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ABSTRACT OF THE DISSERTATION
On the Asymptotic Expansion of the Bergman Kernel
By
Shoo Seto
Doctor of Philosophy in Mathematics
University of California, Irvine, 2015

Professor Zhiqin Lu, Chair

Let (L,h) — (M,w) be a polarized Kéhler manifold. We define the Bergman kernel for
H°(M, L*), holomorphic sections of the high tensor powers of the line bundle L. In this
thesis, we will study the asymptotic expansion of the Bergman kernel. We will consider the
on-diagonal, near-diagonal and far off-diagonal, using £? estimates to show the existence of
the asymptotic expansion and computation of the coefficients for the on and near-diagonal
case, and a heat kernel approach to show the exponential decay of the off-diagonal of the
Bergman kernel for noncompact manifolds assuming only a lower bound on Ricci curvature

and C? regularity of the metric.

vil



Chapter 1

Introduction

Background and motivation

Let (L,h) — (M,w) be a positive Hermitian line bundle over a complex manifold M. Let L*
be the kth tensor power of L. An active field of research in complex geometry is to analyze
the geometry of the manifold M when & — oo. A classical result in this direction is the
celebrated Kodaira embedding theorem which states that such manifolds admitting positive
line bundles can be embedded into a projective space of sufficiently high dimension. The
main tools in this analysis are the holomorphic sections H°(M, L*), which can be used to

construct many objects in geometry, one of them being the Bergman kernel.

The Bergman kernel, as defined classically on pseudoconvex domains €2 C C", is the holo-
morphic integral kernel of the projection operator from square integrable to holomorphic
square integrable functions. Its analogue on complex manifolds can be obtained by replacing
holomorphic functions and the £2 inner product of functions with an £2 inner product in-
duced from the Hermitian metric. In a local neighborhood, we can view holomorphic sections

as local holomorphic functions, an observation we use in Chapter 4.



An explicit formula for the Bergman kernel, except for certain cases (c.f. §3.1.2, Lemma
4.1.1), is not possible. However by the works of Zelditch [33] and independently by Catlin
[5], a complete asymptotic expansion of the Bergman kernel on the diagonal was given by
using a result by Boutet de Monvel-Sjostrand on the asymptotics of the Szego kernel. The
coefficients of the asymptotic expansion carry geometric information as demonstrated by Lu
in [19] in which he explicitly computed the first four coefficients. In particular, the second
coefficient is half the scalar curvature of the manifold. This fact was used by Donaldson [11]
demonstrating the stability of polarized manifolds with constant scalar curvature Kahler
metrics. The method employed by Lu in [19] uses certain holomorphic sections called peak
sections constructed by Tian in [31]. These are sections which in a small neighborhood can
be represented by monomials and by Hormander’s O-estimate, extend to a global section

with sufficient decay property.

Other methods to the analysis of the Bergman kernel include a heat kernel method by
Dai, Liu, and Ma [9], where they obtained the full off-diagonal asymptotic expansion and
Agmon-type estimates. Their results hold in a more general setting of the Bergman kernel
of the spin® Dirac operator associated to a positive line bundle on a compact symplectic
manifold. Another approach, done by Berman, Berndtsson, and Sjostrand in [3], involves
using microlocal analysis techniques inspired by the calculus of pseudodifferential operators
and Fourier integral operators with complex phase. In this thesis, we consider the diagonal

and the near-diagonal expansion, and the off-diagonal Agmon-type decay estimates.

In chapter 2, we begin by reviewing the fundamentals of Kéhler geometry and introduce the
“polarized” setting that we will use. We introduce the primary object of this thesis, the
Bergman kernel in Chapter 3, and discuss the on-diagonal behavior of the Bergman kernel.
We give a computation of the coefficients up to the first order using methods of Tian [31] and
Lu [19]. In Chapter 4, we give an elementary proof of the expansion based on a joint work by

the author with Hezari, Kelleher, and Xu [14]. In Chapter 5, we prove an exponential decay



of the Bergman kernel on the off-diagonal using a “perturbation” of the operator approach

as seen in the works of [29].



Chapter 2

Preliminaries

2.1 Kahler Geometry

In this chapter, we review the basics of Kahler geometry and set up notations and conventions
which will be used. We focus on the elements of Kahler geometry which will be pertinent to
our analysis of the Bergman kernel for positive line bundles. We refer the reader to [30] for

further detail.

2.1.1 Kahler Manifolds

Let (M, J) be a complex manifold of complex dimension n, where J € End(T'M) is the
complex structure. A Hermitian metric on M is a Riemannian metric g such that for
v,w € TM, we have g(v,w) = g(Jv, Jw). Under a holomorphic local coordinate system

(z;), g can be written as

g = g(ai7 07)dz" QdF = gijdzi ® dzf,



and (g;5) can be viewed as an n x n Hermitian matrix. Here and throughout, we will use
the Einstein summation convention for repeated indices. Next define the Kdhler form (or

fundamental 2-form) w by
1
w(v,w) := 2—g(Jv,w), v,w € TM,
T

which in local coordinates is given by

v —1 . ‘
W= ——g;;dz" NdZ’.
2 7Y

We say a metric is Kdhler if dw = 0, and call a manifold equipped with such a metric a

Kahler manifold. The condition dw = 0 in local coordinates is given by

&cgij = 31‘916-

An immediate consequence of the symmetries of the metric is the existence of a holomorphic
normal coordinate system.

Lemma 2.1.1 (Holomorphic normal coordinates). At each point zy on a Kéhler manifold
(M, g), there exists a holomorphic coordinate chart (U, (2)%,) centered at zy such that

gzj(x()) = 57, and 8’6915(‘7:0) = 07 for i7j7 k€ {17 s 7n}'

Proof. Let g € M. We first choose coordinates (w*);; centered at xq such that g;;(0) = d;;,
which can be found since (g;(0)) is Hermitian symmetric, and expand the metric at 0 to

obtain:

w = V—1(0;j + 019;(0)w' + 919;(0)W" + O(|w]?)) dw’ A dw’.



We use the following holomorphic change of variables

I g
Iy = 90;9iq,

1
whi= 2 — =T

5 1(0)227.

Then
dw' = dz' — F%(O)zidzj,

so that

w=+v-1 (@-j +01g;5(0)2' + yg;5(0)2 — TY(0)2' — TE(0)2' + O(|z\2)) dz' A dZ

V=1 (6;; + O(|2]")) dz" N dZ.

A crucial point is that for Riemannian metrics normal coordinates can be constructed via
the exponential map, however the coordinates may not be holomorphic, hence we require
the Kahler condition to construct such holomorphic coordinates. The strategy of the proof

of Lemma 2.1.1 can be extended further yielding the result below

Lemma 2.1.2 (K-coordinate system). With the same notation and hypotheses as Lemma
2.1.1, for any choice of p; € Z, with p = > | p; , there exists a holomorphic coordinate
chart (U, (z;)) centered at xy € M such that

apgij
(azl>p1 e (azn)pn

gzj(x0> = 61’]’ and <$0) = O, for Zaj € {17 Tt 7n}’

In other words, we can find a coordinate system where the derivative of the metric vanishes

for purely holomorphic and purely antiholomorphic directions. These coordinates play an
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important role in the computation of the coefficients of the Bergman kernel asymptotic

expansion.

The Kahler condition also implies additional basic results in Kahler geometry, known as the

00-lemmas.

