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ABSTRACT OF THE DISSERTATION 

 

Geochemical tracers of crustal thickness and their applicability to the Tibetan-Himalayan Orogen 

 

by 

 

Ellen Wright Alexander 

Doctor of Philosophy in Geology 

University of California, Los Angeles, 2020 

Professor Timothy Mark Harrison, Chair 

 

Tectonic models of continental orogens seek to reconstruct the deformation processes 

associated with large-scale continental collision events. Geographically broad field surveys 

provide two spatial dimensions, and geochronology provides a third temporal dimension. The 

missing fourth dimension, most critical to understanding crustal evolution throughout collision, 

is the crustal thickening history of the orogen. Over the past few decades, however, accurate 

methods for estimating crustal thickness from the rock record have not fully emerged. Recently, 

indirect proxies for Moho depth have been developed using whole rock composition: trace 

element ratios Sr/Y, La/Yb, and Gd/Yb, and stable Nd isotopes. While these proxies can show 

changes in apparent depth based on transitions in whole-rock chemistry, these proxies are not 

immune to unconstrained effects on composition, including source melt composition and phase 

relations, or systematic changes in the intensive variables controlling the proxy. The application 

of an accurate and precise empirical thermobarometer to plutonic rocks can provide the depth of 
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magma generation and assimilation, and thus the minimum depth of the Moho and thickness of 

the crust. The Gangdese batholith in southern Tibet, spanning ca. 200 Ma of pre- and syn-

orogenic history, provides a continuous record of silicic magmatism associated with the 

subduction and collision history of southern Tibet. This work reconstructs whole-rock and zircon 

P-T-X-t histories of Gangdese granitoids spanning 225 Ma – 18 Ma from a transect of plutons 0 

– 110km north of the Indus-Tsangpo Suture, the southern margin of Eurasia, near Lhasa, Tibet at 

92ºE. I compare the utility of indirect geochemical proxies and thermobarometry, and discuss the 

relationship between the thermo-chemical histories of complex plutonic growth processes, and 

crustal thickening during orogenesis. High-resolution in-situ thermobarometry of quartz 

inclusions in zircon suggest rapid crustal thickening began ca. 25 Ma earlier than indicated by 

indirect isotopic and geochemical proxies. Pluton formation occurred throughout the lower three-

quarters of the Tibetan Crust, representing a large zone of plutonic activity that weakened the 

lower crust and contributed significantly to total orogenic heat budget. These results provide 

constraints for geodynamic models of intracontinental deformation and reveal the limitations and 

utility of various barometers and pseudobarometers in granites.  
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1.1 Motivation 

Tectonic models of continental orogens seek to reconstruct the deformation processes 

associated with large-scale continental collision events (e.g. Dewey & Burke, 1973; Houseman 

& England, 1993; Kapp et al., 2007; van Hinsbergen et al., 2012). Historically this has been 

achieved through a combination of conceptual geophysical models (e.g. Beaumont et al., 1996; 

Royden et al., 1997; Burov & Yamato, 2008; Duretz & Gerya, 2013) and analog experiments 

(e.g. Tapponnier et al., 1982; Peltzer & Tapponnier, 1988), as well as field investigations (e.g. 

Kidd et al., 1988; Murphy et al., 1997; Yin et al., 1999; Kapp et al., 2000). Geodynamic models 

of orogenic processes do not offer standalone explanations for deformation histories; rather they 

must base their boundary conditions and deformation mechanisms on empirical evidence of the 

four-dimensional (time – area – depth) progression of collision and orogeny. Geographically 

broad field surveys can provide two spatial dimensions, and geochronology provides a third, 

temporal dimension. The missing fourth dimension, critical to understanding crustal evolution 

throughout collision, is the crustal thickening history of the orogen. 

More than 30 years after the classic tectonic models for the Tibetan-Himalayan orogen 

were formulated (Houseman et al., 1981; England & McKenzie, 1982; Tapponnier et al., 1982; 

England & Houseman, 1986), no direct test has yet been devised to reconstruct the crustal 

thickness of Southern Tibet prior to, during, or shortly after the onset of the India-Asia collision. 

The approximate magnitude of northward crustal shortening since the onset of collision is 

approximately 1400 km (Yin & Harrison, 2000), but the exact mechanism of crustal thickening 

and the accommodation of deformation has been vigorously debated (England & Houseman, 

1986; Peltzer & Tapponnier, 1988; Kong & Bird, 1995; Peltzer & Saucier, 1996; Kong et al., 

1997; Ingalls et al., 2016). That these models imply vastly different crustal thickness histories 
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underscores how little we know of this evolution.  Geochemical and structural studies of exposed 

units are essential for complete understanding of collision history. Neotectonic, structural and 

thermochronologic investigations provide useful proxies to understand the behavior of the 

Tibetan crust throughout collision (Yin & Harrison, 2000; and references therein), but indirect 

geochemical proxies toward a geographically broad understanding of crustal thickness in Tibet 

are emerging (e.g., Zhu et al., 2017; Chen et al., 2018; DePaolo et al., 2019). However, these 

proxies can produce potentially misleading results due to unconstrained parameters that modify 

geochemical signals associated with crustal thickness–see Ch. 3. The integration of 

geochronology and direct thermobarometers with these indirect geochemical crustal thickness 

proxies can potentially produce a more accurate four-dimensional reconstruction of the Tibetan 

crust through 3-D space and time. 

1.2 Tectonic Background 

The Tibetan-Himalayan Orogen broadly encompasses the mountain belt stretching from 

Tajikistan to the northern Yunnan province, China; and from northern India to Xinjiang and 

Gansu, China. In total, the orogen represents nearly five million km2 of land area, mostly 

contained within southern Eurasia and the northern Indian subcontinent. The modern Tibetan 

plateau is a jigsaw of several accreted terranes, which were sequentially sutured onto southern 

Eurasia beginning in the early Paleozoic, with the final suturing event at the onset of the India-

Asia collision. The Eurasian portion of the Tibetan plateau is comprised of three major terranes: 

the Songpan-Ganze terrane in northern Tibet, the Qiangtang terrane in central Tibet, and the 

Lhasa terrane in southern Tibet; the Himalayan terrane, belonging to the northern Indian 

subcontinent, bounds the Lhasa terrane to the south (Figure 1.1). The Himalayan terrane was 

sutured to the Lhasa block along the Indus-Tsangpo Suture (ITS, alternately called the Yarlung-
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Tsangpo or Indus-Yarlung suture) at the onset of the India-Asia collision at approximately 57 Ma 

(Leech et al., 2005). 

As this work focuses on the magmatic and tectonic evolution of the southernmost portion 

of the Lhasa terrane, this introduction will focus on the precollisional history of the Lhasa 

terrane, particularly the southernmost portion. The Lhasa terrane is a microcontinent that rifted 

away from the Gondwana supercontinent, beginning approximately 250 Ma with the opening of 

the Neo-Tethys ocean basin by back-arc extension (Zhu et al., 2011). For the following ca. 100 

Figure 0.1: Schematic figure of terranes of the Tibetan plateau. The boundary between Eurasia 
and India is marked by the Indus-Tsangpo Suture (ITS). The studies in the following chapters 
focus on magmatic rocks from the Lhasa Terrane. 
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Ma, Lhasa rifted away from what would later become the Indian subcontinent, with continued 

spreading of the Neo Tethys basin to the south, and subduction of the Bangong-Nujiang Tethys 

ocean basin to the north. In the Late Jurassic the Lhasa terrane began a protracted collision with 

the Qiangtang terrane to the north, with collision and suturing progressing from east to west until 

the Middle Cretaceous (Dewey et al., 1988; Gaetani et al., 1993; Matte et al., 1996). Following 

completed suturing of Lhasa to Qiangtang along the Bangong-Nujiang suture zone, Lhasa 

underwent continued north-south shortening until the Late Cretaceous, with approximately 180 

km of total internal shortening between its collision with Qiangtang and the onset of the India-

Asia collision approximately 70 million years later (Murphy et al., 1997). 

Following the Lhasa-Qiangtang collision, the Neo-Tethyan ocean began to subduct under 

the formerly passive southern margin of Lhasa at approximately 140 Ma (Niu et al., 2003; Zhu et 

al., 2011). Though there has been continuous magmatic activity in the Lhasa terrane since at least 

225 Ma to the present (Chapman & Kapp, 2017; Alexander et al., 2019), the onset of Gangdese 

Batholith magmatism heralded the commencement of Neo-Tethys subduction. Gangdese 

magmatic rocks are broadly characterized by juvenile calc-alkaline I-type granitoids and 

intermediate to felsic arc volcanics, with the most voluminous magmatism likely occurring 

between ca. 100 – 80 Ma and again between 65 – 45 Ma (Wen et al., 2008; Zhu et al., 2015). The 

Gangdese Batholith, stretching ca. 2000 km along the entire southern margin of the Lhasa 

terrane, witnessed the tectonic and thermal effects of continental collision; the geochemistry of 

its plutonic units record the evolving geologic environment as the India-Asia collision 

progressed. These granitoids record the evolving crustal structure of the Lhasa terrane, providing 

a window into the nature and mechanism of collision. The temperature, pressure, and regional 

tectonic conditions present during granite magmatism inform the geochemistry and 
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thermobarometry of Gangdese Batholith granitoids, which can then be used to constrain the 

long-uncertain mechanisms of the 1000’s of km of crustal deformation and shortening following 

the onset of the India-Asia collision. 

1.3 Accommodating Collision-Induced Shortening 

Structural and geochemical studies of the Tibetan-Himalayan orogen reveal a complex 

history of deformation and magmatic evolution, from Andean-type subduction to post-collisional 

pluton emplacement in a significantly thickened crust (Yin and Harrison, 2000). Accommodation 

of this shortening can include intracrustal deformation, including development of upper-crustal 

fold-thrust belts or lateral extension; intracontinental subduction; erosion and consumption of the 

overriding lithosphere by the downgoing plate; and lateral extrusion of rigid crustal blocks or 

ductile lower crust. The relative impact of these various shortening-induced deformation 

mechanisms, however, is not well understood. Many have argued that the collision zone 

thickened to its present state via uniformly distributed shortening (England & McKenzie, 1982; 

England & Houseman, 1986; Dewey et al., 1988; Royden et al., 1997). The “distributed 

shortening” (simple-shear thickening) model, initially introduced by Dewey & Bird (1970) and 

reiterated more recently (e.g. Beaumont et al., 1996; Royden et al., 1997; Shen et al., 2001), 

often assumes a low-elevation, relatively thin Tibetan crust at the onset of collision.  Distributed 

shortening models simulate substantial deformation of the Tibetan upper crust; even with 

decoupling of the upper and lower crust, which could accommodate crustal flow, models still 

generate significant upper crustal deformation.  The presence of essentially undeformed late-

Cretaceous/Early Cenozoic volcanics (Murphy et al., 1997) in Southern Tibet implies models of 

this type cannot fully explain the uplift and shortening history of the Tibetan Plateau. Rather 

Tibet had already been significantly shortened and thickened prior to collision (Murphy et al., 
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1997) and did not experience upper crustal shortening during the initial stages of collision 

(Harrison et al., 1992).  

Crustal extrusion, on the other hand, is a process by which the lithosphere is fractured 

and discrete blocks are extruded laterally away from the indenter, with displacement 

accommodated either by large-scale strike-slip faults (Peltzer & Tapponnier, 1988; Tapponnier et 

al., 2001) or by pure shear along a mosaic of slip lines whose location changes as collision 

progresses (Molnar & Tapponnier, 1975; Tapponnier & Molnar, 1976). Analog experiments 

conducted by Peltzer and Tapponnier (1988) used several model crustal structures: vertical layers 

either perpendicular to or parallel to the indenter’s velocity, as well as homogeneous blocks.  The 

model with preexisting perpendicular structures most closely mimics the reconstructed 

displacements and modern strike-slip faults in Tibet and Indochina; there is additionally minimal 

deformation within the discrete blocks as fracturing and shearing proceeds.  The experimental 

results agree with regional neotectonics, but it is not clear that crustal extrusion was the dominant 

form of accommodation throughout the entire India-Asia collision. The fundamental distinction 

between the distributed shortening and crustal extrusion endmember models is whether 

shortening was accommodated primarily through intracrustal deformation or lateral 

displacement, respectively. It is estimated that between ~32 and 16 Ma, plate convergence 

became increasingly accommodated by eastward extrusion, either as translation of the Indochina 

and South China Blocks (Tapponnier et al., 1982; Harrison et al., 1996) or as ductile flow of 

underlying material (Bird, 1991).  

1.4 The Role of Igneous Geochemistry 

Over the past 40 years, intensive structural, geochemical, and thermochronological 

efforts in the Tibetan orogen have laid the groundwork for a comprehensive understanding of 
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this mountain belt, but key issues remain unresolved. In the case of continental orogens with 

voluminous magmatic inflation, like southern Tibet, the chemistry of igneous rocks in the region, 

and their constituent minerals, may provide better constraints on minimum crustal thicknesses 

than metamorphic rocks, which are susceptible to disequilibrium processes that may confound 

the use of thermodynamic methods. In recent years, however, accurate methods for estimating 

crustal thickness from igneous rocks have not fully emerged. Major element cation exchange 

barometers such as the Al-in-hornblende barometer (Hammarstrom & Zen, 1986; Schmidt, 1992; 

Anderson & Smith, 1995; Ague, 1997; Mutch et al., 2016) are limited to a narrow range of phase 

assemblages and appear to, at best, record emplacement depth rather than depth of melting 

(Ague, 1997; Alexander et al., 2016; Mutch et al., 2016), and at worst are highly susceptible to 

closure effects and deuteric alteration (Agemar et al., 1999). More recently, indirect proxies for 

Moho depth have been developed using whole rock composition: trace element ratios Sr/Y and 

La/Yb (Chiaradia, 2015; Profeta et al., 2015; Farner & Lee, 2017; Hu et al., 2017; Lieu & Stern, 

2019), and Nd isotopes (DePaolo et al., 2019). Chapter 2 explores the use of Hf isotopes in this 

role and concludes that granitoids in the southern margin of Tibet do not indicate significant 

assimilation with old crustal material until after the onset of collision. When the thermoisotopic 

model of DePaolo et al. (2019) is modified for Hf isotopes, calculated apparent depths suggest a 

relatively thin margin in southern Lhasa until < 50 Ma. Chapter 3 offers a critique of the trace 

element ratio methods (i.e., Sr/Y, La/Yb, and Gd/Yb) for establishing depth histories; a case 

study of 336 igneous samples from southern Lhasa age 40–100 Ma demonstrates the unreliability 

of trace element depth proxies. While chemical and isotopic proxies can show changes in 

apparent depth based on geochemical transitions, they are not immune to unconstrained effects 

on composition, such as changing source melt composition and phase relations, or systematic 
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changes in the intensive variables controlling the proxy (Moyen, 2009). Ironically these changes 

may be caused by the very crustal thickening that these proxies attempt to track, resulting in 

unresolvable drift in the baseline assumptions used to implement these proxies (Farner & Lee, 

2017; c.f. Hu et al., 2017). 

It is clear that direct thermobarometry would be an improvement on compositionally 

dependent, indirect Moho depth proxies. The application of an accurate and precise empirical 

thermobarometer to plutonic rocks can provide the depth of magma generation and assimilation, 

and thus the minimum depth of the Moho and thickness of the crust. Titanium partitioning in 

zircon and quartz is particularly useful, as it is a fixed charge cation that is universally available 

in magmatic rocks, compatible in zircon and quartz in trace amounts, and resistant to diffusive 

resetting at subsolidus temperature (T ) and pressure (P ) (Cherniak et al., 1997, 2007). 

Experimental studies have calibrated the T dependency of [Ti] in zircon (Watson & Harrison, 

2005; Ferry & Watson, 2007), and the T and P dependency of [Ti] in quartz (Thomas et al., 

2010, 2015). One caveat to the paired use of these thermobarometers is the assumption that the 

zircon and quartz crystallized during the same stage of magma genesis, under thermodynamic 

equilibrium. Analyses of Ti concentration of quartz inclusions in zircon, as well as the Ti 

concentration of the adjacent zircon growth zone, allows for simultaneous solution for T and P. 

Oxygen isotopic analyses of inclusion-host pairs can test thermodynamic equilibrium isotopic 

fractionation (Trail et al., 2007; Alexander et al., 2019).  

The Tibetan-Himalayan orogen presents a natural laboratory to apply these paired 

thermobarometers to reconstruct crustal thicknesses at the India-Asia margin throughout 

collision. In Southern Tibet, there are hundreds of granitic plutons spanning ~200 Ma and 1000’s 

of km2; the petrology of these plutons provides a window into the spatiotemporal history of 
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magmatic processes throughout the India-Asia collision. Chapter 4 describes a promising 

feasibility study of titanium thermobarometry on Tibetan granites and suggests it can be a robust 

technique for accessing the depth of melt generation throughout the India-Asia collision. Chapter 

5 synthesizes the results of Chs. 2–4: thermobarometry results inform the reliability of indirect 

thermoisotopic and geochemical models, showing the challenges in relying on indirect proxies. 

The robustness of a proxy is governed, in part, by its mutability by unconstrained parameters; in 

Ch. 5 I recommend future methods to test parameter sensitivity in order to deconvolve crustal 

thickness information from complex geochemical systems. 
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2.1 Introduction 

Isotopic signatures of magmatic rocks are governed by the composition of the primary 

melt source, as well as potential contribution from crustal material subsequently assimilated into 

the magma. Our interpretations emphasize the role of crustal assimilation in the genesis of 

granitic magmas, an issue which remains subject to debate (e.g. Chapman et al., 2017); a detailed 

discussion of the importance of crustal assimilation is given in DePaolo et al. (2019). The 

temperature of the country rock into which a magma intrudes is the most important limiting 

factor on the degree of assimilation between the juvenile melt and crustal material (Reiners et al., 

1995). In general, cold crust is unlikely to be heated to anatexis by the injection of juvenile melt 

and thus the melt will not undergo significant alteration of its isotopic signature by assimilation 

of crustal material, while hot crust will be more readily available for assimilation. When the 

assimilation rate competes with the rate at which fractional crystallization is occurring, there can 

be a large crustal contribution to the isotopic signature (DePaolo, 1981; Spera & Bohrson, 2002). 

