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Abstract of the Dissertation

On the Negative K-theory of Singular Varieties

by

Justin Shih

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2012

Professor Christian Haesemeyer, Chair

Let X be an integral n-dimensional variety over a field k of characteristic zero, regular in

codimension 1 and with singular locus Z. We establish a right exact sequence, coming

from the Brown-Gersten spectral sequence, that computes K1−n(X) from KH1−n(X) and

NK1−n(X). We then compute each of these pieces separately, and then analyze the map

NK1−n(X) −→ K1−n(X).

We show that the KH1−n(X) contribution almost has a geometric structure. When k is alge-

braically closed, X is projective, and Z is either smooth over k or of codimension greater than

2, we prove that there is a 1-motive M = [L −→ G] over k, and a map G(k) −→ KH1−n(X)

whose kernel and cokernel are finitely generated. Thus the k-points G(k) of the group scheme

G approximates KH1−n(X) up to some finitely generated abelian groups. Furthermore, when

n = 3, the sequence L(k) −→ G(k) −→ KH−2(X) is exact. In addition, M is computable,

as under Deligne’s equivalence between torsion-free 1-motives and torsion-free mixed Hodge

structures of type {(0, 0), (0, 1), (1, 0), (1, 1)} such that GrW1 H is polarizable, the free complex

1-motive (M ×k C)fr is the 1-motive that corresponds to the unique largest such H coming

from the weight 2 part W2H
n(X(C),Z) of the nth cohomology group Hn(X(C),Z).

When X is not projective, the result still holds, except that the 1-motive M comes from

W2H
n(X(C),Z), where X is an algebraic compactification of X. Furthermore, the non-

lattice parts of the M we get, and hence the map α, are independent of the choice of
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compactification.

For the NK1−n(X) contribution, when Z is an isolated singularity, we show that K1−n(X) is

an extension of KH1−n(X) by the cdh-cohomology group Hn−1
cdh (U,O), where U is any open

affine neighborhood of Z. Furthermore, Hn−1
cdh (U,O) is a finite-dimensional k-vector space,

whose dimension is the Du Bois invariant b0,n−1 of the isolated singularity Z.

All in all, we have a full computation of K−2(X) when X is three-dimensional over an

algebraically closed field and has only isolated singularities.
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CHAPTER 1

Introduction and History

The origins of algebraic K-theory can be traced back to the late 1950s when Alexander

Grothendieck defined K0(X) of a scheme X as the group of isomorphism classes of locally-

free coherent sheaves on X modulo exact sequences [BS58]. Topologists, taking notice of

Grothendieck’s construction, soon produced an analogous construction for vector bundles

over compact Hausdorff spaces. A few years later in 1961, Michael Atiyah and Friedrich

Hirzebruch published a landmark paper in which they extended this idea by defining higher

topological K-groups Kn(X) for all integers n. It led directly to a second, alternative proof

of the celebrated Atiyah-Singer index theorem a year later in 1962. On the algebraic side of

things, things proceeded more slowly. Progress in the topological case suggested that higher

algebraic K-theory should exist, and satisfactory definitions for lower K-groups (K1, K2)

were found, but these were ad-hoc and did not generalize well to higher n. The search for a

general definition for higher K-theory went on for the next decade or so until the early 1970s,

when Daniel Quillen, in a series of papers, settled things once and for all. He defined higher

algebraic K-theory in two different ways, via the Q- and +-constructions [Qui10, Qui75].

These equivalent constructions [Qui74] yielded groups Kn(X) for all integers n ≥ 0, as in

the topological case. Quillen would win the Fields Medal a few years later in 1976, in large

part due to this foundational work.

Quillen’s landmark papers established groups Kn for a general exact category C (of which

the category VB(X) of vector bundles over a scheme X is one class of examples); in the years

since, Quillen’s work has been refined by many others, including Waldhausen [Wal85], who

defined K-groups for more general categories called Waldhausen categories, and Thomason,
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who extended algebraic K-theory by using the derived category of perfect complexes [TT90].

In addition, many variants of K-theory have appeared across many different fields. Besides

topology and algebraic geometry, K-theory has appeared in number theory and functional

analysis. In algebraic geometry alone, there are several important variants: K ′-theory, which

considers all coherent sheaves on a scheme X (rather than just locally-free coherent sheaves,

as in K-theory); Karoubi-Villamayor’s KV -theory [KV69, KV71], and Weibel’s KH-theory

[Wei89]. Of these variants, KH-theory will be the most useful to us.

1.1 Overview of Dissertation

The rest of this chapter is dedicated to introducing algebraic K-theory, related variants, and

their basic properties. To compute K-groups, we will compute the homotopy K-theory KH

(Chapter 6) and the nil K-theory NK (Chapter 7) pieces, and then put them together. To

do this, we will need to use Hironaka’s resolution of singularities (Chapter 2), Voevodsky’s

cdh-topology (Chapter 3), simplicial and semisimplicial spaces (Chapter 4), and mixed Hodge

structures and 1-motives (Chapter 5). Finally, applications and other consequences of our

work are considered in chapter 8.

1.2 Definitions and basic properties

In order to get a basic intuition for algebraic K-theory, we briefly review some of its con-

structions and properties. We do not claim any originality in this section, and will mostly

just quote useful theorems. In Higher Algebraic K-Theory: I [Qui10] and II [Gra76], Quillen

defined the higher algebraic K-theory of exact categories, i.e. those categories that have a

distinguished collection of exact sequences.

Quillen’s definitions of K-theory are very technical and not particularly well suited for

computations. More generally, computing the K-theory of a scheme X is very difficult. The

computation of Kn(Z) is still open (see [Wei05] for the current status), and the K-theory
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Kn(C) of the complex numbers is still not completely understood [Sus84]. We would like

to calculate some of the K-groups of specific varieties, so we are interested in the tools

that have been developed to compute K-groups. Despite the difficulties, a good amount of

progress has been made over the past few decades in the direction of computing K-groups.

This introduction would not be complete without the following standard tools, given below:

the projective bundle formula, the localization sequence for K-theory, and the fundamental

theorem of K-theory.

Theorem 1.1 (Projective Bundle Formula). Let X be quasi-compact and quasi-separated,

and let E be a vector bundle of rank n on X with π : PE −→ X the associated projective

space bundle. Then we have, for all n ∈ Z, an isomorphism

r−1⊕
i=0

Kn(X) // Kn(PE ) (1.1)

given by (x0, . . . , xr−1) 7→
∑

i π
∗(xi)⊗ [OPE (−1)].

Proof. [TT90, Theorem 4.1]

Theorem 1.2 (Localization sequence for K-theory). Let X be quasi-compact and quasi-

separated, U ⊂ X a quasi-compact open subscheme, and let Y = X − U be the reduced

induced complement. Then on the spectrum level, we have a homotopy fibration sequence

K(X on Y ) // K(X) // K(U) (1.2)

inducing a long exact sequence on K-groups

· · · // Kn(X on Y ) // Kn(X) // Kn(U) // Kn−1(X on Y ) // · · · (1.3)

Proof. [TT90, Theorem 7.4]
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In particular, we have the fundamental theorem of K-theory :

Corollary 1.3 (Fundamental theorem of K-theory). We have an exact sequence for any

quasi-compact, quasi-separated scheme X, and any n ∈ Z:

0 // Kn(X) // Kn(X[t])⊕Kn(X[t−1]) // Kn(X[t, t−1]) // Kn−1(X) // 0.

(1.4)

Proof. [TT90, Theorem 6.6]

1.3 Variants of K-theory and related functors

When defining the K-theory of a noetherian scheme, there are two natural choices for the

exact category that we can plug into the machine: the category VB(X) of vector bundles

on X, and the larger category Coh(X) of coherent sheaves on X. These two categories lead

to different K-theories. The first, VB(X), yields the standard Quillen K-theory, and the

second, Coh(X), yields K ′-theory (also sometimes called G-theory).

It turns out that when X is smooth over k, it satisfies many other additional nice K-

theoretic properties. For example, the Bass Fundamental Theorem 1.3 simply becomes

Kn(X × Gm) ∼= Kn(X) ⊕ Kn−1(X). In addition, the K-theory of X agrees with its K ′-

theory [Qui10, §6]. Furthermore, its K-theory is zero in negative degrees [TT90, Proposition

6.8]. They also satisfy the important relation Kn(X) ∼= Kn(X × A1) [Qui75]. This last

property motivates the following definition:

Definition 1.4. Let F : (Sch/k)op −→ A, where A is additive. We say that F is homotopy

invariant if for any X ∈ Sch/k, the projection X × A1 −→ X induces an isomorphism

F (X) ∼= F (X × A1).

In general, however, K-theory is not homotopy invariant, as the next example shows.
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Example 1.5. Let F be a field, and consider R = F [ε] = F [x]/(x2), the ring of dual numbers

over F . We will show that the inclusion R −→ R[t] does not induce an isomorphism on K1

groups. The determinant gives a canonical surjection [Wei, Chapter 3]

K1(A) det // // A× (1.5)

for any commutative ring A. For A = R, this map is an isomorphism because R is local

[Wei, Chapter 3, Lemma 1.4]. On the other hand, K1(R[t]) surjects onto R[t]× ∼= R×⊕εR[t].

So we have a diagram

K1(R)
∼= //

��

R×

��

K1(R[t]) // // R[t]×

(1.6)

In particular, the vertical map on the right is a strict inclusion. If the left vertical map were

an isomorphism, the left-bottom composite would be surjective. But then the vertical map

on the right would have to be surjective, a contradiction.

One attempt at defining higher K-theory came in the form of Karoubi-Villamayor K-theory,

denoted KV , in 1969 [KV69]. It is defined for a ring R as follows: let R[∆•] be the simplicial

ring associated to R (see Example 4.4 for details). Then we define

KVn(R) = πn−1(GL(R[∆•])), (1.7)

where GL is the direct limit of the groups GLq [Wei, IV, Definition 11.4]. This definition

was not Karoubi and Villamayor’s original definition, but was discovered later on by Rector

[Wei99]. We mention KV -theory for historical reasons, and because it is closely related

to KH-theory, which we now discuss. KH-theory was introduced by Charles Weibel in

[Wei89], some number of years after Karoubi and Villamayor discovered KV -theory. KH
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is a homotopy invariant K-theory, as the groups KHn are homotopy invariant for all n

(in contrast with the groups KVn, which are only homotopy invariant for n ≥ 1). Weibel

originally defined KH (for rings) to be KHn(R) = πnK
B(R[∆•]), and then extended it to

schemes using Jouanalou’s device. We present the more compact definition of KH found in

[TT90].

Definition 1.6. Let X be quasicompact and quasiseparated. We then define the homotopy

K-groups KHn(X) to be

KHn(X) = πn

(
hocolim

∆op
K(X ×∆p)

)
. (1.8)

We will make extensive use of KH, dedicating an entire chapter (see Chapter 6) to the

computation of KH groups. A functor closely related to K and KH is that of nil -K-theory,

denoted by NK, which is the obstruction to homotopy invariance of K-theory.

Definition 1.7. Let X be quasicompact and quasiseparated. We define the nil -K-groups

NKq(X) to be

NKq(X) = ker(Kq(X × A1) t=0 // Kq(X)). (1.9)

NK theory is related to KH theory more directly via the spectral sequence (1.10). This

spectral sequence will be the basis for our calculations, and we have an entire chapter (chapter

7) dedicated to computing NK1−n(X) when X is an irreducible n-dimensional variety over

k with isolated singularity.

More generally, for a contravariant functor F from Sch/k into an additive category, we may

define

NF (X) = ker(F (X × A1) t=0 // F (X)). (1.10)
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In particular, we may iterate this construction and define NpF := N(Np−1F ). Furthermore,

since the projection X ×A1 −→ X is a section of the closed immersion {t = 0}, on applying

F we see that NF (X) is a direct summand of F (X×A1). Iterating this shows that NpF (X)

is a direct summand of F (X × Ap).

1.4 Spectral Sequences

Spectral sequences form a large class of tools by which to compute K-groups. They are, in

some sense, generalizations of long exact sequences. Weibel [Wei94, Chapter 5] gives a good

introduction to spectral sequences. In the following, we discuss a few spectral sequences

which will be useful in our calculations.

Theorem 1.8 (Grothendieck spectral sequence). Suppose A,B, C are abelian categories, and

we have additive functors F : A −→ B and G : B −→ C so that G is left exact and F takes

injective objects of A to G-acyclic objects of B. Then there is a spectral sequence

Ep,q
2 = RpG(RqF (A)) =⇒ (Rp+q(GF ))(A). (1.11)

Proof. [Wei94, Theorem 5.8.3]

The Grothendieck spectral sequence is one of the foundations of homological algebra, and

many spectral sequences (including the famous Leray spectral sequence) are specific instances

of the Grothendieck spectral sequence.

Theorem 1.9 (Simplicial spectral sequence abutting to KH). Let X be a scheme over a

field k, and let ∆n = Spec(k[x0, . . . , xn]/(1−
∑

i xi)). Then there is a right half-plane spectral

sequence

E1
p,q = Kq(X ×∆p) =⇒ KHp+q(X). (1.12)
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Proof. [Jar97, Corollary 4.22]

Applying the Dold-Kan correspondence [Wei94, Theorem 8.4.1] to the E1 terms for each

fixed horizontal line, we obtain the normalized simplicial spectral sequence:

Corollary 1.10 (Normalized simplicial spectral sequence abutting to KH). Let X be a

scheme over a field k, and let ∆n = Spec(k[x0, . . . , xn]/(1−
∑

i xi)). Then there is a spectral

sequence

E1
p,q = NpKq(X) =⇒ KHp+q(X). (1.13)

This spectral sequence also appears in [Wei89, Theorem 1.3]. Haesemeyer showed that

KH satisfies cdh-descent in [Hae04] (see Chapter 3 for details). In particular, we have the

following spectral sequence:

Theorem 1.11 (cdh-descent spectral sequence). Let X be a scheme, essentially of finite type

over a field k of characteristic zero. Then there is a strongly convergent spectral sequence

Ep,q
2 = Hp

cdh(X, acdhK−q) =⇒ KH−p−q(X), (1.14)

where acdh is the cdh-sheafification functor.

Proof. [Hae04, Theorem 1.1]. See Chapter 3 for background on the cdh-topology.

If E is a normal crossing variety (Definition 2.4), the simplicial scheme ∆•E associated to

E may be used to compute cdh-cohomology groups (see Chapter 4 for details):
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Theorem 1.12 (Simplicial spectral sequence for cdh-cohomology). For any sheaf F , there

is a strongly convergent first quadrant spectral sequence

Ep,q
1 = Hq

cdh(∆pE,F ) =⇒ Hp+q
cdh (E,F ). (1.15)

Proof. This is the so-called Čech-to-derived spectral sequence [God73, Theorem 5.4.1] (see

also [Con03] for details), applied to the cdh-cover {
∐

iEi −→ E} (see also Lemma 3.4).

The inclusion of the nondegenerate components of ∆•E into ∆•E induces a quasi-isomorphism

of spectral sequences as we prove below, so we may use either the simplicial scheme or the

semisimplicial scheme ∆alt
• E associated to E to compute its cdh-cohomology groups (again,

see Chapter 4 for details).

Theorem 1.13 (Nondegenerate simplicial spectral sequence for cdh-cohomology). For any

sheaf F , there is a strongly convergent first quadrant spectral sequence

Ep,q
1 = Hq

cdh(∆alt
p E,F ) =⇒ Hp+q

cdh (E,F ). (1.16)

Proof. We apply [Wei94, Lemma 8.3.7], to the rows of the E1 page of the spectral sequence.

