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Abstract 

 

Tools for engineering biology: methods for designing, building, and testing 

by 

Timothy H Hsiau 

Doctor of Philosophy in Bioengineering 

University of California, Berkeley 

Assistant Professor J. Christopher Anderson, Chair 

 

 Genetic engineering remains a difficult task and the design, build, test cycle may take 
months or years to complete.  Currently, all three aspects are laborious, expensive, and mostly 
handle volumes of tens of units.  The typical process of reaching a proof of concept genetic 
prototype involves an intensive survey of literature, synthesizing or acquiring genes, and testing 
their function.  Here I outline tools to address bottlenecks in the genetic engineering workflow.  
First, I describe the Engineered DNA Sequence Syntax Inspector (EDSSI).   This software 
pipeline checks protein-coding DNAs for syntax errors, which are incorrect or missing elements 
in the DNA.  By using EDSSI, researchers are able to avoid the simple but costly mistakes of 
point errors, misannotated gene structure, or unintended extraneous ORFs.  Second, I describe 
Multiplex Ortholog Library Synthesis and Expression Testing (MOLSET), a method  to build 
genes and test their expression in E. coli.  MOLSET enables the multiplex synthesis and 
expression testing of up to a hundred genes directly from a microarray oligo pool.  data 
generated by MOLSET is incorporated into a design synthesis algorithm called Act Synthesizer 
that employs this information to improve predictions of pathways.  Finally, we show the 
usefulness of the Act synthesizer by designing and testing a pathway for product of the 
household painkiller, acetaminophen, in E. coli. 
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Chapter 1 
 

The Engineered DNA Sequence Syntax Inspector 
 
 Reproduced with permission from ACS Synthetic Biology, submitted for  
publication. Unpublished work copyright 2013 American Chemical Society. 
 
Abstract 
 DNAs encoding for polypeptides often contain design errors that cause 
experiments to prematurely fail.  One class of design errors is incorrect or missing 
elements in the DNA, referred to here as syntax errors.  We have identified three major 
causes of syntax errors: point mutations from sequencing or manual data entry, gene 
structure misannotation, and unintended ORFs.  EDSSI is an online bioinformatics 
pipeline that checks for syntax errors through three steps.   First, ORF prediction in input 
DNA sequences is done by GeneMark; next, homologous sequences are retrieved by 
BLAST; and finally, syntax errors in the protein sequence are predicted by using the 
SIFT algorithm.  We show that EDSSI is able to identify previously published examples 
of syntatical errors and also show that our indel addition to the SIFT program is 97% 
accurate on a test set of E. coli proteins.  EDSSI is available at 
http://andersonlab.qb3.berkeley.edu/Software/EDSSI/ 
 
Preface 
 The contents of this chapter are based on a paper submitted to ACS Synthetic 
Biology.  My contributions to this work included developing the DNA Syntax Inspector 
concept, writing code, and writing this chapter.  Dr. J. Christopher Anderson contributed 
to developing the ideas presented in this chapter. 
 
 
Introduction 
 Designed DNAs encoding for polypeptides often contain design errors that cause 
experiments to prematurely fail; to address this concern, we have developed a 
computational tool that detects likely syntactic design errors in a genetic construct.  DNA 
sequences are typically designed from prior knowledge of biological phenomena but 
implementation of novel biological functions is error prone [1].  The cause of error 
requires  some  experimental  “debugging”  to  discover,  and  typically only after ruling out 
many alternative hypotheses is the problem traced to incorrect or missing features in the 
designed DNA. 

Previously, we have reviewed the many challenges that genetic engineers face [1].  
One class of challenge is incorrect or missing elements in the DNA, referred to here as 
syntax errors.   These errors can be predicted beforehand and corrected for in the design 
stage; however, in many experiments today they are usually discovered during the 
debugging stage after an experiment has failed.   

Syntax errors that occur in polypeptide-coding DNAs result in a non-functional 
protein or cause unintended interactions in the early, proof-of-concept stages of a project.  
Such a result can then be interpreted as a total failure of the experiment rather than an 
artifact due to syntax errors.  We have identified three major sources of syntax errors and 
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the corresponding manifestations: 1) sequencing errors in the primary data that lead to 
point mutations or truncations; 2) wrong gene structure annotations, typically of the gene 
start site that lead to truncated proteins; and, lastly, 3) unanticipated ORFs, which give 
rise to unintended polypeptides.  We give examples for these three types of syntax errors 
and present an analysis pipeline  that aids in the identification of such errors. 

 
Point errors from sequencing or manual data entry: Sequencing errors from 

Sanger technology in the 1990s were estimated at 0.1% [2].  Although next generation 
sequencing can compensate for higher error rates in individual reads by using information 
from overlapping reads, finished contigs are still imperfect were were estimated to have 
an error rate of 0.33% in 2009 [3].  Additionally, error rates are unequally distributed 
across sequenced genomes and fluctuate based on both local sequence composition and 
the specific sequencing technology employed.  Sequencing errors can cause 
nonsynonomous mutations and truncations of a gene by introducing erroneous start or 
stop codons.  Additionally, manual sequence editing has the potential of introducing this 
and other types of errors. 

Real world example:  Engineers refactored a Klebsiella nitrogen-fixation gene 
cluster to remove unwanted regulation by synthesizing sequences derived from NCBI 
entry X13303.1 [4].  The synthesized genes were non-functional when tested by knockout 
complementation, and the failures were traced back to non-synonymous mutations due to 
erroneous sequencing data in the original submission.  Identifying the problem and 
correcting it by resequencing the source DNA consumed 3 months [5]. 

 
Gene structure misannotation:  While genome annotation has gone through a 

rapid pace of development, predicted gene structures are still imperfect and also many 
erroneous entries exist in the databases.  As one example, automated gene annotation 
software mis-annotates at least 10% of prokaryotic gene start sites [6, 7].  Similarity-
based analyses of genome sequences have identified gene-calling errors as high as 15% 
[8].  The gold standard for gene start site is experimental validation by N-terminal 
sequencing, which is sparse or not collected in a central database.  While there have been 
efforts to improve annotation of gene start sites [9], many of the entries in nr,  NCBI’s  
non-redundant protein database, still have erroneous annotations.  Gene prediction in 
eukaryotes, especially non-model organisms, is non-trivial as the software must also 
accurately predict introns [10].  Gene structure misannotation can also happen when users 
manually infer the incorrect gene structure. 

Real world example: The invF gene was used in a design for genetic logic gates in 
E. coli; however, due to an incorrect annotation, the synthesized ORF was truncated. [11]  
This error is particularly common when refactoring overlapping ORFs or when dealing 
with ORFs that have many methionines near the start (e.g. beta-lactamase). 

 
 Unintended ORFs: overlapping ORFs have been found in all domains of life.  
On average, 27% of genes in prokaryotic genomes are involved in at least one overlap 
[Lillo], and internal or partial ORFs can occur when sequences are copied from their 
native context.  During transfer of a target ORF to a new context, annotation of the 
overlapping ORF may be forgotten or discarded.  Additionally, ORFs expressed outside 
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of their native context can contain unintended translational signals that lead to production 
of truncated protein products [13]. 

Real world example:  A chimeric gene composed of the rabbit structural capsid 
protein VP60 fused to cholera toxin B subunit was not stable in E. coli hosts [14].  
Constructing frame-shift mutations versions of the gene did not alleviate plasmid 
instability, and the true cause of instability was found to be due to the use of non-standard 
codons, which, when read in a different frame, led to expression of a leucine-rich ORF.  
The leucine-rich polypeptide was hypothesized to insert into the membrane and was 
shown to be the cause of toxicity. 