Storage at high temperature, whether due to high country rock initial temperature or periodic 

magma recharge, will result in greater total assimilation and thus a more crustal-like isotopic 

signature (DePaolo, 1981; Reiners et al., 1995). We proceed on the assumption that higher 

degrees of assimilation are associated with higher wall-rock temperature and that the majority of 

melt hybridization occurs at or near the Moho (DePaolo, 1981; Klaver et al., 2018; Rapp et al., 

2003; Reiners et al., 1995; DePaolo et al., 2019).  

While steady-state magma flux and assimilation cannot be assumed for upper-crustal 

volcanic systems, in which a large quantity of low-crystallinity magma must be generated prior 

to eruption (Simon et al., 2014; DePaolo et al., 2019), granitic batholiths are commonly 

characterized by episodic growth and zircon crystallization histories spanning 105 to 106 years 
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(Wiebe & Collins, 1998; McNulty et al., 2000; Walker et al., 2007). Accordingly, typical 

granitoids form from low magma flux, with the ratio of assimilation rate and recharge rate only 

slightly lower than steady state. The “Temperature-Flux” model developed by DePaolo et al. 

(1992; 2019) defines the “Neodymium Crustal Index” (NCI), which relates the whole-rock εNd of 

a pluton to the εNd of recharging magma and assimilated (crustal) material, can be used to 

approximate Moho temperature, and therefore depth, as a function of the pluton’s degree of 

crustal assimilation.  DePaolo et al. (2019) use model parameters based on calibrated isotopic 

studies of layered intrusions (Hammersley and DePaolo, 2006). In open systems it is difficult to 

constrain the validity of Temperature-Flux model parameters; factors such as cooling rate, pluton 

volume, and crystallization rate necessarily change during recharge and assimilation in an 

evolving magma body. The use of this model to reconstruct crustal thickness relies on several 

assumptions, the most important being the geothermal gradient of the system. The crustal 

thickness is derived from the calculated Moho temperature and the assumed geothermal gradient; 

while the paleo-geotherm of Southern Tibet has not been directly reconstructed, other continental 

arcs have a relatively shallow geothermal gradient in the mid- to lower-crust, consistent with the 

model geotherm used by DePaolo et al. (2019) (Rothstein and Manning, 2003). Other assumed 

parameters, including those that address rate of crystallization DePaolo et al. (2019) further 

demonstrated with a Monte Carlo simulation that the model is relatively robust at predicting NCI 

and Moho temperature with variation of unconstrained parameters within a geophysically 

reasonable range. 

In this study, we adapt the Temperature-Flux model to the Hf isotopic variation in pre- 

and syn-collisional granitic zircons, which are resistant to secondary alteration or addition of 

radiogenic Hf. The Lu-Hf isotopic system behaves similarly to Sm-Nd; the distribution 



 25 

coefficient ratio during partial melting DLu/DHf is approximately twice that of DSm/DNd, resulting 

in greater radiogenic enrichments or depletions of Hf isotopes relative to Nd in derived magmas. 

Thus, the Lu-Hf system magnifies differential evolution of DM and crustal 176Hf/177Hf relative to 

Sm-Nd. Modern DM is characterized by a maximum εHf ≈ +18 (Vervoort & Blichert-Toft, 1999, 

and references therein). As with Nd, the average εHf of continental material is dependent on the 

timing of fractionation of crustal material from DM. Reconstructing crustal evolution using Hf 

requires a temporal anchor to which isotopic data may be attached. Zircon (ZrSiO4) has proved 

ideal for constraining not only the age of magmatic rocks of a wide variety of compositions, but 

also as a record of the thermal history and isotopic signature of its source magma (Harrison et al., 

2014). Zircon typically incorporates up to 1-2 wt% Hf and is characterized by extremely low 

Lu/Hf (< 0.0005) (Finch & Hanchar, 2003; Kinny & Maas, 2003). The 176Lu/177Hf in zircon at 

the time of crystallization therefore is sufficiently low as to have a negligible and easily 

corrected contribution to the final 176Hf/177Hf of the crystal. The 176Hf/177Hf of the source melt 

from which the zircon crystallized is preserved, permitting reconstruction of crustal 

differentiation and magmatic assimilation processes when combined with zircon U-Pb age. 

Relating zircon isotopic composition to bulk-melt assimilation processes requires an 

understanding of the link between the thermal history of a pluton – which relates to its ability to 

crystallize zircon – and the degree of assimilation possible within the constraints of that thermal 

history. Prolonged recharge will suppress crystallization and lead to a broader range of isotopic 

compositions of the melt during the period that zircon is crystallizing, resulting in an isotopically 

heterogeneous population of zircon within a single pluton (Lovera et al., 2015). Plutons with a 

high zircon εHf MSWD are not suitable for the Temperature-Flux model due to the complicating 

effects of extensive magma recharge on the relationship between ambient crustal temperature 
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and assimilation. 

To calculate a “Hafnium Crustal Index” (HCI) requires estimates of both the mantle and 

crustal endmember components that contribute to the formation of granitic magma. The majority 

of Lhasa block zircon εHf reported by Zhu et al. (2011) are consistent with a broadly Proterozoic 

crustal model age of the southern Lhasa terrane (i.e. average crustal εHf ≈ -15), with some grains 

inherited from Archean crust, assuming a source 176Lu/177Hf = 0.015. Results of Hf and Nd 

isotopic compositions of pre-batholithic metasedimentary rocks presented here allow us to refine 

our estimate of crustal εHf for the southern Tibetan basement rocks that predate the Mesozoic to 

Cenozoic granitoids (see discussion). 

Interpreting magmatic mixing and assimilation histories from radiogenic isotopes can 

lead to mistaken assumptions about provenance, as a mixing relationship between juvenile 

mantle and ancient crust cannot be distinguished a priori from anatexis of old and fractionated 

mantle-derived material, such as lower-crustal cumulates. Oxygen isotopes are independent of 

crustal age, and whole-rock δ18O of magmatic rocks is directly derived from the source material, 

whether that be the DM (δ18O = +5.5‰; Ito et al., 1987) or supracrustal material (from +15‰, 

for hydrothermally altered MORB, up to +42‰ for pelagic clays; Eiler, 2001), or some 

combination thereof. Oxygen isotopes in zircon record the magmatic signature at the time of 

crystallization – with an approximate -2‰ ∆18O(zircon-whole rock) – and have been shown to be 

resistant to resetting due to hydrothermal or deuteric alteration relative to other minerals (King et 

al., 1997; Valley, 2003; Bindeman, 2008; Trail et al., 2009). The diffusive lengthscale of 18O in 

zircon is ~1 µm/Ma at 500ºC and ~275 µm/Ma at 900ºC under hydrothermal conditions (Watson 

and Cherniak, 1997), making zircon reasonably retentive of its most recent magmatic conditions, 

and more resistant to subsolidus alteration than other minerals. Petrographic and geochemical 
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evidence shows Gangdese batholith granitoids have all undergone some degree of hydrothermal 

or deuteric alteration (Blattner et al., 2002; Zhang et al., 2015). As long as care is taken to avoid 

zircons whose intra-sample oxygen isotope heterogeneity suggest secondary mixing with a 

hydrothermal or meteoric water source, zircon will provide the most robust mineral record of the 

primary magmatic oxygen isotope signature in these rocks. In this study we explore the multiple 

uses of zircon as a geochemical time capsule to explore the spatiotemporal crustal evolution of 

Southern Tibet throughout the India-Asia collision. 

2.2 Methods  

2.2.1 Whole-rock chemistry 

Granitoid samples used in this study were collected during numerous field trips between 

1994 and 2014. Sample locations are depicted in Figure 1, and numbers and GPS coordinates are 

reported in the supplementary material and in Alexander et al. (2019). Whole-rock major and 

trace element analyses were either performed at Pomona College on a 3.0 kW Panalytical Axios 

wavelength-dispersive XRF spectrometer or taken from Harrison et al. (2000).  Pulverized 

samples were prepared with a 2:1 ratio of dilithium tetraborate and rock powder, which was then 

fused at 1000°C for 10 minutes, reground and fused again, and polished on diamond laps prior to 

analysis. Concentrations were determined using reference calibration curves using 55 certified 

reference materials. See Johnson et al. (1999) and Lackey et al. (2012) for detailed methodology 

and error assessment. 

Finely pulverized whole-rock samples were analyzed for Hf isotopes at the PCIGR labs 

at the University of British Columbia. Aliquots of 100 mg of each sample was dissolved using 

high-pressure acid digestion in PTFE bombs. Hf was separated by column chemistry and 

analyzed by static MC-ICP-MS for masses 180, 179, 178, 177, 176 and 174 with monitoring of 
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176Lu and 172Yb; results are corrected for 176Lu, 176Yb, and 174Yb interferences using natural 

abundances corrected for instrumental mass fractionation (see Weis et al., 2007 for details). 

2.2.2 Zircon U-Pb, Ti d18O, and eHf 

Zircon grains were separated from a crushed and sieved portion of each rock and 

mounted in epoxy, along with age and Hf standard material for internal reproducibility, and the 

surface of the grain mounts were polished flat. Mounts were coated with a ~100 Å layer of Au 

for SIMS measurements. Each grain was analyzed simultaneously for U-Pb age and Ti 

concentration on a CAMECA ims1270 at UCLA, using a 10-15 nA primary O- beam. U-Pb age 

standard AS3 (1099±1 Ma; Paces & Miller, 1993) was used for the U-Pb age calibration, and 

NIST SRM-610 glass (Jochum et al., 2011) and AS3 (Aikman, 2007) were used to standardize Ti 

concentration. In separate sessions, the same zircons were analyzed on the CAMECA ims1270 at 

UCLA for 18O /16O using a 4 nA primary Cs+ beam in multicollection mode, with a mass 

resolving power of over 4000. Grains were analyzed in 12 cycles with 10 seconds each of 

counting time, with 1 second of waiting time between cycles. Zircon standards AS3 (δ18O = 

+5.34‰, Trail et al., 2007) and 91500 (δ18O = +9.86‰; Wiedenbeck et al., 2004) were used, 

with 91500 used for tuning and AS3 grains on each mount for isotopic calibration (see Mojzsis et 

al., 2001 and Booth et al., 2005, for details). 

In situ zircon Lu-Hf measurements were made with a 193-nm excimer laser coupled to a 

ThermoFinnigan Neptune MC-ICPMS at UCLA. Zircons were analyzed in their original epoxy 

mounts using apertures with nominal laser spot diameters of 52 and 69 μm, with zircon standards 

Mud Tank, Monastery, and Temora (Woodhead & Hergt, 2005) as well as AS3 (Harrison et al., 

2008). The in-situ LA-ICPMS method has insufficient mass resolving power to separate isobaric 

interferences on Hf at masses 174 and 176. Yb, which is present in trace levels in zircon (Finch 
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& Hanchar, 2003), interferes on both 174 and 176; Lu, while generally in low abundance in 

zircon (Patchett et al., 1982), interferes on mass 176. The correction on masses 174 and 176 is 

achieved by measuring non-interfering Yb and Lu masses and calculating the contribution of the 

interfering masses to the 174 and 176 peaks using natural isotopic abundances. Contamination 

from cracks or inclusions is monitored with 181Ta, though it was never detected above baseline in 

these measurements. Masses 171Yb, 173Yb, 174Hf, 175Lu, 176Hf, 177Hf, 178Hf, 179Hf, and 181Ta were 

measured in 15 cycles per analysis, with a blank run for baseline correction between each block. 

For each sample, 6-10 grains were analyzed to account for individual grain heterogeneities due 

to inherited igneous cores or multi-stage growth histories. Data were corrected using the peak-

stripping procedures detailed in Bell et al. (2011). 

The zircon crystallization temperature (Tzir) was calculated using the Ti-in-zircon 

thermometer calibration of Ferry & Watson (2007). The concentration of Ti in zircon is given 

by: 

log	(𝑝𝑝𝑚	𝑇𝑖) 	= (5.711 ± 0.072) −
4800 ± 86
𝑇(𝐾)

− log	𝑎!"#! 	+ log	𝑎$"#! 	 

The inclusion of 𝑎!"#!permits expansion of the thermometer’s utility to rutile-

undersaturated systems; 𝑎$"#! ≈ 1 was found to be appropriate not only for natural systems 

whose mineral assemblages imply silica saturation, but also for experimental run products with 

unbuffered 𝑎$"#!. The uncertainty in the linear fit to the experimental data results in an 

uncertainty in calculated T of ±12ºC (2σ); uncertainty in Ti concentration added ±11° to ±40° 

(1σ) to the temperature estimates. The activity of rutile in the system, 𝑎!"#!, is necessary for the 

temperature calculation but is difficult to precisely constrain in granitic systems. As the whole 

rock chemistry is not a good proxy for 𝑎!"#! in granitic rocks, we estimate 𝑎!"#!based on the 

assemblage of Ti-bearing minerals in the granites of interest. I use 𝑎!"#!= 0.6±0.15 due to the 
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absence of rutile (TiO2), and presence of sphene (CaTiSiO5) and ilmenite (FeTiO3), in the 

majority of Gangdese Batholith granitoids, which implies 0.6< 𝑎!"#!<0.9 (Kapp et al., 

2009)(Ghiorso & Gualda, 2013; Kapp et al., 2009). The potential error induced by 

underestimation of 𝑎!"#!averages 46ºC for maximum 𝑎!"#!= 1.0; 36ºC for maximum 𝑎!"#!= 0.9. 

2.3 Results 

Granitoid 206Pb/238U ages, locations, zircon Ti, Tzir, and major element data are reported 

in Table 1. Whole-rock εNd and εHf, zircon εHf and d18O, sample latitudes, and U-Pb ages (where 

available) are reported in Table 2. 

2.3.1 U-Pb Ages of Southern Lhasa Block Granitoids 

The zircon 206Pb/238U ages of granitoids in this study show a similar age distribution to 

previous work on Lhasa block granitoids (Fig. 2.1) (Quidelleur et al., 1997; Harrison et al., 2000; 

Zhu et al., 2009, 2011, 2015). Geochronological datasets such as these are generally incomplete, 

as sample collection cannot perfectly account for every unit and weight the number of analyses 

appropriately based on volumetric abundance of discrete plutons. Units found in or near roadcuts 

or otherwise accessible areas will tend to be overrepresented relative to more inaccessible 

Figure 0.1 North-South distribution of 
sample ages; error bars are 2 s.e.; the red 
line is the modern latitude of the Indus-
Tsangpo suture (ITS) at 92ºE. 
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outcrops. Apparent gaps or spikes in magmatism must therefore be regarded skeptically, 

especially in an intrusive magmatic complex as expansive as the Gangdese batholith; we 

therefore abstain from interpreting the absolute quantity of ages for various age brackets as 

“spikes” in magmatism. While there is a general trend of youngest granites clustered nearest to 

the ITS, and oldest >75 km north of the suture, there are precollisional samples (up to 180 Ma) 

adjacent to the ITS (Fig. 2.1). Younger granodiorite units may exist in the subsurface further 

north; young (~10 Ma) two-mica granites have been reported ~100 km north of the ITS (DePaolo 

et al, 2019) but are not found in our dataset. Syncollisional (<50 Ma) granites are found 

exclusively within ~40 km of the ITS in our study, consistent with previously reported Tertiary 

granitoids found in abundance near the ITS and relatively sparse to the north (e.g. Harrison et al., 

2000; Mo et al., 2005; Yin & Harrison, 2000; Zhu et al., 2015, 2011). We define “precollisional” 

rocks as those with zircon U-Pb ages >70 Ma, and “early syn-collisional” rocks as 50-70 Ma 

according to maximum and minimum estimates of the onset of collision between ~65 and ~50 

Ma (Le Fort, 1996; Rowley, 1996; Yin & Harrison, 2000). 

2.3.2 Hf Isotopes of Pre-Batholithic Metasedimentary Rocks 

Figure 2.2 shows results for southern Lhasa block metasedimentary rocks and granitoids 

in the region between 89.5 and 92.5°E.  The schist εNd values fall between -9 and -12; this is 

consistent with the range used by DePaolo et al. (2019) for the crustal endmember in the Nd 

isotope Temperature-Flux model. Fig. 2.3 shows the relationship between zircon εHf, granitoid 

whole-rock εNd, and the pre-batholithic endmembers. In the region north of 29.8ºN, there are 2-

mica granites with εNd ≈ -12 to -14, so the crustal component north of 29.8º must have slightly 

lower εNd. The same schist samples show a range of εHf values from -3 to -23, with the 

discontinuity shifted south to ~29.6°N. Previously reported Mesozoic granites from ~ 30°N have 
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εHf in the range -12 to -16, so it is likely that the εHf value of the crust is closer εHf ≤ -17, 

consistent with our results for schists north of 29.6ºN.  South of 29.6ºN, the data are consistent 

with crustal εHf ≈ -10. Previous compilations of granitoid zircon and whole-rock εHf data from 

the southern Lhasa block, including those from Paleozoic granitic gneisses, suggest that the pre-

Mesozoic crust south of 29.6ºN had εHf values in the range of -5 to -10, consistent with these new 

data (Zhu et al., 2011; Chapman & Kapp, 2017). One of the metasediments analyzed is a 

metavolcanic sample with εHf ≈ +13, consistent with a mantle endmember εHf ≈ +18 used in our 

Hf isotope Temperature-Flux model (see discussion). 

 

2.3.3 Zircon Hf Isotopes 

There is good correlation between whole-rock εHf and zircon εHf, independent of unit age 

(Fig. 2.3a) such that we are confident that the zircon εHf can be used as a proxy for the whole-

rock signal. The relationship is quantified by least squares-maximum likelihood regression (after 

York et al., 2004), with slope b = 0.97±0.21 and intercept a = 0.85±1.1; error 1 σ. Cases where 

zircon εHf is markedly more positive than the whole rock εHf – indicative of isotopic 

disequilibrium between zircons and their host rocks – are associated with high whole-rock SiO2 

(>75%) (Fig. 2.3b), typically have Tzir below the hydrous granite solidus, and high MSWD in 

zircon O and/or Hf isotopes (Table S1). These factors may indicate that the zircon was always 

saturated at magmatic conditions, and the Hf isotopic composition of inherited or restitic zircon 

was preserved rather than crystallizing new zircon. The youngest plutons, <50 Ma, show 

substantially more variable zircon εHf , compared to >50 Ma samples, and a strong correlation 
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between zircon εHf and whole rock εHf.  