We consider Hq
cdh(∆•E,F ) as a simplicial abelian group, and let C•(H

q
cdh(∆•E,F )) be the

associated chain complex. If D•(H
q
cdh(∆•E,F )) denotes the subcomplex generated by the

image of the degeneracy maps, then C•(H
q
cdh(∆•E,F )) is quasi-isomorphic to

C•(H
q
cdh(∆•E,F ))/D•(H

q
cdh(∆•E,F )) ∼= C•H

q
cdh(∆alt

• E,F ), (1.17)

which was what we wanted to show.

None of the spectral sequences listed so far abut to the K-theory of X, but instead to the

KH-theory of X. Given the limitations of our current tools, it is natural that we attack
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the problem of computing K by first computing KH. The leftover piece will come from the

NK-theory of X, so we will also use a spectral sequence to compute to the NK-theory of

X.

Theorem 1.14. There is a strongly convergent right half plane spectral sequence

Ep,q
2 = Hp

Zar(X, aZarN
tK−q) =⇒ N tK−p−q(X), (1.18)

where aZar denotes Zariski sheafification.

Proof. The Brown-Gersten spectral sequence [TT90, Theorem 10.3] splits into a direct sum,

as in Definition 1.10. In this way, the above spectral sequence is a direct summand of the

Brown-Gersten spectral sequence.

1.5 Setup and Problem

Let k be a field of characteristic zero. The higher algebraic K-groups of a scheme tend to

be, in general, significantly more inaccessible than the lower groups. The following results,

known for any n-dimensional noetherian scheme X essentially of finite type over k, exemplify

this phenomenon:

1. When q > n, K−q(X) = 0. [CHS08, Conjecture 0.1]

2. K−n(X) ∼= Hn
cdh(X,Z). [Hae04, Theorem 7.1]

3. If, in addition, X is smooth, X has no negative K-groups. [TT90, Proposition 6.8]

where the second isomorphism is with the cohomology of the constant sheaf Z on the cdh-

site over X (see Chapter 3). From the above, we see that one of the first unknown cases

beyond the boundary of current literature is K1−n(X), where X is singular. But K0 of

curves is well known, and Weibel has computed K−1 of normal surfaces [Wei01]. Let X

be an normal, irreducible n-dimensional variety (a separated reduced scheme of finite type)
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over an algebraically closed field k whose singular locus Z = Sing(X) is either smooth or

has codimension greater than 2; we will compute the various pieces that contribute to the

group K1−n(X). When n = 3, we will have a full computation of K−2(X). Application of

the normalized simplicial spectral sequence (1.10) abutting to KH yields the following exact

sequence which computes K1−n(X) (see Lemma 7.1 for the proof):

NK1−n(X) // K1−n(X) // KH1−n(X) // 0. (1.19)

We will compute the pieces NK1−n(X) and KH1−n(X) separately, and then analyze the

map NK1−n(X) −→ K1−n(X).

1.5.1 Motivational Example

When X is a threefold (i.e. n = 3) whose singular set Z = Sing(X) has is smooth and has

dimension at most 1, we begin the computation of KH1−n(X) = KH−2(X) here, mostly to

motivate the background material found in Chapters 2, 3, 4, and 5. To do this, consider a

good resolution of singularities for X:

E //

��

X̃

p

��

Z // X

(1.20)

where p is a proper birational morphism which is an isomorphism outside of the exceptional

divisor E. We note that E must be connected, by Zariski’s main theorem (see Lemma 2.3

for details). That this resolution is a good resolution means that E has smooth (irreducible)

components that intersect transversally in smooth subschemes. More technically, we require

E to have normal crossings (Definition 2.4). Intuitively, normal crossing divisors locally look

like the intersection of coordinate planes. Then cdh-descent for KH [Hae04, Theorem 2.4],

[CHS08, Theorem 3.4] implies a long exact sequence in KH:
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· · · // KHq(X) // KHq(Z)⊕KHq(X̃) // KHq(E) // · · · (1.21)

Since Z and X̃ are smooth, KH-theory agrees with K-theory and K ′-theory which are zero

for negative q, so their negative KH groups vanish. In addition, KHq(E) = 0 for q < −2

and KHq(X) = 0 for q < −3 by [Hae04, Theorem 7.1]. So we obtain isomorphisms

KH−q(X) ∼= KH−q+1(E), (1.22)

for q = 2, 3. Consequently, we can compute KH−1(E) instead of KH−2(X), and we will use

the simple normal crossings structure of E to do so. We will do this by using the simplicial

and semisimplicial schemes associated to the simple normal crossing divisor E (see Chapter

4).

When the base field k is algebraically closed and of sufficiently small cardinality (|k| ≤ c),

we will produce a 1-motive (see Chapter 5) M = [L −→ G] so that

L(k) // G(k) α // KH−2(X) (1.23)

is exact, and such that coker(α) is finitely generated. Thus G(k) approximates KH−2(X)

up to some finitely generated groups.
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CHAPTER 2

Resolution of singularities

2.1 Background, history, and current status

Definition 2.1. Let k be a field, and X be a scheme over k with Z = Sing(Xred) the singular

locus. A resolution of singularities of X is a proper birational map p : X̃ −→ Xred, where X̃

is smooth over k, and such that p is an isomorphism on p−1((X − Z)red).

Often times, however, we will be interested not in just a resolution of X in the abstract,

but a resolution of X considered as a subvariety of a larger ambient scheme W . In addition,

for the purposes of this paper, we will work closely with the exceptional divisor, so we

will be especially concerned about having the exceptional divisor be “as nice as possible”

in a specific sense, which we will get to later in this chapter. The above definition of a

resolution of singularities is standard, but beyond this point, terminology and definitions

in the literature vary greatly. Therefore, to fix terminology, we will follow [EH02]. Below,

we define the related notions of an embedded resolution of X and a strong resolution of X,

which makes precise what we want out out of a resolution.

Definition 2.2. Let X be a reduced scheme over k, and let X −→ W be a closed embedding

of X into a regular scheme W . An embedded resolution of X in W is a proper birational

morphism p : W̃ −→ W satisfying the following:

1. p is a composition of blowups in smooth centers, each transverse to the previous ex-

ceptional locus.
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2. The total transform X̃ of X is smooth over k, and has normal crossings (see below,

Definition 2.4) with the exceptional locus of W̃ .

3. The morphism X̃ −→ X induced by p does not depend on the closed embedding

X −→ W .

A strong resolution of singularities for X is an embedded resolution for any choice of W .

The first question that one might ask is: do resolutions always exist for any X? What about

strong resolutions? To put it bluntly, these questions are hard. The problem of resolution

of singularities is very subtle, and like other such reasonably accessible problems (Fermat’s

last theorem, the four color theorem, the Poincaré conjecture), is well known for producing

many incorrect proofs. The history of resolution of singularities in characteristic zero is, very

briefly, as follows.

Resolutions of curves are easy and have essentially been known since the 1600s [Kol07, Theo-

rem 1.1]. Consequently, there are a large number of algorithms to resolve the singularities of

a curve. Blowing up singular points, taking the normalization of the curve, and Albanese’s

method, among others, will all resolve the singularities of a curve.

Resolutions of surfaces are much harder than of curves, but are still easy relative to the

general case. The standard method of resolving surfaces is to repeatedly (alternatingly)

normalize and blow up singular points. There are other methods – for example, Albanese’s

method extends to surfaces. See [Kol07] for details.

Finally, resolution of singularities for schemes in dimension > 3 become increasingly much

more complicated than for surfaces, although Zariski established resolution specifically for

threefolds (in characteristic zero) in 1944 [Zar44].

We have the following short lemma.
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Lemma 2.3. Suppose X is a variety over k such that its singular locus Z = Sing(X) is

connected, and let p : X̃ −→ X be a strong resolution. Then E = p−1(Z) is connected, and

its irreducible components are each divisors on X̃.

Proof. It is known that blowing up has the universal property of replacing a subscheme

(defined by a coherent sheaf of ideals) by a divisor (defined by an invertible sheaf) [Har77,

II, Theorems 7.13, 7.14]. Write E = ∪mi Ei as the union of its irreducible components, and

without loss of generality, consider E1. The resolution map is surjective, so the images f(Ei)

cover Z. Consequently, for any other Ej, there is a sequence a0, . . . , ar of distinct numbers

between 1 and m so that a0 = 1, ar = j, and f(Eai)∩ f(Eai+1
) 6= ∅. These intersections are

closed in X, as the resolution is proper. Pick closed points xi ∈ f(Eai) ∩ f(Eai+1
). Zariski’s

main theorem asserts that f−1(xi) is connected. But by definition, f−1(xi) ∩ Eai 6= ∅ and

f−1(xi) ∩ Eai+1
6= ∅. So Eai and Eai+1

must be on the same connected component of E.

Iterating this, we see that E1 and Ej are in the same component. But as j was arbitrary,

we conclude that E is connected.

A related question is this: given a resolution, how nice can we make the exceptional divisor

E? Ideally, we would want the exceptional divisor to be smooth, but it turns out that this

is too strong of a condition. We can get something close, however: we can make E a simple

normal crossing divisor. This assertion is (essentially) part of requirement 2, above, for a

resolution to be a strong resolution.

Definition 2.4. Let E be a reduced effective Cartier divisor with irreducible components

E1, . . . , Em on a smooth scheme X̃. Furthermore, for any subset I of {1, . . . ,m}, let us write

EI := ∩i∈IEi. We say that E has normal crossings, or is a normal crossing divisor, if each

of the EI are smooth and codimE EI = |I| − 1. Furthermore, we say that E has simple

normal crossings, or is a simple normal crossing divisor, if, in addition, each of the EI are

irreducible.

In particular, all of the components Ei must have the same dimension.
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Example 2.5. Consider the node X defined by x2
1 = x3

0 + x2
0 in A2

k. Blowing up the origin

gives a closed subvariety Bl0(X) of A2 × P1, defined by

x2
1 = x3

0 + x2
0

x0y1 = x1y0.
(2.1)

where y0, y1 are the coordinates of P1. On the chart y0 = 1, we see that the strict transform

of the node is given by x0 = y2
1 − 1, which intersects the exceptional divisor x0 = 0 in two

points at y1 = ±1, which correspond to the slopes of two tangents of the node at the origin.

It turns out that this blowup resolves the singularities of X. The exceptional divisor is the

preimage of the origin (x0, x1) = (0, 0), which is a copy of P1.

Example 2.6. Let C be a smooth projective curve, and let X be the cone over C. Then

X is normal because it is regular in codimension 1 (its only singular point, the origin, has

codimension 2), so we proceed by blowing up the origin. It turns out that this resolves

the singularities of X, i.e. Bl0(X) is smooth, and the exceptional divisor turns out to be

isomorphic to C.

The question of the existence of resolution of singularities in characteristic 0 was finally

resolved in 1964 by Hironaka [Hir64]. As a testament to the difficulty of the problem,

Hironaka’s proof features a long and complicated multiple induction on the dimension, and

is over 200 pages, although his proof has been significantly shortened over the years. On the

other hand, resolution in characteristic p is still open when X has dimension ≥ 4. Hauser

[Hau00] gives a thorough history of the problem.
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2.2 The dual complex associated to a resolution of singularities

Given a strong resolution p : X̃ −→ X with exceptional divisor E that has simple normal

crossings, we may construct a finite cell complex associated to E which we denote D(E),

following [Kol12].

Let E be a scheme over k with simple normal crossings, and write E = ∪iEi as the union

of its irreducible components. For each non-negative integer m, let Cm be a set of m-

cells, each one corresponding to each of the irreducible components of each of the m-fold

intersections Ei0 ×E · · · ×E Eim . We then define D(E)m inductively, by letting D(E)0 be the

disjoint union of the elements (vertices) of C0, and gluing the m-cells of Cm to D(E)m−1

as follows. Let Dq
i0,...,im

∈ Cm be an m-cell corresponding to the qth irreducible component

of the intersection Ei0 ×E · · · ×E Eim . Then glue Dq
i0,...,im

to D(E)m−1 along each of the

m − 1 cells Dq′

i0,...,̂ij ,...,im
⊂ D(E)m−1 for each j = 0, . . . ,m and each q′, in the usual way,

whenever the (q′)th component of Ei0 ×E · · · ×E E ˆiq′
×E · · · ×E Eim and the qth component

of Ei0 ×E × · · · ×E ×Eim have a nonempty intersection. As m increases, eventually the Cm

must become empty, because E has only a finite number of irreducible components. Thus

D(E)N = D(E)N+1 for sufficiently large N , and we let D(E) = D(E)N for such an N .

Definition 2.7. For a simple normal crossing divisor E, we refer to D(E) as the dual complex

associated to E.

We give a simple example to illustrate D(E).

Example 2.8. Let E = E1 ∪ E2 ∪ E3 ∪ E4 be the union of four hyperplanes in general

position in P3. Then the double intersections Ei∩Ej are isomorphic to copies of P1, and the

triple intersections Ei ∩ Ej ∩ Em are just points. So D(E)0 consists of four disjoint points;

D(E)1 has an edge for any two distinct vertices; and D(E)2 has a 3-cell for any three distinct

vertices, so that D(E)2 = D(E) is homeomorphic to the 2-sphere.

Different resolutions of X yield different dual complexes D(E), but it turns out that the

homotopy type of D(E) is independent of the choice of good resolution [Ste06, Theorem 1.2].
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Consequently, we will also sometimes use the notation DR(X) to refer to the homotopy type

of a D(E) corresponding to some good resolution. This is quite nice, but on the other hand

D(E) is in general only a cell complex and need not be a simplicial complex.

This is problematic because we would like D(E) to be a simplicial complex. In fact, having

D(E) being a simplicial complex is crucial to our future calculations. At the very least,

having a simplicial D(E) simplifies the computations quite a bit. Luckily, such a resolution

exists; we begin with establishing an obvious criterion on E to have D(E) be a simplicial

complex. An intersection ∩i∈IEi is by definition smooth in a simple normal crossing divisor,

so it is the disjoint union of its components. We will call ∩i∈IEi a bad intersection if it is

not irreducible. It turns out that bad intersections are the only obstruction for D(E) to be

a simplicial complex.

Lemma 2.9. Given a good resolution p : X̃ −→ X, the dual complex D(E) is a simplicial

complex if and only if each of the intersections
⋂
i∈I Ei is irreducible.

Proof. Suppose E has m irreducible components, and that ∩i∈IEi is a bad intersection. Then

in the construction of the dual complex, we will have multiple |I|-cells glued in the same

place, so D(E) cannot be simplicial.

Conversely, suppose ∩i∈IEi is irreducible, and consider the corresponding |I|-simplex DI in

D(E). All of the faces of DI are in D(E), because any such face corresponds to a smaller

intersection of the Ei, which must be nonempty. Furthermore, for any other subset J of

{1, . . . ,m}, we have DI ∩DJ = DI∪J , which is a face of both.

The preceding criterion eliminates disconnected intersections (which correspond to multiple

cells glued to the same vertices). We now proceed with the proof that a resolution of X

always exists with dual complex D(E) a simplicial complex. The idea behind the proof was

communicated to us by János Kollár.

Proposition 2.10. There exists a resolution of X with exceptional divisor E for which D(E)
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is a simplicial complex. Moreover, such a resolution can be obtained from any good resolution

by further blowups.

