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ABSTRACT OF THE DISSERTATION

Unsupervised Learning and Understanding of Deep Generative Models

by

Tian Han

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2019

Professor Ying Nian Wu, Chair

Probabilistic generative models, especially ones that are parametrized by convolutional neu-

ral network (ConvNet), are compact representation tools towards knowledge understanding

and can be crucial in statistics as well as artificial intelligence. The generator model and

the energy-based model are two notable examples. Yet the learning and understanding of

such models can be challenging because of the high dimensionality of the input and the high

non-linearity of the network. In this dissertation, we pay particular attention to the genera-

tor model, and study its learning algorithm and the behavior of the learned model. We also

develop the joint learning scheme for both the generator model and the energy-based model.

To learn the generator model, we view it in the lens of non-linear generalization of factor

analysis and propose an alternating back-propagation algorithm for learning. The alternating

back-propagation algorithm iterates the following two steps: (1) Inferential back-propagation,

which infers the latent factors by Langevin dynamics or gradient descent. (2) Learning back-

propagation, which updates the parameters given the inferred latent factors by gradient

descent. The gradient computations in both steps are powered by back-propagation, and

they share most of their code in common. We show that the alternating back-propagation

algorithm can learn realistic generator models of natural images, video sequences, and sounds.

Moreover, it can also be used to learn from incomplete or indirect training data.

The generator model can be naturally extended for multi-view representation learning

where we build separate generator model for each domain but share their latent variables.
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The proposed multi-view generator model can be easily learned through alternating back-

propagation. Our experiments show that the proposed method is powerful in both gener-

ation, prediction and recognition. Specifically, we demonstrate our model can accurately

rotate and complete faces as well as predict missing modalities. We also show our model

can achieve state-of-art or competitive recognition performance through quantitative com-

parisons.

Further, the generator model can be jointly learned with the energy-based model. We

propose the probabilistic framework, called divergence triangle, as a compact and symmetric

(anti-symmetric) objective function that seamlessly integrates variational learning, adver-

sarial learning, wake-sleep algorithm, and contrastive divergence. This unification makes

the processes of sampling, inference, energy evaluation readily available without the need

for costly Markov chain Monte Carlo methods. Our experiments demonstrate that the di-

vergence triangle is capable of learning (1) an energy-based model with well-formed energy

landscape, (2) direct sampling in the form of a generator model, and (3) feed-forward in-

ference that faithfully reconstructs observed as well as synthesized data. The divergence

triangle is also a robust training method that can learn from incomplete data.

The last but not the least, we take the inspiration from recent discovery in neuroscience

which states that for the face stimuli generated by a pre-trained active appearance model

(AAM), the responses of neurons in the selected areas of the primate brain exhibit strong

linear relationship with the shape and appearance variables of the AAM that generates the

face stimuli. We show that this behavior can be replicated by a generator model. Specifically,

we learn the generator model from the face images generated by a pre-trained AAM model

using variational auto-encoder, and we show that the inferred latent variables of the learned

generator model have strong linear relationship with the shape and appearance variables of

the AAM model that generates the face images. Unlike the AAM model that has an explicit

shape model where the shape variables generate the landmarks, the generator model has

no such shape model and shape variables. Yet the generator model can learn the shape

knowledge in the sense that some of the latent variables of the learned generator network

capture the shape variations in the face images generated by AAM.
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CHAPTER 1

Introduction

1.1 Background and Motivation

Initially developed by Grenander in the 1970s, the pattern theory [Gre70, GM07] is a unified

mathematical framework for representing, learning and recognizing patterns that arise in

science and engineering. The objects in pattern theory are usually of high complexity or di-

mensionality, defined in terms of the constituent elements and the bonds between them. The

patterns of these objects are characterized by both the algebraic structures governed by local

and global rules, as well as the probability distributions of the associated random variables.

Such a framework encompasses most of the probability models in various disciplines. Mum-

ford [MD10] later advocated such probabilistic theoretical framework for computer vision,

so that learning and inference can be based on probability models.

The discriminative model is one of the most successful developed models in the past

decade. A discriminative model is in the form of a classifier and specifies the conditional

probability of the output class label given the input signal. Fueled by the large scale datasets,

such as ImageNet [DDS09] and LSUN [YSZ15], and powered by the graphical processing units

(GPUs), discriminative models that are parametrized by convolutional neural networks have

achieved state-of-the-art results in the tasks such as classification and recognition. Such a

model can be learned in the supervised setting where a training dataset of input signals and

the corresponding output labels are provided. Discriminative models have been widely used

in the areas of artificial intelligence including computer vision, natural language processing,

speech recognition etc.

Despite its success, the discriminative model only specifies the conditional probability
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and can only tell apart between two objects. It does not provide any clues about how

objects are created and what they look like. Such information is essential towards knowledge

understanding as in the famous quote from Richard Feynman —–“If I cannot create, I do

not understand”, and is the primary focus of generative models. A generative model directly

specifies the probability distribution on the input signal and can be considered as a compact

representation of knowledge. Once learned, they have potentials for solving a wide range of

problems including density estimation, data completion, representation learning as well as

downstream inferences.

Despite its generality, learning and understanding of probabilistic generative models re-

main challenging tasks. Unlike discriminative model learning, generative models are usually

learned in the unsupervised setting where the training dataset only consists of input signals

without the corresponding output labels. Both the input and the output are of extremely

high dimensionality (e.g., ∼10000 dims for image) and their hidden structures are also of

high complexities. Models parametrized by convolutional neural networks, i.e., deep prob-

abilistic models, can be effective because of their approximation capacity, but learning and

understanding such models can be even more difficult because of the highly non-linear and

entangled nature of deep networks. In this dissertation, we study how to effectively and effi-

ciently learn deep probabilistic generative models and investigate their underlying behaviors.

1.2 Two probabilistic Generative Models

Deep probabilistic generative models are powerful frameworks for representing complex input

data distributions. The goal is to build rich and flexible models to fit complex, multi-modal

input data distributions as well as to be able to generate samples with high realism. The

family of generative models can be roughly divided into two classes: the first class is the

energy-based model (a.k.a undirected graphical model) and the second class is the generator

model (a.k.a directed graphical model). In this dissertation, we study and focus on the

models that are parametrized by convolutional neural network (ConvNet) which consists

of multilayer linear convolution operations followed by non-linear activation functions (see
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Figure 1.1: Convolutional neural network (ConvNet) mapping. The bottom-up mapping

starts from input image and mainly used for feature/statistics extraction. The top-down

mapping builds upon latent variable (or categories) and used for generation.

Figure 1.1). We will briefly describe two type of models in this section and leave more

detailed analysis in the following chapters. The models described in this section serve as the

basic building blocks of our thesis work.

Top-down mapping Bottom-up mapping

latent variable z energy −fα(x)

⇓ ⇑

signal x ≈ gθ(z) signal x

(a) Generator model (b) Energy-based model

1.2.1 The Energy-based Model

The energy-based model specifies the following probability model on the observed data:

πα(x) =
1

Z(α)
exp [fα(x)] , (1.1)

where −fα(x) defines the energy of x, and a low energy x is assigned a high probability, and

Z(α) is the normalizing constant. If fα(x) is linear in α, the model becomes the familiar

exponential family model in statistics or the Gibbs distribution in statistical physics. The
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energy function fα(x) can be generalized to hierarchical form with multiple layers of features

using ConvNet with parameters α and can be computed in a bottom-up manner. In the

literature, such model is also called descriptive model [Zhu03]. See Figure 1.1 and above

diagram (b) for illustration.

The energy-based model can be interpreted as associative memory as observed by Hop-

field [Hop82]. Take image space for example, if πα is an accurate model of the given dataset,

then images whose appearance is consistent with the observed data should have low energy

while images which differ greatly from the observed data should have high energy. The

major modes of energy function represents the most typical image appearances for observed

data. The energy-based model πα defines explicit log-likelihood of input x via fα(x), even

though Z(α) is intractable. It has no latent variables involved and therefore has no explicit

inference.

The energy-based model can be learned through maximum likelihood estimation (MLE)

which aims at matching the statistical features between observed data and the data from

the model distribution πα. The learning proceeds by first sampling/synthesising data from

the current model, then updating the model (i.e., energy function) in order to decrease the

energy for observed data and increase the energy for model samples. It is essentially a

“analysis-by-synthesis” learning scheme. However, the learning can be challenging since it is

difficult to sample from model distribution πα due to the intractable Z(α). Therefore, Markov

Chain Monte Carlo (MCMC) is needed to get approximate samples from the model [LZW16,

XLZ16].

1.2.2 The Latent Variable Model

Instead of explicitly specifying probability distribution on the observed data, the latent

variable model generates the data through latent factors z in the following way:

z ∼ N(0, Id), x = gθ(z) + ε, ε ∼ N(0, σ2ID) (1.2)

where gθ is a mapping function that maps the d-dimensional latent vector z to the D-

dimensional signal x. If gθ(z) is linear in θ, then the model becomes the factor analysis which
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is a prototype model in unsupervised learning of distributed representations. Such mapping

can be generalized to non-linear form using ConvNet with parameters θ and essentially a top-

down mapping (see Figure 1.1 and above diagram (a)). The ConvNet parametrization version

of the model is also known as the generator model in the literature [GPM14, RMC15, KW13].

The generator model specifies the complete data distribution pθ(z, x) through prior distri-

bution p(z) and the conditional distribution pθ(x|z), i.e., pθ(z, x) = p(z)pθ(x|z). Therefore,

the observed data distribution is implicitly defined by integrating out the latent variables,

i.e., pθ(x) =
∫
pθ(z, x)dz.

The generator model is a fundamental representation of knowledge, and it has the follow-

ing properties: (1) Analysis: The model disentangles the variations in the observed signals

into independent variations of latent factors. (2) Synthesis: The model can synthesize new

signals by sampling the factors from the known prior distribution and transforming the fac-

tors into the signal. (3) Embedding: The model embeds the high-dimensional non-Euclidean

manifold formed by the observed signals into the low-dimensional Euclidean space of the

latent factors, so that linear interpolation in the low-dimensional factor space results in

non-linear interpolation in the data space.

In the unsupervised setting, latent variables z are unknown and need to be inferred

during learning. The general learning scheme follows “analysis-by-inference” mechanism

where the latent variables are inferred using the current model and the model is updated

using the obtained latent variables. The generator model can be learned directly using

maximum likelihood, however, the learning can be challenging since the inference is based

on the intractable posterior distribution pθ(z|x) of the generator model.

1.3 Overview of the Dissertation

The research work in this dissertation aims at learning and understanding deep probabilistic

generative models. Particularly, for learning, we focus on the unsupervised setting where

only observed data is available and we discuss the model and learning algorithms for different

data modalities (e.g., image, video etc). For understanding, we focus on the generator model
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and examine its behavior through latent factors. We overview the research works and their

contributions below.

In chapter 2, we work on unsupervised learning of the generator model. The existing

training algorithms for such models involve an assisting network with a separate set of

parameters, and they cannot perform accurate inference on the latent factors. We have

developed an efficient algorithm called Alternating Back-propagation (ABP) that trains

the generator model without any assisting network and infers the latent factors explicitly

and accurately. Precisely, it iterates the following two steps: (1) inferential step where

the latent factors are inferred through Langevin dynamics based on exact likelihood, and

(2) learning step where the generator model is learned by gradient descent based on the

inferred latent factors. The gradient computations in the two steps can be powered by

back-propagation and share the same chain rule, which makes the proposed algorithm very

efficient. Experiments show that our approach can learn realistic generator model on various

data types, including audio signals, texture/object images and video sequences. It could also

be successfully applied to data completion problems.

In chapter 3, we extend the original generator model to multi-view data. The proposed

multi-view generator model uses separate generator for each domain but share their un-

derlying latent factors. The shared latent factors can encode common knowledge between

different domains while the separate generator model can encode domain specific information.

The model is learned using extended alternating back-propagation, and can be effective in

multi-view learning (e.g. multi-view gait generation and recognition), as well as audio-video

common knowledge extraction.

In chapter 4, we consider to jointly learn the generator model with the energy-based

model. Separate learning of the two models are in general difficult for two reasons: (1)

The energy-based model is learned through an “analysis-by-synthesis” manner in which

the negative samples need to be draw from the model distribution, because the underly-

ing expectation is analytically intractable. (2) A generator model is learned through an

“analysis-by-inference” manner in which latent factors need to be inferred which requires

integrating out latent variables that is also analytical intractable. Learning such models
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usually requires expensive MCMC sampling, and few existing work has been proposed to

efficiently and effectively bridge these two classes of models. We propose the divergence

triangle scheme to jointly train these two models. While using the inference model, we

make the joint model learning analytically tractable. The learning of the generator model,

the energy-based model and the inferential model can be seamlessly integrated within an

unified probabilistic framework. It can also be seen as a probabilistic framework to unify

the variational learning and adversarial learning schemes. Experiments showed that the pro-

posed work can learn a well-behaved energy-based model with meaningful energy landscape,

a realistic generator model with sharp sample quality, and an accurate inferential model with

faithful reconstruction.

In chapter 5, we study the behavior of the generator model. The work in this chapter is

inspired by the recent Cell paper [CT17] which shows how specific neurons in the primate

brain respond to and encode the given face stimuli. The face stimuli used in [CT17] are gen-

erated by a pre-trained Active Appearance Model (AAM) which is explainable and contains

explicit shape and appearance variables. Interestingly, the work in [CT17] on the specific

neuron responses exhibits strong linear relationship with shape and appearance variables of

AAM. In our work, we have learnt the generator model by variational autoencoder (VAE)

using the images generated by pre-trained AAM. The most important finding is that la-

tent factors in the learned generator model exhibit strong linear relationship with the AAM

shape/appearance variables. This finding is non-trivial and surprising, because when pre-

sented with only synthesized face stimuli, the VAE training of the highly non-linear generator

network can automatically learn the code that is linearly related to the underlying AAM

code that generates the given face stimuli. The experiments also show that we are able to

linearly decode face images and separate the shape and appearance parts given the inferred

latent factors from the generator model. Moreover the AAM model can be fully replicated

by the generator model.
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1.4 Prior Art

In this section, we review some of the representative works on unsupervised learning and

understanding of probabilistic generative models that are most related to our work.

1.4.1 Maximum Likelihood Learning for Generative Model

The maximum likelihood learning of the energy-based model requires expectation with re-

spect to the current model, while the maximum likelihood learning of the generator model

requires expectation with respect to the posterior distribution of the latent variables. Both

expectations can be approximated by MCMC, such as Gibbs sampling [GG84], Langevin

dynamics, or Hamiltonian Monte Carlo (HMC) [Nea11]. [LZW16, XLZ16] used Langevin

dynamics for learning the energy-based models, and we propose to use Langevin dynam-

ics for learning the generator model in this dissertation. In both cases, MCMC sampling

introduces an inner loop in the training procedure, posing a computational expense.

1.4.2 The Energy-based Model

An early version of the energy-based model is the FRAME (Filters, Random field, And

Maximum Entropy) model [ZWM97, WZL00]. [ZM98] used gradient-based method such

as Langevin dynamics to sample from the model. Other forms of energy-based model also

include product of experts [Hin02a], product of t-distribution [WOH03], field of experts

[RB05] as well as restricted Boltzmann machine (RBM) [Hin10]. The energy-based models

are also called descriptive models as in [Zhu03]. [LZW16, XLZ16] generalized such models

to deep versions.

For learning the energy-based model [LCH06], to reduce the computational cost of MCMC

sampling, contrastive divergence (CD) [Hin02a] initializes a finite step MCMC from the ob-

served data. The resulting learning algorithm follows the gradient of the difference between

two Kullback-Leibler divergences, thus the name contrastive divergence. In this dissertation,

we shall use the term “contrastive divergence” in a more general sense than [Hin02a]. Per-
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sistent contrastive divergence [Tie08] initializes MCMC sampling from the samples of the

previous learning iteration.

Generalizing [Tu07], [JLT17] developed an introspective learning method where the en-

ergy function is discriminatively learned, and the energy-based model is both a generative

model and a discriminative model.

1.4.3 The Generator Model

For learning the generator model, the variational auto-encoder (VAE) [KW13, RMW14a,

MG14] approximates the posterior distribution of the latent variables by an explicit inference

model. In VAE, the inference model is learned jointly with the generator model from the

observed data. A precursor of VAE is the wake-sleep algorithm [HDF95], where the inference

model is learned from the dream data generated by the generator model in the sleep phase.

The generator model can also be learned jointly with a discriminator model, as in the

generative adversarial networks (GAN) [GPM14], as well as deep convolutional GAN (DC-

GAN) [RMC15], energy-based GAN (EB-GAN) [ZML16], Wasserstein GAN (WGAN) [ACB17].

GAN does not involve an inference model.

1.4.4 Joint Learning of Probabilistic Models

The generator model can be learned jointly with an energy-based model [KB16, DAB17]. We

can interpret the learning scheme as an adversarial version of contrastive divergence. While

in GAN, the discriminator model eventually becomes a confused one, in the joint learning of

the generator model and the energy-based model, the learned energy-based model becomes

a well-defined probability distribution on the observed data. The joint learning bares some

similarity to WGAN, but unlike WGAN, the joint learning involves two complementary

probability distributions.

To bridge the gap between the generator and the energy-based model, the cooperative

learning method of [XLG18] introduces finite-step MCMC sampling of the energy-based

model with the MCMC initialized from the samples generated by the generator model. Such
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finite-step MCMC produces synthesized examples closer to the energy-based model, and the

generator model can learn from how the finite-step MCMC revises its initial samples.

Adversarially learned inference (ALI) [DBP16, DKD16] combines the learning of the

generator model and inference model in an adversarial framework. ALI can be improved

by adding conditional entropy regularization, resulting in the ALICE [LLC17] model. The

recently proposed method [CDP18] shares the same spirit. They lack an energy-based model

on observed data.

1.4.5 Other Forms

Other forms of probabilistic generative models also exist in the literature. Notably, deep

belief net (DBN) [HOT06] uses the directed sigmoid belief net, with the RBM on the top

layer, to model observed data. Deep Boltzmann machine (DBM) [SH09] instead uses the

undirected connection for the modeling. Flow-based generative models, on the other hand,

explicitly learn the data distribution through sequence of invertible transformations, ex-

amples include recently proposed NICE [DKB14], Real-NVP [DSB16] and GLOW model

[KD18].