 
 Errors in designed protein coding sequences are predictable, preventable, and 
cause unnecessary experimental delays.  Thus, there is a need for software tools that 
decrease risk of failure by identifying potential errors in a genetic design.  In this article, 
we report the Engineered DNA Sequence Syntax Inspector (EDSSI), a new tool that 
identifies  syntax  errors  in  the  user’s  protein-coding sequence.  We focus on protein-
coding syntax for genes from any source being expressed in bacteria, to facilitate the 
common practice of placing existing protein-coding sequences under engineered 
transcriptional regulation.  Additionally, protein-coding syntax is much better understood 
than non-protein-coding syntax and poses a more tractable problem.  In our tool, users 
input a DNA sequence, protein-coding regions are detected, and a homology-based 
approach is used to predict errors.  Users can then view the syntax error analysis on the 
results page.  By quickly allowing syntax errors to be considered or discarded as a 
hypothesis in troubleshooting experiments, this tool enables a more rational design of 
protein-coding sequences. 
 
 
Methods 
 The sequence inspector workflow is illustrated in Figure 2.  The workflow 
consists of the following steps: sequence submission, gene prediction, homolog search, 
alignment, scoring, and display. 
 
 
Bioinformatics workflow 
 The sequence inspector predicts genes in input DNA by using GeneMark.hmm 
and NCBI’s  Conserved  Domain  search (CD-search).  The HMM framework of 
GeneMark.hmm uses the statistical patterns of nucleotides coding for proteins to predict 
likely genes.  Predictions of translational start sites are further improved by incorporating 
a model of the ribosome binding site (RBS).  The CD-search identifies nucleotide regions 
matching protein family profiles [15].  The protein family profile match regions are then 
extended to the closest start and stop codon for a minimal gene prediction.  The predicted 
genes from the two approaches are then merged if they overlap and are in the same 
frame. 
 The sequence inspector next searches for and retrieves homologous protein 
sequences, aligns the sequences, and scores the input sequence for syntax errors. To find 
protein homologs, for each predicted ORF, the program uses a BLAST search against the 
non-redundant (nr) protein database to find closely related genes.  Full-length protein 
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sequences identified by the BLAST search are then retrieved, and the homologs are 
aligned using the MUSCLE aligner [16].  The alignment is then scored using the SIFT 
algorithm [17].  In brief, amino acid distributions at each column are used to calculate a 
normalized probability that the observed residue is correct.  Aligned columns with more 
variation are more likely to tolerate substitutions than highly conserved positions.  The 
standard cutoff of 0.05 was used.  Because SIFT ignores gaps in the input alignment, we 
added a custom scoring function for the gapped positions that uses a simple weighted 
vote. 
 Results are passed as a JavaScript Object Notation (JSON) file and displayed 
using the JavaScript visualization library RaphaelJS and a JavaScript multiple sequence 
aligner viewer developed in-house.  We use the ELink functionality provided by NCBI to 
retrieve publications relevant to each protein BLAST hit.  Results from the analysis are 
output as an independent json file, which is read and displayed by the HTML/js viewer. 
  
Workflow technical details 
 Genemark.hmm version 2.8a is run with the E. coli model and the -r option, 
which uses an RBS model for start codon prediction.  All other prediction options were 
kept as default.  Conserved Domain search was performed with the rpstblastn binary 
included in the blast+ package from the NCBI.   Rpstblastn is run with an e-value of 1e-
50.  Outputs from Genemark.hmm and rpstblastn are parsed by Python scripts to generate 
gene predictions for the input DNA. 
 After gene prediction, protein sequences are individually queried against the nr 
database using blastp and an e-value of 1e-50 and up to 50 homologs are then retrieved. 
MUSCLE is then called with all default options.  In order to retain the input order of the 
sequences, the stable.py script supplied with MUSCLE is then used to reorder the 
alignment.  Because the standalone SIFT binary does not accept gaps in the aligned fasta 
input, any alignment columns with a gap in the reference are removed.  Processed 
alignments are then anlayzed using the info_on_seqs SIFT binary (SIFT version 5.0.3). 
 
Results 

Here we present EDSSI, a sequence analysis tool that inspects input DNA for 
potential syntax errors in the protein coding sequences when expressed in a bacterial 
context.  By combining gene prediction, homolog retrieval, protein sequence alignment, 
and mutational analysis software, EDSSI predicts one type of genetic design error.  
EDSSI is available at http://andersonlab.qb3.berkeley.edu/Software/EDSSI. 

 
Performance 
 The EDSSI analysis pipeline fits well into common design workflows.  The two 
BLASTs are the main bottlenecks of the pipeline, so results for both are cached to 
improve performance for commonly queried sequences.  The protein blast searches are 
also done in parallel to speed up performance.  We timed the analyses for 20 E. coli 
genomic loci, and found that on average each kilobase takes 3 minutes to run. 
 
Sequence inspector reports 
 EDSSI generates a report that contains a graphical representation of the input 
sequence.  Detected ORFs are drawn as arrows and are labeled by a text annotation.  The 
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ORF labels can be toggled on or off by a button at the top right of the display.  ORFs are 
color-coded by level of evidence: ORFs with exact database matches are shown in green; 
ORFs with database hits but no exact match are shown in orange; and ORFs with no 
database hits are shown in black.  Errors in the protein sequence are drawn as red vertical 
bars. 

Each ORF links to its corresponding multiple sequence alignment.  The sequence 
of the predicted ORF, or the input sequence, is given as the first sequence in the 
alignment.  Subsequent protein sequences are ordered by similarity.  The entire alignment 
is generated by JavaScript and also can be dynamically resized. 

Predicted errors in the input sequence are depicted as color-coded vertical bars in 
the multiple sequence alignment, with more likely errors coded with a deeper shade of 
red.  The amino acid characters are also color coded to facilitate visual comparison. 

Several files from each analysis are available for download.  The complete output 
data is available as a json download to facilitate interoperability with automated genetic 
design software.  The aligned protein sequences are available in a fasta file.  The 
conserved domain and homolog searches produce links to relevant, indexed abstracts in 
PubMed that users can read.  The analysis pipeline also produces an annotated genbank 
file that can be read by popular DNA editors such as ApE, LaserGene, etc. 
 
 A literature search was conducted to find and evaluate underlying software for 
EDSSI.  Genemark.hmm was found to correctly predict 93.5% of experimentally verified 
genes across a wide range of bacteria [21].  SIFT has been benchmarked against a large 
set of functional data from near complete mutagenesis of lacI, HIV protease, and T4 
lysozyme.  SIFT has false positive rates of 20% and false negative rates of 31% [18].  
Finally, to test our indel addition to the SIFT analysis workflow, we selected ORFs from 
the EcoGene Verified Protein Starts set with an internal methionine, generated truncated 
protein sequences, and ran them through EDSSI.  Truncated sequences may result in a 
false negative analysis if there are sufficient shorter, erroneous protein sequence entries 
in NCBI nr.  However, EDSSI is able to predict 97% of the truncated protein sequences. 
 
Three illustrative examples 

To demonstrate the utility of EDSSI, we submitted the three published examples 
of syntax errors discussed above.  

