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ABSTRACT 
 

Public Health Surveillance of Toxic Cyanobacteria in Freshwater Systems 
Using Remote Detection Methods 

 
by 
 

Trina Nicole Mackie 
 

Doctor of Philosophy in Environmental Health Sciences 
 

University of California, Berkeley 
 

Professor Robert Spear, Chair 
 
 

Cyanotoxins, the group of toxic chemicals produced by the blue-green algae or cyanobacteria 
that can proliferate in fresh and salt-water, cause a range of harmful health effects including skin 
rashes, flu-like symptoms, nausea, diarrhea, tingling and nerve damage, liver damage, tumors, 
and death.  Although cyanobacteria are one of the oldest organisms on the planet, anthropogenic 
development (e.g. dams, water diversions, nutrient rich runoff from intensive agriculture, 
decreased impervious area from urbanization, etc.) has caused many watersheds to lose 
substantial water volume, suffer tremendous inputs of nutrients and other organic and inorganic 
pollutants, increase in temperature and overall become more suitable for the proliferation of 
harmful blooms of cyanobacteria. Cyanobacteria blooms are now increasingly prevalent in 
freshwaters as eutrophication becomes ever more common with human stressors, and climate 
change is likely to only further exacerbate this problem.  Public health professionals are 
dependant upon early and dependable information on the presence, concentration, and location of 
cyanobacteria blooms in order to inform the public and reduce potential exposure.  This research 
project evaluated the efficacy of remote sensing data to provide this kind of surveillance and 
early detection for characterizing the presence of toxic algae in freshwater systems. It explored 
the relevance of specific remote sensing techniques to freshwater cyanobacteria bloom 
identification. The various remote sensing platforms available for this kind of research vary in 
cost, swath coverage, spatial scale and spectral resolution.  For this study, three different remote 
imagery platforms were compared in terms of their ability to identify surface blooms and to 
distinguish gradients in cell density or bloom intensity.  This exploration of the application of 
remote sensing used a hyperspectral airborne sensor with high spatial resolution (SpecTIR), a 
multispectral satellite image also with high spatial resolution (IKONOS), and a lower spatial 
resolution multispectral satellite image (Landsat).  Water sampling data (algal pigment 
concentrations, turbidity, transparency, and temperature) from known blue-green algae blooms 
dominated by microcystis aeruginosa on the Iron Gate and Copco Reservoirs on the Klamath 
River were used to evaluate and classify these different images. 
 
This research successfully used both satellite and airborne remotely sensed data to visualize 
where the medium or high density sections of the bloom were located, to quantify the intensity of 
the bloom in terms of area impacted, and to compare the intensity of the bloom at different dates 
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in time.  Remote sensing can provide a synoptic overview of the entire system, making it 
possible to truly assess relative bloom intensity. Furthermore the results indicate that when given 
the choice, the investment in higher spectral resolution should be chosen over higher spatial 
resolution as the former appears to provide more benefits in cyanobacteria detection.   
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1 Introduction and Background  
 
1.1 Public Health Risks of Cyanobacteria 

Surveillance and early detection are keys to effective public health disease prevention.  Whether 
dealing with chronic heart disease, cancer, or infectious disease, the rate of successful treatment 
and often prevention increases with a well designed program to educate the public about 
measures to reduce their risk and to detect early onset symptoms or risk factors in time to take 
action.  Cyanotoxins are no exception to the rule.  This group of toxic chemicals produced by the 
blue-green algae or cyanobacteria that can proliferate in fresh and salt-water can cause a range of 
harmful health effects including skin rashes, flu-like symptoms, nausea, diarrhea, tingling and 
nerve damage, liver damage, tumors, and death (Pouria et al. 1998; Chorus and Bartram 1999).  
Both epidemiologic and toxicological studies have also linked chronic low dose exposures to 
cyanotoxins with the promotion of liver tumors (Nishiwaki-Matsushima et al. 1992; Yu et al. 
2001; Zhou et al. 2002). The potency of cyanotoxins is evident from animal toxicology and the 
accidents that have led to large human fatality and illness.  Most notable are the tragedies in 
Brazil and Australia.  In 1988 in Brazil, 88 deaths occurred from cyanotoxin contamination of a 
drinking water reservoir (Teixeira Mda et al. 1993).  A severe gastroenteritis epidemic was 
caused by cyanotoxin contamination of the reservoir water used in a dialysis clinic that led to 26 
deaths from acute liver failure (Jochimsen et al. 1998; Pouria et al. 1998; Carmichael et al. 
2001). In Australia, 100 children were hospitalized for gastroenteritis after a cyanobacterial 
bloom contaminated drinking water (Falconer et al. 1983; Griffiths and Saker 2003).  In addition 
to consumption of contaminated drinking water, people can be exposed through everyday 
recreation (swimming, boating, fishing, etc.) or inhalation of aerosolized toxin (Backer et al. 
2003; Annadotter et al. 2005).  “Healthy people in healthy places”1 means that poor health can be 
directly tied to places with toxic exposures.  Many people make their living off of the water, live 
in close proximity to the water, or play and recreate regularly in lakes, rivers and the ocean.  For 
them, chronic exposure, even to low levels of cyanotoxins, is a real risk. 
 
Contamination of drinking water supplies has the greatest potential to create the largest burden of 
disease.  While low levels of microcystin have been detected in treated drinking water on a few 
occasions in the U.S., large American water treatment plants are largely able to adequately 
remove (i.e. below detection levels) cyanotoxins through activated carbon filters and ozonation.  
Smaller treatment plants and those in developing countries however, work with less rigorous 
treatment technology.  Microcystin, the most common cyanotoxin, is also particularly stable and 
is unaffected by boiling water, a standard approach in the developing world to protect themselves 
from microorganisms in their drinking water supply.  Exposure may occur by water contact, 
ingestion or inhalation when toxins are aerosolized.  The toxins do not penitrate the skin, so 
strictly contact should result in only minor skin irritations and rashes.  Inadvertant ingestion 
during recreation or ingestion of contaminated drinking water produces an array of gastro-
intestinal symptoms including nausea, vomiting, diarrhea, as well as other cold and flu symptoms 
such as fever. 
 
In 1998 the World Health Organization issued recommendations for guidelines for drinking 
water and recreational water to protect public health from cyanotoxins (Falconer et al. 1999; 
                                                 
1 CDC’s Health Protection Goals include: “Healthy People in Healthy Places – The places where people live, work, 
learn, and play will protect and promote their health and safety, especially those at greater risk of health disparities.” 
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World Health Organization (WHO) 2003).  That same year the U.S. Environmental Protection 
Agency (USEPA) added cyanotoxins to the Contaminant Candidate List, a list of unregulated 
contaminants which may need regulations under the Safe Drinking Water Act (Environmental 
Protection Agency 2005).  In 2004, Congress also expanded the Harmful Algal Bloom and 
Hypoxia Research & Control (HABHRCA) Act of 1998 to require interagency research on both 
freshwater and marine harmful algal blooms.   For the last several years the USEPA, the National 
Oceanic and Atmospheric Administration (NOAA), and the National Aeronautics Space 
Administration (NASA) have released interagency requests for proposals on the causes, effects, 
detection and control of harmful algal blooms (USEPA 2005; USEPA 2007).  The U.S. Centers 
for Disease Control (CDC) has been conducting studies to evaluate the public health impact of 
cyanotoxins and the efficacy of water treatment practices in removing them from the drinking 
water supply (Centers for Disease Control and Prevention; Backer 2002).  The CDC’s National 
Center for Environmental Health (NCER) conducted a pilot study to assess recreational exposure 
to cyanobacterial toxins in the same two reservoirs of the Klamath River that will be used as a 
field site in this study (Backer et al. 2010) and a previous study of exposure to a bloom in a 
Michigan lake (Backer et al. 2008).  All of this demonstrates the increasing acknowledgement of 
the need for research in this area.    

 
1.2 Cyanobacteria 

Although cyanobacteria are one of the oldest organisms on the planet, they are increasingly 
prevalent in freshwaters where they could not have survived100 years ago.  This is because our 
anthropogenic development (e.g. dams, water diversions, nutrient rich runoff from intensive 
agriculture, decreased impervious area from urbanization, etc.) that stresses the environment has 
caused many watersheds to lose substantial water volume, suffer tremendous inputs of nutrients 
and other organic and inorganic pollutants, increase in temperature and overall become more and 
more suitable for the proliferation of harmful blooms of cyanobacteria. Climate change has the 
potential to further exacerbate the issue.  In many ways the problem resembles an emerging 
infectious disease and has been treated as such by numerous local and state health departments.     
 
Cyanobacteria are remarkably adept at growing in many different climates, and they occur 
worldwide from South America to Asia (Smith 1956).  This along with the widespread trend in 
eutrophication worldwide (fueled by anthropogenic development and climate change) is making 
cyanotoxins an important emerging public and ecological health concern. With climate change 
continuing to raise temperatures around the globe, it is reasonable to expect rising water 
temperatures will play a role in increasing eutrophication and the proliferation of cyanobacteria.    
This research is therefore relevant to many communities nationally and abroad.  When water 
sources become contaminated with cyanotoxins, the size of the population at risk can be millions 
of people as was recently the case with a bloom in Taihu Lake near Wuxi, China (Ang 2007; 
Anonymous 2007; Kun 2007; Xiaofeng 2007). 
 
There are many different types of cyanobacteria and when conditions are right, they may have a 
competitive advantage over other phytoplankton and can proliferate into dense blooms which 
move up and down in the epilimnion and are visible from above due to their pigmentation and 
buoyancy on the water surface. In contrast to true algae, many species of planktonic 
cyanobacteria possess specialized intracellular gas vesicles, which enables the organism to 
regulate its buoyancy and thus to actively seek water depths with optimal growth conditions. 
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Some cyanobacteria can fix nitrogen giving them an important competitive advantage in nitrogen 
limited systems. 
 
Cyanobacteria have been and continue to be referred to as blue-green algae, a misnomer given 
that their cellular organization and structure is now known to have more in common with 
bacteria than algae, but they are also photosynthetic like other algae and the name emerged from 
their characteristic color from the pigments they contain.  These pigment compounds 
(chlorophylls, carotenoids, and biliproteins/phycobilins) can be used to distinguish individual 
phytoplankton genera, and chlorophyll concentrations are often used as a general proxy or 
phytoplankton population size.  This is the basis for the use of remote sensing in the 
electromagnetic spectrum to identify blooms of different compounds and sizes. 
 
Cyanobacteria produce toxic compounds referred to collectively as cyanotoxins.  There are many 
different cyanobacteria species and many different cyanotoxins.  Not all cyanobacteria produce 
cyanotoxins, but many cyanobacteria produce multiple cyanotoxins. At least 46 species have 
been shown to cause toxic effects in vertebrates (Sivonen and Jones 1999), but there are thirteen 
that are most commonly found in freshwater. The most common toxin-producing cyanobacteria 
are microcystis spp., anabaena spp., aphanizomenon spp.and nodularia spp.  The cyanotoxins 
they produce can be grouped into hepatotoxins, neurotoxins, and dermatoxins.  
 
Microcystis aeruginosa is the type of cyanobacteria found to dominate in the Iron Gate and 
Copco reservoirs of the Klamath River.  It is a unicellular organism that forms blooms in 
eutrophic fresh and brackish waters. The toxin it most commonly produces is microcystin, a 
potent liver toxin which inhibits eukaryotic protein phosphatases types 1 and 2A. Microcystin 
has more than 20 structural variants, with varying toxicities (Sivonen and Jones 1999) and there 
is evidence that it bioaccumulate at higher trophic levels (e.g. zooplankton, shellfish (Lehman et 
al. 2005), fish (Xie Liqiang 2005)) 
 
Although primary productivity in lakes is often P limited, Upper Klamath Lake is (P)-rich 
(committee on endangered and Threatened Fishes in the Klamath River Basin, National Research 
Council, 2004), and the nitrogen fixing aphanizomenon flos-aquae regularly blooms there 
(Carmichael et al. 2000), as it does in Iron Gate and Copco Reservoirs (Kann and Asarian 2007) 
which are N limited (Moisander et al. 2009).  The availability of N may therefore play a role in 
the dynamics of Microcystis blooms which are not capable of nitrogen fixation.  
 
Toxin production may vary between different strains of Microcystis and within the same toxin-
producing strain depending on environmental conditions.  Some evidence of variation in toxin 
production has been observed with shifts in light (Kaebernick et al. 2000; Kardinaal et al. 2007), 
nutrients (Sivonen and Jones 1999), and salinity (Tonk et al. 2007).  The variant of microcystin 
toxin has also been shown to vary with environmental conditions (Tonk et al. 2005).  Most often 
cell counts and toxin concentration dynamics are correlated with maximum growth 
corresponding with maximum toxin production, however the exceptions may relate to changes in 
growth controlling factors (Downing et al. 2005; Tonk et al. 2009), or an enhanced competitive 
advantage when light is reduced with increased density of blooms (Kardinaal et al. 2007). In the 
Copco and Iron Gate Reservoirs nitrogen additions increased the total microcystin production 
(Moisander et al. 2009) but to a greater degree when biomass was lowest. Runoff (dissolved 
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inorganic and organic N), NH4+ mixing in from anoxic bottom waters, N2 fixation, and 
atmospheric deposition all contribute nitrogen to the Copco and Iron Gate Reservoirs. 
 
Monitoring cyanobacteria in the water can be challenged by the mobility of the blooms with 
respect to sampling locations, infrastructure for field site access, and the cost and time of field 
sampling.  In some settings, the size of the water body and the logistics of physically collecting 
samples can be quite prohibitive.  Remote sensing offers enormous advantages to address these 
challenges and is particularly suited to assessments of large geographical areas. While the use of 
remote detection should be combined with some field sampling, in almost all cases, it serves as a 
highly effective tool to inform the need for field monitoring and can highlight the most important 
locations for sample collection.  Information that highlights potential algal blooms, even when it 
is not conclusive that these are specifically toxic cyanobacterial blooms, may still prove 
enormously useful as the need for field confirmation can be narrowed in time and space.   
 

1.3 Aquatic Remote Sensing 
Remotely sensed data from satellites, radar, and airborne sensors have been effectively used to 
classify terrestrial vegetation and land use (Ustin 2004; Jensen 2007).  Although they have been 
applied with less frequency to aquatic environments, there is still a strong body of literature in 
which reflectance in the electromagnetic spectrum has been used to detect invasive aquatic 
vegetation, phytoplankton (open water algae) and other water quality parameters (chlorophyll-a, 
phaeopigments, aquatic humus, suspended sediment, and temperature (Dekker et al. 1992; 
Mertes et al. 1993; Jakubauskas et al. 2000; Kallio et al. 2001; Khan and Islam 2003; Li et al. 
2003; Sawaya et al. 2003; Williams et al. 2003; Nicandrou et al. 2004; Underwood et al. 2006; 
Vrieling 2006)).  Algae contain a variety of pigments, which give them their own unique spectral 
signature, in some cases allowing for differentiation between species based on their reflectance 
and absorption of different wavelengths of electromagnetic energy (Roelfsema et al. 2006).  
Although some studies have used remotely sensed data (Dekker et al. 1992; Kahru et al. 2000; 
Vincent et al. 2004; Wynne et al. 2005; Tyler et al. 2006) to detect harmful algal blooms 
(including some caused specifically by cyanobacteria) in freshwater, most of this research has 
focused on the ocean (Smith and Baker 1982; Gordon et al. 1983; Carder et al. 1993; Jupp et al. 
1994; Stumpf 2001; Tomlinson et al. 2004) for several reasons.  First, deep ocean waters are not 
as highly impacted with turbidity and suspended sediment that can cause near-infrared surface 
reflection and subsurface volumetric scattering.  Therefore there is less interference with the 
reflectance and absorption from phytoplankton.  Secondly, the scale of ocean blooms and red 
tides is quite large, making their detection possible using sensors with coarse spatial scales (500-
1000 m).  Satellites such as MODIS (36 bands), SEAWIFS (8 main bands2), and CZCS, which 
have enough spectral resolution to facilitate distinguishing between the subtle differences in the 
spectral signatures of planktonic pigments, also have low spatial resolution making it possible to 
use them for a bloom in the ocean but not in a smaller body of freshwater.   
 
Oki et al. (Oki et al. 1995) developed a model to estimate the concentration of chlorophyll in 
lakes or inland seas using two wavelengths (675 nm and 700 nm) on a handheld 
spectroradiometer.  Their model attempted to remove the effect of specular reflection at the 
water surface to improve the accuracy of the chlorophyll estimates.  Their algorithms had the 

                                                 
2 SEAWIFS has additional bands at 412nm to identify yellow substances through their blue wavelength absorption, at 490 nm to 
increase sensitivity to chlorophyll concentration, and in the 765-865 nm near-infrared to assist in removing atmospheric attenuation. 



 

 5

highest performance when chlorophyll concentrations were less than 60 mg/L.  Roelfsema et al. 
(Roelfsema et al. 2006) used Landsat 7 TM+ to differentiate the cyanobacteria L. majuscule from 
other phytoplankton and map the extent of the bloom in the clear shallow waters of Moreton 
Bay, Australia.  The method was limited in its average overall accuracy (58% for detecting L. 
majuscule) and it also used only the visible bands (red, green and blue) based on “water 
penetrating characteristics and preliminary field spectrometer analysis results.”  Svab E. et al. 
(Svab et al. 2005) measured the role of chlorophyll-a and suspended sediment concentrations in 
the spectral reflectance of Lake Balaton (Europe’s largest shallow lake) in Landsat TM and 
Landsat ETM+  images.  They conclude that while heterogeneous suspended sediment 
concentrations (SSC) impede direct estimates of the chlorophyll concentration (Chl-a), a spectral 
linear mixture modeling approach combined with multivariate regression analysis may be able to 
separate the effect of the two water quality parameters (Chl-a and SSC).  This was later done 
(Tyler et al. 2006) to predict Chl-a in the same lake with an R2 of 0.95. 
Vincent et al. (Vincent et al. 2004) was able to predict phycocyanin (a pigment specific to 
cyanobacteria) concentrations in Lake Erie using a spectral ratio model with Landsat 7 ETM + 
data. His model had an adjusted R2 of 73.8% and a standard error (S) of 0.64 ug/l (about 16% of 
the total phycocyanin range).  However, Kutser et al. (Kutser et al. 2006) were unable to 
distinguish between cyanobacteria and other algae, using data from ALI, Landsat, and MODIS. 
They suggest that Vincent et al. were actually measuring turbidity not phycocyanin, as Kutser 
could not detect a unique spectral response for this pigment separate from the suspended 
sediment response.   
 
While numerous studies have been able to generate strong correlations between satellite spectral 
bands and chlorophyll-a, to date, none of this work has been done in small freshwater lakes with 
high spatial resolution IKONOS satellite data nor with high spectral and spatial resolution data as 
is available through the SpecTIR airborne sensors.  Furthermore, very few studies have been able 
to specifically distinguish cyanobacteria from other classes of phytoplankton. 
 

1.4 Study Objectives and Rational 
This research project evaluated the efficacy of remote sensors to assist in characterizing the 
presence, distribution, and concentration of toxic algae in freshwater systems for surveillance 
and early detection.  A watershed impacted by harmful algal blooms can be managed at a 
system-wide level looking at the upstream sources of pollution and impairment or locally by 
directly destabilizing the blooms.    Regardless of the ecological management choices, public 
health officials must respond to the immediate risk by informing the public and helping them to 
prevent exposure to the algal toxins.  Therefore public health professionals are dependant upon 
early and reliable information on the presence, distribution and concentration of cyanobacterial 
blooms.  This information can also inform appropriate monitoring, research, and resource 
management for longer-term change.  The goal was not to develop new remote sensing 
classification methods, but to explore the application of existing methods as an accurate, straight 
forward, accessible tool to semi-automate classification for harmful algal blooms such that it 
would aid public health agencies and natural resource management with surveillance and early 
warning detection. 
 
The first specific aim was to select the best classification for the high spatial and spectral 
resolution remotely sensed data to predict the presence of cyanobacterial blooms. Both 
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chlorophyll-a and phycocyanin were measured for the purposes of predicting not only relative 
bloom intensities, but also quantitative concentrations.  Chlorophyll-a is a good proxy for total 
phytoplankton biomass, which is also representative of toxic cyanobacteria biomass during 
bloom conditions.  Phycocyanin is another pigment that can help in distinguishing classes of 
phytoplankton, because it is specific to cyanobacteria.  As is explained later (see Chapter 3), the 
spatial mobility and temporal variation of the bloom made the pigment concentrations 
inappropriate for use in the models, but a classification for the relative intensity of the blooms 
was still generated.   
 
