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ABSTRACT: Smoke taint in wine has become a critical issue in the wine industry due to its significant negative impact on wine
quality. Data-driven approaches including univariate analysis and predictive modeling are applied to a data set containing
concentrations of 20 VOCs in 48 grape samples and 56 corresponding wine samples with a taster-evaluated smoke taint index. The
resulting models for predicting the smoke taint index of wines are highly predictive when using as inputs VOC concentrations after
log conversion in both grapes and wines (Pearson Correlation Coefficient PCC = 0.82; R2 = 0.68) and less so when only grape
VOCs are used (Pearson Correlation Coefficient PCC = 0.76; R2 = 0.56), and the classification models also show the capacity for
detecting smoke-tainted wines using both wine and grape VOC concentrations (Recall = 0.76; Precision = 0.92; F1 = 0.82) or using
only grape VOC concentrations (Recall = 0.74; Precision = 0.92; F1 = 0.80). The performance of the predictive model shows the
possibility of predicting the smoke taint index of the wine and grape samples before fermentation. The corresponding code of data
analysis and predictive modeling of smoke taint in wine is available in the Github repository (https://github.com/IBPA/smoke_
taint_prediction).
KEYWORDS: smoke taint, wine industry, volatile organic compounds, flavor, computational modeling

■ INTRODUCTION
Bushfire and forest burn events may negatively impact the
quality of wines which are described as “smoke tainted” with
several unfavorable characteristics such as “smoke”, “burnt”,
“ash”, and “ashtray”.1,2 The quality loss of grapes and wines due
to smoke taint from bushfires can be substantial with losses
amounting to hundreds of million dollars or more each year in
Australia3,4 and the United States.5 Due to climate-induced
weather changes such as temperature increase, drought, wind,
and natural ignition sources,6,7 the incidence of significant forest
fires reported in Europe,8,9 North America,9 Australia,4 and
other regions across the globe10 is increasing, and it escalates the
level of negative impact in the wine industry around the world.
During wildfires, several materials including smoke, sub-

stantial quantities of gases, and volatile organic compounds
(VOCs) are released.4 These released materials are part of the
products of the wood combustion process including heating,
dehydration, hydrolyzation, oxidization, and pyrolyzation.4,11,12

Among these materials, VOCs are reported as the potential
substance which may cause contamination of vines,4 and several
studies show that the concentrations of VOCs are elevated in
smoke-tainted wine2,13,14 and also show that the VOCs are
correlated with undesirable smoky and ashy sensory charac-
ters.1,14 Due to the significant relationship between VOCs and
smoke taint levels, different variants of studies related to VOCs
in grapes and wine are published: These studies include
mitigating the smoke taint effect by reducing VOC absorption
and production before,2,15−17 during,18 and after fermenta-
tion,19,20 and observing the changes of VOC concentrations
during fermentation.6,21,22

Finding VOCs that impact the smoke taint index can be
useful, as they may help the fast and reproducible identification
of tainted samples and the development of mitigation
approaches. Data-driven approaches, especially machine learn-
ing, can accelerate the discovery of the VOCs related to smoke
taint and the predictive modeling of the smoke taint index. In
recent years, machine learning algorithms as a part of the
Artificial Intelligence (AI) have increasingly been applied in
food science and agriculture for a sustainable food system,23

including predicting micronutrients,24−26 creating food ontol-
ogies and knowledge bases,27 precision agriculture,28 and crop
and animal management.29 Although VOCs in smoke-affected
grapes and wine have been reported,30 the levels contributing to
the smoke taint effect of VOCs have been evaluated,14 and a few
studies that model the smoke flavor based on chemical
composition have been published recently,31 the number of
studies focusing on data-driven approaches, especially predictive
modeling of smoke taint based on VOC concentrations, are still
limited.
In this study, we collected samples of 56 wines made from 47

grapes with 13 different varieties from 9 different counties in
California and Oregon, which have been evaluated for smoke
taint (Figure 1). We then applied machine learning techniques
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to create smoke taint predictors and identify the minimal set of
compounds that can predict the presence of smoke taint, which
resulted in themost informative combinations of compounds for
each case.

