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ABSTRACT OF THE THESIS

Parametric estimation of spatial-temporal Hawkes models

for the spread of Ebola in West Africa in 2014

Alex Joshua Krebs
Master of Science in Statistics
University of California, Los Angeles, 2017

Professor Frederic R. Paik Schoenberg, Chair

Parametric Hawkes models are proposed and fit by maximum likelihood to World Health
Organization data from the 2014 Ebola epidemic in West Africa. Models were fit to various sub-
region-level subsets of the data to compare with previous research on compartmental models and
nonparametrically estimated Hawkes processes. Models were also fit to country-level subsets
and multi-country subsets to evaluate how these models perform on increasing scales. Results
suggest that these spatio-temporal models are able to accurately forecast the spread of Ebola
infections on larger space-time windows than have been previously researched, with the benefit

of improved parameter interpretability.
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Introduction

West Africa experienced the worst Ebola epidemic in recorded history between 2014 and
2016. Though the disease spread to seven countries in the region, the outbreak proved
particularly devastating in Guinea, Sierra Leone, and Liberia, infecting over 28,000 individuals
and killing more than 11,000. Despite the grim realities surrounding this virus, more than 10,000
people infected with Ebola have been cured, due in large part to heightened efforts to vaccinate,
detect, and contain at-risk populations (World Health Organization, 2016).

Existing epidemiological methods for modelling the spread of disease are founded on
compartmental models introduced by Kermack and McKendrick (1927). Such models, especially
the Susceptible-Exposed-Infected-Recovered (SEIR) model, was proposed to describe African
Ebola outbreaks by Chowell et al. (2004) and fit to the 2014 West African Ebola outbreak in
Guinea, Sierra Leone, and Liberia by Althaus (2014). However, as noted in Chaffee et al. (2017),
SEIR models may be overly simplistic and have large errors in practical application given their
limited strictly-temporal scope and assumption that all susceptible individuals have equal
probability of infection. As an alternative, Chaffee et al. (2017) propose purely temporal Hawkes
models, estimated non-parametrically and individually for each spatial location. The
performance of these Hawkes models in forecasting the purely-temporal spread of Ebola
motivates further exploration and discussion of these methods as viable alternatives to existing
SEIR models. However, given the economic and social consequences Ebola has had even in
neighboring countries untouched by the virus, it is now important to consider spatial distribution

and progression of Ebola (United Nations Development Programme, 2015).



Here, we propose parametric spatial-temporal versions of the Hawkes process, with
parameters estimated by maximum likelihood estimation. The models are assessed using
likelihood criteria, superthinned residuals, and an out-of-sample validation in which only a
portion of the data is used in fitting models and the remainder is used for evaluation against

multiple simulations.

Design

Outbreak Data

The data consists of WHO records from three West African countries during the 2014
Ebola outbreak (WHO, 2016). These records contain information about the country, geographic
location within the country (either a region, city or village), and the number of infections and
deaths associated with the virus on the date of observation. Dates of infection range from March
23, 2014 through September 7, 2014, and are typically recorded at weekly intervals. The initial
subsets of the data include three sub-regions including Southeast Guinea, Eastern Sierra Leone,
and Northwest Liberia, each of which is handled separately and fit with unique models.

Hawkes processes require that no two observations occur at the same point in time and
space, so the dates of each batch of observations were uniformly distributed between the
recorded date of observation and the date of the previous batch in a given region. Further, as it is
infeasible that all infections occurred at the exact same location, observations were jittered

uniformly in a circle encompassing the region in focus.



Parametric Hawkes Modeling and Evaluation

Parametrically specified spatial-temporal Hawkes models may offer several potential
advantages compared to the SEIR models used by Althaus (2014) and the non-parametric
Hawkes models used by Chaffee et al. (2017). First, compared to the previous studies which fit
purely temporal models to each spatial region individually, additional precision may be obtained
by incorporating spatial-temporal information from each observation into the model. Such
precision may aid in the realism of the model as well, since spatial proximity would clearly
influence the transmission of a contagious disease like Ebola. Second, the parameters in a
parametric Hawkes model may offer additional interpretability and insight into the spread of the
virus.

