
UCLA
UCLA Electronic Theses and Dissertations

Title
Mathematical Modeling of Clonal Dynamics in Primate Hematopoiesis

Permalink
https://escholarship.org/uc/item/1w37d37p

Author
Xu, Song

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1w37d37p
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Mathematical Modeling of Clonal Dynamics in Primate Hematopoiesis

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Biomathematics

by

Song Xu

2018



© Copyright by

Song Xu

2018



ABSTRACT OF THE DISSERTATION

Mathematical Modeling of Clonal Dynamics in Primate Hematopoiesis

by

Song Xu

Doctor of Philosophy in Biomathematics

University of California, Los Angeles, 2018

Professor Tom Chou, Chair

Recent developments in cell labeling techniques allow studying activities of the massive cell

population at single-cell or clone-level resolution. The generated data are usually featured

by a large number of labels but small sizes of samples. However, the underlying clonal

dynamics are usually stochastic and high-dimensional in nature. Thus, inferring the full

upstream mechanisms from the downstream sample data is essentially an overfitting problem

and poses new challenges in associated computational, statistical, and modeling methods. In

this work, I study the clonal dynamics in the hematopoietic system of rhesus macaques based

on a decade-long clonal-tracking experiment. I first develop a computational algorithm that

tries to improve the quality of the sampled data by correcting DNA-sequencing errors. Then,

I take the cell count (clone size) data and build a multi-compartment neutral model to study

the dynamics of each labeled clone. To avoid overfitting, I simplify the mechanistic model

and select robust statistical features of the data. Finally, when analyzing the birth-death-

immigration (BDI) clonal dynamics under global carrying capacity, I find that the usually

invoked mean-field approach fails to predict simulated distribution of clone sizes. I solve

this problem by transforming the problem and further approximating the carrying-capacity

effect by the fixed-total-size constraint in a Moran model. I hope this work not only solves

the current technical problems, but also contributes to the ongoing efforts in understanding

the long-term multi-clonal dynamics in complex systems.
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CHAPTER 1

Introduction

Hematopoiesis is a process by which hematopoietic stem cells (HSCs) produce all the mature

blood in an animal through a series of proliferating and differentiating divisions [ACG96].

Maintenance of balanced hematopoietic output is critical for an organism’s survival and

determines its response to disease and clinical procedures such as bone marrow transplan-

tation [MF14,SHM14,GKC15,BKB15]. How the relatively small HSC population generates

more than 1011 cells of multiple types daily over an organism’s lifetime has yet to be fully

understood. HSCs are defined primarily by their function but are often quiescent [SW10b].

In vivo, it is difficult to track the dynamics of individual HSCs, while HSCs in vitro do

not typically proliferate or differentiate as efficiently. Therefore, the dynamics of HSCs

can be inferred only from analyses of populations of progenitors and differentiated blood

cells [BVZ12] and it is useful to investigate HSC dynamics through mathematical modeling

and simulations [SBM14,SM11,HR16].

While most studies model population-level HSC behavior [SKL07,ZLM12,BKB15], cer-

tain aspects of HSCs, such as individual-level heterogeneity in repopulation and differen-

tiation dynamics, have to be studied on a single-cell or clonal level [KKP14]. Single HSC

transplant mouse data [SRM11] and clonal tracking of HSCs [CBE12,SRC14] in mice have

shed some light on repopulation dynamics under homeostasis and after bone marrow trans-

plantation [MSB12, VBZ13, BKB15]. How each individual HSC contributes to the blood

production process over long times in much larger human and non-human primates is less

clear and more difficult to study [DNL12]. Human clinical data may not be ideal for the

purpose of studying normal HSC repopulation as they are usually collected from diseased

people.
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Recently, results of a long-term clonal tracking of hematopoiesis in normal-state rhesus

macaques has been made available [KKP10,KKP14]. The experiment extracted and uniquely

“labeled” hematopoietic stem and progenitor cells (HSPCs) from four rhesus macaques with

viral tags that also carry an enhanced green fluorescent protein gene. After autologous

transplantation, if any of the tagged HSPCs divide and differentiate, its progeny will inherit

their unique tags and ultimately appear in the peripheral blood. All cells that share the

same tag form a “clone”. Blood samples were drawn every few months over 4 − 14 years

(depending on the animal) and the sampled cells were counted and sequenced. Of the

∼ 106− 107 unique HSC tags transplanted, ∼ 102 − 103 clones were detected in the sampled

peripheral blood. In the original paper describing the clonal tracking experiment, Kim et

al. [KKP14] observed “A small fraction (4−10%) of tagged clones predominately contribute

to a large fraction (25− 71%) of total blood repopulation.” They described the fluctuations

of tags that appeared in each sample as “waves of clones”, but did not address why some

clones can disappear at certain times and reappear in a latter sample.

To get a more quantitatively understanding of the data, it is necessary to have sufficient

counts of cells that carry each label. In this experiment, blood cell numbers were counted

by identifying and enumerating the number of DNAs that correspond to specific vector-

cellular DNA junctions in the samples by PCR and next-generation-sequencing (NGS). The

exact counts of DNAs reflect the cell numbers of specific clones and are significant for the

subsequent quantitative analysis. However, the true counts of DNAs obtained from NGS

technology are often underestimated because of certain sequencing errors (e.g. insertion,

deletion, substitution). This results in failure of sequence alignment to the genome, which

can nonetheless be partially recovered by computational tools. For the current NGS data

generated by 454 pyrosequencing, the main source of reading errors is the homopolymer

indel (insertion and deletion) error, a common type of error in 454 sequencing and the

newer technology Ion Torrent [WHL14]. My first goal is to more accurately recover the true

counts of sampled DNAs with each specific VIS tag by developing a computer algorithm

and integrating it into a established data-processing pipeline. In Chapter 2, I will describe

how the algorithm automatically handles various types of sequencing errors, with a special

2



consideration for the homopolymer errors, by comparing similarities of DNA sequences of

different alignment qualities.

After obtaining enhanced data of cell counts for each clone, I seek to better understand the

observed clone size distributions and the large temporal variability in clonal populations. To

address these observations, I ask: Is heterogeneity in HSCs necessary for peripheral blood

clone size heterogeneity, or can a neutral model explain most of the observed differences

among clones? Are clones that disappear and reappear from sample to sample simply missed

by random blood sampling, or do other mechanisms of temporal variability need to be

invoked? Unlike previous models that describe the evolution of lineages of different cell types

and their regulation [SBM14,SM11,HR16,HBK16], we will consider simpler neutral models

that describe the birth-death-migration dynamics of specifically granulocyte populations

carrying different tags. The model will be multi-stage (or multi-compartment) in nature,

consisting of the stem cell stage, the progenitor stage (both in the bone marrow), and the

mature stage (in the peripheral blood). By a “neutral” model, I assume the tagging operation

does not affect cell dynamics and all cells in the same stage are identical. Of central interest

is the competition among the thousands of clones under a neutral environment that gives rise

to fluctuations, extinctions, and resurrections in individual clone populations. I will focus

on the granulocyte lineage (mostly neutrophil) because they have relatively simple dynamics

in contrast to other lineages. Mature granulocytes have a relatively short lifespan (hours

to days) and do not further proliferate in peripheral blood. Thus, their production in the

peripheral blood comes only from HSCs and their sampled counts are good indicators for

recent activities of the upstream stem and progenitor cells. In Chapter 3, I will describe the

multi-stage model and further apply asymptotic analysis to reduce the model complexity. I

then propose a novel statistical feature for each individual clone that allows robust inference

of key parameters from the data.

During the study of the multi-stage clonal dynamics, I consider a “clone count” statistics

in a single stage. For example, this can be the stage of progenitor cells with birth, death,

and immigration (from the stem cell pool). However, limited proliferation is not included

here while the limitation of the bone marrow space is modeled by a global capacity capac-

3



ity on the progenitor cell population. Also, unlike the usual cell count statistics for each

tagged clone, it counts the number of clones of a specific size. Thus the clone identity is

not relevant in this description. Such description is particularly useful for describing how a

distribution of clone sizes arises from the initial same-sized clones under stochastic neutral

dynamics. It was widely applied to characterize systems of various scales, including gene-

barcoded, virally tagged, or TCR-decorated [JHH13,ZES13,QLC14,GKC15,DMW16] cellu-

lar clones, microbial populations [HWH03,HBJ06], and ecological species [Hub01,MEG07,

GT05]. Most previous theoretical studies of the birth-death process (even with arbitrar-

ily time-dependent birth and death rates [Ken48a]) explicitly or implicitly assumed mean-

field models [MEG07] which predicts a hyperbolical power-law-like distribution: Many small

clones, a few intermediate-sized clones, and one or several large clones. However, when

simulating the clonal dynamics under zero or very low immigrations, there always emerges

one clone that acquires an unexpectedly large size in each simulation. As immigration rate

increases, this phenomenon disappears and the clone sizes return to the usual hyperbolical

distribution. After carefully analyzing the simulated clonal dynamics, I find that this large

clone is induced by the genetic-drift-like effect of random birth/death and global carrying

capacity (or density dependence) which creates an additional local stable state of the system

to have a large-size clone. This latter regulatory effect is weak when initially most clones

are small, but gradually becomes very strong for growing clones. It also disappears as im-

migration rate increases which brings a phase transition to the system. In Chapter 4, by

approximating this regulatory effect with a Moran-type fixed-total-population constraint and

employing the analytical tool of energy landscape, I am able to find a good approximation

for the clone-count distribution and unravel the mechanistic reason for the failure of the

mean-field assumption.

In sum, I hope this computational algorithm for the data quality improvement, mathe-

matical modeling of the multi-stage clonal dynamics, and theoretical analysis of the phase

transition induced by global carrying capacity (density dependence) will advance researches

of high-dimensional stochastic systems in clonal tracking, stem cell biology, immune diversity,

ecology, and other related fields.
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CHAPTER 2

Clone Size Data Augmentation

2.1 Background

Integration Site (IS) assays, in combination with next-generation sequencing, were used as

a cell-tracking tool to characterize progenies of stem cells that share the same IS. For the

accurate comparison of repopulating stem cell clones within and across different samples,

the detection sensitivity, data reproducibility, and high-throughput capacity of the assay

are among the most important assay qualities [SXX17]. Aiming at reducing the sequencing

errors, especially those homopolymer-induced ones, in a previously established data pipeline,

I will develop an algorithm that tries to improve the quality of the output sequence data.

A homopolymer segment is a string of identical nucleotides appearing in a row, e.g.

‘AAAA’ (homopolymer of ‘A’s of length 4). In 454 sequencing, each homopolymer segment

is called in a single flow indicated by a light signal. The brightness of the light indicates the

length of the homopolymer. When the same nucleotide appears several times in a row, it may

be hard to distinguish the exact brightness of the signal, resulting in erroneous measurement

of the homopolymer length. Such homopolymer errors lead to extra indels (insertion and

deletion) in the sequence reads and affect the alignments of sequences to the genome data.

The true counts of sequences identified for specific clones will be affected. In a previous study,

Huse et al. showed that insertion, deletion, and substitution errors caused by homopolymers

have error proportions of 20%, 9% and 10%, respectively [HHM07].

In the literature, homopolymer errors were commonly handled by two types of ap-

proaches. One type is merges sequences that are “similar enough” to each other according

to a certain similarity (distance) measure. A straightforward measure is the Levenshtein
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distance [Lev66], which calculates the minimum number of single-character edits (i.e. inser-

tions, deletions or substitutions) required to change one sequence into the other. A similar

measure is the Needleman-Wunsch distance [NW70], which maximizes the similarity be-

tween two sequences instead of minimizing the edit distance between sequences. It was

shown that the two approaches are equivalent [Sel74]. The frequently used Smith-Waterman

algorithm [SW81] for a local sequence alignment, however, looks for the region of highest

similarity between two proteins without aligning the entire lengths (especially the ends) of

two sequences. For the current purpose of finding sequences that carry the same VIS in-

formation, matching sequence ends is essential because sequences with the same VIS are

supposed to start from the same gene site.

Based on the Levenshtein distance, an intuitive way to handle the more frequent ho-

mopolymer errors is to assign a smaller penalty score (e.g. a positive value between 0 and

1) to the homopolymer-induced indel errors than that of the regular indels (with penalty 1).

However, it is unclear what penalty score should be chosen. Some researches [HHV12] chose

to treat it as normal indel error (assign penalty 1) or completely ignore the homopolymer-

length information rather than use it. For example, some algorithms filter CATAAAG as

CATAG [Led12], where the homopolymer length information is lost. This can lead to overes-

timation of sequence difference when there is a substitution in the homopolymer segment, for

example TTTC (filtered as TC) and TCTC (filtered as TCTC). Other options include cod-

ing CATAAAG as C1A1T1A3G1 (nucleotide + homopolymer lengths) or as C1A1T1A3G1

(A1 and A3 are considered as different bases) [Led12]. This treatment does not necessarily

decrease the computational complexity of the distance algorithm and the algorithm will have

to be modified substantially for the extra set of characters.

A different type of approach corrects homopolymer errors by extracting statistical in-

formation from the sequence data itself [QLD11, BSI12,WHL14]. This operation is often

performed before mapping the raw sequences to the genome database. The approach es-

tablishes a spectrum of trusted k-mers (k consecutive bases) from the input dataset and

then modifies each sequence so that it only contains k-mers from the spectrum. However,

there is no guarantee that more frequent k-mers represent true ones for all DNA segments.
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DNA segments of rare clones may be incorrectly modified which can lead to failure of its

alignment to the genome. For the current purpose of identifying clones that carry certain

gene segments of the host genome, finding authentic DNA segments is more important. Such

frequency-based error correction approach may not be an ideal choice.

In this Chapter, I will describe a Levenshtein distance-based algorithm with a length-

dependent penalty for homopolymer-induced errors to calculate the similarities among se-

quences that were successfully pre-aligned to the reference genome. I use multiple rules to

elect a best candidate sequence and merge the counts of similar sequences (whether they are

successfully pre-aligned or not) to its count. This way, the total valid data are augmented.

2.2 Materials and Methods

2.2.1 Raw data and the original pipeline

The experimental protocol to generate data is described in [KKP10]. Directly collected

data from the experiment include: sequence data, search motifs for vector and linker se-

quences, and restriction enzyme information [SXX17]. The raw data contain around 107

DNA segments, which has undergone the following existing computational pipeline: (1) VIS

authentication. The sequences were first demultiplexed and trimmed of the vector, linker,

and primer sequences and then mapped onto the reference genome using a BLAST-like

alignment tool. This way, information of whether there is a single, multiple, or no ‘hit’ is

obtained. (2) Sequence enumeration of unique VIS. Sequences were clustered into groups

based on their similarities (95%) of the processed sequences. It was roughly estimated that

homopolymer errors fail this step by about 26%. A three-step treatment was applied: using

a lower stringency condition such as 90%, electing a “most likely” genome sequences in a

each group re-clustering the sequences based on a 95% threshold. The above process was

then repeated by using an even lower threshold 80%. However, this existing protocol is not

able to treat homopolymer error separately and may include quite a few non-homopolymer

‘fake’ sequences in the VIS counts while still missing many homopolymer-related ‘genuine’
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sequences. For this reason, manual efforts were then paid to achieve reliable final results.

2.2.2 Multi-rule score

Instead of using only sequence frequency information, we use the following information of

a sequence as criteria to evaluate the quality of the read: mapping type, initial counts

(frequency), and read length. There are three mapping types of sequences obtained by

using BLAT and GMAP algorithm [KKP10]: Single, which means that the sequence was

mapped to a single site on the genome; MultiHits, which means that the sequence was

mapped to multiple genome sites; NoHits, which means that the sequence was not mapped

to any genome site. The initial counts were obtained by simply counting the number of

mapped sequences and those similar to the mapped ones by treating homopolymer indels as

regular indels. The read length of a sequence is between 25 bp (below which the sequence

read is considered unreliable) and 500 bp (above which the sequencing efficiency dropped

significantly [KKP10]). Generally, the longer the read is, the more reliable the sequence is

considered to be.

2.2.3 Length-based homopolymer penalty

To calculate the distances between any two sequences, the basic idea is to use a modified

Levenshtein algorithm with an adaptive penalty for the homopolymer indels. One concern

about the Levenshtein-based method is the time complexity; based on the current need

of merging 103 − 104 unmapped sequences to 102 − 103 mapped sequences (representing

several hundreds of distinguishable clones) and some obvious optimization techniques, it is a

realistic approach. We collect indel mismatches among 95% similar sequences from the post-

alignment data. This way, we get a rough sense of the occurrence rates for different types

of errors. Although it is likely that some errors are not counted when some genuine copies

are below 95% similarity from the reference segment, relative ratios among different types

of errors should not be affected much. In Figure 2.1(a), the total homopolymer indel rate is

about three times that of the normal indel, we thus set the penalty score for homopolymer
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indel as 1
3
. By only focusing on the homopolymer segments of these sequences, we plot

Figure 2.1(b) to show how the error rate increases with the homopolymer length. Intuitively

it is more likely to have homopolymer errors in a segment ‘AAAAA’ than in ‘AA’. When the

homopolymer length is larger than 7, there is more than 50% probability that more than 1

indel errors will occur, so we set the penalty in this region to be 0.
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Figure 2.1: Homopolymer error rates

(a) Rates of different error types as a function of reading length. The average rates are 0.0049 for

homopolymer insertion, 0.0027 for homopolymer deletion, 0.0036 for regular insertion, 0.0002 for

regular deletion, and 0.0054 for mutation. (b) Homopolymer error rates as a function of

homopolymer length.

2.2.4 Similarity threshold

We assume two situations that sequences might be similar to each other: First, a sequence is

a ‘genuine’ copy of a genome segment with a small number of mutations, insertions, or dele-

tions. Second, a sequence is a ‘fake’ copy of a genome segment with a substantial number of

overlapping nucleotides as a result of the functional redundancy of primate genome. Ideally,

‘fake’ sequences from the second group is farther away than the ‘genuine’ ones from the first

group. Our aim is to find a proper threshold that can distinguish the two groups of similar

sequences. For this purpose, we sampled a few genome sequences that were successfully

mapped and plot their distances with all raw sequences in Figure 2.2. It seems that as long
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as we choose a threshold between 92%−96% (currently we choose 95%), ‘genuine’ and ‘fake’

copies of the genome segments can be well separated.
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Figure 2.2: Similarity distribution among sequences

Pairwise sequence distance distribution between 150 randomly selected genome sequences and

16384 raw sequences from the experiment.

2.2.5 Pseudo-code and examples

(0) Input filename

(1) Pre-processing e.g. eliminate length < 25 bp sequences, delete reads of ’N’, cut the piece

with linker sequences, etc.

(2) If want to achieve time-efficiency and care only about recovering the counts of mapped

sequences, go to (2.1); otherwise (also recover the counts of unmapped sequences), go to

(2.2).

(2.1) Unsupervised clustering

(2.1.1) Calculate the pair-wise similarities of all sequences

(2.1.2) Group all sequences (e.g. if A=B, B=C, but A6=C, still group {A, B, C}), output
grouping results

(2.1.3) Rank sequences and elect the highest rank one as the representative

(2.1.4) If want to increase sensitivity/decrease specificity, go to (2.1.4.1), otherwise go to
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(2.1.4.2)

(2.1.4.1) Inclusive merging Example: If INCLUSIVE is True, we have:

... ... ... ... ...

10 Single - 98 CTAGGAAAACGA−TTATAGCTGCACAAAC−A−CTTT−GT−CTCG...

10 R|NoHits775 149 CTAG−AAA−−GA−TTATAGCTGCACAAACGA−CTTT−GT−CTCG...

10 R|NoHits795 41 CTAGGAAA−−GAATTATAGCTGCACAAAC−AACTTTTGTTCTCG

10 R|NoHits786 154 CTAGGAAAA−GAATTATAGCTGCACAAAC−A−CTTTTGTTCTCG...

... ... ... ... ...

(2.1.4.1.1) Merge all other sequences in a group into the representative one

(2.1.4.1.2) Output merged sequences

(2.1.4.2) exclusive merging Example: If INCLUSIVE is False, we have (NoHits775 got sep-

arated out):

... ... ... ... ...

10 Single - 98 CTAGGAAAACGA−TTATAGCTGCACAAAC−A−CTTT−GT−CTCG...

-10 R|NoHits775 149 CTAG−AAA−−GA−TTATAGCTGCACAAACGA−CTTT−GT−CTCG...

10 R|NoHits795 41 CTAGGAAA−−GAATTATAGCTGCACAAAC−AACTTTTGTTCTCG

10 R|NoHits786 154 CTAGGAAAA−GAATTATAGCTGCACAAAC−A−CTTTTGTTCTCG...

... ... ... ... ...

(2.1.4.2.1) In each group, for those 95% similar to the representative, merge to the represen-

tative; otherwise, separate and mark the unqualified sequences

(2.1.4.2.2) Output sequences

(2.2) Supervised clustering

(2.2.1) Separate master (MultiHits/Single) sequences and slave (NoHits) sequences

(2.2.2) Calculate the pair-wise similarities between masters and slaves

(2.2.3) for those slaves that is similar to a unique master, merge and output

(2.2.4) for those that is similar to multiple masters, if randomly assign to a sequence, go to

(2.2.4.1); if output information, go to (2.2.4.2)

(2.2.4.2) Mark and output

Example: When RANDOM ASSIGN is False, the suspicious NoHits2743 is separated and
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marked, merging to neither Single 197 nor Single 238:

... ... ... ... ...

197 Single + 411 GTTAGTAGAGACAGGGTTTCACCATGTTGGCCAGGCTGG...

... ... ... ... ...

238 Single - 112 GTTAGTAGAGACAGGGTTTCACCATGTTGGCCAGGCTGG...

... ... ... ... ...

197 238 R|NoHits2743 39 GTTAGTAGAGACAGGGTTTCACCATGTTGGCCAGGCTCG

... ... ... ... ...

(2.2.4.1) Randomly merge to a similar master, output Example: When RANDOM ASSIGN

is True: NoHits2743 is merged to Single 197.

(2.2.5) for those slaves that is similar to no master, directly output

2.2.6 Detailed settings

Homopolymer penalty (use penalty 1/6 as an example). The penalty value for ho-

mopolymer errors

Example: If HOMO PENALTY is 1/6, the distance of the following two Seqs is 1/6+ 1/6+

1/6 + 1 = 1.5; if HOMO PENALTY is 1 (same as normal indel), the distance is 4.

Seq 1: TATACTTGGGGCTATTT−CACAAT−GGAAATAATTAGCCCGT

Seq 2: TATACTTGGG−CTATTTTCACAATTGGAAATAATT−GCCCGT

End gap (default: False). Whether to consider the end gap when comparing two sequences

Example: If END GAP is False, the following two Seqs are considered the same. Otherwise,

they are not considered the same:

Seq 1: GCCTGCCCCCCGAGCTCTCCCGTGTGGATCCCGCA

Seq 2: GCCTGCCCCCTGAGCTCTCCCGTGT

Similarity Threshold (default: 0.95, range: [0, 1]). The similarity threshold for two

sequences to be considered the same.

Example: (With HOMO PENALTY 1/6, END GAP is False) The distance of the following
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two Seqs is 1/6 + 1 + 1 + 1/6 = 2.33, the similarity is 1 − 2.33/40 = 0.942 < 0.95; they are

not considered the same:

Seq 1: GTAG−AGCTTTTAC−ATACTTACAGGCATATGCACAG−CAA−TC

Seq 2: GTAGGAGCTTTTACTATACTTACAGGCATATGCACAGACAAAGT

Score Weights (default: [0.5, 0.3, 0.2], range: 0 ≤ pi ≤ 1,
∑

pi = 1). The importance

weights among different rules, including hit type, post-alignment count, and sequence length.

Hit-type Weights (default: [0.70, 0.25, 0.05], range: 0 ≤ pi ≤ 1,
∑

pi = 1), The

importance weights among various hit types, including MultiHits, Single, and NoHits.

Clustering strategy (default: exclusive). After the first step of calculating all pairwise

distances between mapped and unmapped sequences, we consider two sequences equivalent

if they are of ≥ 95% similarity with each other. However, this may bring inconsistency when

extending the criterion to group more than two sequences, since essentially this definition

of equivalence is not transitive. Specifically, if we use the equal sign A = B to denote that

two sequences A and B are equivalent, we have a problem when A = B, B = C but A 6= C.

The sources of this inconsistency include the intrinsic redundancy nature of different DNA

segments, the shortness of the reading length of sequences, and the impossibility to perfectly

capture the true variations of different sequences with the same set of parameters (e.g.

similarity threshold) across all sequences. We give the option of considering A=C (inclusive

strategy) and considering A6=C (exclusive strategy) when grouping sequences. These two

options give the upper and lower bounds for the estimate of counts for sequence A.

2.3 Results

Performance We checked how many valid VISs were recovered by performing our ho-

mopolymer algorithm. We also checked our results with the eye-balling results obtained by

three lab technicians using three weeks. In comparison, our computation tool used less than
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20 minutes on a Thinkpad laptop (with 4GB memory and Intel i5@1.6GHZ CPU).
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Figure 2.3: Homopolymer-error correction results

(a) Counts recovery by applying the homopolymer algorithm to the original pipeline. Single count

increases by 23%. NoHits count decreases by 30%. (b) Sequence-by-sequence count comparison

between the homopolymer algorithm and the eye-balling results by lab technicians.

Runtime We plot the runtimes of the algorithm for three datasets on three computing

systems in Figure 2.4 for both the supervised (only merge unmapped sequences to mapped

sequences) and unsupervised (merge among all sequences) strategies: Thinkpad (Mem-

ory: 4GB, CPU: Intel i5@1.6GHZ), mac (Memory: 16GB, CPU: Intel i7@2.5GHZ), and

lab server (Memory: 64GB, CPU: Intel x86-64@1.2GHZ) for 454 (454 pyrosequencing data

that contains 800 NoHits, 312 Single/MultiHits), illu16 (Illumina data that contains 1454

NoHits, 566 Single/MultiHits), and illu17 (Illumina data that contains 726 NoHits, 482

Single/MultiHits).
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Figure 2.4: Time efficiency of the algorithm

Time cost comparisons of the unsupervised merging strategy (a) and the supervised merging

strategy (b) on three datasets in three computing systems.