■ DATA SETS AND METHODS
Sample Collection. The final data set contains the smoke taint

indices of 56 wine samples made from 47 grape samples produced in
2020 (Figure 2A, Table S1) in California and Oregon (Figure 2B).

Figure 1. Flowchart of the sample preparation, volatile organic compound (VOC) quantification, data analysis, and predictive modeling of the smoke
taint index.A. Sample preparation and smoke taint index evaluation by selected tasters.B.VOCs quantification.C.Data analysis and smoke taint index
prediction.
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Nineteen wine samples with a smoke taint index greater than 25 are
considered as smoke-tainted. The wine samples were fermented in
three different scales (Figure 2C) from 13 different varieties of grapes

(Figure 2D) in nine counties (Figure 2E). Themajority of wine samples
are non-smoke-tainted with the smoke taint index no greater than 25
(37 samples, 66%), fermented with a lower scale (Bucket scale,

Figure 2.Description of the data set.A. Smoke taint index distribution of 56 wine samples. Nineteen samples with smoke taint index greater than 25 are
considered as smoke-tainted. B. Origin of 56 wine samples colored by different smoke taint index levels. C. Distribution of fermentation scales. D.
Distribution of 13 grape varieties of 56 wine samples. The other six varieties include Barbera, Grenache, Malbec, Petit Sirah, Syrah, and Zinfandel and
each of them has one wine sample. E. Distribution of 9 counties in California and Oregon. The counties without additional specifications are in
California.
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fermentation with 11 kg grapes) (35 samples, 62%), and fermented
from the grape with variety Cabernet Sauvignon (29 samples, 52%). In
addition, more than 90% of wine samples (51 samples, 91%) are from
four counties (Yolo, Lake, Napa, and Sonoma counties) in Northern
California.

Grape and Wine Sample Preparation and Volatile Organic
Compound Extraction. For grape samples, an IKA digital ultraturrax
(T18) disperser is used for homogenization, and then the internal
standard solution which contains a mixture of eight reference
compounds (d3-guaiacol, d3-4-methylguaiacol, d7-o-cresol, d7-p-
cresol, d7-m-cresol, d5-4-ethylguaiacol, and d4-4-ethylphenol were
obtained from CDN Isotopes (Pointe-Claire, QC, Canada) and d6-
syringol was purchased from EPTES (Vevey, Switzerland)) with a
concentration of 5 mg/L is added to homogenized grape samples and
the wine samples (Table 1). For the case of extracting total VOCs, a
harsh-acid hydrolysis method as described by Noestheden et al. with
minor modifications was applied:32 Ten milliliters of homogenized
grape and wine samples for the extraction of total VOCs spiked with
internal standards (20 μg/L) is hydrolyzed by adjusting the pH of the
samples to 1.0 using concentrated HCl and heated to 100 °C for 1 h.33
Recovery of all compounds was tested in three different matrixes
(Cabernet Sauvignon, Pinot noir, and Merlot grapes) at two different
concentrations (5 and 100 μg/kg) in triplicate. Recovery percentages of
all compounds were between 83 and 126%, except for 4-methylsyringol
(creosol) at 66% for free VOCs. For acid-labile VOCs the recovery
percentages determined as described above were between 70 and 127%,
except for 4-methysyringol (creosol) at 67% (manuscript in
preparation). These results are very comparable with those of
Noestheden et al.32 Finally, the free VOCs and the total VOCs were
extracted as described in Oberholster et al.33 by adding the extraction
solvent (the mixture of pentane and ethyl acetate with a ratio of 1:1) to
the nonhydrolyzed and hydrolyzed samples, respectively (Figure 1A).
After 10 min of extraction, centrifugation is then applied to VOC
extractionmixtures, and the upper layer (organic layer) of themixture is
transferred for GC−MS/MS analysis.

