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Professor Richard R. Vance, Co-chair 

 

Ecological interactions are context dependent.  The net effect of species interactions includes the 

multifaceted impacts of community composition and abiotic influences of the environment.  I 

examined how both biotic and abiotic stressors, in the form of herbivore composition and salinity 

stress, respectively, elicited positive interactions between species.  In a kelp forest I examined 

how the relationship between kelp and an encrusting bryozoan, Membranipora membranacea, 

shifted to an associational defense depending on herbivore guild composition.  Using a 

combination of choice experiments and surveys of grazing damage, I demonstrated that the 

mesograzers Lacuna unifasciata, Perampithoe humeralis, and Idotea resecata almost entirely 

avoided (<1% of total diet) encrusted kelp.  The large snail Norrisia norrisi also preferred clean 
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kelp, but kelp crabs, Pugettia producta, targeted encrusted kelp.  Field surveys in a mesograzer 

dominated canopy found 2.5 times more grazing damage on sparsely encrusted kelp than on 

heavily encrusted kelp and far more grazing in the upper canopy than on the blades from the 

vertical stipes below the canopy.  These results indicate that, when mesograzers are dominant, 

Membranipora provides kelp associational resistance to grazing.  Such protection may be more 

prominent in the upper canopy.  Additionally, I examined the role of abiotic stress on positive 

interactions in a hypersaline salt marsh.  Following disturbance that removes established 

vegetation, salt-tolerant species can ameliorate harsh soil salinities for less tolerant species and 

therefore promote secondary succession.  However, when abiotic stress is extremely high 

amelioration may be inadequate to improve growth of associated neighbors.  Using clipping 

manipulations of Batis maritima, an early successional halophyte, I tested whether B.maritima 

facilitates secondary succession in an excessively hypersaline salt marsh in southern California.  

Experimental plots with B.maritima present recovered faster (27% compared to 14% 

revegetation by matrix species) and had lower increases in soil salinity.  Salicornia pacifica and 

Arthrocnemum subterminale were the dominant recovery species in both treatments and no 

differences were found in species richness, diversity, or evenness of recovery species between 

treatments.   

Overall, my research indicates positive interactions play a prominent role in these coastal 

ecosystems though that role will depend on the specific nature of the community. 
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INTRODUCTION OF THE DISSERTATION 

 

Stress is defined as any detrimental effect on a biological entity (Parker et al. 1999).  

Resource limitation (Grime 1989), toxicity (Zhu 2001), and threats to physical integrity  

(Hay et al. 2004) are basic stressors that reduce the growth, reproduction, and/or survival 

of organisms.  Such forms of stress can arise from abiotic factors of the environment 

(Parker et al. 1999).  These factors can include, amongst others, salinity, desiccation, or 

temperature (reviewed in Bertness and Leonard 1997).  Stress can also arise from the 

presence of other species, in the form of competition (Brooker et al. 2005) and 

consumption (Barbosa et al. 2009).  Organisms cope with stress via physiological 

tolerance, either through evolutionary adaptation (Pennings et al. 2003) or plasticity 

(Callaway et al. 2003), or species can associate with stress ameliorators (Leslie 2005).  

Therefore an association between species that negatively impact each other under benign 

conditions may be beneficial under elevated stress (Bertness and Callaway 1994, Brooker 

et al. 2008).  

 

This pattern of shifting interactions with levels of stress was first described by Bertness 

and Callaway (1994) and has come to be known as the Stress Gradient Hypothesis 

(SGH).  The shift in direction and magnitude of the interaction occurs when an 

ameliorator species improves reproduction, growth, and/or survival for a neighboring 

beneficiary species, even though they may compete for limited resources (Stachowicz 

2001, Holmgren and Scheffer 2010).  Such interactions expand keystone species’ habitats 

by enabling their persistence under conditions too harsh for independent survival (Bruno 
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et al. 2003).  Thus, it is important to understand when and how such interactions arise 

since, when stress is elevated, they act as ecological buffers to the community as a whole. 

The objectives of this research are to examine the positive interactions that result from 

both biotic and abiotic stress sources and identify when these context-dependent 

interactions are likely to occur. 

 

Both biotic (Hay et al. 2004) and abiotic (Brooker et al. 2008) sources of stress can give 

rise to community-protecting positive interactions between neighbors.  Intense herbivory 

pressure can elicit association between neighbors that protect against consumption (first 

described by Atsatt and O'Dowd 1976).  This type of interaction, termed associational 

resistance to grazing, has been observed in many marine communities (Hay 1986, Fong 

et al. 2006, Levenbach 2009).  Similarly, the physical stress gradients of intertidal 

habitats can give rise to associations amongst neighbors that reduce physical stress.  

These interactions, called facilitations, protect and promote the resident species (Bertness 

and Leonard 1997).  Vascular plants are sensitive to salinity (Zhu 2001) and often in 

intertidal habitats their association with neighbors can reduce stress via passive shading 

of the soil (Bertness and Ewanchuk 2002, Whitcraft and Levin 2007).  In two separate 

marine habitats, I will investigate whether positive interactions, in the form of 

associational resistance and facilitation arose in response to herbivory and salinity stress 

respectively.  In Chapter 1 and 2 I will examine if a positive biotic association between 

giant kelp, Macrocystis pyrifera, and the bryozoan epibiont, Membranipora 

membranacea, mediated grazing pressure from kelp herbivores.  In Chapter 3 I will 



3 

examine facilitation between salt marsh plants in response to the abiotic stress associated 

with elevated soil salinity during secondary succession.    

 

Many have found that positive interactions are highly context-dependent (reviewed in 

Hay et al. 2004).  Much remains unknown as to when and under what conditions these 

interactions effectively buffer their local communities.  Therefore it is important to 

identify where in both geographic space and along a stress continuum positive 

interactions are likely to occur.  In the case of herbivory, the SGH suggests that positive 

interactions will increase when pressure from consumers is high (Bertness and Callaway 

1994).  The presence of a positive interaction such as associational resistance requires 

pressure from consumers that are deterred by the associated neighbor.  Yet grazers and 

their ability to consume fluctuate greatly in time and space (Lubchenco and Gaines 

1981).  Using the community of a giant kelp canopy, in Chapter 1, I will identify which 

canopy grazers reduced consumption of kelp in the presence of the kelp-associated 

epibiont, Membranipora.  Additionally, in Chapter 2, in a natural kelp forest I will 

examine where in the canopy the mesograzers, which may be particularly sensitive to the 

presence of Membranipora, are located and cause grazing damage.  These findings will 

indicate where in the canopy associational resistance to herbivory by mesograzers is 

likely to occur. 

 

In the case of physical stress, the presence of predictably high levels of stressors can also 

influence the effectiveness of a positive interaction.  Highly stressed habitats are typically 

inhabited by stress-tolerant species (Grime 1989).  Recent analysis of the SGH 
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(Holmgren and Scheffer 2010) and empirical studies  (Pennings et al. 2003) suggest that 

facilitation may be rare amongst species adapted to harsh physical conditions because 

such species may not benefit from amelioration by neighbors to growth and reproduce.  

Salt marshes in Mediterranean-type climates experience hot, dry summers and are 

characterized by much saltier soils than higher latitude salt marshes (Zedler 1982, 

Callaway et al. 1990) where much of the previous work on species interactions and 

zonation have taken place.  In Chapter 3 I will examine whether Batis maritima is an 

effective facilitator of recovery from disturbance for these salt-tolerant species (Pennings 

and Callaway 1992, Kuhn and Zedler 1997) when bare patches are excessively 

hypersaline.  Though a few empirical studies have examined competitive and facilitative 

interactions at the extreme end of the stress gradient, whether facilitation can promote 

secondary succession in extremely high stress regimes amongst tolerant species is 

unknown. 

 Through these studies I will examine how herbivory and salinity stress alter 

species interactions between primary producers and their community and when positive 

interactions that protect the primary producers are likely to arise.  
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I Community-dependent associational resistance in a kelp canopy 

ABSTRACT 

By altering feeding preferences of consumers, epibionts can enhance or reduce 

consumption of their host.  While previous studies have documented how a single 

consumer species responds, few studies have examined how multiple grazer species 

change their consumption of a host when an epibiont is present.  In particular, how the 

small but abundant members of the mesograzer community respond to epibionts has been 

largely unexplored.  Using a combination of choice experiments and in situ estimates of 

grazing, I evaluated whether an encrusting epibiont, Membranipora membranacea, 

promotes or deters consumption of its host, the giant kelp Macrocystis pyrifera, by 

invertebrate canopy grazers.  In lab choice experiments, four of the five grazers, the 

snails Lacuna unifasciata and Norrisia norrisi and the crustaceans Perampithoe 

humeralis and Idotea resecata, preferentially consumed unencrusted kelp.  Of these, the 

mesograzers (Lacuna, Perampithoe, and Idotea) almost entirely avoided (<1% of total 

diet) Membranipora-encrusted kelp.  Kelp crabs, Pugettia producta, the largest of the 

crustacean grazers, targeted encrusted kelp.  Field surveys compared relative grazing 

damage between densely and sparsely encrusted kelp in a canopy dominated by 

amphipod and isopod mesograzers.  I found 2.5 times more grazing damage on sparsely 

encrusted kelp than on densely encrusted kelp.  These results indicate that Membranipora 

provides associational resistance to grazing when these mesograzers are dominant 

consumers.  Thus, whether Membranipora reduces or promotes grazing on kelp will 

depend on the species composition of the grazing guild.  