2.4 Future work

As is pointed out by [KKP14], there exists intrinsic bias in the cell counts of each tag in

such VIS-based sequencing. The reason is that PCR show different amplification efficiencies

among sequences of different lengths. The next step to improve the quality of the clonal

data is to integrate statistical analysis of the PCR bias into the algorithm to compensate the

cell counts. Another way of optimization is to apply machine learning techniques to auto-

matically find optimal parameters instead of using the manually assigned ones. It will also

be valuable to compare the performance of the algorithm with existing sequence denoising

tools on various datasets.
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CHAPTER 3

Modeling Clonal Dynamics in Granulopoiesis

3.1 Background

After obtaining enhanced-quality data, we try to infer the upstream stem cell dynamics in

the bone marrow from the downstream data sampled from the peripheral blood. We will first

focus on the clonal dynamics in the granulocyte lineage. Even when considering only one

cell type, realistic mathematical models may need to include complex multilevel biochemical

feedback mechanisms of regulation [CPG08,AC09,SBM14,HMJ15,ORK03,MSH09,MTB13].

Many mechanisms may contribute to temporal fluctuations, including extrinsic noise and het-

erogeneity of HSCs, progenitors, or mature granulocytes. Large time gaps between samplings

and small sample sizes also add to the uncertainty of the underlying dynamics. In order to

feasibly compare with experimental data, our modeling philosophy will be to recapitulate

these complexities into simple, effective models and infer parameters that subsume some of

these regulatory effects. This approach and level of modeling are similar to those taken by

e.g., Yang, Sun, and Komarova [SK12,YSK15].

Trying to infer all possible mechanisms and associated parameters from the experimental

data would essentially be an overfitting problem. After careful consideration of a number of

key physiological mechanisms, we hypothesize that stochastic HSC self-renewal, generation-

limited progenitor cell proliferation, and sampling frequency statistics provide the simplest

reasonable explanation for the observed clonal size variability and large temporal fluctua-

tions. HSCs that are generated from self-renewal of the founder population share the same

tag as their founder HSC. Thus, during intense self-renewal after myeloablative treatment

and HSPC transplantation, each originally transplanted HSCs begets a clonal HSC subpop-
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ulation. Subsequently, heterogeneous clone sizes are stochastically generated even though

each tag was initially represented by only a single cell. These expanded HSC clones then go

on to repopulate the clones in the progenitor and mature blood population, which are also

distinguishable by their corresponding tags.

Relative to HSCs, progenitor cells have limited proliferative potential that can explain

the apparent extinctions of clones. This limited proliferation potential can be thought of as

an “aging” process. Different types of aging, including organism aging [AC09,GC16,CG16],

replicative senescence of stem cells [MSW09], and generation-dependent birth and death

rates, have been summarized by Edelstein et al. [EIL01]. Here, the clonal “aging” mechanism

we invoke imposes a limit to the number of generations that can descend from each newly

created (from HSC differentiation) “zeroth generation” progenitor cell. Possible sources of

such a limit include differentiation-induced loss of division potential [BBM03] and telomere

shortening (as in the Hayflick limit) [RBK99,Hod99,Mil00]. Mathematically, genealogical

aging can be described by tracking cell populations within each generation. After a certain

number of generations, progenitor cells of the final generation stop proliferating and can only

differentiate into circulating mature cells or die.

In the following sections, we first present the mathematical equations and corresponding

solutions (whenever possible) of a model that incorporates the above processes. We then

develop a new statistical measure that tracks the numbers of absences of clones across the

samples. Measured clone abundances of animal RQ5427 are statistically analyzed within our

mechanistic model to infer estimates for key model parameters. The data and corresponding

statistical analyses for animals 2RC003 and RQ3570 are also provided in the Results section.

3.2 Materials and Methods

Below, we describe available clonal abundance data, mechanistic models, and a statistical

model we will use for parameter inference.
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3.2.1 Clone abundance data

In the experiments of Kim et al. [KKP14], cells in samples of peripheral blood were counted

to extract Ŝ+(tj), the total number of EGFP+ tagged cells in sample 1 ≤ j ≤ J taken at

time tj . After PCR amplification and sequencing, f̂i(tj), the relative abundance of the ith

tag among all sampled, tagged cells is also quantified. The “ˆ” notation will henceforth

indicate experimentally measured quantities.

Within mature peripheral blood, lymphocytes such as T cells and B cells proliferate or

transform in response to unpredictable but clone-specific immune signals [DP13]. They also

vary greatly in their lifespans, ranging from days in the case of regular T and B cells to years

in the case of memory B cells. On the other hand, mature granulocytes do not proliferate in

peripheral blood and have relatively shorter life spans [BVZ12]. Granulocyte dynamics can

thus be analyzed with fewer confounding factors [SKL07]. Thus, in this work, we restrict our

analysis to granulocyte repopulation and extract all variables, including Ŝ+(tj) and f̂i(tj)

described above, that are associated exclusively with granulocyte populations.

In Figure 3.1(a), we plot the total numbers of sampled granulocytes from one of the

macaques, RQ5427. The subpopulation of EGFP+ granulocytes and the subset of EGFP+

granulocytes that were extracted for PCR amplification and analysis are also plotted. Data

for two other animals, 2RC003 and RQ3570, are qualitatively similar, while those for the

fourth animal, 95E132, did not separate granulocytes from peripheral blood mononuclear

cells. As shown in Figure 3.1(b), not only are the clone abundances f̂i(tj) heterogeneous,

but individual clone abundances vary across samples taken at different times. The variation is

so large that many clones can go extinct and reappear from one sample to another, as shown

in Figure 3.1(c). Since large numbers of progenitor and mature cells are involved in blood

production, the observed clone size fluctuations cannot arise from intrinsic demographic

stochasticity of progenitor- and mature-cell birth and death. Moreover, we will show later in

the Results section that random sampling alone cannot explain the observed clonal variances

and mechanisms that involve other sources of variation are required.
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Figure 3.1: Blood sample data from animal RQ5427

(a) The total numbers of sampled granulocytes (blue triangles), EGFP+ granulocytes (green

squares), and the subset of EGFP+ granulocytes that were properly tagged and quantifiable were

extracted for PCR amplification and analysis (black circles) [KKP14]. This last population

defined by Ŝ+(tj) is used to normalize clone cell counts. We excluded the first sample at month 2

in our subsequent analysis so, for example, the sample at month 56 is labeled the 7th sample.

There were 536 clones detected at least once across the eight samples taken over 67 months

comprising an average fraction 0.052 of all granulocytes. The abundances of granulocyte clones

are shown in (b). The relative abundance f̂i(tj) of granulocytes from the ith clone measured at

month tj is indicated by the vertical distances between two adjacent curves. The relative

abundances of individual clones feature large fluctuations over time. “Extinctions” followed by

subsequent “resurrections,” were constantly seen in certain clones as indicated by the black circles

in (b) and in the inset (c).

3.2.2 Nomenclature and lumped mechanistic model

Figure 3.2 depicts our neutral model of hematopoiesis which is composed of five successive

stages, or compartments, describing the initial single-cell tagged HSC clonal populations

immediately after transplantation (Compartment 0), the heterogeneous HSC clonal popu-

lations after a short period of intense self-renewal (Compartment 1), the transit-amplifying

progenitor cell compartment (Compartment 2), the peripheral blood pool (Compartment

3), and the sampled peripheral blood (Compartment 4), respectively. Each distinct color or

shape in Figure 3.2 represents a distinct clone of cells with the same tag.
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Figure 3.2: Multi-stage model of hematopoietic clones

Schematic of a neutral multi-stage or multi-compartment hematopoiesis model. BM and PB refer

to bone marrow and peripheral blood, respectively. Cells of the same clone have the same color.

White circles represent untagged cells which were not counted in the analysis. Stages 0, 1, and 2

describe cell dynamics that occur mainly in the bone marrow. Stage 1 describes HSC clones

(Ch = 6 in this example) after self-renewal that starts shortly after transplantation with rate rh.

After self-renewal, the relatively stable HSC population (H+ = 20 in this example) shifts its

emphasis to differentiation (with per-cell differentiation rate α). Larger clones in Stage 1 (e.g.,

the circular blue clone, hblue = 4) will have a larger total differentiation rate αhblue while smaller

clones (e.g., the red hexagonal clone, hred = 1) will have smaller αhred. The processes of

progenitor-cell proliferation (with rate rn) and maturation (with rate ω) in Compartments 2 and

3 are considered deterministic because of the large numbers of cells involved. The darker-colored

symbols correspond to cells of later generations. For illustration, the maximum number of

progenitor-cell generations allowed is taken to be L = 4. Compartment 4 represents a small

sampled fraction (ε(tj) ≈ 2.8× 10−5 − 2× 10−4) of Compartment 3, the entire peripheral blood of

the animal. In the example pictured above, Cs = 4. Such small samples can lead to considerable

sampling noise but is not the key driver of sample-to-sample variability.
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In each compartment, relevant parameters include (using Compartment 1 as example):

the total cell count H(t), the untagged cell count H−(t), the tagged cell count H+(t), the

total number of tagged clones Ch(t), and the number hi(t) of HSCs carrying the ith tag.

These quantities are related through
∑Ch

i=1 hi(t) = H+(t) ≡ H(t)−H−(t).

In the progenitor pool, the total number of cells and the number with tag i are denoted

N(t) and ni(t), respectively. Further resolving these progenitor populations into those of

the ℓth generation, we define N (ℓ)(t) and n
(ℓ)
i (t). In the mature granulocyte pool, the total

granulocyte population and that with tag i are labeled M(t) and mi(t). In the sampled

blood compartment, we use S(tj), S
+(tj), si(tj), and Cs(tj) to denote, at time tj , the total

number of sampled cells, the number of tagged sampled cells, the total number of tagged

cells of clone i, and the total number of clones in the sample, respectively. In Compartment

4, we further define fi(tj) = si(tj)/S
+(tj) to denote the relative abundance of the ith clone

among all tagged clones.

By lumping together all clones (tagged and untagged) in each compartment, we can

readily model the dynamics of total populations in each pool. After myeloablative treatment,

the number of BM cells, including HSCs, is severely reduced. Repopulation of autogolously

transplanted HSCs occurs quickly via self-renewal until their total number H(t) reaches a

steady-state. The repopulation of the entire HSC population and the subsequent entire

progenitor and mature cell populations may be described via simple deterministic mass-

action growth laws

dH(t)

dt
= (rh(H(t))− µh)H(t), (3.1)

dN (ℓ)(t)

dt
=



























αH(t)− (r
(0)
n + µ

(0)
n )N (0)(t), ℓ = 0,

2r
(ℓ−1)
n N (ℓ−1)(t)− (r

(ℓ)
n + µ

(ℓ)
n )N (ℓ)(t), 1 ≤ ℓ ≤ L− 1,

2r
(L−1)
n N (L−1)(t)− (ω + µ

(L)
n )N (L)(t), ℓ = L,

(3.2)

dM(t)

dt
= ωN (L)(t)− µmM(t). (3.3)

HSC self-renewal is a regulated process involving signaling and feedback [MCT02, SW10a,

AC09, CPG08, HMJ15] and rh may be a complicated function of many factors; however,
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we will subsume this complexity into a simple population-dependent logistic law rh(H(t))

and assume a constant death rate µh. Alternatively, other studies have employed Hill-type

growth functions [ZLM12,SK12].

We assume the per cell HSC differentiation rate α is independent of the tag and that

differentiation is predominantly an asymmetric process by which an HSC divides into one

identical HSC and one progenitor cell that commits to differentiation into granulocytes.

An initial generation-zero progenitor cell further proliferates with rate r
(0)
n , contributing to

the overall progenitor-cell population. Subsequent generation-ℓ progenitors, with population

N (ℓ), proliferate with rate r
(ℓ)
n until a maximum number of generations L is reached. By

keeping track of the generation index ℓ of any progenitor cell, we limit the proliferation

potential associated with an HSC differentiation event by requiring that any progenitor cell

of the final Lth generation to terminally differentiate into peripheral blood cells with rate ω

or to die with rate µ
(L)
n . For simplicity, we neglect any other source of regulation and assume

α, µ
(ℓ<L)
n = µn, r

(ℓ)
n = rn and ω are all unregulated constants.

Our model analysis and data fitting will be performed using clone abundances sampled a

few months after transplantation under the assumption that granulopoiesis in the animals has

reached steady-state [GKC15] after initial intensive HSC self-renewal. Steady-state solutions

of Eqs. (3.1), (3.2) and (3.3) are defined by Hss, N
(ℓ)
ss , andMss. The first constraint our model

provides relates these steady-state populations through

Mss =
ω

µm
N (L)

ss =
ω

µm

[

αHss

(ω + µ
(L)
n )

(

2rn
rn + µn

)L
]

≡ Assβ

µm
, (3.4)

where we have defined

Ass ≡ αHss, and β ≡ ω

ω + µ
(L)
n

(

2rn
rn + µn

)L

(3.5)

as the total rate of HSC differentiation and the average number of granulocytes generated

per HSC differentiation, respectively. These constraints also hold for the EGFP+ subset

(about 5%− 10%) of cells, e.g., M+
ss = A+

ssβ/µm and A+
ss = αH+

ss . Since M
+
ss is inferred from

the experiment, Eq. (3.4) places a constraint between A+
ss = αH+

ss and β. This steady-state

constraint will eventually be combined with statistics of the fluctuating clone abundances

data to infer estimates for the underlying model parameters.
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3.2.3 Clone-resolved mechanistic model

Although the lumped model above provides important constraints among the steady-state

populations within each compartment, the clone-tracking experiment keeps track of the

populations of sampled granulocytes that arise from “founder” HSCs that carry the same

tag. Thus, we need to resolve the lumped model into the clonal subpopulations described

by hi, n
(ℓ)
i , and mi.

Even though the total HSC populations H(t) and H±(t) are large, the total number of

clones Ch ≫ 1 in compartment 1 is also large, and the number of cells with any tag (the size

of any clone) can be small. The population of cells with any specific tag i is thus subject to

large demographic fluctuations. Thus, we model the stochastic population of HSCs of any

tag using a master equation for P (h, t), the probability that at time t the number of HSCs

of any clone is h:

dP (h, t)

dt
= µh(h+1)P (h+1, t)+(h−1)rh(H(t))P (h−1, t)− [µh+ rh(H(t))]hP (h, t). (3.6)

Recall that immediately after transplantation, each HSC carries a distinct tag before self-

renewal (hi(0) = 1) leading to the initial condition P (h, 0) = 1(h, 1), where the indicator

function 1(x, y) = 1 if and only if x = y. Because h = 0 is an absorbing boundary, clones

start to disappear at long times resulting in a decrease in the total number Ch(t) of HSC

clones. Before this “coarsening” process significantly depletes the entire population, each

clone constitutes a small subpopulation among all EGFP+ cells, h(t) ≪ H(t), and the

stochastic dynamics of the population h of any clone can be approximated by the solution

to Eq. (3.6) with rh(H(t)) replaced by rh(t). Hence, evolution of each HSC clone follows a

generalized birth-death process with time-dependent birth rate and constant death rate. We

show below that for H ≫ 1 the solution to Eq. (3.6) can be written in the form [Ken48b]

P (h, t) = (1− P (0, t))(1− λ(t))λ(t)h−1, (3.7)

where 0 ≤ λ(t) < 1 depends on rh(t) and µh. Here, λ(t) determines “broadness” (level of

clone size heterogeneity) of the clone size distribution. For the relevant initial condition of

unique tags at t = 0, λ(0) = 0 and λ(t → ∞) → 1. When λ(t) is small, the distribution is
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weighted towards small h. For λ(t) = 0, P (h, t) = 1(h, 1) which was the limit used in Goyal

et al. [GKC15] to assume no HSC self-renewal after transplantation. In the limit λ(t) → 1,

the distribution becomes flat and a clone is equally likely to be of any size 1 ≤ h ≤ H .

To further resolve the progenitor population into cells with distinct tags, we define n(ℓ)(t)

as the number of generation-ℓ progenitor cells carrying any one of the viral tags. The total

number of progenitor cells with a specific tag is n(t) ≡
∑L

ℓ=0 n
(ℓ)(t). Since the sizes hi

of individual clones may be small, differentiation of HSCs within each clone may be rare.

However, since the size of each tagged progenitor clone quickly becomes large (n(t) ≫ 1),

we model the dynamics of n(ℓ)(t) using deterministic mass-action growth laws:

dn(ℓ)(t)

dt
=



























Poisson(αh(t))− (rn + µn)n
(0)(t), ℓ = 0,

2rnn
(ℓ−1)(t)− (rn + µn)n

(ℓ)(t), 1 ≤ ℓ ≤ L− 1,

2rnn
(L−1)(t)− (ω + µ

(L)
n )n(L)(t), ℓ = L.

(3.8)

Our model is neutral (all clones have the same birth, death, and maturation rates), so

these equations are identical to Eqs. (3.2). However, since creation of the zeroth-generation

subpopulation n(0)(t) derives only from differentiation of HSCs of the corresponding clone,

which has a relatively small population h(t), we invoke a Poisson process with rate αh(t) to

describe stochastic “injection” events associated with asymmetric differentiation of HSCs of

said clone. Each discrete differentiation event leads to a temporal burst in n(ℓ)(t).

Finally, the dynamics of the population m(t) of any granulocyte clone in the peripheral

blood are described by an equation analogous to Eq. (3.3):

dm(t)

dt
= ωn(L)(t)− µmm(t), (3.9)

where we have assumed that only the generation-L progenitor cells undergo terminal dif-

ferentiation with rate ω. An alternative model allows progenitor cells of earlier generations

(ℓ < L) to also differentiate and circulate but does not give rise to qualitatively different

results.

To study the dynamics of the burst in n
(0)
b (t) immediately following a single, isolated

asymmetric HSC differentiation event at t = 0, we set the initial condition n
(0)
b (0) =
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1, n
(ℓ)
b (0) = 0 (1 ≤ ℓ ≤ L), remove the Poisson(αh(t)) term in Eq. (3.8) and find,

n
(ℓ)
b (t) =















(2rnt)
ℓ

ℓ!
e−(rn+µn)t, 0 ≤ ℓ ≤ L− 1,

2rn

∫ t

0

n
(L−1)
b (τ)e−ω(t−τ)dτ, ℓ = L.

(3.10)

Bounded analytic solutions to n
(L)
b (t) involving the lower incomplete gamma function can be

found. Upon using the solution n
(L)
b (t) in Eq. (3.9) the mature blood population within a

clone associated with a single HSC clone differentiation even is described by

mb(t) = ω

∫ t

0

n
(L)
b (τ)e−µm(t−τ)dτ. (3.11)

The populations associated with a single HSC differentiation event, n
(ℓ)
b (t) and mb(t), are

plotted below in Figure 3.3 of the Results section. Then mi(t), the total number of mature

cells with the ith tag at time t, is obtained by summing up all mb(t− τk) bursts initiated by

HSC differentiations at separate times τk ≤ t with the ith tag.

Besides the burst dynamics described above, the data shown in Figure 3.1(a) are subject

to the effects of small sampling size, uncertainty, and bias induced by experimental processing

such as PCR amplification, and data filtering. In this experimental system, PCR generates

a smaller uncertainty than blood sampling so we focus on the statistics of random sampling.

Each blood sample drawn from rhesus macaque RQ5427 contains about 10µg of genomic

DNA [KKP14]. After PCR amplification, deep sequencing, and data filtering, the total

number Ŝ+(tj) of quantifiable tags corresponds to ∼ 5 × 103 − 3 × 104 tagged cells. The

sample ratio is defined by ε(tj) ≡ Ŝ+(tj)/M̂
+
ss = 3× 10−5 ∼ 2× 10−4 where M̂+

ss ≈ 1.6× 108

is the estimated total number of tagged cells in the peripheral blood. The number of

sampled cells with the ith tag from the jth sample then approximately follows a Binomial

distribution B(S+(tj),
mi(tj)

M+
ss

) ≈ B(mi(tj), ε(tj)) in our model. To quantitatively explore

the feature of apparent extinctions of clones from a sample, we calculate the probability

that no peripheral blood cell from clone i is found in a sample of size S+(tj) ≪ M+
ss :

P (fi(tj) = 0|mi(tj)) =

(

M+
ss −mi(tj)

S+(tj)

)/(

M+
ss

S+(tj)

)

≈ exp
(

−mi(tj )S
+(tj )

M+
ss

)

. Thus, ifmi(tj) <

ε−1 = M̂+
ss/Ŝ

+(tj) ∼ 2× 104 the ith clone is likely to be missed in the sample. The value ε−1

is also used to threshold the population mb(t) to define the measurable duration ∆τb of a
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burst (as indicated in Figure 3.3(a)).

3.2.4 Parameter values

Parameters determined by the experimental procedure or estimated directly from the exper-

iments include the weight of the animal, the sampling times tj , the EGFP+ ratio, and the

total number of tagged cells detected in each sample Ŝ+(tj). Since M̂
+(tj) does not fluctuate

much, we use its average for M̂+
ss and the relevant experimental parameters for each animal

become θexp = {M̂+
ss , Ŝ

+
i (tj), tj}. These will also be used as inputs to our models.

Our multi-stage model also contains many other intrinsic parameters, including θmodel =

{λ, Ch, α, rn, µn, µ
(L)
n , L, ω, µm}. We first found parameter values that have been reliably inde-

pendently measured. Some parameters were measured in human clinical studies rather than

in rhesus macaques, but can nonetheless serve as reasonable approximations for non-human

primates due to multiple physiological similarities [CQD09]. These estimates can certainly

be improved once direct measurements on rhesus macaques become available. Model param-

eters, their estimates, and the associated references are given in Table 1 below.

3.2.5 Model properties and implementation

Using parameter estimates, we summarize the dynamical properties of our model and de-

scribe how the key model ingredients including stability of HSC clone distributions and

subsequent “bursty” clone dynamics that follow differentiation can qualitatively generate

the observed clone-size variances.

Slow homeostatic birth-death of HSCs - The first important feature to note is the slow

homeostatic birth-death of HSCs. After the bone marrow is quickly repopulated, rh(H(t))−
µh ≈ 0, and stochastic self-renewal slows down. Because h = 0 is an absorbing state, the

size distribution of the clones may still slowly evolve and coarsen due to stochastic dynamics

leading to the slow successive extinction of smaller clones. The typical timescale for overall

changes in h can be estimated by approximating rh(Hss) ≈ µh [PQP08] and considering
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Parameter Interpretation Values & References

HSC pool (Compartments 1)

Hss total number of HSCs at steady state 1.1× (104 − 106) [SKL07,ZLM12,GKC15]

α per-cell HSC differentiation rate 5.6× 10−4 − 0.02 [SKL07,GKC15,ZLM12]

µh HSC death rate 10−3 − 0.1 [BBM03,ZLM12]

Transit Amplifying Progenitor pool (Compartment 2)

rn growth rate of progenitor cell 2− 3 [ZLM12]

µn death rate of progenitor cell (generation ℓ < L) 0 [BBM03,ZLM12]

µ
(L)
n death rate of progenitor cell (generation ℓ = L) 0− 0.27 [BBM03,ZLM12]

ω maturation rate of generation-L cells 0.15− 0.17 [DDH76,LEZ16]

L maximum generation of progenitor cells 15− 21 [BBM03,ZLM12]

Peripheral Blood pool (Compartment 3)

Mss total number of mature granulocytes at steady state (2.5− 5)× 109 [CQD09,KKP14]

µm death rate of mature granulocytes 0.2− 2 [BBM03,PBV10,LEZ16]

Table 3.1: Summary of parameters reported from the literature

Summary of parameters, including their biological interpretation, ranges of values, and references.

All rate parameters are quoted in units of per day. Other parameters are chosen to be within

their corresponding reported ranges from the referenced literature. How variations in parameter

values of affect our analysis will be described in the subsequent sections.

the mean time T (h) of extinction of a clone initially at size h ≪ Hss. The standard result

given in Gardiner [Gar85] and also derived Text is T (h) ≈ h
µh

(

1 + ln Hss

h

)

& 102 months (for

µh = 10−2, Hss = 104, h = 101 see Table 1 for applicable values).

Since this timescale is larger than the time of the experiment (67 months for rhesus

macaque RQ5427), mean HSC clone sizes do not change dramatically during the experiment,

consistent with the stable number of clones observed in the samples (for rhesus macaque

RQ5427, the number of detected clones at month {2, 8, 19, 25, 32, 43, 50, 56, 67} are

Cs(tj) = {184, 145, 186, 193, 152, 189, 155, 286}) shown in Figure 3.1(b). Thus, as a first
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approximation, we will use a static configuration {hi} drawn from P (h) to describe how,

through differentiation, HSC clones feed the progenitor pool.

Fast clonal aging of progenitors - In contrast to slow HSC coarsening, progenitor

cells proliferate “transiently.” We plot a single burst of progenitor and mature granulocytes,

Eqs. (3.10) and (3.11), in Figure 3.3(a) using the parameter values listed in Table 1. Asso-

ciated with each temporal burst of cells, we define the characteristic duration, or “width”

∆τb as the length of time during which the number mb(t) is above the detection threshold

within a sample of peripheral blood: ε−1 = M̂+
ss/Ŝ

+ ≈ 2× 104.

According to Eq. (3.11), the burst width and height depend nonlinearly on the parameters

L, rn, µn, µm, and ω in their physiological ranges (see Table 1). The characteristic “width”

of a burst scales as ∆τb ∼ L/rn + 1/ω + 1/µm. This estimate is derived by considering the

L rounds of progenitor cell division, each of which takes time ∼ 1/rn. Terminal-generation

progenitors then require time ∼ 1/ω to mature, after which mature granulocytes live for

time ∼ 1/µm. In total, the expected life span of ∼ L/rn + 1/ω + 1/µm, which approximates

the timescale of a HSC-differentiation-induced burst of cells fated to be granulocytes. Using

realistic parameter values, the typical detectable burst duration ∆τb ∼ 1−2 months is much

shorter than the typical sampling gaps ∆tj = 5− 11 months.

With this “burst” picture in mind, we now show how fluctuations of sampled clone sizes

can be explained. Small-h (αhi ≪ 1
∆τb

) clones never or rarely appear in blood samples.

Their appearance also depends on whether sampling is frequent and sensitive enough to

catch the burst of cells after rare HSC differentiation events. On the other hand, large-h

(αhi ≫ 1
∆τb

) clones differentiate frequently and consistently appear in the peripheral blood.

Their populations in blood samples are less sensitive to the frequency of taking samples.