Volatile Organic Compound Quantification in Grape and
Wine Samples. To detect and quantify the VOCs, targeted GC−MS/
MS analysis was applied to grape and wine samples (Figure 1B). The
VOCs were identified based on the precursor ion and retention time,
and the VOCs were quantified based on the constructed calibration
curve for each VOC with the range 0.25−500 μg/kg for grape samples

and 0.25−500 μg/L for wine samples. The Limit of Detection (LOD)
and the Limit of Quantitation (LOQ) of all compounds quantified were
above 0.0649 and 0.1779 μg/L, respectively. LOD and LOQ were
calculated as LOD= 3× SDymin/S and LOQ= 5× LODwhere SDymin is
the standard deviation for the smallest calculated concentration and S is
the slope of the respective regression. Triplicate and duplicate
measurements are applied to grape and wine samples, respectively.

Gas Chromatography−Mass Spectrometry Analysis. An
Agilent 7890A gas chromatograph was coupled to an Agilent 7000B
triple quadrupole mass spectrometer with an MPS 2 autosampler
(Gerstel, Inc., Linthicum, MD). All peaks were integrated using
MassHunter Qualitative Analysis software (ver. B.03.01, Agilent
Technologies).
The gas chromatograph was fitted with a DB-WAXetr fused silica

capillary column with dimensions of 30 m length × 0.32 mm i.d. × 1.0
μm film thickness (Agilent).
The inlet was held at 220 °C, while the oven program began at 75 °C

and was held for 1 min followed by a 15 °C/min increase to 180 °C,
followed by a 10 °C/min increase to 230 °Cheld for 1 min with another
increase at 50 °C/min increase to 250 °C, held for 3 min. The total run
time was 17.4 min. The interface between the GC and the MS was held
at 220 °C. Samples were run in pulsed splitless mode; the split vent was
opened at 1 min with a flow of 50 mL/min. Helium carrier gas was used
at 2.0 mL/min in the constant flow mode. The triple quadrupole mass
spectrometer was fitted with an electron ionization source operated at
70 eV.
The reagent gas was helium introduced to the source at a rate of 1

mL/min. The source temperature was 230 °C. The solvent delay was
7.5 min. Multiple reaction monitoring (MRM) quantitative and
qualitative transitions and collision energies were chosen for each
compound based on signal-to-noise ratios. Dwell times were set so that
there were 15 scans over each peak to ensure quantitative peak
integration. The nitrogen collision gas and helium quench gas was fixed
at 1.5 and 2.25 mL/min, respectively.

Smoke Taint Index Evaluation of Wine Samples. The smoke
taint indices of the wine samples were evaluated by trained panelists.
The “ashy” standard rating included in the descriptive analysis (DA)
panels described in Oberholster et al.33 was applied for evaluating the
smoke taint indices of all wine samples analyzed (Table S1). Descriptive
analysis and subsequent consumer studies using serial dilution of smoke

Table 1. Targeted Volatile Organic Compounds (VOCs) and the Corresponding Internal Standards for Quantification

Targeted VOC
Precursor
Ion (m/z)

Product
Ion (m/z)

Retention
Time (min)

Collision
Energy (V)

Internal Standard
(I.S.) referred

Precursor Ion
(I.S.) (m/z)

Product Ion
(I.S.) (m/z)

Retention Time
(I.S.) (min)

Collision
Energy (I.S.)

