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Abstract Based on the three-dimensional elastodynamics, without using the classical assumption, an operator
method is established to refine the dynamic theory of an infinite homogenous isotropic plate byusing the spectral
decomposition of operators. By this method, the governing equations of the bending and stretching vibrations
of plates with the lateral and tangential loads on the surface are derived from the Boussinesq–Galerkin solution
of the three-dimensional elasticity, respectively. To effectively deduce the governing equations, a complex dif-
ferential operator is introduced. Dispersion relations based on the refined equations and the three-dimensional
elastodynamics are compared to verify the refined theory of plates. It is shown that the dispersion relation of
the refined theory of plates agrees more with the result based on the three-dimensional elastodynamics than
Mindlin’s theory. Therefore, the refined equations are accurate that can be used to solve the vibration of thick
plates and determine high-order vibrationmodes of plates. The applicable conditions of the refined plate theory
are analyzed and discussed.

Keywords Refined dynamic theory of plates · Spectral decomposition of operators ·Typical low-dimensional
structure · Dynamic equations of plate bending and stretching · Lateral and tangential loads

1 Introduction

Potential theory of elasticity proposed in the late nineteenth century is still being used in engineering, and
an overview of the theory was presented [1]. The complex-valued holomorphic potential is one of the most
useful methods to solve elasticity. Recently, the algebra of real quaternion is used in solving three-dimensional
elasticity [2]. The plate theory in elasticity is still a problem worthy of attention in engineering, especially, the
non-classical modeling dynamics of the low-dimensional structure [3–7]. The mini-symposium on the topic
of the refined theory of plates and shells is held in the 8th European solid mechanics conference [8].

Numerical methods can be used to solve various complex mechanical problems including nonlinear prob-
lems. Nevertheless, isotropic linear elasticity is a frequent problem in engineering. Numerical methods are
extensively used at present. However, analytic methods have their own merits. For instance, when solving
boundary-value problems, we can use boundary integral equation to decrease dimensions. Another way is to
find the stationary value of a properly functional defined in the domain.
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Plates and beams, as typical low-dimensional structures, are not only used in aerospace and civil engineer-
ing, but also applied in electronic and micro–nanomechanical devices [9,10]. With the development of modern
science and technology, this kind of the low-dimensional structure frequently operates at high frequency.
Therefore, it is very important to investigate the dynamical modeling of plates, which are related to the predic-
tion accuracy of dynamic properties, elastic wave propagation and localized vibration in the low-dimensional
structure [11–13].

Much work has been done in the area of plate theories by using some classical assumptions and operator
methods. In the middle of twentieth century, Reissner utilized the generalized variational principle of comple-
mentary energy to derive the static theory of thick plates including the effect of lateral shear deformation [14].
The refined static equation of plate bending was proposed, which yields from the 3-dimensional elasticity by
using the operator method [3]. Based on the general solution of elasticity, the refined static equation is extended
to transversely isotropic plates [7].

A fundamental contribution to the development of the Timoshenko theory for plate vibration was made
by Mindlin, who considered the effect of transverse shear deformation and rotational inertia in frequency
domain [15]. Based on the general solution of elastodynamics, using the spectral decomposition of operators,
the refined dynamic equation of plate bending was developed, which introduced the imaginary differential
operator to successfully get the governing equation of plate vibration [4]. The dynamics of the elastic plate of
finite dimensions was investigated by Stoyan, who considered the case of discrete and continuous sets of the
initial and boundary conditions that are satisfied by the means of square criterion [16]. It can be seen that these
papers usually use some assumptions to construct the governing equation of low-dimensional structures.

In this paper, based on the spectral decomposition of operators, we investigate the operator method to
construct the refined dynamical equations of thick plates from three-dimensional elastodynamics without
using the well-known straight normal assumption.

2 Refined dynamic equation of plates

The governing equations of linear elastodynamics in the absence of body forces are given by the monographs
[17,18].

μM∇2
0u + (λM + μM ) ∇0 (∇0 · u) = ρ

∂2u
∂t2

, (1)

where λM = vEM
(1+v)(1−2v)

and μM = EM
2(1+v)

are Lame’s constants of materials, EM and v are elastic modules

and Poisson ratio of materials, respectively, ρ is the mass density, t is time, ∇0 = e1 ∂
∂x + e2 ∂

∂y + e3 ∂
∂z

denotes the Hamiltonian operator in Cartesian coordinate system oxyz, e j ( j = 1, 2, 3) are unit basis vectors,

∇2
0 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is corresponding Laplacian operator in 3D space, ∇2 = ∂2

∂x2
+ ∂2

∂y2
is the corresponding

Laplacian operator in 2D space, and u is the displacement vector.
The general solution of Eq. (1) is presented by Boussinesq–Galerkin as follows [17].

