave regimes using the interpolation formula

τ =
τstand + τtrav

(
|krξr|max

)z

1 +
(
|krξr|max

)z , (3.36)

where τstand is the standing wave torque from equation (3.4), τtrav is the traveling wave torque
produced by interpolating over equation (3.32), and |krξr|max is the maximum value of the wave
shear over all relevant eigenmodes and across the entire propagation cavity (§ 3.6.1), evaluated
assuming standing waves. We arbitrarily adopt z = 25 to induce a sharp transition that occurs
only when |krξr|max is very close to 1; our results are insensitive to the value of z so long as it
is & | ln(τtrav/τstand)|. Figure 3.5 shows a comparison of τstand, τtrav, and the transition function in
equation (3.36).

Figure 3.6 shows the results of two of our simulations. The left column used our 0.2M�,
Teff = 7,000 K He7 model, while the right column used our 0.6M�, Teff = 5,500 K CO6 model
(Table 3.1). We did not account for WD cooling or tidal heating, and instead used fixed WD
models throughout both simulations. We initialized our simulations with Ωspin ∼ 0, and the orbital
period set so that the time until mass transfer tmerge = 3tgw/8 (equation 3.1) was equal to 10 billion
years.

Both simulations follow the archetypal scenario laid out in § 3.3, transitioning amongst the
four regimes (S1), (S2), (T1), and (T2). Both begin in (S1), where the dynamical tide is a standing
wave even near resonances, but the tidal torque is too weak to create a resonance lock. As the
orbit shrinks due to gravitational wave radiation, the tidal force waxes and the first resonance lock
eventually begins in both simulations at the appropriate value of Prl estimated in § 3.4 and provided
in Table 3.2; this is regime (S2). At this point tidal heating and synchronization suddenly become
much more efficient (§ 3.5), and the difference between orbital and spin frequencies remains con-
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Figure 3.5: Top panel: Example plot of the standing wave torque τstand (equation 3.4; red line), the traveling
wave torque τtrav (interpolation over equation 3.32 evaluated at eigenmode frequencies; dashed green line),
and our interpolation between the two regimes (equation 3.36; thick blue line), as functions of δΩ = Ω −

Ωspin at fixed Porb = 30 min for our CO6 model (Table 3.1) and an equal-mass companion. The standing
wave torque on average is many orders of magnitude smaller than the traveling wave torque; however,
near resonances it becomes many orders of magnitude larger. Wave breaking acts to “cap” the Lorentzian
peaks of the standing wave torque in the interpolation function. Bottom panel: Plot of the wave breaking
criterion |krξr| maximized over all eigenmodes and the entire propagation cavity (blue line), using the same
parameters and model as the top panel. When |krξr|max < 1, the dynamical tide represents a traveling wave,
and the torque τ → τstand; when |krξr|max > 1, wave breaking occurs, and τ → τtrav (§ 3.6.1).
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Figure 3.6: Results of numerical simulations of the secular evolution of WD binaries, the details of which are
described in § 3.8. The left column shows results using our 0.2M�, Teff = 7,000 K He7 model, while the right column
used our 0.6M�, Teff = 5,500 K CO6 model (Table 3.1). Top row: The orbital (dashed black line) and spin (thick
blue line) frequencies, as well as their difference δΩ = Ω−Ωspin (red line); the latter sets the tidal forcing frequency
σ = 2δΩ. Resonance locks correspond to regions where δΩ is constant. Our assumption of slow rotation breaks
down when δΩ. Ωspin due to nonlinear rotational modification of stellar eigenmodes. Second row: Number of radial
nodes n of dominant eigenmode/wave. Third row: Maximum value of |krξr| across entire WD, evaluated assuming
standing waves, which assesses whether wave breaking occurs (§ 3.6.1). During the initial resonance lock, |krξr|max

starts < 1, but gradually rises until it becomes ∼ 1 and breaking begins. Fourth row: Rate at which orbital energy
is dissipated as heat in the WD, in units of L�. Bottom row: Tidal quality factor Qt (blue line) and time until mass
transfer tmerge = 3tgw/8 (equation 3.1; dashed magenta line). See equations (3.17) and (3.20) for analytic estimates of
the tidal quality factor Qt and heating rate, respectively.
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stant. Analytic formulas for the tidal quality factor and heating rate appropriate for this situation
(as well as T2 discussed below) are given in equations (3.17) and (3.20), respectively, and exactly
reproduce their numerically derived values appearing in the bottom two rows of Figure 3.6.

Both simulations begin the standing wave resonance lock regime (S2) with a value of the wave
breaking criterion |krξr|max < 1; however, as the orbit shrinks further, progressively larger and
larger wave amplitudes become necessary to support a resonance lock, eventually leading to wave
breaking near the outer turning point (§ 3.6.1). At the onset of (S2) in the CO6 simulation, the
inequality |krξr|max < 1 is only weakly satisfied, meaning that the standing wave lock regime (S2)
is short lived. In the He7 simulation, however, (S2) begins with |krξr|max � 1, so that the initial
resonance lock persists from Prl = 270 min to a period of P≈ 50 min, corresponding to an interval
of time of about 5 billion years.

Once |krξr|max becomes ∼ 1, both simulations enter regime (T1), where near would-be reso-
nances the dynamical tide becomes a traveling wave too weak to create a resonance lock. The oth-
erwise steeply peaked standing wave torque is thus capped in this regime; see Figure 3.5. Regime
(T1) results in a weak tidal synchronization and heating scenario, very similar to (S1).

Eventually, at an orbital period ∼ Ptrl (§ 3.7.2; Table 3.2), both simulations enter regime (T2),
where even the traveling wave torque can create a resonance lock (terminology discussed further
in footnote 5). Tides again become efficient, with synchronization and heating scenarios quantita-
tively consistent with the analytic results in § 3.5 (just as in S2). In the He7 simulation, (T2) begins
at an orbital period of ≈ 27 min, which differs from its value of Ptrl = 49 min listed in Table 3.2,
since that value is only strictly applicable when Ωspin = 0, whereas significant synchronization has
already occurred. The value of Ptrl in the CO6 simulation is a better estimate of the onset of (T2)
due to the brief duration of (S2) in that case.

The maximum wave shear |krξr|max shown in Figure 3.6 (which is evaluated assuming standing
waves) remains very close to unity throughout much of regime (T2). A reasonable question, then,
is whether this is an artifact of the interpolation function we used to transition between standing
and traveling waves torques (equation 3.36).

On the contrary, we believe there is a physical reason why |krξr|max should saturate at ∼ 1,
and that it is a natural consequence of the traveling wave resonance lock scenario we proposed
in § 3.7.2. Specifically, at this point in the system’s evolution, if the dynamical tide attempts to
set up a standing wave, the orbital frequency will evolve, increasing the tidal driving frequency
σ = 2(Ω − Ωspin) towards a resonance and inducing wave breaking. However, fully transitioning
to the traveling wave regime then creates a much larger torque (due to the much larger effective
damping rate), causing the spin frequency to increase rapidly and sending σ away from resonance,
ending wave breaking and reinstituting the standing wave regime. The end result is that |krξr|max

should average to be ∼ 1.
This line of reasoning suggests that the true phenomenon may be episodic in nature. Al-

ternatively, a weak-breaking regime may be possible, allowing the system to smoothly skirt the
boundary between linear and nonlinear fluid dynamics. Full hydrodynamical simulations may be
necessary to understand this in more detail.
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3.9 Discussion

3.9.1 Observational constraints
The theoretical results we have developed can be compared to the recently discovered system

SDSS J065133.33+284423.3 (henceforth J0651), which consists of a Teff = 16,500 K, 0.26M�
helium WD in a 13-minute eclipsing binary with a Teff = 8,700 K, 0.50M� carbon/oxygen WD
(Brown et al. 2011). Orbital decay in this system consistent with the general relativistic prediction
was discovered by Hermes et al. (2012).

Piro (2011) studied tidal interactions in J0651, and produced lower limits on values of the tidal
quality factor Qt by assuming that the observed luminosity of each WD is generated entirely by
tidal heating, and that both WDs are nonrotating. However, the definition of Qt used in that work
differs with ours (equation 3.13), which hinders straightforward comparison.8

Instead, we compare the observed luminosities with our expression for Ėheat from equation (3.20),
which is applicable during a resonance lock. All parameters for J0651 entering into (3.20) were
determined observationally except the moments of inertia I∗ and the asynchronicity periods δP =
2π/δΩ, where δΩ = Ω − Ωspin. Note that equation (3.20) counterintuitively shows that greater syn-
chronization leads to diminished tidal heating, since the heating rate is proportional to the degree
of synchronization (and hence inversely proportional to δP). We can thus use appropriate values
of I∗ from Table 3.1 and impose the inequality L & Ėheat, since cooling can also contribute to each
luminosity, in order to constrain δP for each WD.

This calculation yields δP& 7 min for the helium WD and δP& 400 min for the carbon/oxygen
WD, each with uncertainties of ∼ 20%. Since the orbital period of J0651 is such that resonance
locks should currently exist in both WDs—Porb is less than both Prl from § 3.4 for standing waves
and Ptrl from § 3.7.2 for traveling waves (Table 3.2)—and since our simulations developed wave
breaking long before Porb = 13 min (Figure 3.6), our a priori expectation is that δP should be
∼ Ptrl ∼ 50 min for each WD. It is encouraging that the inferred constraints on δP for both WDs
are within an order of magnitude of this prediction.

We can nonetheless comment on what the deviations from our predictions may imply. First,
the fact that δP > 7 min < Porb = 13 min for the helium WD means that explaining its luminosity
purely by tidal heating would require retrograde rotation. Since this situation would be highly
inconsistent with our results, we can conclude that its luminosity must be generated primarily by
standard WD cooling or residual nuclear burning rather than tidal heating. If this is correct, it
would imply an age for the helium WD of only ∼ 40 Myr (Panei et al. 2007); dividing this age by
a cooling time of ∼ 1 Gyr (Table 3.1) yields a very rough probability for finding such a system of
∼ 4%. This scenario does not seem unlikely, however, since selection bias favors younger WDs.

On the other hand, the inferred lower limit of ∼ 400 min placed on δP for the carbon/oxygen
WD is much larger than our predictions for both Prl and Ptrl. Furthermore, we find that tidal heat is
deposited very close to the photosphere in hot carbon/oxygen WD models (Table 3.1), so we expect

8The relationship between our value of the tidal quality factor, Qt, and that used in Piro (2011), Q′t , is Q′t =
QtσM/λΩµ, where µ is the reduced mass. Our value Qt is consistent with being the reciprocal of an effective tidal
lag angle, which is the conventional definition; see § 3.5.1.
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tidal heating to contribute directly to the luminosity of the carbon/oxygen WD in J0651 (§ 3.5.2).
The constraint on δP thus means that the carbon/oxygen WD appears to be more synchronized
than our theoretical expectation, and consequently less luminous than our prediction by a factor of
∼ 400 min/Ptrl ∼ 10.

Although this is formally inconsistent with our results, examining the first row of Figure 3.6
shows that both of our numerical simulations have δΩ� Ωspin near Porb = 13 min. This means that
the influence of rotation on eigenmode properties is likely to be very important at such short orbital
periods (§ 3.9.2), which is not included in our analysis. This could lead to enhanced synchroniza-
tion and hence mollify the discrepancy (since, again, increased synchronization implies less tidal
heating). Damping and excitation of WD eigenmodes by nonlinear processes are also likely to be
important considerations, which could also increase the efficiency of tidal synchronization.

Lastly, assuming resonance locks are occurring in both WDs, we predict that the rate of orbital
decay should be enhanced due to tides by (§ 3.5.3)(

Ṗtide

Ṗgw

)
J0651

∼ 3%,

where Ṗgw = −Porb/tgw. Although this estimate fails to include the effect of rotation on eigenmode
frequencies, which we already argued may be important in J0651, it should nonetheless be robust
at the order-of-magnitude level. This ∼ 3% deviation between the system’s period derivative and
the general relativistic prediction not accounting for tides may be detectable given further sustained
observations (Piro 2011).

3.9.2 Rotation and WD evolution
In our analysis we have neglected the influence of rotation on the stellar eigenmodes beyond the

simple geometrical Doppler shift of the forcing frequency into the corotating frame. To linear order
in the rotation frequency, the correction to the stellar eigenfrequencies makes very little difference
to the results we have derived—it just means there should be factors of (1−Cn)∼ 5/6 appearing in
various formulas in § 3.4, which we neglected for simplicity.

However, when δΩ = Ω − Ωspin . Ωspin, nonlinear rotational effects become important. Fig-
ure 3.6 shows that this inequality is satisfied below Porb ∼ 25 min in our CO6 simulation, and takes
hold soon after the first resonance lock in our He7 simulation, at only Porb ∼ 150 min. Below these
orbital periods, fully accounting for the Coriolis force in the stellar oscillation equations becomes
necessary.

For example, excitation of rotationally supported modes—Rossby waves and inertial waves—
could prove very efficient. Such modes have corotating-frame eigenfrequencies that are strongly
dependent on the rotation frequency, so a resonance lock would follow the more general trajectory
(Witte & Savonije 1999)

0 = δ̇ω = m
[(

1 +
1
m

∂ωn

∂Ωspin

)
Ω̇spin − Ω̇

]
. (3.37)
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Since our analysis in § 3.5 relied on resonance locks producing Ω̇ ≈ Ω̇spin, which no longer holds
when ∂ωn/∂Ωspin 6= 0, it is unclear whether nonlinear rotational effects could substantially alter our
results for e.g. the tidal quality factor (equation 3.17) and tidal heating rate (equation 3.20).

WD cooling and tidal heating could also potentially modify the synchronization trajectory that
results during a resonance lock. For example, since g-mode frequencies approximately satisfy
ωnl ∼ 〈N〉l/n, and since the Brunt-Väisälä frequency scales with temperature as N ∝ T 1/2 in a de-
generate environment (§ 3.2), progressive changes in a WD’s thermal structure due to either heating
or cooling would introduce an additional ∂ωn/∂t term on the right-hand side of equation (3.37).

3.9.3 Crystallization
Whether a plasma begins to crystallize due to ion-ion electromagnetic interactions is deter-

mined by the Coulomb interaction parameter Γ, which is defined as the ratio of the Coulomb to
thermal energy,

Γ =
Z2e2

dikT
, (3.38)

where Ze is the mean ion charge and di is the ion separation, defined by 1 = ni(4π/3)d3
i . When

Γ & 1, the plasma under consideration behaves as a liquid; when Γ> Γcrys, the plasma crystallizes.
This critical value is Γcrys ∼ 175 in single-component plasmas (Dewitt et al. 2001). However, more
recent observational studies of carbon/oxygen WD populations (Winget et al. 2009) as well as
detailed theoretical simulations (Horowitz et al. 2007) indicate that a larger value of Γcrys ∼ 220 is
applicable for two-component plasmas, as in the cores of carbon/oxygen WDs.

As shown in Table 3.1, the central value of Γ does not exceed the appropriate value of Γcrys for
any of our helium WDs. However, for CO6, our 0.6M�, Teff = 5,500 K carbon/oxygen WD, we
have Γcore = 260 > Γcrys, and further Γ > Γcrys for 19% of the model by mass (taking Γcrys = 220).
This is indicated in the bottom panel of Figure 3.1 as a shaded region.

The excitation of dynamical tides in WDs possessing crystalline cores is an interesting problem
that deserves further study. We will only speculate here on the possible physical picture. Our
preliminary calculations of wave propagation inside the crystalline core, using expressions for the
shear modulus of a Coulomb crystal from Hansen & van Horn (1979), indicate that the shear wave
Lamb frequency is several orders of magnitude too large to allow gravity waves to propagate as
shear waves in the core.

Thus it seems possible that dynamical tides could be efficiently excited at the edge of the
core, as in excitation at the edge of a convective core in early-type stars (Zahn 1975). In this
scenario the deviation of the tidal response inside the crystal from the potential-filling equilibrium
tide solution excites outward-propagating g-modes. As a consequence, tidal gravity waves may
be much more efficiently excited in crystalline core carbon/oxygen WDs, since the Brunt-Väisälä
frequency gradient near the core would be much steeper than in any composition gradient zone, as
discussed in § 3.7.1.
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3.9.4 Nonlinear damping
Since eigenmodes responsible for resonance locks in the standing wave regime attain large

amplitudes, it is natural to worry that they might be unstable to global nonlinear damping by the
parametric instability, even if they don’t experience wave breaking (e.g. Arras et al. 2003; Weinberg
et al. 2012). To address this, we performed a rough estimate of the threshold amplitude T for the
parametric instability to begin sapping energy from the eigenmode responsible for the standing
wave resonance lock in our CO6 simulation from § 3.8. Using the procedure detailed in § 6.5 of
Burkart et al. (2012), we found T ∼ 2× 10−8. On the other hand, during the resonance lock the
mode in question began with an amplitude of |q| ∼ 4× 10−8, which grew to ∼ 10−7 before wave
breaking destroyed the lock.

This demonstrates that parametric instabilities may limit the achievable amplitudes of standing
waves in close WD binaries, potentially somewhat more stringently than wave breaking alone.
Exactly how this affects the overall tidal synchronization scenario requires more detailed study.

3.10 Conclusion
In this paper, we have studied the linear excitation of dynamical tides in WD binaries inspiral-

ing subject to gravitational wave radiation. We showed that the phenomenon of resonance locks
occurs generically in this scenario, both when the dynamical tide represents a standing wave or a
traveling wave. (Our choice of terminology is discussed further in footnote 5.)