 

INTRODUCTION 

Due to close proximity, an epibiont can strongly influence its host. These species living 

directly on the surface of another organism are common in marine systems, and much 

attention has been paid to the direct negative effects epibionts typically impose on the 

host (reviewed in Wahl 1989).  Such effects include reduced nutrient transfer between the 

host and ambient water (e.g. Hurd et al. 1994), increased blade loss (e.g. Fong et al. 2000, 

e.g. Saunders and Metaxas 2009) and reduced growth (e.g. Littler et al. 1995, Stachowicz 

and Whitlatch 2005, Rohde et al. 2008).  Less attention has been given to how an 

epibiont affects the host indirectly by changing interactions with other members of the 

community. 
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One important interaction is consumption, which can be modulated, positively or 

negatively, by the presence of an epibiont (Wahl and Hay 1995).  Epibionts can reduce 

consumption of the host (e.g. Vance 1978, Durante and Chia 1991, Gray et al. 2005, 

Fong et al. 2006, Thornber 2007).  These relationships, termed associational resistance 

(described by Atsatt and O'Dowd 1976), can protect a host by interfering with a 

consumer’s attachment mechanism or detection abilities, or defending the host 

chemically and/or physically (reviewed in Wahl 2008).  Alternatively, a palatable 

epibiont may be harmful by attracting consumers (e.g. Karez et al. 2000, e.g. Enderlein et 

al. 2003, e.g. da Gama et al. 2008) a phenomenon termed “shared doom” by Wahl and 

Hay (1995).  Since palatability is species-specific (Lubchenco and Gaines 1981, Duffy 

and Hay 1990) some consumers may reduce grazing on the host while others may 

increase their consumption when an epibiont is present.   

 

Most studies examining the interaction between giant kelp and the encrusting bryozoan 

Membranipora membranacea have documented negative impacts on the kelp host.  

Membranipora reduces nutrient transfer (Hurd et al. 1994) and decreases light 

penetration to the underlying tissues (Wing and Clendenning 1971).  When present in 

high abundance, Membranipora accelerates blade loss on Macrocystis pyrifera (Dixon et 

al. 1981) and other kelp species (Lambert et al. 1992, Saunders and Metaxas 2009), 

causes blade deformities (Neushul and Haxo 1963), and, as an invasive species along the 

northern Atlantic coast of the United States, Membranipora reduces growth and percent 

cover of native kelps (Levin et al. 2002).  However, at moderate abundances and within 
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its native range, Membranipora does not appear to reduce growth of the host (Hepburn 

and Hurd 2005).  The potential positive effect of associational resistance to grazing has 

yet to be examined. 

 

I hypothesized that different species of canopy grazers have different magnitudes of 

attraction to or avoidance of Membranipora.  Membranipora is common in giant kelp 

beds along the coast of California (Woollacott and North 1971), at times covering almost 

all of the surface area of the algal host (Jones 1971, Harvell et al. 1990, Chess and 

Hobson 1997).  Mesograzers, the small (< 2.5cm) canopy-dwelling grazers (Brawley 

1992) and intermediate-sized grazers (defined here as between 2.5 cm and 10 cm in 

length) are present in giant kelp canopies (Jones 1971, Leighton 1971, Coyer 1984, 

Kushner et al. 1995, Hobday 2000, Sala and Graham 2002) and likely encounter the 

bryozoan regularly.  Membranipora colonies contain calcium carbonate (Ryland 1970) 

and individuals produce defensive spines when preyed upon (Harvell 1998), both of 

which may deter some consumers.  Lidgard (2008) noted that typical bryozoan 

consumers were either large enough to tolerate their defenses or specialize on removing 

only the soft tissue portions of colonies.  I predicted that mesograzers may have difficulty 

penetrating the colonies.  However, since most herbivores are thought to benefit from 

nitrogen-enriched food sources (reviewed in Fong and Paul 2011), consumers not 

deterred by defenses may receive additional nutritional benefits over eating kelp alone.   

 

In this study, I examined whether Membranipora alters the feeding preferences of several 

common invertebrate kelp grazers.  Using choice experiments I tested whether 5 grazer 
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species (2 gastropods and 3 crustaceans) present in southern California kelp canopies 

prefer to consume encrusted or unencrusted portions of Macrocystis pyrifera.  Further, to 

assess if grazing was reduced on heavily encrusted kelp when mesograzers were 

dominant, I surveyed relative levels of grazing pressure between densely and sparsely 

encrusted kelp in a local kelp bed. 

 

METHODS 

Grazer preference assays 

To determine if invertebrate grazers preferentially choose unencrusted or encrusted kelp 

surfaces for consumption, grazers were collected, starved, and then exposed within 

replicate arenas to partially encrusted kelp blades.  Experiments took place from June 

through November 2006 at the Cabrillo Marine Aquarium near Los Angeles, California. 

 

I collected adult grazers prior to the day of experiment (Table 1).  The two larger species, 

Pugettia producta (kelp crabs) and Norrisia norrisi (Norris’ top snail), were collected on 

snorkel from kelp canopies at Cabrillo Beach, 40 km south of Los Angeles, CA. The 

mesograzers, Lacuna unifasciata (One-band Lacuna snail), Perampithoe humeralis 

(amphipod kelp curlers), and Idotea resecata (kelp isopods) were either removed from 

kelp while on kayak inside the Cabrillo Harbor or in the lab from collected blades.  

Grazers were kept in flow-through seawater tables prior to each experiment.  Since I was 

interested in preference and therefore wanted to reduce the duration of the experiments 

and minimize autogenic changes and degradation of the kelp (per Peterson and Renaud 

1989), most grazers were not fed for several days (see Table 1).  However, individuals of 



12 

Perampithoe were used immediately upon collection because they did not survive 

starvation in the lab.  All five grazing species are found in southern California kelp beds, 

but do not necessarily co-occur at all beds and all times (Kushner et al. 1995, pers. obs.).  

Jones (1971) noted from observation that in southern California kelp beds, of all the 

invertebrate canopy grazers, Perampithoe and Idotea probably consume the most kelp. 

 

Plastic containers arranged in an indoor seawater table were used as experimental arenas.  

The larger species, Norrisia and Pugettia, were placed in 40 x 27 x 16cm (L x W x H) 

containers while 15 x 15 x 9cm (L x W x H) containers were used for Idotea, 

Perampithoe, and Lacuna.  Each container had a roughly 5 x 5cm section of each side 

removed and replaced with plastic mesh to allow water flow.  To increase replication, 

most experiments were conducted in two separate trials on different days (See Table 1). 

 

Macrocystis pyrifera blades were collected from Cabrillo Harbor on the day of each 

experimental trial.  Since the distal portion of a blade is older than the proximal portion 

(Abbott and Hollenberg 1997) and grazers can show preferences due to blade age 

(Durante and Chia 1991, Van Alstyne et al. 2001), I targeted kelp with a relatively even 

distribution of Membranipora along the length of each blade to minimize the 

confounding effects of kelp age (Fig. 1).  Larger species, Norrisia and Pugettia, received 

one whole blade (tattered end removed), rubberbanded at the pneumatocyst to a glass 

slide anchor.  To determine if, despite precautions, kelp blade age confounded my results, 

using two-sided Wilcoxon signed ranked tests, I tested for differences in Membranipora 

cover (Norrisia: p = 0.28, Pugettia:  p = 0.31) or grazed area (Norrisia: p = 0.74, 
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Pugettia:  p = 0.38) between the older and younger halves of each blade and found no 

significant differences.  The three smaller species received cut pieces of kelp, on average 

26cm
2
 (Table 1), with encrusted and unencrusted areas of the same age present to 

minimize age effects on grazer preferences (Fig. 1).  Since the pieces were small and 

hence tissue age differences minimal, I did not test for age effects.  Cut pieces were 

rubberbanded flat on two sides to a glass slide and placed in an experimental arena.  One 

individual grazer was haphazardly placed in each experimental unit except for Lacuna for 

which I employed 3 snails per arena to increase replicates with grazing.  Each species 

was left to graze for a short duration not longer than 24 hours such that most replicates 

had grazing activity (Table 1).  I did not use no-grazing treatments to control for 

autogenic changes used since the proportion of encrusted kelp did not visibly change 

during the experiments. 

 

I quantified initial percent cover of Membranipora and area of grazing damage in both 

encrusted and unencrusted regions by comparing before and after photos of the 

experimental kelp pieces using NIH ImageJ software.  Lacuna, Norrisia, Perampithoe, 

and Idotea left scars that did not penetrate through the entire blade and were located 

predominately on a single side of the kelp.  Therefore I only used photos of the heavily 

grazed side to determine grazed area.  Pugettia, however, shred and consume whole 

pieces, and so I used photos of both sides of the kelp to determine grazing damage. 