We first syntax-checked the synthetic construct pCTXvp60 [14].  The leucine-rich 
ORFs in pCTXvp60, including the toxicity causing ORF238, were correctly identified 
during the analysis.  These artificial ORFs have no homologs and were therefore not 
identified by the conserved domain search.  As expected, the artificial fusion protein 
CTXvp60, which lacks a bacterial RBS, was detected as two separate ORFs.  However, 
knowing about the spurious ORF238 would likely have aided in troubleshooting the 
unexpected but observed plasmid toxicity in E. coli. 

 We next examined the X13303.1 nif cluster from [4] and EDSSI predicted 13 
errors.  The nifS gene is shown in Figure 3a as an example of how these point mutations 
are displayed.  During nif cluster resequencing 18 non-synonomous mutations were 
found, of which 8 agree with the ones found by EDSSI.   In comparison, the two 
homologous nif clusters found in had only 6 predicted errors in the 22kb region tested.  
Knowing about the predicted errors in the nif cluster sequence would likely have aided in 
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the debugging of the initial failed experiment.  EDSSI also successfully identified the 
truncation in the published invF construct (Figure 3b).  While some database entries share 
the same truncated translation start site, a majority of entries have the genuine start site.  
Knowledge of those entries would have been useful in the design of the experimental 
execution. 

 
Discussion 

Failed experiments are common in genetic engineering, and there is a need for 
software tools that provide suggestions for debugging these experiments.  One common 
source of error is the subtleties in the DNA syntax of the tested constructs.  Current 
practice relies on an implicit assumption that annotations and sequence databases are 
correct.  However, as we have found in the published examples, those annotations can 
often  mislead  the  engineer’s  thinking and can cause simple experiments to fail.  By 
creating better tools for syntax checking and semantic verification, such experiments will 
have a lower chance of failure. 

We used modern-day computer code editors as inspiration when we created 
EDSSI.  Modern-day computer code editors can find syntax errors or warnings before 
runtime, enabling a faster debugging cycle.  Similarly, our sequence inspector will allow 
for upfront handling of errors or can provide hypotheses for failed experiments. 

Even though there does not exist a formal theory for how each side chain position 
contributes to overall protein function, statistical approaches for predicting deleterious 
mutations still can provide a means of prediction.  By using the statistical techniques 
pioneered by programs like SIFT, our EDSSI output correlates with expert human 
analysis for the three published examples and our synthetic test sequences.  However, in 
the nif gene cluster example, the sequence inspector did not identify all of the non-
synonymous mutations found by resequencing.  This disparity is either due to a false 
negative of the SIFT program, or some of the mutated positions are tolerated.  Empirical 
testing on sequences substituted with each mutation for the desired nitrogen fixation 
function could differentiate between the two interpretations.  The synthetic benchmarks 
suggest that the ORF prediction and gap scoring algorithms can be used for pre-
experimental error prediction, while the amino acid substitution scoring may be useful for 
hypothesis generation in post-experiment debugging. 

EDSSI can be improved by inclusion of more data.  Analyses of rapidly evolving 
genes, such as endonucleases, or unique gene sequences will return many errors because 
the sequence inspector performs poorly when given few data points.  As more strains and 
individuals are sequenced, the number of homologs for any given protein can be expected 
to increase.  Also, more proteomic data will enable precise prediction of translation start 
sites.  Integrating protein structure, when available, into the analysis could also improve 
predictions of effects of amino acid substitutions such as in the PolyPhen prediction 
pipeline [19] 

For the biological engineer, the ability to rule out certain designs before 
fabrication will have an important role in enabling complicated designs [1, 20]. Already, 
with the right information, software systems can check the validity of designed logic 
gates [22] and metabolic pathways [23]. By addressing one common aspect of failure in 
genetic engineering, this tool will help move the practice closer to rational design. 
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Figure 1. Causes of syntactic error in genetic designs. (A) Point errors can result from 
erroneous sequencing or manual data entry. (B) Structural misannotation caused by late 
start sites can result in N-terminal truncations. (C) Unnannotated ORFs can result in the 
expression of unintended genes.   
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Figure 2. Data analysis workflow. The user submits DNA sequences through an online 
interface, which are then run through gene prediction, homolog search, alignment, and 
scoring. Associated programs or algorithms for each stage are shown.   
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Figure 3. Examples of the results page. The top panel depicts point mutations in the 
genbank entry X13303 used in the study [4]. The bottom panel depicts the truncated invF 
gene used in the study [11]. 
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Multiplex Ortholog Library Synthesis and Expression Testing 
 

 
Abstract  

Real-world synthetic biology is still very challenging, with projects taking years to 
complete.  Building genes and testing candidates are both expensive.  To that end, we have 
developed Multiplex Ortholog Library Synthesis and Expression Testing (MOLSET) for rapid 
building and expression characterization of many genes as a pool. In multiplex ortholog library 
synthesis, we have developed a scalable and inexpensive method for directly synthesizing an 
entire library of genes from microarray oligonucleotide pools.  We then used a genetic reporter 
for multiplex expression characterization and demonstrate the feasibility of our approach by 
building and testing 90 genes for empirical evidence of soluble expression. 

Used concurrently, these techniques allows an engineer to rapidly build and screen the 
expression of a library of genes to limit the number of devices going into an assay.  Both 
techniques are highly scalable; thus their accessibility and cost will track with the improvements 
in the underlying technologies of multiplex DNA reading and writing. 
 
Preface 
 The contents of this chapter are based on an ongoing project in the laboratory of Dr. J. 
Christopher Anderson.  My contributions to this work included developing the MOLSET 
methodology, writing in-house scripts for nucleotide sequence design, and writing this chapter.  
Dr. Phillip Elms, Dr. David Sukovich, Tahoura Samad, Tobias Stritmatter, Dr. J. Christopher 
Anderson, Saurabh Srivastava, Paul Ruan, and Bo Curry contributed to the work in this chapter 
or general project coordination and management. 
 
Introduction 

The design, build, test cycle paradigm has emerged as a powerful framework for the 
engineering of biology.  Recently, we have developed a design tool called the Act Synthesizer, a 
system for predicting biosynthetic pathways for desired products.  The Act Synthesizer uses a 
curated database of observations to provide the engineer with a list of enzymatic transformations 
and the associated gene sequences.  However, the build and test stages for constructing and 
assaying genetic parts in the laboratory are still limiting.  Currently, building genes requires 
access to source organisms or the use of expensive gene synthesis.  Even after genetic material is 
in hand, assays are often laborious or expensive, resulting in a need for prioritization of which 
genes to test.  One such metric for prioritization is soluble expression.  By first prioritizing 
genetic sequences that are solubly expressed, engineers can potentially avoid assaying 
recombinant proteins that end up in non-functional aggregation bodies [1-4].  However, currently 
soluble expression has been used as a gene ranking metric as most assays are laborious or require 
access to specialized equipment. 
 
 To address these limitations we report herein Multiplex Ortholog Library Synthesis and 
Expression Testing (MOLSET), a high-throughput gene synthesis and expression assay 
method.  In a multiplex manner, MOLSET synthesizes up to a hundred genes from microarray 
oligos and assays their soluble expression using a recently-developed indirect folding reporter in 
conjunction with next-generation sequencing.  The method uses only common one-pot 
techniques, can be implemented in any molecular biology laboratory, and is able to synthesize 
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the majority (>95%) of designed genes.  The results of MOLSET can be used to prioritize testing 
of genes, and we show how incorporation of that data impacts the predictions from the Act 
synthesizer.   Together, these technologies are highly scalable and their accessibility and cost 
will only advance with improvements to the underlying technologies.  
 