u = 2 (1 − ν)
(∇2

0 − T 2
1

)
G − ∇0 (∇0 · G) , (2)

where T 2
j = 1

c2j

∂2

∂t2
( j = 1, 2) are the time differential operators, c1 = √

(λM + 2μM ) /ρ and c2 = √
μM/ρ

are the velocity of longitudinal and the transverse waves,G = G1e1 +G2e2 +G3e3 is the Somigliana’s vector
potential, which satisfies the following equation

2
�
j=1

(
∇2
0 − T 2

j

)
G = 0. (3)

Employing the Taylor series expansion about z = 0, the displacements in plates can be described in terms of
exponential functions of the differential operator:

u j (x, y, z, t) = exp

(
z

∂

∂z

)
u j (x, y, 0, t) ( j = 1, 2, 3) , (4)

where u j ( j = 1, 2, 3) denote ux , uy and uz , respectively.
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The motion in the plate may be decomposed into two parts, in which the symmetric and antisymmetric
with reference to middle plane are the longitudinal and transverse displacements in the plate. It can be seen
that u j ( j = 1, 2) and u3 are odd and even functions of the z-coordinate, respectively. Thus, the displacements
can be written:

u j (x, y, z, t) = sinh

(
z

∂

∂z

)
u (x, y, 0, t) ( j = 1, 2) (5a)

u3 (x, y, z, t) = cosh

(
z

∂

∂z

)
u3 (x, y, 0, t) , (5b)

where sinh (·) and cosh (·) are the hyperbolic sine and cosine functions.
Consider Eqs. (2) and (4), the following expression can be obtained:

Gk (x, y, z, t) = exp

(
z

∂

∂z

)
Gk (x, y, 0, t)

= exp

(
z

∂

∂z

) 2∑

j=1

G j
k (x, y, 0, t)

= 2 Re
2∑

j=1

[
exp

(
iz� j

)
g j1
k

]
, (6)

where Re(·) means to take the real part of complex variables, �2
j = ∇2 − T 2

j ( j = 1, 2) is Lorentz operator.

i� j is the introduced imaginary differential operator,G = ∑2
j=1 G

j = ∑2
j=1

∑2
k=1 G

jk,
(
�2

j + ∂2

∂z2

)
G j =

0,
(

∂
∂z − i� j

)
G j1 = 0 and

(
∂
∂z + i� j

)
G j2 = 0, j = 1, 2.

To eliminate the non-uniqueness of the unknown function in potential, the following gauge conditions are
introduced [17,19]

∂

∂x
g j
1 + ∂

∂y
g j
2 = 0 ( j = 1, 2) , (7)

Thus, we are arrive at

∇0 (∇0 · G) = −2Im
2∑

j=1

[
exp

(
iz� j

)
� j

∂

∂x
g j1
3

]
e1

−2Im
2∑

j=1

[
exp

(
iz� j

)
� j

∂

∂y
g j1
3

]
e2

−2 Re
2∑

j=1

[
exp

(
iz� j

)
�2

j g
j1
3

]
e3, (8)

where Im(·) means to take the imaginary part of complex variables.
Substituting Eqs. (6) and (8) into Eq. (2), we can obtain:

uk = 2 Re
[
exp (iz�2) T

2
2 g

21
k

] +2Im
2∑

j=1

[
exp

(
iz� j

)
� j

∂

∂xk
g j1
3

]
(k = 1, 2), (9a)

u3 = 2 Re
[
exp (iz�2) T

2
2 g

21
3

] + 2 Re
2∑

j=1

[
exp

(
iz� j

)
�2

j g
j1
3

]
. (9b)
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Therefore, the displacements at the middle plane, rotational angles of normal to the middle plane, and the
lateral strain at the middle plane of plates can be described as:

Uk = uk |z=0 = 2 Re
(
T 2
2 g

21
k

) + 2Im
2∑

j=1

(
� j

∂

∂xk
g j1
3

)
(k = 1, 2) , (10a)

W = uz |z=0 = 2 Re
(
T 2
2 g

21
3

) + 2 Re
2∑

j=1

(
�2

j g
j1
3

)
, (10b)

ψk = −∂uk
∂z

∣∣
∣∣
z=0

= Im
(
�2T

2
2 g

21
k

) − 2 Re
2∑

j=1

(
�2

j
∂

∂xk
g j1
3

)
(k = 1, 2), (10c)

E = ∂uz
∂z

∣∣
∣∣
z=0

= −2Im
(
�2T

2
2 g

21
3

) − 2Im
2∑

j=1

(
�3

j g
j1
3

)
. (10d)

The functions in Eqs. (10a) and (10c) may be changed into the following expressions by the decomposition
method of generalized displacements [20]