1.4.6 Disentangled Representation

Disentangled representations behind the observed data[BCV13, MZZ16] is fundamental to-

wards understanding and controlling modern deep models. Among others, deep generative

models, e.g., the generator model, have shown great promise in learning representation of

images in recent years. However, the learned representation, i.e., latent factor z, is often

entangled and not interpretable. We review some of the recent attempts towards studying

and learning disentangled latent factors below.

On the one hand, disentangled representation can be obtained implicitly through gener-

ative learning. InfoGAN [CDH16], a representative of the GAN family, is proposed under

the principle of maximization of the mutual information between the observations and a

subset of latent factors. However, its disentangling performance is sensitive to the choice of
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the prior and the number of latent vectors. β-VAE [HMP16], from the VAE family, learns

disentangled representations by utilizing a VAE objective but with strong penalty on prior

latent distribution to make it to be independent as much as possible.

On the other hand, disentangled representation can also be obtained explicitly through

model. Active Appearance Models (AAM) [CET01, KTP17] learn the appearance and geo-

metric information explicitly. Particularly, AAM uses principal component analysis (PCA)

to obtain the independent sets of appearance and geometry latent factors.
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CHAPTER 2

The Generator Model and Learning

The generator model described in chapter 1.2.2 is a non-linear generalization of the factor

analysis. We shall first describe the basic factor analysis model based on which the non-

linear version is developed as the generator model, then we shall present the alternating

back-propagation algorithm for model learning. Then we analyze the algorithm and present

the experiments both qualitatively and quantitatively on various tasks.

2.1 Factor Analysis and Beyond

Factor analysis is a prototype model in unsupervised learning of distributed representa-

tions. Let X be a D-dimensional observed data vector, such as an image. Let Z be the

d-dimensional vector of continuous latent factors, Z = (zk, k = 1, ..., d). The traditional

factor analysis model is X = WZ + ε, where W is D × d matrix, and ε is a D-dimensional

error vector or the observational noise. We assume that Z ∼ N(0, Id), where Id stands for

the d-dimensional identity matrix. We also assume that ε ∼ N(0, σ2ID), i.e., the observa-

tional errors are Gaussian white noises. There are three perspectives to view W . (1) Basis

vectors. Write W = (W1, ...,Wd), where each Wk is a D-dimensional column vector. Then

X =
∑d

k=1 zkWk + ε, i.e., Wk are the basis vectors and zk are the coefficients. (2) Loading

matrix. Write W = (w1, ..., wD)>, where w>j is the j-th row of W . Then xj = 〈wj, Z〉 + εj,

where xj and εj are the j-th components of X and ε respectively. Each xj is a loading of

the d factors where wj is a vector of loading weights, indicating which factors are important

for determining xj. W is called the loading matrix. (3) Matrix factorization. Suppose we

observe X = (x1, ..., xn), whose factors are Z = (z1, ..., zn), then X ≈ WZ.

12



The factor analysis model can be learned by the Rubin-Thayer EM algorithm, which

involves alternating regressions of Z on X in the E-step and of X on Z in the M-step, with

both steps powered by the sweep operator [RT82, LRW98].

The factor analysis model is the prototype of many subsequent models that generalize

the prior model of Z.

• Independent component analysis [OF97], d > D, and Z is assumed to be a redundant

but sparse vector, i.e., only a small number of zk are non-zero or significantly different

from zero.

• Sparse coding [OF97], d > D, and Z is assumed to be a redundant but sparse vector,

i.e., only a small number of zk are non-zero or significantly different from zero.

• Non-negative matrix factorization [LS01], it is assumed that zk ≥ 0.

• Recommender system [KBV09], Z is a vector of a customer’s desires in different aspects,

and wj is a vector of product j’s desirabilities in these aspects.

2.2 The Generator Model as Non-linear Factor Analysis

2.2.1 ConNet Mapping

In addition to generalizing the prior model of the latent factors Z, we can also generalize the

mapping from Z to X. In this dissertation, we consider the generator model [GPM14] that

retains the assumptions that d < D, Z ∼ N(0, Id), and ε ∼ N(0, σ2ID) as in traditional factor

analysis, but generalizes the linear mapping WZ to a non-linear mapping gθ(Z), where g is

a ConvNet, and θ collects all the connection weights and bias terms of the ConvNet. Then

the model becomes (recall Eqn. 1.2 in chapter 1.2.2):

X = gθ(Z) + ε,

Z ∼ N(0, Id), ε ∼ N(0, σ2ID), d < D. (2.1)
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The reconstruction error is ||X − gθ(Z)||2. We may assume more sophisticated models for ε,

such as colored noise or non-Gaussian texture. If X is binary, we can emit X by a probability

map P = 1/[1 + exp(−gθ(Z)))], where the sigmoid transformation and Bernoulli sampling

are carried out pixel-wise. If X is multi-level, we may assume multinomial logistic emission

model or some ordinal emission model.

Although gθ(Z) can be any non-linear mapping, the ConvNet parametrization of gθ(Z)

makes it particularly close to the original factor analysis. Specifically, we can write the

top-down ConvNet as follows:

Z(l−1) = gl(WlZ
(l) + bl), (2.2)

where gl is element-wise non-linearity at layer l, Wl is the matrix of connection weights, bl is

the vector of bias terms at layer l, and θ = (Wl, bl, l = 1, ..., L). Z(0) = gθ(Z), and Z(L) = Z.

The top-down ConvNet (2.2) can be considered a recursion of the original factor analysis

model, where the factors at the layer l − 1 are obtained by the linear superposition of the

basis vectors or basis functions that are column vectors of Wl, with the factors at the layer

l serving as the coefficients of the linear superposition. In the case of ConvNet, the basis

functions are shift-invariant versions of one another, like wavelets.

2.2.2 ReLU and Piecewise Factor Analysis

The element-wise non-linearity gl in modern ConvNet is usually the two-piece linearity, such

as rectified linear unit (ReLU) [KSH12] or the leaky ReLU [MHN13, XWC15]. Each ReLU

unit corresponds to a binary switch. For the case of non-leaky ReLU, following the analysis

of [PMB13], we can write Z(l−1) = δl(WlZ
(l) + bl), where δl = diag(1(WlZ

(l) + bl > 0)) is a

diagonal matrix, 1() is an element-wise indicator function. For the case of leaky ReLU, the

0 values on the diagonal are replaced by a leaking factor (e.g., 0.2).

δ = (δl, l = 1, ..., L) forms a classification of Z according to the network θ. Specifically,

the factor space of Z is divided into a large number of pieces by the hyperplanes WlZ
(l) +

bl = 0, and each piece is indexed by an instantiation of δ. We can write δ = δ(Z; θ) to

make explicit its dependence on Z and θ. On the piece indexed by δ, gθ(Z) = WδZ + bδ.
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Assuming bl = 0,∀l, for simplicity, we have Wδ = δ1W1...δLWL. Thus each piece defined

by δ = δ(Z; θ) corresponds to a linear factor analysis X = WδZ + ε, whose basis Wδ is a

multiplicative recomposition of the basis functions at multiple layers (Wl, l = 1, ..., L), and

the recomposition is controlled by the binary switches at multiple layers δ = (δl, l = 1, ..., L).

Hence the top-down ConvNet amounts to a reconfigurable basis Wδ for representing X, and

the model is a piecewise linear factor analysis. If we retain the bias term, we will have

X = WδZ + bδ + ε, for an overall bias term that depends on δ. So the distribution of X is

essentially piecewise Gaussian.

The generator model can be considered an explicit implementation of the local linear

embedding [RS00], where Z is the embedding of X. In local linear embedding, the mapping

between Z and X is implicit. In the generator model, the mapping from Z to X is explicit.

With ReLU ConvNet, the mapping is piecewise linear, which is consistent with local linear

embedding, except that the partition of the linear pieces by δ(Z; θ) in the generator model

is learned automatically.

2.3 Alternating Back-Propagation

The factor analysis model can be learned by the Rubin-Thayer EM algorithm [RT82, DLR77],

where both the E-step and the M-step are based on multivariate linear regression. Inspired

by this algorithm, we propose an alternating back-propagation algorithm for learning the

generator network that iterates the following two-steps:

(1) Inferential back-propagation: For each training example, infer the continuous latent

factors by Langevin dynamics or gradient descent.

(2) Learning back-propagation: Update the parameters given the inferred latent factors

by gradient descent.

The Langevin dynamics [Nea11] is a stochastic sampling counterpart of gradient descent.

The gradient computations in both steps are powered by back-propagation. Because of the

ConvNet structure, the gradient computation in step (1) is actually a by-product of the
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gradient computation in step (2) in terms of coding.

Given the factors, the learning of the ConvNet is a supervised learning problem [DSB15]

that can be accomplished by the learning back-propagation. With factors unknown, the

learning becomes an unsupervised problem, which can be solved by adding the inferential

back-propagation as an inner loop of the learning process. The alternating back-propagation

algorithm follows the tradition of alternating operations in unsupervised learning, such as

alternating linear regression in the EM algorithm for factor analysis, alternating least squares

algorithm for matrix factorization [KBV09, KP08], and alternating gradient descent algo-

rithm for sparse coding [OF97]. All these unsupervised learning algorithms alternate an

inference step and a learning step, as is the case with alternating back-propagation.

Explaining away inference. The inferential back-propagation solves an inverse problem

by an explaining-away process, where the latent factors compete with each other to explain

each training example. The following are the advantages of the explaining-away inference of

the latent factors:

(1) The latent factors may follow sophisticated prior models. For instance, in textured

motions [WZ03] or dynamic textures [DCW03], the latent factors may follow a dynamic

model such as vector auto-regression. By inferring the latent factors that explain the observed

examples, we can learn the prior model.

(2) The observed data may be incomplete or indirect. For instance, the training images

may contain occluded objects. In this case, the latent factors can still be obtained by

explaining the incomplete or indirect observations, and the model can still be learned as

before.

The algorithm can be stated in more formal way. Suppose we observe a training set of

data vectors {Xi, i = 1, ..., n}, then each Xi has a corresponding Zi, but all the Xi share the

same ConvNet θ. Intuitively, we should infer {Zi} and learn θ to minimize the reconstruction

error
∑n

i=1 ||Xi − gθ(Zi)||2 plus a regularization term that corresponds to the prior on Z.

More formally, the model can be written as Z ∼ p(Z) and [X|Z, θ] ∼ pθ(X|Z). Adopting
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the language of the EM algorithm [DLR77], the complete-data model is given by

log pθ(X,Z) = log [p(Z)pθ(X|Z)]

= − 1

2σ2
‖X − gθ(Z)‖2 − 1

2
‖Z‖2 + const. (2.3)

The observed-data model is obtained by integrating out Z: pθ(X) =
∫
p(Z)pθ(X|Z)dZ.

The posterior distribution of Z is given by pθ(Z|X) = pθ(X,Z)/pθ(X) ∝ p(Z)pθ(X|Z) as a

function of Z.

For the training data {Xi}, the complete-data log-likelihood is L(θ, {Zi}) =
∑n

i=1 log pθ(Xi, Zi),

where we assume σ2 is given. Learning and inference can be accomplished by maximizing

the complete-data log-likelihood, which can be obtained by the alternating gradient descent

algorithm that iterates the following two steps: (1) Inference step: update Zi by running l

steps of gradient descent. (2) Learning step: update θ by one step of gradient descent.

A more rigorous method is to maximize the observed-data log-likelihood, which is L(θ) =∑n
i=1 log pθ(Xi) =

∑n
i=1 log

∫
pθ(Xi, Zi)dZi. The observed-data log-likelihood takes into ac-

count the uncertainties in inferring Zi.

The gradient of L(θ) can be calculated according to the following well-known fact that

underlies the EM algorithm:

∂

∂θ
log pθ(X) =

1

pθ(X)

∂

∂θ

∫
pθ(X,Z)dZ

= Epθ(Z|X)

[
∂

∂θ
log pθ(X,Z)

]
. (2.4)

The expectation with respect to pθ(Z|X) can be approximated by drawing samples from

pθ(Z|X) and then computing the Monte Carlo average.

The Langevin dynamics for sampling Z ∼ pθ(Z|X) iterates

Zτ+1 = Zτ + sUτ +

s2

2

[
1

σ2
(X − gθ(Zτ ))

∂

∂Z
gθ(Zτ )− Zτ

]
, (2.5)

where τ denotes the time step for the Langevin sampling, s is the step size, and Uτ denotes a

random vector that follows N(0, Id). The Langevin dynamics (2.5) is an explain-away process,

where the latent factors in Z compete to explain away the current residual X − gθ(Zτ ).
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To explain Langevin dynamics, its continuous time version for sampling π(x) ∝ exp[−E(x)]

is xt+∆t = xt − ∆tE ′(xt)/2 +
√

∆tUt. The dynamics has π as its stationary distribution,

because it can be shown that for any well-behaved testing function h, if xt ∼ π, then

E[h(xt+∆t)] − E[h(xt)] → 0, as ∆t → 0, so that xt+∆t ∼ π. Alternatively, given xt = x,

suppose xt+∆t ∼ K(x, y), then [π(y)K(y, x)]/[π(x)K(x, y)]→ 1 as ∆t→ 0, where K(x, y) is

the transition probability.

The stochastic gradient algorithm of [You99] can be used for learning, where in each

iteration, for each Zi, only a single copy of Zi is sampled from pθ(Zi|Xi) by running a finite

number of steps of Langevin dynamics starting from the current value of Zi, i.e., the warm

start. With {Zi} sampled in this manner, we can update the parameter θ based on the

gradient L′(θ), whose Monte Carlo approximation is:

L′(θ) ≈
n∑
i=1

∂

∂θ
log pθ(Xi, Zi)

= −
n∑
i=1

∂

∂θ

1

2σ2
‖Xi − gθ(Zi)‖2

=
n∑
i=1

1

σ2
(Xi − gθ(Zi))

∂

∂θ
gθ(Zi). (2.6)

If the Gaussian noise Uτ in the Langevin dynamics (2.5) is removed, then the algorithm

becomes the alternating gradient descent algorithm. It is possible to update both θ and {Zi}

simultaneously by joint gradient descent.

Both the inferential back-propagation and the learning back-propagation are guided by

the residual Xi − gθ(Zi). The inferential back-propagation is based on ∂gθ(Z)/∂Z, whereas

the learning back-propagation is based on ∂gθ(Z)/∂θ. Both gradients can be efficiently

computed by back-propagation. The computations of the two gradients share most of their

steps. Specifically, for the top-down ConvNet defined by (2.2), ∂gθ(Z)/∂θ and ∂gθ(Z)/∂Z

share the same code for the chain rule computation of ∂Z(l−1)/∂Z(l) for l = 1, ..., L. Thus,

the code for ∂gθ(Z)/∂Z is part of the code for ∂gθ(Z)/∂θ.

Algorithm 1 below describes the details of the learning and sampling algorithm. The

Langevin dynamics samples from a gradually changing posterior distribution pθ(Zi|Xi) be-
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Algorithm 1 Alternating back-propagation

Require:

(1) training examples {Xi, i = 1, ..., n}

(2) number of Langevin steps l

(3) number of learning iterations T

Ensure:

(1) learned parameters θ

(2) inferred latent factors {Zi, i = 1, ..., n}

1: Let t← 0, initialize θ.

2: Initialize Zi, for i = 1, ..., n.

3: repeat

4: Inferential back-propagation: For each i, run l steps of Langevin dynamics to

sample Zi ∼ pθ(Zi|Xi) with warm start, i.e., starting from the current Zi, each step

follows equation (2.5).

5: Learning back-propagation: Update θ ← θ + γtL
′(θ), where L′(θ) is computed

according to equation (2.6), with learning rate γt.

6: Let t← t+ 1

7: until t = T

cause θ keeps changing. The updating of both Zi and θ collaborate to reduce the recon-

struction error ‖Xi − gθ(Zi)||2. The parameter σ2 plays the role of annealing or tempering

in Langevin sampling. If σ2 is very large, then the posterior is close to the prior N(0, Id). If

σ2 is very small, then the posterior may be multi-modal, but the evolving energy landscape

of pθ(Zi|Xi) may help alleviate the trapping of the local modes. In practice, we tune the

value of σ2 instead of estimating it. The Langevin dynamics can be extended to Hamiltonian

Monte Carlo [Nea11] or more sophisticated versions [GC11].
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2.4 EM, Density Mapping, and Density Shifting

Suppose the training data {Xi, i = 1, ..., n} come from a data distribution Pdata(X). To

understand how the alternating back-propagation algorithm or its EM idealization maps

the prior distribution of the latent factors p(Z) to the data distribution Pdata(X) by the

learned gθ(Z), to ease the presentation, we use the notation g(Z; θ) here, the same applies

for probability distribution. We define

Pdata(Z,X; θ) = Pdata(X)p(Z|X; θ)

= Pdata(Z; θ)Pdata(X|Z; θ), (2.7)

where Pdata(Z; θ) =
∫
p(Z|X; θ)Pdata(X)dX is obtained by averaging the posteriors p(Z|X; θ)

over the observed data X ∼ Pdata. That is, Pdata(Z; θ) can be considered the data prior.

The data prior Pdata(Z; θ) is close to the true prior p(Z) in the sense that

KL(Pdata(Z; θ)|p(Z)) ≤ KL(Pdata(X)|p(X; θ)) (2.8)

= KL(Pdata(Z,X; θ)|p(Z,X; θ)).

The right hand side of (2.8) is minimized at the maximum likelihood estimate θ̂, hence the

data prior Pdata(Z; θ̂) at θ̂ should be especially close to the true prior p(Z). In other words,

at θ̂, the posteriors p(Z|X; θ̂) of all the data points X ∼ Pdata tend to pave the true prior

p(Z).

2.5 Experiments

We test the proposed alternating back-propagation algorithm for generator learning on wide

range of tasks. The training images, sounds and videos are scaled so that the intensi-

ties are within the range [−1, 1]. We adopt the structure of the generator network of

[RMC15, DSB15], where the top-down network consists of multiple layers of deconvolution

by linear superposition, ReLU non-linearity, and up-sampling, with tanh non-linearity at the

bottom-layer [RMC15] to make the signals fall within [−1, 1]. For spatial-temporal gener-

ator network, we use 3D deconvolutional layers as in [VPT16] but with different top-layer
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structures for different models. We also adopt batch normalization [IS15].