Proof. Let p : X̃ −→ X be a strong resolution with exceptional divisor E. We will iteratively

blow up enough closed subschemes so that the conditions of Lemma 2.9 are satisfied. We

begin blowing up components of bad intersections of the smallest dimension, then move up

in dimension.

Write E = ∪mi=1Ei as the union of its irreducible components, and suppose E has no bad

intersections of codimension ≥ r. We will blow up components of bad intersections of

codimension r one by one; we claim that when we have blown them all up, the resulting

divisor will not have any bad intersections of codimension r. Write EI = ∩i∈IEi, and let

Br(p) be the number of connected components E
(j)
I that belong to some bad intersection EI

(i.e. EI has more than one connected component). Fix a bad intersection EI0 of codimension

r, and without loss of generality, blow up X̃ along the smooth irreducible center Z = E
(1)
I0

.

We claim that if p′ : Bl
E

(1)
I0

X̃ −→ X, then Br(p
′) = Br(p) − 1. Continuing in this manner,

we will eventually remove all of the bad codimension r intersections of E. This will finish

the proposition.

First, we partition the set {1, . . . ,m} into three sets:

I0 = {i |Z ⊂ Ei}

I1 = {i |Ei ∩ E(1)
I0
6= ∅, i /∈ I0}

I2 = {i |Ei ∩ E(1)
I0

= ∅}.

(2.2)

When we blow up X̃ along E
(1)
I0

, we see that Bl
E

(1)
I0

E, the total transform of E, will have

m + 1 components. We will let E ′i denote the total transform of Ei. If i ∈ I0, then we will

have E ′i : = Bl
E

(1)
I0

Ei; if i ∈ I1, then we will have E ′i := Bl
E

(1)
I0
∩Ei

Ei; and if i ∈ I2, then since

Ei intersects trivially with the center, E ′i will be isomorphic to a copy of Ei. By abuse of
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notation, we will also use Ei to refer to these E ′i, when it is notationally convenient to do so.

The last irreducible component E ′m+1 of Bl
E

(1)
I0

E is the exceptional divisor of this blowup;

we will also sometimes call this exceptional divisor E ′ when it is convenient to do so.

For ease of notation, we will also write E ′J := ∩j∈JE ′j.

Now that we have established the various irreducible components of Bl
E

(1)
I0

E, we are inter-

ested in how they intersect. We list the various types of intersections below.

α ⊂ I0, β ⊂ I0 : E ′α ∩ E ′β = E ′α∪β

α ⊂ I0, β ⊂ I1 : E ′α ∩ E ′β = Bl
E

(1)
I0
∩Eα∪β

Eα∪β

α ⊂ I0, β ⊂ I2 : E ′α ∩ E ′β = Eα∪β

α ⊂ I0 : E ′α ∩ E ′ = exceptional divisor of Bl
E

(1)
I0

Eα −→ Eα

α ⊂ I1, β ⊂ I1 : E ′α ∩ E ′β = Bl
E

(1)
I0
∩Eα∪β

Eα∪β

α ⊂ I1, β ⊂ I2 : E ′α ∩ Eβ = Eα∪β

α ⊂ I1 : E ′α ∩ E ′ = exceptional divisor of Bl
E

(1)
I0
∩Eα

Eα −→ Eα

α ⊂ I2, β ⊂ I2 : Eα ∩ Eβ = Eα∪β

α ⊂ I2 : Eα ∩ E ′ = ∅

α ⊂ I, β ⊂ I1, γ ⊂ I2 : E ′α ∩ E ′β ∩ Eγ = Eα∪β∪γ

α ⊂ I, β ⊂ I1 : E ′α ∩ E ′β ∩ E ′ = exceptional divisor of Bl
E

(1)
I0
∩Eα∪β

Eα∪β

To finish the proof, we need to check two things. First, we need to check that the intersections

of codimension ≥ r remain irreducible; second, we need to check that Br(p
′) = Br(p)− 1 for

the intersections of codimension r. For ease of notation, let I3 = {m+ 1}. For any arbitrary

subset J of {1, . . . ,m+1}, we can partition J according to its intersections with I0, I1, I2, and

I3; then E ′J = ∩3
i=0(E ′J∩Ii). Suppose now that |J | > r, so that codimE E

′
J ≥ r; we would like
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to show that each E ′J is irreducible. For ease of notation, let α = J∩I0, β = J∩I1, γ = J∩I2.

We now check the various possibilities for E ′J , using our intersection formulas from above:

J = α: Since |I0| = r < |J |, we cannot have J ⊂ I.

J = β: EJ has codimension ≥ r, so is irreducible by assumption. Furthermore, E
(1)
I0
∩

EJ ⊂ EI0∪J , which is irreducible by assumption and has the same dimension, so the

intersection E
(1)
I0
∩ EJ must either be empty or all of EI0∪J . Consequently, E ′J =

Bl
E

(1)
I0
∩EJ

EJ is the blowup of a smooth irreducible scheme along a smooth irreducible

subscheme, hence is irreducible.

J = γ: E ′γ = Eγ, which is irreducible by assumption.

J = α ∪ β: E ′α ∩E ′β is the blowup of Eα∪β along E
(1)
I0
∩Eα∪β. As before, |J | > r, so Eα∪β is

irreducible. Also, E
(1)
I0
∩ EJ ⊂ EI0∪J , which is irreducible by assumption and has the

same dimension, so the intersection E
(1)
I0
∩EJ must either be empty or all of EI0∪J . So

E ′J is the blowup of a smooth irreducible scheme along a smooth irreducible subscheme,

and in particular must be irreducible.

J = α ∪ γ: E ′α ∩ Eγ = Eα∪γ, which is irreducible by assumption.

J = α ∪ I3: E ′α ∩ E ′ is the exceptional divisor of the blowup E ′α −→ Eα. Since J = α ∪ I3

and |J | > r, |α| ≥ r, so that in fact, J = I0. Then the blowup of EI0 =
∐

iE
(i)
I0

along

E
(1)
I0

is just
∐

i 6=1E
(i)
I , so that the component E

(1)
I0

has disappeared. In this case, the

exceptional divisor is empty, i.e. E ′I0 ∩ E
′ = ∅.

J = β ∪ γ: E ′β ∩ Eγ = Eβ∪γ, which is irreducible by assumption.

J = β ∪ I3: E ′β ∩E ′ is the exceptional divisor of the blow up E ′β −→ Eβ. We are blowing up

along the intersection E
(1)
I0
∩ Eβ ⊂ EI0∪β, which is irreducible by assumption and has

the same dimension, so the intersection E
(1)
I0
∩Eβ is either empty or all of EI0∪β. We are

either leaving Eβ unchanged, or blowing it up along a smooth irreducible subscheme,

so the exceptional divisor will be irreducible.
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J = γ ∪ I3: Eγ and E
(1)
I0

, by definition, do not intersect, so E ′J is empty.

J = α ∪ β ∪ γ: E ′α ∩ E ′β ∩ Eγ = Eα∪β∪γ, which is irreducible by assumption.

J = α ∪ β ∪ I3: E ′α ∩ E ′β ∩ E ′ is the exceptional divisor of the blow up E ′α∪β −→ E ′α∪β.

We are blowing up along the intersection E
(1)
I0
∩ Eα∪β ⊂ EI0∪α∪β, which is irreducible

by assumption and has the same dimension, so the intersection E
(1)
I0
∩ Eα∪β is either

empty or all of EI0∪α∪β. We are either leaving Eα∪β unchanged, or blowing it up along

a smooth irreducible subscheme, so the exceptional divisor will be irreducible.

It remains to check that this blowup actually reduces the number of bad intersection com-

ponents. We do this directly by checking the various cases. In particular, the codimension

r intersections with E ′ should all be good intersections.

J = α: Since |I0| = r = |J | we must have J = I0, hence E ′J =
∐

i 6=1Ei has one less irreducible

component than the corresponding EI0 . This will be what causes Br to decrease.

J = β: Write EJ =
∐

j E
(j)
J . Then we have E

(1)
I0
∩ EJ ⊂ EI0∪J , which is irreducible. So

E
(1)
I0
∩ EJ is either empty or all of EI0∪J . In particular, this intersection is contained

in one of the E
(j)
J . Since E ′J = Bl

E
(1)
I0
∩EJ

E ′J , one connected component of EJ is being

blown up in a smooth center, so E ′J will be smooth, and will have the same number of

connected components.

J = γ: E ′γ = Eγ, which does not change under our blowup.

J = α ∪ β: E ′α ∩ E ′β is the blowup of Eα∪β along E
(i)
I0
∩ Eα∪β. As before, |I0 ∪ β| > r, so

this intersection is contained in EI0∪β, which is irreducible by assumption. So our

intersection is either empty or all of EI0∪β, which will be contained in one irreducible

component of Eα∪β. Then E ′α∪β is the blowup of Eα∪β in one of its connected compo-

nents along a smooth connected center, so it will be smooth. In addition, the number

of components stays the same.

J = α ∪ γ: E ′α ∩ Eγ = Eα∪γ, which does not change under blowup.
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J = α ∪ I3: E ′α ∩ E ′ is the exceptional divisor of the blowup E ′α −→ Eα. Since |J | = r,

we must have |α| = r − 1. If we write Eα =
∐

j E
(j)
α as the union of its connected

components, then the irreducible E
(1)
I0

must be contained in one of them, which we will

call E
(1)
α without loss of generality. Then E ′J∩E ′ is the exceptional divisor of Bl

E
(1)
I0

E
(1)
α ,

which will just be a projective bundle over E
(1)
I0

, hence smooth and irreducible. The

intersection E ′J is a good intersection.

J = β ∪ γ: E ′β ∩ Eγ = Eβ∪γ, which does not change under blowup.

J = β ∪ I3: E ′β ∩ E ′ is the exceptional divisor of the blowup E ′β −→ Eβ. If we write Eβ =∐
j E

(j)
β as the union of its connected components, then the irreducible E

(1)
I0

must be

contained in one of them, which we will call E
(1)
β without loss of generality. Then

E ′J ∩E ′ is the exceptional divisor of Bl
E

(1)
I0

E
(1)
β , which will just be a projective bundle

over E
(1)
I0

, hence smooth and irreducible. The intersection E ′J is a good intersection.

J = γ ∪ I3: Eγ and E
(1)
I0

, by definition, do not intersect, so E ′J is empty.

J = α ∪ β ∪ γ: E ′α ∩ E ′β ∩ Eγ = Eα∪β∪γ, which does not change under blowup.

J = α ∪ β ∪ I3: E ′α ∩ E ′β ∩ E ′ is the exceptional divisor of the blowup E ′α ∩ Eβ = E ′α∪β −→

Eα∪β. If we write Eα∪β =
∐

j E
(j)
α∪β as the union of its connected components, then the

irreducible E
(1)
I0

must be contained in one of them, which we will call E
(1)
α∪β without loss

of generality. Then E ′J ∩E ′ is the exceptional divisor of Bl
E

(1)
I0

E
(1)
α∪β, which will just be

a projective bundle over E
(1)
I0

, hence smooth and irreducible. The intersection E ′J is a

good intersection.

Looking at the various cases, we see that in each case, we either get a new good intersection

(in the case when we intersect with E ′), the number of bad components of an intersection

stays the same, or in the case of E ′I0 , the number of bad components goes down by one. We

conclude that Br(p
′) = Br(p)− 1, which proves the second claim.

Since blowing up along E
(1)
I0

preserves the goodness of the intersections of codimension ≥ r
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and lowers the number of bad codimension r intersection components by one, we conclude

that this procedure will eventually produce a resolution with all good intersections, i.e. a

simplicial D(E). By construction, the desired resolution is obtained from a good resolution

from further blowups.

Definition 2.11. We call a strong resolution p : X̃ −→ X an excellent resolution if the

exceptional divisor E is a simple normal crossing divisor and D(E) is a simplicial complex.
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CHAPTER 3

The cdh-topology

Let k be a field of characteristic zero and X a scheme over k. As mentioned in Chapter

1, the cdh-cohomology groups with coefficients in the K-theory sheaves can be used to

compute KH-groups of X (via the descent spectral sequence, Theorem 1.11). To define the

cdh-topology on the category Sch/k of schemes over k, we consider two classes of covers:

those obtained from Nisnevich squares and those obtained from abstract blow-up squares.

A Nisnevich square is a pullback diagram

U ×X V //

��

V

��

U �
�

// X

(3.1)

such that U −→ X is an open embedding and V −→ X is an étale morphism that is an

isomorphism over X − U . Given such a square, {U −→ X, V −→ X} is a Nisnevich cover

of X. Such covers generate the Nisnevich topology on Sch/k.

An abstract blow-up square is a pullback diagram

E //

��

X̃

p

��

Z �
�

// X

(3.2)

such that Z −→ X is an closed embedding, and p : X̃ −→ X is a proper map that is an iso-

morphism when restricted to X̃−E. The cdh-topology on Sch/k is the smallest Grothendieck

topology that contains Nisnevich covers and covers of the form {Z −→ X, X̃ −→ X} ob-
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tained from abstract blow-up squares. The “cdh-topology” stands for “completely decom-

posed h-topology,” and Voevodsky and Suslin introduced it in 1994 [SV00b] in order to

study sheaves of relative cycles. The Nisnevich topology is sometimes called the completely

decomposed topology, and the fact that Nisnevich covers are cdh-covers is reflected in this

name. Evidently, the cdh-topology is finer than both the Nisnevich and Zariski topologies. It

is also incomparable with the étale topology. Blowups are not flat, so a cover obtained from

an actual blowup square will not be étale. Conversely, if U −→ X is a cdh-cover and F is a

field that contains k, then U(F ) −→ X(F ) will be surjective. But this is not necessarily true

for étale morphisms, i.e. Hom(C,R) −→ Hom(R,R) is not surjective. So SpecC −→ SpecR

is not a cdh-cover.

A Grothendieck topology T is subcanonical if every representable functor is a sheaf. The

canonical topology on a category C is the finest topology such that every representable

functor is a sheaf. Almost of the well known Grothendieck topologies are subcanonical. The

fpqc topology is subcanonical [FGI05, Theorem 2.55], so all topologies coarser than the fpqc

topology are also subcanonical. However, the cdh-topology is not subcanonical, and is one

of the first examples of a non-subcanonical topology that has seen widespread use. We begin

with a lemma that elucidates some of the structure of the cdh-topology on Sch/k.

Lemma 3.1. Schemes over k are locally smooth in the cdh-topology.

Proof. Let X be a scheme over k with singular set Z0. As we are in characteristic zero, take a

resolution p : X0 −→ X. Then Z0

∐
X0 −→ X is a cdh-cover of X. Note that Z0 necessarily

has smaller dimension than X. If Z0 is singular, we may iterate this process by resolving Z0,

and this process must terminate because the dimension of the singular set decreases each

time. In the end, we will produce a smooth cdh-cover of X.

In other words, every scheme has a smooth cdh-cover. Notice that the existence of resolution

of singularities is crucial here – if k has characteristic p, then schemes over k might not

necessarily be locally smooth (although they might be!). Haesemeyer proved in [Hae04] that
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KH satisfies cdh-descent in characteristic zero. This slightly technical condition means that

an elementary Nisnevich square or an abstract blowup square

Ỹ //

��

X̃

��

Y // X

(3.3)

yields a homotopy cartesian square of spectra when we apply KH:

KH(Ỹ ) KH(X̃)oo

KH(Y )

OO

KH(X)oo

OO

(3.4)

In particular, we have a spectral sequence

Ep,q
2 = Hp

cdh(X, acdhKH−q) =⇒ KH−p−q(X), (3.5)

where acdhKH−q is the sheafification of the presheaf KH−q in the cdh-topology. Since

schemes are locally smooth in the cdh-topology, and the groups K−q and KH−q agree on

smooth schemes, it follows that the sheaves acdhKH−q and acdhK−q are the same, so that

the above spectral sequence is in fact the descent spectral sequence (1.14).