While in situ analysis for zircon Hf isotopes using LA-ICP-MS provides improved spatial 

resolution compared to solution methods, the relatively large laser spot size necessary for 

adequate sensitivity introduces uncertainty due to the likely averaging of multiple growth 

domains. In many zircon grains, especially those with inherited cores or long-lived, multi-stage 

magmatic growth histories, LA-ICP-MS analyses will average multiple discrete zones which 

may represent a wide range of crystallization conditions. This concern is partly addressed by 

analyzing multiple grains from each sample and interpreting the distribution of isotopic values 

and ages among the population. The isotopic composition of grains with substantial age 

inheritance (>20% difference) is not included in the computed weighted mean sample values, as 

the signal is not representative of final crystallization conditions. Excluding inheritance, inter-

grain heterogeneity was typically within 2σ of analytical error for each sample; paired with good 

correlation between zircon εHf and whole-rock εHf, spatial averaging from laser ablation has a 

minimal effect on the results. Overall MSWD values for zircon εHf have a median of 0.72, with a 

relatively broad distribution (1σMSWD = 4.8); anomalously low MSWD for some populations 

Figure 0.2: Whole-rock εNd and εHf of pre-
batholithic metasedimentary rocks as well as 
granitoid intrusive and hypabyssal rocks. 
The metavolcanic sample, with εNd = +5.7 
and εHf = +13.2, is consistent with a DM-like 
juvenile mantle endmember; crustal 
phyllites with εNd = -8 to -12 and εHf = -9 to -
20 show a likely crustal endmember of εNd ≈ 
-8 to -12 and εHf ≈ -10 to -20; both increase 
with latitude. 



 34 

likely reflect the overestimation of analytical error from counting statistics. Cases with high 

MSWD with a small number of outliers in individual grain analyses could be spurious variation 

in εHf, which can result from ablation of restitic inclusions or other inherited material which may 

not have been caught by our age inheritance filter. High MSWD relating to an overall broad 

inter-grain distribution of εHf could reflect the effects of prolonged magma recharge during 

zircon crystallization (Lovera et al., 2015; see introduction). 

2.3.4 Zircon Ti Thermometry 

Zircon Ti analyses have analytical errors of <1 to 4 ppm. Calculated Tzir for Lhasa block 

Figure 0.3: Zircon eHf (blue, this study) and whole-rock eNd (red, DePaolo et al., 2019) of pre- and early 
syn-collisional samples (A) as well as later syn-collisional samples (B) versus latitude. Red symbols 
correspond to left axis; blue to right axis. Shaded fields show likely crustal assimilant endmembers for Nd 
(red) and Hf (blue); Nd endmember becomes more positive for <32 Ma samples (DePaolo et al., 2019). 
Error bars on eHf are 2 s.e.; dashed lines represent isotopic values for global average DM (εHf = +18; εNd = 
+8). Vertical axes are scaled to match both the global DM and crustal endmember values. 
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granitoids ranges between 620±28ºC and 924±35ºC; maximum and minimum values occur at 

65.9 and 60.9 Ma, respectively (Fig. 2.5). As many as 22% of all samples have Tzir below the 

hydrous granite solidus (ca. 620°C), which is either due to overestimation of 𝒂𝑻𝒊𝑶𝟐, which leads 

to underestimation of temperature, or due to sub-solidus zircon crystallization, likely in a fluid-

Figure 0.4: Whole-rock and zircon eHf values according to age (a) and whole-rock weight percent SiO2 

(b). Error bars for zircon eHf is 2 s.e.; error bars for whole-rock eHf are narrower than the data markers. 
Black solid line is the least squares-maximum likelihood fit (after York et al., 2004) described by εHf(z) = 
(0.968±0.207)εHf(wr) + (0.850±1.05), MSWD = 2.86; black dashed lines are the 95% confidence bounds of 
the linear fit. 

Figure 0.5: Ti-in-zircon temperatures and ages of all samples (A) and samples up to 100 Ma (B), 
calculated using the calibration of Ferry and Watson (2007). Age error bars are 2 s.e.; Tzir error bars 
include the 1s analytical uncertainty in Ti concentration as well as the uncertainty of the thermometer 
calibration at the 95% confidence level. For all samples, 𝒂𝐓𝐢𝐎𝟐 = 𝟎. 𝟔 and 𝒂𝐒𝐢𝐎𝟐 = 𝟏 was used. 
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rich, undercooled stage of pluton solidification. Total error in Tzir induced by the uncertainties in 

calibration, analytical Ti measurements, and estimation of 𝒂𝑻𝒊𝑶𝟐, can lead to 4-5% uncertainty in 

temperature. The total range of calculated temperatures far exceeds variation induced by 

uncertainty, so broad trends in the distribution of Tzir can still be resolved. 

2.3.5 Zircon Oxygen Isotopes 

Oxygen isotope results are reported using standard delta notation relative to Vienna 

Standard Mean Ocean Water (VSMOW); error is reported at one standard deviation. The average 

δ18O value for all samples irrespective of age was 5.77±0.80‰ (1σ of total distribution), with 

average analytical error of 0.34‰. Syncollisional samples (U-Pb age ≤ 70 Ma) have mean δ18O 

= 5.59±0.77‰ (1σ). Median MSWD of oxygen values is 2.6, with some anomalously high 

values derived from greater intra-sample heterogeneity. There is no obvious correlation between 

age and δ18O; there is greater heterogeneity in >100 Ma samples, possibly due to inheritance, 

increased geographic distribution, or higher occurrence of secondary alteration. There is 

Figure 0.6: Zircon eHf and d18OVSMOW 

(Vienna Standard Mean Ocean Water); error 
bars are 2 s.e. The >70 Ma group ranges 
relatively continuously in age up to the 
oldest at 203.5±5 Ma. 



 37 

additionally minimal correlation with zircon εHf (Fig. 2.6) and no correlation with Tzir. 

2.4  Discussion 

2.4.1 Assimilation Evidence 

While magmatic inflation may account for ~15 km of Tibetan crustal thickening 

throughout collision (Mo et al., 2007; Chen et al., 2018; DePaolo et al., 2019), magmatic heat 

added to the crust is insignificant compared to total orogenic heat flow, and therefore cannot 

explain increased assimilation (De Yoreo et al., 1989). Magma recharge, as opposed to increased 

crustal thickness (i.e. higher wall-rock temperature), could promote heterogeneity of zircon εHf 

based on results of RAFC modeling of εHf in zircon (Lovera et al., 2015). Prolonged recharge 

increases the crystallization window of zircon, allowing zircon to record the prolonged 

assimilation process induced by recharge. The current analytical restrictions that generally limit 

zircon εHf measurements to a single datum per grain precludes resolving depth-dependent Hf 

isotopic variations that could reveal complex thermoisotopic histories in individual zircons.  

However, inter-grain heterogeneity of εHf in magmatic zircons within each sample can provide a 

sense of overall zircon εHf heterogeneity. The inter-grain zircon εHf variability for individual 

samples of Lhasa-block syncollisional plutons reported here are within analytical error, so inter-

sample heterogeneity among <50 Ma plutons cannot be explained by an increase in magma 

recharge alone. Increased assimilation from higher wall-rock temperature at the base of a thicker 

crust is most consistent with a greater crustal component in the zircon εHf of syncollisional 

granitoids. The similar spatial trends of whole-rock εNd and zircon εHf (Fig. 2.3) suggest that 

where assimilation occurred, thermal and chemical conditions were such that there was moderate 

to low discrimination between Nd and Hf isotopic assimilation mechanisms, even in cases where 
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both zircon and whole rock retained a relatively mantle-like signature in both systems.  

Hf crustal model age estimates for the Lhasa block range between 1.5-3.0 Ga based on 

central- to northern-Lhasa inherited zircon ages and Hf isotopes (Zhu et al., 2011). Mantle-like 

δ18O values for all but a few early-Jurassic samples indicate the crustal assimilant is likely ≥1.5 

Ga mantle-derived rock, rather than isotopically evolved supracrustal material, which 

additionally supports our interpretation that granite hybridization proceeds mostly at the base of 

the crust. δ18O values for all samples are within ±2‰ of the average mantle value δ18O = +5.5‰ 

(Ito et al., 1987), which is substantially less enriched than the minimum δ18O values expected for 

metasedimentary material. As zircon δ18O is unlikely to be increased by secondary processes 

(King et al., 1997), values that are more negative than average mantle are consistent with lower-

crustal gabbros, which range from +3.5‰ to +5.5‰, or interactions with meteoric water 

(Gregory & Taylor, 1981; Eiler, 2001). Moreover, samples with δ18O lower than average mantle 

do not show signs of heterogeneity that would be expected from partial resetting (average 

MSWD of this subset is no greater than the data in aggregate). Granitoid samples (>55% SiO2) 

range in aluminosity, with molar Al2O3/(CaO+Na2O+K2O) from 0.74 to 1.19 (Fig. 2.7). Major 

element trends are broadly consistent with fractional crystallization (Fig. 2.7); assimilation 

would have had to occur with a protolith whose major element ratios were not substantially 

different from the juvenile melt.  

The origin of mafic melts that contribute to granitic magmatism impacts the isotopic and 

chemical signature of the resultant granitoids; the most plausible source of a basaltic endmember 

melt must be evaluated in the context of the isotopic and geochemical data presented here. Partial 

melting and assimilation of eclogite with a hydrous basalt in arc settings has been shown to 

produce granitic melt in equilibrium with the eclogite residue (Rapp et al., 2003; Bouihol et al., 
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2015). Continual production of slab-derived melts with an eclogitic restite is a tempting 

explanation for the production of these melts and would not require substantial juvenile DM 

component in the melts to produce relatively radiogenic Hf isotopes. However, partial melts of 

slab materials would have more positive δ18O due to the incorporation of altered basaltic crust; 

only 100% slab melt could produce a mantle-like δ18O with no juvenile component, and there 

would be no eclogitic restite (Eiler, 2001). Thermodynamic modeling of subduction zone melting 

further suggests that slab dehydration occurs at much shallower pressures than slab melting, and 

the fluids released during dehydration can produce substantial melting of a thick, hydrated 

mantle wedge (Bouihol et al., 2015). This melt then readily travels to the base of the overriding 

plate and fractionates, potentially without removal of garnet or amphibole, leading to an 

“adakitic” signature in some fractionated products. Depending on the depth of fractionation, if 

garnet and amphibole are removed, the same primary melting process (melting of a hydrated 

mantle wedge) may produce both adakitic and calc-alkaline felsic products. This process may 

provide an explanation for the appearance of a range of adakitic signature in syncollisional 

Figure 0.7: A/CNK = Molar Al2O3/(CaO + 
Na2O + K2O) for granitoid samples (>60% 
SiO2) and mafic enclaves (<60% SiO2), 
representing typical fractional crystallization 
from a metaluminous mafic source; this 
pattern is unchanged from precollisional 
samples to later-syncollisional samples (< 
50 Ma). 
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magmas, which have previously been attributed to geodynamically disfavored processes such as 

“slab breakoff” (e.g. Chung et al., 2005; Chen et al., 2014; Zhu et al., 2017; cf. Garzanti et al., 

2018), or have been used to imply cessation of calc-alkaline Gangdese arc magmatism by 45 Ma 

(e.g. Ji et al, 2016) – which is clearly not the case based on the persistence of calc-alkaline melts 

well after 45 Ma, as presented here (Figs. 2.1, 2.7). 

Fractional crystallization of a pure mantle melt is more favored by the major element 

relationships seen in <70 Ma granites across the Lhasa block (Fig. 2.7). If these granites were 

derived from a pure DM source, however, they would be expected to have exclusively mantle-

signature εHf ≈ +18 and δ18O ≈ +5.5 (Ito et al., 1987; Vervoort & Blichert-Toft, 1999), as isotopic 

ratios cannot be altered by closed-system magmatic fractionation. What we observe in early- and 

later-syncollisional granites is an εHf signature that is moderately depressed relative to DM, and 

an average δ18O that is slightly elevated relative to average DM value (Fig. 2.6). Nd isotopes 

additionally demonstrate an isotopic mixing trend that favors large fractions of mantle melt 

mixed with some assimilated crustal material (DePaolo et al., 2019). Intermediate values of εHf 

are interpreted as the result of assimilation between juvenile mantle-derived melt (DM, εHf ≈ 

+18) and less radiogenic basement rocks of the Lhasa block (εHf -5 to -20). The bulk of 

assimilation is assumed to occur at or near the Moho, where the temperature contrast between 

juvenile magma and surrounding lower-crustal rocks is small, favoring higher assimilation. 

While additional assimilation may occur following fractionation and emplacement of granitic 

melts, the necessarily lower magmatic temperature and greater polymerization of a silicic melt 

would lower the diffusivity of rare earths in the melt (Mungall et al., 1999); and low-T wallrock 

would minimize the ability of the melt to extract substantial crustal material. The fractionation of 

melt sourced from DM, and possibly assimilated with eclogitic residue, additionally requires that 
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hybridization and fractionation occur at the base of the crust. 

2.4.2 Isotopic Constraints on Crustal Thickness 

The granitoids along the 92º E traverse provide a window into the plutonic evolution of 

the southern Lhasa block: this area provides a near-continuous plutonic history from <20 Ma to 

ca. 225 Ma (Fig. 2.1), as greater exhumation of the eastern Lhasa block has exposed younger 

(syncollisional) plutons (Harrison et al., 1992; Zhu et al., 2015). For any given age range of 

Gangdese granitoids within the Lhasa block, east-west variation in geochemistry and age 

distributions is less significant relative to the substantial variation associated with northward 

distance from the southern margin of Eurasia, at the Indus-Tsangpo Suture (ITS) (Harrison et al., 

2000; Yin & Harrison, 2000; Kapp et al., 2005; Chung et al., 2009; Zhu et al, 2011; Chen et al., 

2014).  We therefore consider north-south distance from the ITS to be the main variable in 

spatial isotopic trends. 

We interpret our results through the lens of the thermoisotopic framework developed by 

DePaolo et al. (1992) and quantified with respect to the Tibetan granites by DePaolo et al. 

(2019), using the NCI “Temperature-Flux” model. DePaolo et al. (2019) proposed that the 

whole-rock Nd isotopic signatures of a suite of Lhasa-area granitic plutons could be used as a 

quantitative proxy for crustal thickness based on the degree of isotopic assimilation between 

juvenile mantle and old crust. They use the parameterized Temperature-Flux model to 

approximate crustal thickness of Gangdese granitoids emplaced before and after the onset of 

continental collision. They identify a systematic decrease in whole-rock εNd from south to north, 

from εNd = +5 adjacent to the ITS to εNd = -13, 110 km to the north. For the purpose of their 

model, DePaolo et al. (2019) use 48 Ma as a lower limit age for precollisional granites based on 

the compilations of Zhu et al. (2017). In ≥48 Ma Lhasa block granites, their model suggests a 25-
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35 km-thick crust adjacent to the ITS which thickens rapidly to >45 km-thick approximately 100 

km north of the ITS. The εNd of “postcollisional” granites (<32 Ma as defined by DePaolo et al., 

2019) show evidence of a much thicker crust within ~50 km of the ITS; the crust was up to 75 

km-thick adjacent to the suture by the latest Paleogene. The results of DePaolo et al. (2019) can 

be compared to patterns in zircon εHf, age, and distance to the ITS, given similar behavior 

between Nd and Hf isotopic systems in crustal processes. 

The isotopic data from this study are largely from locations farther east than those of 

DePaolo et al (2019).  Nevertheless, the equivalent north-south trend in both whole-rock and 

zircon εHf reported here suggest the early syncollisional (48 Ma) structure inferred from the Nd 

data by DePaolo et al. (2019) extends to the east at least to 92.5°E, and that the two isotopic 

systems have preserved evidence of the same tectono-magmatic history of the region (Fig. 2.3). 

Given the strong correlation between whole-rock and zircon εHf (Fig. 2.4), the latter may be used 

in conjunction with U-Pb ages to track the spatiotemporal evolution of the S. Tibetan crust. 

Though it is likely that initial collision began earlier than 50 Ma and gradually propagated to 

encompass the entire northern margin of India over the course of many Ma, reconstructed 

isotopic assimilation signatures as calculated by DePaolo et al. (2019) suggest that substantial 

changes in petrogenesis of Gangdese granites do not appear until <50 Ma; younger granites are 

treated here as “later-syncollisional” as a reflection of ongoing full continental collision from 

~50 Ma to the present. The Hf isotopic data presented here represent samples aged 225±15 Ma to 

22±1 Ma; only four units in our study fall within the <32 Ma criteria used by DePaolo et al. 

(2019) to infer later syncollisional thickening. 

 Using zircon Hf values as a basis, we applied the Temperature-Flux model to calculate 

NCI; herein we refer to it as “HCI”: Hafnium Crustal Index (Fig. 2.8). εHf(r) = +18 was used for 
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the juvenile mantle value (Vervoort & Blichert-Toft, 1999). For the case of a latitudinally 

homogeneous crustal assimilant, we use εHf(a) = -15 as the endmember, consistent with a 

typically Proterozoic Tibetan basement (Zhu et al., 2011) (Fig. 2.8a-b). HCI ranges from ~0.2 to 

1, implying relatively high degrees of assimilation for all samples. Based on inherited zircon εHf 

values presented in Zhu et al. (2011) and our pre-batholithic schist analyses, however, it is more 

likely that the crustal assimilant values are dependent on latitude. Recalculating HCI based on 

Figure 0.8: Zircon Hafnium Crustal Index (“HCI”) apparent Moho depths with age (a) and latitude, 
sorted by age (b). Depths calculated from zircon HCI, assuming DM eHf = +18 and crustal eHf  =  -15. 
Depth calculation using Temperature-Flux model of DePaolo et al. (2019) using similar parameters, such 
that depth H  = 2.4 + 80.6(HCI) – 29(HCI)2. Error bars on HCI derive from 2 s.e. of zircon Hf 
measurements. Age error bars are 2 s.e. 
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εHf(a) = -10 for samples south of 29.6ºN and εHf(a) = -15 north of 29.6º leads to commensurately 

higher HCI for the southern samples. Using the Temperature-Flux model of DePaolo et al. 