2.5.1 Qualitative Experiments

Figure 2.1: Modeling texture patterns. For each example, Left: the 224 × 224 observed

image. Right: the 448× 448 generated image.

Experiments 1: Modeling Texture Patterns. We learn a separate model from each

texture image. The images are collected from the Internet, and then resized to 224× 224.

The synthesized images are 448 × 448. Figure 2.1 shows four examples.

The factors Z at the top layer form a
√
d×
√
d image, with each pixel following N(0, 1)

independently. The
√
d×
√
d image Z is then transformed to X by the top-down ConvNet.

We use d = 72 in the learning stage for all the texture experiments. In order to obtain the

synthesized image, we randomly sample a 14 × 14 Z from N(0, I), and then expand the

learned network θ to generate the 448 × 448 synthesized image gθ(Z).

The training network is as follows. Starting from 7×7 image Z, the network has 5 layers
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of deconvolution with 5× 5 kernels (i.e., linear superposition of 5× 5 basis functions), with

an up-sampling factor of 2 at each layer (i.e., the basis functions are 2 pixels apart). The

number of channels in the first layer is 512 (i.e., 512 translation invariant basis functions),

and is decreased by a factor 2 at each layer. The Langevin steps l = 10 with step size s = 0.1.

Experiments 2: Modeling Sound Patterns. A sound signal can be treated as a one-

dimensional texture image [MS11]. The sound data are collected from the Internet. Each

training signal is a 5 second clip with the sampling rate of 11025 Hertz and is represented

as a 1× 60000 vector. We learn a separate model from each sound signal.

The latent factors Z form a sequence that follows N(0, Id), with d = 6. The top-down

network consists of 4 layers of deconvolution with kernels of size 1 × 25, and up-sampling

factor of 10. The number of channels in the first layer is 256, and decreases by a factor of 2

at each layer. For synthesis, we start from a longer Gaussian white noise sequence Z with

d = 12 and generate the synthesized sound by expanding the learned network. Figure 2.2

shows the waveforms of the observed sound signal in the first row and the synthesized sound

signal in the second row.

Figure 2.2: Modeling sound patterns. Row 1: the waveform of the training sound (the range

is 0-5 seconds). Row 2: the waveform of the synthesized sound (the range is 0-11 seconds).

Experiments 3: Modeling Object Patterns. We model object patterns using the
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Figure 2.3: Modeling object patterns. Left: the synthesized images generated by our method.

They are generated by gθ(Z) with the learned θ, where Z = (z1, z2) ∈ [−2, 2]2, and Z is dis-

cretized into 9×9 values. Right: the synthesized images generated using Deep Convolutional

Generative Adversarial Net (DCGAN). Z is discretized into 9× 9 values within [−1, 1]2.

network structure that is essentially the same as the network for the texture model, except

that we include a fully connected layer under the latent factors Z, now a d-dimensional

vector. The images are 64× 64. We use ReLU with a leaking factor 0.2 [MHN13, XWC15].

The Langevin steps l = 30 with step size s = 0.3.

In the first experiment, we learn a model where Z has two components, i.e., Z = (z1, z2),

and d = 2. The training data are 11 images of 6 tigers and 5 lions. After training the model,

we generate images using the learned top-down ConvNet for (z1, z2) ∈ [−2, 2]2, where we

discretize both z1 and z2 into 9 equally spaced values. The left panel of Figure 2.3 displays

the synthesized images on the 9× 9 panel.

In the second experiment, we learn a model with d = 100 from 1000 face images randomly

selected from the CelebA dataset [LLW15a]. The left panel of Figure 2.4 displays the images

generated by the learned model. The middle panel displays the interpolation results. The

images at the four corners are generated by the Z vectors of four images randomly selected
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Figure 2.4: Modeling object patterns. Left: each image generated by our method is obtained

by first sampling Z ∼ N(0, I100) and then generating the image by gθ(Z) with the learned θ.

Middle: interpolation. The images at the four corners are reconstructed from the inferred Z

vectors of four images randomly selected from the training set. Each image in the middle is

obtained by first interpolating the Z vectors of the four corner images, and then generating

the image by gθ(Z). Right: the synthesized images generated by DCGAN, where Z is a 100

dimension vector sampled from uniform distribution.

from the training set. The images in the middle are obtained by first interpolating the Z’s

of the four corner images using the sphere interpolation [DSB16] and then generating the

images by the learned ConvNet.

We also provide qualitative comparison with Deep Convolutional Generative Adversarial

Net (DCGAN) [GPM14, RMC15]. The right panel of Figure 2.3 shows the generated results

for the lion-tiger dataset using 2-dimensional Z. The right panel of Figure 2.4 displays the

generated results trained on 1000 aligned faces from celebA dataset, with d = 100. We run

T = 600 iterations as in our method.

Experiments 4: State-space Dynamic Textures Modeling . We train the generator

model on on a wide range of dynamic patterns randomly selected from the DynTex [PFH10]

database, action database [GBS07], and from the Internet. In this experiment, we model a

textured motion [WZ03] or a dynamic texture [DCW03] by a non-linear state-space dynamic

system Xt = gθ(Zt) + εt, and Zt+1 = AZt + ηt, where we assume the latent factors follow a
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vector auto-regressive model, where A is a d× d matrix, and ηt ∼ N(0, Q) is the innovation.

This model is a direct generalization of the linear dynamic system of [DCW03], where Xt

is reduced to Zt by principal component analysis (PCA) via singular value decomposition

(SVD). We learn the model in two steps. (1) Treat {Xt} as independent examples and learn θ

and infer {Zt} as before. (2) Treat {Zt} as the training data, learn A and Q as in [DCW03].

After that, we can synthesize a new dynamic texture. We start from Z0 ∼ N(0, Id), and

then generate the sequence according to the learned model (we discard a burn-in period of

15 frames). Figure 2.5 shows some experiments, where we set d = 20. The first row is a

segment of the sequence generated by our model, and the second row is generated by the

method of [DCW03], with the same dimensionality of Z. It is possible to generalize the

auto-regressive model of Zt to recurrent network. We may also treat the video sequences as

3D images, and learn generator models with 3D spatial-temporal filters or basis functions as

shown in following experiment.

Figure 2.5: State-space dynamic textures modeling. Row 1: a segment of the synthesized

sequence by our method. Row 2: a sequence by the method of [DCW03]. Rows 3 and 4:

two more sequences by our method.

Experiments 5: Spatial-temporal Dynamic Patterns Modeling . Instead of sepa-
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rately modeling the individual images in the video sequence, we can also seek to capture

the dynamic patterns directly by spatial-temporal filters. To be more precise, let I(x, y, t)

be an image sequence, where (x, y) ∈ S indexes the pixel in the spatial domain, and t ∈ T

indexes the frame in the temporal domain. We assume I is generated by 3D spatial-temporal

generator model and we consider the following three versions:

(1) The dynamic pattern in I(x, y, t) is stationary in both the spatial and temporal

domains, such as water waves, rain, snow etc. In that case, we assume Z = Z(x, y, t,m),

where (x, y) ∈ S(0), t ∈ T (0), and m = 1, ...,M , where S(0) and T (0) are sub-sampled

spatial and temporal domains, i.e., the index k in Z = (Zk, k = 1, ..., d) takes the form k =

(x, y, t,m), so that at the top-layer Z consists of M Gaussian white noise image sequences.

Specifically, we learn a 4-layer ConvNet, where there are 256, 128, 64 and 3 filters with the

size of 4× 4× 4 and a stride of 2 in 4 layers respectively. We use 8× 8× 4× 2 latent factors

to generate dynamic patterns.

(2) The dynamic pattern in I(x, y, t) is stationary in the temporal domain, but non-

stationary in the spatial domain, such as dynamic textures that exhibit stochastic repeti-

tiveness in the temporal domain. In that case, we assume Z = Z(m, t), where t ∈ T (0), and

m = 1, ...,M . This model corresponds to the model in (1) where S(0) is 1× 1. Specifically,

we learn a 6-layer ConvNet, where the first layer has 512 filters with a size of 4× 4× 1 and

a stride of 1. The second layer has 64 filters with a size of 7× 7× 7 and a stride of 1. There

are 256, 128, 64 and 3 filters with a size of 4× 4× 4 and a stride of 2 from layer 3 to layer 6.

We use 1× 1× 8× 20 latent factors to generate the dynamic patterns of the double length.

(3) The dynamic pattern in I(x, y, t) is non-stationary in both spatial and temporal

domains, such as actions and movements. In that case, we assume Z = Z(m), m = 1, ...,M .

The model corresponds to the model in (1) where S(0) is a single pixel, and T (0) is a single

frame. Specifically, we learn a 6-layer ConvNet, where the first layer has 512 filters with the

size of 4× 4× 1 and stride of 1. The second layer has 384 filters with the size of 7× 7× 7

and stride of 1. There are 256, 128, 64 and 3 filters with the size of 4× 4× 4 and stride of 2

from layer 3 to layer 6. We use 1× 1× 1× 20 latent factors to generate dynamic patterns.
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In our experiments, each video sequence from the selected category is partitioned into

segments of 32 frames and such segments are used for training and testing. Figure 2.6 shows

some synthesis results for different model versions.

Figure 2.6: Synthesized dynamic sequences using three versions of the generator model. For

each category, the first row displays frames of the training sequence, and the second row

displays the frames of the generated sequence. The first category shows the synthesized

sequence generated by model-1 with the original length. Category 2, category 3 display the

synthesized sequences generated by model-2 with doubled length. The last category displays

the generated sequence by model-3.

We also compare our method with state space auto-regressive models [DCW03] for dy-

namic textures. Since their methods are based on frame-wise modeling, we set the latent

dimension to 20 for each frame as suggested in their papers. Figure 2.7 shows one comparison

result. It can be seen that frame-wise modeling can accumulate noises, rendering less sharp
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synthesis results as time evolves.

Figure 2.7: The comparison results for moving grid sequence. First row: 8 frames of the

training sequence. Second row: 8 frames of the generated sequence using our method. Third

row: 8 frames of the generated sequence using state-space generator model in experiment 4.

Fourth row: 8 frames of generated sequence using [DCW03].

2.5.2 Quantitative Experiments

Experiments 6: Model Evaluation by Reconstruction Error on Testing Data .

After learning the model from the training images (now assumed to be fully observed), we

can evaluate the model by the reconstruction error on the testing images. We randomly select

1000 face images for training and 300 images for testing from CelebA dataset. After learning,

we infer the latent factors Z for each testing image using inferential back-propagation, and

then reconstruct the testing image by gθ(Z) using the inferred Z and the learned θ. In the

inferential back-propagation for inferring Z, we initialize Z ∼ N(0, Id), and run 300 Langevin

steps with step size 0.05. Table 2.1 shows the reconstruction errors of alternating back-

propagation learning (ABP) as compared to PCA learning for different latent dimensions d.

Figure 2.8 shows some reconstructed testing images. For PCA, we learn the d eigenvectors

from the training images, and then project the testing images on the learned eigenvectors

for reconstruction.
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experiment d = 20 d = 60 d = 100 d = 200

ABP 0.0810 0.0617 0.0549 0.0523

PCA 0.1038 0.0820 0.0722 0.0621

Table 2.1: Reconstruction errors on testing images, after learning from training images using

our method (ABP) and PCA.

Figure 2.8: Comparison between our method and PCA. Row 1: original testing images. Row

2: reconstructions by PCA eigenvectors learned from training images. Row 3: reconstruc-

tions by the generator learned from training images. d = 20 for both methods.

Experiments 7: Learning from Indirect Data . We can learn the model from the

compressively sensed data [CRT06]. We generate a set of white noise images as random

projections. We then project the training images on these white noise images. We can learn

the model from the random projections instead of the original images. We only need to

replace ‖X − gθ(Z)‖2 by ‖SX − Sgθ(Z)‖2, where S is the given white noise sensing matrix,

and SX is the observation. We can treat S as a fully connected layer of known filters below

gθ(Z), so that we can continue to use alternating back-propagation to infer Z and learn θ,

thus recovering the image by gθ(Z). In the end, we will be able to (T1) Recover the original

images from their projections during learning. (T2) Synthesize new images from the learned

model. (T3) Recover testing images from their projections based on the learned model.

Our experiments are different from traditional compressed sensing, which is task (T3), but

not tasks (T1) and (T2). Moreover, the image recovery in our work is based on non-linear
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dimension reduction instead of linear sparsity.

We evaluate our method on 1000 face images randomly selected from CelebA dataset.

These images are projected onto K = 1000 white noise images with each pixel randomly

sampled from N(0, 0.52). After this random projection, each image of size 64×64×3 becomes

a K-dimensional vector. We show the recovery errors for different latent dimensions d in

Table 2.2, where the recovery error is defined as the per pixel difference (relative to the range

of the pixel values) between the original image and the recovered image. Figure 2.9 shows

some recovery results.

experiment d = 20 d = 60 d = 100

error 0.0795 0.0617 0.0625

Table 2.2: Recovery errors in 3 experiments of learning from compressively sensed images.

Figure 2.9: Learning from indirect data. Row 1: the original 64× 64× 3 images, which are

projected onto 1,000 white noise images. Row 2: the recovered images during learning.

Experiments 8: Learning from Incomplete Images . Our method can learn from

images with occluded pixels. This task is inspired by the fact that most of the images contain

occluded objects. It can be considered a non-linear generalization of matrix completion in

recommender system.

Our method can be adapted to this task with minimal modification. The only modifica-

tion involves the computation of ‖X − gθ(Z)‖2. For a fully observed image, it is computed

by summing over all the pixels. For a partially observed image, we compute it by summing

over only the observed pixels. Then we can continue to use the alternating back-propagation
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algorithm to infer Z and learn θ. With inferred Z and learned θ, the image can be auto-

matically recovered by gθ(Z). In the end, we will be able to accomplish the following tasks:

(T1) Recover the occluded pixels of training images. (T2) Synthesize new images from the

learned model. (T3) Recover the occluded pixels of testing images using the learned model.

experiment M0.5 M0.7 M0.9 P20 P30

error 0.0571 0.0662 0.0771 0.0773 0.1035

Table 2.3: Recovery errors in 5 experiments of learning from occluded images.

Figure 2.10: Learning from incomplete data. The 10 columns belong to experiments M0.5,

M.07, M0.9, M0.9, M0.9, M0.9, M0.9, P20, P30, P30 respectively. Row 1: original images,

not observed in learning. Row 2: training images. Row 3: recovered images during learning.

We want to emphasize that in our experiments, all the training images are partially

occluded. Our experiments are different from (1) de-noising auto-encoder [VLB08], where

the training images are fully observed, and noises are added as a matter of regularization, (2)

in-painting or de-noising, where the prior model or regularization has already been learned

or given. (2) is about task (T3) mentioned above, but not about tasks (T1) and (T2).

Learning from incomplete data can be difficult for GAN and VAE, because the occluded

pixels are different for different training images.

We evaluate our method on 10,000 images randomly selected from CelebA dataset. We

design 5 experiments, with two types of occlusions: (1) 3 experiments are about salt and

pepper occlusion, where we randomly place 3×3 masks on the 64×64 image domain to cover
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Methods
Consecutive Block Random Block

LHD ours LHD ours

flag 0.1359 0.0392 0.1111 0.0300

waterfall 0.2720 0.2558 0.2666 0.2393

waterstone 0.1899 0.1321 0.1717 0.1251

light 0.0728 0.0725 0.0586 0.0400

elevator 0.1043 0.0768 0.0735 0.0463

Table 2.4: Interpolation errors for various training videos with different occlusion masks.

roughly 50%, 70% and 90% of pixels respectively. These 3 experiments are denoted M0.5,

M0.7, and M0.9 respectively. (2) 2 experiments are about single region mask occlusion,

where we randomly place a 20× 20 or 30× 30 mask on the 64× 64 image domain. These 2

experiments are denoted P20 and P30 respectively. We set d = 100. Table 2.3 displays the

recovery errors of the 5 experiments, where the error is defined as per pixel difference (relative

to the range of the pixel values) between the original image and the recovered image on the

occluded pixels. We emphasize that the recovery errors are not training errors, because the

intensities of the occluded pixels are not observed in training. Figure 2.10 displays recovery

results. In experiment M0.9, 90% of pixels are occluded, but we can still learn the model

and recover the original images.

Experiments 9: Interpolation of time-stationary patterns. For video sequences

with repetitive patterns in the temporal domain, our method with spatial-temporal gener-

ator can efficiently learn such patterns by assuming Z = Z(m, t) even on a single training

sequence. We evaluate our method by interpolation. We consider two types of missing pat-

terns. The first type is the consecutive block, in which we entirely block 8 consecutive frames

in the middle of the training sequence. The second type is the random block, in which we

entirely block 3 consecutive frames in 3 randomly chosen positions in the training sequence.

Each interpolation experiment is performed on only one video training sequence. Note that

the current 3D GAN model [VPT16] cannot easily do this, because the spatial-temporal
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Figure 2.11: Interpolation results. The first row displays the occluded training sequence.

The second row displays the interpolation results by our method. The third row shows the

interpolation results by using Laplacian heat diffusion.

non-stationary structure is used in their paper and it lacks the inference mechanism. We

compare our approach with the widely used Laplacian Heat Diffusion method (LHD) where

we extend the 2D Laplacian kernel to 3D version, and we use 500 sweeps for the video

interpolation with learning rate 0.5. Table 2.4 shows the recovery errors for various kinds

of dynamic patterns and different missing patterns. The recovery error is defined as the

per-pixel absolute difference between the ground truth video and the recovered video on the

occluded pixels. Figure 2.11 shows the interpolation results on the consecutive block pattern.

It can be seen that our method can get sharper and more realistic results.