 

 

For each grazer species, preference for encrusted or unencrusted kelp was analyzed by 

comparing the proportion of encrusted kelp eaten to the proportion of encrusted kelp 
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available to the consumer using a Wilcoxon signed rank test since the data did not meet 

the assumptions of a paired t-test.  Per replicate, I compared: 

Ae  to Aee 

At             Ate 

where Ae  is the area of kelp encrusted, At is the total area of the piece of kelp, Aee  is the 

area eaten that was encrusted, and Ate  is the total area eaten.  If the average proportion of 

encrusted kelp consumed was significantly less than the proportion of encrusted kelp 

available, the species was considered to show avoidance of encrusted areas.  

Alternatively, if the average proportion of consumed kelp that was encrusted was 

significantly greater than the proportion of encrusted area available, the species was 

considered to show a preference for Membranipora-encrusted kelp.  Since I was 

comparing grazing rates, replicates in which kelp was never consumed were not included 

in the analysis (Table 1).  Data from trials occurring on different days were pooled since I 

found no differences in the proportion of Membranipora-encrusted kelp consumed 

between days for all species (Lacuna, p = 1.0, Norrisia, p = 0.26 Idotea, p = 0.15, 

Pugettia, p = 0.14, Wilcoxon rank-sum test).     

 

Grazing patterns in the field 

To determine if Membranipora colonies reduced grazing damage on kelp blades, I 

conducted a field survey of grazing damage on densely and sparsely encrusted kelp in 

August 2007.  This study was conducted in the canopy of a Macrocystis pyrifera forest at 

Lunada Bay (33°77’19.52”N, 118°42’79.47”W), on the northern side of the Palos Verdes 

Peninsula, approximately 46 km southwest of Los Angeles, California.  Collection took 

place on the seaward edge of the bed where Membranipora is typically most abundant 
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(Bernstein and Jung 1979, pers. obs.).  Active grazers at the site included gammarid 

amphipods, Idotea, and Norrisia (Bryson, unpubl. data), all of which leave visible 

grazing scars (pers. obs.).  On snorkel, I collected individual kelp blades with visible 

differences in Membranipora cover between the two sides. 

 

After collection and prior to analysis, the distal tattered end (~30%) of each blade was 

removed.  As comparisons were made between two sides of the same blade, the kelp was 

the exact same age on both sides of the blade.  Each blade, including patches of 

Membranipora and grazing scars, was traced onto a sheet of clear plastic.  Images were 

scanned, and total area, encrusted area, and grazed area were quantified using NIH 

ImageJ software.  From experience with the grazing preference experiments and 

observations in the field, I identified most of the grazing scars encountered on this survey 

as amphipod and Idotea bites.  Both species leave small, ~ 0.12 cm
2
, irregularly 

distributed scars that do not entirely penetrate though the kelp blade.  The scars from each 

species could not be distinguished from each other reliably, and therefore I combined 

these scars together to quantify mesograzer damage.  Only fresh, crisp scars with the 

kelp’s yellow medulla tissue still present were counted so as to quantify only recent 

grazing damage with respect to recent levels of encrustation.  A total of 499 fresh scars 

were included in the analysis while 109 older tattered holes that penetrated all the way 

through both sides of the kelp were omitted from the 21 blades analyzed.  Using a paired 

t-test, I compared the area of mesograzer-inflicted damage between the sparsely 

encrusted, (sparse side) and densely encrusted (dense side) sides of the blades.  The data 

were log transformed to fit the assumptions of the test.  Only one blade had grazing 
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damage from another species, that of Norrisia, which leaves much larger, ~4.0cm
2
, 

meandering swaths across the blade.  This blade was excluded from analysis.   

 

RESULTS 

Grazer preference assays 

Both gastropod species, Lacuna and Norrisia, strongly targeted areas of kelp blades 

without Membranipora (Fig. 2ab).  Almost half of the kelp offered to Lacuna was 

encrusted with Membranipora, yet none was consumed.  While Norrisia did not entirely 

avoid eating encrusted kelp, over 80% the diet was composed of unencrusted kelp 

compared to the approximately 60% that was available (Fig. 2b). 

 

The two smaller crustaceans, Perampithoe and Idotea, strongly avoided consuming 

portions of kelp blades covered with Membranipora.  These species included almost none 

of the encrusted kelp in their diets (Fig.2cd) even though these grazers were offered 30% 

and 47% encrusted kelp on average respectively.  Pugettia producta, in contrast, 

preferentially selected Membranipora-encrusted kelp.  Proportionately, the diet of the 

crabs consisted of almost twice as much encrusted kelp as was available (Fig. 2e).   

 

Grazing patterns in the field 

Confirming my selection of surveyed blades, the side designated as the dense side of the 

blade was significantly more encrusted than the sparse side (p < 0.0001, Wilcoxon signed 

rank test).  On average, the dense and sparse sides were 41.6% ± 3.7% (mean ±SE) and 

11.1% ± 2.1% encrusted, respectively, with the minimum difference being 14.7% 
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between the two sides of one blade.  Small crustaceans consumed more than double the 

area on the sparsely encrusted side than on the dense side (Fig. 3).  All grazing scars were 

located in unencrusted areas.   

 

DISCUSSION 

My results demonstrated that Membranipora modified the palatability of kelp, with the 

direction of this effect dependent on grazer species.  All 5 species I tested showed 

significant alterations of grazing rates with respect to the presence of Membranipora, 4 

negative and 1 positive.  Previous studies have found examples of epibiotic bryozoans 

protecting their hosts (Durante and Chia 1991, Gray et al. 2005), but studies of 

Membranipora’s effects on host consumption to date have only found Membranipora to 

attract consumption.  For example, the presence of Membranipora made the unpalatable 

alga Zonaria tournefortii palatable to the generalist sea urchin, Arbacia punctulata (Wahl 

and Hay 1995).  Further, the omnivorous fish, Oxyjulis californica has been observed to 

consume Membranipora-encrusted portions of Macrocystis blades (Yoshioka 1973, 

Bernstein and Jung 1979, Chess and Hobson 1997).  My study expands these others by 

showing that the effects of Membranipora on grazers can be either positive or negative, 

depending on the species, and, at times, acts to protect the kelp host.   

 

Membranipora is an especially effective deterrent to small-sized consumers.  All three of 

the mesograzers strongly avoided encrusted kelp in both the lab experiments and in the 

field.  The calcium carbonate (CaCO3) in the colonies may protect the underlying algal 

tissue from mesograzers.  Previous studies have documented CaCO3 being a deterrent for 
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similar species.  Hay et al. (1994) found that CaCO3 deterred feeding by a species of 

amphipod when incorporated into artificial food.  Steneck and Watling (1982) noted that 

the genus Lacuna has a morphological type of radula not typically used for grazing 

calcified algae.  Additionally, Gaines (1985) found that Idotea wosnesenskii was deterred 

by the relatively harder outer cuticle of the red alga Iridaea cordata suggesting that 

Idotea may, in general, be deterred from grazing by hard substances.  Thus, size may be a 

more important predictor than taxonomic affiliation in determining the direction of the 

effects of Membranipora on grazers. 

 

While I observed a clear associational defense in a natural kelp canopy, it does not 

automatically follow that Macrocystis benefits from this defense.  Membranipora may 

have both positive and negative impacts on the kelp host.  The indirect benefits of 

reduced consumption can outweigh negative direct impacts when consumption is high 

(Fong et al. 2006) or when negative impacts are minimal.  I did find a reduction in 

grazing damage at the level of the blade and Hepburn and Hurd (2005) found no effect of 

Membranipora cover on kelp growth rates, suggesting that even relatively small benefits 

from hosting colonies may exceed costs if colonization is modest.  Still, the grazing 

pressure I observed in the field was low, 1.5% of the sparse side of the blade was 

damaged.  Given the high growth rates of Macrocystis, 2% dry-mass increase daily (Reed 

et al. 2008), Macrocystis can likely tolerate low levels of grazing quite well.  However, 

grazing rates by mesograzers can be much higher than I observed in my field surveys.  

Rare but destructive infestations, which may result from reduced fish densities (Tegner 

and Dayton 1987) since predatory fish moderate mesograzer densities and behaviors 
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(Duffy and Hay 2000, Davenport and Anderson 2007, Perez-Matus and Shima 2010), can 

severely defoliate kelp (Jones 1965, Tegner and Dayton 1987, Graham 2004).  I predict 

that during these times of increased abundances of mesograzers Membranipora could be 

an important factor limiting overgrazing, acting as a buffer to the community. 