Figure 3.3(b) shows two multi-burst realizations of mi(t) corresponding to two values of

hi. The 2000-day trajectories were simulated by fixing hi and stochastically initiating the

progenitor proliferation process. Population bursts described by Eq. (3.11) were added after

each differentiation event distributed according to Poisson(αhi).

Thus, the statistics of clone extinctions and resurrections should be more sensitive to the
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Figure 3.3: Bursty clonal dynamics

(a) A burst of cells is triggered by a single HSC differentiation event at time t = 0. A plot of

representative solutions to Eqs. (3.10) and (3.11) for rn = 2.5, L = 24, µn = µ
(L)
n = 0,

µm = 1, A+
ss = 14.7, and ω = 0.16. Curves of different colors represent n

(ℓ)
b (t), the progenitor cell

population within each generation ℓ = 0, 1, 2, . . . , L, and mb(t), the number of mature

granulocytes associated with the differentiation burst. All populations rise and fall. (b)

Realizations of PB numbers of a single clone arising from multiple successive differentiation

events. The fluctuating populations are generated by adding together mb(t) associated with each

differentiation event. Time series resulting from small (hi/H
+ = 0.0003) and large

(hi/H
+ = 0.03) HSC clones are shown. Small clones are characterized by separated bursts of

cells, after which the clone vanishes for a relatively long period of time. The number of mature

peripheral blood cells of large clones reaches a relatively constant level and almost never vanishes.

overall clonal differentiation rate αhi than to the precise shape of a mature cell burst. This

is confirmed by further simulation studies and analysis and motivates reducing the number

of effective parameters (see Discussion).

We can further pare down the number of remaining parameters by finding common

dependences in the model and defining an effective maximum generation number. We can

rewrite Eq. (3.5) as β ≡ 2Le , where

Le = L− L log2

[

rn + µn

rn

]

− log2

[

ω + µ
(L)
n

ω

]

(3.12)
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is an effective (and noninteger) maximum generation parameter. Later in Discussion, we

show that uncertainties of the model structure, alternative mechanisms, and parameter val-

ues can be subsumed into Le. Henceforth, in our quantitative data analysis, we set the

unmeasurable parameters µn = µ
(L)
n = 0 and subsume their uncertainties into an effective

maximum generation Le. Finally, we invoke Eq. (3.4) to find the constraint

A+
ssβ = A+

ss2
Le =M+

ssµm. (3.13)

Since we can use the experimental value of M̂+
ss and µm has been reliably measured in the

literature, Eq. (3.13) constrains A+
ss to Le.

After assigning values to parameters using Table 1 (setting µn = 0, ω = 0.16 and µm = 1),

subsuming parameters into Le (setting µ
(L)
n = 0), describing the configuration {hi} through

λ and Ch (setting µh = 0), and applying the constraint A+
ss2

Le = M̂+
ssµm, we are left with

four effective model parameters θmodel = {λ, Ch, rn, Le}. Here we have included rn in the key

model parameters since it is not reliably measured and the cell burst width is sensitive to

rn. Once Le is inferred, Eq. (3.13) can be used to find A+
ss = 2−LeM̂+

ssµm.

3.2.6 Statistical model

The total number of tags observed across all samples (obtained by summing up the observed

numbers of unique tags over J samples) can be used as a lower bound on Ch. Even though

estimates for animal RQ5427 give Ch ∼ 550−1100, the uncertainties ph, Kh, and H(0) makes

λ and P (h, t) difficult to quantify. Even if P (h, t) were known, it is unlikely that the drawn

{hi} will accurately represent those in the rhesus macaque, especially when λ ≈ 1 and P (h)

becomes extremely broad (the variance of P (h) approaches infinity). Thus we are motivated

to find a statistical measure of the data that is insensitive to the exact configuration of {hi}.
The goal is to study the statistical correlations between various features of only the outputs,

which should be insensitive to the input configuration {hi} but still encode information about

the differentiation dynamics.

Two such features commonly used to fit simulated fi(tj) to measured f̂i(tj) are the mean

yi =
1
J

∑J
j=1 fi(tj) and the variance σ2

i = 1
J

∑J
j=1(fi(tj) − yi)

2. However, the small number
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of measurement time points J and the frequent disappearance of clones motivated us to

propose an even more convenient statistic that is based on

zi =
∑

j

1(fi(tj), 0), (3.14)

the number of absences across all samples of a clone rather than on σi. Here, the indicator

function 1(x, x′) = 1 when x = x′ and 1(x, x′) = 0 otherwise. We illustrate in Subsection

3.5.7 alternatives such as data fitting based on σi and on an autocorrelation function but

also describe the statistical insights gained from using statistics of zi.

Figure 3.4: Scatterplot of clones in the feature space

Scatterplot of clone trajectories of animal RQ5427 displayed in terms of ln ŷi, the log mean

abundance of clone i, and ẑi, the number of samples in which clone i is undetected. The

trajectory of each clone i is represented by a symbol located at a coordinate determined by its

value of ln ŷi and ẑi. A trajectory of a clone that exhibits one absence within months 8− 67 is

shown in the inset. The first sample at month 2 is excluded because only long-term repopulating

clones are considered. Clones that are absent in all eight samples are also excluded, so the largest

number of absences considered for animal RQ5427 is 7. The dashed black line denotes ln Ŷz,

where Ŷz is the average of ŷi calculated over i within each bin of z as shown in Eq. (3.15). When

later analyzing Ŷz, Ŷ0 (red circles) is not included.

The level of correlation between ẑi and ŷi is measured by the average of ŷi conditioned
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by their number of absences ẑi (dashed curve) in Figure 3.4, where the distribution of the

values of ŷi at each ẑi is clearly shown. To combine the correlated stochastic quantities zi

and yi into a useful objective function, we take the expectation of yi over clones that have

the same zi:

Yz =

∑

i yi 1(zi, z)
∑

i 1(zi, z)
. (3.15)

In case no simulated or data-derived trajectories fi(tj) exhibit exactly z absences, we set

Yz = 0. We then determine Yz(θmodel) from simulating our model and Ŷz from experiment

and use the mean squared error (MSE) between the two as the objective function:

MSE(θmodel) =

J−1
∑

z=1

[

Yz(θmodel)− Ŷz
]2
, (3.16)

where θmodel = {λ, Ch, rn, Le} and the sum is taken only over those z for which both data and

simulations produce at least one clone (in practice, when searching for the best fitting θmodel,

we ensure at least 30 clones in each bin of z). Here Y0 is excluded from the MSE calculation

because the yi values of clones that have zi = 0 are not constrained by the burstiness of the

model and Y0 can be sensitive to the underlying configuration {hi}.

We are now in a position to compare results of our model with experimental data. The

general approach will be to choose a set of parameters, simulate the forward model (including

sampling) to generate clone abundances {fi(tj)}, number of absences zi, and ultimately

Yz(θmodel), which is then compared to data-derived Ŷz. By minimizing Eq. (3.16) with respect

to θmodel, we obtain their least square estimates (LSE). A schematic of our workflow is shown

in Figure 3.5. We describe the details of the simulation of our model in Subsection 3.5.5.

3.3 Results

By implementing the protocol outlined in Figure 3.5, we find a number of results including

the shape of the MSE, least-squares-estimates (LSE) of the parameters, validation of the

mechanistic model, and sensitivity analysis.

Shape of the MSE function. For the range of values rn ∈ [0.01, 10] and Le ∈ [19, 28],

the MSEs are fairly insensitive to λ ≥ 0.5 and 500 ≤ Ch ≤ 1000, but typically has lower
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Figure 3.5: Workflow of the model

Workflow for comparing parameter-dependent simulated data with measured clone abundances.

The initial input is the HSC clone distribution P (h), which is unknown and experimentally

unmeasurable. Using known experimental parameters θexp and choosing model parameters θmodel

the theoretical quantities yi and zi are computed by simulating the mechanistic model and the

sampling. The corresponding ŷi and ẑi are extracted from data and the theoretical Yz(θmodel) and

the experimental Ŷz compared through the MSE defined in Eq. (3.16). The MSE is then

minimized to find least squares estimates for θmodel.

values near λ ≈ 0.99 and Ch ≈ 500. Note that Ch ≈ 500 is close to the experimental

estimate for animal RQ5427. Therefore, we fix λ = 0.99, Ch = 500 and minimize the

MSE with respect to rn and Le. For each {rn, Le} pair, simulation of the full model is

repeated 200 times to generate 200 values of all (yi, zi) pairs, Yz(λ = 0.99, Ch = 500, rn, Le),

and MSE(λ = 0.99, Ch = 500, rn, Le). The average values of these MSEs are plotted as a

function of rn and Le in Figure 3.6.

We find that the minimum of the MSE is relatively insensitive to Le for rn & 1. To inter-

pret this result, note that rn does not affect the absolute value of β according to Eq. (3.13),

but it affects the typical time ∼ L/rn+1/ω it takes for a generation-0 progenitor cell to form

a mature granulocyte. When rn < µm, the proliferation of progenitors cannot “catch up”

with the loss of granulocytes, resulting in a quickly vanishing burst in mb. A larger Le would

be required to compensate. When rn ≫ µm, the accumulation of mi(t) is much quicker than
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Figure 3.6: The objective function MSE(rn, Le)

Dependence of the mean MSE defined in Eq. (3.16) on rn and Le. For visualization purposes, we

took the natural logarithms of MSE values and plotted them as a function of Le and rn. Blue

area denotes smaller MSE values, thus better fitting. This energy surface was generated by

averaging over 200 simulations using Ch = 500 and λ = 0.99.

its loss so the burst size is relatively stable and L∗
e is not very sensitive to rn. Thus, the

MSE objective function is fairly insensitive to rn in its biologically meaningful value range.

Least-squares estimates of Le and A+
ss for animal RQ5427. To obtain an explicit best-

fit value for Le we fix rn = 2.5 [ZLM12] (and λ = 0.99, Ch = 500) and varied Le ∈ [19, 26].

The MSE objective function as Le is varied is shown in Figure 3.7(a). For one simulation

at each chosen value of Le, we can construct the MSE and find an LSE for Le. Over 200

sets of simulations (for each chosen Le), we find the expected LSE value L∗
e = 23.4, with a

standard deviation of ±0.12. So in practice, the randomness across simulations is negligible.

Upon applying the constraint in Eq. (3.13), the corresponding (A+
ss)

∗
= 14.7. Substituting

the LSE results into Eq. (3.11) yields a burst width of ∆τb ≈ 32 days, which is consistent

to our assumption ∆τb ≪ ∆tj = 5− 11 months. Figure 3.7(b) shows how Yz(L
∗
e = 23.4) fits

Ŷz. We also plotted Figure 3.8 which shows systematic bias with larger or smaller values of

Le.
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Figure 3.7: MSE(Le) and the optimal fitting of Ŷz

Finding the least squares estimate (LSE) L∗
e for animal RQ5427 by fitting the simulated Yz to the

experimental Ŷz. The values of (λ, Ch, rn) are chosen to be (0.99, 500, 2.5). Simulations with

{hi} set to {ŷi}H+
ss instead of drawing from P (h) generate similar results. (a) The LSE is

L∗
e = 23.4. Averages and standard deviations (error bars) of the 200 MSEs are plotted. (b)

Comparisons between the experimental (solid) Ŷz and simulated (dashed) Yz with fixed L∗
e = 23.4.

The error bars are determined by considering the standard deviation of the average abundances

(yi or ŷi) of all clones exhibiting z absences.

Figure 3.8: Fitting of Ŷz when Le 6= L∗
e = 23.4

In both cases of Le = 22.4 < L∗
e (a) and Le = 24.4 > L∗

e (b), Yz shows systematical bias from Ŷz

across all values of z.
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Comparison of variability from simple sampling and best-fit model. We can check

how our LSE result performs against the null hypothesis that clone size variations arise only

from random sampling. An estimate of sampling-induced variability can be obtained by

assuming a specific number of peripheral blood granulocytes of tag i and randomly drawing

an experimentally determined fraction ε(tj) of peripheral blood cells. This is repeated J

times from a constant peripheral pool {mi}. Each draw results in si(tj) cells of clone i

in the simulated sample. Normalizing by S+(tj), the total number of tagged cells in the

sample, we can define the rescaled mean abundance yi = 1
J

∑J
j=1 fi(tj) and the rescaled

standard deviation σi =
√

1
J

∑J
j=1(fi(tj)− yi)2 for each clone i. The simulated quantities

ln yi and σi associated with each clone i and its experimental sampling fraction ε(tj) are

indicated by the green triangles in Figure 3.9(a). The corresponding values ln ŷi and σ̂i

derived from the data shown in Figure 3.1(b) are indicated by the blue dots. This simple

heuristic test shows that the experimental fluctuations in clone abundances are significantly

larger than that generated from random sampling alone and that additional mechanisms are

responsible for the fluctuation of clone abundances in peripheral blood. Figure 3.9(b) shows

the fluctuations in clone abundances obtained from random sampling of fluctuating mature

clones simulated from our model, using LSE parameter values. Here, the variability is a

convolution of the fluctuations arising from intrinsic burstiness and from random sampling.

The total variability fits those of the experimental data well except for several large-sized

outlier clones.

Insensitivity of analysis to HSC configurations. We demonstrate the weak dependence

of our least squares estimate to λ, the parameter controlling the shape of P (h, t), as shown

in Figure 3.10. For each λ, we sample a fixed number (Ch = 500) of hi from the theoretical

distribution P (h, t) and let Le vary between 19 and 28. We then simulate the model 200

times and find 200 MSEs at each value of Le ∈ [19, 28]. The averages of the 200 MSE’s at

each value of Le are compared and the L∗
e that corresponds to the minimal average MSE

is selected. The selected L∗
e as a function of λ is plotted in Figure 3.10(a). Figure 3.10(b)

shows the averages and standard deviations of MSE(L∗
e) at each value of λ.
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Figure 3.9: Averages and standard deviations of clonal abundances in animal RQ5427

(a) A plot of the standard deviation σ̂i vs. the log of the mean ŷi, extracted from abundance data

(blue dots). For comparison, clonal tags distributed within the peripheral blood cells were

randomly sampled (with the same sampling fraction ε(tj) at times tj as in the experiment). The

analogous quantity σi shown by the green triangles indicate a much lower standard deviation for a

given value of ln yi. This simple test implies that the clonal variability across time cannot be

explained by random sampling. (b) The same test is performed after applying our model with the

LSE parameter Le = 23.4 (and the average of parameters listed in Table 1).

We then repeat the simulations with Ch = 1000. These results together show that L∗
e is

insensitive to the distribution of hi. This insensitivity might be understood by noticing that

Yz is defined as the mean of the values of yi that are associated with z absences (dashed

curve in Figure 3.4), and is not necessarily sensitive to how these values are distributed

(vertically distributed markers at each value of z in Figure 3.4). Instead, Yz encodes the

intrinsic correlation between yi and zi and how much burstiness is transmitted to a clone’s

fi(tj) from its hi.
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Figure 3.10: The objective function is insensitive to λ and Ch

The LSE L∗
e is insensitive to the geometric distribution factor λ > 0 and to Ch ≫ 1. This implies

that for a wide range of values of λ and Ch the LSEs are insensitive to the HSC configuration

{hi}. (a) L∗
e ’s found at each value of λ. (b) Averages and standard deviations (error bars) of

MSE(L∗
e) as a function of λ. The LSE and MSE(L∗

e) values associated with self-consistently using

{hi}/H+ = {ŷi} from experimental data are marked by arrows and “exp.”

In Figure 3.11, we plot simulated datasets and their Yz features under various combination

of model parameters. It can be observed that Yz is insensitive to λ but quite sensitive to Le.
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Figure 3.11: More simulations under various λ and Le

Parameters: λ = 0, 0.5, 0.99 from left to right, Le = 22.4, 23.4, 24.4 from top to bottom.
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To conclude, though it is generally impossible to recover the exact {hi} configuration,

we find the HSC self-renewal-induced geometric distribution in Eq. (3.7) with factor λ ≥ 0.5

generates consistent comparisons with the sampled data.

Data analysis and fitting for animals 2RC003 and RQ3570. The data from the

three different rhesus macaques vary in their numbers of tagged clones transplanted and the

lengths of the experiments. For animal RQ5427/2RC003/RQ3570, there are 536/1371/442

clones that are detected at least once within 67/103/38 months. The fraction of cells in all

tracked clones in animal RQ5427/2RC003/RQ3570 was approximated by the average fraction

of cells that were EGFP+ marked over time, around 0.052/0.049/0.086 (the ratios between

green square and blue triangle markers in Figures 3.1(a), 3.12(a), and 3.13(a)), respectively.

Figures 3.12 and 3.13 also show the clone abundances, the MSE functions, and the statistics

of Y (z).

Despite differences among the animals and the large variability in the estimated values of

α and Hss individually reported in the literature [SKL07,ZLM12,GKC15], the estimates of

(A+
ss)

∗
and L∗

e are rather similar across the three animals. For animal 2RC003, the optimal

estimates are L∗
e ≈ 25.0, while for animal RQ3570, L∗

e = 24.0. The corresponding estimates

for A∗, after considering the constraint Eq. (3.13) and the EGFP+ ratios in Table 2, are

282.7, 136.7, and 224.4.

We also compared how the simulated LSE Yz(L
∗
e) fits the experimental Ŷz for all three

animals. Note that for each specific z, the value of Yz is the conditional mean of the values of

yi for which clones i exhibits exactly z absences. To evaluate the “quality” of fitting Yz(L
∗
e) to

Ŷz, one can directly perform a two-sample t-test between the two sets of values yi(L
∗
e) and ŷi

that contribute to each value of z. The group of ŷi values corresponding to each value of z is

shown by the vertical cluster of diamonds in Figure 3.4, while the corresponding set of values

of yi(L
∗
e) are generated by simulations. For each z value, we performed 200 simulations and

collected the values yi(L
∗
e) of all clones i that exhibit z absences and contribute to Yz(L

∗
e).

We ensured at least 30 values of yi(L
∗
e) for each z and performed the t-test with the measured

set ŷi containing clones that exhibit the same number of absences z. Performing this t-test

40



(c) ��	

(b)

�
)

Figure 3.12: Results for animal 2RC003

(a-b) Experimental data for animal 2RC003. (c) Difference between experimental Ŷz and

simulated Yz(Le) as a function of Le. The values of hi’s are set to be equal to H+ŷi and the model

was simulated 200 times at each value of Le. Other parameters are taken from Tables 1 and 2.

The LSE L∗
e = 25.0 and (A+

ss)
∗ = 6.7. (d) Comparison of the optimal Yz to the experimental Ŷz.

for all 1 ≤ z ≤ J − 2, we generate 200(J − 2) p-values. Data for z = J − 1 is too noisy

and was not included. A p-value p < 0.05 would indicate that the two sample means Yz(L
∗
e)

and Ŷz are not likely to be considered identical; if instead p ≥ 0.05, the null hypothesis

of equal sample means cannot be rejected. For animals RQ5427 and RQ3570, 93.5% and

99.4% of the p-values are larger than 0.05, while for animal 2RC003, the fraction is 76.6%.

This result is consistent with the eroded fitting quality with increasing experimental time,

where the slow decrease in the number Ch(t) of HSC clones in animal 2RC003 cannot be

neglected. As evident from Figure 3.12(a), several clones start to dominate after month 64;
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Figure 3.13: Results for animal RQ3570

Experimental data (a-b) and fitting results (c-d) for animal RQ3570. The values of hi’s are set to

be equal to H+ŷi. Other parameters are taken from Tables 1 and 2. The LSE fitting results are

L∗
e = 24.0 and (A+

ss)
∗
= 19.3.

this coarsening phenomenon is not evident in the data of the other two rhesus macaques.

Animal RQ3570 was sacrificed at month 38 so no obvious coarsening is observed and no

clones strongly dominate (see Figure 3.13). A summary of the parameters and fitting results

for all animals is given in Table 2.

3.4 Discussion

In this study, we analyzed a decade-long clonal tracking experiment in rhesus macaques and

developed mechanistic and statistical models that helped us understand two salient features
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Parameter Reference range or LSE value

RQ5427 2RC003 RQ3570

Ĉs 536 442 1371

(A+
ss)

∗ 14.7 6.7 19.3

A∗

ss 282.7 136.7 224.4

L∗

e 23.4 25.0 24.0

Mss 3.2× 109 4.6× 109 3.8× 109

S+(tj) (5.0− 30)× 103 (2.1− 8.6)× 103 (7.0− 10.8)× 103

EGFP+ ratio 0.052 0.049 0.086

ε(tj) (2.8− 20)× 10−5 (1.2− 4.2)× 10−5 (2.4− 3.0)× 10−5

∆tj 150− 330 180− 660 150− 260

Table 3.2: Summary of fitting results for the three rhesus macaques

Summary of specific parameter values for rhesus macaques 2RC003 and RQ3570 derived from

experimental measurements [KKP14] or obtained by calculations (L∗
e and (A+

ss)
∗
).

of clone abundance data: the heterogeneous (nonuniform) distribution of clone sizes and the

temporal fluctuation of clone sizes. Below, we further discuss the implications of our results,

the structure of our mechanistic model, and the potential effects of including additional

biological processes.

Comparison to previous studies: The long-term clonal tracking data we analyzed were

generated from a huge number of initially tagged HSPCs (Ch(0) ∼ 106−107) [KKP14], a large

number of observed clones (Cs ∼ 102−103), small numbers of sequenced cells (103−104), and

infrequent sampling. This presents significant challenges to the modeling and analysis over

previous studies that mostly focused on one or a few clones [CBE12,MSB12,VBZ13,BKB15].

In a previous analysis, Goyal et al. [GKC15] aggregated the clone abundance data across

all mature cell types and studied the distribution of the number of clones of specific size.

At each time point, they ordered the clones according to their sizes. Thus, the ordering

can change across samples as some clones expand while others diminish. They found that

the cumulative clone number distribution (defined as the number of clones of a specific

size or less) of the size-ordered clones become stationary as soon as a few months after
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transplantation. They proposed a neutral birth-death description of progenitor cells and

fitted the expected value of clone counts in each sample by assuming hi ≡ 1 ∀i (P (h, t) =

1(h, 1)) and tuning parameters in the downstream progenitor and mature cell compartments.

By focusing on aggregate clone counts, this study could not distinguish the dynamics of

individual clones nor could it predict the persistence of clone sizes over time. Since individual

clone sizes (hi, ni, mi, si of the same tag i) were not tracked, mechanisms driving the

dynamics, and in particular, the variability and fluctuations of individual clone sizes that

drive disappearances and reappearances, remain unresolved [GKC15].

In our model, heterogeneity of clone sizes is explicitly generated by stochastic HSC

self-renewal of cells of each tag and extinctions and resurrections arise from a generation-

limited progenitor proliferation assumption. We infer model parameters as listed in Table

2. Combining the results with previous experimental and theoretical estimates of Hss ≈
1.1 × 104 − 2.2 × 104 [ACM02,GKC15] results in α = 0.0045 − 0.027, slightly larger than,

but still consistent with, the estimates α = 0.0013 − 0.009 by Shepherd et al. [SKL07].

Previous studies that modeled total peripheral blood population estimated α ≈ 0.022 and

Hss ≈ 1.1 × 106/kg for dog and α ≈ 0.044 and Hss ≈ 1.1 × 106/kg for human [ZLM12].

These estimates yield a value of αHss about 102 − 103 times greater than ours, which is

nonetheless consistent with our steady-state constraint Eq. (3.13) because they assumed a

much smaller L ≈ 15−18 for dog and 16−21 for human. This difference in the estimates of

L may be partially attributed to the transplant conditions under which the rhesus macaque

experiments were performed [KKP14]. Alternative model assumptions and differing values

of other parameters may also contribute to this difference. For example, the extremely large

value of Hss ≈ 107 used in [BBM03] will naturally decrease their estimate for L∗
e relative to

that of our analysis.

Model structure, sensitivity to parameters, and cellular heterogeneity: Uncertain-

ties in values of parameters such as µh, ph, Kh, and other factors that tune the symmetric-

asymmetric modes of HSC differentiation or involve HSC activation processes [WLO08] will

impart uncertainty in determining P (h) and {hi}. We have assumed P (h) satisfies a master

44



equation and depends only two effective parameters λ and Ch. However, we have demon-

strated that the statistical properties of Yz are quite insensitive to the upstream configuration

{hi} and hence to λ and Ch for a wide range of their values (see Figure 3.10). In other words,

very little information in {hi} is retained in the sampled abundances f̂(tj) after HSCs dif-

ferentiate and trigger random bursty peripheral blood cell population dynamics.

Another feature we have ignored in our neutral model is cellular heterogeneity such

as tag-dependent differentiation, proliferation, and death rates. Cellular heterogeneity in

HSC differentiation rates could be described by different αi for each clone i and the total

differentiation rate would be A+
ss =

∑Ch

i=1 αihi. Differences in αi can be subsumed into a

modified configuration {hi} which, as we have seen, does not strongly influence our parameter

estimation based on the Yz statistics. Thus, given the available data and how information is

lost along the stages of hematopoiesis and sampling, the present quasi-steady state analyses

cannot resolve heterogeneity across HSC clones.

We have not investigated how cellular heterogeneity in progenitor and mature cells would

affect our results, but clone-dependences in their birth and death rates could affect sizes and

durations of population bursts and quantitatively affect our analysis. However, unless the

statistics of inter-burst times are highly variable across clones, we do not expect cellular

heterogeneity to qualitatively affect our conclusions.

Changing downstream parameters such as µm or invoking alternative mechanisms of

terminal differentiation can affect the shape of clonal bursts. We show in Effective param-

eters that these effects can be subsumed into the effective maximum progenitor generation

Le. We have performed additional simulations to confirm that changing µm = 2 will not

influence the fitting of A+
ss but but increases L

∗
e by one. In other words, inference of (A+

ss)
∗

is robust against many upstream and downstream parameters, indicating that the intrinsic

clone size fluctuations observed in the experimental data strongly constrain the total rate of

HSC differentiation. On the other hand, uncovering the actual maximal generation L∗ from

L∗
e is possible only when uncertainties in these other parameters are resolved.