(2019) with identical parameters, apparent crustal thicknesses range from ~18 km to ~55 km 

when εHf(a) = -15 for all samples. When samples south of 29.6º have εHf(a) = -10, the range is ~20 

km to 55 km. Using the model geotherm of DePaolo et al. (2019), HCI apparent depth increases 

within a narrow range of variations in sample εHf until their values approach the composition of 

the crustal assimilant. An extremely steep model geotherm of 50ºC/km forces a steeper 

association with HCI and depth, though such a steep geotherm would be unrealistically high for a 

typical arc setting, especially for depths greater than ~15 km (Rothstein & Manning, 2003). The 

assumption of εHf(r) = +18 may be an overestimate, as the lithospheric mantle below the Tibetan 

crust may not be as depleted as global MORB or may have interacted with unradiogenic 

contaminant prior to melting and forming the magmas of interest, though the metavolcanic 

sample with εHf = +13 suggests the lithospheric mantle under southern Lhasa was near to modern 

DM Hf composition. A more negative εHf(r) would lead to apparently thinner crust using the HCI 

Temperature-Flux model. 

Calculated apparent depths can be associated with sample age (Fig. 2.8a) and latitude 

(Fig. 2.8b). When compared to age alone, HCI Moho depths imply a thinning crust between 

~100 and 50 Ma, and a thickening crust following 50 Ma, though the spatial variations with 

latitude are obscured with this simple comparison. There is a clear discontinuity at ~29.8ºN in 

precollisional samples in whole-rock εNd and zircon εHf (Fig. 2.3a) which implies preexisting 

crustal structure that must be considered when evaluating relative thicknesses through time. Fig. 

2.8 shows little change from precollisional (> 70 Ma) to the early syncollisional period (50 – 70 

Ma), and markedly increased apparent depths in later syncollisional samples near the ITS. The 
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HCI results emulate the thickening inferred by DePaolo et al. (2019) from their εNd – based 

Temperature-Flux model depths.  Above an HCI of 1, corresponding to a Moho depth of ~55 

km, our parameterization of the Temperature-Flux model saturates. That is, an HCI ³ 1 implies 

100% assimilation of the crustal component, and can therefore not be distinguished from isotopic 

assimilation occurring at greater depths.  Cases where the apparent depth is ≥55 km represent 

this upper bound. For all syncollisional samples, however, the calculated HCI <1 implies these 

units formed within the limits of the model. The large range of HCI apparent Moho depths, 

especially among <50 Ma samples, could imply increased heterogeneity of the juvenile melt or 

the assimilant material, greater variation in the duration and volume of magma recharge during 

pluton construction, or may even betray inconsistencies in the assumed model parameters. It is 

possible the hybridization, assimilation, and crystallization environment of each individual 

sample was sufficiently different that applying the same model parameters to multiple samples 

obfuscates accurate calculation of HCI. Inferences may be drawn from systematic differences 

through time, regardless of depth accuracy, but the HCI model does not prove a priori whether 

the southern Tibetan crust was thick or thin prior to collision. 

2.4.3 Structural Implications 

The persistent gradient of positive, mantle-like zircon εHf near the ITS, decreasing to 

more negative, evolved crustal signature to the north implies a strong controlling process on Hf 

isotopes in the Southern Lhasa Block for the past 200 Ma. Lack of deviation from strong mantle 

signature within ~ 80 km of the ITS in precollisional (> 50 Ma) and early syncollisional (40–50 

Ma) plutons is additionally consistent with minimal assimilation of crustal material by a juvenile 

mantle melt source. Following the model of melt production occurring at the base of the crust, 

and degree of assimilation proportional to wall-rock temperature, minimal assimilation in all 
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mid-Cretaceous to early Tertiary granites within ~80 km of the ITS implies granitic melt 

hybridization at the base of a thin crust, where country rock T was too low for substantial 

assimilation with juvenile melt. Increased heterogeneity in zircon εHf of <50 Ma samples, all of 

which are found within 40 km of the ITS, supports this evidence of increased assimilation with 

crustal material, which in turn is consistent with higher-temperature storage and fractionation of 

these evolving melts. Accretion of subducted Indian upper-crustal material onto the base of the 

Eurasian crust at the ITS following the onset of continental collision would provide a new source 

of less radiogenic Hf at the base of the Eurasian crust; it would additionally contribute to the 

ongoing thickening process. A thickened Eurasian lower crust broadens the range of depths at 

which hybridized granitic melts would likely be emplaced, promoting additional heterogeneity in 

the degree of crustal assimilation for each discrete pluton (DePaolo, 1981; Pearce, 1996; Kemp 

et al., 2007).  

The robust spatial trends in εNd and εHf as a function of N-S distance from the ITS must 

represent long-lived processes controlling the production and chemistry of the Gangdese 

batholith in the Lhasa block.  There are three scenarios that could produce large volumes of 

granitic melt in Southern Tibet over many tens of Ma throughout the India-Asia collision: 1) 

Pure crustal anatexis of the (older) mid-crust in the Lhasa block; 2) fractional crystallization of 

partial-melt of the mantle wedge; or 3) hybridization of juvenile mantle melt with crustal 

material at the Moho. Pure crustal anatexis is incapable of explaining the relatively 

homogeneous, mantle-like signature of both εHf and δ18O just prior to and during the early stages 

of collision. Jurassic granites in the central and northern Lhasa blocks have negative εHf 

consistent with formation from melting of Proterozoic basement rocks with 176Lu/177Hf = 0.015 

(Zhu et al., 2011), with εHf ~ -15; pre- and syncollisional melts forming from the same crustal 
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root would be expected to have similarly negative εHf.  

Long-term maintenance of this regime of minimal assimilation at the ITS throughout the 

Jurassic and Cretaceous precludes major changes in the structure and crustal thickness of the 

southern Lhasa block throughout this time period. Despite the substantial magmatic inflation 

associated with the near-continuous emplacement of the Gangdese batholith during this period, 

there is no indication of significant precollisional crustal thickening, which would have resulted 

in greater degrees of crustal assimilation and anatexis in progressively younger rocks. The 

possibility that, in a thickened crust, younger Gangdese granites assimilated only with older 

mantle-derived Gangdese plutons (i.e., no crustal material), is precluded, as the Lhasa block 

bedrock includes substantial Cretaceous sedimentary strata (Kidd et al., 1988; Leier et al., 2007). 

An external process must therefore have controlled the geometry of the southern margin of the 

Lhasa block. 

Prior to collision, the southern margin of the Lhasa block was a long-lived continental arc 

accommodating the closure of the neo-Tethys ocean basin (Allégre et al., 1984; Yin & Harrison, 

2000). The crustal thickness at the arc margin, now the modern ITS, was a function of thickening 

due to magmatic inflation and tectonic accretion and thinning due to erosion or exhumation (Lee 

et al., 2015). As the formation of the Gangdese batholith contributed to magmatic inflation of the 

Lhasa block, there must also have been continuous removal of crustal material at the ITS in order 

to maintain the wedge-shaped N-S geometry of the crust in southern Lhasa. Structural and 

paleoelevation studies of the Lhasa block (England & Searle, 1986; Murphy et al., 1997; Ingalls 

et al., 2016) suggest that the southern Tibetan plateau was at high elevation prior to continental 

collision (although England & Searle (1986) argued for precollisonal thickening occurring only 

in the Gangdese Batholith whereas our data suggest that the southernmost margin remained 
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relatively thin until continental collision began). 

The high convergence rate at the ITS prior to India-Asia continental collision (Rowley, 

1996) and the evidence of steep subduction angle from ultra-high-pressure metamorphic rocks 

(Leech et al., 2005) suggest that moderate levels of subduction erosion may have controlled the 

thickness of the southern Tibetan crust without substantial input of slab material into the 

overriding plate. The rapid decrease in convergence rate, increase of subducted continental 

material, and flattening of the underriding slab following the onset of collision all would have 

contributed to increased addition of crustal material to syncollisional magmas, as observed in Hf, 

O, and Nd isotope systematics of syncollisional granitoids. 

The HICLIMB study (Nableck et al., 2009) imaged the Tibetan crust and upper mantle 

along a N-S transect about 150 km west of Lhasa. This 2D profile was interpreted as showing 

~80 km thick crust across the block at this location, including ~35 km of Indian crust, although 

there are significant crustal thickness variations along strike (Zurek et al., 2007).  Nableck et al. 

(2009) interpreted anisotropy at the crust/mantle interface to reflect sustained shearing during 

formation.  If this section is representative of the crustal structure beneath our transect then the 

lack of significant post-collisional upper crustal deformation in the southern Lhasa Block, as 

documented by the widespread unconformity between the Paleocene Linzizong Volcanics and 

Late Cretaceous Takena Formation (Dewey et al., 1988), and ~10 km of denudation adjacent the 

suture zone (e.g., Copeland et al., 1987) requires that ca. 50 km of crustal thickening has 

occurred since ~50 Ma (including the ~10 km lost via denudation) via accretion from below – 

most likely the result of underplating of Indian crust. 

 Four isotopic systems therefore are broadly consistent with the view that juvenile melts 

were hybridized and fractionated in the lower crust, with small degrees of crustal assimilation 
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between ~90 to 50 Ma. Post-50 Ma samples at the ITS show greater degree of crustal 

assimilation, suggesting rapid thickening of the crust adjacent to the ITS since the onset of 

collision, which is consistent with interpretations of modern seismic data. In general agreement 

with results of recent geochemical models (Zhu et al, 2017; DePaolo et al., 2019), we infer that 

the southern margin of Tibet was relatively thin for at least 150 Ma prior to the onset of collision 

at ~50 Ma, and underwent rapid crustal thickening for at least the next 25 Ma. 

2.5 Conclusions 

A suite of Gangdese granites from a north-south transect around ~92ºE in the Lhasa 

block of southern Tibet show significant north-south variation in Hf isotopes with distance from 

the southern margin of the Lhasa block, at the Indus-Tsangpo Suture (ITS). There is a strong 

correlation between zircon and whole-rock εHf in units spanning >200 Ma to <40 Ma, permitting 

the use of zircon as a proxy for whole-rock εHf in pre- and syncollisional plutons. Northward 

distance from the ITS is negatively correlated with zircon εHf, with less radiogenic values in 

older, northward granites, while the bulk of <100 Ma granites within ~75 km of the ITS show 

more radiogenic, near mantle-like values. Whole-rock major element geochemistry, zircon εHf 

and δ18O of 50–180 Ma granites are consistent with continuous juvenile magma input to the 

lower crust of the southern margin of Tibet for the past ~200 Ma. Lack of heterogeneity in ITS-

adjacent precollisional samples is consistent with low degrees of crustal assimilation during 

fractionation and emplacement of granitic magmas in the southern Lhasa block throughout the 

Jurassic and Cretaceous periods. Syncollisional (<50 Ma) samples show increasing geochemical 

evidence of assimilation with crustal material, both in greater heterogeneity of zircon εHf as well 

as whole-rock major and trace element evidence (this study; Chen et al., 2018). Minimal 

precollisional crustal assimilation, and increased syncollisional assimilation in granites formed 
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near the ITS is consistent with thermoisotopic modeling of whole-rock εNd that indicates 

progressive thickening of the crust immediately adjacent to the ITS between ~50 and 32 Ma. 

Zircon U-Pb, Hf, and O isotopes, as well as whole-rock Hf isotopes and bulk geochemistry, 

indicate that the southern margin of the Lhasa block was thin for up to 150 Ma prior to collision, 

and thickened rapidly following the onset of hard collision at ~50 Ma. The persistence of calc-

alkaline, mantle-like granitic melts throughout the lifetime of the precollisional continental arc is 

consistent with a wedge-shaped crustal geometry of the southern margin of the Lhasa block for 

150 Ma prior to collision. 
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3.1 Introduction 

3.1.1 What are “pseudobarometers”? 

Recent studies of global geochemical databases of arc volcanics have found an empirical 

correlation between the ratios of whole-rock concentrations of La/Yb, Gd/Yb, and Sr/Y; and 

estimated crustal thickness (Chapman et al., 2015; Chiaradia, 2015; Profeta et al., 2015; Farner 

& Lee, 2017; Hu et al., 2017). Profeta et al. (2015) named these ratios “pseudobarometers” as 

they are indirect proxies for the pressure, and therefore depth, of formation of arc magmas. The 

aforementioned studies infer that these ratios change with crustal thickness as a result of variable 

partitioning of these elements into pressure-dependent phase assemblages during partial melting 

of fertilized mantle wedge under an arc. 

Traditional thermobarometers employ pressure- and temperature-dependence of phase 

equilibria or mineral composition to calculate P and T of formation, using equilibrium 

thermodynamics of balanced reactions between phase assemblages or endmember mineral 

compositions. This is achieved either by applying experimentally constrained thermodynamic 

data for pure phases to calculate P and T conditions necessary for naturally-observed solid 

solution in one or more minerals (e.g. Mercier, 1980; Putirka et al., 1996; Dale et al., 2000; 

Watson & Harrison, 2005; Thomas et al., 2010), or with forward calculation of 

“pseudosections”: P-T phase diagrams predicting mineral assemblages for a discrete composition 

as pressure and temperature vary (e.g. Powell & Holland, 1988, 2008; Connolly, 1990, 2005). 

These pseudosections are then compared to naturally occurring phase assemblages to constrain 

the range of P and T of rock formation. 

Pseudobarometers, by contrast, are not based on balanced thermodynamic reactions, but 

rather an empirical association between whole-rock composition and crustal thickness, with 
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inferred associations between phase stabilities and their experimentally constrained partition 

coefficients for the elements of interest. In this chapter I examine the reliability of these 

pseudobarometers and their pitfalls when applied to individual case studies, in particular their 

applicability to the India-Asia collision. 

3.2 Geologic basis of pseudobarometers 

3.2.1 Empirical evidence 

Sr/Y Models 

Chiaradia (2015) identified an empirical correlation between the ratio of Sr/Y and crustal 

thickness for low-MgO (2-6 wt%), low Fe2O3tot (<8 wt%) lavas in young arcs. They used crustal 

thickness estimates from Zellmer (2008) and compiled data from GEOROC (Sarbas et al., 2019). 

Chiaradia took median values of Sr/Y for 22 Pliocene-Quaternary arcs in incremental batches of 

0.5 wt% MgO, which were then averaged (Fig. 3.1). Notably, these “averages of median values” 

often do not overlap with the highest-density regions for n ≈ 104 subsets of the database when 

sorted by crustal thickness. Sr/Y values range from 0-60 in arcs <20 km thick, and 0-100 in arcs 

>30 km thick. Additionally, the largest continental arc invoked in this study, the Central Andes, 

deviates greatly from the overall pattern, with much greater crustal thicknesses for given Sr/Y 

values relative to all other arcs. The deviation of Central Andes data imply that Sr/Y values for 

mature continental arcs akin to the Gangdese Arc–which preceded the Tibetan-Himalayan 

orogen–may be a less reliable proxy for crustal thickness when calibrated against smaller and 

younger arcs. 

Profeta et al. (2015) and Chapman et al. (2015) used a similar dataset to Chiaradia (2015) 

to derive an empirical model that estimates depth of the Mohorovičić discontinuity (Moho) based 

on Sr/Y. They use GEOROC data from 25 Pliocene-Quaternary arcs (Sarbas et al., 2019), 
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filtered to include only low-Mg intermediate calc-alkaline rocks with <4 wt.% MgO and 55-68 

wt.% SiO2, and excluded data from the Central Andes Volcanic Zone (CCVZ) due to the 

presence of the Altiplano Puna magma body–though they do not elaborate on its exclusion. They 

removed outliers and calculated median and standard deviation values of Sr/Y, and compiled 

crustal thickness (Moho depth) estimates from Dimalanta et al., 2002; Eberhart-Phillips et al., 

2006; Yuan et al., 2006; Zellmer, 2008; Laske et al., 2013; and Lücke, 2014. They assumed 

isostatic equilibrium and an average crustal density of 2700 kg m-3 to calculate crustal thickness 

based on average elevations of areas with stratovolcanoes in each arc. They find a linear 

relationship between Moho depth in km (dm) and Sr/Y, 

𝑆𝑟 𝑌⁄ = 𝑎 ∙ dm − 𝑏      (1) 

which can be rearranged to solve for dm with a known value of Sr/Y: 

dm = $( )⁄ +,
-

       (2) 

Both studies use ordinary least-squares linear regression, with a = 0.90±0.06 and b = –7.25±1.89; 

R2 = 0.90. 

Profeta et al. (2015) assert their calibration can be used to reconstruct paleo-crustal 

Figure 0.1: Data from Chiaradia (2015) 
(CA, diamonds) and Profeta et al. (2015) 
(PR, circles), divided by whole-rock MgO 
(wt. %). Error bars are 1s. Solid line is Eq. 
(1), the linear regression of PR, with 95% 
confidence interval as dotted lines. CA data 
includes a wider range of SiO2 than PR, 
which is restricted to 55-68 wt. %. 
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thickness using the Sr/Y ratios of rocks from ancient arcs that fall within the stipulated 

compositional range. Exclusion of the CCVZ data, however, implies that this model is disfavored 

for igneous rocks produced in conditions similar to those underlying the Altiplano-Puna volcanic 

complex (APVC). The APVC is associated with steepening slab dip causing decompression 

melting and high mantle heat flow (Babeyko et al., 2002; Ouimet & Cook, 2010); resultant 

juvenile basaltic melts assimilated with weak, hot crustal material to create ignimbrite lavas with 

ca. 1:1 mantle-to-crust source ratio (Kay et al., 2010). It is therefore possible that such conditions 

produce anomalous Sr/Y relative to typical young arcs (see §3.2.2 and §3.5.1). 

Hu et al. (2017) expanded on the work of Chapman et al. (2015) and Profeta et al. (2015) 

by performing a similar calibration for Sr/Y in young (Miocene-present) rocks from continental 

collision zones. They observed that collisional samples generally had Sr/Y lower than arc 

samples for a given dm when dm< 60 km; their regression followed the same form as Eq. (1) 

with a = 1.49±0.15 and b = –42.03±6.28; R2 = 0.91. When Sr/Y = 0, for the collisional model dm 

» 28 km, while for the arc model dm »8 km. While these numbers are not geologically 

meaningful sensu stricto, they hint that differing geochemical partitioning processes occur during 

Figure 0.2: Sr/Y model of Hu et al. (2017) 
plotted with a KDE of the natural data used to 
calibrate the model (n = 1277). Model 
confidence interval was calculated with a 
Monte Carlo simulation of the uncertainties on 
the regression coefficients. 
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magma genesis in arcs relative to continental collision. 