ψ1 = ∂

∂x
F (1) + ∂

∂y
f (1), ψ2 = ∂

∂y
F (1) − ∂

∂x
f (1),

U1 = ∂

∂x
F (2) + ∂

∂y
f (2),U2 = ∂

∂y
F (2) − ∂

∂x
f (2). (11)

Substituting Eq. (11) into Eq. (10), the following expressions are obtained

Im
(
g211

) = 1

2
�−1

2 T−2
2

∂

∂y
f (1), Im

(
g212

) = −1

2
�−1

2 T−2
2

∂

∂x
f (1),

Re
(
g211

) = 1

2
T−2
2

∂

∂y
f (2), Re

(
g212

) = −1

2
T−2
2

∂

∂x
f (2),

Re
(
g113

) = −1

2
�−2

1 T−2
2

(
�2

2W + ∇2F (1)
)

, Re
(
g213

) = 1

2
T−2
2

(
W + F (1)

)
,

Im
(
g113

) = 1

2
�−1

1 T−2
1

(
E + ∇2F (2)

)
, Im

(
g213

) = −1

2
T−2
1 �−1

2

(
E + �2

1F
(2)

)
. (12)

Here, the negative exponent in the differential operator means the inverse operator, which can be represented
by the integration of Green’s function. Thus, the displacements in the bending and stretching vibration of plates
are

uk = 2T 2
2

[
cos (z�2) Re

(
g21k

) − sin (z�2) Im
(
g21k

)]

+2
2∑

j=1

� j
∂

∂xk

[
cos

(
z� j

)
Im

(
g j1
3

)
+ sin

(
z� j

)
Re

(
g j1
3

)]
(k = 1, 2) ,

u3 = 2T 2
2

[
cos (z�2) Re

(
g213

) − sin (z�2) Im
(
g213

)]

+2
2∑

j=1

�2
j

[
cos

(
z� j

)
Re

(
g j1
3

)
− sin

(
z� j

)
Im

(
g j1
3

)]
. (13)

Here,
sin(z�j)

�j
and cos

(
z� j

)
( j = 1, 2) are differential operators whose values can be obtained by expanding

the functions sin
(
z� j

)
and cos

(
z� j

)
into the series in power of z� j and returning the operator value to the

operator �2
j .
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According to Hooke’s law, the stress components in plates can be described as

τzx = μM

{
−2�2T

2
2

[
sin (z�2) Re

(
g211

)+ cos (z�2) Im
(
g211

)]

−4
2∑

j=1

sin
(
z� j

)
�2

j
∂

∂x
Im

(
g j1
3

)
+ 4

2∑

j=1

cos
(
z� j

)
�2

j
∂

∂x
Re

(
g j1
3

)

+2T 2
2

[
cos (z�2)

∂

∂x
Re

(
g213

) − sin (z�2)
∂

∂x
Im

(
g213

)]}
,

τzy = μM

{
−2�2T

2
2

[
sin (z�2) Re

(
g212

) + cos (z�2) Im
(
g212

)]

−4
2∑

j=1

sin
(
z� j

)
�2

j
∂

∂y
Im

(
g j1
3

)
+ 4

2∑

j=1

cos
(
z� j

)
�2

j
∂

∂y
Re

(
g j1
3

)

+2T 2
2

[
cos (z�2)

∂

∂y
Re

(
g213

)− sin (z�2)
∂

∂y
Im

(
g213

)
]}

,

σz = 2 (λM + 2μM ) �1T
2
1

[
cos (z�1)Im

(
g113

) + sin (z�1) Re
(
g113

)]

−4μM

2∑

j=1

∇2� j

[
cos

(
z� j

)
Im

(
g j1
3

)
+ sin

(
z� j

)
Re

(
g j1
3

)]
. (14)

The surfaces of plates are assumed to be loaded. Thus, the boundary conditions on the upper and lower surfaces
of plates to be satisfied are

τzx |z=± h
2

= μM

(
∂ux
∂z

+ ∂uz
∂x

)
= ±1

2
qx for antisymmetric condition (15a)

τzx |z=± h
2

= μM

(
∂ux
∂z

+ ∂uz
∂x

)
= 1

2
px for symmetric condition (15b)

τzy
∣∣
z=± h

2
= μM

(
∂uy

∂z
+ ∂uz

∂y

)
= ±1

2
qy for antisymmetric condition (16a)

τzy
∣∣
z=± h

2
= μM

(
∂uy

∂z
+ ∂uz

∂y

)
= ±1

2
py for symmetric condition (16b)

σz |z=± h
2

= λM

(
∂ux
∂x

+ ∂uy

∂y
+ ∂uz

∂z

)
+ 2μM

∂uz
∂z

= ±1

2
qn for antisymmetric condition (17a)