Of course there is a nearly endless list of details such cellular heterogeneity and more
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complex biology that we did not include, but given the noisy data, we propose and quantify

the simplest explanation for the observed heterogeneous clone abundances and the temporal

“extinctions and resurrections.” The key ingredients in our mechanistic model are HSC self-

renewal (quantified by the effective parameter λ), intermittent HSC differentiation (quanti-

fied by the parameter A+
ss), and an effective maximum progenitor generation (quantified by

the effective parameter Le). Although we cannot fully resolve λ from data, the obvious mis-

match between experiment and our model when λ is small shows that a certain level of HSC

clone-size heterogeneity (larger λ ≈ 1) is necessary to match the sampled data. Similarly,

we cannot fully resolve α and H+
ss , but their product, the total tagged HSC differentiation

rate A+
ss = αH+

ss , is one of the key parameters constrained by our modeling.

Effective parameters There are differing reports on the measured death rates for cir-

culating granulocytes. We have used the most recently reported value µm = 1 per day for

human. The effect of changing the value of µm → µ′
m on our analysis is a reinterpretation of

Le. By rewriting Eq. (16) as A+
ss2

Le = M+
ssµm = M+

ssµ
′
m

(

µm
µ′m

)

, we rearrange the expression

to A+
ss2

Le+log2(µ
′

m/µm) =M+
ssµ

′
m and find L′

e = Le + log2(µ
′
m/µm). For example, µ′

m = 2 would

lead to L′
e = Le + 1, where one additional round of progenitor doubling compensates for the

doubled loss rate of mature granulocytes. One may argue that the change in µm can also

be compensated for by doubling A+
ss, which would have a different effect on the burstiness

of the model compared to doubling Le. However, when re-fitting the data with µ′
m = 2 or

0.2, we observed that (A+
ss)

∗
did not change much, with most of the effect of modifying µm

absorbed by changes in L∗
e .

Similarly, uncertainties in other parameters can also be subsumed into Le. For example,

setting µ
(L)
n = ω > 0 implies that only half of the generation-L progenitors contribute to the

peripheral blood. For a model with µ
(L)
n = 0 to generate an equivalent effect, we can halve the

number of mature cells by using an effective maximum generation parameter L′
e = Le − 1.

This indicates that the intrinsic clone size fluctuations demonstrated in the experimental

data strongly constrain A+
ss.

Another possible modification of our mechanistic model is to allow for the possibility of
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symmetric HSC differentiation. The effect of symmetric differentiation can again be sub-

sumed into the parameter Le without qualitatively affecting our analysis. Assume a propor-

tion 0 ≤ q ≤ 1 of HSC differentiations are symmetric, producing on average 1+q generation-0

progenitor cells. After Le rounds of proliferation, the 1 + q generation-0 progenitors pro-

duce on average (1 + q)× 2Le mature cells. This is equivalent to an exclusively asymmetric

differentiation model (q = 0) with L′
e = Le + log2(q + 1). We also expect symmetric differ-

entiation to slightly increase the speed of coarsening since each HSC differentiation is also

accompanied by the HSC’s death and clones represented by a single HSC would disappear

under symmetric differentiation. However, given the small rate α of HSC differentiation, the

large number Ch of clones, and the insensitivity of our results to the distribution hi, the data

cannot quantitatively resolve the symmetric-asymmetric modes of HSC differentiation.

Clonal stability vs clonal succession. Our model reduction was based on the separation

of timescales of the slow HSC dynamics and the fast clonal aging dynamics. Since HSC clone

sizes vary extremely slowly for primates (∼ O(102) months), we ignored the homeostatic

births/deaths of HSCs when fitting the temporal clonal variations. This is partially justified

by visual inspection of Figs 3.1(b), 3.12(b), and 3.13(b) that no significant variations of

large clones’ abundances is observed before 60 months. Instead, the random intermittent

HSC differentiation events induce relatively short (∼ O(1) months) bursts of granulopoietic

progeny that contribute strongly to temporal fluctuations of clone sizes. Such behavior is

consistent to the “clonal stability” hypothesis [APS95,PPB96,MGD06], which assumes that

a fixed group of HSCs randomly contribute to an organism’s blood production at all times.

The alternative hypothesis of “clonal succession” [JL90, DKC96, SRC14] assumes that

different groups of HSCs are sequentially recruited to the blood production at different

times. This hypothesis would only be consistent with our model under a different set of

parameters where HSCs self-renew/die at a rate comparable to that of ∆τb, the duration

of a granulocyte burst. For example, murine HSC turnover rates µh are hypothesized to

be 10-fold higher than those in primates while the clonal aging dynamics (and its timescale

∆τb) are relatively conserved across species [CBG11]. According to our result, such a 10-fold
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increase in HSC death rate would lead to a 10-fold increase in HSC clone extinction rate,

bringing the lifespans of HSC clones closer to the (progenitor) clonal aging timescale ∆τb.

This interpretation is consistent with the fact that hematopoiesis in large primates have been

described in terms of “clonal stability” while hematopoiesis in mice have been described in

terms of “clonal succession” [JL90,APS95,DKC96,PPB96,MGD06,SRC14]. We thus predict

that with even longer tracking (> 100 months), the “clonal succession” mechanism could

also be significant in primates.

3.5 Appendices

3.5.1 Proof of Eq. (3.7):

To solve Eq. (3.6) for dP (h,t)
dt

, we transform the equation using the probability generating

function Q(s, t) =
∑∞

h=0 P (h, t)s
h. We have also neglected the subscript i because our model

is “neutral” and P (h, t) can describe the size of any HSC clone i. If the HSC self-renewal

rate is approximated as rh(H(t)) ≡ rh(t), the solution for Q(s, t) takes on the following

form [Wan05]:

Q(s, t) = 1− s− 1

(s− 1)φ(t)− ψ(t)
, (3.17)

where

ψ(t) = e−
∫ t

0
(rh(t

′)−µh)dt′ and φ(t) =

∫ t

0

rh(t
′)ψ(t′)dt′. (3.18)

Note that for h ≥ 1,

Q(h)(s, t) =
∂hQ(s, t)

∂sh
=

h!(−φ(t))h−1ψ

[(s− 1)φ(t)− ψ(t)]h+1
and P (h, t) =

Q(h)(0, t)

h!
=

φh−1(t)ψ(t)

(φ(t) + ψ(t))h+1
.

(3.19)

These solutions obey the initial condition P (h, 0) = 1(h, 1) and as t → ∞, ψ(t) → ψ(∞) ∈
(0, 1), φ → ∞, and P (h, t) → 0. For h = 0, P (0, t) = 1 − 1

φ(t)+ψ(t)
and P (0, t → ∞) → 1,

indicating eventual extinction at long times [Wan05,YSK15].

Using forms given in Eq. (3.19), since both φ and ψ are independent of h, we can define

P (h+ 1, t)

P (h, t)
=

φ(t)

φ(t) + ψ(t)
≡ λ(t). (3.20)
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Thus, the probability distribution P (h, t) can be written as

P (h, t) =
1

φ(t) + ψ(t)

ψ(t)

φ(t) + ψ(t)

(

φ(t)

φ(t) + ψ(t)

)h−1

= (1−P (0, h))(1−λ(t))λ(t)h−1. (3.21)

3.5.2 Mean-field approximation for dP (h,t)
dt

In this section, we validate two approximations used to analyze the dynamics of any clone’s

h(t), the population of a single clone in the HSC pool. The first approximation is that the

dynamics of h(t) does not affect those of H(t), thus rh(H) (decoupling). This “mean-field”

approximation is implemented by assuming the growth rate rh(H) to be a “parametrically

driven” force via rh(H(t)) ≈ rh(t) in Eq. (3.6). It is valid under h ≪ H (qualitatively

verified by the sampled data), but breaks down if any clone dominates the whole stem cell

population (see Chapter 3). The second approximation is that the fluctuations of rh(H(t))

can be neglected. At steady state, if fluctuations in H(t) are sufficiently small, we can set

all kinetic parameters (e.g., rh, µh, ω) in Eqs. (3.6), (3.8) and (3.9) as constants.

To justify these two approximations, we consider a stochastic-differential-equation de-

scription of the clonal dynamics, which is a random birth-death process with a regulated

birth rate [Gar85,AA03],

dh

dt
= (rh(H)− µh)h+

√

(rh(H) + µh)h ξ(t) (3.22)

where ξ(t) represents a Gaussian white noise process. If we decompose rh(H(t)) = r̄h(t)+c(t)

where r̄h(t) = rh(H(t)) with the mean-field valueH(t) determined by the solution of Eq. (3.1)

and c(t) a residual noise term with mean zero, we find

dh

dt
= (r̄h(t)− µh)h+ c(t)h+

√

(rh(H(t)) + µh)hξ(t) (3.23)

The dominate contribution to dh
dt

can be found by comparing the magnitudes of the three

terms on the right-hand-side of Eq. (3.23).

Shortly following transplantation, H(t) ≪ H∗, where rh(H
∗) = µh defines the steady-

state total population H∗. During these shorter times r̄h(t) > µh and the magnitude of the

regulated growth term (r̄h(t) − µh)h ∼ O(h). At long times when steady state holds, self-

renewal and death balance each other and (r̄h − µh)h ≈ 0. The second term c(t)h contains
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the fluctuations in rh(H) induced by fluctuations in H , which are of order O(
√
H). The

magnitude of ch thus depends on the specific form of rh(H). The third term
√

(rh + µh)h

represents the effect of intrinsic noise in the birth-death process and is of order O(
√
h).

First, since h ≪ H , drh/dh ∼ (h/H)drh/dH ≪ drh/dH and we can assume rh(H) ≈
rh(t) at all times. To justify our second approximation, we need to show c(t)h can be

neglected at steady state. At steady-state, the first term vanishes so we need to show that

c(t)h is much smaller than O(
√
h), the magnitude of the third term. Actually, we will show

that ch is of order O( h√
H
) for general functions rh(H) as long as certain conditions are met.

Equivalently, we show the noise term rh(H)−µh is of order O((H∗)−
1
2 ). At steady-state, we

expand rh(H) about rh(H
∗) = µh:

rh(H) = µh +
∞
∑

k=1

1

k!
(H −H∗)k

dkrh(H)

dHk

∣

∣

∣

∣

H=H∗

(3.24)

Two conditions have to be met: (i) the second term on the right-hand-side of Eq. (3.24)

is of order O((H∗)−
1
2 ) while (ii) the last summation term is much smaller (say, of order

o((H∗)−
1
2 )).

Next, we will show that these two conditions are met in both Logistic-type and Hill-type

carrying capacity cases by demonstrating |dkrh
dHk | . O((H∗)−k). If it does, condition (i) is

directly satisfied and condition (ii) is satisfied through Taylor’s theorem.

With Logistic carrying capacity, the birth rate can be written as rh(H) = −(ph−µh)
H
H∗

+

ph and satisfies

∣

∣

∣

∣

drh(H)

dH

∣

∣

∣

∣

=
ph − µh

H∗ ≪ (H∗)−
1
2 ,

∣

∣

∣

∣

dhrh(H)

dHh

∣

∣

∣

∣

= 0 for h = 2, 3, 4... (3.25)

The Hill-type carrying capacity with coefficient c and half-saturation size Kh is written as:

rh(H) =
phK

c
h

Hc +Kc
h

. (3.26)

Note Kh is of the same scale as H∗ and their relation is H∗ =
(

ph
µh

− 1
)

1
c

Kc
h ≡ γKh. We

have
∣

∣

∣

∣

drh(H)

dH

∣

∣

∣

∣

=
phK

c
h · cHc−1

(Kc
h +Hc)2

∣

∣

∣

∣

H=H∗

∼ 1

H∗ (3.27)
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and

∣

∣

∣

∣

d2rh(H)

dH2

∣

∣

∣

∣

= phcK
c
h

[(c− 1)γc−2 − (c+ 1)γ3c−2 − 2γ2c−2]K3c−2
h

(1 + γc)4K4s
h

∼ 1

K2
h

∼ 1

(H∗)2
. (3.28)

More formally, we can show that if the order of d
crh
dHc is O( 1

Hc ), then
dc+1rh
dHc+1 is of order O( 1

Hc+1 ),

because

d

dH

(

Hb + ...

Ha + ...

)

=
(bHb−1 + ...)(Ha + ...)− (Hb + ...)(aHa−1 + ...)

(Ha + ...)2
∼ Hb−1 + ...

Ha + ...
(3.29)

where a and b (a 6= b) are the highest orders of denominator and nominator respectively.

3.5.3 Example of alternative model:

An alternative model to the one we have analyzed allows younger-generation progenitor cells

(ℓ < L) to differentiate into peripheral blood. Since each generation can differentiate with

rate ω, the progenitor cell dynamics is slightly modified from those in our main model:

dn(ℓ)(t)

dt
=



























Poisson(αh(t))− (rn + µn + ω)n(0)(t), ℓ = 0,

2rnn
(ℓ−1)(t)− (rn + µn + ω)n(ℓ)(t), 1 ≤ ℓ ≤ L− 1,

2rnn
(L−1)(t)− (ω + µ

(L)
n )n(L)(t), ℓ = L.

(3.30)

Moreover, the dynamics of the mature peripheral blood obeys

dm(t)

dt
=

L
∑

ℓ=0

ωn(ℓ)(t)− µmm(t). (3.31)

The solution to Eqs. (3.30) and (3.31) following a single differentiation event is

n
(ℓ)
b (t) =

(2rn)
ℓ

ℓ!
tℓe−(rn+µn+ω)t,

n
(L)
b (t) = e(rn−µn−ω)t

[

1− γ(L+ 1, 2rnt)

L!

]

,

mb(t) = ω

∫ t

0

L
∑

ℓ=0

n
(ℓ)
b (τ)e−µm(t−τ)dτ (3.32)

These results can be applied to the model and analyzed and simulated using the same

procedures as described earlier. However, certain parameters have to be re-interpreted. For
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example, using the same value of ω = 0.16 will significantly increase the effective death rate

for progenitor cells of each generation. Fortunately, as we will show later, this alternative

mechanism should not affect our main conclusion as the parameter-fitting results are not

sensitive to the exact shape of cell bursts.

3.5.4 Proof of extinction time:

As a function of the initial number h of HSCs in a clone, the mean extinction time (MET)

T (h) under the steady-state approximation rh = µh obeys [Gar85,All10]

[T (h+ 1)− T (h)]µhh− [T (h)− T (h− 1)]µhh = −1. (3.33)

with an absorbing boundary condition T (0) = 0. By iterating Eq. (3.33), we find

T (h+ 1)− T (h) = T (1)− 1

µh

h
∑

k=1

1

k
, (3.34)

which can be again iterated to obtain

T (h) = hT (1)− 1

µh

h−1
∑

k=1

k
∑

ℓ=1

1

ℓ
. (3.35)

To solve for T (1), we invoke a reflecting boundary condition T (Hss)−T (Hss−1) = 1/(µhHss)

[DSS05], where

T (Hss) = HssT (1)−
1

µh

Hss−1
∑

k=1

k
∑

ℓ=1

1

ℓ
, T (Hss−1) = (Hss−1)T (1)− 1

µh

Hss−2
∑

k=1

k
∑

ℓ=1

1

ℓ
, (3.36)

to find

T (1) =
1

µh

Hss
∑

ℓ=1

1

ℓ
. (3.37)

Upon using Eq. (3.37) in Eq. (3.35), we find

T (h) =
h

µh

Hss
∑

k=1

1

k
− 1

µh

h−1
∑

k=1

k
∑

ℓ=1

1

ℓ
≡ Tdiscrete(h), (3.38)

which is the MET for a discrete system.

We can also approximate T (h) by considering h as a continuous variable and replace the

summations in Eq. (3.38) by integrations to find a simpler, more insightful approximation
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to T (h):

Tcontinous(h) =
h

µh

∫ Hss

ℓ=1

dℓ

ℓ
− 1

µh

∫ h−1

k=1

dk

∫ k

ℓ=1

dℓ

ℓ

=
h lnHss − (h− 1) ln(h− 1) + h− 2

µh

≈ h

µh

(

ln
Hss

h
+ 1

)

,

(3.39)

where we have used
∫ x

(1/x′)dx′ = ln x and
∫ x

ln x′dx′ = x ln x− x. The continuous approx-

imation to the MET matches the exact result quite well (relative error . 5%) for all values

of h.

Figure 3.14: Mean extinction time as a function of stem cell clone size h

3.5.5 Simulation scheme:

To generate predictions, we first choose values of θmodel = {λ, Ch, rn, Le} and simulate our

model, including sampling, to find si(tj). Each realization of a simulation of the model is

performed by

1. Specify the static HSC clone size distribution P (h) by choosing the pair (λ, Ch) and

draw {hi} from the geometric distribution Ch times using the Python package np.random.geometric.

Normalize to construct the configuration {hi}/H+
ss ≡ { hi∑Ch

i=1 hi
}. Alternatively, we can

also use the data ŷi to approximate the configuration {hi}/H+
ss .
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2. Fixing all parameters θmodel, construct the total clone i differentiation rate αhi ≡
A+

sshi/H
+
ss = 2−LeM̂+

ssµmhi/H
+
ss for each clone i. Generate realizations of sets of HSC

differentiation event times {τ (i)k } for each clone i based on the rate αhi = A+
sshi/H

+
ss .

3. Evaluate Eqs. (3.11). Sum up the peripheral blood bursts initiated by each differenti-

ation event of each clone i to find mi(t) =
∑

kmb(t− τ
(i)
k ).

4. Sample a fraction ε(tj) =
Ŝ+(tj)

M̂+(tj)
of the total peripheral cell count M+(tj) =

∑

imi(tj).

Here, Ŝ+(tj), M̂
+(tj), and the times tj are defined by the experiment (we used the

Python package numpy.random.binomial). The cell counts of each clone are si(tj). Use

the simulated total tagged cell counts in the samples S+(tj) =
∑

i si(tj) to normalize

si(tj)

S+(tj )
= fi(tj). Up to this point, we have generated a data matrix fi(tj) of size Ch×J .

5. Increment Le within the desired interval and repeat steps 2-4 200 times. For each value

of Le, the 200 simulations generate 200 fi(tj) matrices. These repeats are to ensure

that the noise induced from drawing values of hi from P (h) and sampling si(tj) from

mi(tj) do not significantly corrupt our parameter estimation.

The simulated, model-derived configurations fi(tj) are then compared with experimen-

tally measured values f̂i(tj). The parameter Le that minimizes the mean-squared error will

be chosen as the least-squares estimate L∗
e .

3.5.6 PCR bias

Each blood sample drawn from rhesus macaque RQ5427 contains about 10 µg genomic

DNA [KKP14]. After PCR amplification, intensive sequencing, and data filtering, the total

number S+
j of quantifiable VISs correspond to 5 × 103 ∼ 3 × 104 tagged cells. The sample

ratio is defined by εj ≡ S+
j /M

+
ss = 3 × 10−5 ∼ 2 × 10−4 where M+

ss ≈ 1.6 × 108 ≫ S+
j ≫ 1

are the total numbers of VIS-tagged cells in the PB pool and in the jth sample respectively.

The time intervals ∆tj ≡ tj+1 − tj between consecutive samples ranged between 5 and 11

months. Besides the bursty dynamics described above, the data shown in Figure 3.1(a) are

subject to the effects of small sampling size, uncertainty and bias induced by experiment
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procedures such as PCR amplification and data filtering, and low sampling frequencies that

may screen out hidden dynamics occurring between consecutive samples.

To explore how sample size affects fi(tj), let us study a specific clone whose abundance

in the peripheral blood is mi(tj)/M
+
ss = 0.01 at a specific sample time tj , corresponding to

mi(tj) = 1.6×106. Sampling includes three detailed steps. In each step, the number of sam-

pled cells obeys a binomial distribution with mean pS and standard deviation
√

p(1− p)S if

the number of trials is S (“sample size”) and the success probability (“clone frequency”) is p

in that step. If the average number of sampled cells is large, the binomial sampling distribu-

tion can be approximated by a Gaussian distribution, where the relative standard deviation

(RSD) defined as the standard deviation divided by the mean
√

1−p
pS

can be calculated to

evaluate how noisy this sampling step is.

• Each time, a 10 µg blood sample were taken from the rhesus macaque, in which about

7.7×104 EGFP+ cells were obtained. The sampling ratio is about 7.7×104/1.6×108 ≈
4.8×10−4. So, the average sampled size of this clone is 770 and the standard deviation

is 27.7. The RSD is 3.6%.

• PCR amplification. A previous study has shown that a PCR starting with k copies of

DNA will provide an estimate of mean k and standard deviation
√

2−q
q
k [PJ96], where

q is the amplification factor. In the current experiment, the correlation between the

relative frequencies and dilution factor in this type of clone-specific PCR amplification

is between 0.989 to 0.999 [KKP14], corresponding to a q ≥ 1.5. So if the input is 770

cells, the standard deviation is less than 16, resulting in RSD less than 2%.

• Second sampling with size 7.7 × 103 was taken from the amplified sequence pool. If

the input is 0.01× 7700 = 77, then the average is 77 and the standard deviation is 8.7;

the RSD is 11%.

Thus in this system PCR generates a smaller uncertainty than sampling. We will approxi-

mate this three-step sampling by a one-step sampling of size S+ = 7700 cells directly from

the PB pool M+
ss = 1.6× 108 in the rest of the paper.
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3.5.7 Alternative statistical measure

We developed our data analysis based on the statistics of the quantity yi, the time av-

eraged relative clone sizes for those clones exhibiting z absences across their longitudinal

samples. While reasonable parameter estimates were obtained from fitting to data, we also

considered alternative objective functions. Specifically, we looked at the standard deviation

σi =
√

1
J

∑J
j=1(fi(tj)− yi)2 quantifying the temporal fluctuations of the relative sizes of

each clone i. The way we construct an alternative objective function is similar to the way we

constructed Yz. Recall for Yz, we calculated the average abundance across only those clones

with the same zi = z absences across time. However, unlike zi which takes a finite set of

discrete values {1, 2, ..., J − 1}, σi is a continuous variable so we have to artificially bin

their values. Instead, we bin clones with similar yi and study the average of their associated

σi’s. Since the distribution yi is non-linear with a long tail, we evaluated ln yi to obtain the

near-linear distribution shown in Figure 3.15(a) and sorted ln yi into equal-width bins and

calculated the average of the associated σi’s. Dividing the values of ln yi into bins labeled

by k, we compute

Uk =

∑

i σi1(clone i ∈ bin k)
∑

i 1(clone i ∈ bin k)
(3.40)

in analogy with the definition of Yz. The objective function can be straightforwardly defined

as

MSEσ(θmodel) =
∑

k

(Uk(θmodel)− Ûk)
2. (3.41)

It is also unclear how to set upper and lower bounds on the range of yi for comparison (in

contrast to the natural bound on 1 ≤ z ≤ J − 1) because an unconstrained set of clones will

be sensitive to the underlying hi distribution (an undesirable property). In Figure 3.15(b)

we fit the data from animal RQ5427 using MSEσ and find L∗
e ≈ 24.4, consistent with our

previous estimate using Yz.

While it is also possible to choose σi as a measure of clone population fluctuations,

we list several advantages of ẑi over σi for the current dataset. Note that the number of

disappearances zi of each individual clone are defined on a finite set of integers (unlike the

continuously measured σi), making it easier to bin clones with the same z values. Different
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(a) (b)

(c) ���

Figure 3.15: Alternative statistical measures of clonal abundances

Statistics of the two alternative fluctuation measures and their fitting results. Each dot represents

a clone. (a) Log standard deviation vs log average abundances. Clones are near-linearly

distributed in the log average abundance space. (b) Objective function MSEσ vs. Le. Clones of

similar yi are binned and their averaged σi were used to compute Uk. (c) Autocorrelations Ri vs.

log of average abundances ui. There is no clear pattern in the distribution of Ri’s. (d) MSER vs.

Le. This objective function cannot resolve the LSE L∗
e .

clones i will exhibit different time-averaged abundances yi, but may have the same value

of zi. As shown in Figure 3.4, the larger ẑi is, the smaller the corresponding ln ŷi tends to

be. The robust correlation between zi and yi encodes the level of fluctuations for a clone

of certain size. For a given yi, the larger zi, the more “bursty” the dynamics, implying a

smaller number of tagged HSC differentiations per unit time (a smaller A+
ss).

Another advantage of using zi statistics emerges when fitting model results to the pattern
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of the measured data in Figure 3.4. Average sizes yi (and the underlying hi) associated with

clones having 1 ≤ z ≤ 7 all contain at least one absence. This constraint naturally controls

the upper and lower bounds of hi in a particular z bin (1 ≤ z ≤ 7), based on the burstiness of

the model. Exact knowledge of the configuration {hi} is not required for fitting these yi data.

Thus, dividing clones into z bins provides us with a natural way to exclude unconstrained

clones sizes. In other words, the theoretical values of yi (and the underlying hi) associated

with bin zi = 0 can be arbitrarily and unreasonably large and such a possibility should be

excluded. Similarly, all yi below a threshold size generate zi = J (clones that never appeared

in the sampled blood) and does not provide any statistical power. This advantage of using zi

can also be confirmed by visual inspection of Figure 3.9(b). Several very large clones do not

follow the general statistical pattern and show extremely large variances. Without manually

filtering out these clones, our fitting in Figure 3.15(b) results in a larger L∗
e = 24.4 than the

L∗
e = 23.4 obtained earlier using Yz statistics.

Finally, another option for comparing model with data is to use correlation functions. In

this approach, the sampling gap ∆tj varies between 5−11 months so the usual autocorrelation

function with equal time gaps cannot be rigorously defined. We use the one-sample-gap

autocorrelation function

Ri =
1

(J − 1)σ2
i

J−1
∑

j=1

(fi(tj)− yi)(fi(tj+1)− yi), (3.42)

and bin values of ln yi in analogy to Eq. (3.40) to define

Wk =

∑

iRi1(clone i ∈ bin k)
∑

i 1(clone i ∈ bin k)
(3.43)

and construct an autocorrelation-based objective function

MSER(θmodel) =
∑

k

(Wk(θmodel)− Ŵk)
2. (3.44)

Since the inter-sample intervals ∆tj are larger than a typical burst size ∆τb ≈ 32 days, so

cells in different samples likely originate from different HSC differentiation events. Thus,

the fluctuations of clone sizes are uncorrelated from sample to sample, as shown in Figure

3.15(c). The values of Ri are randomly distributed between -1 and 1, and centered about the

58



line R = 1
2−J , corresponding to the majority of clones that have zi = J − 1 (only 1 non-zero

sample). Data fitting using Ri and MSER is ill-conditioned and cannot resolve L∗
e , as shown

in Figure 3.15(d).