Results 
 To improve the ease of building genetic sequences, we set out to develop an inexpensive 
and easy-to-use gene synthesis method.  Previous efforts have shown that gene synthesis from 
microarray oligos is possible [5, 6].  However, previous approaches have been difficult to scale 
and not widely accessible for the following reasons: 1) they use complicated protocols, 2) require 
the use of robotics to be practical, and 3) have errors that require clonal enzymatic correction or 
sequencing.  Points 1) and 2) result from demultiplexing the material at the oligo or gene stage 
and require the handling of many samples in parallel. Our approach to simplify the protocol by 
demultiplexing the complex pool as late as possible, if at all.  Thus, we set out to make a robust 
protocol to make genes at the hundred-scale from OLS pools with only one-pot molecular 
biology techniques. 
 
A robust method for Ortholog Library Synthesis 
 
 To enable multiplex ortholog library synthesis, we first standardized the length of 
synthesized sequences and computationally minimized sequence crosstalk.  For each design, 
synthon lengths were standardized by addition of random padding sequence (GC 50%).  Codons 
were randomly chosen with a choice weight proportional to E. coli codon frequencies and oligos 
were designed to have 15 nt of unique sequence at both termini.  Synthons for each gene were 
designed to be 711 bp.  Gene-specific primer sequences and universal primer sequences were 
then added on the end of each sequence [6, 7, 16].  The sequence and oligo design constraints are 
illustrated in Figure 1. 

To empirically test if we could directly synthesize genes from OLS pools, we designed a 
chip for 83 GFP family members for a total of 2,700 oligos and 60.6 kb of designed 
sequence.  Oligos were synthesized by Agilent and received as a multiplex pool.  After 
phosphorylation and a one-pot ligation, we performed gene-specific PCRs with orthogonal 
primer pairs and subcloned products into an expression vector.  The robustness of the protocol 
was demonstrated when correctly-sized PCR product was observed even when 1 picomole of a 
25 nt random oligo (N25) was doped into the ligation reaction. 
 
 Correct gene synthesis products for 80 genes were found by screening cloned products by 
fluorescence or clonal sequencing.  The frequency of correct colonies determined by sequencing 
naive clones was determined to be 15% (6/40), with the majority of errors being point deletions, 
as is expected from the oligo synthesis methodology [8].  We next tested designs with more 
genes or longer synthons; however, we were unable to assemble 1000 genes of 800 bp (unable to 
get any perfect sequences for a majority of genes) or 200 genes of 1.5 kb (partial fragments 
only).  Thus we continued with the proven design of a hundred synthons of 800-900 bp in length. 
 
 
 
Multiplex Ortholog Synthesis 
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 We next sought to enable a one-pot process by eliminating the need for gene-specific 
amplification.  Our initial attempts to directly amplify the pool of assembled genes from the 
complex ligation reaction using conventional PCR yielded only short (100-200 bp) products.  We 
reasoned that the shorter products were favored by the PCR reaction and sought to counter or 
invert the length bias of PCR.  We tried amplification by emulsion PCR [9] and suppression PCR 
[10]. Water-in-oil emulsion PCR was carried out on the ligation reaction and was able to 
generate a faint band of the correct size. Use of emulsion PCR alone was found to be not robust 
as sometimes no band was seen after amplification.  We then used emulsion PCR to add on 
inverted repeats on the end of amplicons that act as suppression tails. A single primer which 
binds to the inverted repeats at the end of the amplicon is used in suppression PCR for 
amplification.  The inverted repeats can anneal to each other and compete with primer binding 
[10].  Shorter amplicons exhibit the suppression effect more than longer amplicons, thus 
suppression PCR is biased towards longer amplicons.  Suppression PCR product was then cloned 
directly into an expression vector and colonies were randomly picked and sequenced.  The 
number of correct, full-length genes was 21% (3/14); however, 43% (6/14) of clones were 
fusions of two genes and the remainder of the errors had deletions or were truncated genes.  We 
concluded that Multiplex Ortholog Synthesis was sufficient to quickly create a multiplex pool of 
genes with an acceptable error rate, and next sought an appropriate downstream assay for 
expression. 
 
A high-throughput expression assay based on Tat quality control 

 
We sought to develop a multiplexable expression assays in order to avoid individual 

cloning and sequence verification of genes.  Recently, a selection assay based on the twin-
arginine export quality control mechanism has been developed [11].  In this system, the gene of 
interest  (GOI)  is  fused  at  the  5’  end  with  a  Tat  export signal derived from trimethylamine N-
oxide  reductase  (ssTorA)  and  fused  at  the  3’  end  with  the  mature  TEM-1 beta-
lactamase.  Previous work has shown that translocation of the fusion protein and conferral of a 
resistance to ampicillin depends on the correct folding of the gene of interest [12]. We adapted 
this system in conjunction with Next Generation Sequencing to develop our expression assay, as 
shown in Figure 2. 

We then designed a Multiplex Ortholog Library Synthesis pool for 95 genes, with 7 
genes being negative controls previously shown to be poorly expressed in E. coli, 6 E. coli genes 
as positive controls, 1 engineered monomeric GFP also as a positive control, and 69 genes 
chosen from our Act system.  These genes were randomly chosen in order to have a wide range 
of assay in order to assess the performance of the multiplex expression assay.  These genes were 
synthesized and cloned into the pSALect-EB vector.  The library was electroporated and a 
diversity of 5×105 was observed by titer plating. 

We plated cells on 1, 2.5, 5, or 10 μg/mL of ampicillin and chloramphenicol and found 
that 1 μg/mL of ampicillin yielded no drop in titer compared to chloramphenicol only.  In 
contrast, we observed a 10% survival in titer on 2.5 or 5 μg/mL of ampicillin, which was on par 
with the expected survival rate based on Sanger sequencing of naive clones.  By sequencing 
clones grown from the 5 μg/mL ampicillin plate, we observed that 60% (27/45) were full length 
and correct, suggesting that the Multiplex Expression Assay system can also be used for 
multiplex, non-enzymatic gene synthesis error correction. 
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We next sought to characterize in a multiplex manner the expression of the synthesized 
genes and plated approximately 108 cells on solid media supplemented with 5, 10, 50, or 100 
μg/mL of ampicillin and 25 μg/mL of chloramphenicol. Plates were incubated at 30°C overnight 
and we observed a titer of 10% for 5 μg/mL, 3% for 10 μg/mL, 1% for 50 μg/mL, and 0.3% for 
100 μg/mL.  Then, we scraped the plates, miniprepped to recover the plasmid library, prepared 
sequencing samples using a TruSeq kit, and performed sequencing with a MiSeq instrument.  A 
total of 7.9 million reads were generated and were mapped to the reference genes.  Overall, 
18.7% of reads were successfully mapped to a designed gene, with the minimal per-pool 
mapping rate being 17.6% and the maximal mapping rate 20.2%. 