 

One important implication of my results is that the species composition of the canopy 

grazing guild will likely affect the direction of the interaction between Membranipora 

and kelp.  Local abundances of grazers change seasonally and from site to site (Wicksten 

and Bostick 1983, North 1987, Kushner et al. 1995) and several species other than the 

mesograzers I observed at my site have been documented to be significant kelp 

consumers in other locales (i.e fish, Bernstein and Jung 1979,  kelp crabs, Bracken and 

Stachowicz 2007).  Clearly, Membranipora reduced grazing on kelp in my site but may 

promote grazing in other sites, especially if larger species dominate the grazer 

community.  Shifts in indirect interactions from positive to neutral or negative have been 

documented in marine communities (Berlow 1999, Hay et al. 2004, Wahl 2008).  I 

predict that as the grazing guilds in kelp forests change from dominance by mesograzers 

to macrograzers the associational resistance to grazing provided by Membranipora will 

likely shift to shared doom.   
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Fig. 1.  Example of experimental kelp for small grazers.  Pieces were cut to incorporate same aged areas 

with and with out Membranipora.  Membranipora-encrusted areas depicted here as checkerboard patches. 
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Fig. 3. Area grazed on the sparse and dense sides of kelp blades collected during field sampling.  Bars are 

means ± SE. 
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II Mesograzer abundance and grazing damage in a giant kelp forest canopy 
 

ABSTRACT 

Mesograzers are often abundant members of marine communities that link higher trophic 

levels to primary productivity, yet little is known about their grazing patterns.  In a giant 

kelp forest canopy in southern California I conducted two surveys to determine 

mesograzer abundance, levels of grazing damage on kelp blades, and level of cover by 

Membranipora membranacea, a kelp epibiont known to deter consumption by 

mesograzers.  I found the two dominant mesograzer taxa, the isopod Idotea resecata and 

an assemblage of gammarid amphipod species, and the majority of grazing damage to 

vary with depth.  Grazing damage, measured as abundance of grazing scars, and the 

abundance of Idotea, were higher in the upper horizontal portion of the kelp canopy, 

while significantly less grazing was found in the deeper, middle portion of the kelp 

canopy where amphipods were more common.  I also found a trend of reduced grazing by 

mesograzers when the bryozoan, Membranipora membranacea was present in sufficient 

abundance.  My findings suggest that mesograzer consumption disproportionately 

impacts the more photosynthetically active blades in a kelp forest.  However such 

impacts may be moderated by the presence of other kelp-associated species.  

 

INTRODUCTION 

Although herbivory is well documented to be a strong force in structuring many marine 

communities (e.g Estes and Palmisano 1974, Lubchenco and Gaines 1981, Hay and 

Fenical 1988, Hughes 1994, Babcock et al. 1999, Graham 2004, Heck and Valentine 

2007), less is known about mesograzers and their activities and impacts in these habitats.  
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These small (<2.5 cm), mobile epifauna are often present in extremely high densities but 

are difficult to study due to their small size (reviewed in Brawley 1992).  While 

“mesograzers” denotes a wide variety of species with different feeding habits the term 

generally refers to a guild of consumers that specialize on epiphytes (Brawley 1992, 

Duffy and Harvilicz 2001), though some species consume host tissue (Farlin et al. 2010).  

Two studies assessing the influence of mesograzers in early successional processes found 

a strong influence on the developing community via top-down control (Brawley and 

Adey 1981, Duffy and Hay 2000).  However, little is known about mesograzers and their 

activities in a fully developed algal canopy (but see Davenport and Anderson 2007, Poore 

et al. 2009). 

   

While giant kelp forests, dominated by Macrocystis pyrifera, support a diverse suite of 

mesograzers species (Jones 1971, Coyer 1984, Hobday 2000), the role these grazers play 

in the community is understudied.  Of the mesograzers that live in the kelp canopy, some 

are known to consume kelp directly (Leighton 1971, Sala and Graham 2002, Bryson, 

Chapter 1).  Such consumption by mesograzers is moderated by the presence of 

microcarnivorous fishes (Davenport and Anderson 2007, Perez-Matus and Shima 2010).  

However, consumption of kelp by mesograzers has been known to spike to destructive 

levels on rare occasions (for examples see Jones 1965, Tegner and Dayton 1987, Graham 

2002).  Outside of the recognition that consumption by mesograzers does not often 

devastate kelp biomass (North 1987), the grazing pressure exerted by mesograzers in the 

canopy remains largely unknown. 
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The bryozoan Membranipora membranacea is a kelp epibiont (Fig. 1) that has been 

shown to deter grazing by mesograzers (Bryson, Ch.1).  Membranipora is a common 

invertebrate present in the kelp canopy (Woollacott and North 1971) that can become so 

dense as to cover most of the kelp thallus (Jones 1971, Harvell et al. 1990, Chess and 

Hobson 1997).  With such a strong presence in kelp beds, Membranipora may frequently 

interact with kelp consumers.  Because Membranipora reduces consumption of kelp by 

mesograzers, the presence of the bryozoan may affect grazing damage patterns in the 

field. 

 

My objectives were to 1. examine spatial patterns of grazing intensity measured as the 

accumulation of grazing scars from mesograzers in a natural Macrocystis canopy, 2. 

relate grazing intensity to abundances of mesograzers, and, 3. evaluate whether the 

presence of Membranipora reduced grazing pressure from mesograzers.   

 

METHODS 

To accomplish my objectives, I conducted two surveys in the kelp forest at Lunada Bay 

(33°77’19.52”N, 118°42’79.47”W) on the north side of the Palos Verdes Peninsula, 

approximately 46 km southwest of Los Angeles, California, USA.  The kelp bed at this 

site occupied about 21.0 hectares of ocean bottom, but fluctuated in size seasonally 

though it persisted year round.  Water depth ranged from 7.5m to 12m.  Like all southern 

California kelp forests, Macrocystis pyrifera, or giant kelp, was the dominant structural 

kelp of the community.  The kelp occurred at a density of 2.2 holdfasts/m
2
 (Bryson, 

unpublished data); this relatively high density is typical of a frequently disturbed 
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community (North 1987).  Surveys and collections took place on the seaward side of the 

kelp bed where encrusting Membranipora colonies were most abundant (pers. obs.).  

Membranipora was present on virtually all kelp thalli. 

 

To evaluate spatial patterns of grazing with depth I quantified grazing within two depth 

ranges (top and mid) of the kelp bed.  The top range was comprised of the upper canopy, 

from the surface to approximately 1.0m depth, defined as where the kelp lies horizontally 

on the surface.  Most kelp blades existed in this region, as noted elsewhere (North 1987), 

and blades were usually spaced < 0.05m apart.  The mid depth occurred between 2.5m-

4m depths, where kelp stipes were vertical and blades fewer and spaced at approximately 

0.2m intervals.  Deeper depths were not considered since few blades were present below 

4m at this site. 

 

Preliminary grazer surveys confirmed the dominance of two mesograzer taxa, a mixed 

assemblage of gammarid amphipods and the isopod Idotea resecata, in the kelp canopy at 

Lunada Bay.  Both are common in southern California kelp forests (Jones 1971, Kushner 

et al. 1995).  There are many species of gammarid amphipods associated with kelp; 

Coyer (1984) found 20 species in kelp forests at Santa Catalina Island, on average 

approximately 2-3mm in length.  Some of these kelp-associated gammarids are kelp 

consumers (Light 1975, Davenport and Anderson 2007, Cerda et al. 2009).  The isopod, 

Idotea resecata, is larger, up to 39mm in length (Morris et al. 1980), and is known to 

consume kelp (Jones 1971).  This species may be less abundant than the gammarid 

amphipods (Coyer 1984).  
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On May 11, 2007, I collected portions of kelp thalli to assess grazing damage and 

quantify mesograzer abundance.  Two series of random numbers were generated to 

designate collection points in the top and mid depths along a haphazardly placed transect 

in the seaward side of the bed, parallel to the bed edge.  In the top depth, at each sampling 

point I collected the nearest stipe with attached blades at 0m (n = 10).  Similarly, a 

second swim was conducted to collect stipes with attached blades in the mid range at 

3.3m depth (n = 11).  A stipe with attached blades was collected only if it came from a 

frond long enough to reach the surface to ensure it was old enough to have accumulated 

Membranipora and grazing scars.  Each section of stipe, approximately 1.3m in length, 

was cut, gently disentangled from neighboring stipes, and placed in 9.4 liter reclosable 

plastic bag.  Prior experience with sampling revealed that mesograzers cling to kelp and 

that quick handling of the short stipes from cutting to placement in plastic bags ensured 

that few if any mesograzers were lost in the process.  None were observed to escape.  

Bags of kelp were placed in a cooler and transported to the lab.   

 

To determine if mesograzer abundance varies with depth, I counted mesograzers 

collected with the kelp from both the top and mid depth ranges.  Each stipe segment was 

considered a replicate.  To estimate mesograzer density per blade, I counted the number 

of blades that were longer than 40 cm in length.   I excluded immature blades near the 

apical meristem, here defined as those less than 40cm in length, because they are much 

smaller than the mature blades and do not contribute substantially to total kelp surface 

area (Jackson et al. 1985).  Stipe segments were rinsed in fresh water, agitated, and the 
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invertebrates strained through 60 micron mesh and placed in 65% ethanol/seawater 

preservative (adapted from Coyer 1984).  All species of gammarid amphipods were 

pooled and counted due to the difficulty in identifying gammarids to species.  Individual 

Idotea resecata were also counted.  To obtain estimates of mesograzer abundance, for 

amphipods and Idotea separately, I calculated total number of individuals per blade 

longer than 40cm on each stipe section.  I analyzed differences in amphipods/blade 

between the top and mid depths using a Student’s t-test following a log-transformation of 

the data to meet the assumptions of the test.  Since transformations of Idotea/blade did 

not improve the fit to the assumptions of a t-test, differences between depth ranges were 

analyzed using a Wilcoxon rank-sum test. 

