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ABSTRACT OF THE DISSERTATION 

 

Testing Non-nested Multilevel models 

 

by 

 

Andrew Lawrence Moskowitz 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2017 

Professor Jennifer Lynn Krull, Co-Chair 

Professor Craig Kyle Enders, Co-Chair 

 

Comparing theories represented by statistical models is central to psychological research. 

Historically, comparisons between so called “non-nested” models have been error prone in the 

absence of a null hypothesis test. Recent research by Levy and Hancock and Merkle, You, and 

Preacher has extended Vuong’s Likelihood Ratio Test of non-nested models to Structural 

Equation Models (SEMs). A notable omission of recent work is the extension of Vuong’s test to 

the case of multilevel regression- a common approach for modeling longitudinal or grouped data. 

This dissertation leverages the similarities between SEMs and multilevel models to extend 

Vuong’s test to the multilevel framework. The logic of Vuong’s test as it relates to multilevel 

regression was explored and a SAS macro developed to facilitate the comparison between two 

models known to be non-nested a priori. The ability of Vuong’s test to select the true or “best” 

model was compared to that of information criteria in three simulation studies reflecting 



 

iii 

scenarios in which non-nestedness is commonly encountered in multilevel regression: non-nested 

covariate sets, level 1 residual covariance structures, and functional forms. Selection rates of the 

incorrect models were also examined. Vuong’s test showed almost no incorrect model selection 

across all scenarios, although its power to select the correct model was generally modest. Model 

comparisons among information criteria tended to be more sensitive than Vuong’s test but also 

selected the incorrect model more often. Finally, Vuong’s test was applied to three real data sets 

comparing competing models in the same scenarios as the simulation studies. Implications and 

recommendations for use are discussed.  
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Chapter 1: Introduction 

Model evaluation and comparison has long been of central importance to psychology. As 

early as Charles Spearman, and certainly earlier, scholars hotly debated their theories against 

those of their contemporaries. In a well-known disagreement over the nature of intelligence, 

Spearman, Sir Godfrey Thomson, and colleagues argued over the existence of a general 

intelligence factor and its implications. While the state of statistical methodology in the early 

1900s was nascent at best, these types of debates were central to the evolution of psychology as a 

science. It wasn’t until more advanced methods were developed later in the century that 

competing theories could be evaluated empirically.    

As methodologies and supporting technologies advanced, it became easier to build 

comprehensive models with the ability to handle more complex data. Personal computers have 

allowed researchers to develop iterative algorithms for estimation to make the process of 

estimating these advanced models mathematically tractable and as a result, Maximum Likelihood 

(ML) estimation and its derivatives have emerged as the preferred method. Broadly, ML 

estimation converges on parameter values that have the highest probability of reproducing data 

in a particular sample; that is to say they maximize the likelihood of a given sample via the 

estimated parameters. The likelihood is quite literally the joint probability of observing the 

collective data given the parameters, however, in practice this maximization typically occurs 

over the joint log likelihoods for mathematical convenience. Intuitively, the log likelihood 

provides a measure of model quality. However, as will be discussed subsequently, the log 

likelihood is not an absolute measure of model fit and therefore cannot be evaluated on its own. 

In certain scenarios the log likelihoods of two models can be compared and their difference 

evaluated.  
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Fitting the Simple Regression Model 

Estimators that appear simple on the exterior may actually be classified as ML and thus 

produce a model-based log likelihood. One such estimator in which the log likelihood metric is 

often overlooked is Ordinary Least Squares (OLS) regression. Because simple and intuitive 

evaluation measures are available and analytic solutions are easily computed, it is often 

unnecessary to approach estimation from an iterative likelihood perspective. Probably the most 

well-known model evaluation metric in OLS regression is the coefficient of determination or 

“R2”. Regularly conceptualized as the percentage of variance in the criterion that a model 

explains, R2 is bounded between 0 and 1 and increases monotonically as regressors are added to 

the model. Thus a simple increase in R2 is not necessarily instructive to determine if the addition 

of a variable improves the predictive power of a model beyond expectation. 

In an attempt to allow for a more evaluative measure of model fit in which additional 

regressors are not guaranteed to improve the model, an adjusted version of R2 was proposed. The 

adjusted R2 is one of the simplest penalized criteria in model evaluation. Specifically, the ratio of 

explained to total variance is weighted, or penalized, by a proportion of degrees of freedom. 

With the addition of a new predictor variable, adjusted R2 will only increase if the variable adds 

more predictive power than would be expected by chance. Therefore the model incurs a penalty 

when variables that do not improve its fit are added to the model.  

Because adjusted R2 must be used for comparative purposes and is only valid for nested 

comparisons, it is necessary to also have a metric that may be used to compare non-nested 

models. While non-nestedness will be discussed in detail later in this chapter, briefly two models 

are considered non-nested if one cannot be obtained by algebraically manipulating the other 

(e.g., setting one or more coefficients in the more general model to zero). To facilitate such 



 

3 

comparisons, a class of metrics known as information criteria are available, however, their 

calculation requires the log likelihood of the model and its transformation to the deviance which 

can be computed by  

 

ln(ℒ) = (−
1

2
𝑛(ln(2𝜋) + ln(𝑆𝑆𝑒) − ln(𝑛) + 1)) (1) 

 −2ln(ℒ) = 𝑛(ln(2𝜋) + ln(𝑆𝑆𝑒) − ln(𝑛) + 1) (2) 

where SSe is the sum of squared residuals (Gagné & Dayton, 2002). The two most common 

information criteria, Akaike’s Information Criterion (AIC; Akaike, 1974) and the Bayesian 

Information Criterion (BIC; Schwarz, 1978), can be represented using the deviance as  

 𝐴𝐼𝐶 = −2ln(ℒ) + 2(𝑘𝑚 + 2) 
 

(3) 

 𝐵𝐼𝐶 = −2ln(ℒ) + ln(𝑛) (𝑘𝑚 + 2) 
 

(4) 

where km is the number of predictor variables in model m and a constant of 2 is added to account 

for the intercept and residual variance. Like the adjusted R2, AIC and BIC penalize more 

complex models with predictors that do not meaningfully contribute to the model. Models with 

the lowest values of these criteria are selected as the “best” model under their respective 

assumptions. I expand on the theory behind common information criteria including AIC and BIC 

in subsequent sections.  

 While R2 measures do not necessarily map directly on to some of the more elaborate 

statistical frameworks (e.g., multilevel modeling), information criteria can be calculated for any 

model estimated under maximum likelihood. As a result they are widely used to compare non-

nested models in a rudimentary fashion. Typically, information criteria are simply compared to 

one another in an absolute sense without any acknowledgement of sampling variability in the 

estimate. A generalizability problem also exists with model selection based on AIC and BIC in 
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that a model selected in one sample may not be selected in another sample. Bootstrapping 

methods (e.g., Bollen & Stine, 1992; Shang & Cavanaugh, 2008a, 2008b; Shibata, 1997)  used to 

create empirical confidence intervals around AIC and BIC have recently gained attention, 

however, their large computational burden, difficulty to implement, and nonstandard 

interpretation have limited their adoption in the literature (Merkle, You, & Preacher, 2015). To 

facilitate model comparisons it would be desirable to create an easy to use and interpretable null 

hypothesis test for comparing non-nested models.  

 Vuong (1989) proposed such a test for non-nested models which has recently garnered 

increased attention in psychology through applications to structural equation models (SEMs) by 

Levy and Hancock (2007, 2011) and Merkle et al. (2015). Although closely related to SEM, 

multilevel models contain several nuances that complicate the use of many model evaluation 

methods utilized in SEM. For instance, the lack of a population model hinders computations of a 

measure of absolute model fit. Furthermore, the presence of random effects in the multilevel 

model complicates implementation of the Merkle et al. methodology in current software 

packages. Because no test for non-nested hypotheses exists in the multilevel literature and 

bootstrapping may be untenable or difficult to implement in multilevel data (Hox, 2010), I adopt 

Vuong’s Likelihood Ratio Test for non-nested models for use in the multilevel framework. I 

begin by describing how multilevel models are estimated using maximum likelihood and expand 

on the likelihood’s relation to information theory, particularly as it was defined by Kullback and 

Leibler (1951). I then describe in detail the theory behind information criteria commonly used in 

multilevel model selection, specifically AIC, AICC, and BIC. Subsequently I discuss a null 

hypothesis test applicable for nested multilevel models, the likelihood ratio test (LRT), and 

continue to describe its extension to the non-nested case via Vuong, Merkle et al., and Levy and 
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Hancock. I conclude the introduction with a short review of the literature surrounding multilevel 

model selection based on information criteria.  

Estimation in Multilevel Models 

 Under the assumptions of normality and Gauss-Markov, estimation by ordinary least 

squares is the best unbiased linear predictor of the outcome y. One such assumption, namely that 

error terms for different observations are uncorrelated, is inherently violated in multilevel data; 

by their nature observations of the same group or person are more correlated with one another 

than those of other groups or persons. As a result when data are estimated under ordinary least 

squares thereby ignoring the correlation among observations and violating the independence 

assumption, standard errors are downwardly biased and alpha levels are inflated (Cohen, Cohen, 

West, & Aiken, 2002; Hox, 2010; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). To 

account for the correlation among observations, random coefficient(s), or rather their variances, 

are estimated in multilevel models to allow for the similarity within groups to be accounted for. 

Ordinary least squares does not provide a mechanism by which to estimate this additional 

variance term and thus maximum likelihood estimation must be employed to estimate the 

additional variances.  

 As a class of estimators, maximum likelihood results in coefficients that maximize the 

likelihood of the observed data given the model. Ordinary least squares is a maximum likelihood 

estimator for the regression problem when the assumptions are met. The type of maximum 

likelihood used in multilevel regression problems employs an iterative process to find estimates 

that produce predicted values closest to the observed data. Two types of maximum likelihood 

estimators, full maximum likelihood (also known as full information maximum likelihood, 

FIML, FML, or simply maximum likelihood) and restricted maximum likelihood (REML or 
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RML), are commonplace in multilevel model estimation. Essentially, FML and REML differ in 

what they are maximizing the likelihood of and how they treat the fixed effects. FML operates 

on the data directly but assumes the fixed effects to be known and does not correct for them in 

the degrees of freedom during calculations (Raudenbush & Bryk, 2002; Snijders & Bosker, 

2012). As a result, variance components are downwardly biased unless the sample is sufficiently 

large, in which case a bias still exists, it is just vanishingly small. REML, on the other hand, 

conditions its estimates on the fixed part of the model and performs estimation on the residuals 

(Raudenbush & Bryk, 2002; Snijders & Bosker, 2012). REML accounts for the estimation of the 

fixed effects, but because of this, comparisons across models are only valid for those that differ 

exclusively in random effects. If there is any difference in fixed effect structure between two 

models, they cannot be compared via REML criteria. Asymptotically, these methods are 

equivalent and because FML can be used to compare models which differ in either their fixed 

and/or random parts, I will focus on full maximum likelihood for the duration of this dissertation.  

 Using vector notation the combined form of the multilevel model can be written as 

 𝒚 = 𝑿𝜷 + 𝒁𝜸 + 𝝐, 
 

(5) 

where y is an n x 1 vector of responses, X is a n x q design matrix for fixed effects, 𝜷 is a q x 1 

vector of fixed effects, Z is an n x p random effects design matrix, 𝜸 is a p x 1 vector of random 

effects parameters, and 𝝐 is an n x 1 vector of residuals. For the general linear mixed model we 

assume that y, 𝜸, and 𝝐 are all normally distributed and 𝜸, and 𝝐 have means of 0 and respective 

variance covariance matrices 𝝉 and R. Furthermore, we assume that 𝝉 and R are independent. A 

common assumption for cross-sectional data in multilevel regression is that R = 𝜎2𝐈nwhere In is 

a n x n identity matrix resulting in a diagonal (i.e., independent) matrix for Level 1 residuals. In 

longitudinal data, it is common for a variety of structures to be specified for R and their fit 
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evaluated with LRTs if two structures are nested. A central goal of this dissertation is to present a 

test that is capable of comparing two non-nested structures.  

 The variance in y is given by the equation V = Z𝝉 Z` + R. V is an n x n block diagonal 

matrix with each block representing an independent Level 2 group. Ultimately, a likelihood 

function is maximized with respect to the parameters in 𝝉 and R. For maximum likelihood 

estimation in the multilevel model this function is 

 
𝑙(𝝉, 𝑹) = −

1

2
log|𝑽| −

1

2
𝒓`𝑽−𝟏𝒓 −

𝑛

2
log(2𝜋), (6) 

 

where r = y – X(X`V-1X)-X`V-1y. Essentially r represents residual values from a generalized least 

squares perspective.  

 Another common interpretation of the likelihood is the Kullback-Leibler (K-L) 

divergence; that is, how distant the estimated model is from the true data generating model. 

Based on the theory proposed by Kullback (1959) the difference in information between models 

can be defined by the multidimensional integral 

 𝐼(𝑓, 𝑔) = ∫𝑓(𝑥)𝑙𝑜𝑔 (
𝑓(𝑥)

𝑔(𝑥|𝜃)
)𝑑𝑥, (7) 

 

where I(f,g) is the K-L divergence, f(x) is the true data generating function, and g(x|𝜃) is the 

approximating function1. Assuming that both f(x) and g(x|𝜃) are known, it is possible to calculate 

the exact K-L divergence. However, if one or both are unknown, as is typically the case in 

psychological research, it is possible to relax the assumption that both functions are known by 

calculating relative distance. Burnham and Anderson (1998) show that Equation 7 can be written 

equivalently as 
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 𝐼(𝑓, 𝑔) = ∫𝑓(𝑥) log(𝑓(𝑥))𝑑𝑥 − ∫𝑓(𝑥) log(𝑔(𝑥|𝜃)) 𝑑𝑥 (8) 

illustrating that I(f,g) amounts to the expectations of the true and approximating functions f(x) 

and g(x|𝜃) with respect to the distribution f  

 𝐼(𝑓, 𝑔) = 𝐸𝑓[log(𝑓(𝑥))] − 𝐸𝑓[log(𝑔(𝑥|𝜃))]. (9) 

In any model of the same outcome, the first term, 𝐸𝑓[log(𝑓(𝑥))], is a constant and can be 

ignored. Eliminating this constant, we are left with the relative distance from the hypothesized 

(approximating) model to the truth −𝐸𝑓[log(𝑔(𝑥|𝜃))]. That this statistic is relative as opposed to 

absolute is an important property. In reality, we do not know the true data generating model nor 

do we know the parameters of the approximating model𝑔(𝑥|𝜃). Thus, it is necessary to estimate 

the parameters of the data generating model and instead examine the estimated divergence 

between the approximating model and the truth. Instead of using the expected K-L divergence 

between the approximating model and truth, we use expected estimated K-L divergence 

(Burnham & Anderson, 1998). The maximized log likelihood is often used as a basis for the 

expected estimated K-L divergence, but is known to have upward bias, especially when the ratio 

between estimated parameters and sample size is large (Akaike, 1974). As a result, a number of 

researchers have proposed several bias corrections, some of which have been more widely 

adopted than others. The most commonly used, and those of central importance in this 

dissertation, are AIC, and the small sample Akaike’s Information Criterion Corrected (AICC). 

AIC and AICC 

 AIC and AICC were developed in an attempt to reduce the upward bias of K-L based 

statistics. Because the likelihood (and by extension, the log-likelihood) is an upwardly biased 

estimate of the K-L discrepancy, Akaike (1974) proposed applying a correction equal to twice 

the number of estimated parameters, k. AIC is computed as 
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 𝐴𝐼𝐶 = −2 log (ℒ(𝜃|𝑦)) + 2𝑘 (10) 

where log (ℒ(𝜃|𝑦)) is the maximized log likelihood (i.e., the upwardly biased K-L discrepancy) 

and k is the number of estimated parameters in the model. The factor of -2 results from the 

commonly known result in which multiplying a ratio of two log likelihoods by -2 results in a  

statistic that is asymptotically distributed as chi-square under certain assumptions (Raudenbush 

& Bryk, 2002; Singer & Willett, 2003). This quantity is also known as a deviance and is the 

crucial element in the likelihood ratio test. The factor of -2 is also distributed to the correction 

term and changes its sign positive.  

 AICC has an additional correction intended to improve performance of AIC in small 

samples, or more precisely when the ratio of estimated parameters to sample size is large. When 

sample size is small or k is particularly large, the correction term ( 
𝑛

𝑛−𝑘−1
 ) will increase and the 

statistic will be calculated as  

 𝐴𝐼𝐶𝐶 = −2 log (ℒ(𝜃|𝑦)) + 2𝑘 (
𝑛

𝑛 − 𝑘 − 1
). (11) 

As sample size grows relative to the number of estimated parameters the ratio will approach 1 

and AICC and AIC will be equivalent. Burnham and Anderson (1998) suggest that AICC should 

be preferred over AIC when there are fewer than 40 observations per estimated parameter.  

 AIC and AICC can be used to qualitatively rank models that are both nested and non-

nested. Because the information criteria are relative quantities, their absolute values cannot be 

interpreted directly and instead the differences of criteria between two models should be 

evaluated. Thus, it is not possible to determine if any of the models are necessarily plausible 

candidates for the true model but rather which model has the most supporting evidence. Raftery 

(1995) provided a rough rule of thumb for evaluating models based on differences in AIC (or 
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AICC). Specifically, a difference between 0-2 is considered “weak” evidence and therefore 

neither model should be eliminated from consideration. A difference of 2-6 is considered 

“positive” and lends slight evidence that one model is better than the other. Differences between 

6-10 suggest “strong” evidence in favor of the model with the smaller information criterion and a 

difference greater than 10 provides very strong evidence (Sterba & Pek, 2012).  

 While Akiake’s Information Criteria and its correction are both philosophically and 

practically intuitive, a major limitation is their failure to account for any sort of variability in 

estimates. Recall that to calculate the statistic we use the expected estimated K-L discrepancy 

which itself is subject to sampling variability. As a result, simple comparisons between AIC or 

AICc over repeated samples may not converge on the best model. Additionally, there is no 

reference distribution on which to evaluate differences in AIC and thus it is not possible to 

indicate which model is best with any certainty. Bootstrapping methods to create confidence 

intervals for AIC and related statistics have recently become more popular (Bollen & Stine, 

1992; Merkle et al., 2015; Millsap, 2010; Müller, Scealy, & Welsh, 2013; Pornprasertmanit, Wu, 

& Little, 2013; Preacher & Merkle, 2012; Shang & Cavanaugh, 2008a, 2008b), however due to 

their relative difficulty to implement, most researchers continue to compare simple differences in 

information criteria.  

BIC 

 The Schwarz Information Criterion, commonly referred to as the Bayesian Information 

Criterion, is another commonly used method for model selection. Similar to the AIC, the BIC 

uses a penalty term, but rather than a fixed proportion, the penalty is scaled by a transformation 

of the sample size, 

 𝐵𝐼𝐶 = −2 log (ℒ(𝜃|𝑦)) + 𝑘(ln(𝑁)). (12) 
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As the sample size increases, the penalty term for the number of parameters will continue to 

increase and ultimately become much larger than 2, the coefficient for the penalty in AIC. Thus, 

in large samples, BIC will tend to prefer more parsimonious models than AIC (that is, when the 

reduction in the deviance is less than ln(N)).  

 BIC has been shown to perform reasonably well in avoiding overfitting due to the large 

penalty for extra parameters, however in multilevel models the penalty term is somewhat 

ambiguous. In multilevel models the choice for N can be unclear; even for the simplest models 

there are two choices for N, sample size at Level 1 or at Level 2. Disagreement surrounds the 

selection of the correct sample size to use in BIC for mixed models and this controversy extends 

to the output of common statistical programs (McCoach & Black, 2008). For instance, SAS Proc 

MIXED uses the number of independent sampling units (i.e., highest level sample size) to 

determine the penalty. This position is supported by Hox (2010), Singer and Willett (2003), and 

Raftery (1995). Alternatively, SPSS and R use the total number of Level 1 units, a position 

advocated by Snijders and Bosker (2012). Others advocate for calculating an effective sample 

size (e.g., Delattre, Lavielle, & Poursat, 2014; Jones, 2011). To examine BIC performance I will 

examine the BIC based on the total number of independent sampling units to coincide with the 

logic and sample size of Vuong’s LRT.  

 While on the surface the BIC seems fairly similar to AIC, differing only by the 

magnitude of the penalty term, they differ drastically in philosophy. Recall that AIC is an 

estimate of K-L discrepancy in which the main goal is to choose a model that approximates the 

truth. In fact, from the perspective of AIC (and other K-L based measures) it is assumed that no 

true model can be estimated because it is too complex (Burnham & Anderson, 1998). Given a set 
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of candidate models, a researcher should be able to distinguish the closest approximation to the 

truth, even if it is a truly poor model in absolute terms.  

 BIC, on the other hand, is not based on the K-L discrepancy and instead is rooted in 

Bayesian philosophy as an approximation to the Bayes factor (Weakliem, 2016). It is assumed 

that a true model exists, it is part of the candidate set, and the goal of analysis is its identification 

(Burnham & Anderson, 1998). Additionally, the impetus to develop BIC arose from the desire to 

find a consistent estimator, one that will converge on the “correct” number of parameters as 

sample size increases (Bozdogan, 1987). Burnham and Anderson (1998) note that the 

assumptions surrounding BIC are particularly absurd. Assuming that the researcher knows the 

true model is only a small step from the assumptions that a simple true model exists and is in the 

candidate set. Thus they have questioned the BIC’s utility. They also note that Monte Carlo 

studies that have been conducted with the BIC tend to adhere to these untenable assumptions and 

as a result are not very informative. Following their suggestion, one part of this dissertation will 

examine candidate model sets excluding the true model (Burnham & Anderson 1998; p. 287). 

Likelihood Ratio Test 

The likelihood ratio test (LRT) has a long history of testing nested models. Virtually 

every textbook on data analysis topics from multiple regression to multilevel modeling to 

structural equation modeling has sections at least touching on the topic (Cohen et al., 2002; Hox, 

2010; Kline, 2015; Raudenbush & Bryk, 2002; Singer & Willett, 2003; Snijders & Bosker, 

2012). As noted above, the deviance (−2 log (ℒ(𝜃|𝑦))) is a measure of lack of fit between the 

model and the data. This quantity lacks an absolute meaning and must be evaluated relative to 

another model’s deviance. Comparing two nested models typically involves a simple calculation 

with a known referent chi-square distribution. Procedures for testing two non-nested models are 
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computationally more involved and not widely known. When two models are nested they are 

said to be related to one another in such a way that the more parsimonious model (i.e., restricted 

model) can be derived from the larger model (i.e., full model) via a set of constraints. Typically 

when testing models in their fixed effects, nesting occurs by constraining the effects of certain 

variables to 0. More common in nested random effects structures (although still permissible in 

fixed effects) are equality constraints where variances are constrained to be equal. A full 

explanation of nested models and examples will be provided in a subsequent section.   

 To conduct the LRT for nested models, one must simply estimate the full and restricted 

models and subtract the full model’s deviance from the restricted. Because the full model will 

always fit better than the restricted model, (i.e., the restricted model will have a higher deviance) 

the resulting quantity characterizes the decrease in fit of the restricted model relative to the full 

model. The deviance difference is then evaluated on a chi-square distribution with degrees of 

freedom equal to the difference in the number of estimated parameters of the two models. A 

significant result indicates that the restricted model fits more poorly and thus the more complete 

model should be preferred.  

 Echoing the views of Raftery (1995), McCoach and Black (2008) suggest that the largest 

drawback of the LRT is that it can only be used to test nested models. While this widely held 

belief has proliferated the use of information criteria to compare two dissimilar (i.e., non-nested) 

models, it is ultimately unfounded. Vuong (1989) developed a two-step likelihood ratio test to 

compare two non-nested models. The first step determines the nestedness of two candidate 

models and the second compares the difference in likelihood ratios of the two candidate models 

to the weighted variance of the individual-specific (i.e., independent unit) log likelihood ratios. 

When models are not nested, the limiting distribution of the deviance difference is no longer 
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distributed as a Chi-square with degrees of freedom equal to the difference in model parameters 

and instead can be evaluated on a standard normal distribution. Vuong’s original exposition 

focused on linear regression models, however, Rivers and Vuong (2002) later expanded it to test 

non-nested time series models and most recently Merkle et al. (2015) applied the test to non-

nested structural equation models. In the following sections I revisit Vuong’s original logic and 

its adaptation to structural equation modeling and in the following chapter I explain how the test 

can be applied to multilevel models from both mathematical and practical perspectives.  

Vuong’s (1989) Likelihood Ratio Test 

 The LRT as proposed by Vuong (1989) is actually a two-step procedure where, in the 

first step, a researcher tests if models are indistinguishable, nested, non-nested, or overlapping 

and in the second step the hypothesis test is performed comparing the fit between two 

distinguishable (i.e., not indistinguishable) models. The initial test, often referred to as the test 

for distinguishability, is necessary to determine the limiting distribution of the test statistic. To 

conduct this test, variances of the differences in individual-specific log likelihoods are evaluated 

on weighted mixtures of chi-squares (Golden, 2000; Levy & Hancock, 2007; Merkle et al., 

2015). Models that are deemed indistinguishable do not need to be tested, as they are equivalent 

in the population. As noted by Merkle et al. (2015), if one knows a priori that models are nested, 

non-nested, or overlapping, one can proceed directly to the appropriate LRT.   

 Before formally defining the test of distinguishability, it is important to understand the 

possible relationships among models. While Levy and Hancock (2007) discuss model 

relationships in the context of mean and covariance structures, they also provide a more general 

visualization of possible relationships. I recreate this here and provide corresponding situations 

in multilevel models. The four panels in Figure 1.1 reflect the potential relationships between 
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two models. In panel (i) the two models are completely overlapping such that their relationship 

to the data is equivalent. Levy and Hancock relate completely overlapping models to those that 

produce the same mean and covariance structures regardless of population. However, in the 

multilevel context, two completely overlapping models may be those involving variable 

transformations. For instance, if model A was fit with a raw variable indicating number of drinks 

per month over the last year in a population with substance use disorder and model B were fit 

with that same variable grand mean centered, the two models could be considered completely 

overlapping as the transformation would not change the model fit in the population. From the 

figure, it is obvious that each model fits no better than the other and thus no hypothesis test 

should be conducted.  

. 

Figure 1.1 Graphical depiction of possible relationships between two models. (i) Completely 

Overlapping (ii) Nested (iii) Partially Overlapping (iv) Strictly Non-Overlapping 

 Panels ii, iii, and iv depict models that are distinguishable in the population but have very 

different relationships to one another. Panel ii shows model A nested within model B. These 

models are typical in multilevel analyses and are often used for multiparameter significance tests 

of fixed effects or variance components via nested LRT. For instance, model B contains 

predictor variables X1, X2 … , Xn. Model A is fit to the same outcome but only includes 
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predictors X1, X2, … , Xn-2 and as a result model A has two fewer parameters to estimate. Model 

A is considered nested in Model B because Model B can be transformed into Model A by 

imposing a set of restrictions, namely setting coefficients of Xn and Xn-1 to zero.  

 Panel iii shows partially overlapping models. In this scenario, two similar models with 

slight differences are fit to data. Levy and Hancock (2007) explain these as models that “share 

some distributions but each contains unique distributions” (p. 47). A more intuitive explanation 

is provided by Merkle et al. (2015):  Figure 1.2 displays a two factor model each with three 

indicators. Let model A represent the case in which there is an additional path from latent 

variable 𝜂1 to X4 (denoted by the dashed line and labeled “A”) and model B represent the case in 

which there is an additional path from latent variable 𝜂2 to X3 (denoted by the dotted line and 

labeled “B”). These models are considered overlapping because their predictions and fit statistics 

will be the same in populations where paths A and B are both zero (Merkle et al., 2015).  A 

similar situation can be found in multilevel models in which there exists a common covariate set 

across models but competing substantive variables driving a theory (or vice versa). For instance, 

in a study of the effect of positive affect on inflammation in breast cancer patients (Moreno, 

Moskowitz, Ganz, & Bower, 2016), we had to make a qualitative decision as to which of two 

highly related Level 2 covariates to use, fatigue severity or fatigue interference, holding the rest 

of the model constant.  
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Figure 1.2. Two factor model overlapping with paths A and B. 

 The final panel depicts the case in which two models are strictly non-overlapping. 

Models which are non-overlapping will never result in the same fit indices or model implied 

moments (Merkle et al., 2015). In other words, “if no set of constraints allows for a solution, the 

models are completely non-overlapping” (Levy & Hancock, 2007). While it is sometimes 

difficult to think of a case in which models would be truly non-overlapping in the population, 

differing functional forms of growth is one instance where these types of models are common. 

Consider the equations for simple power and exponential growth curves, 

 𝑃𝑜𝑤𝑒𝑟: 𝑦 = 𝛽0(𝑇𝑖𝑚𝑒𝛽1) + 𝑒 (13) 

 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙: 𝑦 = 𝛽0(𝑒
𝛽1∗𝑇𝑖𝑚𝑒) + 𝑒. (14) 

In equation 13 𝛽0 reflects the value of y at time 1 and 𝛽1 controls the concavity of the function 

(Timmons & Preacher, 2015). In equation 14 𝛽0 is the intercept (i.e., when time = 0) and 𝛽1is 

the exponential growth rate. These models contain the same number of parameters, however, 

their forms of growth are markedly different as are the definitions of their intercept analogues 
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(𝛽0). In these cases it would be possible to skip the test of distinguishability and proceed directly 

to Vuong’s LRT for non-nested models.  

 Vuong’s LRT assumes that in addition to i.i.d. observations, second derivatives of the 

likelihood function exist, ML estimates are unique and not on the boundary, and the variance in 

the individual likelihood ratios between full and restricted models is non-zero (Golden, 2000; 

Merkle et al., 2015; Vuong, 1989). Under the assumption of the null hypothesis, the two 

candidate models cannot be distinguished in the population and thus should not be tested against 

one another. Merkle et al. (2015) formalize this test with null and alternative hypotheses 

 𝐻0: 𝜔∗
2 = 0 (15) 

 𝐻1: 𝜔∗
2 > 0 (16) 

 

respectively. An estimate of 𝜔∗
2 is given by 
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(17) 

where 𝑓𝐴(𝑥𝑖; 𝜃𝐴) is the individual-specific likelihood function for model A and the individual-

specific likelihood for model B is defined similarly (Golden, 2000; Levy & Hancock, 2007; 

Merkle et al., 2015; Vuong, 1989). Multiplying �̂�∗
2 by the number of cases (n) produces a 

statistic that can be evaluated on a weighted chi-square distribution with the weights arising from 

the squared eigenvalues of the second derivative and information matrices from the candidate 

models (Merkle et al., 2015; Vuong, 1989).  If the models are indistinguishable then the 

variability in the individual log likelihood ratios should be close to zero and the null hypothesis 

retained. Such models should not be candidates for further comparison. Conversely, rejecting the 

null hypothesis would indicate that the variability in individual log likelihoods across the two 
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models is non-zero allowing for a statistical test between models (Merkle et al., 2015). Because 

of this test’s reliance on non-standard output and complex computations, Levy and Hancock 

(2007) took an analytic approach to testing distinguishability originally proposed by Raykov and 

Penev (1999). Briefly, this method requires the user to set up systems of equations to determine 

if parameter matrices are transformations of one another via linear algebra. Even though it does 

not rely on software output, the algebraic method is not easily implemented by applied 

researchers. Additionally, it lacks a certain generality inherent to Vuong’s original proposal and 

does not consistently perform well (Merkle et al., 2015). As a result, Merkle and You (2014) and 

Merkle et al. (2015) have created software in which these tests are implemented for SEMs.  

 Upon establishing that models are in fact distinguishable, researchers can implement a 

nested or Vuong’s non-nested LRT. Formally, when performing this test a researcher poses the 

hypotheses 

 𝐻0: 𝐸[𝑙(𝜃�̂�; 𝑥𝑖)] = 𝐸[𝑙(𝜃�̂�; 𝑥𝑖)] (18) 

 𝐻1𝐴:𝐸[𝑙(𝜃�̂�; 𝑥𝑖)] > 𝐸[𝑙(𝜃�̂�; 𝑥𝑖)] (19) 

 𝐻1𝐵:𝐸[𝑙(𝜃�̂�; 𝑥𝑖)] < 𝐸[𝑙(𝜃�̂�; 𝑥𝑖)] (20) 

where expected values of each likelihood constitute the expected K-L distance discussed earlier. 

The null hypothesis H0 posits that the K-L distances between the truth and models A and B are 

equal. The alternative hypothesis H1A posits that the expected likelihood of model A is greater 

(i.e., closer to the truth in K-L discrepancy) than the likelihood of model B and therefore model 

A should be preferred. Conversely, H1B suggests that the expected likelihood of model B is 

greater than model that of model A and therefore model B should be preferred. Conclusions 

drawn from this hypothesis test are that either model A should be preferred to model B, model B 
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should be preferred to model A, or there is not sufficient evidence to support one model over the 

other.  

 To test these hypotheses for non-nested distinguishable models the statistic 

 𝐿𝑅𝐴𝐵 = 𝑛−(
1
2
) ∑log

𝑓𝐴(𝑥𝑖; 𝜃𝐴)

𝑓𝐵(𝑥𝑖; 𝜃𝐵)

𝑑
→

𝑛

𝑖=1

𝑁(0, 𝜔∗
2) (21) 

 

can be used under the assumption of H0.  The statistic is computed by first extracting the log 

likelihoods for each observation under the two candidate models A and B. The log of the 

likelihood ratio for each case is then summed over the number of observations, divided by its 

square root and evaluated on a normal distribution (Golden, 2000; Merkle et al., 2015). Golden 

(2000) and Merkle et al. (2015) show that this result can also be used to test nested models under 

an alternative limiting distribution, however, the LRT for nested models is not of interest here.  

 While Vuong’s LRT has been expanded on to accommodate a variety of common 

economic models (e.g., incompletely specified models, a variety of estimators, alternative model 

selection procedures, and nonlinear dynamic data [Rivers and Vuong 2002]; time series models, 

[Golden 2000]) its use has until recently been restricted to single level univariate models. The 

fairly technical treatment of the test in the economic literature, in addition to its reliance on non-

standard output from statistical packages, has created substantial barriers to its adoption outside 

of economics. Levy and Hancock (2007, 2011), Merkle and You (2014), and Merkle et al. (2015) 

have all contributed to expanding the test’s use to SEMs and presenting it to substantive 

researchers in psychology. A notable exception has been its application to multilevel models, 

both latent and otherwise. Although the assumptions of Vuong’s test, specifically i.i.d. 

observations, may imply that the test is not suitable for multilevel data, recent discussions in the 

literature paint a different picture.  
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Multilevel Models and SEM 

 The proliferation of multilevel SEM (MSEM) and latent growth curve models have 

continued to blur the lines between SEM and multilevel models (Bauer, 2003; Curran, 2003; 

Mehta & Neale, 2005; Mehta & West, 2000). In virtually all scenarios, multilevel models can be 

reparametrized in the SEM framework (Curran, 2003; Mehta & Neale, 2005). Although it is 

usually more convenient to work in one framework over another depending on the nuances of 

research questions and data, the parallels between MLM and SEM can be leveraged to facilitate 

the application of Vuong’s LRT to multilevel models. 

 To illustrate, consider the case of a multilevel growth curve model and a latent growth 

curve model. For 500 persons each with 4 time points, data are usually structured in one of two 

ways:  “long” as is typically utilized in multilevel models or “wide” as is typical in structural 

equation models. Examples of these data types can be found on Table 1.1. While data formats do 

not make a model, in this context they serve to help one orient to the necessary unit of analysis. 

In multilevel models, the unit of analysis is the observation. Correspondingly, each row in the 

long dataset represents an observation, to whom it belongs is indexed by another column, and 

time is indexed by yet another column. In SEM the unit of analysis is the individual and as such 

each row corresponds to an individual with each observation represented by a new variable.  For 

the multilevel model, consider the standard unconditional linear growth model of the form 

 Level 1: 𝑦𝑡𝑖 = 𝛽0𝑖 + 𝛽1𝑖𝑇𝑖𝑚𝑒𝑡𝑖 + 𝑒𝑡𝑖  (22) 

 Level 2: 𝛽0𝑖 = 𝛾00 + 𝑢0𝑖 (23) 

 𝛽1𝑖 = 𝛾10 +𝑢1𝑖     (24) 

where observation y at time t is nested within person i. 𝛽0𝑖 and 𝛽1𝑖 are person-specific intercept 

and slope parameters, respectively, and 𝛾00 and 𝛾10 are the corresponding population estimates. 
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𝑢0𝑖 and 𝑢1𝑖 are the random effects for the person-level intercept and slope parameters, 

respectively. Finally, 𝑒𝑡𝑖 is the time-point-specific error term. Typically, assumptions are placed 

on the random effects and residuals  

 𝑒𝑡𝑖~𝑁(0, 𝜎2𝑰𝑛) (25) 

 𝑢.𝑖~𝑁(0, 𝝉). (26) 

The random effects and residuals are assumed to be independent from one another as well as 

from any fixed effects. Although homogeneity of variance (i.e., 𝜎2𝑰𝑛) is initially assumed at 

Level 1, this assumption can be and often is relaxed in longitudinal data. The covariance 

structure at Level 2 is typically unstructured, but once again this is not generally required.  