La/Yb Models 

Profeta et al. (2015) and Farner & Lee (2017) evaluate the association between La/Yb 

and crustal thickness, again in Pliocene-Quaternary arcs. The median values of La/YbN and 

crustal thickness (Moho depth in km) were regressed by nonlinear least squares with an 

exponential fit of the form: 

𝐿𝑎 𝑌𝑏.⁄ = 𝐴𝑒/∙12      (3) 

which can be rearranged to solve for dm with a known value of La/YbN: 

𝑑𝑚 =
345 #$

%&'
67 8

9
      (4) 

Profeta et al. (2015) used the same methodology described in §3.2.1.1 to calculate crustal 

thicknesses and median and standard deviation values of La/YbN, where La/YbN is the ratio of 

whole-rock concentrations of La and Yb normalized to chondritic abundance. Farner & Lee 

(2017) compiled GEOROC data of Pleistocene-Holocene arc volcanic rocks and use the un-

normalized whole-rock ratio of La/Yb; i.e. La/Yb is uniformly a factor of 1.48 higher than the 

values used by Profeta et al. (2015). They also estimated crustal thickness from elevation, 

assuming isostatic equilibrium, though they assume average crustal density of 2870 kg m-3, 

compared to 2700 kg m-3 used by Profeta et al. Farner & Lee acknowledged that sampling bias 

could affect the calculated relationship between La/Yb and dm, as readily accessible sampling 

sites in a given arc will be overrepresented in the raw dataset.  Rather than grouping values of 

La/Yb by their arc source, they computed median and mean values for 100 m elevation bins, 

calculated using a digital elevation model with 100 km2 grid spacing to filter small-lengthscale, 
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non-isostatic topography. 

 In order to directly compare Farner & Lee to Profeta et al.’s model, Farner & Lee’s 

La/Yb data can be converted to their equivalent chondrite-normalized values, La/YbN. Using the 

medians and standard deviations of Farner & Lee’s elevation bin data, with corresponding 

calculated crustal thicknesses, the relationship between dm and La/YbN follows the same 

Figure 0.3: Empirical data and models for Moho depth vs. La/YbN.  Data from Farner & Lee, 2017 (FL) 
and Profeta et al., 2015 (PR). FL data were converted to La/YbN for comparison. (A) Median values of 
La/Yb with 1s error bars; FL data are for 100 m elevation intervals; PR data are for each of 22 arcs. (B) 
Kernel density estimation of arc data filtered for 55% < SiO2 < 68% and MgO < 4%, plotted with PR 
model fit and 95% confidence interval. (C) FL median data from 100 m elevation bins, plotted with FL 
model and 95% confidence interval of fit. (D) All data from arcs, unfiltered, with model as in (C). Note 
that the FL model fit is calculated from the median values (plotted in (A) as points and (C) as KDE); the 
model is therefore an inferior fit to the bulk data. 
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functional form of Eq. 3. The two fits are shown in Fig. 3.3; 95% confidence interval of the 

model fits plotted were calculated using a Monte Carlo simulation of model coefficients and their 

standard deviations. Because both Farner & Lee (2017) and Profeta et al. (2015) calibrated their 

models on median data rather than the entire dataset, the 95% confidence intervals in Fig. 3.3b 

Figure 0.4: La/YbN model of Hu et al. 
(2017) plotted with a KDE of the natural 
data used to calibrate the model (n = 1277). 
Model confidence interval was calculated 
with a Monte Carlo simulation of the 
uncertainties on the regression coefficients. 
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and (D) do not actually include 95% of the data. 

Hu et al. (2017) additionally calculated the relationship of La/YbN and dm for young 

collisional samples, from a dataset of 830 natural samples from 25 locations. Like Profeta et al. 

(2015), their model is calculated using the median and standard deviation values of each locality. 

Unlike their Sr/Y calibration, they found that La/YbN was offset to higher values for collisional 

samples relative to Profeta et al. (2015)’s and Farner & Lee (2017)’s calibrations (Fig. 3.5a). 

Samples from collisional terranes would therefore yield an unreasonably high value for dm if 

Farner & Lee (2017) or Profeta et al. (2015)’s arc-based La/Yb models were used. 

3.2.2 Experimental constraints 

There is a clear empirical relationship between crustal thickness and La/Yb and Sr/Y. The 

aforementioned studies invoke the partition coefficients of these elements in phases whose 

stability is dependent on P. The partition coefficient is the ratio of the concentration of a given 

component i in the mineral (m) relative to a coexisting liquid (l):  Di = Cm/Cl.  In this section I 

will review the experimental evidence for the temperature, pressure, and compositional effects of 

Figure 0.5: All pseudobarometer models for La/YbN (A) and Sr/Y (B), with 95% confidence intervals 
(dashed lines) calculated by Monte Carlo simulation with the model coefficients and their uncertainties.  
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Di in the phases that potentially control these ratios.  

Garnet, a common lower-crustal and upper-mantle mineral that is stable beginning at ca. 

10 kbar in metapelites (Hensen & Green, 1971) and beginning at ca. 20 kbar in pyrolite (Green 

& Ringwood, 1967), is typically invoked as the main control on pseudobarometers. Restitic 

garnet has been shown to have relatively low partition coefficients of LREE and HFSE relative 

to extracted melt (Mysen, 1978; Johnson, 1998; Sun & Liang, 2013; Taylor et al., 2015). Yb and 

Y are compatible in garnet relative to La, Gd, and Sr, and this process is inferred to be the 

primary cause of the crustal thickness-dependence on La/Yb and Sr/Y in arc rocks (Chiaradia, 

2015; Profeta et al., 2015; Farner & Lee, 2017). 

Garnet is not alone in controlling these ratios. Clinopyroxene is ubiquitous in mantle 

lherzolite (ca. 5-20 vol %) and experimental studies have demonstrated it is typically a restitic 

phase in the generation of basaltic melts from low degrees of partial melting of mantle lherzolite 

starting material (Adam & Green, 1994; Johnson, 1998). The composition of restitic 

clinopyroxene affects mineral-liquid DREE, as do melt 𝑓#!and P (Adam & Green, 1994; Sun & 

Liang, 2013; Michely et al., 2017). Pressure, [Ti], and [Al] can affect DLa, for example, by up to 

a factor of 7 (Sun & Liang, 2013). The specific source composition of mantle-derived juvenile 

melts is therefore an important factor controlling the La/Yb and Sr/Y ratios of arc- and collision-

produced magmas. 

There is additionally compositional heterogeneity of trace elements in the lithospheric 

mantle, which can be exacerbated by the degree of mantle metasomatism. Lithospheric mantle 

xenoliths have a median La/Yb of 2.85, but La concentrations range significantly, with a median 

of 0.77 ppm, mean of 2.60 ppm, and standard deviation of 5.70 ppm (McDonough, 1990). The 

La/Yb of the average values is 10.00; significantly higher than the median value. Sr/Y is 
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similarly variable, with a median of 6.45 and average of 11.14. Local or inter-arc heterogeneity 

of the source material is therefore a potential cause of uncertainty in both the calibrations and 

application of pseudobarometers to rocks of unknown crustal thickness. 

3.3 Data analysis: do they work for case studies? 

3.3.1 The problem of resampling in small datasets 

The Central Limit Theorem is a concept of probability theory that describes the tendency 

of resampled values–from a dataset of independently random variables–to approach a normal 

distribution, regardless of the distribution of the original population. In the case of igneous rock 

samples, we can consider the global compositional distribution of Earth’s igneous rocks as the 

“original” population. Sampling of these rocks is thus equivalent to a statistical resampling of a 

subset of these original data. As the number of resampled values (n) increases, the mean of 

samples Sn  and its variance (s2) approaches the mean of the original population (µ), i.e., 

𝐥𝐢𝐦
𝒏→+

√𝒏(𝑺𝒏 − µ) = 𝑵(𝟎, 𝝈𝟐)     (5) 

where N is a normal (gaussian) distribution with mean 0 and variance s2. That is, large-n 

resamples of the original population will generally be representative of the mean and standard 

deviation of the original population, even if the original distribution is not preserved. 

In the case of pseudobarometers calibrated from large-n, global geochemical datasets, we 

can infer that the calibration is generally representative of µ and s2 of Earth as a whole. The 

application of pseudobarometers to discrete localities with values of n orders of magnitude lower 

than the n of the datasets used in the calibration, however, carries no such guarantee. The 

calibrations of the relationship between dm and Sr/Y and La/Yb use median values deliberately 

to avoid the influence of outliers (Profeta et al., 2015; Farner & Lee, 2017; Hu et al., 2017; Lieu 

& Stern, 2019). With small-n datasets, one cannot assume a priori that the sample distribution is 
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equivalent or representative of the bulk Earth distribution. To demonstrate the problem of small-

n sample sets falling outside of the global distribution, I performed a Monte Carlo simulation 

with bootstrap resampling of La/Yb values from Farner & Lee’s unfiltered dataset (n = 12506). 

Populations were randomly resampled over 105 iterations from the original data, with n = 101, 

102, 103, and 104. Fig. 3.6 shows the results of this simulation: low-n resampled populations have 

a significantly broader distribution of sample mean (µn), sample standard deviation (sn), and the 

difference between the sample mean and the population mean (µn - µX). The probability 

Figure 0.6: Kernel density estimation (KDE) functions of resampled data; all data in ln(La/YbN). (A) 
Values for all data compared to an example subset of data, n = 10. (B) Distribution of means of resampled 
data for 105 iterations of each n value. (C) Distribution of standard deviations of resampled data as in (B). 
(D) Distribution of difference between means of resampled values and mean of all data, µX, as in (B). 
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distribution function of an example instance of 101 resampled values is significantly different 

than the distribution of the original data (Fig. 3.1a). This simulation demonstrates the risk that 

small-n rock sample sets, taken from a single locality, will not yield data that are consistent with 

the global relationship between dm and La/Yb. 

3.3.2 Probabilities of pseudobarometer model fits 

The general probability of any given arc rock sample falling within pseudobarometer 

model calibrations can additionally be calculated using the dataset compiled by Farner & Lee 

(2017) and the Sr/Y and La/YbN models of Profeta et al (2015) and Farner & Lee (2017). As dm 

is well-constrained for these samples, a model value of  Sr/Y and La/YbN can be calculated for 

each sample’s value of dm, which is then compared to the sample’s actual ratios. For the Sr/Y 

model of Profeta et al. (2015), only 9% of all young arc samples (filtered for composition, n = 

3118) fall within 1s of the model fit; only 18% of samples fall within 2s. Their La/YbN model 

fares similarly, with 10% of filtered samples falling within 1s and 15% falling within 2s. For 

Farner & Lee (2017)’s La/YbN model, 22% of unfiltered samples (n = 12506) fall within 1s, and 

67% fall within 2s. When the data are filtered for composition as in Profeta et al. (2015)’s model 

(n = 4012), 31% fall within 1s and 62% within 2s of Farner & Lee (2017)’s model. As their 

dataset used to fit the model was not filtered by composition, their model is more widely applic  

able to arc rocks of a wide range of compositions. Their efforts to correct for sampling bias by 

calibrating the model on the medians from areally-averaged elevation bins provided a more 

robust foundation for the calibration than averages of each arc. The total number of median 

values used for their calibration (67) is higher than the number of arcs averaged by Profeta et al. 

(2015), and the elevation bins allowed for possible heterogeneity in crustal thickness throughout 
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large arcs, expressed as differences in elevation of each 100 km2 grid space. 

Data from young collisional rock samples, with well-constrained dm, applied to the 

collisional models of Hu et al. (2017) fit the La/YbN model 40% (1s) and 75%(2s) of the time, 

and the Sr/Y model 47%(1s) and 69%(2s) of the time. The geologic factors affecting Sr/Y and 

La/Yb may be more limited in continental collision zones relative to the range of factors 

affecting both oceanic and continental arcs; it is also possible the model is overfit to the data due 

to relatively small n compared to the global arc databases. For Hu et al. (2017)’s models, n was 

one to two orders of magnitude smaller for Sr/Y (n = 1277) and La/Yb (n = 829) relative to the 

arc datasets (n = 9800, Profeta et al. (2015); n = 12506, Farner & Lee (2017)). As discussed in 

§3.3.1, small datasets represent a low-n resample of Earth’s composition and may not be 

representative. When a model is calibrated from relatively low-n, it may therefore be propagating 

resampling bias. A pseudobarometer model that propagates resampling bias will further 

obfuscate results of   

These problems multiply when additional uncertainties are introduced. While large 

sample sets (n ≥ 102) of modern arc and collisional magmatic rocks may yield results that are 

reasonably consistent with the pseudobarometer models, there are unconstrained effects of 

geologic processes experienced by older samples–such as weathering, deuteric alteration, and 

regional metamorphism.  

3.3.3 Compiled data from southern Tibetan igneous rocks 

Magmatism in the Tibetan Plateau straddles a tectonic transition from a continental arc 

environment that produced the Gangdese Arc, to a collisional environment beginning at the onset 

of the India-Asia collision by ca. 57 Ma (Leech et al., 2005). Application of pseudobarometers to 

Tibetan granitoids must therefore take this tectonic transition into account by applying 
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appropriate models to pre- and syn-collisional samples. It follows that the La/YbN and Sr/Y 

models of Hu et al. (2017) should be applied to units <57 Ma, and that arc-based models be 

applied to older units. Given that Farner & Lee (2017)’s La/YbN model fits a wider range of 

natural data than the model of Profeta et al. (2015), the former model is used for the La/YbN 

model in pre-collisional samples. Profeta et al. (2015)’s model is used for Sr/Y model depths in 

Figure 0.7: Pseudobarometer model Moho thickness of Tibetan magmatic rocks; arc models are used for 
>57 Ma samples, and collisional models for younger samples. Dashed lines are at 57 Ma; error bars are 
1s. (A) La/YbN models of Hu et al. (2017) (≤57 Ma) and Farner & Lee (2017) (>57 Ma), unfiltered for 
composition. (B) Sr/Y models of Hu et al. (2017) (≤57 Ma) and Profeta et al. (2015) (>57 Ma), unfiltered 
for composition. (C) La/YbN models as in (A), filtered for composition 55% ≤ SiO2 ≤ 68%; MgO ≤ 4%. 
(D) Sr/Y models as in (B), filtered for composition as in (C). 
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pre-collisional samples. 

Fig. 3.7 shows the results of these combined models for Tibetan magmatic rocks age 40 – 

100 Ma, located between 85º – 95ºE and 29.2º – 30ºN. Not only do the model Moho depths show 

no clear crustal thickening pattern from the pre- to syn-collisional transition; they result in 

pathologically deep Moho depths even, and especially, for pre-collisional samples. When the 

data are filtered to only include rocks of intermediate composition, there is an apparent trend of 

shallower Moho depth in syn-collisional samples. There is no obvious benefit to filtering the 

data by major element composition, even for Profeta et al. (2015)’s model which is calibrated to 

intermediate compositions. A significant portion of the data are outside of geologically 

reasonable Moho depths, with many points at either negative Moho depths, or depths > 100 km, 

for one or both models (Fig. 3.8). There is additionally a change in the relationship between the 

two models from older to younger samples: older than ca. 80 Ma, Sr/Y model depths are ~50 km 

higher than La/Yb model depths, while the trend is generally reversed in samples < 60 Ma. There 

is some correlation with wt. % SiO2 and ∆DM =  DMLa/Yb – DMSr/Y (Fig. 3.4); more felsic 

Figure 0.8 Comparison of La/YbN and Sr/Y 
models in samples from southern Tibet. 
Error bars 1s; colormap is sample age. Gray 
areas are where Moho depth <0 km for 
either model. 
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samples tend to have ∆DM > 0, while relatively more mafic samples have ∆DM < 0. 

3.4 Discussion 

Given that trace element pseudobarometers are predicated on pressure-dependent 

partitioning of the elements of interest during partial melting, both the Sr/Y and La/YbN models 

should agree. However, in the case example for Tibetan rocks, it is clear that these models not 

only do not agree, but yield geologically improbable or impossible model Moho depths. Even 

with < 57 Ma samples, for which both model depths are calculated using Hu et al. (2017)’s 

collisional models, there is some compositionally-related dispersion in ∆D that cannot be 

explained by differing model calibrations. It is likely that unconstrained processes following the 

generation of juvenile melt are differentially modifying Sr/Y and La/Yb in the resultant magmas 

(Fig. 3.9). 

As discussed in Chapter 2, southern Lhasa terrane granitoids show ample evidence of 

crustal assimilation. If we assume that whole-rock stable isotopes are a proxy for assimilation 

between juvenile mantle and old crust-derived endmembers, as in Ch.2, it is clear that crustal 

assimilation contributes to the degree of magmatic differentiation/evolution toward more felsic 

compositions. This same process is tracked in ∆DM, with more felsic, assimilated samples 

Figure 0.9: Difference between La/YbN 
model and Sr/Y model Moho depth (km) 
with age, color-coded by wt. % SiO2. 
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enriched in radiogenic isotopes (εNd(t) and 87Sr/86Sri), and a general trend toward higher degrees 

of crustal assimilation in younger samples (Fig. 3.10). It is geochemically consistent for ∆DM to 

become more positive with more radiogenic values of εNd(t), as Nd and La are both light rare-

earth elements who are likely to behave similarly during the aforementioned processes. Whole-

rock modification of 87Sr/86Sri from the juvenile endmember similarly implies exchange of Sr 

during crustal assimilation; increasing ∆DM with 87Sr/86Sri suggests that assimilation may be 

reducing the overall concentration of Sr relative to Y in the magma. The trace element ratios 

used in pseudobarometers must therefore be significantly modified by the degree of magmatic 

Figure 0.10: Difference between La/YbN and Sr/Y model depths (∆DM) with whole-rock isotopes; error 
bars are 1s. (A) εNd(t) and ∆DM, color-coded by sample wt. % SiO2. (B) 87Sr/86Sri and ∆DM, colors as in 
(A). (C) εNd(t) and ∆DM, color-coded by sample age. (D) 87Sr/86Sri and ∆DM, colors as in (C). 
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differentiation and assimilation.  