The TruSeq random fragmentation method results in shotgun coverage of the plasmids 
and thus the full insert is not sequenced in any single read.  Amplicon-based approaches would 
give rise to skewed counts as inserts are of different sizes in our assay.  Accordingly, partial gene 
fragments show up in our mapping.  However, from differences in the base-by-base coverage we 
can detect if coverage count arises from subfragments.  By taking the median of the base-by-base 
coverage, we have a length-normalized count of representation.  For the 5  μg/mL condition, the 
median read count correlated with Sanger sequencing data.  The same gene, Brenda92, was 
found to be the most represented in both the Sanger and the Illumina sequencing.  Ratios 
between the most represented and the second ranked genes were comparable (8:3 clones with 
Sanger sequencing versus 3197:1131 using Illumina median read coverage).  We then 
normalized counts by the pool to arrive at a dimensionless number that can be compared across 
different ampicillin conditions.  
 Our data showed that we synthesized 96% of the genes, and also enabled inferring gene 
expression.  Expression was then computed by taking the pool-normalized values for each gene 
and normalizing to the 5 μg/mL  condition.   We found that all of the negative solubility controls 
exhibited a pattern of having low representation in the higher ampicillin concentrations, rapidly 
falling  off  after  5  μg/mL.  Of the GFP family members, we included a well-folding, monomeric 
positive control, mKG [13], and found that it was one of the most represented genes in the 100 
μg/mL pool.  Of the 6 E. coli controls, we found that two survived at high ampicillin 
concentrations,  while  the  other  4  died  at  50  μg/mL or more of ampicillin.  These results suggest 
that while multiplex expression assaying using the tripartite fusion system is convenient, it 
suffers from  false negatives. 
 
Correlation with confirmatory experiments 
 
 In order to confirm our expression sequencing analysis, we dilution spotted overnight 
cultures of 6 retransformed clones onto plates of 0-400 μg/mL of ampicillin to confirm the 
phenotypes.  The dilution plating agreed with our NGS findings and can be seen in Figure 3.  To 
independently confirm expression of the 6 representative samples, we expressed them as FLAG-
tagged chimeras and performed Western blotting to look at soluble versus insoluble 
fractions.  The Western blot generally correlated with ampicillin growth (data not shown), but 
there was one exception, a dimer which expressed solubly as a FLAG-tag fusion, again 
suggesting that the multiplex expression system suffers from false negatives. 
 NGS-predicted expression was then correlated with text mined expression predictions in 
the Act Ontology.  Evidence for expression was inferred from the "Cloned" commentary section 
of the BRENDA database.  We then searched for comments with the organism name 
"escherichia", and without the terms "inclusion bodies" and "folding", as evidence of expression.  
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Of the 69 BRENDA-derived test genes, 58 (84%) were predicted by text mining to be expressed 
in E. coli.  NGS predictions using a 10% representation cutoff (gene pool representation should 
be more than 10% of the pool representation observed in the 5 μg/mL condition) predicted 43 
(62%) genes to be expressable. 
  
Methods 
Design of synthesized sequences 
 
 Sequences of all GFP family members in Uniprot were downloaded and a phylogenetic 
tree was made. We then selected GFP family members to synthesize from this tree.  Protein 
sequences were converted to nucleotides using a weighted random codon algorithm design in-
house.  Oligonucleotides were subsequently designed from the nucleotide sequences with the 
following constraints:  no longer than 175 nt and no more than a 15 nt exact match between two 
oligos at either terminus. 
 
Gene synthesis by high-temperature ligation 
 
 OLS oligos were synthesized by Agilent and received resuspended in 100 uL of TE 
buffer. Oligos were phosphorylated using 3 μL T4 Ligase Buffer (NEB), 24 μL OLS oligos, and 
3 μL T4 PNK(NEB) for 37C at 1 hour.  The reaction was heat inactivated at 65°C for 30 min and 
held at a final 16°C.  Testing several commercially available thermostable ligases revealed no 
differences in the gene-specific PCR for a subset of 20 genes.  We used 9 degrees North ligase 
(NEB) for all experiments. 
 Whole pool ligation was performed with 12 μL phosphorylated oligos, 4 μL 50% 3350 
PEG (Carbowax P146-3), 2 μL  9°N™  buffer,  2  μL  (80  U)  of  9°N™  ligase  (NEB).   Reactions 
were performed in a MJ Research PTC-200 thermocycler using the following program: 95°C for 
2 minutes, 65°C for 24 hours, and 4°C hold.  The ligation product was used as template for gene-
specific PCRs or emulsion PCR.  Gene-specific PCR was performed using 0.25 μL of the 
ligation product as template with gene-specific primers.  Emulsion PCR is detailed in the 
following section. 
 
Emulsion PCR for post-ligation amplification 
 
 Emulsion oil mix was prepared with 450 μL Span 80 (Fluka 85548), 40 μL Tween 80 
(Sigma P4780), 5 μL Triton X-100 (Promega H5142), and 9505 μL mineral oil (Sigma M5904) 
as described in [9].  Oil was thoroughly vortexed to mix.  Separately, PCR reaction mix was 
prepared on ice using Q5 polymerase (NEB).  PCR reactions were performed using 10 μL of 
ligation product as template supplemented with 0.5 μL (1 U) of Q5 polymerase, 20 μL Q5 
reaction buffer, 1 mM dNTP, and water for a total reaction volume of 100 μL. 

For emulsification, PCR reaction was mixed with oil at a 1:10 (PCR:oil) volumetric 
ratio.  PCR mix was pipetted into a cryovial tube containing emulsion oil and vortexed at 
maximum power using a VWR benchtop vortexer for 1 minute until a milky white emulsion 
formed.  The emulsion was distributed as 100 μL aliquots and PCR was performed in a MJ 
Research PTC-200 thermocycler. 

To break the emulsion post-PCR, aliquots were consolidated into microcentrifuge tubes 
and spun for 20 minutes to separate the oil and aqueous phases.  As much oil as possible was 
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pipetted off the top of the biphasic solution, 300 μL of 2-butanol (Sigma-Aldrich 19440) was 
added to break the emulsion, and tubes were vortexed.  For reaction clean-up, 1 mL of ADB 
(Zymo) was added, tubes were vortexed, and PCR clean-up columns (Zymo research) were to 
purify the amplicons. 
 
Suppression PCR to generate clonable amplicons 
 
 Purified emulsion PCR product was used as a template for suppression PCR.  Both 
emulsion primers were designed with a suppression tail of 
(CATCAGGTTTCATCCTGCCGGCATGAGCGGCTAACGG) so that amplicon ends form an 
inverted repeat.  For suppression PCR, the distal-binding primer 
(CATCAGGTTTCATCCTGCCGG) was used (30 cycles, Tm of 55°C).  PCR products were 
visualized on a gel and the band of the appropriate length was excised and cloned into a multiple 
cloning site flanked by EcoRI and BamHI. 
 
Solubility assay using a beta-lactamase folding reporter 

 
Matthew DeLisa graciously provided the pSALect vector.  We modified the pSALect 

vector to create pSALect-EB by placing EcoRI and BamHI restriction sites in between the tat 
signal sequence and the mature TEM-1 beta-lactamase sequence.  For library creation, digested 
pSALect-EB vector and amplicons were ligated and purified with a PCR clean-up column 
(Zymo).  Purified DNA was then electroporated into MC1061 derivative strains [14].  Cells were 
rescued for 2 hours at 37°C and grown overnight in 200 mL 2YT liquid media supplemented 
with 25 μg/mL chloramphenicol.  Rescued cells were also dilution plated onto LB 
chloramphenicol plates for titering. 
 A dilution equivalent of 1 μL  overnight  culture  was  then  plated  on  LB  plates  
supplemented  with  chloramphenicol  (25  μg/mL) and ampicillin at different concentrations 
ranging from 1 to 100 μg/mL.  Plates were incubated for 16 hours at 30°C.  Plasmids were 
harvested from plates as libraries or colonies were grown overnight for minipreps. 
 