Lemma 2.1.3 (Local d0-lemma). Let (M,w) be a Kihler manifold. For any zo € M, there

is a neighborhood U and a real function ¢(z,%), called the local Kihler potential, such that

w = v/—100p.

It can be derived as a special case of the following global version,

Lemma 2.1.4 (Global 99-lemma). Let (M,w) be a Kihler manifold and [w] the cohomology

class of (p,q) forms. Given w,w’ € [w] , there exists ¢ € HP~1471 such that

Proof. Since w,w’ € [w] there exists a € APT?~1 such that

dao=w—u'

Decomposing into types a = a??! + aP~14 we have

daPi=t =0, JaP 1 =0.

By the Hodge decomposition,

P10 = 4 Bf



where h is O-harmonic. Furthermore, on Kéhler manifolds,
Aph = Agh =0

so that Oh = 0. Applying the same argument, o?4~! = h + df, with dh = 0, we have

= (04 0)(h+0f +h+0f)

=90(f - f)

Letting p = f — f, the result follows. n

Definition 2.1.1 (Holomorphic Vector Bundle). Let M be a complex manifold. A holomor-
phic vector bundle of rank k over M is a complex manifold E together with a holomorphic

projection map 7w : B — M satisfying:

1. For any p € M, the fiber E, := 7~ !(p) is a complex vector space of complex dimension

k.

2. There exists an open covering {U;} of M and homeomorphic maps ; : 7 (U;) —
U; x C* commuting with the projection to U; such that for each p € U;, the restriction

of ilr-1) — {p} x CF is an isomorphism of the complex vector spaces.

3. On the overlap p € U; N Uj, the induced transition maps
©ij(xg) == ;0 gpj’l(a:o, ) :CF— CF
are holomorphic C-linear maps.

The primary object of study on vector bundles are sections, which can be thought of as

generalization of functions.



Definition 2.1.2 (Sections). Let E be a complex vector bundle over M. A section of E is

amap s: M — E such that (7 o s)(xg) = z for all xy € M.

The key idea is that it is a map taking values in £ which maps p to objects in the fiber E,.
The space of smooth sections is denoted at I'(M, E). In particular, if £ is holomorphic, then
we denote H°(M, E) as the space of holomorphic sections. Restricting the vector bundle E
to an open set U C M preserves the vector bundle structure and we can define the space of

sections on the restricted bundle, denoted as I'(U, E) := I'(U, E|v).

Definition 2.1.3 (Local frame). The set of sections {e;}, with each e; € T'(U, E), is called
a local frame if for each xop € M the collection {e;(zo)} forms a basis for the fiber E,, as a

vector space.

2.1.2 Calculus on vector bundles

We now introduce the notion of a Hermitian metric on a vector bundle FE.

Definition 2.1.4. Let E be a holomorphic vector bundle. A Hermitian metric h of E is
an assignment of a Hermitian inner product h(-,-) on each E,,, which varies smoothly with

respect to xy € M. To be explicit, let {e;} be a local frame. Then

hiz (o) = h(ei, €5) |z

where the matrix (h;(zo)) is a Hermitian n x n matrix for each .

Connections

Here we introduce the notion of a connection, which is a way to differentiate sections by

“connecting” them between different fibers.



Definition 2.1.5 (Connection). Let £ — M be a complex vector bundle. A connection D

on F is a C-linear operator

D:T(M,E) — T(M,AYE))

satisfying D(fs) = df @ s+ fDs for f € C*°(M) and s € I'(M, E). The connection above

induces a connection on the bundle AP(E) given by

D : T(M,AP(E)) — T(M, AP\ (E))

D(wAs)=dvAs+ (—1)’v A Ds,

where v € I'(M, AP(E)).

Let (E, h) be a holomorphic vector bundle over a Kéahler manifold M. We will focus mainly

on a particular type of connection.

Definition 2.1.6. Let D be a connection satisfying the following conditions:

Dh =0 (metric compatibility),

DJ =0 (complex structure compatibility).

Such a connection is called a Hermitian connection.

2.1.3 Line bundles

The following are two important examples of line bundles.

10



Example 2.1.1 (Canonical line bundle). Let M be a complex manifold of dimension n.
The nth exterior power of the holomorphic cotangent bundle forms a line bundle called the

canonical bundle of M
Ky = AT (M) = det(T*EO(M)).
Let {U,, (2i)a} be a holomorphic atlas of M. A local holomorphic frame on U, is given by

{(dz" A... ANdz"),} and the transition function is given by

(dz' A ... Ad2™), = det (g?) (dz'' N ANdz")g  on U, NUg # 0.
B

If g is a Hermitian metric on M, then it induces a metrics a natural Hermitian metric on

Ky is given by
h = (det g)~*

Its dual, denoted K]\}l, is called the anti-canonical bundle.

Example 2.1.2 (Line bundles over CP"). On CP" (defined in 2.1.6), we can construct a line
bundle, called the tautological line bundle or O(—1), by assigning to each point the line that
the point represents and viewing it as a line subbundle of the trivial bundle CP" x C**!. To

be precise, let [p] := [po : -+ : pn]. Then at [p], attach the line in C**! defined by the vector

(poy--.,pn). Let U; ={[p] | p; # 0}. Since

Po DPn
<p07 7pn>:pl<_ 7_>

pi’ Di
we can use p; as a local trivialization. Then the transition function g;; must satisfy

_n

Gij P

11



Let s € H°(CP",O(—1)) be a global holomorphic section. Since O(—1) is a subbundle of
the trivial bundle, under a global non-vanishing frame, we can view s as a holomorphic map
s : CP" — C"*!. The components of s are then holomorphic functions on a compact complex
manifold, hence they must be constant. According to the transition map, on U, N U = f it

must satisfy s, = gass, hence

Sa . S8
Pa p57

which for constants is only satisfied when s = 0.

The dual of O(—1), sometimes called the hyperplane bundle, is denoted O(1) and its tensor
powers O(m) := O(1)™. The transition functions for O(m) are obtained by inversions from

the tautological bundle, i.e.

m_ [Py "
o=(3)"

The global sections of O(m) can be thought of as homogeneous polynomials in py, ..., p, of

degree m.

By looking at the transition functions, it can also be shown that Kcpr = O(—n — 1).

2.1.4 Curvature

In this subsection, we define and establish the curvature and sign conventions we will use.

Let V be the Levi-Civita connection on a Kéhler manifold (M, w).

Definition 2.1.7 (Curvature Tensor). The curvature tensor R is defined as

R(Ula V2, U3, U4) - g(vvlvvgvi‘l - vvgv’ulv?) - v[’ul,’vz}vf)a U4)

12



for v; e TM

On Kahler manifolds, the local coordinate formula for the curvature tensor is greatly sim-

plified due to the compatibility with the complex structure. Let v,w € TH9M. Then

V,w e THM,

va =0= ng.

For local coordinates (z;)!, with coordinate holomorphic vector fields {9;};_,, the curvature

tensor is determined completely by terms of the form

Ry = R(0:, 05,0k, ) = —g(V5Vi0k, )

= - gmz%rzz

= —0i0595; + 9"1(0;9,1) (Okgig)-

Definition 2.1.8 (Ricci and scalar curvature). The Ricci curvature Ric is the trace of the

Riemann curvature tensor and the scalar curvature p is the trace of the Ricci curvature, i.e.

Ric;; = ngRiM, (Ricci)

p=9g"R;. (scalar)

A useful identity for the Ricci curvature which holds for Kéhler manifolds is the following

Lemma 2.1.5.

