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ABSTRACT OF THE DISSERTATION

Understanding the Molecular Basis of Transparency and Refraction in the Eye Lens

By
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Professor Rachel W. Martin, Chair

Crystallins are water-soluble proteins that are necessary for focusing light on the retina. In

mammalian lenses, there are two classes of crystallins; α-crystallins (molecular chaperone

proteins), and βγ-crystallins (structural proteins). My research has focused on γS-crystallin,

which is the main structural component of the human eye lens cortex and contributes to the

lens fiber organization. Present up to 450 mg/mL in the human lens, γS-crystallin depends

on its long-term ability to remain stable and retain a high refractive index. The G18V vari-

ant of γS-crystallin (γS-G18V), associated with hereditary childhood-onset cataract, shows

decreased stability and increased aggregate formation. My work explores the intermolecu-

lar interactions contributing to the increased aggregation propensity of γS-G18V relative to

wild-type (γS-WT). By titration of a hydrophobic chemical probe (ANS) and by titration

of tripeptides (a library composed of the crystallin sequence), residue-specific binding was

observed via NMR chemical shift perturbations (CSP). Protein-protein interactions have

also been measured for the direct determination of the second virial coefficient, which de-

scribes the intermolecular interactions as being either repulsive or attractive. The second

virial coefficient for lysozyme under physiological conditions will give better insight into how

the individual molecules are interacting with one another in solution. The control experi-

ments with lysozyme will be applied to both γS-WT and a deamidated variant, N15D, to

investigate how prone the crystallins are to aggregation. Additionally, in order to investigate
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the functionality of crystallins from aquatic species, the biophysical characterization of the

J2-crystallin from box jellyfish (Tripedalia cystophora) will be presented. J2-crystallin is

an excellent example of convergent evolution developing a protein to perform the refractive

function needed in the eye lenses and thus a deeper understanding of how these crystallins are

related to one another. Lastly, the refractive index increment (dn/dC) of various crystallins

from aquatic and terrestrial species will be reported to fully understand the functionality of

the eye lens.
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Chapter 1

The molecular basis of transparency

and refraction in the eye lens

1.1 Cataract affects transparency in the eye lens

One of the leading causes of blindness globally is cataract disease [13, 14]. Cataract is

the opacification (cloudiness) of the eye lens [13, 15, 16] which, in turn, causes visible light

passing through the lens to scatter [13]. The opacification of the lens is due to high molecular-

weight protein aggregates [15], reducing the sharpness of the image reaching the retina [16].

Forms of cataract include congenital cataract, caused by inherited mutations, and age-related

cataract, caused by cumulative damage of the protein due to environmental [17]. Surgery

remains the current treatment for cataract. It has been proven to be quick and effective,

however it does have a risk of infection or bleeding that can lead to complete vision loss

[16, 17]. Surgery is also expensive and people in developing countries do not hold access.

Efforts set forth in understanding the eye lens and its transparency can result in alternative

methods towards treating cataract as well as an understanding the mechanism of cataract
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Figure 1.1: Schematic representation of the human eye lens. (A) Light passes through the cornea,
iris, and lens to refract to the back of the retina. (B) Lens cross section containing the lens epithelial
cells and lens fiber cells.

formation at the molecular level.

1.2 The lens’s role in vision

1.2.1 Focusing power in on the human eye lens

The human eye is an important sensory organ giving us the ability to see due to the refraction

of light. Starting from the outer most layer working in, the eye (Figure 1.1A) consists of

the cornea, providing a protective membrane layer against infection and structural damage,

the iris, which controls the size of the pupil, thus the amount of visible light reaching to the

retina to form an image [18, 19]. The three transparent structures surrounding the ocular

layers are the aqueous humor, the vitreous humor, and the lens [18].

The lens itself contains three important components: the capsule, the epithelial cells, and

the fiber cells [20, 18, 21]. The lens capsule acts as a protective membrane layer for the
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lens, as well as controlling the forces necessary to adjust the shape of the lens [20]. The

lens epithelial cells are located inside the anterior capsule where the cells divide and migrate

towards center of the lens (Figure 1.1B) [21]. During maturation, epithelial cells elongate

to form fiber cells that stretch lengthwise in concentric layers from the posterior poles to

the anterior poles of the lens [20, 21]. Before the lens has reached maturity, the fiber cells

express structural proteins called crystallins in concentrations varying across the lens tissue,

creating a refractive index gradient increasing from the cortex towards the nucleus [20]. The

lens has no protein turnover, meaning when the lens has matured, the fiber cells lose their

organelles and are unable to express more crystallins [21].

1.2.2 Crystallins: Robust proteins for life

The crystallins make up to 90% of total protein in the tissue [22] where concentrations are

as high as 450 mg/mL in humans and even higher for some other species [23]. These crys-

tallins are split into two classes: α-crystallins and βγ-crystallins [23, 24]. The α-crystallins

are molecular chaperone proteins that belong to the small heat-shock protein superfamily

[25, 26]. The βγ-crystallins are highly stabile structural proteins necessary for maintaining

transparency and refractivity in the lens [21, 23, 27]. βγ-Crystallins share structural similar-

ity where each domain is comprised of two intercalated antiparallel β-sheet Greek key motifs

[21, 28, 3]. The Greek key motif gives high thermodynamic and kinetic stability between

βγ-crystallins [29], where γ-crystallins are known to be more stable than the β-crystallins

[21].

The focus of this thesis is on human γS-crystallin, which is expressed abundantly in the

lens cortex (periphery) [21, 30, 31]. γS-Crystallin is less stable than other branches of γ-

crystallins [21]. There are four cataract variants associated with γS-crystallin: γS-V42M,

where the methionine mutation disrupts the compact β-sheet packing causing bilateral dense
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α-Crystallin
PDB ID: 2YGD 

β-Crystallin
PDB ID: 1BLB 

γ-Crystallin
PDB ID: 2M3T 

Figure 1.2: Structures of example α-, β-, and γ-crystallins. The structure of α-crystallin is of the
human αB (PDB ID: 2YGD) [1]. The structure of β-crystallin is of bovine βB2 (PDB ID: 1BLB)
[2]. The structure of γ-crystallin is of human γS-crystallin (PDB ID: 2M3T) [3].
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cataract in children [32]; γS-D26G, where tertiary structural changes lead to changes in net

intermolecular interactions causing congenital Coppock-type cataract [33]; γS-S39C, where

preliminary data suggests a minor disruption in one of the Greek key folds leading to con-

genital cataract and microcornea [34]; and γS-G18V, which causes childhood-onset cortical

cataract [21]. Comparing wild-type γS-crystallin (γS-WT) with γS-G18V, the two struc-

tures are fairly similar where the variant shows slight structural changes in the N-terminal

domain, particularly near the mutation site [3]. Although the structural changes are mi-

nor, significant perturbations occur throughout the N-terminal domain resulting in altered

intermolecular interactions leading to aggregation, and ultimately, cataract formation.

1.2.3 Understanding protein aggregation at the molecular level

Protein aggregation is a chemical phenomenon where protein molecules interact in such a

way to form large insoluble complexes. These interactions are often tied to protein folding

and stability, where disruption is observed in the high order structure [35]. Mechanisms of

aggregation include depletion of chaperone activity [3, 36], hydrophobic interactions [37],

electrostatic interactions [38], disulfide linkages [39], salt-bridge formation [39], thermal

destabilization [36], deamidation [40], and other post-translational modifications. In par-

ticular to the crystallins, these proteins must last a lifetime while maintaining transparency

and high refractive power to properly focus light. Crystallins must be stable at high concen-

trations and in compact organizations, making them susceptible to aggregation if they are

damaged. Efforts must be made to help understand and develop a mechanistic model of pro-

tein aggregation which can lead to aiding pharmaceutical drug development into reversing

cataract disease.

As we understand them, crystallins are highly stable proteins which exist in elevated con-

centrations within the eye lens. Crystallins are packed in order to maintain stablity and
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solubility for an organisms lifetime. Due to their high refractive power, measuring the crys-

tallins refractive index increment (dn/dC) can provide a valuable information enabling us

to further understand the functions of these protein. However, minimal literature exists

regarding the measurement of any proteins dn/dc, as lysozyme studied as a standard almost

exclusively. Human γS-cyrstallin is found in the cortical lens epithelial cells, and previous

work has shown that γS-WT is thermally stable and less aggregation prone that γS-G18V

[4]. Chaperone studies involving αB-crystallin shows strong binding to the cataract variant

γS-G18V, whereas no binding is observed in γS-WT [3]. These studies have concluded that

the cataract variant of γS-crystallin is not only aggregation prone, but interacts strongly

with its chaperone protein. Although there are no evident mechanisms describing potential

aggregation pathways for γS-crystallin, I have plenty of biophysical methods available that

could provide a better understanding in the solubility of the crystallins.

Thus, the goals of my thesis are as follows:

• Accurately measure the refractive index increment (dn/dC) for crystallins of aquatic

and terrestrial species to compare among one another

• Develop a working model to understand what factors influence a dn/dC value by com-

paring experimental values with the present theoretical model

• Characterize the changes in exposed hydrophobic surface area between wild-type γS-

crystallin and the cataract variant G18V to help elucidate the mechanisms of aggrega-

tion propensity and chaperone recognition in the context of cataract formation

• Investigate the interaction potential of the N-terminal extension loops of γS-WT and

γS-G18V and to help understand how the N-terminal extension loop plays a role in

cataract formation

• Use experimental and theoretical approaches to characterize protein-protein and protein-

solvent interactions
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• Express, purify, characterize an eye lens protein from the box jellyfish (Tripedalia

cystophora), which is believed to have a novel fold

Overall, this thesis uses methods to investigate protein aggregation through protein-protein

interactions. Probing into these interactions will ultimately help understand lens trans-

parency and refractivity.
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Chapter 2

Protein refractive index increment is

determined by conformation as well

as composition

2.1 Background

The crystallins of the eye lens are extremely stable, soluble proteins responsible for maintain-

ing its transparency and providing sufficient refractive power to focus light onto the retina

[20]. The crystallins’ solubility and and stability are possibly why these proteins were selected

for transparency [41].The high refractivity of the eye lens results from two major contribu-

tions; the high protein concentration (between 700 to 1000 mg/mL in some aquatic species)

[42, 43, 44, 45] and the high refractive indices of the crystallin proteins themselves [46]. The

latter is often expressed as the change in refractive index with concentration, or refractive

index increment (dn/dC). In lens proteins, where the increased refractive index is function-

ally important, dn/dC is generally higher than for proteins not selected for this function [47].
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Two major classes of crystallins, α-crystallins and βγ-crystallins, make up 90% of the verte-

brate eye lens [48, 49]. α-Crystallins are small heat shock proteins that are most abundant

in mammalian species [50]. βγ-Crystallins are structural proteins that share a Greek key

motif [51, 50] and are the predominant class of crystallins in fish lenses [48, 49], where they

contribute to the high concentration in the nucleus and cortical region [51, 33]. In particular,

γ-crystallins are the more stable class of crystallins [52]. Mammalian γ-crystallins contain

a significantly larger amount of methionine and/or cysteine residues [49] as well as a set of

conserved tryptophan residues [51]. The amount of sulfur-containing residues is even higher

in fish γM-crystallins [51]. The high content of methionine and cysteine are believed to me-

diate intermolecular interactions that could enhance solubility and dense packing in lenses

[51].

Crystallins from most species, such as cephalopods (S-crystallins) [53] and jellyfish (J1- and

J3-crystallins) [42], are derived from proteins involved in gene-sharing [42, 53]. For ex-

ample, S-crystallin shared high sequence homology with the metabolic enzyme glutathione

S-transferase [43] while J1- and J3-crystallins show similarity to ADP-ribosylglycohydrolases

and vertebrate saposins, respectively[42]. In contrast, J2-crystallin has shares no sequence

homology with other proteins and is preferentially expressed in the eye lens [42]. Comparing

the eye lenses among vertebrate versus invertebrate and terrestrial versus aquatic species

provides better insight the crystallin proteins. A refractive index increment is a measure-

ment capable of comparing the refractive power of the crystallins.

The refractive index of a solution is given by the relationship between the angle of inci-

dent light and its refraction when passing through two different isotropic media, otherwise

known as Snell’s Law [54]. Taking solutions at varying concentrations and reporting their

refractive indices yields the dn/dC value (the change in refractive index over the change
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in concentration) [44, 55, 56], measured using a differential refractometer. Experimentally,

protein or polymer solutions are injected at increasing concentrations through a flow cell. A

laser source is used to shine light on the sample in a split flow cell, the reference solution

in one half and the sample solution flowed continuously in the other, where the refraction

proportional to the difference between the sample and reference solutions is measured. The

dn/dC value measured is used for analytical untracentrifugation, surface plasmon resonance

(SPR), and protein molecular mass from light scattering measurements [44, 55, 57]. Typ-

ically, a general dn/dC value used is for all proteins (0.185 g/mL) [58]. However, dn/dC

values have been measured for a few proteins such as bovine serum albumin (BSA) and hen

egg white lysozyme (HEWL). Although BSA and HEWL are typical protein standards used

for calibration, their dn/dC values can vary due to solvent (in this case buffered solutions),

wavelength of light, and even temperature [56, 59, 60], resulting in conflicting data in the

literature. These conflicting data may also rise due to using narrow sample ranges used

(between 0.5 to 5 mg/mL). Expressing and purifying these protein samples at similar con-

centrations with the appropriate volumes can prove to be labor intensive and require large

amounts of sample, making it difficult for measurement of other proteins.

Here we report the measured dn/dC values of several vertebrate and invertebrate crystallins

for the first time and compare the refractive power of these proteins across different species.

Since these eye lens proteins’ purpose is to refract light, we hypothesize that their dn/dC

values will be significantly higher than other proteins, where the average value is 0.185

mL/g. To our knowledge, the literature has not shown dn/dC measurements for lens crys-

tallins. However, a prediction model using the weighted average of individual dn/dC residue

measurements has been reported [44]. Under the assumption that all proteins have a nar-

row dn/dC value, Zhao and coworkers developed a calculator to predict dn/dC values by

taking the weighted average of known amino acid dn/dC values using unmodified protein

sequences[44]. Contra the prevailing model, we find that for the lens crystallins that the
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measured dn/dC values are much higher than those predicted using amino acid composition

alone. To accurately measure the dn/dC, approximately 750 mg of each crystallin protein

was prepared at larger concentration ranges, making this method labor intensive, yet thor-

ough. With these dn/dC measurements of various crystallins, we will able to show that the

current calculated model does not match for proteins selected for high refractive power and

that other factors may be involved.

2.2 Methods Investigating the crystallin refractive in-

dex increment

2.2.1 Plasmid construction

Plasmids containing the cDNA sequence of human γS-, toothfish γS1-, toothfish γS2-, tooth-

fish γM8b-, toothfish γM8c-, toothfish γM8d-, and box jellyfsh J2-crystallin were purchased

from Blue Heron (Bothell, WA). Primers for human γS-, toothfish γS1-, toothfish γS2-, and

J2-crystallins were purchased from Sigma-Aldrich (St. Louis, MO) while primers for γM8b-,

γM8c-, and γM8d-crystallins were purchased from Integrated DNA Technologies (Coralville,

IA). The crystallin genes were amplified with primers containing flanking restriction sites for

NcoI and XhoI, an N-terminal 6x His tag, and a TEV cleavage sequence (ENLYFQ). The

polymerase chain reaction product was cloned into a pET28(+)a vector, purchased from No-

vagen (Darmstadt, Germany). Human γS-crystallin was prepared by William D. Brubaker

as previously described [4]. Toothfish γS1- and γS2-crystallin were prepared by Carolyn N.

