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COMMENT OPEN

Mobile Health: making the leap to research and clinics
Joy P. Ku 1✉ and Ida Sim 2

Health applications for mobile and wearable devices continue to experience tremendous growth both in the commercial and
research sectors, but their impact on healthcare has yet to be fully realized. This commentary introduces three articles in a special
issue that provides guidance on how to successfully address translational barriers to bringing mobile health technologies into
clinical research and care. We also discuss how the cross-organizational sharing of data, software, and other digital resources can
lower such barriers and accelerate progress across mobile health.

npj Digital Medicine            (2021) 4:83 ; https://doi.org/10.1038/s41746-021-00454-z

INTRODUCTION
Mobile devices have been a disruptive technology in many
industries, but their impact on healthcare has yet to be fully
realized. This is not due to a lack of interest. There are ~85,000
health apps1,2 available for download, and over $8 billion was
invested in “digital health” in 20183. Novel miniaturized sensors
are being developed to continuously detect biomarkers (e.g., from
sweat4, tear fluid5) that have traditionally been measured within a
clinic. These developments are creating new possibilities for a
vision of medicine that is more data-driven and personalized (e.g.,
ref. 6). In this article, we will refer to the use of such sensors and
apps to collect personalized data for health in a ubiquitous
manner as mobile health (mHealth).
As has been noted elsewhere7,8, data collection is only the first

step in developing mHealth solutions that improve health
outcomes. Clinicians and other stakeholders need to be convinced
of the benefits of mHealth, and to-date it has been challenging to
draw clear conclusions about the efficacy of these solutions, given
the conflicting outcomes and heterogeneity in the implementa-
tion of mHealth interventions. This holds true whether assessing
the impact of mHealth on hospital admission rates among
patients with heart failure, adherence to prescribed rehabilitation
exercises or lifestyle changes, or health outcomes like weight and
blood pressure9,10. Myriad other factors, such as integration into
the clinical or research study workflow, cost of implementation,
usability of the device, and adequacy of privacy protections, also
affect the likelihood of a solution transitioning from the prototype
stage to routine use within research and clinics. Coming out of a
multi-disciplinary workshop called mHealth Connect, three articles
in this issue explicate some of these factors and provide guidance
on how to successfully address translational barriers for different
use cases. Specifically, the articles describe considerations when
(1) selecting a suitable wearable sensor for a given application; (2)
analyzing observational health behavior data generated by
mHealth apps and devices; and (3) integrating these technologies
into the clinical environment.
Their recommendations demonstrate the critical role data has in

this new paradigm, so in addition to introducing the three articles,
this paper calls for cross-organizational sharing of digital resources
to accelerate progress within mHealth. Drawing on examples from
other biomedical domains, we describe the positive impacts of
sharing for three different types of resources and identify early
efforts to encourage this behavior within mHealth. Thus, the

insights offered through this and the other three articles in this
issue can catalyze diverse activities to bring mHealth capabilities
into clinical research and care.

MHEALTH CONNECT WORKSHOP
Despite the growing body of literature on consumer-oriented
mHealth devices, there is a paucity of strong evidence for their
benefit9. Few applications have made the leap from prototype to
routine use for research or clinical purposes. mHealth Connect
(http://mobilize.stanford.edu/mhealthconnect/) was a workshop
that brought together key stakeholder leaders across industry,
clinical systems, and academia to collaboratively identify and
overcome barriers to this translation. The workshop was launched
in 2016 by two of the National Institutes of Health’s (NIH) Big Data
to Knowledge (BD2K) Centers of Excellence–the Mobilize Center11

and the Mobile-Sensor-to-Knowledge Center (MD2K)12—in
response to concerns voiced by many BD2K researchers that
many commercial mobile devices and apps on the market are
poorly validated, without compelling clinical use cases, and are
opaque and restrictive about data sharing. mHealth Connect
enabled discussions around these and other critical issues to take
place with a balance of stakeholders at the table and seeded
collaborations to advance the field. The three mHealth papers in
this issue arise from those discussions and the needs identified
during them.

SCOPE OF MHEALTH COVERED
While mHealth comprises a broad range of topics, as an
outgrowth of two NIH Big Data to Knowledge Centers, mHealth
Connect’s focus is on accelerating the use of data collected from
mobile and wireless devices, such as wearable sensors, in clinical
research and care. Because of the personal ubiquitous nature of
mobile devices, the greatest new opportunity is in using mHealth
to directly measure and improve patient health and health states
outside the traditional confines of the hospital and clinic. The
scope for this and the accompanying three papers thus excludes
the following topics: (1) sensors and devices designed exclusively
for the hospital or clinic setting and are intended solely to inform
clinical decision-making (e.g., a Holter monitor, which would be
excluded, versus AliveCor’s KardiaMobile device, which would be
included), (2) strictly educational apps that are one-way channels