We also have the following lemma.

Lemma 3.2. Let X be smooth over k, and F a homotopy invariant sheaf with transfers

on the cdh-site over X. Then the change of topology morphism induces an isomorphism

Hp
cdh(X,F ) ∼= Hp

Zar(X,F ).

Proof. [VSF00]

This result is quite useful, because on smooth schemes, all of the sheaves aZarKn are homotopy

invariant sheaves with transfers [Voe00, Section 3.4], and computing Zariski cohomology
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groups is often easier than computing cdh-cohomology groups. We will use this fact often in

our computations.

Theorem 3.3 (cdh-cohomological dimension). Let X be a separated scheme of finite type

over a field k of characteristic zero, and let F be a cdh-sheaf over X. Then Hp
cdh(X,F ) = 0

whenever p > dimX.

Proof. [SV00a, Theorem 5.13]

In order to compute the KH-groups of X, we will need to know how to compute the cdh-

cohomology groups of simple normal crossing divisors E.

Lemma 3.4. Let E be a simple normal crossing scheme, and write E = ∪iEi as the union

of its irreducible components Ei. Then {
∐

iEi −→ E} is a cdh-cover of E.

Proof. We proceed by induction on the number of irreducible components of E. When there

is only one irreducible component, it’s clear that E is a cover of itself. Next, let E ′ =
⋃
i 6=1 Ei,

and observe that the square

E1 ∩ E ′ //

��

E ′

��

E1
// E

(3.6)

is an abstract blowup square. Indeed, E1 −→ E is a closed embedding, E ′ −→ E is a

closed embedding, hence proper, and is an isomorphism outside of E1. We also note that

the diagram (3.6) is also an actual blowup of E with center E1, although this fact is not

needed. So {E1 −→ E,E ′ −→ E} is a cdh-cover of E. But {
∐

i 6=1Ei −→ E ′} is a cover of

E ′ by induction, and putting these two covers together yields the lemma.

Taking
∐

iEi as a cover of E, we apply the usual Čech cohomology spectral sequence abutting

to the derived functor cohomology, which yields spectral sequence (1.12). It also turns out
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that we can throw away the degenerate parts of the first page – see Theorem 1.13 for a proof.

We will also elaborate on this in the next chapter.
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CHAPTER 4

Simplicial and semisimplicial schemes

In this chapter, we will define simplicial and semisimplicial schemes, and give some of their

basic properties.

Definition 4.1. A simplicial scheme over k, denoted X•, is a simplicial object in the cat-

egory of schemes, i.e. a functor X : ∆op −→ Sch/k from the simplicial category ∆ into the

category of schemes over k. Equivalently, it’s a sequence of schemes {Xp}p∈N with face maps

di,p : Xp −→ Xp−1 for i = 0, . . . , p and all p ∈ N (except that X0 has no face maps), and

degeneracy maps si,p : Xp −→ Xp+1 for i = 0, . . . , p−1 and for all p ∈ N, satisfying the usual

simplicial relations.

didj = dj−1di i < j

disj = sj−1di i < j

djsj = sj+1dj = id

disj = sjdi−1 i > j + 1

sisj = sj+1si i ≤ j

(4.1)

Definition 4.2. A semisimplicial scheme over k, denoted Y•, is a semisimplicial object in

the category of schemes over k, i.e. a sequence {Yp}p∈N of schemes over k, together with face

maps di,p : Yp −→ Yp−1 for i = 0, . . . , p and for all p ∈ N (except that Y0 has no face maps),

satisfying the usual relation for degeneracies, namely

didj = dj−1di i < j. (4.2)
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The notations for a simplicial scheme and a semisimplicial scheme are identical, so there is

room for a lot of confusion. If it’s not clear from context whether X• denotes a simplicial or

a semisimplicial scheme, we will sometimes denote semisimplicial objects with a superscript

“alt,” for “alternating,” e.g. Xalt
• .

Remark 4.3. Note that from a given simplicial scheme X•, we can produce a semisimplicial

scheme Xalt
• by simply forgetting the degeneracy maps. A semisimplicial scheme is “half” of

a simplicial scheme in the sense that it only has face maps, but not degeneracy maps.

Example 4.4. The standard simplicial ring Z[∆•] is defined by

Z[∆n] = Z[t0, . . . , tn]/(t0 + · · ·+ tn − 1), (4.3)

with the face maps di,n : Z[∆n] −→ Z[∆n−1] given by

di,n(tj) =


tj, j < i

0, j = i

tj−1, j > i

(4.4)

and the degeneracy maps si,n : Z[∆n] −→ Z[∆n+1] given by

si,n(tj) =


tj, j < i

ti + ti+1, j = i

tj+1, j > i.

(4.5)

For any scheme X, we can construct a simplicial scheme X[∆•] by taking X[∆n] = X ×Z

Z[∆n], and the face and degeneracy maps induced by those for Z[∆•]. These simplicial

schemes are the ones used to define KV theory and KH theory (Section 1.3).

Example 4.5. The only other case we will be concerned with is the case of a connected

simple normal crossings scheme E = ∪Ei, where Ei are the irreducible components of E.

The simplicial scheme ∆•E and the semisimplicial scheme ∆alt
• E associated to E are defined

as follows. For ∆•E, we have
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∆pE =
∐
i0,...,ip

(Ei0 ×E · · · ×E Eip). (4.6)

Similarly, for ∆alt
• (E), we have

∆alt
p E =

∐
i0<...<ip

(Ei0 ×E · · · ×E Eip), (4.7)

with the face maps given by the natural projections from the fiber products, and the de-

generacy maps for ∆•E induced by the diagonal maps Ei −→ Ei ×E Ei ∼= Ei. Notice that

∆•E contains degenerate intersections (e.g. E1×E E1), where ∆alt
• E does not. In particular,

∆nE is never empty, while ∆alt
n E is empty when n is larger than the number of irreducible

components of E, or when n is larger than the dimension of E.

Remark 4.6. As in Remark 4.3, we can produce a semisimplicial scheme (∆•E)alt from the

simplicial scheme ∆•E associated to E by forgetting the face maps – but this is different from

the semisimplicial scheme ∆alt
• E associated to E, as it contains degenerate self-intersections

(e.g. E1 ×E E1). Of these two semisimplicial schemes, we will only use the latter, ∆alt
• E.

Remark 4.7. In [BRS03], the authors consider the category of varieties over k as a subcate-

gory of the larger additive category where morphisms are now formal Z-linear combinations

of actual morphisms of varieties. In this additive category, we may take a semisimplicial

scheme X• and produce a chain complex C•(X•) where the differentials are the usual alter-

nating sum of face maps. We will need this later in Chapter 6 to produce a 1-motive.

Somewhat related to this discussion is the spectral sequence (1.12) which computes the cdh-

cohomology of a simple normal crossing divisor. Replacing the “simplicial” rows in the E1

page with the corresponding nondegenerate (semisimplicial) rows yields a quasi-isomorphism

(i.e. the E2 page is still the same), so we can use either to compute cohomology groups.

Technically, we are replacing the rows themselves, but it is convenient to think of replacing

the simplicial scheme ∆•E by the semisimplicial scheme ∆alt
• E. In practice, using ∆alt

• E is
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easier to use since 1) it doesn’t have degenerate intersections, and 2) it is finite, i.e. ∆alt
p E

is empty for sufficiently large p. On the other hand, the degenerate intersections of ∆•E

ensure that ∆pE is nonempty for all E.
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CHAPTER 5

Mixed Hodge structures and 1-Motives

5.1 Mixed Hodge structures

We motivate this chapter with an example.

Example 5.1. Let X be a compact Kähler manifold. Then the complex cohomology groups

Hn(X,C) have a vector space direct sum decomposition

Hn(X,C) =
⊕
p+q=n

Hp,q(X), (5.1)

such that Hp,q = Hq,p [PS08, Corollary 1.13]. This decomposition is functorial for many

operations on cohomology, e.g. if Y is a compact Kähler manifold and f : X −→ Y is a

holomorphic map, then the map Hn(Y,C) −→ Hn(X,C) induced by pullback is compatible

with the direct sum decomposition, i.e. f(Hp,q(Y )) ⊂ Hp,q(X). It is also compatible with

other natural operations on cohomology, such as cup product and the Künneth formula

[PS08, Theorem 5.44, Corollary 5.45]. We will see that Hn(X,C) has the structure of a pure

Hodge structure.

5.1.1 Filtered vector spaces

The material in this section comes is taken mostly from [Nic05]. We begin with some

definitions.

Definition 5.2. V be a vector space over a field k. An increasing filtration F• (resp.
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decreasing filtration F •) on V is a chain {Fp(V )}p∈Z (resp. {F p(V )}p∈Z) of subspaces of V

satisfying Fp(V ) ⊂ Fp+1(V ) (resp. F p+1(V ) ⊂ F p(V )) for all p.

If, in addition, there exist p < q so that Fp(V ) = 0 and Fq(V ) = V (resp. F p(V ) = V and

F q(V ) = 0), then we say that F• (resp. F •) is finite.

We will always denote decreasing filtrations by a superscript, e.g. F •, and increasing filtra-

tions by a subscript, e.g. F•. Given an increasing filtration F• on V , we can make a decreasing

filtration on V via F p(V ) = F−p(V ). Henceforth all filtrations will assumed to be decreasing

unless otherwise specified. In addition, we will often refer to vector spaces equipped with a

given filtration as filtered vector spaces, and denote them by the pair (V, F •).

Given a filtered vector space (V, F •) and a subspace W ⊂ V , F • induces a filtration on both

W and V/W , via

F p(W ) = W ∩ F p(V )

F p(V/W ) = (F p(V ) +W )/W,
(5.2)

as we would expect. These two induced filtrations commute: if W ⊂ U ⊂ V , then the two

induced filtrations on U/W (via U 7→ U/W and via U/W ⊂ V/W ) agree.

Now that we have defined filtered vector spaces, we would like to define morphisms between

them.

Definition 5.3. A morphism f : (V, F •) −→ (W,G•) between filtered vector spaces is a

k-linear transformation that is compatible with the filtrations, i.e. f(F p(V )) ⊂ Gp(W ).

The category of filtered vector spaces is additive, but not abelian, as the next example shows.

Example 5.4. Let V = k2 with basis {e1, e2} and filtration F 1(V ) = V, F 2(V ) = ke2, F
3(V ) =

0, and let f : V −→ V be defined by f(e1) = e2, f(e2) = 0. Then f is a morphism of filtered

vector spaces with ker f = ke2, so that the filtration induced on V/ ker f is:
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F 1(V/ ker f) = V/ ker f

F 2(V/ ker f) = 0

F 3(V/ ker f) = 0,

(5.3)

whereas im f = ke2, and the filtration induced on im f is

F 1(im f) = ke2

F 2(im f) = ke2

F 3(im f) = 0,

(5.4)

so that the canonical map V/ ker f −→ im f is not an isomorphism of filtered vector spaces.

We would like to know under what conditions the first isomorphism theorem holds. The

above example motivates the following definition:

Definition 5.5. A morphism f : (V, F •) −→ (W,G•) of filtered vector spaces is called strict

if f(F p(V )) = Gp(W ) ∩ im f .

Given a strict morphism of filtered vector spaces, we then have the first isomorphism theorem:

V/ ker f ∼= im f , so that the category of filtered vector spaces with strict morphisms indeed is

abelian. Keeping the example at the beginning of the chapter in mind, we have the following

definition.

Definition 5.6. Let F • and G• be two finite filtrations on V . We say that F • and G• are

n-complementary if GrpF GrqG(V ) = 0 whenever p+ q 6= n.

It turns out that a pair of n-complementary filtrations gives us the direct sum decomposition

we are looking for. We omit the proof of the following lemma.
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Lemma 5.7. Let F • and G• be two filtrations on V . Then the following are equivalent.

1. F • and G• are n-complementary.

2. F p(V ) =
⊕
i≥p

(F i(V ) ∩Gn−i(V )), and Gq(V ) =
⊕
j≥q

(Gj(V ) ∩ F n−j(V )).

3. F p(V ) ∩Gq(V ) = 0, F p(V ) +Gq(V ) = V whenever p+ q 6= n.

We mentioned in Example 5.1 that H i(X,C) is a pure Hodge structure. We will generalize

this to mixed Hodge structures, and in order to do so, we need to add a third filtration to

the mix.

Definition 5.8. If F •, G•,W• are filtrations on a vector space V , then we say that the triple

(F •, G•,W•) is a complementary triple filtration, if GrpF GrqG GrWn (V ) = 0 whenever p+q 6= n.

Our next result shows that we also get a direct sum decomposition out of a complementary

triple filtration, as in the previous lemma, and as in the example at the beginning of the

chapter. The proof is long and technical, so we omit it.

Proposition 5.9. Let (F •, G•,W•) be a complementary triple filtration on a vector space V .

Then we have the following direct sum decomposition for the filtered pieces:

Wn(V ) =
⊕
p+q≤n

Ip,q

=
⊕
p+q≤n

Jp,q

F p(V ) =
⊕
k≥p

⊕
q

Ik,q

Gq(V ) =
⊕
k≥q

⊕
p

Jp,k,

where
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Ip,q = (F p(V ) ∩Wp+q(V )) ∩

(
(Gp(V ) ∩Wp+q(V )) +

∞∑
i=1

(Gq−i ∩Wp+q−i)

)

Jp,q = (Gq(V ) ∩Wp+q(V )) ∩

(
(F q(V ) ∩Wp+q(V )) +

∞∑
i=1

(F p−i ∩Wp+q−i)

)
.

(5.5)

Although the Ip,q and Jp,q are complicated, the proposition is very explicit about how the di-

rect sum decomposition comes about. The takeaway is that a complementary triple filtration

yields a direct sum decomposition.

5.1.2 Mixed Hodge structures

Definition 5.10. A mixed Hodge structure H = (HZ, F
•,W•) is a triple, where HZ is a free

abelian group, W• is an increasing filtration on the Q-vector space HQ = Q⊗HZ, and F • is

a decreasing filtration on HC = C⊗HZ, such that the triple (F •, F
•
,W•) is a complementary

triple filtration, where F
•

is the filtration on HC obtained by complex conjugation of F •.

We refer to F • as the Hodge filtration and W• as the weight filtration. If there is some n so

that Wn−1HQ = 0,WnHQ = HQ, then we say that H is pure of weight n.

Furthermore, it will be convenient to refer to the type of a mixed Hodge structure H: it

is the set of all pairs (p, q) such that the Hp,q appearing in the direct sum decomposition

HC = ⊕p,qHp,q are nonzero.

The content of Example 5.14 is that when X is a compact Kähler manifold, Hn(X,Z),

modulo torsion, has the structure of a pure Hodge structure of weight n. Note that, in

the notation of Proposition 5.9, when G• = F
•
, we have Jp,q = Iq,p, which agrees with the

condition Hp,q = Hq,p. In fact, we can use Proposition 5.9 to determine the filtrations F •

and W• on Hn(X,Z). If we do, we see that
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F pHn(X,C) =
⊕
k≥p

Hk,q

W pHn(X,C) =


Hn(X,C) p ≥ n

0 p < n.

(5.6)

We would like to build a category of mixed Hodge structures, so we specify morphisms

between them.