Kingsley as previously described [61].

11



2.2.2 Expression and purification of eye lens crystallins

A 50 mL starter culture of Luria Broth (LB) media was innoculated with a single colony

of Rosetta (DE3) Escherichia coli containing the vector of either human γS-, toothfish

γS1-, toothfish γS2-, toothfish γM8b-, toothfish γM8c-, toothfish γM8d-, or box jellyfsh

J2-crystallin. Starter cultures were grown at 37 ◦C for 16 hours shaking at 225 RPM in

a New Brunswick Scientific Innova-42R incubator Shaker (Hauppauge, NY). For human

γS-crystallin and box jellyfish J2-crystallin, the individual starter cultures were used to

innoculate a 1 L culture of LB with a starting OD600 of approximately 0.20. The cultures

were grown at 37 ◦C with shaking at 225 RPM until an OD600 of 0.60 was reached. Protein

overexpression was induced using IPTG (Gold Biotechnology) at a final concentration of

0.10 mM at 37 ◦C for 8 hours (γS-WT) and 25 ◦C for 18 hours (J2-crystallin). The toothfish

crystallins were overexpressed using the Studier autoinduction protocol at 25 ◦C for 24 hours.

Cells were collected via centrifugation with a Beckman Coulter Avanti-JE centrifuge (Brea,

CA) spinning at 6000 RPM for 20 minutes. The cell pellets were resuspended in 40 mL of

50 mM sodium phosphate buffer with 300 mM sodium chloride, 10 mM imidazole, 0.05%

sodium azide at pH 7.4. Cells were lysed by sonication in 10 second intervals for a total

of 30 minutes, followed by centrifugation at 15000 RPM for 90 minutes. The supernatant

was filtered with through a 0.22 µm filter (Millipore) before being loaded onto a Bio-Rad

Duo-Inject FPLC system (Hercules, CA). The His-tagged crystallins were purified using a

Ni-IDA column (Bio-Rad) and cut by a His-tagged TEV protease (produced in-house). The

TEV protease and His-tag were removed by a second application to a Ni-IDA column. The

crystallins were then run on a HiLoad 16/600 Superdex 75 PG gel filtration column from

GE (Pittsburgh, PA) using10 mM sodium phosphate buffer, 100 mM sodium chloride, 0.05%

sodium azide at pH 6.9. All of the toothfish crystallins were expressed and purified by Jan

C. Bierma.

Tunicate (Ciona intestinalis) Ci -βγ-crystallin was expressed and purified as previously de-
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Table 2.1: Table of extinction coefficients for various crystallins.

Crystallin ε at 280 nm (mL*mM-1cm-1)
Human γS 2.05
Toothfish γS1 2.16
Toothfish γS2 2.30
Toothfish γm8b 1.19
Toothfish γm8c 1.06
Toothfish γm8d 1.06
Ci-βγ 1.50
Hen Egg White Lysozyme 2.64
Box jellyfish J2 0.329

scribed in Kozlyuk et al. [62].

2.2.3 Sample preparation and refractive index increment experi-

ments

Lyophilized lysozyme from chicken egg white (Cat. No. 195303) was purchased from MP

Biomedicals (Solon, OH). Lysozyme was dissolved 10 mM sodium phosphate buffer, 100 mM

sodium chloride, 0.05% sodium azide at pH 6.9 for a final concentration of 50 mg/mL.

Crystallin proteins were concentrated down to a stock solution of 50 mg/mL. Stock solutions

for all proteins were used to make samples with concentrations ranging from 0.5 to 30 mg/mL.

The concentrations were checked by UV absorbance measurements at 280 nm using the

following extinction coefficients [63]:

Refractive index increments were measured following the batch-mode technique using an

Optilab rEX refractive index detector (Wyatt Technology, Santa Barbara, CA) configured

with a 685 nm fiber-optic laser diode source.
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2.2.4 Calculation of dipole moments

For proteins where a structure has been solved, PDB files were used. For proteins without a

solved structure, the structures were predicted using the Robetta server [64, 65]. To calculate

protonation states, the PDB files were uploaded to the H++ server, version 3.2 [66, 67, 68],

with a pH set at 6.9, salinity at 100 mM and the internal and external dielectric constants

set at 10 and 80, respectively. The resulting structures were opened in VMD [11] and the

Dipole Watcher plugin, version 1.0 was used to calculated the magnitude of the dipole [69].

2.3 Results and discussion

The species of crystallins for which dn/dC was measured included human, Antarctic tooth-

fish, box jellyfish, and tunicate. Table 2.2 contains the dn/dC values measured for the crys-

tallins. Lysozyme dn/dC measurements were performed as a control where we compared

our results to literature values, which did indeed match [70]. However, the crystallin dn/dC

measurements agreed with our hypothesis of these lens proteins having a higher dn/dC value

rather than the prevailing model. With the exception of Ci -βγ-crystallin, the terrestrial and

aquatic lenses have a dn/dC of 0.20 mL/g or above, significantly higher than the 0.185 mL/g

general average for proteins. The toothfish crystallins showed some of the highest dn/dC

values, consistent with the fact that these are aquatic species and must have lenses with a

higher refractive power to make up for the loss of the air/water interface terrestrial species

have.

We compared our measured results with the predicted dn/dC values using a dn/dC calcu-

lator [44]. Zhao and coworkers developed a model to predict the dn/dC value of a protein

based on the weighted average dn/dC of the residues within the protein. Figure 2.1 contains

14



Table 2.2: Table representing the experimentally measured dn/dC values and predicted dn/dC
values of crystallins from various species. All of the crystallins measured have dn/dC values signif-
icantly larger than the average dn/dC for proteins.

Crystallin Calculated dn/dC (mL/g) Measured dn/dC (mL/g)
Human γS 0.1985 0.2073 ± 0.0014
Toothfish γS1 0.2020 0.2183 ± 0.0014
Toothfish γS2 0.2002 0.2168 ± 0.0014
Toothfish γM8b 0.2003 0.2158 ± 0.0015
Toothfish γM8c 0.2003 0.2061 ± 0.0014
Toothfish γM8d 0.1995 0.2041 ± 0.0014
Ci-βγ 0.1917 0.1985 ± 0.0012
Hen Egg White Lysozyme 0.1963 0.1970 ± 0.0010
Box jellyfish J2 0.1920 0.2037 ± 0.0012

the histogram of the predicted dn/dC values of the human proteome using the calculator

developed by Zhao and coworkers [44]. The 62,378 protein sequences were gathered from

the University of California Santa Cruz (UCSC) genome browser for the human February

2009 assembly (GRCh37/hg19) [44]. Superimposed on this histogram are the predicted and

measured dn/dC values are plotted to compare with the predicted dn/dC model. As it was

presented by Zhao and coworkers, the distribution of the human proteome predicted dn/dC

values is close to Gaussian with the average dn/dC reported at 0.1899 mL/g and a small

standard deviation of 0.0030 mL/g [44]. In the case of hen egg white lysozyme, the predicted

dn/dC value matched the experimentally measured dn/dC value. The eye lens crystallins

show something significantly different; not only are the predicted dn/dCs higher than the

predicted average, which are located at the upper tail of the distribution, but the experi-

mentally measured dn/dC values exceed their predicted values. In fact, the spread of the the

measured value spans the width of the distribution. Experimental dn/dC values conclude

that amino acid composition is not the sole contributor to a crystallin’s dn/dC value, since

the crystallins are selected for high refractivity in the eye lens. The distribution of the dn/dC

values show that the current model of predicting dn/dC values must be updated, involving

significant components of a protein’s structure.
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Figure 2.1: Histogram of predicted dn/dC values for the 62,378 proteins in the human proteome,
gathered from the University of California Santa Cruz (UCSC) genome browser February 2009
assembly (GRCh37/hg19). Predicted dn/dC values and experimentally measured dn/dC values of
crystallins are overlayed on the histogram indicated in an asterisk and closed circle, respectively.
Predicted and measured crystallin dn/dC values are significantly higher than the average dn/dC
of 0.1899 mL/g. The experimentally measured dn/dC values surpass their predicted dn/dC values
for crystallin, which fall within the highest end of the Gaussian distribution.
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Based on our results, we conclude that amino acid composition is not the sole determinant

of a protein’s dn/dC value. Instead, we suggest that the 3-dimensional (3D) structure and

polarization could contribute to the overall dn/dC value. The 3D structure of a protein

consists a main chain of covalently linked amino acids, which twists and bends to a low-

energy state stabilized by intramolecular interactions among the side-chain groups. The

sum of these intramolecular interactions creates an electric field, which can be visualized as

simple distribution of charge [71]. These interactions can include hydrogen bonding interac-

tions, hydrophobic interactions, electrostatic interactions, and pi-pi interactions in addition

to other attractive/repulsive interactions [71]. Hydrogen bonding is often described as a

dipole-dipole interaction [71]. Aromatic residues in close proximity exhibit resonance energy

transfer amongst a donor molecule and acceptor molecule following Förster’s theory de-

scribing molecular interactions [72]. This resonance energy transfer introduces larger dipole

moments within the protein itself, potentially providing a larger influence on the protein’s

dn/dC. Figure 2.2 (right panel) highlights the aromatic resides that could contribute towards

Förster resonance transfer for all crystallins measured. Aromatic residues make up close to

20% of human γS-, toothfish γS1- and γS2-crystallins while on average, proteins contain

between to 11-12% [73].

Additionally, the protein’s own electric field forms a dynamic response due to reorientation

of its molecules to optimize its interactions with the electric field, which could result in

the formation of large dipoles [74, 75, 76]. Figure 2.2 (left panel) shows the overall dipole

moments for all crystallins measured using VMD [11] following the methods from Dixit et

al. [12]. Although these predicted dipole moments are based on comparative structures,

the large dipole moments calculated for Ci -βγ-crystallin (469.9 D), toothfish γS2 (463.8 D),

toothfish γS1 (383.6 D), and human γS (259.1 D). Table 2.3 contains the calculated dipole

moments for the crystallins. It has been suggested that a protein, or even a class of proteins,

with a large dipole moment is considered to have a highly specific role [76]. In the case of

crystallins, that role is to refract light in the eye lens.
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Figure 2.2: Molecular surface representations of (A) human γS-crystallin and (B) toothfish γS1-
crystallin, (C) γS2-crystallin, (D) toothfish γM8b-crystallin, (E) toothfish γM8c-crystallin, (F)
toothfish γM8d-crystallin, (G) Ci -βγ-crystallin, and (H) lysozyme. The left panel portrays the
calculated overall dipole moment. The right panel portrays the highlighted aromatic residues in
orange which are possibly contributing towards Förster resonance transfer resulting in dipole-dipole
interactions.
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Table 2.3: Table containing the calculated dipole moment of crystallins used in this study. The
overall dipole moments for all crystallins were measured using VMD [11] following the methods
from Dixit et al. [12].

Crystallin Estimated Dipole Moments (D)
Human γS 259.1
Toothfish γS1 383.6
Toothfish γS2 463.8
Toothfish γm8b 209.4
Toothfish γm8c 163.7
Toothfish γm8d 108.2
Ci-βγ 173.9
Hen Egg White Lysozyme 383.6

2.4 Conclusion

For the first time, I have accurately measured the refractive index increment of crystallins

from aquatic and terrestrial species. These measured dn/dC values finally allow for compar-

ison among terrestrial and aquatic crystallins, which are proteins responsible in refracting

light. Although the current model developed by Zhao et al. of calculating dn/dC values

using amino acid composition is very quick and efficient, to really understand the differ-

ences among crystallins and comparing them among other species, we put forth the effort

to experimentally measure. Using a wide concentration range, our results showed that these

crystallins not only have higher dn/dC values than predicted, but that they vary by quite

a large amount indicating that other components must be taken into account to determine

a protein’s dn/dC. Future studies will include the measured dn/dC values of an expanded

crystallin library that includes more terrestrial and aquatic species as well as including crys-

tallins that are expressed in only one area of the lens (nucleus versus cortex). We would also

like to explore how the dn/dC value is affected by measuring the crystallins in a partially

unfolded environment, giving much insight on how these intramolecular interactions really

play a role.
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Chapter 3

Increased hydrophobic surface

exposure in the cataract-related

G18V variant of human γS-crystallin

3.1 Background

The solution-state NMR structure of wild-type γS-crystallin has been determined [3], re-

vealing a double Greek key architecture for each of the two domains, consistent with the

structures of other βγ-crystallins [28, 77]. The childhood-onset cataract variant G18V (γS-

G18V) is structurally similar to γS-WT, but it has dramatically lower thermal stability

and solublity [4, 21], as well as strong, specific interactions with αB-crystallin, the holdase

chaperone of the lens [3]. Despite the well-documented aggregation propensity and reduced

stability of γS-G18V, the particular intermolecular interactions leading to its aggregation

are as yet unknown. Protein self-aggregation leading to cataract can occur due to an in-

crease in net hydrophobic interactions, as previously shown in the congenital Coppock-type
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cataract variant D26G γS-crystallin [33], the cerulean cataract variant P23T γD-crystallin

[78], acetylation of the G1 and K2 residues in γD-crystallin [23], and the lamellar cataract

variant D140N αB-crystallin [79]. All of these mutations introduce altered conformations

that produce lowered solubility by exposure of hydrophobic patches on the surface, even

though the structural differences from their wild-type counterparts are relatively subtle. γS-

G18V is no exception; the mutation does not cause large-scale unfolding or rearrangement

into a misfolded conformation, but rather produces altered intermolecular interactions with

itself and with αB-crystallin [3].

The fluorescent probe 1-anilinonaphthanlene-8-sulfonate (ANS), which has both negatively

charged and hydrophobic moieties, is often used to quantify exposed hydrophobic surface

patches in proteins by introducing known concentrations of ANS into a protein solution and

measuring its emission spectrum [78, 80, 81]. Two types of protein-ANS interactions are

required for fluorescence enhancement: hydrophobic interactions between the conjugated

ring system of ANS and the protein surface [82], and electrostatic interactions between the

sulfonate group and positively charged side chains at the binding site [83]. An increase in

fluorescence intensity indicates that either more ANS is binding to the protein surface, or

that it is bound more tightly, correlating with higher surface hydrophobicity. This method

has been used to characterize exposed hydrophobic surface in a number of protein systems,

including the mitochondrial chaperone protein Atp11p, which recognizes its client proteins

via hydrophobic interactions [84], and aggregation-prone variants of superoxide dismutase-1

(SOD1), an essential cellular enzyme whose aggregation is associated with amyotrophic lat-

eral sclerosis (ALS) [85, 86]. Despite the utility of ANS binding as a probe of hydrophobic

surface exposure, and the sensitivity afforded by using fluorescence as a reporter, this assay is

limited by the lack of detailed information about which amino acid residues, or even general

regions of the protein, are taking part in the dye-binding interaction. NMR chemical shift

perturbation (CSP) mapping can forge a link between fluorescence enhancement upon dye
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binding and the corresponding changes in the local chemical environment of specific residues

in the protein.