In a resonance lock, as the orbital frequency increases according to Ω̇ = Ω/tgw, where tgw is the
gravitational wave inspiral time (equation 3.1), a synchronizing torque produced by the dynamical
tide causes the WD spin frequency to evolve at nearly the same rate: Ω̇spin ≈ Ω̇ (§ 3.4). This means
the l = m = 2 tidal driving frequency σ = 2(Ω − Ωspin) remains constant, which in turn keeps the
tidal torque nearly constant, leading to a stable situation. In other words, a resonance lock is a
dynamical attractor (Figure 3.2).

We first considered resonance locks created by standing waves, where resonances between the
tidal driving frequency and WD eigenmodes create the synchronizing torque required to maintain
σ ≈ constant. We derived analytic estimates of the orbital period Prl at which such resonance locks
can first occur (§ 3.4; also Table 3.2): Prl ∼ 30 min for hot carbon/oxygen WDs (Teff ∼ 12,000 K)
and Prl ∼ 200 min for cold carbon/oxygen WDs (Teff ∼ 6,000 K). For helium WDs, we found
Prl ∼ 70 min for hot models (Teff ∼ 10,000 K), and Prl ∼ 1 day for colder models (Teff ∼ 5,000 K).

Tides preferentially deposit orbital angular momentum into a WD’s outermost layers, where
wave damping is most efficient. A concern thus exists that a synchronously rotating critical layer
might develop, causing rapid wave damping and eliminating the possibility of maintaining a stand-
ing wave (Goldreich & Nicholson 1989b). However, we showed that critical layers are in fact
unlikely to develop in the standing wave regime of WD binary inspiral, since a typical WD fos-
sil magnetic field is capable of winding up and enforcing solid-body rotation throughout the WD
down to orbital periods of ∼ 10 min or less (§ 3.6.2; Appendix B.1).

We derived analytic formulas for the tidal quality factor Qt (equation 3.17) and heating rate
Ėheat (equation 3.20) during a resonance lock (§ 3.5). (Since Qt parametrizes the total tidal energy
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transfer rate, including mechanical energy associated with changing the WD spin, values of Qt

alone do not determine the tidal heating rate.) Our results predict that, for orbital periods of .
hours, Qt ∼ 107 for carbon/oxygen WDs and Qt ∼ 109 for helium WDs. Our formula for Qt is
independent of WD eigenmode properties and weakly dependent on the orbital period, scaling as
Qt ∝ P−1/3

orb . It is, however, strongly dependent on the WD mass and radius. We also found that
tidal heating begins to rival typical WD luminosities for Porb . 10 min, a result that is relatively
insensitive to WD properties due to the steep power law scaling Ėheat ∝∼ P−11/3

orb . The analytic results
we derived can easily be incorporated into population synthesis models for the evolution of close
WD binaries.

As a standing wave resonance lock proceeds, the wave amplitude required to maintain synchro-
nization grows. Eventually, the amplitude becomes so large that the standing wave begins to break
near the surface convection zone (§ 3.6.1). This causes the dynamical tide to become a traveling
wave, eliminating the resonance lock. This occurred soon after the initial resonance lock in our
0.6M�, Teff = 5,500 K carbon/oxygen WD simulation; however, the standing wave resonance lock
lasted much longer in our 0.2M�, Teff = 7,000 K helium WD simulation, from Porb∼ 250 min down
to ∼ 40 min, amounting to ∼ 10 Gyr of binary evolution.

Resonance locks have traditionally been considered only when the dynamical tide represents
a standing wave (Witte & Savonije 1999). We showed, however, that given sufficiently short
orbital periods, resonance locks can even occur in the traveling wave regime (§ 3.7.2). We derived
two simple criteria for whether traveling waves can effect resonance locks: the traveling wave
torque must be large enough to enforce Ω̇ ≈ Ω̇spin, and the torque profile as a function of the
tidal driving frequency σ = 2(Ω − Ωspin) must possess “jagged” features, a concept quantified by
|d logτ/d logσ| � 1 (equation 3.31), where τ is the tidal torque.

The first criterion is satisfied for orbital periods below a critical period Ptrl, which we found to
be Ptrl ∼ 40 – 50 min in most WD models (equation 3.33; Table 3.2). The second criterion can be
satisfied by rapid transitions between standing and traveling wave torques (which differ by orders
of magnitude) near resonances as a result of wave breaking (§ 3.6.1), or by wave interference due to
excitation by a composition gradient (§ 3.7.1; Fuller & Lai 2012a). Excitation likely proceeds at a
composition gradient in carbon/oxygen WDs and hot helium WDs, but excitation at the radiative-
convective boundary becomes important for colder helium WDs with larger surface convection
zones (§ 3.7.1). Excitation off a crystalline core may also be important in cold carbon/oxygen
WDs (§ 3.9.3).

Even after the initial standing wave resonance lock is destroyed by wave breaking, a new trav-
eling wave resonance lock takes hold once the orbital period declines to Porb ∼ Ptrl ∼ 40 – 50 min.
The synchronization trajectory and corresponding values of the tidal quality factor (equation 3.17)
and tidal heating rate (equation 3.20) are the same during a traveling wave resonance lock. We con-
firmed our analytic derivations with numerical simulations that smoothly switched between stand-
ing and traveling wave torques based on the maximal value of the wave shear |krξr| (Figure 3.5),
with wave breaking leading to traveling waves for |krξr|& 1 (§ 3.6.1). We presented the results of
two simulations, one with a helium WD and one with a carbon/oxygen WD, in § 3.8. Once the
traveling wave resonance lock began, synchronization in our numerical calculations proceeded un-
til the spin frequency Ωspin became larger than δΩ = Ω − Ωspin, meaning nonlinear rotational effects
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not included in our analysis were likely to be important (§ 3.9.2).
Our numerical calculations (Figure 3.6) demonstrate that efficient tidal dissipation is produced

by standing wave resonance locks at large orbital periods, and by traveling wave resonance locks at
smaller orbital periods. The importance of the standing wave resonance lock regime at large orbital
periods can be tested by measuring the rotation rates of wide WD binaries. We predict that systems
with orbital periods of hours should have undergone significant synchronization (Figure 3.6), while
models that focus solely on excitation of traveling waves (Fuller & Lai 2012a) would predict
synchronization only at significantly shorter orbital periods. A second prediction of our model is
that there may be a range of intermediate orbital periods (e.g., 20 min . Porb . 40 min) where tidal
dissipation is relatively inefficient compared to both smaller and somewhat larger orbital periods.

The results derived here can be directly compared to the recently discovered 13-minute WD
binary J0651 (§ 3.9.1). We predict a ∼ 3% deviation of the orbital decay rate from the purely
general relativistic value, which may be measurable given further observations. We also find that
our predicted tidal heating rates are within an order of magnitude of the observed luminosities.
This broad agreement is encouraging given the well-known difficulties tidal theory has accurately
predicting the efficiency of tidal dissipation in many stellar and planetary systems.

In detail, we find that even if the helium WD is nonrotating (which maximizes the tidal energy
dissipated as heat), tidal heating is a factor of ∼ 2 less than the observed luminosity, strongly
suggesting that much of its luminosity must derive from residual nuclear burning or cooling of
thermal energy rather than tidal heating. In contrast, we predict that the carbon/oxygen WD in
J0651 should be ∼ 10 times more luminous than is observed. We suspect that the origin of this
discrepancy is the importance of rotational modification of stellar eigenmodes at the short orbital
period present in J0651 (§ 3.9.2), and perhaps the effects of nonlinear damping/excitation of stellar
oscillations (e.g. § 3.9.4; Weinberg et al. 2012). These will be studied in future work.
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Chapter 4

Dynamical resonance locking

4.1 Introduction
The most frequent treatment of tidal effects in detached binaries relies on the weak-friction the-

ory (Murray & Dermott 1999), which considers only the large-scale “equilibrium tide” (i.e., filling
of the Roche potential) with dissipation parameterized by the tidal quality factor Q (Goldreich &
Soter 1966). Such a treatment fails to account for the resonant excitation of internal stellar waves
with intrinsic frequencies comparable to the tidal forcing—the so-called “dynamical tide” (Zahn
1975).

Many studies have considered the dynamical tide in different astrophysical contexts. There are
two possible regimes: when the character of the excited modes is that of radially traveling waves,
or when they represent standing waves. A traveling wave occurs when reflection is prohibited by
a strong dissipative process at some radial location in the star or planet in question—e.g., rapid
linear dissipation near the surface or nonlinear wave breaking.

The standing wave regime is the subject of this paper. This is applicable when a wave’s am-
plitude can be built up by many reflections. Existing calculations in this regime have used at least
one of the following two approximations: 1) tides do not backreact on the spin of the star or planet
in question (Lai 1994; Rathore et al. 2005; Fuller & Lai 2011), or 2) the mode amplitude is not
treated as a dynamical variable, and instead has its amplitude set by the adiabatic approximation
discussed in § 4.6.1 (Witte & Savonije 1999; Fuller & Lai 2012b; Burkart et al. 2013).

In this paper we are interested in understanding the phenomenon of resonance locking, in which
the orbital and spin frequencies vary in concert so as to hold the Doppler-shifted tidal forcing
frequency kΩorb − mΩspin constant (Witte & Savonije 1999). Resonance locking is analogous to the
phenomenon of capture into resonance in planetary dynamics (Goldreich 1965; Goldreich & Peale
1968); we provide a comparison in § 4.10. Resonance locks can accelerate the course of tidal
evolution, as we will show in § 4.8. Moreover, recent studies (Fuller & Lai 2012b; Burkart et al.
2012) have proposed that resonance locks may have been observed in the Kepler system KOI-54
(Welsh et al. 2011), although this has been contested by O’Leary & Burkart (2013).

Since resonance locking involves a changing spin frequency, clearly it cannot occur under
approximation (1) noted above. The domain of validity of approximation (2) is given in § 4.6.1



4.2. BASIC IDEA 76

(see also Burkart et al. 2013). In this paper, we drop both of the above assumptions and examine
resonance locks accounting for a dynamically evolving mode amplitude coupled to both the orbital
and spin evolution. Our aim is to investigate the general dynamical properties of resonance locking,
rather than to focus on a specific astrophysical application. Our key questions concern determining
when resonance locks can occur and under what conditions they are dynamically stable.

This paper is structured as follows. We first describe the essential idea behind resonance lock-
ing in § 4.2, and enumerate the approximations we make in order to limit the complexity of our
analysis in § 4.3. We then develop evolution equations for a single stellar or planetary eigenmode
in § 4.4.1, and determine the implied backreaction upon the binary orbit and stellar or planetary
spin in § 4.4.2. We establish the existence and assess the stability of fixed points in the evolution
equations associated with resonance locking in § 4.5. We describe two analytic approximations
that a mode’s amplitude follows in certain limits in § 4.6.1, and then present example numerical
integrations of resonance locks in § 4.6.2. In § 4.6.3 we discuss the possibility of chaos during
resonance locking. We numerically and analytically determine the parameter regimes that lead to
resonance locking in § 4.7, and show that resonance locks can accelerate tidal evolution in § 4.8.
We apply our results to two example astrophysical systems—inspiraling compact object binaries
and eccentric stellar binaries—in § 4.9. We then conclude in § 4.10.

4.2 Basic idea
We first explain the essential mechanism behind resonance locking by considering the example

situation of a circular white dwarf binary inspiraling due to the emission of gravitational waves
(Burkart et al. 2013). Focusing on a particular white dwarf, and shifting to a frame of reference
corotating with the white dwarf’s spin, the tidal forcing frequency is σ = m(Ωorb − Ωspin), where
m is the azimuthal spherical harmonic index and we temporarily assume Ωorb � Ωspin. Due to
the influence of gravitational waves, Ωorb gradually increases, and thus so does σ. As such, σ
sweeps towards resonance with the nearest normal mode, and this mode gains energy as it becomes
increasingly resonant (Rathore et al. 2005).

Along with energy, however, comes angular momentum (for m 6= 0 modes). As the mode then
damps, this angular momentum is transferred to the background rotation, increasing Ωspin and
consequently decreasing σ. Thus if the mode is capable of achieving a sufficient amplitude, fixed
points can exist where σ (but not Ωorb or Ωspin individually) is held constant by tidal synchronization
balancing orbital decay by gravitational waves, as illustrated in Figure 4.1. This is the idea behind
a tidal resonance lock.

The properties of such fixed points corresponding to resonance locking clearly depend on the
rate of externally driven orbital evolution and the strength of tidal coupling to the mode in ques-
tion. Furthermore, the mode’s damping rate influences both its maximum achievable amplitude
as well as the rate at which it dissipates angular momentum into the background rotation profile.
Lastly, since resonance locking involves a balance between orbital and spin evolution, the ratio of
the associated moments of inertia—roughly MR2/µa2 where µ is the reduced mass and a is the
semi-major axis—also plays a key role. We will see in subsequent sections that dimensionless pa-
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Figure 4.1: Diagram illustrating the basic mechanism behind tidal resonance locking. Forcing frequency
drift caused for example by gravitational waves causes the tidal forcing frequency σ to advance towards the
right. The influence of tidal synchronization, on the other hand, becomes stronger as resonance approaches,
and tends to push the forcing frequency to the left. This creates a fixed point on the resonant mode’s
Lorentzian amplitude profile. (The mirror image of this situation is also possible.)

rameters corresponding to these four quantities will entirely determine the dynamics of resonance
locking.

The ideas we have presented here in the context of inspiraling white dwarf binaries carry over
to the more general scenario where some generic physical process causing the forcing frequency
σ or the eigenmode frequency ω to evolve in one direction—e.g., gravitational waves, magnetic
braking, the equilibrium tide, stellar evolution, etc.—is balanced by the resonant tidal interaction
with a planetary or stellar normal mode causing σ to evolve in the opposite direction.

4.3 Essential assumptions
Throughout this work, we invoke the following principal assumptions.

1. As discussed in § 4.1, we assume that the dynamical tide is composed of standing waves,
and thus that linear dissipation (provided e.g. by radiative diffusion) is not strong enough to
prohibit wave reflection.

2. As a mode’s amplitude grows, nonlinear processes can become important. For example,
gravity waves break and catastrophically dissipate when their vertical displacement becomes
comparable to their vertical wavelength (Lindzen 1966). Moreover, global parametric reso-
nances can occur at smaller amplitudes, which transfer energy to a pair of daughter modes
(e.g. Weinberg et al. 2012).

We completely neglect nonlinear hydrodynamical phenomena in this work. The applicability
of this approximation depends on the particular star or planet’s structure and the binary’s
parameters. For example, although Witte & Savonije (2002) considered resonance locking
in solar-type binaries, Goodman & Dickson (1998) showed that the lack of a convective core
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in such stars allows geometric focusing to progressively amplify the local amplitude of an
inward-propagating gravity wave to the point where wave breaking occurs over a wide range
of binary parameters (see also Barker & Ogilvie 2010). This precludes the establishment of
the standing waves required for a resonance lock.

3. We assume that the star or planet in question rotates as a rigid body, even though tidal torques
are typically applied to the background rotation profile in a thin spherical shell where mode
damping is strongest (Goldreich & Nicholson 1989a). We thus rely upon the action of an
efficient angular momentum transport process. Whether such a process is available strongly
depends on the application in question; see e.g. Burkart et al. (2013) and accompanying ref-
erences. Without solid-body rotation, critical layers can develop where angular momentum
is deposited, which would provide rapid, local dissipation and hence violate assumption (i).

4. We take the overall strength of a mode’s tidal forcing to be constant, and account for orbital
evolution only insofar as it affects the forcing frequency. We thus ignore, for example, that
the magnitude of the tidal force depends on the binary’s semi-major axis, which necessarily
must evolve if Ωorb is to change. We determine when this assumption is valid in § 4.5.1; it
would never be appropriate for long-timescale simulations that follow the evolution of many
resonance locks (which are not performed in this paper).

5. Lastly, to simplify our analysis, we only consider binary systems where the spin and orbital
angular momenta are aligned. Generalization to spin-orbit-misaligned systems is straight-
forward (Lai 2012), and ultimately only introduces a Wigner D-matrix element into our
definition of the tidal coupling coefficient U in § 4.4.1.

4.4 Formalism

4.4.1 Mode amplitude evolution
We work in a frame of reference corotating with the spin of the body in question, where the

rotation axis lies along the ẑ direction. Following Schenk et al. (2002), we invoke a phase space
eigenmode decomposition of the tidal response (Dyson & Schutz 1979). The standard stellar mode
inner product for arbitary vector fields η and η′ is

〈η,η′〉 =
∫

η∗ ·η′ρdV, (4.1)

and the anti-Hermitian Coriolis force operator is defined by Bη = 2Ωspinẑ×η.
We consider the resonant interaction between a time-varying tidal potential evaluated on a

Keplerian orbit and a single linear mode of our expansion. The mode has spherical harmonic
indices l and m, and has complex amplitude q. The differential equation describing the mode’s
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linear evolution is (Schenk et al. 2002)

q̇ + (iω +γ)q =
iω
ε
〈ξ,atide〉 , (4.2)

where ω is the mode’s eigenfrequency, γ is its damping rate, ξ is its Lagrangian displacement
vector,

ε = 2ω2〈ξ,ξ〉+ω〈ξ, iBξ〉 (4.3)

is a normalization factor (equal to the mode energy at unit amplitude), and atide is the time-
dependent tidal acceleration vector. We assume γ � ω and, without loss of generality, we take
ω > 0.