σz |z=± h
2

= λM

(
∂ux
∂x

+ ∂uy

∂y
+ ∂uz

∂z

)
+ 2μM

∂uz
∂z

= 1

2
pn for symmetric condition (17b)

Here h is the thickness of the plate qx = q+
x −q−

x , px = q+
x +q−

x , qy = q+
y −q−

y , qn = q+
n −q−

n , pn =
q+
n + q−

n .
Divide the load on the upper and lower surface of plates (z = ±h/2) into the symmetric and antisymmetric

parts with respect to the middle plane, satisfying the boundary conditions of the upper and lower surface of
plates. We can get the following equations from Eqs. (14), (15), (16) and (17).

∂

∂x

⎡

⎣2 cos

(
h

2
�1

)
F (1) + cos

(
h

2
�2

) (
W + F (1)

)
− 2�2

2T
−2
2

2∑

j=1

(−1) j−1 cos

(
h

2
� j

)(
W + F (1)

)
⎤

⎦

± ∂

∂x

⎡

⎣2�1 sin

(
h

2
�1

)
F (2) − sin

( h
2�2

)

κ�2

(
E + �2

1F
(2)

)
+ 2T−2

1

2∑

j=1

(−1) j−1 � j sin

(
h

2
� j

) (
E + �2

1F
(2)

)
⎤

⎦

= ∂

∂y

[
cos

(
h

2
�2

)
f (1) ± �2 sin

(
h

2
�2

)
f (2)

]
± 1

2μM
qx + 1

2μM
px , (18)
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∂

∂y

⎡

⎣2 cos

(
h

2
�1

)
F (1) + cos

(
h

2
�2

) (
W + F (1)

)
− 2�2

2T
−2
2

2∑

j=1

(−1) j−1 cos

(
h

2
� j

) (
W + F (1)

)
⎤

⎦

± ∂

∂y

⎡

⎣2�2
1
sin

( h
2�1

)

�1
F (2) − sin

( h
2�2

)

κ�2

(
E + �2

1F
(2)

)
+ 2T−2

1

2∑

j=1

(−1) j−1 � j sin

(
h

2
� j

) (
E + �2

1F
(2)

)
⎤

⎦

= − ∂

∂x

[
cos

(
h

2
�2

)
f (1) ± �2 sin

(
h

2
�2

)
f (2)

]
± 1

2μM
qy + 1

2μM
py, (19)

⎡

⎣cos

(
h

2
�1

) (
E + ∇2F (2)

)
− 2κ∇2 cos

(
h

2
�1

)
F (2) − 2κ∇2T−2

2

2∑

j=1

(−1) j−1 cos

(
h

2
� j

) (
E + �2

1F
(2)

)
⎤

⎦

±
⎡

⎣2κ�2
2∇2T−2

2

2∑

j=1

(−1) j−1 sin
( h
2� j

)

� j

(
W+F (1)

)
+2κ∇2 sin

( h
2�1

)

�1
F (1)−κ

sin
( h
2�1

)

�1

(
�2
2W+∇2F (1)

)
⎤

⎦

= ± κ

2μM
qn + κ

2μM
pn . (20)

where κ = 1−2v
2(1−v)

.
Solving the simultaneous equations of Eqs. (18) and (19), the following two equations can be obtained

2 cos

(
h

2
�1

)
F (1) − cos

(
h

2
�2

) (
W + F (1)

)
+ 2�2

2T
−2
2

2∑

j=1

(−1) j−1 cos

(
h

2
� j

) (
W + F (1)

)

±
⎡

⎣2�1 sin

(
h

2
�1

)
F (2) − 1

κ

sin
( h
2�2

)

�2

(
E + �1F

(2)
)

+ 2T−2
1

2∑

j=1

(−1) j−1 sin

(
h

2
� j

) (
E + �2

1F
(2)

)
⎤

⎦

(21)

= 1

2μM
∇−2

(
∂

∂x
px + ∂

∂y
py

)
± 1

2μM
∇−2

(
∂

∂x
qx + ∂

∂y
qy

)
,

[
cos

(
h

2
�2

)
f (1) + 1

2μM
∇−2

(
∂

∂y
px − ∂

∂x
py

)]
±

[

�2
2
sin

( h
2�2

)

�2
f (2) + 1

2μM
∇−2

(
∂

∂y
qx − ∂

∂x
qy

)]

= 0.