Any analytical spatial-temporal point process is characterized uniquely by its associated
conditional rate process A (Fishman et al., 1976). A separable spatial-temporal Hawkes process
has conditional intensity defined by A(t,x,y), which may be thought of as the frequency with
which events are expected to occur around a particular location (t,x,y) in space-time, conditional
on the prior history, H,, of the point process up to time ¢ (Schoenberg et al., 2013). The
parametric model defines the conditional intensity A at every point in the space-time window,

and takes the form:

Az, y) =p+ 6> g:(t— 1) goy (T — Tiy — u;) (1)
ey

We assume separability of the spatial and temporal triggering here for convenience. Our
investigations of non-parametric models explored by Chaffee et al. (2017) suggest the forms for

the temporal and spatial triggering functions, g(t) and g respectively, to be:
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Figure 1: Estimated Hawkes triggering density for Southeast Guinea, East Sierra Leone, and MNorthwest Liberia (Chaffee et al. 2007)

In Formula 1, p is the background rate and « is the productivity or the expected number of points
spawning from another. k is most closely related to the reproductive number, R0, in SEIR
models (Korobeinikov, 2004). If « is larger than 1, the process is considered explosive and gives
rise to rapid, unlimited spread. To prevent unrealistically modeling an unconstrained spread of
Ebola, « is bound between 0 and 1 such that an infected individual cannot directly infect more
than one other.

In the spatio-temporal case, the log-likelihood of this process is:

Y log(A(t:)) — / A, z, y)dtdzdy



The parameters are estimated on the entire data available for each sub-region using maximum
likelihood, and the resulting optimized models can be evaluated by their superthinned residuals
(Clements et al., 2013). Consistent with previous research, we first thin or remove each point

with probability 1 — min{ m , 1}, where c is chosen using the default suggested by

Clements et al. (2013) as the mean of 2 over all observed points. Next, we simulate a

homogenous Poisson process with rate ¢ and keep each resulting point with probability max {

At . ) . . . .
NG5 , 0}. The resulting superthinned residuals resemble a Poisson process with rate ¢ if and

only if the estimated conditional intensity % is correct (Clements et al. 2013). The superthinned
residuals are thus inspected for uniformity and can be tested using standard methods or by eye.
Clustering in the superthinned residuals corresponds to areas where the model overestimated the
conditional intensity, and sparsity of points in the residuals corresponds to areas where the
conditional intensity was underestimated. Inhomogeneity in the forms of clusters and voids can
be expected for a simple Hawkes model because of the fixed background rate p and productivity
K, though ideally these plots will not exhibit discernible departures from uniformity.

To guard against overfitting, the records from each sub-region are modeled with the same
parameters and restrictions, using the first 75% of data to predict the remaining 25%, then again
using the first 50% the data to predict the remaining 50%. Each model is evaluated by comparing
200 simulations against the observed counts provided in the original WHO data.

These methods— modeling, superthinning, and simulating— are applied to the outbreaks
in each country individually and also collectively to all records from the three West African

Countries.



Results

Model Fitting and Residual Analysis

Estimated model coefficients, associated standard errors, and log-likelihood scores for all
models are displayed in Table 1. In context, because « is bound between 0 and 1 to prevent the
scenario of limitless spread, we anticipate o > 3, which is confirmed by every model.

Maps of superthinned residuals for each subregion are depicted in Figure 4. Upon
observation, the superthinned residuals over all sub-regions appear homogenous. Model 1,
associated with Southeast Guinea and Figure 4a, appears to overpredict points in the center of the
sub-region from days 130-140, which is seen as a void during this time. Ultimately, the 10-day
interval for these plots is an arbitrary selection, and as we can see in days 140-150, the model
seems to resume explaining activity in the center of Southeast Guinea reasonably well.

Forecast Analysis

In addition to superthinned residuals, we consider forecasting via simulation as a means
of model evaluation. To compare with Chaffee et al. (2017), one subregion from each country is
first isolated, and a model is fit to 50% and 75% of outbreak time (1 5, and 1 ,5 respectively).
For example, Southeast Guinea’s observations span 169.93 days, so for the 50% time subset, the
model was fit to all observations occurring before t ;= 169.93%0.50 = 84.96 days. The resulting
simulations are plotted alongside the observed infection counts from each subregion in Figures 5
and 6.