Nuclear Magnetic Resonance (NMR) is an analytical technique where structural information

is gathered based on the nuclear spin characteristics of the protein of interest. By using a

2-D correlation experiment such as 1H-15N HSQC, chemical shifts are assigned that repre-

sent each N-H correlation within the protein, thereby identifying each residue or sidechain.

Of course, there must be an existing protein structure to use the HSQC assignments. The

addition of a ligand allows for determination of binding sites within the protein [87]. Using

ANS titration experiments, comparisons between wild-type and variant proteins can then

be used to compare differences in exposure of hydrophobic residues on the surface under

particular solution conditions. CSP mapping is a commonly used technique for investigating

protein-protein or protein-ligand interactions and interfaces [87], and is the basis of the “SAR

by NMR” methodology that is indispensable in the identification of active pharmaceutical

agents [88].

Molecular docking, a computational technique used widely to model the conformation of

protein-ligand complexes, enables experimental perturbations to be analyzed in atomistic

detail. Bound ligand conformations, or poses, are ranked using an empirical scoring function

designed to evaluate intermolecular interactions using minimal computational time. Conven-

tionally, knowledge of the active site is used to guide the pose generation, often in the context

of screening large libraries of compounds against known protein structures [89, 90, 91, 92].

However, docking protocols without prior knowledge of the active site (blind docking) [93],

have successfully identified putative allosteric binding sites of drugs, leading to the design

of novel allosteric modulators [94], and fluorescent dyes [95, 80]. Bis-ANS binding sites

found by docking, validated with steady-state and time-resolved fluorescence assays, have
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been used to identify hydrophobic patches in a lipase from Bacillus subtilis [96]. Using ANS

binding mapped by NMR in conjunction with molecular docking, we focus on determining

whether the cataract-related G18V variant of human γS-crystallin has increased exposure

of hydrophobic residues that could explain its aggregation propensity and/or recognition by

αB-crystallin.

3.2 Materials and methods used to investigate γS-crystallin

interacting with ANS

3.2.1 Plasmid construction

Plasmids containing the cDNA sequences γS-WT and γS-G18V crystallin were purchased

from Blue Heron (Bothell, WA) while primers were purchased from Sigma-Aldrich (St. Louis,

MO). The crystallin genes were amplified with primers containing flanking restriction sites

for NcoI and XhoI, an N-terminal 6x His tag, and a TEV cleavage sequence (ENLYFQ). The

polymerase chain reaction product was cloned into a pET28(+)a vector, purchased from

Novagen (Darmstadt, Germany). The γS-crystallin proteins were prepared by William D.

Brubaker as previously described [4].
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3.2.2 Expression and purification of natural abundance γS-WT

and γS-G18V

A 50 mL starter culture of LB media was innoculated with a single colony of Rosetta (DE3)

E. coli containing a pET28(+)a vector, purchased from Novagen (Darmstadt, Germany).

The vector containing either γS-WT or γS-G18V gene inserts was grown at 37 ◦C for 16

hours at 225 RPM in a New Brunswick Scientific Innova-42R incubator Shaker (Hauppauge,

NY). The individual starter cultures were used towards a 1 L culture of LB with a starting

OD600 at approximately 0.20. The cultures were grown at 37 ◦C with shaking at 225 RPM

until an OD600 of 0.60 was reached. Protein overexpression was induced using IPTG (Gold

Biotechnology) at a final concentration of 0.10 mM at 37 ◦C for 8 hours (γS-WT) and 25

◦C for 18 hours (γS-G18V). Cells were collected via centrifugation with a Beckman Coulter

Avanti-JE centrifuge (Brea, CA) spinning at 6000 RPM for 20 minutes. The cell pellets were

resuspended in 40 mL of 50 mM sodium phosphate buffer with 300 mM sodium chloride,

10 mM imidazole, 0.05% sodium azide at pH 7.4. Cells were lysed by sonication in 10 second

intervals for a total of 30 minutes, followed by centrifugation at 15000 RPM for 90 minutes.

The supernatant was filtered with through a 0.22 µm filter (Millipore) before being loaded

onto a Bio-Rad Duo-Inject FPLC system (Hercules, CA). The His-tagged crystallins were

purified using a Ni-IDA column (Bio-Rad) and cut by a His-tagged TEV protease (produced

in-house). The TEV protease and His-tag were removed by a second application to a Ni-IDA

column. The purified crystallins were dialyzed into 10 mM sodium phosphate buffer with

0.05% sodium azide at pH 6.9.
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3.2.3 Expression and purification of 15N-labeled γS-WT and γS-

G18V

A 50 mL starter culture of LB media innoculated with a single colony Rosetta (DE3) E. coli

cell containing a pET28(+)a vector with either γS-WT or γS-G18V gene inserts was grown

at 37 ◦C for 16 hours at 225 RPM. The individual starter cultures were used to innoculate

a 1 L culture of LB with a starting OD600 at approximately 0.20. The cultures were grown

at 37 ◦C at 225 RPM until an OD600 of 0.60 was reached. The cells were then collected in

500 mL batches by centrifugation at 3000 RPM for 30 minutes and each 500 mL batch was

resuspended in 1 L 15N-labeled minimal media cultures. The 1 L minimal media cultures

were grown for an additional 2 hours at 37 ◦C at 225 RPM. Protein overexpression was

induced using IPTG (Gold Biotechnology) at a final concentration of 0.10 mM at 25 ◦C for

30 hours for both γS-WT and γS-G18V. Cells were collected via centrifugation, spinning at

6000 RPM for 20 minutes. The cell pellets were resuspended in 40 mL of 50 mM sodium

phosphate buffer with 300 mM sodium chloride, 10 mM imidazole, and 0.05% sodium azide

at pH 7.4. Cells were lysed by sonication in 30 second intervals for a total of 10 minutes,

followed by centrifugation at 15000 RPM for 90 minutes. The supernatant was filtered with

through a 0.22 µm filter (Millipore) before being loaded onto a Bio-Rad Duo-Inject FPLC

system (Hercules, CA). The His-tagged crystallins were purified using a Ni-IDA (Bio-Rad)

and cut by a His-tagged TEV protease (produced in-house). The TEV protease and His-tag

were removed by a second application to a Ni-IDA column. The purified 15N-labeled crys-

tallins were dialyzed into 10 mM sodium phosphate buffer with 0.05% sodium azide at pH 6.9.
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3.2.4 ANS fluorescence assay

Fluorescence spectra were collected as a function of ANS concentration for γS-WT and γS-

G18V with a F4500 Hitachi fluorescence spectrophotometer with slits set to 5 nm. The

excitation and emission wavelengths were 390 nm and 500 nm, respectively. Protein con-

centrations for both γS-WT and γS-G18V were approximately 1 mg/mL in 10 mM sodium

phosphate buffer and 0.05% sodium azide at pH 6.9. ANS concentrations ranging from 5

µM to 2 mM were measured using ε= 4.95 mM−1 cm−1 at 350 nm [97].

3.2.5 Dynamic Light Scattering (DLS) Measurements

Dynamic light scattering (DLS) measurements were collected for γS-WT and γS-G18V with

a Malvern Zetasizer ZS Nano DLS. Protein concentrations for both γS-WT and γS-G18V

were approximately 0.3 mM in 10 mM sodium phosphate buffer and 0.05% sodium azide at

pH 6.9. ANS at concentration ratios of 1:0, 1:0.5, 1:1, and 1:2 of γS:ANS were measured to

determine the aggregation state of crystallin.

3.2.6 NMR experiments

Experiments were performed on a Varian UnityINOVA spectrometer (Agilent Technologies,

Santa Clara, CA) operating at 800 MHz and equipped with a 1H–13C–15N 5 mm tri-axis

PFG triple-resonance probe, using an 18.8 Tesla superconducting electromagnet (Oxford

Instruments). Decoupling of 15N nuclei was performed using the GARP sequence [98]. 1H

chemical shifts were referenced to TMSP, and 15N shifts were referenced indirectly to TMSP.

NMR data were processed using NMRPipe [99] and analyzed using CcpNMR Analysis [100].
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Center operating frequencies and (unless otherwise stated) center frequency offsets were as

follows:

Center 1H: 799.8056964 MHz 13C: 201.1282461 MHz 15N: 81.0504078 MHz

Offset 1H: -294.932 Hz (4.8 ppm) 13C: -9863.17 Hz (43 ppm) 15N: 2400 Hz (116.7 ppm)

3.2.7 Calculation of chemical shift perturbations

1H-15N HSQC spectra of γS-WT and γS-G18V were collected in the presence and absence

of ANS at concentration ratios of 1:0, 1:0.5, 1:1, and 1:2 of γS:ANS [101]. Resonances were

identified and assigned based on chemical shift data previously collected by our group. The

full NMR spectra can be is shown in Figures 3.1 and 3.2. Resonances showed perturbations

that are indicative of ANS binding. The change in chemical shift for each peak in the 2D

spectrum upon ANS binding was calculated using the following chemical shift perturbation

(CSP) equation:

∆δavg =

√
(∆δN/5)2 + (∆δH)2

2
(3.1)

A strong-binding threshold for each set of conditions was set at two times the root mean

square (RMS) of the calculated CSP, while the weak-binding threshold was set at half the

RMS to determine which residues had strong or weak binding with ANS. These calculated

thresholds are shown in Table 3.1.

3.2.8 Binding site search by rigid receptor docking

Protein coordinates were obtained from the NMR structures of γS-WT and γS-G18V crys-

tallins (PDB ID: 2M3T and 2M3U) [3]. Autodock Tools [102] was used to prepare both the
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Figure 3.1: 1H-15N HSQC spectra of 15N labelled γS-WT with increasing concentrations of ANS.
Ratios of γS:ANS were 1:0, 1:0.5, 1:1, and 1:2 where the concentration of protein was approximately
0.3 mM. Spectra were acquired at 25 ◦C. Residues were assigned based on previous assignments of
γS-WT [4].

Table 3.1: Root mean square (RMS) values used for ANS-residue contact frequency calculations
and CSP calculations. The Boltzmann weighted-contact frequencies had a strong-binding threshold
set at two times the RMS of the calculated ANS-residue contact frequency, while the weak-binding
threshold was set at half the RMS value. Following the CSP calculations, a strong-binding threshold
for each set of conditions of γS:ANS was set at two times the RMS of the calculated CSP, while
the weak-binding threshold was set at half the RMS.

Contact Frequencies 1:0.5 1:1 1:2

WT
strong-binding 0.02699 0.02420 0.02699 0.03382
weak-binding 0.01349 0.00605 0.00675 0.00846

G18V
strong-binding 0.02345 0.02342 0.02345 0.02345
weak-binding 0.01172 0.00586 0.00586 0.00586
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Figure 3.2: 1H-15N HSQC spectra of 15N labelled γS-G18V with increasing concentrations of ANS.
Ratios of γS:ANS were 1:0, 1:0.5, 1:1, and 1:2 where the concentration of protein was approximately
0.3 mM. Spectra were acquired at 25 ◦C. Residues were assigned based on previous assignments of
γS-G18V [4].
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A B

Figure 3.3: Clustering of rigid docking results to define flexible binding sites (γS-WT shown). A.
Set of poses containing both hydrophobic and electrostatic contacts necessary for ANS fluorescence
enhancement upon binding. The resulting set covers nearly the entire surface of the protein. B.
Clustering of the screened docking set resulted in 20 binding sites. Pose clusters near highly
perturbed residues (shown as blue spheres) were picked to define search spaces for flexible docking.
The pose cluster colors distinguish different search spaces.

receptor (crystallin) and ligand (ANS) by merging non-polar hydrogens atoms into united

heavy atoms. The docking simulations, run by Eric K. Wong with the Tobias Lab at UCI,

was performed over each one of twenty solution-state NMR conformations for either γS-

WT or γS-G18V [37]. The resulting poses were screened to ensure that both electrostatic

and hydrophobic interactions required for ANS fluorescence enhancement upon binding were

present. Docked poses that did not include both interactions within the first coordination

shell of the ANS-protein radial distribution function were considered non-fluorescent and

removed from the docked set. The screened docked set covers most of the protein surface as

shown in Figure 3.3.

3.2.9 Calculation of residue contacts

To compare the screened docked set with the residue-based CSP data, ANS-residue contact

frequencies were calculated by summing the Boltzmann weights of all the poses in contact
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Figure 3.4: ANS-residue contact frequencies for γS-WT (green) and γS-G18V (blue) from docking
simulations. Although non-specific binding is observed for both proteins, the contact frequencies
show more ANS binding for γS-G18V than γS-WT, with maximum binding localized near the
interdomain interface.

with a given residue. The Boltzmann weight of a given docked pose was calculated according

to

wi =
exp(−Ei/kBT )∑
i exp(−Ei/kBT )

(3.2)

where i is the index of the docked pose, Ei is the pose binding energy, kB is the Boltzmann

constant, and T is the absolute temperature. The residue contact frequencies for each pro-

tein, calculated by Eric K. Wong [37], are shown in Figure 3.4. Following the CSP analysis,

to determine which residues had strong- or weak-binding with ANS, a strong-binding thresh-

old was set at two times the RMS of the calculated ANS-residue contact frequency, while

the weak-binding threshold was set at half the RMS value. These values appear along with

the CSP thresholds in Table 3.1.
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3.2.10 Flexible refinement of binding sites

A flexible docking refinement, run by Eric K. Wong, was performed near all the highly per-

turbed residues identified using the strong-binding cutoff on the CSP data [37]. Docking

search spaces were defined by clustered conformations of ANS from the screened docked set

used to calculate the ANS-residue contact frequencies. Clustered poses were grouped into

potential binding sites near the experimentally perturbed residues as shown in Figure 3.3B.

Residues with an experimental CSP above the weak-binding cutoff were considered as flexi-

ble. A total of five potential binding sites were used to dock ANS to either flexible γS-WT

or γS-G18V. The resulting poses were clustered again, and the locations and interactions of

each pose were compared visually.

3.3 Results and Discussion

3.3.1 ANS fluorescence indicates that the relative surface hydropho-

bicity of γS-G18V is higher than that of γS-WT

Dye-binding assays were performed on γS-WT and the aggregation prone variant, γS-G18V.

The ANS fluorescence measurements for γS-WT and γS-G18V, shown in Figure 3.5, indicate

more exposed hydrophobic surface in γS-G18V compared to its wild type counterpart. These

data also allow determination of the lowest ANS concentration required to produce the max-

imum emission before saturation, which was 1.5 mM for γS-WT and 1 mM for γS-G18V.