Others (Ustin 2004; Roelfsema et al. 2006; Jensen 2007) have demonstrated the trade-off 
between accuracy and coverage.  While field data collected on the ground manually has high 
accuracy, it provides coverage of a restricted area.  Furthermore, widespread incorporation of 
remote sensing data into public health management depends on having good access to affordable 
imagery.  A second aim of this study, is to compare the loss in accuracy between different 
remote sensor image platforms with varied spectral and spatial resolutions (in addition to varied 
cost and availability) and to identify the technique with the best cost/benefit ratio for generating 
harmful algal bloom maps for government agencies to generate notices to the public, control 
access, and plan for longer-term assessment. 
 
Once validated, the application of remote detection of cyanobacterial blooms would ideally be 
transferable to other water bodies. One of the biggest challenges to large-scale application of 
these remote detection techniques is that the remote sensing algorithms are often image specific 
and may not be applicable to images obtained under different conditions (e.g. climate, 
topography, water depth, etc.). Conducting preliminary exploration of the application of these 
methods to another field site and images from other dates will provide insight on their limitations 
and on the opportunities for further research to improve them.     
 
Three classifications were generated, one for each remote sensing data platform.  Producer’s 
Accuracy and User’s Accuracy were calculated and used to compare them.  It was expected that 
the highest spatial and spectral resolution image would produce the most accurate classification, 
but comparing the loss of accuracy provided important information to inform the data choice for 
others.  The loss of accuracy with respect to the decrease in cost may be more appropriate in 
some settings such as surveillance over a large area such as the Yangtze River’s Three Gorges 
Dam Reservoir.   
 

1.5 Contributions of This Dissertation 
With climate change and anthropogenic environmental stressors eutrophication is expected to 
continue to increase, impacting more water bodies and therefore increasing habitat where BGA 
have a competitive advantage. 
 
Remote sensing offers advantages for public health protection and environmental management of 
these harmful algal blooms. It provides a way to map water parameters in a consistent way over 
wide areas at one moment in time.  This can make a remarkable difference as even those 
agencies with regular bimonthly sampling programs are still only collecting samples from a 
select set of locations, and are unable to know what the full scope of the bloom’s impact is. The 
synoptic overview provided by remote sensing imagery makes it possible to capture the entire 
water body at one time point.  With multiple images from within a bloom season, it is then 
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possible to learn how the bloom density is changing over time and weather it is better or worse 
than in previous years. This type of evaluation is just not possible with standard field sampling 
techniques which allows only a limited number of sites to be sampled and the time it takes to bet 
between sampling sites is enough time for bloom densities to shift vertically and horizontally. 
 
The investment in remote sensing imagery may ultimately cost less than a routine sampling 
protocol.  Additionally the images are data rich and provide a source of information on much 
more than harmful algal blooms.  They can also be analyzed for questions relating to industrial 
wastewater discharge, sewage effluent, land use management and change, floods, and erosion. 
 

1.6 Organization of Dissertation 
The dissertation consists of six chapters. The current chapter (Chapter 1) lays out the background 
to the issues of concern regarding cyanobacteria, and an introduction to the remote sensing 
research tools used to address their management and broad spatial detection. In Chapter 2, I 
summarize the water sampling I did in the Iron Gate and Copco Reservoirs on the Klamath River 
and the Three Gorges Dam Reservoir on the Yangtze River. These data describe the current 
bloom situation in both systems.  They support the need for the current research into the 
applications of remote sensing data to aid in surveillance and management, and they expand 
knowledge of the overall water quality in the study sites.  Because the situation is quite different 
on the two rivers, there are different rationale for the application of the remote sensing work in 
each system. Chapter 3 describes the analysis of the high spatial and spectral resolution SpecTIR 
airborne imagery.  Several techniques were applied to the data in the process of selecting the 
classification decision trees as the most effective approach for the purposes of this study.  
Chapter 4 uses the same analytical approach with a classification decision tree to analyze the 
other satellite imagery (Ikonos and Landsat TM).  The accuracy and results of the three different 
remote sensing imagery platforms are compared in Chapter. 4.  Since archived Landsat data can 
be downloaded for free, images from three different years were available and were used to 
analyze temporal change in a Chapter 5. Chapter 6 summarizes the dissertation, discusses the 
implications of the findings, future studies needed, and places the findings into the relevant 
political and economic context.  
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2 Cyanobacteria and Water Quality Characterization 
 
2.1 Introduction 

This research involved field data collection in two field sites: the Iron Gate and Copco reservoirs 
in northern California and the Three Gorges Dam reservoir in China.  The former are upstream 
of a dam that was built more than 40 years ago on the Klamath River and the latter is upstream of 
the newly built Three Gorges Dam.  The Iron Gate and Copco Reservoirs have dense 
cyanobacteria blooms each summer, typically lasting from June through September. This 
provided an opportunity to evaluate the use of remote sensing in the context of a system clearly 
impacted by toxic cyanobacteria blooms and for which there is a great deal of data, and to also 
evaluate shifting dynamics in a newly altered system and the potential benefits offered by the use 
of remote sensing to better study the changing water quality situation there.  This chapter 
describes the overall water quality situation in these two field sites, the field collection of water 
samples, and the analyses of the field sample data. 
 

2.1.1 Klamath Field Site 
The potential ability of satellite images to detect the color and temperature changes associated 
with cyanobacteria blooms can be used to better predict the need for further monitoring or 
management, and its large spatial scale can enhance our understanding of ground sampling. Data 
from the known and well characterized blue-green algae blooms on the Iron Gate and Copco 
Reservoirs were used to evaluate satellite image classification as an economic and efficient tool 
to remotely detect the presence of cyanobacterial growth and to quantify the intensity of a bloom 
event.  An airborn pass-by was scheduled with SpecTIR to collect hyperspectral data which was 
analyzed for detection and quantification of cyanobacterial bloom intensity in the Iron Gate and 
Copco Reservoirs of the Klamath River in Northern California.  Hyperspectral data contains 
detailed information on the spectral reflectance of features on the ground at small intervals 
throughout the electromagnetic spectrum.  This level of detail provides the most information 
available through remote sensing to be used to determine whether blooms are present and to 
what degree.  Ground truth data was also collected for comparison and potential calibration of 
the model. 
 
The Klamath River runs from southern Oregon across Siskiyou and Humboldt Counties in 
northern California to its mouth at Klamath, California. The watershed draining into the Klamath 
River is 40,795 km2. (~4 million hectares or 10 million acres) (Board on Environmental Studies 
and Toxicology and Water Science and Technology Board 2008).  The Klamath River is one of 
the major salmon rivers in the western United States, and is one of the largest river systems in 
terms of flow, salmon production and economic importance in the western U.S.  PacifiCorp 
Energy owns and operates the 169-megawatt Klamath River Hydroelectric Project regulating 
flows and generating electricity.  The Klamath field site focuses on the Iron Gate and Copco 
Reservoirs, just two of the five impoundments formed by PacifiCorp’s five dams which were 
built between 1908 and 1962. Iron Gate Reservoir is 944 acres (PacifiCorp 2010).  Below the 
Iron Gate Dam the Klamath river is protected as free flowing under the National Wild and Scenic 
Rivers System (North Coast Regional Water Quality Control Board 2010b). 
 
The Klamath reservoirs are located in a rural area.  The closest population center is Yreka, 
California (7,290 people in 2000) located about 40 miles to the southwest. Figure 2-1 shows an 
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overview map of the location of the watershed and Figure 2-2 shows a detailed map of Iron Gate 
and Copco Reservoirs where remote sensing and field samples were collected for water analysis 
of nutrients, pigments, temperature, turbidity, depth, and secchi disk transparency. 
 

Figure 2-1: Overview Map of the Iron Gate and Copco Reservoirs on the Klamath River 
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Figure 2-2: Sampling Sites on the Iron Gate and Copco Reserviors 

 
 

2.1.2 Yangtze Field Site 
The field site in China is the 600-km stretch of the Yangtze River (Chang Jiang or 长江) 
between Chongqing and the Three Gorges Dam encompassing the newly formed reservoir, 
whose surface area will eventually reach approximately 1080 km2 (Wu et al. 2003).  The 
Yangtze River is the third longest river in the world with its headwaters in the northwest Chinese 
province of Qinghai and its estuary 6300 km away near the city of Shanghai.  It descends more 
than 5000 m from the Qinghai-Tibet Plateau and drains 1.81x 106 km2(Chen et al. 2001). In 
Yichang, just downstream of the Three Gorges Dam, the discharge ranges from 2.0x104 - 4.0x104 
m3/s during the rainy season (June-August) and 0.4 x 104 m3/s during the dry season (November-
February). The construction of the Three Gorges Dam (TGD) on the Yangtze River was 
completed in 2003, and the flooding to form the reservoir was predicted to continue through 
2009.   
 
The construction of the Three Gorges Dam provoked large controversies regarding the trade-offs 
between facilitating navigation, creating opportunities for south-north water transfer, and flood 
management versus the dam’s potential detrimental impacts on the hydrology of the Yangtze 
River watershed.  Water quality in the reservoir affects the millions of people in cities along its 
shores whose drinking water is withdrawn from the reservoir.  The water body is also used for 
fishing, washing, recreation and irrigation.  Chongqing, at the western and upstream edge of the 
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reservoir, is the home of scores of industries discharging waste streams directly to the Yangtze 
which is a vital resource for the 400 million people living in the river basin.  Given the water 
shortages in the North China Plain, its management is pertinent to another 400 million who 
reside there.  China’s Yangtze River Reservoir also presents an interesting case to explore the 
application of remote detection and surveillance since it covers such a large area with poor road 
access prohibiting adequate field monitoring and making remote detection an even more 
appropriate alternative. Swimming, fishing, washing clothes and of course drinking water are all 
examples of the pathways for human exposure to cyanotoxins in China. 1.3 million people in 
Yunyang county, the location of field sampling sites for this study, receive their drinking water 
from the reservoir. 
 
Historically the strong stream flow in the Yangtze River has mediated the impacts of extensive 
water pollution (Maurer et al. 1997).  The completion of the Three Gorges Dam in 2003, 
however, has reduced the river’s water velocity.  The resulting elevation in water temperature 
and the concentration of inorganic pollutants from upstream industries as well as local and 
upstream inputs of organic material and nutrients in the growing reservoir are important 
variables in the promotion of cyanobacterial growth.  Concomitant land use shifts may also result 
in new agricultural development, which could further raise nutrient levels in the water due to 
fertilizer input. 
 

2.2 Water Quality 
2.2.1 Water Quality in the Klamath Field Site 

The water quality of the Klamath River and reservoirs has been well documented through tribal 
(Kann and Asarian 2005; Kann 2006a; Kann 2006b; Kann 2006c; Kann and Asarian 2006; Kann 
and Corum 2006; Kann and Asarian 2007; Kann and Corum 2007), state and federal government 
(North Coast Regional Water Quality Control Board 2010a) monitoring as well as that conducted 
by PacifiCorp (PacifiCorp 2004; Carlson and Raymond 2008), the company that owns and 
operates the hydroelectric facilities.  Parameters associated with toxic cyanobacteria bloom 
dynamics that have been monitored include wind, temperature, flow, depth, mixing, turbidity, 
nutrient concentration, light and residence time. 
 
In 2005 Iron Gate and Copco Reservoirs together retained 11.9% of the total phosphorus inflow, 
and 3.7% of the total phosphorus was retained during the photophlankton growing season (May-
October). This time of year also corresponds with the dry season and the hottest months of the 
year.  For nitrogen inflow the corresponding numbers were 18.1% and 29.8% (Kann and Asarian 
2007). The Iron Gate/Copco Reservoir system operates under overall nitrogen limitation for 
phytoplankton growth during the summer season (Moisander et al. 2009).  Both reservoirs are 
typically thermally stratified during the warm summer months, with low levels of dissolved 
oxygen and high levels of ammonia and soluble reactive phosphorus in the hypolimnion which 
correspond with large blooms of phytoplankton in the epilimnion.  
 
These two reservoirs on the Klamath River in Northern California have had documented 
cyanobacteria blooms between May and October in the last five years (Kann 2006a; Kann 
2006b; Kann 2006c; Kann and Corum 2007; Kann and Corum 2009).  Blooms have a long 
duration typically beginning in June, peaking in late August and disappearing mid-October.  The 
blooms are dominated by microcystis aeruginosa (MSAE) with cell counts as high as 
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393,395,000 cells/ml and microcystin concentrations as high 12,176 μg/L (Kann 2006a).  Table 
2-1 shows the maximum, mean, and median values for all sampling dates and sites within the 
reservoirs for the last four summers. Each year the sites that are located within the reservoirs 
have had levels of MSEA and its toxin, microcystin, that far exceed the World Health 
Organizations recommended guidelines for public health protection (Table 2-2 shows the 3-
tiered guidelines from WHO). 
 
TABLE 2-1: Statistics for Cyanobacteria Blooms over last 
Four Years 
    2006 2007 2008 2009
Microcystis aeruginosa (cells/ml)     
 Maximum 393,395,000 22,898,635 42,168,500 122,338,260
 Mean 12,381,258 1,475,681 3,569,067 9,976,831
 Median 108,620 46,979 87,403 928,925
Microcystin Concentration (ug/L)     
 Maximum 12,176 30,000 18,000 73,000
 Mean 1,449 1,194 1,195 7,221
  Median 386 3 10 130

 
 
 
TABLE 2-2: World Health Organization’s Recommended Guidelines  
for Recreational Water 

Guidance level  Health Risks Typical actions 
Low Risk - 20,000 
cyanobacterial cells/ml 

Short-term adverse health 
outcomes, e.g., skin 
irritations, gastrointestinal 
illness 

Post on-site risk advisory 
signs   
 
Inform relevant authorities 

Moderate  Risk - 100,000 
cyanobacterial cells/ml 
or 
50 µg chlorophyll-a/liter 
with dominance of 
cyanobacteria 

Potential for long-term 
illness with some 
cyanobacterial species  

 
Short-term adverse health 
outcomes, e.g., skin 
irritations, gastrointestinal 
illness 
 

Watch for scums or conditions 
conducive to scums  
 
Discourage swimming and 
further investigate hazard 
Post on-site risk advisory 
signs 
 
Inform relevant authorities 

High Risk - 
Cyanobacterial scum 
formation in areas where 
whole-body contact and/or 
risk of ingestion/aspiration 
occur 

Potential for acute 
poisoning  
 
Potential for long-term 
illness with some 
cyanobacterial species 
 
Short-term adverse health 
outcomes, e.g., skin 
irriations, gastrointestinal 
illness 

Immediate action to control 
contact with scums; possible 
prohibition of swimming and 
other water contact activities  
Public health follow-up 
investigation 
 
Inform public and relevant 
authorities 
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2.2.2 Water Quality in the Yangtze Field Site 
After the construction of the TGD in 2003 algal blooms were documented in one of the Yangtze 
River’s tributaries, the Xiangxi River which is located 37 km upstream of the TGD, as well as in 
the confluence of the Xiangxi and the Yangtze (Zeng et al. 2006).  In August of 2004, 63 
phytoplankton taxa were identified in the Yangtze River.  Algal blooms had not been 
documented in these locations previously.  These investigators also monitored phytoplankton 
populations in the Yangtze River intermittently during a 13 month period (Zeng et al. 2007).  
They collected data during March, May, July, August and October of 2004 and May of 2005. 
They found that diatoms dominated the phytoplankton populations and that phytoplankton 
abundance was determined more by hydrological conditions rather than by nutrient 
concentrations. Although they intended their study to provide long-term monitoring of 
fluctuations in TGR water quality, they were only able to capture one snapshot of the spring 
season (March 2004), three sampling events over one summer (May, July, and August 2004), 
and one sampling event in the fall (Oct. 2004) followed by one final sampling event the 
following year in May 2005.  Post-impoundment, the Yangtze has continued to undergo change 
as flooding has moved forward since 2003 in the formation of the vast reservoir stretching 650 
kilometers upstream of the dam to Chongqing.  During the 6-year process of flooding, 
hydrological conditions cannot equilibrate, and multiple years of data are necessary to attempt to 
capture patterns and possibly, reference levels to which to compare data from future time points 
collected after the completion of the reservoir (estimated for 2009).  Therefore the research 
reported here aimed to continue monitoring where Zeng and colleagues left off (summer 2005) in 
order to expand the time-series, compare findings, and therefore ultimately enhance the 
usefulness of the pooled dataset for future planning and understanding of the nearly complete 
reservoir’s biogeochemistry and phytoplankton population diversity and density.  Our data added 
with that of previous studies provides estimated baseline data on water quality and 
phytoplankton populations in the TGDR. 
 

2.3 Water Quality Field Data Collection 
2.3.1 Water Data Collection (Klamath Field Site) 

Field data collected bi-monthly from the Iron Gate and Copco Reservoirs on phytoplankton 
counts and species identification, toxin concentrations, and chlorophyll-concentrations have been 
shared by the Yurok Tribe, the Karuk Tribe and the Klamath Blue-Green Algae Work Group for 
use in this study.  High resolution satellite images are more likely to be useable for this time and 
region given that the days are typically clear, and cloud-free.  The presence of known 
cyanobacterial blooms, the access to good field data and the potential to obtain clear high-
resolution satellite images made this an appropriate case and field site for the development and 
validation of the remote detection methods.      
 
The water sampling data from known blue-green algae blooms on the Iron Gate and Copco 
Reservoirs on the Klamath River was intended for the use in evaluation and classification of 
three different images.  Data collection in the Klamath, both remotely by SpecTIR and Ikonos 
and directly in the field occurred in July 2007.  Most water samples were collected within 12-24 
hours of the remote sensor data acquisitions.  Landsat’s orbit brings it over the area of interest 
(AOI) every 16 days, and the acquisition of IKONOS and SpecTIR airborne imagery were 
scheduled to occur as close to the day of the Landsat passby that fell during the peak of the toxic 
BGA bloom in the reservoirs. Landsat’s orbit was over the AOI on July 28, 2007, but 
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unfortunately it could not be purchased as it was never archived and made available by the 
USGS Center for Earth Resources Observation and Science.  2005 Landsat data was used instead 
in the image analyses (see Chapter 4). The blooms peak in late July and early August, a time 
when clear skies predominate, facilitating remote detection of the dense green surface scum.  
IKONOS satellite acquisition occurred on July 27, 2007 and SpecTIR airborne imagery was 
collected on July 28, 2007.   
 
Because of the large number of pixels in remotely sensed data, the sample size required to be 
statistically sound for accuracy assessment based on ground data in a traditional sense can 
become impractical.  Congalton (Congalton 1991) recommends collecting at least 50 samples for 
each land-cover class.  The number can be increased for land classes that are particularly 
important for the objective of the study (in this case the water in general and the water surface 
covered by blooms), or similarly decreased for the classes of lesser interest.  Greater variation 
within a particular cover class can also warrant collection of an increased number of reference 
samples.  Because the study area in this project is relatively small (~7.86 km2), the goal was to 
collect at least 50 water samples randomly from the two reservoirs.  Up to 20 additional samples 
were desirable to specifically capture variation within a bloom.  In actuality 62 water samples 
were collected in total.  The size of the remote sensing pixels to be analyzed will be 4 m2, 1 m2, 
and 900 m2 for the SpecTIR, IKONOS and Landsat images respectively.  10 samples were 
collected that were spaced out approximately every 3 meters to capture separate SpecTIR and 
IKONOS pixels encompassed by one single Landsat pixel.  See Chapter 3 for remote sensing 
data analysis methods.    
 

2.3.2 GPS Data Collection (Klamath Field Site) 
The geographic coordinates for each sampling site were recorded with a GPS (Global 
Positioning System), in order to link sampling data with the relevant pixels in the remote sensing 
data.  To help verify the accuracy, coordinates were collected for the corners of a fixed dock and 
boat ramp located within the study area prior to remote image acquisition. 
 
The open prairie and grassland terrain of the rolling hills surrounding the Copco and Iron Gate 
Reservoirs offer little if any possible interference for the satellite signal reception, unlike 
mountainous terain or densely foliated sites.  The GPS unit uses four or more satellites to 
triangulate the position.  
 