 

I counted grazing scars to determine if damage on kelp blades from mesograzer 

consumption differed between depths in the canopy.  Each blade over 40cm in length was 

assigned an identification number, and, using a series of random numbers, five blades 

were selected for assessment of grazing damage.  Grazing scars produced by both 

amphipods and Idotea were small, ragged, approximately 0.12cm
2
 (n = 7) in area, and did 

not penetrate through the kelp blade.  Because scars could not be reliably distinguished 

by grazer identity they were pooled.  These scars occurred only in the unencrusted spaces 

between Membranipora colonies, confirming previous findings (Bryson, Ch.1) that the 

colonies prevent almost all grazing by mesograzers on underlying kelp.  Only fresh, crisp 

scars with the medulla of the kelp blade intact were counted.  As a frond grows, the depth 

of an individual blade will change as the apical meristem approaches the surface of the 

water (North 1971).  Recently created fresh scars are more indicative of the grazing 
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pressure on the blade at its current depth in the water column.  Scars on both sides of the 

blade were counted and I averaged data from the five blades of each sampled stipe to 

generate average grazing scar counts per blade for each replicate.  I compared mean 

grazing scar counts/blade between depths using a two-sided t-test following a square root 

transformation to ensure that the data satisfied the assumptions of the test.  I also assessed 

Membranipora cover on these blades.  However, due to greatly uneven distribution of 

cover categories between depth ranges I could not assess grazing differences with respect 

to Membranipora from data garnered from this survey.  This aspect is examined on the 

survey discussed below.   

 

I compared mesograzer abundance and grazing damage on a per blade basis using blades 

per stipe as a proxy for the surface area available to grazers (as described above).  This 

comparison assumes all blades to be of equal size.  Since I employed short stipe segments 

all attached blades from a single stipe were similarly sized.  However, blades from 

different stipes, and in particular, between depths appeared to differ, with the smaller, 

younger blades more common in the top depth as expected (Parker 1971, Jackson et al. 

1985).  To generate rough estimates of area differences between blades in the Top and 

Mid depth ranges, I haphazardly selected a single blade per stipe and approximated blade 

area using the formula:  
2
/3 * blade length * width based on the shape of the blade.  On 

average, blades in the Mid had 1.4 times the surface area than blades from the Top.  

Therefore, measures I employed will tend to underestimate abundance of grazers and 

grazing scars per actual surface area in the top relative to the mid depth.   
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On May 6, 2007, I conducted an in situ survey of grazing damage and Membranipora 

cover in the field.  On SCUBA, I surveyed blades in the top depth (n = 28) at 0m and 

within the mid depth (n = 32) at 3.3m at randomly selected points along a haphazardly 

placed transect.  Selected thalli were tall enough to reach the surface.  At each 

predetermined sampling point, considered to be a single replicate, three sequential blades 

along the selected stipe were surveyed.  I visually estimated Membranipora cover and 

placed each replicate into one of three cover categories:  low (0-5%), medium, (6%-

39%), and high (40%+).  Since the three blades were almost identical in age and adjacent 

to each other along the stipe, they were always in the same cover category; cover 

category did vary between replicates. Grazing scars from the three blades were counted 

and averaged for each replicate as described above.  Since transformations did not 

effectively improve the fit of the data to the assumptions of the test I was unable to 

compare average grazing scar counts between depths and Membranipora cover categories 

simultaneously.  Consequently, I conducted two separate analyses.  I analyzed differences 

in grazing scar counts between depths with a Wilcoxon rank-sum test.  Then, from data 

collected from the top depth only, I compared average grazing scar counts/blade between 

the three different categories of Membranipora cover using a one-way ANOVA 

following a square-root transformation of the data.  All three cover categories were not 

well represented by my sampling in the mid depth and therefore data from this depth 

range could not be analyzed with respect to Membranipora cover. 
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RESULTS 

Overall, amphipods were more abundant than Idotea (Fig. 2).  From all the mesograzers 

collected, I found amphipods to be about 12 times more abundant than Idotea overall 

(1763 vs. 142 individuals respectively).  I also quantified a partitioning of mesograzer 

taxa between depths in the kelp canopy.  Amphipods were significantly more abundant (> 

2 times more abundant) in the Mid than the Top depth (Fig. 2a).  However, Idotea was 

almost an order of magnitude more abundant in the top depth (Fig.2b).  Almost all (214 

of 224) Idotea individuals were found in the top of the kelp canopy.  Natural variation in 

blade size will tend to lessen the differences found in amphipod abundances but amplify 

differences in Idotea abundance between depth ranges. 

 

Mesograzers exerted the majority of their grazing impact within the top portion of the 

kelp forest (Fig. 3).  I found this pattern using both survey techniques.  Mesograzer scars 

were approximately 9 and 6 times more abundant in the top than the mid depth on the in 

situ and kelp collection surveys respectively even though kelp blades in the top depth 

were smaller than those at deeper depths.  Average grazing scars/blade were 

approximately 4 times greater on the kelp collection survey than the in situ survey with 

8.6 ± 2.0 grazing scars/blade (±SE) and 2.0 ± 0.39 grazing scars/blade (± SE) on average 

respectively.  

 

There was a trend of less grazing scars when Membranipora was abundant (Fig. 3a).  

Blades from the top depth with high levels of Membranipora cover had fewer scars than 

blades with medium or low cover though this difference was only marginally significant.  
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And, even though there were few scars on blades from the mid depth, blades with low 

Membranipora cover appeared to have more grazing scars than blades with medium and 

high levels of cover. 

 

DISCUSSION 

My results suggest that Idotea may be driving the overall grazing damage pattern.  I 

found far more grazing in the top depth of the kelp canopy where Idotea individuals were 

predominated located than in the mid region where most of the amphipods were found.  

Coyer (1984) also found higher abundances of amphipods, four times more, in the middle 

third portion of the kelp forest, but did not quantify grazing pressure.  Since many 

amphipods consume epiphytes rather than the host macrophyte (Duffy 1990, Brawley 

1992, Heck and Valentine 2006, Christie et al. 2009, Farlin et al. 2010) it is possible the 

amphipods I collected may not be kelp consumers.  Additionally, while fewer Idotea 

individuals were collected, they were much larger, up to 39mm in length (Morris et al. 

1980) compared to the average amphipod, approximately 2-3mm in length (Coyer 1984).  

With a size difference of this magnitude, the sparse population of Idotea may actually 

consume more kelp than the relatively dense population of amphipods. 

 

It is possible that different species or even size classes of amphipods have different 

vertical distributions within the kelp forest and that those in the top depth consume more 

kelp.  Vast differences in modes of eating and life styles exist between gammarid 

amphipod species.  Some consume their macrophyte host and others do not (Hay et al. 

1987, Duffy 1990, Brawley 1992, Poore et al. 2008, Farlin et al. 2010).  The tube-
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building amphipods of the genus Perampithoe (Cerda et al. 2010) are known to eat kelp 

(Jones 1971, Cerda et al. 2009), however some of the other species are likely to be 

epiphyte consumers (Farlin et al. 2010).  Additionally, Coyer (1984) noted that larger 

individuals were present in the canopy and found several amphipod species, Hyale 

frequens and Perampithoe plea, that tended to reside in the upper canopy rather than at 

deeper depths.  These species are from genera known to consume kelp (Farlin et al. 

2010).  Jorgenson and Christie (2003) described different mesograzer species 

compositions between different depths along the thalli in Norwegian kelp beds and 

suggest that local factors of complexity and longevity of the host strongly influence the 

composition of the epifauna community.  Such differences could separate those 

amphipods that actively consume kelp and those that do not, leading to greater amphipod 

grazing damage in the upper depth range of the kelp canopy.  

 

Finally, it is likely that the presence of fishes strongly affects rates of mesograzer 

consumption.  Few fishes were visually observed in the top while many more were 

present in the mid and bottom regions (pers. obs.), a pattern also noted in other California 

kelp beds (Limbaugh 1955, Coyer 1984).  Microcarnivorous fishes reduce mesograzer 

abundances, movement, and consumption in marine communities (Nelson 1979, Duffy 

and Hay 2000, Davenport and Anderson 2007, Perez-Matus and Shima 2010).  Of the 

fishes known to consume mesograzers (Quast 1971, Bray and Ebeling 1975, Bernstein 

and Jung 1979), senoritas, Oxyjulis californica, were abundant at this site along with 

juvenile kelp bass, Paralabrax clathratus to a lesser extent (pers. obs.).  Per the extensive 

surveys of kelp-associated fishes along the Pacific coast of North America both these 
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species tend to reside within kelp stipes but are not common in the upper canopy 

(Stephens et al. 2006).  It is possible that even with high amphipod abundances in the mid 

region, the risk of predation may be too high for active foraging by amphipods.  There are 

many factors that change with increased depth in a kelp forest, such as reduced irradiance 

(Arkema et al. 2009), reduced numbers of blades (Jackson et al. 1985), increased age of 

the blades (North 1971), and reduced flow speed (Bertness et al. 2001) that may directly 

or indirectly influence mesograzer consumption rates.  However, I expect the presence of 

predatory fishes to strongly impact the ability of mesograzers to actively consume kelp. 