Table 1.1 Data structure to estimate as a mixed model (left) or latent growth curve (right). 

 ID Time Y  ID Time 1 Time 2 Time 3 Time 4 

1 1 8  1 8 7 6 5 

1 2 7  2 10 9 7 4 

1 3 6  3 8 7 8 6 

1 4 5  . . . . . 

2 1 10  . . . . . 

2 2 9  . . . . . 

2 3 7  500 6 3 4 5 

2 4 4       

3 1 8       

3 2 7       

3 3 8       

3 4 6       

. . .       

. . .       

. . .       

500 1 6       

500 2 3       

500 3 4       

500 4 5       
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Curran (2003) rewrites the above equations using matrices to facilitate the comparison 

between multilevel models and SEM. He writes the Level 1 equation from the multilevel model 

(here equation 22) as 

 𝒚𝒊 = 𝑿𝜷𝒊 + 𝒓𝒊 (27) 

Where the first column of the design matrix X is a vector of 1s to indicate an intercept and (with 

a single predictor time) the second column contains the individual-specific measures of time for 

each observation. The Level 2 equation can be rewritten as 

 𝜷𝒊 = 𝚪 + 𝒖𝒊. (28) 

for the unconditional example model (i.e., with no Level 2 predictors). Although it is not 

commonly explicated in discussions of multilevel models, the model does imply a mean and 

covariance structure 

 𝝁𝒚 = 𝑿𝚪 (29) 

 𝚺𝒚𝒚 = 𝑿𝝉𝑿′ + 𝚺𝒓, (30) 

Where 𝝉 and 𝚺𝒓 are Level 2 and Level 1 covariance matrices, respectively (Curran, 2003). A 

SEM can be defined similarly as 

 
𝒚𝒊 = 𝚲𝜼𝒊 + 𝝐𝒊 (31) 

 
𝜼𝒊 = 𝝁 + 𝜻𝒊 (32) 

With implied mean and covariance structures as 

 
𝝁(𝜽) = 𝚲𝝁 

(33) 

 
𝚺(𝜽) = 𝚲𝚿𝚲′ + 𝚯𝝐′. (34) 

As Curran explains, Equations 33 and 34 parallel Equations 29 and 30 where the matrices in one 

can be substituted for the other such that 
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 𝑿 = 𝚲 (35) 

 𝝉 = 𝚿 (36) 

 𝚺𝒓 = 𝚯𝝐 (37) 

 𝚪 = 𝝁. (38) 

Furthermore, while in multilevel models time is a predictor variable included in matrix X, it is 

fixed as a factor loading in matrix 𝚲 in SEM.  

  While the above explanation discusses growth models exclusively, the equivalence 

between multilevel and SEM extends to the more general case as well. Mehta and Neale (2005) 

explain in detail the notion of univariate multilevel models as multivariate “unilevel” models and 

provide a number of examples fitting a series of increasingly complex multilevel models as 

confirmatory factor analysis (CFA) models. Doing so requires a shift in perspective away from 

the typical multilevel model to an alternate unit of analysis. Normally when fitting multilevel 

models it is typical to consider each outcome as indicative of each person’s score within a group.  

In SEM, each “construct is assessed with p equivalent and exchangeable tests.” (Mehta & Neale, 

2005 p. 264). The shift in perspective comes from viewing individuals within groups as 

indicators of a construct (or deviations from a mean) rather than individual sampling units. In a 

random intercept model, the CFA partitions variance as between group (i.e., common variance) 

and within group (i.e., unique variance) similar to the variance partitioning in multilevel models. 

Additionally, unique variances are conditionally independent based on the common factor just as 

within group observations are independent conditional on group membership. Random slopes are 

easily included by the addition of other latent variables with mean structures and factor loadings 

fixed to the variables’ observed values.  
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 Similarities between multilevel models and SEM have motivated some researchers to 

develop fit indices for both frameworks in tandem. Specifically, Sterba and Pek (2012) proposed 

three diagnostics for individual influence on model selection. That is, they developed statistics 

that quantified individual case contributions to chi squares, AIC, BIC, and their differences. To 

equate the multilevel and SEM approaches they explicitly defined a case as “the highest level 

unit in an analysis.” While this may seem counterintuitive in the multilevel context where we 

typically think of each lower level observation as a case, the distinction in SEM is obvious. I will 

show in Chapter 2 specifically why cases are conceptualized as the highest level of a multilevel 

analysis via the mechanics of maximum likelihood estimation and why the individual 

observation (i.e., Level 1) contributions cannot be obtained. However, based on the evidence 

provided by Curran (2003), Bauer (2003), Mehta and West (2000), Mehta and Neale (2005), and 

the proof of concept in Sterba and Pek’s (2012) case contribution statistics, it follows that 

extension of Vuong’s (1989) LRT should generalize from SEM to multilevel modeling as well.  

Despite the equivalence between multilevel models and SEM, fitting models using one 

framework over another might provide a more elegant solution in practice. Further, while much 

of what is possible in multilevel models may be achievable in SEM, it may still be more 

intuitive, in specification and interpretation, to estimate models in the multilevel framework. For 

instance, categorical outcomes can be included in both modeling frameworks, however, only 

multilevel models use a link function that facilitates estimation (Curran, 2003). Multilevel 

models also benefit from straightforward specification of Level 1 covariance structures, 

interaction effects, nonlinear effects, and multiple random effects. Finally, SEM models require 

that the effects of predictors be separated into their between and within group (or individual) 

effects. While such orthogonality facilitates interpretation, it may not be realistic in practice. 
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Although these are only a few of the reasons that a researcher might prefer multilevel models 

over SEM, and there exist several more occasions where the preference would be reversed, it is 

clear that multilevel modeling continues to provide utility for the applied researcher and thus a 

test for non-nested models in this framework would be useful.  

Studies of AIC/BIC in multilevel models 

 Without the option of a null hypothesis statistical test (NHST) to compare non-nested 

multilevel models, researchers have historically been restricted to simple comparisons among 

information criteria. Although numerous options exist, all with different penalty functions, the 

most commonly used in multilevel models are AIC, AICC, and BIC. Motivating the development 

of so many information criteria (e.g., Akaike, 1974; Bozdogan, 1987; Hannan & Quinn, 1979; 

Hurvich & Tsai, 1989; Schwarz, 1978) is that the best information criterion (and by extension 

the best penalty function) to use for model selection remains an open question (Vallejo, Ato, & 

Valdés, 2008; Vallejo, Fernández, Livacic-Rojas, & Tuero-Herrero, 2011; Vallejo, Tuero-

Herrero, Núñez, & Rosário, 2014).  

 Most studies tend to agree that while there is no information criterion that rises above the 

rest in every scenario, AIC and AICC are consistently among the top performing (Dimova, 

Markatou, & Talal, 2011; Pu & Niu, 2006; Vallejo et al., 2008; Vallejo et al., 2011; Vallejo et 

al., 2014). Despite the inconclusive nature of many simulation studies exploring information 

criteria in multilevel models, researchers have found that many of the same factors that 

contribute to power in NHST also contribute to correct model selection.  

 Perhaps the finding most consistent with the multilevel power literature is that the 

greatest effect on model selection comes from the sample size at the highest level (Vallejo et al., 

2011; Vallejo et al., 2014; Wang & Schaalje, 2009). In several studies, researchers found that 
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information criteria improved in selecting the correct model based on differences in fixed effects 

as the sample size at the highest level increased (Vallejo et al., 2011; Vallejo et al., 2014; Wang 

& Schaalje, 2009). When testing differences in random effects, however, increases in the number 

of observations per individual had substantial impact on the performance of the information 

criteria (Vallejo et al., 2014). Finally, different sample-size-based penalties offered the best 

performance in AICC and BIC. It is recommended that the upper level sample size be used as a 

penalty for the BIC, whereas the total number of observations should be used for the AICC 

penalty term (Vallejo et al., 2011).  

 ICC also played a role in the accuracy of model selection, albeit a smaller one than 

sample size. When ICC values were small (roughly .1) the information criteria performed better 

than when ICC values were high, but only when random effects were uncorrelated (Vallejo et al., 

2014). Similarly, BIC outperformed AIC and AICC when random effects were uncorrelated, but 

in the presence of correlated random effects AIC and AICC more consistently preferred the 

correct model. Differences in performance between information criteria conditional on the 

correlation between random effects is a fairly novel finding. Generally in power studies, the 

relationship between intercept and slope variances is considered inconsequential. Perhaps, the 

association among random effects plays an important role in the performance of information 

criteria. 

 Finally, contributing to the debate surrounding the use of information criteria in model 

selection is whether the analysis should be conducted under FML or REML. In addition to the 

debate over which effects, fixed or random, can be tested, the dichotomy raises questions (and 

produces new indices) regarding the quantities that should be included in the penalty terms. 

Several studies (e.g., Vallejo et al., 2008; Vallejo et al., 2011; Vallejo et al., 2014; Wang & 
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Schaalje, 2009) indicated that information criteria tended to perform better when models were 

estimated under REML as opposed to FML. Furthermore, this finding held even when models 

differed in fixed effects. It follows logically that the information criteria perform well when 

comparing random effects under REML as the variance components estimates are less biased. 

However, the reason for improved performance of information criteria in selecting the fixed 

effects under REML remains an open research question.  

 Still, with the plethora of information criteria available and the uncertainty that surrounds 

their performance, researchers continue to try to correct for apparent biases. Pu and Niu (2006) 

developed a generalized version of AIC and BIC for multilevel models called the GIC which 

intended to allow for increased flexibility in penalty functions. Their study found that the new 

criteria performed well for the selection of fixed effects but not random effects. Greven and 

Kneib (2010) derived conditional and marginal corrections for the AIC but failed to study its 

performance. Analytically it appears to be unbiased, however, the conditions in which that comes 

to fruition are undetermined.  

 Other researchers take an empirical approach to correcting information criteria. A number 

of studies (Kitagawa & Konishi, 2010; Shang & Cavanaugh, 2008a, 2008b; Shibata, 1997) use 

bootstrapping to correct bias in the estimate of K-L discrepancy. Bootstrapping is an attractive 

option for information criteria in that the technique can be applied to many different types of 

models and requires very few assumptions, in general. In multilevel models, bootstrapping is 

somewhat of an enigma however, in that typical approaches tend to make it difficult to recreate 

the Level 2 variance structure (Goldstein, 2011). The fully parametric bootstrap is typically 

preferred if model assumptions are accepted (Goldstein, 2011). When model assumptions are not 

accepted, the modified residual bootstrap (Goldstein, 2011) is preferred. Although useful, 
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bootstrapping is rarely applied because of substantial computing time needed to create the 

bootstrapped samples (e.g., Dimova, 2011). 

Shang and Cavanaugh (2008a, 2008b) formalize two bootstrapped approaches to adjust 

bias in the AIC for multilevel models. The results presented in the papers are based on the 

parametric bootstrap assuming normality of error terms, however semiparametric and 

nonparametric bootstrap approaches requiring fewer assumptions are possible. The authors found 

that the bootstrapped criteria outperform AIC without bootstrapping in selecting the best model, 

especially when sample sizes are small. Importantly, the bootstrapped statistics previously 

examined do not address differences in random effects structures, only fixed effects.  

 It is clear from this brief review that model selection based on information criteria is still 

very much an open question. Despite the recent disparagement of NHST, it would be desirable to 

have a statistic that reports with some degree of certainty that one model should be preferred 

over another. Thus, I propose the following dissertation. 

Project Aims 

 In this dissertation I first discuss in detail how Vuong’s LRT extends to the multilevel 

framework by exploring how changes in model specification manifest in the likelihood. In order 

to provide a comprehensive explanation of how model differences common to those seen in non-

nested candidate models affect the likelihood, I will discuss different covariate sets including 

differences in fixed effects at Level 1 and Level 2, non-nested Level 1 random effect structures, 

and non-linear functional forms of growth. The following three chapters explore the performance 

of Vuong’s test in the three common types of non-nested models listed above and evaluate its 

performance relative to AIC, AICC, and BIC. I will conclude with three empirical examples, one 
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in which fixed effects are non-nested, another comparing functional forms, and the other in 

which Level 1 random effect structures are non-nested.  
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Chapter 2: Vuong’s Test for Multilevel Models 

In this chapter I build the argument for applying Vuong’s test for non-nested models to 

the multilevel framework. To this end, I begin by reintroducing Vuong’s likelihood ratio statistic 

and the multilevel log likelihood and explain computationally why cases at Level 2 must be the 

unit of analysis. I then examine how differences in model specification that might cause two 

models to be non-nested manifest in the log likelihood regardless of the level at which they 

occur; first for fixed effects in covariate sets, then for Level 1 random effects, and finally for 

non-linear trends. I walk through a short example illustrating subtle differences in the 

computations of individual log likelihoods for non-linear models specifically. Finally, I show 

empirically that the individual log likelihoods and the results of Vuong’s Test are the same for 

both multilevel and latent variable models for growth models where observations are ordered 

(non-exchangeable) and when individuals are nested within groups (exchangeable observations). 

Through induction this equality serves as the basis on which Vuong’s test for multilevel models 

can be extended to more complex cases when one modeling framework might be preferred to the 

other.  

Vuong’s Likelihood Ratio 

As outlined above, Vuong’s test for non-nested models is effectively a z-test contrasting 

the individual-specific likelihood ratios of two competing models. For two models, A and B, 

each case’s contribution to the log-likelihood is calculated and the differences across models 

computed. The variance of these differences is scaled by 
𝑛−1

𝑛
  resulting in �̂�2, where n is equal to 

the number of individual cases, which is then included in the equation of the test statistic itself, 

 𝑉𝑢𝑜𝑛𝑔𝐿𝑅 = (
1

√𝑛
) ∗

∑(𝑖𝑛𝑑𝐿𝐿𝑚1−𝑖𝑛𝑑𝐿𝐿𝑚2)

√�̂�2
. (39) 
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Vuong’s LR statistic is then evaluated on a standard normal distribution. If Vuong’s LR falls 

beyond the 95% confidence interval about 0, then the model with the greater log likelihood is 

preferred. That is, the model with the lower K-L discrepancy is thought to be a better 

approximation of the truth.  Integral to calculating this test statistic are the individual case 

contributions to the log likelihood, as the variance of their differences between models, as well 

as the differences themselves, are used in the likelihood ratio statistic. 

Multilevel Log Likelihood 

Estimating a mixed model via maximum likelihood can be accomplished with a number 

of estimators. Two common approaches used to solve the linear mixed model problem are 

penalized likelihood (PLS; used in the lme4 package in R) and generalized least squares (GLS; 

used in SAS). Although Vuong’s test can be applied to any maximum likelihood estimator 

(Merkle et al., 2015), in this study I embrace the GLS approach due to its implementation in SAS 

and previous work explicating the extraction of the case-wise likelihood using SAS’s Proc IML 

(Mistler, 2013). Recall the log-likelihood expression provided in equation 6 

 𝑙(𝝉, 𝑹) = −
1

2
log|𝑽| −

1

2
𝒓′𝑽−𝟏𝒓 −

𝑛

2
log(2𝜋), 

. 
 

and the equations for V and r, 

 

𝑽 = 𝒁𝝉𝒁′ + 𝑹, 
 

𝒓 = 𝒚 − 𝑿(𝑿′𝑽−𝟏𝑿)−𝑿′𝑽−𝟏𝒚. 
 

It is worth reiterating that V represents the total variance in outcome y attributable to the 

random effects and is n x n block diagonal with each block representing an independent case 

(i.e., Level 2 group). Z is the n x p known random effects design matrix, 𝝉 is the p x p random 

effects variance covariance matrix, and R is the n x n Level 1 residual variance matrix. 

Additionally, r is an n x 1 vector of residual values from a generalized least squares perspective. 
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R and r are distinct quantities with the former referring to a (co)variance matrix and the latter a 

vector of residual values. Because cases (i.e., Level 2 units) are independent of one another, the 

joint likelihood of the Level 2 units can be calculated by the product of the cases’ individual 

likelihoods. However, working with joint likelihoods on a scale larger than only the smallest 

datasets quickly causes computational issues. Instead it is more practical and common to use the 

log likelihood, which is additive.  

Individuals as Cases 

 Because the likelihood calculation involves the determinant of the variance-covariance 

matrix of the outcome, V, it requires that the input be a square matrix. Generally, matrix V is a 

square, block diagonal matrix and is used in its entirety during model estimation. However, due 

to the independence of the individual cases it is possible to compute the individual-specific log 

likelihoods by executing the computations iteratively for each block, since each block is also 

square. If instead the “individual cases” were thought of in a more traditional multilevel sense, 

with the unit of analysis at Level 1, it would be impossible to calculate the determinant because 

V would be a scalar and an alternative estimation approach would be required. Further, treating 

the Level 1 units as the individual cases would fail to preserve the complexity of the multilevel 

data; specifically, the information shared among members of the same group would be lost as 

there is no place to express the covariance among units. The assumption of independence at the 

greatest sampling unit implies that no information should be lost from treating each block in V 

by itself, as cells in the n x n matrix outside of the blocks are necessarily zero under the 

assumption of conditional independence. Therefore, by treating each Level 2 unit as an 

observation it is possible to calculate 𝑙(𝝉, 𝑹) for each case individually using the above equations 

sacrificing only computational time. 
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 It is also possible to think about the level of a “case” intuitively. Considering the variance 

covariance structure of multilevel data, for a random intercept only model we can assume each 

block has a structure of  

 

𝚺𝒏 =

[
 
 
 
 
𝜏 + 𝜎2 𝜏 𝜏 𝜏 𝜏

𝜏 𝜏 + 𝜎2 𝜏 𝜏 𝜏
𝜏 𝜏 𝜏 + 𝜎2 𝜏 𝜏
𝜏 𝜏 𝜏 𝜏 + 𝜎2 𝜏
𝜏 𝜏 𝜏 𝜏 𝜏 + 𝜎2]

 
 
 
 

 
(39) 

 

 

and V is made up of independent blocks of 𝚺 such that, 

 

 

𝑽 = [

Σ1 0… 0𝑛

0⋮ ⋱ 0⋮

0𝑛 0… Σ𝑛

]. 

 

(40) 

 

First, focusing on matrix 𝚺 it is easy to understand why treating a single data point as the unit of 

analysis would be problematic for the multilevel model. Assuming for a moment that the 

likelihood was not dependent on calculating the determinant and thus did not require a square 

matrix rather than a scalar, it would appear that focusing on a single data point (i.e., a single 

diagonal element of matrix 𝚺) would ignore information regarding the relationships among data 

within group. Furthermore, even if there were some way to account for interrelatedness of 

individual observations, absent a block diagonal structure (and related observations scattered 

around the design matrix) computational time would inevitably be sacrificed as relationships 

among many more observations would need to be estimated and evaluated.  Instead, the block 

diagonal structure of the V matrix imposes an intuitively and computationally satisfying solution.  
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Effects of Interest and the Likelihood 

 While the logic of treating Level 2 units as “cases” is sound, it is still important to 

understand analytically how different specifications of the multilevel model might affect the 

likelihood calculations. I now explain how differences in the three specifications of models 

where non-nestedness is explored in this dissertation (different covariate sets, Level 1 residual 

covariance matrices, and non-linear models) enter the likelihood resulting in differential model 

fit.  

 Covariate sets. The mechanics of how non-nested fixed effects alter the likelihood are 

straightforward. Every time a predictor is added or replaced in the model, the values in the 

corresponding column(s) of X are changed. In actuality X does not discriminate among the levels 

at which different variables enter the model and thus the effect, at least computationally, of 

changing the fixed effects structure of the model is the same regardless of level. Differences in X 

are localized to only the second term in the likelihood via r.  

Level 1 Covariance.  In the example of 𝚺 above, R is implied to be diagonal with 

covariances among observations resulting only from the Level 2 units, however, alternative 

structures can be easily incorporated into the likelihood. For instance, if instead the structure 

were autoregressive with a lag of 1 𝚺 would take the form 

𝚺𝐧 =

[
 
 
 
 
 

𝜏 + 𝜎2 𝜏 + (𝜎2 ∗ 𝜌) 𝜏 + (𝜎2 ∗ 𝜌2) 𝜏 + (𝜎2 ∗ 𝜌3) 𝜏 + (𝜎2 ∗ 𝜌4)

𝜏 + (𝜎2 ∗ 𝜌) 𝜏 + 𝜎2 𝜏 + (𝜎2 ∗ 𝜌) 𝜏 + (𝜎2 ∗ 𝜌2) 𝜏 + (𝜎2 ∗ 𝜌3)

𝜏 + (𝜎2 ∗ 𝜌2)

𝜏 + (𝜎2 ∗ 𝜌3)

𝜏 + (𝜎2 ∗ 𝜌4)

𝜏 + (𝜎2 ∗ 𝜌)

𝜏 + (𝜎2 ∗ 𝜌2)

𝜏 + (𝜎2 ∗ 𝜌3)

𝜏 + 𝜎2

𝜏 + (𝜎2 ∗ 𝜌)

𝜏 + (𝜎2 ∗ 𝜌2)

𝜏 + (𝜎2 ∗ 𝜌)

𝜏 + 𝜎2

𝜏 + (𝜎2 ∗ 𝜌)

𝜏 + (𝜎2 ∗ 𝜌2)

𝜏 + (𝜎2 ∗ 𝜌)

𝜏 + 𝜎2 ]
 
 
 
 
 

. (41) 

 

As each block of 𝚺𝒏 is of the same dimensions as 𝒁𝝉𝒁` for a specific Level 2 unit, any estimable 

Level 1 covariance structure can be seamlessly included into the likelihood calculation. As the 

error structure better approximates the data generating process, the likelihood of the data given 
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the model would be expected to increase and the K-L discrepancy decrease indicating a better 

fitting model. It is worth pointing out that the structure of R may be particularly important given 

its place in the likelihood. Not only does the Level 1 error matrix R influence V which shows up 

explicitly in both the first and second term of the likelihood, but it also helps to define the 

residual vector r. Substituting the equation for V into r, the expanded form becomes:  

 𝒓 = 𝒚 − 𝑿(𝑿′(𝒁𝝉𝒁′ + 𝑹)−𝟏𝑿)−𝑿′(𝒁𝝉𝒁′ + 𝑹)−𝟏𝒚. (42) 

 

Again, R (in addition to the random effects design matrix Z and Level 2 covariance matrix 𝝉) is 

accounted for when calculating the residuals. 

 Turning attention now to the total residual variance, V takes the familiar structure of 

independent and identically distributed data with variances (here blocks) on the diagonal and 

zeros on the off diagonal. This independence at Level 2 allows for log likelihoods to be added 

without the increased computational complexity imposed by relationships among observations 

(i.e., covariances). Although the observations appear to be independent, and are assumed to be at 

the highest sampling unit, each block of 𝚺 contains information about the variability between and 

within groups thus satisfying the multilevel problem.  

 Nonlinear Models. Estimating nonlinear models in SAS uses a marginal likelihood 

which by necessity requires integration over the random effects (SAS "SAS Institute. SAS 

OnlineDoc 9.1.3," 2002-2005). One method that has shown promise in efficiently and accurately 

approximating these integrals is the First Order Approximation (Beal & Sheiner, 1988). This 

integral approximation leverages a one-term Taylor series expansion on the mean (i.e., fixed 

effects) structure and evaluates it at the average of the random effects (i.e., ui = 0, SAS Institute 

2002-2005) to reduce computational burden (Lindstrom & Bates, 1990).  Furthermore, because 

the one-term Taylor series expansion is taken about the random effects it results in a likelihood 
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function where the random effects design matrix, Z, enters the equation as the first derivative of 

the mean structure with respect to each random effect evaluated at its average (i.e., when ui = 0). 

Substituting this new Z matrix into the normal likelihood (assuming that the outcome is still 

normally distributed) provides individual-specific log likelihoods that can be used in 

computation of Vuong’s test for non-nestedness. 

Effectively this changes computation as follows. First, the researcher must define the 

functional form(s) that they wish to test. After defining the equation, they must compute the 

partial derivatives of that equation with respect to each random effect. There are a number of 

ways to arrive at these derivatives. Of course, researchers with advanced knowledge (and 

substantial time) can work to compute these partial derivatives analytically. A more practical 

method, however, is to use one of the more widely available mathematical packages that can be 

used to find the partial derivatives such as Matlab or Wolfram Alpha. Certain versions of these 

applications are capable of directly computing the Jacobian. Once partial derivatives for the 

random effects have been obtained, a researcher can substitute necessary variable values into the 

obtained derivatives and with the results create a new random effects design matrix Z*. Using Z* 

instead of Z in the equations for V will allow for accurate computations of the individual-specific 

log likelihoods.  

To provide a concrete example I use an exponential growth model with a random 

intercept and slope of the form 

 𝑦𝑖𝑗 = (𝛾00 + 𝑢0𝑗) ∗ 𝑒𝛾10∗𝑇𝑖𝑚𝑒𝑖𝑗+𝑢1𝑗∗𝑇𝑖𝑚𝑒𝑖𝑗 + 𝑒𝑖𝑗. (43) 

 

Assuming each individual is assessed weekly for five weeks with a baseline measurement 

indicated by a time value of zero, the fixed effects design matrix X would be of the form 
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𝑿 =

[
 
 
 
 
 
 
 
1 0
1
1
1
1
1
⋮
1

7
14
21
28
0
⋮

28]
 
 
 
 
 
 
 

. 

Note that the second column of X (i.e., the time values) is conceptualized here as days. Matrices 

𝝉 and R would be of the standard forms discussed above; 𝝉 would have dimension 2 x 2 and R 

would be N x N diagonal. To calculate individual-specific contributions to the log likelihood, a 

single block of R would be 5 x 5 in this scenario. To create the Z* matrix, it is necessary to find 

the partial derivatives of equation 43 with respect to 𝑢0𝑗 and 𝑢1𝑗, 

 [𝑒𝛾10∗𝑇𝑖𝑚𝑒+𝑢1𝑗∗𝑇𝑖𝑚𝑒 , 𝑇𝑖𝑚𝑒 ∗ 𝑒𝛾10∗𝑇𝑖𝑚𝑒+𝑢1𝑗∗𝑇𝑖𝑚𝑒 ∗ (𝛾00 + 𝑢𝑜𝑗)]. (44) 

  

Setting 𝑢𝑖 = 0 we are left with the equations to calculate our final Z* matrix 

 [𝑒𝛾10∗𝑇𝑖𝑚𝑒 , 𝑇𝑖𝑚𝑒 ∗ 𝑒𝛾10∗𝑇𝑖𝑚𝑒 ∗ (𝛾00)], (45) 

 

and using the arbitrary values of 𝛾00 = 26.73 and 𝛾10 = -.00037 the resulting values of the Z* 

matrix are 

𝒁∗ =

[
 
 
 
 
 
 
 

1 0
. 9974
. 9948
. 9922
. 9897

1
⋮

. 9897

186.63
372.29
556.99
740.73

0
⋮

740.73]
 
 
 
 
 
 
 

. 

 

Substituting Z* for Z into the log likelihood equation will produce the correct log likelihoods.  

With an understanding of how changes in various parts of the model specification 

manifest in the likelihood of multilevel models, I will now establish that the same likelihood 

quantities, test statistics, and conclusions can be obtained whether using multilevel regression or 
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latent variable models. In doing so, I make an inductive argument that Vuong’s test for non-

nested models can be used in more complex cases where incorporating certain model features 

(i.e., nonlinear model parameters) are applied in multilevel regression more easily.  

Empirical Illustrations 

Fundamentally, multilevel regression and latent variable modeling are two approaches by 

which to solve the same problem. Multilevel regression has an appealing intuition for 

longitudinal problems in that equations can, and often are, thought of for each level. In Level 1, 

observations over time comprise the unit of analysis and specific response values result from 

deviations around each person’s individual mean and individual time slope (in the case of 

random slopes). At Level 2, each person’s mean (and slope) is thought to deviate around a 

population value. The Level 1 model naturally maps onto our typical intuition about regression 

while the Level 2 model accommodates the differences across individuals. By this logic, each 

observation is conditionally independent with respect to their group membership assuming there 

are no other (unmodeled) shared traits among them.  

On the other hand, a latent variable modeling perspective maintains the traditional single 

level approach. Observations at each time point are considered indicators of random latent 

variables representing intercepts and slopes. The means of these latent variables represent the 

population regression coefficients and their (co)variances the variability and relatedness among 

the parameters. In more general latent variable models, the loading of each indicator on the latent 

variable is estimated and interpreted as a regression coefficient representing the strength of the 

relationship between the latent factor and the indicator. In a growth model, these paths are 

typically fixed to values representing indicators’ relationships with the intercept (with a vector of 

ones) and a pre-specified functional form (e.g., a linearly increasing quantification of time for a 



 

40 

linear growth model).  Functionally, these methods can be parameterized to result in the same 

solutions (Bauer, 2003; Curran, 2003; Mehta & Neale, 2005; Mehta & West, 2000). Still, there 

are instances where intuition, specification, and software capabilities would cause researchers to 

prefer multilevel regression over a latent variable model to accomplish a given task. 

Multilevel regression may be preferred in scenarios where observations within groups are 

unordered (such as individuals within groups) and thus observations become exchangeable. That 

is, the order of observations within a group is arbitrary whereas in a growth model order is 

paramount. While the only difference between a single Level 1 predictor multilevel regression 

with time nested within people and one with people nested within groups is the inclusion of a 

“time” variable and its requisite ordering, the difference between a single Level 1 predictor latent 

growth model and an intercept only model as a latent variable model is more complex. Latent 

variable models for individuals within groups require an unappealing shift in perspective where 

individuals become “indicators” of some latent variable. To fit a random intercept only model, a 

researcher would have to apply equality constraints across paths to match the multilevel 

specification. In a simple unconditional model, a researcher would have to constrain all of the 

residual variances to equality, however, as additional Level 1 variables without random slopes 

enter the model, their effect at each time point must be specified separately and those paths also 

constrained to equality. Adding random Level 1 variables complicates specification further with 

additional paths to be specified and constrained. 

In other situations easily handled by the multilevel framework, latent variable models are 

either difficult or impossible to compute. Non-linear models, for instance, where random effects 

enter the equation non-linearly are omitted from or prohibitively difficult to specify in all of the 

standard latent variable software. While certain transformations and software-specific “tricks” 
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may make it possible to find solutions for these models, interpreting an already complex model 

becomes even more difficult in the best case and models may still not be estimable in the worst. I 

apply Vuong’s test for non-nested models to these nonlinear models in Chapter 5.  

To apply Vuong’s test to multilevel models, I have written a SAS macro that calculates 

the individual-specific log-likelihoods and conducts the statistical test for pairs of candidate 

models known to be non-nested a priori (Appendix A). I now use this macro in an example to 

establish that the theoretical equivalence between multilevel models and latent variable models 

manifests appropriately in Vuong’s test’s calculation. To do so, I fit equivalent multilevel and 

latent variable models and compare candidates pairwise with the newly written macro and the 

nonnest2 (Merkle et al., 2015) package, respectively, with the expectation their results are 

identical. In showing the equivalence in Vuong’s test across frameworks for this simple case, I 

provide justification for the application of Vuong’s test to more complex instances of non-

nestedness in multilevel regression. 

Data Generation. Non-Exchangeable Observations. To demonstrate the use of Vuong’s 

test and its equivalence in multilevel and latent variable frameworks, I simulated data under a 

two-level random intercept and slope linear growth model with three binary predictors at Level 

2. Specifically, these models were of the form 

 𝑙𝑒𝑣𝑒𝑙1: 𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑇𝑖𝑚𝑒 + 𝑒𝑖𝑗 

(46) 

𝑙𝑒𝑣𝑒𝑙2: 𝛽0𝑗 = 𝛾00 + 𝛾01𝑊1 + 𝛾02𝑊2 + 𝛾03𝑊3 + 𝑢0𝑗 

𝛽1𝑗 = 𝛾10 + 𝑢1𝑗 

[
𝒖.𝒋

𝑒𝑖𝑗
]~𝑁 (

0, 𝝉

0, 𝜎2) 
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The intercept, time, and residual variance were normally distributed with means of zero and 

variances of 4, 1 and 3, respectively, resulting in a residual-ICC of .5 after accounting for the 

random time effect. Fixed effects coefficients were selected to produce large (.8), medium (.5), 

and small (.2) standardized d-type effect sizes for W1, W2, and W3 respectively. Data were 

generated for 200 individuals with 6 waves of data and uniform assessment schedules. Three 

models were fit to these data differing in only the Level 2 predictor, however, in addition to the 

random intercept and Level 2 fixed effect they also included a random time slope, and a linear 

fixed effect for time.  

Exchangeable Observations. To illustrate the cases with exchangeable observations, 

data were generated under a two-level random intercept model with three binary predictors at 

Level 2. Specifically, the model was of the form 

 𝐿𝑒𝑣𝑒𝑙1: 𝑦𝑖𝑗 = 𝛽0𝑗 + 𝑒𝑖𝑗 

(47) 

 𝐿𝑒𝑣𝑒𝑙2: 𝛽0𝑗 = 𝛾00 + 𝛾01𝑊1 + 𝛾02𝑊2 + 𝛾03𝑊3 + 𝑢0𝑗  

Both the intercept and residual variances, u0j and eij respectively, were normally distributed with 

means of zero and variances of 1 and 4 resulting in an ICC of .2. Again, fixed effects coefficients 

were selected to produce large, medium, and small d-type effect sizes for W1, W2, and W3, 

respectively. Under these specifications, data were simulated for 50 groups consisting of 20 

individuals. Three models were fit, each with a single predictor, and 3 pairwise model 

comparisons conducted to test all possible model differences.  

 Analysis. Each of the three models for exchangeable and non-exchangeable observations 

was fit as a multilevel regression using SAS Proc MIXED with maximum likelihood estimation 

and Satterthwaite degrees of freedom and as a latent variable model using Mplus. Models in both 

frameworks were estimated with unstructured Level 2 covariance matrices. Individual (i.e., 
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Level 2) log likelihoods were calculated using the developed SAS Macro and the LIKELIHOOD 

option in Mplus for each model in each program. Individual log likelihoods were then examined 

within models across frameworks to ensure that their estimation was equivalent (within rounding 

error). Subsequently, pairwise comparisons of models within framework were calculated using 

Vuong’s test (in SAS for multilevel models and the nonnest2 package for R [for latent variable 

models; Merkle et al., 2015]) and their outcomes compared. To fit a latent variable model 

equivalent to the multilevel regression with exchangeable observations, the paths from the latent 

intercept to each indicator were constrained to one, similar to the latent growth curve model 

above. Additionally, residual variances were once again constrained to be equal, however, this 

assumption can be relaxed in both models. 

Results 

Growth Model (Non-Exchangeable Observations) 

 Fitting a growth model with non-exchangeable observations is a canonical example of the 

equivalence between multilevel regression and latent variable modeling. Data were generated 

under the above specifications, and pairwise model comparisons made for models fit with a 

random linear time effect at Level 1 and different Level 2 predictors. That is, a model with 

predictors “W1” and “time” was compared to a model with “W2” and “time” and a model of 

“W3” and “time”. The “W2” model was also compared with “W3”.  

 Fitted models produced identical parameter estimates as well as identical likelihood 

estimates in the aggregate within rounding error. This result comes as no surprise considering the 

well-established equivalence of the two model parameterizations in the literature (Bauer, 2003; 

Curran, 2003; Mehta & Neale, 2005; Mehta & West, 2000). Beyond the equivalent parameter 

estimates, it was necessary to check for the equivalence of the individual specific contributions 
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to the (log) likelihood across frameworks. The individual-specific likelihoods for the first 10 

individuals in each model are presented in Table 2.1.  