The lower concentration required to saturate γS-G18V is consistent with the observation

that it binds ANS more readily than wild-type.
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Figure 3.5: (A) Molecular surface representation of γS-WT (green) and γS-G18V (blue) based on
the solution-state NMR structures (PDB ID 2M3T and 2M3U, respectively). Hydrophobic residues
are highlighted in orange. (B) Fluorescence spectra representing ANS binding monitored at 500
nm using γS-WT and γS-G18V crystallins. Protein concentrations for both γS-WT and γS-G18V
were approximately 1 mg/mL. Saturation occurred at 1.5 mM ANS for γS-WT and 1 mM ANS for
γS-G18V. Higher emission was observed for γS-G18V, indicating more hydrophobic surface area
exposed than for γS-WT.
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3.3.2 Chemical shift perturbation mapping reveals the residues

involved in ANS binding and the relative strengths of the

interactions

Binding interactions between ANS and γS-WT or γS-G18V were measured at concentration

ratios of 1:0, 1:0.5, 1:1, and 1:2 of γS:ANS, using CSP mapping via 1H-15N HSQC spec-

tra. Selected regions of the NMR spectra where resonances show perturbations indicative of

ANS binding are shown in Figure 3.6. The change in chemical shift for each peak in the 2D

spectrum upon ANS binding was calculated using Equation 3.1. Because molecular docking

simulations were performed using 1:1 ANS binding conditions, the focus for this chapter

will be for 1:1 ANS binding conditions. While nonspecific binding is observed throughout

the surfaces of both proteins, γS-G18V binds ANS more strongly in the N-terminal domain

(approximately the first 100 residues). As seen in the 1:1 ANS binding shown in Figure

3.7,the maximum ANS binding occurs within residues 15 through 50, which is close to the

glycine-to-valine mutation site. These observations are mapped onto the protein structures

in Figure 3.8 (left panel) where the residues exhibiting strong (CSP at least two times the

RMS) and weak (CSP at least half the RMS) ANS binding are highlighted. For γS-WT,

strong-binding residues are highlighted in bright green and weak-binding residues in pale

green. For γS-G18V, strong-binding residues are highlighted in dark blue and weak-binding

residues in pale blue. Although some strong-binding residues are observed in both proteins

near the mutation site, (e.g. G18 in γS-WT and D22 in γS-G18V), G18V displays more ANS

binding, both strong and weak, in the N-terminal domain. Strong binding is also seen in

the interdomain interface of γS-WT (residues L62, S82, and H123) and γS-G18V (residues

L62, W73, H87, L88, and G91). These results are consistent with the observation that

αB-crystallin strongly binds near the N-termimal domain and the interdomain interface in

γS-G18V, but not γS-WT [3]. Thus, the ANS-binding data support the hypothesis that the

chaperone may be recognizing an exposed hydrophobic patch in this region of γS-G18V.
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Figure 3.6: Selected portions of the overlaid 1H-15N HSQC spectra of γS-WT and γS-G18V. Ex-
periments were carried out using ratios of 1:0, 1:0.5, 1:1, and 1:2 of γS:ANS. Spectra were acquired
at 25 ◦C with concentrations of all γS-WT and γS-G18V samples at 0.3 mM. Resonances having
a change in chemical shift indicate ANS binding to specific residues, which is quantified using the
CSP equation (Equation 1).

Although we are focused on the 1:1 ANS binding conditions, the full CSP calculation was

performed for the 1:0.5 and 1:2 conditions featured in Figure 3.9. Again, nonspecific binding

is observed primarily within the N-terminal domain. Amongst residues 1 through 50 are

residues experiencing maximum ANS binding, surrounding the mutation site. Again, this

observation supports our previously stated hypothesis that the αB-crystallin strongly binds

near the N-termimal domain and the interdomain interface in γS-G18V, but not γS-WT [3].
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Figure 3.7: Average chemical shift perturbation (CSP) of γS-WT (green) and γS-G18V (blue).
Nonspecific binding, with maximum perturbation in the N-terminal domain, is observed in both
proteins. However, in γS-G18V more of the CSPs are localized to the N-terminal domain, partic-
ularly between residues 15 to 50, in the cysteine loop near the mutation site. Inspection of the
structures confirms that this region is exposed to solvent in γS-G18V but not γS-WT.

3.3.3 Presence of ANS Does Not Affect Aggregation State of γS-

crystallin

In order to characterize the aggregation states of γS-WT and γS-G18V, DLS data were ac-

quired for both proteins under the same solution conditions used in the NMR experiments

(shown in Figures 3.1 and 3.2). As observed in previous studies of γS-G18V[3, 4], Figure

3.10 shows the γS-WT solution contains only monomers, while γS-G18V shows a slightly

broader range of sizes consistent with transient formation of dimers and potentially other

small oligomers. However, the NMR spectra rule out the presence of a significant stable

population of large aggregates; the linewidths for representative peaks in the HSQC spectra

are comparable to the corresponding peaks in γS-WT. Linewidth comparisons for represen-

tative peaks in the spectra of γS-WT and γS-G18V are tabulated in Table 3.2. Despite

the presence of transient oligomers in the γS-G18V sample, consistent with its increased

aggregation propensity, it is clear from the linewidth data that the chemical shift changes
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Figure 3.8: ANS interactions with γS-WT and γS-G18V. The strong-binding threshold and weak-
binding threshold were defined as two times the RMS and half the RMS, respectively. Experimental
CSP values indicate that ANS binding occurs throughout the N- and C-terminal domains for γS-
WT, (strong binding residues in green and weak binding residues in pale green), while in γS-G18V
ANS binding mainly occurs at the N-terminal domain (strong binding residues in blue and weak
binding residues in pale blue). Some strong binding is observed in the N-terminal domain for both
proteins near the mutation site, e.g. G18 in γS-WT and D22 in γS-G18V. However, G18V displays
more ANS binding (both strong and weak) overall in the N-terminal domain. Strong binding is
also observed in the interdomain interface of γS-WT, residues L62, S82, and H123, and γS-G18V,
residues L62, W73, H87, L88, and G91. G18V exhibits more binding (strong and weak) within
that interdomain interface suggesting that this variant has higher surface hydrophobicity localized
to the N-terminal domain near the mutation site and the interdomain interface. Coverage of both
strong- and weak-binding residues are nearly identical between experimental and docking results,
highlighted in dark green for γS-WT and dark blue for γS-G18V, indicating that the docking results
are in good agreement with the experimental data.
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Figure 3.9: Average CSP of γS-WT (green) and γS-G18V (blue) for 1:0.5 and 1:2 γS:ANS. Max-
imum perturbation for both proteins is in the N-terminal domain and the interdomain interface.
At the 1:2 γS:ANS ratio, γS-WT exhibits more perturbation, likely because γS-G18V is already
saturated at 1 mM ANS.
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Table 3.2: A table of selected line widths taken at half height for several representative residues in
the HSQC spectra of γS-WT and γS-G18V for the 1:1 γS:ANS mixtures. The line widths (reported
in Hz) are comparable for both proteins.

γS-WT γS-G18V
Residue 1H (Hz) 15N (Hz) 1H (Hz) 15N(Hz)
C37 33.782 36.110 32.238 31.454
L62 36.003 44.881 37.979 35.617
W73ε 32.349 48.174 30.599 37.302
G102 32.392 33.081 32.082 37.695
F122 31.787 34.271 31.279 34.540
A165 29.652 30.582 31.966 28.605

upon addition of ANS are due to dye binding rather than a change in aggregation state.

Although the oligomerization states of the starting solutions were not identical, this is ac-

counted for by the chemical shift differences between γS-WT and γS-G18V in the absence

of ANS, while the chemical shift perturbations reflect binding of each protein to ANS. If

stable, large complexes were present in the NMR samples, the increased aggregation would

be expected to cause significant line-broadening and disappearance of signals, as was ob-

served for mixtures of γS-G18V with αB-crystallin [3], where large complexes were formed

and TROSY techniques were required to observe the NMR signals. Although it is possible

to prepare purely monomeric samples of γS-G18V at low pH, for the current study, neutral

pH was chosen in order to investigate intermolecular interactions under more physiologically

realistic conditions.

In order to investigate whether ANS changes the oligomerization states of γS-αB complexes

and interferes with binding of αB-crystallin to γS-G18V, gel filtration chromatography was

performed. Samples of γS-WT and γS-G18V were prepared at 1 mg/mL and compared to

equivalent samples in the presence of αB-crystallin (1:1) and both αB-crystallin and ANS

(1:1:1), shown in Figure 3.11. For γS-WT alone, the sample is mostly monomeric with a

small amount of dimers. Upon addition of αB-crystallin, a population of larger oligomers

at about 160 kDa appears, at the expense of the populations of both the monomeric and
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Figure 3.10: DLS data for γS-WT and γS-G18V in 10 mM phosphate at pH 6.9 displayed as the
distribution of particle size by number. The concentrations of both proteins were at 0.3 mM, as in
the NMR experiments. γS-WT is fully monomeric under these conditions, however γS-G18V forms
a mixture of transient dimers and small oligomers, as observed in previous studies.

dimeric states. Addition of ANS to this mixture slightly increases the proportion of large

aggregates. In the case of γS-G18V, both the initial oligomerization states and the effect

of adding ANS is different. Initially, although much of the sample is monomeric, small

populations of dimers and large oligomers exist. The peak at 160 kDa is much broader than

in γS-WT, suggesting greater polydispersity. In the presence of αB-crystallin, the main

effect is a dramatic narrowing of the peak corresponding to large oligomers, indicating a

more uniform population. Addition of ANS to this mixture produces both further narrowing

and an increase in the population of monomers, suggesting that interaction with ANS does

disrupt the αB-γS complex formation. The full chromatogram including molecular weight

standards is also provided in Figure 3.12.
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Figure 3.11: Gel filtration chromatograms for γS-WT (A) and γS-G18V (B) in the presence and
absence of αB-crystallin and ANS. (A) For γS-WT alone (green), the sample is mostly monomeric
(10 kDa) with a small amount of dimers (22 kDa). Upon addition of αB-crystallin (orange),
a population of larger oligomers (160 kDa) appears, at the expense of the populations of both
the monomeric and dimeric states. Addition of ANS to this mixture (red) slightly increases the
proportion of large aggregates. (B) For γS-G18V alone (blue), much of the sample is monomeric,
although small populations of dimers and large oligomers exist. The peak at 160 kDa is much
broader than in γS-WT, suggesting greater polydispersity. In the presence of αB-crystallin (cyan),
the main effect is a dramatic narrowing of the peak corresponding to large oligomers, indicating
a more uniform population. Addition of ANS to this mixture (purple) produces both further
narrowing and an increase in the population of monomers, suggesting that interaction with ANS
does disrupt the αB-γS complex formation.
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Figure 3.12: Gel filtration chromatogram for γS-WT and γS-G18V at 1 mg/mL with and without
the presence of αB-crystallin and ANS. The samples were run in 10 mM sodium phosphate at pH
6.9. (A) Chromatogram representing γS-WT (green), γS-WT in the presence of αB-crystallin at
a ratio of 1:1 (orange), γS-WT in the presence of αB-crystallin and ANS at a ratio of 1:1:1 (red),
γS-G18V (blue), γS-G18V in the presence of αB-crystallin at a ratio of 1:1 (cyan), and γS-G18V in
the presence of αB-crystallin and ANS at a ratio of 1:1:1 (purple). Molecular weight standards were
also run and shown in light gray. (B) Graph showing the calibration of molecular weight standard
as well as the position and relative size of the peak for γS-WT. For γS-WT (green), calculated sizes
were 9.3 kDa and 23 kDa. For γS-WT in the presence of αB-crystallin at a ratio of 1:1 (orange),
calculated sizes were 8.8 kDa, 20.1 kDa, and 158.4 kDa. For γS-WT in the presence of αB-crystallin
and ANS at a ratio of 1:1:1 (red), calculated sizes were 9.1 kDa, 21.7 kDa, and 159.7 kDa. (C)
Graph showing the calibration of molecular weight standard as well as the position and relative
size of the peak for γS-G18V. For γS-G18V (blue) calculated sizes were 10.4 kDa, 25.8 kDa, and
158.4 kDa. For γS-G18V in the presence of αB-crystallin at a ratio of 1:1 (cyan), calculated sizes
were 9.9 kDa, 28.0 kDa, and 161.0 kDa. For γS-G18V in the presence of αB-crystallin and ANS at
a ratio of 1:1:1 (purple), calculated sizes were 10.0 kDa, 23.8 kDa, and 161.0 kDa.
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3.3.4 Docking of ANS on the protein surface predicts more bind-

ing sites on γS-G18V than γS-WT and allows interpretation

of the CSP data

Rigid receptor docking resulted in a total of 4860 docked poses (27 search spaces × 20 NMR

conformations × 9 poses/search space). After screening for poses consistent with ANS flu-

orescence enhancement upon binding, 3423 poses and 3367 poses remained for γS-WT and

γS-G18V, respectively as shown in Figure 3.3A. Filtered poses covered nearly the entire

surface of the protein and exhibit a broad range of scores (from -2 kcal/mol to -7 kcal/mol,

with a mean of -4.5 kcal/mol). Due to the pocket-like shape of the interdomain interface,

ANS preferentially bound to the large hydrophobic pocket between the N- and C-terminal

domains. However, sites were identified near all highly perturbed residues with comparable

binding scores, as shown in Figure 3.4. Flexible docking poses located near the highly per-

turbed residues according to the CSP data had binding scores between -4.5 kcal/mol and

-6.0 kcal/mol, consistent with a stronger preference for ANS to bind near the perturbed

residues. A total of ten binding sites were found for γS-G18V and nine binding sites for

γS-WT using flexible docking. Most of these binding sites were very similar in both γS-WT

and γS-G18V. However, three binding modes were unique to γS-G18V. The first and most

populated binding mode is located in the hydrophobic cavity at the interface between the N-

and C-terminal domains, shown in Figure 6A and 6D [77, 103]. Although this binding site

was found in both γS-WT and γS-G18V, the presence of the R84-D153 salt-bridge blocks

the exposure of the hydrophobic surface in γS-WT. In contrast, γS-G18V lacks this salt-

bridge interaction, which exposes the interdomain hydrophobic cavity and allows the entry

of ANS into the interdomain binding site. This finding is consistent with the experimen-

tal NMR data, which indicate that chemically perturbed residues, H87 and L88, located

near the interdomain pose, interact strongly with ANS only in γS-G18V (Figure 3.13). The

second and third binding sites are located close to residues 20 through 30, which includes
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a loop region containing three cysteine residues (C23, C25, and C27). As a result of the

G18V mutation, C23 and C27 become solvent exposed, suggesting possible formation of

intermolecular disulfide bridges, consistent with the observation that an excess of reducing

agents abrogates the formation of small oligomers [104]. Previous studies suggested that

the exposure of these cysteines results from a disruption in secondary structure due to the

burial of V18 side chain [3]. As a result of this cysteine exposure and concomitant structural

changes, a new hydrophobic pocket is uncovered as the second ANS binding site. Although

ANS binds this cysteine loop in γS-WT after flexible docking refinement, it is not in direct

contact with any hydrophobic surface, suggesting that the pose may not be consistent with

enhancement in ANS fluorescence (Figure 3.13B). In contrast, when the hydrophobic pocket

is exposed, as it is in γS-G18V, ANS becomes buried deep within the pocket (Figure 3.13E).

This conformation provides both the hydrophobic interactions necessary for fluorescence as

well as reduced quenching due to water exposure [82]. In addition to cysteine exposure, the

third binding site shows additional hydrophobic surface exposure due to the cysteine loop

separating from the main Greek key motif. This binding site was not found in γS-WT using

the same docking search space, indicating that this hydrophobic patch is a unique character-

istic of γS-G18V (Figure 3.13F). Additionally, the CSP data shows local perturbation of the

backbone amides of the residues involved in these three binding sites only for γS-G18V. The

presence of these γS-G18V-specific binding sites can explain the higher ANS fluorescence in-

tensity of the variant protein over WT, and they also identify exposed hydrophobic patches

which may potentially serve as protein-protein interfaces in crystallin aggregates, and which

can be targeted in future mutagenesis studies.