Allowing for an arbitrary eccentricity, the projection of the tidal acceleration onto the mode
〈ξ,atide〉 is proportional to ( a

D

)l+1
e−im( f −ψspin),

where D is the binary separation, a is the semi-major axis, f is the true anomaly, and(
ψorb

ψspin

)
=
∫ (

Ωorb

Ωspin

)
dt. (4.4)

Assuming that changes in the orbital frequency and eccentricity occur on timescales much longer
than an orbital period, we can expand the dependence on D and f in a Fourier series:( a

D

)l+1
e−im( f −ψspin) ≈

∑
k

X k
lme−i(kψorb−mψspin), (4.5)

where X k
lm(e) is a Hansen coefficient (Appendix C.2), with X k

lm(e = 0) = δk
m for circular orbits.

Since we are concerned with resonant mode-tide interaction, we henceforth consider only a sin-
gle harmonic component of this expansion. The phase associated with this component is ψ =
kψorb − mψspin.

Our mode amplitude equation from (4.2) then becomes

q̇ + (iω +γ)q = iωUe−iψ. (4.6)

The dimensionless mode-tide coupling strength associated with our harmonic component is

U =
(

M′

M

)(
R
a

)l+1(E∗
ε

)
Ilm X k

lmWlm, (4.7)

where M′ is the companion mass,

Ilm =
1

MRl

〈
ξ,∇

(
rlYlm

)〉
(4.8)
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is the mode’s linear tidal overlap integral (Press & Teukolsky 1977),

Wlm =
4π

2l + 1
Y ∗lm
(π

2
, 0
)

(4.9)

is an order-unity angular coupling coefficient, and E∗ = GM2/R is the gravitational energy scale.
We also define the tidal forcing frequency to be σ = ψ̇ = kΩorb −mΩspin, and take σ > 0 without loss
of generality. We are free to choose the sign of σ since we are considering a complex conjugate
mode pair—one member of the pair is resonant with σ while the other is resonant with −σ. Because
m can possess either sign, both prograde and retrograde modes are allowed for σ > 0. Since we
are considering resonant interaction, our assumption is σ ≈ ω.

4.4.2 Forcing frequency evolution
We will first obtain the time derivative of the stellar or planetary spin frequency implied by

equation (4.6). The canonical angular momentum associated with the mode together with its com-
plex conjugate is given by (Appendix C.3)

Jmode =
mε
ω
|q|2. (4.10)

Differentiating with respect to time and substituting equation (4.6), we find

J̇mode = −2γJmode + 2mεUIm
[
qeiψ] . (4.11)

The first term in equation (4.11) results from damping, and is imparted to the stellar or planetary
spin (Goldreich & Nicholson 1989b).1 We thus set

J̇spin = 2γJmode, (4.12)

meaning that

Ω̇spin =
2γJmode

I∗
+αspin, (4.13)

where I∗ is the planet or star’s moment of inertia, and we have incorporated an additional term αspin

to account for processes that can change Ωspin other than interaction with the mode in question—
e.g., the equilibrium tide, magnetic braking, etc. We take αspin to be constant.

The rate at which the orbital energy changes is given by (Weinberg et al. 2012)

Ėorb = −2kΩorbεUIm
[
qeiψ] . (4.14)

1It can be shown that the second term in equation (4.11) is exactly the angular momentum transfer rate from the
orbit; see e.g. Weinberg et al. (2012). This justifies attributing the first term to changes in the spin.
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We can convert equation (4.14) into an expression for Ω̇orb using

Ω̇orb

Ωorb
= −3

Ėorb

µa2Ω2
orb
, (4.15)

which yields

Ω̇orb =
(

3k
µa2

)
2εUIm

[
qeiψ]

+αorb, (4.16)

where we have again included an extra term αorb to account for e.g. orbital decay by gravitational
waves.

It is useful to combine equations (4.13) & (4.16) to determine the time derivative of δω = ω−σ,
which can be expressed as

δ̇ω

ω
= −Γdr + Γtide

(
γ|q|2

ωU2 − r Im
[

qeiψ

U

])
. (4.17)

Here we have combined both α parameters from earlier into the “drift” rate

Γdr =
kαorb − m(1 −C)αspin

ω
−
∂ lnω
∂t

, (4.18)

where
C = −

1
m

∂ω

∂Ωspin
(4.19)

allows for a rotationally dependent corotating-frame eigenmode frequency and ∂ω/∂t accounts for
changes in the eigenmode frequency due to progressive modifications of the background hydro-
static profile from e.g. stellar evolution.2 The tidal backreaction rate is

Γtide =
2m2U2(1 −C)ε

I∗ω
, (4.20)

and parameterizes the strength of tidal coupling to the mode in question; it is related to the rate at
which the mode can synchronize the star or planet at nonresonant amplitudes (|q| ∼ |U |). Lastly,
the moment of inertia ratio is

r =
k2

m2

3I∗
(1 −C)µa2 . (4.21)

We assume that both Γtide and r are positive throughout this work, but allow Γdr to possess either
sign.

2Tidal heating could contribute to the |q|2 term in equation (4.17), due to heat deposited by the mode in question
affecting the background star or planet; we neglect this for simplicity.
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4.5 Resonance lock fixed points

4.5.1 Existence of fixed points
We first remove the overall oscillatory time dependence of q by changing variables to Q =

qeiψ/U , so that equation (4.6) becomes

Q̇ +

(
iδω +γ +

U̇
U

)
Q = iω, (4.22)

where again δω = ω−σ. For simplicity, we now assume that γ is much larger than terms contribut-
ing to U̇/U , such as ȧ/a and ė/e, so that equation (4.22) becomes

Q̇ + (iδω +γ)Q = iω; (4.23)

as we will see in § 4.8, this essentially amounts to assuming γ� |Γdr|. Equation (4.17) becomes

δ̇ω

ω
= −Γdr + Γtide

(γ
ω
|Q|2 − r Im[Q]

)
. (4.24)

Having thus eliminated direct dependence on the phase ψ, our two dynamical variables are now Q
and δω. Since Q is complex, we have a third-order differential system.

Resonance locking corresponds to a fixed point in the evolution equations. We thus set time
derivatives to zero in equation (4.23) to derive

Qf =
ω

δωf − iγ
, (4.25)

and hence [
Re(Qf)
Im(Qf)

]
=

ω

δω2
f +γ2 ×

[
δωf

γ

]
. (4.26)

Similarly, setting δ̇ω = 0 in equation (4.24) and using the fact that (γ/ω)|Qf|2 = Im(Qf), we have

Γdr = (1 − r)Γtide Im(Qf). (4.27)

We can use equations (4.26) & (4.27) to derive

δω2
f =

ωγΓtide(1 − r)
Γdr

−γ2. (4.28)

So far we have not determined the sign of δωf, and indeed there is one fixed point for each sign;
however, we will show in § 4.5.2 that one is always unstable.

These fixed points exists if equations (4.26) & (4.27) can be solved for Qf and σf, which is



4.5. RESONANCE LOCK FIXED POINTS 83

possible if (assuming Γtide > 0)
γ

ωΓtide
<

1 − r
Γdr

; (4.29)

this in particular requires
(1 − r)Γdr > 0. (4.30)

If Γdr > 0, then equation (4.30) reduces to

|k|< |m|
(

(1 −C)µa2

3I∗

)1/2

. (4.31)

As a result, Fuller & Lai (2012b) referred to the quantity on the right-hand side of equation (4.31)
as the “critical” harmonic.

The existence of the fixed points also relies on the “weak-tide” limit, which we define to be
|δωf| < ∆ω/2, where ∆ω is the eigenmode frequency spacing near the mode in question. This
means that the fixed point must lie within the eigenmode’s domain of influence, so that the con-
tribution of other eigenmode resonances can be legitimately neglected. If this is not the case, then
resonance locking is not possible.

For example, if Γdr is very small, equation (4.27) requires a commensurately small value of Q.
However, this could be impossible to achieve in practice, since it would require a very large value
of the detuning δω, allowing the possibility for a neighboring mode to come into resonance. The
actual outcome in such a situation is that the tidal interaction would dominate the dynamics, and
the drift processes contributing to Γdr would be irrelevant—i.e., the “strong-tide” limit.

A necessary condition for the weak-tide limit, and thus for a resonance lock to be able to occur,
is |δωf| � ω, which evaluates to

|Γdr|
γ
� Γtide|1 − r|

ω
. (4.32)

We will use this as a convenient, although very liberal, proxy for the real requirement of |δωf| <
∆ω/2, so as to avoid handling the additional parameter ∆ω. Calculations of dynamical tidal
evolution that use the adiabatic approximation (§ 4.6.1) with many modes—e.g. Witte & Savonije
(1999); Fuller & Lai (2012b)—already naturally account for the true requirement.

4.5.2 Fixed point stability
Linearization

We will now perform a linear stability analysis about each fixed point. First, note that the
presence of the nonanalytic functions | · | and Im(·) in equation (4.24) necessitates treating the real
and imaginary parts of Q separately. Thus let

ζ =
[
Re(Q) Im(Q) (σ −ω)/ω

]T
,
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and
dζ
dt

= f(ζ),

where f represents equations (4.23) & (4.24) and satisfies ∇ · f = −2γ. We can then derive a time-
evolution equation for δζ = ζ −ζf by invoking results from § 4.5.1.

Proceeding, to linear order we have

d
dt
δζ = Aδζ + o(δζ), (4.33)

where

A =Df(ζf) =

 −γ δωf A1,3

−δωf −γ A2,3

A3,1 A3,2 0

 , (4.34)

A1,3 = −
ωβ

Γtide
A2,3 =

ωβδωf

γΓtide
(4.35)

A3,1 = −
2βδωf

ω
A3,2 = rΓtide −

2βγ
ω
, (4.36)

and β = Γdr/(1 − r).

Eigenvalues

We assume in this section that equation (4.29) is satisfied, so that the resonance locking fixed
point formally exists, and that equation (4.32) is also satisfied, so that we are in the weak-tide limit
and the fixed point physically exists. The characteristic polynomial P for the eigenvalues λ of A is

P(λ) = λ3
+ 2γλ2

+ P1λ+ P0, (4.37)

where
P1 =

ωγΓtide

β
−

rωβδωf

γ
P0 = 2ωΓdrδωf. (4.38)

A fixed point is asymptotically stable if all eigenvalues satisfy Re(λ) < 0. A standard theorem
then states that, for this to occur, it is necessary (but not sufficient) that all of the coefficients of λi

(i≥ 0) in equation (4.37) possess the same sign. We thus must have that P1,0 > 0.
First, we see that

+1 = sign(P0) = sign(Γdr)sign(δωf). (4.39)

Since equations (4.26) & (4.27) admit two solutions, corresponding to δωf = ±|δωf|, the criterion
that P0 > 0 simply allows us to select the solution that could potentially be stable. Henceforth we
will focus on the solution that satisfies equation (4.39), which we refer to as the “lagging” fixed
point; similarly, the “leading” fixed point is the one that fails to satisfy equation (4.39).

Equation (4.39) permits the following intuitive interpretation: the forcing frequency σ is “pushed”



4.5. RESONANCE LOCK FIXED POINTS 85

towards an eigenfrequency in the direction specified by the sign of Γdr, but the approaching eigen-
mode “pushes” σ in the opposite direction, and resonance locking occurs when these “forces”
cancel out (§ 4.2). In particular, if Γdr > 0, σf should be smaller than ω, meaning δωf = ω −σf > 0,
consistent with equation (4.39).

It remains to analyze P1 and to ascertain when it is also positive. Moreover, since positivity of
the characteristic polynomial’s coefficients is only a necessary condition for stability, we must then
further examine the Hurwitz matrix associated with P to establish when its leading principal minors
are also positive (e.g. Gradshteyn & Ryzhik 2007). We perform this analysis in Appendix C.1 in
the limit of γ� |δωf|; the result is that the lagging fixed point is stable if and only if

Γdr < 0 or 0<
Γdr

γ
< (1 − r)

(
Γtide

ω

)1/3

(4.40)

(subject to the assumptions we have made thus far). In particular, the lagging fixed point is thus
always stable for r > 1 per equation (4.30).

Figure 4.2 shows the stability region of the lagging fixed point as a function of the damping
rate γ and the frequency drift rate Γdr for two example values of the backreaction rate Γtide and the
moment of inertia ratio r. Stability was determined by numerically solving for the eigenvalues λ
using equation (4.37), and is indicated by green shading, while instability is white; regions where
the fixed point does not exist are shaded dark gray. Equations (4.29), (4.32), & (4.40), which are
displayed as blue dashed, black dotted, and magenta dot-dashed lines, closely correspond to the
green region’s boundaries. The values used in the top panel were chosen based on our white dwarf
binary application in § 4.9.1. In the bottom panel we have r > 1, which by equation (4.30) implies
Γdr < 0.

The instability boundary defined by equation (4.40) is in fact a supercritical Hopf bifurcation
(Wiggins 2003), corresponding to the loss of stability of a complex conjugate eigenvalue pair. Past
the bifurcation, inside the unstable region of parameter space, this unstable complex conjugate
pair splits into two unstable real eigenvalues, as shown in Figure 4.3. In other words, the fixed
point switches from being an unstable spiral to an unstable node. Determining the parameter space
manifold on which this splitting occurs will be useful in § 4.7.2; we can accomplish this by setting
the discriminant of equation (4.37) to zero (thus requiring a repeated root), yielding

0 = 36γP1P0 − 32γ3P0 + 4γ2P2
1 − 4P3

1 − 27P2
0 . (4.41)

Although this equation cannot be solved analytically, we can nonetheless determine the asymptotic
dependence of Γdr on γ in the limit γ→ 0. Newton’s polygon for equation (4.41) shows that this
asymptotic dependence is linear: Γdr = Aγ. Substituting this into equation (4.41), setting γ = 0, and
solving for A, we have that the lagging fixed point is a spiral if

Γdr < γ

(
1 − r
r2/3

)(
Γtide

ω

)1/3

. (4.42)
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Figure 4.2: Resonance locking fixed point stability analysis. Regions where the fixed point is asymptotically
stable are shaded green, while unstable regions are white, and regions where the fixed point does not exist are
dark gray. We determined the stability regions by numerically evaluating the eigenvalues λi of the matrix
A determined by linearizing the equations of motion about the fixed point (equation 4.34) and enforcing
Re(λi) < 0 together with equation (4.32). The analytic results in equations (4.29), (4.32), & (4.40) are
displayed as blue dashed, black dotted, and magenta dot-dashed lines. The lower-right gray triangle in
both panels corresponds to where the weak-tide limit is certainly violated, and thus the fixed point does not
physically exist; see § 4.5.1. In the bottom panel we have r > 1, which by equation (4.30) implies Γdr < 0.
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Figure 4.3: Real parts of the lagging fixed point’s three eigenvalues as functions of Γdr for γ/ω = 10−8,
Γtide/ω = 10−10, and r = 0.01 (see the left middle panel of Figure 4.10). A complex conjugate pair exists for
Γdr/ω. 10−10 (equation 4.42), which loses stability at Γdr/ω≈ 10−11.3 in a Hopf bifurcation (equation 4.40).

4.6 Trajectories
Here we will show several examples of trajectories that can be produced by our dynamical

equations from § 4.5.1. First, however, in § 4.6.1 we will discuss two different analytic approxi-
mations that the trajectories follow in certain limits.

4.6.1 Analytic approximations
Adiabatic approximation

In this paper, we define the adiabatic approximation to be the situation where the mode ampli-
tude can instantaneously adjust to a changing forcing frequency, and thus we can set the Q̇ term in
equation (4.23) to zero and assume σ is constant. Equation (4.23) can then be solved exactly:

Qad =
ω

δω − iγ
. (4.43)

This approximation, also referred to as the Lorentzian approximation due to the form of equa-
tion (4.43), is frequently employed in the literature.

The domain of validity of the adiabatic approximation can be determined by comparing the
maximum possible mode growth rate to the growth rate implied by equation (4.43); when the
latter exceeds the former, the adiabatic approximation is no longer valid. We can determine the
maximum rate at which a mode amplitude Q can grow by providing a perfect resonance to equa-
tion (4.23), i.e., by setting σ = ω. Dropping the damping term and setting σ̇ = 0, the particular
solution is

Q(t) = iωt, (4.44)

which implies that |Q̇|max = ω. Next, in order to estimate the time derivative of Qad, we take
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σ̇ ≈ Γdrω, which gives us

|Q̇ad| ≈ |Γdr|
(

ω2

δω2 +γ2

)
. (4.45)

We then equate |Q̇ad| and |Q̇|max and solve for δω, finding

δω2
ad ≈ |Γdr|ω −γ2; (4.46)

if |Γdr|ω < γ2, then the adiabatic approximation is always valid.

No-backreaction approximation

Although directly solving equations (4.23) & (4.24) outside the adiabatic limit requires numer-
ical integration, we can nonetheless produce an approximate analytic expression for Q(t) in the
limit that backreaction of the mode on the tidal forcing frequency σ is unimportant (Reisenegger &
Goldreich 1994; Rathore et al. 2005). This approximation subsumes the adiabatic approximation,
but is also more complicated.