DNAseq of Libraries 

 
Library minipreps were quantitated using a Nanodrop (Thermo Scientific) and 

fragmented using a Covaris S220 using the recommended protocols in the TruSeq kit 
(Illumina).  The TruSeq procedures was used to prep the libraries for sequencing.  Pools were 
prepared separately, barcoded, quantitated using a Library Quant Kit (Kapa Biosystems), 
combined, and sequenced on a MiSeq using a 300 cycle v2 kit. 
 Reads were quality trimmed and mapped to the reference sequences using BWA (0.6.1-
r104).  Samtools mpileup was used to extract per-base coverage and then an in-house python 
script and Microsoft Excel were used to normalize the data.  As some inserts were partial gene 
fragments and also contribute to the per-base read coverage score, we took the median as the 
read coverage score for the entire gene.  Manual inspection of the read coverage for several 
genes showed that the median was an acceptable measurement of whole gene read 
coverage.  The read coverage per gene is then pool-normalized by dividing by the sum of read 
coverages for all genes in each pool. 
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Confirmation of solubility with Western blotting 
 
 Library minipreps from the 5 μg/mL ampicillin conditon were digested and the 700 
bp  band corresponding to library of genic inserts was gel purified and cloned into an arabinose-
inducible expression vector with a C-terminal 3x FLAG tag.  72 colonies were Sanger sequenced 
and 26 unique inserts were recovered.  Minipreps were retransformed and strains were grown 
overnight, reinoculated, induced with arabinose (0.2% w/v), and harvested after 4 hours.  Cells 
were pelleted by centrifugation for 5 minutes at 2500 rcf, and the cell pellet was resuspended 
with BugBuster MasterMix (Novagen) at a ratio of 1 mL BugBuster per 0.1 g cell pellet.  Cells 
were lysed for 20 minutes at 25°C on a rocking platform and soluble protein was recovered by 
taking the supernatant after centrifugation at 12,000 rcf for 15 minutes.  The insoluble fraction 
was resuspended in an equal amount of BugBuster.  Subsequent Western blotting was performed 
with Monoclonal Anti-FLAG M2-HRP antibody (Sigma A8592) and ECL Western Blotting 
Substrate (Pierce 32106).  Images were quantitated using ImageJ. 
 
Discussion 

We have developed new methodologies, called MOLSET, for rapidly building genes and 
prioritizing them for downstream assays based on soluble expression.  For building genes, we 
simplified the process of creating genes from complex microarray oligo pools.  Our method 
requires only one-pot reactions and is able to create genes with length 811 bp at the hundred-
scale with a high rate of success (>95% of genes).  These results enable researchers to perform 
only 5 unit operations to make a pool of 100 genes as opposed to hundreds of unit operations 
required by previous protocols.  Additionally, with the use of the beta lactamase fusion system 
and selecting on ampicillin, we have shown it is possible to perform non-enzymatic gene 
synthesis error correction in a pooled format.  Taking these steps in combination, even if the 
eventual goal is to generate clonal inserts, our methods could save researchers much labor. 
 Our motivation in developing the expression testing in MOLSET is based on two 
observations. Firstly, expression issues can negatively impact recombinant protein 
function.  Secondly, downstream functional assays can be limited in throughput.  In combination, 
these  two  observations  point  towards  a  need  for  cataloguing  of  the  “expressability”  of  selected  
gene sequences such that 1) poorly expressed genes can be avoided in the design stage or 2) 
genes predicted to express can be prioritized in assays.  Our multiplex expression test uses the 
Tat-pathway export of a beta-lactamase folding reporter in conjunction with next-generation 
sequencing to quickly assay expressability of hundreds of genes using the widely available 
methods of plate-based selections. Previously, tripartite fusions in conjunction with NGS have 
been used to annotate genomes [15] and other reports have used NGS for characterization of 
degron mutants [17].  Our study extends on those results and show that it is possible to use NGS 
to read out multiplex expression measurements. 

Using the Tat export pathway allows our expression system to avoid false positives 
arising from translation due to spurious ribosomal binding sites internal to the assayed ORF, 
however, it also confers some disadvantages on our system.  The Tat pathway has a limit on the 
size of proteins it can export, and while proteins of up to 120 kDa have been shown to be 
exported [12], all of the factors that influence what can and cannot be exported are 
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unknown.  Taken together, these and our findings suggest that the Tat β-lactamase system has 
few false positives, and a false negative rate that can be complemented by other approaches. 

Complementary approaches would either use a different method of fusing GOIs to the β-
lactamase reporter or the use of other reporters.  There has been a loop insertion system 
developed for beta lactamase [22].  Also, the use of GFP as a expression reporter has been shown 
to correlate with the solubility of the fusion partner [18].  Currently, there are also split or 
circular permutation GFP folding assays which only require a tag of as little as 15 amino acids 
[19-21].  In conjunction with fluorescence-activated cell sorting and DNA sequencing, it would 
be possible to do multiplexed expression assays with a broad range of organisms and genes. 

With affordable gene synthesis now available, there can be a mismatch between the 
throughput at the building stage and what can be assayed.  In the absence of a genetic selection, 
downstream assays such as mass spectrometry are limited by their accessibility, throughput and 
cost.  One solution to this mismatch is to pre-screen genetic designs for easily assayable features 
that can influence final performance.  We have developed a multiplexable assay for expression in 
this report, but future development of multiplexable assays for aspects such as protein-protein 
interactions or impact on cellular fitness will also enable a more predictable approach to genetic 
engineering. 
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Figure 1. Multiplex Ortholog Library Synthesis. A) Nucleotide sequence and oligo design 
contraints.  Synthons are not to exceed 950 bp including Universal Forward and Reverse (UF, 
UR, respecitively) sequences, Specific Forward and Specific Reverse (SF, SR, respectively), 
Restriction Endonuclease (RE) recognition sites, and filler (Fi).  Oligos are designed such that all 
terminal 15 nucleotides are unique.  B)  Overview of the gene synthesis process. Oligos are 
phosphorylated and subjected to a high temperature ligation.  Next, individual genes can be 
amplified via specific PCR, or emulsion PCR and suppression PCR can be performed to amplify 
genes in a one-pot, multiplex manner.  C) Cells expressing 88 GFPs synthesized in this study.  1 
mL of cells were grown overnight, concentrated by centrifugation, and resuspended in PBS in a 
clear bottom 96-well plate with opaque siding.  Images are combined from UV illumination (top 
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layer, 50% transparency) and blue light illumination.  Well F4 contains empty media and is 
marked with a white X. 
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Figure 2.  Overview of multiplex expression testing. A) Test ORFs are fused to a N-terminal 
Tat pathway secretion signal (ssTorA) and a C-terminal TEM-1 β-lactamase.  B) Solubly 
expressed ORFs result in mature β-lactamase fusions exported to the periplasm of the cell.  The 
library is then selected on various ampicillin concentrations and relative abundances are assayed 
with Illumina sequencing. 
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Chapter 3 
 

The Act Synthesizer: Design and Testing of Biosynthetic Pathways 
 

Abstract 
 The microbial production of chemicals is an active area of investigation that has not been 
characterized yet in terms of its opportunities, limitation, and risks. Contrary to the common 
perception that the avenues for biosynthesis of chemicals is unquantifiable, here we present as a 
conservative over-approximation an enumerated set of a few thousand chemicals that can be 
biologically produced, given current electronic enzymatic datasets. Not only that, for each of 
these  “reachable”  chemicals  one  can  exhaustively characterize the set of heterologous pathways 
that can lead to it, if engineered into the cell. This enumerated set of biosynthesizable chemicals 
can also be screened for bioactivity, leading to an algorithmic and quantifiable characterization 
of biosafety concerns and potential mitigation strategies. 
 