The CSP data and the ANS-residue contact data from the docking simulations show gen-

erally good agreement in that the same protein regions were observed to bind ANS, shown

in Figure 3.8. In some cases, the specific residues classified as strong binding vary between

experimental and docking results, but coverage of both strong- and weak-binding residues
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Figure 3.13: Docking poses of ANS bound to a flexible γS-WT and γS-G18V receptor. Three bind-
ing sites were found to be unique to γS-G18V. The protein surface was generated with MSMS[5];
red, blue, green, and white correspond to negative, positive, polar and hydrophobic regions, respec-
tively. ANS is shown in licorice representation. The R84-D153 salt bridge and cysteine residues
(C23, C25, and C27) critical to the hydrophobic patch availability are shown in space-filling rep-
resentation. In the left-hand panels, residues defined as strong/weak binding by CSP data have
their backbone amides represented as spheres. Large spheres represent strongly-binding residues,
and small spheres represent weakly-binding residues. Atoms are colored by element (carbon, cyan;
nitrogen, blue; oxygen, red; hydrogen, white; sulfur, yellow). (A & D) At site 1, the R84-D153 salt
bridge separates to expose the hydrophobic cavity at the interdomain interface. Although a pose
is generated in both proteins, the lack of perturbed residues at the binding site, according to the
CSP data, indicates that the binding site is inaccessible to ANS in γS-WT. (B & E) At site 2, the
docked pose of ANS shifts from a polar surface in γS-WT to inserting into a hydrophobic cavity in
γS-G18V. Due to specific backbone torsions propagating from the G18V mutation site that keep
the V18 buried, C23 and C27 become solvent exposed and reveal a hydrophobic cavity. This pose
is located near the largest perturbed residue in γS-G18V according to the CSP data. (C & F) At
site 3, the disordered cysteine loop separates from the Greek key motif of the N-terminal domain
resulting in exposure of an additional hydrophobic patch. No equivalent pose could be generated
on the γS-WT structure.
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are nearly identical (highlighted in dark green for γS-WT, and dark blue γS-G18V in the

right panel of Figure 3.8). This outcome is to be expected because the docking scoring func-

tion is more effective at identifying binding sites than distinguishing more subtle changes

in binding energy: the standard error of the Autodock Vina scoring function [105] is larger

than the variation among scored poses. The agreement between rigid protein docking results

and experimental ANS binding results suggests that there is no major change in protein

conformation upon binding of ANS, supporting the hypothesis that hydrophobic patches on

the surface are involved in intermolecular interactions. Good agreement between the experi-

mental and docking results further confirms that ANS binding is localized near the mutation

site in the N-terminal domain for γS-G18V, consistent with the CSP data. Experimental

and simulation results are also consistent on the binding of ANS to the exposed interdomain

hydrophobic surface located in the interdomain interface between the two domains due to

the breaking of the R84-D153 salt bridge in γS-G18V. Exposure of this hydrophobic patch

facilitates ANS binding and may be involved in hydrophobic protein-protein interactions.

3.4 Conclusion

In this study, I have used ANS fluorescence and solution-state NMR chemical shift pertur-

bation mapping along with molecular docking (performed by Eric K. Wong) to investigate

the differences in exposed hydrophobic surface between human γS-crystallin and its cataract-

related γS-G18V variant. The experimental results indicated that both proteins have a fairly

high level of nonspecific binding, but both the fluorescence and NMR measurements indicate

more ANS binding to γS-G18V, particularly in the N-terminal domain near the mutation

site. The docking studies, in agreement with the NMR data, found three binding modes

that are unique to γS-G18V that were not found in γS-WT: one in the exposed hydropho-

bic patch in the interdomain interface and two binding modes in the exposed hydrophobic
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pocket formed when the cysteine loop becomes solvent exposed. Using docking and bind-

ing assays, hydrophobic surface patches were identified that may be responsible for some of

the intermolecular interactions between crystallins that promote aggregation in the lens. In

conjunction with DLS measurements and gel filtration chromatography, the addition of ANS

did not disrupt the αB-γS complex formation. To further investigate αB-γS complexes in

the presence of ANS, CSP mapping must be performed to understand whether or not ANS is

displacing αB-crystallin at higher concentrations. The results of this chapter may guide the

design of future mutagenesis and drug-binding studies to further investigate the importance

of such intermolecular interactions in mediating γS-crystallin solubility and aggregation re-

sistance in the healthy eye lens.

47



Chapter 4

Probing Protein-Peptide Interactions

of Human γS-Crystallin

4.1 Background

The crystallins of the human lens belong to two superfamilies: the α-crystallins, which are

molecular chaperones related to small heat-shock proteins, and the structural βγ-crystallins.

The βγ crystallins share a common Greek key fold where it is hypothesized that non-specific

surface interactions are repelled, however, subtle structural differences between them could

disprove that idea. The fold of most γ-crystallins is very compact, with the N- and C-termini

hidden within the protein. In contrast, β-crystallins possess longer N- and C-terminal ex-

tensions as well as a distinctive linker sequence between the two domains [106]. γ-crystallins

usually exist as monomers whereas β-crystallins often form dimers, tetramers, and higher-

order complexes [107, 108, 109], in the form of both homo- and heterooligomers [106]. Previ-

ous studies of interactions among β-crystallins have suggested that they are often mediated

by association of the N-terminal extensions, which are highly variable due to differences in

48



length and flexibility. Ajaz et al. have reported β-crystallin aggregates in the human eye lens

containing βB1-crystallin with varying levels of truncations at the N-terminus, along with

other β-crystallins (βA1, βA3, βA4, and βB2). Using mass spectrometry and chromatog-

raphy, Ajaz et al. observed that βB1-crystallin with a variety of N-terminal truncations

form aggregates in vivo [106]. The sizes of the aggregates were correlated with the length of

the N-terminus, where the largest aggregates contained intact βB1 or very short truncations,

while the smallest aggregates contained more extensive truncations [106]. These truncations,

which involve deletion of anywhere between 15 to 45 residues from the N-terminus of βB1

in vivo, appear to play a role in β-crystallin heterooligomerization, as tested with βB1 and

βB1∆N41 [110]. Further understanding of the N-terminal extension was enhanced by exper-

imentation on various truncated forms of βB1, using truncations of up to 50 residues [111].

By monitoring kinetics of isolated βB1, Leng et al. observed that the N-terminal extension

may act as an intramolecular chaperone via weak binding of the N-terminal extension to the

main body of βB1 or to exposed hydrophobic patches on the interior of βB1, either of which

may lead to stabilization of the native state or avoidance of the misfolding/aggregation path-

way [111]. Although the mechanisms of the N-terminal extension loop for β-crystallins is not

fully understood, it is clear that intermolecular interactions with the N-terminal extension

has a large impact on the aggregation propensity. Leng et al. proposed an intramolecular

chaperone mechanism from refolding experiments, suggesting that the N-terminal extension

of βB1 is important for the co-refolding of β-crystallin heteromers and the chaperone func-

tion of αA-crystallin. Unlike most γ-crystallins, human γS-crystallin contains an N-terminal

extension similar to that of βB1 [109]. Although wild-type γ-crystallins are not known to

form dimers or have proteolytic sites on the N-terminal extension as β-crystallins do, inter-

actions with the N-terminal extension in γ-crystallins could potentially lead to the formation

of aggregates in the lens. However, Ray et al. proposed that the N-terminal extension loop

of γS-crystallin could regulate dimer formation in aggregation-prone variants based on sig-

nificant chemical shift differences between γS-WT and its deamidated variant, N76D [27].
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In this chapter, I test this idea by investigating possible intermolecular interactions among

human γS-crystallin and its N-terminal extension loop towards aggregation propensity.

Crystallin protein self-aggregation leads to cataract formation, in many cases mediated by

subtle structural changes. Experiments on deamidated variants in γS-crystallin presented by

Pande et al. showed that although the secondary and tertiary structures were similar to wild-

type, the significant changes were observed in the weakened net repulsive interactions of the

deamidated variants [40]. Crystal structures of two congenital-cataract related γD-crystallin

variants, γD-W42R [112] and γD-P23T [113], as well as a solution NMR structure, γD-R76S

[114], confirmed no major structural alterations. Potential aggregation sites caused by the

mutations were not visible compared to the previous solution NMR structures of γD-WT

[115]. Ji et al. proposed that aggregation behavior of proteins is best observed in the solution

environment [112, 113] as proteins are dynamic in solution and behave as they would in a

physiological environment.

Here we investigate the potential intermolecular interactions between γS-WT and γS-G18V

molecules using a library of tripeptides derived from the human γS-crystallin sequence.

CSP mapping using solution NMR identify some of the intermolecular interactions between

crystallins that may promote aggregation in the lens. However, in agreement with molecular

docking simulations, non-specific binding at the surface or both γS-WT and γS-G18V does

indeed occur, disproving the hypothesis that the very low aggregation propensity of γS-

WT is due to unusually good resistance to non-specific binding. We find that although

both proteins are susceptible to non-specific binding, many of the tripeptides investigated

bind more strongly to γS-G18V. In particular, two peptides derived from the N-terminal

extension showed strong interactions with γS-G18V that are different from those available

to γS-WT. The N-terminal extension is of particular interest because it is unstructured and

exposed to solvent in both the γS-WT and γS-G18V structures, such that intermolecular

interactions are possible in the context of the full protein. Binding of disordered regions
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to structured domains is an important mechanism for mediating intra- and intermolecular

interactions, leading to stable interactions in solution or inducing aggregation [116]. In light

of the previous finding that the N-terminus of bovine γS-crystallin is acetylated [117], the

N-terminus may act as a mediator of inter-crystallin interactions and is sometimes found

in proteins involved in interactions with cytosolic chaperones. Intra- and intermolecular

interactions in βB-crystallins are sometimes mediated by the N-terminal extensions, leading

to the hypothesis that the short N-terminal extension of γS-crystallin is involved in mediating

intermolecular interactions between itself and other crystallins.

The SPOT-synthesis method of producing peptide arrays on cellulose supports uses standard

Fmoc chemistry based on solid phase peptide synthesis [118]. Despite varying coupling yields

across peptide “spots,” detection of peptide-protein interactions via fluorescence of the dye-

labeled target protein is relatively simple and reliable [119, 120]. Peptide-binding assays using

SPOT synthesis peptide arrays provide a semiquantitative approach to studying protein-

protein interactions [118]. This method has been used to study binding interfaces between

Src homology 2 (SH2) domains and protein kinases,[121] to monitor interactions among Src

homology 2 domains and phosphorylated immunoreceptor tyrosine-based regulatory motifs

(ITRMs) necessary for immune signaling,[122] to map the interactions between yeast Ire1 ER-

lumenal domain (Ire1) to a constitutively misfolded mutant of carboxypeptidase Y (CPY*)

[123], and to establish the αA-crystallin recognition site on the surface of αB-crystallin [26].

However, these assays neither provide a detailed view of the binding interfaces nor produce

any structural data regarding possible conformational changes. In contrast, NMR chemical

shift perturbation (CSP) mapping can provide a detailed picture of which residues in the

protein are involved in ligand binding [87]. Short peptide sequences in previous studies

have been shown to form aggregates, particularly sequences that are 4-10 residues long

[124, 125]. These short peptide sequences have been shown to recapitulate interactions of full

proteins [126]. SPOT synthesis peptide binding assays are typically performed with peptides

composed of 2-5 amino acid residues; here tripeptides were chosen because tripeptides have
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been proposed as the minimum functional unit of protein aggregation [127], and have been

shown to display hydrogen-bonding functionality similar to proteins [128].

4.2 Materials investigating γS-crystallin interacting with

the N-terminal extension loop

4.2.1 Design and SPOT-synthesis of tripeptides

Tripeptide libraries were synthesized using the methodology of Hilpert et al.[129] for screen-

ing with γS-WT and γS-G18V. The synthesis was performed by Carolyn N. Kingsley [130].

Libraries were made covering the sequence of γS-WT in three reading frames beginning with

S2, K3, or T4. A fourth random tripeptide library was also designed to incorporate a broad

range of charged and hydrophobic amino acids.

4.2.2 Binding assay

Wild-type and G18V γS-crystallins were expressed and purified as described previously [4].

Binding assays using non-specifically Oregon Green-labeled γS-WT and γS-G18V were car-

ried out and binding of the protein to the peptide spots was visualized using a fluorescence

laser scanner (λex= 488 nm, λem= 520 nm). The peptide spot emission intensities were

analyzed using ImageQuantTL. After correction for background emission, the change in

emission intensity was calculated for each peptide spot. All four tripeptide libraries and

their respective binding assays appear in Figures 4.1.
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Reference Frame #1

TGT KIT FYE DKN FQG RRY DCD CDC ADF HTY LSR CNS

IKV EGG TWA VYE RPN FAG YMY ILP QGE YPE YQR WMG

LND RLS SCR AVH LPS GGQ YKI QIF EKG DFS GQM YET

TED CPS IME QFH MRE HIS CKV LEG VWI FYE LPN YRG

RQY LLD KKE YRK PID WGA ASP AVQ SFR RIV

SSK EKF HFY YFH HFF AYS EYS KKF VLV ILI VAI YFV

YSH EYK HYH YSA YHY EAF YAE KYS YAE YSK YYS KFS

SKS YEK YKF LVL HFA VLL YVF LPP LLL KHH IHH YLF

PLA YFP PFF QHP AQA YFE LHV YPH PLA LPA LFI AFV

YFL AHV LIA YHH SSF KHF SAE HFY EAE IAF VPF

KTG TKI TFY EDK NFQ GRR YDC DCD CAD FHT YLS RCN

SIK VEG GTW AVY ERP NFA GYM YIL PQG EYP EYQ RWM

GLN DRL SSC RAV HLP SGG QYK IQI FEK GDF SGQ MYE

TTE DCP SIM EQF HMR EIH SCK VLE GVW IFY ELP NYR

GRQ YLL DKK EYR KPI DWG AAS PAV QSF RRI

SKT GTK ITF YED KNF QGR RYD CDC DCA DFH TYL SRC

NSI KVE GGT WAV YER PNF AGY MYI LPQ GEY PEY QRW

MGLNDR LSS CRA VHL PSG GQY KIQ IFE KGD FSQ QMY

ETT EDC PSI MEQ FHM REI HSC KVL EGV WIF YEL PNY

RGR QYL LDK KEY RKP IDW GAA SPA VQS FRR IVE

γS-WT γS-G18V Tripeptides

Reference Frame #2

Reference Frame #3

Random

Figure 4.1: Tripeptide binding assay data set utilizing SPOT peptide libraries with Oregon Green-
labeled γS-WT and γS-G18V Tripeptide libraries contain 3 reference frames taken from the γS-
crystallin sequence and a random tripeptide library for control.
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4.2.3 Mass spectrometry of tripeptides

The tripeptides SKT, KTG, and RLS were purchased from NeoBioLab (Woburn, MA). The

tripeptides were dissolved in 10 mM sodium phosphate buffer and 0.05% sodium azide at

pH 6.9 to a final concentration of 300 mM and characterized by mass spectrometry on an

ESI LC-TOF Micromass LCT 3 to verify their molecular masses and purity before carrying

out the CSP NMR experiments. Mass spectrometry data for tripeptides RLS, SKT, and

KTG are shown in Figure 4.2.

4.2.4 NMR sample preparation

15N-labeled γS-WT and γS-G18V were expressed and purified as described previously [4].