Table 2.1 Case Wise Likelihoods for Growth Models 

 W1 Model W2 Model W3 Model 

Case # MLM SEM MLM SEM MLM SEM 

1 -13.993 -13.993 -13.032 -13.032 -13.236 -13.236 

2 -16.337 -16.337 -16.395 -16.395 -16.485 -16.485 

3 -14.012 -14.012 -14.128 -14.128 -14.363 -14.363 

4 -13.351 -13.351 -13.351 -13.351 -13.361 -13.361 

5 -13.290 -13.290 -12.928 -12.928 -13.131 -13.131 

6 -13.224 -13.224 -13.132 -13.132 -12.996 -12.996 

7 -13.728 -13.728 -14.009 -14.009 -13.834 -13.834 

8 -13.410 -13.410 -12.998 -12.998 -13.224 -13.224 

9 -15.567 -15.567 -15.625 -15.625 -15.715 -15.715 

10 -13.942 -13.942 -13.340 -13.340 -13.618 -13.618 

 

Overall, the individual-specific likelihoods are identical with some deviation occurring 

after the third decimal place. These minute differences are maintained in the test statistics (Table 

2.2), however, what small differences there are can be attributed to rounding conventions 

specific to each program. When rounding was constrained to be equivalent across programs, so 

too were the likelihood ratios and test statistics. Qualitatively, the small differences in rounding 

made no difference as the conclusions remained the same across programs and frameworks. 

Comparing the model with predictor W1 and the model with W2, Vuong’s test found no 

preference for either model (pw1 = .176). A similar, but less extreme result occurred when 

comparing the models with W2 and W3 (pw2 = .057). Finally, Vuong’s test showed a preference 

for the model including W1 as a predictor over W3 (pw1 = .017). When specifying the number of 

places for rounding, p-values were absolutely identical across programs.  

Table 2.2 Vuong’s Test for Growth Models fit as MLM and SEM 

Model LR Test Stat Prob A > B Prob B > A 

 MLM SEM MLM SEM MLM SEM MLM SEM 

W1-W2 5.104 5.108 .931 .932 .176 .176 .824 .824 

W1-W3 9.988 9.982 2.128 2.127 .017 .017 .983 .983 

W2-W3 4.884 4.874 1.580 1.577 .057 .057 .943 .943 
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Individuals within Groups (Exchangeable Observations).  

Models were fit using the same methods as growth models omitting the fixed and random 

effects of time. The individual-specific log likelihoods for the first 10 cases for the models of 

exchangeable observations can be found in Table 2.3. Once again, each model’s individual-

specific log likelihoods were identical across parameterizations to the third decimal place. These 

quantities were then used in SAS or R (dependent on the modeling framework) to conduct 

pairwise comparisons between non-nested models via Vuong’s test. Once again, results were 

identical.  

Similar to the above example, rounding conventions may produce slight aberrations 

across programs (and subsequently frameworks), however, these rounding errors are due to 

floating point truncation native to each program and can again be ignored. Fixing rounding 

conventions to be the same across programs yielded entirely identical results.  

Table 2.3 Case Wise Likelihoods for Models of Individuals Nested within Groups 

 W1 Model W2 Model W3 Model 

Case # MLM SEM MLM SEM MLM SEM 

1 -41.570 -41.570 -41.640 -41.640 -41.404 -41.404 

2 -41.370 -41.370 -41.238 -41.238 -41.152 -41.152 

3 -40.267 -41.267 -39.563 -39.563 -39.447 -39.447 

4 -45.488 -45.488 -45.397 -45.397 -45.582 -45.582 

5 -41.931 -41.931 -42.655 -42.654 -41.716 -41.716 

6 -48.448 -48.448 -48.704 -48.704 -47.721 -47.721 

7 -46.717 -46.717 -45.917 -45.917 -45.842 -45.842 

8 -43.031 -43.031 -43.692 -43.692 -42.824 -42.824 

9 -40.649 -40.649 -41.140 -41.140 -40.411 -40.411 

10 -48.191 -48.191 -48.053 -48.053 -48.784 -48.784 

 

Table 2.4 shows the results for the pairwise comparisons among models with 

exchangeable observations. Results indicated that no model should be preferred over any other 

with all p-values exceeding the traditional target significance of .05. Considering that the 

standardized effect sizes were equal to those in the previous example, these results beg the 
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question of how differences in characteristics typical of individuals nested within groups (i.e., 

smaller Level 2 sample sizes and ICCs) contribute to the ability of Vuong’s test to detect a 

difference in KL-distance between models. Given what we know about the effects of sample size 

on the power to detect effects in the hypothesis testing literature (e.g., Hox, 2010; Maas & Hox, 

2004, 2005; Raudenbush & Liu, 2000, 2001; Scherbaum & Ferreter, 2009), it is likely that Level 

2 sample size is highly influential on the power of Vuong’s test. However, this notion will be 

explored empirically in the following chapters. 

Table 2.4 Vuong’s Test for Models of Individuals Nested within Groups in MLM and SEM 

 LR Test Stat Prob A > B Prob B > A 

Model MLM SEM MLM SEM MLM SEM MLM SEM 

W1-W2 1.814 1.814 .751 .751 .226 .226 .774 .774 

W1-W3 3.650 3.651 1.288 1.289 .099 .099 .901 .901 

W2-W3 1.836 1.837 .548 .549 .292 .292 .708 .708 

 

In this chapter I have shown the equivalence of Vuong’s test across SEM and MLM for 

simple models when observations were both exchangeable and non-exchangeable. In the 

following chapters I extend Vuong’s test to more complex multilevel models including those 

where certain features (e.g., nonlinear parameters) may be more easily accommodated by MLM 

than latent variable models and evaluate its performance relative to current model selection 

techniques (i.e., information criteria comparison). These studies will explore how differences in 

study design (e.g., Level 1 and Level 2 sample size, ICC, effect size, etc.) affect the ability of 

Vuong’s test to  differentiate among candidate models where pairs of multilevel regressions are 

non-nested in their covariates, Level 1 error structures, or functional forms. 
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Chapter 3: Testing Non-nested Covariate Sets 

 In this chapter I examine the effectiveness of Vuong’s Likelihood Ratio test to detect the 

“best” model from pairs of candidates in cases when non-nestedness manifested as different 

covariate sets at Level 1 or Level 2. While non-nestedness in covariates is not exceedingly 

common in the literature or exclusive to multilevel models, it is an important first step in 

establishing Vuong’s test as a useful tool in the multilevel case as well as understanding 

differences in its behavior, if any, when non-nestedness occurs at a particular level. Although 

relatively few studies may report competing non-nested candidate models, they routinely arise 

early in the research process. For instance, in Moreno, Moskowitz, Ganz, and Bower (2016) two 

related variables were candidates for inclusion in the model, fatigue severity and fatigue 

interference. Because fatigue interference was not related to the outcome, only fatigue severity 

was included in the models but authors were unable to test whether the models with either 

variable fit the data differently. In this case, Vuong’s test would have been helpful in 

determining if there was a significant difference in model fit when one covariate was included 

over the other. 

 To explore the performance of Vuong’s test when covariate sets were non-nested, a 

simulation study was conducted comparing the model selection guided by Vuong’s test compare 

to selection guided by information criteria. Additionally, analyses explored how Level 1 sample 

size, Level 2 sample size, effect size, ICC, and correlations among random effects might affect 

the ability of Vuong’s test to detect the best model.  
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Method 

Data Generation 

To generate multilevel data on which to fit models, within- and between group 

correlation matrices were specified to define the relationships between all variables at Level 1 

and Level 2. In the Level 1 correlation matrix, the relationship between the outcome, y, and 

Level 1 predictors, time, X1, X2, and X3 were defined with correlations of .2, .2, .3, and .4 

respectively. Predictors were correlated with one another at .3. Level 2 variables were included 

in the Level 1 correlation matrix with zero vectors indicating no correlation with the outcome at 

Level 1 nor any correlation with Level 1 predictors. The Level 2 correlation matrix included the 

same Level 1 sub-matrix used to define Level 1 as well as correlations among Level 2 variables 

and their relationship with the outcome. Level 2 predictors, W1, W2, and W3 were correlated 

with the outcome at .2, .3, and .4, respectively. Relationships among Level 2 predictors matched 

those relationships among Level 1 predictors with a correlation of .3. Despite the inclusion of the 

between group relationships of the Level 1 variables they remained uncorrelated with Level 2 

covariates. These correlation matrices were used to define the regression coefficients of y on the 

predictors.  

 After defining the regression coefficients of the predictors, values for each predictor were 

generated. All variables, fixed and random, were generated to have a mean of zero. Variances of 

Level 1 predictors were defined by the ICC whereas the variances of the Level 2 predictors were 

set to 1. The random intercept variance was set such that residual ICC was .4 in the small ICC 

condition and .7 in the large ICC condition. That is, the remaining ICC when the random effects 

portion of the model was fully specified. Thus the intercept variance was set to a value of either 

.666 or 2.3333. The intercept-slope covariance was defined by a pre-specified correlation 
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between random intercept and slope (0, .2, or .4) and the random slope variance was always half 

of the intercept variance.  Level 1 predictor variables were generated from a multivariate normal 

distribution using the RANDNORMAL module in SAS Proc IML under the specifications 

defined above. Values for the Level 1 residual were drawn from a random normal distribution 

with mean zero and its total variance (1) adjusted for the covariates. Level 2 predictors were 

generated in the same fashion as the Level 1 fixed effects from a multivariate normal distribution 

defined by the between groups correlation matrix. Level 2 residuals were also generated in the 

same way with a covariance matrix defined by the desired random effects matrix resulting from 

the specified ICC and the correlation among random effects.  

 To generate the outcome y, predictors were combined according to the following 

equation: 

𝑦𝑖𝑗 = 𝛾𝑡𝑖𝑚𝑒.𝑗𝑡𝑖𝑚𝑒𝑖𝑗 + 𝛾𝑥1𝑋𝑖𝑗
(1)

+ 𝛾𝑥2𝑋𝑖𝑗
(2)

+ 𝛾𝑥3𝑋𝑖𝑗
(3)

+ 𝛾𝑤1𝑊.𝑗
(1)

+ 

𝛾𝑤2𝑊.𝑗
(2)

+ 𝛾𝑤3𝑊.𝑗
(3)

+ 𝑢𝑖𝑛𝑡.𝑗 + 𝑡𝑖𝑚𝑒𝑢𝑡𝑖𝑚𝑒.𝑗 + 𝑒𝑖𝑗 

where superscripts define different variables. X variables refer to Level 1 covariates whereas W 

variables refer to Level 2 covariates. The intercept in the data generating model was set to zero 

and as a result was omitted from the above equation. After creating the outcome variable, 

predictors and the outcome were written to a SAS dataset.  

 Several models were then fit to the resulting data set using SAS Proc MIXED and a 

macro developed for this dissertation to conduct Vuong’s test on each pair of models. Proc 

MIXED was run using maximum likelihood estimation (method = ML) and Satterthwaite 

degrees of freedom, although the degrees of freedom do not affect the subsequent analyses.  The 

macro for conducting Vuong’s test can be found in the appendix. First, six pairwise model 

comparisons were conducted using only Level 1 predictors. Models were compared each with a 
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single predictor (e.g., X1 v X2, X1 v X3, and X2 v X3) as well as models with two predictors 

compared with the excluded predictor (e.g., X1 v X2 & X3, X2 v X1 & X3, and X3 v X1 & X2). 

The same comparisons were made for the Level 2 covariates. Every estimated model contained 

time as a common predictor. Both results of Vuong’s test comparing these models and each 

model’s information criteria were collected and saved for analysis.  

 A factorial design was used to generate data from every combination of 3 Level 1 sample 

sizes, 3 Level 2 sample sizes, 2 ICCs, and 3 random effects correlations. Effect size was 

manipulated within condition with each pair of model comparisons manifesting a different effect 

size. One-thousand replications were generated for each of the 54 study conditions resulting in 

54,000 unique data sets. Twelve models were run on each of these 54,000 data sets resulting in 

648,000 hypothesis tests.  

Sample Size. Sample sizes at both Level 1 and Level 2 were chosen to approximate the 

range of sample sizes used in longitudinal research. At Level 2, samples of 50, 100, and 200 

were chosen to represent individuals to be measured repeatedly over time whereas 5, 13, or 25 

Level 1 observations were simulated as a representation of studies of various lengths. The upper 

limits of these sample sizes were selected as they have been shown empirically to approach the 

ceiling of statistical power (Hox, 2010; Maas & Hox, 2004, 2005; Raudenbush & Liu, 2000, 

2001; Scherbaum & Ferreter, 2009).  

ICC. ICC was manipulated via the Level 2 intercept variance to achieve residual ICC 

values of .4 and .7. Residual ICC values are conceptualized here as the proportion of remaining 

variance attributable to the intercept after accounting for the random (and fixed) effects of time. 

Because longitudinal models are rarely estimated without a random time effect, I estimate it and 

remove it from the equation when calculating ICC. That is, the proportion of variance attributed 
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to the intercept parameter was 40% or 70% of the total variance in the outcome excluding the 

random slope variance (and the intercept slope covariance) and was calculated as 
𝜏00

(𝜏00+𝜎2)
. If the 

ICC were calculated without modeling the random time effect, it would appear greater than 

intended.  

Effect Size. Effect size was conceptualized as the difference in variance explained 

between the two candidate models under consideration. For example, if a model including 

covariate X1 explained 6% of the variance in Y and the model with covariate X2 explained 10% 

of the variance in Y, the effect size for the comparison between the two candidate models would 

be 4%. An empirical effect size was generated using a very large data set (500 observations for 

10,000 Level 2 units). Effect sizes for all covariate sets are displayed on Table 3.1.  

Preliminary analyses indicated that in addition to effect size, the difference in the number 

of parameters in the candidate models may influence the probability of Vuong’s test selecting the 

best model. Thus an indicator variable was coded to identify conditions in which candidate 

models contained the same or different numbers of parameters. Within these groups, I ranked the 

effect sizes as “small”, “medium”, and “large” and refer to them as such throughout this chapter. 

These designations have no relation to Cohen’s (1977) widely accepted small, medium, and large 

effect sizes nor is it meant to equate effect sizes across number of parameter groups. Referring to 

these effects as “small”, “medium”, and “large” is purely for convenience.  

Table 3.1. Effect Size conditions.  

Level 1 Comparison 
Diff Variance 

Explained 
Level 2 Comparison 

Diff Variance 

Explained 

X1 vs X2 4.2% W1 vs W2 3.7% 

X2 vs X3 6.8% W2 vs W3 6.7% 

X1 vs X3 11.0% W1 vs W3 10.4% 

X1 X2 vs X3 5.9% W1 W2 vs W3 5.6% 

X1 X3 vs X2 7.3% W1 W3 vs W2 7.1% 

X2 X3 vs X1 14.1% W2 W3 vs W1 12.8% 
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Random Effects Correlation. The random effects correlation was manipulated directly 

as the covariance between intercept and slope variances. Once Level 2 intercept variances were 

determined to achieve the desired ICCs, covariances were computed to achieve the desired 

intercept-slope correlation. Following the methodology set out by Vallejo et al. (2014), one of 

the only studies to report an impact of intercept-slope covariance on the performance of model 

selection, covariances were determined that resulted in correlations among random effects of 0, 

.2, and .4. 

Data Analysis 

 Once model comparisons were conducted and results retained, each replication was 

classified depending on whether the “best” model was detected. The true data generating 

mechanism—a full model with time, three Level 1 predictors, three Level 2 predictors, a random 

intercept, and a random slope—was never among the candidates. As a result, the “best model” 

was defined as the model with the greatest combined effect on the outcome. Because all 

predictors were equally correlated with one another, had the same mean, the same variance 

(within level), and differed only in their relationship with y (but were in the same direction), the 

differences between combinations of regression coefficients should be sufficient to determine the 

expected best model. That is, summing the scaled magnitudes of estimated effects and 

calculating the difference between two models should indicate which model would be expected 

to fit the data best. This logic maps nicely onto the concept of K-L divergence as well. If the 

outcome, y, is a function of six predictor variables, the candidate model with the largest absolute 

value of the total effect should result in the best predictions, the greatest likelihood, and the 

smallest K-L divergence. However, to map results onto a more intuitively appealing and 
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generalizable metric, the best model is discussed by the amount of variance its predictors 

explained.  

 Results of each model selection procedure were then tabled and compared on correct 

model selection rate and incorrect model selection rate. Special consideration was also given to 

the non-significance rate of Vuong’s test as the ability of the test to fail to find evidence in 

support of either model rather than potentially selecting the incorrect model as a result of a 

forced choice is an appealing property of the method. Although model selection is not 

technically a classification procedure, I use the terms correct classification and misclassification 

to describe when Vuong’s test or information criteria select the correct or incorrect model, 

respectively.  

To facilitate comparison among misclassification rates of Vuong’s test and information 

criteria, a sensitivity analysis was conducted to determine the difference from a constant 

proportion that would be detected using a binomial test with a power of .8 and 1000 observations 

per cell. The misclassification rate of Vuong’s test was vanishingly small (at most 1%; Table 

3.3) for Level 1 covariates and only slightly larger (at most 3%; Table 3.6) for Level 2 

covariates. Using G*Power 3.1.5 and a constant misclassification proportion of .03 the maximum 

misclassification of Vuong’s test in this study the sensitivity analysis determined that there was 

enough power to detect a difference in percentages of 1.7% at the canonical .05 significance 

level. Conservatively rounding this difference to 2%, it was reasonable to assume that any 

misclassification of 5% or greater can be considered significantly poorer performance than 

Vuong’s test.  

 After comparing the performance of Vuong’s test that of information criteria logistic 

regression was then used to determine the factors that contributed to Vuong’s test’s capacity to 
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detect the best model. Using SAS Proc LOGISITIC, main effects were explored first to describe 

the general behavior of Vuong’s test. Next, all possible interactions among study factors were 

included in a full model and the significance of each omnibus test evaluated. One by one, higher 

order effects were removed until only significant differences among groups remained in the 

model. Non-significant lower order effects were retained if they were qualified by a higher order 

interaction. Initially, some logistic regressions were inestimable due to a high degree of 

separation in the outcome. To account for the near perfect separation (“quasi-separation”) Firth’s 

method of penalized likelihood was employed to facilitate fitting the logistic regressions (Heinze 

& Schemper, 2002). Throughout analyses, study factors were treated categorically.  

Results 

Level 1 Covariates 

Selecting the Correct Model. To compare the results of Vuong’s test with the 

performance of information criteria I first examined the rates at which each model selection 

procedure selected the correct model. As the trends are generally the same across ICC conditions 

and random coefficients correlations with only small differences between model selection rates 

(the correct model is selected with slightly higher frequency in the small ICC condition and a 

small random effects correlation) I present the correct classification rates for the small ICC 

condition with no random effects correlation on Table 3.2. A complete set of model selection 

tables (correct classification, misclassification, and non-significance rates of Vuong’s test) across 

ICCs and random effects correlations can be found in the supplementary material. Shaded cells 

indicate conditions in which the empirical power of Vuong’s test to detect the best model was 

above .8.  
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 When Level 1 sample size contained 25 observations Vuong’s test power for Vuong’s 

test was above .8. As Level 1 sample size decreased, the power of Vuong’s test tended to 

decrease as well. When the number of Level 1 observations was 13, Vuong’s test was 

underpowered when differences between models were small or medium when the number of 

parameters in the models was the same and when Level 2 sample size was small. When the 

number of parameters was unequal across models and effect size was small, Vuong’s test 

remained underpowered when Level 2 sample size was small. When Level 1 sample size was 

only 5 observations, Vuong’s test selected the correct model in only when effect size was large 

or Level 2 sample size was large and effect size was medium.  

Information criteria tended to select the correct model in almost every case when Level 1 

sample size was 13 observations or more. Even when the number of Level 1 observations was 

only 5, information criteria still tended to select in at least 85% of replications in all conditions. 

While these results might suggest that information criteria should be used over Vuong’s test 

when comparing non-nested fixed effects at Level 1, examining misclassification of information 

criteria suggest that in certain cases the decision may not be as clear.  
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Table 3.2 Correct model selection rates for Level 1 covariate sets when ICC = .4 and 𝜏01 = 0 

 

 

   L1 SS 

# of 

Params 

%Var 

Explained 
 L2SS 5   13 25 

   Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Equal 

4.2% 

50 32% 89% 89% 89% 71% 99% 99% 99% 93% 100% 100% 100% 

100 49% 97% 97% 97% 91% 100% 100% 100% 100% 100% 100% 100% 

200 81% 99% 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

6.8% 

50 37% 91% 91% 91% 71% 99% 99% 99% 94% 100% 100% 100% 

100 62% 97% 97% 97% 93% 100% 100% 100% 100% 100% 100% 100% 

200 83% 99% 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

11% 

50 82% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Unequal 

5.9% 

50 27% 91% 91% 94% 55% 98% 98% 98% 85% 100% 100% 100% 

100 47% 95% 95% 96% 83% 100% 100% 100% 98% 100% 100% 100% 

200 69% 99% 99% 99% 99% 100% 100% 100% 100% 100% 100% 100% 

7.3% 

50 45% 90% 90% 88% 81% 99% 99% 99% 97% 100% 100% 100% 

100 71% 97% 97% 97% 97% 100% 100% 100% 100% 100% 100% 100% 

200 90% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

14.1% 

50 95% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 



 

57 

Misclassification. Misclassification rates for Vuong’s test and the information criteria 

can be found on Table 3.3 for the same condition as above. Vuong’s test selected the incorrect 

model in at most 1% of the replications. Results from the sensitivity analysis suggest that any 

misclassification in the information criteria greater than 5% can be considered significantly 

poorer performance than Vuong’s test. 

 Despite the uniformly high correct classification rates of the information criteria, Table 

3.3 shows that when Level 2 sample size is 50 and Level 1 sample size is 5, information criteria 

consistently selected the incorrect model in over 10% of cases. As either Level 1 or Level 2 

sample size increased, so did the propensity of information criteria to select the best model.  

 The benefit of Vuong’s test can best be observed when differences in fit among candidate 

models are difficult to detect.  Table 3.4 displays the non-significance rates for Vuong’s tests. 

Highlighted cells indicate conditions in which information criteria select the incorrect model in a 

significantly greater proportion of replications. While Vuong’s test would not necessarily 

provide any insight into which model should be preferred in these scenarios, its capacity to return 

a null result in the case where there is not enough information to determine which model fits the 

data better is an attractive aspect of the test. Having compared the performance of Vuong’s test 

to that of information criteria, I now explore differences in the power of Vuong’s test to detect 

the best model between study factors. 
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Table 3.3 Incorrect model selection rates for Level 1 covariate sets when ICC = .4 and 𝜏01 = 0 

   L1SS 

     5   13 25 

# of 

Params 

%Var 

Explained 
 L2SS 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

 

Equal 

4.20% 

50 0% 11% 11% 11% 0% 1% 1% 1% 0% 0% 0% 0% 

100 0% 3% 3% 3% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

6.80% 

50 0% 9% 9% 9% 0% 1% 1% 1% 0% 0% 0% 0% 

100 0% 3% 3% 3% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

11% 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

 

Unequal 

5.90% 

50 0% 9% 9% 6% 0% 3% 3% 2% 0% 0% 0% 0% 

100 0% 5% 5% 4% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

7.30% 

50 0% 10% 10% 12% 0% 1% 1% 1% 0% 0% 0% 0% 

100 0% 3% 3% 4% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

14.10% 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
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Table 3.4 Non Significance rates of Vuong’s test for Level 1 covariate sets when ICC = .4 and 

𝜏01 = 0 

 
  L1SS 

# of 

Params 
 %Var 

Explained 
L2SS 5 13 25 

Equal 

4.20% 

50 68% 29% 7% 

100 51% 9% 0% 

200 19% 0% 0% 

6.80% 

50 63% 29% 6% 

100 39% 7% 0% 

200 17% 0% 0% 

11% 

50 19% 0% 0% 

100 2% 0% 0% 

200 0% 0% 0% 

Unequal 

5.90% 

50 72% 45% 15% 

100 53% 17% 2% 

200 31% 1% 0% 

7.30% 

50 55% 19% 3% 

100 29% 3% 0% 

200 10% 0% 0% 

14.10% 

50 5% 0% 0% 

100 0% 0% 0% 

200 0% 0% 0% 

 

Power. Logistic regression was employed to determine the factors that impact the power 

of Vuong’s likelihood ratio test to select the best model. Tests of main effects can be found in 

Table 3.5. Results indicated significant effects of Level 2 sample size, Level 1 sample size, effect 

size, and ICC. As Level 2 sample size, Level 1 sample size, or effect size increased so did power 

for Vuong’s test to select the best model. Additionally, power was greater when ICC was small. 

The significant main effect for ICC was such that the probability of detecting the best model when 

ICC was .7 was only 94% as high as when ICC was .4. There was no significant main effect for 

random effects correlation nor was there a main effect for equality of parameters. 
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Table 3.5. Omnibus Test for Main effects Predicting Power to detect Non-nestedness of Level 1 

covariate sets. 

Effect DF 

Level 2 Sample Size 2 20208.22* 

Level 1 Sample Size 2 33191.65* 

ICC 1 21.12 

Effect Size 2 18279.73* 

Ran Eff Correlation 2 1.30 

# Parameters Equality 1 .63 

* p < .0001.   

 

Results indicated a significant 4-way interaction between Level 2 sample size, Level 1 

sample size, effect size, and equality of parameters, = 20.1641, p = .0097. This relationship 

is illustrated on Figure 3.1 where the left column contains figures where the number of 

parameters among candidates are equal and the right column contains figures where the number 

of parameters among candidates are unequal. Each row contains figures for a different effect size 

and each line on individual panels represents a different Level 1 sample size. Finally, Level 2 

sample size is represented on the horizontal axis and the power to detect the best model is 

represented on the vertical axis. Omnibus tests for each lower order effect for equal and unequal 

numbers of parameters are displayed on Table 3.6. 

Omnibus tests of simple effects were largely similar when the sample was split by 

differences in the number of parameters in candidate models. Only the significance tests of the 

Level 1 sample size by ICC interaction and the random effects correlation by ICC interaction 

differed across parameter equality groups. Follow up testing examining the difference in the 

Level 1 sample size by ICC interaction across parameter equality groups confirmed that there 

was no significant difference in the Level 1 sample size by ICC interaction, = .1090, p = 

.95. Follow up analyses also confirmed no significant differences in the ICC by correlation 

interaction across equality groups, = 1.09, p = .59 there was no difference in the ICC by 

random effects correlation   
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Table 3.6 Omnibus tests for lower order interactions for equal and unequal numbers of 

parameters.  

Effect DF Equal Unequal 

Level 2 Sample Size 2 1774.62*** 1346.34*** 

Level 1 Sample Size 2 1369.35*** 1087.13*** 

Effect Size 2 1808.78*** 1971.20*** 

Correlation 2 .24 5.37 

ICC 1 1.27 3.83 

Level 2 Sample Size * Level 1 Sample Size 4 360.57*** 500.45*** 

Level 2 Sample Size * Effect Size 4 239.89*** 166.79*** 

Level 2 Sample Size * ICC 2 4.99 5.43 

Level 1 Sample Size * Effect Size 4 149.89*** 138.16*** 

Level 1 Sample Size * Correlation 4 2.32 7.58 

Level 1 Sample Size * ICC 2 2.05 10.20** 

ICC * Effect Size 2 6.44* 8.50* 

ICC * Correlation 2 2.22 14.54*** 

Level 2 Sample Size * Level 1 Sample Size * Effect Size 8 36.73*** 64.89*** 

*p < .05 **p < .01 ***p < .001    

 

Across all panels, power increased monotonically as either Level 1 or Level 2 sample 

size increased until it reached its asymptote. The same can be said for effect size. As the 

differences between models grew, power to detect that difference grew as well. As expected, 

there were diminishing returns in power as it approached its maximum. That is, as power neared 

100%, adding an observation at either Level 1 or Level 2 offers a smaller improvement in power.  

Power also tended to be greater when models had unequal numbers of parameters than 

when they had the same number of parameters, except when effect size was small. Power in the 

small effect size condition was greater when the number of parameters in candidate models was 

equal compared to when they were unequal. While differences in the magnitude of effect sizes 

across equal and unequal numbers of parameters in candidate models would suggest that an 

interaction should exist between effect size and number of parameters, this effect was in the 

unexpected direction. That is, the difference in variance explained between models in the small 

sample size condition when the number of parameters between models was unequal was 5.9% 
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whereas there was only a difference of 4.2% variance explained when the number of parameters 

were equal.  

 Number of Parameters in Candidate Models 

Effect 

Size 
Equal Unequal 

Smal1 

  

Med 

  

Large 

  
 

Figure 3.1 Level 1 Sample size x Level 2 Sample size x Effect Size x Number of Parameters 

Interaction 

In addition to the complex effect decomposed above, there were several significant 

effects not qualified by the 4-way interaction. Specifically, there were significant interactions 
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between Level 1 sample size, ICC, and random effects correlation (= 9.6737, p = .0463), 

ICC and effect size (= 12.6408, p = .0018), and Level 2 sample size and ICC (= 

9.0038, p = .0111). Although significant, the Level 1 sample size by ICC by random effects 

correlation interaction was qualitatively trivial. Power increased only slightly faster as Level 1 

sample size increased when the random effects correlation was zero compared to when it was 

non-zero. The Level 2 sample size by ICC interaction was also trivial; differences in power 

between ICC conditions at each effect size differed only by 1-2%.  

Table 3.7 displays the predicted power values for each effect size at both levels of ICC.  

Generally, there was less power for Vuong’s test to detect the best model when ICC was large 

than when ICC was small. However, as effect size increased, the difference in power between the 

two ICC conditions increased as well. In the small effect size condition the difference in power 

between ICCs is 1.7%, which increased to 2.4% at the medium effect size. When effect size was 

large, the difference in predicted power across ICCs was 4.5%.   

Table 3.7 Predicted power of detecting the best model for the ICC x Effect Size interaction 

ICC 
Effect Size 

Small Medium Large 

.4 32.3% 36.9% 82.7% 

.7 30.6% 34.5% 78.1% 

Difference 1.7% 2.4% 4.5% 
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Level 2 Covariates 

Selecting the Correct Model. To compare the results of Vuong’s test with the 

performance of information criteria when non-nestedness occurred in the Level 2 covariates, I 

examined the rates at which model selection procedures selected the correct model. Because 

there was a reasonably large effect for ICC (see section on power below) on the power of 

Vuong’s test to detect the best model, Tables 3.8 and 3.9 present the correct classification rates 

of Vuong’s test and information criteria for the small and large ICCs, respectively. A full set of 

tables including correct model selection rates, misclassification rates, and Vuong’s test’s non-

significance rates for each random effects correlation at each ICC can be found in the 

supplementary material. Shaded cells indicate conditions in which the empirical power of 

Vuong’s test to detect the best model was above .8. 

 Results on Tables 3.8 and 3.9 indicated that Vuong’s test was generally underpowered 

when non-nestedness occurred at Level 2. When ICC was small, Vuong’s test never reached 

adequate power to detect the best model. In the large ICC condition, Vuong’s test only achieved 

power of .8 in the conditions where there was a large effect and the number of parameters in 

candidate models was unequal, Level 2 sample size was large, and Level 1 sample size was at 

least 13. The rest of the conditions left Vuong’s test underpowered. In the worse cases (small 

sample sizes at Level 1 and Level 2, small effect size with equal number of parameters) power of 

Vuong’s test to detect the best model was about 4%. 
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Table 3.8 Correct model selection rates for Level 2 covariate sets when ICC = .4 and 𝜏01 = 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

   L1SS 

     5 
 

13  25  

# of 

Params 

%Var 

Explained 
 L2SS 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Equal 

3.70% 

50 4% 61% 61% 61% 4% 65% 65% 65% 4% 65% 65% 65% 

100 6% 73% 73% 73% 7% 75% 75% 75% 9% 76% 76% 76% 

200 13% 81% 81% 81% 15% 83% 83% 83% 19% 82% 82% 82% 

6.70% 

50 6% 65% 65% 65% 8% 67% 67% 67% 9% 69% 69% 69% 

100 10% 69% 69% 69% 12% 73% 73% 73% 13% 76% 76% 76% 

200 20% 80% 80% 80% 19% 84% 84% 84% 23% 85% 85% 85% 

10.40% 

50 8% 79% 79% 79% 10% 80% 80% 80% 12% 82% 82% 82% 

100 17% 87% 87% 87% 23% 90% 90% 90% 29% 93% 93% 93% 

200 44% 96% 96% 96% 52% 96% 96% 96% 55% 98% 98% 98% 

Unequal 

5.60% 

50 2% 69% 70% 83% 5% 71% 71% 82% 5% 73% 73% 84% 

100 6% 72% 73% 86% 7% 74% 75% 85% 8% 77% 77% 88% 

200 14% 79% 79% 88% 12% 82% 82% 92% 14% 82% 82% 90% 

7.10% 

50 9% 56% 54% 62% 12% 57% 57% 58% 12% 62% 62% 54% 

100 13% 64% 63% 55% 15% 70% 70% 53% 18% 72% 72% 57% 

200 26% 78% 78% 65% 26% 83% 83% 72% 30% 85% 85% 74% 

12.80% 

50 17% 70% 69% 53% 20% 77% 77% 62% 23% 79% 79% 65% 

100 33% 88% 88% 71% 42% 92% 92% 82% 49% 94% 94% 85% 

200 67% 98% 98% 94% 73% 98% 98% 96% 77% 99% 99% 98% 
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Table 3.9 Correct model selection rates for Level 2 covariate sets when ICC = .7 and 𝜏01 = 0 

 

 

 

 

   L1SS 

     5   13 25 

# of 

Params 

%Var 

Explained 
L2SS  

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Equal 

3.70% 

50 6% 67% 67% 67% 5% 68% 68% 68% 5% 69% 69% 69% 

100 9% 77% 77% 77% 10% 78% 78% 78% 10% 76% 76% 76% 

200 16% 84% 84% 84% 22% 84% 84% 84% 19% 86% 86% 86% 

6.70% 

50 7% 70% 70% 70% 9% 70% 70% 70% 9% 69% 69% 69% 

100 11% 74% 74% 74% 13% 75% 75% 75% 18% 79% 79% 79% 

200 21% 85% 85% 85% 24% 84% 84% 84% 25% 86% 86% 86% 

10.40% 

50 11% 82% 82% 82% 13% 82% 82% 82% 15% 84% 84% 84% 

100 27% 91% 91% 91% 30% 91% 91% 91% 35% 93% 93% 93% 

200 55% 97% 97% 97% 60% 99% 99% 99% 62% 99% 99% 99% 

Unequal 

5.60% 

50 4% 74% 75% 84% 5% 71% 71% 83% 5% 72% 72% 82% 

100 6% 75% 75% 85% 8% 75% 76% 86% 12% 79% 79% 88% 

200 14% 81% 81% 89% 15% 81% 81% 89% 17% 83% 83% 89% 

7.10% 

50 11% 62% 61% 55% 13% 61% 61% 54% 12% 62% 61% 52% 

100 16% 71% 71% 58% 19% 72% 72% 57% 23% 75% 75% 61% 

200 29% 86% 86% 75% 30% 84% 84% 73% 32% 87% 87% 76% 

12.80% 

50 25% 79% 78% 64% 25% 79% 79% 66% 29% 84% 84% 70% 

100 48% 93% 93% 84% 51% 94% 94% 85% 56% 96% 96% 88% 

200 78% 99% 99% 97% 83% 99% 99% 98% 85% 99% 99% 98% 
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 Correct classification rates of information criteria are also presented on Tables 3.8 and 

3.9. Overall, information criteria performed worse when non-nestedness occurred at Level 2 than 

when it occurred at Level 1. Correct classification rates dropped as low as 52% in certain 

conditions and only rose above 80% when effect size or Level 2 sample size was large and 

models had unequal numbers of parameters. While these classification rates might seem better 

than Vuong’s test they come at a cost: when information criteria were not selecting the correct 

model, they were selecting the incorrect model. As a result, the metric of .8 for the “power” of 

information criteria was an inadequate bar on which to evaluate information criteria as it would 

imply that a 20% error rate would be acceptable. Given that information criteria must make a 

decision about which model to choose, it must be held to a much higher standard so as to not 

lead researchers to make incorrect conclusions. Examining the misclassification rates of 

information criteria, instead of their correct classification rates, provides insight into how these 

moderate correct classification rates can be worrisome.  