3.6 Extended studies

3.6.1 Simulating clone samples under different time gaps

One of the major constraint of taking blood samples from primates is that the frequency

(or time gap) of sampling is usually low (or large) for ethical and financial reasons. It

is interesting to get a sense of how such gap actually affects the sampled data by taking

advantage of computer simulations on which we can tune the gap arbitrarily small. We

simulated one realization of mi(t) in our optimized model (Le = 23.4, λ = 0.99) and saved

this dataset. We then take samples fi(tj) of all clones from the saved data. This process

is repeated for four times, each with a different sampling gap of 10 month, 1 month (the

typical time scale for a “burst”), 10 days, and 1 day (the typical lifespan for a granulocyte).

The results are plotted in Figure 3.16.

We observe that as sampling gap decreases, the observed level of fluctuations increases.

So indeed, rich dynamics may be hidden between infrequent samples. Nevertheless, this

uncertainly does not bring systematical bias to our fitting results since we use the same time

gaps as in the experiment. Moreover, as shown by Figure 3.7(a), our proposed statistics Yz

is able to capture the subtle level of clonal fluctuation (which is controlled by Le) emerging

on that specific scale of sampling gap. As shown by Figure 3.8, simulated data generated

under a different Le 6= L∗
e would not make a good match to the experimental data.

3.6.2 Reconstructing {hi}

In our model, the dynamics of any clone may be approximately summarized by

fi(t) ∼ F(hi(t)). (3.45)
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(a) (b)

(c) ���

Figure 3.16: Simulated samples under different sampling gaps

In the optimized model (Le = 23.4, λ = 0.99), we simulated one realization of mi(t) and sampled

it with sampling gaps 10 month (a), 1 month (b), 10 days (c), and 1 day (d).

This is approximate since fi(t) is contributed by the stem cell activities in the time period

t − τb ≤ τ ≤ t where τb is the characteristic time lag between a stem cell’s differentiation

and the death of its progeny granulocytes (see Subsection 3.6.3 for more details). What we

investigated in the main body of this chapter was choosing the Yz statistic that is sensitive

to the bursty function F but is robust to the unknown {hi} configuration. In Figure 3.17,

we plot how the sampled abundance fi of a clone correlates to its fraction gi ≡ hi/H
+ in the

stem cell pool. Because of the stochasticity in F , gi corresponds to a distribution of fi. The

average of fi is equal to gi, simply because the clonal dynamics are neutral. The (relative)

variance, however, can be quite large, especially for small clones.

After obtaining the bursty dynamics F , a natural next step is to explore the possibility

60



(a) (b)

Figure 3.17: Correlations of stem cell clone fractions and sampled fractions

Simulated statistics of (a) fi and (b) fi/gi. We have set Le = 24. The range 0 < g . 0.1 is set to

be constant throughout the simulation. For each of the 100 values of fi a simulation of the full

model is performed and eight sampled fi(tj) are taken, from which we plot the mean fi (solid

line) and standard deviations (error bars).

of reconstructing {hi} from blood samples. For this purpose, we define the fraction of clones

with average abundance f as the “count of average” (COA)

COA(f) =
1

Cs

Cs
∑

i=1

1

(

1

J

J
∑

j=1

fi(tj), f

)

. (3.46)

By fixing a certain Le (or A
+) and adjusting λ, we can fit the COA(f) from our model with

that obtained from data. The fraction of all clones at each time point that have abundance

f (“average of count”, or AOC), defined by

AOC(f) ≡ 1

J

J
∑

j=1

[

1

Cs

Cs
∑

i=1

1 (fi(tj), f)

]

, (3.47)

was previously considered by [GKC15]. Compared to COA, AOC does not track individual

clones across time since it aggregates the counts at each time point, allowing individual

clones to exchange their contributions. Previously, AOC was found to fit well by assuming a

homogeneous-size stem cell pool hi ≡ 1 (i.e. setting λ = 0 in our model) [GKC15]. This result

suggests that fitting AOC does not require knowledge of {hi} but only requires adjusting the

downstream dynamical parameters. In comparison, fitting COA requires tuning both A+
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and λ. Although it is easier to fit, AOC(f) cannot distinguish individual clones as it does

not encode clone identity information across time samples. For investigating the persistence

in time of clone sizes that are determined by gi and encoded in fi(tj), COA(f) should be a

more suitable metric for our system even though constrains the dynamics of each individual

clone. Such persistence of clone sizes fi(tj) over time encodes the information of the true

distribution of HSC clone sizes gi. We expect that AOC is less sensitive to λ, the controlling

factor of the gi distribution, than COA, which is confirmed by Figure 3.18. On the other

hand, AOC is more sensitive to A+, implying that the non-uniform distribution of AOC

emerges as a result of the stochasticity in the HSC differentiation and subsequent processes.

The magnitude of A+ controls the distribution of AOC and is insensitive to the distribution

of gi, which is consistent to the analysis in the previous study [GKC15]. The easier fitting of

AOC relative to COA, specifically for the long term experiment on animal 2RC003, indicates

that a slow evolution of the clone abundance distribution of the HSC pool.

(a) (b)

Figure 3.18: Different statistical features encoded in AOC and COA

The dashed and dotted curves represent simulations with λ = 0 and λ = 0.99, respectively. The

red curve is associated with A+ = 3 while the black curve was generated using A+ = 17. (a)

Simulated COAs are more sensitive to λ than to A+. (b) AOC derived from simulations are found

to be sensitive to changes in A+, but not to changes in λ.
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3.6.3 De-convolving the multiplicative noise

In subsection 3.6.2, we talked about the difficulty of modeling the clonal dynamics which

includes the hidden {hi} configuration and the bursty dynamics F . Yet another confounding

source of the problem is the fluctuations of {hi} over time. The observed clonal fluctuations

are contributed by stochasticity in three consecutive stages:

Stem cell clone fluctuations + Progenitor/mature cell bursty dynamics + Sampling effect.

This is the so-called “multiplicative noise” problem, where the level of fluctuations of the

next stage depends on the state of the current stage. For example, the larger mi is, the less

relative variance we would expect to see in si over samples. But since mi itself is fluctuating

in time, it is difficult to determine how much of the observed variance is contributed by the

sampling effect. The way hi affects mi is similar.

Besides the difficulty of de-convolving the observed variances, there is no analytic function

for measuring noise induced by the bursty dynamics, unlike sampling noise which is relatively

easy to model. In the main text, we simplify the problem by ignoring the fluctuations of {hi}
and focusing on the bursty dynamics. This inevitably exaggerates the estimate for L∗

e , which

can be severe for fitting the murine data since mice HSCs are speculated to turnover much

faster than those of primates [CBG11]. Figure 3.19 shows how the fluctuations of hi may

contribute even more to the observed variance than the bursty dynamics and the sampling

effect for clone i. The red solid curve is a hypothetical realization of the relative abundance

gi between samples j and j + 1. The variability simply due to the bursty dynamics and

sampling is described by a sharper distribution (black curve) while the experimental variation

is described by the broader, red distribution. For large clones, this suggests stochastic

fluctuations in hi contribute to most of the variance between fi(tj) and fi(tj+1).

To model fluctuation of HSCs, a major difficulty is still that the distribution of {hi} after

the initial phase of fast HSC self-renewal is unknown. To bypass this difficulty, we again

study statistical patterns that emerges from the observed data regardless of the underlying

{hi}. This time, we pair a clone’s sampled abundances in consecutive samples to study

P (fi(tj+1)|fi(tj)), (3.48)
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Figure 3.19: Evolving stem cell clones may induce large variances

Thick solid red line describes the trajectory of a stem cell clone’s fraction gi(t) = hi/H
+ over

time. Thin solid red line denotes the probability distribution of gi(tj+1) given a specific gi(tj).

Dashed red line denotes possible trajectories of the stem cell clone’s fraction before tj and after

tj+1. The narrower black distribution of the sampled fi(tj) arises from variation due to bursty

dynamics and sampling.

the probability distribution of fi(tj+1) given fi(tj). An immediate advantage of using this

statistics instead of collecting clone-wise variables (yi, σi, and zi) is that more data points

can be obtained (Cs × (J − 1) compared to Cs before). .

Another advantage emerging from considering this statistic is that one can now model

the change of {hi} across samples. Consider the following inference/derivation procedure

that maps fi(tj) to a distribution of fi(tj+1)

fi(tj)
1○−−→ hi(tj −∆τb)

2○−−→ hi(tj+1 −∆τb)
3○−−→ fi(tj+1). (3.49)

Transition 1○ denotes reconstructing hi(tj −∆τb) from fi(tj). This is possible (but difficult)

because the observed fi(tj) comes essentially from the cumulative activities of stem cells in

the same clone during the time period (tj −∆τb, tj). Given hi(tj −∆τb), one can calculate

the probability of observing a specific trajectory hi(tj − ∆τb < t < tj), which determines

the Poissonian rate of stem cell differentiations during that period. These differentiations
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generate progenitor and mature cell bursts successively in time, which stack up at time tj to

determine m(tj) and thus s(tj). The full probability reads

P (hi(tj −∆τb)) ·
∑

{hi(t) trajectories}
P (hi(t) trajectory|hi(tj −∆τb))

·
∑

mi(tj )

P (mi(tj)|hi(t) trajectory) · P (fi(tj)|mi(tj)). (3.50)

To realistically approximate this probability, we assume that hi does not change over the

period ∆τb ≈ 1 month. Note that it is NOT assuming that hi does not change over ∆τj =

5 − 11 months, the gap between two consecutive samples, thus imposing a less stringent

constraint to the model. Now use Bayes’ rule

P (hi(tj)|fi(tj)) · P (fi(tj)) = P (fi(tj)|hi(tj)) · P (hi(tj)) (3.51)

where P (fi(tj)) = 1 and P (fi(tj)|hi(tj)) comes from the bursty dynamics (controlled by Le).

The prior P (hi(tj)) is a geometric distribution with unknown parameter λ.

Step 2○ is the random walk of hi from time tj to tj+1 with rate µh. The relative persistence

hi is the only reason why fi(tj+1) correlates with fi(tj), because NO granulocyte/progenitor

that appears in/contributes to the j-th sample will still appear in/contribute to the (j+1)-th

sample, thanks to their short lifespans. Step 3○ is the usual bursty dynamics.

Overall, to simulate Eq. (3.49), we can specify a set of key parameters θ = {µh, λ, Le}.
Given θ and any desired fi(tj), we can construct a distribution of P (hi(tj)|fi(tj)) according to
Eq. (3.51). This distribution will then be employed to generate a distribution of P (hi(tj+1),

which is then used to simulate a distribution of fi(tj+1) with the same Le. We can compare

this simulated distribution to the experiment and find an optimal θ∗ by a grid search. The

range of fi(tj) will be chosen to make sure that the experimentally observed abundances

f̂i(tj) are fully covered.

3.6.4 Tracking the long-term evolution of HSC clones

Tracking the change of the {hi} configuration is one of the primary goals of this study. In

the main text, we considered intensive HSC self-renewal in the short term and assumed
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static HSC pool in the long term as a “baseline” model. Based on the results of the baseline

model, we are now in a position to investigate the (slow) birth-death process as well as other

random or deterministic mechanisms that may affect HSC clone sizes in homeostasis, such

as telomere shortening (HSC “aging” [SRM11]), HSC dormancy and reactivation [WLO08,

WLT09,TEW10], and changes of lineage bias in the hematopoietic output [KKP14], etc.

Our first explorative strategy is to identify “outlier” clones that significantly deviate

from our baseline model. As shown in Figure 3.9, projecting time series data of clones

onto the average-standard deviation space makes it easy to identify clones that have much

higher/lower level of fluctuations than what would be expected from our optimally fitted

model. We pick four of these outlier clones that have large yi (red squares in Figure 3.20(a))

and plot their abundance data in all samples (Figure 3.20(b)). These clones show a quali-

tative trend to expand their sizes over time (except for the last sample). To compare them

with “normal” clones, we pick five “normal” ones (blue circles in Figure 3.20(a)) that have

comparably large yi and plot their their abundance data (Figure 3.20(c)), which do not show

an obvious trend to increase or decrease.

(a) (b) (c)

Figure 3.20: Identifying “outlier” clones

Four “outlier” clones (red circles) and five “normal” clones (blue rectangle) are identified from the

scatter plots (a). Abundances of the outlier clones (b) and the chosen normal clones (c) in the

samples.

According to our model, such long-term clone size expansion implies expansion of their

corresponding stem cell populations, which suggests non-neutral dynamics of HSCs. How-

ever, since the total number of samples is small, it is difficult to study each individual outlier
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clones. Before more sample data become available, our analysis is still performing statistical

analysis on as many clones’ data as possible. In subsection 3.6.3, we have considered the

correlation between consecutive samples for each clone. In order to further extract the long-

term trend of clonal dynamics, we further study the inter-sample statistics of clones between

non-consecutive samples. If the HSC pool changes considerably over time, such statistics

will correlate with the length tk − tj of the time interval between any two samples. Here

tj and tk are not necessarily times of consecutive samples. Figure 3.21(a) shows the means

and standard deviations of the distribution P (tk|tj) between two observed abundances of

the same clone measured at different times tj and tk. Note that different pairs of sampling

times can have the same gap; for example, both (tj = 8, tk = 17) and (tj = 17, tk = 26)

correspond to the same interval of 9 months. For similar gaps (e.g. 6 months and 7 months),

we group them into the same gap bin. In our dataset for animal RQ5427, tk− tj ranges from
6− 7 months to 59 months, depending on tj and tk. We also bin clones of similar sizes fi(tj)

together and study the statistics of the corresponding fi(tk) values. The rationale relies on

the neutral assumption that clones of the similar sizes behave similarly over a similar amount

of time.

Figure 3.21(a) shows that averages of fi(tk) calculated within different sample gaps dis-

tribute around and are generally close to fi(tj). This pattern implies neutral clone dynamics

and clone size persistencies. Deviation of fi(tk) from fi(tj) generally increases as the sam-

ple gap increases. A “deterministic” evolution pattern of clones is clearest inside the bin

fi(tj) ≈ 0.07: Averages of fi(tk) calculated under 24 ∼ 25 months center around fi(tj).

There is then an obvious rise of fi(tk) averages during months 31 ∼ 42, which is followed

by an apparent drop at months 31 ∼ 59, suggesting a possible “ballistic” change of HSC

clone sizes over time. In the largest bin at fi(tj) ≈ 0.11, fi(tk) averages calculated within all

sample gaps fall under fi(tj). The phenomenon suggests that clone sizes only temporarily

reach such large values and would very likely drop to a lower value in later samples. Dy-

namical pattern in the bin fi(tj) ≈ 0.05 seems random. Clones all fall under fi(tk) in the

bin fi(tj) ≈ 0.03. In both bins, significant drops are observed at months 48 ∼ 59. For

bins at fi(tj) < 0.02, dynamical patterns tend to be more noisy. Overall, the changes of
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Figure 3.21: Statistics of fi(tk) given fi(tj) from the experimental data

Different sample gaps tk − tj were considered. Because the values of fi(tj) are sparse and the

relation between fi(tk) and fi(tj) is stochastic, we discretize fi(tj) values into bins and study the

distribution of the corresponding fi(tk) values. The bin sizes change adaptively with fi(tj) values,

as there are more fi(tj) data points that are close to 0 (small) than close to 0.14 (large). We

calculated and plotted the average and standard deviation of fi(tk) values in each bin as shown

above. The black dashed line denotes fi(tj) = fi(tk).

HSC sizes between neighboring samples (6 ∼ 11 month gap) are small and neutral. Possible

deterministic mechanisms that induce permanent change (in the HSC pool), if exists, has a

characteristic timescale 30 ∼ 60 months. Such deterministic mechanisms, if working on a

similar time scale as the random birth and death process, cannot be resolved in the current

experimental data set. In Figure 3.22, we plot simulated mi(t) (solid curves) from a neutral

model that includes random birth and death (a) or telomere-length-controlled HSC aging (b)

of hi(t) (dashed curve). Before the ultimate extinction of hi(t), there is no qualitative differ-

ence in the pattern of mi(t) comparing to that in our baseline model (static hi). However,

such ultimate extinction is not observed from the current dataset.
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Figure 3.22: Bursty dynamics of mi(t) under evolving hi(t)

Two types of mechanisms of the stem cell evolution are imposed: hi (dotted line) changes

randomly in time (a) or hi “ages” (with maximally 60 rounds of self-renewal) after each

self-renewal and differentiation (b).

3.6.5 Other datasets

Recently, clonal data from another HSPC tracking experiment (Dunbar’s group) on rhesus

macaques have become available [KEW17]. Instead of using the integration site information

of lentivirus (Chen’s group), oligonucleotide barcodes were used to identify various clones.

Such barcodes contain 6-base pair library ID followed by a 35-base pair region of highly

diverse combinations of base pairs. HSPCs from four macaques were tagged and cell data

from various clones were sampled for 10-20 times for up to 49 months. We plot the total

numbers of appearing granulocyte clones in each sample vs. the months at which the samples

were taken in both datasets in Figure 3.23. Though the lengths of tracking are generally

shorter in this dataset, sampling is more frequent (1− 8 months vs 6− 11 months), sample

sizes are generally larger (about 4×106 vs 103−104), and more clones are tracked (3000−5000

vs 500− 1200).

We check the average-standard deviation pattern of the dataset in Figure 3.24. The
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(a) (b)

Figure 3.23: Numbers of detected clones in 8 rhesus macaques

sampled clones (red dots) are distributed in a range of smaller average abundances (x-axis)

than those from Chen’s group (blue dots), probably because more clones are tracked (so the

average fraction of each clone was “suppressed” by normalization). Also, sampling-alone-

induced fluctuations are much smaller (green triangles) , a direct outcome of the much larger

sample sizes. There is still a gap between fluctuations induced by sampling alone and those

observed from the experimental data.

Figure 3.24: Averages and standard deviations of clonal abundances in animal ZH33.

Data of ZH33 from the Dunbar group (red dots), RQ5427 from Chen’s group (blue dots), and

simulations from the null hypothesis model of “sampling alone” (green triangles) based on

sampling parameters from Dunbar’s group.
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Another feature of the dataset is that cells of various types or lineages (e.g. granulo-

cytes, monocytes, T cells) were separately sequenced, which allows an additional aspect of

hematopoiesis to be investigated. It was observed [KEW17] that the granulocyte (Gran)

lineage shows a high correlation with the Monocyte (Mono) lineage, validating the common

knowledge that both belong to the myeloid lineage. Monos are also ideal objects to study

since they also have relative shorter lifespan in circulation and do not proliferate in pe-

riphery, thus capable of indicating recent activities of hematopoietic stem cells. Monocytes

have three subgroups by phenotype: classical, non-classical, and intermediate, where the

classical group accounts for 80-90% of peripheral blood monocytes [BMH17]. Using in vivo

human deuterium labeling, it was shown that the average waiting time to release post-mitotic

monocytes from bone marrow is 1.6 days and that of circulation of about 1 day [PZF17]. In

peripheral blood, Grans are around 15− 20 folds more than Monos [CQD09].

The positive correlation between Grans and Monos was quantitatively modeled by em-

ploying simple multi-compartment birth-death-migration process [XKG16], which however

only focus on the scale-free correlation measure between different lineages, which is easier to

fit. However, the observed averages and covariances, which are scale-dependent quantities,

require a more detailed model to account for. Our progenitor aging model has been shown

to capture the scale-dependent averages and variances quite well. We can push further our

results by modeling the covariances and with the inclusion of the Monos data.

In our previous model, each burst of progenitor cells is constrained to the granulocyte

lineage. However, since blood cells of various types share common ancestor at some stage

of the progenitor differentiation (at least, they share the same HSC), different lineages have

to “branch out” at some point of the progenitor proliferation. Thus our granulocyte burst

ignores “byproduct cells” of other types, whose effect can be subsumed into progenitor cell

death. To include Monos, it is important to find the “branching point” of the myeloid lineage

after which progenitor cells commit to either Grans or Monos. Such tree-like structure is

naturally formulated by our progenitor aging model, which will be shown in subsection 3.6.6.

Two extremal cases are shown by Figure 3.25, where the branching point is set at ℓb = 0

(a) and ℓb = L (b). In the first case, a generation-0 progenitor cell immediately needs
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to decide which lineage it would go, i.e. Grans or Monos. The subsequent expansion of

progenitor cells would only include either one of the lineages. We expect negative correlation

between the cell counts of the two lineages. In the second case, a progenitor cell would not

make a decision until the last generation L, so all cells previous generations are common

progenitors for both lineages. We would instead expect positive correlation.

In real data, we expect such pattern to be clear only among small clones. For large

clones, on the other hand, the correlation should always be close to 1 since the total number

of HSC differentiation is so high that cell bursts overlap. Data from small clones, however,

would be severely corrupted by sampling errors. We plot the experimental data in Figure

3.26. Observation confirms that large clones tend to have positive correlation between their

Gran and Mono outputs. As the average abundance drops, correlations start to spread out

among (0, 1). One can expect sampling effect to play a role in corrupting the pattern. The

challenge is again to extract model-induced correlation information from sampling noise.

Grans

Mono

(a)

(b)

days

Figure 3.25: Modeling correlations between Gran and Mono bursts

Two patterns of bursty dynamics of granulocytes and monocytes.
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Figure 3.26: Correlations of granulocytes and monocytes in animal ZH33

Scatter plot of granulocyte clones in the average-correlation space for rhesus macaque ZH33 from

Dunbar’s group

3.6.6 Lineage tree of myeloid progenitor cells

An earlier statistical work proposed several simple “lineage tree” structures that specify how

cells of various lineages are derived from a stem cell [XKG16]. However, progenitor “aging”

was not involved, but cells from different compartments undergo random homogeneous birth-

death-migration processes. Given an initial stem/progenitor cell, all progenies’ averages,

variances and covariances were calculated through the probability generating function (PGF)

method. In particular, the scale-free correlations were extracted to compare experiment and

simulations. The problem was formulated by the probability generating function of the

system at any state {nℓ} (0 ≤ ℓ ≤ L, where L+1 is the total number of cell types), starting

from a type-i cell,

Fi(z; t) =

∞
∑

n0=0

...

∞
∑

nL=0

Pi(n; t)z
n1
1 ...z

nL

L . (3.52)

73



Denote Ai as the generating function for the dynamics of the ith type cell. For example, in

the modeled plotted in Figure 3.27 which contains L = 5 types of cells, one obtains

A0[z] = µ0 + ν01z1 + λ0z
2
0 ,

A1[z] = µ1 + ν12z2 + ν13z3 + λ1z
2
1 , A2[z] = µ2 + ν24z4 + λ2z

2
2 ,

A3[z] = µ3 + ν35z5 + λ3z
2
3 , A4[z] = µ4, A5[z] = µ5.

Another example is plotted in Figure 3.28, where lineage branching is naturally integrated

Figure 3.27: Branching model for simple Gran and Mono dynamics

Red ball (i = 0) is hematopoietic stem cell (HSC). Light blue ball (i = 1) is multi-potent

progenitor (MPP) for Gran and Mono. Mid blue ball (i = 2) is uni-potent progenitor (UPP) for

Gran. Dark blue ball (i = 4) is differentiated Gran. Mid green ball (i = 3) is UPP for Mono.

Dark green ball (i = 5) is differentiated Mono.

into a generation-limited progenitor cell model. There are L0 generations of myeloid pro-

genitors, L1 generations of Gran progenitors, and L2 generations of Mono progenitors. One

obtains

A1[z] = µ0 + λ0z
2
1 , ..., AL0−1[z] = µ0 + λL0−1z

2
L,

AL0 [z] = µ0 + ν01zL0+1 + ν02zL0+L1+1,

AL0+1[z] = µ1 + λ1z
2
L0+2, ..., AL0+L1 [z] = µ1 + ω1,

AL0+L1+1[z] = µ2 + λ2z
2
L0+L1+2, ..., AL0+L1+L2 [z] = µ2 + ω2.
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In this model, the stochastic self-renewal of progenitors is replaced by a limited number of

Figure 3.28: Branching model combined with progenitor cell aging

Red ball is HSC. Light blue ball are common progenitors for Grans and Monos (ℓ = 1, 2, 3, ..., L0).

The blue ball branch is the Gran lineage (ℓ = L0 + 1, L0 + 2, L0 + 3, ..., L0 + L1). The green ball

branch is the Mono lineage (ℓ = L0 + L1 + 1, L0 + L1 + 2, L0 + L1 + 3, ..., L0 + L1 + L2).

cell divisions. More “bursty” dynamics are expected in this latter model.

To solve the time evolution of Eq. (3.52), further define ui(z) = Ai[z] − Ai[1]z
i, which

describes the dynamics of how all other types of cells affect the ith type. One obtains [XKG16]

∂Fi(z; t)

∂t
= ui(F1(z; t), ..., FL(z; t)). (3.53)

Based on this formula, and the definition of Fi(z; t), one obtains the average number of type

k and covariance of type k, ℓ cells, given one type-0 cell at time 0, as

Mk|0 =
∂

∂zk
F0(z; t)

∣

∣

∣

∣

z=1

, Ukℓ|0 =
∂2F0

∂zk∂zℓ

∣

∣

∣

∣

z=1

. (3.54)

Evolution equations for the average of and the covariance between various lineage cell num-
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bers can then be calculated:

∂Mj|i
∂t

=
∂Fi
∂t∂zj

∣

∣

∣

∣

z=1

=
∑

k

∂ui
∂zk

∂Fk
∂zj

∣

∣

∣

∣

z=1

=
∑

k

∂ui
∂zk

Mj|k, (3.55)

∂Ujk|i
∂t

=
∂3Fi

∂t∂zj∂zk

∣

∣

∣

∣

z=1

=
∑

m=1

(

∂ui
∂Fm

∂2Fm
∂zj∂zk

)

+
∑

m,n=1

(

∂2ui
∂Fm∂Fn

∂Fm
∂zj

∂Fn
∂zk

)
∣

∣

∣

∣

z=1

.