Purified γS-crystallin was concentrated and supplemented with 2 mM TMSP, 10% D2O,

and 0.05% sodium azide. The final concentration of all γS-WT and γS-G18V samples was

1.5 mM. Tripeptides KTG, SKT, and RLS were titrated into the protein samples to give

final molar ratios of 1:0, 1:1, 1:2, 1:5 and 1:10 of γS:tripeptide.

4.2.5 NMR experiments

Experiments were performed on a Varian UnityINOVA spectrometer (Agilent Technologies,

Santa Clara, CA) operating at 800 MHz and equipped with a 1H–13C–15N 5 mm tri-axis

PFG triple-resonance probe, using an 18.8 Tesla superconducting electromagnet (Oxford

instruments). Decoupling of 15N nuclei was performed using the GARP sequence [98]. 1H

chemical shifts were referenced to TMSP, and 15N shifts were referenced indirectly to TMSP.

NMR data were processed using NMRPipe [99] and analyzed using CcpNMR Analysis [100].

Center operating frequencies and (unless otherwise stated) center frequency offsets were as

follows:

54



RLS

320 330 340 350 360 370
    0

100

  20

  40

  60

  80

m/z 

in
te

ns
ity

 (%
) 

    0

100

  20

  40

  60

  80

    0

100

  20

  40

  60

  80

365 370 375 380 385 390 395 400

300 305 310 315 320 325 330

m/z 

in
te

ns
ity

 (%
) 

in
te

ns
ity

 (%
) 

SKT

KTG

m/z 

Figure 4.2: Mass spectrometry of tripeptides RLS, SKT, and KTG using an ESI LC-TOF Mi-
cromass LCT 3. The major peaks of the RLS spectra are 335 and 357 m/Z while those of the
SKT spectra are 375 and 397 m/Z . The actual molecular masses of RLS and SKT are 374.4
334.4 g·mol−1. The molecular mass of KTG is 304.4 g·mol−1. The mass spectrometry data shows
two peaks at 305 and 327 m/Z. The second peak is +23 m/Z, the molecular weight of a sodium
ion from the sodium phosphate buffer. Although minor impurities were present, they are not
concentrated enough to interfere with the NMR assays.
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Table 4.1: Table featuring weak and strong binding thresholds for 1:10 γS:tripeptide. The weak-
binding threshold was set at half the RMS while the strong-binding threshold was set at two times
the root mean square (RMS) of the calculated CSP to determine which residues had strong or weak
binding with the individual tripeptides

γS-WT γS-G18V
Weak Strong Weak Strong

RLS 0.00728192 0.0291277 0.01180599 0.04722398
SKT 0.00883259 0.03533037 0.01287653 0.05150614
KTG 0.0099113 0.0396452 0.01583817 0.06335269

Center 1H: 799.8056964 MHz 13C: 201.1282461 MHz 15N: 81.0504078 MHz

Offset 1H: -294.932 Hz (4.8 ppm) 13C: -9863.17 Hz (43 ppm) 15N: 2400 Hz (116.7 ppm)

4.2.6 Calculation of chemical shift perturbations

1H-15N HSQC spectra of γS-WT and γS-G18V were collected in the presence and absence

of tripeptides RLS, SKT, and KTG at concentration ratios of 1:0, 1:1, 1:2, 1:5 and 1:10

of γS:tripeptide. Resonances were identified and assigned based on previously collected

chemical shift data (PDB ID: 2M3T and 2M3U) [3]. The full NMR spectra is shown in

Figure 4.3. The chemical shifts for each resonance in the 2D spectra upon tripeptide binding

were recorded and the differences were calculated using the Equation 3.1. A strong-binding

threshold for each set of conditions was set at two times the root mean square (RMS) of

the calculated CSP, while the weak-binding threshold was set at half the RMS to determine

which residues had strong or weak binding with the individual tripeptides. The CSP values

for the 1:10 γS:tripeptide concentrations were used for analysis in flexible docking. The

values used for 1:10 γS:tripeptide appear in the Table 4.1.

4.2.7 Binding site search by blind docking

Docking receptor coordinates were obtained from the NMR structures of γS-WT and γS-

G18V (PDB ID: 2M3T and 2M3U) [3]. Autodock Tools [131] was used to prepare both
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Figure 4.3: Chemical shift perturbation mapping of 15N-labeled γS-WT and γS-G18V with natural-
abundance peptides RLS, SKT, and KTG monitored by 1H-15N HSQCs. γS protein sample con-
ditions consist of 10 mM phosphate buffer at pH 6.9 supplemented with 10% D2O, 0.05% sodium
azide and 2 mM TMSP for referencing. Protein concentrations for both γS-WT and γS-G18V were
1.5 mM. The γS:tripeptide ratios used were 1:0, 1:1, 1:2, 1:5, and 1:10.
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receptor and tripeptide ligands by adding Gasteiger charges [132] and merging non-polar

hydrogen atoms into united heavy atoms. Docking simulations for this study were performed

by Eric K. Wong in the Tobias Lab at UCI [133].

4.2.8 Calculation of residue contacts

To compare the filtered docked set with the residue-based CSP data, tripeptide-residue

contact frequencies were calculated by summing the Boltzmann weights of all the poses

in contact with a given residue. The calculations for this study were performed by Eric K.

Wong in the Tobias Lab at UCI. The Boltzmann weight of a given docked pose was calculated

according Equation 3.2. A strong-binding threshold was set at two times the RMS of the

calculated tripeptide-residue contact frequency, while the weak-binding threshold was set

at the RMS value. A weighted contact frequency cutoff of 0.0457 and 0.0114 were used to

identify strong- and weak-binding residues for comparison to CSP in Figure 4.4.

4.3 Results and discussion

4.3.1 Tripeptide libraries based on the γS-crystallin sequence show

low affinity overall for γS-WT, slightly higher for γS-G18V

Of the 233 peptides screened, 81% (189 peptides) interacted more strongly with γS-G18V

than with γS-WT. A schematic representation of the tripeptide-binding assay is shown in

Figure 4.5. Although the NMR structures of the proteins have revealed that the G18V

mutation in γS-crystallin leads to some minor structural changes, while leaving the overall

fold intact, the binding assays presented here suggest that surface interactions are more

strongly affected, consistent with previous data on binding of the hydrophobic dye ANS [37].
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Figure 4.4: Molecular surface representation of tripeptide interactions with γS-WT and γS-G18V.
A strong-binding threshold and weak-binding threshold were defined as two times the RMS and
half the RMS, respectively, using experimental CSP values and rigid docking simulations. The
right panel displays the experimental results based on the NMR titration studies, while the left
panel displays the matching rigid docking results. The left panel shows that tripeptide binding
occurs throughout both the N- and C-terminal domains for γS-WT (strong binding residues in
green and weak binding residues in pale green) and in γS-G18V (strong binding residues in blue
and weak binding residues in pale blue). Coverage of both strong and weak binding residues are
nearly identical between experimental and docking results, highlighted in dark green for γS-WT
and dark blue for γS-G18V, indicating that the docking results are in good agreement with the
experimental data.

59



When all four libraries are plotted by their change in emission intensities between γS-WT

and γS-G18V, shown in Figure 4.6, the first three libraries (purple) have more preferential

binding towards γS-G18V while the random library (salmon) has binding to both proteins.

Tripeptides having a particularly low binding affinity to γS-WT include MEQ, SAE, TED,

EAE, and YED. Similarly, SAE, TED, EAE, QGE had low binding affinity for γS-G18V, po-

tentially suggesting that negative charges may be involved in disrupting potentially harmful

surface interactions. The tripeptides that had the highest degree of binding to γS-G18V are

KTG, SKT, RLS and VLV. VLV proved to be insoluble in water and was therefore not in-

vestigated further. Interestingly, KTG and SKT both contain subsequences located near the

N-terminus (GSKTGTKITF). Strong binding from subsequences in the N-terminus raises a

possible mechanism for intermolecular interactions. To test the hypothesis that the short

N-terminal extension of γS-crystallin is involved in mediating intermolecular interactions

between itself and other crystallins, NMR chemical shift perturbation experiments were per-

formed using the tripeptides SKT and KTG, both found in the N-terminus. The tripeptide

RLS, located in a β-sheet in the C-terminal domain was used as a control.

4.3.2 Chemical shift perturbation mapping shows that many of

the same residues are involved in interactions with all three

tripeptides.

Chemical shift perturbation assays reveal that many of the same residues, in particular

those located at the surface of the proteins, interact with tripeptides RLS, SKT, and KTG.

Selected portions of the NMR data are shown in Figure 4.7. The chemical shift perturbation

for each peak in the 2D spectrum upon binding each tripeptide was calculated using Equation

3.1. Both γS-WT and γS-G18V show non-specific binding, validated through CSP mapping

in Figures 4.8 - 4.10. In the interest of comparing the CSP data to the molecular docking
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A Synthesize spot tripeptide arrays

cellulose support
Fmoc chemistry

B Label γS-crystallin with Oregon Green

C Screen arrays for interaction
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Figure 4.5: Representative tripeptide binding assay utilizing SPOT peptide libraries with Oregon
Green dye. (A) SPOT synthesis of tripeptides using standard Fmoc chemistry. Libraries were
made covering the sequence of γS-WT. (B) γS-WT and γS-G18V labeled with Oregon Green
dye. (C) Samples were excited at 488 nm by a fluorescence laser scanner and emission intensities
were recorded at 520 nm where emission intensities represented amount of protein binding to the
tripeptides.
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Figure 4.6: Graphic representation of the change in emission intensity between γS-WT and γS-
G18V. The three tripeptide libraries using the first, second, and third reading frame are in purple
while the random library is indicated in salmon. The three individual reading frames find more
preferential binding towards γS-G18V while the random library does seem to bind to both proteins.
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simulations, we focus on the 1:10 γS:tripeptide CSP data, shown in Figure 4.11. For γS-WT,

all three tripeptides show strong binding at the disordered loop in the N-terminal domain,

the N-terminal Greek key motif, the interdomain linker, and the surface of the C-terminal

domain loop, particularly at residues H31, W47, L88, and H123. KTG shows additional

strong binding near the C-terminal extension loop at residue V177. γS-G18V shows strong

binding for all three tripeptides at the N-terminal Greek key motif and the surface of the

C-terminal domain loop, in particular W47, W47ε, and H123 respectively. Additionally, for

γS-G18V, the tripeptides RLS, SKT, and KTG show strong binding at the surface of the

N-terminal domain helical loop, specifically residues H31 for RLS, T32 for RLS and SKT,

and Y21 for SKT and KTG. Overall, tripeptides RLS, SKT, and KTG have shown to bind

stronger to similar regions throughout both γS-WT and γS-G18V, with γS-G18V showing

slightly higher perturbations overall.

Molecular surface representations for both γS-WT and γS-G18V are shown with weak- and

strong-binding residues highlighted for all three tripeptides in Figure 4.12. For γS-WT,

weak-binding residues are highlighted in pale green while strong-binding residues are high-

lighted in dark green, while for γS-G18V, weak-binding residues are highlighted in pale blue

while strong-binding residues are highlighted in dark blue. Based on the calculated CSP,

binding occurs throughout the N- and C-terminal domains for both proteins, but with subtle

differences. For γS-WT, weak binding is observed at the N-terminal extension for all three

tripeptide cases, something not observed in in the case of γS-G18V. However, in both γS-WT

and γS-G18V, binding is observed around the inter-domain interface, consistent in all three

tripeptide cases. We can compare these results with the rigid docking studies, where the low

Boltzman-weighted contact frequency is used as a cutoff and residues above that cutoff have

been highlighted in dark green for γS-WT and dark blue for γS-G18V. For RLS, SKT, and

KTG, the experimental results where the strong- and weak-binding residues are highlighted

are in strong agreement with the rigid docking results. More interestingly, γS-G18V is in

complete agreement with the rigid docking results, highlighted in dark blue. This represen-
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Figure 4.7: Chemical shift perturbation mapping of the selected 15N-labeled γS-WT and γS-G18V
with natural-abundance peptides RLS, SKT, and KTG, monitored by 1H-15N HSQCs. γS protein
sample conditions consist of 10 mM phosphate buffer at pH 6.9 supplemented with 10% D2O, 0.05%
sodium azide and 2 mM TMSP for referencing. Protein concentrations for both γS-WT and γS-
G18V were 1.5 mM. The γS:tripeptide ratios used were 1:0, 1:1, 1:2, 1:5, and 1:10. Panels showing
representative portions of the spectra for tripeptides RLS, SKT, and KTG binding to γS-crystallin
show both large chemical shift differences, such as residues H31 and W47, and smaller chemical
shift differences, such as S35 and G45.
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Figure 4.8: Average CSP of tripeptide RLS in the presence of γS-WT (green) and γS-G18V (blue).

65



SKT 1:1

SKT 1:2

SKT 1:5

••••••••••••••••••••••••••
•••••••••••••••
•
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•

•••••••••••••••••••••••••
••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•••••••••••••••••••••••••••••••••••••0
50 100 150

0.05

0.10

0.15

0.20

0.25

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••0
50 100 150

0.05

0.10

0.15

0.20

0.25

••••••••••••••••••••••••••
•
••••••••••••••
•
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•
••••••••••••••••••••••••••••••••••••••••••••••••••••

•

••••••••
•••••••••••••••••
••
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•
••••••••••••••••••••••••••••••••••••0

50 100 150

0.05

0.10

0.15

0.20

0.25

Residue Number

C
he

m
ic

al
 S

hi
ft 

P
er

tu
rb

at
io

n

γS-WT
γS-G18V
••

Figure 4.9: Average CSP of tripeptide SKT in the presence of γS-WT (green) and γS-G18V (blue).
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Figure 4.10: Average CSP of tripeptide KTG in the presence of γS-WT (green) and γS-G18V
(blue).

67



Residue Number

C
he

m
ic

al
 S

hi
ft 

P
er

tu
rb

at
io

n

SKT

KTG

γS-WT
γS-G18V
••

RLS

••••••••••••••••••••••••••
•
••••••••••••••

•

•••••••••••••••••••••••••••••
••••••
•
•••••••••••••••••••••••••
•
••••••••••••••••••••••••••••••••••

•
••••••••••••••••

•••••••••
•••••••••••••••••

••

••••••••••••••••••••••••
•••••••
••••••••••••••••••••••••••

•
••••••••••••••••••••••••••••••••••

•
•

50 100 150
0.00

0.05

0.10

0.15

0.20

••••••••••••••••••••••••••
•
••••••••••••••

•

•••••••••••••••••••••••••••••••••••
•
•••••••••••••••••••••••••
•
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•
••••••••••••••••••

••

•••••••••••••••••••••••••••
•••••
••••••••••••••••••••••••••

•
••••••••••••••••••••••••••••••••••

••
50 100 150

0.00

0.05

0.10

0.15

0.20

••••••••••••••••••••••••••
•
••••••••••••••

•

•••••••••••••••••••••••••••••••••••
•
•••••••••••••••••••••••••
•
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•
••••••••••••••••••

••

•••••••••••••••••••••••••••
•••••
••••••••••••••••••••••••••

•
••••••••••••••••••••••••••••••••••

••
50 100 150

0.00

0.05

0.10

0.15

0.20

Figure 4.11: Average chemical shift perturbation (CSP) of γS-WT (green) and γS-G18V (blue).
For γS-WT, all three tripeptides show strong binding to residues H31, W47, L88, and H123 with
KTG showing strong binding additionally at residue V177. For γS-G18V, all three tripeptides show
strong binding at residues W47, W47ε, and H123. Additionally, both RLS and SKT show strong
binding at residue T32 while both SKT and KTG show strong binding at residue Y21. Lastly,
RLS alone shows strong-binding towards residue H31, similar to γS-WT. All three tripeptides show
strong binding to similar regions among both γS-WT and γS-G18V.
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tation shows a qualitative measurement of where on the protein surface tripeptide binding

occurs.