50 random points were generated within the boundaries of the Iron Gate and Copco reservoirs 
using the Hawth Tools functionality within ArcGIS.  The coordinates and map of these locations 
were used as a rough guide in the field to collect the water samples, however, efficiency required 
that we abandon the effort to steer our boat to the exact GPS location generated randomly.  
Rather we moved from east to west over the reservoir collecting samples at approximately the 
same locations as the randomly generated coordinates with emphasis more on capturing both 
sides of the reservoir, open water, and coves.  Additional deviations were made from the 
randomly selected points when visual observations indicated stratified concentric layers of 
different algal densities.  Samples were intentionally collected to provide cross-sections of these 
stratified areas to better capture the variability within the bloom. 
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A total of 62 sampling sites were collected across the Iron Gate and Copco reservoirs.  The 
location of sample withdraws was recorded using both a differential Trimble GPS (GeoXH 
Handheld) receiver with the capability of sub-meter accuracy as well as a Garmin GPS receiver 
(GPSmap 60CSx) with the capability of 2-10 meter accuracy depending on the environment and 
the position of satellites.  Accuracy typically ranged between 2-5 meters for the Garmin GPS 
receiver because the unit was WAAS (Wide Area Augmentation System) enabled and WAAS 
reception was available.  The Trimble GPS receiver was differentially corrected using 
Differential Global Positioning Systems to obtain a higher level of accuracy that corrects for 
atmospheric conditions and irregularities in satellite orbits by referencing a nearby “base 
station”. 
 

2.3.3 Water Data Collection (Yangtze Field Site) 
The Yangtze River field data collection was initiated in July of 2005.  The reservoir created by 
the Three Gorges Dam stretches 700 kilometers upstream of the dam.  In 2005, the average width 
of the reservoir was 300 meters and has gradually widened through 2009 when flooding was 
estimated to be complete.  The expansive reservoir area of approximately 350 square kilometers 
is difficult to monitor.  Adequate characterization of the entire reservoir would require an 
elaborate sampling plan with well distributed sampling sites throughout the reservoir because 
wind patterns can create horizontal stratification; because uses, nutrient sources and loads, and 
other water impacts can vary substantially across such an area; and because other basic water 
quality parameters are variable in such a large water body.  There are several factors that impede 
such sampling.  The first is the challenge of access throughout the reservoir.  Much of the 
surrounding land is rural and difficult to access by land.  Boat transport is slow and not organized 
for such needs.  Laboratory facilities are distant and transport of samples in a timely fashion for 
analysis would be impossible without the investment of significant resources.  This project made 
a compromise in order to provide valuable information to characterize the water quality in the 
reservoir.  Rather than attempt to collect data throughout the reservoir, a preliminary 
comparative cross-sectional study was conducted to measure the concentration of nitrate, 
organophosphate, and the other parameters listed in Table 2-3 at seven locations (see map in 
Figure 2-3) stretched across the full length of the reservoir.   
 
These data from the Three Gorges Dam reservoir detected no algal blooms, however one genus 
of cyanobacteria (oscillatoria) is already present and a dense green algae bloom occurred on a 
tributary (Xiao Jiang) which joins the Yangtze at the city of Yunyang.  It is quite possible that 
other blooms are being missed due to insufficient sampling locations and/or frequency.   
 
Remote detection would facilitate making a more definitive determination of the presence or 
absence of harmful algal blooms over the full spatial scope of the reservoir, it would enhance our 
understanding of existing ground sampling data, and it would inform the need for additional 
water sampling and the general location where this would be appropriate.   

 
2.3.4 Water Sampling (Klamath Site) 

At each sampling site, the water’s temperature, depth, conductivity and transparency (via secchi 
disk) were measured, and 2-3 100-ml surface water samples were collected with a Van Dorn 
sampler, split with a churn splitter and immediately put on ice in the dark.  Several semi-
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integrated samples were also collected by combining water from the surface, 1-meter, 5-meters 
and 10-meters below the surface in the churn splitter.  Within twelve hours of collection one 
 
Figure 2-3: Sample Locations in Three Gorges Dam Reservoir for Preliminary 
Comparative Study 
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sample from each site was filtered using a glass-fiber filter and frozen to be analyzed later for 
chlorophyll-a and phycocyanin.  Phytoplankton identification and enumeration was done for the 
Yangtze samples but not on the Klamath samples, as this information was obtained for separate 
samples collected by the Klamath Blue-Green Algae Work Group at 11 sites within these 
reservoirs (twice a month from May through October) and made available for this research.   
 
Microcystis aeruginosa (a known toxic blue-green algae species) has been identified as the 
dominant species in all existing bloom datasets for Copco and Iron Gate Reservoirs although 
Aphanizomenon flos-aquae, Anabaena sp., and Gloeotrichia echinulata, other species of 
cyanobacteria were also detected in lower concentrations.  Chlorophyll-a is often a good proxy 
of harmful algal biomass in this system, because the phytoplankton population is so uniform. 
Data from the Klamath system does show an increasing trend in the probability that microcystis 
aeruginosa cell counts and microcystin concentrations will exceed the various recommended 
WHO guidance levels as chlorophyll-a concentrations increase.  This is not always the case, 
however, as many other genera and species of phytoplankton also produce chlorophyll.  
Therefore the more specific cyanobacterial pigment phycocyanin was also quantified for use in 
classification of the remote sensing data. 
 
TABLE 2-3: Measured Water Parameters 

Dissolved Oxygen 
pH 
Temperature 
Conductivity 
Turbidity 
Transparency 
Depth 
Chlorophyll-a (Klamath only) 
Phycocyanin (Klamath only) 
Nitrate (Yangtze only) 
Soluble Reactive Phosphorus (Yangtze Only) 

 
 
All of these parameters were measured in the field using portable probes except nutrients and the 
pigments, chlorophyll-a and phycocyanin, which were measured in the laboratory.   
 

2.3.5 Water Sampling (Yangtze Site) 
Visual inspections for discoloration and scum formation, and for transparency with the use of a 
secchi disc were conducted at each location.  Grab samples were collected by hand-dipping 1 
liter bottles into the surface of the water.  Once every third sampling trip, one site was collected 
in triplicate to evaluate the variability of the sampling technique.   
 
For phytoplankton enumeration and identification in the Yangtze River, horizontal tows (12-inch 
diameter opening to a 63 micron mesh plankton net) were used to concentrate phytoplankton in 
samples.  A flow meter attached to the plankton net was used to calculate the exact distance of 
the tow and later the volume of water filtered by the plankton net.  These samples were preserved 
in the field immediately with Lugol’s solution.  Phytoplankton genera were identified and 
samples were counted using a compound light microscope with a Sedgewick-Rafter counting cell 
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(American Public Health Association (APHA) 2001).  10 randomly selected grid cells were 
counted to reach a minimum of 100 cells. 
 
Samples to be analyzed for chlorophyll-a were kept on ice and dark for up to 12 hours before 
they were filtered onto glass fiber filters (Millipore 0.7 micron pore size).  Filters were then kept 
cold (≤4ºC) and dark until analysis.  Chlorophyll-a was analyzed spectrophotometrically.  The 
absorbance was measured at 664, 647, and 630 nanometers on a PerkinElmer Lambda 14 
UV/Vis Spectrophotometer and applied to equations (1), (2), and (3) of Jeffrey and Humphrey 
(1975) as recommended in the Standard Methods (American Public Health Association (APHA) 
2001).  

 
630647664 08.054.185.11)l(Chlorophyl EEEa −−=  (1) 

630647664 66.203.1243.5)l(Chlorophyl EEEb −+−=  (2) 
630647664)21 52.2460.767.1(lChlorophyl EEEcc +−−=+  (3) 

 
Surface grab samples were collected and used for the measurement of nitrate and soluble reactive 
phosphorous.  All samples were kept cold on ice and dark until they were analyzed  
spectrophotometrically using the HACH cadmium reduction method 8171 and the 
phosphomolybdate reduction Method 8048 which are equivalent to USEPA Method 365.2 and 
Standard Method 4500-PE, respectively.  Nutrient analyses were conducted no more than 48 
hours after sample collection.  The analytical detection limits were 0.2 mg/L and 0.05 mg/L 
respectively. The percent coefficient of variation from replicate analyses of selected samples and 
the standard was <15%.   
 
Finally temperature, turbidity, conductivity, pH, and dissolved oxygen were measured in the 
field using a Horiba multi-meter.  ELISA (enzyme-linked immunosorbent assay) field kits were 
purchased to analyze for microcystin, however these analyses were not conducted as large cell 
counts of cyanobacteria were not detected. 
 
Cross-Sectional Data Sampling Locations 
During June 2005 and March 2007 samples were collected from five other locations spread out 
over the length of the TGRA in addition to Wanzhou. Figure 2-3 shows all the sampling 
locations on a map and the exact locations are provided as latitude and longitude for each.  
 
The data from the preliminary comparative study, summarized in Table 2-4, indicate minimal 
spatial variability in basic water quality and current within the reservoir.  For this reason and 
because of the logistic challenges just described, only two locations (the ports of the city of 
Wanzhou and the city of Yunyang) in the reservoir were selected for longer-term sampling.  
These two locations were chosen for their accessibility as well as their relevance to public health 
due to potential exposure pathways (e.g. fishing, washing, swimming, and drinking).   
 
Time Series Data Sampling Locations 
Field data were collected in collaboration with Chongqing University in the reservoir along the 
banks of the cities of Wanzhou (编号) and Yunyang (云阳) seasonally from July 2005 to May 
2007 capturing 13 out of 22 months.  The data attempts to provide a baseline for water quality 
parameters most relevant to cyanobacteria population dynamics.  At each of these two sampling  
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TABLE 2-4: Summary Data From 
Preliminary Comparative Study (7 Sites) 
Parameter Mean Std Dev. % Std Dev.
pH 7.44 0.32 4.3
Cond (mC/cm) 0.337 0.019 5.5
Turb (NTU) 453 131.0 28.9
DO (mg/L) 6.0 0.95 15.7
Temp (°C) 25.6 1.8 7.1
Secchi Disk (cm) 11.7 5.6 47.5
N (mg/L) 1.37 0.33 24.3
P (mg/L) 0.15 0.04 25.5
 
locations (Wanzhou and Yunyang), water grab samples were collected at 9-12 individual sites 
approximately 100 m apart across a roughly 500x200 m2 grid section of the reservoir near the 
location of drinking water withdrawal pumps and public access points.  Thus the sites encompass 
both banks of the reservoir as well as deep water sites in the middle.  Wanzhou and Yunyang 
were chosen for monitoring because of the extensive use of the reservoir water by the 
populations of these cities for swimming, fishing, washing, and drinking.  Feasible access to the 
sites for logistical collection and transport of the samples was also a factor.   
 
Sampling Schedule 
Sampling occurred between June 2005 and April 2007.  The cross-sectional data was collected at 
the beginning and end of the sampling period (June 2005 and March 2007), while the time series 
data was collected regularly throughout this time period.  Table 2-5 below shows the specific 
dates for sampling and identifies any exceptions in data collection for that particular sampling 
event.  
 

2.4 Results 
2.4.1 Results (Klamath Site) 

Figure 2-4 shows a histogram of the chlorophyll-a concentrations in Copco and Iron Gate 
Reservoirs. The mean and median concentrations were 2445.7 μg/ml and 116 μg/ml, 
respectively.  These chlorophyll concentrations are indicative of a hypereutrophic water body.  
There have been numerous indices created to calculate the trophic state of water. The Carlson’s 
Trophic State Index (TSI) uses information on total phosphorus, transparency, and chlorophyll-a 
to determine where on the continuum from oligotrophic and hypertrophic a particular water body 
falls.  Chlorophyll-a levels above 50 ug/ml are considered hypereutrophic (Carlson 1977). 
 
Table 2-6 shows the mean and median values for the other parameters measured in the field. The 
average transparency of less than a meter is that of a eutrophic or hypereutrophic water body.  
Similarly the phosphate concentration in 2007 ranged between 2.5 and 5.1 umol/L (Moisander et 
al.; Moisander et al. 2009) or 238-485 ppb, which is also representative of hypertrophic water.  
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Table 2-5: Sampling Schedule 

Date Locations Sampled 
Parameters of the standard 
suite of 10 not available for 

sampling event 
7/19-20/2005 Shi Bao Zhai 

Wanzhou 
Zhang Fei Tample 

Wu Shan 
Da Ning River 
Mao Ping 

 

7/28/2005 Wanzhou   
8/15-16/2005 Wanzhou 

Yunyang 
  

10/21/2005 Wanzhou 
Yunyang 

  

11/07/2005 Wanzhou 
Yunyang 

  

11/20/2005 Wanzhou 
Yunyang 

  

12/17/2005 Wanzhou 
Yunyang 

  

1/11/2006 Wanzhou 
Yunyang 

  

3/17/2006 Wanzhou 
Yunyang 

  

4/09/2006 Yunyang   pH, cond, turb, DO, temp 
4/12/2006 Yunyang  N, P 
7/1-2/2006 Wanzhou 

Yunyang 
  

10/3/2006 Yunyang   
11/26-
27/2006 

Wanzhou 
Yunyang 

 Turb 

3/23-24/2007 Wanzhou 
Yunyang 
Xiao Jiang 
Old Yunyang 

Tang Xi He 
Wushan 
Daling He 
Ba Dong 

Turb 

4/24/2007 Yunyang  Turb 
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Figure 2-4: Histogram of July 2007 Chlorophyll-a Concentrations in the Iron Gate and 
Copco Reservoirs  
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Table 2-6: General Water Data Summary for Klamath Reservoirs 
 Surface Surface Surface Surface Surface    

  pH Cond Turb DO  Temp 
Secchi 
(m) 

Water Depth 
(feet)   

MEAN 9.33 0.122 21 13.42 24.98 0.86 46.6  
MEDIAN 9.37 0.119 19 13.19 24.95 1 18.8   

 
Figures 2-5 and 2-6 show histograms for the nitrate and soluble reactive phosphorus 
concentrations in the reservoirs from May-September 2007.  Figures 2-7 and 2-8 show the 
microcystin concentrations and the Microcystis aeruginosa cell counts May-September 2007 for 
eleven sampling sites in the reservoirs.   
 

2.4.2 Results (Yangtze Site) 
Figure 2-9 shows the individual site values for these seven water quality parameters measured 
during the June 2005 spatial cross-sectional survey on the central sections of the study area 
between Shi Bao Zhai and the Da Ling River.  The percent coefficient of variation calculated 
from laboratory replicates indicates that only some sampling sites for some parameters can 
clearly be distinguished from the rest.  For example, after accounting for laboratory variance, Wu 
Shan has the highest values for DO, temperature, pH and nitrate and Wanzhou has the highest 
values for phosphate.  While variation was observed among these sites, full analysis for trend 
and spatial pattern was not possible, although it was reported by previous studies (Zeng et al. 
2007).  Zeng (2007) averaged their nutrient data over all time points (March, May, July, August, 
and October 2004 and March 2005) for each site in their presentation of the data.  Their nitrate 
values were about an order of magnitude less than the values recorded for this study, while their 
reported reactive phosphorous values matched with those of this study.  The transparency, 
temperature and reactive phosphorous data reported for the rainy season (August 2004) in Zeng 
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(2006) matched the ranges measured in this cross-sectional survey, while their reported nitrate 
values again were an order of magnitude below the values measured here. 
 
Figure 2-10 shows the expanded spatial cross-sectional survey conducted in March 2007 in 
which total phytoplankton cell counts were measured in addition to the other parameters and the 
number of sites was expanded from 5 to 8 on a section of the river shifted to the east of the 2005 
survey, but including three of the five sites from 2005.  Overall higher nutrient levels than in 
2005 were expected due to the spring versus earlier summer sampling season.  The drop in DO at 
the two Wushan sites may be attributable to inflow from the Daling River.   Table 2-7 shows the 
minimum and maximum of the means of the samples taken at each location.  Previous findings 
displayed a spatial trend, but this was not observed in these data. The phytoplankton populations 
between the seven sites ranged between 5-45 cell units/mL.  Cell counts did not increase 
downstream, but rather were highest at Yunyang and in the tributaries where they join the 
Yangtze. 
 
Table 2-7: Water Measurements in March 2007 at 8 sites spanning the TGR 

Maximum Minimum
All Reservoir 
Mean

All Reservoir 
Std Dev

Secchi Disk (cm) 347 210 282.5 40.4
pH 7.9 5.6 7.4 0.7
Conductivity (uS/cm) 0.376 0.349 0.363 0.010
DO (mg/l) 10.49 8.88 9.61 0.56
Temperature (°C) 15.9 14.5 15.3 0.5
N03-2 (mg/l) 1.73 1.14 1.50 0.19
PO4-3 (mg/l) 0.47 0.21 0.29 0.08  
 
For the longitudinal time series data, mean concentrations of water parameters were compared 
between the two  sampling locations (i.e. Wanzhou and Yunyang) using the Kruskal-Wallace 
technique (Zar 1996) due to the small sample size with a null hypothesis that the sample means 
were not different at a significance level of 0.05 (Stata 9.0, StataCorp LP, 2005) There was some 
variability in nutrient concentrations, temperature and dissolved oxygen between the port at 
Yunyang and the port at Wanzou.  For all sampling events except January 2006 and March 2007 
the nitrate concentrations were significantly different between the two cities (p<0.05).  For all 
sampling events except November 2005, January 2006, and November 2006 the reactive 
phosphorous concentrations were also significantly different between the two cities (p<0.05).  
Table 2.8 shows the minimum and maximum of the means of the samples taken at each location 
over the two years.  Figure 2-11 shows the mean values (± Standard Error) for the different 
parameters at both Yunyang and Wanzou over the monitoring period.  The parameters are 
affected by seasonal fluctuations in outdoor temperature, precipitation, and flow.  An analysis for 
temporal trend was not conducted since the time-series only spans two years which prevents us  
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Figure 2-5: Histogram of July 2007 Nitrate Concentrations in the Iron Gate and Copco 
Reservoirs 
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*These data were collected and made available by the Karuk Tribe. 
 

Figure 2-6: Histogram of July 2007 Soluble Reactive Phosphorus Concentrations in the 
Iron Gate and Copco Reservoirs  
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*These data were collected and made available by the Karuk Tribe. 
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Figure 2-7: Summer 2007 Microcystin Concentrations in Iron Gate and Copco Reservoirs 
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*These data were collected and made available by the Karuk Tribe. The number in the dates 
refers to the first or second sampling event of the month.  
 
Figure 2-8: Summer 2007 Microcystis aeruginosa Cell Counts in the Iron Gate and Copco 
Reservoirs 
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*These data were collected and made available by the Karuk Tribe. 

Site ID 

Site ID 



 

 29

Figure 2-9: June 2005 Spatial Cross-Section on the TGDR. Sites listed from upstream to 
downstream.3 

 

                                                 
3 Absent columns for any site or date reflects unavailable data, not a null value. 
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Figure 2-10: March 2007 spatial cross-section on the TGDR.  Sites listed from upstream to 
downstream.4 

 
                                                 
4 Absent columns for any site or date reflects unavailable data, not a null value. 
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Figure 2-11: Longitudinal time-series for Wanzhou and Yunyang on the TGDR.5 

 
 

                                                 
5 Absent columns for any site or date reflects unavailable data, not a null value. 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

7/2
8/0

5

8/1
5/0

5

10
/21

/05

11
/7/

05

11
/20

/05

12
/17

/05

1/1
1/0

6
4/9

/06

4/1
2/0

6

3/1
7/0

6
7/1

/06

10
/3/

06

11
/26

/06

3/2
3/0

7

pH

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

7/2
8/0

5

8/1
5/0

5

10
/21

/05

11
/7/

05

11
/20

/05

12
/17

/05

1/1
1/0

6
4/9

/06

4/1
2/0

6

3/1
7/0

6
7/1

/06

10
/3/

06

11
/26

/06

3/2
3/0

7

Tr
an

sp
ar

en
cy

 (c
m

)

-100.0

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

900.0

7/2
8/0

5

8/1
5/0

5

10
/21

/05

11
/7/

05

11
/20

/05

12
/17

/05

1/1
1/0

6
4/9

/06

4/1
2/0

6

3/1
7/0

6
7/1

/06

10
/3/

06

11
/26

/06

3/2
3/0

7

Tu
rb

id
ity

0.0

5.0

10.0

15.0

20.0

25.0

30.0

7/2
8/0

5

8/1
5/0

5

10
/21

/05

11
/7/

05

11
/20

/05

12
/17

/05

1/1
1/0

6
4/9

/06

4/1
2/0

6

3/1
7/0

6
7/1

/06

10
/3/

06

11
/26

/06

3/2
3/0

7

Te
m

pe
ra

tu
re

 (C
)

0.0

0.5

1.0

1.5

2.0

2.5

7/2
8/0

5

8/1
5/0

5

10
/21

/05

11
/7/

05

11
/20

/05

12
/17

/05

1/1
1/0

6
4/9

/06

4/1
2/0

6

3/1
7/0

6
7/1

/06

10
/3/

06

11
/26

/06

3/2
3/0

7

N
O

3-
2 

(m
g/

L)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

7/2
8/0

5

8/1
5/0

5

10
/21

/05

11
/7/

05

11
/20

/05

12
/17

/05

1/1
1/0

6
4/9

/06

4/1
2/0

6

3/1
7/0

6
7/1

/06

10
/3/

06

11
/26

/06

3/2
3/0

7

PO
4-

3 
(m

g/
L)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

7/2
8/0

5

8/1
5/0

5

10
/21

/05

11
/7/

05

11
/20

/05

12
/17

/05

1/1
1/0

6

4/9
/200

6

4/1
2/2

00
6

3/1
7/0

6
7/1

/06

10
/3/

20
06

11
/26

/06

3/2
3/0

7

D
O

 (m
g/

L)

Wanzhou

Yunyang

0.0

0.1

0.2

0.3

0.4

0.5

0.6

7/2
8/0

5

8/1
5/0

5

10
/21

/05

11
/7/

05

11
/20

/05

12
/17

/05

1/1
1/0

6
4/9

/06

4/1
2/0

6

3/1
7/0

6
7/1

/06

10
/3/

06

11
/26

/06

3/2
3/0

7

C
on

du
ct

iv
ity

 (μ
S/

cm
)



 

 32

Table 2-8: Summary of Water Quality Parameters in Wanzhou and Yunyang– Maximum 
and Minimum are taken from the Means for each Sampling Dates  

Secchi Disk (cm) pH Cond Turb DO Temp (°C) N03-2 (mg/l) PO4-3 (mg/l)
Y Maximum 347.0 8.1 0.4 759.5 9.6 25.2 1.97 1.24
Y Minimum 7.3 7.4 0.3 11.7 5.4 12.4 0.14 0.15
W Maximum 14.8 8.1 0.4 759.6 10.2 26.6 2.25 0.84
W Minimum 0.0 7.6 0.3 3.0 6.2 11.4 0.91 0.19
   
from distinguishing temporal trends from seasonal changes especially given irregularities in the 
sampling frequency.  
 
