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ABSTRACT OF THE THESIS 

 

Parametric estimation of spatial-temporal Hawkes models 

for the spread of Ebola in West Africa in 2014 

 

by 

 

Alex Joshua Krebs 
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Professor Frederic R. Paik Schoenberg, Chair 

 

 Parametric Hawkes models are proposed and fit by maximum likelihood to World Health 

Organization data from the 2014 Ebola epidemic in West Africa. Models were fit to various sub-

region-level subsets of the data to compare with previous research on compartmental models and 

nonparametrically estimated Hawkes processes. Models were also fit to country-level subsets 

and multi-country subsets to evaluate how these models perform on increasing scales. Results 

suggest that these spatio-temporal models are able to accurately forecast the spread of Ebola 

infections on larger space-time windows than have been previously researched, with the benefit 

of improved parameter interpretability. 

  



iii 
 

The thesis of Alex Joshua Krebs is approved. 

Nicolas Christou 

Ying Nian Wu 

Frederic R. Paik Schoenberg, Committee Chair 

 

 

 

University of California, Los Angeles, 

2017 

  



iv 
 

Table of Contents 

List of Figures……………………………………………………………………………………. v 

List of Tables…………………………………………………………………………………….. vi 

Acknowledgements………………………………………………………………………………vii 

Introduction………………………………………………………………………………………. 1 

Design  

Outbreak Data………………………………………………………………………….... 2 

Parametric Hawkes Modeling and Evaluation…………………………………………... 3 

Results  

Model Fitting and Residual Analysis……………………………………………………. 6 

Forecast Analysis………………………………………………………………………... 6 

Analysis of All Available Data………………………………………………………….. 7 

Discussion……………………………………………………………………………………….. 8 

Conclusion………………………………………………………………………………………. 8 

References……………………………………………………………………………………….. 21 



v 
 

List of Figures 

Figure 1, Estimated Hawkes Triggering Density for Sub-Regions (Chaffee et al. 2017)............. 4 

Figure 2, Map of West Africa and Guinea, Sierra Leone, and Liberia………………………….. 11 

Figure 3, Country and Sub-Region Maps with Ebola Contractions Plotted…………………….. 12 

Figure 4, Superthinned Residual Plots from Sub-Region Models………………………………. 13 

Figure 5, Simulations of Final 25% of Outbreak in Each Sub-Region………………………….. 16 

Figure 6, Simulations of Final 50% of Outbreak in Each Sub-Region………………………….. 17 

Figure 7, Superthinned Residual Plots from Conglomerate Model……………………………... 18 

Figure 8, Simulations of Final 25% of Outbreak across West Africa…………………………... 19 

Figure 9, Simulations of Final 50% of Outbreak across West Africa…………………………... 20 

  



vi 
 

List of Tables 

Table 1, Model Parameters……………………………………………………………………… 10 

  



vii 
 

Acknowledgements 

I would like to extend my love and thanks to the following: 

To my adviser, Rick, and peers Adam, Junhyung, and Ryan who have developed and pursued 

this project, I am so grateful to have had this opportunity to work with you. 

To my entire committee and those who helped with this project, including Rick, Rob, Nicolas, 

and Ying Nian, thank you for all the classes I have had the pleasure of taking under your 

direction, and for shaping my time at UCLA in the most positive ways. 

To my counselor, Glenda, thank you for four amazing years— your help and friendship 

throughout has meant the world to me. 

To my parents Kathy and David, my sister Katie, my grandparents Gram and Saba, and Debbie, 

Ned, Danny, Mike, Jeff, and Fritz, and my entire Widdop family, thank you for your unwavering 

support and encouragement. You have always been my primary source of inspiration. 

Finally, to my one and only KG, thank you for keeping me laughing and smiling throughout this 

whole process. I can't wait to celebrate our upcoming successes— together! 

 
 



Introduction 

West Africa experienced the worst Ebola epidemic in recorded history between 2014 and 

2016. Though the disease spread to seven countries in the region, the outbreak proved 

particularly devastating in Guinea, Sierra Leone, and Liberia, infecting over 28,000 individuals 

and killing more than 11,000. Despite the grim realities surrounding this virus, more than 10,000 

people infected with Ebola have been cured, due in large part to heightened efforts to vaccinate, 

detect, and contain at-risk populations (World Health Organization, 2016). 