 

The presence of Membranipora may also play a role in mediating grazing by 

mesograzers.  I found support for previous findings that Membranipora reduces damage 

from mesograzers on kelp (Bryson, Ch.1).  Depending on grazer identity, Membranipora 

can deter grazing (for Perampithoe humeralis, Idotea, and the snails Lacuna unifasciata 

and Norrisia norrisi , Bryson Ch.1) or promote grazing (for the fish Oxyjulis californica, 

Bernstein and Jung 1979, sea urchins, Wahl and Hay 1995, kelp crabs, Bryson Ch. 1).  

Since Membranipora is common (Woollacott and North 1971) and often densely 

abundant (Jones 1971, Harvell et al. 1990, Chess and Hobson 1997) in kelp forests along 

the coast of California, it may regularly interact with mesograzers to reduce their 

consumption of kelp. 

 

Whether natural abundances of mesograzers regularly influence host growth and survival 

is largely unknown.  In Australian algal beds, Poore et al. (2009), using experimental 

removal via pesticides, found that the associated amphipods did not affect the growth rate 
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of the brown alga Sargassum linearifolium.  The authors concluded that grazing pressure 

by the amphipods was low enough to have no detectable effects on the host growth rate.  

Whether this result can be generalized to other algal beds is unknown.  I found grazing 

damage on kelp, but only a small portion of the blade was lost to grazing by mesograzers.  

Similarly, Davenport and Anderson (2007) reported approximately 1.0% of the blade 

consumed over a one and half month time period with natural levels of mesograzers 

present.  However, even modest levels of grazing can impact kelp if grazing targets 

important structures of the alga (Duggins et al. 2001, Bracken and Stachowicz 2007).  

The kelp blades in the top depth are more photosynthetically active and contribute more 

to algal production than blades at deeper depths (North 1971, Colombo-Pallotta et al. 

2006).  Damage to these blades could disproportionately affect the alga.  Additionally, 

Cerda et al. (2009) demonstrated defensive growth strategies in Macrocystis integrifolia 

when grazed by amphipods indicating an evolved response to such grazing.  While it is 

unclear if the level of grazing I observed represents a sizable impact, further study is 

needed to understand how the kelp-associated mesograzers influence their host. 
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III Facilitation of secondary succession in an ultrahypersaline salt marsh in  

southern California 

 

ABSTRACT 

Facilitation by early colonizers is an important mechanism promoting secondary succession 

in salt marshes.  These salt-tolerant pioneers shade bare patches and ameliorate harsh soil 

salinities, thereby promoting the growth of less-tolerant species.  However, this process has 

not been evaluated in warm-climate marshes where positive interactions between highly salt-

tolerant species may be rare.  Using manipulations of the presence of the early colonizing 

halophyte, Batis maritima, I examined whether this species facilitated secondary succession 

in experimentally cleared patches in a mediterranean-type climate salt marsh (southern 

California).  Only 4% cover of B. maritima was present in the experimental plots in which B. 

maritima was allowed to grow, yet these plots had significantly more cover of marsh matrix 

vegetation, 27% compared to 14% in the treatment lacking B. maritima.  Soil salinity 

increased in all plots over the growing season (spring through fall), though this increase was 

less in the B. maritima present (55 ± 4 ppt) than in B. maritima clipped (72 ppt ± 6) 

treatment.  The most abundant colonizers were Salicornia pacifica and Arthrocnemum 

subterminale in both treatments.  I found no evidence that B. maritima promoted particular 

species as indicated by non-significant differences in species richness, diversity, evenness, 

and the composition of recolonizing species between treatments.  Most importantly, 

facilitation was seen to promote recovery of salt-tolerant plants under severe soil salinities 

typical of salt marshes exposed to mediterranean-climatic conditions.  
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INTRODUCTION 

The Stress Gradient Hypothesis (SGH), originally described by Bertness and Callaway 

(1994), predicts an increase of facilitative interactions when abiotic stress is elevated, yet 

recent work questions the generality of this prediction under conditions of extreme abiotic 

stress (Brooker et al. 2008, Maestre et al. 2009).  Under moderately elevated stress (relative 

to low levels) the benefits of neighbors can outweigh the negative effects of competition if 

the association ameliorates stressful conditions (reviewed in Stachowicz 2001, Bruno et al. 

2003, Brooker et al. 2008, Maestre et al. 2009, Holmgren and Scheffer 2010).  Numerous 

studies have documented species-species interactions shifting from competitive to facilitative 

when abiotic stress levels are elevated (i.e. Callaway 1994, Bertness and Leonard 1997, 

Leslie 2005, Pennings et al. 2005).  However, recent research failed to find facilitation when 

abiotic stress is extremely high (Abbott and Hollenberg 1997, Tielborger and Kadmon 2000, 

Pennings et al. 2003, Maestre and Cortina 2004).  In a recent review of the SGH, Holmgren 

and Scheffer (2010) suggested that facilitations may be less common and less important in 

habitats predictably characterized by extremely high levels of abiotic stressors because the 

resident species are adapted to the local conditions and can thrive without amelioration.  If 

and when facilitation occurs in very stressful habitats needs further study.  

 

Salt marsh plant communities are ideal to study the relationship between stress and 

facilitation because they are characterized by soil salinity gradients (Zedler 1982, Vince and 

Snow 1984, Bertness and Ellison 1987, Callaway et al. 1990, Alberti et al. 2010) that 

strongly influence the spatial arrangement of plant species (Pennings and Callaway 1992, 

Bertness and Pennings 2002, Greer and Stow 2003, Wetzel et al. 2004, Pennings et al. 2005) 
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and affect the direction of species interactions (Bertness 1991, Bertness and Shumway 1993, 

Pennings et al. 2005).  Several studies have documented beneficial associations between 

tolerant and intolerant plant species in areas of the salt marsh with elevated soil salinities, 

though interactions between the same species are competitive or neutral in regions with 

lower salinity (Bertness 1991, Pennings et al. 2005).  In this study, I examined whether 

facilitation occurs within a salt-tolerant plant community living in ultrahypersaline soils 

characteristic of salt marshes in mediterranean-type climates.  

 

Stress-ameliorating facilitation may be of key importance during secondary succession in salt 

marshes.  Secondary succession occurs following any disturbance such as wrack burial 

(Brewer et al. 1998), ice scouring (Ewanchuk and Bertness 2003), or attack by parasitic 

plants (Pennings and Callaway 1996) that opens relatively small bare patches in marsh 

vegetation.  Disturbance-generated bare patches commonly occur in the northeastern United 

States (Brewer et al. 1998), and recovery rates depend on salinity regime (Crain et al. 2008).  

This phenomenon is less studied in west coast marshes and may be less common in southern 

California because lower latitude marshes do not experience winter die-offs and associated 

heavy accumulations of wrack (Pennings and Richards 1998).  However, in especially stormy 

years thick mats of smothering wrack accumulated onto the salt marsh plain (pers. obs.), and 

Pennings and Callaway (1996) documented the frequent occurrence of patches created by 

mortality following attacks by parasitic plants.  If vegetation is removed, resulting patches 

have higher soil salinities than the surrounding vegetated marsh as demonstrated in both east 

and west coast marshes (Bertness 1991, Shumway 1995, Whitcraft and Levin 2007).  Higher 

salinities have been attributed to higher rates of evapotranspiration (Zedler 1982, Pennings 



54 

and Bertness 1999), which can hinder bare patch recovery (Bertness 1991, Bertness et al. 

1992).  However, recovery can be facilitated by plants that tolerate high soil salinities and act 

as nurse plants by providing shade, reducing evaporation and hence soils salinities, and 

speeding establishment of less tolerant species (Bertness and Shumway 1993, Callaway 

1994).  Whether facilitation of secondary succession of bare patches in ultrahypersaline 

conditions occurs has never been studied.   