(3.56)
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CHAPTER 4

Density-dependence-induced phase transition in clone

abundances

4.1 Introduction

During our study of the multi-compartment clonal dynamics in Chapter 3, we studied the

multi-clonal dynamics in the stem cell pool under a birth-death process with density- depen-

dency (or carrying capacity). This model is a typical high-dimensional model if the size of

each clone constitutes a dimension. High-dimensional stochastic models are important across

many fields of science and arise often in biological and medical contexts, including immunol-

ogy [ZES13], ecology [MEG07], cellular barcoding experiments [GKC15], etc. For example,

applications of DNA-tagging technology allow in vivo tracking of multiple hematopoietic

clones, each of which was derived from a unique hematopoietic stem cell that carries a

unique DNA tag [ZES13,KKP14, SRC14,BPS16,KEW17], generating clonal-tracking data

of very high dimensions. Here the number of cells ni carrying the ith label (or the size of

the ith clone) represents the ith dimension. Multispecies ecological communities are another

example of high-dimensional systems. For example, if the compartment of interest is an is-

land, then ni quantifies the number of animals of species i on the island. T cells in the jawed

vertebrates can also classified into multiple subpopulations, each corresponding to different

T cell receptor subtypes and produced by the thymus. Here, ni denotes the number of T

cells in an organism that carry the ith receptor. In this setting the huge number of different

T cell receptors (1 ≤ i ≤ Ω, Ω ∼ 106 − 108) present in an organism allows its adaptive

immune system to recognize and respond to a wide range of unknown antigens that it might

encounter.
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The simplest single-compartment mathematical structure that is common to all the mul-

tispecies systems mentioned above is the birth-death-immigration (BDI) processes shown in

Figure 4.1 The source of immigration into the system is a fixed population of H different

C=9N=30,
c =70

H
=

16

Nµ(   )

r (   )N

α O

Figure 4.1: Birth-death-immigration model

A simple H-species birth-death-immigration process in which an “external mainland” always

contains H individuals, each of a unique species. Each species immigrates into the system with

rate α but is immediately replaced on the mainland. All individuals in the system can proliferate

with rate r(N) and dies with rate µ(N), where N is the total population in the system. A specific

configuration with H = 16 and N = 30 is depicted. Here, C = 9 represents the number of

different clones that exist in the system.

individuals. After immigration into the system, the individuals can proliferate with rate

r(N) and die with rate µ(N), both possibly function of the total population N . In the

configuration shown in Figure 4.1, the number of individuals of each species is n1 = 7, n2 =

5, n3 = n4 = 4, n5 = 3, n6 = n7 = n8 = 2, n9 = 1, where we have defined clones i according

to decreasing population. In this work, we will interchangeably use the terms “clones” and

“species” that are distinguishable by “labels”, whether they distinguish different DNA tags,

T-cell receptor types, or species identities.
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Such high-dimensional stochastic systems are generally difficult to study because of the

“curse of dimensionality.” A description using the full probability distribution P (n) ≡
P ({n1, n2, ..., nH}), where H denotes the total number of labels, is unintuitive and typi-

cally computationally intractable. It also contains more information than necessary if we

consider only neutral clones and clone identity is not relevant.

Describing the system in terms of moments such as 〈ni〉 and 〈ninj〉 reduces the model com-

plexity and allows one to track the dynamics of specific clones [XKG16], but does not directly

capture the clone size distribution resulting from the relevant stochastic processes. Another

approach is to use single-quantity metrics such as species richness R ≡
∑∞

k=1

∑H
i=1 1(ni, k),

Simpson’s diversity, Shannon’s diversity, or the Gini index to describe and compare various

ecological communities. Here 1(x, y) is the identity function which takes value 1 when x = y

or 0 otherwise. Such diversity measures can be overly simplistic and can lead to differ-

ent conclusions depending on the diversity index used. Thus, a description of intermediate

complexity is desired.

In ecology, a commonly used measure is the species abundance distribution (SAD) that

counts the number of different species encountered in a community [MEG07]. In the language

of clonal dynamics, it is the count of the number of clones that are each represented by k

individuals as depicted in Figure 4.2 [GKC15]:

ck =

H
∑

i=1

1(ni, k), (4.1)

The clone or species count ck is a one-dimensional vector of numbers indexed by k = 0, 1, ...

and gives a more comprehensive picture of how the clone/species are distributed compared to

that of a single index. The clone count ck is also constrained by construction: By definition

we also have the normalization and

∞
∑

k=0

ck = H,

∞
∑

k=0

kck = N. (4.2)

Clone counts can be useful in describing numbers of rare or abundant clones especially when

clone identity is not important. Clone- or species-counts are widely applied to characterize

systems of various scales, including gene-barcoded, virally tagged, or TCR-decorated [JHH13,
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ZES13,QLC14,GKC15,DMW16] cellular clones, microbial populations [HWH03,HBJ06], and

ecological species [Hub01,MEG07,GT05].
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Figure 4.2: Clone count statistics

Definition of clone counts corresponding to the configuration in Figure 4.1. (a) In the cell-count

representation ni is the number of cells of clone i detected in a sample. (b) ck is the number of

different clones that are represented by exactly k cells in a sample. A given set {ni} uniquely

determines the corresponding ck ≡∑∞
i=1 1(ni, k). However, one cannot uniquely determine ni

from ck since clone identity information is lost when transforming from ni to ck.

A universally observed feature in empirical studies across all these fields is a “hollow curve

distribution” for ck, where few highly populous species and many low-population species

arise [MEG07]. Theoretical studies attempt to explain these observations by proposing

various physical models, including neutral models with constant immigration, birth, and

death rates [Mot32,FCW43,Ken48a], time-dependent birth and death [Ken48b], cell-wise and

clone-wise heterogeneities [DMW16], and intra-species carrying capacities [VBH05]. Many

of these studies neglect interactions or apply a mean-field approximation.

Although some theories considered competition for resources (such as T cell proliferation

competing for stimuli from self-peptides [LCH16, DMW16, EGC16]), resources themselves

were modeled as evolving variables of the system and explicit solutions exist only in very

simple cases. Other studies have considered intra-species carrying capacities that limit the

size of an individual clone. However, populations in each clone are assumed to evolve in-
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dependently of those in other clones. None of these previous studies have treated global

interactions that correlate population dynamics across all clones/species, a commonly con-

sidered factor in population dynamics [PQP08].

In this paper, we introduce a simple idea of transforming the problem of calculating the

qth moment of {ck} to the problem of solving a (q+1)-dimensional process described by the

population vector {n1, , n2, ..., nq, N
′}. This process can be further approximated by a

q-dimensional Moran model that imposes a fixed total population. We use this approach to

accurately calculate the 1st and 2nd moments of ck under functional forms of the carrying

capacity. We then exploit ideas from energy landscapes to identify the key parameters that

control a phase transition of the general multi-species BDI process and explain the failure of

previously used mean-field assumptions.

4.2 Classical formulation and mean-field assumption

Here, we develop dynamical model for the stochastic BDI process depicted in Figure 4.1. In

the language of clonally tracked stem cell differentiation, the probability of an stem cell that

carries any specific tag asymmetrically differentiating to produce a progenitor cell within

infinitesimal time dt is αdt + o(dt). We will assume that there is a fixed number H of

“source” or “founder” individuals The probability for any progenitor cell to divide into two

new identical progenitor cells (birth) within dt is rdt+ o(dt) and the probability of it dying

in dt is µdt+ o(dt).

We will further assume the particle dynamics are coupled in a clone-independent way,

leading to identical (but not independent) statistics of the populations of each clone. The

canonical implementation of such a “global” interaction is through a birth rate r(N) and/or

death rate µ(N) that depend only on the total population N ≡ ∑H
i=1 ni. Thus, the total

population N can be “decoupled” and completely described by its own master equation,

∂P (N, t)

∂t
= α[P (N − 1)− P (N)] + r(N) [(N − 1)P (N − 1)−NP (N)]

+µ(N) [(N + 1)P (N + 1)−NP (N)] ,
(4.3)

from which moments ofN can be computed. The higher-dimensional master equation obeyed
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by the full multispecies distribution P (n1, n2, . . . , nH ; t) is explicitly given in Subsection 4.7.1.

Let us denote the ensemble (not time) average of a quantity by 〈·〉. Thus, 〈ni(t)〉 ≡
∑

nj
niP ({nj}, t) represents the expected sizes of the ith clone. By using Eqs. (4.3) and

(4.35, we can show that the expected subpopulation 〈ni(t)〉 and total population 〈N(t)〉 for
the BDI process obeys

d〈ni〉
dt

= α+ 〈(r(N)− µ(N))ni〉,
d〈N〉
dt

= αH + 〈(r(N)− µ(N))N〉. (4.4)

In Subsection 4.7.2, we also explicitly derive the equation for 〈ck(t)〉 from the master equation

for P (c0, c1, c2, . . . ; t):

d〈ck〉
dt

= α(〈ck−1〉 − 〈ck〉) + 〈r(N) [(k − 1)ck−1 − kck]〉+ 〈µ(N) [(k + 1)ck+1 − kck]〉. (4.5)

This evolution equation indicates that immigration (at rate α) of a cell within a clone of

size ni = k increases its size by 1, thereby decreasing ck by 1 but increasing the number

of clones of size k + 1, ck+1, by 1. Cellular birth and death have similar effects, but their

corresponding rates are proportional to the clone size k (the number of cells in the clone).

In the rest of this paper we are interested in evaluating the steady-state values of 〈ck〉.

4.2.1 Constant rates

In the simplest scenario of constant birth and death rates, one can write [GKC15]

d〈ck〉
dt

= α(〈ck−1〉 − 〈ck〉) + r[(k − 1)〈ck−1〉 − k〈ck〉] + µ[(k + 1)〈ck+1〉 − k〈ck〉]. (4.6)

If r < µ, a stable steady state can be found:

〈c∗k≥1〉 =
αH

rk!

( r
µ
)k(1− r

µ
)α/r

α
r
+ k

k
∏

ℓ=1

(α

r
+ ℓ
)

, 〈c∗0〉 = H −
∞
∑

k=1

〈c∗k〉 = H

(

1− r

µ

)α/r

. (4.7)

4.2.2 Carrying capacity and mean-field approximation

Now, assume the birth and death rates depend on N such that r(N) decreases with N

and/or µ(N) increases with N . These forms for r(N) and µ(N) guarantee that ni and ck are
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bounded even if r(0) > µ(0). Terms of the form 〈r(N)ck〉 6= 〈r(N)〉〈ck〉 in Eq. (4.5) cannot be

factored because r(N) depends on ck through the stochastic variable N ≡
∑

ℓ ℓcℓ (Eq. 4.2).

Nonetheless, to make headway, a mean-field method is often invoked to simplify Eq. (4.4)

and Eq. (4.5). Upon fully factorizing interaction terms such as 〈r(N)ck〉 ≈ r(〈N〉)〈ck〉 and
〈r(N)N〉 ≈ r(〈N〉)〈N〉, we can approximate Eqs. (4.4) and (4.5) as

d〈N〉
dt

≈αH + 〈(r(〈N〉)− µ(〈N〉))〈N〉 ≡ f(〈N〉), (4.8)

d〈ck〉
dt

≈α(〈ck−1〉 − 〈ck〉) + r(〈N〉) [(k − 1)〈ck−1〉 − k〈ck〉]

+ µ(〈N〉) [(k + 1)〈ck+1〉 − k〈ck〉] . (4.9)

By first solving Eq. (4.8) we can input 〈N(t)〉 into Eq. (4.9) and explicitly solve for

〈ck(t)〉. The steady state of 〈ck〉 can be reached only after the steady state of 〈N〉 is reached
and r(〈N〉) and µ(〈N〉) approach constant values. The steady-state solution of Eq. 4.8

is defined by f(〈N∗〉) = 0. The requirement that 〈N∗〉 > 0 is equivalent to df
d〈N〉

∣

∣

∣

∣

〈N∗〉
=

(

dr
d〈N〉 −

dµ
d〈N〉

)

∣

∣

∣

∣

〈N∗〉
< 0.

We show in Subsection 4.7.3 that this deterministic description breaks down after an

exponentially long time as the immigration rate α is sufficiently small. The reason is that

N = 0 becomes effectively an absorbing boundary in the full stochastic model. The 〈N∗〉 we
find from f(〈N∗〉) = 0 is actually a quasi-steady state (QSS) even though Eq. (4.8) yields a

stable deterministic equilibrium 〈N∗〉 for physically reasonable functions r(〈N〉) and µ(〈N〉).

Focusing on evaluating the QSS value of 〈c∗k〉 before the final extinction that occurs over

exponentially long times, we denote r(〈N∗〉) ≡ r∗ and µ(〈N∗〉) ≡ µ∗ as the rates of birth

and death at QSS. The QSS solution 〈c∗k〉 is similar in form to that in Eq. (4.7),

〈c∗k≥1〉 =
αH

r∗k!

( r
∗

µ∗
)k(1− r∗

µ∗
)α/r

∗

α
r∗

+ k

k
∏

ℓ=1

( α

r∗
+ ℓ
)

, 〈c∗0〉 = H −
∞
∑

k=1

〈c∗k〉 = H

(

1− r∗

µ∗

)α/r∗

.

(4.10)

Here, 〈c∗k〉 above corresponds to the expected QSS clone-count under the mean-field approx-

imation which we expect to be different from the exact solution.
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4.2.3 Failure of the mean-field approximation

To explicitly investigate the errors incurred under a mean-field assumption, we will be use a

concrete Logistic growth law for the total population defined by

r(N) = p

(

1− N

K

)

, µ(N) = µ, (4.11)

where p is the maximal birth rate and K is the carrying capacity parameter. The QSS

solution for the total population is

〈N∗〉 = K

2

(

1− µ

p

)

[

1 +

√

1 +
4αHp

(p− µ)2K

]

. (4.12)

In many examples, such as progenitor cell dynamics, K ≫ 1. To ensure large populations

〈N∗〉, p, µ, and p − µ must be comparable in magnitude. For example, we can have p =

2, µ = 1 but not p = 2, µ = 1.999999. We will focus on the parameter range αH ≪ pK, so

the population is mainly supported by birth rather than immigration.

We are now in a position to use 〈N∗〉 to determine r∗ and evaluate the mean-field approx-

imation for 〈c∗k〉 (Eq. (4.10)). In Figure 4.3 we compare numerically evaluated mean-field

solution 〈c∗k〉 with Monte-Carlo simulations of the underlying BDI process for various values

of α.

Clearly, for small α = 10−8 as in Figure 4.3(a), Eq. (4.10) fails to capture the peak arising

in 〈c∗k〉 near k = 〈N∗〉. In the singular limit α→ 0, the mean-feield solution 〈c∗k≥1〉 → 0 and

〈c∗0〉 → H but nonetheless by construction, satisfies
∑∞

k=1 k〈c∗k〉 → 〈N∗〉.

However, in the exact (simulated) 〈c∗k〉 the small peak at large size k ≈ 〈N∗〉 signals that
a single large clone has come to dominate the total population. The number of clones not in

the system is thus 〈c∗0〉 ≈ H−1. One clone, typically the first to have immigrated, has taken

over the system squeezing out all others that try to immigrate when the immigration rate α

is small. At higher immigration rates, the structure of the simulated 〈c∗k〉 is non-monotonic

with respect to α. When α is still relatively small as in (b), the simulated 〈c∗k〉 is dominated

by small clones but with a slow decay with size k. As immigration increases, larger clones do

not have the opportunity to establish and more intermediate-sized clones arise at the expense
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(a)

(c) (d)

(b)

Figure 4.3: Simulation and mean-field results under Logistic birth

Comparison of steady-state clone-count distributions from simulations (black dots) to the

mean-field model (dashed curves) c̄∗k using the logistic growth model of Eq. (4.11) and (a)

α = 10−8, (b) α = 0.1, (c) α = 10, and (d) α = 60. Other parameters used are

µ = 10, p = 20, K = 1600, H = 200. The mean-field approximation 〈c∗k〉 breaks down for small α

in (a). Also, note the log scale and the absence of simulations that capture the rare configurations

where k 6= 〈N∗〉 (a).

of very large clones but the simulated result 〈c∗k〉 remains monotonic. For even larger α, a

peak at size k ≪ 〈N∗〉 develops and even fewer large clones arise. All these larger-α cases

shown in Figure 4.3(b-d) are accurately described by the mean-field approximation for 〈c∗k〉.
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4.3 Proposed Model for 〈cq〉

The challenge in solving Eq. (4.5) lies in the non-separable terms 〈r(N)ck〉. Even in the

simple case of logistic growth where r(N) is linear, the 〈r(N)ck〉 terms include second-

moments 〈ckcl〉, which usually cannot be approximated by 〈ck〉〈cl〉. If one attempts to

solve Eq. (4.5) for the time-dependent or steady-state solution 〈c∗k〉, one encounters the so-

called “moment closure” problem, where the solution of the 1st moment 〈ck〉 depends on

2nd moments 〈ckcℓ〉, which in turn depends on 3rd moments, and so on. There is usually no

closed-form solution or easy approximation to such problems. In the rest of this section, we

develop an alternative approach.

4.3.1 Transformation of the problem

We recall the definition of the clone count ck and exploit the cell-count representation. By

using the definition in Eq. (4.1), one can easily show that (Subsection 4.7.4)

〈ck(t)〉 = HP (n1 = k; t), (4.13)

which is exact if the initial populations of all clones are identical n1(0) = n2(0) = . . . = nH(0).

This assumption does not affect the generality of our later conclusions at QSS as long as

different initial distributions ck(0) converge to a unique 〈c∗k〉. Thus, at QSS 〈c∗k〉 = HP (n1 =

k; t → ∞) always holds. Intuitively, the expected fraction of all clones that have size k is

the probability that any one clone is of size k.

Eq. (4.13) illustrates the indistinguishability among clones that will be quite useful.

We can heuristically write the master equation for the BDI process of a single clone with

population n1 as

dP (n1)

dt
= α[P (n1 − 1)− P (n1)] + r(N) [(n1 − 1)P (n1 − 1)− n1P (n1)]

+µ(N) [(n1 + 1)P (n1 + 1)− n1P (n1)]
(4.14)

where N(t) represents one trajectory of the random process N = n1 + n2 + . . .+ nH which

we might approximate using the deterministic solution to Eq. (4.4). Equation (4.14) has the

exact same form as the right-hand side of Eq. (4.9) for 〈ck〉. However, in the presence of other
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species or clones, it is immediately clear that Eq. (4.14) is not a complete description for

n1 since the variable N depends on the population of the 1st clone. Clonal “independence”

breaks down through the r(N) and µ(N) terms. All clones compete with each other for

the limited sources in the environment through regulating their shared birth rate. The full

model should be H-dimensional.

Eq. (4.13) is still exact (Subsection 4.7.4) since the clonal dynamics are neutral and

all clones start with the same initial size. One still needs to solve any individual clone’s

marginal probability distribution P (n1) given that all other clones can affect it. Formally,

this corresponds to first solving the full distribution P ({n1, n2, ..., nH}) before summing

over all other populations {n2, ..., nH}. Further consideration indicates that we do not

care about the detailed configuration of {n2, ..., nH}, but rather their combined effects on

n1. Therefore, we can lump species 2 through H into an effective “bath” clone whose size

is N ′ = n2 + ... + nH . This effective clone has birth rate r(N) ≡ r(n1 + N ′), death rate

µ(n1 +N ′), and immigration rate (H − 1)α. Eq. (4.14) is now coupled to a master equation

dP (N ′)

dt
=α(H − 1)[P (N ′ − 1)− P (N ′)] + r(N) [(N ′ − 1)P (N ′ − 1)−N ′P (N ′)]

+ µ(N) [(N ′ + 1)P (N ′ + 1)−N ′P (N ′)] . (4.15)

One usually combines Eqs. (4.14) and (4.15) together into a 2D master equation

∂P (n1, N
′)

∂t
=α[P (n1 − 1, N ′)− P (n1, N

′)]

+ r(N) [(n1 − 1)P (n1 − 1, N ′)− n1P (n1, N
′)]

+ µ(N) [(n1 + 1)P (n1 + 1, N ′)− n1P (n1, N
′)] +

α(H − 1)[P (n1, N
′ − 1)− P (n1, N

′)]

+ r(N) [(N ′ − 1)P (n1, N
′ − 1)−N ′P (n1, N

′)]

+ µ(N) [(N ′ + 1)P (n1, N
′ + 1)−N ′P (n1, N

′)] . (4.16)

This 2D problem can be approximated by a 1D problem when n1 ≪ N ′ and r(N) ≈ r(N ′).

The birth rate is regulated approximately by the “external” population decoupling it from

n1. Similarly, when n1 ≫ N ′, r(N) ≈ r(n1) and the birth rate is approximately independent
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of N ′. In either limit, the problem is approximately one-dimensional and can be modeled

using a 1D master equation P (n1) (Eq. (4.14) with r(N) ≡ r(N ′(t)) as an external force)

or P (N ′) (Eq. (4.3)) correspondingly. However, when n1 and N ′ are comparable in size,

one needs to evaluate the full 2D distribution P (n1, N
′) and marginalize over N ′ to obtain

P (n1) =
∑∞

N ′=0 P (n1, N
′) and finally

〈ck(t)〉 = HP (n1 = k; t) = H

∞
∑

N ′=0

P (n1 = k,N ′; t). (4.17)

This approach can be extended to higher dimensions to determine higher moments of

ck(t), which are important for characterizing the variability of clone size distributions. Co-

variances cov(ck, cℓ) ≡ 〈ckcℓ〉 − 〈ck〉〈cℓ〉, in particular, will illustrate the differences between

the solutions to the mean-field model (Eq. (4.10)) and the exact model (Eq. (4.5)). In

Subsection 4.7.4, we derive relationships between higher moments of ck and the cell count

distributions P (n1, n2, ...). Specifically, for the second moments,

〈ck(t)cℓ(t)〉 = H(H − 1)P (n1 = k, n2 = ℓ; t) + δk,ℓHP (n1 = k; t). (4.18)

4.3.2 Approximating P ({n1, ..., nq, N
′}) by a q-dimensional Moran model

We now try to solve for P (n1, N
′). Since this 2D master equation does not usually have

analytic solutions, we will show how to approximate P (n1, N
′) by a 1D two-species Moran

model [PQP08,CN15,CRM16,CN17,CM17] with n1 individuals of clone 1 and N
′ individuals

of clone 2. The 1D Moran model imposes n1 + N ′ ≡ N , the total population size, to be a

fixed value.

We will first fix the value of N to be the quasi-steady-state value of the original uncon-

strained BDI process N → N∗ := 〈N∗〉, at which the condition αH+r(N∗)N∗ = µ(N∗)N∗ is

satisfied. For example, under a logistic birth law (Eq. (4.11), the mean-field approximation

Eq. (4.12) yields an accurate value of N∗. At this value of N∗, the growth and death rates

take on specific values defined by r∗ := r(N∗), µ(N∗) := µ∗. In fact, to absolutely fix N∗

the stochastic dynamics are driven by completely coupled birth-death events. During each

event, one individual is randomly chosen to die and immediately replaced by a new one. This
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tethering of birth and death ensures that the total population N∗ is fixed. The total rate

of a tethered birth-death event is 1
2
(αH + r∗N∗ + µ∗N∗) = µ∗N∗, where the factor 1

2
com-

pensates for the fact that two birth-death events occur simultaneously during one tethered

event so on average the arrival rate of events has to be halved. Thus, µ∗N∗ is the intrinsic

rate of evolution in the Moran model. The master equation for the probability distribution

PM(n1; t|N∗) of the fixed-N∗ two-clone Moran model can be expressed as

∂PM(n1; t|N∗)

∂t
=ω12(n1 − 1|N∗)PM(n1 − 1|N∗) + ω21(n1 + 1|N∗)PM(n1 + 1|N∗)

− [ω12(n1|N∗) + ω21(n1|N∗)]PM(n1|N∗), (4.19)

where the functions ωji(n|N∗) denote the rate that a clone i individual is replaced by a clone

j individual in a Moran of fixed total population N∗

ω12(n|N∗) = n
(

1− n

N∗

)

r∗ +
(

1− n

N∗

)

α

= µ∗N∗
[

(1−m∗)
n

N∗

(

1− n

N∗

)

+m∗Q1

(

1− n

N∗

)]

,

ω21(n|N∗) = n
(

1− n

N∗

)

r∗ + (H − 1)
(

1− n

N∗

)

α

= µ∗N∗
[

(1−m∗)
n

N∗

(

1− n

N∗

)

+m∗(1−Q1)
(

1− n

N

)]

, (4.20)

where we have further defined

m∗ ≡ αH

µ∗N∗ , Q1 =
1

H
. (4.21)

Here, m∗ represents the relative total immigration rate and Q1 is the fixed fraction of clone

1 amongst those from on the “mainland.”

In these dynamics, it is clear that the probability of choosing an individual for re-

moval/death from clone 1 and clone 2 are n1/N
∗ and 1 − n1/N

∗, respectively. The newly

created individual has probability n1/N
∗ to be of clone 1 and 1 − n/N∗ to be of clone 2,

calculated from the state of the model prior to death. Thus, after one event, the population

of clone 1 may increase by 1 (if a clone 2 individual is chosen to die, and a clone 1 individual

is chosen to be born) or decrease by 1 (if a clone 1 individual is chosen to die, and a clone

2 individual is chosen to be born). The total rate is for one clone augmented by the per-cell
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immigration rate α, which is equal to the per-clone immigration rate since the cells initiating

immigration are unique (see Figure 4.1). The total immigration into the “bath” clone is thus

(H − 1)α.

To solve Eq. (4.19) in steady state, we use Eqs. (4.20) and invoke the detailed balance

condition ω12(n1 − 1|N∗)P ∗
M(n1 − 1|N∗) = ω21(n1|N∗)P ∗

M(n1|N∗) to obtain

P ∗
M(n1|N∗) = P ∗

M(0|N∗)
ω12(0|N∗)

ω21(n1|N∗)

n1−1
∏

ℓ=1

ω12(ℓ|N∗)

ω21(ℓ|N∗)
, P ∗

M(0|N∗) =

[

N
∑

n1=0

n1
∏

ℓ=1

ω12(ℓ− 1|N∗)

ω21(ℓ|N∗)

]−1

.