Chlorophyll-a concentrations ranged between 5 mg/L and 700 mg/L. The highest concentrations 
were measured in Xiao Jiang River, a tributary that joins the Yangtze just north of Yunyang and 
at the location of the old city of Yunyang.  The chlorophyll concentrations were highest in the 
spring when levels were usually at least 10 times higher than those of the summer rainy season 
when flows are highest. 
 
Similarly phytoplankton populations were largest during the spring (March/April), with a  
second population growth peak in the fall (October/November).  Although water temperatures 
were considerably warmer during the summer months, heavy rainfall at this time causes high 
suspended sediment levels and increased turbidity.  In the spring rainfall had not yet begun 
meanwhile the water temperatures had risen to levels that foster greater phytoplankton growth.  
In the fall rainfall had stopped and water temperatures had not cooled to a level no longer 
conducive for phytoplankton growth. Diatoms dominated the phytoplankton populations for all 
samples, and asterionella, melosira, synedra, and fragillaria were the most abundant genera.  The 
only cyanobacteria genus detected was oscillatoria.  While micrycystis colonies were not 
detected, individual cells may have been present as observed by Zeng (Zeng et al. 2006) but 
escaped detection in this study due to the counting technique (Sedgwick rafter counting cells 
under lower magnification) and low population size. 
 

2.5 Temporal and Spatial Variability 
There are numerous challenges to field data collection for toxic cyanobacteria surveillance 
monitoring and quantification.  Researchers, managers, and regulators struggle to select sample 
locations, sampling technique, and sampling depth appropriately to provide good representation 
of the water body’s bloom conditions.  It is precisely these challenges that one hopes to 
overcome using remote detection methods, but the process of collecting field data for ground 
truthing still requires addressing these issues.  Phytoplankton are not evenly distributed 
throughout the water column, and cell densities can vary 10 to 1000-fold (if not more) between 
surface samples and depth samples. The depth distribution results from the capacity of some 
phytoplankton like Microcystis aeruginosa to depth regulate using cellular packaging and 
vacuoles to move within the ideal photic zone that maximizes their ability to photosynthesize 
during daylight.  Their cell densities at any given spot on the water surface can therefore vary 
across the span of a day due to this vertical variation.  Following on the model of other agencies, 
the Klamath Blue Green Algae Work Group opted to collect surface grab samples to sample 
blooms and make decisions regarding public health risks.  They also collected some samples at 
depth gradiants to help map phytoplankton population trends and some samples integrating 
surface and a 1 meter depth collection were collected for this study.  The more dense a 
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cyanobacterial bloom is, the less relevant depth samples are in a remote detection context since 
the surface reflectance will be dominated by the surface bloom.  When the phytoplankton are 
more evenly distributed in the epilimnion of the water column, there will be some contribution, 
down to a limited depth, to the light reflectance properties at any given point.  
 
Temporal and spatial variation is also created horizontally through ambient wind, water currents 
and other stimulation (boating, recreation, hydroelectric facility operations, etc.). Therefore the 
number of samples collected, their geographic spacing, and the location of the each is important. 
Some monitoring programs have chosen to use just one sample whose measurements for cell 
densities, chlorophyll-a or toxin concentration will be used to make risk management decisions, 
but most try to collect more than one sample.  Others collect collect samples across transects or 
collect one shore and one open water site. Nebraska’s current beach sampling protocol relies on a 
single, mid-beach grab sample (Brakhage 2008; Walker et al. 2008; Brakhage 2009).  In a past 
study of Lake Champlain’s cyanobacteria, Vermont  did one vertical tow at seventeen sites 
spaced over the lake (Lake Champlain Basin Program 2007). New Zealand’s guidelines state that 
a near-shore sample be collected by compositing five sup-samples collected from a 50 cm depth 
along a 20-30 m transect parallel to the shore (Wood et al. 2008).  USGS recommends selecting 
a single representative site when conducting a reconnaissance study to determine presence or 
absence of cyanobacteria, but multiple sites for monitoring or interpretive studies (Graham et al. 
2008).  Due to the temporal and spatial variation, it is difficult to ensure adequate representation 
of the true variability.  The Klamath Blue Green Algae Work Group selected 11 sites spread 
across the reservoirs that include both shore/access points as well as open water sites. This 
decision was partially based on collection time limitations, cost, and consistency with prior work. 
 
In general, it is best to collect samples during the mid-day hours. Ahn, et. al. (Ahn et al. 2008), 
found cyanobacterial depth modulation resulted in optimal Microcystis sampling periods at 12 
noon and 3 pm when the biomass is highest and biomass was lowest at the 9 AM and 5 PM 
sampling times. At noon blooms would be surfacing to maximize photosynthesis.  
Environmental monitoring that describes actual variability is regularly addressed by increasing 
the sample size.  Moisander collected data over a 16 hour period on August 26, 2007 at one site 
in the Iron Gate Reservoir.  Her data (Moisander 2008) is replicated in Figure 2-12 which 
succinctly demonstrates how drastically the density of the bloom can shift over short periods of 
time at any given site.  

 
2.6 Discussion 

The Klamath reservoirs have already displayed a seasonal pattern of toxic cyanobacteria blooms 
which have been well documented since 2005.  Upper Klamath Lake has also had regular algal 
blooms of non-toxic species.  The field data were collected to confirm the trophic status and 
current situation in the reservoirs and to be used in model development and classification of the 
remote sensing data, rather than as a way to characterize the water quality of the reservoirs. The 
Three Gorge Dam Reservoir, on the other hand, as a newly formed water body with changing 
hydrodynamics was monitored to begin to establish the water quality situation with respect to 
cyanobacteria and phytoplankton dynamics as an exploration into the need for further research in 
this area. 
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Nutrient concentrations in TGDR exceed those measured pre-dam. The dissolved inorganic 
phosphorous (DIP) concentrations in the stretch of the Yangtze that comprises the new TGDR 
ranged between 1.5-2.5 μM (~0.14-0.24 mg/L) in April-May 1997 (Liu et al. 2003).  In the 
current study the DIP concentrations had risen to 0.27-0.35 mg/L in April 2006.  Zeng et al. 
(Zeng et al. 2006) found no significant correlation between soluble nutrients and algal abundance 
in the TGDR during their monitoring in April 2005, however they reported much lower DIP 
concentrations of 0.06 ± 0.03 mg/l.  They reported similar findings in a subsequent paper (Zeng 
et al. 2007) which also referred to data collected in the spring of 2004 and 2005.  The Chinese 
Ministry of Environmental Protection (MEP) has published an annual Three Gorges Bulletin 
starting in 2003.  The 2007 Three Gorges Bulletin includes a description of 2006 surface water 
quality in the mainstem of the Yangtze River according to water quality categories (“Grade I-V”) 
defined by the MEP (Chinese Ministry of Environmental Protection 2008) as listed in Table 2-9. 
In April of 2006 the Yangtze River sections corresponding with those measured here were 
classified into Grades III and IV meaning their total phosphorous concentration ranged between 
0.1 and 0.3 mg/L which matches with this study’s data.  Two years earlier in 2004 the MEP 
classified all Yangtze River sections as Grade III or better, with none in Grade I, 6.3% in Grade 
II, and 93.7% in Grade III. 
 
Table 2-9: Chinese MEP Water Quality Categories 
Grade Total Phosphorous Total Nitrogen 
Grade I <0.02 mg/L <0.2 mg/L 
Grade II 0.02-0.1 mg/L 0.2-0.5 mg/L 
Grade III 0.1-0.2 mg/L 0.5-1.0 mg/L 
Grade IV 0.2-0.3 mg/L 1.0-1.5 mg/L 
Grade V 0.3-0.4 mg/L 1.5-2.0 mg/L 
 
Overall cell counts in the TGDR are much lower than would be predicted by the nutrient 
concentrations observed between 2005 and 2007.  According to the Carlson Trophic State Index 
(TSI) (Carlson 1977) eutrophic water bodies are characterized by phosphorus concentrations 
between 0.048 and 0.096 mg/L where blue-green algae begin to dominate and problems with 
algal scums begin.  With increasing phosphorous concentrations the density of algal biomass 
grows as the water becomes more and more hypereutrophic.  The reactive phosphorous 
concentrations in the TGDR as well as the secchi disk transparency would classify it as a 
hypereutrophic water body according to the Carlson TSI.  The shallow secchi depth reading may 
be attributable to the high suspended sediment levels in the main stem of the Yangtze, but the 
phosphorous concentrations are oddly contradictory to the actual phytoplankton populations 
measured.  The reservoir, with the flooding now near completion, shows surprisingly low 
populations of phytoplankton among all taxa (10-80 cell units/ml), given the nutrient 
concentrations and water temperature. The sparse populations of phytoplankton may be good 
news for the large cities that rely on their drinking water from the reservoir which would 
otherwise be susceptible to toxic cyanobacteria blooms.   
 
The fact that dense algal scums have are not yet being regularly detected in the TGDR raises 
questions about other dynamics and water pollutants that may be preventing algae proliferation. 
The unexpected absence of both proliferations of harmful phytoplankton as well as even a 
healthy natural balance of phytoplankton, the basis of the aquatic ecological foodchain may be a 
result of the physical hydrology of the reservoirs whose deep, stratified waters may trap 
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Figure 2.12: Microcystis Spatial Variation Over 16 hours on the Copco Reservoir (Counts measured in gene copies).  Data replicated 
from Moisander 2008. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*These data were made available by Dr. Pia Moisander.
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phytoplankton below the photic zone and thereby inhibit the proliferation of their populations.  
Another explanation may be a disproportionately large population of grazing zooplankton.  
These observations, however, may also be indicative of unsuitable water quality to foster even 
healthy phytoplankton populations.  Increasing levels of untreated industrial water may be a 
factor in this and should be evaluated in more depth in future studies. Xiao Jiang and Tang Xi 
He, two tributaries to the Yangtze both had larger phytoplankton populations than the main stem 
of the Yangtze, despite having lower nutrient concentrations.  These data tend to substantiate the 
latter speculation that industrial pollutants in the main stem might actually by curbing 
phytoplankton growth which would otherwise be expected, but more research is needed.     
 
Furthermore, in July 2008 blue-green algae blooms covered a 25-kilometer stretch of the Xiangxi 
River.  This tributary to the Yangtze River also showed blue-green algae blooms during an 
earlier study (Zeng et al. 2006).  A bloom occurred in Xiao Jiang River, a tributary whose 
confluence with the Yangtze River is at the city of Yunyang where sampling was conducted for 
this study.  A bloom of the green algae, lemna minor, occurred in April 2007 in the spring when 
phytoplankton density is the highest according to our monitoring.  Although the blooms were 
problematic for fishing, boating and other activities in the water they were not toxic 
cyanobacteria.  In May 2007 a large toxic microcystis aeruginosa bloom occurred in Lake Tai 
(Taihu) located near the city of Wuxi which resulted in the contamination of local drinking 
water.  Wuxi is north of the Yangtze River and Tai Hu Lake is connected to the Yangtze 
Watershed much farther downstream of the Three Gorges Dam.  
 
Prior to the construction of the TGD, others predicted a loss of biodiversity and ecosystem 
services from habitat fragmentation (e.g. its reduction as well as spatial reconfiguration) (Wu et 
al. 2003).  The reduction in phytoplankton population diversity observed in this study 
substantiates the occurrence of this fragmentation. However, algal blooms are occurring in the 
Yangtze Watershed as decribed above.   
 
The data presented here did not detect the presence of toxic cyanobacteria blooms in the TGDR, 
however the other water quality data indicate that conditions would be expected to foster harmful 
infestations of these toxic species of phytoplankton.  Due to the level of water treatment in the 
area, water users are at risk of high exposures in the event of a bloom. The status of flooding and 
hyrodologic modification in the TGDR along with the limited number of studies on water quality 
and phytoplankton community in this region make it difficult to form conclusions on trends or 
shifts.  However in combination these studies begin to lay the basis for baseline understanding of 
the ecosystem health and water quality in the TGDR.  This study does indicate a need for regular 
surveillance and monitoring plans in order to protect public and ecological health. Such 
surveillance may be facilitated through the use of remote sensing.  The subsequent chapters 
evaluate the application of remote sensing for these purposes in the context of the Klamath River 
reservoir, where large blooms regularly occur.  Using the Klamath field site to evaluate the 
remote sensing applications made sense so that appropriate classification could be developed for 
actual blooms.  The situation on the Yangtze River, however, clearly indicates a water system 
that may be at risk for future cyanobacterial blooms and a population with regular exposure 
pathways that would put there health at risk in the event of a major bloom in TGDR.  The 
Klamath reservoirs make good field sites for evaluation of the remote sensing tools, and the 
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TGDR is an important case for future applications of successful remote sensing tools (see 
Chapter 3 and 4). 
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3 Hyperspectral Image Analysis 
 
3.1 Introduction 

Mapping, monitoring and management of aquatic environments may be enhanced by remote 
sensing’s synoptic capability for attaining spatial and temporal data over expansive areas 
otherwise logistically unattainable. This is a valuable tool for monitoring toxic cyanobacteria.  
Image analysis of remotely sensed data may provide quantitative information on water depth, 
optical water properties and benthic habitat composition. The visible pigmentation of 
cyanobacteria lend it to remote detection. 
 
This chapter presents the analysis of hyperspectral high spatial resolution (2 meter) imagery from 
SpecTIR.  The company SpecTIR LLC headquartered in Reno, Nevada operates hyperspectral 
remote sensing airborne missions on demand. They offer visible near infrared/short-wave 
infrared (VNIR/SWIR), mid-wave infrared (MWIR) and long-wave infrared hyperspectral 
scanning sensor systems depending on the project needs. Their visible/near-infrared sensor 
provides 60 bands which are each 9.2 nm in width covering the electromagnetic spectrum from 
391-961 nm.  SpecTIR imagery was chosen because 60 bands provide sufficient spectral 
resolution to distinguish spectral signatures for different algal pigments, and the company’s 
physical proximity to the field site made their cost competitive. The spectral resolution of 
SpecTIR is not quite as high, but still comparable to that of MODIS and SeaWiFS imagery 
whose bands are 2-4 nm wide in the same range of the electromagnetic spectrum and which have 
been used to detect, quantify and predict harmful algal blooms in the ocean.    
 

3.1.1 Absorbance and Reflectance Properties of Algal and Plant Pigments 
Chlorophyll-a is the primary photosynthetic pigment in phytoplankton.  It absorbs more blue and 
red light than green.  Satellite and airborne remote sensing make use of the natural incident 
sunlight, a portion of which is absorbed and a portion of which is reflected back where it can be 
detected by the sensors designed for the electromagnetic spectrum. As the concentration of 
phytoplankton in the water increases, the backscattered light increasingly changes from blue to 
green (Yentsch 1960). 
 
Chlorophyll-a shows peak absorbance at 433/435 nm and 686 nm.  Since it absorbs in the blue 
and red portion of the electromagnetic spectrum, it appears green.  Carotenoids usually absorb 
high energy light at or below 500 nm.  Phycobilins have peak absorbance between 550 and 650 
nm.  These absorbance features seen as peaks in an absorbance spectrum will appear as troughs, 
the exact opposite, in a reflectance spectrum.  Figures 3-1, 3-2 and 3-3 are reproductions from 
Rowan 1989 (Rowan 1989) showing the absorbance spectra of pure chlorophylls, carotenoids 
and biliproteins/phycobilins including phycocyanin. 
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Figure 3-1: Absorption spectra of chlorophyllous pigments, (A) Chlorophyll a and b in diethyl 
ether.  (B) Chlorophyll c1 and c2 in acetone containing 2% pyridine. (C) MgDVP in 90% 
acetone. (Reproduced from Figure 3-3 of Rowan, 1989) 
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Figure 3-2: The absorption spectra of lycopene (…), a carotene without cyclic end-groups, and β-
carotene (―) and echinenone (---), showing the effect of β-cyclization and insertion of a 
carbonyl group, respectively. (Reproduced from Figure 4-4 of Rowan, 1989) 
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Figure 3-3: Absorption spectra of the biliproteins from the Cyanophyceae and Rhodophyceae. 
(reproduced from Figure 5-2 of Rowan 1989) 
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Figures 3-4 shows the reflectance spectra for several algae pixels on the left and several 
terrestrial vegetation pixels on the right which were visually selected to show the variation within 
and between these two classes in the SpecTIR image.  Figure 3-5 shows the locations of these 
pixels which include both open water and shoreline sites for algae. As expected, the algae spectra 
show an absorbance trough at 631 nm characteristic of the bandwidth where phycocyanin 
absorbs and another absorbance trough 679 nm.  Another trough is visible at 499 nm and a very 
small possible absorbance feature appears at 435 nm.  One of these may be the second 
absorbance peak of chlorophyll typically found at 433 nm and the other may be an absorbance 
due to one or more carotenoids.  In contrast all but the 631 nm absorbance peak are clearly 
visible in the terrestrial vegetation spectra. The absence of the phycocyanin peak is characteristic 
of this pigment unique to cyanobacteria.  
  
Figure 3-4: SpecTIR Reflectance Spectra for water surface algae (left) and terrestrial vegetation 
(right) 
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Figure 3-5: Sample Spectra Pixel Locations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The pronounced change in reflectance in the 680-800 nm is called the red edge, and is used in 
remote sensing of terrestrial environments to map vegetation as it emanates from the re-emission 
of light from chlorophyll-a (Horler et al. 1983; Jensen 2007).  Even just a small amount of water 
overlying the algae or any vegetation will begin to diminish (at 2 cm) or eliminate (at 2 m) this 
“red edge”.  The spectra for algae on the water surface versus those dispersed in the water 
column do show such an attenuation in the red edge differential.  However, this characteristic 
appears to be less effective in algae/vegetation discrimination than that of the 631 absorbance 
trough given that the spectra for algae 10 and algae 6 in Figure 3-4 both show large “red edge” 
features (e.g. reflectance peaks at 746 nm that far out reach the reflectance peak at 555 by a 
factor of 2 or 3) comparable to those observed in vegetation spectra. This characteristic may 
reflect that much of the algae is largely concentrated on the water surface, and therefore it’s 
chlorophyll-a re-emits much like terrestrial vegetation. 
 
The water algae and the terrestrial vegetation are visibly different in the near infrared range of 
the spectrum greater than 775 nm.  Both contain reflectance peaks at 785 nm and 843 nm, and an 
absorbance trough at 824 nm. However, the ratio of the height of the 843 peak (measured from 
the 824 nm trough) to the height of the 785 nm peak (measured from the 824 nm trough) is larger 
and closer to one for the terrestrial vegetation than for the water algae.  Figure 3-6 shows a 
sample spectrum and how this ratio (referred to from here on as the NIR ratio) is calculated. 
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These are just some of the spectral features important in defining and quantifying the presence of 
freshwater cyanobacteria and the rich spectral dataset offers many potential approaches to this 
question.  Based on these observations of the spectral signatures the following spectral bands 
were selected for inclusion in the statistical analyses: 435, 481, 499, 555, 631, 650, 679, 746, 
785, 824, 843.  These eleven wavelengths will be referred to as key wavelengths subsequently.   
 