Since we are already assuming that the mode damping rate is weak enough for the resonance
locking fixed point to exist (equation 4.29), we can simply take γ→ 0. Subject to this simplifica-
tion, we can solve equation (4.6), yielding

q(t)≈ iωUe−iωt
∫ t

t0

eiωt−iψdt, (4.47)

with t0� −(ωΓdr)−1/2. If we then approximate ψ as

ψ ≈ ψ0 +ωt +ωΓdrt2/2,

where we have set resonance to occur (i.e. ψ̇ = ω) at t = 0, then equation (4.47) becomes a closed-
form solution to the equations of motion.

Since the integral in equation (4.47) approaches a constant for t � (ωΓdr)−1/2, and since we
wish to estimate the maximum value of |Q|, we can simply extend the domain of integration to
(−∞,+∞), yielding (using e.g. the method of stationary phase)

q(t)≈ −(1 − i)U
√
πω

Γdr
e−iωt−iψ0 (4.48)

for t� (ωΓdr)−1/2. We thus find that

|Q|max ≈

√
2πω
|Γdr|

. (4.49)

We plot this maximal value of |Q| in the middle panels of Figures 4.4 – 4.7 as a dash-dotted black
line.
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4.6.2 Numerical results
Figures 4.4 – 4.7 show full numerical solutions to equations (4.23) & (4.24) for several different

choices of our four parameters γ, Γdr, Γtide, and r. In each case, the mode amplitude is initialized
to the adiabatic approximation in the regime where it should be valid (§ 4.6.1).

First, Figure 4.4 gives a simple example of resonance locking into a stable fixed point. Next,
we hold Γtide, γ, and r constant, but increase Γdr by a factor of ∼ 10, thus making σ sweep towards
resonance more quickly. In this case the fixed point is no longer stable, since equation (4.40) is
no longer satisfied, and Figure 4.5 shows the limit cycle resonance lock that then occurs. The
system passes through resonance in between the two unstable fixed points, and then oscillates
back and forth through resonance. This oscillation pumps the mode amplitude up as the system is
repelled by the fixed points. Eventually, the oscillation ceases and the mode’s angular momentum
discharges into rotation causing the system to travel back away from resonance and decay back
onto the adiabatic approximation. The cycle then begins again. This limit cycle is in fact precisely
the stable periodic orbit generated by the supercritical Hopf bifurcation (§ 4.5.2).

Figure 4.6 shows the resulting evolution again holding all parameters constant except for Γdr,
which we increase by another factor of∼ 10. The resonance locking fixed point is now sufficiently
unstable that it suppresses the mode amplitude’s growth and prevents resonance locking from oc-
curring. Near resonance the mode amplitude still grows appreciably, but after the lock fails to hold,
damping causes the mode amplitude to decay exponentially. We have found the linear character of
the lagging fixed point to be the principal distinguishing factor between a limit cycle occurring and
a failed resonance capture due to fixed point suppression. Specifically, we find that if the lagging
fixed point is an unstable node, meaning all its eigenvalues are real (Figure 4.3), then it acts to
suppress the mode amplitude and leads to a failed capture. If instead the lagging fixed point is an
unstable spiral, meaning its eigenvalues contain an unstable complex conjugate pair (§ 4.5.2), then
it is able to “pump” a trajectory to high amplitude and allow the formation of a limit cycle. This
distinction, which is valid within a factor of ∼ 3 in Γdr, will be critical in § 4.7.2.

4.6.3 Chaos
Lastly, Figure 4.7 shows a chaotic trajectory. This situation is very similar to the limit cycle

evolution shown in Figure 4.5, in that the resonance locking fixed point is unstable but Γdr is not
so large that resonance locking doesn’t occur altogether; the essential difference is that the mode
amplitude profile resulting from the adiabatic approximation (dashed line) is capped by damping
not far above the fixed points, unlike in Figure 4.5 where it ascends much higher. This corresponds
to the fact that the choice of parameters for Figure 4.7 lies close (logarithmically speaking) to the
bifurcation manifold in parameter space where equation (4.29) ceases to be satisfied and the fixed
points no longer exist. This appears to be a key ingredient for chaos, as we will explain below,
which is why we have changed γ to a larger value than that used in Figures 4.4 – 4.6 (so that
equation 4.29 is closer to not being satisfied).

Since the fixed points are so close to the peak of the adiabatic profile, the pumping process
that occurs due to repulsion from the fixed points cannot allow the mode to acquire a very large
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Figure 4.4: Numerical integration of mode and orbital evolution equations for the case of resonance locking
into a stable fixed point. Parameters used were Γdr/ω = 10−9, γ/ω = 10−4.5, Γtide/ω = 10−10, and r = 0.5.
The adiabatic approximation is shown in the top panel as a dashed black line (§ 4.6.1), while the actual
system trajectory is purple. The red circle shows the lagging fixed point (§ 4.5). Individual timeseries
for the mode amplitude Q and the forcing frequency σ are shown in the bottom two panels. The dash-
dotted black line in the mode amplitude panel shows equation (4.49), which gives the maximum amplitude
attainable under the no-backreaction approximation (§ 4.6.1). The lagging fixed point’s eigenvalues are
λ/ω ∈ {(−0.031±1.2 i)×10−3, −1.6×10−6}.
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Figure 4.5: Resonance lock limit cycle for a case in which the fixed points exist (red and black circles)
but are linearly unstable. Parameters used were Γdr/ω = 10−7.7, γ/ω = 10−4.5, Γtide/ω = 10−10, and r = 0.5.
Conventions used are the same as in Figure 4.4. Color shows time, ranging from purple at t = 0 to light blue.
The red & black circles show the lagging and leading fixed points, respectively (§ 4.5). System sweeps
through resonance without initially being captured. However, the system then oscillates through resonance
several times, pumping up the mode’s amplitude. Eventually, the oscillation ceases and the mode’s angular
momentum discharges into rotation causing the system to travel back away from resonance and start over.
The lagging fixed point’s eigenvalues are λ/ω ∈ {−3.9×10−4, (1.6±0.49 i)×10−4}.
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Figure 4.6: Failed resonance lock. Parameters used were Γdr/ω = 10−7, γ/ω = 10−4.5, Γtide/ω = 10−10, and r =
0.5. Conventions used are the same as in Figure 4.4. Color shows time, ranging from purple at t = 0 to light
blue. The unstable, repulsive fixed points (red and black circles) suppress the maximum attainable mode
amplitude below the dash-dotted black line in the second panel, which shows the maximum amplitude that
would be achieved without backreaction (§ 4.6.1). This suppression is severe enough to prevent resonance
locking from occurring. The lagging fixed point’s eigenvalues are λ/ω ∈ {−6.7× 10−4, 5.4× 10−4, 6.8×
10−5}.
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Figure 4.7: Chaotic resonance lock around an unstable fixed point (red circle). Parameters used were
Γdr/ω = 10−7.4, γ/ω = 10−4, Γtide/ω = 10−10, and r = 0.5. Conventions used are the same as in Figure 4.4.
Color shows time, ranging from purple at t = 0 to light blue. This situation is similar to that depicted in
Figure 4.5, but in this case backreaction is so significant that the system never fully returns to the adiabatic
approximation once deviating from it near the fixed point. Chaotic orbits are instead executed around the
fixed point. The lagging fixed point’s eigenvalues are λ/ω ∈ {(0.98±2.4 i)×10−4, −4.0×10−4}.
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amplitude. As a result, when the mode’s angular momentum eventually drains into the background
spin, the system does not retreat back from resonance very far, and has little time to decay back
onto the adiabatic approximation before resonance is reached again. The initial condition upon
entering resonance is consequently somewhat different each cycle, leading to the potential for
chaos.

We show a three-dimensional projection of the orbit from Figure 4.7 in Figure 4.8. The lagging
fixed point is shown by a small red sphere, while its unstable plane corresponding to eigenvalues
λ/ω = (0.98±2.4 i)×10−4 is also displayed.

We now present numerical evidence that the path depicted in Figure 4.8 follows a strange
attractor. We emphasize that our evidence is not rigorous. A strange attractor of a dynamical
system, also known as an attracting chaotic invariant set, is a set that (Wiggins 2003):

1. is compact,

2. is invariant under the dynamical equations,

3. is attracting,

4. has sensitive dependence on initial conditions, and

5. is topologically transitive.

Figure 4.8 appears to begin to trace out a bounded, attracting, invariant set, which we denote
Λ; this addresses conditions (i) – (iii). In Figure 4.9, we estimate the largest Lyapunov exponent of
the trajectory in Figure 4.8 to be 6× 10−5ω. Since this is positive, trajectories that begin together
deviate exponentially as time passes. This then points toward condition (iv) being satisfied. Lastly,
since color indicates time in Figure 4.8, the fact that dark purple (early times) is tightly and ran-
domly interwound with light blue (late times) leads us to believe that condition (v) is likely also
satisfied. Again, we have presented only suggestive evidence; further study is required to fully
address the presence of a strange attractor.

In addition, we note that our preliminary investigations show that the chaos present results from
the Hopf orbit undergoing a period-doubling cascade, and is similar in several ways to the Rössler
attractor (Rössler 1976). This requires further study.

4.7 Achieving resonance locks

4.7.1 Numerical results
In order to ascertain the conditions that lead to resonance locks, we performed sample integra-

tions of equations (4.23) & (4.24) numerically. We initialized each integration with

δω0 = 10×max(δωf,δωad,γ)
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Figure 4.8: Three-dimensional projection of the integration from Figure 4.7. Time is indicated by color,
ranging from dark purple at early times to light blue. The unstable plane corresponding to eigenvalues
(0.98± 2.4 i)× 10−4 is shown, centered on the fixed point (red sphere). Each cycle, the system begins
near the fixed point, but is then ejected along the unstable manifold. Nonlinear terms cause the system to
decay back onto the adiabatic solution; this motion comprises the spiral structure on the left. The adiabatic
solution then transports the system near to the fixed point, and the cycle begins again with perturbed initial
conditions.
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Figure 4.9: Estimation of largest Lyapunov exponent for the chaotic trajectory in Figures 4.7 & 4.8. We
initialized two numerical integrations of our dynamical equations on the adiabatic solution (§ 4.6.1) with
slightly perturbed initial detuning frequencies: δω0 = 0.95δωf and 0.950001δωf. The blue curve shows the
norm of the difference between the resulting values of the reduced mode amplitude Q as a function of time.
The trajectories initially deviate exponentially, demonstrating chaos, with a rough functional form of et/τ

for τ ≈ 2×104/ω (dashed magenta line). We thus estimate the largest Lyapunov exponent (Wiggins 2003)
for the trajectories to be ≈ 1/τ ≈ 6×10−5ω > 0, which is close to the damping rate of γ = 10−4ω.
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and Q0 set by the adiabatic approximation from equation (4.43). We then performed each integra-
tion until t1 = 2δω0/ωΓdr. We determined that a resonance lock occurred if, assuming r < 1,

minδω
δω0

> −0.5,

where minδω is the minimum value of δω attained over the final 10% of integration.3 A similar
formula was used for r > 1, but accounting for the fact that resonance is then approached from the
left (in terms of δω; see § 4.5.1). Note that these conditions account for stable, limit cycle, and
chaotic forms of resonance locking (§ 4.6.2).

Figure 4.10 shows our results. Light blue regions indicate that a resonance lock did occur, while
white indicates the reverse, and dark gray indicates that the fixed point does not exist (§ 4.5.1).
The green lines are the analytic formula from equation (4.54) below for the boundary between
successful and failed resonance locking. The thin purple lines are the equivalent condition for
resonance locks to occur when r > 1, from equation (4.53). Both analytic approximations, which
we will develop in the next section, show good agreement with numerical results.

4.7.2 Analytic approximations
We now seek to obtain an analytical understanding of our numerical results in Figure 4.10. We

will thus attempt to assemble a set of analytic approximations to determine what values of our four
parameters γ, Γdr, Γtide, and r (§ 4.4) lead to resonance locks, and what values do not. We define
resonance locking in this context to be any behavior such that σ does not increase without bound
as t→∞; this definition comprises locking into a stable fixed point (Figure 4.4), limit cycles about
an unstable fixed point (Figure 4.5), and chaotic behavior like in Figure 4.7, but does not include
the behavior seen e.g. in Figure 4.6.

We see by inspecting equations (4.25) & (4.43) that the adiabatic solution exactly passes
through the resonance locking fixed point. As a result, a sufficient condition for a resonance lock
to be achieved is |δωf|> |δωad|, which evaluates to

Γ2
dr . (1 − r)|Γtide|γ, (4.50)

together with fixed point stability (§ 4.5.2; equation 4.40). However, this is a very conservative
estimate of the resonance locking regime. To develop a set of necessary and sufficient criteria for
resonance locks, recall that the time derivative of δω is given by (equation 4.24)

δ̇ω/ω = −Γdr + Γtide(g1 − rg2), (4.51)

where g1 and g2 are
g1 =

γ

ω
|Q|2 g2 = Im[Q]. (4.52)

First, assume r� 1. By equation (4.30) we see that Γdr < 0 and thus that the system approaches

3Numerous other potential resonance lock criteria exist; however, we have found this to be the most reliable.
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Figure 4.10: Resonance lock regimes based on numerical solution of mode, spin, and orbit evolution equa-
tions from § 4.5.1. Light blue shading indicates that resonance locking occurs (including stable fixed point
locks, limit cycles, and chaotic locks, as in Figures 4.4, 4.5, & 4.7), while white indicates the reverse (as in
Figure 4.6). Above each dashed blue line, the resonance locking fixed point does not exist (§ 4.5.1; equa-
tion 4.29). The green and purple lines correspond to our analytic formulae for the resonance locking regime
(§ 4.7.2; equations 4.54 & 4.53 respectively). The dash-dotted magenta line indicates the upper boundary
of the domain of stability of the resonance lock fixed point (§ 4.5.2; equation 4.40), while the dotted black
line shows where the weak-tide limit is certainly violated (§ 4.5.1; equation 4.32). Limit cycles and chaotic
orbits (as in Figures 4.5 & 4.7) preferentially occur in the regions between the green and magenta lines
(where the fixed point is unstable but locks still occur).
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resonance from the left (in terms of δω; note that in Figures 4.4 – 4.7 the abscissa is σ − ω =
−δω). Since the lagging fixed point is always stable in this situation (§ 4.5.2), we simply need
the resonance passage to provide sufficient amplitude to reach the fixed point in order for a stable
resonance lock to take hold. Invoking the no-backreaction approximation results from § 4.6.1 to
substitute a maximum value of Im[Q] into equation (4.51), dropping g1, and setting δ̇ω ∼ 0 leads
to the following condition for resonance locking:

−
Γdr

Γtide
> 3r

√
−
πω

Γdr
. (r� 1) (4.53)

Although our analysis is strictly valid only for r much larger than unity, we find it to work well
even for r & 1, as can be seen in the bottom row of Figure 4.10 (where r = 1.5). We have inserted
an additional factor of 3 on the right-hand side of equation (4.53) to match our numerical results.

Next, assume r � 1. By equation (4.30) this means Γdr > 0, so the system approaches the
resonance locking fixed point from the right (in terms of δω). Here, however, the fixed point is not
always stable, as we found in § 4.5.2. In § 4.6.2, we argued that resonance locks in the form of
limit cycles or chaotic trajectories could occur when the fixed point was an unstable spiral (with
a complex conjugate pair of eigenvalues), but that resonance capture failed when the fixed point
was an unstable node (with all real eigenvalues); this was true within a factor of ∼ 3 in terms
of the value of Γdr. Thus a necessary condition for resonance locks (to within a factor of ∼ 3)
is equation (4.42), which specifies where the fixed point is a spiral. Next, we drop g2 and again
substitute the no-backreaction approximation results from § 4.6.1 to find that resonance passage
can deliver a system to the resonance locking fixed point if

γ

Γdr
>

Γdr

2πΓtide
.

Augmented with equation (4.42), this approximately becomes the following condition for reso-
nance locking:

γ

Γdr
>

Γdr

6πΓtide
+

1
3

(
r2/3

1 − r

)(
ω

Γtide

)1/3

. (r� 1) (4.54)

Similar to our formula for r > 1, our analysis is valid only for r very close to zero; however, we
again find it to work well even for r . 1, as can be seen in the right panels of the top two rows of
Figure 4.10 (where r = 0.5). We have inserted an additional factor of 1/3 on the right-hand side of
equation (4.54) to match our numerical results.

4.8 Tidal evolution during resonance locks

4.8.1 Accelerating tidal evolution
Here we generalize the energetic arguments made in Burkart et al. (2013) to estimate the or-

bital and spin evolution during a resonance lock. During a lock, the reduced mode amplitude
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Q is roughly given by its value at the fixed point, i.e., equation (4.27); note, however, that this
approximation is very crude for limit cycles and chaotic orbits (e.g. Figures 4.5 & 4.7) since in
those cases the real and imaginary parts of Q have a more complicated dependence on time. Using
equations (4.16) & (4.27) together with our definitions of Γdr, Γtide, and r from equations (4.18) –
(4.21), we can derive

Ω̇orb =
(

1
1 − r

)[
αorb −

r
k

(
mαspin +

∂ω

∂t

)]
, (4.55)

where again αorb and αspin represent the contributions to Ω̇orb and Ω̇spin from slowly varying pro-
cesses other than resonant interaction with the normal mode in question (see equations 4.13 &
4.16). This can be converted into an energy transfer rate by equation (4.15). Performing a similar
derivation for the spin frequency, we have

Ω̇spin =
( r

1 − r

)[
−αspin +

1
rm

(
kαorb −

∂ω

∂t

)]
, (4.56)

Examining equations (4.55) & (4.56), we see that a resonance lock acts to accelerate the orbital
and spin evolution given by the nonresonant processes contributing to αorb and αspin, which are
due e.g. to gravitational wave orbital decay, the equilibrium tide, etc. Moreover, since the time
derivative of the eccentricity is simply a linear combination of Ω̇orb and Ω̇spin (Witte & Savonije
1999), resonance locking also accelerates circularization. The degree of acceleration depends on
how close the moment of inertia ratio r is to unity; we estimate under what conditions r ∼ 1 in
§ 4.8.2. This acceleration of tidal evolution is what led Witte & Savonije (2002) to conclude that
resonance locks solve the solar-binary problem (Meibom et al. 2006), although they neglected
essential nonlinear effects that obviate their results (see § 4.3).