(22)

The plate vibration can be decomposed into symmetric and antisymmetricmotion,which represents the bending
vibration and stretching vibration of plates, respectively. Eqs. (21) and (22) can be changed into the following
equations

cos

(
h

2
�1

)
F (1) − 1

2
cos

(
h

2
�2

)(
W + F (1)

)
+ �2

2T
−2
2

2∑

j=1

(−1) j−1 cos

(
h

2
� j

)(
W + F (1)

)

= 1

4μM
∇−2

(
∂

∂x
px + ∂

∂y
py

)
, (23a)

�2
1
sin

( h
2�1

)

�1
F (2) − 1

2κ
�2

2
sin

( h
2�2

)

�2

(
E + �2

1F
(2)

)
+ T−2

1

2∑

j=1

(−1) j−1 �2
j

sin
( h
2� j

)

� j

(
E + �2

1F
(2)

)

= 1

4μM
∇−2

(
∂

∂x
qx + ∂

∂y
qy

)
, (23b)

cos

(
h

2
�2

)
f (1) = 1

2μM
∇−2

(
∂

∂x
py − ∂

∂y
px

)
, (24a)

�2
2
sin

( h
2�2

)

�2
f (2) = 1

2μM
∇−2

(
∂

∂x
qy − ∂

∂y
qx

)
. (24b)
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According to the holomorphism function theory, the cosine and sine function of operators in Eq. (24) can be
expanded into the following form

cos

(
h

2
�2

)
f (1) = ∞

�
m=1

[

1 − h2�2
2

(2m − 1)2 π2

]

f (1), (25a)

sin
( h
2�2

)

�2
f (2) = ∞

�
m=1

[

1 − h2�2
2

4m2π2

]

f (2). (25b)

Substituting Eq. (25) into Eq. (24), truncating the infinite product series, the two-order wave equations arrive
at

∇2 f (1) −
(

π2

h2
+ T 2

2

)
f (1) = π2

2μMh2

∫ ∞

−∞

∫ ∞

−∞
G (x, y; ξ, η)

[
∂px (ξ, η)

∂η
− ∂py (ξ, η)

∂ξ

]
dξdη, (26a)

∇2 f (2) − T 2
2 f (2) = π2

2μMh2

∫ ∞

−∞

∫ ∞

−∞
G (x, y; ξ, η)

[
∂qx (ξ, η)

∂η
− ∂qy (ξ, η)

∂ξ

]
dξdη. (26b)

where G (x, y; ξ, η) is Green’s function and G (x, y; ξ, η) = 1
2π ln 1√

(x−ξ)2+(y−η)2
.

The simultaneous equation can be composed by Eqs. (20) and (23a) to get the governing equation of plate
bending.

[
L11 L12
L21 L22

] [
W
F (1)

]
=

[
1

4μM
∇−2

(
∂
∂x px + ∂

∂y py
)

1
4μM

qn

]

, (27)

where the expressions of these operators in Eq. (27) are

L11 = T−2
2

2∑

j=1

(−1) j−1 cos

(
h

2
� j

)
∇2 − cos

(
h

2
�1

)
+ 1

2
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(
h

2
�2

)
,

L12 = T−2
2

2∑

j=1

(−1) j−1 cos

(
h

2
� j

)
∇2 + 1

2
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(
h

2
�2

)
,

L21 = T−2
2

2∑

j=1

(−1) j−1 sin
( h
2� j

)

� j
∇2∇2 −

[
3

2

sin
( h
2�1

)

�1
− sin

( h
2�2

)

�2

]

∇2 + 1

2

sin
( h
2�1

)

�1
T 2
2 ,

L22 = T−2
2

2∑

j=1

(−1) j−1 sin
( h
2� j

)

� j
∇2∇2 −

[
1

2

sin
( h
2�1

)

�1
− sin

( h
2�2

)

�2

]

∇2.

On the base of determinant of the operator matrix in Eq. (27), the lateral displacement function of plates would
satisfy the following equation:

T−2
2

[
sin

( h
2�1

)

�1
cos

(
h

2
�2

)
− sin

( h
2�2

)

�2
cos

(
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2
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�2
2∇2W+

1

4
T 2
2
sin

( h
2�1
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�1
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(
h

2
�2

)
W

=
1

4μM
L12qn − 1

4μM
∇−2L22

(
∂px
∂x

+ ∂py
∂y

)
, (28)

The corresponding generalized displacement functionF (1) can be expressed as:

L22F
(1) = 1

4μM
qn − L21W. (29)
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Truncating the infinite operator series in Eq. (28), and thenwe have the governing equation of bending vibration
of plates

D∇2∇2W − (2 − v) DT 2
2 ∇2W + CT 2

2 W + 7 − 8ν

8
DT 4

2 W

= qn − 3 (2 − v) D

4C

(
∇2 − 1 − v

2 − v
T 2
2

)
qn − h

2

{
1 − (2 − v) D

4C

[
∇2 − 3 − 2v

2 (2 − v)
T 2
2

]} (
∂px
∂x

+ ∂py
∂y

)
,

(30)

where C and D are the shear and bending stiffness of plates, C = EMh
2(1+v)

and D = EMh3

12(1−v2)
.