Experiments 10: Learning from Incomplete Videos . The task of learning from

incomplete data is in general challenging and is infeasible for models that do not have

inference mechanism, because such models cannot easily borrow strength from other training

data. We have evaluated our generator model for this task on images as well as single video

with time-stationary pattern. We now consider the spatial-temporal generator model for

multiple videos under various blocking patterns. For fair comparison, we adopt the model-

3 structure which assumes non-stationary in both the spatial and temporal domains. We

compare with the strong baseline model, i.e., 3D variational auto-encoder (3D VAE), based

on the original variational auto-encoder [KW13, RMW14a]. The 3D VAE share the same

generator model structure as our model. For the inference network for 3D VAE, it has the

“mirror” structure as its generator model, with convolution and LeakyReLU (with ratio 0.2)

to replace the deconvolution and typical ReLU used in the generator. For all models, we set
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the latent factor dimension to 100.

We again experiment on three types of occlusions for this task, including salt and pepper

noise, 2D patch occlusion and 3D block occlusion as described above. Table 2.5 displays

the recovery errors on various dynamic patterns for 3 different occlusion types. It can be

seen that the inference-based methods are well suited for this task, and our methods are

competitive and outperform the baseline method in terms of recovery errors.

Methods
M0.5 P20 B25x25x15

3D VAE [KW13] 3D ABP 3D VAE [KW13] 3D ABP 3D VAE [KW13] 3D ABP

elevator 0.0421 0.0415 0.0422 0.0415 0.0525 0.0476

windmill 0.0442 0.0412 0.0464 0.439 0.0773 0.0769

flag1 0.0296 0.0283 0.0375 0.0363 0.0400 0.0389

flamingo 0.0478 0.0471 0.0467 0.0441 0.0603 0.0598

flag2 0.0775 0.0772 0.9746 0.0947 0.1601 0.1592

Table 2.5: Recover error for the various incomplete training videos based on different occlu-

sion masks.

Experiments 11: Video Recovery . Besides directly learning the model from incomplete

videos, we could also learn the spatial-temporal generator on clean videos in the training

stage, then try to recover the occluded patterns during testing stage. For this task, we split

the training/testing video sequences by about 4:1 in proportion, and randomly block the

testing videos using different occlusion patterns. For adversarial trained network using 3D

GAN [VPT16], we apply the inferential mechanism powered by Langevin dynamic for direct

comparison with our method. For 3D VAE, we iteratively impute the occluded pixels during

inference stages [RMW14a].

We experiment on three types of occlusions: (1) salt and pepper mask (M) which covers

roughly 50% (M0.5) of the pixels per-frame. (2) 2D patch occlusion (P) where we randomly

place a 20×20 (P20) mask on each frame. (3) 3D block occlusion (B) where we randomly

place a 35×35×20 block in the whole video. For the inference stage on occluded testing

videos, we run the inference step for 200 iterations with step size 0.05 for Langevin dynamic.
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Table 2.6 shows recovery errors for various kinds of dynamic patterns and different occluding

masks. It can be seen that our proposed ABP based method shows competitive or superior

performance over baseline models.

Videos flag elevator grid windmill traffic

M0.5

3D GAN [VPT16] 0.3385 0.1679 0.3696 0.2151 0.1697

3D VAE [KW13] 0.1603 0.0485 0.2516 0.1170 0.0943

3D ABP 0.1370 0.0457 0.2106 0.1157 0.0903

P20

3D GAN [VPT16] 0.3380 0.1796 0.3542 0.2483 0.1780

3D VAE [KW13] 0.1511 0.0591 0.1981 0.1643 0.1037

3D ABP 0.1459 0.0562 0.2044 0.1621 0.1001

B35

3D GAN [VPT16] 0.3382 0.1803 0.4505 0.2626 0.1740

3D VAE [KW13] 0.1801 0.0591 0.2082 0.1851 0.1012

3D ABP 0.1778 0.0577 0.2159 0.1779 0.0991

Table 2.6: Recovery errors for various incomplete testing videos with different occlusion

masks.

2.6 Summary

In this chapter, we recognize the generator model as a non-linear generalization of the factor

analysis model, and propose an alternating back-propagation algorithm for learning. The

alternating back-propagation algorithm iterates the inferential back-propagation for inferring

the latent factors and the learning back-propagation for updating the parameters. Both back-

propagation steps share most of their computing steps in the chain rule calculations. The

experiments show the proposed algorithm can be effective in generating different form of

data (e.g., audio, image, video etc) as well as completing occluded data.
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CHAPTER 3

Multi-view Generator Model

We have discussed the generator model and its learning algorithm in chapter 2. Such model

can be effective for data that shares the similar properties, however, the data online are

collected in various forms and in different “view points” which present difficulty for the

original generator model. In this chapter, we shall extend the generator model and the

learning for multi-view data.

3.1 Introduction and Motivation

Multi-view data have become increasingly accessible in many areas of scientific analysis

including video surveillance, social computing, and environmental science, where data are

collected from diverse domains, or described by different feature sets. The representations

from different domains or different feature sets for a common identity are referred to as

different“views” of the data. For example, a document can be described using both images

and audios, or be described in multiple languages. Human’s identity can be represented

by multiple biometric features, such as face, gait, fingerprint, iris etc. Human faces or gait

sequences captured by multiple cameras from different viewpoints can be utilized together

for person identification in uncontrolled environment. Therefore, multi-view representation

learning has wide applicability.

Consensus and complementarity are two main principles behind the multi-view repre-

sentation learning [XTX13, LYZ16]. Consensus principle aims to maximize the agreement

on the representations learned from multiple distinct views. For example, among uncon-

strained face recognition and gait recognition, pose variations or viewpoint variations are
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the bottleneck for real-world applications. In such applications, differences between intra-

subjects under two views are usually much larger than the differences between inter-subjects

under the same view, which makes the multi-view learning problem challenging. Consensus

principle is commonly employed by various multi-view representation learning methods to

obtain a common representation for multiple heterogeneous spaces. This usually comes in

two types: (1) finding common subspace across different views, and (2) transforming non-

normal views to normal view. For the first type, Canonical Correlation Analysis (CCA)

based algorithms [HSS04, SC07, SSY14, XWY16] and coupled projections (CP) based al-

gorithms [LCS10, WXY14, XW16] are two representative methods which tend to find a

common subspace such that the heterogeneous attributes can be eliminated in this con-

sensus subspace. Specifically, CCA based algorithms aim to maximize the correlations (or

the principal angles) of variables among different views, while CP based algorithms aim to

minimize the distances between the projecting point pairs that have similar relations in the

original heterogeneous sets. For the second type of consensus principle enforcement, there

are several notable models which transform the data under different views into a normal

view. Specifically, view transformation based model (VTM) [KWL09, ZZH11, KWZ12] per-

forms a linear transformation from non-normal views to normal view. Stacked progressive

auto-encoders (SPAE) [KSC14] models further extend VTM by using deep neural network to

model complex non-linear transformations from the non-frontal face images to frontal ones in

a progressive way. Recently, generative model based methods, such as generative adversarial

networks (GAN) [GPM14], have been employed to rotate images from non-normal views to

the normal view. TP-GAN [HZL17] is proposed to recover a frontal face in a data-driven

way, while GaitGAN [YCR17] is proposed to generate the side view gait images as invariant

gait features for multi-view recognition task.

Different views of data usually contain complementary information, therefore the com-

plementarity principle states that multiple views can be employed to comprehensively and

accurately represent the data. The complementarity principle has also been employed by

many multi-view representation learning methods in different ways. For the task of human

identification at a distance, face and gait features are combined to obtain better performance
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than the methods that only use the face or gait feature alone. For example, Zhou and Bhanu

[ZB06] conducts feature concatenation after normalization and dimension reduction to fuse

face and gait information. Xing and Wang [XWL15] fuses the gait and face features by

computing the weighted mean of the two projecting features in the coupled subspace. For

the task of human pose inference, the image features and different pose information are con-

nected with one another in a latent space, which integrates the complementary information

underlying different views [SMF09].

3.2 Model and Algorithm

The generator model described in chapter 2 can be treated as a single-view generator model

in which only one generator model is used for all observed data that is potentially mixed:

X = gθ(Z) + ε,

Z ∼ N(0, Id), ε ∼ N(0, σ2ID), d < D. (3.1)

Such generator model can be effective in generation as well as completion as described in

chapter 2. However, if X is heterogeneous or inhomogeneous, the original generator model

can be less effective. The model tends to encode all the variations in the data in the latent

factors in a highly non-linear and non-interpretable way. Although such Z can be used to

generate sharp images, they hardly contain any useful information for downstream vision

tasks. Therefore, we introduce a multi-view generator model to solve this problem.

Suppose X contains signals that come from m different source domains, i.e., X =

{X(1), X(2), ..., X(m)}. The number of domains can be determined by the specific appli-

cation and we assume the signals are obtained across m domains. To effectively model the
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shared representations, we consider the following model (3.2):

X(1) = gθ1(Z) + ε1

X(2) = gθ2(Z) + ε2

...

X(m) = gθm(Z) + εm

Z ∼ N(0, Id) εv ∼ N(0, σ2ID)

(3.2)

where the vector of the latent factors Z is shared across signals from different domains, and

gθv denotes the generator sub-network corresponding the v-th view, v ∈ {1, . . . ,m}. In this

way, the domain or view specific variation is encoded through its corresponding view-specific

generator sub-network, while the latent factors are forced to represent the common features

among all the observations.

To learn from this multi-view generator model, we introduce a multi-view alternating

back-propagation algorithm based on chapter 2. The generator model can be learned from

training examples {Xi, i = 1, ..., n} by the maximum likelihood estimation (MLE). Since

the error term ε is normally distributed, the MLE is equivalent to L2 reconstruction error∑n
i=1 ‖Xi − gθ(Zi)‖2. The basic idea of learning is to iteratively optimize {Zi} and θ until

convergence. More rigorously, since the latent factors are random variables, sampling method

is employed to account for the uncertainty in Zi.

Specifically, for the training examples from m domains, i.e., X = {X(1), X(2), ..., X(m)},

the model can be written as Z ∼ p(Z) and [X(v)|Z, θv] ∼ pθv(X
(v)|Z), where v ∈ {1, ...m}.

The complete data log-likelihood is thus

log pθ(X,Z) = log

[
p(Z)

m∏
v=1

pθv(X
(v)|Z)

]

= −
m∑
v=1

1

2σ2
‖X(v) − gθv(Z)‖2 − 1

2
‖Z‖2 + C, (3.3)

where C denotes the constant w.r.t Z and θ. The network parameter θ = {θ1, θ2, ..., θm}

is learned by maximizing the observed-data log-likelihood L(θ) which integrates out the
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unknown latent factors Z. More precisely, the gradient of L(θ) can be obtained from:

∂

∂θv
L(θ) =

∂

∂θv
log pθ(X)

= Epθ(Z|X)

[
∂

∂θv
log pθv(X

(v) | Z)

]
. (3.4)

The expectation can be approximated by Monte Carlo samples drawn from the posterior

distribution pθ(Z|X) ∝ pθ(X,Z) = p(Z)
∏m

v=1 pθv(X
(v)|Z). Specifically, the latent factors

are inferred using Langevin sampling method and they are updated as follows:

Zt+1 = Zt +
s2

2

∂

∂Z
log pθ(X,Zt) + sUt (3.5)

where the Gaussian standard random noise term U is added to prevent the stochastic gradient

step to be trapped by the local modes, and s denotes the step size of the Langevin dynamics.

It can be shown that given sufficient transition steps, the obtained Z follows the posterior

distribution (see chapter 2). In this chapter, the transition of Z also starts from the updated

latent factors from the previous learning iteration, so that the persistent updating results

in a sufficiently long chain to sample from the posterior distribution while greatly reducing

the computational burden in that we only need to use a small number of transition steps in

each learning iteration.

For each training example Xi, we run Langevin dynamics Eqn.(3.5) to get the correspond-

ing posterior sample Zi, then this sample is used for gradient computation in Eqn.(3.4). More

precisely, the parameter θ is learned through Monte Carlo approximation:

∂

∂θv
L(θ) ≈ 1

n

n∑
i=1

[
∂

∂θv
log pθv(X

(v)
i | Zi)

]
. (3.6)

The whole algorithm iterates through two steps: (1) inferential step that infers the latent

factors through the Langevin dynamics, and (2) learning step that updates the network

parameter θ by stochastic gradient descent. Gradient computations in both steps are powered

by the efficient back-propagation. This is essentially alternating back-propagation algorithm

stated in chapter 2, but with domain specific generator model and the shared latent space.

The left part of Figure 3.1 illustrates the structure and the training process of the proposed

model.
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Figure 3.1: Overview of our method. The left panel illustrates the training process of the

proposed method. The right panel illustrates our method for multi-view recognition task.

Suppose the probe dataset Xp and the gallery dataset Xg come from two different views p

and g. Our method first infers their latent factors Zg and Zp, and then generates X̂p,v and

X̂g,v by feeding the inferred latent factors Zp and Zg to a sub-network under some common

view. The complementary information for generating X̂v under all views (v ∈ {1, . . . ,m})

and the latent factors Z are employed by our method.

3.3 Shared Representation and Recognition by Generation

The proposed model can be used to learn the shared representation (the latent factors Z)

across multiple views. On the one hand, our proposed multi-view generator learning scheme is

able to rotate or predict data to different views and recover the incomplete data from multiple

views in the training stage. On the other hand, the shared representation obtained from our

proposed scheme contains some identity information and can be employed in recognition

problem.

Specifically, for multi-view recognition problem, during testing stage, suppose we have

the gallery dataset Xg and the probe dataset Xp coming from the normal view and the test

view, respectively. We can infer their latent factors Zg and Zp, which are in the shared

distribution, and perform classification in this common subspace. Specifically, in the testing

phase, when given data from any view v, we can infer the corresponding latent vector Zv
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using Eqn.(3.5) and we change log pθ(X,Z) by using only the given view v as:

log pθ(X,Z) = log
[
p(Z)pθv(X

(v)|Z)
]

= − 1

2σ2
‖X(v) − gθv(Z)‖2 − 1

2
‖Z‖2 + C. (3.7)

Moreover, we can improve the multi-view recognition by generating data X̂g,v and X̂p,v

by feeding the inferred latent factors Zg and Zp to the sub-generators for a common view

v ∈ {1, . . . ,m}. Figure 3.1 illustrates this multi-view recognition by generation scheme. It

is worth noting that although Xg and Xp are from different domains or views, the gener-

ated X̂g,v and X̂p,v obey the same distribution, and can be effective in recognition problem.

Furthermore, we can perform the match-score fusion [ZB07] which combines both the latent

factors Z and the generated data X̂v in all common views v ∈ {1, . . . ,m}. This scheme has

the advantage of encoding both the common attributes (in Z) and view-specific discriminat-

ing information (in X̂v) through a unified way. Let D(·, ·) denote the L2 distances between

two matrices, and define DZ ≡ D(zp, Zg), and DvX ≡ D(x̂p,v, X̂g,v), where DZ and DvX are

both vectors which calculate the L2 distances between a probe identity and the gallery set

containing Ng identities. The normalized match-score of latent factors zp and Zg can be

computed as:

SZ(zp, Zg) =
exp{−DZ}∑Ng

i=1 exp{−DZ}(i)
, (3.8)

and the normalized match-score of the generated X̂p,v and X̂g,v can be computed as:

SvX(x̂p,v, X̂g,v) =
exp{−DvX}∑Ng

i=1 exp{−DvX}(i)
. (3.9)

Finally, we can fuse the match score of the latent factors Z and the generated data X̂v in

all common views v ∈ {1, . . . ,m} to obtain the fusing match score SF , defined as:

SF =
m∑
v=1

wiS
v
X + wm+1SZ , (3.10)

where wi, i ∈ {1, · · · ,m+1} are the fusing coefficients which can be optimized on a validation

set. The probe identity will be classified to the class for which the fusing match score is the

largest. Utilizing the information from all the views helps the recognition problem, since

different identities may be difficult to recognize in a particular view but may be easier in

some other views. We shall elaborate on these points in the following experiment section.
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3.4 Experiments

We test our model for data that are under different view points or from different domains.

We cropped images to 64 × 64 for all experiments and data are normalized to be [−1, 1],

except for the last gait recognition experiment where data are scaled to be [0, 1]. We use

Adam optimizer [KB14] with initial learning rate 0.0002 and we run Langevin dynamics for

20 steps in each iteration with step size 0.1.

3.4.1 Rotation and Completion on the Multi-PIE face database

Multi-PIE database [GMC10] is one of the most widely used face dataset which has a wide

range of pose and illusion conditions. Specifically, it consists of 3 sessions of images of 249

identities under 15 poses and 20 different illumination conditions. We train our model on a

selected subset which covers 5 poses, i.e., {−60◦,−30◦, 0◦, 30◦, 60◦}, and 50 randomly selected

subjects under all illuminations. The subjects under odd numbers of illumination conditions

are used for training and those under even numbers of illumination conditions are used for

testing. We show qualitatively that our model can not only rotating faces, but also learn to

recover the incomplete faces under different poses.

We build up two generator nets, one for standard pose 0◦ (gθ1) and one for another rotated

pose (gθ2). For each generator net, we adopt the structure similar to [RMC15]. Specifically,

we learn a 5-layer convNet which has deconvolutional kernel of size 4×4 and of stride 2, and

has 512, 256, 128, 64, 3 filters from top to bottom. Each deconvolution layer is followed by

ReLU non-linearity and batch normalization [IS15] except the last layer where tanh is used.

Rotation: We first consider generating faces with the same identity and illumination con-

dition but with the desired pose. The input data to our model are the image pairs which

consist of the same subjects under the standard pose and the desired pose. In the testing

stage, we have image pairs of 10 testing subjects under these two poses, and we use images

under the standard pose as our gallery set and the other images as our testing set. After

training, given the gallery set, we first run the Langevin dynamics for 200 steps based on gθ1

to get the inferred latent factors. These factors are then fed into the other learned generator

43



Figure 3.2: Face rotation results for different subjects. First column: face image under

standard pose (0◦). Second to fifth column pairs: each pair shows the rotated face by our

method (left) and the ground truth target (right).

net gθ2 to get the rotated images under the desired pose.

Figure 3.2 shows the qualitative results of rotating face images to −60◦, −30◦, 30◦, and

60◦. It can be seen that our shared generator model can accurately generate face images

under different poses and they are visually similar to the ground truth testing images.