Definition 5.11. A morphism f : H −→ H ′ of mixed Hodge structures is a group homo-

morphism fZ : HZ −→ H ′Z that is compatible with the filtrations in the following sense.

Specifically, we require f to be such that fQ : (HQ,W•) −→ (H ′Q,W
′
•) and fC : (HC, F

•) −→

(H ′C, F
′•) are strict morphisms of filtered vector spaces.

Definition 5.12. A polarization of a pure Hodge structure H of weight m is a bilinear form

Q : HZ ×HZ −→ Z such that

1. Q(α, β) = (−1)mQ(β, α);

2. (F pHQ)⊥ = Fm−p+1HQ; and

3. The form (α, β) 7→ Q(Cα, β) on HC is positive-definite,

where C(α) = ip−qα whenever α ∈ Hp,q. A pure Hodge structure of weight m is called

polarizable if it admits a polarization. Furthermore, we say that a mixed Hodge structure

H is graded-polarizable, or often just polarizable, if each of the graded pieces GrWmH of pure

weight m are polarizable.

Polarizable Hodge structures often have nice properties that non-polarizable Hodge struc-

tures don’t have. For example, in the following discussion, we will construct an equivalence

between mixed Hodge structures of type {(0, 0), (0, 1), (1, 0), (1, 1)} such that GrW1 H is polar-

izable, and the category of 1-motives. The existence of a polarization on GrW1 H guarantees
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that the objects that comprise the 1-motive, which a priori are just complex-analytic, are

actually algebraizable. Some other nice results that come from the existence of polarizations

can be found in [PS08], e.g. Corollary 2.11, Theorem 10.13.

Let MHS denote the category of mixed Hodge structures. It turns out that MHS is abelian;

see [Del71, Theorem 2.3.5] for the details. Since morphisms respect all of the filtrations, we

can also consider the full subcategory MHS≤p of mixed Hodge structures of weight ≤ p

for any p. Another subcategory of MHS that will be important to us is the category of

mixed Hodge structures of type {(0, 0), (0, 1), (1, 0), (1, 1)} such that GrW1 H is polarizable;

we denote this category by MHS1.

Deligne proved that the cohomology groups of any complex variety have mixed Hodge struc-

tures, by first extending Hodge theory to open smooth varieties, then complete singular

varieties, then to all varieties.

Theorem 5.13 (Deligne). Let X be a complex variety. Then the cohomology groups Hn(X,Z)

have Hodge and weight filtrations that give them a mixed Hodge structure. Moreover, given

a morphism f : X −→ Y , the induced map Hn(Y,Z) −→ Hn(X,Z) is a morphism of mixed

Hodge structures.

Proof. See the seminal papers [Del71, Del74].

Example 5.14. Consider two elliptic curves C1, C2 ⊂ P2 in general position, and let X =

C1 ∪ C2. Since they are cubic curves, by Bezout’s theorem, they will intersect transversally

in nine points P1, . . . , P9. We then have the diagram

∐
i Pi

//

��

C2

��

C1
// X

(5.7)

Taking cohomology groups yields an exact sequence
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0 // H0(X,Z) //

2⊕
i=1

H0(Ci,Z) // H0(
∐

i Pi,Z)

// H1(X,Z) //

2⊕
i=1

H1(Ci,Z) // 0.

(5.8)

Then H1(Ci,Z) = Z2, as an elliptic curve is just a torus, and H0 just counts the number of

components. So the exact sequence becomes

0 // Z // Z2 // Z9 // H1(X,Z) // Z4 // 0. (5.9)

Taking the weight 0 part of this sequence yields

0 // Z // Z2 // Z9 //W0H
1(X,Z) // 0. (5.10)

Since the first map is just the diagonal map, we see that W0H
1(X,Z) has rank 8, and in

particular is nontrivial. Furthermore, H1(X,Z) surjects onto Z4, which is pure of weight

1, so GrW0 (H1(X,Z)) has rank 4, hence H1(X,Z) must have a mixed Hodge structure. In

particular, it is not pure of weight 0.

5.2 1-motives

The material in this section, including notations, will mostly follow [BRS03]. Let k be a field

of characteristic zero, and fix an algebraic closure k of k.

Definition 5.15. A 1-motive over k is an exact diagram of commutative group schemes
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M =

 L

��

0 // T // G // A // 0

 (5.11)

over k, with L locally finite such that L(k) is a finitely generated abelian group, T is an

algebraic torus, and A is an abelian variety.

We will sometimes write M = [L −→ G] for convenience. When k is algebraically closed,

this definition is equivalent to the one that replaces the group scheme morphism L −→ G

by a group homomorphism L(k) −→ G(k), as in [Del74]. This is because the image of a

given basis of L(k) (which is a set of closed points of L) under the group homomorphism

L(k) −→ G(k) generates its image, hence determines the map L −→ G.

If M = [L −→ G] and M ′ = [L′ −→ G′], an effective morphism u = (ulf , usa) : M −→M ′ is

just a square

L
ulf
//

��

L′

��

G
usa // G′

(5.12)

We call u a quasi-isomorphism if usa is an isogeny (a surjective morphism with finite kernel)

and if the square (5.12) is cartesian. Morphisms of 1-motives M −→ M ′ are obtained

by inverting quasi-isomorphisms, in the same way that the calculus of fractions is used to

determine morphisms in Verdier localization. This gives us a category of 1-motives, which

we will denote M1(k).

Theorem 5.16. The category M1(k) is abelian.

Proof. [BRS03, Theorem 1.3]

Example 5.17. Trivial examples of 1-motives include locally finite group schemes [L −→ 0],

algebraic tori [0 −→ T ], abelian varieties [0 −→ A], and semiabelian varieties [0 −→ G]. We
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will see in the next section that many more examples (in some sense, all of them) come from

mixed Hodge structures.

We now look at 1-motives a little more in depth. We will be interested in 1-motives up to

torsion, which we define below.

Definition 5.18. Given a 1-motive

M =

 L

f
��

0 // T // G // A // 0

 (5.13)

let Ltor denote the torsion part of L, and consider the 1-motive

Mtor =

 Ltor ∩ ker f

f
��

0 // 0 // 0

 (5.14)

We call this 1-motive the torsion part of M . We say that M is torsion-free if Mtor = 0, and

torsion if M = Mtor. Furthermore, we will let Mfr := M/Mtor denote the free part of M .

Deligne [Del71, Del74] is the source of the material found in this section, originally construct-

ing torsion-free 1-motives over algebraically closed fields. His work has been generalized over

the years, but the core of many of the arguments remain the same.

5.3 Relation between Mixed Hodge structures and 1-motives

The main theorem we wish to state in this section is the following:

Theorem 5.19. There is an equivalence of categories

MHS1 'M1(C). (5.15)
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Proof. Given a 1-motive M = [L −→ G], we can construct a mixed Hodge structure HZ

defined by the following pullback diagram:

0 // ker(exp) // HZ //

��

L //

��

0

0 // ker(exp) // LieG
exp
// G // 0

(5.16)

Let rH : M1(C) −→MHS1 be the functor that takes M to HZ. We still need to specify the

Hodge and weight filtrations on HZ.

F 2HC = 0

F 1HC = ker(HZ ⊗Z C −→ LieG)

F 0HC = HC

W2HQ = HZ

W1HQ = ker(exp)

W0HQ = ker(exp) ∩ LieT

W−1HQ = 0

(5.17)

The map HZ −→ LieG is a map from a finitely generated abelian group to a complex vector

space, so it extends to a map HZ ⊗ C −→ LieG. The maximal torus T sitting inside G

induces an inclusion LieT −→ LieG.

Conversely, given a mixed Hodge structure HZ of the desired type, we set L = GrW2 HZ, G =

Ext1
MHS(Z,W1HZ), with the map L −→ G given by the boundary map

HomMHS(Z,GrW2 HZ) // Ext1
MHS(Z,W1HZ) (5.18)
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induced by the short exact sequence

0 //W1HZ //W2HZ // GrW2 HZ // 0. (5.19)

In addition, we have T = Spec(C[GrW0 HZ]) and the quotient A = G/T = W1HC/(W1HZ +

(F 1 ∩W1)HC).

Let rM : MHS1 −→M1(C) be so that rM(HZ) = [L −→ G]. The details of the proof that

rH and rM are quasi-inverses can be found in [BRS03, Theorem 1.5]; here, we are mostly only

interested in knowing how to translate between mixed Hodge structures and 1-motives.

Example 5.20. We continue our previous example 5.14. We saw that W0H
1(X,Z) had

rank 8, so the torus part is T = Spec(C[GrW0 H
1(X,Z)]) ∼= G8

m. In addition, since H1(X,Z)

has no weight 2 part, there will be no lattice. Finally, if we take the end of the long exact

sequence 5.8

· · · // H0(
∐

i Pi,Z) // H1(X,Z) // H1(C1,Z)⊕H1(C2,Z) // 0, (5.20)

we see that GrW1 H
1(X,C) ∼= H1(C1,C) ⊕ H1(C2,C) as pure Hodge structures of weight 1,

which shows that the abelian variety parts must be the same. But as C1 and C2 are elliptic

curves, the abelian variety must indeed be C1×C2. All in all, the 1-motive that corresponds

to H1(X,Z) is just


0

��

0 // G8
m

// G // C1 × C2
// 0

 (5.21)

We will, in the next chapter, produce a 1-motive M = [L −→ G] with a map α : G(k) −→

KH1−n(X) when X is a normal, n-dimensional projective variety over an algebraically closed
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k, whose singular locus Z is either smooth or of codimension > 2. In fact, (MC)fr will come

from the unique largest mixed Hodge structure H of type {(0, 0), (0, 1), (1, 0), (1, 1)} in the

weight 2 part W2H
n(X(C),Z) of the nth cohomology group Hn(X(C),Z), such that GrW1 H

is polarizable.
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CHAPTER 6

Calculation of KH1−n(X)

In Section 1.5, we started the calculation of KH−2(X) in the case that X is a threefold,

in order to motivate the background material. Here we begin more generally, but in a

similar fashion. Let X be an normal, integral n-dimensional variety (where n ≥ 3) such that

Z = Sing(X) is either smooth or of codimension greater than 2. Instead of taking a good

resolution of X, we will insist on taking an excellent resolution p of X (Definition 2.11), so

that the exceptional divisor E is a simple normal crossing divisor such that the dual complex

D(E) is a simplicial complex. We will compute the various pieces that comprise KH1−n(X),

with a full computation of KH−2(X) in the case that n = 3. KH satisfies cdh-descent

(Definition 3.3), so we obtain a long exact sequence

· · · // KH1−n(X) // KH1−n(X̃)⊕KH1−n(Z) // KH1−n(E) // · · · (6.1)

X̃ is smooth, so its negative KH groups vanish. When Z is smooth, its negative K-groups

vanish as well, and when Z is of codimension greater than 2, we have K−q(Z) = 0 for

q > n− codimZ (see Section 1.5) In any case, we are left with isomorphisms

KH−q(E) ∼= KH−q−1(X) (6.2)

for q > 0 in the case that Z is smooth, and for all q > n − codimZ = dimZ when

codimZ > 2. Recall that we are interested in the case q = n − 1, and in either of these
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cases, obtain an isomorphism KH2−n(E) ∼= KH1−n(X). Notice that when Z =
∐

i Zi has

more than one connected component, we will have KH1−n(X) ∼= ⊕iKH2−n(Ei), where Ei is

the strict transform of Zi. For each exceptional divisor i, we can compute KH2−n(Ei) using

its simple normal crossings structure, so henceforth we will assume that Z, and thus E (see

Lemma 2.3) is connected.

Before we use the simple normal crossings structure of E, however, we apply the descent

spectral sequence (1.14). We begin with a lemma:

Lemma 6.1. Let X be a scheme over k, and consider the sheaf acdhKq on the cdh-site over

X. For q ≤ 1, we have the following:

acdhKq =


acdhGm, q = 1

acdhZ, q = 0

0, q < 0.

(6.3)

Proof. First, we note that X is locally smooth in the cdh-topology (Lemma 3.1), so we may

assume that X is smooth and irreducible. In addition, Kq(U) = 0 vanishes for smooth U

and q < 0, so acdhKq vanishes for q < 0.

We can sheafify both K0 and Z in two steps, as follows:

K0
//

rank
��

aZarK0
//

��

acdhaZarK0 = acdhK0

��

Z // aZarZ // acdhaZarZ = acdhZ

(6.4)

The rank map aZarK0 −→ Z is an isomorphism on the stalks, since K0(R) = Z when R

is local, since every projective module over a local ring is free. So acdhK0 −→ acdhZ is an

isomorphism. We have a similar argument for the sheaf acdhK1:

K1
//

��

aZarK1
//

��

acdhaZarK1 = acdhK1

��

Gm
// Gm

// acdhGm

(6.5)

48



The map aZarK1 −→ Gm is an isomorphism on the stalks, since K1(R) = R× when R is local.

So acdhK1 −→ acdhGm is an isomorphism locally, hence is an isomorphism globally.

When there is no ambiguity (for example, when we take cohomology groups), we will some-

times write Kq for acdhKq, and similarly for Gm and Z.

By the above lemma, we conclude that the descent spectral sequence (1.14) resides in the

fourth quadrant. Moreover, the spectral sequence degenerates at En, because the cdh-

cohomological dimension of E is at most dimE = n− 1 [SV00a]. In particular, the spectral

sequence is bounded. The E2 page of the spectral sequence is shown below.

· · · 0 0 0 0

· · · En−3,0
2

dn−3,0
2

**

En−2,0
2 En−1,0

2 0

· · · En−3,−1
2

dn−3,−1
2

**

En−2,−1
2 En−1,−1

2 0

· · · En−3,−2
2 En−2,−2

2 En−1,−2
2 0

(6.6)

To calculate KH2−n(E), we need to know about the map dn−3,0
2 . When n = 3, it is zero:

Lemma 6.2. In the case n = 3, the differential d0,0
2 is the zero map.

Proof. Let P be a closed point of E, and consider the diagram

K0(E) //

rank
����

KH0(E) // //

��

E0,0
∞ (E) // //

��

E0,0
2 (E)

��

K0(P ) KH0(P ) E0,0
∞ (P ) E0,0

2 (P ) = Z

(6.7)

obtained from naturality of both the map K −→ KH and the spectral sequence. Zariski’s

main theorem implies that E is connected, so that the vertical map on the right, H0
cdh(E,Z) −→

H0
cdh(P,Z) is an isomorphism. Furthermore, the vertical map on the left, the rank map,
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K0(E) −→ K0(P ), is surjective since there are vector bundles on E of any rank. A diagram

chase shows that the map E0,0
∞ (E) −→ E0,0

2 (E) is an isomorphism, hence d0,0
2 = 0.

This lemma shows that when n = 3, we have E2,−1
2 = E2,−1

∞ , so the spectral sequence reduces

to a short exact sequence calculating KH−1(E):

0 // H2
cdh(E,Gm) // KH−1(E) // H1

cdh(E,Z) // 0. (6.8)

For arbitrary n, the differential dn−3,0
2 may be nonzero, so we only have exactness on the

right. Furthermore, we we can extend the exact sequence on the left by precomposing with

the E2 differential dn−3,0
2 :

Hn−3
cdh (E,Z)

dn−3,0
2 // Hn−1

cdh (E,Gm) // KH2−n(E) // Hn−2
cdh (E,Z) // 0. (6.9)

To use the fact that E has normal crossings, we invoke the machinery developed in Chapter

4. Let ∆alt
• E be the semisimplicial scheme associated to the normal crossings divisor E, as

in Example 4.5. We apply the spectral sequence (1.13) to ∆alt
• E, with F = aKm, where

m ∈ Z is arbitrary:

Ep,q
1 = Hq

cdh(∆alt
p E,Km) =⇒ Hp+q

cdh (E,Km). (6.10)

For this first quadrant spectral sequence, many terms are zero. First, ∆alt
p E = ∅ for p >

dimE = n−1, so Ep,q
1 = 0 for p > n−1. Additionally, since dim ∆alt

p E = dimE−p = n−1−p,

we have Ep,q
1 = 0 for p+ q > n− 1.