Ric;; = —0;0;(log det g). (2.1)

13



Proof. Follows from the two identities,

9 det g = g"(05g,7) det g

8igkl = —gplgka(aigpa)

2.1.5 First Chern Class

We will use the identity (2.1) to define an important cohomology class associated to a

manifold called the (first) Chern class. First define the Ricci form to be

v—1 4 . v—1 —
Ric(w) = 5 Ric;; dz' Ndz’ = —?88 log det g

Let h be another Kéahler metric on M. Then ‘;Zt’; be a globally defined function and the

difference of the Ricci forms is given by

det h

Ric(h) — Ric(g) = —v—100log det g

Hence [Ric(g)] € H*(M,R) defines a cohomology class independent of the metric and we
define the first Chern class of M

Definition 2.1.9 (First Chern class of M).

c1(M) = [Ric(g)]

More generally, we can define the first Chern class of a Hermitian line bundle (L, h) as the

cohomology class of form of the line bundle. Let s be a local non-vanishing holomorphic

14



section of L. As in the case for Ricci curvature, the curvature form is locally defined by

F(h) = —v/—1001og h(s)

where h(s) = (s,s),. Given any other Hermitian metric, it can be written as e™/h for a

globally defined function f and so

F(e7'h) — F(h) = V/—100f

thus we can define the first Chern class of the line bundle L to be the cohomology class

1
o7

c1(L) [£(h)]

By the d0-lemma, we have that every real (1,1)-form in ¢;(L) is the curvature of some
Hermitian metric on L. With this viewpoint, we see that the first Chern class of M is the

first Chern class of the anti-canonical bundle of M,

2.1.6 Example: Complex Projective Space

The model case of a Kahler manifold which we will consider is the complex projective space,
CP". Tt is constructed from C"*' — {0}/ ~, where the equivalence relation is given by p ~ ¢
if and only if for p = (po, -+ ,pn), ¢ = (qo, " @), there is a nonzero complex number

A € C* such that p = Aq.

A local coordinate system is given by the following. Let

U,:{[popn]GCPn|pz7§0}

15



for2=20,---,n. Then the map z; given by
Do 2/7\1 Pn
= (2 B )
Di Di Di

where % is removed, gives a local holomorphic coordinate chart. The holomorphic structure

is the one induced from C"*! and the transition maps are easily seen to be holomorphic.

Fubini-Study Metric

A Kéhler metric that is commonly equipped to CP" is the Fubini-Study metric.

Definition 2.1.10 (Fubini-Study Metric). Let [py : --- : p,] be homogeneous coordinates

on CP". The Fubini-Study metric is defined as the 2-form
=1 _ n
= ——001 E i12).
Wrs o Og(izo |p | )

On a neighborhood, say Uy = {pg # 0}, it can be written in local coordinates z; = B

J—=1 _ n )
Wps = 7581%(1 + ; |2]%).

The metric is a homogeneous metric, that is, for any A € U(n + 1) C Aut(CP"), the
holomorphic automorphism group, acts transitively and leaves the form wpg invariant. As

such, to check that the form wpg is indeed a metric, we need to only check that it is positive

definite at one point, say p =[1:0: ---: 0]. Directly computing, we have
VL (05 +12°) — 2z i
= dz' N\ dz’
) =g Ty )N (2.
v/ —1 . .
= dz' Ndz' >0
2m

16



Curvature of Fubini-Study metric

As an example, we will compute the curvature terms of the Fubini-Study metric. Using

normal coordinates at the point p=[1:0:---: 0], the curvature tensor is given by

Rz = —0k09;5-

Using g;5 given in (2.2), computing while dropping the terms which will evaluate to 0,

(Si'Zl 2'52‘1
— a J ]
, k(u+vmf*u+vm9

= 0450k + 0104

52']‘ iji
‘@%<1+vw‘<r+maﬂ

p

Hence the curvature tensor is given by
Rt = 9596 + 959

and tracing gives the Ricci curvature
Ric;z = (n+1)g;3

and the scalar curvature
p=mn(n+1)

The Fubini-Study metric on CP" is in fact a Kéhler-Einstein metric with positive first Chern

class.

17



2.2 Kodaira Embedding

Definition 2.2.1 (Ample line bundle). A line bundle L over M is very ample, if for suitable

sections Sg, ..., sy of L, the Kodaira map
@ : M — CPY
(2.3)
p=[so(p) : ... sn(p)]

defines an embedding of M into CPY. A line bundle L is ample if L* is very ample for

sufficiently large k € Z .

Theorem 2.2.1 (Kodaira Embedding Theorem). Let L be a line bundle over a compact

complex manifold M. Then L is ample if and only if ¢;(L) > 0, i.e. L is positive.

Proof for ample implies positive. By the embedding, L* can be identified with the restriction
of the O(1) bundle of some complex projective space. In particular, L* is positive. Let h
be the positively curved Hermitian metric of L¥. Then Lt is a positively curved Hermitian

metric on L. O

In proving positive implies ample, we first make the following lemma

Lemma 2.2.1. Let L be a positive holomorphic line bundle. If for every z,y € M with
r # y and every v € C", there exists elements S, T € H°(M, L") such that S(y) # 0,

S(x) =0, T(x) =0, and dT(z) = v, then L is ample.

Proof. Let sg,...,sy be a basis for H°(M, L*). Since at each point y € M, we can find a
non-vanishing section s(y) # 0, we see that the at least one of s;(y) # 0, hence the Kodaira

map ¢ (2.6) defined by the basis is well defined. Suppose ¢(z) = ¢(y). Then there exists

18



nonzero complex number A € C* such that

(s0(y), - sn(y)) = Also(@), ..., sn(2))

but this would contradict the existence of a section such that S(x) = 0 and S(y) # 0, hence
@ is injective. It remains to prove that dy is injective, hence we want to show it has maximal
rank. For any x € M, let Ty,..., T, be sections of L* such that Tj(z) = 0 for 1 < j < n.
Let e} be a local frame at z . Then each T} has a local representative T; = t;el, where
t; € H'(U). Also let Ty = ef. By assumption, we can assign for each j, dt; = v;, where

{v;} is the standard basis vector on C". Then define the immersion
e [To:Ty - :T,:0:---:0].

Since the T; = a;;S;, we have the rank of ¢ must be n as well. O

Theorem 2.2.2 (L? estimate construction). Let py, -+ ,ps € M and Ky, -+ , K, € Z,.
Then for k sufficiently large, there is a holomorphic section S € H°(M, L*) such that at each

pi, S has the prescribed derivatives up to order K.

Proof. Let U; be a coordinate neighborhood of p;, with coordinates (z1,...,2,). By pre-

scribed derivatives, we mean to assign the values for a holomorphic function f; at p;,

i fi
D21 Dzkn

(1)

Let n; be a smooth cut-off function whose supports are within U; and is 1 in a neighborhood

of p;. We then define a global smooth section of L™ by

w = mei-

19



Since we need a global holomorphic section, we consider the 9 equation
Of = 0w

If the solution f exists, then w — f will be holomorphic. To ensure that we have a section
with the required conditions for the derivatives, that is, the vanishing order be at least K;+1

at each p;.

Consider the Laplace equation

(00" + 0 0)u = Azg = dw (2.4)
Taking 0 on both sides, we have 98 0u = 0. Then

0 = (Gu, 89 Ou) = |9 dul?
So that @ 0u = 0. Letting & u = f, we have

af = ow.