A simplistic 2-dimensional scatter plot of the red wavelength 650.59 nm versus the blue 
wavelength 481.60 nm (see Figure 3-7) can be used to distinguish between the spectral features 
in the image. Figure 3-8 shows patches and swaths within the scatter plot (on the left) that have 
been highlighted to create different color classes whose corresponding pixels are highlighted to 
match in a crop of the SpecTIR image (on the right). Figures 3-9 and 3-10 show the same thing 
using the blue wavelength 481.60 nm versus the green wavelength 555.38 nm.  This technique is 
highly subjective because as many or as few classes as desired can be created.  Both images 
however show good distinction between chlorophyll and other algal pigments located over the 
water surface and the chlorophyll found in land vegetation.  The unclassified cropped image is 
shown in Figure 3-11.   
 
 
Figure3-6: Example Spectra Showing Measurements used to Calculate NIR Ratio 
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Figure 3-7: 2-Dimensional Scatter plot of red wavelength 650.59 nm versus the blue wavelength 
481.60 nm 

 
 
Figure 3-8: Classes created in Red versus Blue 2D scatter plot to distinguish spectral features 
(Left) and Classes shown in SpecTIR image as created in 2D scatter plot (right) 
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Figure 3-9: 2-Dimensional Scatter plot of blue wavelength 481.60 nm versus the green 
wavelength 555.38 nm 

 
 
Figure 3-10: Classes created in Blue versus Green 2D scatter plot to distinguish spectral features 
(Left) and Classes shown in SpecTIR image as created in 2D scatter plot (right) 

 
 

Figure 3-12 shows the same 2-dimensional scatter plot of the blue versus green wavelengths, but 
this time a single class has been created that mostly encompasses nothing but the water.  There is 
some misclassification, as small patches over the land have also been highlighted. Maximum, 
minimum, mean and standard deviation of the spectral curves for the pixels encompassed within 
this single class are shown in Figure 3-13.  The maximum and minimum can be roughly 
interpreted as representative of the range in algal pigment concentrations present in the field: 8-
12,805 μg/L chlorophyll-a (see Figure 2-6) and 2-164 μg/L phycocyanin .   
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 Figure 3-11: Unclassified cropped SpecTIR image 

 
 

Figure 3-12: Single lass created in Blue versus Green 2D scatter plot to distinguish spectral 
features (Left) and Class shown in SpecTIR image as created in 2D scatter plot (right) 
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Figure 3-13: Blue v. Green 2D Water Class Statistics (Max, Min, Mean, Std. Dev.) and just Max 
and min to the right. 

 
 

The spectral number reflectance data (see Section 3.2.2: Image Pre-Processing , p. 3-19) for the 
pixels corresponding to the locations of five of the water sampling sites were extracted.  These 
five sites had differed greatly in their chlorophyll-a concentrations (See Table 3-1). They were 
normalized relative to the largest value and their spectral curves are shown in Figure 3-14.  As 
expected the spectra span the range captured in the image and depicted in Figure 3-13, however 
the order of the spectra does not align exactly with the magnitude of the chlorophyll-a 
concentration.  The highest concentration is in fact the spectra with the largest peaks, but the 
lowest concentration has the second largest peaks.  The other three concentrations fall in the 
expected order after that.  This may reflect the spatial and temporal variability described in 
Chapter 2.  If the water samples could have all been collected at exactly the same instant in time 
as the imagery was acquired, we would expect that the pigment concentrations would be an 
effective way to train and/or evaluate the remote sensing data.  The same limitations of ground 
data collection that weaken its explanatory power in toxic cyanobacteria surveillance and compel 
the need for synoptic techniques also hamper the comparisons between the two types of data. 
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Table 3-1: Chlorophyll Concentrations for Selected Sites 
Site [Chl-a] (ug/L) Normalized to Site 036a 
010a 8.6 0.001
015a 20.6 0.002
030a 365.6 0.029
004c 3378.9 0.264
036a 12805.3 1.000

 
In Figure 3-15 the two satellite images of the reservoirs acquired within 24 hours of each other 
show the differences in the pattern of bloom dispersion just within 1 day due to the vertical and 
horizontal variability discussed in Section 3.3.  This means that the same point at the exact same 
geographic location can contain varied levels of cyanobacteria if sampled in the morning versus 
the evening or on two consecutive days as was necessary in order to complete the ground data 
collection for these reservoirs.   
 
The wavelengths 650, 481, and 555 were chosen for the 2-dimensional scatterplots based on 
known properties of chlorophyll-a, phyocyanin and carotenoids (Richardson 1996).  However 
suspended sediments, dissolved organic matter, and humic acids as well as atmospheric 
interference can all combine to complicate the reflectance spectra (as compared to those of pure 
substances) and therefore their interpretation. The methods of classification described below 
were used to compensate for these sources of error, noise, and interference and to  determine 
which components of the spectra predict the unique pigment combinations of chlorophyll-a and 
phycocyanin characteristic of blue-green algae and thereby distinguish them from the spectra of 
terrestrial vegetation.  This study analyzed the image with four different analytical/classificaton 
methods: unsupervised classification, linear regression, linear discriminate analysis, and tiered 
decision tree classification.  Each is described below together with the results of the analysis.  
 

3.2 Methods and Results 
3.2.1 Image Acquisition 

I scheduled an airplane pass-by for July 27, 2007 to acquire the 60 band (each 9.2 nm in width 
from 391-961 nm) 2-meter resolution image from SpecTIR using a visible and near infrared 
sensor with a a progressive scan CCD (charged couple devise) camera.  Technical difficulties 
prevented acquisition on the 27th and the image was collected the following day on July 28 
between 9:27 and 10:11 a.m. The image was collected in four flight-lines that were later 
assembled with the mosaic tools available using ENVI software. The sensor was flown aboard a 
Cessna 206 at an altitude of approximately 4,000 m above ground level, making the swath width 
2720 m, and the survey was completed within an hour time period.   
 

3.2.2 Image Pre-processing 
Reflectance and radiance are often used interchangeably in general discussions, but radiance is 
the true uncorrected light energy reflected by an object or element.  It is reported with the units 
of watts/steradian/square meter and its magnitude is dependent upon the intensity of the light 
source, the incident angle or direction from which the light source emanates, the object’s 
orientation, and any interference in the light’s path through the atmosphere.  Therefore the raw 
radiance numbers are not interpretable until they have been corrected for these influences.  
Atmospheric correction calibrates the imagery by converting the at-sensor radiance data to unit-
less reflectance values that are ratios of the amount of light leaving the target to the amount of  
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Figure 3-14: Relative Chlorophyll Differences and Spectra
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Figure 3-15 Satellite Images on Two Consecutive Days (The top image shows SpecTIR – 
collected 7/28/07 09:27-10:11 Pacific Time, 2 m resolution. The bottom image shows IKONOS 
– collected 7/27/07 12:09 Pacific Time, 1 m resolution.) 
 
 

 
 

light striking the target. In any remotely sensed scene, the atmosphere can vary widely in terms 
of suspended aerosols which both attenuate the light passing through and scatter it.  This in turn 
can result in inaccurate calculations of land use classes due to the altered light detected by the 
instrument sensor. 
 
SpecTIR data are provided in two separate files. In one the data are in radiance units scaled by a 
factor of 1000 such that a pixel value 4500 designates an actual radiance value of 4.500 
mW/cm2/steradian/m.  In the other the data are converted to reflectance scaled by a factor of 
10,000 so a value of 3000 is actually 0.3000.  The reflectance data is corrected using a SpecTIR 
proprietary program based on a Savitsky-Golay algorithm which handles adjustments of 
atmospheric absorption features associated with CO2 and water. The proprietary program 
implements the industry standard MODTRAN4 radiative transfer code. Despite the many 
assumptions that are used in these atmospheric corrections as compared to the purer calibrated 
radiance data, and although Song et. al. (Song et al. 2001) concluded that atmospheric correction 
does not necessarily improve the classification and is unneeded in many remote sensing 
applications as long as the training and calibration data come from the same time and place, the 
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reflectance data corrected for atmospheric interference were used in the subsequent analyses 
following standard practice in remote sensing science.   
 
The data are georeferenced with either a 3-ring laser gyro-based Inertial Navigation System 
(INS) or a Fiber Optic Gyro/Mems-based system.  SpecTIR has the entire 10 meter resolution 
NED digital elevation model (DEM) database for the continental United States which is used to 
provide orthorectified hyperspectral imagery. The signal-to-noise ratio is 500:1 to 1,000:1 in 
regions away from the water absorption bands near 900 nm. The spatial accuracy of the data is 
+/- 8 meters (2 pixels) after orthorectification using a USGS digital elevation model. 
 

3.2.3 Unsupervised Classification 
Unsupervised classifications were used as the first pass to quickly look at how easily chlorophyll 
and other pigments of water phytoplankton could be distinguished from those contained in land-
based vegetation.  K-means is just one of several ENVI incorporated tools for unsupervised 
classification. It is a clustering algorithm using Euclidean distance as a metric and doesn’t 
generate any kind of model to interpret the contribution of individual bandwidths.  Another 
disadvantage is that it requires that the user input the number of clusters (K) and poor results 
may be from an inappropriate choice for this parameter. Data (X(n), where n runs from 1 to the 
number of data points N – in this case the number of pixels in the image) are grouped by 
minimizing the sum of squares distances (d) between data and the corresponding data centroid. 
Each vector x has i components (in this case, the 60 bands in SpecTIR), xi. 
 

2)(),( yixiyxd
i

−= ∑  

 
The means for the K clusters (m1…mk) may be specified randomly or by some speculative 
formulation. The process is iterative by which each data point n is assigned to the cluster with the 
nearest mean. The cluster means are then recalculated based on the average of all the data points 
assigned to that cluster.  The process repeats until the assignments no longer change (MacKay 
2003).  
 
Figure 3-16 below shows a K-means unsupervised classification using 20 clusters.  The 
algorithm is able to separate the water relatively well however the variations in bloom density 
within the water are not well defined and there is considerable misclassification in large swaths 
of the water (see large green and purple patches of non-algae classes within the boundaries of the 
water algae class shown in red in Figure 3-16). Linear regression was applied next to begin to 
identify the spectral combination and model that could best define the algal blooms.  
 

3.2.4 Linear Regression 
Linear regression was used to attempt to develop a model predicting pigment concentrations or 
cell counts from spectral reflectance data identifying the bandwidths that are most relevant.  The 
chlorophyll-a pigment concentrations (a proxy for total cyanobacteria cell counts) from ground 
truth field data (see Chapter 2) were used as the dependant variable with the reflectance data 
from the pixels corresponding to the GPS locations where the field samples were collected used 
as the independent variables.  Despite the large spatial mobility (see section 2.5) over relatively 
short periods of time (hours), the imagery’s pixel reflectance was only moderately correlated (R2 
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< 0.7) with the actual field measurements of phytoplankton chlorophyll.  The reflectance values 
at the key wavelengths (all eleven are listed in for model 1 in Table 3-2) were included in the 
first model and removed in a process of stepwise regression.   
 
Figure 3-16 

 
 
 
Table 3-2 shows the different regression models, their R2, and the number of misclassified pixels 
in each category.  The best fit model included the wavelengths 499, 555, 650, 746, 785, 824, and 
843. 
 
The poor relationship between the chlorophyll concentrations and the reflectance peak in 
Band650 (related to chlorophyll) is shown in Figure 3-17. The field data, however, do provide a 
guide to the range in pigment concentrations/cell densities present in the field and this range can 
be linked with the range of relevant spectral data (e.g. wavelength reflectance and/or values 
calculated from them such as ratios, derivatives, etc.)  The linear regression indicates that 
wavelengths 435, 481, 631, and 679 are less important in predicting presense of cyanobacteria 
and confirms the usefulness of the others in this task. Since the dependent variable in linear 
regression must be a continuous/measured variable, linear discriminant analysis was next used to 
evaluate land use categories as the dependant variable instead of the field sample pigment 
concentrations which were impacted by temporal variability.  Using pixels categorized by land 
use in linear discriminant analysis also allowed a much larger sample size, since only 62 field 
samples could be collected and analyzed for chlorophyll-a for this study with the physical 
constraints involved in collecting them within twelve hours of the imagery acquisition.  
 

3.2.5 Linear Discriminant Analysis 
Linear discriminant analysis was used to find a model that identified the bandwidths that 
contributed the most towards separate variations in density of water phytoplankton and towards 
differentiating them from other land features (e.g. soil, foliage, roads, grasslands, etc.).   
 
Linear discriminant analysis (LDA), like principle component analysis, classifies data and 
reduces dimensionality, but LDA uses data classification instead of feature classification.  Unlike 
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PCA, the shape and location of the original data sets is not changed.  The separation of any two 
data points is maximized in LDA by maximizing the ratio of between-class variance to the 
within-class variance (Balakrishnama and Ganapathiraju). The classification problem has several 
objects with a set of features (e.g. explanatory variables) measured from those objects and the 
objects can be put into several different groups based on the measurements of those features.  In 
this case the objects are the individual pixels of the image that I have grouped into land use 
classes (two classes of algae, three classes of soil, and five classes of vegetation) based on visual 
assessment, and their features are the reflectance at each of the different band wavelengths. The 
method then looks for the set of features that can best determine group membership of the object 
and the classification rule or model to best separate those groups. 
 
Using a LDA model assumes that the groups are linearly separable, that the population 
covariance matrices are equal for each group, that each group is drawn from a population with a 
multivariate normal distribution, and that no variable is a linear combination of any other 
variable (Klecka 1980). 
 
To generate a large sample size of pixels grouped into land use classes, I made use of the 
unsupervised classification to generate random samples within what could be separated into 
algae, soil and vegetation groups with my visual assessment as a trained user familiar with the 
site. The log of the eleven key wavelengths described earlier (in section 3.1.1. and then used in 
the linear regression) were selected for inclusion in the linear discriminant analysis. The F-tests 
associated with each dimension are exact and Table 3-3 shows that only 7 of the 9 dimensions 
created with the discriminant analysis are statistically significant (p<0.001). Dimension 1 alone 
explains 77.76% of the separability between the groups, and only the first three dimensions are 
needed to explain 98.84% of the separability.  In Table 3-4 the standardized canonical 
coefficients are summarized for all nine dimensions.  The grey highlights the coefficients which 
make the largest contributions to dimension 1, 2 and 3.  For dimension 1 this contribution comes 
from bands 631, 650 and 679. Absorbance troughs from phycocyanin are seen in the remote 
sensing spectra at 631 and 679 (see Figure 3-3) and the reflectance peak between them is at 650.  
These three bands are therefore particularly important in defining the part of the spectra that is 
uniquely different for the pixels containing cyanobacteria.  Bands 746 and 785 make the largest 
contributions to Dimension 2 while bands 481 (where caretenoids often absorb) and 679 
dominate in Dimension 3. Dimensions 8 and 9 are not significant, and this may be because of the 
tight correlation between the independent variables. Table 3-5 shows the correlation matrix 
between the natural logs of the eleven key wavelengths showing that all the different bands used 
as the independent variables have high correlations with one another.  All of the correlations are 
greater than 0.66 and half of them are greater than 0.95.  
 
The accuracy of this classification by LDA was tested using the leave-one-out cross-validation 
technique which classifies the same observations that were used to estimate the discriminant 
model holding each data point out separately and than re-generating the model on the remaining 
observations and then classifying the one that was held out.  All the data points are therefore 
used once as the validation data, and the misclassifications are summed over all the iterations and 
summarized in Table 3-6.  The grey shading highlights where algae were misclassified as 
vegetation or visa versa. Only 16 pixels of the 2645 were misclassified between algae and 
vegetation (< 1% error rate).  The groups include several different types of vegetation or several 
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Figure 3-17: Chlorophyll-a Concentration versus Reflectance at 650 nm 
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Table 3-2: Linear Regression Model Results          

  Dependant Variable Independent Variables (reflectance at wavelengths listed below) R2 
Adj. 
R2 

Model 1 Continuous ([Chl-a]) 435 481 499 555 631 650 679 746 785 824 843 0.7454 0.6606
Model 2 Continuous ([Chl-a])   481 499 555 631 650 679 746 785 824 843 0.7454 0.6705
Model 3 Continuous ([Chl-a])     499 555 631 650 679 746 785 824 843 0.7392 0.6721
Model 4 Continuous ([Chl-a])     499 555   650 679 746 785 824 843 0.7346 0.6757
Model 5 Continuous ([Chl-a])     499 555   650   746 785 824 843 0.7305 0.6795
Model 6 Continuous ([Chl-a])     499     650   746 785 824 843 0.7074 0.6613

 
 

Table 3-3: Tests of Discriminant Dimensions: canonical linear discriminant 
analysis 

Dimension Corr. 
Eigen 
value 

Cumulative % 
of Variance F df1 df2 p 

1 0.9885 12.6284 77.76 378.01 99 1.90E+04 0.0000
2 0.9510 9.4680 95.03 184.27 80 1.70E+04 0.0000
3 0.8224 2.08896 98.84 81.154 63 1.50E+04 0.0000
4 0.5697 0.48046 99.71 31.455 48 1.30E+04 0.0000
5 0.3135 0.10903 99.91 11.541 35 1.10E+04 0.0000
6 0.1760 0.03198 99.97 5.229 24 9.18E+03 0.0000
7 0.1173 0.01395 100.00 2.7981 15 7.26E+03 0.0002
8 0.0404 0.00164 100.00 0.67458 8 5.26E+03 0.7144
9 0.0203 0.00041 100.00 0.36279 3 2.63E+03 0.7799
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Table 3-4: Standardized Discriminant Coefficients       
    Dimension 
    1 2 3 4 5 6 7 8 9 

log435 0.639738 -0.3751106 -1.46353 -1.09397 -0.25088 2.28277 1.264451 2.96957 -3.84975
log481 -2.16046 1.700813 3.440948 2.081637 -5.65542 -9.0219 -3.06471 -22.8706 1.679951
log499 0.535206 -0.3679338 1.271371 1.288637 5.731963 7.142347 0.525136 23.34991 3.126471
log555 1.512576 -3.051311 -2.06224 1.64601 -0.99722 1.675152 4.45066 -2.70049 1.721658
log631 -7.63226 2.08656 -0.07736 -0.12113 8.733434 -6.92124 -7.04349 -4.05749 -3.25214
log650 10.86262 0.0113087 2.198957 -7.79437 -7.23247 1.682575 -8.52325 5.61328 -3.15134
log679 -3.89028 -0.9434206 -2.91619 3.519474 -0.93575 3.23302 12.87357 -2.67426 3.567978
log746 -1.90726 3.088629 0.340806 1.514177 9.110604 2.256136 1.040161 5.102164 -1.81945
log785 0.848163 -3.393951 -0.59392 -2.98706 -10.6795 -11.3805 2.937463 -1.95442 -1.12591
log824 0.740849 -0.1701463 1.249756 2.723467 2.70608 6.481963 -6.7003 -1.17803 0.782855
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log843 -0.78312 0.6268713 -1.00586 -1.03144 -1.2002 2.311449 1.977214 -1.27898 2.001622
 
 

Table 3-5: Correlation Matrix between Log Wavelengths 
  log631 log435 log481 log499 log555 log650 log679 log746 log785 log824 log843 
log631 1           
log435 0.973 1          
log481 0.9852 0.9945 1         
log499 0.9884 0.9917 0.9995 1        
log555 0.9551 0.9313 0.949 0.955 1       
log650 0.9988 0.9704 0.985 0.9887 0.9609 1      
log679 0.9943 0.9651 0.9755 0.9778 0.9201 0.9913 1     
log746 0.7604 0.6941 0.6911 0.6949 0.6971 0.7443 0.7778 1    
log785 0.7375 0.67 0.6659 0.6695 0.6675 0.7204 0.7581 0.999 1   
log824 0.739 0.672 0.6671 0.6705 0.6632 0.7214 0.7613 0.9979 0.9994 1  
log843 0.7311 0.6658 0.6595 0.6621 0.641 0.712 0.7581 0.994 0.9969 0.9984 1
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Table 3-6: Leave One Out Classification Summary                 
   Classified 
    algae1 algae2 soil soil2 soil3 veg2 veg3 vegdark vegshadow vegsoil  Total 

algae1 326 13 0 0 0 0 0 0 2 0 341
algae2 4 68 0 0 0 0 0 6 0 0 78
soil 0 0 317 55 2 0 0 0 0 26 400
soil2 0 0 19 150 30 1 0 0 0 0 200
soil3 0 0 0 15 84 1 0 0 0 0 100
veg2 0 0 12 5 0 258 2 0 0 19 296
veg3 0 0 0 0 0 1 245 0 23 29 298
vegdark 0 8 0 0 0 0 3 178 33 0 222
vegshadow 0 0 0 0 0 0 3 11 245 0 259
vegsoil 0 0 47 0 0 49 25 0 0 330 451

Tr
ue

 G
ro

up
 

Total 330 89 395 225 116 310 278 195 303 404 2,645
 
 Table 3-7: Accuracy of SpecTIR Classification Decision Tree 

 Low MedLow MedMed MedHigh High Scum Land 
Commission Error 1.92% 0.38% 2.51% 3.71% 21.54% 27.66% 0.07 % 
Area equivalent of pixel 
error 

~64,164 
m2 

~13,296 
m2 

~112,684 
m2 

~90,480 
m2 

~287,720 
m2 

~250,976 
m2 

 

User Accuracy 98.08% 99.62% 97.49% 96.29% 78.46% 72.34% 99.93 
% 
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different types of soil and misclassification between those groups is not pertinent to the purpose 
of this model. 
 