The Hawkes models applied to Southeast Guinea and East Sierra Leone forecast the end
of the outbreak in both regions impressively well. In Liberia, a small number of isolated

infections were reported at the onset (week 1), followed by numerous weeks with very few



additional reports. The estimated model coefficients in Model 9 imply the lowest productivity
and rate of infection among all models and subregions. As a result, the Hawkes model applied to
Liberia’s data restricted to T 5, estimates strikingly low counts of second-half contractions
(Figure 6). In Figure 5, however, it is interesting to note that despite most simulations estimating
fewer cases than reality, a few forecasts following 1 5 in Liberia capture the potential for an
event of rapid spread.
Analyses of All Available Data

To showcase the advantage of Hawkes models— namely their consideration of space—
the final component of this paper is the evaluation of all three countries in a comprehensive
model. The combined data from Guinea, Sierra Leone, and Liberia is restricted and modeled
with the same procedures as before (Models 10,11,12). The superthinned residual plots in Figure
7 appear impressively uniform through the first half of the outbreak, suggesting Model 10 has
characterized clustering in the data appropriately, but after day 110 the residuals appear to cluster
more readily. We suspect that the coarse spatial resolution of the original data is the primary
driver of this behavior. Figure 8 shows narrow simulation ranges resulting from Model 11,
accurately forecasting the number of new infections during the final weeks of the 2014 Ebola
outbreak. Figure 9 suggests that Model 12 also forecasts infections after T 5, reasonably well.
These results further support a large-scale approach to model-fitting, especially since the three
countries share borders and realistically should not be considered independent during an

epidemic.



Discussion

Chaffee et al. (2017) found non-parametric Hawkes models to perform at least as well as
compartmental SEIR models for predicting the spread of Ebola during the 2014 epidemic. Here
we have shown that parametric Hawkes models also have the capacity to accurately predict the
spread of Ebola with the added benefit of interpretability of estimated coefficients, which was
previously unaccounted for by their non-parametric counterparts. Furthermore, even simplistic
models such as the ones presented here have an enormous advantage in their ability to handle
spatio-temporal data compared to the existing strictly-temporal SEIR models. However, SEIR
models might still have an advantage in the early stages of an outbreak when few infections are
recorded.

At present, the primary limitation of these results is the spatial and temporal resolution of
the original data. The location of an infection was only recorded as the sub-region in which the
disease was contracted. Though these sub-regions provide a finer resolution than the broader
country, they are still vast and limited in their accuracy. The time associated with each case is
also coarse, having been recorded in batches with other recent infections. With enhanced spatial
and temporal resolution, Hawkes models have the potential to more accurately detail the spread

of disease.

Conclusion

The performance of parametric Hawkes models on various subsets as well as the entirety

of the 2014 Ebola outbreak data further validates these techniques as viable infectious disease

models. Clearly not all environmental factors are taken into consideration in the present analysis,



but the capacity of simple models to accurately predict the spread of the virus shows promise for
models of greater complexity. Future exploration of statistical models in an epidemiological
context should consider marked point processes that take into account additional factors
associated with space or time such as a city’s population or status of vaccinations. Such models
are already being implemented in numerous settings, including earthquake, wildfire, and
epidemic occurrences— among many others (Ripley, 1997; Guttorp, 1995; Schoenberg et al.
2002). Another practical interest is the extent to which a limited amount of data can be modeled
and make accurate predictions, potentially leading to optimal selections of t for simulating

future spread.



Tables

Table 1: Model Parameters

Subset (as
Country Region gglrg)e Etsigde f(())i Model Number | Log-likelihood v K o B
Modeling
Full ! 166237 ©0:043) 0.034) (13,066 ©0031)
Guinea Southeast 75% 2 644.32 (gf)gg) (g:gi;) (?ggg (gz‘éié)
" ’ o 0085 00D (15505 (0.045)
o : 024 o114 0027 (12459) ©.048)
Sierra Leone East 75% 5 1556.78 (%ﬁ) (8232) (23301' 637553) (8:3 gz)
T
Full 7 6340.10 (g: (1)22) (823%) (1151%90(;107) (82?)42‘2)
Liberia Northwest 75% 8 604.99 ((1)2231?) (g:ggg) (332.65()661) (g: ?T;‘)
" ’ 93 003 0146 6967 e
w0 ees  gm o am ot
All Countries 75% 11 11261.06 (g:ﬁg) (g:ggi : l(gg%;g? ((1): (1)2(7))
T
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Figures

Figure 2: Map of West Africa, with Guinea, Sierra Leone, and Liberia highlighted.
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Figure 3: From top to bottom, Guinea and Southeast Guinea, Sierra Leone and East Sierra Leone, and
Liberia and Northwest Liberia with 2014 WHO observations shown.
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Figure 4a: Superthinned residuals resulting from Model 1 plotted over Southeast Guinea in 10-day intervals.
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Figure 4b: Superthinned residuals resulting from Model 4 plotted over East Sierra Leone in 10-day intervals
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Figure 4c: Superthinned residuals resulting from Model 7 plotted over Northwest Liberia in 10-day intervals.
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