 

Salt marshes in mediterranean-type climates provide an ideal opportunity to expand our 

understanding of the relationship between facilitation and stress tolerance during secondary 

succession. Many acknowledge that regional climate can affect the frequency of facilitations 

(Bertness and Ewanchuk 2002, Pennings et al. 2003).  Due to hotter climates, lower latitude 

marshes have strikingly higher soil salinities than salt marshes in the northeastern United 

States (Bertness and Pennings 2002) which is true in southern California salt marshes 

experiencing a mediterranean-type climate with hot, dry summers (Zedler 1982, Callaway et 

al. 1990).  Callaway (1990) documented ultrahypersaline soils, 40-100 ppt under vegetation 

in the upper marsh which is substantially saltier than soils in the upper marsh of a New 

England salt marsh, 14-18ppt under vegetation (Bertness 1991).  And, in general, warmer-

climate marshes are composed of more salt tolerant plants (Kuhn and Zedler 1997, Pennings 

and Bertness 1999) that may not benefit from ameliorators.  Indeed, Pennings et al. (2003) 

found facilitation rare amongst the salt-tolerant species in the warm climate of the 

southeastern United States.  Yet, even salt-tolerant species are sensitive to salinity.  Pennings 

and Richards (1998) found wrack deposition to facilitate growth of marsh vegetation in part 

due to moderation of salinity.  In southern California, Zedler (1996) noted that tolerant marsh 
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plants establish more easily during brief reductions of extreme salinity following freshwater 

input. Therefore I predict that the presence of a salinity-reducing neighbor with weak 

competitive abilities may be beneficial even to the salt-tolerant inhabitants of the upper 

marsh in southern California. 

 

I examined whether the presence of the early colonizing halophyte, B. maritima, promoted 

the initial phase of secondary succession in the upper zones of a hypersaline mediterranean-

type salt marsh in California, USA.  I hypothesized: 1. following disturbance, Batis maritima 

facilitates recolonization of vegetation into bare patches of the upper marsh; 2. facilitation by 

Batis maritima is associated with lower soil salinities; and 3. Batis maritima 

disproportionately promotes particular species during recovery. To address these hypotheses, 

I manipulated the presence of B.maritima in artificially cleared plots and monitored regrowth 

rates, soil salinities, and species composition during vegetative recovery. 

 

METHODS 

Site and Species Description 

The experiment was conducted at Mugu Lagoon, 87 km west of Los Angeles, CA, USA 

(Fig. 1).  Located on the Naval Base Ventura County, Point Mugu, the salt marsh is 597 

hectares, relatively large compared to other southern California salt marshes (Onuf 1987).  

The experiment took place near the upper limit of the fully vegetated marsh (Fig. 1), or 

high Salicornia zone (sensu Pennings and Callaway 1992), within the tidal reach of high 

spring tides with inundation at ≈ 5 days/mo (pers. obs.).  Observed tidal flooding agreed 

with that observed by Callaway (1990) in a similarly vegetated zone of a nearby marsh.  
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The subshrub, Frankenia salina and the succulent Salicornia pacifica were the spatially 

dominant species of the marsh matrix vegetation at this elevation.  Batis maritima 

(Bataceae) was also present in this zone.  B. maritima is a decumbent (with stems lying 

on the ground), salt-tolerant succulent found in mid and high intertidal zones throughout 

its range (Lonard et al. 2011) and common to salt marshes of the area (Zedler 1982).  As 

an early colonizing species (Milbrandt and Tinsley 2006, Lonard et al. 2011), B. 

maritima quickly expands into open areas (Zedler 1982, Pennings and Richards 1998). 

 

To evaluate whether there are facilitative effects of B. maritima on the early phase of 

secondary succession, I conducted an experiment that varied regrowth of B. maritima into 

cleared plots.  I monitored the respective rates of revegetation during the growing season 

from April 2008 to August 2008.  Experimental plots with naturally occurring B. 

maritima were randomly chosen using a table of random compass headings and numbers 

of walked steps.  No plots were closer to each other than 2m and maximum distance 

between neighboring plots was 10m.  A circular ring approximately 0.25m
2
 was placed 

on each plot and percent cover of plant species within the ring was measured using the 

point-intercept method (rectangular quadrat over a circular area, 43 points ± 2 SE).  To 

determine if there were differences in pre-experiment species composition, I used 

estimates of percent cover prior to clearing to calculate the proportion each species 

comprised of the total vegetation.  A MANOVA evaluated if proportional species 

composition prior to experimental clearing differed between the B. maritima present and 

B. maritima clipped treatments. 
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From each plot, all aboveground and near-surface (depth of 1-2cm) belowground 

vegetation was gently removed by hand or with a hand shovel.  Four markers were placed 

around each perimeter to designate the original area cleared.  Five cleared patches were 

randomly assigned to each of 2 treatments: B. maritima permitted to recolonize the 

cleared plot (B. maritima present) and B. maritima clipped monthly to prevent B. 

maritima recolonization (B. maritima clipped).  I monitored revegetation rates in plots 

with digital analysis of photos using NIH ImageJ software.  A level, overhead photo was 

taken of each plot at the beginning and end of the growing season.  The regrowth rate in 

each plot was calculated by totaling the percent cover of each matrix species present, 

excluding the manipulated B. maritima, at the final time point.  The difference in the 

regrowth rates between treatments was statistically analyzed using a one-sided Student’s 

t-test since I expected faster rates of regrowth when B. maritima was present. 

 

To quantify pore water salinity, soil cores (5cm deep and 2cm in diameter) were collected 

near the center of the plot on initial and final dates.  Soil samples were stored in sealed 

plastic bags, put on ice in a cooler during transportation to a lab, and placed in a freezer 

until processed.  Frozen soils were weighed, dried in a drying oven, reweighed to 

determine water content, and ground to a fine powder with a mortar and pestle.  Soil 

subsamples (5g) were placed in a beaker with 20ml of distilled deionized water, stirred, 

and allowed to extract for 30 minutes.  Salinity of the supernatant was measured with a 

refractometer and original pore water salinity calculated for the initial amount of water 

present in the core.  Because soil salinity at the end of the growing season is highly 

dependent on initial soil salinity we calculated the difference in soil salinity in each 
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replicate and employed a one-sided t-test to determine whether the increase in soil 

salinity differed between the B. maritima present and B. maritima clipped treatments.  

Final total soil salinities of both treatments are also presented. 

 

To evaluate if the presence of B. maritima altered the pattern of recovery by matrix 

vegetation, I determined whether proportional species composition differed between the 

two treatments at the end of the experiment.  I calculated the proportion of total 

vegetation, not including B. maritima, represented by each species in each treatment 

through image analysis (see above) and conducted a MANOVA to detect any differences 

between treatments.  Additionally, excluding B. maritima, I calculated species richness, 

Shannon’s diversity index (H), and species evenness on the final date.  For each measure, 

I examined treatment differences by Wilcoxon rank-sum tests because the data did not fit 

the assumptions of a t-test. 

 

RESULTS 

Prior to clearing, F. salina and S. pacifica dominated the plots, making up 73% of all the 

vegetation (Fig.2).  Initial species composition did not differ between treatments (p = 

0.70, MANOVA).  Overall mean soil salinity at the onset of the experiment was 59 ppt ± 

5 (±SE) and did not differ significantly between treatments (p = 0.82, two-sided t-test). 

 

The presence of B. maritima promoted growth of vegetation (Fig. 3).  In plots with B. 

maritima, percent cover by matrix species was almost twice that in the B. maritima 

clipped plots (Fig. 3a).  An additional 4% ± 1.3% (± SE) of the plot in the B. maritima 
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present plots was covered by B. maritima (Fig. 3b).  None of the encroaching B. maritima 

stems were rooted in the plots, rather they were decumbent on bare soil.  In plots of both 

treatments, almost all plant cover appeared to result from local vegetative growth.  Only 

Cressa truxillensis, accounting for 1.5% ± 1% (±SE) of the final vegetation, appeared to 

grow from seeds. 

 

Increases in soil salinity were lower when B. maritima was present (Fig.4).  Over the 

course of the season, soils became saltier under both treatments, 113 ± 7 ppt (±SE) for B. 

maritima present and 132 ± 10 ppt (±SE) for B. maritima clipped at final sampling.  In B. 

maritima clipped plots, the increase in soil salinity over the course of the experiment was 

30% higher than in plots with B. maritima present (Fig. 4). 

 

I did not find evidence that the presence of B. maritima promoted particular species 

(Fig.5).  Species composition did not differ significantly between treatments (p = 0.93 

MANOVA).  S. pacifica and A. subterminale were the most and second most common 

species for both treatments at the season end sampling.  Species richness (p = 0.41), 

Shannon’s Diversity Index (H) (p = 0.92), or evenness (p = 0.92) also did not differ 

significantly between treatments. 

 

DISCUSSION 

Facilitation was a prominent mechanism accelerating secondary succession in this 

extremely hypersaline marsh.  The presence of B. maritima promoted more rapid 

recolonization of plant species, presumably by reducing soil salinities in the experimental 
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plots.  Two studies in the northeastern United States demonstrated similar facilitation in 

the process of bare patch closure (Bertness 1991, Bertness and Shumway 1993).  In the 

upper marsh, Bertness and Shumway (1993) reported bare patch closure rates in the 

presence of facilitating neighbors of approximately 50% cover after two growing seasons, 

which is similar to the 31% cover I observed after one growing season with B. maritima.  