Existing epidemiological methods for modelling the spread of disease are founded on 

compartmental models introduced by Kermack and McKendrick (1927). Such models, especially 

the Susceptible-Exposed-Infected-Recovered (SEIR) model, was proposed to describe African 

Ebola outbreaks by Chowell et al. (2004) and fit to the 2014 West African Ebola outbreak in 

Guinea, Sierra Leone, and Liberia by Althaus (2014). However, as noted in Chaffee et al. (2017), 

SEIR  models may be overly simplistic and have large errors in practical application given their 

limited strictly-temporal scope and assumption that all susceptible individuals have equal 

probability of infection. As an alternative, Chaffee et al. (2017) propose purely temporal Hawkes 

models, estimated non-parametrically and individually for each spatial location. The 

performance of these Hawkes models in forecasting the purely-temporal spread of Ebola 

motivates further exploration and discussion of these methods as viable alternatives to existing 

SEIR  models. However, given the economic and social consequences Ebola has had even in 

neighboring countries untouched by the virus, it is now important to consider spatial distribution 

and progression of Ebola (United Nations Development Programme, 2015). 
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Here, we propose parametric spatial-temporal versions of the Hawkes process, with 

parameters estimated by maximum likelihood estimation. The models are assessed using 

likelihood criteria, superthinned residuals, and an out-of-sample validation in which only a 

portion of the data is used in fitting models and the remainder is used for evaluation against 

multiple simulations. 

 

Design 

Outbreak  Data 

The data consists of WHO records from three West African countries during the 2014 

Ebola outbreak (WHO, 2016). These records contain information about the country, geographic 

location within the country (either a region, city or village), and the number of infections and 

deaths associated with the virus on the date of observation. Dates of infection range from March 

23, 2014 through September 7, 2014, and are typically recorded at weekly intervals. The initial 

subsets of the data include three sub-regions including Southeast Guinea, Eastern Sierra Leone, 

and Northwest Liberia, each of which is handled separately and fit with unique models. 

Hawkes processes require that no two observations occur at the same point in time and 

space, so the dates of each batch of observations were uniformly distributed between the 

recorded date of observation and the date of the previous batch in a given region. Further, as it is 

infeasible that all infections occurred at the exact same location, observations were jittered 

uniformly in a circle encompassing the region in focus.  
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Parametric Hawkes Modeling and Evaluation 

Parametrically specified spatial-temporal Hawkes models may offer several potential 

advantages compared to the SEIR models used by Althaus (2014) and the non-parametric 

Hawkes models used by Chaffee et al. (2017). First, compared to the previous studies which fit 

purely temporal models to each spatial region individually, additional precision may be obtained 

by incorporating spatial-temporal information from each observation into the model. Such 

precision may aid in the realism of the model as well, since spatial proximity would clearly 

influence the transmission of a contagious disease like Ebola. Second, the parameters in a 

parametric Hawkes model may offer additional interpretability and insight into the spread of the 

virus. 

Any analytical spatial-temporal point process is characterized uniquely by its associated 

conditional rate process λ (Fishman et al., 1976). A separable spatial-temporal Hawkes process 

has conditional intensity defined by λ(t,x,y), which may be thought of as the frequency with 

which events are expected to occur around a particular location (t,x,y) in space-time, conditional 

on the prior history, Ht, of the point process up to time t (Schoenberg et al., 2013). The 

parametric model defines the conditional intensity λ at every point in the space-time window, 

and takes the form: 

 

 

We assume separability of the spatial and temporal triggering here for convenience. Our 

investigations of non-parametric models explored by Chaffee et al. (2017) suggest the forms for 

the temporal and spatial triggering functions, gt(t) and gx,y respectively, to be: 
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In Formula 1, μ is the background rate and κ is the productivity or the expected number of points 

spawning from another. κ is most closely related to the reproductive number, R0, in SEIR 

models (Korobeinikov, 2004). If κ is larger than 1, the process is considered explosive and gives 

rise to rapid, unlimited spread. To prevent unrealistically modeling an unconstrained spread of 

Ebola, κ is bound between 0 and 1 such that an infected individual cannot directly infect more 

than one other.  