The presence of αspin in the evolution equation for Ω̇orb (and αorb in the equation for Ω̇spin)
implies that a resonance lock efficiently couples orbital and spin evolution together, as well as to
stellar evolution through the rate of change of the eigenfrequency ∂ω/∂t. For example, if gravita-
tional waves in an inspiraling white dwarf binary cause orbital decay, a resonance lock will cause
tidal synchronization to occur on a gravitational wave timescale (§ 4.9.1). Similarly, resonance
locking can cause stellar spindown by magnetic braking or eigenfrequency evolution due to tidal
heating to backreact on the binary orbit.

4.8.2 Conditions for rapid tidal evolution
Here we estimate the “typical” value of r (defined in equation 4.21) expected to occur in

a given binary, so as to assess whether resonance locks significantly accelerate tidal evolution
(§ 4.8.1). First, consider a binary in a circular, spin-aligned orbit. For the lowest-order l = 2 spheri-
cal harmonic of the tidal potential, only one temporal Fourier component of the tidal forcing exists:
k = m = 2 (§ 4.4.1). With only a single forcing component, it is thus generically unlikely to find
r ∼ 1. The exception is when considering a star whose companion’s mass is�M, in which case r
may be ∼ 1 even for a circular orbit.

For an eccentric orbit, however, there is significant power at many harmonics k of the orbital
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frequency. In this case, a resonance lock persists until it is disrupted when another mode, driven by
a different Fourier component, also comes into resonance and upsets the balance of spin and orbital
evolution theretofore enforcing δ̇ω = 0. Whether the existing resonance lock can withstand a second
resonance passage depends on how “robust” it is; we can estimate the degree of “robustness” using
the maximum amplitude achieved under the no-backreaction approximation from § 4.6.1:4

|q|max = |U |

√
2πω
|Γdr|

. (4.57)

If we equate ω ≈ kΩorb, having taken |mΩspin| � |kΩorb| for simplicity, then |q|max depends on
the harmonic index k as

|q|max ∝∼ kbX k
lm, (4.58)

where X is a Hansen coefficient and b > 0 is a constant that accounts for power law dependences
on the tidal overlap integral and other mode-dependent quantities entering into equation (4.57)
(§ 4.4.1). Using our scaling derived in Appendix C.2, equation (4.58) becomes

|q|max ∝∼ kb−1/2 exp[−kg(e)] , (4.59)

where the full form of g(e)≈ (1 − e2)3/2/3 is given in equation (C.10).
The longest-lived resonance locks in an eccentric binary will be those with the largest values

of |q|max. Thus we can estimate the “typical” value of r by finding the value of k that maximizes
|q|max. This is

argmaxk|q|max ≈
b − 1/2

g(e)
. (4.60)

In order to produce a simple order-of-magnitude estimate, we take b−1/2∼ 1 to find that the most
robust resonance locks will have r ∼ 1, and thus significantly increase the rate of tidal evolution,
if5

1 − e2 ∼
(

10
I∗
µa2

)1/3

. (4.61)

When this condition is not satisfied, then either the longest-lived resonance locks will not provide
much acceleration of tidal evolution, or there will be no long-lived locks at all.

4.9 Astrophysical applications
In §§ 4.9.1 & 4.9.2, we determine where tidal resonance locks may be able to occur by applying

the criteria we have developed—equations (4.29) & (4.54)—to inspiraling compact object binaries

4Our results are insensitive to the expression by which a resonance lock’s “robustness” is quantified, so long as it
is proportional to U .

5Note that whether r > 1 or r < 1 is determined by the sign of Γdr, which is independent of our estimates here; see
§ 4.5.1.
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Figure 4.11: Resonance locking regimes for a fiducial white dwarf binary. Yellow shading indicates that the
resonance locking fixed points exists (equation 4.29), but that resonance locks are nonetheless not possible.
Orange shading indicates the complete resonance locking regime, derived from our numerical results in
§ 4.7.1 (equation 4.54). The black dashed line shows a schematic system trajectory, assuming the initial
spin is negligible. The dot-dashed magenta line shows where the lagging fixed point becomes unstable
(equation 4.40).

and eccentric stellar binaries.

4.9.1 Inspiraling compact object binaries
We consider the case of a circular, spin-orbit-aligned binary consisting of either two white

dwarfs or two neutron stars. The equivalent of the drift rate Γdr in this case is

Γdr =
mΩorb

ωtgw
, (4.62)

where tgw is the gravitational wave orbital decay time given by (Peters 1964)

tgw = ω−1
∗

5
96

(
1 + M′/M

)1/3

M′/M
β−5
∗

(
ω∗

Ωorb

)8/3

. (4.63)

Here ω2
∗ = GM/R3 is the dynamical frequency and β2

∗ = GM/Rc2 is the ratio of the escape velocity
to the speed of light. We consider only the l = |m| = 2 component of the tidal response.

For a fiducial double-white dwarf binary, we use the 0.6M�, Teff = 5,500 K carbon/oxygen
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white dwarf model described in Burkart et al. (2013), with a radius of R = 0.013R�, and a moment
of inertia of I∗ = 0.18MR2. For the damping rate γ and tidal overlap integral I, we use the following
scaling relations listed in Table 3 of Burkart et al. (2013):

I ∼ 27×
(
σ

ω∗

)3.69

γ ∼ 2.9×10−14ω∗×
(
σ

ω∗

)−1.88

,

where our mode normalization convention is E∗ = ε and we are neglecting rotational modifications
of the stellar eigenmodes (in other words, setting the Coriolis force operator B from § 4.4.1 to
zero).

For a fiducial double-neutron star binary, we use the M = 1.4M�, R = 12 km cold neutron star
model employed in Weinberg et al. (2013), which assumed the Skyrme-Lyon equation of state
(Chabanat et al. 1998; Steiner & Watts 2009). We assume that I∗ = 0.18MR2, as with our white
dwarf model. Weinberg et al. (2013) give the following scaling relations for l = 2 g-modes:

I ∼ 0.3×
(
σ

ω∗

)2

γ ∼ 4×10−8×
(
σ

ω∗

)−2

T −2
8 Hz,

where T8 is the core temperature in units of 108 K.
Figure 4.11 shows our result for the white dwarf case. The yellow region shows where the

resonance locking fixed point exists (equation 4.29) but where resonance locks are nonetheless
not possible according to our numerical and analytic results in § 4.7. The orange region shows
the complete resonance locking regime derived from our numerical results (equation 4.54). The
dashed black line in the top panel is a simple, schematic system trajectory for a double-white dwarf
binary. The system begins in the upper right with a long orbital period and a small rotation rate.
Once orbital decay causes the system to reach the orange region, a resonance lock occurs and the
forcing frequency σ is held approximately constant. This was already demonstrated in Burkart
et al. (2013) using the adiabatic approximation (§ 4.6.1), which is valid for determining when the
resonance locking fixed points exist.

Eventually, however, the system exits the orange region. At this point resonance locking is
no longer possible because of the short gravitational wave inspiral time. This novel prediction
comes from our analysis in this work.6 Note that this prediction neglects nonlinear hydrodynamical
phenomena (§ 4.3): in reality the wave amplitude eventually becomes large enough to cause wave
breaking, as shown in Burkart et al. (2013); Fuller & Lai (2012a). This may be a more stringent

6Burkart et al. (2013) did assess where the adiabatic approximation (which was inaccurately referred to as the
“secular approximation”) became invalid; however, this is an incomplete consideration that fails to account for fixed
point instability, limit cycles, etc.



4.9. ASTROPHYSICAL APPLICATIONS 103

constraint on the existence of resonance locks in many close white dwarf binaries.
In the neutron star case, the gravitational wave time is much shorter than for white dwarf bina-

ries at comparable values of R/a, since neutron stars are much more relativistic objects. Resonance
passage thus happens very quickly, which prevents modes from reaching amplitudes large enough
to allow locking. As a result, resonance locks are never possible, even though the resonance lock-
ing fixed point exists for Porb . 50 ms.

To get a sense of the degree to which equation (4.54) fails to be satisfied for neutron star
binaries, we first compute the following quantities with Ωspin = 0:

γ

ω
= 10−7T −2

8

(
Porb

50 ms

)3
Γdr

ω
= 6×10−5

(
Porb

50 ms

)−5/3

Γtide

ω
= 10−11

(
Porb

50 ms

)−6

r = 0.002
(

Porb

50 ms

)−4/3

.

We thus set r≈ 0. Substituting the remaining values into equation (4.54) and simplifying, we have

10T 2
8 < 10−7

(
Porb

50 ms

)1/3

. (4.64)

This shows that resonance locking fails to occur by ∼ 8 orders of magnitude at a wide range of
orbital periods. The conclusion that resonance locks cannot occur in neutron star binaries is thus
very robust.

4.9.2 Eccentric binaries
In this section we estimate whether resonance locking can occur in eccentric stellar binaries

(Witte & Savonije 1999). For a fiducial system, we take parameters consistent with KOI-54 (Welsh
et al. 2011), where it has been recently suggested that one or more of the observed tidally excited
pulsations may be the signatures of resonance locks (Fuller & Lai 2012b; Burkart et al. 2012; see
however O’Leary & Burkart 2013). This system consists of two similar A stars with M ≈ 2.3M�,
R ≈ 2.2R�, and Teff ≈ 8,500 K. The binary’s orbital parameters are e = 0.83 and Porb = 43 days.
Burkart et al. (2012) estimated damping rates for such stars to be

γ ∼ 0.1
(
ω

ω∗

)−4

Myr−1. (4.65)

For overlap integrals I, we take the following scaling derived for A stars from Burkart et al. (2012):

I ∼ 10−5
(
ω

ω∗

)11/6

. (4.66)

The drift rate Γdr in this case comes from the equilibrium tide’s influence on each star’s spin
and on the overall orbital frequency. We account only for the equilibrium tide’s effect on the orbital
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frequency for simplicity. Parameterizing the equilibrium tide’s energy transfer rate by its quality
factor Qeq, so that (Goldreich & Soter 1966)

|Ėeq| ∼
EtideΩorb

Qeq
, (4.67)

we have the approximate formula

Γdr ∼
Etide

Qeqµa2

k
ω
, (4.68)

where the energy contained in the equilibrium tide is roughly Etide ∼ λ(M′/M)2(R/a)6E∗, and the
constant λ (related to the apsidal motion constant) is ∼ 3×10−3 for an A star.

Witte & Savonije (1999) invoked the adiabatic approximation (§ 4.6.1) to show that resonance
locking could occur in various fiducial eccentric binary systems; Burkart et al. (2012) performed a
similar analysis for KOI-54. However, as we have established in this work, this only means that the
resonance locking fixed point exists, and not necessarily that resonance locking actually occurs.
For the latter, we need to apply our criterion from equation (4.54).

As in § 4.9.1, we proceed to compute the values of our four parameters that affect the possibility
of resonance locks in the current situation. We fix r, but assume 0� r < 1. We also assume that
the star is nonrotating. We then find7

γ

ω
= 10−11

(
Porb

40 day

)5/3

Γdr

ω
= 3×10−21

(
Porb

40 day

)−4(Qeq

108

)−1

Γtide

ω
= 6×10−18

(
Porb

40 day

)−4.6

.

Substituting into equation (4.54), noting that the first term on the right-hand side of equa-
tion (4.54) is much smaller than the second in this case (unlike in § 4.9.1), we find that locks are
present if

1> 10−4
(

1 − r
0.1

)−1( Porb

40 day

)4.1(Qeq

108

)−1

. (4.69)

It thus appears that resonance locks are indeed possible in eccentric binaries, subject to the validity
of the assumptions enumerated in § 4.3 (e.g., solid-body rotation).

7Since we are considering an eccentric orbit, the tidal coupling coefficient U (on which Γtide depends) is addition-
ally proportional to a Hansen coefficient, due to the Fourier expansion of the orbital motion (§ 4.4.1). We take this
coefficient to be of order unity.
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4.10 Conclusion
We have studied tidally induced resonance locking in close (but detached) binary systems. In

a resonance lock, the detuning frequency δω = ω − σ between a stellar or planetary eigenmode
frequency ω and a particular Fourier harmonic of the tidal driving frequency σ = kΩorb − mΩspin is
held constant (§ 4.2; Witte & Savonije 1999). This happens when a slowly varying physical process
causing δω to evolve in one direction is balanced by resonant interaction with the eigenmode in
question causing δω to evolve in the reverse direction. The slowly varying process could be, e.g.,
orbital decay due to gravitational waves causing Ωorb to increase, magnetic braking causing Ωspin

to decrease, stellar evolution altering ω, or nonresonant components of the tidal response (the
“equilibrium tide”) affecting both Ωorb and Ωspin simultaneously.

Our primary goal has been to understand the dynamical properties and stability of resonance
locks without relying on simplifying approximations for the mode amplitude evolution used in
previous calculations. We defer detailed implications of these results to future papers. We have
derived a novel set of equations allowing for a dynamically evolving mode amplitude coupled to the
evolution of both Ωspin and Ωorb (§ 4.4). In particular, we do not assume that the mode amplitude is
given by a Lorentzian profile resulting from the adiabatic approximation (§ 4.6.1) used in previous
work, but instead solve the fully time-dependent mode amplitude equation.

In § 4.5 we analyzed the stability of the dynamical fixed points associated with resonance
locks. We analytically derived when such fixed points exist (equation 4.29); there are either two
fixed points or none for a given eigenmode. Although one of these equilibria is always unstable, the
other can be stable when certain restrictions on binary and mode parameters are met (equation 4.40
in § 4.5.2). One of the important conclusions of this analysis is that resonance locks can exist and
be stable even when the adiabatic approximation for the mode amplitude evolution is invalid (which
happens, e.g., in the limit of moderately weak damping).

In § 4.6.2 we analyzed the properties of resonance locks using direct numerical integration of
our dynamical equations. In the simplest case in which a resonance lock fixed point exists and is
stable, two possibilities arise: either a resonance passage is able to pump the mode’s amplitude
up sufficiently high to reach the fixed point and be captured into it, creating the resonance lock
(Figure 4.4), or the system instead sweeps through resonance without locking.

The more interesting situation is when both fixed points are unstable. In this case, we showed
that resonance locking can nonetheless occur in some cases in a time-averaged sense. In these
situations the mode amplitude and detuning frequency δω execute limit cycles or even chaotic
trajectories around the fixed points (see Figures 4.5 & 4.7). We presented evidence in § 4.6.3 sug-
gesting that resonance locking may in fact correspond to a strange attractor for certain parameter
values; see Figure 4.8.

In order to determine when resonance locking of some kind occurs (either stable, limit cycle,
or chaotic), we performed numerical integrations over wide ranges of parameter values in § 4.7.1.
Using analytic approximations from § 4.6.1, we then developed approximate analytic formulae
that explain our numerical results and define the binary and mode parameter regimes in which res-
onance locks of some kind occur. The key results are equations (4.53) & (4.54) and Figure 4.10.
Future studies of tidal evolution that do not include our full set of coupled mode-spin-orbit evolu-
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tion equations can nonetheless utilize our results to assess whether resonance locks can occur.
One of the interesting consequences of resonance locks highlighted by Witte & Savonije (1999)

and Witte & Savonije (2002) using numerical simulations in the adiabatic approximation is that
locks can produce a significant speed up of orbital and spin evolution. We have explained this
analytically in § 4.8.1. In particular, we have demonstrated that resonance locks generically act to
produce orbital and spin evolution on a timescale that is somewhat shorter than the slowly varying
physical process whose influence drives the system into a lock. The magnitude of this acceleration
depends on the effective moment of inertia ratio r defined in equation (4.21) and is large for r ∼ 1.
The latter condition can only be satisfied in eccentric binaries or binaries with high mass ratios.
For the case of an eccentric orbit, we derived a rough condition for significant acceleration of the
rate of orbital and spin evolution in § 4.8.2.

To give a rough sense of the possible application of our results, we applied them to three
sample astrophysical systems in § 4.9: inspiraling white dwarf and neutron star binaries in § 4.9.1,
and eccentric binaries with early-type stars in § 4.9.2. As has been argued previously using the
adiabatic approximation for mode amplitudes, resonance locks are likely very common in white
dwarf binaries and eccentric stellar binaries. They cannot, however, occur in neutron star binaries
since orbital decay by gravitational wave emission is too rapid. A future application that may be
of considerable interest is tidal circularization during high-eccentricity migration of hot Jupiters.