Completion: The proposed multi-view generator model can also be adapted to the task of

image completion in which we only consider the observed or visible pixels for inference.

We experiment with two types of noise patterns: one is the random pixel occlusion where

we randomly block 50% or 90% pixels of the training images. The other is random patch

occlusion where we randomly place a 20× 20 block on each training image. We denote these

random patterns as M0.5, M0.9 and P20 respectively.

Figure 3.3 shows completion results. It is clear that even under severe occlusion, the

proposed method can still get sharp results. We compute the average per-pixel difference

between the recovered images and the corresponding ground truth images to measure the

recovery quality. For M0.5, we have recover error 0.256, for M0.9 and P20, we have recover

errors 0.404 and 0.328 respectively. Note that we tested the single view generator in the

chapter 2, however, the generator is only applied to one front view, whereas the problem

of how to efficiently learn multi-views remains unexplored. Our proposed model directly

shares the latent factors across different views. Therefore, each sub-domain is forced to

communicate with other domains to agree upon the common knowledge. Besides, each sub-
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domain only contains the images from one view, thus a better generator net can be learned.

Figure 3.3: Face completion results for different noise patterns. Each row represents the

completion results under P20, M0.5 and M0.9 patterns respectively. In each row, the first

and fourth columns represent the masked images. The second and fifth columns represent

the images after filling in the missing parts using our method. The third and sixth columns

represent the ground truth images.

3.4.2 Missing Modality Prediction on OuluVS data

We further evaluate the shared representation learned for both video and audio modalities.

Most of the existing methods [NKK11, SS12, BAM17], used spectrogram for audio represen-

tation, and require labels for both modalities, so they could hardly generate raw signals. In

this dissertation, we directly use raw audio and video sequences as inputs and focus on the

generation of the missing modality. One feasible and well-known approach for this task is

canonical correlation analysis (CCA) [HSS04, XWY16] which finds the linear transforma-

tions of audio and video data to form a shared representation. Our model can be naturally

seen as a non-linear version of CCA where two generator nets are trained to find non-linear

transformations and latent factors Z are shared across both modalities during inference.

We experiment on OuluVS dataset [ZBP09] which includes audio and pre-extracted
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mouth ROI sequences for 20 persons speaking 10 phrases 5 times. We circularly add or

delete mouth images to make each video clip contains 32 frames, each of size [64, 64]. We

also fix the length of audios to be 48, 000 which equals the sample rate, and only keep the

first sound channel for simplicity. We use verison 3 of spatial-temporal generator structure

for videos (see experiment 5 in section 2.5.1), and 4-layer 1D ConvNet for audios. For audio

net, there are 512, 256, 128, 1 filters for each deconvolution layer, and the filter size is 20× 1

of stride 10 for all layers. We also utilize batch normalization and ReLU non-linearity except

the last layer where tanh is used. For training, we randomly choose 10 persons, each saying

10 phrases 5 times, and use corresponding audios and videos to learn our model and CCA.

For testing, we randomly select 3 new persons to: (1) predict the mouth movement based

on their audios only (A→ V ), (2) predict the audio track based on their mouth movements

only (V → A). We run 200 steps of Langevin dynamics with stepsize 0.1 for the inference

of our model. Table 3.1 shows the mean absolute per-pixel/signal prediction error on 10

different phrases. A lower error indicates a more powerful model for preserving the common

information between two modalities.

Experiments Execuse Goodby Hello How Nice Seeyou Sorry Thank Time Welcome

V → A
CCA 0.1779 0.1828 0.1878 0.1894 0.1870 0.1889 0.1943 0.1842 0.1818 0.1821

ours 0.0179 0.0243 0.0199 0.0379 0.0210 0.0184 0.0306 0.0164 0.0301 0.0348

A→ V
CCA 0.4269 0.4468 0.4326 0.6225 0.4549 0.4811 0.5945 0.4472 0.6044 0.5892

ours 0.1771 0.1860 0.1758 0.1735 0.1791 0.1747 0.1788 0.1713 0.1846 0.1743

Table 3.1: Average prediction errors on missing modality for different phrases.

3.4.3 Multi-view Gait Recognition on the CASIA gait database B

The CASIA gait database B [YTT06] is one of the largest multi-view gait databases. It

contains 124 subjects captured from 11 viewing angles, namely 0◦, 18◦, 36◦, 54◦, 72◦, 90◦,

108◦, 126◦, 144◦, 162◦, and 180◦. Under each view, there are ten gait sequences for each

person, including six sequences of normal walking, two sequences of walking with a bag,

and two sequences of walking with a coat. We experiment on the gait sequences of normal
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Figure 3.4: Multi-view gait generation results for different subjects. The first column shows

the original GEIs, and the second to twelfth columns show the generated GEIs under all

the 11 views by our multi-view generator model. Specifically, the first row consists of one

subject’s original GEI under 90◦ view, and 11 generated GEIs by forward-propagating the

inferred factors into the 11 sub-networks of our multi-view generator model. The second

row consists of the same subject’s original GEI under 0◦ view, and 11 generated GEIs under

all views. The third row consists of another subject’s original GEI under 0◦ view, and 11

generated GEIs under all views.

walking. Since Gait Energy Image (GEI) [LXW15] is a popular gait feature, which is efficient

for computation and is robust to noise, we employ it for our method’s input and target

images. For this experiment, we build up eleven generator sub-nets, where for each sub-net,

we use the similar network structure as in first experiment except that we do not use batch

normalization and we use the sigmoid in the last layer.

According to the experimental protocol defined in [YCW17, YCR17], the database is

divided into two groups: the first group of the 62 subjects is used for constructing the training

set and the remaining 62 subjects are used for performance evaluation. Suppose the gallery

view and the probe view are denoted by ωG and ωP , respectively. In the training phase, we

use the gait sequences from the training group under all the 11 views to alternatively infer

the common identity factors and learn the deconvolutional sub-network under each view. In

the recognition phase, the sequences from the evaluating group under the gallery view ωG

are utilized to construct the gallery set and the sequences from the evaluating group under

the probe view ωP are utilized to form the probe set. Our method can utilize two kinds of

information learned from the proposed model to perform multi-view gait recognition: (1) The
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Figure 3.5: Comparisons of gait recognition rates for multi-view gait recognition using dif-

ferent methods. The viewing angles of the probe data in subfigures (a)-(c) are 54◦, 90◦ and

126◦, respectively. The viewing angles of the gallery data are the rest 10 viewing angles

except the corresponding probe viewing angle.
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shared factors (the latent factors Z in Figure 3.1). For both the gallery and probe GEIs, we

infer their shared factors and use these factors for recognition. (2) The generation of GEIs.

For both the gallery and probe GEIs, we first infer their shared factors, and then generate

new GEIs by feeding the inferred latent factors into the sub-networks under some common

views. Figure 3.4 shows the generated GEIs through our multi-view generator model. We

employ these generated GEIs for further classification. Our method performs a match-score

fusion of the above two kinds of information for the final multi-view gait recognition (see

section 3.3 for detail).

To evaluate the performance of our algorithm, we compared the proposed model with the

following state-of-art methods: FT-SVD [MSM06], OVTM [KWL09], RVTM [ZZH11],VTM-

SR [KWZ12], C3A [XWY16], SPAE [YCW17], and GaitGAN [YCR17]. As in experiments

of those methods, the probe view ωP is selected as 54◦, 90◦ or 126◦. For each selected probe

view, we test on the gallery view ωG from the rest 10 viewing angles except the corresponding

probe view.

The experimental results are plotted in Figure 3.5, which reveals several interesting ob-

servations. (1) Most of the algorithms can obtain a high recognition rate when the viewing

angle difference between the gallery and probe is small. The reason behind this high recog-

nition rate is that gaits between two closer views share more common information, therefore

only simple transformation of gaits is needed to have a good performance. (2) When the

angle difference between the gallery and the probe is large, the deep learning gait recognition

methods, including SPAE, GaitGAN and the proposed multi-view generator model, perform

better than the traditional linear methods, such as FT-SVD, OVTM, RVTM, VTM-SR, and

C3A. This is because the deep learning methods can approximate highly non-linear trans-

formations, which are important for this task with large viewpoint variation. (3) Generally

speaking, the proposed method performs better then the other two deep learning methods

in most of the views. The proposed method can not only improve the recognition rate when

the viewpoint variation is not large, but can also handle large viewpoint variation quite well.

In Table 3.2, we further summarize the experimental results of three unsupervised meth-

ods, including C3A, SPAE, and the proposed model, which obtain good performances as
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Methods\Probe angles θP = 54◦ θP = 90◦ θP = 126◦ Average

C3A 56.64% 54.65% 58.38% 56.56%

ViDP (Supervised) 64.20% 60.40% 65.00% 63.20%

CNN (Supervised) 77.80% 64.90% 76.10% 72.90%

SPAE 63.31% 62.10% 66.29% 63.90%

GaitGAN (Supervised) 64.52% 58.15% 65.73% 62.80%

Ours 66.53% 60.78% 65.19% 64.17%

Table 3.2: Comparisons of the average recognition accuracy under the probe views ωP = 54◦,

ωP = 90◦, ωP = 126◦, where the gallery view are the rest 10 viewing angles except the

corresponding probe viewing angle. The values in the right most column are the averages

rates at the three probe views ωP = 54◦, ωP = 90◦, ωP = 126◦.

shown in Figure 3.5, where we also include three supervised methods, ViDP [HWZ13], CNN

[WHW17], and GaitGAN. It is worth noting that it is generally unfair to directly compare

the unsupervised method with the supervised one, since the latter one needs to utilize the

label or other auxiliary information for training. As we can observe from Table 3.2, our

method, as an unsupervised generative model, obtains comparable results with these state-

of-art methods, and even performs better than some supervised methods, such as ViDP and

GaitGAN.

3.5 Summary

In this chapter, we propose to learn multi-view generator model through shared latent fac-

tors. The learned shared representation can effectively encode the common knowledge across

different views, and the domain specific generator networks can accurately obtain the domain

related information. We show that the proposed model can be effective in tasks including

multi-view rotation and generation, multi-modality prediction as well as multi-view gait

recognition.
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CHAPTER 4

Joint Learning of Generator Model and Energy-based

Model

The generator model can be derived from the view of non-linear factor analysis and learned

by alternating back-propagation under maximum likelihood criterion (chapter 2). The model

and the algorithm are general and can be effectively adapted to different data forms as well

as various tasks (chapter 2 and chapter 3). In this chapter, we shall discuss a principled

probabilistic framework that could jointly and tractably learn both the generator model and

the energy-based model.

4.1 Learning Deep Probabilistic Models

We shall first briefly review the two probabilistic models, namely the generator model and

the energy-based model, both of which are parametrized by convolutional neural networks

(ConvNet) [LBB98, KSH12]. Then, we shall present in detail the maximum likelihood learn-

ing algorithms for training these two models, respectively. The presentation of the two

maximum likelihood learning algorithms in this chapter is unconventional. We seek to de-

rive both algorithms based on the Kullback-Leibler divergence using the same scheme. This

will set the stage for the divergence triangle.

We shall use the same notations as defined in section 1.2 of chapter 1. To be more specific,

the generator model [GPM14, RMC15, KW13, RMW14a, MG14] is a generalization of the

factor analysis model [RT82],

z ∼ N(0, Id), x = gθ(z) + ε, (4.1)

51



where gθ is a top-down mapping parametrized by a deep network with parameters θ. It

maps the d-dimensional latent vector z to the D-dimensional signal x. ε ∼ N(0, σ2ID) and

is independent of z. In general, the model is defined by the prior distribution p(z) and

the conditional distribution pθ(x|z). The complete-data model is pθ(z, x) = p(z)pθ(x|z).

The observed-data model is pθ(x) =
∫
pθ(z, x)dz. The posterior distribution is pθ(z|x) =

pθ(z, x)/pθ(x).

The energy-based model [NCK11, DLW14, LZW16, XLZ16] defines the energy of x

through −fα(x), and assigns a high probability to low energy x. Specifically, we have the

following probability model:

πα(x) =
1

Z(α)
exp [fα(x)] , (4.2)

where fα(x) is parametrized by a bottom-up deep network with parameters α, and Z(α) is

the normalizing constant. We may consider πα an evaluator, where fα assigns the value to

x, and πα evaluates x by a normalized probability distribution.

The energy-based model πα defines explicit log-likelihood via fα(x), even though Z(α) is

intractable. However, it is difficult to sample from πα. The generator model pθ can generate

x directly by first generating z ∼ p(z), and then transforming z to x by gθ(z). But it does

not define an explicit log-likelihood of x.

In the context of inverse reinforcement learning [ZMB08, AN04] or inverse optimal con-

trol, x is action and −fα(x) defines the cost function or fα(x) defines the value function or

the objective function.

Let qdata(x) be the true distribution that generates the training data. Both the gener-

ator pθ and the energy-based model πα can be learned by maximum likelihood. For large

sample, the maximum likelihood amounts to minimizing the Kullback-Leibler divergence

KL(qdata‖pθ) over θ, and minimizing KL(qdata‖πα) over α, respectively. The expectation

Eqdata can be approximated by sample average.
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4.1.1 EM-type learning of generator model

To learn the generator model pθ, we seek to minimize KL(qdata(x)‖pθ(x)) over θ. Suppose in

an iterative algorithm, the current θ is θt. We can fix θt at any place we want, and vary θ

around θt.

We can write

KL(qdata(x)pθt(z|x)‖pθ(z, x)) = KL(qdata(x)‖pθ(x)) + KL(pθt(z|x)‖pθ(z|x)). (4.3)

In the EM algorithm [DLR77], the left hand side is the surrogate objective function. This

surrogate function is more tractable than the true objective function KL(qdata(x)‖pθ(x))

because qdata(x)pθt(z|x) is a distribution of the complete data, and pθ(z, x) is the complete-

data model.

We can write (4.3) as

S(θ) = K(θ) + K̃(θ). (4.4)

The geometric picture is that the surrogate objective function S(θ) is above the true objective

function K(θ), i.e., S majorizes (upper bounds) K, and they touch each other at θt, so that

S(θt) = K(θt) and S ′(θt) = K ′(θt). The reason is that K̃(θt) = 0 and K̃ ′(θt) = 0. See Figure

4.1.

Figure 4.1: The surrogate S majorizes (upper bounds) K, and they touch each other at θt with

the same tangent.

qdata(x)pθt(z|x) gives us the complete data. Each step of EM fits the complete-data model

pθ(z, x) by minimizing the surrogate S(θ),

θt+1 = arg min
θ

KL(qdata(x)pθt(z|x)‖pθ(z, x)), (4.5)
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which amounts to maximizing the complete-data log-likelihood. By minimizing S, we will

reduce S(θ) relative to θt, and we will reduce K(θ) even more, relative to θt, because of the

majorization picture.

We can also use gradient descent to update θ. Because S ′(θt) = K ′(θt), and we can place

θt anywhere, we have

− ∂

∂θ
KL(qdata(x)‖pθ(x)) = Eqdata(x)pθ(z|x)

[
∂

∂θ
log pθ(z, x)

]
. (4.6)

To implement the above updates, we need to compute the expectation with respect to the

posterior distribution pθ(z|x). It can be approximated by MCMC such as Langevin dynamics

or HMC [Nea11]. Both require gradient computations that can be efficiently accomplished by

back-propagation. We have learned the generator using such learning method in chapter 2.

4.1.2 Self-critic learning of energy-based model

To learn the energy-based model πα, we seek to minimize KL(qdata(x)‖πα(x)) over α. Suppose

in an iterative algorithm, the current α is αt. We can fix αt at any place we want, and vary

α around αt.

Consider the following contrastive divergence

KL(qdata(x)‖πα(x))−KL(παt(x)‖πα(x)). (4.7)

We can use the above as surrogate function, which is more tractable than the true objective

function, since the logZ(θ) term is canceled out. Specifically, we can write (4.7) as

S(α) = K(α)− K̃(α) (4.8)

= −(Eqdata [fα(x)]− Eπαt
[fα(x)]) + const. (4.9)

The geometric picture is that the surrogate function S(α) is below the true objective

function K(α), i.e., S minorizes (lower bounds) K, and they touch each other at αt, so that

S(αt) = K(αt), and S ′(αt) = K ′(αt). The reason is that K̃(αt) = 0 and K̃ ′(αt) = 0. See

Figure 4.2.
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Figure 4.2: The surrogate S minorizes (lower bounds) K, and they touch each other at αt with

the same tangent.

Because S minorizes K, we do not have a EM-like update. However, we can still use

gradient descent to update α, where the derivative is

K ′(αt) = S ′(αt) = −(Eqdata [f
′
αt(x)]− Eπαt

[f ′αt(x)]), (4.10)

where

f ′αt(x) =
∂

∂α
fα(x)

∣∣∣
αt
. (4.11)

Since we can place αt anywhere, we have

− ∂

∂α
KL(qdata(x)‖πα(x)) = Eqdata

[
∂

∂α
fα(x)

]
− Eπα

[
∂

∂α
fα(x)

]
. (4.12)

To implement the above update, we need to compute the expectation with respect to the

current model παt . It can be approximated by MCMC such as Langevin dynamics or HMC

that samples from παt . It can be efficiently implemented by gradient computation via back-

propagation. [LZW16, XLZ16] trained the energy-based model using such learning method.

The above learning algorithm has an adversarial interpretation. Updating αt to αt+1 by

following the gradient of S(α) = KL(qdata(x)‖πα(x))−KL(παt(x)‖πα(x)) = −(Eqdata [fα(x)]−

Eπαt
[fα(x)]) + const, we seek to decrease the first KL-divergence, while we will increase the

second KL-divergence, or we seek to shift the value function fα(x) toward the observed data

and away from the synthesized data generated from the current model. That is, the model

πα criticizes its current version παt , i.e., the model is its own adversary or its own critic.

4.1.3 Similarity and difference

In both models, at θt or αt, we have S = K, S ′ = K ′, because K̃ = 0 and K̃ ′ = 0.
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The difference is that in the generator model, S = K + K̃, whereas in energy-based

model, S = K − K̃.

In the generator model, if we replace the intractable pθt(z|x) by the inference model

qφ(z|x), we get VAE.