In the spatio-temporal case, the log-likelihood of this process is: 
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The parameters are estimated on the entire data available for each sub-region using maximum 

likelihood, and the resulting optimized models can be evaluated by their superthinned residuals 

(Clements et al., 2013). Consistent with previous research, we first thin or remove each point 

with probability 1 – min{  , 1}, where c is chosen using the default suggested byc
λ(t ,x ,y )
︿

i i i
 

Clements et al. (2013) as the mean of   over all observed points. Next, we simulate aλ
︿

 

homogenous Poisson process with rate c and keep each resulting point with probability max{

, 0}. The resulting superthinned residuals resemble a Poisson process with rate c if andc
c−λ(t ,x ,y )

︿

j j j  

only if the estimated conditional intensity   is correct (Clements et al. 2013). The superthinnedλ
︿

 

residuals are thus inspected for uniformity and can be tested using standard methods or by eye. 

Clustering in the superthinned residuals corresponds to areas where the model overestimated the 

conditional intensity, and sparsity of points in the residuals corresponds to areas where the 

conditional intensity was underestimated. Inhomogeneity in the forms of clusters and voids can 

be expected for a simple Hawkes model because of the fixed background rate μ and productivity 

κ, though ideally these plots will not exhibit discernible departures from uniformity. 

To guard against overfitting, the records from each sub-region are modeled with the same 

parameters and restrictions, using the first 75% of data to predict the remaining 25%, then again 

using the first 50% the data to predict the remaining 50%. Each model is evaluated by comparing 

200 simulations against the observed counts provided in the original WHO data. 

These methods— modeling, superthinning, and simulating— are applied to the outbreaks 

in each country individually and also collectively to all records from the three West African 

Countries. 
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Results 

Model Fitting and Residual Analysis 

Estimated model coefficients, associated standard errors, and log-likelihood scores for all 

models are displayed in Table 1. In context, because κ is bound between 0 and 1 to prevent the 

scenario of limitless spread, we anticipate  , which is confirmed by every model.α > β   

Maps of superthinned residuals for each subregion are depicted in Figure 4. Upon 

observation, the superthinned residuals over all sub-regions appear homogenous. Model 1, 

associated with Southeast Guinea and Figure 4a, appears to overpredict points in the center of the 

sub-region from days 130-140, which is seen as a void during this time. Ultimately, the 10-day 

interval for these plots is an arbitrary selection, and as we can see in days 140-150, the model 

seems to resume explaining activity in the center of Southeast Guinea reasonably well.  

Forecast Analysis 

In addition to superthinned residuals, we consider forecasting via simulation as a means 

of model evaluation. To compare with Chaffee et al. (2017), one subregion from each country is 

first isolated, and a model is fit to 50% and 75% of outbreak time (  and  respectively).τ .50  τ .75  

For  example, Southeast Guinea’s observations span 169.93 days, so for the 50% time subset, the 

model was fit to all observations occurring before  = 169.93*0.50 = 84.96 days. The resultingτ .50  

simulations are plotted alongside the observed infection counts from each subregion in Figures 5 

and 6.  

The Hawkes models applied to Southeast Guinea and East Sierra Leone forecast the end 

of the outbreak in both regions impressively well. In Liberia, a small number of isolated 

infections were reported at the onset (week 1), followed by numerous weeks with very few 
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additional reports. The estimated model coefficients in Model 9 imply the lowest productivity 

and rate of infection among all models and subregions. As a result, the Hawkes model applied to 

Liberia’s data restricted to   estimates strikingly low counts of second-half contractionsτ .50  

(Figure 6). In Figure 5, however, it is interesting to note that despite most simulations estimating 

fewer cases than reality, a few forecasts following   in Liberia capture the potential for anτ .75  

event of rapid spread. 