Although the LDA model generated in Stata 9.0 could not be applied to predict other pixels 
within the spatial framework of ENVI or ERDAS, it serves to further the understanding of the 
relationship between the different spectral bandwidths and the pigments in phytoplankton. This 
approach with LDA solved the issue of spatial and temporal inaccuracies in the ground data and 
gave helpful information about the relevant bandwidths to be included in the model.  
Unfortunately it requires that I (or some trained analyst) do a first pass on the imagery to define 
the categories and select the input pixels. Once generated the ENVI software had no way apply 
the model to the whole dataset, which is so large with this imagery ,and therefore could not be 
used to classify the whole image, but only an exportable random selection from within the 
categories.  Decision trees were used next as a tool that allows one to incorporate existing 
knowledge of the different variables, including that generated by the previous analyses.  
 

3.2.6 Decision Trees 
Differentiation between the levels of cyanobacteria bloom density and between all cyanobacteria 
and vegetation and other land use categories is possible using a tiered decision tree which 
specifies criteria within the spectra that allow the creation of mutually exclusive classes.   
 
Many others have successfully used classification and regression tree approaches to classify crop 
type (Yang et al. 2003), land cover (Hansen et al. 1996; Friedl and Brodley 1997), and wetlands 
(Wright and Gallant 2007) in remote sensing imagery. Decision trees have several advantages 
over neural networks or other approaches (Hansen et al. 1996; Friedl and Brodley 1997; Yang et 
al. 2003). They can efficiently handle non-parametric data, nonlinear relationships, missing data, 
numerical data, categorical data, and non-normal, non-homogeneous data. Decision tree 
classifiers need not assume the input data displays the central tendency or has a particular 
distribution. Finally they are computationally efficient and conceptually simplistic such that the 
rules can be easily interpreted and the relative importance of different variables becomes 
apparent. The hierarchical nature of the predictor variables makes the interpretation explicit and 
fairly intuitive to identify those that most contribute to the discrimination of any particular class. 
Decision tree algorthms exceeded the performance of maximum likelihood and linear 
discriminant function classifiers (Pal and Mather 2001) in a land use classification of Landsat-7 
ETM+ data for an agricultural area. Classification tree theory is described in detail in Breiman et 
al. (1984) 
 
Fourteen criteria were used in the tiered decision tree. Criteria were selected based on knowledge 
of the spectral characteristics of the algal pigments, water, vegetation and land which were 
described in section 3.1.1.  This understanding was furthered by the results of the linear 
regression and the LDA.  The spectral characteristics of the output classes were evaluated after 
each criteria was added to inform the definition of the subsequent criteria..  Based on the known 
areas of land with vegetation versus water impacted by cyanobacteria, spectra for misclassified 
and correctly classified pixels were examined in order to select the best next criteria.  The 
process was repeated until visual inspection of the final classified map continually showed no 
improvement in class area refinement. There may be better decision trees for the data or multiple 
trees with comparable performance, but the tree captures the spectral features observed by a 
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Figure 3-18: Tiered Decision Tree for SpecTIR
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manual rather than computerized selection and it establishes the feasibility of classifying these 
data for caynobacterial bloom surveillance in this way.  Figure 3-18 below shows the final 
decision tree used for the SpecTIR image.  All the features on the land (e.g. the groups depicted 
as LAND 1-7 in Figure 3-18) were combined into one single class and six separate 
cyanobacteria/algae groups within the water were created corresponding to varying 
cyanobacteria cell densities: cyanobacteria scum, high, medium-high, medium-medium, medium-
low, low and water/shadow (water without algae).  The selection of each criterion is described 
below. 
 
Notation: b= bandwidth, GT = greater than, LT = less than, EQ = equal 
Criterion 1-1: b669 GT b631 
This criterion separates out much of the soil, sand, clay and other ground surface pixels from the 
vegetation, water and algae.  Sample spectra from the image of vegetation pixels, land/soil 
pixels, and algae pixels are shown in Figure 3-19.  Figure 3-20 shows sample spectra for the 6 
different categories of algae. Their spectra slope upward in the visible and the near infrared 
(NIR) range, while vegetation and algae have pigment absorption in the visible red around 669 
nm (0.669 μm).  Therefore the pixels that are true for this criterion are land. 
 
Criterion 2-1: b669 GT b660 AND b746 GT b707 
Some of the land/soil pixels are mixed with vegetation and slight absorption troughs still occur in 
the red wavelengths around 669 nm.  This criteria pulls out a small group of these mixed pixels 
by shifting the criteria slightly to look for b669 greater than b660 (instead of b631) and includes 
the additional requirement that their be a steady increase in reflectance in the near infrared 
between b707 and b746.  The latter does not occur in water, but does occur in water covered in 
algae.  Clear water absorbs in the NIR, but the  
higher the algae density in the water the greater the reflectance in the NIR. The pixels that are 
true for this criteria are land (some mixed vegetation but no algae or water). 
 
Criterion  3-1: b650 GT b641 OR b650 EQ b641 OR b622 GT b631 AND b641 GT b631 
Algae have a peak at 650 nm formed by the trough at 631 nm from phycocyanin absorption and 
the trough around 669/679 nm from chlorophyll absorption.  This criterion highlights the peak at 
650 and therefore pulls out the vast majority of the algae for the pixels true for this criteria.  
 
Criterion 4-2: (b746-b600)/(b746+b600) GT 0.6 
The pixels that were true for criteria 3-1 are mostly algae and some vegetation.  The normalized 
difference vegetation index (NDVI) is used to separate them.  Those pixels with an NDVI greater 
than 0.6 (e.g. true for this criteria) are mostly vegetation on land with the exception of the 
extremely thick algal scum that attains a (NIR-R)/(NIR+R) reflectance ratio similar to 
vegetation.   
 
Criterion 5-3: b593 LT b612 
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Figure 3-19: Sample SpecTIR Spectra 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a)       b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c) 
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Figure 3-20: Spectra for Categories of Phytoplankton Bloom Density 
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Criterion 5-4: b593 LT b612 
The same criterion is applied to both the true and false pixels from criteria 4-2.   
 
For the pixels that were true for Criteria 4-2, this now separates the scum (false since b612 > 
b593) from vegetation.  Because the algae scum contains phycoyanin which absorbs at 631 
creating a trough and making b612 less than b593 (rather than the other way around) for the 
spectra to slope down into the trough, the scum are false for this criteria. 
 
Criterion 6-5: (b746-b600)/(b746+b600) GT 0.45 
All the false pixels for criteria 5-3 are algae.  Criteria 6-5 separates the patches of algae with the 
highest density using the NDVI as in criteria 4-2.  This time the criteria looks for pixels with an 
NDVI greater than 0.45.  The pixels that are true are high density algal bloom.  
 
Criterion 7-9: (b746-b600)/(b746+b600) GT 0.25 
The next criteria separates out the next level of algal bloom density (Medium-High) using NDVI 
greater than 0.35. 
 
Criterion 8-17: b746 GT b650 
This separates out the next level of algal bloom density (medium-medium) using the fact that the 
higher densities have reflectance in the NIR (b746) that exceeds their reflectance in the red band 
(b650).  The pixels true for this criterion are the medium-medium algal bloom density.  Lower 
density blooms in the water (pixels false for this criterion) show more of the absorbance in the 
NIR characteristic of water. 
 
Criterion 9-33: b746 / b688 LT 1 
This separates the medium-low algae from the low algae based again on high reflectance in the 
NIR from those pixels with more algae.  The reflectance in b746 in the NIR is greater than 
reflectance in 688 for the medium-low algae (is it is for all the other higher density algae classes, 
but for the lowest algae class, b688 is less than b746.  The reflectance in the key absorbance 
troughs at b631 and b679 is incrementally less moving from high algae density to lower algae 
density, but the variability within each class limited the efficacy of straight values in any band as 
a criteria. 
 
Criterion 4-1: b863 GT b804 
The pixels that were false for criteria 3-1 were mostly land, but some water/algae pixels were 
also included. Criteria 4-1 uses the peak at the start of the NIR followed by a negative slope 
down as the wavelength increases.  This absorbance in the higher range of the NIR may be a 
result of water mixed into the pixels, as vegetation does not display this feature.  The pixels that 
are false for this criterion include high scum pixels that may have some aquatic vegetation mixed 
in as they didn’t display the characteristic absorption troughs at 631 and 669/679 that were used 
to separate the most of the other algae pixels in Criteria 3-1.   
 
Criterion 5-1: b804 EQ 0 or b804 EQ -9999 
Also mixed into the pixels that are false for Criteria 4-1 are the empty space pixels from the edge 
of the image.  These are easily removed with Criteria 5-1 as all values for all wavelengths in 
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those empty pixels are either zero or -9999. b804 was used in this criteria, but any wavelength 
could be used here without affecting the result. 
 
Criterion 5-2: (b746-b600)/(b746+b600) LT 0.6 
Like Criteria 4-2 this criteria is again using the NDVI to separate out vegetation.  In this case the 
false pixels whose NDVI is greater than 0.6 will be vegetation or non-algae land pixels.  
 
Criterion 6-4: b603 LT b593 
Some of the nonalgae is still misclassified as algae.  The nonalgae dip down at 583/594 and then 
go up.  The algae don’t have this trough.  The algae trough is at 622/631. Those that are true for 
this criterion are water with some but very little algae. 
 
Figure 3-21 shows the true color SpecTIR image and Figure 3-22 shows the image classified 
using the above tiered decision tree criteria. Figures 3-23 and 3-24 show a smaller scale cropped 
enlargement of the true color and the classified image.  Figure 3-25 a-f shows this cropped area 
with each of the six algae layers overlaid separately. 
 
Image classifications are generally evaluated by measuring the commission and omission error, 
the producer’s and user’s accuracy, and a kappa statistic.  Commission error measures how many 
of the pixels within a given generated class are actually known to be part of another feature and 
therefore have falsely been assigned to the class (e.g. false positive rate).  Omission error 
measures how many pixels known to be part of given feature, have been erroneously left out of 
the class representing that feature (e.g. false negatives). Producer’s Accuracy measures the 
probability that given pixels known to be in a particular class are actually classified into that 
class (e.g. sensitivity/specificity). User’s accuracy measures the probability that a pixel classified 
as a given class is truly part of that class (positive/negative predictive value). 
 
All of these except the kappa statistic are calculated for each individual class by comparing the 
pixels assigned to that class to the pixels known to be a part of that class from ground truth 
regions of interest (ROIs).  These ground truth regions of interest (ROIs) were created manually 
by visually identifying and assigning the area of the reservoirs to one ROI and the surrounding  
land area to another ROI. The measures of accuracy for the classification were calculated by 
comparing the areas assigned to the land and algae classes to these two ROIs.  The percent 
commission errors in Table 3-7, therefore, show the percent of pixels within a given 
cyanobacteria class that are contained erroneously within the land ground truth ROI or the 
percent of pixels within the predicted land class that are erroneously assigned to one of the water 
ground truth ROI.  All but that of the cyanobacteria high density and scum have less than 4 % 
commission error. 
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Figure 3-21: True-Color SpecTIR Image 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-22: SpecTIR Image Classified with Tiered Decision Tree 
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3.3 Discussion 
One key challenge to these data is the large spatial mobility over relatively short periods of time 
(hours).  As a result the time required to mobilize across the field area to collect ground truth 
data is prohibitive as the system is constantly in flux making the training of any classification 
using ground truth data potentially flawed due to the shifts in blooms within the water between 
the time of remote data collection and field data collection for any given site. Jernakoff 
(Jernakoff et al. 1996) asserts that ground-truthing must be done within 30 minutes of flight 
times. This limitation is partially remediated in larger systems where the size of the water and the 
harmful algal bloom are large enough that course spatial resolution can be used without 
compromising the interpretation of variation within the system, as is the case with remote 
sensing detection and analysis of harmful algal blooms in the ocean. While the blooms are 
equally mobile in the ocean, their mobility causes shifts within any single pixel (which are 
typically 0.8-1 km2 for the SeaWiFS, MODIS, MERIS or Coastal Zone Color Scanner satellites 
most commonly used) and therefore should not affect correlations between ground and satellite 
data.  The small size of freshwater algal blooms, however, dictates that they be analyzed using 
higher spatial resolution which in turn means that the bloom shifts in space move algal densities 
between pixels rather than just within a single pixel such that a field measurement on the ground 
several hours after the remote data collection may no longer represent the ground truth for that 
point.  
 
In future studies the use of multiple stationary field fluorometers that can measure water in real-
time may provide suitable ground truth data, but with the present impediments to collecting 
accurate ground truth data from the algal blooms in small freshwater systems, classification 
approaches could not benefit from separate training and validation data sets.  Rather the full data 
set is used in generating the classification model. The tiered decision tree was the most effective 
classification for the SpecTIR image, and visual interpretation as well as understanding of the 
spectral signatures are used to select the criteria rather than any deviance measure such as the 
likelihood ratio statistic which can be used to compare all possible splits of the data to find the 
one that maximizes the dissimilarity between the resulting subsets (Hansen 1996). The absence 
of ground truth validation data required a modified approach to accuracy assessment.  Since the 
water boundaries are known, the areas classified as algae beyond those boundaries are counted as 
misclassification and the areas within those boundaries classified as vegetation are also counted 
as misclassification.  In the case of the Klamath reservoirs, we were specifically looking at water 
bodies known to be impacted by cyanobacteria blooms, and therefore it was not important to be 
able to separate the bloom’s pigment signature from that of land-based vegetation except when 
there is submerged aquatic vegetation which it is important to be able to distinguish from 
blooms.  The successful separation between blooms and land vegetation is also important for 
potential future surveillance applications in which images of large areas of land and water are 
classified to pull out any places where blooms are occurring.  This facilitates surveillance and 
avoids needing to mask images to focus on only water bodies. 
 
Many studies (Friedl and Brodley 1997; Yang et al. 2003; Wright and Gallant 2007; Sesnie et al. 
2008; Tooke et al. 2009) have implemented decision trees or classification regression trees by 
using computer programs such as S-PLUS ‘cancor’ function (S-Plus, Insightful Corporation, 
Seattle, Washington), QUEST, and DTREG which divide the training dataset into successively 
more homogeneous subsets that minimize error and maximize differences between subsets. After 
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completion, the tree is usually “pruned” by removing branches to avoid over fitting to noise in 
the training data which may not be perfectly representative of the full dataset.  Such software 
creates a set of hierarchically structured rules or branches based a deviance measure such as the 
likelihood ratio statistic. Defining the tree with machine learning algorithms by using a statistical 
procedure is more common, but the manual selection of criteria defined by analyst expert 
knowledge and qualitative understanding of the class’s spectral properties can sometime produce 
superior results.  This was the case for the present study in which statistical software was 
unsuccessful in identifying the best nodes and model variables. 
 
The approach for generating the tiered decision tree without training data allows its application 
as a survey method over areas which have not been visited or tested in the field.  Public health 
officials and natural resource management agencies could apply this decision tree to other 
imagery for areas with unknown cyanobacteria risks in order to identify sites which warrant the 
cost of additional field work.    
 
A real value to the classification, in addition to being able to visualize where the medium or high 
density sections of the bloom are located, is the ability to quantify the intensity of the bloom in 
terms of area impacted and compare the intensity of the bloom at different dates in time.  As is 
already described, blooms are mobile and one cove or inlet may be densely covered on one day 
and then remarkably clear another after a shift in wind or other system change.  Water managers 
struggle to identify the best sampling protocol that will facilitate knowing when a particular 
water body is becoming a health threat and when conditions are resolving. Managers struggle 
with the number of sites to sample, how many at the surface, and how many at greater depths.  
Regardless of their decision they are always only able to capture a small snapshot of the system, 
unlike remote sensing which can provide a synoptic overview of the entire system, making it 
possible to truly assess relative bloom intensity.   
 
This advantage also extends to temporal comparisons, whereby images from consecutive years 
can be quantitatively compared to estimate the change in bloom intensity as a result of 
remediation measures or shifts in environmental conditions. Imagery from multiple dates within 
on bloom season can further enhance the understanding of the intensity of the bloom and better 
capture its peak.  
 
Remote sensing for cyanobacteria blooms may be limited in quantification beyond a certain 
maximum cell density.  When scums exist, their thickness may not affect their surface 
reflectance.  A dense scum may accumulate over millimeters of the waters surface or extend 
several centimeters deep, but both may be identical from above especially with the colony 
forming properties of cyanobacteria.  Both could be capable of fully masking the water surface, 
but remote sensing would be unable to differentiate between them even though one would 
obviously have a much higher chlorophyll-a concentration. This would also limit comparisons of 
overall bloom intensity, but it would be more likely that variations in area covered by the densest 
bloom material are more relevant to the overall question of bloom intensity.  
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4 Multispectral and Hyperspectral Image Comparison 
 
4.1 Introduction 
Decreases in resolution, both spectral and spatial, are expected to decrease the ability of remotely 
sensed data to detect the presence of toxic cyanobacteria blooms.  The various image platforms 
available for this kind of research provide a trade-off between high spatial resolution, high 
spectral resolution, high revisit frequency, cost, image processing time and total area covered.  
To date other researchers have used imagery from Landsat, AVHRR, MODIS, and SeaWIFS to 
specifically detect cyanobacterial blooms with varying degrees of success, as discussed in 
Section 1-Background (Dekker et al. 1992; Jupp et al. 1994; Kahru et al. 2000; Vincent et al. 
2004; Tyler et al. 2006).  The literature disagrees on the efficacy of Landsat or comparable 
satellites such as ALI to be able to actually predict the presence and concentration of 
phycocyanin and chlorophyll concentrations and cyanobacteria cell densities in the presence of 
suspended sediment spectral interference (Vincent et al. 2004; Kutser et al. 2006).  Therefore, 
three different remote sensing platforms, SpecTIR, Ikonos and Landsat, were compared in terms 
of their ability to identify surface blooms, cyanobacteria specifically, and reasonable estimates of 
total phytoplankton cell counts or pigment (chlorophyll-a and phycocyanin) concentrations.  As 
explained in Chapter 2, the inability of field samples to serve as accurate ground truth data made 
it possible to estimate only relative differences in cyanobacteria density rather than any 
quantitative cell count and/or pigment concentration. 
 
This methods comparison used a hyperspectral airborne sensor (SpecTIR: 2-m spatial resolution, 
spectral resolution continuous coverage between 400-1000 nm), a high spatial resolution 
multispectral satellite image (IKONOS: 4-m spatial resolution for each band, 1-m spatial 
resolution panchromatic image, 4 separate bands of red, green, blue and IR), and a lower spatial 
resolution satellite image (LANDSAT: 30-m spatial resolution, 7 bands with 3 in the visible 
range).  Chapter 3 presented the analysis of hyperspectral 2-meter spatial resolution SpecTIR 
airborne imagery to predict the presence and intensity of toxic cyanobacteria blooms.  The 
decision tree was the preferable classification method for the SpecTIR imagery and this chapter 
compares those results to that of the IKONOS and Landsat satellite images using the same 
classification method.  To compare the three different images, the same classification method 
(the decision tree) was used on all three. The decision trees allowed existing knowledge 
regarding the characteristics individual wavelengths and their relationship to cyanobacteria 
blooms and the other features in the image to be incorporated into the model.  It was also easily 
applied to the whole image within the ENVI software.  
 

4.2 Methods 
 

4.2.1 Image Acquisitions 
IKONOS imagery was acquired on July 27 and July 30, 2007, collections scheduled with 
GeoEye to coordinate with the scheduled SpecTIR airborne passby.  Both images had 0% cloud 
cover and occurred at 7:09 p.m. and 7:18 p.m. respectively. The resolution of the 4 bands (red, 
green, blue and near infrared) are 4 meters, but the pan-shapened imagery with 1-meter 
resolution was also obtained in which the imagery from the 4-meter sensor and the 82-cm black 
and white panchromatic sensor were merged.  