The theory of resonance locking that we have developed bears some similarity to resonance
capture in planetary dynamics (Murray & Dermott 1999). In the case of both mean-motion reso-
nances (Goldreich 1965) and spin-orbit resonances (Goldreich & Peale 1968), the generic equation
governing the evolution of the relevant angle Ψ towards resonance is

Ψ̈ = −F sinΨ + G. (4.70)

For mean-motion resonances, Ψ defines the angle between the mean anomalies of two orbiting
bodies, while for spin-orbit resonances, Ψ is related to the difference between a body’s mean and
true anomalies (relevant only for eccentric orbits). In both cases, G provides a frequency drift term,
resulting from orbital decay for mean-motion resonances and from a net tidal torque for spin-orbit
resonances.

Equation (4.70) can be compared to our equation describing the evolution of the detuning fre-
quency δω = ω−σ in equation (4.24). Both specify the second time derivative of a resonance angle,
and both contain a frequency drift term describing how resonance is approached. The essential dif-
ference is that in place of the pendulum restoring force present in equation (4.70), tidal resonance
locking instead contains two terms providing the complicated interaction with a stellar or plane-
tary normal mode. Thus, although there are qualitative similarities between resonance capture in
planetary dynamics and resonance locking, no formal mathematical analogy exists.

It is important to reiterate that resonance locks can only occur under a specific set of conditions
(§ 4.3). They are not relevant to all close binaries. In particular, the dynamical tide must be com-
posed of global radial standing waves, with damping times much longer than radial wave travel
times. For this reason, an efficient angular momentum transport process must maintain approx-
imate solid body rotation; if not, critical layers may develop where mode angular momentum is
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deposited into the background rotation profile, which would lead to efficient local wave damping.
In addition, we have restricted our analysis to linear perturbation theory. In practice, this repre-
sents a restriction on the maximum mode amplitudes that are allowed, since nonlinear instabilities
can act on large-amplitude waves. For example, in the case of binaries containing solar-type stars
with radiative cores, wave breaking in the core likely prohibits the establishment of global standing
waves (Goodman & Dickson 1998), thus also precluding resonance locks from developing.
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Appendix A

Tidal asteroseismology

A.1 Nonadiabatic tidally driven oscillation equations
Here we will describe the computational procedure we employed to solve for tidally driven

stellar responses, which we then used to model KOI-54’s lightcurve. In Appendix A.1.1, we ac-
count for rotation only by using Doppler-shifted driving frequencies kΩorb − mΩ∗, and neglect any
effects of the Coriolis force; in Appendix A.1.2, we invoke the traditional approximation (Bildsten
et al. 1996) to account for the Coriolis force (§ 2.3.4).

A.1.1 Formalism without the Coriolis force
The gravitational potential due to the secondary, experienced by the primary, is given by

U2→1 = −
GM2

|D − r|
. (A.1)

Performing a multipole expansion (Jackson 1999) and excising the l = 0 (since it is constant) and
l = 1 (since it is responsible for the Keplerian center-of-mass motion) terms, we are left with the
tidal potential:

U = −
GM2

D(t)

∞∑
l=2

l∑
m=−l

Wlm

(
r

D(t)

)l

e−im f (t)Ylm(θ,φ), (A.2)

where

Wlm =
4π

2l + 1
Y ∗lm(π/2,0)

= (−1)(l+m)/2mod(l + m + 1,2)

√
4π

2l + 1
(l + m − 1)!!

(l + m)!!
(l − m − 1)!!

(l − m)!!
.

(A.3)
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Next, we shift to the primary’s corotating frame (by sending φ→ φ + Ω∗t) and expand the time
dependence of the orbit in terms of the Hansen coefficients:

U =
M2

M1

∑
l

(
R1

a

)l+1∑
m

WlmYlm(θ,φ)
∑

k

exp(−iσkmt)X k
lm(e)Ul(r), (A.4)

with σkm = kΩorb − mΩ∗ and

Ul(r) = −

(
GM1

R1

)(
r

R1

)l

. (A.5)

The unit-normalized Hansen coefficients X̃ k
lm were defined in equation (2.11); here we are using

the conventionally normalized Hansen coefficients X k
lm = X̃ k

lm/(1 − e)l+1, which are convenient to
evaluate numerically as an integral over the eccentric anomaly:

X k
lm =

1
π

∫ π

0
(1 − ecosE)−l cos

[
k(E − esinE) − 2marctan

(√
1 + e
1 − e

tan(E/2)

)]
dE. (A.6)

If we represent the linear response of a star to the perturbing tidal potential by an abstract vector
y(r,θ,φ, t) whose components are the various oscillation variables (e.g., ξr/r), then y can also be
expanded, again in the primary’s corotating frame, as in (A.4):

y =
M2

M1

∑
l

(
R1

a

)l+1∑
m

WlmYlm(θ,φ)
∑

k

exp(−iσkmt)X k
lm(e)yk

lm(r). (A.7)

The equations necessary to determine yk
lm(r) are given in the appendix of Pfahl et al. (2008), along

with appropriate boundary conditions; note that their U is our Ul and their driving frequency ω is
our σkm.

After determining yk
lm(r) in the corotating frame, we can switch to the inertial frame specified

in § 2.3.1:

y =
M2

M1

∑
l

(
R1

a

)l+1∑
k

exp(−ikΩorbt)
∑

m

WlmYlm(θ,φ)X k
lm(e)yk

lm(r). (A.8)

As noted in § 2.4.2, we see in equation (A.8) that the observed frequencies should be pure harmon-
ics of the orbital frequency, even though the corresponding amplitudes of observed pulsations are
influenced by the star’s rotation rate (via the Doppler-shifted frequency σkm).

A.1.2 Rotation in the traditional approximation
We now invoke the traditional approximation (§ 2.3.4); we must correspondingly adopt the

Cowling approximation and employ the Hough functions (§ 2.5) as angular basis functions instead
of spherical harmonics.
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We expand the Hough functions as (Longuet-Higgins 1968)

Hk
λm =

∑
l

ek
λlmP̃lm → ek

λlm = 2π
∫ 1

−1
P̃lmHk

λmdµ → P̃lm =
∑
λ

ek
λlmHk

λm, (A.9)

where P̃lm is a normalized associated Legendre function defined by

P̃lm =

√
2l + 1

4π
(l − m)!
(l + m)!

Plm → Ylm(θ,φ) = eimφP̃lm(cosθ). (A.10)

We used the numerical method of calculating the expansion coefficients ek
λlm detailed in Ogilvie &

Lin (2004) § 5.4. The tidal potential in the corotating frame is then

U =
M2

M1

∑
l

(
R1

a

)l+1∑
m

Wlmeimφ
∑

k

exp(−iσkmt)X k
lm

∑
λ

Hk
λm(µ)U k

λlm(r), (A.11)

where

U k
λlm(r) = −

(
GM1

R1

)(
r

R1

)l

ek
λlm, (A.12)

σkm = kΩorb − mΩ∗, and the Coriolis parameter q on which the Hough functions depend is

q = 2Ω∗/σkm, (A.13)

which justifies writing Hk
λm and ek

λlm rather than Hq
λm and eq

λlm.
We again represent the linear response of a star, as in Appendix A.1.1, by a vector y(r,θ,φ, t)

whose components are the various oscillation variables, and which can be expressed in the inertial
frame as:

y =
M2

M1

∑
k

exp(−ikΩorbt)
∑

l

(
R1

a

)l+1∑
m

WlmeimφX k
lm(e)

∑
λ

Hk
λm(µ)yk

λlm(r)

=
M2

M1

∑
k

exp(−ikΩorbt)
∑

l

(
R1

a

)l+1∑
m

WlmX k
lm(e)

∑
λ

∑
l′

ek
λl′mYl′m(θ,φ)yk

λlm(r).

(A.14)

The expansion of Hq
λm back into associated Legendre functions in the second line of equation (A.14)

is useful since disk integrals are convenient to perform over spherical harmonics (§ 2.3.3).
Following Unno et al. (1989), we choose the components of y as

y1 =
ξr

r
, y2 =

δp
ρgr

, y5 =
∆s
cp
, and y6 =

∆L
Lr
, (A.15)

where we have omitted the variables corresponding to the perturbed gravitational potential, y3

and y4. Equation (A.14) together with determination of the radial displacement ξr/r = y1 and the
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Lagrangian flux perturbation ∆F/F = y6 −2y1 at the photosphere then enables use of the formalism
from § 2.3.3 to compute the flux perturbation as seen by an observer.

Next, we present the differential equations which determine a particular component yk
λlm(r) of

the full response in radiative zones. These equations are nearly identical to those in the appendix
of Pfahl et al. (2008), but with l(l + 1) replaced by λ and with certain terms set to zero as per the
traditional approximation. In practice these terms can be left in, since they are nearly zero for situa-
tions where the traditional approximation is valid; this is then a smooth way of transitioning among
different regimes. Omitting (λlmk) indices and denoting U = U k

λlm and ω = σkm, the equations are

dy1

d lnr
= y1

(
gr
c2

s
− 3
)

+ y2

(
λg
ω2r

−
gr
c2

s

)
− y5ρs +

λ

ω2r2U (A.16)

dy2

d lnr
= y1

(
ω2 − N2

g/r

)
+ y2

(
1 −η +

N2

g/r

)
− y5ρs −

1
g

dU
dr

(A.17)

dy5

d lnr
= y1

r
Hp

[
∇ad

(
η −

ω2

g/r

)
+ 4(∇−∇ad) + c2

]
+ y2

r
Hp

[
(∇ad −∇)

λg
ω2r

− c2

]
+ y5

r
Hp
∇(4 −κs) − y6

r
Hp
∇+

r
Hp

[
∇ad

(
dU/dr

g

)
+ (∇ad −∇)

λ

ω2r2U
] (A.18)

dy6

d lnr
= y2

(
λγg
ω2r

)
+ y5

(
iω

4πr3ρcpT
L

)
− y6γ +

(
λγ

ω2r2

)
U, (A.19)

where η = 4πr3ρ/Mr, γ = 4πr3ρε/Lr, c2 = (r/Hp)∇(κad − 4∇ad) +∇ad(d ln∇ad/d lnr + r/Hp), Hp =
ρg/p is the pressure scale height, and ε is the specific energy generation rate.

We need four boundary conditions for our four variables. Our first three are

0 = ξr(0) evanescence in convective core, (A.20)
0 = ∆s(0) adiabaticity/evanescence in core, (A.21)

0 =
∆F(R)
F(R)

− 4
∆T (R)
T (R)

blackbody at the stellar surface, (A.22)

where ∆T/T can be cast in terms of y1, y2, and y5 using standard thermodynamic derivative iden-
tities.

A final surface boundary condition that allows for traveling and/or standing waves can be gener-
ated by imposing energetic constraints at the surface. This is detailed in Unno et al. (1989) pp. 163
– 167 for adiabatic oscillations. To generalize the boundary condition to include nonadiabaticity,
rotation, and inhomogeneous tidal forcing, we write equations (A.16) – (A.19) as

dy
d lnr

= My + b, (A.23)

where M and b are treated as constant near the stellar photosphere. The constant solution is y0 =
−M−1b; defining z = y −y0, the homogeneous solutions for z can be computed by diagonalizing M.
In the evanescent case, we eliminate the solution for y with outwardly increasing energy density.
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Alternatively, in the traveling wave case, we eliminate the inward-propagating wave. The final
boundary condition is then implemented by setting the amplitude of the eliminated homogeneous
solution to zero, and solving for a relationship between the original fluid variables implied by this
statement.

A.2 Analytic model of ellipsoidal variation
As discussed in § 2.6.1, our simplified model of ellipsoidal variation reproduces the much more

sophisticated simulation code employed by Welsh et al. (2011) to model KOI-54; here we discuss
the details of our analytic methods, which can easily be applied to model other systems.

A.2.1 Irradiation
The following is our simple analytical model of the insolation component of the KOI-54’s

ellipsoidal variation. We focus our analysis on the primary, since extending our results to the
secondary is trivial. Our main assumption is that all radiation from the secondary incident upon
the primary is immediately reprocessed at the primary’s photosphere and emitted isotropically (i.e.,
absorption, thermalization, and reemission). This assumption is well justified for KOI-54, since
its two component stars are of very similar spectral type. The method below might need to be
modified if the components of a binary system had significantly different spectral types, because
then some of the incident radiation might instead be scattered.

The incident flux on the primary, using the conventions and definitions introduced in § 2.3.1, is

F2→1 =
L2

4πD2 Z(r̂ · D̂), (A.24)

where Z is the ramp function, defined by

Z(x) =

{
0 x< 0
x x≥ 0

. (A.25)

We can expand Z(r̂ · D̂) in spherical harmonics as

Z(r̂ · D̂) =
∑

lm

ZlmYlm(θ,φ)e−im f (t), (A.26)

where Zlm can be evaluated to

Zlm = 2
(

2l + 1
4π
· (l − m)!

(l + m)!

)1/2(cos(mπ/2)
1 − m2

)∫ 1

−1

√
1 −µ2Plm dµ, (A.27)

with cos(mπ/2)/(1 − m2)→ π/2 for m =±1.
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Next, taking the reemission as isotropic, the reemitted intensity will be

Iemit =
F2→1

π
. (A.28)

Using this together with our expansion of Z(r̂ · D̂) as well as results from § 2.3.3, we can evaluate
the observed flux perturbation:

δJ
J1

= β(T1)
(

L2

L1
· R2

1

D(t)2

) ∞∑
l=0

l∑
m=−l

bl ZlmYlm(θo,φo)e−im f (t), (A.29)

where J1 = L1/4πs2 is the unperturbed observed flux, s is the distance to the observer, the bandpass
correction coefficient β(T ) is defined in equation (2.19), the disk-integral factor bl is defined in
equation (2.23), several values of bl using Eddington limb darkening are given in Table 2.3, and
other variables are defined in § 2.3.1. Since bl declines rapidly with increasing l, it is acceptable to
include only the first few terms of the sum in equation (A.29). We have neglected limb darkening,
so it is formally necessary to use a flat limb darkening law in calculating bl (h(µ) = 2; § 2.3.3).
However, we found this to be a very modest effect.

The binary separation D and the true anomaly f can be obtained as functions of time in various
ways, e.g., by expanding with the Hansen coefficients employed earlier (equation 2.11 or A.6), or
by using

D =
a(1 − e2)

1 + ecos f
(A.30)

together with numerical inversion of

Ωorbt = 2arctan
(

(1 − e) tan( f/2)√
1 − e2

)
−

e
√

1 − e2 sin f
1 + ecos f

, −π < f < π. (A.31)

The observed flux perturbation from the secondary is obtained from equation (A.29) by switching
1↔ 2 and sending φo→ φo +π.

Using the fact that b0 = 1 and Z00 =
√
π/2, it can be readily verified that the total reflected power,

i.e. s2J1 times (A.29) integrated over all observer angles (θo,φo), is equal to L2(πR2
1/4πD2). This is

just the secondary’s luminosity times the fraction of the secondary’s full solid angle occupied by
the primary, which is the total amount of the secondary’s radiation incident on the primary.

A.2.2 Equilibrium tide
We invoke the Cowling approximation (well satisfied for surface values of perturbation vari-

ables), and use the analytic equilibrium tide solution, where the radial displacement at star 1’s
surface becomes

ξr = −
U(R1, t)

g(R1)
, (A.32)
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and U is the tidal potential. Using the expansion in equation (A.2), ξr,lm(t)/R1 from equation (2.20)
becomes (Goldreich & Nicholson 1989a)

ξr,lm(t)
R1

=
M2

M1

(
R1

D(t)

)l+1

Wlm e−im f (t). (A.33)

We invoke von Zeipel’s theorem (von Zeipel 1924; Pfahl et al. 2008) to determine the correspond-
ing surface emitted flux perturbation:

∆Flm(t)
F1

= −(l + 2)
ξr,lm(t)

R1
. (A.34)

We can then explicitly evaluate the observed flux variation using the formalism from § 2.3.3:

δJ
J1

=
M2

M1

∞∑
l=2

(
R1

D(t)

)l+1 l∑
m=−l

{[
2 −β(T1)(l + 2)

]
bl − cl

}
WlmYlm(θo,φo)e−im f (t), (A.35)

where the bandpass correction coefficient β(T ) is defined in equation (2.19), Wlm is defined in
equation (A.3), the disk-integral factors bl and cl are defined in equations (2.23) and (2.24), several
values of bl and cl using Eddington limb darkening are given in Table 2.3, and other variables are
defined in § 2.3.1. Due to the strong dependence on l, it is typically acceptable to include only
the first term of the sum in equation (A.29). Computation of the binary separation D(t) and true
anomaly f (t) is discussed in Appendix A.2.1. The observed flux perturbation from the secondary
is obtained from equation (A.35) by switching 1↔ 2 and sending φo→ φo +π.

We note that although the analytic equilibrium tide solution for the radial displacement ξr

is a good approximation at the stellar surface regardless of stellar parameters, the presence of
a significant surface convection zone in a solar-type star proscribes the use of equation (A.34);
Pfahl et al. (2008) gives the appropriate replacement in their eq. (37). Moreover, we note that
equation (A.34) may also be invalid for slowly rotating stars in eccentric orbits; see § 2.6.2.

A.3 Tidal orbital evolution

A.3.1 Eigenmode expansion of tidal torque and energy deposition rate
Assuming alignment of rotational and orbital angular momenta, the tidal torque τ produced by

star 2 on star 1 must have only a z component, where ẑ points along the orbital angular momentum.
We can evaluate it as follows (Kumar & Quataert 1998). First,

τ = ẑ ·
∫
∗

(
r× dF

dV

)
dV =

∫
∗
(ẑ× r) · dF

dV
dV

=
∫
∗
φ̂ · [−(ρ0 + δρ)∇U]r sinθdV.