(4.22)

For general q-dimensional (q ≥ 2) Moran models that involve (q+1 ≥ 3) subpopulations,

closed form solutions are difficult to obtain. However, we can approximate these models

using a diffusion approximation that treats the clonal fractions xi = ni/N
∗ (1 ≤ i ≤ q)

as continuous variables. After Taylor-expanding q−dimensional discrete master equations

and assuming m∗ ≡ αH
µ∗N∗

≪ 1, a simple q−dimensional Fokker-Planck equation can be

derived [Kim64,BM07]

∂PM(x|N∗)

∂t
= µ∗N∗

[

− 1

N∗

q
∑

i=1

∂Ai(x)PM(x|N∗)

∂xi
+

1

(N∗)2

q
∑

i=1

q
∑

j=1

∂2Bij(x)PM(x|N∗)

∂xi∂xj

]

(4.23)

where

Ai(x) =

q
∑

j=1

m∗(Qi − xi), Bii(x) = xi(1− xi), Bij(x) = −xixj (i 6= j). (4.24)

For example, when q = 2 (three clones), we have Q1 = Q2 = 1
H
, Q3 = H−2

H
. We explicitly

show the derivations for the 1D and 2D Fokker-Planck equations in Subsection 4.7.5. The

exact QSS solution of the general q-dimensional diffusion model is known and follows the

Dirichlet distribution [BBM07]

P ∗
M(x|N∗) = Γ(2N∗m∗)

q
∏

i=1

x2N
∗m∗Qi−1

i

Γ(2N∗m∗Qi)
. (4.25)

4.3.3 Relaxing the hard population constraint of the Moran model

While the Moran model can be used to approximate P (n1, N
′), it includes an additional

hard constraint n1 + N ′ = N∗ that is not imposed in the original BDI model. In fact, n1
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itself can fluctuate above N∗. To relax this constraint and find an improved approximation

to the reduced QSS distribution P ∗({n1, n2, ..., nq}), we simply allow the system size of the

Moran process to vary and weight each QSS Moran process by the steady-state probability

distribution over the total population

P ∗(N) =

∏N
j=1

r(j−1)+αH
µ(j)

(

∑∞
N=0

∏N
ℓ=1

r(ℓ−1)+αH
µ(ℓ)

) , (4.26)

which is readily obtained from solving Eq. (4.3), the master equation for the total population

of the BDI process. We thus use a whole family of Moran models, each at a different value

of N , weighted by P ∗(N) to find a “convolved” QSS probability

P ∗({n1, n2, ..., nq}) =
∞
∑

N=1

P ∗
M ({n1, n2, ...nq+1}|N)P ∗(N). (4.27)

In the above summation the total population of the Moran models can vary around

N = {1, 2, ..., N∗ − 1, N∗, N∗ + 1, ...}. Different values of the system size will yield different

values of the rates ωji(n|N) according to Eq. (4.20). In 1D, according to Eq. (4.20), the ratio

ω12(ℓ|N)
ω21(ℓ|N)

varies with N according to

ω12(ℓ|N)

ω21(ℓ|N)
=

(1−m∗) ℓ
N

(

1− ℓ
N

)

+m∗Q1

(

1− ℓ
N

)

(1−m∗) ℓ
N

(

1− ℓ
N

)

+m∗(1−Q1)
(

1− ℓ
N

) , (4.28)

where we have kept the intrinsic rates r∗ and µ∗ and the relative immigration rate m∗ fixed.

The only terms in Eq. (4.28) that vary with N are the probability factors ℓ/N and 1− ℓ/N .

By keeping the r∗, µ∗, and m∗ fixed, we preserve the relative rates of tethered birth, death,

and immigration that define the original BDI process.

4.4 Results

4.4.1 〈ck〉 and 〈ckcℓ〉 under logistic growth

In Figure 4.4, we plot results from Monte-Carlo simulations, the mean-field solutions to

Eq. (4.10), and the numerically weighted solutions of Eq. (4.27) in which P ∗
M(n1|N) is taken

from Eq. (4.22) but with varying N as defined in Eq. (4.28). This improved weighted solution

yields accurate expected QSS clone count distributions 〈c∗k〉.
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(a)

(c) (d)

(b)

Figure 4.4: Results under Logistic birth

Simulated (blue dots), mean-field (solid black), and weighted Moran (red dashed) approximations

of 〈c∗k〉 using logistic growth laws and the parameters µ = 10, p = 20, K = 1600, H = 200.

Immigration rates used were (a) α = 10−8, (b) α = 0.1, (c) α = 10, and (d) α = 60, as in Figure

4.3. The weighted QSS Moran model approach yields a very accurate approximation to the

simulated values of 〈c∗k〉 for all values of α, including small α as shown in (a).

To calculate the covariance between c∗k and c
∗
ℓ at QSS, we use the 2D (q = 2) “continuum”

solution given in Eq. (4.25) in the weighting in Eq. (4.27) in order to numerically compute

Eq. (4.18).

The covariances cov(c∗k, c
∗
ℓ) ≡ 〈c∗kc∗ℓ〉 − 〈c∗k〉〈c∗ℓ〉 with α = 10−8, both from Monte-Carlo

simulations and from our weighted Moran model approximation, are plotted in Figure 4.5.

The results provide insight on how the true dynamics for 〈c∗k〉 in Eq. (4.5) differs from that

of the mean-field description in Eq. (4.10).
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(a) (b)

×10-2 ×10-2

Figure 4.5: Covariances under Logistic birth

cov(ck, cℓ) in the simulations (a) and from our calculations (b). Parameters are

α = 10−8, µ = 10, p = 20, K = 1600, H = 200. Only the interesting ranges of k and ℓ close to

N∗ ≈ 800 are shown. The pattern shows that large clone counts are positively self-correlated

(black line) but are negatively correlated with neighboring counts (white dots). The grey

background shows no correlation between farther-away clone counts.

The large values (black line) along the diagonal k = ℓ is indicate 〈c∗kc∗ℓ〉 for k ∼ ℓ ∼ N∗ ≈
800. White regions in the off-diagonal areas imply negative correlation between clone counts

of large neighboring sizes. In other words, whenever we observe a clone of 800 individuals in

a simulation at any fixed time t (at QSS), we will probably not observe another clone with

801 cells at the same time. Gray areas that are farther away (such as k = ℓ = 600) represent

transient states of the system and have near-zero covariances.

4.4.2 Other forms of global interactions

Since global interactions across all clones mediate the breakdown of the mean-field approxi-

mation, we now investigate different forms of regulation imposed through the functions r(N)

and µ(N). To explore how the “stiffness” of different total population constraints affects

the expected QSS clone-count vector 〈c∗k〉, we consider a simple Hill-type birth function with
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Hill coefficient 1:

r(N) =
p2K2

K2 +N
, µ(N) = µ2. (4.29)

This form imposes a “softer” constraint on the total population N than the Logistic birth

function. In order to compare the results with those of the Logistic model in subsection

4.4.1, we use the same values of α and H and use µ2 = µ, p2 = p and K2 = K − N∗ where

N∗ is the QSS population size obtained from the Logistic model. In this way, the Hill-type

model generates the same steady state total population size N∗
H = N∗. In Figure 4.4.2, we

plot results of 〈c∗k〉 from our convolved model, from the mean-field approximation, and from

simulations.

Now consider a constant birth but density-dependent death rate of the form [PQP08]

r(N) = r3, µ(N) = µ3(1 +
N

K3

). (4.30)

Again, we are interested in clonal dynamics near the same N∗ as in subsection 4.4.1. Besides

the same α and H , we set K3 = K, r3 = r∗, µ3 = µ/(1 + N∗

K3
). Simulations and results are

plotted in Figure 4.7.

4.4.3 “Stiffness” of regulation

Although the above examples share the same Moran model PM(x), they differ in their P ∗(N)

distributions. In panels (a) of Figures 4.4, 4.4.2, and 4.7, the differences in the P (N) are

illustrated by the different “widths” of the peak near N∗. Generally, a wider peak represents

a “softer” (less stiff) total population constraint. According to simulations and numerical

solutions of the convolved model shown by the figures, the levels of stiffness of the regulatory

effects are ranked by logistic > hill-type > density-dependent death.

As long as f(N) on the right-hand side of Eq. (4.4) is a differentiable function of N ,

“stiffness” near N∗ may be defined by its first derivative

|f ′
∗| = −f ′

∗ ≡
df(N)

dN

∣

∣

∣

∣

N∗

∈ [0,+∞). (4.31)

f ′
∗ takes negative value as long asN

∗ is a locally stable state. The larger |f ′
∗| is, the more likely

the next event will be “compensatory” (e.g. a new birth increases the chance for the next
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Figure 4.6: Results under Hill-type birth

Comparison of 〈c∗k〉 distributions from simulations, mean-field model (green dash dot), and

convolved Moran model (red solid) under Hill-type birth and for different immigration rates

α = 10−8 (a), 0.1 (b), 10 (c), and 60 (d). Other parameters are µ2 = 10, p2 = 20, H = 200. The

half-saturation size K2 was set such that the model has the same N∗ as in Figure 4.4. Thus K2

differs under different α.

event to be death). It measures how much response was given by the model as N randomly

increases/decreases. In our three examples (under α = 10−8), f ′
∗ = p− µ− 2p

K
N∗ = −10 for

Logistic birth, f ′
∗ = p2

(N∗)2+2K2N∗

(N∗+K2)2
−µ2 = −5 for Hill-type birth, and f ′

∗ = r3−µ3− 2µ3
K3
N∗ =

−3.3 for density-dependent death, which is consistent to the ranking of the levels of stiffness

shown by Figures 4.4(a), 4.4.2(a), and 4.7(a).

We may extend our definition of the stiffness to cases where f(N) is not differentiable.

For example, the Moran model has an infinitely “stiff” constraint (f ′
∗ = −∞) which “forces”
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Figure 4.7: Results under density-dependent death

Comparisons of 〈c∗k〉 distributions from simulations, mean-field model (green dash dot), and

convolved Moran model (red solid) under density-dependent death. Immigration rates are

α = 10−8 (a), 0.1 (b), 10 (c), and 60 (d). Other parameters are K3 = 1600, H = 200. r3 and µ3

were set such that the model has the same N∗ and QSS rates of birth and death as in Figure 4.4.

an immediately death after a new birth. Nevertheless, as we have shown, even though a

regulated BDI model may have much less sensitivity than the Moran model, the latter still

provides insights on how such regulatory effect would induce a local stable state at N∗. Also,

the larger |f ′
∗| is, the better the model is approximated by the Moran model. A model with

constant birth and death rates, on the other hand, has f ′
∗ = 0.
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4.5 Phase transition in the clonal distribution

In this section, we aim to interpret the failure of the mean-field equation (Eq. (4.10)) as

a result of a “phase-transition” in the clonal statistics. As discussed in Section 4.4, the

full high-dimensional BDI model can be approximately decomposed into two components,

(1) evolution of different clones’ fractions (the Moran model, which is the same across the

Logistic birth, Hill-type birth, and density-dependent death) and (2) fluctuations of the

total population size (the total population model, which differs for different models). We

will focus on the first part since the failure of the mean-field approach essentially arises from

the emergence of a clone that represents a large fraction of the whole population.

Phase-transition behavior can be conveniently visualized using a potential energy land-

scape φ. This analytical tool has been widely used in population genetics and develop-

mental biology [Wri32,Wad57, She97, APJ01, Ao09,Orr09, XJJ14]. Its recent development

from the physics community has allowed its applications to quantitative and systems bi-

ology [Ao04, Qia06,WXW08]. Defined as a measure of “generalized energy”, its gradient

indicates the direction of evolution of the system and its minima (potential wells) denote

local stable states.

4.5.1 Energy landscape as an analytical tool

We employ φ({x1, x2, ...}), the energy landscape function at system state {x1 = n1

N∗
, x2 =

n2

N∗
, ...} (N∗ is fixed) to study how the Moran-type clonal dynamics vary with parameters.

The shape of φ across {x1, x2, ...} characterizes the global stability of the model.

First, write Eq. (4.24) in 1D

A(x) = m∗
(

1

H
− x

)

, B(x) = x(1− x). (4.32)

The energy function is obtained as [XJJ14]

φ(x) ≡ −
∫ x A(y)

B(y)/N∗ + lnB(x) =

(

1− α

µ∗

)

ln(x) +

(

1− α(H − 1)

µ∗

)

ln(1− x)

≡ 1

H − 1

[

(H − 1)− α

αc

]

ln(x) +

(

1− α

αc

)

ln(1− x) (4.33)
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where we have defined

αc =
µ∗

H − 1
, (4.34)

a critical value of α that controls a “phase transition.” When P ∗
M(x) is normalizable, the

energy function satisfies φ(x) ∝ − lnP ∗
M. Since ln(0) = −∞ and ln(1) = 0, the shape of φ(x)

is determined by the signs of the coefficients H − 1− α
αc

and 1− α
αc
.

Assuming αc > 0 (see Discussion for the special case αc = 0), different regimes of the

model can be delineated

• When α < αc, we have α
αc
< 1, α

αc
< H − 1. Two potential wells in φ(x) emerge at

0 and 1 with two associated basins of attraction as shown in Figure 4.8(a). All clones

starts with a small fraction xi ≈ 0. One of them has the chance to transit to the

attractive peak x = 1 and causes the failure of the mean-field description. However,

this transition is different from the usual stochastically-driven “escape” in statistical

physics (see Discussion). When α is extremely small, the “extinction” state x = 0 is

an absorbing state for each clone and the mean-field approximation fails severely.

• When α = αc, we have α
αc

= 1, α
αc
< H − 1. The potential exhibits a well at 0 and

a peak at 1. The whole interval [0, 1] is a basin of attraction for x = 0 as shown by

Figure 4.8(b). The severity of the failure of the mean-field approach is sensitive to α

when it is near αc.

• When αc < α ≤ (H − 1)αc, we have α
αc
> 1, α

αc
≤ H − 1. The landscape remains

single-peaked at x = 0 but the energy increases much more quickly as x increases

(Figure 4.8(c)). The mean-field approach is accurate in this regime.

• When α > (H − 1)αc, there is a single potential well in φ(x) appearing at some value

x > 0. The peak location xpeak = α−αc(H−1)
αH−2αc(H−1)

is close to x = 0 when H ≫ 1. Two

energy peaks emerge at both x = 0 and x = 1 and the basin of attraction is the whole

[0, 1] interval as shown by Figure 4.8(d). The mean-field approach does not fail here.
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(a) (b) (c) "#$

Figure 4.8: Energy landscapes

Energy landscapes φ(x) as a function of x, the fraction of a specific clone when α = 10−8, 0.05

(= αc), 0.2, and 120 in (a-d) respectively. Other parameters are µ = 10, p = 20, K = 1600, and

H = 200.

4.5.2 Resolving the effects of α and H

Equipped with the energy landscape, we can examine how clonal dynamics look like when

varying the per-stem-cell differentiation rate α and the total number of stem cells H but

fixing their product αH . The product αH determines how immigration contributes to the

dynamics of the total population N . Varying parameters in this way should not change the

dynamics of N but affect the resolved dynamics of individual clones.

This is readily shown by the different shapes of φ(x) as α and H change. For example,

let µ = 0.33. With H = 2, α = 1, landscape where a positive “most probable” clone size

is maintained by high per-clone immigration rate. However, if H = 200 and α = 0.01, each

clone has a low immigration rate. The associated landscape φ(x) = 0.97 lnx − 5 ln(1 − x)

exhibits a unique potential well at 0 as all clones tend to vanish.

We can also consider the limit H → ∞ while fixing a finite αH . This limit is appropriate

for naive T cell generation by the thymus. While total thymic output αH is finite, there are

theoretically ≥ 1018 different clones (T-cell receptor sequences) that can be generated. In

this limit, every immigration leads to a new clone and k = 0 is an absorbing boundary for all

existing clones. Clone labels keep changing, but the distribution of ck reaches a QSS. The
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energy landscape becomes (taking α → 0 in Eq. (4.33)) φ(x) = ln(x) +
(

1− αH
µ∗

)

ln(1− x).

There is always an potential well at 0 while the dynamics near 1 depend on the sign of

2αH
µ∗

− 1.

Recall that the condition for the failure of the mean-field approach is α < αc. From

Eq. (4.34), the smaller H is, the larger αc becomes, thus the more likely the mean-field

approach would fail. When αc = 0 (e.g. realized by µ∗ = 0), Eq. (4.33) no longer has

a valid form. Birth becomes negative (N∗ > K) to balance immigrations. Nevertheless,

we can multiply the landscape function by a constant µ∗ without affecting its ability to

qualitatively characterize and classify the transient dynamics of the system. Such transient

dynamics drive clone sizes towards their steady state distribution, whether it has a valid

form or not. We then take the limit µ∗ → 0 and get φ ∝ −α ln(x) − α(H − 1) ln(1 − x),

which always has a unique potential well between (0, 1), corresponding to Figure 4.8(d).

4.6 Summary and Discussion

In this paper, we were able to map the qth moment of {ck} to a (q+1)-dimensional cell-count

BDI model, which is then approximated by a q-dimensional Moran model. The expected

distribution and covariances of clone counts were accurately calculated in parameter regimes

in which the mean-field approximations break down. By exploiting the concept of energy

landscapes, we analytically describe a phase transition in clonal dynamics which explains

the failure of the mean-field approach in the original model. Our analysis shows that global

(inter-clonal) carrying capacity, when combined with a random sampling mechanism, gener-

ates a genetic-drift-like effect [Ewe12] in a Moran model that ultimately destroys the universal

power-law distribution of ck.

In Eq. (4.5), dynamics of any 〈ck〉 are controlled by r(N), where N ≡
∑

ℓ ℓcℓ. It involves

contributions from all clone populations ℓ = 0, 1, 2, ..., k, ... Recall that in many classical

scenarios the relative strengths of these effects on the kth dimension decay with distance

|k − ℓ|. For example, in the constant-rate BDI model, only ck±1 and ck affect the dynamics

of ck. Here, however, contributions from cℓ is proportional to the index ℓ itself instead of
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on |k − ℓ|. This is a type of “long-range” interaction or long-distance coupling, arising as a

theoretical challenge across many fields [MS87,Tak12,SLJ12,CVJ16]. Thus, the evolution of

〈ck〉 according to Eq. (4.5) can no longer be approximated by diffusive-like dynamics across k.

This is clearly shown in Figure (4.5) where correlations between large k and its neighboring

states k ± 1 are negative.

High-dimensional diffusion models conveniently provide analytic-form steady-state dis-

tributions [Ewe63, Aal89]. However, the boundary values of P ∗
M(x) in the diffusion model

may not accurately approximate those from the discrete Moran model, especially in higher

dimensions. For example, when 2Nmi ≪ 1 in Eq. (4.25), Pdiffusion(xi = 0) = +∞ but

Pdiffusion(xi =
1
N
) ≈ 0. Near the boundary, Pdiffusion(0 < x < 1

N
) generally changes in a highly

non-linear fashion. Only with extremely large N , the probability densities of the discrete

and continuous Moran models match. Nevertheless, our result in Figure (4.5) is accurate

because the range is far away from the boundaries; also, the second moment 〈c2k〉 in Eq. (4.18)

turns out to be dominated by the first-moment term H〈ck〉, which was calculated based on

the exact Eq. (4.22). Small k region under various α’s show qualitative consistency to the

simulations (data not shown).

Curiously, failure of the mean-field assumption under such simple additional force has not

been noticed or explicitly mentioned in the literature. In fact, the consequences of density-

dependence have been rarely discussed in the context of species diversity [VBH05]. Such a

global effect will break independence between clones and can be difficult to model. On the

other hand, failure of predicting a large-size clone by Eq. (4.10), was not mentioned before.

First, most empirical studies focused on the small-to-intermediate range of k, where the ck

distribution is well approximated by the mean field model (Eq. (4.10)). As seen in Figures

4.4 and 4.4.2, the mean-field c̄∗k and our 〈c∗k〉 match well in the small k range in all ranges of

α. Also, even though one or a few large clones/species were always observed, they might be

believed to be favored by selection effect, instead of by the (simpler) explanation of global

carrying capacity.

Importantly, global carrying capacity is ubiquitous in cellular populations (e.g. bone mar-

row for progenitors) and ecological systems (e.g. physical space for all species). This largest
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‘outlier’ clone contains most cells in the compartment and can be biologically more impor-

tant than all other smaller clones/species in the organism/community. Correctly predicting

it provides a correct “null hypothesis” of neutral dynamics. Otherwise, one may incorrectly

argue that the existence of such a singular ‘outlier’ clone suggests a selection effect. It is

also required for the mathematical consistency of the model and numerical calculations.

It is worth noting that the initial establishment of the large clone i, denoted by the

transition xi ≈ 0 → xi ≈ 1, is different from traditional scenarios where clone i randomly

cross the energy peak near x = 0.5 and “escapes” to the other attractive basin. Here,

as most clones vanish, this clone was randomly selected to be “pushed” towards x = 1

to compensate for the loss of all other clones. However, the classical escape problem can

still be observed from the model after clone i dominates the whole population. Specifically,

consider an event in which a different clone j starts from a small fraction xj ≈ 0 at QSS but

subsequently replaces clone i (xj ≈ 1). The waiting time for such replacement event was

obtained by [XJJ14] as Tr ∼ O(µN
∗

α
), a much longer time than the waiting time T2 ∼ O(N

∗

µ
)

(Subsection 4.7.3) for the first dominant clone to emerge in our BDI model.

Future work includes more accurately determining higher-dimensional steady state solu-

tions of the diffusion models, especially near the boundaries; adding clone-wise or cell-wise

heterogeneities, where the current “one-VS-others” view may break down since clone labels

are no longer exchangeable, and mapping time-dependent BDI models to time-dependent

Moran models; and find direct applications of the current results in empirical studies.
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4.7 Appendices

4.7.1 Dynamical equation for P (n, t) ≡ P (n1, ..., ni, ..., nH ; t)

The high-dimensional master equation obeyed by the full multispecies distribution reads

dP (n)

dt
= α

H
∑

i=1

[P (n1, ..., ni−1, ni − 1, ni+1, ..., nH)− P (n)]

+

H
∑

i=1

[r(N − 1)(ni − 1)P (n1, ..., ni−1, ni − 1, ni+1, ..., nH)− r(N)niP (n)]

+
H
∑

i=1

[µ(N + 1)(ni + 1)P (n1, ..., ni−1, ni + 1, ni+1, ..., nH)− µ(N)niP (n)] (4.35)

where N ≡
∑H

i=1 ni.

4.7.2 Dynamical equations for 〈cℓ〉

Define P (c, t) as the probability of observing the configuration c = {c0, c1, c2, ...} at a specific

time t. Under constant immigration rate and density-regulated birth and death rates, the

evolution of the full probability distribution satisfies the master equation

dP (c)

dt
= −

∞
∑

k=0

[α + (µ(N) + r(N))k]ckP (c)

+

∞
∑

k=0

(ck+1 + 1)(k + 1)µ(N + 1)P ({..., ck − 1, ck+1 + 1, ...})

+

∞
∑

k=0

(ck + 1)(α + kr(N − 1))P ({..., ck + 1, ck+1 − 1, ...}). (4.36)

Without loss of generality, let us assume constant µ, α but regulated r = r(N) = r(
∑∞

k=0 kck).

The expected count of clone is (the time argument has been neglected for simplicity)

〈cℓ〉 =
H
∑

cℓ=0

cℓP (cℓ) =

H
∑

c0=0

H
∑

c1=0

...

H
∑

ck=0

... cℓP (c0, c1, c2, c3, ..., cℓ−1, cℓ, cℓ+1, ...). (4.37)
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Substituting Eq. (4.36) into Eq. (4.37), we obtain

d〈cℓ〉
dt

=
H
∑

c0=0

H
∑

c1=0

...
H
∑

ck=0

... cℓ
dP (c0, c1, c2, c3, ..., ck−1, ck, ck+1, ...)

dt

=

H
∑

c0=0

H
∑

c1=0

...

H
∑

ck=0

... cℓ

{ ∞
∑

k=0

−[α + (µ+ r(N))k]ckP (c0, c1, ..., ck−1, ck, ck+1, ...)

+
∞
∑

k=0

(ck+1 + 1)[(k + 1)µ]P (c0, c1, ..., ck−1, ck − 1, ck+1 + 1, ...)

+
∞
∑

k=0

(ck + 1)[α + kr(N − 1)]P (c0, c1, ..., ck−1, ck + 1, ck+1 − 1, ...)

}

. (4.38)

By collecting only terms in Eq. (4.38) that involve r(N), we obtain two summations

S1 + S2 ≡ −
H
∑

c0=0

H
∑

c1=0

...

H
∑

ck=0

... cℓ

∞
∑

k=0

r(N)kckP (c0, c1, ..., ck−1, ck, ck+1, ...)

+

H
∑

c0=0

H
∑

c1=0

...

H
∑

ck=0

... cℓ

∞
∑

k=0

r(N − 1)k(ck + 1)P (c0, c1, ..., ck−1, ck + 1, ck+1 − 1, ...).

Consider the contribution of the kth terms in both summations:

• When k < ℓ− 1 or k ≥ ℓ+ 1, the kth term of S1 becomes

−
H
∑

c0=0

H
∑

c1=0

...
H
∑

ck=0

... c2r(N)(k − 1)ck−1P (c0, c1, c2, ..., ck, ...) (4.39)

and kth term of S2 becomes

H
∑

c0=0

...

H
∑

ck−1=0

H
∑

ck=0

... cℓr(N − 1)(k − 1)(ck−1 + 1)P (c0, c1, c2, ..., ck−1 + 1, ck − 1, ...)

=
H
∑

c0=0

...
H
∑

ck−1=0

H−1
∑

ck=0

... cℓr(N)(k − 1)ck−1P (c0, c1, c2, ..., ck−1, ck, ...)

=
H
∑

c0=0

...
H
∑

ck−1=0

H
∑

ck=0

... cℓr(N)(k − 1)ck−1P (c0, c1, c2, ..., ck−1, ck, ...). (4.40)

The last equality holds because P (ck = H) = 0 (if ck = H , then all other cm6=k = 0

and the equation still holds).

• When k = ℓ− 1, we have the kth term of S1

−
H
∑

c0=0

...
H
∑

cℓ−1=0

H
∑

cℓ=0

... cℓr(N)(ℓ− 1)cℓ−1P (c0, c1, c2, ..., ck, ...) (4.41)
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and the kth term of S2

H
∑

c0=0

...

H
∑

cℓ−1=0

H
∑

cℓ=0

... cℓr(N − 1)(ℓ− 1)(cℓ−1 + 1)P (c0, cℓ−1 + 1, cℓ − 1, c3, ..., ck, ...)

=

H
∑

c0=0

...