1Department of Bioengineering, Stanford University, Stanford, CA, USA. 2Division of General Internal Medicine, University of California San Francisco, San Francisco, CA, USA.
✉email: joyku@stanford.edu

www.nature.com/npjdigitalmed

Published in partnership with Seoul National University Bundang Hospital

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-021-00454-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-021-00454-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-021-00454-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41746-021-00454-z&domain=pdf
http://orcid.org/0000-0003-4785-6044
http://orcid.org/0000-0003-4785-6044
http://orcid.org/0000-0003-4785-6044
http://orcid.org/0000-0003-4785-6044
http://orcid.org/0000-0003-4785-6044
http://orcid.org/0000-0002-1045-8459
http://orcid.org/0000-0002-1045-8459
http://orcid.org/0000-0002-1045-8459
http://orcid.org/0000-0002-1045-8459
http://orcid.org/0000-0002-1045-8459
https://doi.org/10.1038/s41746-021-00454-z
http://mobilize.stanford.edu/mhealthconnect/
mailto:joyku@stanford.edu
www.nature.com/npjdigitalmed


for fixed media, (3) electronic health records (EHR) apps, and (4)
apps for navigating the healthcare system (e.g., finding doctors,
scheduling appointments) rather than for managing health or
disease.
What these three papers do focus on are mobile apps and

sensors used by patients in their daily lives to manage their health,
with or without co-management by clinical team members or
friends and family. These include devices measuring novel
biomarkers, as well as consumer versions of traditional clinical
equipment, such as blood pressure cuffs and spirometers, which
an individual can use to collect measurements whenever and
wherever they desire independent of clinical indications. The
devices may be integrated into a clinical healthcare workflow, but
they are not designed exclusively or primarily for that environ-
ment. The emphasis is on the availability of dynamic personalized
data captured either passively or through active self-report, and
the consequent value of this data for informing patient and
clinician action to improve health and manage acute or chronic
disease.

GUIDELINES FOR DEVELOPING AND DEPLOYING MHEALTH
SOLUTIONS
Recent years have seen a rise in resources providing guidelines to
evaluate mHealth solutions, including from the U.S. Food and
Drug Administration (FDA)13–16. Evaluation criteria assess a broad
range of factors, including adherence to privacy laws, data
security, interoperability with existing infrastructure and work-
flows, cost, usability, and validity of the content or intervention.
Nascent efforts, such as Express Scripts’ planned digital health
formulary, a list of approved digital health technologies to guide
consumers and payers, are emerging to reinforce these guide-
lines17. While efforts to increase rigor in the evaluation of mHealth
solutions are still taking shape, many questions remain on best
practices and frameworks for mHealth development upstream of
final regulatory or formulary approval.
The Clinical Trials Transformation Initiative (CTTI) provides one

of the more comprehensive sets of guidelines for developing a
mobile device-based solution, including the development of novel
endpoints from mobile device data and the design of protocols
that use mobile devices for data capture18. CTTI’s guidelines are
intended for the relatively controlled conditions and limited
durations of clinical trials, and therefore, necessarily exclude
considerations for broad-scale clinical deployment. Nonetheless,
they provide a useful path for individuals launching mHealth
endeavors in general. Below we introduce a collection of articles
based on our series of mHealth Connect meetings that augment
existing guidelines provided by CTTI and others18–20.

Device selection for wellness, healthcare, and research
applications
Regardless of the application, defining the target use case is
critical for success. This definition is a fundamental tenet of many
mHealth guidelines18–20, and it requires a process of user-centered
design incorporating clinical, engineering, behavioral science,
ethical, and disparities considerations (e.g., language, numeracy,
literacy, and disabilities). All mHealth projects, even noncommer-
cial ones, should have a clear business case detailing how
continued use of the solution will be financially and logistically
sustainable. The paper by Caulfield, et al. presents a framework for
optimizing the match between sensors and classes of use cases,
for refining the use case requirements, and then evaluating
available devices against those requirements21.

Analysis of digital biomarkers for predictive models and
unique insights
Digital biomarkers are clinically meaningful measures derived
from mobile and wearable devices that correlate with or predict
disease states. They can be analogues of traditional clinical
quantities, such as heart rate, or novel indicators of health states.
The full impact of mHealth comes from simulation or predictive
models that combine digital biomarkers potentially with other
data sources. An example is the cStress model, which blends real-
time data streams on heart rate, heart rate variability, and
interbeat interval data to derive a probability of stress in a given 1-
min time window22. Developed using MD2K’s Cerebral Cortex, a
cloud infrastructure for big data analysis of high-volume high-
frequency data streams12, cStress utilized a prospective approach
and actively recruited participants to collect data for its
development.
Data analysis and model building can also be done retro-

spectively on observational datasets to gain insights that are
challenging to obtain through traditional studies. In some cases,
these datasets contain upwards of hundreds of thousands of
individuals, enabling analysis about health and behavior on an
unprecedented scale23,24. While such datasets can be a windfall,
they present their own set of unique challenges for obtaining
reliable results. The paper by Hicks, et al. presents a set of best
practices for analyzing these large-scale, observational digital
biomarker datasets from commercial personal technologies25.