With the successful results of the rigid docking results, the flexible docking refinement was

pursued to give a better understanding of how the tripeptides were binding at those in-

teraction sites. However, due to the flexible nature of the tripeptides, the flexible docking

results are inconsistent with consistent interaction sites. Therefore, to truly investigate the

nature of the N-terminal extension loop of γS-crystallin, future experiments will incorporate

preparing truncated variants of γS-crystallin where the N-terminal extension loop will be

removed. DLS experiments will reveal whether or not the truncated variants of γS-crystallin

form oligomeric complexes.

4.4 Conclusion

Here we comprehensively test the binding of representative tripeptides in γS-crystallin. Using

CSP mapping and rigid docking simulations, we show that the tripeptides selectively bind

to the cataract-related γS-G18V. Particularly, the tripeptides SKT and KTG represents

four residues in the N-terminal extension loop, thus enforcing the idea that the N-terminal

extension loop play a significant role in aggregate formation. To further investigate the

interaction potential of the N-terminal extension loops of γS-WT and γS-G18V, truncated

variants of these crystallins missing the N-terminal extension loop will be prepared. Whether

or not these truncated variants form oligomeric species will ultimately reveal a better glimpse

into how the N-terminal extension loop plays a role in cataract formation.
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Figure 4.12: Molecular surface representation of tripeptide interactions with γS-WT and γS-G18V
for SKT and KTG. A strong- and weak-binding threshold were defined as two times the RMS and
half the RMS, respectively, using experimental CSP values and rigid docking simulations. The
right panel displays the experimental results based on the NMR titration studies, while the left
panel displays the matching rigid docking results. The left panel shows that tripeptide binding
occurs throughout both the N- and C-terminal domains for γS-WT (strong-binding residues in
green and weak-binding residues in pale green) and in γS-G18V (strong-binding residues in blue
and weak-binding residues in pale blue). Coverage of both strong- and weak-binding residues are
nearly identical between experimental and docking results, highlighted in dark green for γS-WT
and dark blue for γS-G18V, indicating that the docking results are in good agreement with the
experimental data.

70



Chapter 5

MALS

5.1 Background

Protein fold, solubility, and function can dictate protein stability in solution [35]. A change

in pH, temperature, or ionic strength can cause proteins to unfold or precipitate, resulting

to changes in solvent accessible surface area [134]. Controlling protein aggregation proves

to be a challenge due to the numerous pathways, making it difficult to predict a protein’s

aggregation propensity. Current models of aggregation have found two factors contributing

towards stability: colloidal and conformational stability [135, 134]. Colloidal stability is

determined by the balance of repulsive and attractive intermolecular interactions between

protein molecules in solution, applicable towards measuring the second osmotic virial coef-

ficient [135, 134].

The second osmotic virial coefficient (B2) is a thermodynamic property describing the pair-

wise interactions between proteins in a particular solvent [38, 136, 137, 134]. Positive B2

values dictate predominantly mutual repulsive interactions, i.e. a protein molecule will inter-

act with buffer, whereas negative B2 values indicates predominantly attractive interactions,
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i.e. a protein molecule will interact with another protein molecule making it possible for

the protein to aggregate [38, 135, 137]. Measuring B2 of protein solutions can be useful

in modeling protein-protein and protein-solvent interactions which can be achieved through

experimentation (Multi-angle light scattering) and simulation (multi-conformational Monte

Carlo method).

Multi-angle light scattering (MALS) is a biophysical technique used to characterize biomacro-

molecules by measuring the average molecular weight, the average radius, and intermolecular

interactions. Samples prepared at various concentrations are injected into a flow cell where it

is irradiated with light, typically from a laser source. The sample will scatter light, directly

proportional to the molecular weight and concentration while detectors placed at different

angles will measure the scattering intensity. By measuring the scattering intensity as a

function of the scattering angle (θ), molecular weight and size can be determined. Zimm’s

second-order expansion of light scattering intensity with respect to the concentration for

particles in dilute solution leads to the approximation [136, 138, 139]:

Kc

Rθ

≈ 1

MPθ
+ 2B2c (5.1)

where K is an optical constant given by the equation [136, 138, 139]:

K =
4π2n2(dn/dC)2

NAλ4
(5.2)

and n is the refractive index of the solvent, dn/dC is the refractive index increment for

the sample/solvent pair (mL/g), NA is Avogadro’s number (mol−1, λ is the wavelength of

the incident vertically polarized light in a vacuum (cm), c is the concentration of the sample

(g/mL), Rθ is the Rayleigh ratio at a given scattering angle (cm−1), M is the average molecu-

lar weight of the sample(g/mol), and B2 is the second osmotic virial coefficient (mol*mL*g−2)

[139]. MALS can experimentally determine protein-protein and protein-solvent interactions.
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Monte Carlo (MC) simulations use random sampling and statistical modeling to investigate

aggregation propensity in protein solutions. These simulations involve translational and

rotational motions of known structures to determine protein-protein interaction potentials

in solution [136, 140, 141]. However, proteins are dynamic, meaning that a single protein

molecule exists in various orientations and conformations. The Tobias Lab at UCI developed

a new method known as the multi-conformational Monte Carlo (mcMC) simulation which

implements a conformational swap in the simulation method [136]. The conformational swap

uses all possible protein conformations to better simulate protein-solvent interactions [136].

To test the mcMC method, experimental MALS measurements of hen egg white lysozyme

were used as a control to compare with single-conformation Monte Carlo (scMC) simulations.

The optimization of the mcMC method allows for simulating B2 values for γS-crystallin and

other variants to understand and compare their aggregation propensities.

5.2 Methods for investigating protein-protein interac-

tions

5.2.1 Hen egg white lysozyme sample preparation

Lyophilized hen egg white lysozyme (Cat No. 195303) was purchased from MP Biomedicals

(Solon, OH). Lysozyme was dissolved in 10 mM sodium phosphate with 0.05% sodium azide

(pH 4.7 and 6.9) and sodium chloride concentrations at 50, 75, 100, 125, 150, 200, 250, and

300 mM for a final concentration of 50 mg/mL. Lysozyme samples were prepared analytically

with concentrations ranging from 2.5 to 50 mg/mL. These concentrations were checked by

UV absorbance measurements using ε= 2.64 mL mM−1 cm−1 at 280 nm.
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5.2.2 Multi-angle light scattering experiments

Light scattering experiments were performed in combination with a Dawn HELEOS multi-

angle light scattering (LS) detector and an Opitlab rEX refractive index (RI) detector from

Wyatt Technology (Santa Barbara, CA). Samples were injected using the batch-mode tech-

nique from lowest to highest concentrations. Filters (0.1 µm) were used to ensure monodis-

persity as samples are injected through the flow cell. Scattering intensity data from each

concentration was processed to remove artifacts caused by the sample injection by use fo

a clustering algorithm developed by Carter T. Butts at UCI [142]. The median of the re-

maining observations were used as the scattering intensity measurements for each detector

[136, 142].

5.2.3 Estimation of second virial coefficients for lysozyme

Zimm’s second-order expansion of light scattering intensity (Equation 5.1) was used to de-

termine B2 values for lysozyme [136, 142].

5.2.4 Single-conformational and multi-conformational Monte Carlo

simulations

Monte Carlo simulations were performed on lysozyme solutions under the same conditions

used for MALS measurements on three different structures obtained from neutron scattering

(PDB ID: 1IO5 and 1LZN) [6, 7] and solution NMR (PDB ID: 1E8L, model 1) [8] exper-

iments [136]. All three structures contained information on protonation states and proton

coordinates as well as information regarding heavy atom coordinates. The Monte Carlo

simulations were performed by Vera Prytkova from the Tobias Lab [136].
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5.3 Results and Discussion

5.3.1 Batch-mode collection of lysozyme shows artifacts in scat-

tering intensity data

MALS data were collected for lysozyme in 10 mM sodium phosphate and 0.05% sodium

azide (pH 4.7 and 6.9) at varying ionic strengths. Using batch-mode collection, samples

were injected through a flow cell using a syringe pump starting with buffer only, followed

by lysozyme samples (lowest to highest conentration),and finally ending with buffer only for

baseline correction. Batch-mode collection does introduce potential artifacts causing some

inconsistencies in the scattering intensities. These artifacts are results of air bubbles or back

pressure from the injection of a new sample during data collection. Scattering intensities

were recorded for each sample concentration and Figure 5.1 portrays some of the artifacts

observed in black. With the use of a clustering algorithm, the artifacts were removed,

allowing the real scattering intensities shown in Figure 5.2 to be used in the analysis.

5.3.2 Experimentally determined B2 agrees with multi-conformation

Monte Carlo simulations

Single-conformation and multi-conformation Monte Carlo simulations were performed to

determine B2 values. Three structures of lysozyme included neutron scattering structures

(PDB ID: 1IO5 and 1LZN) [6, 7] and a solution NMR structure (PDB ID: 1E8L, model

1) [8]. All lysozyme measurements show that B2 decreases as the ionic strength increases,

meaning that lysozyme exhibits attractive interactions. The increasing concentrations of

sodium chloride in solution causes an overall decrease in repulsive electrostatic interactions

of charged proteins, which is why sodium chloride is often viewed as a precipitating agent
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Figure 5.1: Light scattering data of lysozyme in 10 mM phosphate, 100 mM sodium chloride, 0.05%
sodium azide at pH 6.9. Scattering intensity is recorded over the time of the experiment. Each
color represents a particular concentration of lysozyme being injected into the MALS instrument
with the first and last being buffer for baseline correction. Black areas indicate artifacts introduced
by the sample injection.
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Figure 5.2: Light scattering data of lysozyme in 10 mM phosphate, 100 mM sodium chloride, 0.05%
sodium azide at pH 6.9 where artifacts have been removed. Median scattering intensity used as
measurement from each detector.
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[143]. When comparing single-conformation Monte Carlo simulations shown in Figure 5.3,

experimental values slightly match the solution NMR structure of lysozyme chosen. The

two neutron scattering structures of lysozyme have overall slightly higher B2 values than

the solution NMR structure used in the scMC simulations. The solution NMR structure

of lysozyme B2 values closely match the experimentally measured B2 values. Including a

conformational swap into the simulation method allows for more protein conformations to

be included, better simulating protein-protein/protein-solvent interactions overall. Using the

multi-conformation Monte Carlo method with the solution NMR structure of lysozyme, B2

values better match the experimental values for lysozyme, as shown in Figure 5.4.

5.4 Conclusion

I have successfully collected lysozyme light scattering data with increasing ionic strengths

for different pH conditions using Carter T. Butts’s clustering algorithm to clean up light

scattering data and Vera Prytkova’s multi-conformation Monte Carlo simulation method.

Comparing single-conformation Monte Carlo simulations with experimental data shows that

matching experimental results with simulation results depends on which lysozyme structure

is chosen for the simulation method. Including several conformations of a protein structure

in the simulation method, the multi-conformation Monte Carlo method, better simulates

protein-protein/protein-solvent interactions. The mcMC method better simulated B2 values

that closely agreed with experimentally measured B2 values for lysozyme at two different

pH conditions. With the success of better simulating B2 values using the mcMC method,

we will now apply this method towards γS-crystallin and other variants to determine the

aggregation propensity for these systems.
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Figure 5.3: B2 values for lysozyme, which decrease as ionic strength increases. Experimentally
measured B2 using MALS: lysozyme in 10 mM phosphate, 100 mM sodium chloride, 0.05% sodium
azide at pH 4.7 (red) and pH 6.9 (blue). Single-conformation Monte Carlo simulations used three
lysozyme structures, including neutron scattering structures (PDB ID: 1IO5 and 1LZN, green and
pink, respectively) [6, 7] and a solution NMR structure (PDB ID: 1E8L, model 1, orange) [8]. The
scMC simulated B2 values using the solution NMR structure closely resemble the experimentally
gathered B2 values.
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Figure 5.4: B2 values for lysozyme, which decrease as ionic strength increases. Experimentally
measured B2 using MALS: lysozyme in 10 mM phosphate, 100 mM sodium chloride, 0.05% sodium
azide at pH 4.7 (red) and pH 6.9 (blue). Multi-conformation Monte Carlo simulations included a
solution NMR structure (PDB ID: 1E8L, model 1, orange) [8]. The mcMC simulated B2 values
have better agreement with the experimentally gathered B2 values, compared to Figure 5.3.

80



Chapter 6

Biophysical characterization of

J2-crystallin: A novel eye lens protein

6.1 Background

Many crystallins are derived from either metabolic enzymes or physiological stress proteins

and appear to have undergone selection for increased refractive index after gene duplication

[46]. Mammalian lenses consist of two strongly conserved classes of crystallins, the chaperone

α-crystallins, and the structural βγ-crystallins [42, 43, 53, 46, 144, 145] whereas taxon-specific

crystallins with diverse structural properties are found in other species, including the ε-

crystallin in avians and reptiles and the S-crystallins in cephalopods [42, 53]. Unlike other

non-cephalopod invertebrates, in which typical visual systems consist of simple ocelli and/or

compound eyes made up of an array of ommatidia [146, 147], the box jellyfish, Tripedalia

cystophora, has camera-type eyes similar to those of vertebrates and cephalopods [146]. Its

lenses are capable of forming sharp images, although the distance between the lens and the

retina is not optimized for maximum visual acuity, since the animal uses vision primarily for
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navigation rather than detection of detailed objects [148]. T. cystophora has a total of 24

eyes split among four rhopalia, around the bell of the medusa, each containing two camera-

type eyes as well as an array of simpler pigment cup eyes [149, 147]. The camera-type eye

lenses are composed of the J1-, J2- and J3-crystallin proteins [149]. J1- and J3-crystallins

are homologous to known enzymes, (ADP-ribohydroglycosylase and saposins, respectively)

[149], whereas J2-crystallin (J2) has no known homologs [148, 24]; a BLAST search of the

Protein Data Bank (PDB) found no proteins above 36% similarity [150]. To our knowledge,

J2 has not previously been expressed and characterized. Here we focus on the box jellyfish

eye lens protein J2-crystallin. This 157-amino acid protein has a molecular weight of 18.2

kDa [42] and a theoretical isoelectric point (pI) of 9.25 [63].

6.2 Materials and Methods

6.2.1 Gene Construction

Plasmids containing the cDNA sequence of box jellyfsh J2-crystallin was purchased from

Blue Heron (Bothell, WA). Primers were purchased from Sigma-Aldrich (St. Louis, MO)

and were amplified with primers containing flanking restriction sites for NcoI and XhoI, an

N-terminal 6x His tag, and a TEV cleavage sequence (ENLYFQ). The polymerase chain

reaction product was cloned into a pET28(+)a vector, purchased from Novagen (Darmstadt,

Germany). The gene construction was performed by Timothy R. Valentic.