Furthermore, the sheaves aZarKm are homotopy invariant sheaves with transfers in the Zariski

topology and the components of ∆alt
p E are smooth for any p, so we may compute cohomology

using the Zariski topology (Theorem 3.2).
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We would like a better understanding of the exact sequence (6.9), so using this spectral

sequence (1.13), we first compute H i
cdh(E,Z) for arbitrary i.

Lemma 6.3. H i
cdh(E,Z) ∼= H i(D(E),Z). In particular, these groups are finitely generated.

Proof. In addition to the observations above about the spectral sequence, we also get Ep,q
1 = 0

for q > 0 since Z is flasque as a Zariski sheaf, so H i
cdh(E,Z) is just the cohomology of the

complex

0 // H0
Zar(∆

alt
0 E,Z) // · · · // H0

Zar(∆
alt
n−2E,Z) // H0

Zar(∆
alt
n−1E,Z) // 0 (6.11)

in degree i. The sheaf Z only carries information about the components of ∆alt
• E, so this

sequence depends only on the semisimplicial structure of E, hence we see that H i
cdh(E,Z) =

H i(D(E),Z).

Additionally, the homotopy type of D(E) is independent of the choice of resolution [Ste06,

Theorem 1.2], so we also have H i
cdh(E,Z) = H i(DR(X),Z).

Example 6.4. Using this same approach, we can easily calculate KH−n(X). Applying cdh-

descent for KH for the same resolution of singularities of X (or just equation (6.2)) yields

KH1−n(E) ∼= KH−n(X); application of the descent spectral sequence then yields

KH1−n(E) ∼= En−1,0
2 = Hn−1

cdh (E,Z). (6.12)

Then the above lemma tells us that KH1−n(E) ∼= H i(D(E),Z) = H i(DR(X),Z). �

Applying the above lemma to equation (6.9), we see that the kernel of the mapHn−1
cdh (E,Gm) −→

KH1−n(E) is a quotient of first termHn−3
cdh (E,Z), so the kernel and cokernel ofHn−1

cdh (E,Gm) −→

KH1−n(E) are finitely generated. Thus the cohomology group Hn−1
cdh (E,Gm) approximates
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KH1−n(E), up to some finitely generated groups. We continue, therefore, by computing

Hn−1
cdh (E,Gm).

6.1 Calculation of Hn−1
cdh (E,Gm)

The computation of Hn−1
cdh (E,Gm) is more complicated (and interesting) than the computa-

tion of Hn−2
cdh (E,Z). We begin by analyzing the spectral sequence (1.13).

6.1.0.1 Simplifying the simplicial spectral sequence

We begin with a small lemma.

Lemma 6.5. Let Y be a smooth scheme over k. Then Hq
Zar(Y,Gm) = 0 whenever q > 1.

Proof. There is a short exact sequence

0 // Gm
//K × // CaDiv // 0. (6.13)

Since Y is smooth, K is just the constant sheaf K(Y ), and CaDiv is the presheaf of Cartier

divisors on Y (which, by definition, is already a sheaf). But for such an Y , the presheaves of

Cartier divisors CaDiv, Weil divisors Div, and the class group presheaf Cl are all isomorphic

[Har77, II, Theorems 6.11, 6.16], and are sheaves since CaDiv is a sheaf. But Cl is a flasque

sheaf by [Har77, II, Proposition 6.5]. So the exact sequence (6.13) is a flasque resolution of

Gm, from which we see that Hq
Zar(Y,Gm) = 0 whenever q > 1.

Now, since ∆alt
• E is a smooth semisimplicial scheme, we apply the above to get Ep,q

1 = 0 for

q > 1. Thus the spectral sequence degenerates at E3, and we need only compute En−1,0
3 and

En−2,1
3 . The E1 page of the corresponding spectral sequence looks like
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· · · // 0 // 0 // 0 // 0

· · · // En−3,1
1

dn−3,1
1 //

d0,12

))

En−2,1
1

// 0 // 0

· · · // En−3,0
1

// En−2,0
1

// En−1,0
1

// 0

(6.14)

where now En−1,1
1 = H1

Zar(∆
alt
n−1E,Gm) = 0 since dim ∆alt

n−1E = 0. There is also a possibly

nonzero differential dn−3,1
2 on the E2 page, which we have denoted using a dashed arrow in

the diagram above. In order to compute En−1,0
∞ = En−1,0

3 , we need to determine the map

dn−3,1
2 . Applying the global sections of the resolution (6.13) for each ∆alt

p E in each column

yields the following diagram.

· · · // Div(∆alt
n−3E) // Div(∆alt

n−2E) // 0

· · · // k(∆alt
n−3E)× //

OO

k(∆alt
n−2E)× //

OO

k(∆alt
n−1E)×

OO

(6.15)

The E1 differentials are given by the semisimplicial structure of ∆alt
• E, i.e. the alternating

sum of the face maps. They are defined on the E0 page at Div(∆alt
m E), but only on those

divisors on ∆alt
m E that intersect ∆alt

m+1E transversally. For example, if two irreducible compo-

nents E1 and E2 of E intersect nontrivially, then E1∩E2 is a divisor on E1, but the image of

E1∩E2 is (clearly) not a divisor on E1∩E2. To remedy this, we will find a quasi-isomorphic

subcomplex for which the horizontal maps are defined, then use this subcomplex to show

that the map dn−3,1
2 in (6.14) is the zero map. Our current discussion motivates the following

definition.

Definition 6.6. For each p, we define the group of good divisors

Divg(∆
alt
p E) = {D ∈ Div(∆alt

p E) | D intersects ∆alt
m E transversally for all m > p}. (6.16)
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Remark 6.7. By applying Bertini’s theorem, we see that this definition is equivalent to the

one that requires the image of D under any composition of any of the face maps dj to be

defined. In addition, while the notation Divg comes from Carlson [Car85], our definitions

are slightly different. Carlson does not require Divg to be defined so that di lands in (our)

Divg(∆
alt
p+1E) – only that di lands in Div(∆alt

p+1E). Furthermore, Carlson’s definition applies

to a more general class of semisimplicial schemes, as we only define Divg for semisimplicial

schemes associated to a special class of simple normal crossing schemes.

Now, we will prove the following:

Lemma 6.8. For each p, let Ap be the pullback

Ap //

��

Divg(∆
alt
p E)

��

k(∆alt
p E)×

βp
// Div(∆alt

p E)

(6.17)

where βp is the rational function-to-divisor map. Then the vertical maps are a quasi-

isomorphism of complexes.

Proof. We add in the horizontal kernels and cokernels to the diagram above, and label the

vertical maps:

ker(αp) // Ap
αp

//

vk

��

Divg(∆
alt
p E) //

vDiv

��

coker(αp)

vcoker

��

ker(βp) // k(∆alt
p E)×

βp
// Div(∆alt

p E) // Pic(∆alt
p E)

(6.18)

We now check that vcoker is injective. This is a result of the fact that the middle square

is a pullback square. Given a section s ∈ coker(αp) with vcoker(s) = 0, we first lift s to

s ∈ Divg(∆
alt
p E). Then vDiv(s) maps to zero in coker(βp), so it lifts to t ∈ k(∆alt

p E)×.

Since βp(t) = vDiv(s), there is some element r ∈ Ap mapping to s. This shows that s = 0,

establishing injectivity of vcoker.
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Finally, we show that vcoker is surjective. Let t ∈ Div(∆alt
p E). We would like to lift t to a

good divisor on ∆alt
p E. In order to do so, we would like to wiggle t by a principal divisor so

that it meets ∆alt
p E transversally for q > p. But since ∆alt

q E = ∅ for sufficiently large q and

each ∆alt
p E has a a finite number of components, we may apply Bertini’s theorem to find a

lift s ∈ Divg(∆
alt
p E) of t. This shows that vcoker is surjective.

By replacing each column k(∆alt
p E)× −→ Div(∆alt

p E) with the quasi-isomorphic complex

obtained from Divg(∆
alt
p E) as in the lemma above, we can replace the diagram (6.15) with

the following diagram

· · · // Divg(∆
alt
n−3E) // Divg(∆

alt
n−2E) // 0 // 0

· · · // An−3
//

OO

An−2
//

OO

k(∆alt
n−1E)×

OO

// 0

(6.19)

so that all of the horizontal maps are indeed defined. We may then use this diagram to

calculate the differential dn−3,1
2 that appears in the spectral sequence (1.13). We claim this

map is zero.

Lemma 6.9. dn−3,1
2 is the zero map.

Proof. For the purposes of bookkeeping, suppose E has m irreducible components. Let

m = {1 < · · · < m}, and let us also set

I = {{i0 < · · · < in−1} | i1, . . . , in−1 ∈m} . (6.20)

I denotes all ordered subsets of {1, . . . ,m} of length n. We will also let i and j denote ordered

subsets of m of length n−2 and n−1, respectively. Keeping tight track of the indices would

be a notational burden and detracts from the main thrust of the proof, so there will be some

looseness in our usage of i and j.

55



Consider a divisor D ∈ Divg(∆
alt
n−3E) that represents an element of En−3,1

2 = ker(dn−3,1
1 ) (see

the diagram (6.14)). The image of D in Pic(∆alt
n−2E) is zero, so it pulls back to a rational

function g = (gj) ∈ An−2 on ∆alt
n−2E.

Write D = (Di), and write Di = D′i − D′′i such that D′i and D′′i are effective divisors

whose supports intersect in codimension at least two. In the basis of prime divisors on

Ei = Ei0 ×E · · · ×E Ein−3 , D
′
i and D′′i correspond to the divisors with positive and negative

coefficients, respectively. The D′i, D
′′
i also correspond to locally principal, closed, codimension

one subschemes Y ′′i , Y
′′
i , respectively, of ∆alt

n−3E. Locally, Y ′i and Y ′′i are defined on some open

U by the vanishing of sections f ′i , f
′′
i ∈ Γ(U,OU), respectively.

If i = {i0, . . . , in−2} and i  j = {i0 . . . , ir, a, ir+1, . . . , in−2} so that j is obtained from i by

inserting a after the rth element of i, then we define sign(i, j) = (−1)r.

Then on Ej, the divisor
∑

i j(−1)sign(i,j)(Di ∩ Ej) has degree zero, and is locally defined by

fj :=
∏

i j(f
′
i/f

′′
i )(−1)sign(i,j) . Then the divisor defined locally by gj/fj has no zeroes or poles

hence is constant on Ej. This shows that the function defined locally by the fj is in fact

actually a rational function, and gives the same divisor class as g. Since D is a good divisor,

it meets ∆alt
n−1E transversally, i.e. the support of D does not intersect ∆alt

n−1E. Then the

zeros of the f ′i , f
′′
i do not intersect ∆alt

n−2E, so we can use the fj to evaluate dn−3,1
2 (D).

Let P ∈ ∆alt
n−1E be a closed point. We claim that when we push g forward to k×(∆alt

n−1E)

and then evaluate at P , we will get 1. By the preceding discussion we can use fj in place of

the gj, and because the differentials are gotten by taking an alternating sum of face maps,

we see that dn−3,1
2 (g)(P ) is is the image of the fi under the composition of two differentials,

hence is trivial. Since g pulls back to something already trivial in k(∆alt
n−1E)×, it will be zero

in the quotient En−1,0
2 .

Consequently, En−1,0
∞ = En−1,0

2 = Hn−1(D(E), k×), and we have the following corollary.

Corollary 6.10. Writing coker(Pic) for the cokernel of Pic(∆alt
n−3E) −→ Pic(∆alt

n−2E), we

have a short exact sequence that computes Hn−1
cdh (E,Gm):
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0 // Hn−1(D(E), k×) // Hn−1
cdh (E,Gm) // coker(Pic) // 0. (6.21)

Example 6.11. If Hn−2(D(E),Z) is torsion-free, or if k contains all roots of unity (for exam-

ple, when k is algebraically closed), then we also have Hn−1(D(E), k×) = Hn−1(D(E),Z)⊗

k×, via the universal coefficient theorem, which gives a split short exact sequence

0 // Ext(Hn−2(D(E),Z), k×) // Hn−1(D(E), k×) // Hom(Hn−1(D(E),Z), k×) // 0.

(6.22)

The first term is zero, since in the first case k× is a divisible group, and in the second case

Hn−2(D(E),Z) is free. In addition, since dimD(E) = n − 1, the top homology group of

D(E) is free, which proves the claim. In particular, Hn−1(D(E), k×) ∼= (k×)r = TE(k), for

some r, is the k-points of some split torus TE.

The thrust of the next subsection is to show that a 1-motive naturally arises out of the

spectral sequence (1.13).

6.1.0.2 Computation of Picard groups

Since all of our schemes are projective over k, the Picard functor is representable [FGI05,

Chapter 9]; in particular, Pic0, the connected component of the Picard scheme, exists. Let

the Néron-Severi group, NS, be the presheaf cokernel of the group of components Pic /Pic0.
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Writing Pic as an extension of NS by Pic0, we obtain a diagram

0

��

0

��

0

��

0 // ker(Pic0) //

��

ker(Pic) //

��

ker(NS)

��

0 // Pic0(∆alt
n−3E) //

��

Pic(∆alt
n−3E) //

��

NS(∆alt
n−3E) //

��

0

0 // Pic0(∆alt
n−2E) //

��

Pic(∆alt
n−2E) //

��

NS(∆alt
n−2E) //

��

0

coker(Pic0) //

��

coker(Pic) //

��

coker(NS) //

��

0

0 0 0

(6.23)

Taking the second map from the short exact sequence (6.22) and pulling back along the map

coker(Pic0) −→ coker(Pic) gives us

0 // Hn−1(D(E), k×) // GE(k) //

��

coker(Pic0)

��

// 0

0 // Hn−1(D(E), k×) // Hn−1
cdh (E,Gm) // coker(Pic) // 0

(6.24)

Applying the snake lemma to the above diagram, we see that the two vertical maps on the

right have the same kernel and cokernel, and that ker(NS) surjects onto ker(β):
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ker(NS)

����

ker(NS)

����

ker(β)
��

��

ker(β)
��

��

0 // Hn−1(D(E), k×) // GE(k) //

��

coker(Pic0)

β

��

// 0

0 // Hn−1(D(E), k×) // Hn−1
cdh (E,Gm) //

����

coker(Pic) //

����

0

coker(NS) coker(NS)

(6.25)

Furthermore, since NS(∆alt
• E) is a complex, we have a map NS(∆alt

n−4E) −→ ker(NS). We

claim that the composite

NS(∆alt
n−4E) // ker(NS) // coker(Pic0) (6.26)

is zero. We can see this from the square

Pic(∆alt
n−4E) //

��

NS(∆alt
n−4E)

��

ker(Pic) // ker(NS)

(6.27)

The top horizontal map is surjective, so we may pull back any element of NS(∆alt
n−4E) back

to Pic(∆alt
n−4E). But then we can evaluate the composite (6.26) by pushing down to ker(Pic)

and then forward to coker(Pic0).