Preface 
 The contents of this chapter are based on an ongoing project.  My contributions to this 
work included designing experiments, assisting in the development of the Act system, 
performing wetlab experiments, and writing portions of this chapter.  Dr. Saurabh Srivastava is 
the main developer of the Act system and also wrote portions of this chapter.  Paul Ruan, Dr. J. 
Christopher Anderson, Dr. Sanjit Seshia, and Dr. Ras Bodik contributed to the work in this 
chapter or general project coordination and management. 

Introduction 
 Biosynthetic production of chemicals, using Microbial Chemical Factories (MCFs), is an 
important area of synthetic biology research. Exemplar instances exist of optimized production 
strains for precursors to drugs [1], polymers [2], and fuels [3].  To date, typical pathway design 
processes involve copying natural biosynthetic pathways or manual searching through literature 
to back-track possible biosyntheses step-by-step to known metabolites.  However, these 
"manual" methods require specialized knowledge and can miss finding pathways as the number 
of possible biosyntheses to consider can become quite large after only a few steps. 
 Prior approaches have demonstrated that computational biosynthesis design can 
supplement or surpass manual design capabilities [2,4,5] and enables the biological production of 
novel chemicals.  <>[T1]  In this work, we develop a data-driven MCF-design system, called the 
Act Synthesizer, and exhaustively enumerate the current opportunities and limitations of the 
biosynthesizable chemical space. We additionally experimentally validate Act Synthesizer 
designed pathways by engineering E. coli to produce the household painkiller, acetaminophen. 
 
Results 
Approach: We use a graph-based approach to represent the known or reachable metabolic space.  
In our bipartite graph representation, there are two types of nodes: reactions and chemicals.  
Common "cofactors" such as H2O, NADH, or ATP are manually defined and ignored in edge 
construction.  To design novel biosynthetic pathways, we first define a core set of chemicals 
present in the host (see definition of L0, below) and then use a breadth-first search to enumerate 
enzymatic steps leading to new chemicals.  Pathways found using our simple node-edge 
approach are next subjected to a multi-stage process that considers "ranking factors" such as 1) if 
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all substrates are present for multi-substrate/product reactions and 2) known directionality of the 
reaction.  Act Synthesizer algorithm details are available in the Methods section. 
 
To populate the Act system, we have used the BRENDA database [7], a repository of enzymes 
and their catalyzed biochemical reactions. 
 
Reachables: We have categorized biosynthesizable chemicals, here called reachables, based on 
the difficulty of their production within a biological chassis.  Level 0 (L0): endogenous 
chemicals natively produced in the organism, here taken as a list of 192 E. coli metabolites [6].   
Level 1 (L1): chemicals naturally produced by another organism.  Level 2 (L2): chemicals that 
need enzymes from multiple different organisms.  Level 3 (L3): chemicals that require a 
speculated enzymatic substrate specificity.  Level 4 (L4): chemicals that need an enzyme with 
engineered substrate specificity reaction, Level 5 (L5): chemicals that need a reaction step with 
unnatural chemistry. Levels L3-L5 require predictive models for enzyme function (e.g., 
predicting substrate binding via Structure Activity Relationships) and we leave that for future 
work. This report characterizes the L0-L2 MCF space. 
 
The Act Synthesizer can fully enumerate the L0-L2 chemicals, given current databases of 
enzymatic catalysis. Using a list of metabolites native to E. coli as the L0 set, the L0-L2 space 
contains 3519 chemicals.  The distribution of number of reachables by enzymatic steps is shown 
in Figure 1.  By cross-referencing with other datasets such as the Sigma-Aldrich or Drugbank 
catalogs, we can highlight biosynthesizable polymers, therapeutic drugs, or chemical building 
blocks.  We next enumerated all possible enzymatic pathways for each reachable chemical. 
 
Enzymatic cascades: Given a reachable chemical, all possible enabling enzymatic routes can be 
expressed in the form of an acyclic directed graph. This acyclic directed graph starts with native 
host metabolites and ends at the reachable chemical. We call these set of possibilities the 
enzymatic cascade to that chemical. A simplified schematic of an enzymatic cascade is in Figure 
2. [T2]Square nodes indicate intermediates, and round nodes represent reactions.  Within this 
cascade, any set of enzymes that make a contiguous connected sequence from natives to 
reachable is a viable MCF pathway to the target chemical. The cascade can be ranked by a 
confidence metric for success relative to other pathways through the cascade. The metric used 
for confidence evaluation is enzyme expression data within that host and the number of other 
enzymes doing similar catalysis (but which potentially work on substantially different substrates.) 
The set of L0-L2 reachables and their cascades provide microbial engineering options for a 
variety of commonly targeted MCF chemicals, including adipic acid, glucaric acid, squalene, 
amongst others. In addition, the reachables also contain some unnatural chemicals whose 
biosynthesis has not yet been demonstrated. One such reachable target is 4-acetaminophen (also 
called paracetamol or Tylenol®). To  test  the  validity  of  Act’s  predictions of its reachability and 
the corresponding cascade we engineered an E. coli strain with the suggested pathway. 
 
Confirmation of Act-designed pathways: We chose to validate Act designs by implementing the 
pathway shown in Figure 3 for 4-acetaminophen. This L2 pathway branched off from chorismate 
biosynthesis and was unnatural in two regards. First, it suggested a gene from the common 
mushroom (Agaricus bisporus) for conversion of PABA to 4-aminophenol for the penultimate 
step. Second, it suggested using 4-aminophenol as an unnatural substrate for the E. coli gene N-
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hydroxyarylamine O-acetyltransferase (NhoA).  The  enzyme’s  natural  substrate  is  p-
aminobenzoic acid but it has also been shown to acetylates 4-aminophenol to produce 
acetaminophen [8].  The pathway is shown in Figure 3. 
 The enzymes 4ABH and NhoA were synthesized or PCRed from source material and 
cloned into a p15A vector with constitutive expression.  The PabABC genes were assembled into 
an operon without a promoter and cloned into a high copy vector.  As acetaminophen is a 
biologically active molecule in humans, we performed all experiments in dapD knockout strains 
that are unable to colonize the human gut. 
 The in vivo activity of the individual enzymes were confirmed by feeding in 10mM of 
precursors p-aminobenzoic acid or 4-aminophenol and using LCMS to confirm the 1-step 
transformations (p-aminobenzoic acid to 4-aminophenol and 4-aminophenol to acetaminophen, 
respectively).  4-aminophenol was detected via LCMS when p-aminobenzoic acid was fed to 
cells overexpressing 4ABH, and acetaminophen was detected via LCMS when 4-aminophenol 
was fed to cells overexpressing NhoA.  The 2-step pathway was then confirmed by 
supplementing the media with 1 mM p-aminobenzoic acid and observing the production of 
acetaminophen.  Finally, cells with the 4ABH, NhoA, and PabABC constructs were grown in 
glycerol minimal media to relieve product inhibition of the chorismate pathway and a yield of 
2.9 µM was measured via LCMS.  No further optimization was attempted to improve the yield.  
The experimental confirmation of the acetaminophen pathway demonstrates how novel 
biosynthesis routes can be designed by computational algorithms and highlights the need for 
more formalizable biochemical data. 
 