Misclassification. Misclassification rates for the same conditions described above can be 

found on Tables 3.10 and 3.11. In either ICC, Vuong’s test selected the wrong model in at most 

3% of replications. Misclassification to this degree was only observed in cases where effect size 

comparing two models with unequal numbers of parameters was small, Level 1 sample size was 

small or medium, and Level 2 sample size was small. In all other conditions, Vuong’s test chose 

the incorrect model in less than 3% of replications.  
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Table 3.10 Incorrect model selection rates for Level 2 covariate sets when ICC = .4 and 𝜏01 = 0 

   L1SS 

   5  13 25 

# of 

Params 

%Var 

Explained 
L2SS 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Equal 

3.70% 

50 1% 39% 39% 39% 1% 35% 35% 35% 1% 36% 36% 36% 

100 0% 27% 27% 27% 0% 25% 25% 25% 1% 24% 24% 24% 

200 0% 19% 19% 19% 0% 17% 17% 17% 0% 18% 18% 18% 

6.70% 

50 1% 35% 35% 35% 1% 33% 33% 33% 1% 32% 32% 32% 

100 1% 31% 31% 31% 1% 27% 27% 27% 0% 24% 24% 24% 

200 1% 20% 20% 20% 1% 16% 16% 16% 0% 15% 15% 15% 

10.40% 

50 0% 21% 21% 21% 0% 20% 20% 20% 1% 18% 18% 18% 

100 0% 13% 13% 13% 0% 10% 10% 10% 0% 7% 7% 7% 

200 0% 4% 4% 4% 0% 4% 4% 4% 0% 2% 2% 2% 

Unequal 

5.60% 

50 2% 31% 30% 17% 3% 29% 29% 18% 2% 28% 27% 16% 

100 1% 28% 27% 14% 1% 26% 26% 15% 1% 23% 23% 12% 

200 1% 21% 21% 13% 1% 18% 18% 8% 0% 18% 18% 10% 

7.10% 

50 0% 45% 46% 38% 1% 43% 43% 42% 1% 38% 38% 47% 

100 0% 37% 37% 45% 0% 30% 30% 48% 0% 28% 28% 43% 

200 1% 22% 22% 35% 0% 17% 17% 29% 0% 15% 15% 26% 

12.80% 

50 0% 30% 31% 47% 0% 23% 23% 38% 0% 21% 21% 35% 

100 0% 12% 12% 29% 0% 8% 8% 19% 0% 6% 6% 15% 

200 0% 2% 2% 6% 0% 2% 2% 4% 0% 1% 1% 3% 
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Table 3.11 Incorrect model selection rates for Level 2 covariate sets when ICC = .7 and 𝜏01 = 0 
     L1SS 

     5   13 25 

# of 

Params 

%Var 

Explained 
L2SS  

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Equal 

3.70% 

50 1% 34% 34% 34% 1% 32% 32% 32% 1% 31% 31% 31% 

100 1% 23% 23% 23% 0% 22% 22% 22% 1% 24% 24% 24% 

200 0% 16% 16% 16% 0% 16% 16% 16% 0% 14% 14% 14% 

6.70% 

50 2% 30% 30% 30% 1% 30% 30% 30% 1% 31% 31% 31% 

100 1% 26% 26% 26% 1% 25% 25% 25% 1% 21% 21% 21% 

200 0% 15% 15% 15% 0% 16% 16% 16% 1% 14% 14% 14% 

10.40% 

50 0% 18% 18% 18% 0% 18% 18% 18% 0% 16% 16% 16% 

100 0% 9% 9% 9% 0% 9% 9% 9% 0% 7% 7% 7% 

200 0% 3% 3% 3% 0% 2% 2% 2% 0% 2% 2% 2% 

Unequal 

5.60% 

50 3% 26% 26% 16% 3% 29% 29% 18% 2% 28% 28% 18% 

100 1% 25% 25% 15% 2% 25% 25% 14% 2% 21% 21% 12% 

200 1% 19% 19% 12% 1% 19% 19% 11% 1% 17% 17% 11% 

7.10% 

50 1% 38% 39% 45% 1% 39% 39% 46% 1% 38% 39% 48% 

100 0% 29% 29% 42% 1% 28% 28% 43% 1% 25% 25% 39% 

200 0% 14% 15% 26% 0% 16% 16% 27% 0% 13% 13% 24% 

12.80% 

50 0% 22% 22% 36% 0% 21% 21% 34% 0% 16% 16% 31% 

100 0% 7% 7% 16% 0% 6% 6% 15% 0% 4% 5% 12% 

200 0% 1% 1% 3% 0% 1% 1% 2% 0% 1% 1% 2% 
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Following the sensitivity analysis described above, any misclassification in the 

information criteria above 5% could be considered significantly poorer performance than 

Vuong’s test. In all but two conditions (when effect size and Level 2 sample size are both large) 

sample size information criteria select the incorrect model significantly more often than Vuong’s 

test. In the worst cases, model selection based on information criteria were almost no better than 

a coin flip with misclassification occurring in 45%-46% of replications.  

Table 3.12 displays the non-significance rates of Vuong’s test when the random effects 

correlation was 0 and the ICCs were small and large. Shaded cells represent cases in which 

information criteria selected the incorrect model in a significant proportion of replications. The 

table was almost completely shaded; in virtually every condition information criteria selected the 

incorrect model in a significant proportion of cases. Furthermore, this misclassification was not 

marginally significant, but drastically so. Even when misclassification began approaching non-

significance, the incorrect model was selected in about 10%-20% of replications when following 

information criteria. Although Vuong’s test was underpowered and did not select the correct 

model, it also did not select the incorrect model. Instead, Vuong’s test provided a non-significant 

result indicating that there was no evidence that one model fit the data better than the other. That 

is, the models fit the data equally well.  
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Table 3.12 Non-significance rates for non-nested Level 2 covariate sets when 𝜏01 = 0 

      ICC 

      0.4 0.7 

    L1 SS 

# of 

Params 

%Var 

Explained 
L2SS 5 13 25 5 13 25 

Equal 

3.70% 

50 95% 96% 95% 93% 94% 94% 

100 94% 93% 91% 91% 90% 90% 

200 87% 85% 81% 84% 78% 81% 

6.70% 

50 94% 91% 91% 91% 90% 90% 

100 90% 88% 87% 88% 86% 81% 

200 79% 80% 77% 78% 76% 75% 

10.40% 

50 92% 89% 88% 89% 87% 85% 

100 83% 77% 72% 73% 70% 65% 

200 56% 49% 45% 45% 40% 39% 

Unequal 

5.60% 

50 96% 93% 93% 93% 93% 93% 

100 93% 92% 91% 92% 90% 86% 

200 85% 87% 86% 85% 84% 82% 

7.10% 

50 91% 88% 87% 88% 86% 87% 

100 87% 85% 82% 83% 81% 77% 

200 73% 74% 70% 70% 69% 67% 

12.80% 

50 83% 80% 77% 76% 75% 71% 

100 67% 58% 51% 52% 49% 44% 

200 33% 27% 23% 22% 17% 16% 

 

Power. The same approach was utilized to test the factors that influence the performance 

of Vuong’s test when non-nestedness manifests in covariates at Level 2. Initial analyses 

indicated main effects for all of the factors (Table 3.13). The effects of Level 1 sample size, 

Level 2 sample size and effect size all trended in the same direction -- increases in any of these 

factors significantly increased statistical power. ICC, however, had a different effect when non-

nestedness occurred at Level 2 than when it occurred at Level 1; a larger ICC led to greater 

power. When ICC was large, the best model was selected 1.42 times more often than when ICC 

was small. The effect of correlation and the number of parameters in the candidates also had 
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significant main effects for non-nestedness in Level 2 covariates. As the correlation among 

random effects increased, so too did the probability of Vuong’s test selecting the best model. 

Finally, power was greater when the number of parameters among candidates was unequal 

compared to when it was equal. In Vuong’s test where candidates had an unequal number of 

parameters, power was 1.68 times greater than when candidates had an equal number of 

parameters. These effects were qualified by higher order interactions.  

Table 3.13. Omnibus Test for Main effects Predicting Power to detect Non-nestedness of Level 2 

covariate sets. 

Effect DF 

Level 2 Sample Size 2 21443.6246 

Level 1 Sample Size 2 1136.2607 

ICC 1 1392.3033 

Effect Size 2 30958.0268 

Ran Eff Correlation 2 95.6522 

# Parameters Equality 1 2993.3995 

Note: All p values < .0001. 

The final model examining the effects of design factors on the probability of detecting the 

best model when differences occurred in the Level 2 fixed effects contained no 6-, 5-, or 4- way 

interactions. A number of three-way interactions emerged as significant (Table 3.14).  To probe 

these interactions further, data were first split on ICC as it was the most common factor among 

the interactions.  

Table 3.14 Omnibus tests of significant three-way interactions affecting the power of Vuong’s 

test when models are non-nested in Level 2 covariates. 

Effect df  

ICC* Effect Size * Unequal 2 6.21* 

Level 2 Sample Size* Effect Size * Unequal 4 125.37*** 

Level 2 Sample Size*Level 1 Sample Size* Correlation 8 37.92*** 

Level 2 Sample Size*Level 1 Sample Size*ICC 4 14.66** 

Level 2 Sample Size*ICC* Effect Size 4 11.18* 

Level 1 Sample Size*ICC* Effect Size 4 13.27* 

Level 1 Sample Size*ICC* Correlation 4 25.01*** 

*p < .05 **p < .01 ***p < .001   
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Results of omnibus tests for lower order effects in the small and large ICC conditions are 

shown in Table 3.15. Significance tests were largely the same across ICC conditions with the 

exceptions of the Level 2 sample size by random effects correlation interaction and the main 

effect of random effects correlation. When ICC was large, the Level 2 sample size by correlation 

interaction is nonsignificant whereas when ICC was small it was significant. The opposite 

occurred for the main effect of correlation; when ICC was small, the main effect of correlation 

was non-significant whereas it was significant when ICC was large.  

Table 3.15 Omnibus Tests of Simple Effects at Each Level of ICC 

Effect DF ICC = .4 ICC = .7 

Level 2 Sample Size 2 445.49*** 432.10*** 

Level 1 Sample Size 2 12.57** 3.16 

Effect Size 2 141.43*** 298.05*** 

Correlation 2 2.24 12.39** 

Unequal 1 .01 .02 

Level 2 Sample Size * Level 1 Sample Size 4 11.58* 15.12** 

Level 2 Sample Size * Effect Size 4 275.07*** 361.42*** 

Level 2 Sample Size * Correlation 4 10.68* 7.69 

Level 1 Sample Size * Effect Size 4 78.96*** 20.73*** 

Level 1 Sample Size * Correlation 4 4.28 9.26 

Effect Size * Unequal 2 96.66*** 117.19*** 

Level 2 Sample Size * Unequal 2 7.03* 16.97*** 

Level 2 Sample Size * Effect Size * Unequal 4 21.02*** 73.68*** 

Level 2 Sample Size * Level 1 Sample Size * Correlation 8 24.54** 21.40** 

*p < .05 **p < .01 ***p < .001    

 

 Table 3.16 shows the predicted probabilities of the effect size by equality of parameters 

interactions in the small and large ICC conditions. Overall, power increased at a faster rate when 

ICC was large compared to when ICC was small. When the effect size was small, power was 

uniformly small in all cases. However, as effect size increased power increased at a greater rate 

when ICC was large. Given the inequality among differences in percent variance explained 

across the parameter equality groups, this effect was not unexpected. Percent variance explained 

was always higher in conditions where the number of parameters across models were different.  
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Table 3.16 Predicted Probabilities from Effect Size x ICC x Equality of Parameters Interaction 

 ICC 

 .4 .7 

 Equal Unequal Equal Unequal 

Small 3% 3% 5% 5% 

Medium 6% 9% 8% 12% 

Large 7% 16% 12% 23% 

 

 Interactions involving Level 1 sample size were generally too small to be qualitatively 

interesting. Although they were statistically significant, interactions involving Level 1 sample 

size tended to result in effects changing in magnitude of no more than a few percent. Generally, 

effects slightly increased as Level 1 sample size increased. Despite their significance, effects 

were so small that researchers would gain almost nothing in terms of power to detect differences 

in models non-nested at Level 2 by increasing Level 1 sample size. As a result they were omitted 

from discussion.  

 Figure 3.2 shows the two-way interaction between effect size and Level 2 sample size at 

small and large ICCs. Comparing these two panels it can be observed that power differences 

between Level 2 sample size conditions were slightly greater in in the high ICC condition, and as 

effect size increased those differences become more pronounced. For instance, when ICC was 

low, the difference between large and small Level 2 sample sizes for a big effect size was 37%. 

When ICC was high, that difference grew to 42%. The same comparisons when Level 2 sample 

size was small resulted in differences of 11% and 12%, respectively.  
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Figure 3.2 Effect Size by Level 2 Sample Size Interaction in Small ICC (Left) and Large ICC 

(Right) Conditions 

 Two three way interactions remained that did not depend on ICC but did include Level 2 

sample size: Level 2 sample size by effect size by equality of parameters and Level 2 sample size 

by Level 1 sample size by random effects correlation (explored because it contained Level 2 

sample size). The Level 2 sample size by effect size by equality of parameters interaction can 

largely be explained by the inequality of effect sizes across number of parameter groups. 

Because effect sizes were uniformly larger when the number of parameters among candidate 

models was unequal, the effect size by Level 2 sample size interaction should be greater when 

the number of parameters was unequal. Finally, results indicated that there were no qualitative 

differences (< 2%) in the random effects correlation by Level 2 sample size interaction across 

Level 1 sample sizes.  

Discussion 

In this study I have compared the performance of Vuong’s test to that of information 

criteria when attempting to select between two candidate models non-nested in their fixed 

effects. When comparing the performance of Vuong’s test to the performance of information 

criteria to select the best model in non-nested Level 1 covariates, Vuong’s test tended to be 

sufficiently powered to detect the correct effect in a large proportion of conditions specifically 
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when effect size was large or there were at least 13 observations at Level 1. Information criteria 

also performed rather well when examining non-nestedness in Level 1 covariates. In fact, 

information criteria only selected the wrong model in a significant proportion of replications 

when Level 1 and Level 2 sample sizes were small.  

However, when choosing between models non-nested in their Level 2 covariates the 

information criteria selected the wrong model much more frequently whereas Vuong’s test was 

rarely ever significant in favor of the wrong model. Even though Vuong’s test rarely ever 

reached adequate power when detecting differences in models non-nested at Level 2, rather than 

select the incorrect model it failed to reject the null hypothesis. The null result of Vuong’s test 

suggested that there is insufficient evidence in support of one model over the other. 

Alternatively, it implies that both models fit the data equally well.   

 To say that Vuong’s test outperformed information criteria by failing to reject the null 

hypothesis rather than selecting the correct model begs the question “What do you do when 

Vuong’s test fails to reject the null hypothesis?” Depending on the purpose of the model 

comparisons and the underlying theories, researchers can follow a number of different paths. 

First, should one model be more complex than another (e.g., contain more complex interaction 

terms or more variables in general) logic would dictate selection of the more parsimonious 

model. That is, if model fit is not improved by adding additional, or a more complex set, of 

predictors, the simpler theory should be preferred.  

 Alternatively, one could use Vuong’s test as a pseudo-diagnostic for the information 

criteria. If Vuong’s test prefers one model over another, a researcher can be confident that a 

commensurate difference in information criteria is in fact detecting the best model. If Vuong’s 

test fails to converge on the same conclusion one would draw from comparing information 
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criteria, researchers might still proceed with the model preferred by information criteria but with 

caution, understanding that while the information criteria are more sensitive to differences in 

non-nested models, they might have chosen incorrectly. To confirm their theory more research 

would be needed.  Ultimately, researchers will need to continue with the model fitting process 

even in the presence of a non-significant result from Vuong’s test. However, it is my hope that 

its results are considered when discussing the preferred model and conclusions are tempered 

accordingly.  

I have also explored the factors that contribute to the power of Vuong’s test to select the 

best model between pairs of candidates. Overall, Level 1 sample size, Level 2 sample size, and 

effect size affected power as expected. Power increased with increases in either factor. Effects 

occurred in the opposite direction when the main effect of ICC was tested for non-nested Level 1 

covariates compared to non-nestedness at Level 2. When non-nestedness occurred at Level 1, 

there was less power for Vuong’s test to detect a significant effect when ICC was large compared 

to when ICC was small. However, more power was observed with a larger ICC when covariates 

were non-nested at Level 2. The effect of ICC when models are non-nested at Level 2 is counter 

to what is typically known about the effect of ICC on power (Hox, 2010). This anomalous result 

may be related to the fact that Vuong’s test is conducted on the case wise (or individual specific) 

log likelihoods and more variability at the case level is advantageous. Further work is needed, 

however, to explain this anomalous result.  

The random effects correlation exhibited main effects only when non-nestedness 

occurred at Level 2. As the random effects correlation increased, so did power to detect the best 

model. Power increased monotonically with effect size within equality of parameters groups. 

Power increases when the number of parameters were unequal appeared to be greater than when 
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parameters among candidates were equal, however, equality and effect size were confounded and 

effects may be attributable to a greater proportion of variance explained when there were unequal 

numbers of parameters. A single anomalous result where power was lower despite having a 

larger effect size in the small effect conditions motivated this dichotomization. All of these 

effects, both at Level 1 and Level 2, were qualified by higher order interactions. 

Main effects of factors affecting power when models were non-nested in Level 1 

covariates were qualified by a 4-way Level 1 sample size by Level 2 sample size by effect size 

by unequal number of parameters interaction. The Level 1 by Level 2 sample size interaction 

tended to behave similarly across effect sizes and equality of parameters, however, in the small 

effect size with unequal numbers of parameters (where the anomalous power rates surfaced) the 

greatest difference in power was seen when comparing the small and medium Level 2 sample 

sizes at the small Level 1 sample size. Otherwise, this interaction was largely driven by changes 

in the effects of variables expected as power approached 100%.  

Interactions not qualified by the 4-way interaction also occurred when parameters were 

non-nested at Level 1. Specifically, a three-way interaction between Level 1 sample size, ICC, 

and random effects correlation, ICC and effect size, and Level 2 sample size and ICC all 

emerged as significant. However, only the ICC by effect size interaction appeared to make a 

qualitative difference in power. At larger effect sizes, the difference in power between large and 

small ICCs increased. 

There were also several three-way interactions when non-nestedness occurred at Level 2, 

most of which were conditional on ICC. These interactions were such that simple two-way 

effects tended to increase in magnitude when ICC was greater. Additionally, the difference in the 

effects between ICC conditions tended to be larger when either Level 2 sample size was large or 
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effect size was large, depending on the interaction. For instance, a greater difference in power 

between the unequal and equal number of parameters conditions for the large effect size when 

ICC was large. A similar effect occurred for the Level 2 sample size by effect size by ICC 

condition; the increase in power from a medium to large effect in all Level 2 sample sizes was 

greater when ICC was large compared to when ICC was small, however, the difference was 

amplified when Level 2 effect size was large.  

 While non-nested covariate sets as depicted in this simulation do not constitute the most 

interesting application of Vuong’s test, compelling cases require only a small departure from 

models described here. For instance, a researcher may desire to understand a curvilinear 

relationship and be forced to decide between two growth curves: one with a quadratic trend and 

the other defined through a piecewise function. Although these two forms could be used to 

understand a curvilinear trend in the data, their parametrization would be a case of non-nested 

fixed effects. As a result, their treatment would be no different than in this chapter. Assuming 

non-nestedness only occurs in the fixed effects, the only difference to the likelihood would occur 

in the fixed effects design matrix which would affect only the residual term, r. The residual 

vector r is also the only aspect of the likelihood affected by non-nestedness in this study. 

Therefore it would be reasonable to assume similar behavior of Vuong’s test with other non-

nested fixed effects. Detecting differences in truly nonlinear forms is a specific and more 

complex case addressed in Chapter 5.  

 Cross level interactions, particularly those involving time, are often of particular interest 

when fitting multilevel models to longitudinal data. That is, the motivating research question is 

typically not to describe the effects of participant characteristics at baseline, but the effects of 

change over time. Exploring the power of Vuong’s test to detect non-nested differences in these 
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cross-level interactions is a logical extension for this research in the future. Open questions 

surround the effects of ICC, sample sizes at different levels, as well as the differences in the 

number of parameters between candidate models since these factors do not necessarily result in 

the same effects across levels. By nature, the cross-level interaction contains effects at multiple 

levels and therefore the effects of different study factors remains open for inquiry.  

Limitations 

 While this study exhibits for the first time the behavior of Vuong’s test in multilevel 

regression and compares its performance to that of information criteria, it employs a 

straightforward model. Rarely are models as simple as the one utilized in this study (i.e., no cross 

level interactions nor are there interactions with time) and outlined above are a number of 

extensions for the proposed method. Proving Vuong’s test’s utility and comparing its 

performance to the current standard, however, served a necessary preliminary function. Beyond 

the model form utilized by the present study, other limitations bound its generalization. First, the 

present study continues to explore the properties of Vuong’s test, only in the context of growth 

curves. However, as discussed in chapters 1 and 2 the results of this study should apply directly 

to multilevel models of individuals within groups. An additional study should be undertaken 

exploring the power of Vuong’s test and performance relative to information criteria in study 

designs common to multilevel models with exchangeable observations (e.g., larger Level 1 

sample size, smaller Level 2 sample size, and smaller ICC). Finally, given that there is currently 

no known way to operationalize the difference between (e.g., small, medium, or large true 

differences in likelihoods) the effect size component used in this study was developed somewhat 

ad hoc. While the rudimentary effect size used herein was sufficient for describing the general 
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behavior of Vuong’s test, it would be instructive for future studies to establish a well-defined and 

empirically vetted measure of model difference.  

Despite these limitations, this study served as a first step in understanding the behavior of 

Vuong’s test over a variety of Level 1 sample sizes, Level 2 sample sizes, ICCs, effect sizes, and 

random effects correlations in longitudinal multilevel models. Additionally, Vuong’s test was 

shown to serve its purpose in cases when comparisons among information criteria did not 

perform well. That is, when information criteria chose the wrong model at a high rate, Vuong’s 

test failed to reject the null hypothesis. However, when Vuong’s test selected the best model with 

sufficient power, information criteria also tended to select the best model. Thus at this early 

stage, Vuong’s test might be used as more of a diagnostic test to determine the probable accuracy 

of information criteria rather than being used independently. In the following chapters, I extend 

Vuong’s test to contexts where multilevel modeling is the more obvious preferred approach: 

non-nested Level 1 residual covariance structures and non-nested non-linear forms of growth.  
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Chapter 4: Testing Non-nested Level 1 Covariance Structures 

 In this chapter I explore the performance of Vuong’s test to detect the correct model 

when comparing two candidates non-nested in their Level 1 residual covariance structures. 

While most multilevel models are specified using a default identity structure, autoregressive or 

Toeplitz structures are attractive alternatives for longitudinal or time series data (Kwok, West, & 

Green, 2007). In fact, autoregressive models now enjoy regular use in psychology through 

adoption in longitudinal structural equation models (Bollen & Curran, 2004, 2006). Ferron, 

Dailey, and Yi (2002) and Keselman, Algina, Kowalchuk, and Wolfinger (1998) both studied the 

performance of AIC and BIC in selecting the optimal covariance structure. Their results 

indicated that these methods were only marginally accurate and as a result more accurate 

methods are needed (Kwok, West, & Green, 2007). This study intends to serve that purpose.  

Method 

Data generation 

Using SAS Proc IML, a data generation program similar to that used to generate data for 

non-nested covariate sets generated data with varying Level 1 covariance structures. The fixed 

effect for time was specified such that for every unit increase in time, the outcome would 

increase by .2. Time was represented by an integer variable and was generated with the 

maximum value defined by the Level 1 sample size for the condition with a value of zero 

indicating the baseline measurement. As a result time ranged from zero to either four, twelve, or 

twenty-four. Level 2 random effects were specified such that the residual random intercept 

variance would result in residual ICCs of either .4 or .7 for properly specified models. The 

random slope variance was defined as half of the random intercept variance and a covariance 

specified to obtain a correlation between slope and intercept of .4.  
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Level 1 residual covariance structures were generated using the “Toeplitz” function in 

SAS Proc IML. With the covariance matrices specified, the RANDNORMAL command was 

used to generate a matrix of multivariate normal variables with means of zero and the desired 

covariance matrix. This matrix was reshaped into a single n x p vector to facilitate data 

generation.  

After writing the ID, outcome, and time variables to a dataset, Vuong’s test for the two 

candidate models was conducted with a SAS Macro created for this study. The macro was used 

to estimate two multilevel models using SAS Proc MIXED under maximum likelihood 

estimation and Satterthwaite degrees of freedom; one model was fit using an autoregressive 

structure with lag 1 (AR(1)) and the other was fit using a Toeplitz(3) (TOEP(3)) structure. All 

models included fixed effects for time and random Level 2 intercepts and time slopes in addition 

to the structures imposed on the Level 1 residual covariance matrix. The results of both mixed 

models were parsed to obtain the necessary quantities to calculate the individual log-likelihoods. 

Once individual log-likelihoods were calculated, it was possible to conduct Vuong’s test and 

save the output for analysis.  

A factorial design was used to generate data from every combination of 3 Level 1 sample 

sizes, 3 Level 2 sample sizes, 2 ICCs, and 4 different true models representing a “small” and 

“large” effect of the Level 1 covariance structure. As will be discussed below, small and large 

are relative terms comparing the amount of misfit introduced; they do not refer to any accepted 

effect size scale. One thousand replications were generated for each of the 72 study conditions 

resulting in 72,000 unique datasets for analysis.  
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Sample size. The same sample sizes used in the study examining non-nested covariate 

sets were used to examine non-nested residual error structures as well. Data were generated for 

50, 100, or 200 individuals at Level 2 each with 5, 13, or 25 observations at Level 1.  

ICC. Two values of ICC were included in this study, .4 and .7. Because longitudinal 

models require a time effect by definition and this effect is typically assumed to vary in 

multilevel models, ICC was conceptualized as a residual ICC after accounting for the time slope 

and the Level 1 residual covariance structure. That is, the specified ICCs denote the residual ICC 

estimated when the Level 1 and Level 2 covariance structures are both properly specified (i.e., a 

time slope at Level 2 and the proper structure at Level 1).  

Level 1 Covariance Structures: Effect Size. Following the logic set forth by Kwok, 

West, and Green (2007), autoregressive and Toeplitz structures were utilized to evaluate the 

utility of Vuong’s test for non-nestedness when non-nesting manifests in Level 1 covariance 

structures. Both the autoregressive and the Toeplitz structures provide a mechanism by which 

Level 1 residuals can adhere to a structure, however, the Toeplitz structure can provide more 

flexibility than the autoregressive model. Figure 4.1 shows the general specification of the 

Toeplitz and autoregressive structures. Here, the Toeplitz structure contains 3 non-zero bands 

and is referred to as Toeplitz(3) or TOEP(3) and the autoregressive structure is autoregressive 

with a lag of 1, AR(1).  
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Figure 4.1 General Forms of Toeplitz(3) and Autoregressive(1) Structures 
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As can be seen from the above structures, the Toeplitz structure estimates a variance and a 

unique covariance for each off diagonal band not indexed by a zero. Each band is estimated 

independently and can take any admissible value regardless of the band that preceded it. As a 

result there are as many parameters estimated at Level 2 as there are non-zero bands in the 

matrix. The AR(1) structure requires a stricter form. That is, the covariance changes at a specific 

rate defined by the parameter 𝜌. At each successive band, the rate at which the variance changes 

decreases exponentially, however, the exponentiated parameter is constant across bands. Thus in 

the AR(1) structure only a single parameter besides the variance need be estimated to fit the 

Level 1 residual variance structure.  

 The parameters chosen for the four Level 1 residual variance structures were based on 

those of Kwok, West, and Green (2007). The “small” covariance structure was defined by 

diagonal bands decreasing with an autoregressive parameter of .5 for both the Toeplitz and 

AR(1) structures, whereas the “large” covariance structure was based on off diagonal bands 

decreasing with an autoregressive parameter of .7. An example of this specification for the small 

effect size condition is provided below. While Kwok, West, and Green used a large 

autoregressive parameter of .8, the same value in this simulation resulted in matrices with 

negative eigenvalues that were not invertible. As such, the largest coefficient that was found to 

be invertible (.7) was used instead. Additionally the TOEP(3) model with a large Level 1 sample 

size produced negative eigenvalues when non-zero bands followed an autoregressive pattern. As 

a result a small degree of misspecification was added to the large TOEP(3) condition with the 

third band taking a value of .3 rather than .49 as would be dictated by an autoregressive pattern.  

 An effect size was created by the degree of misfit between the two Level 1 covariance 

structures. For instance, when the true variance structure was the small Toeplitz(3) structure, 
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misfit for an estimated AR(1) structure was created by the number of zeroes in the matrix (and a 

smaller third band in the large TOEP(3) condition). For example, the Toeplitz(3) and AR(1) 

matrices below show the true covariance structure for the small effect conditions when Level 1 

sample size was small. 
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 Sources of misfit are identified by the triangular regions in the above matrices for the small 

effects and include the dotted region when effects are large. When the true model is TOEP(3), 

the AR(1) structure will not fit the data properly in an attempt to accommodate the zero 

covariances in the fourth and fifth bands. Conversely, when the true model is AR(1), the 

TOEP(3) model will be unable to accommodate any nonzero covariance beyond the first two off 

diagonals. These differences are expected to increase when the non-zero off diagonal elements 

are larger and there is more misspecification between candidate models.  

Parametrizing effect size in this way confounds the effects of Level 1 sample size and 

discrepancies in the Level 1 residual covariance matrix. By increasing Level 1 sample size I 

increase the number of off diagonal zeroes for the TOEP(3) structure and additional covariance 

is estimated in the AR(1) structure. Therefore the effects of these factors cannot be truly 

differentiated. Although this approach implies a Level 1 sample size by effect size interaction, it 

is not without precedence. Ferron, Dailey, and Yi (2002) used precisely this approach when 

examining the effects of misspecifying the Level 1 residual covariance structure in two Level 

models. While the effects of the individual study factors may be confounded, the choice was 

made to introduce this confounding in an effort to keep models consistent across Level 1 sample 

sizes.  
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Data Analysis 

 To evaluate the performance of Vuong’s test its propensity to select the correct model 

was compared to that of information criteria. First, tables are presented comparing the correct 

model selection (correct classification) of Vuong’s test to the correct classification of 

information criteria. Second, results where the incorrect model was chosen (misclassification) by 

Vuong’s test is contrasted with the misclassification rate of information criteria. Conditions 

where information criteria select the incorrect model significantly more often than Vuong’s test 

are highlighted.  Misclassification of Vuong’s test was at most only slightly over 1%, and as a 

result a conservative estimate of 2% was used to determine the power to detect a significant 

difference in proportions. G*Power 3.1.5 was used to calculate the difference from a constant 

proportion of 2% that could be detected with a power of .8 and a total sample size of 973. 

Although 1000 replications were generated for each condition, occasional convergence issues 

necessitated a small number of cases be discarded. The smallest remaining condition contained 

973 replications. This number was conservatively used for all differences. The results of the 

sensitivity analysis indicated that a difference of 1.4% (from 2%) could be detected with a power 

of .8 and as a result any misclassification of at least 4% could be considered a significant degree 

of misclassification for the information criteria.  Finally, the non-significance rates of Vuong’s 

test were highlighted to illustrate the advantage of Vuong’s test in cases where information 

criteria are error prone. 

Logistic regression was then used to determine the effect of Level 1 sample size, Level 2 

sample size, ICC, and effect size on the ability of Vuong’s test to detect the correct model. 

Contrary to chapter 3 where the true data generating process was not among candidates, this 

study seeks to select the true model. Using SAS PROC Logistic with Firth’s penalized 
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likelihood, a main effects model was estimated to understand the general behavior of Vuong’s 

test in the context of non-nested Level 1 covariance structures and across study factors described 

above. After defining the general trends in the effects of Vuong’s test across study factors, a full 

logistic regression model was estimated with all possible higher order interactions. Starting at the 

highest level, non-significant effects were removed one-by-one based on their significance level. 

Non-significant lower order effects were retained if their components contributed to a higher 

order interaction. Throughout analyses, all study factors were treated categorically. 

Results 

 Because results across the true Toeplitz and autoregressive candidates are not directly 

comparable they are analyzed independently. Within each true structure, however, both effect 

sizes were analyzed concurrently and included as a study factor. I first discuss results describing 

Vuong’s test when the true data generating process contains a TOEP(3) structure for the Level 1  

residual covariance matrix before transitioning to the true AR(1) structures. Discussions will first 

contrast the performance of Vuong’s test with that of the information criteria beginning with an 

examination of the differences in the methods’ propensity to select the correct models and then 

their propensity to select the incorrect model which is referred to here as misclassification. I then 

provide results from analyses examining differences in how study factors affect the power of 

Vuong’s test to detect the correct model.   

True Toeplitz Model 

Selecting the Correct Model. To compare the results of Vuong’s test with the 

performance of information criteria I first examined the rates at which each model selection 

procedure selected the true model. Table 4.1 provides rates of correct model selection for 

Vuong’s test and information criteria. Cells are shaded to indicate conditions in which the power 



 

89 

of Vuong’s test to detect the true data generating process is at or above .8. As can be seen in the 

table, when there are at least 13 observations at Level 1, Vuong’s test almost always has enough 

power to detect to true model. The only exceptions to the uniformly high power rates occur when 

Level 2 sample size is small the effect size is small, and Level 1 sample size has 13 observations. 

Still, power rates remain over .7.  

When the power of Vuong’s test is high, so is the correct model selection rate of the 

information criteria. Comparisons among information criteria select the correct model in almost 

every case when Level 1 sample size is 13 observations or more. Slight deviations from 100% 

correct model selection occur in conditions where Vuong’s test loses power as well, however, 

correct classification rates remain over 95% for information criteria.  

Selecting the correct model becomes more tenuous when Level 1 sample size is small, 

especially in the small effect size condition. When effect size was large, Vuong’s test and 

information criteria both tended to perform well, however, Vuong’s test was slightly 

underpowered when Level 2 sample size was small and ICC was large. In the small effect size 

condition, performance was suspect. Vuong’s test was exceedingly underpowered when effect 

size was small and there were only 5 Level 1 observations. When Level 2 sample size was also 

small, the power of Vuong’s test was in the single digits. Even when sample size reached 200, 

the power of Vuong’s test was at most 40%.  

In these conditions when the power of Vuong’s test was exceedingly bad, information 

criteria also tended to perform poorly. When Level 2 sample size was small, information criteria 

performed no better than randomly selecting from the two candidates. In fact, BIC performed 

worse than random selection. As Level 2 sample size increased, the performance of information 

criteria improved with AIC and AICc reaching correct model selection rates of over 90% when 
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Level 2 sample size was 200. BIC on the other hand, continued to perform poorly when Level 2 

sample size was large; it selected the correct model just over 70% of the time.  
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Table 4.1 Correct Model Selection Rates for True Toeplitz Models 

      L1SS 

      5 13 25 

ICC Effect L2SS VT AIC AICc BIC VT AIC AICc BIC VT AIC AICc BIC 

0.4 

Toep(3) .5 

50 7% 52% 50% 26% 75% 99% 99% 97% 97% 100% 100% 100% 

100 16% 71% 70% 43% 95% 100% 100% 100% 100% 100% 100% 100% 

200 40% 91% 91% 70% 100% 100% 100% 100% 100% 100% 100% 100% 

Toep(3) .7 

50 82% 99% 98% 93% 100% 100% 100% 100% 100% 100% 100% 100% 

100 99% 100% 100% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

0.7 

Toep(3) .5 

50 6% 46% 44% 25% 74% 98% 98% 97% 98% 100% 100% 100% 

100 13% 70% 69% 43% 96% 100% 100% 100% 100% 100% 100% 100% 

200 36% 93% 92% 72% 100% 100% 100% 100% 100% 100% 100% 100% 

Toep(3) .7 

50 73% 97% 97% 90% 100% 100% 100% 100% 100% 100% 100% 100% 

100 95% 100% 100% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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Misclassification. Vuong’s test may not appear to add substantial value over information 

criteria when differences between models are easily detected. It can, however, outperform 

information criteria when differences between models are not as obvious. Table 4.2 contains the 

misclassification rates of Vuong’s test and the information criteria. At most, Vuong’s test selects 

the incorrect model in 1% of replications. Based on the sensitivity analysis discussed above, any 

misclassification greater than 4% in information criteria can be considered significantly greater 

than the misclassification of Vuong’s test. 