To solve (2.4), we first use the Weitzenbock formula to get a lower bound estimate for the
first eigenvalue. Let e 7h* be a Hermitian metric on L*. For any L*-valued (0, 1)-form,

e
aadz y

Aj(awdz®) = =V Vz(aadz®) + (Ric)azaadz” + mRic(h)ayaaydz” + (0alyn)axdz’
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Let ¢ be an eigensection corresponding to the lowest eigenvalue, \;. Then

" /M llPe v, = /M (Ag(), B)e"dV,
2e7dV, + (kCy — C 2e7ndV,
g/Muwue 4 (kCy 2>/Muwue g

for some C,Cy > 0. Hence A\ > kCy — (5. By the first eigenvalue estimate Azyu > \u,

hence
[0w|7s,, = 1Azull?2,, > Aillull7, > (kC1 — Co)|lull?-,,
Thus we have

fl2e dV, = 9 u|?e "V, = u,Oa*u e "dV
g g g
M M

10w HL2

< lullzz gllowllzz < 752"

By shrinking the neighborhoods if necessary, we assume that the U; are all disjoint. Then in

a small neighborhood of p;,

Iw) = Z(Em)fi +mi(0f;) =

7

Hence ||0w]|2, , < 00. Now we choose an appropriate cut-off function 7 for the vanishing

order of f. Consider n to be the function such that at each point near p;,

n(x) = Alog(r:)

where 7; is the distance d(x, p;). The value of A will control the vanishing order of the section.
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For the integral on the neighborhood U;, we have

_ fil? ! 1
/ |fi|26 n :/ ‘ ZJ -~ |fi|2r2n 1-X < 00
U; U; r 0

Since fol L < oo when p < 1. Let | f;]> ~ 2. Then we require A — 2¢ — 2n < 1, so choosing

rP

A sufficiently large, we can push the vanishing order of f; to be large. m

2.3 Polarized Kahler Manifolds

Let L — M be a Hermitian line bundle over M with Hermitian metric h. We say that the
line bundle L is positive if the curvature Ric(h) is positive definite. We define a Kéhler form

w, by the curvature form of L, i.e. for a fixed point p € M with local coordinates (2%)7; at

D,

V=1 & A
Wy = _7821653 IOg hdz' N dz’ = 7gzgdz AN dE],

where h is the local representation of the Hermitian metric h. We refer to this setting as
polarized Kdhler manifold with polarization L. For each k € Z., the Hermitian metric

h induces a Hermitian metric h* on LF := L ® --- ® L. The Hermitian metric h* further
—_—

k times
induces an L? inner product on H°(M, L*), the space of holomorphic global sections of L™

as follows: Choose an orthonormal basis {S%} of HY(M, L*). Then define the inner product

n

w
(55,58 1= [ (SE S (2.5)
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We use the following notations

LM, I¥) = {f € (M, I¥) | ||]le = / F2edV, < oo}
M

H°(M, LF)y = {f € £* | f holomorphic section of L*}

By the Kodaira embedding theorem, for sufficiently high tensor power k, the basis {S*}
induces a holomorphic embedding of M into CPY, N + 1 = dim H°(M, L*) given by the

mapping

@ :M — CPY

x s [SE(x) .. Sh(2)]

Let grg be the standard Fubini-Study metric on CP?, i.e., for homogeneous coordinate

system [Zy : - -+ : Zy] of CPY,
Vol (S0

Definition 2.3.1 (Bergman metric). The -multiple of grs on CP" restricts to a polarized
Kahler metric %@ZQFS on M, where ¢y is the Kodaira map defined above. The metric is

called the Bergman metric with respect to L.

The Bergman metric and polarized metrics are related by the following

Theorem 2.3.1 (Tian). With notation as above,
1
ofl)
coe k2

Tian [31] originally proved the C? convergence with remainder O (ﬁ) and was improved

1 *
HE‘PngS —-9
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to C* and O (1) by Ruan [26]. Zelditch [33] and Catlin [5] independently generalized the
above theorem by giving the asymptotic expansion of the Bergman kernel using the Szego

kernel on the unit circle bundle of L* over M.
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Chapter 3

The Bergman kernel

In this chapter, we will introduce the Bergman kernel and and its expansion on the diago-
nal. The first section will define the Bergman kernel, the second section will introduce the
asymptotic expansion and in the third we will give an analysis of it via Tian’s peak sections

31).

3.1 The Bergman Kernel

In this section, we introduce the primary object of our study, the Bergman kernel. We will
be concerned with the Bergman kernel on manifolds, which is analogous to the classical
Bergman kernel defined on pseudoconvex domains 2 C C". Some literature on the classical

theory can be found in [1], [15].
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3.1.1 Bergman kernel on manifolds

Let (M,w) be a compact polarized Kéhler manifold with a positive line bundle (L, h) such
that Ric(h) = w. Let h, be the local representation of the Hermitian metric with respect to

a local frame ey on some neighborhood U,, that is, h, = h(er,er).

By the Hodge theorem, this space is finite-dimensional and a normal family argument shows
that the space is a closed subspace of £L2(M, L™). We then consider the orthogonal projection
Pt L2(M,L™) — HO(M, L™).

Definition 3.1.1 (Bergman kernel). The holomorphic integral kernel By of the projection
is called the Bergman kernel, i.e., for f € L2(M, L¥),

If we choose an orthonormal basis {S*} of H°(M, L*), then the Bergman kernel is given by

ZS’“ ) @ Sk(y)

Definition 3.1.2. Let By(z,z) € I'(LF @ E’“) be the Bergman kernel restricted to the
diagonal. The Bergman function, sometimes called density function, B(z) is given by the

point-wise norm, i.e.
B(z) i= || Bu(w, )|lpm = |Bu (@, x)|e ™,

where B(z, ) is the coefficient function of the Bergman kernel with respect to the frame

ek @ ek,

We have an extremal characterization of the Bergman kernel which we will be useful.

26



Lemma 3.1.1. Let B(x) be the Bergman function. Then

B(x) = sup ||s(z)|x

lIsll ;2=1

Proof. We have

B(w) = >_ISi(@)l = 1) 7

for any ||S(z)[|3. = 1, since we can choose an orthonormal basis {S,} with Sy = S. For
the converse inequality, let x € M and consider the subset Z, C H°(M, L¥) of sections that
vanish at z. Since B(z) > 0, we know there exists a nonvanishing section Sy(x) # 0. Then

for any S € H°(M, L¥), consider the decomposition
S(x) = S(x) — ASo(z) + ASp(z)

where A is chosen so that S(z) — ASp(x) = 0. We see that Z, has codimension one. Let S
be in the orthogonal complement of Z, and ||So||z2 = 1 and extend to an orthonormal basis

on H(M, L¥). Then each section orthogonal to Sy vanishes at z so
B(x) = |So(@) I
which gives us the result. O

We first give a rough upper bound of the Bergman kernel.

Lemma 3.1.2 (Uniform upper bound on Bergman function). Let B(z) be the Bergman
function for the Bergman kernel of H°(M, L*). Then there exists C' dependent on M, and

independent of k£ and z such that

B(z) < Ck".
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Proof. We use the extremal characterization of the Bergman function (4.9). On the compact
Kihler manifold M, we fix a finite coordinate cover {U,} and also fix a coordinate (z%); in
U,. For each U,, we have a local Kéhler potential ¢(z). We can assume that U = B(0, 2),
and sup,c (g9 |D?¢(2)] < C, ie. the second derivatives are uniformly bounded. Since ¢
is plurisubharmonic, we can assume the volume form dV, = (%83@)”(@ is equivalent to

dVg(z) in B(0,2).