Analyses  of All Available Data 

To showcase the advantage of Hawkes models— namely their consideration of space— 

the final component of this paper is the evaluation of all three countries in a comprehensive 

model. The combined data from Guinea, Sierra Leone, and Liberia is restricted and modeled 

with the same procedures as before (Models 10,11,12). The superthinned residual plots in Figure 

7 appear impressively uniform through the first half of the outbreak, suggesting Model 10 has 

characterized clustering in the data appropriately, but after day 110 the residuals appear to cluster 

more readily. We suspect that the coarse spatial resolution of the original data is the primary 

driver of this behavior. Figure 8 shows narrow simulation ranges resulting from Model 11, 

accurately forecasting the number of new infections during the final weeks of the 2014 Ebola 

outbreak. Figure 9 suggests that Model 12 also forecasts infections after  reasonably well.τ .50  

These results further support a large-scale approach to model-fitting, especially since the three 

countries share borders and realistically should not be considered independent during an 

epidemic. 
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Discussion 

Chaffee et al. (2017) found non-parametric Hawkes models to perform at least as well as 

compartmental SEIR models for predicting the spread of Ebola during the 2014 epidemic. Here 

we have shown that parametric Hawkes models also have the capacity to accurately predict the 

spread of Ebola with the added benefit of interpretability of estimated coefficients, which was 

previously unaccounted for by their non-parametric counterparts. Furthermore, even simplistic 

models such as the ones presented here have an enormous advantage in their ability to handle 

spatio-temporal data compared to the existing strictly-temporal SEIR models. However, SEIR 

models might still have an advantage in the early stages of an outbreak when few infections are 

recorded. 

At present, the primary limitation of these results is the spatial and temporal resolution of 

the original data. The location of an infection was only recorded as the sub-region in which the 

disease was contracted. Though these sub-regions provide a finer resolution than the broader 

country, they are still vast and limited in their accuracy. The time associated with each case is 

also coarse, having been recorded in batches with other recent infections. With enhanced spatial 

and temporal resolution, Hawkes models have the potential to more accurately detail the spread 

of disease. 

 

Conclusion 

The performance of parametric Hawkes models on various subsets as well as the entirety 

of the 2014 Ebola outbreak data further validates these techniques as viable infectious disease 

models. Clearly not all environmental factors are taken into consideration in the present analysis, 
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but the capacity of simple models to accurately predict the spread of the virus shows promise for 

models of greater complexity. Future exploration of statistical models in an epidemiological 

context should consider marked point processes that take into account additional factors 

associated with space or time such as a city’s population or status of vaccinations. Such models 

are already being implemented in numerous settings, including earthquake, wildfire, and 

epidemic occurrences— among many others (Ripley, 1997; Guttorp, 1995; Schoenberg et al. 

2002). Another practical interest is the extent to which a limited amount of data can be modeled 

and make accurate predictions, potentially leading to optimal selections of for simulatingτ  

future spread.  
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Tables

Table 1: Model Parameters

Country Region

Subset (as 
percentage of 
time) used for 

Modeling

Model Number Log-likelihood μ κ α β

Guinea Southeast

Full 1 1662.37 0.170
(0.048)

0.966
(0.034)

136.145
(13.066)

0.397
(0.031)

75% 2 644.32 0.205
(0.063)

0.943
(0.047)

99.276
(12.552)

0.431
(0.046)

50% 3 604.42 0.212
(0.085)

0.955
(0.051)

109.997
(15.805)

0.416
(0.045)

Sierra Leone East

Full 4 3550.24 0.511
(0.114)

0.961
(0.027)

149.041
(12.459)

0.657
(0.048)

75% 5 1556.78 3.723
(0.611)

0.933
(0.048)

231.353
(30.075)

0.359
(0.034)

50% 6 793.30 5.944
(0.770)

0.999
(0.000)

67.63
(0.132)

5.421
(1.357)

Liberia Northwest

Full 7 6340.10 0.166
(0.046)

0.988
(0.022)

152.047
(11.900)

0.440
(0.028)

75% 8 604.99 1.526
(0.341)

0.999
(0.000)

32.561
(3.606)

0.844
(0.112)

50% 9 4.953 0.073
(0.034)

0.862
(0.146)