For the rest of this chapter, let k be algebraically closed and of sufficiently small cardinality

so that there is an embedding k −→ C. We will show that the diagram
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ker(NS)

��

0 // Hn−1(D(E), k×) // GE(k) // coker(Pic0) // 0

 (6.28)

is the k-points of a 1-motive M ′
E, and that


Hn−3(NS(∆alt

• E))

��

0 // Hn−1(D(E), k×) // GE(k) // coker(Pic0) // 0

 (6.29)

is the k-points of a 1-motive ME, where Hn−3(NS(∆alt
• E)) = coker(NS(∆alt

n−4E) −→ ker(NS))

is the (n− 3)rd cohomology group of the complex NS(∆alt
• E).

Pic0 is representable, and since k is algebraically closed, the functor of taking k-points is

exact. In particular, the k-points of the cokernel of the map between Pic0 schemes of ∆alt
0 E

and ∆alt
1 E is the cokernel of the Pic0 groups, that is, coker(Pic0). In other words, coker(Pic0)

is the k-points of the corresponding abelian variety.

Similarly, the group Hn−1(D(E), k×) ∼= (k×)r, are the k-points of some torus, as in Example

6.11. Therefore, for ease of notation and for suggestiveness, let TE be the (split) torus so

that TE(k) = Hn−1(D(E), k×).

We may compose the map GE(k) −→ Hn−1
cdh (E,Gm) with the descent spectral sequence

edge map Hn−1
cdh (E,Gm) −→ KH2−n(E) to get a map α := GE(k) −→ Hn−1

cdh (E,Gm) −→

KH1−n(E); the cokernel of this composite is an extension of the cokernel of the latter map

by the cokernel of the former map:

0 // coker(NS) // coker(α) // Hn−2(D(E),Z) // 0. (6.30)

Similarly, the kernel of α is the extension of the kernel of the latter map by the kernel of the

60



former map:

0 // ker(β) // ker(α) // im(dn−3,0
2 ) // 0, (6.31)

where dn−3,0
2 is the E2 differential Hn−3

cdh (E,Z) −→ Hn−1
cdh (E,Gm) in the descent spectral

sequence (1.14). Since the Néron-Severi groups are finitely generated, ker(NS) is finitely

generated, so the quotient ker(β) is finitely generated as well. Furthermore, Lemma 6.3

tells us that the term im(dn−3,0
2 ) is also finitely generated, so ker(α), the extension of two

finitely generated groups, is always finitely generated. When n = 3, Lemma 6.2 implies that

the edge map H2
cdh(E,Gm) −→ KH−1(E) is an injection (see the exact sequence (6.8)), so

ker(α) = ker(β). In particular, the sequence

ker(NS) // GE(k) // KH−2(X) (6.32)

is exact. All in all, for general n, both ker(α) and coker(α) are finitely generated, so that

KH−1(E) ∼= KH−2(X) is the k points of some group scheme, up to some finitely generated

groups.

We now verify our earlier claim that the diagrams (6.28) and (6.29) are the k-points of

1-motives.

Proposition 6.12. The diagrams (6.28) and (6.29) are the k-points of 1-motives over k.

Proof. For ease of notation, we will let A• := C•(∆
alt
• E) denote be the complex associated

to the semisimplicial scheme ∆alt
• E (see Remark 4.7). We now check that our construction

agrees with [BRS03], where we take X• = ∆alt
• E. In addition, ∆alt

• E is already projective,

so there is no need to take a compactification. So we have, using the notation of [BRS03],
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o
W ′0(A•) = A•

o
W ′1(A•) = En −→ En−1 −→ · · · −→ E2 −→ E1

...

o
W ′n−1(A•) = En −→ En−1

o
W ′n(A•) = En

o
W ′n+1(A•) = ∅

(6.33)

and

o
W ′′−1(A•) = A•

o
W ′′0(∆alt

• E) = A•

o
W ′′1(∆alt

• E) = ∅

(6.34)

so that

o
W ′′−1(A•) = ∆alt

• E

o
W ′′0(A•) = ∆alt

• E

o
W ′1(A•) = En −→ En−1 −→ · · · −→ E2 −→ E1

...

o
W ′n−1(A•) = En −→ En−1

o
W ′n(A•) = En

o
W ′n+1(A•) = ∅

(6.35)

where the chain maps are the alternating sum of the face maps. In addition, in any explicitly
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written-out complexes, the rightmost term has homological degree zero. Then the spectral

sequence [BRS03, 3.1.3] with r = 0 is

Ep,q
1 = Hq(∆alt

p E,Gm) =⇒ Hp+q(K′), (6.36)

which is the spectral sequence (1.13). Next, with the notation of [BRS03], we claim that

the diagrams (6.28) and (6.29) are the k-points of the 1-motives M ′
n−1(A•) = [Γ′n−1(A•) −→

Gn−1(A•)] and M ′
n−1(A•) = [Γ′n−1(A•) −→ Gn−1(A•)], where

Γ′n−1(A•) = ker
(
∂ : Pn−3(A•)/Pn−3(A•)

0 −→ P≥n−2(A•)/P≥n−2(A•)
0
)

Γn−1(A•) = coker
(
NS(∆alt

n−4E) −→ Γ′n−1(A•)
) (6.37)

and

Gn−1(A•) = coker (∂ : Pn−3(A•) −→ P≥n−2(A•)) , (6.38)

where

P≥i(A•) = H i+1(W iK′)

Pi(A•) = H i+1(GriWK′).
(6.39)

and K′ is as in spectral sequence (6.36). To check this, we first compute the lattices Γ′n−1(A•)

and Γn−1(A•). We can see that Pn−3(A•) = Pic(∆alt
n−3E); we still need to know P≥n−2(A•).

For the latter, the above spectral sequence (6.36) gives a short exact sequence

0 // Hn−1(D(E), k×) // P≥n−2(A•) // Pic(∆alt
n−2E) // 0. (6.40)
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Consider the pullback of the diagram along the inclusion Pic0(∆alt
n−2E) −→ Pic(∆alt

n−2E). We

claim that the pullback of this square is P≥n−2(A•)
0:

0 // Hn−1(D(E), k×) // P≥n−2(A•)
0 //

��

Pic0(∆alt
n−2E) //

��

0

0 // Hn−1(D(E), k×) // P≥n−2(A•) // Pic(∆alt
n−2E) // 0

(6.41)

The middle term in the top row, the pullback, is an extension of two connected group schemes,

hence is connected. In addition, the connected component of the identity P≥n−2(A•)
0, injects

into the pullback, so the pullback must be isomorphic to the connected component of the

identity, as we have indicated on the diagram above. Now applying the snake lemma to the

above diagram, we obtain

P≥n−2(A•)/P≥n−2(A•)
0 ∼= NS(∆alt

n−2E), (6.42)

so that Γ′n−1(A•) = ker(NS(∆alt
n−3E) −→ NS(∆alt

n−2E)), which agrees with our lattice LE =

ker(NS). The related lattice Γn−1(A•) is just the cokernel

Γn−1(A•) = coker(NS(∆alt
n−4E) −→ Γ′n−1(A•))

= Hn−3(NS(A•))
(6.43)

which agrees with our other lattice term in (6.29). It remains to check that the semiabelian

variety Gn−1(A•) agrees with our GE. Using the short exact sequence above that calculates

P≥n−2(A•), we get

Pic0(∆alt
n−3E)

g

��

0 // TE // P≥n−2(A•)
0 // Pic0(∆alt

n−2E) // 0

(6.44)
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where Gn−1(A•) is the cokernel of the vertical map g. We take the pullback of the first

horizontal map TE −→ P≥n−2(A•)
0 along g:

W //

��

Pic0(∆alt
n−3E)

��

TE // P≥n−2(A•)
0

(6.45)

Because the bottom map is a closed immersion, we see that W is a closed subgroup of

Pic0(∆alt
n−3E). Furthermore, because the square is a pullback square, the induced map on

cokernels is injective. We add these observations to the diagram (6.44):

0

��

0 //W //

f

��

Pic0(∆alt
n−3E)

g

��

// Pic0(∆alt
n−3E)/W //

h
��

0

0 // TE //

��

P≥n−2(A•)
0 //

��

Pic0(∆alt
n−2E) //

��

0

coker f // Gn−1(A•) // cokerh // 0

(6.46)

To finish, we need the following lemma:

Lemma 6.13. The k-points of the bottom row of the above diagram (6.46) is the same as

the short exact sequence in the top row of the diagram (6.24).

Proof. Let W ′ = im f denote the image of W in TE. Since Pic0(∆alt
n−3E) is an abelian variety,

it is proper over k, so that g is also proper [Har77, II, Corollary 4.8]. We have already

observed that W is a closed subscheme of Pic0(∆alt
n−3E), hence proper over k. Furthermore,

the map W −→ TE is also proper, so W ′ is a closed subvariety of TE that is proper over k

[Har77, II, Exercise 4.4]. On the other hand, TE is affine, and W ′, being closed in TE, is also

affine. But then W ′ is finite over k, as it is affine and proper over k[Har77, II, Exercise 4.6].
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In addition, since W ′ is a finite subgroup of TE, we claim that coker f is isomorphic to TE. TE

is a group of multiplicative type, and since all finite subgroups of a group of multiplicative

type are also of multiplicative type, W ′ is of multiplicative type [Wat79, 2.2]. There is

an anti-equivalence between group schemes of multiplicative type over k and finite abelian

groups [KMR98, Proposition 20.17]. Here, the map W ′ −→ TE corresponds to a surjective

map of a lattice onto a finite abelian group. The kernel of this map must also be finitely

generated free abelian of the same rank, so that coker f must be isomorphic to a copy of TE.

Finally, since the top right horizontal map is surjective, cokerh is the same as the cokernel

of the map Pic0(∆alt
n−3E) −→ Pic0(∆alt

n−2E), as in our case.

Applying the snake lemma and making the identification coker f ∼= TE yields a short exact

sequence of commutative group schemes

0 // TE // Gn−1(A•) // coker(Pic0) // 0, (6.47)

which agrees with our construction.

The main theorem in the Barbieri-Viale, Rosenschon, Saito paper on Deligne’s conjecture

on 1-motives [BRS03, Theorem 0.1] tells us that, under the equivalence 5.15, the free part

1-motive (ME)fr, after base extending to C, comes from a unique mixed Hodge structure

HE in W2H
n−1(E(C),Z). (More specifically, HE is the unique largest torsion-free mixed

Hodge structure of type {(0, 0), (0, 1), (1, 0), (1, 1)} in W2H
n−1(E(C),Z) such that GrW1 HE

is polarizable.)

6.2 Independence of the choice of resolution

Now that we have the 1-motive ME = [LE −→ GE], we wish to determine to what extent

these are independent of the choice of resolution. Under the equivalence (5.15), we get
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another 1-motive, which we will denote M = [L −→ G], that comes from a unique mixed

Hodge structure H in W2H
n(X(C),Z), of the considered type. We will not only establish

to what extent ME is independent of the choice of resolution, but also we will establish a

relation between ME and M . The precise formulation is as follows.

Proposition 6.14. For each resolution p : X̃ −→ X, there exists an (effective) morphism

ME −→ M , which is an isomorphism on the non-lattice parts. In particular, the 1-motive

ME is independent of the choice of resolution p unless n = 3, in which case we have a

surjection LE −→ L.

Proof. Taking the long exact sequence in singular cohomology (of the C-points) induced by

the blowup square (1.20), we obtain

· · · // Hr−1(X̃,Z)⊕Hr−1(Z,Z) // Hr−1(E,Z) // Hr(X,Z) // · · · (6.48)

From this long exact sequence, we get a map HE −→ H of mixed Hodge structures, since

the weights are functorial with respect to morphisms. Since the groups H i(Z(C),Z) vanish

for i > n − 2, the groups H i(X̃(C),Z) are pure of weight i, and n ≥ 3, taking the weight

2 part of the sequence yields an isomorphism W2H
n−1(E(C),Z) ∼= W2H

n(X(C),Z) unless

n = 3, in which case we only have a surjection. Similarly, taking the weight 1 part of the

above sequence yields an isomorphism W1H
n−1(E(C),Z) ∼= W1H

n(X(C),Z). The weight 2

part contains the lattice, and the weight 1 part contains the rest of the 1-motive, proving

the claim.

Remark 6.15. Because the map LE −→ G factors through L, we see from the composite

LE(k) // // L(k) // G(k) // KH1−n(E) (6.49)

that the images of LE and L in G are the same. So when n = 3, the sequence
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L(k) // G(k) // KH−2(E) (6.50)

is still exact.

Another way to see that the torus Hn−1(D(E), k×) is independent of the resolution is to

see that the homotopy type of D(E) is independent of the choice of resolution [Ste08].

In particular, all of the cohomology groups H i(D(E), A), for any abelian group A, are

independent of the choice of resolution. So we see that the groups H i(D(E),Z) for i = n−

3, n−2, coming out of the exact sequence (6.9) that computes KH2−n(E) is also independent

of the choice of resolution. Thus Hn−1
cdh (E,Gm) is independent of the choice of resolution as

well. More directly, we can apply cdh-descent to the cohomology groups themselves; we get

a long exact sequence

· · · // Hn−1
cdh (Z,Gm)⊕Hn−1

cdh (X̃,Gm) // Hn−1
cdh (E,Gm) // Hn

cdh(X,Gm) // · · ·

(6.51)

Since Z and X̃ are smooth, their cdh-cohomology groups agree with their Zariski cohomology

groups, and by Lemma 3.2, we obtain an isomorphism Hn−1
cdh (E,Gm) ∼= Hn

cdh(X,Gm), which

gives an alternate way to see that Hn−1
cdh (E,Gm) is independent of the choice of resolution.

Now that Hn−1
cdh (E,Gm) is independent of the choice of resolution, the exact sequence (6.21)

shows that the group coker(Pic) is also independent of the choice of resolution. Furthermore,

since coker(Pic0) was independent of the choice of resolution, the cokernel of coker(Pic0) −→

coker(Pic), which is coker(NS), is also independent of the choice of resolution, as is the kernel

of that map. In summary, all of the various groups appearing in the diagram (6.23) are

independent of the choice of resolution except possibly the group ker(NS), and only in the

case n = 3. We give an example to show that indeed this is the case, that ker(NS) is not

independent of the choice of resolution when n = 3.
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Example 6.16. Suppose we have an 3-dimensional integral X with a smooth singular locus

Z of dimension ≤ 1. Suppose that we also have an excellent resolution p : X̃ −→ X with

exceptional divisor E that has at least 2 irreducible components E1, E2 that have a nonempty

intersection E12 (which must be a smooth curve). Let the other irreducible components of

E be E3, . . . , Em. Take a closed point x that lies in E12 but does not lie in any of the other

Ei. If we take the blowup along x, we obtain a diagram

BlxE //

��

BlxX̃

��

E //

��

X̃

��

Z // X

(6.52)

so that BlxX̃ −→ X is also an excellent resolution. BlxE then has m + 1 irreducible

components: E ′1 = BlxE1, E
′
2 = BlxE2, E3, . . . , Em, and a new component E ′ that is the

exceptional divisor of BlxX̃. The relationships between the intersections of the various

components are given below.