1> / 13(2)|2e R av,
B(Z()vﬁ)

1
> L / 15(2) 2D dv,
Cy B(zo. %)

> ie—sups(oa) D2<P/ |§(Z)|2e—k<p(20)—lwz(20)(z—zo)—k<pz(ZO)(z—zo)dVE
01 B(zo L)
"V

_ L ket / 15(2)etes 00 2V,
CQ B(zo,ﬁ)

Since §(z)e~##=(20)(=20) ig holomorphic, by the mean-value inequality we have

L —ke(z0) / 15(2)e ke o)t 12,
B(

02 ZO:ﬁ)

> @efk@(z()”g(%)ﬁ

So we have

B_kW(ZO)yg(Zo)P S ng‘n,

where Cjs is uniform for any 2y € B(0,1) and any s € H°(M, L*). Taking the supremum

over all such s and a standard finite cover argument yields the desired result. O
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3.1.2 Bergman kernel on the complex projective space

As a concrete example, we will compute the Bergman kernel on the polarized manifold

(CP",0(1)).

Consider the open set Uy = {Zy # 0} of CP". The homogeneous coordinates [1: 23 : -+ : 2]
give local coordinates (zy,-- -, z,) for Uy. Since CPV is a symmetric space, we only need to
consider the Bergman kernel at one point, say [1: 0: ... : 0]. By considering the hyperplane

line bundle O(1) with Hermitian metric h = we consider CP" with the Fubini-Study

_1
1+|2]2?

metric, which on Uj is represented by

w= 2—_18510g(1 + [2]%).
m

The tensor powers of the hyperplane line bundle is denoted O(k) = O(1)* and sections of

the O(k) bundle correspond to k-th degree homogeneous polynomials.

To compute the Bergman kernel, we need to find an orthonormal basis for H°(CP", O(m)).
Let p:= 14 |2|* and dV} := []}_, dz' A dz’, where the product is the wedge product. We

compute the volume form of the Fubini-Study metric

2 2

o (\/—_1)" (zdzi NdZ apA5p>”

P P
~onldVy  nl|z2dV
o pn - pn—l—l
(V=TI nldv,
B 2 pn+1

where we use the fact that (9p A dp)* = 0 for k > 1.

k
Next the Hermitian metric h* on U, can be expressed locally as (%) . Let ey, be a frame

on H* write 20 = 25° -+ 2P» @ ep,, P = (po, p1,- .. pn) € Z"! such that |P| = p; = k, we

have
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P Q) = S
2= | T 2

P1=41 | . Pnsdn
——/ S W i dVy
kntl
o pktnt

—=1\"
where dV = (2—) dzt ANdzt- - d2™ A dZ"
s

By using polar coordinates, we can see that the set {2’} is orthogonal under the £2 norm.

Hence we compute the norm of each monomial and normalize to form an orthonormal set.

Proposition 3.1.1.

/ |21 2P0 |2, 2P _ po'p1! - pp!
on (L |21 + o 22ttt 0 (n+k)!

Proof. Changing to polar coordinates, z; = r;eV =% we obtain

|21’2p1 e |z ’21771 2p1+1 . 2pn+1 2 n
dr- db;
/Cn (L+ ]2+ .o+ [2a]?) ’“*”“ / / (Lrf+-+ r2)<’f+"+1> </0 )

For convenience, we change variables s; = r? to get

e Sﬁn
/ / 1+ s + o+ 8p)(EFHL) V{s)

Now consider the integral

/OO /OO d81 Ce dSn
o Jo (L4+tisy+... +tys,)mHeotD)
!

(n+po)lty -ty
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Then inductively we see that

apz ( p0| ) _ ( 1)p1p0'pz
(Ot;)Pr \ (n 4 po)lty -+t (n 4 po)lty - tHth ¢,

On the other hand, we have

o / / . ds,
(Ot )7 (1 +t131 + A by sy ) (PO

:/ pl(n+p0+1)(n+po+2) -(n+po + pi)si” dv()
P (14181 + ... + t,s,)trotpitl)
So
/ (=1 (n +po + 1)(n+poJFQ)"'(TLWL]f?)SﬁJ : SﬁndV( )

n (]_ + 51 +. )(n+k+1)

R?

(3) () [ / o

0 1+t131 + o tnsy) TR |

_ (=) "(py)! (pl) -+ (pn)

and the result follows. O

Using the above, we see that the set

(k+n)!

P =
Pl pal

ZPGL, szzgo"'zﬁnu P:(p07"'7pn)7 |P|:p0++pn:k

forms an orthonormal basis for H°(CP", O(k)). The Bergman kernel is then given by

z,y) = Z S (x) ®§P(?J) = Z (k ;!n)!xPyPeL@)éL

|P|=k |P|=k
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Computing the Bergman function, we have

Ba)= 3 By
|P|=k

Which at the origin is @ Expanding out the terms in term of the power of k, we have

el o (14 ontan 0+ 0

where we see that the second coefficient is indeed 1/2 of the scalar curvature of CP".

3.2 Asymptotic expansion

In this section, we discuss the asymptotic expansion of the Bergman kernel. We begin with

the following theorem

Theorem 3.2.1 (Zelditch [33], Catlin [5]). There is a complete asymptotic expansion:

> ISt =& (e + 2420 20 )

for smooth coefficients a;(x) with ay = 1. More precisely, for any m

S CR,mkniR

2 NS2@lli = > ay(aym™

J<R

cm

where Cg,, depends on R, m and the manifold M.

The algorithm to compute the coefficients were given by Lu [19], who also determined the
coefficients to be polynomials in the metric and covariant derivatives of the curvature, and

computed the first 4 coefficients, and extended his computation with Shiffman to the near-
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diagonal terms. For the near diagonal expansion, it is given in powers of \/LE

As a corollary of the asymptotic expansion, we give a quick proof of Tian’s theorem, Theorem

2.3.1.

Proof of Theorem 2.3.1. Let {S;} be an orthonormal basis of H°(M, L¥) and let ¢ : M —
CP" be the associated Kodaira map, see (2.6). Consider homogeneous coordinates [Z : - - - :
Zn] and open set Uy = {Zy # 0}. Then the pullback of the Fubini Study metric by ¢ is

given in local coordinates by

=1

V=1 _= (|50|2 542 |5N|2>
=Y 5910 n gt
2 B ISoP T[S0 [Sol?

= YL og(|S0f3) + —Vz‘lamog B,
T T

* *V_l Yoy - 2
Y Wps = @ 78810g 1+Z|le

J—1 _
=kw + 2—80 log Bj,
T

where the last line is due to the fact that we are considering a polarized manifold. Using the

asymptotic expansion, we have

—_18510g3k:—_13510g 1+ 240 1 —0 1
27 27 k k2

Combining with the above, we have

1 1 o
E(p*wpg —w=0 (ﬁ) in C

Another immediate corollary that can be obtained is an approximation of the dimension of

space H°(M, L¥) for high tensor powers. More precisely,
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Corollary 3.2.1. As k — oo, we have

n k,n—l wn
dim HO(M, L¥) = k» | <= / Y Lok?
im HE(M, L) /Mn!—'—Q Mn!+0( )
Proof.
N
dim HO(M, L¥) = >~ [ [Si[
i=0 v M

3.3 Peak Sections

We now introduce Tian’s peak section method [31] to compute the coefficients of the asymp-
totic expansion. The peak sections were originally introduced by Tian to prove the following

theorem approximating polarized metrics by a sequence of Bergman metrics:

Let zg € M. Choose local normal coordinates (z;)?_, centered at xy such that the Hermitian

matrix (g;7) satisfies

9i5(wo) = 045
o1 gz(0)

aZ{)l A aZnn

=0

fori,5 = 1,...,n and any nonnegative integers py, ..., p, with p; +---+p, # 0. Next choose

a local holomorphic frame ey, of L at zo such that the local representation function % of the
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Hermitian metric h has the properties

- 8p1+~~'+]7nh

h(zo) = 1, m(%) =0

for any nonnegative integers (p1,...,p,) with p; + -+ p, # 0.