(V)

guaiacol 123.9 109 9.058 10 D-guaiacol 127.1 109 9.039 10
guaiacol 123.9 81 9.058 20 D-guaiacol 127.1 81 9.039 20
4-
methylguaiacol

138.1 123 9.811 10 D-4-
methylguaiacol

141.1 126 9.799 10

4-
methylguaiacol

138.1 95 9.811 20 D-4-
methylguaiacol

141.1 98 9.799 20

o-cresol 108 107 10.146 15 D-o-cresol 115 113 10.146 20
o-cresol 108 77 10.146 15 D-o-cresol 115 81 10.146 30
phenol 94 66 10.201 10 D-4-ethylphenol 126.1 111 11.54 10
phenol 94 65 10.201 20 D-4-ethylphenol 126.1 80 11.54 30
4-ethylguaiacol 151.8 137 10.388 10 D-4-ethylguaiacol 157 139 10.34 10
4-ethylguaiacol 151.8 94 10.388 30 D-4-ethylguaiacol 157 96 10.34 30
p-cresol 108 107 10.801 15 D-p-cresol 115 113 10.752 20
p-cresol 108 77 10.801 15 D-p-cresol 115 85 10.752 20
m-cresol 108 107 10.87 15 D-m-cresol 115 113 10.821 20
m-cresol 108 77 10.87 15 D-m-cresol 115 85 10.821 20
4-ethylphenol 121.9 107 11.29 10 D-4-ethylphenol 126.1 111 11.29 10
4-ethylphenol 121.9 77 11.29 30 D-4-ethylphenol 126.1 80 11.29 30
syringol 153.9 139 12.266 5 D-syringol 160 142 12.227 10
syringol 153.9 65 12.266 20 D-syringol 160 114 12.227 20
4-methylsyringol 168 153 12.936 5 D-syringol 160 142 12.227 10
4-methylsyringol 168 125 12.936 10 D-syringol 160 114 12.227 20
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impacted wines determined that wines are considered “smoke tainted”
when the “ashy” rating is >20 out of a 100. Wines made from grapes not
exposed to smoke also obtained low “ashy” ratings in conducted studies.

Data Preprocessing.The concentrations of VOCs in wine samples
and the corresponding origin grape samples are merged for analysis.
First, the average and median values are used to represent the VOC
concentration of each sample for duplicate measurements (wine
samples) and triplicate measurements (grape samples), respectively.
Then two tables of VOC concentrations quantified in wine and grape
samples are merged by mapping the corresponding grape samples for
each wine sample. Different wine samples may be mapped to the same
origin of grape samples. The final table contains concentrations of 20

VOCs in 56 wine samples and their corresponding grape samples (48 in
total).

Univariate Analysis and Feature Selection. To find the VOCs
that are predictive of the smoke taint index, univariate analysis is
performed by evaluating the correlation between the smoke taint index
and the concentration of the VOCs in wine samples. In addition, feature
selection is performed for predictive modeling by evaluating four
different feature importance benchmarks including the loadings of the
first components in Principle Component Analysis34 and Partial Least-
Squares,35 the feature importance reported by Random Forest,36 and
the order of feature selection reported by Sequential Forward
Selection.37 The VOCs with at least two top-five rankings in these
four benchmarks are selected for predictive modeling.

Figure 3. Relationship between the wine origin and the smoke taint index. A.Hierarchical clustering result of 56 wine samples. The clustering is based
on the pairwise distance in miles. Seven clusters are extracted with the cutting threshold of 40 miles. B. Origin of wine samples from five counties in
Northern California colored by different smoke taint levels and their corresponding clusters.C. Boxplot of the smoke taint index of the wine samples in
seven clusters, and the number of smoke-tainted samples (with smoke taint index greater than 30) in four clusters that contains more than one wine
sample.
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Predictive Modeling. Regression models and classification models
are built for predicting the smoke taint index in wine and detecting
smoke-tainted wines using the selected features. For regression models,
four different models (linear model using the VOC which are the most
highly correlated with the smoke taint index, Lasso,38 Support Vector
Regression,39 and Random Forest36) are applied for smoke taint index
prediction. For classification, four different models (single VOC which
is the most highly correlated with the smoke taint index, Logistic,40