20.032
(6.062)

1.564
(0.316)

All Countries

Full 10 29848.23 0.069
(0.024)

0.983
(0.014)

196.574
(3.660)

1.518
(0.057)

75% 11 11261.06 0.273
(0.053)

0.983
(0.022)

1590.740
(80.726)

1.107
(0.050)

50% 12 4848.08 0.248
(0.060)

0.936
(0.030)

1679.180
(131.990)

0.654
(0.042)
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Figures

Figure 2: Map of West Africa, with Guinea, Sierra Leone, and Liberia highlighted.
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Figure 3: From top to bottom, Guinea and Southeast Guinea, Sierra Leone and East Sierra Leone, and
Liberia and Northwest Liberia with 2014 WHO observations shown.
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Days 0−10 Days 10 − 20 Days 20 − 30

Days 31 − 40 Days 40 − 50 Days 50 − 60

Days 60 − 70 Days 70 − 80 Days 80 − 90

Days 90 − 100 Days 100 − 110 Days 110 − 120

Days 120 − 130 Days 130 − 140 Days 140 − 150

Days 150 − 160 Days 161 − 170

Figure 4a: Superthinned residuals resulting from Model 1 plotted over Southeast Guinea in 10-day intervals.
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Days 62−70 Days 70 − 80 Days 80 − 90

Days 90 − 100 Days 100 − 110 Days 110 − 120

Days 120 − 130 Days 130 − 140 Days 140 − 150

Days 150 − 160 Days 160 − 170

Figure 4b: Superthinned residuals resulting from Model 4 plotted over East Sierra Leone in 10-day intervals.
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Days 11−20 Days 20 − 30 Days 30 − 40

Days 40 − 50 Days 50 − 60 Days 60 − 70

Days 70 − 80 Days 80 − 90 Days 90 − 100

Days 100 − 110 Days 110 − 120 Days 120 − 130

Days 130 − 140 Days 140 − 150 Days 150 − 160

Days 160 − 170

Figure 4c: Superthinned residuals resulting from Model 7 plotted over Northwest Liberia in 10-day intervals.
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Figure 5: From left to right, simulations of the final 25% of outbreak in Southeast Guinea, East Sierra
Leone, and Northwest Liberia. The solid black curve is the true data, the slightly transparent grey curves
represent unique simulations, and the dashed lines depict the 25th and 75th percentiles of all simulations for
reference. τ.75 are 127.45, 143.14, and 130.21 days respectively.
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Figure 6: From left to right, simulations of the final 50% of outbreak in Southeast Guinea, East Sierra
Leone, and Northwest Liberia. The solid black curve is the true data, the slightly transparent grey curves
represent unique simulations, and the dashed lines depict the 25th and 75th percentiles of all simulations for
reference. τ.50 are 84.96, 116.41, and 90.52 days respectively.
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Days 0−10 Days 10 − 20 Days 20 − 30

Days 30 − 40 Days 40 − 50 Days 50 − 60

Days 60 − 70 Days 70 − 80 Days 80 − 90

Days 90 − 100 Days 100 − 110 Days 110 − 120

Days 120 − 130 Days 130 − 140 Days 140 − 150

Days 150 − 160 Days 160 − 170

Figure 7: Superthinned residuals resulting from Model 10 plotted over Guinea, Sierra Leone, and Liberia
collectively.
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Figure 8: Simulations of the final 25% of outbreak across Guinea, Sierra Leone, and Liberia collectively.
The solid black curve is the true data, the slightly transparent grey curves represent unique simulations, and
the dashed lines depict the 25th and 75th percentiles of all simulations for reference. τ.75 = 127.45 days.

19



0 5 10 15 20 25

0
10

00
30

00
50

00

Week of Outbreak

C
um

ul
at

iv
e 

N
um

be
r 

of
 C

as
es

Figure 9: Simulations of the final 50% of outbreak across Guinea, Sierra Leone, and Liberia collectively.
The solid black curve is the true data, the slightly transparent grey curves represent unique simulations, and
the dashed lines depict the 25th and 75th percentiles of all simulations for reference. τ.50 = 84.96 days.
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