The simultaneous equations can be composed by Eqs. (20) and (23b) to get the governing equation of the
stretching plate. We can arrive at

�1 sin

(
h

2
�1

)
F (2) − 1

2κ

sin
( h
2�2

)

�2

(
E + �2
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)
, (31)
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2
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∇2F (2) = 1

4μM
pn . (32)

Based on Eqs. (31) and (32), the governing equation of the stretching plate can be written

[
L11 L12
L21 L22

] [
E
F (2)

]
=

[
1

4μM
∇−2

(
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. (33)

Here, the expressions of these operators are
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∇2∇2.

Based on the operator matrix determinant of Eq. (33), the lateral strain function E at the middle plane would
satisfy the following equation
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. (34)



Refined theory for vibration of thick plates 447

Table 1 Comparison of all kinds of governing equations of bending vibration of plates

A kind of plate theories Refined theory for plate vibration

Static governing equation D∇2∇2W =
[
1 − 3(2−v)D

4C ∇2
]
qn − h

2

[
1 − (2−v)D

4C ∇2
] (

∂px
∂x + ∂py

∂y

)

∇2 f (1) − π2

h2
f (1) = π2

2μMh2
∫ ∞
−∞

∫ ∞
−∞ G (x, y; ξ, η)

[
∂px (ξ,η)

∂η
− ∂py (ξ,η)

∂ξ

]
dξdη

Dynamic governing equation D∇2∇2W − (2 − v) DT 2
2 ∇2W + CT 2

2 W + 7−8ν
8 DT 4

2 W

=
[
1 − 3(2−v)D

4C

(
∇2 − 1−v

2−v
T 2
2

)]
qn − h

2

{
1 − (2−v)D

4C

[
∇2 − 3−2v

2(2−v)
T 2
2

]} (
∂px
∂x + ∂py

∂y

)

∇2 f (1) −
(

π2

h2
+ T 2

2

)
f (1) = π2

2μMh2
∫ ∞
−∞

∫ ∞
−∞ G (x, y; ξ, η)

[
∂px (ξ,η)

∂η
− ∂py (ξ,η)

∂ξ

]
dξdη

Kind of plate theories Lagrange–Germain’s plate theory

Static governing equation D∇2∇2W = qn

Dynamic governing equation D∇2∇2W + CT 2
2 W = qn

A kind of plate theories Reissner’s plate theory

Static governing equation D∇2∇2W = qn − 2−v
10(1−v)

h2∇2qn
∇2 f (1) − 10

h2
f (1) = 0

Dynamic governing equation N/A

A kind of plate theories Mindlin’s plate theory

Static governing equation No corresponding equation

Dynamic governing equation Mindlin’s plate theory is given in frequency domain

A kind of plate theories Hencky’s plate theory

Static governing equation D∇2∇2W = qn − 1
6(1−v)

h2∇2qn
Dynamic governing equation N/A

A kind of plate theories Panc’s plate theory

Static governing equation D∇2∇2W = qn − 1
5(1−v)

h2∇2qn
Dynamic governing equation N/A

Truncating the infinite product series in Eq. (34), a fourth-order wave equation of stretching vibration of plates
can be obtained.

∇2∇2E − 12

[
1

h2
+ 2 − κ2

24 (1 − κ)
T 2
2

]
∇2E + 3

1 − κ

[
1

h2
+ 1 + 3κ

24
T 2
2

]
T 2
2 E

= 3

2 (1 − κ) μMh2
�2

1 pn − 3

8 (1 − κ)μMh

(
�2

1 − 8 (1 − 2κ)

h2

) (
∂qx
∂x

+ ∂qy
∂y

)
. (35)

Here, the corresponding generalized displacement function F (2)can be expressed in terms of the function E
as follows:

L12F
(2) = −L11E . (36)

The static governing equation corresponding to Eq. (35) can be written as follows

∇2∇2E − 12

h2
∇2E = 3

2 (1 − κ)μMh2
∇2 pn − 3

8 (1 − κ)μMh

(
∇2 − 8 (1 − 2κ)

h2

)(
∂qx
∂x

+ ∂qy
∂y

)
. (37)

From Table 1, it can be seen that the static equation of plate bending proposed by this paper and the governing
equations of the classical theories of plate bending are very close in the form. When the some high-order terms
of time derivatives in the refined theory of plates are ignored, the corresponding reduced equation is close the
one of all kinds of governing equations of the classical theory of plate bending.