Support Vector Machine,41 and Random Forest36) are applied. To
evaluate the performance of models, 5-fold cross-validation (CV) is
applied, and the Pearson Correlation between the predicted and
measured smoke taint index and the classification performance (recall,
precision, and F1-score) are evaluated. Ten repeats are applied, and the
average 5-fold CV performances of four models are compared. Due to
the observation that the correlation increases after applying the log
conversion to VOCs concentration, the performances of the regression
models using log-converted VOC concentrations as input features are
also evaluated. In addition to models that use concentrations of VOCs
in wine and their corresponding origin grape as input, the models that
use concentrations of VOCs only in origin grape samples are also
trained, and their 5-fold CV performances are also evaluated to observe
the possibility of predicting smoke taint index before fermentation. All
smoke taint prediction models are implemented in R programming
language (version 3.6.1).42 For the Lasso model, the packet glmnet
(version 4.1-1)43 is used and the searching range of λ is {10−3, 10−2.9, ...,
103}. For the support vector regression model, the packet e1071
(version 1.7-13)44 is used and the searching range of cost, gamma, and
epsilon are {10−1, 10−0.9, ..., 101}, {10−1.8, 10−0.7, ..., 100.2}, and {10−2.2,

10−2.1, ..., 10−1.8}, respectively. For the Random Forest model, the
packet randomForest (version 4.6-14)45 is used and the searching range
of mtry, node size, and the number of tree parameters are {0.25N, 0.5N,
0.75N, 1.0N}, {1, 3, 5, 10}, and {50, 100, 200, 500, 1000, 2000},
respectively (N is the number of input features, andN will be 20 for the
model using only grape VOC concentrations as input or 40 for the
model using both grape and wine VOC concentrations as input).

■ RESULTS
Hierarchical Clustering Reveals the Consistent Loca-

tion-Based Smoke Taint Pattern.We performed hierarchical
clustering of the wine samples based on the pairwise
geographical distances (in miles) among the origin of the wine
samples. As expected, samples with high smoke taint scores are
colocated geographically, with a clear cluster of those samples
forming (green cluster, Figure 3A). The selected cluster contains
wine samples from Sonoma and Napa and the border between
Napa and Lake County (Figure 3B). The statistical results show
that the smoke taint indices in the selected cluster are
significantly higher than the smoke taint indices of wine samples
from Yolo County (the cluster colored in blue) and Lake
County (the cluster colored in pink). In addition, the
hypergeometric test shows that the selected cluster has a
significantly higher ratio of smoke-tainted wine samples (p-value
= 2 × 10−5; Figure 3C).

Figure 4.Z-Normalized VOC concentration of samples. Ten Total VOCs and 10 Free VOCs quantified in wine samples and their origin grape samples
are shown.
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VOC Signatures Are Predictive of Smoke Taint in Wine
Samples. Hierarchical clustering based on the VOC profiles
including free and total VOC in wine and grapes argues that the
smoke-tainted wine samples can be separated from non-smoke-
tainted wine based on the VOC concentration distribution
(Figure 4). As shown in Figure 4, the right cluster contains 17
wine samples, and 15 of them are smoke-tainted (with index
>25), and the left cluster contains 39 wine samples, and only 4 of
them are smoke-tainted. The hypergeometric test shows that the
right cluster has a significantly higher ratio of smoke-tainted
wine samples (p = 3.7 × 10−10). In addition, the concentrations
of VOCs of wine samples in these two clusters are significantly
different: The t test shows that 19 VOCs in wine samples and 12
VOCs in the corresponding origin grape samples have
significantly higher concentrations in the right cluster (p <
0.05) compared with the VOC concentrations in the left cluster.

Free m-Cresol in Wine and Total Syringol in Grapes
Are the Most Predictive Indicators of Smoke Taint Index.

The predictiveness of the VOC features can be evaluated based
on the correlations between the features and the smoke taint
index (Figure 5A). For VOCs in wine samples and the
corresponding grape samples, free m-cresol (in wine) and total
syringol (in grapes) concentration are themost highly correlated
with smoke taint indices with PCC 0.79 and 0.67, respectively
(Figure 5B,C). In addition, the scatter plots show the
nonlinearity between the VOC concentrations: As the VOC
concentration increases, the slope of VOC concentrations and
the smoke taint index decreases. For this reason, we performed
log-normalization of the VOC concentration, which we found to
be more predictive of the smoke taint index (PCC of 0.83 and
0.71 for m-cresol and total syringol, respectively; Figure 5A).