H
∑

cℓ−1=0

H−1
∑

cℓ=0

... (cℓ + 1)r(N)cℓ−1P (c0, c1, c2, c3, ..., ck, ...)

=
H
∑

c0=0

...
H
∑

cℓ−1=0

H
∑

cℓ=0

... (cℓ + 1)r(N)cℓ−1P (c0, c1, c2, c3, ..., ck, ...). (4.42)

The two terms sum up to

H
∑

c0=0

H
∑

c1=0

H
∑

c2=0

H
∑

c3=0

...
H
∑

ck=0

... r(N)cℓ−1P (c0, c1, c2, c3, ..., ck, ...) = 〈r(N)cℓ−1〉. (4.43)

• When k = ℓ, we have the kth term of S1

−
H
∑

c0=0

...

H
∑

cℓ−1=0

H
∑

cℓ=0

... cℓr(N)ℓcℓP (c0, c1, c2, ..., ck, ...) (4.44)

and the kth term of S2

H
∑

c0=0

...

H
∑

cℓ=0

H
∑

cℓ+1=0

... cℓr(N − 1)ℓ(cℓ + 1)P (c0, c1, cℓ + 1, cℓ+1 − 1, ..., ck, ...)

=

H
∑

c0=0

...

H
∑

cℓ=0

H−1
∑

cℓ+1=0

... (cℓ − 1)r(N)ℓcℓP (c0, c1, c2, c3, ..., ck, ...)

=
H
∑

c0=0

...
H
∑

cℓ=0

H
∑

cℓ+1=0

... (cℓ − 1)r(N)ℓcℓP (c0, c1, c2, c3, ..., ck, ...). (4.45)

The two terms sum up to

H
∑

c0=0

...
H
∑

cℓ=0

H
∑

cℓ+1=0

...r(N)ℓ(−cℓ)P (c0, c1, c2, c3, ..., ck, ...) = −ℓ〈r(N)cℓ〉. (4.46)

To sum up, terms that involve r(N) in Eq. (4.38) are simplified as (ℓ − 1)〈r(N)cℓ−1〉 −
ℓ〈r(N)cℓ〉. Terms involving α and µ can be similarly obtained if they are regulated by N .

Together, Eq. (4.38) becomes

d〈cℓ〉
dt

= α(〈cℓ−1〉 − 〈cℓ〉) + [(ℓ− 1)〈r(N)cℓ−1〉 − ℓ〈r(N)cℓ〉] + µ(N) [(ℓ+ 1)〈cℓ+1〉 − ℓ〈cℓ〉] .
(4.47)
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4.7.3 Multi-time-scale dynamics of N(t) and ck

For simplicity, we discuss the model with no immigration (α = 0) first. Under this limit,

N∗ = (1− µ
p
)K ∼ O(K). The deterministic Eq. (4.4) gives a quite good approximation for

the typical dynamics for N in its first phase of evolution: N(0) first approaches its QSS N∗

quickly. To estimate this time period, one can integrate dN
dt

in Eq. (4.11) under α = 0 to get

N(t) = N∗N0

N0+e−(p−µ)t(N∗−N0)
. Thus N approaches N∗ in a characteristic timescale O( 1

p−µ).

As N reaches QSS, r(N) also stabilizes to r∗, 〈ck〉 can now approach its QSS, which has

a high peak at 0 and a low peak near N∗. Corresponds to the observation that one large-size

clone emerges persists for a long time while the other H − 1 clones vanish after a while. If

we define the number of living clones (or “species richness”)

R ≡
∑

k>0

ck, (4.48)

the above process decreases R from its initial value H to 1 also called a “coarsening” pro-

cess in physics or fixation in population genetics [Ewe12]. We define the waiting time

for such fixation to take place as T1. Since fixation is most relevant to changes of frac-

tions of clones, we study the problem in a Moran model. In a standard textbook such

as [Ewe12], the mean time for the ith clone to fix (conditioned on its fixation) is Tfix(i) ≈
−N∗

µ
N(0)−ni(0)

ni(0)
ln
[

1− ni(0)
N(0)

]

. The expected time until any arbitrary clone’s fixation is then

calculated by averaging each clone’s fixation times conditioned on its probability to fix

(Pfix(i) = xi(0)) as Tc =
∑

i Tfix(i)Pfix(i) ≈ N∗

µ
.

The last clone, which is just the total population, is stabilized to N∗ by the regulatory

effect of f(N). It fluctuates around N∗ for an exponential long time. The variance (“width”)

of such fluctuation near N∗ can be calculated by invoking the full stochastic model Eq. (4.3)

which leads to the solution P ∗(N) in Eq. (4.26). The fact that P ∗(0) 6= 0 (though is

typically exponentially small) dictates that N may initiate a huge fluctuate to the absorbing

boundary N = 0, resulting in the ultimate extinction of the total population [KS07]. Denote

T2 as the waiting time for the extinction of the total population. Its asymptotic estimate

O(eO(N∗)) shows an extremely large magnitude, which can be obtained from the exact formula

T2 =
∑n

m=1 am where am = 1
µm

+
∑

k−m
j=1

1
µ(m+j)

∏j
i=1

rm+i−1

µ
[DSS05]. Here k = 2N∗ denotes
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a reflecting boundary that does not allow k to go infinity, which in our model is realized by

a threshold beyond which ck is practically 0. Numerically, setting k = 2N∗, 20N∗ or 200N∗

generate practically the same T2 estimates.

(b)

T2

Figure 4.9: Multi-timescale dynamics of N and ck

Simulations of the multi-timescale dynamics of a small (a) and a large (b) system. Common

parameters are µ = 10, p = 20. Different parameters are K = 50, H = 11, α = 0 for (a) and

K = 1600, H = 200, α = 10−8 for (b).

In Figure 4.9, we plot simulations of the dynamics of both N and R under two different

sets of parameters. Values of α are set to be extremely small or 0. Figure 4.9(a) shows

that N reaches N∗ within 1 unit of time and remains stable for longer than 102. Figure

4.9(b) follows a smaller system observed on a longer timescale, where the total population

ultimately vanishes as random events accumulate.

So when α = 0, we can formally define the QSS to be the time period T1 < t < T2.

When α > 0, N = 0 is no longer a rigorous absorbing boundary. For extremely small

α ≪ (HT2)
−1, nevertheless, the dynamics is similar to the case α = 0 (Figure 4.8(a)) since

the waiting time of a single immigration is even longer than the extinction time of the whole

population. For large α, cells all clones will persist by fast immigrations and x = 0 becomes

unstable (Figure 4.8(d)). Intermediate-level immigrations do not stop clones to go extinct,

but above regulatory effect may still be considerable such that x = 0 is still more stable

(Figure 4.8(b-c)).
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4.7.4 Moments

The first moment of c is readily obtained by invoking its definition in Eq. (4.1) as

〈ck〉 =
∑

n

[I(n1, k) + I(n2, k) + ... + I(nH , k)]P (n) = H
∑

n

I(n1, k)P (n) = HP (k)

The second moment, when k 6= ℓ, is obtained as

〈ckcl〉 =
∑

n

[I(n1, k) + I(n2, k) + ...+ I(nH , k)][I(n1, ℓ) + I(n2, ℓ) + ...+ I(nH , ℓ)]P (n)

=
∑

n

H
∑

i=1

I(ni, k)[I(n1, ℓ) + I(n2, ℓ) + ...+ I(nH , ℓ)]P (n)

=
∑

n

H
∑

j 6=1

I(n1, k)I(nj, ℓ)P (n) = H(H − 1)
∑

n

I(n1, k)I(n2, ℓ)P (n)

= H(H − 1)P (k, ℓ).

When k = ℓ, we have

〈ckck〉 =
∑

n

[I(n1, k) + I(n2, k) + ... + I(nH , k)][I(n1, k) + I(n2, k) + ... + I(nH , k)]P (n)

= H(H − 1)P (k, k) +
∑

n

HI(n1, k)I(n1, k)P (n)

= H(H − 1)P (k, k) +HP (k).

The third moment, when k 6= ℓ 6= m, is obtained as

〈ckcℓcm〉 =
∑

n

[I(n1, k) + ... + I(nH , k)][I(n1, ℓ) + ...+ I(nH , ℓ)][I(n1, m) + ... + I(nH , m)]P (n)

=
∑

n

H
∑

i=1

I(ni, k)[I(n1, ℓ) + ...+ I(nH , ℓ)][I(n1, m) + ...+ I(nH , m)]P (n)

=
∑

n

HI(n1, k)
∑

i 6=1

I(ni, ℓ)
∑

j 6=1,i

I(nj , m)P (n)

= H(H − 1)(H − 2)P (k, ℓ,m).

When k = ℓ 6= m, we have

〈c2kcm〉 = H(H − 1)(H − 2)P (k, k,m) +
∑

n

[I(n1, k) + ...+ I(nH , k)][I(n1, m) + ... + I(nH , m)]

= H(H − 1)(H − 2)P (k, k,m) +H(H − 1)P (k,m).

108



And finally when k = ℓ = m, we obtain

〈c3k〉 = H(H − 1)(H − 2)P (k, k, k) +H(H − 1)P (k, k) +
∑

n

[I(n1, k) + ... + I(nH , k)]

= H(H − 1)(H − 2)P (k, k, k) +H(H − 1)P (k, k) +HP (k).

4.7.5 Diffusion approximation by the Taylor expansion

For simplicity, we replace x1 with a continuous variables x and neglect the subscript “M”

for the Moran model probability PM in the rest of this subsection. Letting ∆ = 1
N∗

→ 0

(N∗ → ∞) in Eq. (4.19), we expand the transition rates to the second derivative of x

ω12(x−∆)P (x−∆) ≈ (ω12P )−∆(ω12P )
′ +

∆2

2
(ω12P )

′′, (4.49)

ω21(x+∆)P (x+∆) ≈ (ω21P ) + ∆(ω21P )
′ +

∆2

2
(ω21P )

′′. (4.50)

Substituting them into Eq. (4.19), considering ω12(x) = α(1− x) + r∗N∗x(1− x), ω21(x) =

α(H − 1)x + r∗N∗x(1 − x) in Eq. (4.20), and canceling out terms, we obtain (when αH ≪
r∗N∗)

RHS ≈ −∆[(ω12 − ω21)P ]
′ +

∆2

2
[(ω12 + ω21)P ]

′′

= −αH
N∗

∂

∂x

(

1

H
− x

)

P +
1

2(N∗)2
∂2

∂x2
[α(1− x) + α(H − 1)x+ 2r∗N∗x(1− x)]P

≈ −αH
N∗

∂

∂x

(

1

H
− x

)

P +
r∗N∗

(N∗)2
∂2

∂x2
x(1− x)P

≈ µ∗N∗
[

− 1

N∗
∂

∂x
m∗
(

1

H
− x

)

PM(x) +
1

(N∗)2
∂2

∂x2
x(1− x)PM(x)

]

(4.51)

where m∗ = αH
µ∗N∗

is the fraction of birth that comes from immigration.

For the 2D Moran model, we have

∂P (x1, x2)

∂t
= (ω21P )(x1 +∆, x2 −∆) + (ω31)P (x1 +∆, x2) + (ω12P )(x1 −∆, x2 +∆)

+(ω32P )(x1, x2 +∆) + (ω13P )(x1 −∆, x2) + (ω23P )(x1, x2 −∆)

−[(ω21 + ω31 + ω21 + ω32 + ω13 + ω23)P ](x1, x2) (4.52)
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where

ω21 = αx1 + r∗N∗x2x1, ω31 = α(H − 2)x1 + r∗N∗x3x1, (4.53)

ω12 = αx2 + r∗N∗x1x2, ω32 = α(H − 2)x2 + r∗N∗x3x2, (4.54)

ω13 = αx3 + r∗N∗x1x3, ω23 = αx2 + r∗N∗x3x2. (4.55)

Invoking the 2D Taylor expansion on Eq. (4.52), we obtain terms like

(ω21P )(x1 +∆, x2 −∆) ≈ (ω21P ) + ∆

[

∂(ω21P )

∂x1
− ∂(ω21P )

∂x2

]

+
∆2

2

[

∂2(ω21P )

∂x21
− 2

∂(ω21P )

∂x1

∂(ω21P )

∂x2
+
∂2(ω21P )

∂x22

]

.

The right-hand side of Eq. (4.52) is thus approximated by

RHS ≈ ∆

[

∂(ω21P )

∂x1
− ∂(ω21P )

∂x2

]

+
∆2

2

[

∂2(ω21P )

∂x21
− 2

∂2(ω21P )

∂x1∂x2
+
∂2(ω21P )

∂x22

]

+

[

∆
∂(ω31P )

∂x1
+

∆2

2

∂2(ω31P )

∂x21

]

+

[

∆
∂(ω32P )

∂x2
+

∆2

2

∂2(ω32P )

∂x22

]

+∆

[

−∂(ω12P )

∂x1
+
∂(ω12P )

∂x2

]

+
∆2

2

[

∂2(ω12P )

∂x21
− 2

∂2(ω12P )

∂x1∂x2
+
∂2(ω12P )

∂x22

]

+

[

−∆
∂(ω13P )

∂x1
+

∆2

2

∂2(ω13P )

∂x21

]

+

[

−∆
∂(ω23P )

∂x2
+

∆2

2

∂2(ω23P )

∂x22

]

= ∆

[

∂

∂x1
(ω21 + ω31 − ω12 − ω13)P +

∂

∂x2
(ω12 + ω32 − ω21 − ω23)P

]

+
∆2

2

[

∂2

∂x21
(ω21 + ω31 + ω12 + ω13)P +

∂2

∂x22
(ω12 + ω32 + ω21 + ω23)P − 2

∂2

∂x1∂x2
(ω12 + ω21)P

]

= µ∗N∗

[

− 1

N∗

2
∑

i=1

∂Ai(x)P (x)

∂xi
+

1

(N∗)2

2
∑

i=1

2
∑

j=1

∂2Bij(x)P (x)

∂xi∂xj

]

(4.56)

where

Ai(x) =

2
∑

j=1

m∗(Qi − xi), Bii(x) = xi(1− xi), Bij(x) = −xixj (i 6= j). (4.57)

The last step of Eq. (4.56) involves calculations based on Eqs. (4.53-4.55) and the assumption

m∗ ≪ 1. For example,

ω12 − ω21 + ω13 − ω31 = α(1− x1)− αHx1 = αH

(

1

H
− x1

)

≡ µ∗N∗ ·m∗(Q1 − x1)

ω21 + ω31 = α(H − 1)x1 + r∗N∗x1(x2 + x3) ≈ µ∗N∗ · x1(1− x1).

ω12 + ω13 = α(1− x1) + r∗N∗x1(1− x1) ≈ r∗N∗x1(1− x1) (4.58)

110



CHAPTER 5

Conclusions

In this dissertation, I have described three projects that serve the same overall goal of

modeling hematopoietic dynamics from a decade-long clone-tracking dataset, which both

carries great scientific values in unraveling single cell-level behaviors of hematopoietic stem

and progenitor cells and presents unprecedented technical challenges.

Computationally, I have combined approaches of computer algorithms, statistical analy-

sis, mechanistic modeling, and theory development in order to bridge the gap between the

multi-stage stochastic hematopoiesis and the infrequently sampled and noisy downstream

data. First, I have developed an empirical rule-based, complexity-optimized, and statisti-

cally supported algorithm for improving the quality of the genetically-tagged sequences. The

algorithm automatically corrected DNA sequencing errors by grouping similar sequences to

an elected “authentic” genome sequence, leading to a 23% data quality boost. The algorithm

was integrated as the core component of an in-house data-processing pipeline. Second, to

quantitatively understand the clonal dynamics underlying these data, I have built a math-

ematical framework that successfully maps two principle statistical features of the data,

the heterogeneous clone abundances and the highly fluctuating abundances of each indi-

vidual clone, to two mechanistic features of the hematopoietic system, the short-term HSC

self-renewal and the limited proliferation of progenitor cells. Such mapping allows robust in-

ference of the total HSC differentiation rate 100−300 among three rhesus macaques. Third,

during the study of size distribution among T cell clones, I noticed an unexpected break-

down of the power law distribution under global carrying capacity (density dependent birth

death rates) and small immigration. Further investigation by using global energy landscapes

shows that the breakdown is a result of phase transition induced by such density dependence
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which leads to the breakdown of the traditional mean-field assumption. I then proposed to

transform the system into an equivalent one which was further approximated by a classical

Moran model. The results accurately fit the first and second moments of the simulated clone

size distributions.

Biologically, first, new predictions can be naturally derived from our computational model

and readily tested when larger and more frequently sampled data become available. For ex-

ample, we predict distinct dynamical patterns between small and large clones (Figure 3.3(b))

that are not caused by sampling noise. Small clones “randomly” contribute to hematopoiesis,

while large clones almost “deterministically” appear in peripheral blood. There actually

ARE “extinctions and resurrections” of small clones in peripheral blood, which is because of

the limited proliferation and long waiting time of HSC differentiation instead of insufficient

sampling. Thus, in most of the time, no matter how large the blood sample/how deep the

sequencing is, one would not be able to sample small clones. Another prediction is that more

frequent sampling can lead to qualitatively different patterns of clonal dynamics as shown by

our computer simulations under various sampling frequencies (Figure 3.16). Second, neutral

model can explain most of the observed variances (Figure 3.9(b)). As a baseline model, it

also helps identify “outliers” (Figure 3.20(a)) that violates the neutral assumption. Such

neutrality is the underlying assumption to consider the trajectories (sampled abundances

over time) of different clones hypothetically as different realizations of the same clone, on

which we can perform modeling and statistical analysis. Third, randomness can generate

deterministic heterogeneity in clonal behaviors. The key factor is different timescales. Our

model in Chapter 3 has two distinct timescales: the repairing process of bone marrow (BM),

and homeostasis. The stochasticity during BM-repairing generates a power-law-like distri-

bution of stem cell clone sizes, which becomes stable in homeostasis. Our theoretical study

in Chapter 4, however, predicts that on an even larger time scale (after about thousands

of years), the power-law would break down and there will be only one clone left. This pre-

diction was supported by computer simulation but it requires a special animal (whose HSC

turnover rates is much faster) to experimentally confirm. This observation also shows that an

extremely large-size clone can arise from a neutral model without invoking intrinsic hetero-
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geneity. Such large size is beyond the prediction from the usual demographic noise-induced

power law distribution, but represents a evolutionary stable state of the system to have one

dominating clone. Another biological insight based on such multi-timescale idea has already

been mentioned in Section 3.4 is that our model unifies the “clonal stability” hypothesis on

primates (extremely slow HSC turnover rate) and “clonal succession” observation on mice

(faster HSC turnover rate).

Overall, even though existing data do not yet have the statistical power to accurately

resolve the dynamics of each individual clone, a proper combination of feature selection and

model simplification makes it possible to extract “signals” from the noisy samples. The

collected data indeed contain highly valuable information for understanding the single-cell

level behaviors of stem and progenitor cells in a long-term and multi-clonal manner. More

data of such type on non-human primates and human have become available and drawn

more attentions these days, thanks to the advances in experimental techniques. I hope the

obtained results not only help solve the present scientific problems, but may also be useful

for studies in relevant areas and interesting for wider audience.
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wald. “Fundamental properties of unperturbed haematopoiesis from stem cells
in vivo.” Nature, 518(7540):542–546, 2015.

[BM07] Richard A Blythe and Alan J McKane. “Stochastic models of evolution in ge-
netics, ecology and linguistics.” Journal of Statistical Mechanics: Theory and
Experiment, 2007(07):P07018, 2007.

[BMH17] Lisa B Boyette, Camila Macedo, Kevin Hadi, Beth D Elinoff, John T Walters,
Bala Ramaswami, Geetha Chalasani, Juan M Taboas, Fadi G Lakkis, and Di-
ana M Metes. “Phenotype, function, and differentiation potential of human
monocyte subsets.” PloS one, 12(4):e0176460, 2017.

[BPS16] Luca Biasco, Danilo Pellin, Serena Scala, Francesca Dionisio, Luca Basso-Ricci,
Lorena Leonardelli, Samantha Scaramuzza, Cristina Baricordi, Francesca Ferrua,
Maria Pia Cicalese, et al. “In vivo tracking of human hematopoiesis reveals
patterns of clonal dynamics during early and steady-state reconstitution phases.”
Cell Stem Cell, 2016.

[BSI12] Lauren Bragg, Glenn Stone, Michael Imelfort, Philip Hugenholtz, and Gene W
Tyson. “Fast, accurate error-correction of amplicon pyrosequences using Acacia.”
Nature Methods, 9(5):425–426, 2012.

[BVZ12] Leonid V Bystrykh, Evgenia Verovskaya, Erik Zwart, Mathilde Broekhuis, and
Gerald de Haan. “Counting stem cells: methodological constraints.” Nature
Methods, 9(6):567–574, 2012.

[CBE12] Michael R Copley, Philip A Beer, and Connie J Eaves. “Hematopoietic stem cell
heterogeneity takes center stage.” Cell Stem Cell, 10(6):690–697, 2012.

[CBG11] Sandra N Catlin, Lambert Busque, Rosemary E Gale, Peter Guttorp, and Janis L
Abkowitz. “The replication rate of human hematopoietic stem cells in vivo.”
Blood, 117(17):4460–4466, 2011.

[CG16] T. Chou and C. D. Greenman. “A hierarchical kinetic theory of birth, death and
fission in age-structured interacting populations.” Journal of Statistical Physics,
164:49–76, 2016.

[CM17] George W. A. Constable and Alan J. McKane. “Mapping of the stochastic Lotka-
Volterra model to models of population genetics and game theory.” Phys. Rev.
E, 96:022416, Aug 2017.

[CN15] Thiparat Chotibut and David R Nelson. “Evolutionary dynamics with fluctuating
population sizes and strong mutualism.” Physical Review E, 92(2):022718, 2015.

[CN17] Thiparat Chotibut and David R Nelson. “Population Genetics with Fluctuating
Population Sizes.” Journal of Statistical Physics, 167(3-4):777–791, 2017.

115



[CPG08] F Crauste, L Pujo-Menjouet, S Génieys, C Molina, and Gandrillon O. “Mathe-
matical model of hematopoiesis dynamics with growth factor-dependent apopto-
sis and proliferation regulations.” Journal of Theoretical Biology, 250:322–338,
2008.

[CQD09] Younan Chen, Shengfang Qin, Yang Ding, Lingling Wei, Jie Zhang, Hongxia
Li, Hong Bu, Yanrong Lu, and Jingqiu Cheng. “Reference values of clinical
chemistry and hematology parameters in rhesus monkeys (Macaca mulatta).”
Xenotransplantation, 16(6):496–501, 2009.

[CRM16] George WA Constable, Tim Rogers, Alan J McKane, and Corina E Tarnita. “De-
mographic noise can reverse the direction of deterministic selection.” Proceedings
of the National Academy of Sciences, p. 201603693, 2016.

[CVJ16] Jerry L Chen, Fabian F Voigt, Mitra Javadzadeh, Roland Krueppel, and Fritjof
Helmchen. “Long-range population dynamics of anatomically defined neocortical
networks.” Elife, 5, 2016.

[DDH76] J. T. Dancey, K. A. Deubelbeiss, L. A. Harker, and C. A. Finch. “Neutrophil
kinetics in man.” Journal of Clinical Investigation, 58(3):705, 1976.

[DKC96] Nina J Drize, Jonathan R Keller, and Joseph L Chertkov. “Local clonal anal-
ysis of the hematopoietic system shows that multiple small short-living clones
maintain life-long hematopoiesis in reconstituted mice.” Blood, 88(8):2927–2938,
1996.

[DMW16] Jonathan Desponds, Thierry Mora, and Aleksandra M Walczak. “Fluctuating
fitness shapes the clone-size distribution of immune repertoires.” Proceedings of
the National Academy of Sciences, 113(2):274–279, 2016.

[DNL12] S Doulatov, F Notta, E Laurenti, and J. E. Dick. “Hematopoiesis: A human
perspective.” Cell Stem Cell, 10(2):120–136, 2012.

[DP13] Rob J De Boer and Alan S Perelson. “Quantifying T lymphocyte turnover.”
Journal of Theoretical Biology, 327:45–87, 2013.

[DSS05] Charles R Doering, Khachik V Sargsyan, and Leonard M Sander. “Extinction
Times for Birth-Death Processes: Exact Results, Continuum Asymptotics, and
the Failure of the Fokker–Planck Approximation.” Multiscale Modeling & Simu-
lation, 3(2):283–299, 2005.

[EGC16] Raluca Eftimie, Joseph J Gillard, and Doreen A Cantrell. “Mathematical models
for immunology: Current state of the art and future research directions.” Bulletin
of mathematical biology, 78(10):2091–2134, 2016.

[EIL01] Leah Edelstein-Keshet, Aliza Israel, and Peter Lansdorp. “Modelling perspectives
on aging: Can mathematics help us stay young?” Journal of Theoretical Biology,
213(4):509–525, 2001.

116



[Ewe63] WJ Ewens. “Numerical results and diffusion approximations in a genetic pro-
cess.” Biometrika, 50(3/4):241–249, 1963.

[Ewe12] Warren J Ewens. Mathematical population genetics 1: theoretical introduction,
volume 27. Springer Science & Business Media, 2012.

[FCW43] Ronald A Fisher, A Steven Corbet, and Carrington B Williams. “The relation
between the number of species and the number of individuals in a random sample
of an animal population.” The Journal of Animal Ecology, pp. 42–58, 1943.

[Gar85] Crispin W Gardiner. Handbook of Stochastic Methods: For physics, chemistry,
and natural sciences. Springer, Berlin, 1985.

[GC16] C. D. Greenman and T. Chou. “Kinetic theory of age-structured stochastic birth-
death processes.” Physical Review E, 93:012112, 2016.

[GKC15] Sidhartha Goyal, Sanggu Kim, Irvin SY Chen, and Tom Chou. “Mechanisms of
blood homeostasis: lineage tracking and a neutral model of cell populations in
rhesus macaques.” BMC Biology, 13(1):85, 2015.

[GT05] Antoine Guisan and Wilfried Thuiller. “Predicting species distribution: offering
more than simple habitat models.” Ecology letters, 8(9):993–1009, 2005.

[HBJ06] Sun-Hee Hong, John Bunge, Sun-Ok Jeon, and Slava S Epstein. “Predicting
microbial species richness.” Proceedings of the National Academy of Sciences of
the United States of America, 103(1):117–122, 2006.
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