The datum with maximum εNd(t), +6.3, also has unradiogenic 87Sr/86Sri (0.7033), but has 

∆DM = 12.5 km. The data with the most negative ∆DM have slightly more radiogenic isotopic 

values, and are also not necessarily the most mafic, so there are likely other controlling factors 

beyond degree of crustal assimilation. Most of the data with the most negative ∆DM are 

relatively older, so secondary alteration may additionally be playing a role differential exchange 

of La/Yb vs. Sr/Y. Differential weathering rates of Sr- and Y-bearing minerals, for example, may 

exacerbate changes in whole-rock Sr/Y ratio following emplacement. For example, though 

plagioclase has a significantly higher DSr/DY than biotite (Fedele et al., 2015), it was shown that 

biotite in glaciated Sierra Nevada granites weathered 4-6 times faster than plagioclase (Blum et 

al., 1993). Depending on the relative abundances and weathering rates of plagioclase and biotite 

in Tibetan magmatic rocks, exposure to weathering processes for many 10’s of Ma in older 

samples may differentially deplete Y relative to Sr, leading to deeper apparent DMSr/Y in those 

samples. The highly negative ∆DM values in old samples likewise imply a depletion of La 

relative to Yb relative to Sr/Y. Accessory minerals including apatite, allanite, and sphene are 

significant contributors to the whole-rock budget of LREE, and are generally quite soluble 

during hydrothermal alteration in acidic fluids (Exley, 1980; Guidry & Mackenzie, 2003). 

Dissolution of LREE-rich phases during weathering would deplete the whole-rock budget of La 

relative to Yb, leading to pathologically low DMLa/Yb, as seen in many older, unradiogenic 

samples with negative ∆DM. 

During crustal assimilation, partitioning of La, Yb, Sr, and Y into the melt are dependent 

on composition, as they are governed by the saturation and partition coefficients of the minerals 

controlling the whole-rock budget of these elements. Dissolution of LREE-bearing phases out of 
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the country rock and into the melt is limited by the melt composition; more mafic melts will 

dissolve a greater fraction of apatite, for example, than felsic melts (Watson & Harrison, 1984); 

the melt water content will also impact apatite dissolution (Harrison & Watson, 1984). Positive 

∆DM implies differential enrichment of La/Yb relative to Sr/Y, and correlates with crustal 

assimilation indicators in Tibetan rock data (Fig. 3.10). It is therefore likely that crustal 

assimilation modifies juvenile melt La/Yb more readily than Sr/Y, and this effect becomes more 

dramatic with highly felsic melts. 

3.5 Conclusions 

Trace element pseudobarometers using the ratios of La/Yb and Sr/Y are subject to a 

number of confounding factors that impact their reliability for reconstructing crustal thicknesses 

in ancient and evolving terranes. The existing calibrations do not consistently reproduce the 

crustal thicknesses of young arcs and collision zones whose Moho depth is well-constrained by 

seismic and elevation proxies. Sampling bias in small-n datasets has the potential to generate 

spurious results leading to incorrect assumptions regarding the crustal thickness of ancient 

terranes. Processes including crustal assimilation, magmatic differentiation, and secondary 

alteration appear to modify these pseudobarometers, causing significant disagreement between 

models. 

This has implications not only for the use of pseudobarometers for reconstructing crustal 

thickness in southern Tibet, but also for their use more broadly. There appear to be significant 

unconstrained factors that affect these trace element ratios outside of the scope of the model 

calibrations, and it is not yet clear to what extent these factors operate on the geochemistry of 

discrete magmatic terranes. In the case of southern Tibet, it is likely that a combination of a 

complex, evolving tectonic setting, crustal assimilation, degree of differentiation, deuteric 
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alteration, and weathering coalesced to produce spurious results in pseudobarometer models. 

This study indicates that trace element pseudobarometers are not suitable for reconstructing 

ancient crustal thicknesses, even for relatively large datasets. 
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4.1 Introduction 

4.1.1 Granitoid Thermobarometry 

Interpreting of the role of magmatic systems in the evolution of Earth’s crust requires a 

foundational understanding of the conditions at which magmas are generated, hybridized, and 

emplaced. The fundamental motivation of the inverse problem of igneous petrogenesis is that we 

are unable to directly observe the formation mechanisms of natural magmas. We are therefore 

left to the ex-post-facto interpretation of petrogenetic conditions using geochemistry, 

geochronology, and petrography. Understanding the petrogenesis of magmas from their resultant 

rocks provides substantial insight into geologic processes driving the geochemical and structural 

evolution of a region of interest. One of the most significant factors influencing the rheology and 

composition of the crust is its thickness, which influences the thermal profile and pressure 

conditions experienced by its constituent rocks (Babeyko et al., 2002; Burov & Yamato, 2008; 

Schott & Schmeling, 1998). Thickness-dependent crustal rheology carries implications for 

available deformation mechanisms and the conditions at which melts can form and migrate (De 

Yoreo et al., 1989; Brown, 1994; de Silva & Gregg, 2014). 

Reconstructing the spatiotemporal evolution of crustal thickness throughout dynamic 

geologic processes requires investigation of rock formation pressures through time. While 

indirect geochemical proxies for estimating crustal thickness have been proposed and evaluated 

(Chapman et al., 2015; Profeta et al., 2015; Farner & Lee, 2017; Hu et al., 2017; DePaolo et al., 

2019; Lieu & Stern, 2019), there are a number of confounding factors that can negatively 

influence the reliability of these methods (see Ch. 3). Directly reconstructing the pressure at 

which rocks and their constituent minerals form is therefore a more robust method of 

constraining crustal thickness. Thermobarometry provides such a tool, relying on experimental 
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and empirical calibrations of deviations in phase relations and chemistries due to variations in P 

and T. Thermobarometric evidence of these conditions can then be used to better understand a 

variety of geologic processes, including depth of magma emplacement, melt storage, and 

metamorphism. Relevant to this study is the utility of thermobarometry to estimate the minimum 

crustal thickness during generation of silicic plutons, which in turn can constrain deformation 

mechanisms available during the tectonic evolution of continental orogens. 

The first-order assumption necessary for igneous thermobarometry is that the mineral of 

interest was in thermodynamic equilibrium with the melt as it crystallized. At magmatic 

temperatures, this is generally true, as cation diffusivities in the liquid phase are sufficiently fast 

to equilibrate with crystallizing phases (Hofmann & Magaritz, 1977; Lowry et al., 1982; Mungall 

et al., 1999). Thermobarometry requires solution for two intensive variables, P and T, and 

therefore requires at least two phases whose P- and T-dependent chemistry has been quantified. 

A priori assumption that multiple phases of interest were in thermodynamic equilibrium is 

problematic; the crystallization sequence of a cooling magma necessarily precludes uniform T 

and chemical activities experienced by phases which may have saturated at discrete intervals. 

Continuous crystallization during melt migration and emplacement is a further complication. 

Selection of the two (or more) phases to pair when solving for P and T must include a likelihood 

of cotectic crystallization intervals, such that it can be reasonably assumed the phases of interest 

experienced similar, if not identical, thermodynamic conditions during crystallization. It is 

additionally ideal to select phases with few components, such that variation in thermodynamic 

parameters due to solid solutions or variable site occupancy is minimized. Naturally occurring 

phases with fewer components are simpler to simulate in experimental settings, reducing the 

uncertainty induced by discrepancies between highly variable natural compositions and their 
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experimental endmembers. Finally, near thermodynamically ideal behavior during P- and/or T-

dependent substitution of a given species reduces uncertainty associated with variations in 

chemical potential. An ideal thermobarometer has 𝑎" ≈ 𝑋", where i is the substituting species of 

interest, such that analytical results of concentration are sufficient to solve for P and T.  

Mineral geothermometers (which are pressure-insensitive) are routinely used in both 

plutonic and volcanic systems (e.g. Ti-in-zircon, Zr-in-rutile, pyroxene-liquid, and two-feldspar 

thermometers (Anderson, 1996; Putirka et al., 1996; Watson & Harrison, 2005; Ferry & Watson, 

2007)). Thermobarometers, sensitive to both pressure and temperature, are commonly used in 

metamorphic petrology, but experimentally calibrated igneous thermobarometers are scarce, and 

less routinely applied. The Al-in-hornblende barometer (Hammarstrom & Zen, 1986; Schmidt, 

1992; Anderson & Smith, 1995; Mutch et al., 2016) has been a relatively popular barometer for 

granitic systems and displays reasonably linear increase in total Al concentration with increasing 

pressure in experimental studies (Mutch et al., 2016, and references therein). However, the Al 

content of unaltered magmatic hornblende is likely reflective of emplacement pressure, as case 

studies demonstrate agreement between thermochronometric evidence of post-emplacement 

storage temperature and the expected ambient geotherm at the pressures indicated by Al-in-

hornblende (e.g., Tremblay et al., 2015; Alexander et al., 2016). This thermobarometer is 

therefore useful mainly for reconstructing the final emplacement depth of granitoid plutons, 

provided the hornblendes are unaltered. Hydrothermal alteration is, however, exceedingly 

common in granitoids, as evidenced by commonly observed textural features including 

sericitization and myrmekitization of feldspars, and chloritization of biotite and hornblende 

(Bray, 1969; Ferry, 1979; Leake, 1998; Nishimoto & Yoshida, 2010), and granitoids in southern 

Tibet are no exception (e.g., Blattner et al., 2002; Kapp et al., 2005). Fluid-mediated 
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recrystallization and cation exchange will reduce the Al content of magmatic hornblende, leading 

to spuriously low calculated pressures (Agemar et al., 1999; Alexander et al., 2016). Moreover, 

pluton emplacement depths are minimally reflective of actual crustal thickness, given that 

magma bodies can migrate 10’s of km over the course of melt generation, hybridization, and 

emplacement (De Yoreo et al., 1989; Brown, 1994). A thermobarometer that plumbs greater 

depths of petrogenetic processes is therefore required to approach a minimum estimate of crustal 

thickness, disqualifying the use of Al-in-hornblende barometry for this study. 

The Ti-in-zircon thermometer (Tzir) is generally useful for all but the most mafic 

compositions of igneous rocks and has been extensively tested and calibrated (Watson & 

Harrison, 2005; Ferry & Watson, 2007; Harrison et al., 2007; c.f. Hofmann et al., 2009). Zircon’s 

near-ubiquitous presence as an accessory mineral in intermediate to felsic igneous rocks, paired 

with its incompressibility at crustal pressures, makes Tzir an ideal thermometer for most igneous 

rocks.  Tzir can therefore be used to constrain T in order to solve for P using a coexisting mineral 

thermobarometer. The Ti-in-quartz thermobarometer (Pqtz) (Thomas et al., 2010, 2015) is, for our 

purposes, an ideal barometric counterpart. The T- and P-dependent substitution of Ti into the 

quartz lattice is sensitive to both pressure and temperature, so pressure can therefore be 

constrained with temperature independently constrained using Tzir. An additional advantage to 

pairing these two systems is their mutual dependence on the activities of rutile and quartz. The 

presence of quartz necessarily dictates that 𝑎$"#! is unity, so 𝑎!"#! governs the availability of Ti 

to substitute into the quartz and zircon lattices. 

Ensuring equilibrium between quartz and zircon poses an additional challenge to accurate 

calculation of Pqtz. While quartz and zircon generally crystallize over similar intervals in felsic 

magmas (Miller et al., 2003; Claiborne et al., 2010; Boehnke et al., 2013), localized 
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compositional differences in a highly viscous, cooling granitic melt could induce variance in 

𝑎!"#!; protracted crystallization throughout melt generation, migration, and emplacement can 

induce zoning in [Ti] in both zircon and quartz (Harrison & Schmitt, 2007; Schoene et al., 2012; 

Thomas et al., 2015). Analysis of separate whole quartz and zircon grains therefore is not 

guaranteed to represent equilibrium partitioning of Ti between these two phases. In this study, I 

present both whole-grain analyses as well as a thorough investigation of Tzir and Pqtz of quartz 

inclusions in zircon. Primary, unaltered quartz inclusions are in equilibrium with their zircon 

hosts by nature of their proximity and the reasonably high diffusivity of Ti in the surrounding 

melt at magmatic temperatures (Mungall et al., 1999). While analysis of 5–30 µm quartz 

inclusions in zircon requires significantly higher spatial resolution than analysis of separate 

whole grains, the greater likelihood of thermodynamic equilibrium (i.e., identical 𝑎!"#! during 

crystallization) justifies this effort.  

4.1.2 Thermodynamic Basis of Tzir and Pqtz 

The Tzir calibration of Ferry and Watson (2007) assumes 𝑋!":"(;<= behaves according to 

Henry’s law, as [Ti] in zircon is typically limited to between 100 to 102 ppm Ti. First-principles 

calculations indicate the incorporation of Ti into the zircon lattice occurs through substitution of 

Ti into the Si site (Harrison et al., 2005; Ferriss et al., 2008): 

𝑍𝑟𝑆𝑖𝑂- + 	𝑇𝑖𝑂. = 	𝑍𝑟𝑇𝑖𝑂- + 𝑆𝑖𝑂.     (6) 

The Ferry and Watson (2007) calibration allows for estimation of zircon crystallization 

temperature in rutile-undersaturated rocks by incorporating a term for 𝑎!"#!, as well as silica-
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undersaturation with 𝑎$"#!. Assuming equilibrium, 

∆𝐻/ − 𝑇∆𝑆/ + 𝑃∆𝑉/ + 	𝑅𝑇ln𝑎01$"## + 𝑅𝑇ln𝑎!"#! − 𝑅𝑇ln𝑎01!"## − 𝑅𝑇ln𝑎$"#! = 0  (7) 

Where ∆H0, ∆S0, and ∆V0 are the change in enthalpy, entropy, and volume of the reaction at 

standard state, R is the gas constant 8.314x10-3, and T is the temperature of reaction. The activity 

of ZrTiO4, 𝑎>(!"#( = 𝑘?, where 

𝑘2 = 𝛾 ∗ 𝑋01$"##
3"1456 ∗ 𝑓      (8) 

𝛾 is the Henry’s Law coefficient, and 𝑓 is the factor converting 𝑋>(!"#(
:"(;<= to ppm Ti-in-zircon. 

Accordingly, equation (2) may be rearranged: 

log[Ti]789:;< (ppm) = log a=8>! − log a?8>! + ^
∆?A$

..C/CD
− log 𝑘2_ −

∆EF$GH∆IF$

..C/CD=
  (9) 

The experimental calibration of Ferry and Watson (2007) finds that ∆𝑆̅@ 2.303𝑅 − log 𝑘?⁄  = 

5.711±0.072, and (∆𝐻F@ + 𝑃∆𝑉J@) 2.303𝑅⁄  = – 4800±86 using standard state values for a-quartz 

and rutile at the relevant P and T. For felsic rocks with abundant quartz, as is the case in this 

study, it may be reasonably assumed that 𝑎$"#! =	1, such that log 𝑎$"#! 	 = 0. The equation thus 

reduces to: 

log[𝑇𝑖]3"1456 (𝑝𝑝𝑚) = log 𝑎$"#! + (5.711 ± 0.072) + (4800 ± 86) 𝑇(K)⁄   (10) 

which when solved for T becomes: 

𝑇3"1(K) =
J-K//±KM

N;O[$"]%&'()*(SST)JN;OV+&,!J(W.X22±/./X.)
     (11) 

When temperature is constrained with Tzir, the P- and T-dependent substitution of Ti into 
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the quartz lattice may be leveraged to calculate the pressure of quartz crystallization. Substitution 

of Ti into the quartz lattice occurs at trace levels (101 – 102 ppm Ti) in magmatic quartz, and its 

P- and T-dependence was experimentally calibrated by Wark & Watson (2006) and Thomas et 

al. (2010, 2015) following the exchange reaction between rutile and a  quartz-isostructural, 

fictive TiO2 phase: 

𝑇𝑖𝑂.9YZ8N[ ↔ 𝑇𝑖𝑂.
\]V1^3     (12) 

where 𝑎!"#!
AB-(C: = 𝑘D𝑋!"#!

AB-(C:; 𝑘D is the Henry’s law coefficient, i.e. 𝑎!"#!
AB-(C: ≈ 𝑋!"#!

AB-(C:. At 

equilibrium, 

∆�̅�/ = ∆𝐻e/ − 𝑇(∆𝑆̅/ − 𝑅 ln 𝑘$"#!) + 𝑃∆𝑉f
/ + 𝑅𝑇 ln𝑋$"#!

\]V1^3 − 𝑅𝑇 ln 𝑎$"#! = 0  (13) 

which may be rearranged as, 

𝑅𝑇 ln𝑋$"#!
\]V1^3 = −∆𝐻e/ + 𝑇∆𝑆̅/ − 𝑃∆𝑉f/ + 𝑅𝑇 ln 𝑎$"#! − 𝑅𝑇 ln 𝑘.   (14) 

Thomas et al. (2010, 2015) experimentally calibrated the above equation over a P range of 5 – 20 

kbar and a T range of 600ºC – 1000ºC: 

𝑅𝑇 ln𝑋$"#!
\]V1^3 = −𝑎 + 𝑏 ∗ 𝑇 − c ∗ 𝑃(𝑘𝑏𝑎𝑟) + 𝑅𝑇 ln 𝑎$"#!    (15) 

where a = 60952±3122, b = 1.520±0.04, and c = 1741±63; representing the calibrated values for 
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∆𝐻F@, ∆�̅�@, and		∆𝑉J@, respectively. Rearranging for P gives: 

𝑃\^3(𝑘𝑏𝑎𝑟) =
JVG_∗$Ga$bN< V+&,!JN<c+&,!

-./'0%d

4
     (16) 

where T = Tzir in degrees K. 

Constraining 𝑎!"#! in rutile-absent rocks remains problematic and must be addressed so 

as to avoid significant under- or over-estimation of Tzir and Pqtz. When Tzir and Pqtz are paired, the 

problem is somewhat self-correcting due to the presence of the 𝑎!"#! term in both the numerator 

and denominator. Unconstrained 𝑎!"#! can still result in an overestimation of Pqtz by up to ca. 2.5 

kbar, so effort must be made to narrow the range of likely 𝑎!"#!.  Various methods have been 

proposed, including calculation from whole-rock [Ti] (Hayden & Watson, 2007; Ryerson & 

Watson, 1987) as well as from coexisting Fe-Ti oxides (Ghiorso & Gualda, 2013). The whole-

rock methods significantly overestimate rutile saturation in granitoids, likely due to sequestration 

of available Ti in other modal phases (e.g. ilmenite, titanite, hornblende, and biotite) such that 

bulk [Ti] is not representative of 𝑎!"#! of the melt during crystallization of zircon and quartz. 