 

 75

 
Landsat TM (Path 045, Row 031) imagery was downloaded for August 23, 2005, the most recent 
summer (i.e. bloom season) dataset available for the Klamath Site. Images can be downloaded on 
the Earth Science Data Interface of the Global Land Cover Facility (NASA Landsat Program 
2005).  Landsat passes over the area every 16 days and the image resolution is 30 x 30 meters 
(Chander et al. 2009).  
 

4.2.2 Decision Trees 
See section 3.2.7. 
 

4.3 Results 
 
4.3.1 Decision Tree for IKONOS 

Like the analysis of the SpecTIR imagery a decision tree was constructed in ENVI 4.5 (ITT 
Visual Information Solutions, Boulder, CO). Criteria were selected based on knowledge of the 
spectral characteristics of the algal pigments, water, vegetation and land which were described in 
section 3.1.1.  The spectral characteristics of the output classes were evaluated after each criteria 
was added to inform the definition of the subsequent criteria.  Based on the known areas of land 
with vegetation versus water impacted by cyanobacteria, spectra for misclassified and correctly 
classified pixels were examined in order to select the best next criteria.  The process was 
repeated until visual inspection of the final classified map continually showed no improvement 
in class area refinement. Figure 4-1 below shows the final decision tree used for the IKONOS 
image.  All the features on the land (e.g. the groups depicted as LAND 1-5 in Figure 4-1) were 
combined into one single class and three separate cyanobacteria/algae groups within the water 
were created corresponding to varying cyanobacteria cell densities: high, medium, and low. Ten 
criteria were used in the tiered decision tree which are described below. 
 
Notation: b= bandwidth, GT = greater than, LT = less than, EQ = equal, Band 1 = NIR (757-853 
nm), Band 2 = Blue (445-516 nm), Band 3 = Green (505-595 nm), Band 4 = Red (632-698 nm) 
 
Criterion 1-1: b1 EQ B2 EQ B3 EQ b4 EQ 0 
The pixels that are true for this criteria are empty image pixels  
 
Criterion 2-2: (b1-b4)/(b1+b4) GT 0.4 
The pixels that are true are mostly high scum and some land vegetation.  This is making use of 
the NDVI, so it separates as the true pixels, those that have particularly strong red edge typical of 
abundant chlorophyll pigments.  
 
Criterion 3-4: b2/ b3 LT 0.85 
Criterion 3-4 then takes the pixels with high NDVI (e.g. high chlorophyll content) that were true 
for Criteria 2-2 and separates the water based pixels from the land based pixels, by looking for 
those that have smaller Band 2 peaks with respect to Band 3.  The positive slope between Band 2 
and Band 3 is greater for the land vegetation pixels and therefore the Band 3 reflectance is 
greater and the ratio of b2/b3 is smaller.  The pixels true for this criterion are high algae content 
and the false pixels are land based vegetation.   
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Criterion 3-3: (b1- b4)/( b1+ b4) GT 0.2 AND (b1- b4)/( b1+ b4) LT 0.4 
This criterion again uses the NDVI.  The true pixels are those whose NDVI falls between 0.2 and 
0.4. They are the pixels containing medium to high algae content with some misclassified land 
pixels which are separated out in the next two criteria (4-6, 5-11 and 5-12). The false pixels are 
low to medium algae content with some misclassified high algae content.  They are separated 
using the criteria 4-5, 5-9, and 6-17. 
 
Criterion 4-6: b1 LT 340  
This criterion divides the pixels according to the strength of their reflectance in the NIR (band 1). 
 
Criterion 5-11: b4/ b3 LT 0.7  
There is a negative slope between Band 3 and Band 4 indicating that more light is absorbed in 
the red band than in the green band leaving a peak in the green (Band 3). The true pixels for this 
criterion are high algae content as apposed to land based pixels which are the false pixels.  The 
true pixels are characterized by a larger peak at Band 3 making their ratios of B4/B3 smaller. 
 
Criterion 5-12: b2/ b3 GT 0.90  
There is a positive slope between Band 2 and Band 3 indicate that more light is absorbed in the 
blue band than in the green band leaving a peak in the green (Band 3). The false pixels for this 
criterion are height algae content as opposed to land based pixels which are the true pixels.  The 
false pixels are characterized by a larger peak at Band 3 making their ratios of  B2/B3 smaller. 
 
Criterion 4-5: b1 GT 100 AND b1 LT 200  
This criterion uses the numeric values of reflectance in the NIR (band 1) to separate out medium 
algae content pixels as those who are true for this criterion. Those that are false are separated 
using Criterion 5-9. 
 
Criterion 5-9: b1 LT b4  
Low algae content results in the high absorbance in the NIR characteristic of water.  This is seen 
in the pixels true for this criterion whose NIR reflectance is less than the reflectance in the red 
band 4. 
 
Criterion 6-17: b1 LT b2 
Pixels true for this criteria are a few high algae content those that are false are land based pixels. 
 
Figure 4-2 a-c shows the IKONOS image classified by the tiered decision tree. Figure 4.2a is 
Iron Gate Reservoir where the highest algal density classification falls predominantly along the 
shoreline, within protected coves, and in the narrow stretch that forms the eastern portion of the 
reservoir. This matches well with all my field reconnaissance and knowledge of the system. The 
bloom cell density is less in the open areas of water in the reservoir, which is again accurately 
represented in the classified image. This is less likely to be a result of physical water parameters 
such as depth and temperature, and more a feature of the geography of the reservoir and wind 
patterns which serve to clump and concentrate the blooms within the reservoir.  Figure 4.2b 
shows a similar pattern of the bloom in Copco Reservoir with the densest portions predominating 
along the outer shores of the reservoir.  The water movement and wind patterns do produce 
swirled patterns of mixed cell density covering the full cross-section of the reservoir.  This is 
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clearly visible in the larger scale cropped enlargement of a portion of Copco Reservoir in Figure 
4-2c. Figure 4-3 a-e shows the unclassified true color image along with each of the 3 
cyanobacteria/algae layers overlayed separately. These images make it easy to see how well 
matched the classification is to the image.  For example, in true color unclassified cropped image 
in Figure 4-3b one can see the bright sections of extremely thick scum along the very shore of 
the reservoir and stretching down in a finger shape along the left half of the image.  Figure 4-3e 
shows the high algae density classification as the green overlayed area which overlaps well with 
what visual observation (supported by intimate knowledge of the field conditions) shows also to 
be the higher cell density. Similarly the darker areas in the middle open water sections of the 
reservoir which are not so visibly green in the true color unclassified cropped image in Figure 4-
3b are the areas of the water where there is many fewer cyanobacteria.  Although they are still 
present, they are not present in such thick scum on the water surface.  This again matches well 
wih the area classified as low algae density and shown in light blue in figure 4-3c.  The 
remaining intermediate areas are medium algal density and again correctly match with the area 
classified as such and shown with the green overlay shown in Figure 4-3d.  Figure 4-4 shows 
sample spectra for the 3 different classes of cyanobacteria/algae.  The red edge (see Chapter 3) 
can be clearly seen in the high algae pixels as the NIR band (b1) reflectance is considerably 
higher than all of the other bands (blue, green and red) and it is particularly minimized or absent 
in the low algae pixels.  The higher reflectance in the green band and more absorbands in the 
blue and red bands is also apparent as expected with the presence of chlorophyll and 
phycocyanin.   
 
Again the commission and omission error, and the producer’s and user’s accuracy Image 
classifications were calculated for each individual class to evaluate the image classifications in 
comparison to that of the SpecTIR and the Landsat.    Commission error measures how many of 
the pixels within a given generated class are actually known to be part of another feature and 
therefore have falsely been assigned to the class (e.g. false positive rate).  Omission error 
measures how many pixels known to be part of given feature have been erroneously left out of 
the class representing that feature (e.g. false negatives). Producer’s Accuracy measures the 
probability that given pixels known to be in a particular class are actually classified into that 
class (e.g. sensitivity/specificity). User’s accuracy measures the probability that a pixel classified 
as a given class is truly part of that class (positive/negative predictive value). 
 
Pixels assigned to each class by the decision tree were compared to the pixels known to be a part 
of that class from ground truth regions of interest (ROIs).    These ground truth regions of 
interest (ROIs) were created manually by visually identifying and assigning the area of the 
reservoirs to one ROI and the surrounding land area to another ROI.  The measures of accuracy 
for the classification were calculated by comparing the areas assigned to the land and algae 
classes to these two ROIs.  The percent commission errors in Table 3-8 below, therefore, show 
the percent of pixels within a given cyanobacteria class that are contained erroneously within the 
land ground truth ROI or the percent of pixels within the predicted land class that are erroneously 
assigned to one of the water ground truth ROI. 
 
The percent commission errors in Table 4-1 below therefore show the percent of pixels within a 
given cyanobacteria class that are contained erroneously within the land ground truth region or 
for the predicted land class the number of pixels erroneously assigned to one of the water/algae 
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classes.  The commission error is only 5.91% for the low cyanobacteria density class, however, it 
gets increasingly large for the other two class reaching almost 50% for the high cyanobacteria 
density class.  This is significantly worse than for the SpecTIR data where four of the 
cyanobacteria classes had commission errors less than 4% and the two most dense cyanobacteria 
classes (high and scum) had commission errors of 21.54% and 27.66% respectively.   
 
TABLE 4-1: Ikonos Decision Tree Classification Accuracy 

 Low Medium High 
Commission Error 5.91% 21.18% 48.64% 
Area equivalent of pixel error ~55,816 m2 ~1,982,428 

m2 
~741,728 m2 

User Accuracy 94.09% 78.82% 51.36% 
 
There may be better decision trees for the data or multiple trees with comparable performance, 
but the tree captures the spectral features observed using a manual rather than a computerized 
selection.  The tree criteria were refined until no improvement in classification could be obtained 
based on visual assessment.  
 

4.3.2 Decision Tree for Landsat 
A decision tree was also constructed in ENVI 4.5 (ITT Visual Information Solutions, Boulder, 
CO) for the 2005 Landsat image. As with the process for the development of the Ikonos and 
SpecTIR decision trees, criteria were selected based on knowledge of the spectral characteristics 
of the algal pigments, water, vegetation and land which were described in section 3.1.1.  The 
spectral characteristics of the output classes were evaluated after each criteria was added to 
inform the definition of the subsequent criteria.  Based on the known areas of land with 
vegetation versus water impacted by cyanobacteria, spectra for misclassified and correctly 
classified pixels were examined in order to select the best next criteria.  The process was 
repeated until visual inspection of the final classified map continually showed no improvement 
in class area refinement. Figure 4-5 below shows the final decision tree used for the Landsat 
image.  All the features on the land (e.g. the groups depicted as LAND 1-3 in Figure 4-5) were 
combined into one single class and three separate cyanobacteria/algae groups within the water 
were created corresponding to varying cyanobacteria cell densities: high, medium, and low. Five 
criteria were used in the tiered decision tree which are described below. 
 
Notation: b= bandwidth, GT = greater than, LT = less than, EQ = equal,  

b1 = blue = 450-520 nm 
b2 = green = 520-600 nm 
b3 = red = 630-690 nm 
b4 = Near IR = 760-900 nm 
b5 = Mid IR = 1550-1750 nm 
b6 = Thermal IR = 10400-12500 nm 
b7 = Mid IR = 2080-2350 = Mid-IR 

 
Criterion 1-1: b3 GT b2 
This criteria separates the land.  The vegetation, algae, and water all absorb in the visible red 
wavelengths, while the land reflects in this range.  Land reflects more in B3, the red wavelengths 
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of 630-690 nm, than for B2, the green wavelengths of 520-600.  These land pixels are true for 
this criterion. 
 
Criterion 2-1: (b4/1000- b3/1000)/(b4/1000+ b3/1000) GT 0.75 
This is like the NDVI. The pixels with the highest chlorophyll content are true and those with 
less are false. This criterion separates out the low and medium algae from the vegetation and 
high algae. 
 
Criterion 3-2: b5 LT b4 
This criterion separates out more of the land-based pixels which are false while the high algae 
vegetation are true.  
 
Criterion 4-4: b5 GT b3 
This criterion again separates the land-pixels, which are true in this case, from the high algae 
pixels.  
 
Criterion 3-1: b4 GT 15 
The earlier separated low and medium algae which were both false for Criterion 2-1 are now 
separated from each other.  The medium algae are true for this criterion.  
 
Figure 4-6 a-c shows the Landsat image classified by the tiered decision tree.  Figure 4.6a is Iron 
Gate Reservoir where the highest algal density classification falls predominantly along the 
shoreline, within protected coves, and in the narrow stretch that forms the eastern portion of the 
reservoir. This matches well with all my field reconnaissance and knowledge of the system, as 
well as with the classified and unclassified Ikonos and SpecTIR images. The bloom cell density 
is less in the open areas of water in the reservoir, which is again accurately represented in the 
classified image. Figure 4.6b shows a similar pattern of the bloom in Copco Reservoir with the 
densest portions predominating along the outer shores of the reservoir.  The water movement and 
wind patterns do produce swirled patterns of mixed cell density covering the full cross-section of 
the reservoir.  This is clearly visible in the larger scale cropped enlargement of a portion of Iron 
Gate Reservoir in Figure 4-6c., including a smaller scale cropped enlargement of a portion of 
Copco Reservoir. Figure 4-7 a-e shows the unclassified true color image along with each of the 3 
cyanobacteria/algae layers overlayed separately. In the unclassified section of Iron Gate 
Reservoir shown in Figure 4-7b the darker areas without bright green coloring from thick 
cyanobacteria blooms correspond to the areas classified as low density algal bloom and shown 
overlayed on the image in Figure 4-7c.  The bright green sections along the outer edges of the 
water which predominate in this narrow and shallow section of the Iron Gate Reservoir 
correspond well with the area overlayed as the high density algal bloom in Figure 4-7c. Figure 4-
8 shows sample spectra for the land, vegetation and cyanobacteria/algae.    
 
Again the commission and omission error, and the producer’s and user’s accuracy Image 
classifications were calculated for each individual class to evaluate the image classifications in 
comparison to that of the SpecTIR and the IKONOS.  As before, commission error measures 
how many of the pixels within a given generated class are actually known to be part of another 
feature and therefore have falsely been assigned to the class (e.g. false positive rate).  Omission 
error measures how many pixels known to be part of given feature have been erroneously left out 
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of the class representing that feature (e.g. false negatives). Producer’s Accuracy measures the 
probability that given pixels known to be in a particular class are actually classified into that 
class (e.g. sensitivity/specificity). User’s accuracy measures the probability that a pixel classified 
as a given class is truly part of that class (positive/negative predictive value). 
 
Pixels assigned to each class by the decision tree were compared to the pixels known to be a part 
of that class from ground truth regions of interest (ROIs).  These ground truth regions of interest 
(ROIs) were created manually by visually identifying and assigning the area of the reservoirs to 
one ROI and the surrounding land area to another ROI.  The measures of accuracy for the 
classification were calculated by comparing the areas assigned to the land and algae classes to 
these two ROIs.  The percent commission errors in Table 3-8 below, therefore, show the percent 
of pixels within a given cyanobacteria class that are contained erroneously within the land 
ground truth ROI or the percent of pixels within the predicted land class that are erroneously 
assigned to one of the water ground truth ROI.    
 
The percent commission errors in Table 4-2 below therefore show the percent of pixels within a 
given cyanobacteria class that are contained erroneously within the land ground truth region or 
for the predicted land class the number of pixels erroneously assigned to one of the water/algae 
classes.  The commission error is only less than 6% for all 3 cyanobacteria density classes.  
Consistent with the evaluations of the other images, the accuracy is greatest for the least dense 
cyanobacterial class, and the accuracy decreases as cyanobacteria density intensifies making the 
signal overlap more with that of land vegetation both because of the decrease in water’s signal 
and the fact that highest density blooms usually occur closer to the reservoirs banks where water 
is shallow and aquatic vegetation may be mixed in the pixel..  This is not much worse than for 
the SpecTIR data where four of the cyanobacteria classes had commission errors less than 4% 
and the two most dense cyanobacteria classes (high and scum) had commission errors of 21.54% 
and 27.66% respectively.   
 
TABLE 4-2: Landsat Decision Tree Classification Accuracy 
 Low Medium High 
Commission Error 0.65% 4.63% 5.85% 
Area equivalent of pixel error ~28,800 m2 ~63,000 m2 ~87,300 m2 
User Accuracy 99.35% 95.37% 94.15% 
 
As with the classifications for the other images, there may be better decision trees for the data or 
multiple trees with comparable performance, but the tree captures the spectral features observed 
using a manual rather than a computerized selection.  The tree criteria were refined until no 
improvement in classification could be obtained based on visual assessment. 
 

4.4 Discussion 
The SpecTIR imagery did have the best accuracy in comparison to the Landsat and the IKONOS. 
Not only is the SpecTIR data highly accurate, but it provides much more detailed information.  
Although the Landsat data had less than 6% error for all classes, only three classes of 
cyanobacteria density could be separated as opposed to the six classes of cyanobacteria separated 
with the SpecTIR data.  The resolution of the SpecTIR data offers a greater opportunity to 
separate out subtle shifts, early blooms, and blooms of different organisms (not tested here due to 
the homogeneity of the cyanobacterial blooms in the Klamath). Although the cost of acquiring 



 

 81

these data is higher than the cost of acquiring most types of satellite imagery, much of the cost is 
related to the fixed cost of transporting the sensor to the study site. This means that the 
technology to implement this technique may be cost effective if large areas are being surveyed.  
 
Landsat imagery has far better accuracy than the IKONOS despite it’s much courser spatial 
resolution (see Table 4-1 and 4-2). Landsat is currently most accessible and most economical of 
the three image platforms.  The fact that even the highest algae density class still had 94.15% 
accuracy means that even without the spectral and spatial resolution, valuable surveillance of 
cyanobacteria blooms is possible.  It may be that the panchromatic merging to create the higher 
spatial resolution of the IKONOS imagery may have a part in the poor accuracy observed.  It 
may also be possible that there is a distinct advantage in separating out the cyanobacteria by 
having the few additional spectral bands provided in Landsat data. A more likely explanation, 
however, is the limitations of the spectral scale for the IKONOS data are compounded by having 
such high spatial resolution.  There are more pixels to potentially misclassify and therefore an 
opportunity for high error.   
 
The results indicate that when given the choice the investment in higher spectral resolution 
should be chosen over higher spatial resolution as the former appears to provide more benefits in 
cyanobacteria detection.  Ideally high spatial and spectral resolution imagery will become more 
and more available such that the cost is not prohibitive for this kind of surveillance.  In the mean 
time, there is already a wealth of free or affordable imagery, such as Landsat, of lower resolution 
which these results indicate will be highly effective in a first round of surveillance for 
cyanobacteria. Lower spatial resolution imagery also decreases the amount of time invested in 
image processing.  
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Figure 4-1: IKONOS Tiered Decision Tree 
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Figure 4-4: 

IKONOS Spectra for Bloom Density Classes

0

200

400

600

800

1000

1200

1400

1 2 3 4

Band

R
ef

le
ct

an
ce

 Algae low 
 Algae med 
 Algae high 



 

 86

 
Figure 4-5: LANDSAT Tiered Decision Tree 
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LANDSAT Spectral Profiles
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 Figure 4-8: Sample Spectral Profiles for Three Classes in Landsat Image
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5 Temporal Comparison 
 
5.1 Introduction 

 
Remote sensing has shown great potential in agricultural mapping and monitoring due to its 
advantages over traditional procedures in terms of cost effectiveness and timeliness in the 
availability of information over larger areas (Murthy et al, 1998). 
 
A large advantage of monitoring cyanobacteria blooms using remote sensing data is the synoptic 
overview provided of the whole system at a single point in time.  Images from multiple points in 
time facilitate analyzing temporal shifts and following the results of environmental changes or 
remediation steps. Remote sensing has shown great potential for mapping and monitoring of 
other land features such as agriculture with its availability of information over larger areas and 
temporal change of forest cover and vegetation patterns has also been successfully detected,  
 
Change detection techniques can calculate new maps highlighting those pixels that are assigned 
to different classes in the two images. These techniques have been used in many different 
contexts including the quantification of impacts from wildfires (Richards 1984), grazing (Blanco 
et al. 2009), re-vegetation programs, agriculture (R.S. Lunetta and C.D. Elvidge 1999), urban 
and regional planning (Li and Yeh 1998; Masek et al. 2000), and other land use and land cover 
changes (Ghioca-Robrecht et al. 2008). Karfs and Wallace (Karfs and Wallace 2001) found that 
information on long-term trends and changes over time are best provided by an integrated 
method that uses both the extrapolative capacity of remote sensing and on-ground field data.  
Most change detection studies start with a modeling phase in which some combination of 
algorithms are used to classify the spectral data in both images followed by a subtraction phase 
in which the change is calculated by the difference from subtracting one map’s values from the 
other.  The difference itself can then be visualized on a new “change” map (Kennedy et al. 
2009). 
 