Comparison of VOC Concentrations in Wine and
Origin Grape Samples. Measurement of the VOC concen-
tration in both wine samples and the corresponding origin grape
sample allows us to observe the VOC composition changes after
fermentation by comparing the composition ratio in wine and

Figure 5. Univariate analysis results. A. Correlations between smoke taint index and VOCs in wine samples and their origin grape samples. B. Scatter
plot of smoke taint index and free m-cresol concentration of wine samples. C. Scatter plot of smoke taint index of wine samples and total syringol
concentration of their origin grape samples.
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grape samples: The composition ratio of free syringol increased
by 33.2% and 48.4% after fermentation for non-smoke-tainted
and smoke-tainted wine samples, respectively (Figure S3). In
addition, the pattern of VOC composition ratio changes can be
compared in smoke-tainted wine samples and non-smoke-
tainted wine samples: The average composition ratios of free
phenol and free p-cresol decreased by 23.5% and 15.0% after
fermentation in non-smoke-tainted wine, but the composition
decreased by only 3.3% and 7.9% in smoke-tainted wine. In
contrast, the average composition ratios of free guaiacol and free
o-cresol decreased by more than 10% in smoke-tainted wine but
only about 5% in non-smoke-tainted wine. Moreover, the
composition ratio changes of free VOCs and total VOCs can
also be compared: For phenol and guaiacol, the composition
ratio of both free VOCs and total VOCs decreased during

fermentation; for syringol, both free and total composition ratio
increased; and for o-cresol and p-cresol, only the composition
ratio of free VOCs decreased.
The correlations between VOC concentrations in wine

samples and the corresponding origin grape samples may also
reveal the VOC composition changes during fermentation
(Figure S4). The patterns of the distribution of correlations are
different in non-smoke-tainted wine and smoke-tainted-wine:
For smoke-tainted wine samples, the concentrations of free 4-
ethylphenol, total syringol, and total 4-methylsyringol are highly
correlated to the VOCpredictive smoke taint indices such as free
m-cresol, free o-cresol, and free phenol in wine with a PCC of
about 0.9 (Figure S4A). The correlations are less significant for
non-smoke-tainted wine (PCC of 0.6) (Figure S4B).

Figure 6. 5-fold cross-validation (CV) performance of the models for smoke taint prediction.A. Prediction performance of four models using VOCs of
wine samples and their origin grape samples as input features.B. Prediction performance of four models using VOCs only in the origin grape samples as
input features. C. Scatter plot of measured smoke taint indices and the indices predicted from the best model (linear model) which used wine VOC
concentration (free m-cresol concentration) as the input feature. The first trial of the 5-fold CV is shown. D. Scatter plot of measured smoke taint
indices and the indices predicted from the best model (Support Vector Regression model) which used only VOC concentrations detected in origin
grape samples as the input features. The first trial of the 5-fold CV is shown.
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Smoke Taint Index Prediction and Smoke-Tainted
Wine Classification. 5-fold cross-validation performance of
regression models and classification models using selected VOC
concentrations (Figure S5) in wine samples and the
corresponding origin grape samples as input are evaluated
(Figures 6A and 7A). Interestingly, the linear regression model
using the most predictive VOCs (free m-cresol in wine) as the
input feature with log conversion yields the best results with an
average PCC of 0.82 in ten 5-fold cross-validation trials, and the
single feature classification model yields the best results with an
average F1-score of 0.82. In addition, log-converted VOC
concentrations yield significantly better performance in three
regressionmodels (linear, Lasso, and support vector regression).
The performance of models using only VOC concentrations in
origin grapes as input features are also evaluated (Figures 6B and
7B): The Support Vector Regression model achieves the best

performance with an average PCC of 0.76, and the single feature
classification model yields the best results with an average F1-
score of 0.80. Log conversion on the VOC concentration also
significantly improves the prediction performance in three
models.