In energy-based model, if we replace the intractable παt(x) by the generator pθ(x), we

get adversarial contrastive divergence (ACD). The negative sign in front of K̃ is the root of

the adversarial learning.

4.2 Divergence Triangle

In this section, we shall first present the divergence triangle, emphasizing its compact

symmetric and anti-symmetric form. Then, we shall show that it is an re-interpretation

and integration of existing methods, in particular, VAE [KW13, RMW14a, MG14] and

ACD [KB16, DAB17].

Suppose we observe training examples {x(i) ∼ qdata(x)}ni=1 where qdata(x) is the unknown

data distribution. πα(x) ∝ exp[fα(x)] with energy function −fα denotes the energy-based

model with parameters α. The generator model p(z)pθ(x|z) has parameters θ and latent

vector z. It is trivial to sample the latent distribution p(z) and the generative process is

defined as z ∼ p(z), x ∼ pθ(x|z).

The maximum likelihood learning algorithms for both the generator and energy-based

model require MCMC sampling. We modify the maximum likelihood KL-divergences by

proposing a divergence triangle criterion, so that the two models can be learned jointly with-

out MCMC. In addition to the generator pθ and energy-based model πα, we also include an

inference model qφ(z|x) in the learning scheme. Such an inference model is a key component

in the variational auto-encoder [KW13, RMW14a, MG14]. The inference model qφ(z|x) with

parameters φ maps from the data space to latent space. In the context of EM, qφ(z|x) can

be considered an imputor that imputes the missing data z to get the complete data (z, x).

The three models above define joint distributions over z and x from different perspectives.
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The two marginals, i.e., empirical data distribution qdata(x) and latent prior distribution

p(z), are known to us. The goal is to harmonize the three joint distributions so that the

competition and cooperation between different loss terms improves learning.

Figure 4.3: Divergence triangle is based on the Kullback-Leibler divergences between three joint

distributions of (z, x). The blue arrow indicates the “running toward” behavior and the red arrow

indicates the “running away” behavior.

The divergence triangle involves the following three joint distributions on (z, x):

1. Q-distribution: Q(z, x) = qdata(x)qφ(z|x).

2. P -distribution: P (z, x) = p(z)pθ(x|z).

3. Π-distribution: Π(z, x) = πα(x)qφ(z|x).

We propose to learn the three models pθ, πα, qφ by the following divergence triangle loss

functional D

max
α

min
θ

min
φ
D(α, θ, φ),

D = KL(Q‖P ) + KL(P‖Π)−KL(Q‖Π). (4.13)

See Figure 4.3 for illustration. The divergence triangle is based on the three KL-

divergences between the three joint distributions on (z, x). It has a symmetric and anti-

symmetric form, where the anti-symmetry is due to the negative sign in front of the last
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KL-divergence and the maximization over α. The divergence triangle leads to the following

dynamics between the three models: (1) Q and P seek to get close to each other. (2) P

seeks to get close to Π. (3) π seeks to get close to qdata, but it seeks to get away from P , as

indicated by the red arrow. Note that KL(Q‖Π) = KL(qdata‖πα), because qφ(z|x) is canceled

out. The effect of (2) and (3) is that π gets close to qdata, while inducing P to get close to

qdata as well, or in other words, P chases πα toward qdata.

4.2.1 Unpacking the Loss Function

The divergence triangle integrates variational and adversarial learning methods, which are

modifications of maximum likelihood.

4.2.1.1 Variational Learning

Figure 4.4: Variational auto-encoder (VAE) as joint minimization by alternating projection. Left:

Interaction between the models. Right: Alternating projection. The two models run toward each

other.

First, minθ minφ KL(Q‖P ) captures the variational auto-encoder (VAE).

KL(Q‖P ) = KL(qdata(x)‖pθ(x)) + KL(qφ(z|x)‖pθ(z|x)), (4.14)

Recall S = K + K̃ in (4.4), if we replace the intractable pθt(z|x) in (4.4) by the explicit

qφ(z|x), we get (4.14), so that we avoid MCMC for sampling pθt(z|x).

We may interpret VAE as alternating projection between Q and P . See Figure 4.4 for

illustration. If qφ(z|x) = pθ(z|x), the algorithm reduces to the EM algorithm. The wake-sleep
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algorithm [HDF95] is similar to VAE, except that it updates φ by minφ KL(P‖Q) instead of

minφ KL(Q‖P ), so that the wake-sleep algorithm does not have a single objective function.

The VAE minθ minφ KL(Q‖P ) defines a cooperative game, with the dynamics that qφ and

pθ run toward each other.

4.2.1.2 Adversarial Learning

Figure 4.5: Adversarial contrastive divergence (ACD). Left: Interaction between the models. Red

arrow indicates a chasing game, where the generator model chases the energy-based model, which

runs toward the data distribution. Right: Contrastive divergence.

Next, consider the learning of the energy-based model model [KB16, DAB17]. Recall

S = K − K̃ in (4.8), if we replace the intractable παt(x) in (4.8) by pθ(x), we get

min
α

max
θ

[KL(qdata(x)‖πα(x))−KL(pθ(x)‖πα(x))], (4.15)

or equivalently

max
α

min
θ

[KL(pθ(x)‖πα(x))−KL(qdata(x)‖πα(x))], (4.16)

so that we avoid MCMC for sampling παt(x), and the gradient for updating α becomes

∂

∂α
[Eqdata(fα(x))− Epθ(fα(x))]. (4.17)

Because of the negative sign in front of the second KL-divergence in (4.15), we need maxθ in

(4.15) or minθ in (4.16), so that the learning becomes adversarial. See Figure 4.5 for illus-

tration. Inspired by [Hin02b], we call (4.15) the adversarial contrastive divergence (ACD).

It underlies [KB16, DAB17].
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The adversarial form (4.15) or (4.16) defines a chasing game with the following dynamics:

the generator pθ chases the energy-based model πα in minθ KL(pθ‖πα), the energy-based

model πα seeks to get closer to qdata and get away from pθ. The red arrow in Figure 4.5

illustrates this chasing game. The result is that πα lures pθ toward qdata. In the idealized

case, pθ always catches up with πα, then πα will converge to the maximum likelihood estimate

minα KL(qdata‖πα), and pθ converges to πα.

The above chasing game is different from VAE minθ minφ KL(Q‖P ), which defines a

cooperative game where qφ and pθ run toward each other.

Even though the above chasing game is adversarial, both models are running toward

the data distribution. While the generator model runs after the energy-based model, the

energy-based model runs toward the data distribution. As a consequence, the energy-based

model guides or leads the generator model toward the data distribution. It is different from

GAN [GPM14]. In GAN, the discriminator eventually becomes a confused one because the

generated data become similar to the real data. In the above chasing game, the energy-based

model becomes close to the data distribution.

The updating of α by (4.17) bears similarity to Wasserstein GAN (WGAN) [ACB17],

but unlike WGAN, fα defines a probability distribution πα, and the learning of θ is based on

minθ KL(pθ(x)‖πα(x)), which is a variational approximation to πα. This variational approxi-

mation only requires knowing fα(x), without knowing Z(α). However, unlike qφ(z|x), pθ(x) is

still intractable, in particular, its entropy does not have a closed form. Thus, we can again use

variational approximation, by changing the problem to minθ minφ KL(p(z)pθ(x|z)‖πα(x)qφ(z|x)),

i.e., minθ minφ KL(P‖Π), which is analytically tractable and which underlies [DAB17]. In

fact,

KL(P‖Π) = KL(pθ(x)‖πα(x)) + KL(pθ(z|x)‖qφ(z|x)). (4.18)

Thus, we can modify (4.16) into maxα minθ minφ[KL(P‖Π)−KL(Q‖Π)], because again we

have KL(Q‖Π) = KL(qdata‖πα).

Fitting the above together, we have the divergence triangle (4.13), which has a compact

symmetric and anti-symmetric form.
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4.2.2 Gap and Two-side of KL-divergences

We can write the objective function D as

D = (KL(qdata(x)‖pθ(x)) + KL(qφ(z|x)‖pθ(z|x)))

− (KL(qdata(x)‖πα(x))−KL(p(z)pθ(x|z)‖πα(x)qφ(z|x)))

= ((KL(qdata(x)‖pθ(x))−KL(qdata(x)‖πα(x)))

+ KL(qφ(z|x)‖pθ(z|x)) + KL(p(z)pθ(x|z)‖πα(x)qφ(z|x)).

Thus D is an upper bound of the difference between the log-likelihood of the energy-based

model and the log-likelihood of the generator model.

In the divergence triangle, the generator model appears on the right side of KL(Q‖P ),

and it also appears on the left side of KL(P‖Π). The former tends to interpolate or smooth

the modes of Q, while the later tends to seek after major modes of Π while ignoring minor

modes. As a result, the learned generator model tends to generate sharper images. As to the

inference model qφ(z|x), it appears on the left side of KL(Q‖P ), and it also appears on the

right side of KL(P‖Π). The former is variational learning of the real data, while the latter

corresponds to the sleep phase of wake-sleep learning, which learns from the dream data

generated by P . The inference model thus can infer z from both observed x and generated

x.

In fact, if we define

D0 = KL(qdata‖pθ) + KL(pθ‖πα)−KL(qdata‖πα), (4.19)

we have

D = D0 + KL(qφ(z|x)‖pθ(z|x)) + KL(pθ(z|x)‖qφ(z|x)). (4.20)

(4.19) is the divergence triangle between the three marginal distributions on x, where pθ

appears on both sides of KL-divergences. (4.20) is the variational scheme to make the

marginal distributions into the joint distributions, which are more tractable. In (4.20), the

two KL-divergences have reverse orders.
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Figure 4.6: Joint learning of three models. The shaded circles z and x represent variables

that can be sampled from the true distributions, i.e., N(0, Id) and empirical data distribution,

respectively. x̃ and z̃ are generated samples using the generator model and the inference

model, respectively. The solid line with arrow represents the conditional mapping and dashed

line indicates the matching loss is involved.

4.2.3 Training

The three models are each parameterized by convolutional neural networks. The joint learn-

ing under the divergence triangle can be implemented by stochastic gradient descent, where

the expectations are replaced by the sample averages. Algorithm 2 describes the procedure

which is illustrated in Figure 4.6.

4.3 Experiments

In this section, we demonstrate not only that the divergence triangle is capable of successfully

learning an energy-based model with a well-behaved energy landscape, a generator model

with highly realistic samples, and an inference model with faithful reconstruction ability,

but we also show competitive performance on four tasks: image generation, test image re-

construction, energy landscape mapping, and learning from incomplete images. For image

generation, we consider spatial stationary texture images, temporal stationary dynamic tex-

tures, and general object categories. We also test our model on large-scale datasets and

high-resolution images.
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Algorithm 2 Joint Training for Divergence Triangle Model

Require:

training images {x(i)}ni=1,

number of learning iterations T ,

α, θ, φ← initialized network parameters.

Ensure:

estimated parameters {α, θ, φ},

generated samples {x̃(i)}ñi=1.

1: Let t← 0.

2: repeat

3: {z(i) ∼ p(z)}M̃i=1.

4: {x̃(i) ∼ pθ(x|z(i))}M̃i=1.

5: {x(i) ∼ qdata(x))}Mi=1.

6: {z̃(i) ∼ qφ(z|x(i))}Mi=1.

7: α-step: Given {x̃(i)}M̃i=1 and {x(i)}Mi=1,

update α← α + ηα
∂
∂α
D with learning rate ηα.

8: φ-step: Given {(z(i), x̃(i))}M̃i=1 and {(z̃(i), x(i))}Mi=1,

update φ← φ− ηφ ∂
∂φ
D, with learning rate ηφ.

9: θ-step: Given {(z(i), x̃(i))}M̃i=1 and {(z̃(i), x(i))}Mi=1,

update θ ← θ − ηθ ∂∂θD, with learning rate ηθ

(optional: multiple-step update).

10: Let t← t+ 1.

11: until t = T
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The images are resized and scaled to [−1, 1], no further pre-processing is needed. The

network parameters are initialized with zero-mean Gaussian with standard deviation 0.02

and optimized using Adam [KB14]. Network weights are decayed with rate 0.0005, and batch

normalization [IS15] is used.

4.3.1 Generation

In this experiment, we evaluate the visual quality of generator samples from our divergence

triangle model. If the generator model is well-trained, then the obtained samples should be

realistic and match the visual features and contents of training images.

Figure 4.7: Generated samples. Left: generated samples on CIFAR-10 dataset. Right:

generated samples on CelebA dataset.

Object Generation . For object categories, we test our model on two commonly-used

datasets of natural images: CIFAR-10 and CelebA [LLW15b]. For CelebA face dataset,

we randomly select 9,000 images for training and another 1,000 images for testing in re-

construction task. The face images are resized to 64 × 64 and CIFAR-10 images remain

32× 32.
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Model VAE DCGAN WGAN CoopNet CEGAN ALI ALICE Ours

CIFAR-10 (IS) 4.08 6.16 5.76 6.55 7.07 5.93 6.02 7.23

CelebA (FID) 99.09 38.39 36.36 56.57 41.89 60.29 46.14 31.92

Table 4.1: Sample quality evaluation of VAE [KW13], WGAN [ACB17], CoopNet [XLG18],

CEGAN [DAB17], ALI [DBP16], and ALICE [LLC17]. Row 1: Inception scores for CIFAR-

10. Row 2: FID scores for CelebA.

For CelebA data, we use 5 layer generator model start from 100-dim latent factor. We use

kernel size 4 with stride 1 for the first layer and stride 2 for the following layers. Each layer

have 512, 512, 256, 128, 3 filters respectively. The inference net has the “mirror” structure

as generator model. We build the last layer separately to model the posterior mean and

variance. For the energy-based model, we use the same structure as the inference net. For

the CIFAR-10 data, we use the same network structure as for CelebA, but we use stride 1

for the bottom layer of generator, top layer of inference net as well as energy-based model,

and we do not use batch normalization for inference and energy-based model.

The qualitative results of generated samples for objects are shown in Figure 4.7. We

further evaluate our model using quantitative evaluations which are based on the Inception

Score (IS) [SGZ16] for CIFAR-10 and Frechet Inception Distance (FID) [LKM17] for CelebA

faces. We generate 50,000 random samples for the computation of the inception score and

10,000 random samples for the computation of the FID score. Table 4.1 shows the IS and

FID scores of our model compared with VAE [KW13], DCGAN [RMC15], WGAN [ACB17],

CoopNet [XLG18], CEGAN [DAB17], ALI [DBP16], ALICE [LLC17].

Note that for the Inception Score on CIFAR-10, we borrowed the scores from relevant

papers, and for FID score on 9,000 CelebA faces, we re-implemented or used the available

code with the similar network structure as our model. It can be seen that our model achieves

the competitive performance compared to recent baseline models.

Large-scale Dataset . We also train our model on large scale datasets including down-

sampled 32 × 32 version of ImageNet [OKK16, RDS15] (roughly 1 million images) and
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Figure 4.8: Generated samples. Left: 32× 32 ImageNet. Right: 64× 64 LSUN (bedroom).

Large-scale Scene Understand (LSUN) dataset [YSZ15]. For the LSUN dataset, we consider

the bedroom, tower and Church ourdoor categories which contains roughly 3 million, 0.7

million and 0.1 million images and were re-sized to 64 × 64. The network structures are

similar with the ones used in object generation with twice the number of channels and batch

normalization is used in all three models. Generated samples are shown on Figure 4.8.

High-resolution Synthesis .

In this section, we recruit a layer-wise training scheme to learn models on CelebA-HQ

[KAL17] with resolutions of up to 1, 024 × 1, 024 pixels. Layer-wise training dates back to

initializing deep neural networks by Restricted Boltzmann Machines to overcome optimiza-

tion hurdles [HS06, BLP07] and has been resurrected in progressive GANs [KAL17], albeit

the order of layer transitions is reversed such that top layers are trained first. This resembles

a Laplacian Pyramid [DCF15] in which images are generated in a coarse-to-fine fashion.

As in [KAL17], the training starts with down-sampled images with a spatial resolution

of 4× 4 while progressively increasing the size of the images and number of layers. All three

models are grown in synchrony where 1× 1 convolutions project between RGB and feature.

In contrast to [KAL17], we do not require mini-batch discrimination to increase variation of
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Figure 4.9: Generated samples with 1, 024 × 1, 024 resolution drawn from gθ(z) with 512-

dimensional latent vector z ∼ N(0, Id) for Celeba-HQ.

Figure 4.10: High-resolution synthesis from the generator model gθ(z) with linear interpola-

tion in latent space (i.e., (1− α) · z0 + α · z1) for Celeba-HQ.

gθ(·) nor gradient penalty to preserve 1-Lipschitz continuity of fα(·).

Figure 4.9 depicts high-fidelity synthesis in a resolution of 1, 024× 1, 024 pixels sampled

from the generator model gθ(z) on CelebA-HQ. Figure 4.10 illustrates linear interpolation

in latent space (i.e., (1− α) · z0 + α · z1), which indicates diversity in the samples.

Therefore, the joint learning in the triangle formulation is not only able to train the three

models with stable optimization, but it also achieves synthesis with high fidelity.

Texture Synthesis . We consider texture images, which are spatial stationary and contain

repetitive patterns. The texture images are resized to 224×224. Separate models are trained

on each image. We start from the latent factor of size 7× 7× 5 and use five convolutional-

transpose layers with kernel size 4 and up-sampling factor 2 for the generator network. The
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Figure 4.11: Generated texture patterns. For each row, the left one is the training texture,

the remaining images are 3 textures generated by divergence triangle.

layers have 512, 512, 256, 128 and 3 filters, respectively, and ReLU non-linearity between

each layer is used. The inference model has the inverse or “mirror” structure of generator

model except that we use convolutional layers and ReLU with leak factor 0.2. The energy-

based model has three convolutional layers. The first two layers have kernel size 7 with stride

2 for 100 and 70 filters respectively, and the last layer has 30 filters with kernel size 5 and

stride 1.

The representative examples are shown in Figure 4.11. Three texture synthesis results

are obtained by sampling different latent factors from prior distribution p(z). Notice that
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although we only have one texture image for training, the proposed triangle divergence model

can effectively utilize the repetitive patterns, thus generating realistic texture images with

different configurations.