Analysis of paired Fe-Ti oxides, likewise, presumes these oxides are in equilibrium with the 

residual melt at the time of zircon crystallization, but the low diffusivity of Ti in crystalline 

phases suggests this is likely not the case (Cherniak et al., 1997, 2007). The range of 

𝑎!"#! 	typical of rutile-undersaturated metamorphic rocks with titanite present was calculated, 

based on phase relations to 𝑎!"#! = 0.75±0.26 (P. Kapp et al., 2009); 𝑎!"#! of late-stage melts in 

felsic magmatic rocks is typically somewhat lower (Ghiorso & Gualda, 2013). The necessary 

precision of 𝑎!"#! constraint required to apply Ti-thermobarometry is dependent on the level of 

precision needed in the resultant temperature and pressure calculations. For the purpose of this 

study, where I examine broad trends in crustal thickness spanning many kbar, it is permissible to 
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propagate relatively generous uncertainty in 𝑎!"#!, within the expected bounds for typical felsic 

igneous rocks. Accordingly, I use  𝑎!"#! = 0.6 ± 0.15 (1s) to account for the probable range 

present in rutile-undersaturated granitoids with abundant ilmenite and titanite. 

The effects of secondary alteration on inclusion-host pairs can be explored by measuring 

∆18O of quartz inclusions and their zircon hosts. However, it is an imperfect proxy for the 

retention of primary [Ti] partitioning between quartz and zircon. Self-diffusion of O in both 

quartz and zircon is significantly faster than Ti (Cherniak et al., 1997, 2007; Watson & Cherniak, 

1997). Moreover, Ti is quite insoluble in hydrothermal fluids at mid- to upper-crustal pressures, 

even at magmatic temperatures (Antignano & Manning, 2008; Thomas et al., 2019), so though 

d18Oqtz may be greatly modified relative to d18Ozir during hydrothermal alteration (King et al., 

1997), primary magmatic Ti partitioning between quartz and zircon is much more likely to be 

preserved. Textural evidence that quartz inclusions in zircon are primary and unaffected by post-
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crystallization recrystallization or diffusion at the quartz-zircon interface is likely a more reliable 

Figure 0.1 Color-CL images of zircons with primary quartz inclusions. CL intensities are not to 
scale between images. These zircons and their quartz inclusions did not have equilibrium ∆18Oqtz-

zir, but did not show evidence of disturbed [Ti]. 
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method for screening viable inclusion-host pairs.  

4.2 Methods 

4.2.1 Identification and Imaging of Quartz Inclusions 

Zircons were mounted in epoxy, sectioned, and polished. Quartz inclusions in zircon 

Figure 0.2: Examples of inclusion textures consistent with secondary alteration of quartz 
inclusions. 
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were identified using the Tescan Vega3 SEM equipped with EDAX Team EDS detector and 

software. Zircons with quartz inclusions were then imaged for textural analysis with the color-

cathodoluminesence (CL) detector in order to determine whether inclusions were primary (Fig 

4.1), secondary, or showed textural evidence of alteration (Fig. 4.2). CL imaging was performed 

following oxygen isotope analysis so as to preserve a smooth surface for maximum transmission 

and to minimize surface effects during ionization. 

4.2.2 Titanium Concentration 

Ti concentrations were measured with SIMS, which is sensitive enough to resolve [Ti] in 

zircon and quartz of as little as a fraction of a ppm; the ratio of 49Ti/30Si was measured in both 

unknowns and standards to account for variations in beam intensity and ionization efficiency. 

49Ti, though less abundant than other Ti isotopes, avoids mass interferences from Ca and V 

isotopes; 30Si allows for use of the electron multiplier for both masses–more abundant Si isotopes 

would generate count rates too high for the EM. Whole quartz and zircon aliquots were analyzed 

on the CAMECA ims1270 at UCLA in monocollection mode using a ca. 12 nA beam focused to 

a ~30 µm spot. Zircons were simultaneously measured for U-Pb age using the same AS3 

standard for both U-Pb and Ti. Ti concentrations for paired quartz inclusions and zircon hosts 

were measured on the CAMECA ims1290 at UCLA, using the Hyperion RF Plasma 16O- source 

with a ~5 nA beam focused to a ~2-3 µm spot. Zircon standards FC1 (21.6±0.8 ppm, Aikman, 

2007) and 91500 (5.2 ± 1.5 ppm Ti, Wiedenbeck et al., 2004) and three reference glasses with 0, 

100, and 500 ppm Ti (Gallagher & Bromiley, 2013) were used as zircon and quartz standards, 

respectively. Internal heterogeneity of standard materials exceeded analytical uncertainty, and 

was incorporated into the standard linear regression (using the New York regression method; 
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Mahon, 1996).  

4.2.3 Titanium Thermobarometry 

 Zircon crystallization temperature (Tzir) was calculated using the calibration of Ferry and 

Watson (2007); quartz crystallization pressure (Pqtz) was calculated using the calibration of 

Thomas et al. (2010, 2015). Uncertainties in Tzir and Pqtz were calculated by propagating 

analytical, calibration, and 𝑎!"#! uncertainties by the Monte Carlo Method of error propagation 

using 105 iterations per value. The Pqtz calculation included the propagated error in Tzir; final 

values are taken from the mean and standard deviation of the 105 iterations. Pqtz of inclusions 

was calculated using Tzir of the adjacent zircon growth zone. Pqtz of whole quartz was calculated 

using Tzir calculated from the mean [Ti] (ppm) of an aliquot of 5-10 zircon grains. Depth 

equivalence of Pqtz was calculated using an average crustal density of 2750 kg m-3, consistent 

with density profile estimates of continental arcs for a wide range of geothermal gradients 

(Lucassen et al., 2001).  

4.2.4 Oxygen Isotopes 

Oxygen isotope measurements of quartz inclusions and their host zircon were made 

simultaneously using the CAMECA ims1290 high-resolution ion microprobe at UCLA with a 

~2.5 nA Cs+ beam focused to a ~10 µm spot with mass resolving power >3000.  Analyses were 

performed in multicollection mode with 16O and 18O measured with Faraday cups. Quartz 

standard QzCWRU (d18O = 24.52‰) and zircon standard AS3 (d18O = 5.34±0.04‰; Trail et al., 

2007) were used to correct for instrumental mass fractionation in corresponding phases. Internal 

reproducibility was <0.2‰ for QzCWRU quartz and <0.3‰ for AS3 zircon. Linear drift in 

instrumental mass fractionation was monitored and corrected for as needed using the new York 

regression method (Mahon, 1996). ∆18Oqtz-zir was calculated by subtracting the IMF-corrected 
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d18Oqtz – d18Ozir (‰). 

4.3 Results 

The calibration of Thomas et al (2010; 2015) is constrained between 5 kbar and 20 kbar, 

with recent work suggesting that at >20 kbar, the calibration significantly overestimates pressure 

of crystallization (Thomas et al., 2019); results greatly exceeding 20 kbar (~ 75 km apparent 

depth) are therefore likely not accurate.  

4.3.1 Whole quartz inclusions 

Analysis of 27 plutons, with 10 quartz grains analyzed for each sample, ranging from 

82.2±6.9 Ma to 42.1±0.8 Ma (2 s.e.) demonstrate a notable increase in apparent depths for 

samples younger than 65 Ma. Uncertainties in Pqtz, and calculated apparent depth, reflect the 

dispersion of [Ti] in both quartz and zircon aliquots as well as the propagated calibration 

uncertainties of Tzir and Pqtz. While collision is typically invoked to have begun as early as 57 Ma 

(Leech et al., 2005), maximum Pqtz depths begin increasing noticeably beginning 60 Ma. >65 Ma 

samples range in apparent depth from 21.5±9.4 km to 44.4±8.8 km (1s), while <60 Ma samples 

range from 24.0±8.2 km to 66.9±10.0.1 km; the maximum depth is in the youngest sample at 

42.1±0.8 Ma (Fig. 4.3). Median apparent depth increases from 36.5±6.9 km (1s) to 43.2±11.3 

km. The increased median and standard deviation post-60 Ma is driven by an increase in the 

maximum apparent depths, while minimum apparent depths remain approximately 20 km for all 



 108 

ages.  

4.3.2 Quartz inclusions in zircon 

154 quartz inclusions and their zircon hosts were each analyzed for Tzir, Pqtz, and ∆18Oqtz-

zir, and U-Pb ages from aliquots of ~10 zircons per sample. Ranging in age from 96±7.9 Ma to 

42±0.8 Ma, the inclusions, when unfiltered for primary magmatic textures, display a range of 

apparent depths that span the calibration limits of TitaniQ (Thomas et al., 2010; 2015) (Fig. 4.4). 

 These data include not only primary magmatic inclusions, but also inclusions which are 

Figure 0.4. Apparent depths of all 154 
inclusion-host pairs. Uncertainties in depth 
are 1s; age error bars are 2 s.e. of the 
weighted mean. Gray box indicates region 
outside of TitaniQ calibration. 

Figure 0.3: Apparent depths calculated from 
Pqtz of whole quartz grain aliquots using 
rcrust = 2750 kg m-3. Error bars for depth are 
1s of calculated Pqtz apparent depth; age 
error is 2 s.e. of the weighted mean. 
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either clearly secondary (e.g. filling cracks in the host zircon), or possess textural features 

consistent with secondary alteration (Fig. 4.2). Many primary inclusions are ringed by CL-bright 

haloes ranging from <2 µm to up to 30 µm, but this is likely a primary texture (fig. 4.1).  CL-

bright zones in zircon are governed mainly by the overlap of the ZrO2 and SiO2 bands, with 

additional minor contribution from variations in Dy concentration (Koschek, 1993). CL-bright 

haloes around quartz inclusions in zircon are therefore likely due to a zone of increased SiO2 in 

the zircon lattice. Diffusion of Si and Ti in zircon is very slow even at magmatic temperatures 

(Cherniak et al., 1997;  Cherniak & Watson, 2003; Cherniak, 2008); these CL-bright haloes are 

likely a primary texture resulting from the host zircon’s contact with the SiO2-saturated quartz 

interface. 

Secondary inclusions are identified by fitting one or more of the following criteria: 1) 

filling cracks in the host zircon; 2) replacing metamict zones in the zircon; 3) highly irregular 

and anhedral grain shape; or 4) CL patterns in the host zircon suggestive of post-magmatic 

recrystallization. While most inclusions are not perfectly euhedral with a trigonal or hexagonal 

habit, primary inclusions are identified by their generally equant or prismatic shape (Fig. 4.1), 

Figure 0.5: Apparent depths of only 
primary magmatic inclusions; error bars are 
the same as described in fig. 4.3.2. Gray box 
indicates pressure-equivalent depths outside 
of the TitaniQ calibration of Thomas et al. 
(2010; 2015). 
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while secondary inclusions are more typically elongated, vermicular, or otherwise texturally 

inconsistent with a primary inclusion growth process (Fig. 4.2). 

When inclusions with secondary textures are removed from the analyses, much of the 

spuriously high Pqtz data are filtered out (Fig. 4.5). There are three data which fall outside the 

limits of the Thomas et al. (2010; 2015) calibrations; though these cannot be relied upon at this 

time, it is possible they reflect pressures of ca. 22 – 32 kbar (i.e., 82 – 120 km), within the 

bounds of the as-yet-unpublished new calibration of high-P TitaniQ experiments (Thomas et al., 

2019). 

4.3.3 Oxygen Isotopes 

Oxygen isotope fractionation of inclusion-host pairs was calculated by ∆18Oqtz-zir = d18Oqtz 

- d18Ozir, where d18O is the per-mil (‰) difference between the measured ratio of 18O/16O and the 

ratio of Vienna Standard Mean Ocean Water (VSMOW), corrected for instrumental mass 

fractionation with matrix-matched standards. Experimental calibration of oxygen isotope 

Figure 0.6: Oxygen isotope fractionation 
between quartz inclusions and zircon hosts. 
Experimentally predicted ∆18Oqtz-zir = d18Oqtz 
- d18Ozir is shown with the solid line, and 
99% confidence interval with the dashed 
lines (calibration of Trail et al., 2009). All 
inclusions shown in light purple; primary 
inclusions in dark purple. T(ºC) = Tzir of the 
host zircon. Error bars on T are 1s of Tzir; 
error bars on ∆18Oqtz-zir is 2 s.e. of the mean 
from counting statistics during analysis, 
which is typically smaller than the data 
points. 

 



 111 

fractionation between quartz and zircon (Trail et al., 2009) predicts: 

∆?E𝑂AC:+:"( =	𝛿?E𝑂AC: − 𝛿?E𝑂:"( ≈ 1000 ln 𝛼AC:+:"( =
2.33 ± 0.24x10F

𝑇(𝐾)D  

which results in quartz that is a few ‰ more enriched than zircon when in thermodynamic 

equilibrium at magmatic temperatures (Fig. 4.6).  

Primary inclusions are closer to equilibrium than all inclusions overall, especially with fewer 

instances of significantly negative ∆18Oqtz-zir. Most inclusion-host pairs, however, have ∆18Oqtz-zir 

that falls significantly outside the 99.9999998% confidence interval (6s) of the experimental 

calibration of equilibrium fractionation. This likely results from exchange with hydrothermal 

fluids equilibrated either with supracrustal sediments enriched in 18O, or with meteoric water 

depleted in 18O relative to the primary magmatic values. Quartz more readily exchanges 18O 

during hydrothermal alteration than zircon, so the primary equilibrium fractionation during 

crystal growth will be disproportionately modified by alteration of d18Oqtz (King et al., 1997; see 

discussion). 

4.4 Discussion 

4.4.1 Geologic context of Pqtz 

In order to accurately interpret the results of this study, it is important to understand the 

geologic context that is being recorded in the analyzed values of Pqtz for both whole quartz as 

well as inclusion-host pairs. A first-order assumption is that quartz is crystallizing following 

initial melt generation and hybridization: in order to saturate quartz, a melt must be sufficiently 

enriched in SiO2 such that SiO2 is not exclusively sequestered in other silicate minerals. The 

evolved melt then must cool enough to saturate and crystallize quartz. In southern Tibetan 

granitoids, and indeed in most Cordilleran-style I-type plutons, empirical and experimental 

geochemistry indicate the vast majority of granitoid magmas are generated from a basaltic-
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andesitic source with variable degrees of crustal assimilation (Roberts & Clemens, 1993; Douce, 

Figure 0.7: Schematic idealized diagram of a vertically extensive, compositionally 
heterogeneous magma system in which quartz (pink) and zircon (blue) crystals can 
nucleate, migrate, and/or include each other throughout various stages of melt generation 
and emplacement. 
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1999; Alexander et al., 2019). A basaltic-andesitic source melt – generated either from partial 

melting of a hydrated mantle wedge, or from remelting of lower crustal cumulates and meta-

igneous rocks – must achieve positive buoyancy relative to the surrounding lower crustal 

material to ascend and be emplaced or erupted. This can be achieved either with significantly 

higher T relative to a colder, denser lower crust; or through geochemical modification toward a 

lower-density, more felsic composition through fractionation and assimilation. Geochemical and 

geophysical studies indicate arc magmatism and crustal growth proceeds through an iterative 

sequence of partial melting, assimilation, and relamination of broadly andesitic magmas at the 

crust-mantle interface (Christensen & Mooney, 1995; Rudnick & Fountain, 1995; Sisson et al., 

2005; Kelemen & Behn, 2016; Klaver et al., 2018). The maximum pressure (depth) at which 

quartz crystallizes from a differentiated silicic magma is therefore a minimum constraint on the 

thickness of the crust. 

It is broadly understood that arc magmatism occurs through a multi-stage, vertically 

extensive, and thermally- and compositionally-heterogeneous process throughout which magma 

bodies can be alternately emplaced, cooled, recharged, and assimilate with surrounding crustal 

material (Cashman et al., 2017; and references therein). Crystallization of quartz and zircon is 

therefore likely to occur in multiple stages or regions during the generation, migration, and 

emplacement of granitoid magmas (Fig. 4.7). Pqtz results are best understood, therefore, as a 

range of pressures at which quartz was able to crystallize throughout the full history of granitoid 

magma-genesis and emplacement. A range of Pqtz values for a suite of plutons of a given age will 

be topologically representative of the minimum crustal thickness, indicated by the upper limit of 

Pqtz; and a lower limit on emplacement depth of granitic plutons, indicated by the minimum 

values of Pqtz. The range of Pqtz becomes a heuristic for a “zone of granitoid magmatism”, 
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representative of the vertical extent of the silicic portion of the trans-crustal magmatic system 

depicted in Fig. 4.7. 

4.4.2 Whole quartz vs. Inclusions 

Pressure-equivalent depths calculated from whole quartz analyses suggest rapid crustal 

thickening beginning at 65 Ma, the early onset of the India-Asia collision  (Fig. 4.3). Pqtz values 

indicate the precollisional crust prior to 65 Ma was approximately 45-50 km thick, consistent 

with average crustal thicknesses of modern orogens (46 km) (Christensen & Mooney, 1995). 

Following 65 Ma, rapid crustal thickening is indicated by a Pqtz minimum crustal thickness of ca. 

70 km, well before the canonical onset of continental collision at ca. 50 Ma (Yin & Harrison, 

2000). Minimum emplacement depths of approximately 20 km persist throughout the ca. 50 Myr 

history of granitic magmatism recorded in these data. 

Pressures recorded in quartz inclusions, however, suggest even greater depths of 

crystallization, especially after 70 Ma. Pqtz of primary inclusions imply an extremely thick crust 

well prior to the onset of collision. These results may not be entirely accurate, especially given 

that many inclusions approach the upper limit of the Thomas et al. (2010, 2015) calibration for 

Pqtz. Fig. 4.8 shows the dramatic dispersion of Pqtz of inclusions relative to whole quartz in the 

same rock. Taken at face value, these data suggest that arc magmatism is producing small quartz 

crystals in the lithospheric mantle, which is both geophysically and geochemically unlikely. 

More probable is that [Ti] of quartz inclusions has been modified following crystallization. 

Though diffusion of Ti is slow in the quartz lattice, fluid-mediated recrystallization of quartz 

inclusions could mobilize Ti and reset the primary magmatic signal. ∆18Oqtz-zir of these inclusions 

suggests hydrothermal alteration of inclusions is not only likely, but almost certain (see § 4.4.3). 