Deploying mHealth solutions within clinical care
The necessity of a well-defined use case and business case
becomes especially evident when it comes to the adoption and
scaling of a mHealth solution. Is the mobile technology to be used
by people with or without their clinicians? Is the intent to deploy
locally in one care setting or to scale to global use? Particularly
where clinician use is envisioned, integration into the clinical
workflow is a prerequisite for adoption. To help guide expansion
of mHealth technology into clinical care delivery, the paper by
Smuck, et al. presents common factors driving successful
utilization of wearables in the clinical care environment, as shown
by two examples26.

RESOURCE SHARING TO ACCELERATE MHEALTH ADOPTION
These papers aim to increase the likelihood of mHealth projects to
achieve their aims, whether that is integrating mHealth technol-
ogies into the clinical workflow or developing a model to
accurately predict health outcomes from mHealth data. The
recommendations are intended to advance the work of individual
groups, but they also point to opportunities for collective efforts
that would advance activities across the entire community. In
particular, we highlight the impact of sharing digital resources.
Echoing Hicks, et al., we encourage “sharing models, software,
datasets, and other digital resources whenever possible”25. Below
we describe three categories of shared resources that can
accelerate mHealth’s leap to research and the clinics: raw and
processed data from devices; software and models used to
analyze and interpret data; and evaluation results. We call
attention to the positive impact the sharing of such resources
has had in other biomedical domains and highlight initial efforts
to bring these practices to mHealth.
The benefits of sharing experimental data, software, and models

are well-delineated: enhanced transparency, the ability to more
rapidly and easily extend existing efforts, and decreased duplica-
tion of efforts27,28. Large biomedical datasets that have been
established specifically as research resources, such as the UK
Biobank and the Osteoarthritis Initiative, have demonstrated the
value of sharing, having supported hundreds of published
research studies29,30. Smaller datasets from independent research
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labs can also positively impact a field. Previously shared data have
served as benchmarks for comparing algorithms and aided in the
validation of new models31–33. And pooling these datasets, such as
in the Enhancing Neuro Imaging Genetics through Meta-Analysis
(ENIGMA) project, has increased the statistical power of analyses
and led to discoveries that would not have been possible from a
single dataset alone34.
Such capabilities are critical for advancing mHealth. Having

readily accessible datasets, both large and small, will facilitate the
development of new digital biomarkers or robust mHealth-based
predictive models, such as those described by Hicks, et al. We are
starting to see some organized efforts to promote data sharing
among the mHealth community. The International Children’s
Accelerometry Database (ICAD) has created a pooled dataset,
similar to ENIGMA35. Vivli, a platform for sharing data from clinical
trials including trials with digital biomarkers, was launched in
201836, and SimTK, a repository for the biocomputation and
movement communities, recently added support for the sharing
of mobile and other experimental data37.
Although invaluable, shared data alone will not propel mHealth

applications into routine research and clinical use. Software
methods and models are needed to glean insights from the data
and thus, it is just as important that they also be shared, ideally
with an open-source license to encourage modification and reuse
for new applications. The programming language Python is a
testament to the power of open-source with over 100,000
community-developed extensions38 that make it a popular tool
within bioinformatics and scientific computing. In biomechanics,
researchers are sharing software for analyzing movement data
within the open-source OpenSim simulation platform, extending
the community’s ability to derive new insights39. While some
mHealth software is being shared40,41, large, active communities
have yet to develop around them. Initiatives, such as Open
mHealth42 as well as Shimmer and Nextbridge Exchange’s
industry-based open-source effort to share analysis tools for
wearable sensor data43, may help change the culture.
Similar initiatives would be useful throughout the mHealth

development process, including the sharing of evaluation results,
for example when evaluating devices during study design, as
described by Caulfield, et al.21, and also when developing a
reimbursement model to implement wearable technology into
patient care, as mentioned by Smuck, et al.26. If individuals made
their evaluation results available for others to leverage, we could
appreciably streamline these processes. The CTTI Feasibility Studies
Database44 is a step towards this. The database compiles a list of
devices, along with relevant evaluation criteria such as outcome
measures and sample size, from publications examining the feasibility
of mHealth in clinical trials. In a similar vein, the Digital Medicine
Society provides a crowdsourced library of digital endpoints being
used in industry-sponsored studies45. While there are some concerns
about resource sharing—for example, potential misuse of shared
resources and privacy breaches—technological and policy solutions
can be implemented to mitigate them46,47. Compiling mHealth
knowledge, data, and methods with such safeguards will accelerate
the widespread adoption of mHealth for research and clinical care,
and we urge individuals to contribute to such efforts.

CONCLUSION
It has been 13 years since the first iPhone was released, and 11
years since the first FitBit. In the intervening years, smartphone
adoption has skyrocketed, fitness bands and smartwatches are
commonplace, and “mobile health” NIH grants have grown from
tens per year to over 610 in 2019. It has been said that digital
health is now at “the end of the beginning”48. The mHealth
Connect events have highlighted ways to go beyond the
beginning: develop cross-disciplinary collaborations, pay attention
to purpose, and consider factors beyond the technology itself. The

papers in this series are intended as a guide for mHealth’s journey
ahead and highlight ways in which we can collectively accelerate
our progress along the path to clinical research and care.
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