Lemma 3.3.1 (Peak Sections). Let ¢; be a sequence such that

Ck

lim ——— =1 1
i log(k)e «=

Suppose Ric(g) > —Kw,, where K > 0 is a constant. For P € Z" and an integer p’ > |P].

Then there is a k > 0 and a holomorphic section Spj;, € HY(M, L*), satisfying
‘/ |SelliedVy — 1] < Cemse (3.1)
M
Moreover, Spj, can be decomposed as
Spi = Spx — up

such that

SP,k(I) =

P_k Ck
k|22 Ap2teh v e{|z] < /&
>\P7]( 2| )ZPek _ 2k

0 re M\ {|2] < \/E}

Ck

and

| urlf v, < et
M
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where 7 is a smoothly cut-off function

satisfying —4 > 7/(t) > 0 and |n”(¢)| < 8 and

)\]—32 — ‘ZP‘Qakd‘/g

/|z|s\/?

Proof. Define the weight function

U(z) = (n+2p)n (%) log (M)

Ck

Where 1 : R — R is a smooth cut-off function such that

1 fort<%
n(t) =
0 fort>1

satisfying —4 > 7/(¢t) > 0 and |”(t)| < 8 and |z|> = |z1|> + ... + |2,,|*. Directly computing

we have

2\ 1.2
V=100V = v/—1(n + 2p) { {n” (k’CZ‘ ) 12—28|z]2 A O|z|?
k

k

2 2
o (—W’ ) ﬁaﬁm?} log <’“‘Z| >
Cr C CL

klz[*\ k — k2|2 =
+2Re {n’ ( 12 ) —0|z]* A Olog ]2\2] +n (ﬂ) 00 log ]z|2}
Ck, Ck, Ck

To obtain a lower bound, we first note that v/—199log(|z|?) is positive definite, hence can be

dropped. According to the support of the cut-off function n and its derivatives, we restrict
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our attention to the interval 5= < [z|* < %. In that interval, log (]M > < 0, hence

i <M> (k| |2) V=100|2* > 0,

Ck

thus can be dropped. Continuing the computation, we have

Vo100 (z) > — M) (Cﬁa|z|2 A D)2 + 9|2 A Dlog m?)
k

Ck
24k 2
> M,/ 10|22 A 9] 22
G
24k 2 . ‘
> —Mw/—ldzl A d7
Ck
A8k (n + 2p)
=W,
Ck

Using the above, we have for any unit vector v € THYM and any point p € M,

_ 2 i . _ k
<38\11 + 71 (Ric(h*) + Ric(g)) ,v A v> > Z||v||§

For k sufficiently large.

Define the following 1-form

1—, (k|2
wp = Za(” <ﬂ))zf1 e Zﬁ"e'z

Ck

which will serve as the main portion of the peak section. By solving the equation dup = wp,

we obtain an LF-valued section up such that

[ el tav, < 5 [ el
M
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Computing out the right hand side to get a more explicit form of the bound, we have

v k|z\2 v
[ twpleevav, = 7 [ 100 (S5 ) ekl vay,

4 Elz|2\ kz ,
<2 / I (ME5) g pevay,
k M CL Cp

<2 |22 ht ey,
Ck Jgp<lzP<E

—1
< CCL hEdV;.

P
A

For k large, we expand h* in K-coordinates

hE — o=k — o—k(27+0(2[Y)

so that

A
k e 2
kptn ’

[ Nurlieetav, < 0
M

Since ¢ ~ (log k)%, with a > 1, for sufficiently large k, we can obtain the order O (kip) for

any desired p. O

Using these peak sections, Tian proved a convergence theorem for Bergman metrics. In
computing the coefficient of the Bergman kernel, we require an orthonormal basis. However,
if we only want to compute up to a certain order, we only require that the sections be “almost

orthogonal”. In that direction, we have a lemma by Tian [31] and generalized by Ruan [26]

Lemma 3.3.2. Let 7y € M be fixed. Let Sp be a peak section and T' € H°(M, L*). Locally,

T = fek for a holomorphic function f.
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1. If 2¥ is not in the Taylor expansion of f at zg, then
1
(Sp, T)pe = O % 1T 2.
2. If f contains no terms z9 such that ¢ < p + o in its Taylor expansion at p, then

1
(Sp, T)pe = O (W) 17| c2.-

3.4 Reduction of the Problem

The following reduction used to compute the asymptotic expansion has been given in [19],

and is included here for completeness.

Let {So, ..., Sq} be a basis for H°(M, L*) such that at xo € M,

So(l'o) 7é 0
(3.2)
Si(zg) =0 fori=1,...d
Let S = (Sp,...,Sq) and define the Gram matrix F' = STS, where the entries are
Fij = (S, S)) (3.3)
It is positive definite, since xFz" = ||Sz'||?, hence admits a decomposition
F=GGt (3.4)
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Let H = G~'. Then the entries of SH, i.e.
d
) _HyS;}, i=0,....d (3.5)
5=0

form an orthonormal basis of H°(M, L¥). Using this orthonormal basis, the Bergman kernel

at xo can be reduced to

S0 HSyalf = 3 1HoPSo(aw) (36)

Furthermore, if I = F~1, then the (0,0)th entry is given by
Too = Z | Hyl?. (3.7)

Hence to compute the asymptotic expansion, we only need to estimate Iog and ||So(xo)]|3x

to the desired order.

3.5 Computation up to first order

With the above considerations, we will compute the diagonal asymptotic expansion up to
first order. It was shown in [19] that Joo = 1+ O (45 ) hence to compute up to the first order,

we only need to compute \2. We will need the following integral identity:

Lemma 3.5.1 (Lemma 4.1 [19]). Let A be a symmetric function on {1,...,n}?x{1,...,n}?.

Then for any p’ > 0,

| |24 k|2
/ A[Jz“- - Zi, %5, 25, | 2] e A

S
-1 1
pintptg-D! 1y
p +n— 1)|mn+p+q mp
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where I = (i1,...,4,),J = (J1,...,Jp) and 1 <iy, ... 0p, j1,. .., Jp < M.

Under normal coordinates and frame,

15012 (o) = A2 = / Wav,

l2|2< 3k

= / e det(g)dVy
l2[2< 2k

— efkapelog det(g) d‘/O
2<%

Taking the Taylor expansions with normal coordinates gives

Rmg; . .
p(2) = |2 = —722"77 + O(lal”)

and

log det g = — Ric;5 227 + O(|2[).
Therefore

e ke(z) — e—k\z|2€§ e e—k|z\2(1 + % Rmi}ki Zizkzjzl) + O(|z|5)),
and

elogdety — 1 Ric;; 27+ O(|z*).
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Applying Lemma 3.5.1 and computing up to % order,

- k
— ic.= il — =7
/|,;§10gk<1 Ric;; 22" + 1 Rm,z7 2

1 p 1
—ﬁ(l ﬂHO(W)'

Inverting the above we have that

2 _yn (14 L 1
iow (120 (L)).