It is also possible that some of the inclusions identified by EDS spectra are not crystalline quartz, 
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but rather amorphous SiO2, which could invalidate the application of the Ti-in-quartz 

thermobarometer. The calibration of Thomas et al. (2010; 2015) is based on thermodynamic data 

for quartz, which has significantly different thermodynamic and elastic properties compared to 

amorphous silica (Richet et al., 1982; Pabst & Gregorová, 2013). Inclusions that have been reset 

at temperatures significantly lower than Tzir will have spuriously high calculated Pqtz, as [Ti] in 

quartz is balanced by the interplay of +∆V of thermal expansion and -∆V of compression. If the 

inclusions have been reset at lower T, we can no longer rely on Tzir as the temperature constraint 

for the calculation of Pqtz. Further investigation of the crystal structure of quartz inclusions, as 

well as elastic thermobarometry, could elucidate these issues and provide some constraint as to 

the relevance of [Ti] of quartz inclusions in zircon. 

As discussed in § 4.1.1, whole quartz crystals cannot be assumed a priori to be in 

thermodynamic equilibrium with separate zircon grains: it is possible that quartz crystallized in a 

different temperature regime than zircon. However, given that magma ascent in a conduit is 

isothermal, sensu lato (Costa et al., 2007), it is likely that the majority of quartz and zircon 

experienced similar crystallization temperatures. This notion is bolstered by the presence in these 

Figure 0.8: Relationship between Pqtz-
equivalent depth of whole quartz and 
inclusions of discrete samples, with both 
primary (yellow) and secondary (cyan) 
inclusions shown. In most cases there are 
multiple inclusions per whole quartz datum, 
resulting in the vertical dispersion of 
inclusion depths for a given whole quartz 
depth. 
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granitoids of both quartz inclusions in zircon and zircon inclusions in quartz, suggesting 

approximately cotectic crystallization. Though whole quartz grains do not carry the guarantee of 

thermodynamic equilibrium with zircon during initial crystallization, their significantly larger 

volume relative to the inclusions (500 – 2000 µm vs. 5 – 30 µm diameter) armors them from 

complete resetting of primary [Ti] by hydrothermal interactions beginning at the grain interface. 

4.4.3 Significance of ∆18Oqtz-zir 

A majority of quartz inclusions in zircon are well outside of expected ∆18Oqtz-zir 

equilibrium fractionation with their host zircons (Fig. 4.6). Alteration of ∆18Oqtz-zir from 

magmatic equilibrium can occur through interaction with either hydrothermal fluids that have 

equilibrated with isotopically enriched sediments, or with isotopically depleted meteoric water. 

Secondary and highly altered inclusions are especially prone to large (≥ ±10‰) ∆18Oqtz-zir, 

bolstering the notion that oxygen isotopes of quartz inclusions can be progressively modified 

relative to their zircon hosts. These data are consistent with the probable modification of [Ti] in 

quartz inclusions from the primary magmatic signal. Fluid ingress could occur via micron-scale 

cracks in the host zircon, which will retain primary magmatic d18O while the quartz inclusion is 

modified.  

Though Ti is significantly less mobile at hydrothermal conditions than O (Antignano & 

Manning, 2008), removal of a few ppm Ti will have drastic effects on calculated Pqtz. These data 

indicate that application of Ti thermobarometry to quartz inclusions in zircon requires significant 

vetting of quartz inclusions: they must possess an unaltered igneous crystal structure and have 

primary magmatic equilibrium ∆18Oqtz-zir in order to be candidates for Ti thermobarometry. 

Applying just the ∆18Oqtz-zir filter to this dataset reduces the number of usable inclusions to a 

quantity too small (n = 12) to draw real conclusions about the crustal thickening history of 
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southern Tibet. 

4.4.4 Geologic implications of Pqtz results 

Whole crystal Pqtz values provide compelling evidence that southern Tibet underwent 

rapid crustal thickening beginning early in the transition from oceanic subduction to continental 

collision. These data contradict indirect geochemical proxies applied in previous studies (e.g. 

Chen et al., 2018; DePaolo et al., 2019) and discussed in Chapters 2 and 3, which implied a thin 

margin of southern Tibet until well after the onset of continental collision. Given that the indirect 

geochemical proxies are based on or modified by assimilation with crustal material, it is probable 

that those proxies are subject to a geochemical hysteresis related to the evolving geothermal 

gradient during the tectonic transition from subduction to collision. [Ti] in quartz and zircon, 

however, record crystallization P and T conditions contemporaneously with granitoid formation, 

irrespective of second-order interactions with assimilated crustal material.  

The consistent lower bound of ca. 20 km depth of quartz crystallization indicated by 

whole crystal Pqtz suggests a relatively static limit to the ability of granitic magmas to migrate 

vertically into the upper crust.  While these data are not a direct constraint on the evolution of 

intra-crustal structure, they are consistent with the lack of structural evidence for upper-crustal 

deformation in southern Tibet in the past 65 Ma (Murphy et al., 1997; Yin & Harrison, 2000). 

Pqtz results indicate significant broadening of the zone of granitic magmatism post-65 Ma, 

exclusively extending into greater depths rather than symmetrically inflating both the lower and 

upper crust. 

These data have profound implications for the rheology of the mid to lower crust, and by 

extension the deformation mechanisms available to southern Tibet as collision progressed. Pqtz 

results suggest a 60 km-thick trans-crustal magmatic system producing large volumes of 
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granitoid melts for many 10’s of Ma prior to and after the onset of continental collision. In order 

to understand the thermo-mechanical implications of a widened zone of granitic magmatism, we 

must evaluate the thermal impacts of magmatic inflation in the context of overall orogenic heat 

flow. Previous studies have estimated ca. 15-30% magmatic inflation occurring in the mid 

Paleogene in the Tibetan plateau (e.g., Chen et al., 2018; DePaolo et al., 2019).  

As a simple thought experiment, we can estimate the contribution of magmatic inflation 

to total Paleogene orogenic heat flow. The total surface heat flow, qo (mW m-2) can be described 

as the sum of mantle basal heat flow (qm) and crustal radiogenic heat production: 

𝑞5 = 𝑞T + 𝐴 ∗ 𝐶     (17) 

where C is the crustal thickness and A is the average radiogenic heat production of the crust. 

Following the estimates of Rudnick & Gao (2014), we can use A = 0.89 µW m-3. If qm = 21 mW 

m2 (Xian-Jie, 1991), and C is 50 km at 60 Ma, then total orogenic heat flow from basal heat flow 

and intracrustal radiogenic heat production would have been 65.5 mW m-2. A 250000 km2 

orogen, approximately the size of the Lhasa terrane, would thus generate 1.1x1010 J/s of 

radiogenic heat, plus accumulate 5.3x109 J/s from mantle heat flow. Pqtz results suggest crustal 

thickening from ~50 km to ~80 km between 60 Ma and 40 Ma. Over the course of those 20 Ma, 

this equates to 10.3 TJ of total heat production, disregarding magmatic heat flux. Magmatic heat 

addition can be estimated from the density of granite magma (ρ = 2750 kg m-3); its heat capacity 

Cp, the latent heat of crystallization, and the temperature of the magma. Tzir values in this study 

average 760ºC, or 1033K; according to the calibration of Miao et al. (2014), Cp would be ~1200 

J kg-1 K-1 at this temperature. Latent heat of crystallization is approximated to 3x105 J kg-1 

(Huppert & Sparks, 1988; Zhang et al., 2008). For the aforementioned orogen, magmatic heat is 
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calculated as: 

𝑄T = 𝑄$ + 𝑄e      (18) 

where QT is the heat from the temperature of the magma, and QL is the total heat produced by 

crystallization. 

𝑄$ = 𝑉5 ∗ 𝑓T ∗ 𝑇T ∗ 𝜌T ∗ 𝐶S(T)     (19) 

𝑄e = 𝑉5 ∗ 𝑓T ∗ 𝐿 ∗ 𝜌T     (20) 

where Vo is the volume of the orogen, fm is the fraction of magmatic inflation, Tm, ρm, Cp(m), and L 

are the temperature, density, heat capacity, and latent heat of crystallization per kg of the magma. 

If we assume an initial crustal thickness of 50 km at 60 Ma, increasing to 80 km by 40 Ma–as 

indicated by Pqtz results–and integrate the total magmatic inflation over this time period, we can 

calculate the impact of magmatic heat addition to the thermal budget of the orogen. 

As crustal thickness increases, so does radiogenic heat production, thus producing higher 

qo. Without magmatic inflation, 30 km of thickening increases qo to 92 mW m-2 in this simplified 

model (Fig. 4.9). Magmatic inflation substantially increases the total heat budget of the orogen, 

even at relatively low volumes. Inflation of 10% over 20 Ma increases total Q of the orogen by 

43%; inflation greater than 26% more than doubles the total heat production of the orogen (Fig. 

4.9). The calculated total heat flow with magmatic inflation produces surface heat fluxes that are 

substantially higher than the average continental crust; 10% inflation leads to qo of 92.6 – 116.6 

mW m-2 from 50 km to 80 km thickness. These calculations are likely overestimates of actual 
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surface heat flow (qo), which is dependent not only on the total radiogenic and magmatic heat 

production, but also the proximity of heat production to the surface (Jaupart & Mareschal, 2014). 

Nevertheless, these simple calculations suggest that magmatic addition in the range of 10-30% 

over the course of 20-30 Ma would have significantly influenced the orogenic heat budget of 

southern Tibet during the onset of collision, considerably impacting the thermomechanical 

properties of the mid- to lower-crust. 

Relatively continuous emplacement of plutons throughout this zone of granite 

magmatism from 20km depth to the Moho would produce a steepened upper-crustal geotherm 

(Fig. 4.10) (Rothstein & Manning, 2003; Hasterok & Chapman, 2011). Magmatic heat input into 

the mid- and lower-crust produces a thermomechanical feedback cycle where hot, weak zones in 

the crust are more easily maintained, weakening the crust overall and prolonging the ability of 

injected magmas to assimilate with the surrounding country rock (de Silva & Gregg, 2014; Rees 

Figure 0.9: Modeled orogenic heat 
production per million years due to 30 km of 
thickening over 20 Ma. Curves are the log of 
heat production in an amagmatic orogen 
(ambient), and 10%, 20%, and 30% 
magmatic inflation. Units are in Joules per 
million years.  
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Jones et al., 2018). Moreover, thermal buffering of the mid- to lower-crust by metamorphism 

could reduce the apparent peak metamorphic temperatures observed in contemporaneous 

metamorphic units (Schorn et al., 2018), leading to an underestimate of the thermal gradient if 

metamorphic temperatures are the only proxy used for the evolving thermal regime. A crust 

weakened by magmatic heat below 20km depth could accommodate deformation primarily in the 

lower crust without significant strain rates in the upper crust (Gerbault et al., 2009); modern 

deformation of the southern Tibetan crust is consistent with a similar process of lower-crustal 

shortening and/or extrusion that is not manifested as dramatically at the surface (Royden et al., 

Figure 0.10: Schematic illustration of the “zone of plutonic activity” from 60 Ma to 40 Ma. 
Minimum depth of magmatism remains ca. 20 km, but rapid crustal thickening is indicated by an 
increase in maximum depths from Pqtz. The geothermal gradient (orange line) is more steep in the 
upper crust by 40 Ma, due to persistent magmatism and thermal buffering in the plutonic zone 
leading to higher heat flux.. 
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1997; Unsworth et al., 2005). Modern high heat flow in southern Tibet is attributed to plutonic 

activity in a similar zone as seen in the Paleogene (Francheteau et al., 1984; Wang, 2001); the 

observed deformation mechanisms seen in southern Tibet may represent a 60 Myr-long 

deformation regime in which collision is primarily accommodated through displacement and 

extrusion of the mid- to lower-crust due to weakening from continuous plutonic activity. 

4.5 Conclusions 

Ti-in-quartz and Ti-in-zircon thermobarometry is likely a more robust proxy for the 

crustal thickening history of southern Tibet when [Ti] is not affected by secondary alteration or 

diffusive loss. Quartz inclusions in zircon are susceptible to hydrothermal alteration and may be 

too small to be armored against resetting of primary magmatic [Ti]. Whole crystal Pqtz is likely 

retentive of primary magmatic signal due to larger grain size and armoring of primary core [Ti] 

by the outer volume of the grains. Whole crystal Pqtz results indicate rapid crustal thickening in 

southern Tibet much earlier than previously indicated by indirect geochemical proxies of crustal 

thickness. Maximum Pqtz values are representative of the minimum crustal thickness at the time 

of plutonism; minimum Pqtz values represent a lower limit on depth of emplacement for plutons 

in the mid-crust. These data demonstrate an extensive zone of plutonic activity between 20 km 

and the Moho; this zone of magmatic activity represents 75% of the Tibetan crust post-60 Ma, 

with substantial impact on the total heat budget of the orogen during the early- to mid-Paleogene. 

Structural studies that seek to understand the deformation mechanisms necessary to 

accommodate hundreds of km of N-S shortening in southern Eurasia following the onset of the 

India-Asia collision must account for the rheological consequences of an extensive magmatic 

system in the lower three quarters of the crust. Magmatic activity in all but the upper quarter of 

the crust likely generated thermomechanical feedbacks that led to weakening of the crust, 
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potentially explaining the ability for the crust to undergo the extensive shortening required 

during collision without substantial deformation of the upper crust. Paleogene crustal structure 

and rheology were likely remarkably similar to modern southern Tibet’s crustal structure and 

heat production, suggesting that collision-induced shortening has primarily been accommodated 

through mid- to lower-crustal thickening rather than upper-crustal shortening. 
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5.1 Summary of Findings 

This work demonstrates the complexity of geochemical proxies for crustal thickness. 

Magmatic systems associated with continental arcs and collision zones experience a wide range 

of petrogenetic conditions that are shaped by the thermal regime of the orogen, source 

composition of juvenile melts, and the composition of pre-existing crust. Silicic melts formed in 

arcs and collision zones exhibit a wide range of trace element and isotopic compositions that are 

influenced not only by the provenance of juvenile melt, but also variable degrees of crustal 

assimilation, hydrothermal alteration, and post-emplacement weathering. Indirect proxies for 

crustal thickness are especially vulnerable to unconstrained effects of assimilation, assimilant 

composition, and local thermal regime. In southern Tibet, it is likely that a combination of a 

complex, evolving tectonic setting, crustal assimilation, degree of differentiation, deuteric 

alteration, and weathering coalesced to produce complex signals in isotope and trace element 

chemistry that are not controlled solely by crustal thickness. Indirect geochemical proxies alone 

cannot determine a priori whether changes in isotopic chemistry reflect crustal thickening or 

fundamental changes in the parameters controlling pluton composition. 

Ti-in-quartz and Ti-in-zircon thermobarometry is likely a more robust proxy for the 

crustal thickening history of southern Tibet when [Ti] is not affected by secondary alteration or 

diffusive loss. Whole crystal Pqtz results indicate rapid crustal thickening in southern Tibet much 

earlier than previously indicated by indirect geochemical proxies of crustal thickness. These data 

demonstrate an extensive zone of plutonic activity between 20 km and the Moho prior to and 

during collision. Magmatic activity in all but the upper quarter of the crust likely generated 

thermomechanical feedbacks that led to weakening of the crust, potentially explaining the ability 

for the crust to undergo the extensive shortening required during collision without substantial 
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deformation of the upper crust. Barometry results suggest that collision-induced shortening could 

primarily have been accommodated through mid- to lower-crustal thickening rather than upper-

crustal shortening, which is consistent with structural observations (England & Searle, 1986; 

Murphy et al., 1997; Royden et al., 1997). 

The spatial isotopic gradient in southern Tibet discussed in Ch. 2 can be interpreted 

through two endmember scenarios: (1) if the isotope chemistry of the assimilant remains 

constant through time, then such a spatial gradient implies a similar gradient in crustal thickness 

(or, at a minimum, a gradient in pluton emplacement depths). (2) If the assimilant composition is 

variable with latitude, i.e. the assimilant endmember is more radiogenic near the southern margin 

of Tibet, we cannot assume that more radiogenic isotopic signatures in southern plutons 

necessarily indicates lower degrees of assimilation. Geochemical signatures of crustal 

assimilation are limited, however, by our ability to constrain the chemical endmembers of 

variably assimilated magmas. Thermobarometry results are not consistent with the 

thermoisotopic modeling discussed in Ch. 2; it is clear that magmatic rocks in southern Tibet 

have experienced wide variation in assimilant composition and trace element partitioning (Ch. 

3), which confound the use of indirect proxies for crustal thickness. 

5.2 Future Work 

Further investigation of isotopic and trace element heterogeneity in lower crustal melting, 

assimilation, storage, and homogenization (MASH) zones could help improve our understanding 

of factors influencing apparent assimilation and pseudobarometer signatures in collisional 

magmas. Previous work studying lower-crustal and mantle xenoliths in southern Tibet have 

revealed a wealth of information on recent thermobarometric, geochemical, and petrologic 

conditions of the Tibetan lower crust (e.g. Hacker et al., 2000; Chan et al., 2009; Hébert et al., 
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2014). Examination of xenoliths in pre- and syn-collisional magmas (e.g., in the Linzizong 

volcanic group, ca. 60 – 40 Ma (Lee et al., 2009)) would provide information on magma storage 

depth and temperature, as well as likely crustal and mantle endmembers for geochemical 

assimilation. Thermobarometry of metamorphic Paleogene xenoliths could test the robustness of 

the granitoid Ti thermobarometry record for providing minimum crustal thicknesses, and 

additionally distinguish between melt generation and storage regions. The isotopic and trace 

element chemistry of these xenoliths, in addition to providing assimilant endmembers, would 

clarify the relationship between pseudobarometer trace element ratios and crustal assimilation. 

Additionally, composition-specific, thermobarometrically-constrained forward modeling of 

RAFC processes in granitoid MASH zones could illuminate the sensitivity of trace element and 

isotopic assimilation to the depth, temperature, and longevity of magma storage. 

Granitoid magmas in southern Tibet act as time capsules for the dynamic geochemical 

and petrogenetic history of the Tibetan plateau throughout the onset of the India-Asia collision. 

This work demonstrates the wealth of information held within these rocks, as well as the 

challenges associated with inverting complex geochemical and thermobarometric histories in the 

context of major tectonic events. Granitoid thermobarometry is likely the way forward to 

continued improvement of our understanding of the spatiotemporal evolution of the Tibetan 

plateau; the development and testing of Ti thermobarometry, as well as other thermobarometric 

tools, can produce a robust record of the dynamic crustal thickness of continental orogens. By 

reconstructing not only depth, but also thermal histories of magmas in orogens, we can better 

constrain the thermal, chemical, and mechanical evolution of orogens like the Tibetan plateau. 
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