6.2.2 Expression and purification of J2-crystallin

A 50 mL starter culture of LB media was innoculated with a single colony of Rosetta (DE3)

E. coli containing the vector of box jellyfsh J2-crystallin. Starter cultures were grown at 37
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◦C for 16 hours at 225 RPM in a New Brunswick Scientific Innova-42R incubator Shaker

(Hauppauge, NY). The individual starter cultures were used to innoculate a 1 L culture of

LB with a starting OD600 at approximately 0.20. The cultures were grown at 37 ◦C with

shaking at 225 RPM until an OD600 of 0.60 was reached. Protein overexpression was induced

using IPTG (Gold Biotechnology) at a final concentration of 0.10 mM at 25 ◦C for 18 hours

(J2-crystallin). Cells were collected via centrifugation with a Beckman Coulter Avanti-JE

centrifuge (Brea, CA) spinning at 6000 RPM for 20 minutes. The cell pellets were resus-

pended in 40 mL of 50 mM sodium phosphate buffer with 300 mM sodium chloride, 10 mM

imidazole, 0.05% sodium azide at pH 7.4. Cells were lysed by sonication in 10 second in-

tervals for a total of 30 minutes, followed by centrifugation at 15000 RPM for 90 minutes.

The supernatant was filtered with through a 0.22 µm filter (Millipore) before being loaded

onto a Bio-Rad Duo-Inject FPLC system (Hercules, CA). The His-tagged crystallin were

purified using a Ni-IDA column (Bio-Rad) and cut by a His-tagged TEV protease (produced

in-house). The TEV protease and His-tag were removed by a second application to a Ni-

IDA column. The purified crystallin were dialyzed into 10 mM sodium phosphate buffer

with 0.05% sodium azide at pH 6.9.

6.2.3 Expression and purification of 15N-labeled J2-crystallin

A 50 mL starter culture of LB media innoculated with a single colony of Rosetta (DE3)

E. coli cells containing a pET28(+)a vector with J2-crystallin gene inserts was grown at

37 ◦C for 16 hours with shaking at 225 RPM. The individual starter cultures were used to

innoculate a 1 L culture of LB with a starting OD600 at approximately 0.20. The cultures

were grown at 37 ◦C with shaking at 225 RPM until an OD600 of 0.60 was reached. The

cells were then collected in 500 mL batches by centrifugation at 3000 RPM for 30 minutes

and each 500 mL batch was resuspended in 1 L 15N-labeled minimal media cultures. The
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1 L minimal media cultures were grown for an additional 2 hours at 37 ◦C at 225 RPM.

Protein overexpression was induced using IPTG (Gold Biotechnology) at a final concentra-

tion of 0.10 mM at 25 ◦C for 30 hours. Cells were collected via centrifugation, spinning at

6000 RPM for 20 minutes. The cell pellets were resuspended in 40 mL of 50 mM sodium

phosphate buffer with 300 mM sodium chloride, 10 mM imidazole, and 0.05% sodium azide

at pH 7.4. Cells were lysed by sonication in 30 second intervals for a total of 10 minutes,

followed by centrifugation at 15000 RPM for 90 minutes. The supernatant was filtered with

through a 0.22 µm filter (Millipore) before being loaded onto a Bio-Rad Duo-Inject FPLC

system (Hercules, CA). The His-tagged crystallin was purified using a Ni-IDA (Bio-Rad)

and cut by a His-tagged TEV protease. The TEV protease and His-tag were removed by a

second application to a Ni-IDA column. The purified 15N-labeled crystallin was dialyzed into

10 mM sodium phosphate buffer with 0.05% sodium azide at pH 6.0. The final J2-crystallin

sample was prepared in 10 % D2O and 2 mM TMSP at a final concentration of 1.8 mM.

6.2.4 Electrospray ionization mass spectrometry of J2-crystallin

Purified J2-crystallin was prepared at 1.07 mg/mL was dialyzed into nanopure water for a

period of 48 hours where the water was changed every 12 hours to remove as much salt as

possible. J2-crystallin was injected into a Waters Micromass QTOF2 (Milford, MA) in the

presence of 50% acetonitrile and 0.1% formic acid (Micromass LCT).

6.2.5 Far-UV circular dichroism

Purified J2-crystallin samples were prepared at 0.083 mg/mL in 10 mM sodium phosphate

buffer with 0.05% sodium azide at pH 6.9. Measurements were taken with a JASCO: J-

18 Spectropolarimeter (Easton, MD) with a temperature control unit JASCO: PFD-425S
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(Easton, MD). Scans were performed with high sensitivity detection from 260 nm to 180 nm

using the step-scanning mode. Data pitch was set at 1 nm at a 16-second response time,

bandwidth set at 1 nm, and accumulation of four scans. Data was adjusted using Savitzky-

Golay smoothing [10].

6.2.6 Differential scanning fluorometry

Purified J2-crystallin samples were prepared at a final concentration of 5 µM in in 10 mM

sodium phosphate buffer with 0.05% sodium azide at pH 6.9 in the presence of 40 µM

SYPRO Orange dye. Differential scanning fluorometry (DSF) with samples of J2-crystallin

were assessed using an Agilent Mx3005P QPCR machine (Santa Clara, CA). The excitation

and emission wavelengths were 492 nm and 610 nm, respectively. Fluorescence readings

were recorded from 2595 ◦C with a temperature ramp of 1 ◦C/min and recorded in duplicate

[151]. The data were fit by a nonlinear regression analysis using the Boltzmann function and

melting temperature values were determined by the inflection point of the resulting sigmoidal

curves defined from 25-87 ◦C.

6.2.7 NMR experiments

Experiments were performed on a Varian UnityINOVA spectrometer (Agilent Technologies,

Santa Clara, CA) operating at 800 MHz and equipped with a 1H–13C–15N 5 mm tri-axis

PFG triple-resonance probe, using an 18.8 Tesla superconducting electromagnet (Oxford

Instruments). Decoupling of 15N nuclei was performed using the GARP sequence [98]. 1H

chemical shifts were referenced to TMSP, and 15N shifts were referenced indirectly to TMSP.

NMR data were processed using NMRPipe [99] and analyzed using CcpNMR Analysis [100].

Center operating frequencies and (unless otherwise stated) center frequency offsets were as

follows:
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Center 1H: 799.7988955 MHz 15N: 81.04252684 MHz

Offset 1H: 4.81 ppm 15N: 118.70 ppm

6.3 Results and Discussion

6.3.1 J2-Crystallin optimal expression and purification

Rosetta cells transformed with a pET 28a(+) vector containing DNA encoding N-terminal

His-J2 were expressed at 25 ◦C for 24 hours. Expression and purification conditions were

monitored via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) to

examine if the isolation of J2-crystallin was successful. Referring to Figure 6.1, the blue

band around 18 kDa becomes darker starting from lane 2 going through lane 4, indicating

that the protein was expressed successfully. As the purification steps progressed, the sub-

sequent lanes show bands that were not J2-crystallin disappearing and the band that was

J2-crystallin become noticeably narrower, indicating that the purification of J2-crystallin

was successful.

For further verification in isolating J2-crystallin, electrospray ionization mass spectrometry

(ESI-MS) was used providing for the molecular mass of the protein. ESI-MS uses electrical

energy to transfer ions from a solution phase to a gaseous phase through a capillary tube at

a high, positive voltage [152]. Mass spectra were generated for J2-crystallin, shown in Figure

6.2, one being the cluster of multiple-charged ions (A) and the other being the deconvoluted

spectrum showing the true mass scale after processing (B). The spectra containing the clus-

ter of ions are due to the protein picking up proton charges from the number of accessible

basic sites [152]. Since each peak only differs by one proton charge, one can set up two simple

equations and solve for two unknowns: the charge (z ) and the mass of the protein (m). In

relation to the J2-crystallin spectrum, the mass of the protein was solved to be 18251.65 Da
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Figure 6.1: SDS-PAGE gel used to determine the presence of J2-crystallin. Samples of the cell
culture (1 mL) were collected before induction, 1 hour after induction, and 24 hours after induction.
Samples of protein (50 µL) were collected after subsequent purification steps to determine the
isolation of J2-crystallin. Each lane of the gel represents the molecular weight marker (Promega) (1),
cells pre-induction (2), cells 1 hour post-induction (3), cells 24 hours post-induction (4), insoluble
cell pellet (5), cell-free extract (6), J2-crystalin with polyhistidine tag (7), TEV digest (8), J2-
crystallin after TEV removal (9), purified J2-crystallin (10). The arrow indicates the presence of
J2-crystallin at approximately 18 kDa.

and the charge was solved to be 8.00.

A secondary structure prediction was performed for J2-crystallin, using the Self Optimized

Method (SOPM) via the ULC Bioinformatics PSPIRED Protein Structure Prediction Server

and is shown in Figure 6.3 [9]. J2-crystallin is predicted to contain primarily α-helices (42%),

unlike vertebrate α- and βγ-crystallins, which typically contain less than 10% α-helical sec-

ondary structure [46, 24]. This protein appears to have a novel fold that is not obviously

related to any known enzymes or taxon-specific crystallins.
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Figure 6.2: ESI-MS spectra of purified J2-crystallin prepared at 1.07 mg/mL in 10 mM sodium
phosphate at pH 6.9 dialyzed against nanopure water for 48 hours. The water was changed every
12 hours to remove as much salt as possible. The sample of protein was injected in the presence of
50% acetonitrile and 0.1% formic acid, denaturing the protein. The spectrum in panel A represents
the raw data showing the cluster of ions while panel B represents the deconvoluted spectrum of
J2-crystallin on the true mass scale after processing. The mass of J2-crystallin was found to be
18251.65 Da and the charge was found to be 8.00.
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AA: GMSRNSLFFVYGDSQNYREAERVKDALSSKMESRYECQTLKDLGGNITPSKFKSAASRVQ

AA: AILFFCSEDFKNRLDKSEPITFDADGNKITLERNAVYSALEDRSIKDKFILLSFDTPMHIPGKL

AA: RDKSQDDIFMFRRNMQGKDLIDALRRVVSQIQRK
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130 140 150

Pred:

Pred:

Pred:

Legend:
- α helix

- β strand

- random coil
Figure 6.3: PSPIRED secondary structure prediction results for J2-crystallin [9]. The amino acid
sequence (AA) is represented by each residues one letter code and the prediction (Pred) is presented
as α-helix (red rod), β-strand (cyan arrow), or random coil (black line). The majority of the protein
is predicted to contain α-helices.
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Figure 6.4: Far-UV CD spectrum of J2-crystallin at 0.083 mg/mL. Minimum ellipticities at 211 nm
and 218 nm are consistent with α-helical secondary structure. Measurements were taken at 10 ◦C.
Scans were performed with high sensitivity detection from 260 to 180 nm using the step-scanning
mode. The data pitch was set at 1 nm at a 16-second response time, bandwidth set at 1 nm, and
accumulation of four scans. Data was adjusted using Savitzky-Golay smoothing [10].

6.3.2 Biophysical characterization of J2-crystallin reveals α-helical

content

Various biophysical techniques were used to investigate the structure of J2-crystallin. The

overall structure of J2-crystallin was qualitatively measured by far-UV circular dichroism

(CD) spectroscopy while conformational properties of J2-crystallin were characterized by

fluorescence methods. CD spectroscopy provides a qualitative measure of protein secondary

structure by measuring the amide-amide orientation of the protein backbone that absorb

into the far UV region [153]. CD measurements support the secondary structure prediction,

indicating that J2-crystallin is primarily α-helical. The far-UV CD spectra of J2-crystallin

in Figure 6.4 shows minimum ellipticities at 211 nm and 218 nm, indicative of a protein with

α-helical content, a result fairly uncommon for eye lens crystallins [153].

The thermostabilty of J2-crystallin was determined by DSF. The SYPRO Orange fluorescent

probe was used to monitor the changes in intensity over the temperature range from 25 to

95◦C [151]. The probe binds to hydrophobic pockets of the protein and as the temperature

increases, the protein unfolds resulting in the emission intensity of the probe to increase.
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Figure 6.5: Thermal unfolding curve of J2-crystallin using DSF with best-fit unfolding curves. The
Tm-value was found to be 75.2 ◦C. The excitation and emission wavelengths were 492 nm and
610 nm, respectively. Fluorescence readings were recorded from 25-95 ◦C with a temperature ramp
of 1 ◦C/min and recorded in duplicate.The data were fit by a nonlinear regression analysis using
the Boltzmann function and unfolding temperature values were determined by the inflection point
of the resulting sigmoidal curves defined from 25-87 ◦C

For J2-crystallin, the resulting changes in fluorescence yields a sigmoidal curve signifying a

two-state transition where the midpoint determines the melting temperature. The unfolding

temperature (Tm) for J2-crystallin was found to be 75.2 ± 0.1 ◦C as shown in Figure 6.5.

To qualitatively examine exposed surface hydrophobic patches, structural changes in J2-

crystallin must be observed by use of a hydrophobic probe. Using SYPRO Tangerine dye

in conjunction with fluorescence spectroscopy, I collected emission spectra of J2-crystallin

prepared at 25, 50, and 75 ◦C, as plotted in Figure 6.6. At 75 ◦C, J2-crystallin exhibits the

most exposed surface hydrophobic patches while at 50 ◦C it is 5% less hydrophobic, and

approximately 17% less hydrophobic at 25 ◦C.

6.3.3 Pursuing structural studies for J2-crystallin

To assess the suitability of J2-crystallin for structural studies, a 1H–15N heteronuclear single-

quantum correlation experiment (HSQC) was collected using samples of 15N-labelled J2-

crystallin. The first of many solution-state NMR experiments in a structure determination
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Figure 6.6: Emission spectra of J2-crystallin at various temperatures. Samples were prepared at
0.95 mg/mL and allowed to incubate with SYPRO Tangerine dye (1% v/v) at various temper-
atures for 5 minutes. Samples were excited at 492 nm and emission was recorded from 550 to
700 nm. J2-crystallin exhibits the most exposed surface hydrophobic patches at 75 ◦C and is 5%
less hydrophobic at 50 ◦C followed by approximately 17% less hydrophobic at 25 ◦C.

effort, this experiment determines how well-folded the protein is by the distribution of cross

peaks. The cross peaks are representative of the amide N-H pairs of the protein backbone

and sidechains. Clean and separated cross peaks allow for distinction among the 158 amino

acid residues that should be seen in the spectrum. An HSQC also can indicate the signal-

to-noise ratio at the particular pH and concentration of the sample. The right pH and

concentration will allow for further 3D experiments that can take longer and are less sensitive.

The spectrum of J2-crystallin, Figure 6.7 shows well-separated cross peaks in both spectral

dimensions, indicating that the protein is folded and monomeric.

6.4 Conclusion

Along with the 1H–15N HSQC experiment performed earlier, further characterization of J2-

crystallin will be done to ultimately solve the structure. As this is a structural protein, the

structure is of paramount importance in determining its function. J2-crystallin is a novel eye

lens protein that has been expressed recombinantly and purified in high yield. In agreement

with the secondary structure prediction and CD spectroscopy, J2-crystallin has primarily
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Figure 6.7: 1H–15N HSQC spectrum of 15N-labelled J2-crystallin acquired at 25 ◦C, indicating that
the protein is folded and monomeric. The crystallin sample was prepared in 10 % D2O and 2 mM
TMSP at a final concentration of 1.8 mM.
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α-helical character and thermal studies have concluded a melting temperature of 75.2 ◦C.

A 1H–15N HSQC shows the protein is well-folded, allowing for further NMR experiments to

be performed.
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