Without loss of generality, consider the steady-state solution of bending vibration of plates, let

W = Re
(
W̃e−iωt

)
, F (1) = Re

(
F̃ (1)e−iωt

)
, f (1) = Re

(
f̃ (1)e−iωt

)
. (38)

where ω is the angular frequency.
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In the following formula, omit the time factor and symbol ∼ on the unknown generalized displacement
potential for convenience.

Substituting Eqs. (38) into (30), the dispersion relation in terms of the general displacement function W
of plate bending is obtained by the following equation

α4W − (2 − v) k22α
2W − 6 (1 − ν)

h2
k22W + 7 − 8ν

8
k42W = 0, (39)

(∇2 + α2
1

) (∇2 + α2
2

)
W = 0, (40)

where αi (i = 1, 2) are the traveling wavenumber of plates in a bending state, which satisfy

α4 − (2 − ν) k22α
2 − 6 (1 − ν) k42

[
1

k22h
2

− 7 − 8ν

48 (1 − ν)

]

= 0. (41)

Here k2 is the wavenumber of the transverse wave, and k22 = ω2/c22.
According to the Vieta theorem, we can see that at least a propagational wave exists along the x direction of

the plate in a bending state because α2
1α

2
2 = −6 (1 − ν) k42

(
1

k22h
2 − 1

48
7−8ν
(1−ν)

)
from Eq. (41). That is, without

losing the generality, the wavenumber α1 always represents the propagating wave; thus, the wavenumber α2
represents the propagating wave or attenuating wave.

In the same way, consider the steady solution of stretching vibration of plates, let

E = Re
(
Ẽe−iωt

)
, F (2) = Re

(
F̃ (2)e−iωt

)
, f (2) = Re

(
f̃ (2)e−iωt

)
. (42)

Substituting Eq. (42) into Eq. (35), the dispersion relation in terms of the generalized displacement function
E of plate stretching is obtained by the following equation

∇2∇2E − 12

[
1

h2
− 2 − κ2

24 (1 − κ)
k22

]
∇2E − 3

1 − κ

[
1

h2
− 1 + 3κ

24
k22

]
k22E = 0, (43)

(∇2 + α2
1

) (∇2 + α2
2

)
E = 0, (44)

where αi (i = 1, 2) is the traveling wavenumber of plate in a stretching state, which would satisfy the following
dispersion relation:

α4 + 12

[
1

h2
− 2 − κ2

24 (1 − κ)
k22

]
α2 − 3

1 − κ

[
1

h2
− 1 + 3κ

24
k22

]
k22 = 0, (45)

According to the Vieta theorem, we can see that at least a propagational wave exists along the x direction of

plates in a stretching state because α2
1α

2
2 = − 3

1−κ

(
1
h2

− 1+3κ
24 k22

)
k22 from Eq. (45). That is, without losing the

generality, the wavenumber α1 always represents the propagating wave, thus the wavenumber α2 represents
the propagating wave or attenuating wave.
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Fig. 1 Dispersion relation by the various plate theories (ν = 0.30)

Fig. 2 Dispersion relation by the various plate theories (ν = 0.50)
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Fig. 3 Wavenumber by the various theories (ν = 0.30)

3 Validation of Refined Plate Theory

3.1 Refined Equation of Plate Bending

The dispersion relations, which are from the given refined theory, 3-dimensional elasticity and Mindlin’s plate
theory, are graphically presented and compared with each other. And the dispersion equations are as follows

(
c
c2

)2 = 2π2

3(1−ν)

( h
λ

)2
based on the classical theory of thin plates (46)

(
c
c2

)2 = 2π2

3(1−ν)

[
1 + π2

3

( h
λ

)2]−1 ( h
λ

)2
from the theory including the effect of inertia (47)

π2

3

( h
λ

)2
[
1 − 1

K 2

(
c
c2

)2](
c2p
c22

− 1

)
= 1 based on the Mindlin’s theory of plates (48)

4

[
1−κ

(
c
c2

)2]1/2[
1−

(
c
c2

)2]1/2

[
2−

(
c
c2

)2]2 =
tanh

{
h
λ
π

[
1−κ

(
c
c2

)2]1/2
}

tanh

{
h
λ
π

[
1−

(
c
c2

)2]1/2
} based on the 3-dimensional elasticity (49)

where c2p = EM
ρ(1−ν2)

, λ
h and λ2

h are the traveling wavelength and the shear wavelength ratio to the thickness of

plates, respectively; K 2 is the correction factor of the shear strain in plates, K 2 = π2

12 . The dispersion relation
of elastic waves in plates proposed by this paper is Eq. (30).