Figure 4.12: Generated dynamic texture patterns. The top row shows the frames from the

training video, the bottom row represents the frames for the generated video.

Dynamic texture synthesis . Our model can also be used for dynamic patterns which

exhibit stationary regularity in the temporal domain. The training video clips are selected

from Dyntex database [PFH10] and resized to 64 pixels × 64 pixels × 32 frames. We adopt

spatial-temporal models for dynamic patterns that are stationary in the temporal domain

but non-stationary in the spatial domain. Specifically, we start from 10 latent factors of size
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1×1×2 for each video clip and we adopt the same spatial-temporal convolutional transpose

generator network as described in chapter 2 except we use kernel size 5 for the second layer.

For the inference model, we use 5 spatial-temporal convolutional layers. The first 4 layers

have kernel size 4 with upsampling factor 2 and the last layer is fully-connected in spatial

domain but convolutional in the temporal domain, yielding re-parametrized µφ and σφ which

have the same size the as latent factors. For the energy-based model, we use three spatial-

temporal convolutional layers. The first two layers have kernel size 4 with up-sample factor 2

in all directions, but the last layer is fully-connected in the spatial domain but convolutional

with kernel size 4 and upsample by 2 in the temporal domain. Each layer has 64, 128 and

128 filters, respectively. Some of the synthesis results are shown in Figure 4.12. Note, we

sub-sampled 6 frames of the training and generated video clips and we only show them in

the first batch for illustration.

4.3.2 Test Image Reconstruction

.

Model WS VAE ALI ALICE Ours

CIFAR-10 0.058 0.037 0.311 0.034 0.028

CelebA 0.152 0.039 0.519 0.046 0.030

Table 4.2: Test reconstruction evaluation for WS [HDF95], VAE [KW13], ALI [DBP16],

ALICE [LLC17]. Row 1: MSE for CIFAR-10 test set. Row 2: MSE for 1,000 hold out set

from CelebA.

In this experiment, we evaluate the reconstruction ability of our model for a hold-out

testing image dataset. This is a strong indicator for the accuracy of our inference model.

Specifically, if our divergence triangle model D is well-learned, then the inference model

should match the true posterior of generator model, i.e., qφ(z|x) ≈ pθ(z|x). Therefore, given

test signal xte, its reconstruction x̃te should be close to xte, i.e., xte
qφ−→ zte

pθ−→ x̃te ≈ xte.

Figure 4.13 shows the testing images and their reconstructions on CIFAR-10 and CelebA.
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Figure 4.13: Test image reconstruction. Top: CIFAR-10. Bottom: CelebA. Left: test

images. Right: reconstructed images.

For CIFAR-10, we use its own 10,000 test images while for CelebA, we use the hold-out

1,000 test images as stated above. The reconstruction quality is further measured by per-

pixel mean square error (MSE). Table 4.2 shows the per-pixel MSE of our model compared

to WS [HDF95], VAE [KW13], ALI [DBP16], ALICE [LLC17].

Note, we do not consider methods without inference models on training data, including

variants of GANs and cooperative training, since it is infeasible to test such models using
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image reconstruction.

4.3.3 Energy Landscape Mapping

In the following, we evaluate the learned energy-based model by mapping the macroscopic

structure of the energy landscape. When following a MLE regime by minimizing KL(qdata‖πα),

we expect the energy-function −fα(x) to encode x ∼ qdata(x) as local energy minima. More-

over, −fα(x) should form minima for unseen images and macroscopic landscape structure in

which basins of minima are distinctly separated by energy barriers. Hopfield observed that

such landscape is a model of associative memory [Hop82].

In order to learn a well-formed energy-function, in Algorithm 2, we perform multiple

θ-steps such that the samples {x̃i}M̃i=1 are sufficiently “close” to the local minima of −fα(x).

This avoids the formation of energy minima not resembling the data. The variational ap-

proximation of entropy of the marginal generator distribution H(pθ(x)) preserves diversity

in the samples avoiding mode-collapse.

To verify that (i) local minima of −fα(x) resemble {xi} and (ii) minima are separated

by significant energy barriers, we shall follow the approach used in [HNZ18]. When cluster-

ing with respect to energetic barriers, the landscape is partitioned into Hopfield basins of

attraction whereby each point {xi} on the landscape −fα(x) is mapped onto a local min-

imum {x̂i} by a steepest-descent path xt+1
i = xti + η∇fα(xti). The similarity measure used

for hierarchical clustering is the barrier energy that separates any two regions. Given a pair

of local minima {x̂i, x̂j}, we estimate the barrier bi,j = max{−fα(xk) : xk ∈ x̂i
γ
⇁ x̂j} as the

highest energy along a linear interpolation x
γ
⇁ y = {x+ γ(y − x) : γ ⊆ [0, 1]}. If bi,j < ε for

some energy threshold ε, then {xi, xj} belong to the same basin. The clustering is repeated

recursively until all minima are clustered together. Such graphs have come to be referred as

disconnectivity graphs (DG) [WMW98].

We conduct energy landscape mapping experiments on the MNIST [LC10] and Fashion-

MNIST [XRV17] datasets, each containing 70, 000 grayscale images of size 28 × 28 pixels

depicting handwritten digits and fashion products from 10 categories, respectively. We use 4
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Figure 4.14: Illustration of the disconnectivity-graph depicting the basin structure of the

learned energy-function fα(x) for the MNIST dataset. Each column represents the set of at

most 12 basins members ordered by energy where circles indicate the total number of basin

members. Vertical lines encode minima depth in terms of energy and horizontal lines depict

the lowest known barrier at which two basins merge in the landscape. Basins with less than

4 members were omitted for clarity.

layer generator model that has 100-dim latent factor. The kernel size is 3 for first layer and

4 for the following layers, and the number of channels are 1024, 512, 256, 1 respectively. The

inference and energy-based model has the similar “mirror” structure as generator model.

The energy landscape mapping is not without limitations, because it is practically im-

possible to locate all local modes. Based on the local modes located by our algorithm, see

Figure 4.14 for the MNIST dataset, it suggests that the learned energy function is well-

formed which not only encodes meaningful images as minima, but also forms meaningful

macroscopic structure. Moreover, within basins the local minima have a high degree of pu-

rity (i.e. digits within a basin belong to the same class), and, the energy barrier between

basins seem informative (i.e. basins of ones and sixes form pure super-basins). Figure 4.15

depicts the energy landscape mapping on Fashion-MNIST.
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Figure 4.15: Illustration of the disconnectivity-graph depicting the basin structure of the

learned energy-function for the Fashion-MNIST dataset. Each column represents the set of

at most 12 basins members ordered by energy where circles indicate the total number of

basin members. Vertical lines encode minima depth in terms of energy and horizontal lines

depict the lowest known barrier at which two basins merge in the landscape. Basins with

less than 4 members were omitted for clarity.
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Potential applications include unsupervised classification in which energy barriers act

as a geodesic similarity measure which captures perceptual distance (as opposed to e.g. `2

distance), weakly-supervised classification with one label per basins, or, reconstruction of

incomplete data (i.e. Hopfield content-addressable memory or image inpainting).

4.3.4 Learning from Incomplete Images

The divergence triangle can also be used to learn from occluded images. This task is challeng-

ing as described in chapter 2, because only parts of the images are observed, thus the model

needs to learn sufficient information to recover the occluded parts. Notably, chapter 2 of

this dissertation proposed to recover incomplete images using alternating back-propagation

(ABP) which has a MCMC based inference step to refine the latent factors and perform

reconstruction iteratively. VAEs [RMW14b, KW13] build the inference model on occluded

images, and can also be adapted for this task. It proceeds by filling the missing parts with

average pixel intensity in the beginning, then iteratively re-update the missing parts using

reconstructed values. Unlike VAEs, which only consider the un-occluded parts of training

data, the proposed model utilizes the generated samples which become gradually recov-

ered during training, resulting in improved recovery accuracy and sharp generation. Note

that learning from incomplete data can be difficult for variants of GANs [GPM14, DAB17,

RMC15, ACB17] and cooperative training [XLG18], since inference cannot be performed

directly on the occluded images.

We evaluate our model on 10,000 images randomly chosen from CelebA dataset. Then,

selected images are further center cropped as in chapter 2. Similar to VAEs, we zero-fill the

occluded parts in the beginning, then iterative update missing values using reconstructed

images obtained from the generator model. Three types of occlusions are used: (1) salt and

pepper noise which randomly covers 50% (P0.5) and 70% (P0.7) of the image. (2) Multiple

block occlusion which has 10 random blocks of size 10×10 (MB10). (3) Singe block occlusion

where we randomly place a large 20× 20 and 30× 30 block on each image, denoted by B20

and B30 respectively. Table 4.3 shows the recovery errors using VAE [KW13], ABP and
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Figure 4.16: Learning from incomplete data from the CelebA dataset. The 9 columns belong

to experiments P0.5, P0.7, MB10, MB10, B20, B20, B30, B30, B30 respectively. Row 1:

original images, not observed in learning stage. Row 2: training images. Row 3: recovered

images using VAE [KW13]. Row 4: recovered images using ABP. Row 5: recovered images

using our method.

the triangle model where the error is defined as per-pixel absolute difference (relative to the

range of pixel values) between the recovered image on the occluded pixels and the ground

truth image.

EXP P0.5 P0.7 MB10 B20 B30

VAE [KW13] 0.0446 0.0498 0.1169 0.0666 0.0800

ABP 0.0379 0.0428 0.1070 0.0633 0.0757

Ours 0.0380 0.0430 0.1060 0.0621 0.0733

Table 4.3: Recovery errors for different occlusion masks for 10, 000 images from CelebA.

It can be seen that our model consistently out-performs the VAE model for different occlu-

sion patterns. For structured occlusions (i.e., multiple and single blocks), the un-occluded

parts contain more meaningful configurations that will improve learning of the generator
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Figure 4.17: Image generation from different models learned from training images of the

CelebA dataset with 30 × 30 occlusions. Left: images generated from VAE model [KW13].

Middle: images generated from ABP model. Right: images generated from our proposed

model.

through the energy-based model, which will, in turn, generate more meaningful samples to

refine our inference model. This could be verified by the superior results compared to ABP.

While for unstructured occlusions (i.e., salt and pepper noise), ABP achieves improved recov-

ery, a possible reason being that un-occluded parts contain less meaningful patterns which

offer limited help for learning the generator and inference model. Our model synthesizes

sharper and more realistic images from the generator on occluded images. See Figure 4.17

in which images are occluded with 30× 30 random blocks.

4.4 Summary

In this chapter, we propose an unified probabilistic framework, called divergence triangle,

to jointly and tractably learn the generator model and the energy-based model. The diver-

gence triangle forms the compact learning functional that integrates the maximum likelihood

learning, variational learning and adversarial learning. Our experiments show that we could

learn the well-formed energy-based model, the realistic generator model as well as faithful

inference model. The model can be effective in learning from incomplete data as well.
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CHAPTER 5

Understanding Generator Model

In the previous chapters, we discussed probabilistic deep generative models, namely the

generator model and the energy-based model, and their unsupervised learning methods.

Though good performance can be obtained, the understanding of the learned models remains

largely unexplored, especially for deep generative models. The existing models with deep

neural network parameterizations are in general difficult to interpret because of their high

non-linearity and entangled nature. In this chapter, we venture to study the behavior of the

learned deep generative models.

5.1 Introduction and Motivation

Recently, a paper published in Cell [CT17] reports an interesting discovery about the neurons

in the middle lateral (ML)/middle fundus (MF) and anterior medial (AM) areas of the

primate brain that are responsible for face recognition. Specifically, the paper is concerned

with how these neurons respond to and encode the face stimuli generated by a pre-trained

Active Appearance Model (AAM) [CET01, CRB15]. In AAM, there are explicit shape

variables and appearance variables that generate the positions of the control points and

the nominal face image respectively, and the output image is then generated by wrapping

the nominal face image using the control points. [CT17] discovers that the responses of

the aforementioned neurons to the face image generated by the AAM exhibits strong linear

relationship with the shape and appearance variables of the AAM that generates the face

image. In fact, the shape and appearance variables of the AAM can be recovered from

the neuron responses so that the face image can be reconstructed by the AAM using the
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recovered shape and appearance variables.

In this chapter, we investigate whether the above phenomenon can be replicated by deep

generative models. In particular, we focus on a popular generator model [GPM14], which can

be considered a non-linear generalization of the factor analysis model. In generator model,

the mapping from the latent variables to the observed signal is modeled by a convolutional

neural network (ConvNet), which has proven to be an exceedingly powerful approximator of

high-dimensional non-linear mappings.

Both the AAM and the generator model are latent variable models where the signal is

obtained by transforming the latent variables. In the AAM, the latent variables consist of

explicit shape variables and appearance variables, which generate the control points and the

appearance image by linear mappings learned by principal component analysis (PCA). The

output image is generated by a highly non-linear but known warping function of the control

points and the nominal image. In contrast, the generator model is more generic, in that it

does not assume any prior knowledge about shape and deformation, and it does not have any

explicit shape variables and shape model. We are interested in whether the generator model

can replicate the AAM in the sense that whether the generator model can learn from the

images generated by a pre-trained AAM, so that the latent variables of the learned generator

model are closely related to the latent shape and appearance variables of the AAM, and the

non-linear mapping from the latent variables to the output image in the generator network

accounts for the highly non-linear warping function of the AAM. As it is impossible for the

latent variables of the learned generator to be the same as the latent variables of the AAM,

a strong linear relationship between the two sets of latent variables (or codes) is the best we

can hope for. We shall show that such a linear relationship indeed exists, thus qualitatively

reproducing the behavior of the neuron responses (or neural code) observed by [CT17].

The generator model can be trained by various methods, including the wake-sleep algo-

rithm [HDF95], variational autoencoder (VAE) [KW13, RMW14a, SKW15], generative ad-

versarial networks (GAN) [GPM14, RMC15, DCF15], moment matching networks [LSZ15]

as well as alternating back-propagation (ABP) and divergence triangle which are described

in the previous chapters. They have led to impressive results in a wide range of applications,
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such as image/video synthesis [DSB15], disentangled feature learning [CDH16, HMP16] and

pattern completion etc.

In this dissertation, we shall adopt the VAE method to train the generator model. Unlike

GAN, the VAE complements the generator model with an inference model that transforms

the observed image to the latent variables. The inference network seeks to approximate the

posterior distribution of the latent variables given the observed image. The inference model

and the generator model form an auto-encoder, where the inference model plays the role

of the encoder that encodes the signal into the latent variables (or latent code), and the

generator model plays the role of the decoder that decode the latent variables (or latent

code) back to the signal. The parameters of the two networks can be learned by maximizing

a variational lower bound of the log-likelihood [BKM17] (see chapter 4). We show that

the latent variables computed by the inference network from the observed face image are

highly correlated with the latent variables of the AAM that generates the face image. This

work is phenomenological in nature. It is our hope that the study is of interest to both the

neuroscience community and the deep learning community.

5.2 Active Appearance Model (AAM)

The active appearance model [CET01, CRB15] is a generative model for representing face

images. It has a shape model and an appearance model. Both models are learned by principal

component analysis (PCA).

Shape model : The shape model is based on a set of landmarks or control points. In

the training stage, the control points are given for each training image. Let y denote the

coordinates of all the control points. The shape model is

y = ȳ + Psbs, (5.1)

where ȳ is the average shape, Ps is the matrix of eigenvectors, and bs is the vector of shape

variables. (ȳ, Ps) are shared across all the training examples, while y and bs are different for

different examples. The model can be learned from the given control points of the training
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images by PCA, where the number of eigenvectors is determined empirically.

Appearance model : The appearance model generates the nominal image before shape

deformation. To learn the model, we can wrap each training image to the shape-normalized

image so that its control points match those of the mean shape ȳ. Then a PCA is performed

on the shape-normalized training images. Let g denote the vector of the grey-level image.

The appearance model is

g = ḡ + Paba, (5.2)

where ḡ is the mean normalized grey-level image, Pa is the matrix of eigenvectors, and ba

is the vector of appearance variables. (ḡ, Pa) are shared by all the training examples, while

g and ba are different for different examples. For colored images with RGB channels, we

then concatenate three channels into a single vector, then perform the PCA as in grey-level

images.

We can learn (Ps, Pa) from the training images with given control points. We concatenate

the shape and appearance variables to form the face representation or the latent code, i.e.,

ZAAM = [bs, ba]. Given ZAAM , we can generate face image X by generating y and g first, and

then warping g according to y using a warping function to output the image X = h(g, y).

The warping function h is given and is highly non-linear in g and y.

5.3 Generator Model and Variational Learning

We have discussed the generator model and the variational learning in chapter 2 and chap-

ter 4. We shall briefly review them below.

The generator model is a deep generative model of the following form:

Z ∼ N(0, Id), (5.3)

X = gθ(Z) + εi, (5.4)

where Z is the vector of latent variables (or latent code) and generates the output image X

by a non-linear mapping gθ, which is modeled by a top-down convolutional neural network
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(ConvNet), where θ collects all the weight and bias parameters of the top-down ConvNet. ε

is the noise vector whose elements are independent N(0, σ2) random variables. Even though

Z follows a simple distribution, the model can generate X with very complex distribution

and with very rich patterns because of the expressiveness of gθ.

Compared to the AAM, the generator network has no explicit shape model such as (5.1)

with control points y and shape variables bs, nor does it have the explicit non-linear warping

function X = h(g, y). The generator network relies on the highly expressive ConvNet gθ to

account for the linear shape model and the non-linear warping function. Even though no

prior knowledge of shape and warping is built into the generator network, it can learn such

knowledge by itself.

Specifically, we shall use a pre-trained AAM as a teacher model, and we let the generator

network be the student model. The AAM generates training images, and the generator

network learns from the training images. We shall show that the inferred Z from the face

image X has a strong linear relationship with the corresponding ZAAM that the AAM uses

to generate X.