E ′1 ∩ E ′2 = BlxE12
∼= E12

E ′i ∩ E = exceptional divisor of BlxEi,−→ Ei i = 1, 2

Ei ∩ E ′ = ∅ i > 2

Ei ∩ E ′j ∼= Ei ∩ Ej i > 2, j = 1, 2

(6.53)

In general, for a smooth surface S that contains a point y, then we will have [Har77, V,

Theorem 5.8]

NS(BlyS) = NS(S)⊕ Z, (6.54)

so that from the diagram
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NS(∆alt
0 E) //

��

NS(∆alt
0 E)⊕ NS(E ′)⊕ Z2

��

NS(∆alt
1 E) // NS(∆alt

1 E)⊕ Z2

(6.55)

we see that NS(∆alt
0 E) has changed by NS(E ′) ⊕ Z2 and that NS(∆alt

1 E) has changed by

Z2. Since E ′ is projective, NS(E ′) has rank at least 1, so that ker(NS) must become strictly

bigger, and in particular depends on the choice of resolution of X.

This makes sense, because by Proposition 6.14, we have in general only a surjection ker(NS) −→

L and not an isomorphism.

Remark 6.17. When X is projective, the 1-motive is independent of the choice of good res-

olution p unless n = 3, in which case the non-lattice parts of the 1-motive are independent of

the choice of good resolution p. Therefore, to calculate KH1−n(X) when X is not projective,

we need only take an algebraic compactification X of X, and then compute KH1−n(X), as

KH1−n(X) ∼= KH2−n(E) ∼= KH1−n(X). This shows that KH1−n(X) is independent of the

choice of algebraic compactification X. This result makes sense in light of the observation

that negative KH vanishes for smooth schemes, and we compactify away from the singular

locus. In some sense, we are computing, KH1−n of the singularity x0 locally sitting inside

X.

We wrap things up by putting together everything we have proven so far.

Theorem 6.18 (Main Theorem for KH1−n(X)). Let X be an normal, integral n-fold over

an algebraically closed field k of characteristic zero, with singular locus Z = Sing(X) such

that Z is smooth or codimZ > 2. Then there exists a 1-motive

M =

 L

��

0 // T // G // A // 0

 (6.56)
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and a map α : G(k) −→ KH1−n(X), natural in X, whose kernel and cokernel are finitely gen-

erated. If p : X̃ −→ X is any good resolution of singularities, then ker(α) and coker(α) have

the more explicit descriptions (6.31) and (6.30), respectively. In particular, the descriptions

of ker(α) and ker(β) are independent of the choice of resolution of X.

Furthermore, if X −→ X is an algebraic compactification of X, then after base extending

to C, the (torsion-free) 1-motive (MC)fr corresponds, under the equivalence (5.15), to the

unique largest torsion-free mixed Hodge structure H of type {(0, 0), (0, 1), (1, 0), (1, 1)} in

W2H
n(X(C),Z) such that GrW1 H is polarizable. Moreover, the non-lattice parts of M , and

hence α, are independent of the choice of algebraic compactification X −→ X.

Finally, when n = 3, then we have the additional property that the sequence

L(k) // G(k) // KH−2(X) (6.57)

is exact.
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CHAPTER 7

Calculation of NK1−n(X)

Now that we have a good description ofKH1−n(X), we turn our attention towardsNK1−n(X),

the other remaining contribution to K1−n(X). For this chapter, let X be a (not necessar-

ily irreducible) n-dimensional variety over k with isolated singularity x0. We begin with a

lemma justifying the exact sequence (1.19).

Lemma 7.1. There is an exact sequence

NK1−n(X)
d1,1−n1 // K1−n(X) // KH1−n(X) // 0. (7.1)

Proof. We apply the normalized simplicial spectral sequence (1.10) to X. The K-dimension

theorem [CHS08, Conjecture 0.1] implies that the groups NpK−q(X) are zero whenever q ≥ n

and p ≥ 1. The E1 page of this spectral sequence is shown below.

. . .
...

...
... . .

.

0 K2−n(X)oo NK2−n(X)oo N2K2−n(X)oo · · ·oo

0 K1−n(X)oo NK1−n(X)oo N2K1−n(X)oo · · ·oo

0 K−n(X)oo 0oo 0oo · · ·oo

0 0oo 0oo 0oo · · ·oo

(7.2)

We can see that there are no nonzero differentials coming into or going out of (0, 1 − n)
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after the first page, so that E∞0,1−n = E2
0,1−n. In addition, all of the groups E∞p,1−n−p are zero,

except when p = 0. This gives us the exact sequence we are looking for.

We now reduce to the case when X is affine.

Lemma 7.2. N tK−q(X) ∼= N tK−q(U) for any q ∈ Z, any t ≥ 1, and any open U ⊂ X

containing the isolated singularity x0.

Proof. We apply the spectral sequence (1.14) to X. Because smooth schemes are K−q-

regular, it follows that for any smooth open subscheme U ⊂ X, we have N tK−q(U) = 0

whenever t ≥ 1, as we have indicated above. Since X has only a singularity at x0, we have

N tK−q(U) = 0 whenever x0 /∈ U . It follows that the Zariski sheaf aN tK−q is a skyscraper

sheaf supported at x0. In particular, aN tK−q is flasque, so it has no higher cohomologies.

Since Ep,q
2 = 0 for p > 0 (and also p < 0 trivially), all differentials are zero, so we conclude

that Ep,q
2 = Ep,q

∞ , and thus H0
Zar(X, aN

tK−q) ∼= N tK−q(X). But since aN tK−q is a skyscraper

sheaf, we have (aN tK−q)(U) = (aN tK−q)(X), proving the claim.

In particular, we may choose U = SpecR to be an open affine neighborhood of x0. The

intuition here is that since the N tK−q-groups are zero on smooth schemes, they only detect

singularities, and their value depends only on the type of singularity involved.

Recall that we are interested in the case q = n− 1. Cortinãs, et al. [CHW10, Example 3.5,

Proposition 4.1] elucidates the structure of the NpKq groups, which, specializing to p = 1

and q = n− 1, gives

NK1−n(X) ∼= NK1−n(U) ∼= Hn−1
cdh (U,O)⊗Q tQ[t]. (7.3)

The maps in the spectral sequence (1.14) are induced by the maps on the p-simplicial struc-

ture of X × Ap; in particular,

NK−q(X) = ker(∂0 : K−q(X × A1) t=0 // K−q(X)), (7.4)
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where t is the parameter of A1 – the same t as in equation (7.3). The decomposition (7.3)

found in [CHW10] boils down to applying the Künneth formula for Hochschild homology

HHn(R[t]) ∼= ⊕i+j=nHHi(R) ⊗Q HHj(Q[t]) [Wei94, Proposition 9.4.1], from which we see

that the t in the Q[t] is indeed the parameter t in the copy of A1 when computing the

N -functors. The groups HHj(Q[t]) are given in [Wei94, Exercise 9.1.3], albeit with several

typos.

The differential ∂0 − ∂1 : K1−n(X × A1) −→ K1−n(X) reduces to just −∂1 on NK1−n(U) =

ker(∂0), and ∂1 just sets t = 1. Therefore, the image of NK1−n(X) in K1−n(X) is isomorphic

to Hn−1
cdh (U,O). In summary, we have proven that

Proposition 7.3. There is a short exact sequence

0 // Hn−1
cdh (U,O) // K1−n(X) // KH1−n(X) // 0 . (7.5)

that computes KH1−n(X).

Remark 7.4. The observation here that the maps in the spectral sequence come from the

simplicial structure on X×Ap can be taken further. For example, we can try to say something

about K2−n(X). We have, in a similar way, via [CHW10, Corollary 4.2],

N2K1−n(U) ∼= NK1−n(U)⊗Q sQ[s]

∼= Hn−1
cdh (U,O)⊗Q rQ[r]⊗Q sQ[s].

(7.6)

The top face map from K1−n(X ×A2) −→ K1−n(X ×A1) sends 1− r− s to zero, so it sends

r to t and s to 1− t. Therefore, the image of d2,1−n
1 in NK1−n(X) is just

Hn−1
cdh (U,O)⊗Q t(1− t)Q[t] ⊂ Hn−1

cdh (U,O)⊗Q tQ[t]. (7.7)

which is precisely the kernel of the map ∂1 = (t 7→ 1). The E1 page of the spectral sequence
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is therefore exact at (1, 1−n), and so 0 = E1,1−n
2 = E1,1−n

∞ . We may make the same argument

for the map d3,1−n
1 : N3K1−n(X) −→ N2K1−n(X). Let us write

N3K1−n(X) ∼= NK1−n(X)⊗ sQ[s]⊗ tQ[t]

∼= Hn−1
cdh (U,O)⊗ rQ[r]⊗ sQ[s]⊗ tQ[t]

N2K1−n(X) ∼= Hn−1
cdh (U,O)⊗ uQ[u]⊗ vQ[v].

(7.8)

The differential coming out of N3K1−n(X) is just the one that sends 1 − r − s − t to 0, so

r 7→ u, s 7→ v, t 7→ 1− u− v, so the image of this map is just

(1− u− v)(Hn−1
cdh (U,O)⊗ uQ[u]⊗ vQ[v]) = Hn−1

cdh (U,O)⊗ uv(1− u− v)Q[u, v], (7.9)

which is precisely the kernel of the map ∂2 = d2,1−n
1 . Thus 0 = E2,1−n

3 = E2,1−n
∞ , and we

conclude that we have an exact sequence

NK2−n(X) // K2−n(X) // KH2−n(X) // 0. (7.10)

In particular, the map K2−n(X) −→ KH2−n(X) is surjective.

As we have already noted, this group is independent of the choice of open affine neighborhood

U of the singularity x0. The following lemma makes this statement precise.

Lemma 7.5. Let V ⊂ U be an open affine neighborhood of x0. Then the inclusion V ↪→ U

induces an isomorphism Hn−1
cdh (U,O) ∼= Hn−1

cdh (V,O).

Proof. Take a Nisnevich cover {V −→ U, V ′ −→ U}, and then cover V ′ by open affines V ′i .

Since V ′ is smooth, so are all of the V ′i , and in particular, they have no higher cdh-cohomology
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groups (Theorem 3.2). A standard Čech spectral sequence argument then shows that the

induced map is an isomorphism.

Alternatively, this isomorphism can be obtained directly from Proposition 7.3, by seeing that

the kernel Hn−1
cdh (U,O) of the map K1−n(X) −→ KH1−n(X) is independent of the choice of

open affine neighborhood U containing the isolated singularity x0.

The discussion using the decomposition (7.3) yielding the short exact sequence (7.5) is a

reasonable description ofK1−n(X), but cdh-cohomology groups are often difficult to compute.

It turns out that we can be more explicit in our description of K1−n(X) in the exact sequence

(1.14) by identifying the term Hn−1
cdh (U,O) in terms of known invariants of the singularity x0.

Definition 7.6. Let R be a finite type k-algebra such that U = SpecR has only isolated

singularities. The generalized Du Bois invariants bp,q for p ≥ 0, q ≥ 1 are

bp,q = lengthHq
cdh(U,Ωp). (7.11)

These invariants are finite by [CHW11]. Du Bois invariants were introduced by Steenbrink

[Ste97]. By [CHW11, Lemma 2.1, Equation 2.7], we see that Hn−1
cdh (U,O) is a k-vector space

of dimension b0,n−1. In particular, its dimension is finite.

Finally, in the case of n = 3, we have a full computation of K−2(X).

Corollary 7.7. Let X be an integral threefold with an isolated singularity x0. Then for any

open affine U containing x0, K−2(X) is an extension of KH−2(X) by H2
cdh(U,O), where

KH−2(X) has the description given by Theorem 6.18, and H2
cdh(U,O) is a k-vector space of

finite dimension b0,2.

76



CHAPTER 8

Applications, examples and related questions

In this chapter, we give some applications and examples, and then discuss possible future

research directions.

8.1 Applications and examples

We begin with a few simple examples. Because the dual complex D(E) appears multiple

times in our computation, many of the simplifications in particular instances come from

knowledge about D(E).

Example 8.1. When x0 is a Du Bois singularity, then H i
cdh(U,O) = 0 for i > 0. In this

case, the exact sequence (7.5) yields an isomorphism K1−n(X) ∼= KH1−n(X). Furthermore,

when x0 is a rational singularity (i.e. for any resolution p : X̃ −→ X, the higher direct images

Rip∗OX̃ are zero) , then we use the fact [Ste06] that Hn−1(D(E),Z) = 0 to see that in fact

there is no torus part in the 1-motive constructed in chapter 6.

Example 8.2 (Isolated hypersurface singularity). Let x0 ∈ X be a isolated hypersurface

singularity in the case that X is a complex threefold. Then [Ste08, Theorem 3.3] says

that DR(X) has trivial fundamental group, so that H1(E,Z) = 0, so that H3
cdh(X,Gm) ∼=

KH−2(X).

Example 8.3 (Isolated toric singularity). When x0 is an isolated singularity of a toric variety

X, then [Ste05, Theorem 3] tells us that D(E) is homotopy equivalent to a point, so that

H i(D(E), A) = 0 whenever i > 0 and for any A. In this case, we have Hn−1
cdh (E,Gm) ∼=

KH1−n(E), and that there is no torus part, so that G is an abelian variety.

77



8.2 Related Questions

There are many ways we can try to generalize using our techniques:

1. Resolution of singularities holds for threefolds in characteristic p, so we can try the

same techniques. We won’t be able to relate it to any Hodge structures, but perhaps

there is something analogous.

2. See to what extent our techniques will work for computing K−1(X) for a threefold X

with isolated singularities.

For 2., we may take an excellent resolution of X, but then the term H2
cdh(E, aK2) shows up

when applying the descent spectral sequence – a term that would require further investiga-

tion, since we currently do not know of any good descriptions of aK2.

There are other interesting questions that we don’t quite know the answer to.

Question 8.4. Theorem 6.14 asserts that in the computation of the 1-motive that approx-

imates KH−2(X), we get, for any choice of resolution p : X̃ −→ X, a surjection LE −→ L.

It is then natural to ask the following questions:

1. Does there always exist a resolution p of X for which LE −→ L is an isomorphism?

2. If there does not exist such a resolution p, then what is the minimum of dimLE−dimL,

and how can we relate this invariant to other invariants of X? Does it depend only on

the singularity, or on the choice of X?

3. We can ask a similar question for L and ker(β): under what conditions on X (especially

when n = 3) is L = ker(β)?

In chapter 7, we were able to determine some of the maps in the spectral sequence (1.10).

Because these maps are induced by the simplicial face maps, it may be possible to completely

describe all of the differentials involved.
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In Chapter 6, we established a full calculation of KH−2(X), when X is a threefold with

smooth singular locus Z = Sing(X) of dimension ≤ 1. The only obstruction to the full

calculation of KH1−n(X) for arbitrary n is the differential dn−3,0
2 appearing in the descent

spectral sequence (1.11). In the n = 3 case, we were able to show that this differential was

the zero map. Presently, we do not understand this differential, and it is possible that its

image is torsion, or possibly even zero.
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Mathématique de l’Université de Strasbourg, XIII, Actualités Scientifiques et In-
dustrielles, No. 1252.

[Gra76] Daniel Grayson. “Higher algebraic K-theory. II (after Daniel Quillen).” In Al-
gebraic K-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), pp.
217–240. Lecture Notes in Math., Vol. 551. Springer, Berlin, 1976.

[Hae04] Christian Haesemeyer. “Descent properties of homotopy K-theory.” Duke Math.
J., 125(3):589–620, 2004.

80



[Har77] Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Grad-
uate Texts in Mathematics, No. 52.

[Hau00] Herwig Hauser. “Resolution of singularities 1860–1999.” In Resolution of sin-
gularities (Obergurgl, 1997), volume 181 of Progr. Math., pp. 5–36. Birkhäuser,
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