Although recovery rates were comparable, salt marshes in the northeast experience a 

milder and cooler climate.  In these marshes there is less evaporation from soils and 

therefore far less saline soils, 30 ppt in bare patches (Bertness 1991, Bertness et al. 1992), 

than I observed in the upper marsh at Mugu Lagoon.  While recent empirical findings 

(Pennings et al. 2003) and expansions of the Stress Gradient Hypothesis indicate that 

extremely high levels of stressors should produce less and weaker facilitations in stress-

tolerant communities (Brooker et al. 2008, Holmgren and Scheffer 2010), my experiment 

demonstrated that salinity stress-induced facilitation can be an important process during 

secondary succession within the plant communities of mediterranean climate marshes.  

 

A small amount of B. maritima played a very effective role in facilitating the early phase 

of secondary succession.  Only 4% of the plot was covered by B. maritima at final 

sampling, yet more matrix vegetation cover and lower soil salinities were found in these 

plots.  In contrast, during secondary succession in the northeast, the facilitator species 

Distichlis spicata covered more than 50% of the plot in the first year of recovery 

(Bertness 1991).  Mechanisms that have been posed in such facilitations include 

sequestering of salts and shade provision (Bertness et al. 1992).  In my study, biological 

compartmentalizing of salt ions was unlikely since B. maritima was not rooted in the 
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cleared plots.  Shade provision, which has been demonstrated elsewhere (Bertness et al. 

1992, Whitcraft and Levin 2007), is a more likely means of lowering soil salinities.  

However, since B. maritima does not appear to cast shade broadly (Pennings and 

Richards 1998, pers. obs.) the effect of B. maritima on soil salinity is probably indirect.  

While the dense, but small prostrate mats appeared to heavily shade the soils directly 

underneath, reducing salinity by 66 ppt directly below B. maritima in other locations 

(Bryson, in prep), this highly localized salinity reduction would not be detected by the 

salinity sampling protocol employed in this study.  An alternative explanation is that 

these extremely local changes in soil salinity permitted faster growth of the larger, shade-

casting plants like Salicornia pacifica that can reduce light at the soil surface by 85% (per 

Whitcraft and Levin 2007).  Pennings and Bertness (1999) posited that a feedback exists 

between soil salinity and matrix vegetation in warm climates, via shading, that reduces 

soil salinities and further enables the growth and survival of vegetation.  During 

secondary succession, B. maritima may trigger the development of this feedback. 

 

The presence of B. maritima did not appear to promote particular species 

disproportionately; rather it appeared that the locally resident species encroached faster 

when B. maritima was present.  The vast majority of revegetation by matrix species 

resulted from vegetative growth, mostly through observable encroachment of 

aboveground vegetation from outside the cleared plot (pers. obs.).  Most plant growth in 

hypersaline zones of southern California marshes is vegetative (reviewed in Zedler et al. 

2003).  Hypersaline soils substantially reduce seedling germination (Noe and Zedler 

2000) and survival (Zedler et al. 2003).  In this early phase of recovery, it appears that B. 
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maritima promoted vegetative expansion of local residents.  I expect, then, that later 

successional phases will approach compositions similar to the immediately local 

community.  

 

Specific features of B. maritima may enable facilitation at higher soil salinities than other 

benefactor species.  The nature of the particular species and type of stress may influence 

when facilitation is functional in highly stressful habitats (Michalet et al. 2006, Maestre 

et al. 2009).  Clonally integrated species, like B. maritima, are those that expand into new 

territory with runners physically connected to rooted adults.  Ideal for early colonizers, 

this morphology allows runners to share water with physically connected portions in less 

extreme habitats while invading harsh, exposed soils (Shumway 1995, Pennings and 

Callaway 2000).  Also, as a decumbent species, B. maritima is likely a poor competitor 

for light. Therefore the cost to benefit ratio of associating with B. maritima may be low, 

and so even salt tolerant species like S. pacifica and A. subterminale (Pennings and 

Callaway 1992, Kuhn and Zedler 1997) benefit during secondary succession.  Two other 

studies documented facilitations in warm climate marshes (Callaway 1994, Pennings et 

al. 2003) though Pennings et al. (2003) found competition far more common.  However, 

in both these studies the beneficiary species were relatively salt-intolerant.  The 

properties of B. maritima appear to expand facilitation to tolerant species.  While 

facilitation may be less common in highly physically-stressed regimes, a well-suited 

benefactor can facilitate even highly stress-tolerant species.  
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Fig. 2.  Mean percent of total vegetation cover of each species present prior to 

clearing.  Species abbreviations are Frank (Frankenia salina), Sal (Salicornia 

pacifica), Arth, (Arthrocnemum subterminale), Batis (Batis maritima), Dist 

(Distichlis  littoralis), and Dead (combined dead species).  Bars are means ± SE. 
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Fig. 3 Percent cover of vegetation at final sampling for a. matrix vegetation, 

not including B.maritima and b. B.maritima alone.  Reported p-values from a 

t-test.  Bars are means ± SE. 
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Fig. 4.  Soil salinity differences between B. maritima present and B. maritima 

clipped treatments.  Black bars are initial salinities.  White bars stacked on top 

initial salinities are change in salinity from the initial and final sampling .  

Reported p-value from a t-test on change in salinity between treatments.  Bars 

are means ± SE. 
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Fig. 5  Final species composition.  No differences in composition 

between treatments (p = 0.93, MANOVA).  Species abbreviations 

as in Fig. 2, additionally Cressa (Cressa truxillensis).  Bars are 

means ± SE. 
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CONCLUSIONS OF THE DISSERTATION 

 

I found that positive species-species interactions occurred in response to both biotic (herbivory) 

and abiotic (salinity) factors.  Associational resistances and facilitations can protect primary 

space holders of the community (Stachowicz 2001).  In a kelp forest, a common epifaunal 

invertebrate, Membranipora membranacea, conferred associational resistance to herbivory by 

mesograzers.  In a salt marsh, I found facilitation to ameliorate salinity stress between plant 

species during secondary succession.  Both of these conditional positive interactions may 

contribute to community persistence in the presence of stress. 

 

The two interactions differed in the strength of their effects on local primary producers.  The 

associational resistance to mesograzer herbivory reduced grazing damage on giant kelp.  

However, with fast growth rates (Reed et al. 2008), kelp can probably tolerate moderate 

herbivory pressure from mesograzers.  Therefore, even though the presence of the encrusting 

bryozoan reduced grazing damage, the benefit conferred to kelp in terms of increased biomass is 

probably quite small.  In contrast, I observed almost a doubling of matrix species percent cover 

when the facilitator, Batis maritima, was present.  This effect reflected a substantial increase in 

plant biomass whereas the effect in the kelp forest was much more modest.  Whether 

associational resistance tends to be weaker relative to facilitation in physically stressful habitats 

is unknown.  This trend, if it exists, would depend on, in part, whether the negative consequences 

of biotic stressors tend to be less than that of physical stressors, and on the ability of neighbors to 

ameliorate each type of stress.  This topic would be an interesting area of future research. 
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The results of my studies also suggested that the temporal consistency of the interactions differ.  

Kelp canopies contain a number of grazing species (Jones 1971, Coyer 1984, Sala and Graham 

2002) whose feeding behaviors are influenced differently by Membranipora membranacea 

(Bernstein and Jung 1979, Wahl and Hay 1995, Bryson, Ch.1).  Therefore whether 

Membranipora promotes or deters grazing is likely to change in space and time.  However, 

previous research in higher latitude salt marshes found that early salt-tolerant colonizers promote 

revegetation by matrix species (Bertness 1991, Bertness and Shumway 1993), similar to the 

findings presented here.  The temporal pattern of recovery described as disturbance, elevation of 

soil salinities, colonization by tolerant species, amelioration of soil salinity, followed by 

facilitation of the matrix, was consistently observed in these studies.  This commonality between 

systems is despite recent empirical evidence that facilitation is less common in high salinity 

regimes with salt-tolerant species (Pennings et al. 2003) which occur in southern California salt 

marshes (Zedler 1982).  Though seasonal (Callaway et al. 1990) and inter-annual (Zedler 1983) 

variation in soil salinities do exist and may influence the effectiveness of this process, I predict 

that facilitation during secondary succession of the salt marsh to be much more of a general 

occurrence than the associational resistance to mesograzer herbivory I documented in a kelp 

canopy. 

 

I propose that the difference in the temporal consistency between the two positive interactions 

reported here is the result of differences in the predictability of the stresses.  Algal herbivores 

and the level of grazing damage they inflict vary greatly in time and space (Lubchenco and 

Gaines 1981) as do the abundances of epibionts (Wahl 1989).  However, vascular plants 

regularly perform less optimally in saline conditions (Zhu 2001) and even salt marsh plants are 
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extremely sensitive to changes in soil salinity (Zedler 1996).  Thus, plants living in saline 

conditions, even within their tolerance range, may benefit from amelioration of soils following 

disturbance.  Thus, I speculate that neighbors that reduce salinity stress with minimal 

competitive effects will be beneficial whereas the benefits of a species-dependent deterrent 

neighbor will be transitory. 

Overall I found two sets of positive interactions in two coastal communities, one biotic 

and one abiotic, but the effects and consistency of each interaction differed between the two 

systems probably due to the predictability of the stressors.  
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