■ DISCUSSION
The data-driven approach discovers more smoke-taint-related
attributes of wine such as the origin of smoke-tainted wine, the
profiles of VOC concentrations of wine samples and their
corresponding origin grape samples, and the correlation
between smoke taint index and VOC concentrations, which
allow us to find the predictive VOCs of smoke taint index. In
addition, the VOC composition ratio changes can be observed
by comparing the VOC profiles in grapes and wines. The
correlation between VOC concentrations in grapes and wines

Figure 7. 5-fold cross-validation (CV) performance of the models for smoke-tainted wine classification. A. Classification performance of four models
using VOCs of wine samples and their origin grape samples as input features. B. Classification performance of four models using VOCs only in the
origin grape samples as input features. C. The receiver operating characteristic (ROC) curve of the best model (the single feature model) which used
wine VOC concentration (free m-cresol concentration) as the input feature. The first trial of the 5-fold CV is shown. D. The ROC curve of the best
model (the single feature model) which used wine VOC concentration (total syringol concentration in grape) as the input feature. The first trial of the
5-fold CV is shown.
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may help us to discover the difference in metabolism during
fermentation in non-smoke-tainted wine and smoke-tainted
wine. Although several studies compared the VOC concen-
trations before and after fermentation,6,46 it is difficult to observe
the VOC concentration changes for different grape varieties
during fermentation due to limited data set size or to correlate
the VOC concentrations with smoke sensory attributes without
smoke taint index information. In this study, a complete data set
that combines VOC concentrations of wine and grape samples
from different varieties and smoke taint index is prepared, and it
allows us to discover the VOC composition changes and the
correlation between VOC concentrations and smoke taint index
and to apply predictive modeling of the smoke taint index at the
same time. Recently, a study that models the smoke taint flavor
based on the VOC concentration in Australian grapes and wine
using the Partial Least Squares approach for each variety with
listing the VOCs that significantly contribute the smoke flavor is
published.31 Some VOCs, especially free guaiacol, significantly
contribute to or are correlated with the smoke taint flavor in
both studies; however, some VOCs are not, such as m-cresol.
This study which includes the VOC concentration from more
varieties of wine and grape samples in California and Oregon
may allow us to discover how smoke taint affects the wine quality
in different regions and varieties.
The hierarchical clustering results show that smoke-tainted

wine samples and non-smoke-tainted wine samples can be
separated. The clusters with a significantly higher VOC
concentration contain 17 wine samples, and 15 of them are
smoke-tainted. In contrast, only 4 smoke-tainted wine samples
are clustered into the group with lower VOC concentrations.
Although it is reported that several factors such as varieties and
maturities of the grapes at smoke exposure can affect the VOC
concentrations,47 the data set shows that the VOC concen-
trations in smoke-tainted wine is significantly higher than the
non-smoke-tainted wine regardless of other factors.
The correlation analysis results in this study show high

correlations between the smoke taint index and the concen-
trations of specific free VOCs and total VOCs in wine samples,
especially free m-cresol, o-cresol, phenol, guaiacol, p-cresol, and
4-methylguaiacol, and total syringol, o-cresol, m-cresol, 4-
methylsyringol, and guaiacol with a PCC greater than 0.65.
The results are consistent with the reported results that the ashy
sensory attributes are significantly associated with the
concentration of free guaiacol, 4-ethylguaiacol, and m-cresol14