In Figs. 1 and 2, the Poisson’s ratio is 0.50 and 0.30, respectively. In Fig. 1, it can be seen that the
difference between dispersion curves fromMindlin’s plate theory and the one from the 3-dimensional elasticity



Refined theory for vibration of thick plates 451

Fig. 4 Wavenumber by the various theories (ν = 0.50)

is larger than the difference between dispersion curves given by this paper and the one from the 3-dimensional
elasticity.

The comparison of wavenumber curves of traveling waves is made by Eq. (41) and Mindlin’s plate theory
on the different Poisson’s ratio in Figs. 3 and 4, respectively. It can be seen that the wavenumber α2

1 of traveling
waves given by the refined theory of plate bending is very close to the one from the Mindlin’s theory, but the
wavenumber α2

2 of traveling waves given by the refined theory is not close to the one from the Mindlin’s plate
theory at the higher frequency. It is demonstrated that the Mindlin’s plate theory has limitations because the
refined theory of plate bending is accurate without the assumptions.

In addition to, the comparison of the mode coefficients from the various theories of plate bending are made
on the different Poisson’s ratio in Figs. 5 and 6, respectively.

3.2 Refined equation of plate stretching

The dispersion relations, which are from the refined theory, 3D elasticity and the classical theory of plate
stretching, respectively, are graphically presented and are compared with each other. And the dispersion
equations are as follows:

(
c

c2

)2

= 2

1 − ν
from the classical theory of plate stretching (50)

[
2 −

(
c
c2

)2]2

4

[
1 − κ

(
c
c2

)2]1/2 [
1 −

(
c
c2

)2]1/2
=

tanh

{
h
λ
π

[
1 − κ

(
c
c2

)2]1/2
}

tanh

{
h
λ
π

[
1 −

(
c
c2

)2]1/2
} from the 3D elastodynamics
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Fig. 5 Mode coefficients by the various theories (ν = 0.30)

(51)

In Figs. 7 and 8, the Poisson’s ratio is 0.30 and 0.50, respectively. From Fig. 7, it can be seen that as the
Poisson’s ratio is smaller, the dispersion curve of the refined theory has little difference with that of the 3D
elastodynamics at the lower frequency; From Fig. 8, it can be seen that as the Poisson’s ratio is larger, the
dispersion curve of the refined theory has larger difference with that of the 3D elastodynamics at the lower
frequency.

Besides, from Figs. 7 and 8, we can see that when the elastic wavelength is larger or the vibration frequency
is lower, the dispersion relation from the classical theory of plate stretching is the same as one from the 3-
dimensional elastodynamics, and the difference goes larger when the elastic wavelength is smaller or the
vibration frequency is larger.

4 Conclusion

In this paper, based on 3-dimensional elastodynamics without the classical assumption in plates, the refined
dynamic theory of plates, which involves the governing equation of the bending and stretching vibration of
plates, is established by the spectral decomposition of operators and the gauge theory, instead of the geometrical
mechanics method, which use the force and moment equilibrium equations.

The classical modeling in the plate theory, which is from the force and moment equilibrium, may loss the
some influences of the dynamical boundary condition at upper and lower surfaces. Unlike the classical plate
theory, the refined equation presented by this paper is directly based on the operator method from the general
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Fig. 6 Mode coefficients by the various theories (ν = 0.35)

Fig. 7 Dispersion relation by the various plate theories (ν = 0.30)

solution in 3-dimensional elastodynamics. The modeling for the refined theory of plates is one of analytic and
algebraic method as opposed to the classical geometric mechanics.

When the deflection of plates is a small, the stress state in plates would be decomposed into the antisym-
metric and symmetric vibration with respect to the middle plane without action coupling, in which the bending
vibration is governed by a four-order wave equation of lateral displacement and a second-order wave equation
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Fig. 8 Dispersion relation by the various plate theories (ν = 0.50)

of the corresponding shear deformation field, and the stretching vibration is governed by a fourth-order wave
equation of the lateral strain and a second-order wave equation of the other shear deformation field.

In this paper, we present a general method for constructing the refined dynamical theory of plates, which
would be treated as the uniform method to establish the governing equation of the low-dimensional structure
from the 3-dimensional elasticity. The comparison of the dispersion relations from the various theories is made
to verify the proposed method for establish the refined theory of plates. The feature of the refined theory of
plates on the physical meaning is that not only the effect of transverse shear and rotational inertia but also
the lateral and tangential loads are included. Unlike the classical plate theory, we can see that the refined
equation contains the fourth-order time derivative, which means the initial condition would involve initial
displacement, velocity, acceleration and the jerk in plates. The refined dynamical equations of plate bending
and stretching in the time domain would be used to analyze and calculate the vibration of thick plates and to
determine the high-order vibration modes of plates, because the refined equations of plates are directly from
three-dimensional elasticity without using the well-known straight normal assumption, so the refined theory
is more accurate than the classical plate theory.
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