 With respect to misclassification, Vuong’s test performs quite well. When Level 1 sample 

size is at least 13, Vuong’s test never selects the incorrect model. Even when Level 2 sample size 

and effect size were small, Vuong’s test did not ever select the incorrect model. While not 

technically significant, it is notable that when Level 2 sample size and effect size were both 

small, there was still a small degree of misclassification for the information criteria. To be 

absolutely positive of a correct result, samples were required to be rather large.  

 When Level 1 sample size was small, Vuong’s test selected the incorrect model in at 

most 1% of cases. While Vuong’s test, AIC, and AICc generally performed well when effect size 

was large, BIC continued to select the incorrect model with significant frequency when Level 2 

sample size was small. The biggest benefit of Vuong’s test can be seen in the small effect size 

conditions.  

 When effect size was small, information criteria selected the incorrect model in a 

significant number of replications regardless of Level 2 sample size. In the smallest conditions, 

AIC and AICc chose the incorrect model roughly in roughly half of the replications whereas BIC 

chose the incorrect model in about three-quarters of replications. As effect size increased, model 
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selection tended to improve across all methods. However, even at the largest Level 2 sample 

sizes BIC was still selecting the incorrect model in about 30% of cases.  

The benefit of Vuong’s test can be best observed when differences in fit among candidate 

models are difficult to detect. Table 4.3 displays the non-significance rates of Vuong’s test. 

Shaded cells indicate conditions in which information criteria perform significantly worse than 

Vuong’s test. Worth noting in this table is the large values in the first column representing the 

small Level 1 sample size. When information criteria are selecting the correct model at rates 

worse than chance, Vuong’s test produces a null result indicating that there is insufficient 

evidence to prefer one model over another. Although ambiguous, this null result would be 

preferable to making an incorrect decision. Thus it could be argued that Vuong’s test is most 

beneficial, when information criteria are performing at their worst.  

Table 4.3 Non-significance Rates of Vuong’s Test 

   L1SS 

ICC Effect L2SS 5 13 25 

0.4 

Toep(3) .5 

50 93% 25% 3% 

100 83% 5% 0% 

200 60% 0% 0% 

Toep(3) .7 

50 17% 0% 0% 

100 1% 0% 0% 

200 0% 0% 0% 

0.7 

Toep(3) .5 

50 94% 26% 2% 

100 87% 4% 0% 

200 64% 0% 0% 

Toep(3) .7 

50 27% 0% 0% 

100 4% 0% 0% 

200 0% 0% 0% 
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Table 4.2 Incorrect Model Selection Rates for True Toeplitz Models 

      L1SS 

      5 13 25 

ICC Effect L2SS VT AIC AICc BIC VT AIC AICc BIC VT AIC AICc BIC 

0.4 

Toep(3) .5 

50 0% 48% 50% 74% 0% 1% 1% 3% 0% 0% 0% 0% 

100 1% 29% 30% 57% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 9% 9% 30% 0% 0% 0% 0% 0% 0% 0% 0% 

Toep(3) .7 

50 1% 1% 2% 7% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

0.7 

Toep(3) .5 

50 0% 54% 56% 75% 0% 2% 2% 3% 0% 0% 0% 0% 

100 0% 30% 31% 57% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 7% 8% 28% 0% 0% 0% 0% 0% 0% 0% 0% 

Toep(3) .7 

50 0% 3% 3% 10% 0% 0% 0% 0% 0% 0% 0% 0% 

100 1% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
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Power. Results of a logistic regression with Firth’s penalized likelihood indicated 

significant omnibus tests for the effects of Level 1 sample size (2(2) = 4441.75, p < .0001), 

Level 2 sample size (2(2) = 1507.79, p < .0001), ICC (2(1) = 23.68, p < .0001), and effect size 

(2(1) = 3793.50.75, p < .0001). As sample size at both Level 1 and Level 2 increased so did the 

power of Vuong’s test to detect the correct model. Similarly, power was greater when the non-

zero covariances among residuals were large than when they were small. When ICC was large 

the power of Vuong’s test to detect the correct model was reduced. Specifically, Vuong’s test 

was 1.27 times less likely to detect a significant effect in favor of the correct candidate when ICC 

was .7 compared to when it was .4. While these main effects describe the behavior of Vuong’s 

test on average, they were qualified by higher order interactions. 

 A final model with non-significant higher order terms trimmed indicated a significant 

three way interaction for Level 1 sample size, Level 2 sample size, and effect size (2(4) = 26.53, 

p < .0001). Figure 4.2 shows the Level 1 sample size by Level 2 sample size interaction for the 

small and large effect size conditions. In the large effect size condition (right) it is clear that 

power was at its maximum for all but the smallest sample sizes. When Level 1 and Level 2 

sample size were both small, power was above 80%, however, power at medium and large Level 

2 sample sizes was at or are extremely close to 100% even when Level 1 sample size is small. 

When Level 1 sample size reaches 13 time points, even the small Level 2 sample size had 

reached maximum power.  In contrast the small effect size condition (left) illustrates that 

increasing Level 1 sample size from 5 to 13 has a greater effect on power when Level 2 sample 

size is 100 than when it is 50 or 200. As the medium and large Level 2 sample sizes reach 

maximum power at the Level 1 sample size of 13, the improvement in power gained in the 50 
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observation Level 1 sample size condition is greater than the larger Level 1 sample sizes, as 

would be expected.  

 

 

Figure 4.2 Level 1 Sample Size by Level 2 Sample Size Interaction in the Small (Left) and Large 

(Right) Effect Size Conditions. 

Two lower order interactions not qualified by the three-way Level 1 sample size by Level 

2 sample size by effect size interaction also emerged as significant: the Level 1 sample size by 

ICC interaction (2(2) = 6.87, p = .032) and the ICC by effect size interaction, 2(1) =14.05 , p = 

.0002. Despite their significance, both of these interactions yield qualitatively uninteresting 

results. When Level 1 sample size is small, the small ICC condition has marginally greater 

power than when ICC is large. When Level 1 sample size is large the relationship is reversed; the 

large ICC marginally outperforms the small ICC condition. The ICC by effect size interaction 

suggests that at larger effect sizes, the difference in power between large and small ICCs 

becomes larger. Although significant, the difference was fairly trivial as the difference in power 

between small and large ICC conditions was only 2% greater than the difference between ICCs 

when effect size was small.  
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True AR(1) Model 

Selecting the Correct Model. Following the approach taken to compare the performance 

of Vuong’s test and information criteria when the true data generating process was Toeplitz, 

Table 4.4 displays the rates at which Vuong’s test and information criteria select the correct 

model. Conditions in which Vuong’s test had power greater than .8 are highlighted in the table. 

Vuong’s test tended to achieve power of .8 when Level 1 sample size and effect size were both 

large. In cases when the effect size was small but Level 1 and Level 2 sample size was large, 

power still remained around 90%. The only instances in which Vuong’s test achieved adequate 

power with a Level 1 sample size below 25 was when effect size and Level 2 sample size were 

both large and there were 13 observations at Level 1. In all other cases, Vuong’s test failed to 

reach adequate power.  

 Information criteria, on the other hand, tended to perform rather well when the true data 

generating mechanism was AR(1). In every condition AIC and AICc selected the correct model 

over 80% of the time, whereas BIC selected the correct model in over 94% of replications in all 

but three conditions. Although there was never a case in the AR(1) conditions when information 

criteria performed exceedingly poorly, high correct model selection rates are only part of the 

story.  

Misclassification. Misclassification for Vuong’s test and information criteria are 

presented on Table 4.5. Once again, Vuong’s test selects the incorrect model in at most 1% of 

replications. While information criteria also tended to perform well when Level 1 sample size 

was large, especially when effect size was also large, there was a stark contrast in performance in 

the small and medium Level 1 sample sizes.  
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Table 4.4 Correct Model Selection Rates for True Autoregressive Models 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

    L1SS 

      5 13 25 

ICC Effect L2SS VT AIC AICc BIC VT AIC AICc BIC VT AIC AICc BIC 

0.4 

AR(1) .5 

50 1% 86% 87% 97% 7% 84% 85% 94% 30% 95% 95% 97% 

100 0% 80% 81% 96% 17% 90% 90% 97% 58% 99% 99% 100% 

200 0% 83% 84% 98% 36% 97% 97% 99% 89% 100% 100% 100% 

AR(1) .7 

50 1% 82% 84% 96% 40% 97% 97% 99% 96% 100% 100% 100% 

100 1% 83% 83% 96% 69% 98% 98% 99% 100% 100% 100% 100% 

200 2% 83% 83% 97% 96% 100% 100% 100% 100% 100% 100% 100% 

0.7 

AR(1) .5 

50 0% 84% 84% 95% 9% 85% 85% 94% 32% 94% 94% 97% 

100 0% 82% 83% 97% 16% 88% 88% 96% 60% 99% 99% 99% 

200 0% 82% 82% 97% 35% 95% 95% 98% 88% 100% 100% 100% 

AR(1) .7 

50 1% 81% 82% 94% 37% 96% 96% 98% 97% 100% 100% 100% 

100 1% 80% 81% 96% 69% 99% 99% 100% 100% 100% 100% 100% 

200 1% 81% 81% 98% 95% 100% 100% 100% 100% 100% 100% 100% 



 

99 

Table 4.5 Incorrect Model Selection Rates for True Autoregressive Models 

 
      L1SS 

      5 13 25 

ICC Effect L2SS VT AIC AICc BIC VT AIC AICc BIC VT AIC AICc BIC 

0.4 

AR(1) .5 

50 0% 14% 13% 3% 1% 16% 15% 6% 0% 5% 5% 3% 

100 1% 20% 19% 4% 0% 10% 10% 3% 0% 1% 1% 0% 

200 1% 17% 16% 2% 0% 3% 3% 1% 0% 0% 0% 0% 

AR(1) .7 

50 0% 18% 16% 4% 0% 3% 3% 1% 0% 0% 0% 0% 

100 0% 17% 17% 4% 0% 2% 2% 1% 0% 0% 0% 0% 

200 1% 17% 17% 3% 0% 0% 0% 0% 0% 0% 0% 0% 

0.7 

AR(1) .5 

50 1% 16% 16% 5% 1% 15% 15% 6% 0% 6% 6% 3% 

100 1% 18% 17% 3% 0% 12% 12% 4% 0% 1% 1% 1% 

200 1% 18% 18% 3% 0% 5% 5% 2% 0% 0% 0% 0% 

AR(1) .7 

50 1% 19% 18% 6% 0% 4% 4% 2% 0% 0% 0% 0% 

100 1% 20% 19% 4% 0% 1% 1% 0% 0% 0% 0% 0% 

200 1% 19% 19% 2% 0% 0% 0% 0% 0% 0% 0% 0% 
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Information criteria performed generally well in the medium sample size conditions when 

effect size was large. By the significance standard set by the afore mentioned sensitivity analysis, 

AIC and AICc perform significantly worse than Vuong’s test when ICC was high, and Level 2 

sample size was small when effect size was large and 13 observations occupied Level 1. In 

conditions where effect size was small, AIC and AICc consistently selected the incorrect model 

in a significant proportion of cases, except when Level 2 sample size was large and ICC was 

small. BIC performed slightly better than the other information criteria only significantly 

misclassifying Level 2 sample size was small and ICC was small or Level 2 sample size was 

small and ICC was large.  

The greatest advantage of Vuong’s test was observed when there were few Level 1 units. 

With 5 observations at Level 1, AIC and AICc consistently selected the incorrect model in over 

15% of replications with the only exception being the small effect size with a small Level 2 

sample size and small ICC where misclassification dropped to 14% and 13% for AIC and AICc, 

respectively. BIC generally performed well. Although significant misclassification occurred in 

some conditions, it never rose above 6% and tended to do so only when Level 2 sample size was 

small. Cells are shaded to indicate conditions in which information criteria select the incorrect 

model in a significant proportion of cases.  

Although when Level 1 sample size was small Vuong’s test rarely ever selected the 

correct model, it also rarely selected the incorrect model. Non-significance rates from Vuong’s 

test can be seen on Table 4.6. Although these high rates of non-significance when the number of 

Level 1 units was small are not ideal, they are preferable to the large misclassification rates 

exhibited by information criteria.  
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Table 4.6 Non-Significance of Vuong’s Test 

      L1SS 

ICC   L2SS 5 13 25 

0.4 

AR(1) 

Small 

50 99% 92% 70% 

100 99% 83% 42% 

200 99% 64% 11% 

AR(1) 

Large 

50 99% 61% 4% 

100 99% 31% 0% 

200 97% 5% 0% 

0.7 

AR(1) 

Small 

50 99% 90% 68% 

100 99% 84% 40% 

200 99% 65% 12% 

AR(1) 

Large 

50 98% 63% 3% 

100 98% 31% 0% 

200 98% 6% 0% 

 

Power. Logistic regression with Firth’s penalized likelihood was used again to determine 

the effects of study factors on the power of Vuong’s test to select the correct candidate. A main 

effects model was first estimated to determine the average trends of study factors affecting 

power. Results indicated significant main effects for Level 1 sample size (2(2) = 5990.02, p < 

.0001), Level 2 sample size(2(2) = 2828.59, p < .0001), and effect size (2(1) = 4659.56, p < 

.0001). As expected, as sample size increases at either level, power increases. Effect size also 

maintained the expected positive relationship with power. ICC, on the other hand, was non-

significant, 2(1) = .056, p = .8136. There was no difference in power on average between low 

ICC and high ICC. These main effects were qualified by higher order interactions.  

A full model testing all of the interactions between study factors resulted in no 

interactions of an order greater than two nor was there any effect of ICC whatsoever. The final 

model included main effects for Level 1 sample size, Level 2 sample size, and effect size as well 
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as the two-way interactions among the three factors. The Level 1 sample size by Level 2 sample 

size interaction (2(4) = 153.36, p < .0001) is displayed on Figure 4.3 with values estimated 

values collapsed across effect sizes. The interaction was such that as Level 1 sample size 

increased, the difference in power between Level 2 sample sizes increased to a point and began 

decrease as power approached the asymptote. When Level 1 sample size was small, power was 

at its minimum and there was no difference between Level 2 sample sizes. As Level 1 sample 

size increased to 13, the difference in power between Level 2 sample sizes increased as well. As 

Level 1 sample size increased further to 25 observations, power differences between Level 2 

sample sizes began to decrease. Should Level 1 sample size increase beyond 25 observations it 

would be expected that there be no difference in power across Level 2 sample sizes as it reaches 

its maximum.  

 

Figure 4.3 Level 1 Sample Size by Level 2 Sample Size Interaction Averaged Over Level 2 

Sample Sizes 

The Level 1 sample size by effect size interaction is displayed on Figure 4.4 averaged 

across Level 2 sample sizes. As Level 1 sample size increased the difference in power between 

the large and small effect size conditions once again grew initially, before decreasing as the large 

effect size condition reached its upper limit. As mentioned earlier, this interaction is in large part 
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a product of the confounding between effect size and Level 1 sample size. As Level 1 sample 

size increased, the effect size inherently increased as there were more zero elements in the 

comparison Toeplitz(3) candidate.  

 

Figure 4.4 Level 1 Sample Size by Effect Size Interaction Averaged Over Level 2 Sample Sizes 

Finally, the Level 2 sample size by effect size interaction were averaged over Level 1 

sample sizes and are presented in Figure 4.5. While there was a large difference in the overall 

power between large and small effect sizes, this figure reflects the same pattern seen above: as 

power becomes high, increases in sample size tend to have less of an effect on power. When 

there is still room to improve power (i.e., it is low), increases in sample size have a greater effect 

on power.  
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Figure 4.5 Level 2 Sample Size by Effect Size Interaction Averaged Across Level 1 Sample Sizes 

Discussion 

 In this study I have examined the factors that contribute to the power of Vuong’s test to 

detect the correct model when non-nestedness occurs in the Level 1 residual covariance 

structures. To examine this situation, I conducted a simulation study in which data generation 

included either a TOEP(3) structure where three parameters were estimated or an AR(1) 

structure estimating a residual variance and an autoregressive parameter. Within each structure 

two “effect sizes” were generated: one in which the off diagonal elements were based on a value 

of .7 and another based on a value of .5. The TOEP(3) structure was specified to have the same 

values as the autoregressive structure for the non-zero elements in the small condition with 

slightly more misspecification in the third band as required to remain invertible. However, 

beyond those elements misfit was introduced by restricting the covariances to zero. 

Alternatively, the autoregressive structures were fully autoregressive and contained non-zero 

values for every element.  

Across data generating processes, Vuong’s test outperformed information criteria in the 

sense that it rarely selected the incorrect candidate. In the case that Vuong’s test was unable to 

detect the correct candidate it almost always failed to reject the null hypothesis. Information 
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criteria, on the other hand, exhibited exceedingly high misclassification rates. Rates as large as 

74% were seen for BIC in Toeplitz models, indicating that in such conditions BIC is three times 

as likely as AIC or AICc to lead a researcher to select the wrong candidate. Information criteria 

also performed poorly, albeit to a lesser extent, in small sample sizes for the true Autoregressive 

models. This behavior provides insight into the tangible benefits of Vuong’s test over tests using 

information criteria. To understand these benefits I explore the behavior of the information 

criteria themselves. 

As was discussed in Chapter 1, information criteria are comprised of the deviance, or 

negative two times the log likelihood, and some penalty term. The calculation of the penalty term 

is what differentiates each information criterion. SAS calculates the information criteria using 

the following equations: 

 

𝐴𝐼𝐶: − 2𝑙 + 2𝑑 

(49) 𝐴𝐼𝐶𝑐: − 2𝑙 +
2𝑑𝑛∗

𝑛∗ − 𝑑 − 1
 

𝐵𝐼𝐶: − 2𝑙 + 𝑑𝑙𝑛(𝑛) 

where d is the number of parameters in the model (fixed and random), n* is the total sample size 

(t*i), and n is the number of Level 2 units. Essentially, these information criteria penalize the 

likelihood for model complexity where models with more parameters are considered to be more 

complex. From the results of this chapter it was obvious that the information criteria perform 

worse when Vuong’s test is especially underpowered. That is to say that when the difference is 

so small that Vuong’s test is almost never able to detect the difference between models, 

information criteria select the wrong model at a greater rate. This effect appears to be amplified 

when the number of parameters in the true model are greater than in the alternative. Information 

criteria performed especially badly when the difference between candidate models was small and 



 

106 

the true data generating process is more complex than the other candidate. Consider the case 

when the true data generating process was Toeplitz(3). Even through the true data model was 

among the candidates, because it was more complex than the alternative and there was a small 

difference between the two candidates in model fit, the information criteria prefer the simpler 

model. Furthermore, the information criteria with the more extreme penalty (i.e., BIC) selected 

the simpler and incorrect candidate more often. Thus, relying on information criteria to inform 

model selection is particularly problematic when the true data generating process is more 

complex than other candidates. Again, results suggest that information criteria were 

untrustworthy when the difference between models was small (e.g., when Vuong’s test cannot 

detect a difference). This is precisely the case in which significance testing for model fit would 

be desirable.  

 This theory is supported when examining the performance of information criteria in the 

autoregressive models. Information criteria continue to display significant misclassification rates 

except with large sample size or effect size. However, in this case BIC outperformed AIC and 

AICc. Because the AR(1) model was more parsimonious than the TOEP(3) model, the larger 

penalty term worked in favor of selecting the correct model when it was in fact less complex 

than the other candidate.  

 While understanding the performance of information criteria is important, this study 

highlights exactly why their use is problematic in practice. Because data for this study were 

simulated and the true models known a priori, it was possible to know whether the correct model 

was being selected when using information criteria. In applications of this method, researchers 

would not know which model is the true or best model. Similarly, researchers would not know a 

priori the effect size for the models they are comparing and as a result would not know if 
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information criteria will lead them to the correct conclusion. Despite its lack of power in some of 

the conditions tested here, Vuong’s test provided a safer alternative for researchers to test 

differences between two models. The results presented in this chapter suggest that significant 

tests of non-nested models can be trusted with near certainty and Vuong’s test provides a real 

and conservative alternative to testing models non-nested in their Level 1 residual covariance 

structures.  

 Power followed the expected trends for both the true Toeplitz and true autoregressive 

models. When either Level 1 sample size, Level 2 sample size, or effect size increased so did the 

power of Vuong’s test to detect a significant effect. There was a significant main effect for ICC 

when the true data generating process was Toeplitz, but not when it was Autoregressive. Power 

of Vuong’s test tended to decrease in high ICCs when the true data generating process was 

Toeplitz. This effect appears to be driven largely by a single condition (i.e., large effect size 

when Level 1 and Level 2 sample sizes are small). At all other conditions the difference in power 

between small and large ICCs for the true Toeplitz structure was negligible.  

 While this study illustrated the ability of Vuong’s test to detect the true Level 1 residual 

covariance matrix and studied its behavior across Level 1 sample size, Level 2 sample size, ICC, 

and effect size, it is limited by a number of factors. Most notably, effect size and Level 1 sample 

size were confounded. For instance, when the true data generating process was AR(1), the 

amount of covariance unable to be captured by the zero elements in the TOEP(3) candidate 

increased with the number of time points, not just the size of the autoregressive parameter. While 

this confounding limits the interpretability of the findings, namely that improvements in power 

thought to result from increases in Level 1 sample size might be attributed to the increased 

degree of misfit, it reflects situations that are encountered in the real world. Still, it would be 
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ideal to control for this confounding in future studies as more is learned about the power of 

Vuong’s test. Additional confounding occurred between the number of parameters in the models 

and performance, particularly when examining performance of information criteria. In the 

previous study where non-nestedness occurred for Level 1 covariate sets, effects of other study 

factors differed depending on the number of parameters in candidate models. In the present study 

there was no condition in which the candidates had the same number of parameters and as a 

result, the added flexibility of the more complex Toeplitz model may have influenced the results. 

While it would have been possible to estimate a Toeplitz model with only two bands, it seemed a 

larger transgression to introduce additional misfit by restricting additional parameters to zero. 

Still, building on this work, it would be instructive to determine if model complexity 

significantly affects the performance of Vuong’s test when testing Level 1 residual covariance 

structures, as it did when examining Level 1 covariate sets.  Kwok, West, and Green (2007) 

chose to compare non-nested Level 1 covariance structures with the same numbers of parameters 

(i.e., AR(1) and Toeplitz(2)), however, they did not examine model selection based on 

information criteria, only bias and type 1 error rate of the fixed effects. Ferron, Dailey, and Yi 

(2002) examined the effects of misspecification on the ability of information criteria to select the 

best model using methodology similar to that in the current study. They compared the “identity” 

structure where a single residual variance is estimated for all time points and the autoregressive 

structure. Their results showed that correct identification rates were “unacceptable” specifically 

when the number of Level 1 units was small.   

Addressing these confounds inherent to testing alternative Level 1 residual covariance 

structures would be a logical first step in future research exploring the power of Vuong’s test in 

multilevel models. To advance the understanding of Vuong’s test further, it would be instructive 
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to determine how different degrees and types of misspecification affect the performance of the 

test overall. Kwok, West, and Green (2007) found that non-nestedness in the Level 1 covariance 

structure (which they referred to as “general misspecification”) was associated with 

overestimation of the Level 2 variances, over-estimations of the standard errors of fixed effects 

growth parameters, and decreased statistical power. Type-1 error for detecting the fixed growth 

parameters was not negatively affected. While Kwok, West, and Green only examined the effect 

of non-nestedness when the number of parameters among candidate models was equal, it is 

possible that there are combined effects between complexity and non-nestedness. A test of this 

hypothesis specifically would be informative.  

Type-1 error rate is another area in which there is room to build on this research. The 

goal of this study was to first establish Vuong’s test as a viable option for testing non-nested 

Level 1 covariance structures and compare its performance to model selection based on 

information criteria. While the current results of small effect sizes might suggest that type-1 error 

rate would be well within the nominal .05 limits, it would be useful to examine the type-1 error 

rates of Vuong’s test, and the performance of information criteria, when there is no difference in 

model fit between two candidates non-nested in their Level 1 covariance structures. Doing so 

would require two different parameterizations of the Level 1 covariance structure that fit the data 

equally well. However, I know of no currently available method that can accomplish this task.  

 In this study I have established Vuong’s test as a useful option for comparing two candidate 

models non-nested in their Level 1 covariance structures. Results indicated that Vuong’s test 

rarely, if ever, suggests the wrong model be preferred over the true data generating model. 

Choosing the correct model based on comparisons among information criteria is more error prone. 

Misclassification rates of information criteria reached as high as 75% when the true model was 
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more complex than the alternative and there was a small degree of misfit. Thus, when the true 

model is unknown, as is the case in applied research, Vuong’s test allows researchers to be more 

cautious in selecting the correct model and provides more accurate and reliable model selection.  
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Chapter 5: Testing Non-nested Functional Forms 

 The last context in which Vuong’s test for non-nested multilevel models was explored 

was competing non-linear functional forms. Often the first step in the modeling process, 

understanding the shape of a curve is essential to appropriately describing trends in the data. 

Typically, researchers will examine general trends in their data at the outset of modeling through 

a number of means such as graphical representation (e.g., scatter plots), correlations, and other 

descriptive statistics (e.g., means and variances) across time points. These methods can, and 

often do provide a rough approximation of the shape of the phenomenon under study. With this 

information in hand, functional forms resembling the observed data can be fit and evaluated.  

 While linear growth is a simple and widely used function, it fails to capture some of the 

more curvilinear relationships often studied in psychology. From language development 

(Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 1991) to randomized controlled trials (Weisz et 

al., 2012), there are many instances when linear growth curves might not be sufficient to fully 

address the research question. A common remedy for curvilinear data is the quadratic growth 

curve model. In addition to the linear trend, a quadratic term is included to capture differences in 

the rate of change at each time point. Although quadratic (and higher order) trends are sometimes 

sufficient for understanding curvilinear data, their use implies several assumptions. One such 

assumption of the quadratic model is that at some point growth changes directions, although this 

directional shift may not occur in the functional space being modeled. Additionally, a quadratic 

term suggests that growth occurs infinitely. This assumption is untenable when there is an 

absolute ceiling or floor inherent to the process under study (e.g., behavior). Therefore, despite 

being an improvement over the linear model, issues still arise when fitting and interpreting a 

higher order growth curve.  
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 Some of the issues encountered with quadratic growth curves can be mitigated by truly 

non-linear functions. For instance, the exponential decay model decreases monotonically until it 

reaches an asymptote. This form solves the problem of changes in direction and predicting 

values outside of the admissible range (e.g., increasing to infinity). Additionally, when a data 

generating process is truly non-linear, and “non-quadratic” by extension, non-linear models may 

provide a more natural context in which to interpret results. Not only is it a possibility that the 

model fit the data better empirically, but also that the true non-linear form maps onto theory 

more naturally. The present study examines the performance of Vuong’s test when selecting 

from different functional forms.  

 Although the entirety of this study is examining the performance of Vuong’s test in 

detecting different functional forms, it is split into two parts. The first examines the power and 

performance of Vuong’s test in multilevel non-linear growth curves when the growth parameter 

is fixed. In restricting growth to a fixed effect I was able to explore additional factors that might 

affect the performance of Vuong’s test which created estimation issues when growth was 

random. In the second part of the chapter I examine how a restricted set of study factors might 

influence Vuong’s test when there is also a random growth parameter. Although the non-linear 

models explored here do not have the same meaning of the “slope” parameter in linear models, I 

refer to the growth parameter as a “slope” for the remainder of the chapter.  

Random Intercept Only Models 

Method 

Data Generation  

Using SAS Proc IML, a data generation program was written to create data that followed one of 

two non-linear forms of decay: exponential and power (see below). Fixed and random effects 
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were loosely based on results from Cudeck and Harring (2007) and Timmons and Preacher 

(2015). In all models, the intercept or intercept analogue was set to a value of 27, the empirical 

intercept found by Cudeck and Harring. Initial slope values for each model were then set in 

decrements of .2 with one condition of each model set to a value of -.10. Initial results indicated 

a ceiling effect in power, specifically when the true data generating process followed a power 

function. Therefore intermediary conditions were generated with slope values between the two 

smallest slope parameters. I omit the original conditions where power is almost perfect.  

The random intercept variance was specified to produce a residual ICC of either .86, .70, 

or .50 with a residual Level 1 variance of 10. Both the intercept and residual variances were 

normally distributed with means of zero. Additionally the large intercept variance and the Level 

1 residual variance were both based on Cudeck and Harring (2007). An interval scale time 

variable was also created dependent on Level 1 sample size. Having specified values for all data 

generating parameters and a time variable, an outcome was calculated according to the true 

model of the current condition. True values were saved to be used for start values during model 

fitting. Through a process of trial and error, start values facilitating model fitting in the 

alternative non-linear candidate were specified as well.  

Four models were fit to each dataset: linear, quadratic, exponential, and power. Linear 

and quadratic models were fit using SAS Proc MIXED with maximum likelihood estimation and 

Satterthwaite degrees of freedom. Non-linear models were estimated using SAS Proc NLMIXED 

with the “FIRO” estimation method and start values as defined above. Requisite output (i.e., 

parameter estimates and fit statistics) from all models was saved to be used in the calculation of 

Vuong’s test or model fit analyses.  
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Using output from the fitted models, individual log likelihoods were computed for each 

model and Vuong’s Test conducted for each pair of non-nested candidates. While Merkle et al., 

(2015) suggest that multiple models might be tested with an F-type statistic, I maintain the 

pairwise approach in this study. Thus, the following results refer to comparisons among the 

exponential, power, linear, and quadratic models for several effect sizes in true exponential or 

power data generating functions. 

Sample Size. Level 2 sample sizes were consistent with the previous two studies. Data 

for 50, 100, and 200 individuals were generated. When the number of Level 1 units became too 

large (i.e., 25) a significant degree of non-convergence and fatal errors occurred when fitting the 

non-linear models. This difficulty, combined with uniformly high power in the previous studies, 

dictated that Level 1 sample size be adjusted. Samples of 5, 9, or 13 observations were generated 

for each Level 2 unit.  

ICC. Three values of residual ICC were included in this study: .5, .7, and .86. The large 

residual ICC of .86 was included as it was the residual ICC in Cudeck and Harring (2007). The 

residual ICC of .7 was included to maintain continuity across the other studies. For the same 

reason, I attempted to include an ICC of .4, however, convergence issues prohibited the use of 

any random intercept variance less than 10. As a result, the small residual ICC condition was .5.  

Effect Size. Similar to the previous studies, effect size was conceptualized as the degree 

of misfit between two candidate models and the data generating process. While observing the 

degree of misfit in linear models with non-nested covariate sets or non-nested Level 1 residual 

covariance structures was fairly intuitive, quantifying the degree of misfit among non-linear 

models was somewhat opaque. Figure 5.1 displays the estimated curves for the power and 

exponential models when Level 1 sample size is small in the true exponential model conditions. 
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Figure 5.2 displays the same curves when the true model was a power function. While these 

curves exhibit similar properties (e.g., monotonically decreasing and zero asymptote) they may 

differ in fit considerably.   

 Examining Figure 5.1 more closely, misfit between the exponential (black) and power 

(grey) curves can be observed from the degree, or lack thereof, of overlap. Because the true 

model is exponential, the black lines representing the exponential model do reasonably well at 

approximating the true curve. Therefore, misfit between the true data generating process and the 

estimated model was always larger for power and can be observed from the difference in the 

corresponding grey and black lines. Interestingly, misfit seemed to have a curvilinear 

relationship with the slope. When slope was small as in the top two lines, there was a relatively 

small degree of misfit between the exponential and power models. As slope increased and the 

curve of the true function changed, that difference appeared to become larger. However, when 

the slope became sufficiently large the difference between the two models was reduced, as in the 

lowest two pairs of curves on Figure 5.1.  

 This phenomenon can be explained by the rate of change of the true model. When the 

slope parameter was small (top pair of models), the trend was close to linear and able to be 

approximated by both models reasonably well.  When the slope parameter was sufficiently large, 

as begins to be the case in the bottommost pair of lines on Figure 5.1, the function approached 

the asymptote so quickly that there was little room for misfit. The same can be observed for the 

true power models on Figure 5.2, however it was not possible to consistently simulate data and 

estimate models with large enough slopes that decreases in misfit would be observed.  

Regardless, misfit, and power by extension, should not increase monotonically with increases in 

slope.  
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 Effect size was manipulated by altering the slope parameter in each true model. Given the 

true model forms 

 𝑝𝑜𝑤𝑒𝑟: 𝑦𝑖𝑗 = (𝛾00 + 𝑢0𝑗) ∗ 𝑡𝑖𝑚𝑒𝑖𝑗
𝛾10 + 𝑒𝑖𝑗 , (50) 

and, 

 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙: 𝑦𝑖𝑗 = (𝛾00 + 𝑢0𝑗)𝑒
𝛾10∗𝑡𝑖𝑚𝑒𝑖𝑗 + 𝑒𝑖𝑗 (51) 

the 𝛾10parameter was used to manipulate the effect size. The largest value for the power model 

was based on the slope used in the simulation study performed by Timmons and Preacher (2015).  

The application analyzed by Cudeck and Harring (2007) provided the large effect value for the 

exponential decay model. From each of these slopes smaller slope values were chosen to provide 

a sufficient gradient in model misfit. Initially four conditions were chosen for each true model:    

-,86, -.65, -.45, and -.10 for the power models and -.776, -.55, -.35, and -.10 for the exponential 

models. After observing ceiling effects for the power models and the non-monotonic changes in 

power over effect sizes in the exponential models, an intermediate slope value of -.25 was 

generated for the power model and  -.25  and -.15 were generated for the exponential model. 
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Data Analysis 

After comparing all models and retaining the results, a variable was coded for each 

replication to indicate whether the true model was selected by Vuong’s test and/or information 

criteria. Only the selection of true models was included in this study because of ambiguity 

surrounding the definition of the “best” model when candidates did not include the true data 

generating process. That is, when the true data generating process was exponential, there was no 

definitive way of determining if a power or quadratic model should fit the data better in the 

population.  

The rates of correct model selection (correct classification) of Vuong’s test were 

compared to the correct classification of information criteria. After examining when both 

Vuong’s test and information criteria selected the correct model, the misclassification rates of 

Vuong’s test and information criteria were examined. Vuong’s test selected the incorrect model 

in at most 2% of replications in a single anomalous cell. To provide a context for comparison, 

G*Power 3.1.5 was used to determine the difference from a constant proportion that would be 

detected with a binomial test with a power of .8 and a minimum of 918 observations per cell. 

Although 1000 replications were generated for each condition, convergence issues rendered 

some replications unusable. Using the maximum misclassification of Vuong’s test of 2% as the 

referent proportion, sensitivity analysis indicated that there was enough power to detect a 

difference of 1.5%. Thus, any misclassification of information criteria 4% or greater could be 

considered significant. After exploring contexts in which information criteria perform 

significantly more poorly than Vuong’s test, non-significance rates of Vuong’s test are discussed 

for comparison.  
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 After comparing the performance of Vuong’s test and information criteria, logistic 

regression was used to determine the degree to which different study factors impacted the ability 

of Vuong’s test to detect the correct candidate. To facilitate the discussion of Vuong’s test in the 

context of non-linear models, I use the term “correct classification rate” for Vuong’s test in lieu 

of “power” so as to not confuse the power function with statistical power. Using SAS Proc 

LOGISTIC with Firth’s penalized likelihood, main effects models were explored to understand 

the general behavior of Vuong’s test in the context of non-linear candidates. Next, logistic 

regression analyses with all interactions among study factors were run and the significance of 

each omnibus test evaluated. Non-significant higher order interactions were removed from the 

model one by one and non-significant lower order effects were retained if they were qualified by 

a significant higher order interaction. Throughout analyses all study factors were treated 

categorically.  

Results 

True Exponential Decay Models.  

Selecting the Correct Model. Table 5.1 shows the empirical correct classification rates 

(i.e. power) for Vuong’s test and the information criteria comparing the true exponential model 

to either a linear, quadratic, or power model across all effect sizes, Level 1 sample sizes, and 

Level 2 sample sizes when ICC was small. Because of an unexpected positive effect of ICC (see 

below) Table 5.2 was also included to display correct classification rates in the large ICC 

condition. Correct classification rates tended to be greater at larger ICCs such that only a small 

number of conditions remained underpowered; specifically when both Level 1 and Level 2 

sample size were small and slopes were strong or weak (as opposed to moderate). Vuong’s test 

was underpowered in the large ICC condition when Level 1 sample size was greater than 5 only 
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when the data generating model had a strong slope, Level 2 sample size was small and the 

alternative model was a power function. Information criteria performed uniformly well in the 

high ICC condition with correct classification rates rarely deviating from 100%. Shaded cells 

identify conditions in which the correct classification rate of Vuong’s test to select the correct 

model was greater than .8.  