Given a set of N training images {Xi, i = 1, ..., N} generated by AAM, we train the gen-

erator model by variational method, i.e., variational auto-encoder (VAE) [KW13, RMW14a,

SKW15]. The basic idea of VAE is to approximate the posterior distribution pθ(Z|X) by a

tractable inference model qφ(Z|X) with a separate set of parameters φ, such as a Gaussian

distribution with independent components N(µφ(X), σ2
φ(X)), where µφ(X) is the vector of

means of the components of Z, and σ2
φ(X) is the vector of variances of the components of

Z. Both µφ(X) and σφ(X) can be modeled by bottom-up ConvNets.

The parameters (θ, φ) can be learned by jointly maximizing the variational lower bound of

the log-likelihood which is computationally tractable as long as the inference model qφ(Z|X)

is tractable. See [KW13] for more details. qφ(Z|X) is the encoder, and pθ(X|Z) is the

decoder. After learning (θ, φ), we can estimate Z from X by the learned posterior mean

vector ZG = µφ(X). In our work, we use ZG as the code of X.

The VAE can be viewed as minimization of two joint distributions, namely Q(Z,X)(=
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qdata(X)qφ(Z|X)) and P (Z,X)(= p(Z)pθ(X|Z)) due to the following (see Eqn. 4.14 in chap-

ter 4):

KL(Q‖P ) = KL(qdata(X)‖pθ(X)) + KL(qφ(Z|X)‖pθ(Z|X)) (5.5)

Such joint minimization, i.e., minQ minP KL(Q‖P ), can be accomplished by alternating pro-

jection. Specifically, minQ KL(Q‖P ) is a variational projection that minimizes over the first

argument, while minP KL(Q‖P ) is a model fitting projection that minimizes over the second

argument. As is commonly known, the former has mode seeking behavior while the latter

has moment matching behavior. Adversarial based methods, e.g., GANs[GPM14], can also

be used for training. However, they do not have an inference model or an encoder, which is

crucial for our work.

5.4 Experiments

We conduct experiments to investigate whether the generator model can replicate or imitate

the AAM, where the AAM serves as the teacher model and the generator model plays the

role of the student model. In the learning stage, the generator model only has access to the

images generated by the AAM. It does not have access to the shape and appearance variables

(latent code) used by the AAM to generate the images. After learning the generator model,

we investigate the relationship between the latent code of the learned generator model and

the latent code of the AAM.

5.4.1 Experiment Setting

Data Generation. We consider models on both grey-scaled and colored face images. For

grey-scaled images, we pre-train the AAM using approximately 200 frontal face images with

given landmarks or control points. Coordinates of the landmarks are first averaged, then

PCA is performed where the first 10 principal components (PCs) for shape (see Eqn 5.1)

are retained. The landmarks of each training image are then smoothly morphed into the

average shape, so that the resulting image only carries shape-free appearance information.
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Another PCA is then performed on the shape-normalized training images, where the first 10

PCs for appearance (see Eqn 5.2) are retained. This results in a 20-dimensional latent face

space. Similarly, for color images, we pre-train the AAM on 800 frontal images with given

landmarks. We retain 50 PCs for the shape and another 50 PCs for the appearance which

results in a 100-dimensional latent space. Every face has a corresponding AAM code denoted

as ZAAM , which encodes its shape and appearance variables. ZAAM has 20 dimension for

grey-scaled images and 100 dimension for colored ones.

To generate face stimuli for our experiments, we randomly generate 20, 000 grey-scaled

face images of size 256× 256 and 10, 000 colored ones of size 128× 128 from the above pre-

trained AAMs. Specifically, for each dimension of the latent code, we record the standard

deviation of the training responses of that dimension, and sample the variable from the

Gaussian distribution with the same standard deviation as the real training faces. After

that, these sampled variables are combined with the learned eigenvectors Ps and Pa to

generate the synthesized images. The obtained images are then used as our training data

for the generator network. Figure 5.1 shows some examples of training images to pre-train

the AAM, and the synthesized face images generated by the trained AAM.

Figure 5.1: Top and third row: training images with landmarks labeled for AAM. Second

and bottom row: synthesized AAM images for training the generator network.
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VAE Training. The training images obtained above are scaled so that the intensities are

within the range [−1, 1]. No further pre-processing steps are needed.

For the generator model, we adopt the structure similar to [RMC15, DSB15]. The net-

work consists of multiple deconvolution (a.k.a convolution-transpose) layers interleaved with

ReLU non-linearity and batch normalization [IS15]. For grey-scaled images, we learn a 7

layer top-down convNet. The first deconvolutional layer has 512 filters with kernel size 4× 4

and stride 1. There are 512, 384, 256, 128, 64, 1 filters with kernel size 4 × 4 and stride 2

for the following deconvolution layers respectively. For colored images, we learn a 6 layer

top-down convNet where the first layer has 512 filters with kernel size 4 × 4 of stride 1,

and the rest layers have 512, 256, 128, 64, 3 filters which have the same kernel size as the

first layer but with stride 2. Each deconvolution layer is followed by ReLU non-linearity

and batch normalization except the last deconvolution layer which is instead followed by the

tanh non-linearity.

For the inference model or the encoder network of VAE, we utilize the mirror structure

of the generator network (which is the decoder network) where we use convolutional layers

instead of deconvolutional ones. Besides, we use the ReLU with leaky factor 0.2 as our non-

linearity. The mean and variance networks of the inference model share the same network

structure except the top fully-connected layer. We also adopt the batch normalization in the

inference model as in the generator model.

We tried different dimensionalities for the latent code Z, including 20, 100 and 200

dimensions for grey-scaled images as well as 100, 200 dimensions for colored ones. We used

Adam optimizer [KB14] with initial learning rate 0.0002 for 500 iterations. The outputs of

the mean network of the inference model are used as the learned latent code and are denoted

as ZG. Realistic synthesized images can be generated by the trained generator network.

See Figure 5.2 for some examples. We design four experiments to examine the relationship

between the AAM code ZAAM for generating the face images and the code learned by the

generator network, ZG.
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Figure 5.2: Synthesized images generated by the trained generator network.

5.4.2 Linear Relationship

[CT17] discovered that if a neuron has ramp-shaped tuning to different facial features, then

its neural response can be approximated by a linear combination of the facial features. That

is, the neural code for face patches ML/MF and AM has linear relationship with the AAM

code of the presented face stimuli. In our first experiment, we check the strength of linearity

between the code learned by the generator model and the underlying AAM code.

The codes for AAM, i.e., ZAAM , are used to predict the corresponding codes learned by

generator network, i.e., ZG, and vice versa. Specifically, we fit linear model A and linear

model B respectively:

ZG ≈ AZAAM , (5.6)

ZAAM ≈ BZG. (5.7)

We also include interception terms in both models. The goodness of fit of the model is

determined by the percentage of variance in data that is explained by the fitted linear

model, i.e., the so-called R-square (R2):

R2 = 1−
∑

i ‖Zi − Ẑi‖2∑
i ‖Zi − Z̄‖2

, (5.8)
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where Zi is the given code for image i, Ẑi denotes the fitted value, and Z̄ is the average of

the code. Higher R2 indicates stronger linear strength.

The R2 values for different dimensionalities of ZG are shown in Table 5.1 and Table 5.2. It

can be seen that models show strong linear relations on both grey-scaled and colored images.

This is non-trivial and surprising, because when presented with only synthesized face stimuli,

the VAE training of the highly non-linear generator network [MPC14] can automatically learn

the code that is linearly related to the underlying AAM code that generates the given face

stimuli. That is, the learned generator network shares similar behavior as the face patch

systems ML/MF and AM in the primate brain.

dimension d for ZG d=20 d=100 d=200

R2 (A) 0.9749 0.9332 0.9641

R2 (B) 0.9728 0.9926 0.9951

Table 5.1: Strength of linearity (R2) for models A and B on grey-scaled face images.

dimension d for ZG d=100 d=200

R2 (A) 0.6578 0.6627

R2 (B) 0.7604 0.7983

Table 5.2: Strength of linearity (R2) for models A and B on colored face images.

5.4.3 Decoding

As argued in [CT17], we should be able to linearly decode the facial features from the neural

responses if there is a linear relationship between them. If so, we can accurately predict what

the primate brain sees by knowing only the neural responses of the brain. Knowing that our

learned code of the generator network ZG shows strong linear relationship with the facial

features ZAAM from the above experiment, we expect that our automatically learned code
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Figure 5.3: Left: test faces. Right: reconstructed faces using linear decoding. Top: results

for grey-scaled face images. Bottom: results for colored images.

ZG can accurately predict the facial features ZAAM , which can then be used to reconstruct

the input face image via the AAM. Therefore we further examine the decoding quality in

this section.

To proceed, for training, we use ZAAM and ZG obtained during the learning process
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to fit model B as described above. Denote the estimated coefficients as B?. To test the

decoding quality, we carry out the following two steps: (1) randomly sample a new set of

AAM generated face images, which are used as the testing set. Then use the trained encoder

network, i.e., mean network, of VAE to get point estimate of latent code of the generator

network, i.e., Ztest
G . (2) Use the optimal B? to get the predicted AAM code:

Ẑtest
AAM = B?Ztest

G . (5.9)

The predicted AAM code is then projected onto the previously learned AAM eigenvectors

Ps and Pa to get the reconstructed image.

For model fitting for B?, we use the obtained 20, 000 ZAAM during training for grey-scaled

images and use 10, 000 ZAAM for colored ones. 2, 000 newly generated testing images are

used for both cases. Figure 5.3 shows some testing images and the reconstructed ones. It

can be seen that the linear model between the learned code by VAE and the AAM code

gives us high decoding quality. In this experiment as well as the subsequent experiments,

we set the dimensionality of ZG to be 100. Other dimensionalities give similar results.

5.4.4 Shape/Appearance Separation

The latent code ZG learned by the deep generative model is mixed with shape and appearance

information. It would be useful to separate the shape and appearance parts of ZG. In this

experiment, we further identify the strengths of shape and appearance parts of the learned

code ZG.

From the first two experiments, we show that ZG is linearly related to the AAM code

ZAAM , which contains both the shape and appearance parts. We can identify these two

parts by projecting each dimension of ZG onto the shape code bs and the appearance code

ba. We can then obtain the relative R2 for each part. A higher R2 for one part indicates the

stronger response for this part. Recall that ZAAM = [bs, ba]. We fit the linear models on the
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Figure 5.4: Bar plot for R2 values of shape and appearance. Each vertical bar corresponds

to a dimension of the latent code.

shape part bs and the appearance part ba respectively:

ZG ≈ Asbs, (5.10)

ZG ≈ Aaba. (5.11)

Figures 5.4 and 5.5 show the R2 values for each dimension of ZG. We only show plots

for grey-scaled images here to illustrate the idea, note that the similar plots can be obtained

for colored images as well. It shows that each dimension of ZG responds differently to shape

and appearance. To further verify and visualize our analysis, we first choose four dimensions

with the top R2 for shape and four dimensions with the top R2 for appearance. Then

we visualize the generated images using the trained generator network by varying (±3 sd)

the four chosen dimensions of the learned code while keeping the other three dimensions

fixed. Figure 5.6 shows the result. It is clear that if we only vary the shape dimensions

of the code (horizontally in the figure), the generated images mainly change their shapes

while the appearances tend to remain similar. On the other hand, if we only vary the
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Figure 5.5: Scatter plot for R2 values of shape and appearance. Each point corresponds to

a dimension of the latent code. Red dashed line indicates the equal R2 values for shape and

appearance.

appearance dimensions of the code (vertically in the figure), the generated images mainly

change their appearances instead of shapes. Similarly, for colored images, we also estimate

the corresponding shape and appearance strength for each dimension of their latent factors

ZG. We select the dimensions which have relatively high R2 value for appearance and low R2

for shape, and vary such dimension by ±3 sd while keeping other dimensions fixed. The first

two rows of Figure 5.7 show that such dimension mainly controls the appearance variations.

For dimensions that have high R2 value for shape but low R2 for appearance mainly controls

the shape variations. The last two rows of Figure 5.7 show such examples.

5.4.5 Replicating AAM by Supervised Learning

So far the generator model learns from the AAM in the unsupervised manner, where the

generator model only has access to the training images but not the latent code of the AAM.

We now examine whether the generator model has enough expressive power to replicate the
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Figure 5.6: Vertical: appearance variation. Horizontal: shape variation.

AAM in the supervised setting where we also provide the latent code of the AAM to the

generator.

In this experiment, the synthesized face images and their AAM codes are given, and we

use these pairs to learn the generator model. To be more specific, we also consider two cases

which include the grey-scaled images and more realistic colored images. we first train the

generator network using the 20, 000 grey-scaled images (or 10, 000 colored images) and their

codes. Let us denote the trained generator as G?. Then, we prepare a new set of 2, 000

synthesized images Ytest and their AAM code Ztest
AAM as our testing set. Ztest

AAM is then fed

into G? to get X̂test. If the generator network is capable of replicating the AAM, then X̂test

should be close to Xtest, that is, the generated images by the trained generator model should

be similar to the testing face images.
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Figure 5.7: Top two rows: appearance variations (First: identity and expression changes.

Second: color changes). Bottom two rows: shape variations. (First: the width of the face

changes. Second: view points changes.)

We use the same generator model structure as in the VAE training. We use Adam

optimizer to train the generator model for supervised learning. The learning rate is 0.0002

with 800 epochs. Figure 5.8 shows the ground-truth testing images generated by the AAM

and the reconstructed images generated by the trained generator network for both grey-scaled

and colored face images. We also calculate the per-pixel `1 reconstruction error, which is

0.0137 for grey-scaled images and 0.0840 for colored faces.

5.5 Summary

In this chapter, we design and conduct experiments to examine the relationship between

the AAM code that generates the face stimuli and the automatically learned code by the

generator model. Through the linearity analysis and the decoding quality analysis, we find

that the biological observations made in [CT17] can be qualitatively reproduced by the
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Figure 5.8: Left: test face images generated by AAM. Right: reconstructed face images by

the generator network trained by supervised learning.

generator model, i.e., the learned code shows a strong linear relationship with the AAM

code. Additionally, we use this relationship to further separate the shape and appearance

parts of the learned code. Furthermore, we show that knowledge of AAM can be distilled

into the generator model through supervised learning.
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CHAPTER 6

Conclusion

In artificial intelligence and machine learning, probabilistic generative models play an impor-

tant role towards knowledge representation and understanding especially for deep generative

models that are parameterized by ConvNet. Such deep models have high approximation

capacity, but the learning and understanding can be challenging. In this dissertation, we

develop unsupervised learning algorithms for deep generative models and study their behav-

iors.

We first propose an alternating back-propagation (ABP) algorithm for training the gener-

ator model. We recognize that the generator model is a non-linear generalization of the factor

analysis model, and develop the alternating back-propagation algorithm as the non-linear

generalization of the alternating regression scheme of the Rubin-Thayer EM algorithm for

fitting the factor analysis model. The alternating back-propagation algorithm iterates the in-

ferential back-propagation for inferring the latent factors and the learning back-propagation

for updating the parameters. Both back-propagation steps share most of their computing

steps in the chain rule calculations.

Our learning algorithm is perhaps the most canonical algorithm for training the generator

model. It is based on maximum likelihood, which is theoretically the most accurate estimator.

The maximum likelihood learning seeks to explain and charge the whole dataset uniformly,

so that there is little concern of under-fitting or biased fitting.

As an unsupervised learning algorithm, the alternating back-propagation algorithm is

a natural generalization of the original back-propagation algorithm for supervised learning.

It adds an inferential back-propagation step to the learning back-propagation step, with

minimal overhead in coding and affordable overhead in computing. The inferential back-
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propagation seeks to perform accurate explaining-away inference of the latent factors. It can

be worthwhile for tasks such as learning from incomplete or indirect data. The inferential

back-propagation may also be used to evaluate the generators learned by other methods

on tasks such as reconstructing or completing testing data. The proposed method can be

effective for various data types including audio, image, video etc.

We then proposes to learn multi-view generator model through sharing the latent fac-

tors. We argue that the shared representation learned could effectively encode the common

knowledge across different views, and the domain specific generator model can accurately

obtain the domain related information. Therefore, the proposed method can naturally en-

force the consensus and complementary principles of which a good shared representation

should possess. We conduct qualitative experiment on face rotation and completion as well

as audio-video common knowledge extraction, demonstrating that our method can be effec-

tively utilized for generation and reconstruction tasks. We also conduct extensive quantita-

tive comparisons with existing works in gait recognition, showing that our method, though

trained unsupervisely, is competitive or even become state-of-the-art in many cases.

Besides the generator learning, in this dissertation, we also propose to jointly and tractably

learn both the generator model and the energy-based model through the inference model.

The proposed probabilistic framework, namely divergence triangle, forms the compact learn-

ing functional for three models and naturally unifies aspects of maximum likelihood estima-

tion, variational learning, adversarial learning, contrastive divergence, and the wake-sleep

algorithm. An extensive set of experiments demonstrated learning of a well-behaved energy-

based model, realistic generator model as well as an accurate inference model. Moreover,

experiments showed that the proposed divergence framework can also be effective in learning

directly from incomplete data.

In terms of understanding of probabilistic models. We take the inspiration from the

recent work in neuroscience [CT17] which shows that the face images can be reconstructed

using the cell responses from face patches ML/MF and AM. To investigate whether the

widely used generator model has the similar property, we design and conduct experiments

to examine the relationship between the AAM code that generates the face stimuli and
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the automatically learned code by the generator model. Through the linearity analysis and

the decoding quality analysis, we find that the biological observations made in [CT17] can

be qualitatively reproduced by the generator model, i.e., the learned code shows a strong

linear relationship with the AAM code. Additionally, we can also use this relationship to

further separate the shape and appearance parts of the learned code. Again this is similar

to the neural system as it is found that ML/MF and AM carry complementary information

about shape and appearance. Furthermore, we show that the generator model is capable of

replicating AAM and we demonstrate this through supervised learning. In other words, the

knowledge of a pre-trained AAM can be distilled into the generator model.

Future Directions. The learning algorithm proposed or its variants can be applied to

non-linear matrix factorization and completion which can be useful in recommender system.

It can also be applied to problems where some components or aspects of the factors are

supervised such as semi-supervised learning scenario.

We distill the knowledge of a pre-trained AAM to the generator network in this disser-

tation. It will also be interesting to distill the knowledge of a learned generator model to

an AAM in order to interpret the generator model. Furthmore, we shall also extend the

algorithm to learn interpretable generator and energy-based models with multiple layers of

sparse or semantically meaningful latent variables or features.
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