and the observations that glycosidically bound VOCs such asm-
cresol β-D-glucoside and guaiacol β-D-glucoside significantly
contribute the ashy or smoke flavor.14 The results also show that
free and total o-cresol are also highly correlated with the smoke
taint index and are also consistent with the low association
between the ashy sensory attributes and the concentration of
free 4-methylsyringol due to its high detection threshold
(10,000 μg/L).14,48 However, a high correlation between the
smoke taint index and the concentration of total 4-
methylsyringol is observed in this study. Further analysis is
required to explain the high correlation with the smoke taint
index and the concentration of total 4-methylsyringol, but not
free 4-methylsyringol. The correlation analysis also shows that
the human smoke taint sensor may be saturated as the VOCs
concentration increases: The scatter plots of the smoke taint
index and VOC concentrations show that the slope is lower
when the VOC concentrations increase. Therefore, applying log
conversion to the VOC concentration yields a higher linear

correlation to the smoke taint index and improves the smoke
taint index prediction performance.
The free and total VOCs that highly correlated to the smoke

taint index allow us to perform predictive modeling of the smoke
taint index. Interestingly, using only log-converted free m-cresol
concentration as input, the linear regression model achieves the
PCC performance of 0.82 and single feature classification
achieves the F1-score of 0.82, which argues that even simple
models with one or a few markers are sufficient to predict smoke
taint. The high PCC between log-converted free o-cresol and
free phenol may also indicate them as a good predictor as freem-
cresol. However, they are highly correlated with each other
(with pairwise PCC > 0.92), and these VOCs may contribute to
the same olfactory sensory receptors related to smoke taint, so
combining these features yields no significant improvement in
prediction. It is reported that several VOCs including p-cresol,
m-cresol, guaiacol, and 4-methylguaiacol stimulate the similar
combination of the olfactory sensory receptors in human or
mouse,49 and the reported synergistic effect1,50 may imply that
the different VOCs may trigger the same sensory receptors
related to smoke taint and that there is the possibility of
changing the smoke flavor intensity irregularly, which increases
the difficulties of smoke taint prediction. We expect that as we
gather more samples, advanced machine learning models similar
to the ones trained here will be able to achieve higher
performance for the same features. In addition, the fact that
grape-based models achieve a PCC performance of about PCC
0.68 with the use of total syringol as a biomarker demonstrates
the capacity for predicting the smoke taint index from grapes
before fermentation. It is worth mentioning that free phenol and
p-cresol concentrations in grapes are negatively correlated with
smoke taint but their concentrations in wines are highly
correlated with smoke taint, which can be explained by the
biodegradation more specifically for phenol and p-cresol
compared with m-cresol and o-cresol by Trichosporon
cutaneum51 as one of the yeast species involved in wine
fermentation.52 The VOC composition changes during
fermentation may also indicate the degradation of phenol and
p-cresol in non-smoke-tainted wine: The VOC ratio of free
phenol and p-cresol is 40% and 20% in grape samples which
yields non-smoke-tainted wine, and for these samples, the ratio
of phenol and p-cresol decreases to less than 20% and 10% after
fermentation, respectively. In contrast, a higher composition
ratio of free o-cresol with a lower degradation rate in yeast is
found in grapes which yield smoke-tainted wine. In addition, the
increase of the composition ratio of syringol can be explained by
the syringol production reported in the previously study53 due to
bacterial metabolism54 (Figure S3). Our results show that
producers may accurately use predictive models in either grapes
or wine for decision-making when a wildfire event occurs, which
in turn can lead to better management and fewer losses.

■ ASSOCIATED CONTENT

Data Availability Statement
The corresponding code of data analysis and predictive
modeling of smoke taint in wine is available in the Github
repository: https://github.com/IBPA/smoke_taint_
prediction.
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The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jafc.3c07019.
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Figures including the principal components analysis
(PCA) plot of the VOC concentration in the wine
samples and the grape samples (Figure S1), the
corresponding principal components loadings (Figure
S2), the composition ratios of the VOCs in grape and
wine samples (Figure S3), the correlation matrices of the
VOC concentrations in wine and grape samples (Figure
S4), the feature importance represented as the rankings
evaluated with different feature selection approaches
(Figure S5), and the coefficients of the Lasso models for
predicting smoke taint index (Figure S6) (PDF)
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