In the small ICC condition, Vuong’s test almost always achieved adequate power to 

select the true exponential decay model when there were at least 9 observations at Level 1. The 

rare instances in which Vuong’s test was underpowered and Level 1 sample size was 13 occurred 

when Level 2 sample size was small and comparisons were made between the true exponential 

model and the power function when the slope was strongest, or the exponential and quadratic 

models in the two weakest slope conditions. Fewer conditions achieved correct classification 

rates of .8 when there were 9 observations at Level 1. Specifically, when the slope was weak it 

became more difficult for Vuong’s test to differentiate the exponential model from the quadratic 

model at larger Level 2 sample sizes and distinguish from the linear model when Level 2 sample 

size was small.   

 When Level 1 sample size was small, the rate at which the true exponential model was 

selected dropped considerably. Exploring first the comparisons of the true exponential model 

with the linear model, when the slope of the true model was weak and had the least amount of 

curvature, Vuong’s test had the most difficulty selecting the true exponential model. As slope 

increased, and curvature was introduced into the data generating process the correct 

classification rate of Vuong’s test increased monotonically until it reached 100% in the strongest 

slope condition. When comparing the true exponential model to either a quadratic or a power 

model, the relationship between slope and correct classification was more complex. 
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 In small Level 1 sample sizes the correct classification rate of Vuong’s test tended to 

increase as slope became larger when the alternative model was quadratic. However, at moderate 

slopes the correct classification rate improved very little. Specifically, when slope increased from 

-.15 to -.25, there was a substantial increase in correct classification when the Level 2 sample 

size was 200. At smaller Level 2 sample sizes the increase was more modest. This correct 

classification rate remained fairly constant until slope reached -.78 where another drastic 

increase was observed. It is likely that when there were few Level 1 units and a moderate slope, 

that is, the data generating process was non-linear but not yet reaching the asymptote, the 

quadratic model was flexible enough to accommodate the curvature of the exponential form 

within the functional space.  

 Finally, when comparing the power model to the true exponential function the expected 

curvilinear relationship between slope coefficient and correct classification emerged. However, 

this effect was attenuated by increases in Level 2 sample size as correct classification rates 

approached the asymptote. Correct classification rates for the small and medium Level 2 samples 

size conditions formed almost the perfect inverted-U and can be seen on Figure 5.3. Correct 

classification rates were greater when the slope of the true model was moderate and attenuated 

when slopes were extreme. When Level 2 sample size was large, Vuong’s test selected the 

correct model at a higher rate overall. At medium Level 2 sample sizes, the correct classification 

rate was greater than .8 for all but the most extreme slopes. As Level 2 sample size decreased to 

50, adequate correct classification rates were only achieved for the most moderate slopes.  

Information criteria tended to perform well when Level 1 sample size was at least 9. 

Commensurate with Vuong’s test, the correct model selection rate decreased at the small Level 1 

sample size, however, in most slope conditions comparisons between information criteria still 
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tended to perform well. Information criteria displayed the worst performance when comparing 

the exponential model to the linear model in the weakest slope condition. When Level 2 sample 

size was small, comparisons among information criteria tended to select the correct model in 

only 76% of cases. Although information criteria appeared to perform well across slopes even 

when Level 1 sample size was small, the advantage of Vuong’s test over comparisons among 

information criteria can best be observed through the misclassification rates.  

 

Figure 5.3. Correct Classification Rates Comparing Power Model and True Exponential Model 
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Table 5.1 Correct Model Selection Rates for True Exponential Decay Models when Residual ICC = .5 
   L1SS 

   5 9 13 

Slope 
Alt 

Model 
L2SS 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

-.78 

Linear 

50 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 19% 88% 88% 90% 97% 100% 100% 100% 100% 100% 100% 100% 

100 40% 95% 95% 97% 100% 100% 100% 100% 100% 100% 100% 100% 

200 68% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Pwr 

50 46% 93% 93% 93% 67% 98% 98% 98% 70% 98% 98% 98% 

100 70% 99% 99% 99% 91% 100% 100% 100% 91% 100% 100% 100% 

200 92% 100% 100% 100% 100% 100% 100% 100% 99% 100% 100% 100% 

-.55 

Linear 

50 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 12% 86% 87% 92% 88% 100% 100% 100% 100% 100% 100% 100% 

100 26% 94% 94% 96% 100% 100% 100% 100% 100% 100% 100% 100% 

200 55% 98% 98% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

Pwr 

50 71% 99% 99% 99% 94% 100% 100% 100% 99% 100% 100% 100% 

100 93% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

-.35 

Linear 

50 88% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 10% 89% 89% 96% 62% 99% 99% 99% 99% 100% 100% 100% 

100 30% 95% 95% 98% 91% 100% 100% 100% 100% 100% 100% 100% 

200 59% 99% 99% 100% 99% 100% 100% 100% 100% 100% 100% 100% 

Pwr 

50 83% 99% 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

100 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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Table 5.1(cont’d) Correct Model Selection Rates for True Exponential Decay Models when Residual ICC = .5 
   L1SS 

   5 9 13 

Slope 
Alt 

Model 
L2SS 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

-.25 

Linear 

50 65% 98% 98% 98% 100% 100% 100% 100% 100% 100% 100% 100% 

100 90% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 11% 89% 89% 95% 46% 97% 97% 98% 89% 100% 100% 100% 

100 30% 95% 95% 98% 82% 100% 100% 100% 100% 100% 100% 100% 

200 61% 99% 99% 99% 99% 100% 100% 100% 100% 100% 100% 100% 

Pwr 

50 82% 99% 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

100 97% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

-.15 

Linear 

50 35% 88% 88% 88% 96% 100% 100% 100% 100% 100% 100% 100% 

100 54% 96% 96% 96% 100% 100% 100% 100% 100% 100% 100% 100% 

200 78% 99% 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 11% 88% 88% 95% 42% 96% 96% 98% 72% 100% 100% 100% 

100 26% 91% 92% 97% 73% 99% 99% 100% 97% 100% 100% 100% 

200 47% 97% 97% 99% 96% 100% 100% 100% 100% 100% 100% 100% 

Pwr 

50 68% 98% 98% 98% 100% 100% 100% 100% 100% 100% 100% 100% 

100 90% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

-.10 

Linear 

50 19% 76% 76% 76% 71% 99% 99% 99% 99% 100% 100% 100% 

100 33% 88% 88% 88% 94% 100% 100% 100% 100% 100% 100% 100% 

200 49% 95% 95% 95% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 8% 82% 83% 93% 31% 96% 96% 98% 63% 99% 99% 99% 

100 17% 88% 88% 96% 61% 99% 99% 100% 92% 100% 100% 100% 

200 31% 93% 93% 98% 88% 100% 100% 100% 100% 100% 100% 100% 

Pwr 

50 50% 95% 95% 95% 100% 100% 100% 100% 100% 100% 100% 100% 

100 73% 99% 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

200 94% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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Table 5.2 Correct Model Selection Rates for True Exponential Decay Models when Residual ICC = .86  

   L1SS 
   5 9 13 

Slope 
Alt 

Model 
L2SS 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

-.78 

Linear 

50 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 70% 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 97% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Pwr 

50 51% 94% 94% 94% 67% 98% 98% 98% 72% 99% 99% 99% 

100 71% 99% 99% 99% 90% 100% 100% 100% 95% 100% 100% 100% 

200 93% 100% 100% 100% 99% 100% 100% 100% 100% 100% 100% 100% 

-.55 

Linear 

50 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 88% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Pwr 

50 74% 99% 99% 99% 96% 100% 100% 100% 99% 100% 100% 100% 

100 95% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

-.35 

Linear 

50 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 94% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Pwr 

50 84% 99% 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

100 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Table 5.2 (cont’d) Correct Model Selection Rates for True Exponential Decay Models when Residual ICC = .86 
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   L1SS 
   5 9 13 

Slope 
Alt 

Model 
L2SS 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

-.25 

Linear 

50 97% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 89% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Pwr 

50 83% 99% 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

100 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

-.15 

Linear 

50 85% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 78% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 97% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Pwr 

50 69% 99% 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

100 91% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

-.10 

Linear 

50 66% 97% 97% 97% 99% 100% 100% 100% 100% 100% 100% 100% 

100 89% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 57% 98% 98% 99% 98% 100% 100% 100% 100% 100% 100% 100% 

100 85% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Pwr 

50 53% 96% 96% 96% 100% 100% 100% 100% 100% 100% 100% 100% 

100 80% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 96% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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Misclassification. Misclassification rates for Vuong’s test and information criteria are 

presented on Table 5.3. I present only the table for the small ICC condition here because 

misclassification rates in the large ICC condition were negligible.  Across all conditions, 

Vuong’s test rarely if ever selected the incorrect model. When Level 1 sample size reached 9 or 

above, there was little to no misclassification for Vuong’s test or information criteria under any 

study conditions. Misclassification only reached the significant 4% Level for information criteria 

in very specific conditions (comparing the quadratic model to the true exponential model, slope 

was no stronger than -.15, Level 1 sample size was 9, and Level 2 sample size was 50). Even 

under these specific conditions, misclassification was only barely significant (4-5%) and only 

reached significant levels for AIC and AICc. Because the true data generating model had fewer 

parameters than the alternative quadratic model, BIC misclassified at a lesser rate.  

 When Level 1 sample size was small, there tended to be more misclassification when 

model selection was based on information criteria. Comparisons to the quadratic model 

consistently produced significant misclassification rates when Level 2 sample size was small or 

medium when using AIC or AICc. Again, BIC exhibited better performance than AIC or AICc 

when the alternative model was quadratic because of the extra parameter of the quadratic model 

encouraged the selection of the more parsimonious true model. When comparing the true 

exponential model to the linear model significant misclassification only arose for the weakest 

slope conditions (-.15, -.10). When the exponential slope was at its weakest, the linear model was 

wrongfully selected in almost a quarter of replications when Level 2 sample size was small. 

Information criteria tended to have difficulty selecting the correct model when the slope was 

weak across all comparisons. Finally, when comparing the true exponential model to the power 

model, information criteria only misclassified in a significant proportion of replications when 
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Level 2 sample size was small and slopes were in the extremes. Even then misclassification was 

still relatively infrequent never exceeding 7%.  

 Non-significance rates for Vuong’s test can be found on Table 5.4 where cells are shaded 

to indicate conditions in which information criteria selected the incorrect model in a significant 

proportion of replications. The shaded cells indicate that significant misclassification from 

information criteria occurred when Level 1 sample size was small. Furthermore, incorrectly 

selecting a quadratic model appeared to have occurred across the range of slope coefficients 

whereas linear models were only wrongfully selected when the slope was weak and power 

models incorrectly selected when the slope was in the extremes. As expected significant 

misclassification via information criteria only occurred when Vuong’s test was unable to 

determine which model fit the data best.  



 

130 

Table 5.3 Incorrect Model Selection Rates for True Exponential Decay Models when Residual ICC = .50 

   L1SS 
   5 9 13 

Slope 
Alt 

Model 
L2SS 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

-.78 

Linear 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 1% 13% 12% 10% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 5% 5% 3% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Pwr 

50 0% 7% 7% 7% 0% 2% 2% 2% 0% 2% 2% 2% 

100 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

-.55 

Linear 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 0% 14% 13% 8% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 6% 6% 4% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 2% 2% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

Pwr 

50 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

-.35 

Linear 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 0% 11% 11% 4% 0% 1% 1% 1% 0% 0% 0% 0% 

100 0% 5% 5% 2% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Pwr 

50 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
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Table 5.3 (cont’d) Incorrect Model Selection Rates for True Exponential Decay Models when Residual ICC = .5 

   L1SS 
   5 9 13 

Slope 
Alt 

Model 
L2SS 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

-.25 

Linear 

50 0% 2% 2% 2% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 1% 11% 11% 5% 0% 3% 3% 2% 0% 0% 0% 0% 

100 0% 5% 5% 3% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

Pwr 

50 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

-.15 

Linear 

50 1% 12% 12% 12% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 4% 4% 4% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 1% 12% 12% 5% 0% 4% 4% 2% 0% 1% 1% 0% 

100 0% 9% 8% 3% 0% 1% 1% 0% 0% 0% 0% 0% 

200 0% 3% 3% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

Pwr 

50 0% 2% 2% 2% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

-.10 

Linear 

50 1% 24% 24% 24% 0% 1% 1% 1% 0% 0% 0% 0% 

100 0% 13% 13% 13% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 5% 5% 5% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 1% 18% 17% 7% 1% 5% 5% 3% 0% 1% 1% 1% 

100 0% 12% 12% 4% 0% 1% 1% 1% 0% 0% 0% 0% 

200 0% 7% 7% 2% 0% 0% 0% 0% 0% 0% 0% 0% 

Pwr 

50 0% 5% 5% 5% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
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Table 5.4 Non-significance rates for Vuong’s Test for the True Exponential Decay Model 
   ICC 

   0.5 0.7 0.86 
   L1SS 

Slope 
Alt 

Model 
L2SS 5 9 13 5 9 13 5 9 13 

-.78 

Linear 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 81% 3% 0% 75% 1% 0% 30% 0% 0% 

100 60% 0% 0% 45% 0% 0% 4% 0% 0% 

200 32% 0% 0% 13% 0% 0% 0% 0% 0% 

Pwr 

50 54% 33% 30% 51% 32% 29% 49% 33% 28% 

100 31% 9% 9% 31% 12% 9% 29% 10% 6% 

200 8% 1% 1% 7% 1% 0% 7% 1% 0% 

-.55 

Linear 

50 1% 0% 0% 1% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 88% 12% 0% 68% 5% 0% 12% 0% 0% 

100 74% 0% 0% 34% 0% 0% 1% 0% 0% 

200 46% 0% 0% 7% 0% 0% 0% 0% 0% 

Pwr 

50 29% 6% 2% 28% 4% 1% 26% 4% 1% 

100 7% 0% 0% 8% 0% 0% 5% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 

-.35 

Linear 

50 12% 0% 0% 5% 0% 0% 1% 0% 0% 

100 1% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 90% 38% 1% 56% 10% 0% 6% 0% 0% 

100 70% 9% 0% 23% 0% 0% 0% 0% 0% 

200 41% 1% 0% 3% 0% 0% 0% 0% 0% 

Pwr 

50 17% 0% 0% 16% 0% 0% 16% 0% 0% 

100 2% 0% 0% 2% 0% 0% 1% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 
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Table 5.4 (cont’d) Non-significance rates for Vuong’s Test for the True Exponential Decay Model 
   ICC 

   0.5 0.7 0.86 
   L1SS 

Slope 
Alt 

Model 
L2SS 5 9 13 5 9 13 5 9 13 

-.25 

Linear 

50 35% 0% 0% 20% 0% 0% 3% 0% 0% 

100 10% 0% 0% 3% 0% 0% 0% 0% 0% 

200 1% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 88% 54% 11% 54% 12% 1% 11% 0% 0% 

100 70% 18% 1% 24% 0% 0% 1% 0% 0% 

200 40% 1% 0% 3% 0% 0% 0% 0% 0% 

Pwr 

50 18% 0% 0% 18% 0% 0% 17% 0% 0% 

100 3% 0% 0% 2% 0% 0% 2% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 

-.15 

Linear 

50 64% 4% 0% 46% 1% 0% 15% 0% 0% 

100 46% 0% 0% 20% 0% 0% 2% 0% 0% 

200 22% 0% 0% 4% 0% 0% 0% 0% 0% 

Quad 

50 88% 58% 28% 63% 18% 2% 22% 1% 0% 

100 74% 27% 3% 38% 1% 0% 4% 0% 0% 

200 53% 4% 0% 13% 0% 0% 0% 0% 0% 

Pwr 

50 32% 0% 0% 31% 0% 0% 31% 0% 0% 

100 10% 0% 0% 10% 0% 0% 9% 0% 0% 

200 1% 0% 0% 0% 0% 0% 1% 0% 0% 

-.10 

Linear 

50 81% 29% 1% 65% 10% 0% 34% 1% 0% 

100 66% 6% 0% 46% 0% 0% 11% 0% 0% 

200 51% 0% 0% 19% 0% 0% 1% 0% 0% 

Quad 

50 91% 68% 37% 77% 29% 5% 43% 2% 0% 

100 83% 39% 8% 59% 7% 0% 15% 0% 0% 

200 69% 12% 0% 27% 0% 0% 1% 0% 0% 

Pwr 

50 50% 0% 0% 48% 0% 0% 47% 0% 0% 

100 27% 0% 0% 26% 0% 0% 20% 0% 0% 

200 6% 0% 0% 5% 0% 0% 4% 0% 0% 
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 Power. Results of a logistic regression model examining the main effects of study factors 

on the power of Vuong’s test to detect the true model indicated significant main effects for all 

study factors. As Level 1 sample size (=30759.14, p < .0001), Level 2 sample size (= 

16490.86, p < .0001), and ICC (=12958.02, p < .0001) increased, so did the power of 

Vuong’s test. The manipulation of slope coefficient magnitude (= 5696.25, p < .0001) 

exhibited the expected complex relationship discussed above: as slope became stronger, power 

increased up to a point and then began to decrease as model fit became more similar. 

 A logistic regression model exploring the interactions among study factors indicated  a 

significant four-way interaction between Level 1 sample size, Level 2 sample size, slope 

magnitude, and ICC (= 130.42, p < .0001). As would be expected, the effects of the higher 

order interaction were generally observed as moderate sample sizes, ICCs, and slopes grew to 

larger values as effects would tend to slow as power increased. In general, the effects of study 

factors on the power of Vuong’s test can be explained by the main effects described throughout 

the previous section.    

True Power Model. 

Selecting the Correct Model. Correct classification rates of Vuong’s test and 

information criteria when the true data generating process was a power model can be found on 

Tables 5.5 (ICC = .5) and 5.6 (ICC = .86). Generally the trends observed across ICCs were the 

same, increases in any study factor improved power, however, power tended to be greater when 

ICC was large. When Level 1 sample size had 13 observations, almost every comparison had a 

correct classification rate of at least .8. The only exceptions across both ICC conditions occurred 

when slope was weakest; comparing the quadratic model to the power model did not select the 

correct model in at least 80% of replications unless there were 200 observations at Level 2 when 
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ICC was .5. When ICC reached .86 the only underpowered condition when Level 1 sample size 

was large was when Level 2 sample size was small and the alternative model was quadratic.  

 The correct classification rate decreased slightly as the Level 1 sample size decreased to 9 

observations. Again, correct classification rates for Vuong’s test were inadequate only when the 

slope was weak and were mainly an issue for the curvilinear models. In the weakest slope 

condition, the correct classification rate only exceeded .8 when the alternative model was an 

exponential form and Level 2 sample size was large or the alternative was a linear model with 

Level 2 sample sizes of 100 or 200. At medium Level 1 sample sizes, comparing the true power 

model to the quadratic form never achieved correct classification of .8 in the weak slope 

condition.    

 Finally, when there were only 5 observations at Level 1 adequate rates of correct 

classification were achieved when the comparison models were linear or exponential in almost 

every case when  the true slope was stronger than -.10. Comparisons to the exponential model 

were underpowered at the small Level 2 sample size when the slope was at least -.25. When 

comparing the true power model to the quadratic model, however, Vuong’s test did not reach 

adequate correct classification rates until slope was at least -.45. Even when the slope was 

relatively strong, Vuong’s test failed to select the correct model unless Level 2 sample size was 

at least 100.  

 Information criteria generally performed well when the true data generating model was a 

power function. Only when slope was particularly weak and Level 1 sample size was small did 

correct classification rates from information criteria drop below 90%. When the true slope was 

stronger than -.10 information criteria almost perfectly selected the correct model. However, 

when the slope was weak, information criteria selected the incorrect model rather frequently.  
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Table 5.5 Correct Model Selection Rates for True Power Models when Residual ICC = .5 
   L1SS 

   5 9 13 

Slope 
Alt 

Model 
L2SS 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

-.65 

Linear 

50 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 71% 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 94% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Exp 

50 96% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

-.45 

Linear 

50 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 43% 97% 97% 99% 96% 100% 100% 100% 100% 100% 100% 100% 

100 74% 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 96% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Exp 

50 89% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

-.25 

Linear 

50 80% 99% 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 

100 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 18% 89% 89% 94% 65% 98% 98% 99% 92% 100% 100% 100% 

100 35% 95% 95% 98% 92% 100% 100% 100% 100% 100% 100% 100% 

200 64% 98% 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Exp 

50 59% 97% 97% 97% 97% 100% 100% 100% 100% 100% 100% 100% 

100 82% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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Table 5.5 (cont’d) Correct Model Selection Rates for True Power Models when Residual ICC = .5  
   L1SS 

   5 9 13 

Slope 
Alt 

Model 
L2SS 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

-.10 

Linear 

50 25% 82% 82% 82% 59% 98% 98% 98% 85% 100% 100% 100% 

100 41% 91% 91% 91% 86% 99% 99% 99% 98% 100% 100% 100% 

200 62% 98% 98% 98% 98% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 5% 80% 81% 94% 13% 85% 85% 93% 29% 93% 93% 96% 

100 8% 81% 82% 96% 28% 92% 92% 97% 52% 97% 97% 99% 

200 13% 85% 85% 97% 52% 97% 97% 99% 84% 100% 100% 100% 

Exp 

50 20% 80% 80% 80% 51% 96% 96% 96% 79% 99% 99% 99% 

100 31% 88% 88% 88% 78% 99% 99% 99% 96% 100% 100% 100% 

200 50% 96% 96% 96% 95% 100% 100% 100% 100% 100% 100% 100% 
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Table 5.6 Correct Model Selection Rates for True Power Models when Residual ICC = .86 
   L1SS 

   5 9 13 

Slope 
Alt 

Model 
L2SS 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

-.65 

Linear 

50 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Exp 

50 97% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

-.45 

Linear 

50 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 96% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Exp 

50 89% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

-.25 

Linear 

50 94% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 72% 99% 99% 99% 98% 100% 100% 100% 100% 100% 100% 100% 

100 92% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Exp 

50 62% 97% 97% 97% 98% 100% 100% 100% 100% 100% 100% 100% 

100 85% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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Table 5.6 (cont’d) Correct Model Selection Rates for True Power Models when Residual ICC = .86 
   L1SS 

   5 9 13 

Slope 
Alt 

Model 
L2SS 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

-.10 

Linear 

50 38% 90% 90% 90% 79% 99% 99% 99% 95% 100% 100% 100% 

100 62% 97% 97% 97% 98% 100% 100% 100% 100% 100% 100% 100% 

200 86% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Quad 

50 17% 88% 89% 95% 45% 96% 97% 98% 69% 99% 99% 100% 

100 34% 94% 94% 97% 76% 99% 99% 100% 93% 100% 100% 100% 

200 62% 99% 99% 100% 96% 100% 100% 100% 100% 100% 100% 100% 

Exp 

50 22% 80% 80% 80% 53% 95% 95% 95% 80% 99% 99% 99% 

100 32% 88% 88% 88% 80% 100% 100% 100% 98% 100% 100% 100% 

200 52% 94% 94% 94% 97% 100% 100% 100% 100% 100% 100% 100% 
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Misclassification. Due to high correct model selection rates, there was not much 

misclassification except when the true slope was weakest (-.10). Tables 5.7 and 5.8 display the 

misclassification rates of Vuong’s test and information criteria in the small and large ICC 

conditions. Vuong’s test never selected the incorrect model in more than 2% of replications. 

Using 2% as a base rate, the results of the sensitivity analysis above indicated that any 

misclassification greater than 4% was significantly worse than Vuong’s test. When the slope was 

stronger than -.10, information criteria only selected the incorrect model at a significant rate 

when the alternative candidate was quadratic, Level 2 sample size was small or medium and 

Level 1 sample size was small. With larger Level 1 sample sizes or larger slopes, there was never 

significant misclassification with a slope stronger than -.10. 

In the weak slope condition, however, information criteria performed significantly worse 

than Vuong’s test whenever Level 1 sample size was small with the exception of the comparison 

to a linear model with a large Level 2 sample size. As Level 1 sample size increased, 

misclassification rates dropped to non-significant rates when comparing the power model to 

linear and exponential models, however comparisons to the quadratic model continued to 

misclassify at a significant rate. In these cases BIC outperformed AIC and AICc because of its 

preference for more parsimonious models.  

Non-significance rates of Vuong’s test are presented on Table 5.9. Shaded cells denote 

conditions in which information criteria performed significantly worse than Vuong’s test. As 

would be expected, information criteria performed at their worst when Vuong’s test exhibited 

high rates of non-significance.  
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Table 5.7 Incorrect Model Selection Rates for True Power Models when Residual ICC = .5 
   L1SS 

   5 9 13 

Slope 
Alt 

Model 
L2SS 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

-.65 

Linear 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 0% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Exp 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

-.45 

Linear 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 0% 3% 3% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Exp 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

-.25 

Linear 

50 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 0% 11% 11% 6% 0% 2% 2% 1% 0% 0% 0% 0% 

100 0% 5% 5% 2% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 2% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Exp 

50 0% 3% 3% 3% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 
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Table 5.7 (cont’d) Incorrect Model Selection Rates for True Power Models when Residual ICC = .5 
   L1SS 

   5 9 13 

Slope 
Alt 

Model 
L2SS 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

-.10 

Linear 

50 0% 18% 18% 18% 0% 3% 3% 3% 0% 0% 0% 0% 

100 0% 9% 9% 9% 0% 1% 1% 1% 0% 0% 0% 0% 

200 0% 3% 3% 3% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 2% 20% 19% 6% 1% 15% 15% 7% 0% 7% 7% 4% 

100 1% 19% 18% 4% 1% 8% 8% 4% 0% 3% 3% 1% 

200 1% 15% 15% 3% 0% 3% 3% 1% 0% 0% 0% 0% 

Exp 

50 1% 21% 21% 21% 0% 4% 4% 4% 0% 1% 1% 1% 

100 0% 12% 12% 12% 0% 1% 1% 1% 0% 0% 0% 0% 

200 0% 5% 5% 5% 0% 0% 0% 0% 0% 0% 0% 0% 

 

 

 

 

 

 

 

 

 

 

 

Table 5.8 Incorrect Model Selection Rates for True Power Models when Residual ICC = .86 
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   L1SS 
   5 9 13 

Slope 
Alt 

Model 
L2SS 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

-.65 

Linear 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Exp 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

-.45 

Linear 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Exp 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

-.25 

Linear 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Exp 

50 0% 3% 3% 3% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

 

Table 5.8 (cont’d) Incorrect Model Selection Rates for True Power Models when Residual ICC = .86 
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   L1SS 
   5 9 13 

Slope 
Alt 

Model 
L2SS 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

Vuong's 

Test 
AIC AICc BIC 

-.10 

Linear 

50 0% 10% 10% 10% 0% 1% 1% 1% 0% 0% 0% 0% 

100 0% 3% 3% 3% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 1% 12% 12% 5% 0% 4% 3% 2% 0% 1% 1% 0% 

100 0% 6% 6% 3% 0% 1% 1% 0% 0% 0% 0% 0% 

200 0% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Exp 

50 1% 20% 20% 20% 0% 5% 5% 5% 0% 1% 1% 1% 

100 0% 12% 12% 12% 0% 1% 1% 1% 0% 0% 0% 0% 

200 0% 6% 6% 6% 0% 0% 0% 0% 0% 0% 0% 0% 

 

 

 

 

 

  

 

 

 

 

 

Table 5.9 Non-significance rates of Vuong’s Test for True Power Models.  
   ICC 
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   0.5 0.7 0.86 
   L1SS 

Slope 
Alt 

Model 
L2SS 5 9 13 5 9 13 5 9 13 

-.65 

Linear 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 29% 0% 0% 9% 0% 0% 0% 0% 0% 

100 6% 0% 0% 1% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Exp 

50 4% 0% 0% 4% 0% 0% 3% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 

-.45 

Linear 

50 0% 0% 0% 0% 0% 0% 0% 0% 0% 

100 0% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 57% 4% 0% 32% 1% 0% 4% 0% 0% 

100 26% 0% 0% 6% 0% 0% 0% 0% 0% 

200 4% 0% 0% 0% 0% 0% 0% 0% 0% 

Exp 

50 12% 0% 0% 11% 0% 0% 11% 0% 0% 

100 2% 0% 0% 1% 0% 0% 1% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 

-.25 

Linear 

50 20% 0% 0% 16% 0% 0% 6% 0% 0% 

100 3% 0% 0% 2% 0% 0% 0% 0% 0% 

200 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Quad 

50 81% 35% 8% 64% 18% 3% 28% 3% 0% 

100 65% 9% 0% 44% 3% 0% 8% 0% 0% 

200 36% 1% 0% 12% 0% 0% 0% 0% 0% 

Exp 

50 41% 3% 0% 42% 2% 0% 39% 3% 0% 

100 18% 0% 0% 18% 0% 0% 15% 0% 0% 

200 2% 0% 0% 2% 0% 0% 2% 0% 0% 
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Table 5.9 (cont’d) Non-significance rates of Vuong’s Test for True Power Models. 
   ICC 

   0.5 0.7 0.86 
   L1SS 
   5 9 13 5 9 13 5 9 13 

-.10 

Linear 

50 75% 41% 15% 71% 34% 9% 62% 22% 5% 

100 58% 14% 2% 55% 10% 1% 38% 3% 0% 

200 38% 2% 0% 31% 1% 0% 14% 0% 0% 

Quad 

50 93% 87% 71% 90% 77% 57% 82% 55% 32% 

100 91% 72% 48% 87% 55% 29% 66% 25% 7% 

200 86% 49% 16% 74% 26% 7% 38% 4% 0% 

Pwr 

50 80% 49% 21% 80% 49% 19% 78% 47% 20% 

100 69% 22% 4% 65% 21% 3% 68% 21% 3% 

200 50% 5% 0% 50% 3% 0% 48% 3% 0% 
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Power. The same approach using logistic regression was employed when the true data 

generating process was a power model as when it was an exponential model; a main effects 

logistic regression model was first used to understand the behavior of Vuong’s test over the 

study factors. Main effects were found for Level 1 sample size (= 18978.06, p < .0001), 

Level 2 sample size (= 10323.70, p < .0001), slope (= 30242.22, p < .0001), and ICC 

(= 4010.31, p < .0001). As any study factor increased, so did the power of Vuong’s test to 

detect the correct model. It would be expected that the same non-linear relationship for effect 

size that occurred when the true data generating process was exponential would occur when the 

data generating process was a power model. However, as noted above it was not possible to fir 

certain models to data generated with large enough slopes to observe the nonlinearity. Therefore 

in the observed range of effect sizes power increased monotonically with slope.  

 Results from a full logistic regression model including interactions among all study 

factors indicated a four-way interaction among Level 1 sample size, Level 2 sample size, slope 

and ICC, = 39.76, p =.023. Similar to the true exponential models, this interaction was 

expected, improving study factors had diminishing returns as power increased and approached its 

asymptote. Thus, there tended to be larger differences between study factors when the two 

conditions being compared had lower power.  

Random Intercept and Slope Model. 

Method 

Data Generation 

 The data generation program used to generate data for the random intercept only models was 

altered to generate data for the random intercept and slope models. Specifically, instead of a 
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scalar for the residual Level 2 intercept variance, a matrix was specified. Values for the residual 

Level 2 variances were adopted from Cudeck and Harring (2007): 

𝝉~𝑁 (
0
0
,
. 63 −.18
−.18 . 04

). 

Because of considerable convergence issues when a random slope was included in the model, 

only the two largest slopes from the study of non-linear models with a random intercept were 

able to be generated for each model. Data were generated using the same equations as above 

except with an additional residual term associated with the random slope. Start values were 

identified as either the true values from the data generation program or values found through trial 

and error.  

 After generating outcomes, four models were fit to the data: linear, quadratic, power, and 

exponential. Again, specification was the same as above except for the addition of the random 

slope term, its variance, and the random intercept and slope covariance. Every model included a 

random time slope in addition to the random intercept. A random quadratic term was omitted 

from the model of quadratic effects so as to maintain the same number of random effects terms 

across models. Vuong’s test was conducted on each pair of models for each replication and 

results saved for further analysis.  

Sample Size. The same sample sizes that were used for the random intercept only models 

was used for the random intercept and slope models. Conditions were generated for 50, 100, or 

200 Level 2 units and 5, 9 or 13 Level 1 units.  

ICC. ICC was not manipulated due to the fragility of the estimation with a random slope. 

Thus the residual ICC was .86, reflecting the value in Cudeck and Harring (2007). 

Effect Size. The two largest coefficient magnitudes sizes from the random intercept only 

models were included here. Effect size (i.e., the difference between models) was manipulated by 
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varying these slope coefficients. Thus, slopes for the exponential models took values of -.776 

and -.55 while the power models took values of -.86 and -.45.  

Data Analysis 

 To understand the performance of Vuong’s test relative to the performance of 

information criteria I contrasted the two methods for model selection in their correct 

classification rates and misclassification rates. Further, I examined the non-significance rates of 

Vuong’s test relative to misclassification resulting from information criteria. An additional table 

is provided with non-significance rates of Vuong’s test. Following the same methodology as the 

previous studies, G*Power 3.1.5 was used to determine the difference from a constant proportion 

that would indicate significantly worse model selection. The largest misclassification rate for 

Vuong’s test when non-linear models with random slopes were compared was 10%. Using this 

maximum misclassification as a conservative constant, a sensitivity analysis indicated that a 

difference of 2.8% (from 10%) could be detected with a power of .8 and a total sample size of 

998, the minimum sample size for a given condition. Thus, misclassification of at least 13% can 

be considered significantly worse than Vuong’s test in the worst case.  

Logistic regression with Firth’s penalized likelihood was then used to determine the study 

factors that significantly impacted the power of Vuong’s test to detect the true model. Main 

effects models were first used to understand the general behavior of Vuong’s test when 

comparing non-nested functional forms with random slopes. Then, logistic regression models 

were run with all higher order interactions. Non-significant effects were removed one-by-one 

until only significant effects remained in the model. If lower order effects contributed to a 

significant higher order interaction they were retained regardless of their significance level.  
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Results 

True Exponential Decay Model.  

Selecting the Correct Model. To compare the performance of Vuong’s test to the 

performance of information criteria, correct classification rates were examined for each model 

selection method (Table 5.10). Again, results of a sensitivity analysis suggested that any 

misclassification made by the information criteria of more than 13% could be considered 

significantly worse than Vuong’s test’s worst case. When the slope of the true exponential model 

was strong, power was above .8 when comparing the quadratic model to the exponential model 

and there were 9 or more observations at Level 1. 

When the slope coefficient was strong, power increased with either Level 1 or Level 2 

sample size for both the quadratic and power comparisons. Vuong’s test only reached adequate 

power when compared to the power model when Level 2 sample size was large and Level 1 

sample size was at least 9 observations. In other cases Vuong’s test was underpowered.  
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Table 5.10 Correct Model Selection for True Exponential Decay Model with Random Intercept and Slope

   L1SS 

   5 9 13 

Slope 
Alt 

Model 
L2SS 

Vuong‘s 

Test 
AIC AICC BIC 

Vuong‘s 

Test 
AIC AICC BIC 

Vuong‘s 

Test 
AIC AICC BIC 

-.776 

Quad 

50 14% 88% 88% 93% 97% 99% 99% 99% 99% 100% 100% 100% 

100 33% 93% 94% 97% 99% 100% 100% 100% 99% 100% 100% 100% 

200 62% 98% 98% 100% 98% 100% 100% 100% 98% 100% 100% 100% 

Power 

50 37% 88% 88% 88% 52% 93% 93% 93% 56% 94% 94% 94% 

100 54% 96% 96% 96% 71% 97% 97% 97% 77% 96% 96% 96% 

200 75% 99% 99% 99% 87% 98% 98% 98% 86% 96% 96% 96% 

-.55 

Quad 

50 7% 72% 73% 80% 61% 87% 88% 88% 80% 90% 90% 90% 

100 13% 74% 74% 82% 65% 85% 85% 86% 73% 85% 85% 86% 

200 20% 77% 77% 82% 59% 79% 79% 80% 63% 79% 79% 79% 

Power 

50 36% 88% 88% 88% 50% 85% 85% 85% 48% 79% 79% 79% 

100 55% 96% 96% 96% 52% 85% 85% 85% 45% 72% 72% 72% 

200 74% 99% 99% 99% 55% 87% 87% 87% 38% 66% 66% 66% 
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In the weaker of the two slope conditions, power increased as Level 2 sample size 

increased for both model comparisons when Level 1 sample size was small. However, as Level 1 

sample size increased there was an unexpected trend: power started to decrease as sample size 

grew. This counter intuitive effect is explored in more detail in the next section.  