(A.36)
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The term involving the background density ρ0 vanishes; expanding both the tidal potential U and
the Eulerian density perturbation δρ in spherical harmonics with expansion coefficients Ulm(r, t)
and δρlm(r, t), we have

τ (t) = i
∞∑
l=2

l∑
m=−l

m
∫ R1

0
δρlm(r, t)U∗lm(r, t)r2dr. (A.37)

Further invoking the expansions from equations (2.5) and (A.4), as well as the definitions in § 2.3.2,
we arrive with

τ (t) = −2 i
(

GM2
1

R1

)∑
nlmkk′

m
(εlQnlWlm)2

Enl
X̃ k

lmX̃ k′
lm∆nlmkei(k′−k)Ωorbt . (A.38)

Lastly, averaging over a complete orbital period and rearranging the sums, we derive our final
expression for the secular tidal torque:

〈τ〉 = 8
(

GM2
1

R1

)(
M2

M1

)2 ∞∑
l=2

(
R1

a

)2l+2 l∑
m=−l

mW 2
lm×

∞∑
k=0

X k
lm(e)2

∑
n

(
Q2

nl

Enl

)(
ω2

nlσkmγnl

(ω2
nl −σ2

km)2 + 4γ2
nlσ

2
km

)
. (A.39)

The torque depends on the rotation rate Ω∗ only through the Doppler-shifted frequency σkm =
kΩorb − mΩ∗, since we have neglected rotational modification of the eigenmodes (§ 2.3.4). Fig-
ure 2.4 shows plots of this torque evaluated for KOI-54.

Note that a particular term of this sum is positive if and only if mσkm = m(kΩorb − mΩ∗) > 0,
which reduces to (k/m)Ωorb > Ω∗. This is known as being prograde, since it is equivalent to the
condition that a mode’s angular structure, in the corotating frame, rotate in the same sense as the
stellar spin; conversely, retrograde waves with (k/m)Ωorb < Ω∗ cause negative torques.

Using similar techniques to those given above, an equivalent expansion of the secular tidal
energy deposition rate into the star (including mechanical rotational energy) can be derived:

〈Ė〉 = 8Ωorb

(
GM2

1

R1

)(
M2

M1

)2 ∞∑
l=2

(
R1

a

)2l+2 l∑
m=−l

W 2
lm×

∞∑
k=0

kX k
lm(e)2

∑
n

(
Q2

nl

Enl

)(
ω2

nlσkmγnl

(ω2
nl −σ2

km)2 + 4γ2
nlσ

2
km

)
. (A.40)

The only difference between equations (A.39) and (A.40) is switching m↔ kΩorb.
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A.3.2 Nonresonant pseudosynchronization
A pseudosynchronous frequency Ωps is defined as a rotation rate that produces no average tidal

torque on the star throughout a sufficiently long time interval, which here we take to be a complete
orbital period (§ 2.5). I.e.,

〈τ〉(Ωps) = 0. (A.41)

Here we will show that our expansion from A.3.1 reproduces the value of Ωps derived in Hut
(1981), which we denote Ωnr

ps, in the equilibrium tide limit. We will in particular show that Hut’s
result is independent of assumptions about eigenmode damping rates.

Proceeding, we take the nonresonant (equilibrium tide) limit of equation (A.39). This is ob-
tained by retaining only the first term in the Taylor series expansion in σkm/ωnl of the last factor in
parentheses from equation (A.39), and yields

〈τnr〉 = 8
(

GM2
1

R1

)(
M2

M1

)2 ∞∑
l=2

(
R1

a

)2l+2
[

l∑
m>0

mW 2
lm

∞∑
k=−∞

X k
lm(e)2σkm

][∑
n

(
Q2

nl

Enl

)(
γnl

ω2
nl

)]
;

(A.42)
note that sums over k and m become decoupled from the sum over n. Setting 〈τnr〉(Ωnr

ps) = 0 and
retaining only l = 2, we have

0 =
∞∑

k=−∞

X k
22(e)2 (kΩorb − 2Ωnr

ps

)
. (A.43)

We need two identities to evaluate this further. First, starting with the definition of the Hansen
coefficients, ( a

D

)l+1
e−im f =

∞∑
k=−∞

X k
lme−ikΩorbt , (A.44)

we can differentiate with respect to t, then multiply by the complex conjugate of (A.44) and average
over a complete period to derive

∞∑
k=−∞

k
(
X k

lm

)2
=

m
2π

∫ 2π

0

(
1 + ecos f

1 − e2

)2l+2

d f . (A.45)

Specializing to l = 2,
∞∑

k=−∞

k
(
X k

2m

)2
= m

[
5e6 + 90e4 + 120e2 + 16

16(1 − e2)6

]
. (A.46)

The second identity needed,
∞∑

k=−∞

(
X k

2m

)2
=

3e4 + 24e2 + 8
8(1 − e2)3/2 , (A.47)

can be derived similarly.
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Substituting equations (A.46) and (A.47) into (A.43), we have that

Ωnr
ps = Ωorb ·

1 + (15/2)e2 + (45/8)e4 + (5/16)e6[
1 + 3e2 + (3/8)e4

]
(1 − e2)3/2

; (A.48)

this is precisely eq. (42) from Hut (1981).
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Appendix B

Tides in inspiraling white dwarf binaries

B.1 Angular momentum transport
If we assume there is a source of angular momentum near the WD surface, e.g. from tides,

a fossil magnetic field of initial magnitude ∼ B0 will wind up and exert magnetic tension forces
attempting to enforce solid-body rotation. The rate at which magnetic tension transports polar
angular momentum through a spherical surface S at radius r is given by

J̇z =
1

4π

∫
S
BrBφ r sinθdS, (B.1)

which can be derived by applying the divergence theorem to the magnetic tension force density
(B ·∇)B/4π. As the field winds up, the radial component remains constant, while the azimuthal
component increases as (Spruit 1999)

Bφ = NwBr, (B.2)

where Nw = r sinθ
∫

(dΩspin/dr)dt is the rotational displacement that occurs during wind up and we
have assumed the rotational velocity field can be described by “shellular” rotation: v = Ωspin(r)r sinθφ̂.

Once the field wind up propagates into the WD core, an equilibrium field is established that
communicates the tidal torque throughout the WD and eliminates any rotational shear. There are
several requirements necessary for this equilibrium to be reached during inspiral, and consequently
for WDs in inspiraling binaries to rotate as a rigid bodies.

B.1.1 Solid-body rotation at short orbital periods
Whether there is sufficient time for the global equilibrium magnetic field to develop and elimi-

nate differential rotation altogether amounts to whether the timescale over which the torque changes,
given by the gravitational wave inspiral time tgw (equation 3.1), is longer than the timescale over
which the wind up of the magnetic field propagates into the core, which is given by the global
Alfvén crossing time 〈tA〉 =

∫
dr/vA, where vA = Br/

√
4πρ is the radial Alfvén speed. This restric-
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tion translates to

B0�
1

tgw

∫ R

0

√
4πρ dr, (B.3)

where we have assumed Br ∼ B0 ∼ constant. We can evaluate this further as

B0� 0.2 G
(

Porb

10 min

)−8/3

F1 (B.4)

where

F1 =
(

M′

M

)(
1 + M′/M

2

)−1/3( M
0.60M�

)13/6( R
0.013R�

)−1/2

.

The other requirement for solid-body rotation is that the rotational displacement Nw required for
the equilibrium field configuration must not be too extreme, since the field becomes susceptible to
resistive dissipation as well as various instabilities as it winds up (Spruit 1999). We can address this
constraint by setting the tidal torque appropriate for a resonance lock τr = IrΩ/tgw (equation 3.9),
where Ir is the moment of inertia up to a radius r, equal to equation (B.1), and then requiring
Nw . 1. Solving for B0, we have

B0 &

√
τ

r3 =

√
IrΩ

r3tgw
. (B.5)

Since the right-hand side of equation (B.5) scales radially as r1, we can safely set Ir = I∗ and r = R.
Evaluating this further yields

B0 & 104 G
(

Porb

10 min

)−11/6

F2, (B.6)

where

F2 =
(

M′

M

)1/2(1 + M′/M
2

)−1/6( I∗
0.18MR2

)1/2( M
0.6M�

)4/3( R
0.013R�

)−1/2

. (B.7)

We see that equation (B.4) is likely to hold nearly until mass transfer, meaning there is always
sufficient time to set up an equilibrium field capable of stably transmitting angular momentum
throughout the WD and enforcing solid-body rotation. Equation (B.6) is more restrictive, however,
and shows that even for a fossil field of initial magnitude of B0 ∼ 106 G in a carbon/oxygen WD
(§ 3.6.2), excessive wind up may begin to occur below an orbital period of∼ 1 min. Nonetheless, at
orbital periods of∼ 100 min where standing-wave resonance locks occur, which require solid-body
rotation, equation (B.6) requires only modest fields of ∼ 200 G.

Lastly, although angular momentum transport occurs due to a wound-up equilibrium magnetic
field, torsional Alfvén waves can also be excited, which cause oscillations in the differential ro-
tation profile. Formally, a phase-mixing timescale must elapse before such waves damp (Spruit
1999). However, due to the slowly varying torque, we expect Alfvén wave excitation to be weak.



B.1. ANGULAR MOMENTUM TRANSPORT 120

Indeed, in simulations of the solar magnetic field’s evolution, Charbonneau & MacGregor (1993)
found that Alfvén wave amplitudes (in terms of δΩspin/Ωspin) were small.

B.1.2 Transport during an initial resonance lock
When a standing wave resonance lock first begins to takes hold, angular momentum is applied

exclusively to a thin layer near the outer wave turning point where wave damping predominantly
occurs. Since no equilibrium field state has yet developed in this situation, a concern exists that
the layer will rapidly synchronize and destroy the lock before it begins (§ 3.6.2).

To this end, we first compare the spin-up timescale of the layer to the Alfvén travel time tA

across it. Using the torque for a resonance lock from equation (3.9) and taking tA = H/vA, where
H is the thickness of the layer, we have

(2/3)4πρr4HΩspin

I∗Ωspin/tgw
� H

√
4πρ

Br
. (B.8)

Evaluating ρ at the radiative-convective boundary (RCB), letting Br ∼ B0, and setting r ≈ R, this
becomes

B0�

√
4π
ρrcb

(
3I∗

8πR4tgw

)
. (B.9)

We can evaluate this further as

B0� 10−3 G
(

Porb

200 min

)−8/3

F3, (B.10)

where

F3 =
(

ρrcb

8.4×10−7ρc

)−1/2(M′

M

)(
1 + M′/M

2

)−1/3( I∗
0.18MR2

)(
M

0.60M�

)13/6( R
0.013R�

)−1/2

and ρc is the central density.
Secondly, even if no critical layer occurs, it is still necessary for the global, wound-up equilib-

rium field to develop quickly in order for an initial resonance lock to develop. Specifically, in order
for a particular resonance to halt the increase in the tidal driving frequency σ = 2(Ω − Ωspin), its lo-
cally applied tidal torque must be communicated globally fast enough relative to the timescale over
which the torque changes significantly. If this cannot occur, the system sweeps through the reso-
nance without locking (see also § 3.6.3). The timescale over which a maximally resonant torque
decays by roughly a factor of two is given by the time for the detuning δω to increase from zero
to of order the associated mode’s damping rate γn (see e.g. equation 3.5; also Appendix B.2.3).
Comparing to the global Alfvén travel time 〈tA〉, this condition becomes

B0�
Ω

γn tgw

∫ R

0

√
4πρ dr, (B.11)
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which is identical to equation (B.3) except with an additional factor of Ω/γn on the right-hand side.
Evaluating further, we have

B0� 100 G
(

Porb

200 min

)−11/3(
γ−1

n

120 yr

)
F1, (B.12)

where F1 was defined in Appendix B.1.1. The value of 100 G reduces to 6 G for a helium WD (He7
from Table 3.1), holding γn constant. This is a much stricter requirement than equation (B.10), but
still seems likely to be satisfied given typical WD fields (§ 3.6.2).

B.2 Global normal mode analysis

B.2.1 Mode dynamics
Here we give an overview of linear normal mode analysis as it applies to tidal interactions. As

such, we assume the fluid motions generated by the tidal potential represent standing waves; we
discuss the possibility of traveling waves in § 3.7.

In linear perturbation theory, we expand all fluid variables in spherical harmonics angularly,
indexed by l and m, and adiabatic normal modes radially, indexed by the number of radial nodes
n, as

δX(r,θ,φ, t) =
∞∑
l=2

l∑
m=−l

∑
n

qnlm(t)δXnlm(r)Ylm(θ,φ). (B.13)

We computed normal modes using the ADIPLS stellar pulsation package (Christensen-Dalsgaard
2008). In this work we concern ourselves only with quadrupolar eigenmodes, and consider only
circular orbits, meaning we can let l = 2 and m =±2, since m = 0 modes have no time dependence
with zero eccentricity. Thus equation (B.13) becomes

δX(r,θ,φ, t) = 2
∑

n

Re
[
qn(t)δXn(r)Y22(θ,φ)

]
, (B.14)

with m = 2 used throughout.
We can write the momentum equation schematically as (Press & Teukolsky 1977)

ρξ̈ = −ρL[ξ] −ρ∇U, (B.15)

where the linear internal acceleration operator L satisfies L[ξn] = ω2
nξn, ωn is an eigenfrequency,

and U is the tidal potential. The corotating frame mode amplitude equations determining the
behavior of each qn can be obtained from equation (B.15) by taking the scalar product with ξ∗n on
both sides and integrating over the star, yielding (e.g. Weinberg et al. 2012)

q̈n + 2γnq̇n +ω2
nqn = 2ω2

nεWQne−iσt , (B.16)
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where W =
√

3π/10, ε = (M′/M)(R/a)3 is the tidal factor, σ = m(Ω − Ωspin) is the tidal driving
frequency, and the linear overlap integral Qn is discussed in Appendix B.2.4 (Press & Teukolsky
1977). We have also inserted into equation (B.16) a damping rate γn, the calculation of which we
describe in Appendix B.2.3. We normalize our normal modes by setting

E∗ = En =
∫ R

0
2ω2

n

(
ξ2

r,n + l(l + 1)ξ2
h,n

)
ρr2dr. (B.17)

Given slowly varying orbital and stellar properties, the steady-state solution to equation (B.16)
is

qn(t) = 2εQnW
(

ω2
n

(ω2
n −σ2) − 2iγnσ

)
e−iσt . (B.18)

The above amplitude applies in the corotating stellar frame; in the inertial frame the time depen-
dence e−iσt instead becomes e−imΩt .

B.2.2 Angular momentum and energy transfer
Assuming a circular orbit and alignment of spin and orbital angular momenta, the secular

quadrupolar tidal torque on a star is given by an expansion in quadrupolar (l = 2) normal modes as
(Burkart et al. 2012 Appendix C1 and references therein)

τ = 8mE∗ε2W 2
∑

n

Q2
n

ω2
nσγn

(ω2
n −σ2)2 + 4σ2γ2

n
, (B.19)

where most variables are defined in the previous section.
The tidal energy deposition rate into the star Ėtide can be determined from τ by the relation

−Ėorb = Ėtide = Ωτ , (B.20)

valid only for a circular orbit. This can be derived by differentiating standard equations for the
energy and angular momentum of a binary with respect to time, setting ė = e = 0, and noting that
the tidal torques and energy deposition rates in each star of a binary are independent.

The total energy contained in the linear tide can be expressed in the corotating frame as (Schenk
et al. 2002)

Etide =
1
2

〈
ξ̇, ξ̇
〉

+
1
2

〈
ξ,L[ξ]

〉
, (B.21)

where the operator L was introduced in Appendix B.2.1. Using results from Appendix B.2.1, we
can evaluate this expression as

Etide = 2E∗ε2W 2
∑

n

Q2
n

ω2
n(σ2 +ω2

n)
(ω2

n −σ2)2 + 4σ2γ2
n
. (B.22)

Lastly, since the great majority of the tidal energy is in the lowest-order modes, i.e. the equilibrium
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tide, which satisfy ωn� σ, we can further set σ ≈ 0 in the previous equation to derive the simple
expression

Etide ≈ λE∗ε2, (B.23)

where
λ = 2W 2

∑
n

Q2
n. (B.24)

Several limits can be taken of our general torque expression in equation (B.19). First, if we
assume ωn� (σ,γn), we arrive at the equilibrium tide limit:

τeq = 8mE∗ε2W 2
∑

n

Q2
n

(
σγn

ω2
n

)
. (B.25)

Willems et al. (2010) showed that in linear theory the equilibrium tide provides a negligible torque
due to the very weak damping present in WDs, resulting from their high densities and long ther-
mal times. We confirm this result: e.g., the tidal quality factor associated with damping of the
quadrupolar equilibrium tide in WDs is (equation 3.15)

Qeq
t =

1
8

∑
n Q2

n∑
n Q2

nσγn/ω2
n
& 1013, (B.26)

which is much larger than the effective value of Qt for the dynamical tide determined in § 3.5.1.
The resonant dynamical tide (ωn ∼ σ in equation B.19) is discussed in §§ 3.4 & 3.7.

B.2.3 Damping
We consider two different damping processes in this appendix: thermal diffusion and turbulent

convection. We also calculate g-modes’ group travel times, which sets the effective damping time
for traveling waves. Figure B.1 shows plots of all three of these quantities for several of our
fiducial WD models, and demonstrates that thermal diffusion is the dominant source of damping
for high-order g-modes in WDs.