Methods 
The Act Synthesizer 
 The Act Ontology is an aggregator of observations and the Act Synthesizer is a predictive 
tool that algorithmically explored the aggregated observations space. Each observation in Act is 
one biochemical interaction: binding, catalysis, dissociation etc. For MCF we are only concerned 
with catalysis observations. To compute all reachables we start with the set of native metabolites 
and iteratively do the following: Optimistically assume all enzymes that are enabled, i.e., whose 
substrates and all cofactors at this step are reachable, can be expressed in the host resulting in a 
new set of reachables as augmented the products of that catalysis. Doing this iterative wavefront 
expansion until no further enzymes are enabled yields the set of all reachables. We can then 
narrow this down by screening using substructure patterns (e.g., for reachable diesters, and 
diacids, etc.) or using enumerated datasets (e.g., DEA regulated chemicals, or known LD50 
values, Drugbank small molecules, or Sigma-Aldrich functionally categorized chemicals) or by 
keyword  (e.g.,  “cancer”  for  Drugbank  entries  that  mention  cancer  in  the  associated  text  for  the  
small molecule.) Supplement X contains examples of such screened reachables lists. 
 
 To generate the enzymatic cascade to a reachable chemical, the algorithm traverses 
backwards iteratively including all possible steps that could lead to the intermediate, ignoring at 
each step any enzymes that need an unnatural substrate. This condition ensures that it never 
includes a pathway step which lacks biosynthesizable precursors in the host. Once we have the 
entire space of possible pathways, i.e., the cascade, we then subsequently rank within them based 
on available expression data, and number of similar catalyses observed. These metrics assign a 
confidence score to each end-to-end pathway within the cascade. 
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 This is a three phase algorithm: forward wavefront for all reachables (AND), backwards 
inclusion of pathway possiblities (OR), and ranking within the possibilities, and is a novel 
approach that exploits the semantics of enzymatic catalysis to develop an efficient algorithm that 
has previously eluded researchers. Previous attempts to solve this ranked hypergraph traversal 
problem (which is at least NP-hard) that defines the pathway construction process typically 
default to simulation-like incomplete solutions because of the hardness of the underlying 
computational  problem.  Act’s  phased  solution  not  only  provides  valuable  intermediate  artifacts,  
i.e., all possible reachables, but is also more efficient. 
 
Acetaminophen biosynthetic pathway 
 The Agaricus bisporus gene 4ABH was synthesized in-house using a LCR-based 
approach and the E. coli gene NhoA was cloned from genomic DNA. Both genes were placed 
under the control of the constitutive promoter BBa_J23100 in a p15A plasmid (4ABH.NhoA 
construct). The pabABC genes were assembled into an operon without a promoter and cloned 
into a high copy pUC vector (pabABC construct). As a biosafety precaution, we employed a 
dapD knockout strain that strictly requires diaminopimelic acid for growth.  DapD E. coli 
knockout cells were generated via P1 transduction from the Keio collection [9]. DapD E. coli 
strains were transformed with either the 4ABH.NhoA construct or both the pabABC and 
4ABH.NhoA constructs.  Transformants were grown for two days in GMML (Teknova) 
supplemented with the corresponding antibiotics. 
 
 For LCMS analysis (using an Agilent 1260 Infinity HPLC and a Agilent 6120 
Quadrupole LC/MS, using an Agilent Eclipse Plus C18 column with injection volumes 5 
microliters), fermentation broth with cells were desalted using Waters Oasis HLB Light 
Cartridges for both the experimental and background samples. As acetaminophen is permeable to 
the E. coli membrane, we did not need to lyse cells and 1 mL of "crude" fermentation broth was 
loaded into the desalting cartridge. The negative control background was the ΔdapD strain 
transformed with an empty vector. The positive control was a negative control strain with 
acetaminophen (Sigma Chemicals) doped into the fermentation broth prior to desalting. A 
standard curve was generated for yield quantitation. 
 
 
Discussion 
 As enzymatic knowledge increases, the space accessible by genetic engineering is also 
expected to increase.  Computational predictions of the reachable space and their cascades is 
made possible by a formalization of biochemistry, as encoded by the Act Ontology and by 
algorithms that process it. Such formalizations and integration across different data sets (drug 
bioactivity data, material physiochemical data, flavor and fragrance profiles, etc.) allows for 
exhaustive enumeration of the opportunities and limits of MCF applications. Given the 
incomplete standardization of enzymatic, chemical, and cellular chassis data computational tools 
are in a state of continuous improvement.  However, as we show with Act’s  characterization  of  
the L0-L2 space as 3519 reachables, standardization of biochemical data is possible and useful 
for MCF engineering.  We have also demonstrated the utility of our algorithms by 
experimentally engineering E. coli to produce a non-natural chemical, acetaminophen.  Yet more 
data exists in published form. With ongoing future work on text mining, prediction of enzymatic 
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catalysis and binding, protein engineering models, virtual screening, and multiplex 
characterization, more data will be formalized into Act and will unlock an expanded space of 
reachable chemicals. 
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 Figure 1. Graph of steps versus number of reachables.  Graph showing how many steps from 
L0 (0 steps) are needed to enable reachables in the L0-L2 space.  There are 3519 reachables in 
the L0-L2 space for E. coli using only data from BRENDA.  This number increases with the 
addition of more biochemical observations from text mining (data not shown). 
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Figure 2. Bipartite representation of biochemical reactions. The three biochemical reactions 
on the left are represented by the bipartite, directed graph on the right.  Squares are chemicals 
and reactions are circles.  Manually defined cofactors such as NADH, ATP, etc. are not shown in 
this representation but are accounted for in the algorithm.    



33 
 

 

Figure 3. Demonstration of acetaminophen production in E. coli.  A) depicts the Act-
designed enzymatic pathway with organism sources for each enzymatic step.  The LCMS trace is 
shown in B).  Negative control strains were the ΔdapD strain transformed with an empty vector.  
Standard control strains were the negative control strain with acetaminophen supplemented in the 
growth media.  The experimental strain expressed the 4ABH (from Agaricus) and the NhoA 
genes. 



25 
 

 

 

Figure 3.  Multiplex sequencing correlates with plate expression phenotype.  A) Graph of 
normalized occurrence of six representative ORFs.  See the Methods for details on data 
normalization.  B) Growth phenotype of strains on plates with different amounts of ampicillin. 
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Chapter 4 
 

Conclusions 
 
 Genetic engineering has much promise but still remains a difficult endeavor.  Biological 
systems are highly complex and attempts to modularize or standardize with the goal of predictive 
design have been met with limited success.  Current state-of-the-art techniques all rely on some 
amount of undirected random sampling.  However, there are certainly areas of biological 
engineering that are amenable to a more systematic approach.  The results presented in this 
dissertation are a small suggestion of how a combination of empirical and predictive approaches 
can decrease the difficulty of genetic engineering. 
 Certainly, engineers and researchers will still grapple with the lack of predictability in 
biological research.  Yet no technique will be able to exhaustively sample all genotype space for 
non-trivial systems, and most systems can only be assayed via laborious methods that only yield 
a few data points.  However, as multiplex tools such as those described in this dissertation 
become widely available, I believe that the combination of better design methods, more data, and 
high-throughput methods of testing hypotheses will unlock ever-larger application spaces for 
biological engineering. 
 