Information criteria generally performed well when comparing a true exponential model 

with random intercepts and slopes to a quadratic and power model with random slopes. When the 

slope coefficient was large, information criteria tended to select the correct model in over 90% of 

cases across all conditions with the only exception arising when Level 1 and Level 2 sample size 

were both small. When the alternative model was quadratic, BIC performed better than AIC or 

AICc as the penalty term more heavily favored the more parsimonious exponential model. In the 

weaker slope condition, information criteria performed more poorly. When comparing the true 

exponential model to the quadratic model, information criteria only selected the correct model in 

roughly three-quarters of replications when Level 1 sample size was small, however, it still 

performed reasonably well when the alternative model was the power model. Similar to the 

results of Vuong’s test, correct classification rates decreased with increasing Level 2 sample 

sizes at larger Level 1 sample sizes.  

Misclassification. Misclassification rates of Vuong’s test and information criteria can be 

found on Table 5.11. When the slope coefficient was large, there was only a significant degree of 

misclassification for AIC when comparing the exponential model to a quadratic model in small 

Level 1 and Level 2 sample sizes. In no other condition was there a significant degree of 

misclassification of information criteria when the exponential slope was strong.  

 In the weaker exponential slope condition, there was a significant degree of 

misclassification among information criteria whenever Level 1 sample size was medium or large. 
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Regardless of Level 2 sample size, information criteria had a significant degree of 

misclassification for both comparison models. When Level 1 sample size was large, 

misclassification rates increased with increases in Level 2 sample sizes, reflecting the anomalous 

results found for correct model selection. In the small Level 1 sample size, there was a 

significant degree of misclassification when comparing the exponential and quadratic models. At 

this small Level 1 sample size, the effect of Level 2 sample size was as expected; increasing 

Level 2 sample size reduced the degree of misclassification. 

 Misclassification of Vuong’s test exhibited the same patterns as information criteria. 

When Level 1 sample size was large, the misclassification rate of Vuong’s test increased with 

Level 2 sample size and when Level 1 sample size was small the effect of Level 2 sample size 

was as expected. The largest degree of misclassification occurred when both Level 1 and Level 2 

sample sizes were large.  

 Non-significance rates of Vuong’s test are presented on Table 5.12. Shaded cells 

represent conditions in which information criteria selected the incorrect model in a significant 

proportion of replications. As can be seen from the table, when non-significance rates of 

Vuong’s test were large, misclassification rates of information criteria tended to be large as well. 

Once again this illustrates the benefit of Vuong’s test over that of information criteria. While 

information criteria were leading to incorrect results in upwards of 30% of replications, Vuong’s 

test tended to report non-significance. 
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Table 5.11 Incorrect Model Selection for True Exponential Decay Model with Random Intercept and Slope 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   L1SS 

   5 9 13 

Slope 
Alt 

Model 
L2SS 

Vuong‘s 

Test 
AIC AICC BIC 

Vuong‘s 

Test 
AIC AICC BIC 

Vuong‘s 

Test 
AIC AICC BIC 

-.776 

Quad 

50 1% 13% 12% 7% 0% 1% 1% 1% 0% 0% 0% 0% 

100 0% 7% 7% 3% 0% 0% 0% 0% 0% 0% 0% 0% 

200 0% 2% 2% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

Power 

50 0% 12% 12% 12% 0% 7% 7% 7% 1% 6% 6% 6% 

100 0% 4% 4% 4% 0% 3% 3% 3% 0% 4% 4% 4% 

200 0% 2% 2% 2% 0% 2% 2% 2% 1% 4% 4% 4% 

-.55 

Quad 

50 3% 28% 27% 20% 4% 13% 13% 12% 5% 10% 10% 10% 

100 2% 26% 26% 18% 4% 15% 15% 14% 5% 15% 15% 14% 

200 2% 24% 24% 18% 4% 21% 21% 20% 8% 21% 21% 21% 

Power 

50 0% 12% 12% 12% 2% 15% 15% 15% 6% 21% 21% 21% 

100 0% 4% 4% 4% 2% 15% 15% 15% 6% 28% 28% 28% 

200 0% 1% 1% 1% 2% 13% 13% 13% 10% 34% 34% 34% 
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Table 5.12 Non-significance Rates of Vuong’s Test for the True Exponential Decay Model with 

Random Intercepts and Slopes 

 

 

 

 

 

 

 

 

 

Power. Logistic regressions with Firth’s penalized likelihood were used to test main 

effects models of study factors on the power of Vuong’s test to detect the true data generating 

process when random intercepts and slopes were included in non-linear models. Results 

indicated significant effects of Level 1 sample size (= 3303.76, p < .0001), Level 2 sample 

size (= 630.66, p < .0001), and slope coefficient, = 2001.04, p < .0001. Power 

increased as any study factors increased.  

A full logistic regression model resulted in a significant three-way interaction was 

between Level 1 sample size, Level 2 sample size and effect size, = 57.76, p < .0001. 

Empirical power rates only for Vuong’s test can be seen on Table 5.13 to aid in understanding 

the interaction. The two way interaction between Level 1 and Level 2 sample size for the small 

effect size, tended to differ in the larger effect size. When effect size was small, the Level 1 by 

Level 2 sample size interaction was such that power decreased as Level 2 sample size increased 

at larger Level 1 sample sizes. In the large effect size condition, there were diminishing returns 

   L1SS 

Slope Alt Model L2SS 5 9 13 

-.776 

Quad 

50 85% 3% 1% 

100 67% 1% 1% 

200 38% 2% 2% 

Power 

50 63% 48% 43% 

100 46% 29% 23% 

200 25% 13% 13% 

-.55 

Quad 

50 90% 35% 15% 

100 86% 31% 22% 

200 78% 37% 30% 

Power 

50 64% 49% 46% 

100 45% 46% 49% 

200 27% 43% 52% 
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on increasing Level 2 sample sizes within Level 1 sample sizes. Still, power generally increased 

as Level 2 sample size increased at specific Level 1 sample sizes, except for very specific and 

anomalous instances.  

Table 5.13 Empirical Power rates of Vuong’s Test for Exponential Data Generating Process 

 
  L1SS 

True 

Model 
Candidate L2SS 5 9 13 

-.776 

Quadratic 

50 14% 97% 99% 

100 33% 99% 99% 

200 62% 98% 98% 

Power 

50 37% 52% 56% 

100 54% 71% 77% 

200 75% 87% 86% 

-.55 

Quadratic 

50 7% 61% 80% 

100 13% 65% 73% 

200 20% 59% 63% 

Power 

50 36% 50% 48% 

100 55% 52% 45% 

200 74% 55% 38% 

To explore what might be contributing to this phenomenon, I examined parameter bias 

for the estimated exponential model for each condition (Table 5.14).  As evidenced by Table 

5.14, there was significant bias in fixed effects contributing to increased misfit as Level 1 sample 

size and/or Level 2 sample size increases. When Level 1 sample size was large, the largest 

degree of bias was present in the estimated parameters; the intercept estimate was negatively 

biased whereas the slope estimate was positively biased. Within Level 1 sample sizes, bias also 

increased as a function of Level 2 sample size. Furthermore, the acceleration of bias also 

appeared to increase across Level 2 sample sizes as Level 1 sample size increased. The same 

phenomenon appeared to be true for the large effect size condition, however, the effects of Level 

1 and Level 2 sample size, as well as the absolute degree of bias, tended to be lower. It is 

reasonable to assume that this estimation error is driving the curious power results.  



 

 

157 

Table 5.14 Absolute and Percent Bias in Fixed Effects Estimates for Exponential Decay Models 

   True Values 

  27 -.55 27 -.776 

  𝛾00 𝛾10 𝛾00 𝛾10 

  Estimation Bias 

L1 SS L2 SS Abs % Abs % Abs % Abs % 

5 

50 -2.439 9% 0.104 19% -1.751 6% 0.079 10% 

100 -2.534 9% 0.107 19% -1.750 6% 0.080 10% 

200 -2.583 10% 0.109 20% -1.885 7% 0.082 11% 

9 

50 -4.127 15% 0.163 30% -1.945 7% 0.088 11% 

100 -4.678 17% 0.181 33% -2.210 8% 0.096 12% 

200 -5.106 19% 0.196 36% -2.364 9% 0.101 13% 

13 

50 -5.277 20% 0.196 36% -2.277 8% 0.098 13% 

100 -6.235 23% 0.227 41% -2.359 9% 0.102 13% 

200 -7.290 27% 0.255 46% -2.508 9% 0.106 14% 

 

True Power Model. 

Selecting the Correct Model. Overall, Vuong’s test performed well when detecting the 

correct model when the true data generating process was a power model with random intercepts 

and slopes. Vuong’s test was only underpowered in one condition, when Level 1 and Level 2 

sample size were both small, the slope was weak and the alternate model was a quadratic. In this 

condition the correct classification rate to detect the true power model was 63%. Information 

criteria performed nearly perfectly across all conditions.  Clearly, misclassification was not an 

issue and so I omit its discussion and the table. I omit the non-significance rate table for the same 

reason. Correct classification rates can be found on Table 5.15. 
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Table 5.15 Correct Model Selection Rates for True Power Model with a Random Intercept and Slope 

   L1SS 

   5 9 13 

Slope 
Alt 

Model 
L2SS 

Vuong‘s 

Test 
AIC AICC BIC 

Vuong‘s 

Test 
AIC AICC BIC 

Vuong‘s 

Test 
AIC AICC BIC 

-.86 

Quad 

50 96% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

Exp 

50 88% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

100 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

200 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 

Quad 

50 59% 96% 96% 96% 98% 100% 100% 100% 100% 100% 100% 100% 

 100 81% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

-.45 200 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 

Exp 

50 21% 80% 80% 80% 52% 95% 95% 95% 80% 99% 99% 99% 

 100 32% 88% 88% 88% 80% 99% 99% 99% 97% 100% 100% 100% 

 200 51% 95% 95% 95% 96% 100% 100% 100% 100% 100% 100% 100% 
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 Power. Logistic regression models with Firth’s penalized likelihood were used to explore 

the main effects of study factors that influence power when Vuong’s test was used to distinguish 

between non-linear models with random intercepts and slopes before exploring complete models 

with interactions among all study factors. Results of the main effects model indicated significant 

main effects of Level 1 sample size (= 165.98, p < .0001), Level 2 sample size (= 

308.88, p < .0001), and effect size,= 287.33, p < .0001. Increases in any study factor 

resulted in more power to detect the true power model on average. Analyses of a full model 

examining the interactions among study factors indicated only a significant interaction between 

Level 1 and Level 2 sample size, = 9.64, p =.047, such that as either sample size increased, 

the effect of additional units of the other sample size decreased. This interaction was 

unsurprising considering that power was basically at its asymptote in all conditions.  

 Table 5.16 shows bias in estimated parameters for the true power model. Similar to the 

exponential model, the intercept analogue was consistently downwardly biased whereas the slope 

parameter exhibited consistent upward bias. Despite this bias, it is likely that a ceiling effect was 

present as a result of the effect sizes generated. Unfortunately, it was not possible to consistently 

estimate smaller effect sizes under the existing conditions.  

 

 

 

 

 

 

 



 

 

160 

Table 5.16 Absolute and Percent Bias in Fixed Effects Estimates for Power Models 

   True Values 

  27 -.45 27 -.86 

  𝛾00 𝛾10 𝛾00 𝛾10 

  Estimation Bias 

L1 SS L2 SS Abs % Abs % Abs % Abs % 

5 

50 -0.091 0% 0.021 5% -0.061 0% 0.021 2% 

100 -0.103 0% 0.022 5% -0.082 0% 0.020 2% 

200 -0.044 0% 0.024 5% -0.048 0% 0.020 2% 

9 

50 -0.249 1% 0.035 8% -0.105 0% 0.028 3% 

100 -0.200 1% 0.038 8% -0.123 0% 0.029 3% 

200 -0.243 1% 0.037 8% -0.072 0% 0.029 3% 

13 

50 -0.360 1% 0.049 11% -0.147 0% 0.034 4% 

100 -0.388 1% 0.049 11% -0.187 0% 0.035 4% 

200 -0.414 2% 0.051 11% -0.156 0% 0.035 4% 

 

Discussion 

 In this study I examined the effects of study factors on the power of Vuong’s test to 

detect the true model when non-nestedness manifested as different functional forms of growth. I 

also compared the performance of Vuong’s test to the performance of information criteria to 

select the correct model. This evaluation was conducted in two contexts, random intercept only 

models and random intercept and slope models.  

 The factors that contributed to and the performance of Vuong’s test in random intercept 

only non-linear models was generally as expected with the exception of the ICC effect. When the 

true data generating process was exponential, increases in Level 1 sample size, Level 2 sample 

size, and ICC tended to increase power. While increases in power would be expected from 

increases in sample size at either level, ICC is usually expected to decrease power as each 

individual data point contributes less unique information. When alternative models were other 

non-linear forms (i.e., exponential or power) there was a curvilinear effect of slope coefficient 

magnitude on the power to detect the correct model. As the slope coefficient magnitude used to 
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manipulate the effect size increased, power increased to a point before it decreased again. This 

effect was not surprising, however, as Figure 5.1 showed that models will tend to fit similarly 

when slopes are large or small. Overall, Vuong’s test tended to be better at distinguishing 

between quadratic and exponential models than power and exponential models. In comparison to 

the information criteria, Vuong’s test tended to outperform information criteria in that it rarely, if 

ever, selected the incorrect model. 

 When the data generating process was a power function, the correct classification rate 

was generally high across medium and large Level 1 sample sizes unless Level 2 sample size 

was small and the slope was weak. In general, where power had not yet reached its asymptote 

increases in Level 1 sample size or Level 2 sample size tended to improve power, however, 

increases in Level 1 sample size tended to improve power to a greater degree. When comparing 

Vuong’s test to the information criteria, results for power models were very similar to those for 

exponential models. When information criteria selected the incorrect model, Vuong’s test failed 

to find significance in favor of either model in a large proportion of replications. Vuong’s test 

was beneficial over information criteria in that it rarely if ever suggested the incorrect model 

entirely.  

 When random slopes were included, power became significantly worse when the true 

data generating process was exponential. Power was greater for the large effect size condition 

than the small effect size condition, however, Level 1 and Level 2 sample size exhibited a 

strange interaction. When Level 1 sample size was small, increases in Level 2 sample size 

increased power whereas when Level 1 sample size was large, increases in Level 2 sample size 

decreased power but only when effect size was small. Exploratory analyses indicated that in the 
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small effect size condition the intercept parameter was downwardly biased while the slope 

parameter exhibited upward bias.  

 When comparing the performance of Vuong’s test to the performance of information 

criteria, once again the biggest benefit of Vuong’s test occurred when the alternative model was 

quadratic. However, when Level 1 sample size was large and effect size was small, the amount 

of misclassification when the alternative model was a power model was the highest recorded in 

this particular study. Misclassification rates reached as high as 34%. In the large effect size 

condition, Vuong’s test outperformed information criteria generally in the small Level 1 sample 

size when the alternative candidate was a quadratic model, and across all Level 1 sample sizes 

when the alternative was a power model.  

For the cases in which the data generating process was a power model, power was almost 

always adequate regardless of sample size or comparison and there was almost never any 

misclassification from information criteria. It appears that the estimable slopes resulted in a 

ceiling effect of power.  

While statistical power decreased at either end of the slope spectrum, the decrease in 

power manifested in different ways. Referring back to Table 5.1, when comparing power and 

exponential functions, statistical power was similar at the largest and smallest slope values. 

However, when comparing quadratic and exponential functions, power was greater when the 

slope was stronger compared to when it was weaker. In stronger slope conditions, the true model 

likely reached the asymptote within the functional space even when there were few Level 1 units 

and created additional misfit in the quadratic model. With additional Level 1 units, this effect 

was exaggerated and it became easier to distinguish between the true non-linear forms and the 

quadratic models.  
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The parameter bias that was encountered when the slope coefficient was small, the data 

generating process was exponential, and random intercepts and slopes present was an unexpected 

finding. It is unclear as to why adding a random slope into the data generation would introduce 

bias into the fixed effects. It is also unclear as to why bias became worse as sample size became 

larger. This is an open question for research and should be evaluated before more work on this 

topic is done with non-linear models.  

An additional issue in this study was the difficulty with determining “effect size” in terms 

of model fit. While the slope parameter is a convenient way to manipulate the degree to which 

models take a specific shape it is clear that if research into this method should continue, it will be 

important for researchers to assess and manipulate model fit directly. One potential avenue for 

such a metric is the root mean square error. If a researcher knows the data generating process, as 

they would in a simulation study, the difference in predicted values from the estimated models 

from the true model would provide a closer analogue to K-L divergence than that achieved 

through manipulating model parameters. While RMSE is a good metric on which to base future 

research, it is unclear as to how it can be directly manipulated.  

In this study I explored the study factors that contribute to power in Vuong’s test to 

distinguish between models with different functional forms and compared it to the performance 

of information criteria. While Vuong’s test outperformed information criteria outright in a 

number of cases, there were other cases in which its superiority was not so obvious. As was 

shown in the previous two chapters, those circumstances in which the power of Vuong’s test was 

low (generally with small differences between models) are precisely the circumstances in which 

using Vuong’s test provided benefit over information criteria. While Vuong’s test may not find a 

significant difference between models, it rarely if ever suggests the incorrect model, except when 
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a random slope was included in the model. Information criteria, on the other hand, will suggest 

the incorrect model more often that Vuong’s test when the power of Vuong’s test is low.  

While the previous three chapters have examined the performance of Vuong’s test in 

simulation studies, the test has not yet been applied to real data using multilevel models. In the 

next chapter chapters I use real data to apply Vuong’s test to three cases which might be seen in 

practice: non-nested covariate sets, non-nested Level 1 residual error structures, and non-nested 

functional forms. I conclude the dissertation with a general discussion highlighting overall 

findings, limitations of these studies, and future directions.  
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Chapter 6: Applications 

In the previous three chapters I have extended Vuong’s test to three scenarios where non-

nested models commonly arise in multilevel data: different predictor sets, Level 1 residual 

covariance structures, and non-linear functional forms.  While the previous studies have 

illustrated the utility of Vuong’s test through simulation, they have not applied the test to any 

real data. In this chapter I illustrate how using Vuong’s test might influence results from two 

previously published studies and a publically available data set. The first application revisits data 

from Moreno et al. (2016) in which the relationship between positive affect and inflammation in 

breast cancer survivors was explored. While the original study was focused on individual 

differences in inflammation related to positive affect, the current application of Vuong’s test will 

address a modeling decision: which of two fatigue indicators to control for in the model. Because 

the simulation study conducted in Chapter 3 included only a small number of covariates beyond 

time, the application will be examined in two parts. The first analysis will examine growth 

curves where only fatigue is controlled for. The second analysis will examine the fully 

conditional growth models including all of the variables modeled in Moreno et al. (2016). 

Further, both of these analyses will be applied to the two inflammation markers of interest in the 

original study, soluble tumor necrosis factor receptor type II (sTNFR-II) and C-reactive protein 

(CRP). 

The second application will explore the case of non-nested Level 1 residual covariance 

structures. Following the lead of Bollen and Curran (2004), I use household income data in two 

year increments between 1986 and 1994 from the freely available National Longitudinal Study 

of Youth (NLSY). In doings so, I compare the autoregressive structure with a lag of one (AR(1)) 

to the three-banded Toeplitz structure (TOEP(3)) as done in Chapter 4. While it is unclear which 
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Level 1 residual covariance structure should be preferred in these data, this example reflects the 

modeling process that would be undertaken in an applied setting.  

Finally, the third application will examine competing functional forms of growth. For this 

illustration, previous data from Weisz et al. (2012) will be examined. These data were used to 

compare the effect of a modular therapy on children’s problem behaviors to standard manualized 

treatment and a “treatment-as-usual” control group. Overall, children’s improvement progressed 

nonlinearly with rapid improvement early in treatment which slowed over time. In a randomized 

controlled trial such as Weisz et al., this behavior is exactly what researchers would hope to 

observe; the treatment is highly effective for clients at the outset of treatment and improvement 

slows as the target behaviors approach a baseline. To accommodate this nonlinearity, Weisz et 

al. applied a logarithmic transformation to linearize the time trend.  

While there may be substantial practical benefits for linearizing a time trend through 

transformation, not least of which are specification and estimation, there are also arguments in 

favor of modeling the time trend on its original scale. Discussing results in terms of “days”, for 

example, is more intuitive than the adjusted time scale of “log days”.  Additionally, linearizing 

time does not allow one to incorporate certain parameters that map on to theoretically important 

aspects of growth (e.g. asymptotes). Excluding such parameters has the potential to limit the 

understanding of the nature of change and its determinants (Grimm, Ram, & Hamagami, 2011).  

Non-nested Covariate Sets 

  Moreno, Moskowitz, Ganz, and Bower (2016) examined data to explicate the relationship 

between high and low arousal positive affect and inflammation in 186 women who had recently 

completed treatment for breast cancer. Although the study was focused on the relationship 

between positive affect and inflammation, a number of covariates were included in the model to 
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control for individual factors such as type of treatment, age, and time since last treatment, among 

others. During peer review, one reviewer had noted that our measure of high arousal positive 

affect (e.g., “excited”, “active”, and “enthusiastic”) might simply capture the absence of fatigue, 

rather than positive feelings. Cancer survivors in particular have been shown to experience 

elevated levels of fatigue and as a result the reviewer thought our study would be strengthened 

by including a measure to control for it.  

 Two candidates for fatigue were eligible for inclusion in the model: fatigue severity and 

fatigue interference, both of which were measured by the Fatigue Symptom Inventory (Hann et 

al., 1998). Fatigue severity assessed how fatigued a participant had been for the past week, how 

many days they had felt that way, and the extent of each day on average they felt fatigued (none 

of the day to the entire day; Hann, Jacobsen, Azzarello et al., 1998). Fatigue interference 

assessed the degree to which participants felt that fatigue hindered their performance of normal 

activities. While arguments could be made for including either predictor, only one predictor was 

found to be related to the outcome despite their moderate to high collinearity (r=.77). Two 

models were fit using SAS Proc MIXED with default REML estimation and Satterthwaite 

degrees of freedom. Both models were identical in the measures of positive affect, time, and 

other covariates (e.g., gender, treatment, etc.) but differed in the inclusion of fatigue:  one 

contained interference and the other severity. Results indicated that fatigue severity was 

significantly related to sTNF-RII levels whereas fatigue interference was not. Neither measure of 

fatigue was significantly related to CRP. Therefore, Moreno et al (2016) chose to control for 

fatigue severity in the models. 
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Determining which covariate to control for is a prime example of where Vuong’s test for 

non-nested models could be applied. Thus, I revisited the decision of which fatigue covariate to 

include with Vuong’s test. For each of the two inflammation markers, sTNF-RII and CRP, I fit 

restricted models including time and either fatigue interference or fatigue severity as well as 

complete models with full predictor sets differing only in their fatigue variables. All models 

included random intercepts and time slopes as well as an intercept and slope covariance. They 

were estimated using SAS Proc MIXED with maximum likelihood estimation and Satterthwaite 

degrees of freedom. The goal of this approach was to first generate results directly comparable to 

the simulation study in Chapter 3 and then to examine how Vuong’s test would be used in a truly 

naturalistic setting. For all models, data with any missing values in the predictors or outcomes 

were omitted resulting in a 10% loss of subjects. In its current state, the SAS macro developed to 

conduct Vuong’s test cannot incorporate missing values. 

 sTNF-RII. Models examining sTNF-RII were estimated on data from 167 individuals 

with at most 3 time points of data. The residual ICC after accounting for the fixed and random 

effects of time was .84, indicating that much of the variability in sTNF-RII was between persons. 

Intercept and slope were highly correlated at -.45.  

 When comparing the candidates with only time and the fatigue variable, Vuong’s test was 

non-significant at the nominal .05 level, ZVT = -1.425, pinterference = .923, pseverity = .077. The 

notation used here is similar to that used by Merkle et al. (2015) to convey the results of Vuong’s 

test. ZVT refers to Vuong’s test statistic given by Equation 21. Each “p” refers to the probability 

of the model defined by the variable in the subscript; pinterference refers to the probability 

associated with preferring the model with fatigue interference whereas pseverity refers to the 

probability associated with preferring the model with fatigue severity. The information criteria 
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(Table 6.1) uniformly suggested that fatigue severity should be preferred over fatigue 

interference. In the simulation study reported in Chapter 3, Vuong’s test suggested the incorrect 

model in at most 1% of replications when non-nestedness occurred in Level 2 covariates, Level 2 

sample size was 100, and Level 1 sample size was 5. While this study contains fewer Level 1 

samples, it contains more Level 2 samples, which, according to Chapter 3, has a greater effect on 

the power of Vuong’s test when non-nestedness occurs at Level 2. Additionally, fatigue severity 

explained 3.1% more variance in the intercept than fatigue interference. The empirical power 

rates observed in Chapter 3 suggest that power for this test is somewhere between 9% and 18%. 

Given that Vuong’s test appears underpowered, because it is marginally significant in support of 

fatigue severity in a decision commensurate with the information criteria it would be reasonable 

to select the model with fatigue severity over fatigue interference.  

Table 6.1 Information Criteria in Growth Models for sTNF-RII Conditional on Only Fatigue 

 AIC AICc BIC 

Fatigue Interference -244.55 -244.31 -222.72 

Fatigue Severity -250.30 -250.06 -228.48 

 

 A more realistic comparison was made using the full models estimated by Moreno et al 

(2016). Because fatigue was simply a covariate to be controlled for in this analysis and not a 

variable of interest, it is unrealistic that it would be tested by itself. Using the same methods as 

the previous comparison, two models were estimated with all of the effects of interest included. 

That is, models were completely specified as they were in Moreno et al. Results with the full 

model were less convincing. While the information criteria maintained support for fatigue 

severity (Table 6.2), Vuong’s test trended away from significance, ZVT = -.892, pinterference = .814, 

pseverity = .186. Given the study conditions and the reduced difference between models, now 2.3% 

more variance explained, the power of Vuong’s test would now be even lower. While arguments 
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can be made for a more lenient cutoff for the test statistic in the previous example, the current 

results require a larger stretch. Still, taken together there appears to be modest support for the 

preference of fatigue severity, although more evidence should be gathered to make a stronger 

claim.  

Table 6.2. Information Criteria in Fully Conditional Growth Models for sTNF-RII. 

 

 

 

CRP. Models testing the relationship between positive affect and CRP were also 

reexamined using Vuong’s test. Again, these analyses utilized only 167 of the original 189 

participants due to missing data. Residual ICC was almost as high as it was for sTNF-RII at .75. 

A similar analysis with options identical to those specified above was used to test the CRP 

models. 

 When comparing candidates with only time and each respective fatigue variable, Vuong’s 

test was non-significant, ZVT = -.381, pinterference = .648, pseverity = .352. While information criteria 

uniformly agreed that the model including fatigue severity should be the preferred, differences 

were exceedingly small (Table 6.3). While the simulation results in Chapter 3 suggest that 

Vuong’s test would be severely underpowered (Level 1 observations: 3, Level 2 observations: 

167, variance explained difference = .2%), the thin margin by which fatigue severity fits the data 

better than fatigue interference indicates that there is too little information on which to make a 

decision in favor of one model over the other. Again, even if .05 is too stringent a criteria for 

Vuong’s test, the .35 significance level is far too liberal to suggest support. 

 

 

 AIC AICc BIC 

Fatigue Interference -294.19 -292.7 -238.06 

Fatigue Severity -297.86 -296.35 -241.74 
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Table 6.3 Information Criteria in Growth Models for CRP Conditional on Only Fatigue 

 AIC AICc BIC 

Fatigue Interference 1391.09 1391.33 1412.91 

Fatigue Severity 1390.65 1390.89 1412.47 

 

 A more realistic approach was employed by testing the final model from Moreno et al. 

(2016) in its entirety. Similar to the results for sTNF-RII, there was less of a difference between 

fully conditional models when comparing fatigue interference with fatigue severity. Vuong’s test 

and the information criteria all agree that choosing between either of these two variables for 

inclusion in the model would be trivial. AIC, AICc, and BIC are essentially identical values 

(Table 6.4). Even the probability of selecting either model from Vuong’s test was approaching 

50%, ZVT = -.028, pinterference = .511, pseverity = .489. As a result, it can be concluded that both 

covariates would function equally well in this context.  

Table 6.4. Information Criteria in Fully Conditional Growth Models for CRP. 

 AIC AICc BIC 

Fatigue Interference 1335.7042 1337.21 1391.83 

Fatigue Severity 1335.6969 1337.20 1391.82 

 

 Taken together, the results above suggest that there is mild evidence supporting the 

decision to include fatigue severity over fatigue interference, at least when examining sTNF-RII. 

Both fatigue severity and fatigue interference performed equally well when predicting CRP. 

There is no evidence clearly favoring one covariate over the other. For continuity it would be 

appropriate to include fatigue severity in the model when analyzing CRP. While it may be 

unrealistic to expect substantive researchers to report these tests, especially when they do not 

concern the focal predictors, the method by which these modeling decisions are made should be 

acknowledged at some point in a manuscript.  
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Non-nested Residual Variance Structures.  

Kwok, West, and Green (2007) showed that misspecification (i.e., non-nestedness) of the 

Level 1 residual covariance matrix can lead to a number of issues in parameter estimation, 

including overestimation of  variances of the random effects at Level 2, overestimation of 

standard errors of growth parameters, and lower statistical power to detect fixed effects. In order 

to mitigate these negative effects of misspecification, it is important to try to recover the true 

residual covariance matrix as closely as possible. To illustrate how Vuong’s test could be used to 

compare residual Level 1 covariance structures in multilevel models, I provide an example using 

the National Longitudinal Study of Youth (NLSY) following the methods of Bollen and Curran 

(2004).  

NLSY data were originally collected to understand, in detail, the life course experiences 

of young adults in America (Bureau of Labor Statistics). Specifically, data were collected on a 

variety of topics including labor market behavior, health issues, financial information, etc. to 

examine the transition of young adults into the work force. Beginning in 1979, the original 

sample included survey responses from 12,686 individuals between the ages of 14 and 22, half of 

whom were female. A majority of the original sample was white (59%), however black (25%) 

and Hispanic or Latino (16%) respondents were represented as well. This sample was intended to 

be nationally representative of the United States at the time.  

Following Bollen and Curran (2004) I extracted respondents’ total net family income 

over the previous calendar year in two year increments from 1986 to 1994 (N = 3995). All 

respondents reported complete data at all time points. Bollen and Curran report using the same 

data extracted for this study, however, for an unknown reason their sample consisted of only 

3912 individuals. The current sample matched Bollen and Curran in terms of mean age (24.7 
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years, SD = 2.2) with a minimum age of 21 years and a maximum of 29 years, however, gender 

and ethnic composition varied slightly. Despite the unexplained differences in samples, I 

maintain methodological consistency with Bollen and Curran and use the square root 

transformation of the net household income variable to reduce kurtosis and skewness of the data 

in its original scale.  

 In the motivational example, Bollen and Curran (2004) used these data to illustrate the 

utility of their Autoregressive Latent Trajectory model. Because of their assumption that these 

data are autoregressive, I take the position that Vuong’s test should prefer the autoregressive 

model to a Toeplitz model with three bands.  

 Results of Vuong’s test comparing the AR(1) model to the TOEP(3) model indicate that 

evidence the more flexible TOEP(3) model fits the data better than more restricted AR(1) model, 

ZVT = -3.052, pAR(1) = .999, pTOEP(3) = .001. Differences in information criteria also supported the 

TOEP(3) model despite the additional complexity.  Information criteria can be found on Table 

6.5.  

Table 6.5 Information Criteria for Models Non-nested in Level 1 Residual Variance Structure 

 AIC AICc BIC 

Autoregressive 227925.42 227925.42 227963.18 

Toeplitz(3) 227878.19 227979.19 227922.23 

  

 The estimated residual covariances for both the AR(1) and TOEP(3) were  

𝐴𝑅(1) =

[
 
 
 
 



4292.33 433.65 43.81 4.43 . 45
433.65 4292.33 433.65 43.81 4.43
43.81 433.65 4292.33 433.65 43.81
4.43 43.81 433.65 4292.33 433.65
. 45 4.43 43.81 433.65 4292.33]
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𝑇𝑂𝐸𝑃(3) =

[
 
 
 
 



4376.45 542.59 392.91 0 0
542.59 4376.45 542.59 392.91 0
392.91 542.59 4376.45 542.59 392.91

0 392.91 542.59 4376.45 542.59
0 0 392.91 542.59 4376.45]

 
 
 
 

. 

Examining the estimated values of these matrices conveys obvious differences in the 

representation of the residual covariances. The AR(1) was forced to estimate the residual 

covariances in an exponential form. That is the coefficient scaling the variance for the off-

diagonal elements decreases exponentially as it gets further away from the diagonal. 

The TOEP(3) structure implies that the residual covariances do not necessarily decrease 

at an exponential rate. While the relationship between the diagonal and the first off diagonal 

element of the TOEP(3) matrix resembled that of the AR(1) matrix, the values in the second off 

diagonal were markedly different. There was considerably more covariance estimated between 

time points of lag 2 for the TOEP(3) structure than there was for the AR(1) structure. While 

misspecification likely remains in the third and fourth off diagonal elements of the TOEP(3) 

matrix, it is likely that the discrepancy between the two matrices in the second off diagonal 

element provides enough of a difference in fit for Vuong’s test to prefer the TOEP(3) model.   

Non-nested Functional Forms 

To examine how Vuong’s test could be applied to real data when comparing different 

functional forms, I revisited data from Weisz et al (2012). In this study, researchers examined the 

effect of a modular therapy on children’s problem behaviors and compared it to the efficacy of 

standard manualized treatment and a treatment-as-usual control group. Researchers reported 

results of their analyses with time transformed to log days, indicating that a long right tail existed 

in the dataset that may have attenuated the treatment effects had the trend been modeled as 

linear. The log transformation effectively linearized this curvilinear trend by transforming time 

values on the x-axis to be less extreme. Functionally, this transformation condensed the larger 
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time values to give them less leverage. While log transforming the time variable is an accepted 

method for linearizing the curvilinear relationship that was initially observed (Grimm, Ram, & 

Hamagami, 2011), doing so may complicate interpretation.  

Alternatively, the curvilinear relationship can be modeled directly. While this approach 

might ameliorate some problems resulting from transformations (i.e., interpretability), others 

may be introduced. For instance, while a quadratic time effect might be suitable to model a 

curvilinear relationship within a restricted space, the form of the growth implies a change of 

direction in the future (or past). Furthermore, the function will decrease (or increase) to infinity 

after the shift. Another option to address curvilinear relationships is to model a naturally non-

linear form such as exponential decay. In cases when values decrease and reach some asymptote 

without changing direction, exponential decay is an appealing model. Non-linear models are not 

without their own issues, however, in that they may be exceedingly hard to estimate and model 

parameters do not necessarily map neatly onto those of the more common linear models. Still, if 

the more complex model can provide a better fit to the data and help to explain the phenomenon 

under study with more accuracy, it can be worth the effort.  

One-hundred and seventy four children (70% male) were assessed and treated over an 

average of 221.9 days (SD = 143.7, Mean sessions = 16.8, SD = 11.4) for anxiety, depression, or 

disruptive behavior (Weisz et al. 2012).  However, as the program developed to conduct Vuong’s 

test is unable to incorporate cases with missing values, some data was excluded from the 

analysis. Complete data from 129 (59% male) children treated over an average of 132.14 days 

(SD = 55.16, Mean sessions = 15.22, SD = 7.06) were included in these analyses. While this 

exclusion is not ideal and makes the unrealistic assumption that missing data is ‘missing 

completely at random’ (Enders, 2010), the remaining data should suffice for the purposes of this 
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demonstration. Weisz et al (2012) found a curvilinear relationship in the data to warrant 

transformation to log days, I compared the fit of the linear model with log days to the naturally 

non-linear exponential decay model. A logical first step in analyzing these data would be to 

determine the time trend that best models the observed change.  

 Examining unconditional growth models where the growth trend was either non-linear or 

linear on a log transformed time variable resulted in residual ICCs of .75 and .77, respectively. 

Results of Vuong’s test comparing the two models indicated a non-significant difference in fit, 

but support for the non-linear exponential model trended toward significance, ZVT = 1.37, 

pexponential = .086, plinear = .914. Information criteria uniformly support this conclusion. AIC, 

AICc, and BIC all suggest the exponential model is a better fit to the data than the linear model 

with the log transformation of time. Information criteria can be found in Table 6.6.  