Damping due to electron conduction and radiative diffusion can be estimated simultaneously
as (Goodman & Dickson 1998)

γdiff
n =

1
2En

∫
χk2

r
dEn

dr
dr, (B.27)

where dEn/dr is the integrand of equation (B.17), χ is the thermal diffusivity (including both
radiative diffusion and electron conduction), and kr is the radial wavenumber. In terms of an
effective opacity κ, χ can be expressed as

χ =
16σT 3

3κρ2cp
. (B.28)
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Figure B.1: Plots of the contributions to eigenmode damping rates due to thermal diffusion γdiff
n (thick blue

lines) and turbulent convection γturb
n (red lines), as well as the effective damping rate for traveling waves

αn = 2π/tgroup,n (dashed green lines), as functions of the eigenmode frequency ωn (in units of the dynamical
frequency ωdyn) and radial order n, for the first 400 g-modes in four of our fiducial WD models (Table 3.1).
We describe the computation of these quantities in Appendix B.2.3. Inside the shaded regions in panels 2
& 4, g-modes become traveling waves due to rapid thermal diffusion near their outer turning points. In this
case, approximating wave damping rates using γdiff

n +γturb
n is invalid, and a traveling wave formalism such

as that discussed in § 3.7 must be used. Note that the WD models shown here are different from those in
Figure 3.4.
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For high-order g-modes, kr is given by (Christensen-Dalsgaard 2008)

k2
r = k2

h

(
N2

ω2 − 1
)
, (B.29)

where k2
h = l(l + 1)/r2 is the angular wavenumber. The integration in equation (B.27) is performed

up to the adiabatic cutoff radius defined by ω tth = 1 (Unno et al. 1989), where tth = pcpT/gF is
the local thermal time. A wave’s group travel time across a scale height must remain smaller than
its local damping time in order for the wave to reflect. This criterion will always be broken for
sufficiently long-period waves since the radial wavenumber kr grows as ω−1; nonetheless, we find
that thermal diffusion is never strong enough to invalidate the standing wave assumption for all of
the modes used in this work that are capable of effecting standing wave resonance locks.

To estimate the turbulent convective damping rate, we rely on the calibration of convective
viscosity performed by Penev et al. (2009). The formula we employ is

γturb
n ∼ ω2

n

En

∫
ρr2νturb

[
s0′

(
dξr

dr

)2

+ s1l(l + 1)
(

dξh

dr

)2
]

dr, (B.30)

where s0′ = 0.23 and s1 = 0.084 (Penev & Sasselov 2011). For the effective turbulent viscosity νturb,
we use equation (11) of Shiode et al. (2012):

νturb = Lvconv min

[
1

Πmin

(
2π
ω teddy

)2

,

(
2π
ω teddy

)
,Πmax

]
, (B.31)

where vconv is the convective velocity, L is the mixing length, teddy = vconv/L, Πmin = 0.1, and Πmax =
2.4.

Lastly, the effective damping rate applicable in the traveling wave regime is the inverse group
travel time α = 2π/tgroup; we can calculate tgroup as

tgroup = 2
∫

dr
|vgroup|

, (B.32)

where vgroup = dω/dkr and the integration is over the propagation cavity where the wave frequency
ω < N. Using the dispersion relation from equation (B.29), this becomes

α = π
(∫

kh N
ω2 dr

)−1

. (B.33)

For ω� N, α∝ ω2; this proportionality is verified in Table 3.3 and Figure B.1.
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B.2.4 Linear overlap integral
The linear overlap integral for quadrupolar eigenmodes, introduced in equation (B.16), can be

expressed as

Qn =
1

MRl

∫ R

0
l
(
ξr,n + (l + 1)ξh,n

)
ρrl+1dr

=
1

MRl

∫ R

0
δρn rl+2dr

= −
R

GM
· 2l + 1

4π
· δφn(R),

(B.34)

with l = 2, where ξh is the horizontal fluid displacement. The second equality can be derived by sub-
stituting the continuity equation, and the third equality by substituting Poisson’s equation. How-
ever, all three of these methods of calculating Qn suffer from numerical difficulties, presumably
arising due to a failure of orthogonality or completeness of the numerically computed eigenmodes
(Fuller & Lai 2011), or to small inconsistencies in the stellar model (Fuller & Lai 2012a).

Thus we now consider a more stable way of numerically evaluating Qn, which is what we
actually employed in our calculations and the fits in Table 3.3. We again focus on l = 2 modes, but
the technique can easily be extended to arbitrary l. First, the tidally generated displacement field is
given as a sum of normal modes in equation (B.13). If we set the tidal driving frequency σ and the
damping rate γn to zero in equation (B.18) and substitute into equation (B.14) (while keeping the
tidal factor ε nonzero), we recover the equilibrium tide limit. However, the equilibrium tide can
alternatively be obtained by directly solving the inhomogeneous linear stellar oscillation equations
in the zero-frequency limit; see e.g. Weinberg et al. (2012) Appendix A.1. Equating these two
alternate expressions, taking the scalar product with ρξ∗n on both sides, integrating over the star,
and solving for Qn, one obtains

Qn =
ω2

n

WE∗

∫ R

0

(
X r

eqξ
r
n + l(l + 1)Xh

eqξ
h
n

)
ρr2dr, (B.35)

where
Xeq(r,θ,φ) =

∑
m=±2

(
X r

eq(r)r̂ + rXh
eq(r)∇

)
Y2m(θ,φ) (B.36)

is the numerically computed l = 2 equilibrium tide scaled to ε = 1.
Finally, there is one further method of computing Qn that we have employed, which also uses a

solution to the inhomogeneous equations. In this method, however, instead of comparing alternate
computations of the equilibrium tide, we instead evaluate the inhomogeneous tidal response very
near an eigenfrequency. The overlap can then be extracted by fitting the resulting Lorentzian profile
of e.g. the tidal energy. This method numerically agrees very well with the equilibrium tide method
described above.
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B.3 Verification of traveling wave torque approximation
Here we will justify our traveling wave tidal torque approximation described in § 3.7.2 using

several distinct lines of reasoning. Our goal is to explain why the traveling wave torque can be
expressed in terms of the properties of global eigenmodes as in equation (3.32). This is a different
approach than is typical in the literature.

First, in the limit that the wave damping time is much longer than the group travel time, the
tidal response is well approximated as a standing wave. Thus taking the standing wave torque
and setting the damping rate equal to the inverse group travel time (Appendix B.2.3) represents a
natural method of smoothly transitioning to the traveling wave limit, since it corresponds to the
situation where a wave is nearly completely absorbed over one travel time. One apparent difficulty
with the resulting expression in our equation (3.32) is that it appears to contain explicit dependence
on the wave travel time, which seems paradoxical, since a traveling wave has no information about
the extent of the propagation cavity. This is, however, simply an artifact of our normalization
convention. To show this, we first note that our approximation for τtrav depends on α = 2π/tgroup

(Appendix B.2.3) only through
τtrav ∝ Q2/α. (B.37)

Next, given the appropriate WKB expression for ξh (Christensen-Dalsgaard 2008),

ξh ≈ A
√

N
ρr3Λσ3 sin

(∫
krdr + δ

)
, (B.38)

where A is a constant, we impose our normalization convention from equation (B.17) and use the
fact that ξh� ξr for g-modes to obtain

E∗ ≈ 2σ2
∫

Λ2ξ2
hρr2dr

≈ A2
(
πσΛ

α

)
,

(B.39)

having set sin2→ 1/2. This implies that unnormalized eigenfunctions (which are independent of
global integrals) must be multiplied by A ∝ α1/2 in order to be normalized properly. Since the
overlap integral Q is linear in the eigenfunctions (Appendix B.2.4), re-examining equation (B.37)
shows that τtrav is indeed independent of α and hence tgroup.

An alternate justification of our traveling wave torque expression can be obtained by consider-
ing how a traveling wave of a given frequency σ can be expressed in terms of global standing wave
eigenmodes, which form a complete basis (Dyson & Schutz 1979). Obtaining a traveling wave
functional form of ei(kr±σt) requires summing at least two real-valued eigenmodes with a relative
global phase difference between their complex amplitudes of ±π/2, where both modes possess
frequencies close to σ. Examining equation (B.18), we see that the phase of a standing mode’s am-
plitude is given by arctan(γ/δω). Thus, in order to approximate a traveling wave of commensurate



B.3. VERIFICATION OF TRAVELING WAVE TORQUE APPROXIMATION 128

0.002 0.005 0.010 0.020

10-16

10-14

10-12

10-10

10- 8

10- 6

Σ � Ω dyn

F
HΣ

L

Interpolation

Eigenmodes

G & D

0.04 0.06 0.1 0.2 0.3

10 - 7

10 - 6

10 - 5

Σ � Ω dyn

F
HΣ

L

Figure B.2: Dimensionless traveling wave tidal torque F(σ) = τtrav/ε
2E∗, computed as described in § 3.7.2.

Red points show direct evaluations of equation (3.32) at eigenmode frequencies, while blue lines are linear
interpolations of these values. Left panel: Results for our 0.6M�, Teff = 5,500 K CO6WD model (Table 3.1).
To facilitate straightforward comparison, this plot employs the same axes and conventions as in Figure 8 of
Fuller & Lai (2012a). Right panel: Results for a solar model, which agrees reasonably well with the semi-
analytic traveling wave result in equation (13) of Goodman & Dickson (1998) (dashed green line).

frequency, two adjacent eigenmodes 1 and 2 must satisfy

arctan
(
γ1

δω1

)
− arctan

(
γ2

δω2

)
=±π

2
, (B.40)

which simplifies to γ1γ2 = δω1δω2. Setting |δω1,2| ≈ (∆P0/2π)σ2≈ α, where ∆P0 is the asymptotic
g-mode period spacing, we find that the damping rate required to produce a traveling wave is
γ ∼ 2π/tgroup, consistent with our equation (3.32).

Lastly, we will quantitatively demonstrate that our approximation for the traveling wave tidal
torque reproduces results available in the literature. First, the left panel of Figure B.2 shows our
traveling wave torque evaluated for our CO6 WD model (Table 3.1), expressed in the dimension-
less form F(σ) = τtrav/ε

2E∗, as a function of the l = m = 2 tidal forcing frequency σ = 2(Ω − Ωspin).
Comparing this to Figure 8 of Fuller & Lai (2012a), which employs the same conventions and
axes, shows reasonable agreement. In particular, both exhibit the jagged variation with frequency
discussed in § 3.7.1. Our result has a slightly steeper overall trend, leading to a smaller torque at
low frequencies; however, because excitation is sensitive to the details of the composition bound-
aries in the model, there is no reason to expect detailed agreement. In addition, the right panel of
Figure B.2 compares traveling wave results for solar-type stars from Goodman & Dickson (1998)
(using their equation 13) with our equation (3.32) applied to a solar model. Both possess the same
power-law scaling with frequency, and agree in normalization within a factor of ∼ 2.
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B.4 White dwarf models
We used MESA version 4298 (Paxton et al. 2011) to produce our helium WD models (Ta-

ble 3.1: He5, He7, and He10). We used three inlists. The first evolves a 1.6M� star with Z = 0.02
from ZAMS to where 0.198M� of its core is locally at least 90% helium. Salient non-default
parameter values are:

mesh_delta_coeff = 0.5

h1_boundary_limit = 0.1

h1_boundary_mass_limit = 0.198

The second smoothly removes the outer 1.4M�, leaving a hydrogen layer with ∼ 1% of the re-
maining mass. This is achieved with:

relax_mass = .true.

new_mass = 0.2

The third evolves the resulting 0.2M� WD until Teff = 5,000 K. We invoke MESA’s element dif-
fusion routine even where the plasma interaction parameter Γ > 1. Salient non-default parameter
choices are:

mesh_delta_coeff = 0.05

which_atm_option = ‘simple_photosphere’

surf_bc_offset_factor = 0

do_element_diffusion = .true.

use_Ledoux_criterion = .true.

diffusion_gamma_full_off = 1d10

diffusion_gamma_full_on = 1d10

diffusion_T_full_off = -1

diffusion_T_full_on = -1

diffusion_Y_full_off = -1

diffusion_Y_full_on = -1

Our carbon/oxygen WD models (Table 3.1: CO6 and CO12) were produced by solving for
hydrostatic equilibrium subject to heat transport by radiative diffusion and electron conduction
(Hansen et al. 2004). We use the OPAL EOS and effective opacities (Rogers et al. 1996) in the
WD outer layers, and transition to the Potekhin-Chabrier EOS and electron conduction opacities
(Potekhin & Chabrier 2010) where the electrons begin to become degenerate. We use a mixture of
25% carbon, 75% oxygen for the inner 98% of the model’s mass, then add a helium layer with 1.7%
of the mass, and finally a hydrogen layer with the remaining 0.17%. We smooth the composition
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transition regions over ∼ 0.1Hp with a Gaussian profile, where Hp is a pressure scale height. We
treat convection with mixing length theory, using L = Hp for the mixing length.
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Appendix C

Dynamical resonance locking

C.1 Deriving fixed point stability conditions
Here we will determine the stability region for the resonance locking fixed point described in

§ 4.5. The characteristic polynomial P in question is given in equation (4.37).
First, P1 > 0 reduces to

δωf <
(1 − r)2γ2Γtide

rΓ2
dr

. (C.1)

We immediately see that this is satisfied if Γdr < 0 (assuming Γtide > 0), since by equation (4.39)
we then have δωf < 0. If instead δωf > 0, then we can take |δωf| � γ to derive

Γdr < γ

(
1 − r
r2/3

)(
Γtide

ω

)1/3

. (C.2)

Next, the Hurwitz matrix for P is

H =

2γ P0

1 P1

2γ P0

 . (C.3)

The remaining condition for stability of the fixed point is that the three leading principal minors of
H must be positive; this formally yields three additional inequalities. However, one is γ > 0 which
is always satisfied, and the other two are actually identical:

2γP1 > P0, (C.4)

which expands to
γ2Γtide(1 − r)2 > Γ2

drδωf. (C.5)

We now see that Γdr < 0 implies asymptotic stability. If Γdr > 0, then the inequality reduces to
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(again assuming |δωf| � γ)

Γdr < γ (1 − r)
(

Γtide

ω

)1/3

. (C.6)

Since equation (C.6) is more restrictive than equation (C.2) (since r < 1 for Γdr > 0; see equa-
tion 4.30), equation (C.6) is the condition for asymptotic stability when Γdr > 0.

C.2 Hansen coefficient scaling
Here we will determine how the Hansen coefficients X k

lm scale with harmonic index k. These
coefficients are defined to satisfy(

a
D(t)

)l+1

e−im f (t) =
∞∑

k=−∞

X k
lme−ikΩorbt , (C.7)

where D is the binary separation and f is the true anomaly. For |k| � |m|Ωperi/Ωorb, where Ωperi is
the effective orbital frequency at periapse, we have that X k

lm
∝∼ X k

00. We can express X k
lm in general

as an integral over the eccentric anomaly E (Burkart et al. 2012); for l = m = 0, this is

X k
00 =

1
π

∫ π

0
cos[k(E − esinE)]dE

= Jk(ek)
(C.8)

where J is a Bessel function. We can expand Jk(ek) as (Abramowitz & Stegun 1972)

Jk(ek)∝∼
1√
k

exp[−kg(e)] , (C.9)

where

g(e) =
1
2

ln
(

1 +η

1 −η

)
−η

=
η3

3
+
η5

5
+
η7

7
+ · · ·

(C.10)

and η =
√

1 − e2.
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C.3 Canonical angular momentum
Here we will derive the canonical angular momentum associated with a stellar perturbation.

The Lagrangian density for a stellar perturbation is (Friedman & Schutz 1978a)

L =
1
2
ρ
(
|ξ̇|2 + ξ̇ ·Bξ −ξ ·Cξ

)
, (C.11)

where ξ is the Lagrangian displacement vector, the Coriolis force operator B was defined in § 4.4.1,
and the Hermitian operator C is defined in e.g. Schenk et al. (2002). The z component of the
canonical angular momentum is then

J = −

〈
∂φξ,

∂L
∂ξ̇

〉
= −

〈
∂φξ, ξ̇ + Bξ/2

〉
.

(C.12)

As in § 4.4.1, we perform a phase space expansion of the Lagrangian displacement vector and
its time derivative (Schenk et al. 2002), so that(

ξ

ξ̇

)
=
∑

A

qA

(
ξA

−iωAξA

)
, (C.13)

where A runs over all rotating-frame stellar eigenmodes and both frequency signs. The canonical
angular momentum then becomes

J =
1
2

∑
AB

q∗AqB mA

[
2ωB 〈ξA,ξB〉+ 〈ξA, iBξB〉

]
. (C.14)

Since
〈
∂φξ, ξ̇

〉
is real valued, we can re-express equation (C.14) as

J =
1
2

∑
AB

q∗AqB

[
(mAωB + mBωA)〈ξA,ξB〉+ mA 〈ξA, iBξB〉

]
. (C.15)

We have that 〈ξA,ξB〉 ∝ δmA,mB , so J reduces to

J =
1
2

∑
A

εAmA

ωA
|qA|2, (C.16)

where we have used the orthogonality relation (Friedman & Schutz 1978b)

(ωA +ωB)〈ξA,ξB〉+ 〈ξA, iBξB〉 = δAB
εA

ωA
. (C.17)
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