2
zzkzjzl)e k|z|
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Chapter 4

Near-Diagonal Expansion

In this chapter, we provide a proof of the near-diagonal expansion of the Bergman kernel
via a perturbation method given in [14]. We use the observation that the Bergman kernel is
concentrated in the near-diagonal. The first section will review the calculus of the Bargmann-
Fock space. In the second section, we begin by establishing the local setting. There we
will construct our candidate local kernel. The third section will show that the difference
between the candidate kernel with the asymptotic expansion and the global kernel differ by
an decaying term. In the last section, we show the smooth convergence of the asymptotic

expansion.

4.1 Bargmann-Fock Model

The Bargmann-Fock space is the space of entire functions that satisfy the weighted square

integrability condition:

1F(2)Pe P aV < o0
Cn
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The space F is precisely H°(C",|z|?), and is thus a closed linear subspace of the space

L2(C", |z|?) with inner product given by

(f.9)F = 5 f(2)g(z)e 1 av,

and thus is a Hilbert space. In fact, it is a reproducing kernel Hilbert space on C", with

reproducing kernel

Ren(u,v) == e,
We first show that this kernel has the reproducing property on C and then extend this
argument to C".

Lemma 4.1.1. On C, the Bargmann-Fock kernel is given by

Re(u,v) = e".

Proof. Taking some f € H°(C), we consider the inner product against Rc. We convert the

resulting integral to polar coordinates and then apply the Cauchy Integral Formula to obtain

dv N dv

(). Re) = VT [ o)™ P2
C m
1 > o 0 u(ﬂ+re’ie)—|u+rew|2r
S fu+ree —df@dr
T Jo Jo 2
L[> . [7 P
= ——/ re”" / fu+re®)e™ <" dfdr
m™Jo 0
= —f(u)/ 2re”" dr
0
= f(uw).

The result follows. O]
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Corollary 4.1.1. On C”, the Bargmann-Fock kernel is given by

Ren(u,v) == e,

Proof. Let u,v € Z'y with v = (u4, ..., u,) and v = (v1,...,v,). Observe that

n
61#@ — | |€ui'u7—\”ui|2.
i=1

To demonstrate the reproducing property, we consider f € H°(C") and decompose the
integrand of the resulting inner product agains Ren. Applying Lemma 7?7 to each dimensional

component, we have

(f(v), Ren)r = . Fw)er =Py

= [ flo,...,0) (ﬁ eumlvz'P) dv
Ccn i=i
= f(u).

The result follows. O]

The following lemmas demonstrate the Bargmann-Fock projection of monomials of different

variables.

Lemma 4.1.2. Given some multiindex m € Z the following equality holds.

/ 7met Tl gy — 0.
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Proof. By manipulation and an application of Dominated Convergence Theorem,

/ Ty = / oy [e“'ﬂ—'”'Q] dv
_ olm [/ eu.v_|v|2dv}

=0.

Note that the integral is constant with respect to u, hence the derivative vanishes. The result

follows. O

Lemma 4.1.3. The following equality holds, for p,q € Z, with p <q.

o, 0 if p > g,
/ Pylet I gy =
! (qf—!p)!uq*p if p<gq.

Proof. Again by manipulation and an application of Dominated Convergence Theorem,

/ olet Il gy — @Sp) [quu'ﬂ_hjp] dV

(Cn
= o) {/ U%“'”“'Qd\/}
— o ]
therefore
o, 0 if p > g,
/ Pylet I gy =
8 (qf—!p)!uq_p lf P S q.
Result follows. N
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4.2 Local Construction

The idea is to first construct a local kernel, then use Hérmander’s L?-estimates to compare
the local “candidate” Bergman kernel, which by construction will be in the form of an
asymptotic expansion, with the global Bergman kernel. To make precise what we mean by

local construction, we define what we mean by local reproducing property (modulo k_%).

Definition 4.2.1 (Local Reproducing Property). A function Qy(z,y) on U,, x U,, which is

holomorphic in x, antiholomorphic in y, is a local reproducing kernel modulo k=" on Uz

if it satisfies the following local reproducing property (modulo k_%)

f(@) = W) W), Qv (Y, 2) 2, gy + O (’ﬂ”_%) 1l 220, oy f € HO(Usy),

where Y is a cutoff function supported in a scale ball of radius k=17 for some £ > 0

The key here is to show that it is possible to construct such kernel for any N > 0 to be
able to say that Bergman kernel has an asymptotic expansion. To construct such a local

reproducing kernel, we need to consider Bochner coordinates and frames,

Definition 4.2.2 (Bochner coordinates). Let zy € M and U,, be a sufficiently small neigh-

borhood which admits a local holomorphic frame e;, of L. Define the local Kahler potential

¢ by
h(ep,er) = e %.

Bdchner coordinates (z;)!, centered at xy are special coordinates in which ¢ admits the

following form
p(z) = [z + R(2),  R(z) = O(|2]") (4.1)
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On a Kéahler manifold, we can always find holomorphic Bochner coordinates.

To construct the local reproducing kernel modulo N at a point zo € M, we begin by
choosing Bochner coordinates and a local trivialization of the bundle. Our cutoff function
X is chosen to have shrinking support on B(k~17¢), so that the inner product is localized
near the diagonal and also to ensure that the local rescaled Kahler potential admits an

asymptotic expansion of the form

o() =

N

7

=

2 d _
a;(v,0)
(1 + 22 7) , k= oc.
J:

2
, hence we propose that the local

C

vk

Bergman kernel admits an asymptotic expansion of the form

This expression is an asymptotic perturbation of

loc U v __1m, uv cj (u,0)
K (3, 5) = ke (1+227> (4.2)
J:

where the ¢;’s depends on a; and satisfy ¢j(u,v) = ¢;(v,u). The reason we propose such an
expansion is that if ¢(z) = |x|, then a; = 0 for all j > 2 and hence ¢; = 0 for all j > 2

yielding K ZOC(X/LE, \/LE) = k""", which is precisely the rescaling of the kernel of Bargmann-

Fock model k|z|%.

4.2.1 Local Kernel
Existence of coefficients

We first establish some notations. For convenience, we write the volume form as

Yo —Qav

nl
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Let a]® be the coefficients in the formal power series expansion of the product

T8 7T 23S

() ( ) Z Z am UV (4.3)

m=0r+s=0

where R(z) was defined in (4.1). The following was shown by the author, with Hezari,
Kelleher, and Xu in [14]

Proposition 4.2.1 (Existence of coefficients (Proposition 2.1 [14]) ). There exist unique
coefficients cg-”q € C depending only on the Kahler potential ¢ such that for any polynomial
F and any N > 0,

JEORYRACO 2025 %o S L

t=0 m+j=t p,q s

. 7q . . ¢ . )
Furthermore, the coefficients cf have the following finiteness and “parity property’

1. 2% =0 when |p+ ¢q| > 2m,
2. 29 =0 when |p| + |q| Z2 m.

Remark. When N = 0 the equation reduces to the reproducing property of the Bargmann-
Fock kernel. Also note that the expression in the parenthesis is precisely the truncation up

to k~N/2 of the product
ci(w, )\ k(2 )
(Z ) ()0 ().