Table 6.6 Information Criteria for Unconditional Growth Models of Problem Behaviors 

 AIC AICc BIC 

Exponential Decay 9945.2 9945.2 9962.3 

Linear Log Transform 10027.2 10027.3 10044.4 

 

 The analysis program was further adapted to incorporate a model testing the effect of 

modular therapy and standard manualized treatment on the time trend (i.e., the treatment by time 

interactions). Thus, two new models were fit incorporating dummy variables for modular 

treatment and standard manualized treatment compared to the treatment-as-usual control group. 

These Level 2 indicator variables were included as predictors of both the random intercept and 

random time slope. The time by treatment interaction, specifically the effect for modular 

treatment (𝛾11), would typically be the parameter of interest in this type of analysis. The two-

level equations for this analysis were specified as: 
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𝐿𝑖𝑛𝑒𝑎𝑟:   

 𝐿𝑒𝑣𝑒𝑙1:𝐵𝑃𝐶𝑡𝑜𝑡 = 𝛽0𝑗 + 𝛽1𝑗ln(𝑡𝑖𝑚𝑒𝑖𝑗) + 𝜖𝑖𝑗 

(52)  𝐿𝑒𝑣𝑒𝑙2:β0j = 𝛾00 + 𝛾01𝑀𝑀𝑇.𝑗 +𝛾02𝑆𝑀𝑇.𝐽 + 𝑢0𝑗 

 𝛽1𝑗 = 𝛾10 + 𝛾11𝑀𝑀𝑇.𝑗 + 𝛾12𝑆𝑀𝑇.𝑗 + 𝑢1𝑗 

 

And, 

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙:   

 𝐿𝑒𝑣𝑒𝑙1: 𝐵𝑃𝐶𝑡𝑜𝑡 =𝛽0𝑗 ∗ 𝑒𝛽1𝑗∗𝑡𝑖𝑚𝑒𝑖𝑗 + 𝜖𝑖𝑗 

(53)  𝐿𝑒𝑣𝑒𝑙2:𝛽0𝑗 =𝛾00 +𝛾01𝑀𝑀𝑇.𝑗 + 𝛾02𝑆𝑀𝑇.𝑗 + 𝑢0𝑗  

 𝛽1𝑗 = 𝛾10 + 𝛾11𝑀𝑀𝑇.𝑗 + 𝛾12𝑆𝑀𝑇.𝐽 + 𝑢1𝑗 

 

 

where,  

 
𝑣𝑎𝑟 (

𝑢0𝑗

𝑢1𝑗
)~𝑁(0, 𝝉) (54) 

 

and,  

 𝑣𝑎𝑟(𝜖𝑖𝑗)~𝑁(0, 𝜎2). (55) 

 Results of Vuong’s test for the conditional growth curves reflected the same result as the 

unconditional models. When treatment variables were included in the model Vuong’s test 

remained marginally significant in favor of the exponential decay model, ZVT = 1.42, pexp = .077, 
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plin = .923. Information criteria (Table 6.7) also uniformly suggested that the exponential decay 

model be preferred when treatment variables are included in the model.  

Table 6.7 Information Criteria for Unconditional Growth Models of Problem Behaviors 

 AIC AICc BIC 

Exponential Decay 9939.5 9939.7 9968.1 

Linear Log Transform 10025.1 10025.2 10053.7 

 

 Because treatment effects are of central importance to these analyses, it is worth 

examining them as well. Parameter estimates and significance tests for the exponential decay and 

linear models can be found on Table 6.8. Beginning with the exponential decay model, there was 

a significant difference in initial values between the group that received modular treatment and 

the control group. On average, children in the modular therapy group began with about 3 more 

reported problem behaviors. Furthermore, the group receiving modular therapy improved at a 

faster rate than the control condition. For each day in treatment, the exponential slope decreased 

by .002 units. There was no significant difference in initial values between the standard 

manualized treatment group and control nor was there a significant difference in their 

exponential time trends.  

Table 6.8 Parameter Estimates of Fixed Effects for the Exponential Decay and Linear Model 

with Log(Time) Predicting Differences in Problem Behaviors (BPC) Across Treatments. 

 Exponential Decay Linear w/ log(time) 

Int 8.5223*** 9.6024*** 

Time -.0018** -.3568* 

MMT 3.0611** 3.2346** 

SMT 1.3578 1.5600 

MMT*Time -.0019* -.6185** 

SMT*Time -.0005 -.4514+ 

+p < .10 * p < .05 ** p < .01 *** p < .001 

  

Results were basically identical for the linear model with the log transformed time 

variable. Initial values for the modular treatment group were significantly higher than for the 
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control group. Additionally, the modular treatment group improved at a faster rate than controls; 

the for each log day unit the difference between the modular and control conditions increased by 

.62. Once again, there was no significant difference between the manualized treatment group and 

control at the study outset. However, the difference in slopes between manualized treatment and 

control groups was marginally significant.  

 Finally, the implications for the differences in trends can be seen in Figure 6.1. The top 

panel displays the results from the exponential decay model whereas the bottom panel displays 

the results of the linear model with the log transformed time variable. Predicted values from the 

exponential decay model indicate that although initial values for the modular treatment are 

greatest, by the end of the study (25 weeks indexed by days) the modular therapy group has the 

lowest number of problem behaviors. Conversely, the linear model suggests that the standard 

manualized treatment has the best outcome at the end of the study. Although significance tests 

would lead to similar conclusions, modular treatment performs better than usual care, plots of the 

effects over time paint a different picture. This example illustrates precisely why it is important 

to consider non-linear models when selecting among candidates to fit curvilinear data.  
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Figure 6.1 Predicted Values from the Exponential Decay (Top) and Linear Model with log 

transformed time variables.  

Note: The y-axis was adjusted to highlight non-linearity in the exponential decay model. The 

adjustment was carried over to the linear model for consistency. 

 

 Results from these analyses suggest exponential decay model should be preferred over 

the linear model with a log transformation of time. While both the unconditional and conditional 

growth curves fail to reach significance at the traditional .05 level, they both fall in the range of 

marginal significance in favor of the exponential model. Comparisons of information criteria 

overwhelmingly support the exponential decay model. Still, because the results of Vuong’s test 

were inconclusive, preference for one model over another should be discussed with caution. 

However, with the evidence provided in this example it would be reasonable to conclude that the 

exponential decay model best represented the non-linear trends in the data.  

Discussion 

In this chapter I have applied Vuong’s test to three real data sets in which candidate 

models were non-nested in either their covariate sets, Level 1 residual covariance structures, or 

functional forms. The first illustration applied Vuong’s test to a case where researchers needed to 

decide between two covariates to include in the model. For the first outcome, sTNF-RII, a model 

conditional only on time and the covariates suggested weak support in favor of fatigue severity, 
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whereas for a fully conditional model Vuong’s test was not able to distinguish between the two 

covariates. Furthermore, information criteria always preferred the model including fatigue 

severity, however, Vuong’s test only trended toward fatigue severity in the unconditional model 

and had almost equal probabilities of preferring both models when the fully conditional model 

was specified. In the second illustration, Vuong’s test tended to be inconclusive as were the 

information criteria for both the restricted and full models. Because neither fatigue severity nor 

fatigue interference provided a better fit to the data, it was determined that fatigue severity be 

included in models of CRP for consistency.  

Next, an illustration was provided exploring Vuong’s test when models were non-nested 

in their Level 1 covariance structures. Results suggested that the TOEP(3) structure be preferred 

over the AR(1) structure when examining net household income in the NLSY data. When 

comparing the TOEP(3) model to AR(1), information criteria indicated that the increased 

flexibility afforded by the extra parameter in the Toeplitz model significantly improved model 

fit. By examining the residual covariance matrices directly, it was clear that the autoregressive 

model was underestimating covariability among observations with lags greater than one.  

Finally, an illustration was provided comparing a truly non-linear functional form and a 

linear model with a log transformed time variable. This illustration served two purposes. The 

first was to mimic the initial step in fitting a growth curve model by testing different functional 

forms in an unconditional model. The second was to provide an example in which Vuong’s test 

with non-linear models was adapted to include predictors or covariates. Including additional 

fixed effects required modifications to the partial derivatives used to create the random effects 

design matrix used in calculating the case-wise log likelihoods whereas additional random 

effects would require additional partial derivatives. 
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Results indicated that information criteria preferred the non-linear form for both the 

unconditional and conditional models, with Vuong’s test also trending toward significance in this 

direction. When examining the significance of the effects of interest, differences in time trend 

across treatment groups, conclusions based on statistical tests would be the same across models. 

However, when examining the predicted values of each model differences started to emerge. In 

the better fitting, exponential decay model, the group who received modular therapy had the best 

predicted outcomes. This group also displayed the most non-linear slope. Conversely, predicted 

values from the linear model indicated that the standard manualized treatment group had the best 

outcomes at the study’s conclusion. Not only did the exponential decay model fit the data better, 

but it provided a more nuanced and accurate insight into the data. 

While Vuong’s test provided consistent results in these examples it may not always do 

so. Given that both candidates are in line with theory, it would stand to reason that Vuong’s test 

could be used to assess models at different stages in the fitting process until one distinguishes 

itself from the other. For instance, while it might be ideal to attempt to determine the functional 

form of growth prior to including treatment variables, if at first models fit equally well, it would 

be wise to compare them at each step until one is preferred over the other.  

Perhaps the biggest drawback of Vuong’s test is the ambiguity that remains when two 

models fit the data equally well. As a non-significant difference between two models does not 

imply that candidates are not good representations of the data, but rather fit the data no better 

than one another, a researcher would need to make a decision as to which model to report. To 

researchers in this quandary, I would suggest first choosing the model with the most theoretical 

justification. If there is ample theory for both candidates according to Vuong’s test, I would 

suggest the model with fewer parameters. Using the same logic that is typically applied to 
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likelihood ratio tests of nested models, if the added complexity of a model does not significantly 

improve its fit, the more parsimonious model should be preferred. It is an open question as to 

whether preferring the more parsimonious model in the case of a non-significant result from 

Vuong’s test would introduce substantial bias if the true model was in fact more complex. In this 

case where candidate models contain the same number of parameters, when Vuong’s test is non-

significant I would suggest using the model supported by the information criteria. Although not 

ideal, following information criteria in light of a non-significant result from Vuong’s test is not 

technically wrong in that both models fit the data equally well. Under these circumstances, 

alternative models should be acknowledged and statements about model preferences tempered 

until more definitive conclusions can be reached.  
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Chapter 7: General Discussion 

 In this dissertation I have made a case for Vuong’s Likelihood Ratio Test to be used as an 

alternative to information criteria when comparing non-nested multilevel models. I have shown 

that while information criteria might be more sensitive to differences in model fit, they are far 

more error prone than Vuong’s test. Whereas Vuong’s test rarely suggested the wrong model, 

information criteria selected the incorrect model in as many as 75% of replications. Additionally, 

I have evaluated the effects that study factors have on the power of Vuong’s test to detect the 

best model when non-nestedness manifested in several different scenarios. Overall study factors 

behaved as expected with some deviation in effect sizes and ICCs for non-linear models and 

Level 2 covariates. Finally, I provided three examples of when Vuong’s test could be used in 

practice, acknowledging the ambiguity that remains in the presence of a null result.  

While Vuong’s test may not be as sensitive as information criteria to differences in 

competing models, its potential lies in that Vuong’s test rarely selects the incorrect model. From 

this perspective, Vuong’s test outperformed information criteria in every scenario. In fact, when 

Vuong’s test was underpowered and had difficulty determining which candidate fit the data best, 

information criteria tended to perform at their worst. That is, information criteria always 

performed well when there was enough power for Vuong’s test to detect the best model but 

encountered considerable issues in other cases. 

 Across the different manifestations of non-nestedness, information criteria performed 

differentially. In the case where the true model had more parameters than the alternative model, 

the larger penalty of the BIC resulted in more misclassification than AIC or AICc. Conversely, 

when the true model contained fewer parameters than the alternative model BIC outperformed 

AIC and AICc. While this behavior might be useful when a researcher intends to find the most 
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parsimonious model, it is problematic if they are attempting to determine the best model from a 

number of candidates. Without knowing if the best model in the population has more or fewer 

parameters than alternatives, it is difficult to decide which information criterion to use. In cases 

where information criteria may disagree, it is likely that Vuong’s test will be inconclusive and 

fail to provide evidence in support of either model.  

In these instances where Vuong’s test is unable to determine which candidate should be 

preferred, Merkle et al. (2015) advocate for specifying a larger model that encompasses both 

candidates as special cases. Thus, the original candidate models would be nested within the 

newly specified more complex model. Researchers would then either use this more complex 

model for inference or continue with the modeling process to create an alternative that combines 

the two original candidates. Alternatively, a researcher could compare the more complex model 

to each original model with a nested likelihood ratio test to determine if the more complex model 

provides a significantly better fit than the original models. While this advice may prove helpful 

in certain situations, researchers may still encounter problems. Should the nested likelihood ratio 

test produce a null result, the researcher is back to square one: the more complex model does not 

provide an improvement in fit and a choice must be made between two non-nested candidates. 

Additionally, should a researcher decide to retain the more complex model regardless of a 

likelihood ratio test, there is no guidance as to how model fitting should proceed to reduce it. In 

other cases, it may not be possible or may not make theoretical sense to specify a more complex 

model in which both candidates are nested. Thus researchers may be left with a difficult decision 

and inadequate evidence on how to proceed with their study.  

Because Vuong’s test does not provide sufficient evidence to support either model does 

not mean that a researcher cannot continue their study. Recall that Vuong’s test is a relative fit 
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statistic. That is, it does not indicate the degree to which a model fits in a population, but rather 

compares the fit of one model to that of another. Leveraging the relative nature of Vuong’s test, a 

researcher can choose a number of approaches. Ideally, and especially when Vuong’s test is non-

significant, modeling decisions should be heavily based on theory. With the caveat that there is 

not enough empirical support for either theory, a researcher can discuss results in the context of 

the hypothesized theory while simultaneously reporting the results of the model fit. That is to 

say, because the alternative theory is no better than the proposed theory (and vice versa) it would 

not be incorrect to discuss one theory’s implications. However, acknowledging the possibilities 

of and differences in both theories would be the best course of action and allow researchers to 

temper their arguments in support of either claim while setting the stage for future work.  

When candidate models have different numbers of parameters and Vuong’s test does not 

indicate which model should be preferred, a researcher should be more skeptical of results from 

information criteria, as they may mistakenly select the more parsimonious model when there is 

little difference between candidates. Without a strong theory for the more complex model, a 

researcher could take the non-significant result to mean that the added complexity of the extra 

parameter does not significantly improve the fit of the model. This approach would be analogous 

to that traditionally taken for the nested likelihood ratio test and would likely align with the 

results implied by comparisons of information criteria. A researcher could also proceed by fitting 

a simpler alternative model. For example, fitting a model with a TOEP(2) structure instead of a 

TOEP(3) structure if the more complex model does not significantly improve model fit. If 

models still fit the data equally well by Vuong’s test, researchers should note the non-significant 

result and differences between the models and proceed with the model best supported by their 

theory (or most empirically interesting) with appropriate caveats.  
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The decision to include focal variables in tests of certain non-nested models is also an 

open question. While results from examples in Chapter 6 were consistent regardless of the 

inclusion of focal variables they may not always lead to the same conclusions. Initial analyses of 

the non-linear example in Chapter 6 including only a single vector representing the modular 

treatment group led to conflicting results when the variable was included or excluded. When the 

treatment effect was excluded, Vuong’s test showed mild support for the non-linear model. 

However, when the treatment effect was included in the model (predicting both intercept and 

slope), Vuong’s test was highly significant in favor of the model with a linear transformation. It 

is a matter of debate at which point non-nested models should be tested, however, when the 

focus of a study is treatment differences in trends over time I take the perspective of including 

the focal variable. The implications of these differing perspectives are a direction for further 

research,  

Alternatively, researchers still have the option of utilizing to information criteria to guide 

model selection in the event that Vuong’s test is non-significant. While the results of this 

dissertation indicate that information criteria tend to perform poorly when Vuong’s test is non-

significant and as such would suggest that this approach is ill-advised, it does still provide some 

empirical basis on which to choose a model. Even when using information criteria for model 

selection, the results of Vuong’s test, albeit non-significant, should be taken into account. Should 

Vuong’s test approach significance in favor of the model suggested by information criteria, a 

researcher could be more confident that they are selecting the best model. Caution should remain 

when using information criteria, however, if Vuong’s test does not lean in favor of either model. 

In these cases where Vuong’s test does not support either model, information criteria tend to 

perform at their worst.  
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The power of Vuong’s test to detect the best model behaved as expected. Generally, as 

sample size increased at either level, power to detect the best model increased. As power 

approached the asymptote of 100%, the relative effects of increases in sample size were 

diminished. This result came as no surprise, however, as diminishing returns of increases in 

sample size as power approaches 100% are widely known.  

 Increases in effect size (i.e., differences in model fit) also tended to increase power, 

however manipulating the slope coefficients did not always produce the expected result. In 

Chapter 5, I showed that as the slope coefficient increased power increased up to a point and then 

started to decline. While this result was unexpected, it was easily explained when examining 

plots of the predicted effects. When the non-linear slope was moderate, the alternative models 

were unable to adequately approximate the slope of the exponential model, especially when 

Level 1 sample size was small. By definition, this poor approximation led to larger differences in 

fit between the true and alternate models. As coefficients deviated from the median, alternative 

models were able to better approximate the true exponential model and power decreased.  

 This curvilinear effect of the effect size manipulation underscores the need to develop a 

well understood and easily manipulated effect size for likelihood based tests in multilevel 

models. In this dissertation I manipulated effect size by altering the magnitude of parameters. 

While this approach served its purpose of creating differences between models, it was not 

entirely clear as to how the magnitude of each effect, especially when non-nestedness occurred 

in Level 1 covariance structures and non-linear models, was to manifest in model fit or 

differences in model fit. Creating a well understood and easily manipulated measure of 

likelihood difference would help to advance the understanding of this, and other, likelihood 

based model fitting approaches.  
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 The effects of ICC were mixed between models that included non-nestedness at Level 1 

or at Level 2. When non-nestedness occurred at Level 1 (e.g., Level 1 covariate sets, Level 1 

residual covariance structures) power tended to decrease when ICC was large. Conversely, when 

non-nestedness occurred at Level 2 (i.e., Level 2 covariate sets) power was greater at the larger 

ICC. In non-linear growth models, power was greater in the large ICC condition than in the small 

ICC condition. This result was surprising because increased variability at Level 1, and more 

unique information, should provide more power. Although this test was statistically significant, 

there was no qualitative difference in power between ICC conditions.  

 The applications explored in Chapter 6 illustrate how Vuong’s test can be used to test 

non-nested models in real data. Importantly, these examples highlight the difficulties that arise 

when using the test to guide decision making and the ambiguity that remains from a null result. 

As was seen when Vuong’s test was used to compare different functional forms, even when 

results are significant, conclusions are not necessarily straightforward. Through these examples, I 

attempted to illustrate how a researcher would proceed with their study given the results of their 

model comparisons. Taken together the results of these examples illustrate that above all, it is 

paramount that model building be an iterative process that continues to acknowledge alternative 

conclusions.   

 In addition to the scenarios discussed in this dissertation, there are many other areas of 

research which might benefit from Vuong’s test. Cross-classified models are one instance in 

which adopting Vuong’s test might prove especially useful. On occasion, researchers are tasked 

with deciding between a cross-classified and a three-level model. To facilitate this comparison, 

Vuong’s test would need to be adopted to compare data with unequal numbers of cases. That is, 

the number of cases in a three-level model would not be equivalent to the number of cases in a 
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cross-classified model due to differences in the structures data are representing. A “case” in the 

cross-classified sense would be each unique combination of upper level nesting units. For 

instance, if cross classification existed for schools and neighborhoods cases would refer to each 

unique pairing of schools and neighborhoods. This scenario poses both a philosophical and a 

computational issue for Vuong’s test. Namely, would Vuong’s test be valid when comparing two 

different nesting structures, and by extension different cases, and can it be adapted to handle 

such a structure? Understanding Vuong’s test in this context would have more general 

implications for comparing non-nested random effects given that their differences would 

represent different cases.  

Another potential application for Vuong’s test involves alternative growth models. 

Curvilinear forms and non-linear models are not the only two methods by which to measure 

growth. For instance, continuous and discontinuous piecewise models are often used to measure 

growth as well. As mentioned in the discussion in Chapter 3, a piecewise model compared with a 

quadratic model would be a simple case of non-nested fixed effects. Comparing a quadratic 

model with a piecewise model would require little extra effort computationally and require a 

simple modification to the X matrix, assuming the random effects structure remained the same. 

Finally, while this dissertation focused exclusively on growth models, it was shown in 

Chapter 2 that Vuong’s test should apply in the same way to data for individuals nested within 

groups. It would be instructive for a future study to explore smaller Level 2 sample sizes, larger 

Level 1 sample sizes, and lower ICCs to expand the understanding of Vuong’s test to a wider 

variety of research applications and capitalize on the elegance of multilevel models when 

individuals are nested within groups.  
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 Over the course of this dissertation I have provided a method by which researchers can 

test the difference between non-nested multilevel models. I have shown that Vuong’s test is an 

improvement over information criteria in that it rarely, if ever, suggests that the wrong model fits 

data best. While Vuong’s test constitutes an advancement in how researchers can test certain 

hypotheses, it remains only one piece of information in a broader context of evaluation. Rarely 

are model comparisons so simple as to be decided by a single result and instead the results of 

Vuong’s test should be considered in a broader context merging theory, other tests of 

significance, and the ultimate goals of the study to reach a conclusion. 
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Footnotes 

1Note: “I” is used to represent “information” and was chosen here for consistency with various 

discussions on the topic. While K-L information and K-L divergence (or discrepancy) are 

synonymous I employ the latter term throughout this dissertation because divergence or 

discrepancy apply naturally to the concept of model selection. I prefer the use of I as opposed to 

the logical D as D commonly refers to deviance when discussing model selection. 
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Appendix A 

SAS Macro for Vuong’s test of Fixed Effects 

proc IML; 

start ML_Vuong(data,cluster,dv,m1_fixed,m1_random, m1_rep, m1_rtype, 

m2_fixed, m2_random, m2_rep, m2_rtype, 

    ddfm,m1_type,m2_type,method,datname, tnum); 

 

/************************************************************/ 

/* This section of code to parse the fixed and random   */ 

/* effects was adopted from           */ 

/* the code provided by Stephen A. Mistler in his     */ 

/* MMI IMPUTE and MMI ANALYZE macro     */ 

/* Mistler, S. A. (2013) A SAS macro for computing pooled  */ 

/* likelihood ratio tests with multiply imputed data.  */ 

/* SAS Global Forum 2013.       */ 

/* Much of the rest of this program was written using  */ 

/* Mistler’s programs as examples.     */  

/************************************************************/ 

 

 

 pi = arcos(-1); 

 method = upcase(method); 

 

 m1_f = m1_fixed;   * Parsing the fixed effects of model 1; 

 m1_f_n = countn(m1_f);  * Counting the fixed effects of model 1;  

  

 m1_r = m1_random;   * Parsing the random effects of model 1; 

 m1_r_n = countn(m1_r) +1;  * Counting the random effects for model 

1. One is added for intercept; 

 

 m2_f = m2_fixed;   * Parsing the fixed effects for model 2; 

 m2_f_n = countn(m2_f);   * Counting fixed effects for model 2; 

 

 m2_r = m2_random;   * Parsing the random effects for model 2; 

 m2_r_n = countn(m2_r) +1;  * Counting the random effects for model 

2. One is added for intercept; 

  

* Submit statement to call proc; 

*This line is used to initialize macro variables in submit; 

 

submit data cluster dv m1_fixed m1_random m1_rep m1_rtype ddfm m1_type 

m2_fixed m2_random m2_type m2_rep m2_rtype method;   

 

*model 1 for two-Level data; 

 

proc mixed data = &data method = &method noclprint covtest;   

class &cluster; 

model &dv = &m1_fixed / s ddfm = &ddfm notest; 

random int &m1_random /g sub = &cluster type= &m1_type; 

repeated &m1_rep /r sub = &cluster type = &m1_rtype;  

ods output 

R    = rmat_m1 

G    = psi_m1 

covparms   = sigma_m1 
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solutionF  = beta_m1 

iterhistory  = iter_m1 

modelinfo  = model_m1 

FITSTATISTICS = fit_m1; 

run; 

 

proc mixed data = &data method = &method noclprint covtest; 

class &cluster; 

model &dv = &m2_fixed/ s ddfm = &ddfm notest; 

random int &m2_random/g sub = &cluster type= &m2_type; 

repeated &m2_rep /r sub = &cluster type = &m2_rtype; 

ods output 

R    = rmat_m2 

G     = psi_m2 

covparms   = sigma_m2 

solutionF  = beta_m2 

iterhistory  = iter_m2 

modelinfo  = model_m2 

FITSTATISTICS = fit_m2; 

run; 

 

ods select all; 

endsubmit; 

 

*Read in model fitting information and parameters; 

use model_m1;          

read all var {Value} where (descr = "Degrees of Freedom Method") into ddfm; 

read all var {Value} where (descr = "Covariance Structures") into type; 

close model_m1; 

 

use sigma_m1 where (covparm = 'Residual'); 

read all var {estimate} into sigma_m1; 

close sigma_m1; 

 

sigma_m1 = sigma_m1[:,]; 

_names_ = {Residual}; 

mattrib sigma_m1 colname = _names_; 

 

use sigma_m2 where (covparm = 'Residual'); 

read all var {estimate} into sigma_m2; 

close sigma_m2; 

 

sigma_m2 = sigma_m2[:,]; 

_names_ = {Residual}; 

mattrib sigma_m2 colname = _names_; 

 

if countn(cluster) ^= 0 then do; 

  

 *Read in each models L2 covariance matrix; 

 

 use psi_m1;      

 read all var _num_ into psi_m1; 

 close psi_m1; 

  

 

 * Parse variance covariance parameters; 

 n_psi_m1= ncol(psi_m1); 



 

 

195 

 psi_m1 = psi_m1[,3:n_psi_m1]; 

   

 use psi_m2; 

 read all var _num_ into psi_m2; 

 close psi_m2; 

 

 n_psi_m2 = ncol(psi_m2); 

 psi_m2 = psi_m2[,3:n_psi_m2]; 

end; 

  

 *Read in model parameters; 

 use beta_m1; 

 read all var {effect} into beta_m1_names; 

 read all var {estimate} into beta_m1; 

 beta_m1 = beta_m1`; 

 mattrib beta_m1 colname = beta_m1_names; 

 close beta_m1; 

  

 

 use beta_m2; 

 read all var {effect} into beta_m2_names; 

 read all var {estimate} into beta_m2; 

 beta_m2 = beta_m2`; 

 mattrib beta_m2 colname = beta_m2_names; 

 close beta_m2; 

  

 

* Read in data for calculations; 

use (data); *use data; 

read all var dv into y;   *read in DV for residual calculation; 

read all var m1_f into x_m1;   *Read in values of predictors; 

if m2_f_n ^=0 then read all var m2_f into x_m2; *If model 2 has any fixed 

effects read them in; 

if m1_r_n ^=1 then read all var m1_r into z_m1; *If model 1 has any random 

effects other than an intercept read their values; 

if m2_r_n ^=1 then read all var m2_r into z_m2; *If model 2 has any random 

effects other than an intercept read their values; 

if countn(cluster) > 0 then read all var cluster into id;  

close (data); *close data; 

 

 

n = nrow(x_m1);     *Count rows of design matrix for model 1; 

 

*Add intercept column to design matrix; 

if m1_f_n > 0 then x_m1 = j(n,1,1) || x_m1;    

else x_m1 = j(n,1,1); 

if m2_f_n > 0 then x_m2 = j(n,1,1) || x_m2; 

else x_m2 = j(n,1,1); 

 

if countn(cluster) ^=0 then  

do; 

*Create random effects design matrices;  

 

 id_l1 = unique(id[,1])`; 

 m = nrow(id_l1); 

 

 if m1_r_n ^= 1 then z_m1 = j(n,1,1) || z_m1; 
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 else z_m1 = j(n,1,1); 

 

 if m2_r_n ^= 1 then z_m2 = j(n,1,1) || z_m2; 

 else z_m2 = j(n,1,1); 

end; 

 

if countn(cluster) ^=0 then  

do; 

 

*Name columns of random effects design matricies; 

 

 mattrib cluster colname = cluster;  

 mattrib id_l1 colname = cluster; 

 

 _z_m1_ = {Intercept} || m1_r; 

 mattrib z_m1 colname = _z_m1_; 

 

 _z_m2_ = {Intercept} || m2_r; 

 mattrib z_m2 colname = _z_m2_; 

end; 

 

* Name Fixed effects design matrices; 

_x_m1_ = {Intercept} || m1_f; 

mattrib x_m1 colname = _x_m1_; 

 

_x_m2_ = {Intercept} || m2_f; 

mattrib x_m2 colname = _x_m2_; 

 

 

/************************************************************/ 

/* Calculating the Likelihood for each cluster        */ 

/* for model 1 and model 2. Currently, this is only  */ 

/* supported for two-Level data. Support for n    */ 

/* levels of clusters will be added in a future   */ 

/* version.         */ 

/* This section of code to extract the individual     */ 

/* Specific log likelihoods was based largely on      */ 

/* the code provided by Stephen A. Mistler in his     */ 

/* MMI IMPUTE and MMI ANALYZE macro     */ 

/* Mistler, S. A. (2013) A SAS macro for computing pooled  */ 

/* likelihood ratio tests with multiply imputed data.  */ 

/* SAS Global Forum 2013.       */  

/************************************************************/ 

 

 

 

use rmat_m1; 

read all into rmat_m1; 

close rmat_m1; 

 

rmat_m1 = rmat_m1[,3:ncol(rmat_m1)]; 

 

use rmat_m2; 

read all into rmat_m2; 

close rmat_m2; 

 

rmat_m2 = rmat_m2[,3:ncol(rmat_m2)]; 



 

 

197 

 

 

*ML estimation; 

if method = 'ML' then do; 

 

 

 *Multilevel Data; 

 if countn(cluster) ^= 0 then 

 do; 

 ind_ll_m1 = j(m,1,0); 

  do j = 1 to m;         

   ***Model 1***; 

   v_log_det_m1 = 0; *Reset log det v to 0; 

   rvr_m1 = 0;  *reset rvr to 0; 

   temp_x_m1 = x_m1[loc(id[,1] = id_l1[j,1]),];    

  * create fixed eff design matrix; 

   temp_y = y[loc(id[,1]=id_l1[j,1]),];    

   temp_z_m1 = z_m1[loc(id[,1]=id_l1[j,1]),];   

   * create random eff design matrix; 

   temp_n_m1 = nrow(temp_z_m1);      

   * count how big the cluster is; 

   temp_v_m1 = temp_z_m1 * psi_m1 * temp_z_m1` + rmat_m1;  

  *creating total variance matrix V; 

   temp_r_m1 = temp_y - temp_x_m1 * beta_m1`;    

   v_log_det_m1 = v_log_det_m1 + log(det(temp_v_m1)); 

   rvr_m1 = rvr_m1 + temp_r_m1` * inv(temp_v_m1) * temp_r_m1; 

   ind_ll_m1[j,1] = (-1/2) * v_log_det_m1 - (1/2) * rvr_m1 - 

(temp_n_m1/2) *log(2*pi);  

    

end; 

end; 

***Model 2***; 

 ind_ll_m2 = j(m, 1, 0); 

  do j = 1 to m; 

   v_log_det_m2 = 0;        

   rvr_m2 = 0;         

   temp_x_m2 = x_m2[loc(id[,1]=id_l1[j,1]),];   

   * create fixed eff design matrix; 

   temp_y = y[loc(id[,1]=id_l1[j,1]),];    

   * create Y vector; 

   temp_z_m2 = z_m2[loc(id[,1]=id_l1[j,1]),];   

   * create fixed eff design matrix; 

   temp_n_m2 = nrow(temp_z_m2);       

   temp_v_m2 = temp_z_m2 * psi_m2 * temp_z_m2` + rmat_m2;  

  *creating total variance matrix V; 

   temp_r_m2 = temp_y - temp_x_m2 * beta_m2`;    

   v_log_det_m2 = v_log_det_m2 + log(det(temp_v_m2)); 

   rvr_m2 = rvr_m2 + temp_r_m2` * inv(temp_v_m2) * temp_r_m2; 

   ind_ll_m2[j,1] = (-1/2) * v_log_det_m2 - (1/2) * rvr_m2 - 

(temp_n_m2/2) *log(2*pi); 

    

end; 

end; 

 

 

use sigma_m1; 

read all var {Estimate} into sig_m1; 
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close sigma_m1; 

 

 

use sigma_m2; 

read all var {Estimate} into sig_m2; 

close sigma_m2; 

 

sig_m1 = t(sig_m1); 

sig_m2 = t(sig_m2); 

 

***Computing Omega squared; 

 

omega2 = (m-1)/m * var(ind_ll_m2- ind_ll_m1); * taken from nonnest2 package; 

            

lr = sum(ind_ll_m1 - ind_ll_m2); 

 

Vuong_LR = (1/sqrt(m))*(lr/sqrt(omega2)); 

tot_parm_m1 = m1_f_n + ncol(sig_m1) ; *Number of fixed effects +num random 

effects; 

tot_parm_m2 = m2_f_n + ncol(sig_m2) ; 

*adjustments to test statistics. Information Criteria; 

V_AIC = Vuong_LR - (tot_parm_m1 - tot_parm_m2); *Difference in Length of 

Coefficients; 

V_BIC_diffAB =  Vuong_LR - (tot_parm_m1 - tot_parm_m2) * log(m)/2; 

 

pLRTA = 1 - cdf('NORMAL', Vuong_LR,0,1); 

pLRTB = cdf('NORMAL', Vuong_LR,0,1); 

 

  

use fit_m1; 

 read all var {Value} into value_m1; 

 value_m1 = t(value_m1); 

 close fit_m1; 

  

 

 use fit_m2; 

 read all var {Value} into value_m2; 

 value_m2 = t(value_m2); 

 close fit_m2; 

  

testdat = nrow(ind_ll_m1)|| nrow(temp_x_m1)|| lr || Vuong_LR || omega2 || 

pLRTA || pLRTB || V_AIC || V_BIC_DIFFAB || value_m1 || value_m2; 

 

create (datname) from testdat[colname ={"n" "m" "lr" "Vuong_LR" "omega2" 

"pLRTA" "pLRTB" "V_AIC" "V_BIC" "-2LL_m1" "AIC_m1" "AICC_m1" "BIC_m1" "-

2LL_m2" "AIC_m2" "AICC_m2" "BIC_m2"}]; 

append from testdat; 

close (datname); 

 

 

finish ML_vuong; 

store module=(ML_vuong); 

 

quit; 
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/************************************************************/ 

/* Example Test Code with data generation program   */ 

/* 09/07/16 Currently works for nonnested fixed effects  */ 

/* 11/07/16 Changed Data generation for growth models in ch2*/ 

/************************************************************/ 

/* 

data a; 

do i = 1 to 200; 

 b0j = 10 + rannor(0)*2; 

 b1j = 3 + rannor(0); 

 w1 = ranbin(0,1,.5); 

 w2 = ranbin(0,1,.5); 

 w3 = ranbin(0,1,.5); 

 do j = 1 to 25; 

  eij = rannor(0) *1.73205080756; 

  yij = b0j + b1j*j + 1.6*w1 + 1*w2 + .4*w3 + eij; 

  output; 

 end; 

end; 

run; 

 

 proc iml; 

    load module=(ML_vuong); 

 

    data               = "work.a"; 

    cluster            = "i"; 

    dv                 = "yij"; 

    m1_fixed         = {j};   *no quotes necessary; 

    m1_random        = {j};      *only quotes for an empty model; 

 m1_rep    = {""}; 

 m1_rtype   = {ar(1)}; 

 m2_fixed     = {j}; 

    m2_random    = {"j"}; 

 m2_rep    = {""}; 

 m2_rtype   = {toep(2)}; 

    ddfm               = "SATTERTH"; 

    m1_type            = "UN"; 

    m2_type    = "UN"; 

    method             = "ML"; 

    run ml_vuong(data,cluster,dv,m1_fixed,m1_random, m1_rep, m1_rtype, 

m2_fixed, m2_random, m2_rep, m2_rtype, 

    ddfm,m1_type,m2_type,method); 

 quit; 
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