Landsat TM data of the Iron Gate and Copco reservoirs is available free for the end of the bloom 
season (late August/early September) over four years (2005, 2006, 2008, and 2009).  Given the 
high accuracy achieved with the decision tree for Landsat data that was developed and described 
in Chapter 4 it was used to classify these images from four different years. 
 

5.2 Methods 
Landsat TM (Path 045, Row 031) imagery was downloaded on the Earth Science Data Interface 
of the Global Land Cover Facility (NASA Landsat Program 2005).  Landsat passes over the area 
every 16 days and the image resolution is 30 x 30 meters (Chander et al. 2009).  
 
The tiered decision tree was used with criteria specifying the spectra that allow the creation of 
mutually exclusive classes for degrees of cyanobacteria density and non-bloom materials. The 
same decision tree which is described in section 4.3.2 was applied to all the Landsat images.  The 
number of pixels within the water boundary assigned to each class in all images was calculated 
and compared.  Unlike most other change detection studies, it was not important for these data to 
know the specific locations in the reservoir that had changed in bloom density since the blooms 
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are already mobile both vertically and horizontally.  Rather the total area impacted by each 
bloom density level was important, and therefore no subtraction phase was necessary. 
 

5.3 Results 
Table 5-1 shows the number of pixels correctly classified within each of the three cyanobacteria 
classes for each of the images. Three images were downloaded from 2005 from three dates at the 
end of the bloom season (August 23, August 31, and September 24).  The first image collected 
on 8/23/2005 has the largest high density bloom area. Eight days later on 8/31/05 the amount of 
high density bloom decreased by more than 75%, the medium density bloom decreased by 5% 
and the low density bloom increased. Almost a month later at 9/24/05 the high density bloom 
had increased, the medium density bloom had decreased by 80% and the low density bloom had 
increased slightly (~9%). As expected the three images confirm the seasonal decrease in the 
overall bloom intensity with the high and medium density decreasing from roughly 20% of the 
water surface on August 23 to roughly 3-5% of the water surface on September 24.  
 
The 2006 image was acquired on August 26.  The 2006 bloom is smaller than the 2005 bloom on 
both August 23 and August 31, but the September 2005 bloom and the August 2006 bloom are 
roughly equivalent in size. It may be that the 2006 bloom was quite large, but diminished earlier 
in the summer than occurred in 2005, or the bloom intensity overall may just have been less in 
2006.  This uncertainty in drawing conclusions from the data highlights a challenge for temporal 
trend analysis.  Even with synoptic data for single points in time, drawing conclusions about the 
whole season requires an image from more than one time point.  With only one image for each of 
the other 3 years, it is not appropriate to conclude which year had a more or less intense bloom.  
Although the bloom in the August 26, 2006 image is smaller than those in the 2008 and 2009 
images, and the 2009 image bloom is smaller then the 2008 image bloom, multiple images from 
each year are needed to compare the blooms from these three years.  The regular bi-monthly 
monitoring of the bloom dynamics within the Iron Gate and Copco reservoirs indicates that 3-4 
images collected between June 1 and August 31 at fairly equal intervals should be adequate to 
allow rough comparisons in bloom intensity between years.  
 
Table 5-2 shows the commission error and user accuracy for the six different Landsat images. 
Although the accuracy does vary by image, the pixels within each class in Table 5-1 are all 
correctly classified within the water body and are unlikely affected by the range in commission 
errors for each image. 
 
Table 5-1: Per Cent of Pixels in each Class
Date Low Med High
8/23/2005 62% 18% 20%
8/31/2005 80% 16% 3%
9/24/2005 92% 3% 5%
8/26/2006 93% 3% 3%
8/31/2008 78% 15% 7%
9/3/2009 83% 11% 6%  
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Table 5-2: Image Accuracy
LANDSAT Acquision Date 8/23/2005 8/31/2005 9/24/2005 8/26/2006 8/31/2008 9/3/2009

Landsat 7 Landsat 5 Landsat 5 Landsat 5 Landsat 5 Landsat 5
Commission Error

Low 0.65 16.34 3.53 1.5 0.4 0.75
Medium 4.63 51.86 42.74 35.78 11.38 9.74
High 5.85 38.35 7.07 11.74 24.93 9.94

User Accuracy
Low 99.35 83.66 96.47 98.5 99.6 99.25
Medium 95.37 48.14 57.26 64.22 88.62 90.26  

 
Figure 5-1 shows the true color images for each time point and Figure 5-2 shows the classified 
images depicting locations of blooms with algal density varying between low, medium and high. 
 
5.4 Discussion 
In any given water system the specific objectives of the monitoring and knowledge of the 
individual system will help determine the necessary frequency for image acquisition in order to 
do temporal trend analysis. Comparing the intensity of bloom seasons over consecutive years 
will require several images over the course of the bloom to capture it during the peak and during 
it’s decline.  If the blooms last several months, as they do in the Klamath reservoirs, every 2 
weeks throughout the bloom season might be suitable, making the Landsat’s 17 day pass-by a 
possibility.  Shorter blooms would need more acquisitions more closely spaced.  Since Landsat 5 
and Landsat 7 each have a separate 17 day pass-by cycle, using both jointly would provide closer 
spacing time between the images acquisitions. 
 
The Klamath reservoirs have now been monitored in the field for five consecutive years and it is 
clear that once the cyanobacteria blooms have reached a certain extent, their overall intensity 
only fluctuates modestly for a period of weeks despite potentially large spatial shifts in the 
spread of bloom density within the reservoirs.  The blooms do appear to have a peak in intensity 
followed by a gradual dissipation.  One single image might actually prove quite informative 
regarding changes in intensity over years if that image were acquired close to the seasonal bloom 
peak.  The seasonal peak seems to occur towards the end of July to the middle of August, and 
unfortunately none of the available images were captured around this time.  The review of these 
images therefore confirmed my intuition that they would not be be effective at determining 
which year’s bloom overall was more or less intense.  The exercise does confirm the utility of the 
classification decision tree to be applied to different images and the ease with the results can be 
compared.  
 
If the monitoring is aimed at determining when blooms have subsided, less frequent image 
acquisitions might be suitable, especially if the exact date at which the water body returns to 
non-bloom conditions is not needed.  Looking at temporal trends within a season is also possible 
and the more dynamic the system the more frequent the image acquisition should be.  
 
If the data are to be used for immediate decisions there will be at least a 2-5 day delay to allow 
time for processing and image delivery and then for image analysis once the decision trees have 
been developed.  
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Figure 5-1: True Color Landsat Images of the Copco and Iron Gate Reservoirs on Multiple 
Dates  
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Figure 5-2: Classified Landsat Images Showing Areas impacted by Low, Medium and High 
Density Cyanobacteria 
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6 Conclusions and Future Studies 
 

6.1 Conclusions 
One of the objectives of this research was to evaluate the potential of remote sensing as a tool to 
be used in surveillance of toxic cyanobacteria blooms in freshwater.  Remote sensing has been 
used extensively to predict, detect and study blooms in the ocean, but the relatively smaller size 
of blooms in freshwater has made it impractical to use many of the satellite systems that are 
suitable for ocean blooms.  The results of this research show that even relatively coarse spectral 
resolution (4-7 different bands dividing the electromagnetic spectrum) is capable of providing 
information on the presence and density of cyanobacteria.  
 
Those focused on the public health management of Klamath BGA, have relied on field sample 
collection twice a month over the bloom season (May – October). Samples are analyzed for 
microcystins and phytoplankton species are identified and quantified, with 48 hour turn around 
request once surface scums are visible in the reservoirs.  Informational signs are posted at the 
start of the season as a precaution, and warning signs are posted as soon as scums are visible, or 
data on microcystin concentrations or microcystis cell counts exceed recommended guidelines of 
8 ppb and 40,000 cells/l respectively.  This approach has several limitations.  First, is the 
question of whether the site measured is representative of the conditions in the whole water 
body.  Since the blooms are moved by the wind and water currents, any particular site may be 
clear one day, and covered in dense scum the next.  The public health sampling was therefore not 
limited to any fixed site (as opposed to the ecological trend monitoring sites), but rather samplers 
were instructed to visually assess the shores by foot or boat within reasonable time limits and 
collect samples within what appears to be most impacted location. Secondly, the samples were 
collected from the surface scum, but cyanobacteria can depth regulate and what is in the 
uppermost meter of the water column at any given time in the day, may be quite different 3, 6, or 
12 hours later.  To understand changes in the water column over time and to monitor trends, 
water over the whole photic zone should be collected, but this does not overcome the challenge 
of spatial variability.  The use of satellite remote sensing data would provide synoptic coverage 
for a given point in time, but it could be cost prohibitive to have this data collected twice a 
month.  Landsat satellites do pass by approximately twice a month (every 17 days), but currently 
there is often a long delay between collection and when the images are made available and not 
all images are ever even made available. Furthermore, shifts in population structure (between 
species or strains) or in toxin production would not necessarily be captured by the remote 
sensing data.   
 
Even when the image is correctly classified and bloom material is correctly identified, it is 
possible that the bloom is either not cyanobacteria or that it is cyanobacteria but is nontoxic. As 
mentioned earlier (see Chapter 1), not all cyanobacteria are toxic and even those that do produce 
toxins can vary their level of toxin production in response to poorly understood environmental 
triggers.   Though less likely there could be a situation where cell counts are high, but toxin 
production is low, or visa versa.  In such a scenario the conclusions from remote data would err 
on the side of safety and precaution.  This possibility affirms the need to verify remote 
classification results in the field.  The spectral data interpretation should be used for making 
management decisions regarding the need for more monitoring and data collection but not the 
specific need for posting or press releases. 
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While the remote sensing cannot replace the field sampling in the Klamath given the way the 
data is used, it can be used be to augment and direct the sampling that happens in the field. 
Specifically the synoptic data from remote sensing may be used to help better select sites on the 
ground where samples should be collected.  It allows better overall understanding of the intensity 
of the bloom, and can be a good way of confirming when the bloom has fully subsided. In 2008, 
PacifiCorp worked with the company SolarBee to test the use of solar powered machines that use 
circulation of the water to try to reduce cyanobacteria density.  Twelve SolarBee circulators 
(model SB10000v12-HW) were placed on the upsteam end of one of the reservoirs and left in 
place for six months (April 17, 2008 through October 22, 2008) and an attempt was made to 
evaluate the effects of this remediation through the use of one single open water sampling site 
(Eilers and Walker 2010).  The manufacturers of the circulators concluded that their installation 
resulted in a 99 percent reduction in Microcystis aeruginosa cell density and in total microcystin 
concentrations based on a comparison of the data from one sampling location in 2007 season 
versus 2008 season.  The type of data available from remote sensing is well-suited for this type 
of research question.  Remote sensing images of the whole water body from both seasons can be 
a more accurate way to evaluate the change in bloom intensity whether for the evaluation of the 
efficacy of remediation, shifts from other natural or anthropogenic environmental stressors, or 
the assessment of trends.  The remote sensing data is particularly adept at monitoring the efficacy 
of longer-term management measures.  3-6 images within each season could effectively 
demonstrate bloom size, duration within a season, and an increase or decrease in bloom density 
between seasons. 
 
Jernakoff 1996 (Jernakoff et al. 1996) also did a comparison of two data types.  They used two 
airborne imaging systems: the CASI (Compact Airborne Spectrographic Imager), which has 288 
bands in imaging spectrometer mode and 14 bands in spatial imaging mode and the DMSV 
(Digital Multi-Spectral Video) which has less spectral resolution but is less expensive and more 
available at short notice. Both imagers are carried aboard aircraft and therefore the spatial 
resolution is adjustable depending on the flight height.  In this study the height of the aircraft 
allowed for 2 m x 2 m resolution. The CASI with higher spectral resolution provided greater 
accuracy and sensitivity to several different algal bloom types at low and moderate 
concentrations, but the 3 DMSV bands were still capable of separating the sites with high 
reliability. 
 
In the research reported here, I was not able to test the efficacy of these remotely sensed data sets 
in detecting the presence of cyanobacteria in very low concentrations, as would be expected in 
pre-bloom conditions.  Jupp (Jupp et al. 1994) asserts that a remote sensing system must be able 
to measure accurately down to 10 μg/l in turbid waters in order to be practical for this very 
purpose. Here it was not possible to look at the ability of the imagery to classify such low 
concentrations of algae because of a lack of ground truth data in these low ranges and a lack of 
low bloom conditions in the images.  
 
From a broader perspective, the Intergovernmental Panel on Climate Change (IPCC) reported 
that the average global temperature will rise by an amount within the range of 1.1°-6.4° through 
the end of the 21st century depending on the emission scenario of greenhouse gases 
(Intergovernmental Panel on Climate Change (IPCC) 2007). Continuing releases of greenhouse 
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gases from human activities will perpetuate the decline in snow cover, shifts in plant and animal 
distributions, and ultimately changes in algal and fish communities and foodwebs.  The predicted 
rise in average global temperature will bring about changes in the range for habitat and the 
migration patterns of many organisms.  As this occurs the structure and function of ecosystems 
will be altered and so to the phytoplankton dynamics and trophic interactions – hence a trend for 
increasingly abundant cyanobacteria blooms which is already being seen. Given the rising 
abundance of cynobacteria blooms and the myriad of both human health and ecological impacts 
from their proliferation, this research adds valuable contributions for future efforts to detect and 
manage them.  
 
In California cyanobacterial blooms have been detected in non-marine water bodies, including 
Los Vaqueros and Mallard Reservoirs, the Sacramento River, the San Joaquin River, the Old 
River, Crowley Lake, Black Butte Lake, Clear Lake, the South Fork Eel River, Lake Hensley, 
Lake Isabella, Big Bear Lake, Perris Lake, Lake Elsinore, Canyon Lake, Pinto Lake, Lake 
Hennessey, Lake Britton, the Klamath River and its reservoirs, and in surface water components 
of the Metropolitan Water District of Southern California. Cyanobacterial blooms also occur in 
Big Lagoon, an estuary, and in the Salton Sea, an inland salt-water lake. To date the specific 
cyanotoxins identified in California include microcystins and anatoxin-a.  A growing list of 
waterbodies in California are impacted by toxic BGA. Given the size of California, the list, long 
as it is, is still most certainly an underestimate of the true impact of toxic BGA.  Without a 
formal monitoring and surveillance program in place nor specific requirements for drinking 
water districts the state functions at a reactionary level when blooms are detected unintentionally.   
 
The results of this research support the use of remote sensing as a tool to detect the presence and 
intensity of cyanobacteria and to monitor temporal change in these blooms in response to natural 
or anthropogenic changes in the system. This in turn facilitates better public health protection 
and watershed management.  Land uses and planning choices have the potential to impact water 
quality in a way that alters the ecosystem and phytoplankton community, and promotes 
cyanobacteria proliferation. Indeed, the research reported here supported the original premise 
that remote sensing is a tool to assess the risks to public health associated with land use and 
ecological change such as that produced by the construction of the Three Gorges Dam. 
 

6.2 Policy Framework Contrast between California and China 
The National Academy of Sciences published a book on the Klamath Basin in which they stated 
that less than 1% of the energy needs of PacifiCorp’s customers is actually generated by the 
Klamath dams.  Additionally the Klamath Reclamation area has low electricity rates so there is 
no motivation to reduce the pumping of irrigation water as a way to conserve both energy and 
water (Board on Environmental Studies and Toxicology and Water Science and Technology 
Board 2008).  The Klamath River is listed as an impaired water body on the Clean Water Act 
(CWA) section 303(d) list for temperature, nutrients, dissolved oxygen and microcystin.  The 
North Coast Regional Water Quality control Board (NCRWQCB) is in the process of finalizing 
and adopting a Total Maximum Daily Load (TMDL) for the Klamath River.  The revised Staff 
Report and TMDL Action Plan were released in December 2009.  PacifiCorp Energy applied for 
relicensing with the Federal Energy Regulation Commission on February 23, 2004 which 
included documentation on section 401 of the Clean Water Act.  The State Water Board 
reviewed this and responded in February 2007 by stating that it was not clear that the relicensing 
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of PacifiCorp’s hydroelectric PacifiCorp would protect water quality and additional studies were 
requested. An Agreement in Principle (AIP) to remove four Klamath River Dams was announced 
on November 13, 2008.   
 
Hydroelectric dams often fail to meet expectations.  While they do provide the benefits they were 
intended for, these are often at a much lower level than was anticipated (International River 
Network 2008).  In 1996 for the first time the Federal Energy Regulatory Commission 
recommended the removal of a dam (Newport Dam #11 on the Clyde River in Vermont) for 
environmental reasons (Platt 2003).  Increasingly in the U.S., where there are few un-
appropriated water supplies, dam decommissioning and dam removal are happening to benefit 
fish population recovery and to counteract any number of environmental impacts.  In contrast, 
many other countries in the developing world are following the past model of the U.S. by 
building many dams on most of their rivers.   
 
Many major tributaries along the Yangtze now contain high volumes of algae (Yan 2007) The 
first annual report on the Yangtze River protection was released in 2007 by the Nanjing Institute 
of Geography and Limnology, the Yangtze River Water Resources Commission, and the WWF, 
and it showed continued inflows of billions of tons of waste leaving more than 600 kilometers of 
the river in critical condition. The reservoir is polluted with pesticides, fertilizers and sewage 
from passenger boats (Xinhua China News Agency 2007). Varis reports that severe 
eutrophication problems are regularly observed in all major Chinese river systems, including the 
Yangtze (Varis and Vakkilainen 2001). China, however, lacks a unified water administration and 
management. Their transition to a market-based economy has also involved some 
decentralization of  their government, but the water institutions are not necessarily all keeping up 
(Varis and Vakkilainen 2001).  
 
When I contacted officials at Chinese environmental agencies for collaboration on water 
monitoring of harmful algal blooms and related dynamics in the Yangtze River, they 
communicated that their hands were tied when it came to research on issues that could be viewed 
as highlighting potential negative repercussions of the Three Gorges Dam construction. 
Nonetheless in October of 2006 a delegation of officials from China, who were all part of the 
Three Gorges Project Construction Committee and working on its management, came to 
California where they scheduled meetings with many state and federal agencies to learn about 
management and planning for U.S. dams.  In a meeting with the U.S. EPA where I presented 
information regarding cyanobacteria in the Klamath reservoirs, they were particularly interested 
in learning about the risks and management of cyanobacteria.  Although the sampling conducted 
as a part of this study did not detect cyanobacteria blooms in the Three Gorges Dam reservoir, 
harmful algal blooms have been reported on other parts of the Yangtze watershed and the 
delegation’s keen interest in this issue may be indicative of their awareness of the growing issue 
on the Yangtze. 
 
The findings from this research show that remote sensing data, even with coarse spectral 
resolution, can be used successfully to map the freshwater area impacted by blooms of various 
intensity.  Periodic collection and classification of remote sensing can provide valuable 
information over the large area of the TGDR regarding where blooms may be occurring that is 
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otherwise unattainable in a site like the TGDR where the reservoir is so large and logistically 
difficult to access. 
 

6.3 Future Studies 
The results of this work lead to a number of other possible research questions that it would be 
helpful to explore in the future.  One of these is working to develop a way to have real ground 
truth data collected that can truly represent field conditions at multiple sites throughout the water 
at the instant when the satellite image was collected. Part of the issue with correlating the field 
pigment concentration data with the pixel reflectance data is the diurnal temporality.  Blooms 
rise to the water surface during the day and depending on local winds, water currents and their 
location in the water column they can be moved within the reservoir.  The remote sensing 
imagery is collected for the entire area in a near instant in time, while 2 days were needed to 
collect the field samples.  GPS coordinates were collected for the field sample sites (see Chapter 
2), but as they were not at the exact hour when the imagery was collected large discrepancies 
exist between the concentrations of algae observed in the field versus those observed in the 
imagery. One way around this issue might be the use of real time monitoring probes placed 
throughout the reservoir.  Those probes (available through YSI and Turner Designs) measure 
fluorescence in the field in real time, providing field data that can be assessed at precisely the 
time corresponding to image acquisition. 
 
Other types of remotely sensed information might also be quite beneficial. For example the use 
of sensors (even simple cameras), mounted on posts at fixed heights over the water so that  the 
field of view encompasses as much approximately 10 sq. meters (depending on the mounted 
height) can be programmed to capture images daily, weekly, monthly (or any other fixed 
interval) at the same time each day.  With some automation, these images could quickly be used 
to evaluate impact, and to dictate when to collect field data for verification or further information 
such as speciation and toxin concentration.  
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