The key point is that there exists coefficients that reproduce the polynomials each time we
increase the accuracy of the expansion of the volume form. The full proof is provided in [14]

and is purely algebraic relying heavily on the identity given in Lemma 4.1.3.

49



4.2.2 Estimates of local kernel
In this section, we show a series of estimates necessary to show that the coefficients con-
structed perturbing the Bargmann-Fock kernel satisfies the local reproducing property.

Proposition 4.2.2 (Local reproducing property). Let f € H°(B), and ¢; be the quantities

as found in Proposition 4.2.1. Then for v € B,

(-G

N+1

+0 (") ez

To show the above, we need to show that we can approximate each term by its series

expansion, and the error term depending on the £2 norm of the function being reproduced.

Lemma 4.2.1 (Remainder of the exponential term). Let M = [%E
and any f € H°(B),

/BWE)X’“ (32) 7 () e (ﬁ: Gk ) ( ) <e"“R2N*“”(7E)>M> 0(z)av

=0

N
25 O (k : ) .

Lemma 4.2.2 (Remainder of determinant). Let M = [%E

N - 2N+5 =
/B(\/E) (\%) ! (L> vl (Z CJ\(/%J) ( . <\/E)>M(QQQN+1) (7> dv

j=0

]+1 Then for N >0

<.

114+ 1. Then

o N1
= Il z2(B,kp) O (k 2 ) :
(4.5)

Lemma 4.2.3 (Estimate outside the ball). Let F' be a holomorphic polynomial. Then the
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following estimate holds:

[ () e (g (3 3 deteten)ay

1 %725

< CN/{?nHFHl;Q(B’k@)eiEk

Given the results above, we prove Proposition 4.2.2.
Proof of Proposition 4.2.2. By Proposition 4.2.1,
u > c;j(u,v am v,7)
() Lo () (£ 5 o)
\/E " \/_ t=0 m-+j=t
for all N > 0 and all holomorphic polynomials F'. We then split the above to two pieces.
u v > cj(u,v am v, )
P - Lo (@) R (R 2 v

o)) (ZZ)

The first integral is bounded above by Cxk"™|| f|l c2srge 2% from Lemma 4.2.3. For the

second integral, we note that since M = [%5E1] +1 > N/4, and |u| < 1, we have

‘(Z 5 ¢;(u, T am v, T ) <§: CJ\(;T ) ( kRQN%(\/UE))MQQN-i-l

t=0 m+j=t §=0

< CNk’M ]v]4 M+N+1)

Then by applying this to the second integral, and using the Cauchy-Schwarz inequality we



get

N+1

Cyk~ "2

/n i (Lk> F (ﬁ) ’v|4(M+N+1)6uv—|v|2dV'

<o ([ ()l (@) ) ([ ()

N+1

< CONIF |l z2Brp)k™ 2 -

2

‘,U’4(M+N+1)em77%

1
2 2
dV)

Hence we obtain the estimate,

() Lo () (oo (B2 (),

Jj=0

e NE1
+ O™ 2)[|F[|2(B.ky)-

Now by applying Lemma 4.2.2 and Lemma 4.2.1, we have

N v
T 2 cj(u,v —kR2 Vk v
[ Gy ) (ot ) () v () v
M
N
v v U-v c;(u,v n— N+1
- <X’“ <_k> d <_k> )€ ( 51?3)>> + 1l 22 (B,k) O <k 2 ) :
C2(B(VR) p(

2)

We can extend to arbitrary f € HY(B) by putting F = f7, letting L — oo, and using the

uniform convergence of fr. The result follows. n
We end this section with the proofs of Lemma 4.2.1, Lemma 4.2.2, and Lemma 4.2.3.

Proof of Lemma 4.2.1. First note that since |v| < k1~¢ we have

kR (%) = 0(k™).
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We regroup the quantity

6—k‘R _ 6—kR2N+5 — e—k‘R (1 _ ek(R_R2N+5)) .

By Taylor expansion

v D*R(§)
— — )<k Z 5
k:‘(R R2N+5)( \/E)‘ < |a|i§z€+6 @)
lel< L
| | 2N+6
= Ok <f>
< Oyk—7

Applying the above to (4.6), we have

Next we consider the difference

’

s (i) — ()

M ‘

where M is a fixed constant such that M > NQ—?

v

By <ekR2N+5<k>> we mean to truncate as
M

85 (anee ()
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Hence we have an estimate

‘ekR2N+5(Uk) . (6kR2N+5(\}}E>) ‘ < sup J\'Z’M—H '
M |$|S|—kR2N+5(Lk)| ( T 1>'

< C«k—aM—f—l

<Ck .

Combining (4.7) and (4.8), we have

) () | < ot
M

<ou ([ (@) () o)
N NE 1
| (E5)a) 7]
cn oy

[\
N|=

N+1

< COn|fllz2B e k™™ 2.

The result follows.
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Proof of Lemma 4.2.2. We first observe the following estimate

2N+2

DQQ
< Cyk™ 2.

v
QO —-Q — )< su
‘( 2N+1) (ﬂ)‘ N |a|=21€+2

|

Using the above estimate with a similar manipulation as Lemma 4.2.1 we conclude (4.5). O

Proof of Lemma 4.2.3. First note that since |u| < 1 and |v] > %k%_a, we have |u — v| >

%‘ki_s. Next we use the identity

(Z (v v> dV) = —ne”Uqy,
J— rU’L

where dV' := <%> dvt Advt AL AdUE A AT A LA do™ A do™. Integrating by parts, we

have

[ (e () () (5 30 et

)
L Ga) (o () (£ 3, e oot

Iterating the above integration by parts 2/N times we obtain

() 5 a3 )

t=0 m+j=t

[I|=2N+1

Since the degrees of a,, and c¢; are 2m and 2j respectively, always one differentiation is

applied to 1 — xx. Therefore, the integrand is supported on the annulus %k‘%_g < |v| < ki—e
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The above integral is then bounded above by

/ PG e
— )| e
ki <|u|<ki—® vk

I=(i1,...,i2N+1)
|T|=2N+1

1_oc

< CNanFHH(B,k@)@_éM

The result follows O

4.3 Local to Global

Now that we have constructed the local kernel, we will use Hormander’s estimate to con-
struct a global holomorphic section such that the contribution of the terms outside the local
neighborhood is negligible to the asymptotic expansion. This will prove the existence of the
asymptotic expansion. Recall that the norm of By, as a section of the bundle LF @ L* is the

Bergman function B (Definition 3.1.2). Hence in local coordinates

B(l’) = |Bk(x,:l':)|hk = |B~k(l”gj’)|6_k‘p(x)’

where B~k(3:, x) is the coefficient function of the Bergman kernel with respect to the frame

ek @ er*. We also have an extremal characterization of the Bergman function given by

B(x) = sup |s(z)lp. (4.9)

lIsll ;2<1
where s € HO(M, L*).

Let Bi(z,y) = By, (x) be the global Bergman kernel of H(M, L*). We view By ,(z) as a
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section of L* ®E’;. We shall use Bj(x,y) for the local representation of By (z,y) with respect

to the frame e (z)* ® e (y)*.

Theorem 4.3.1 (Local to global). The following equality relates the truncated local Bergman

kernel

to the global Berman kernel Bj.

~ u v u v N+1
By —=,—)=B%(—,— ) +0 (k" "2).

Proof. Fix u,v € B. We apply the local reproducing property to the global Bergman kernel

F(w) = Be s (w) = Belw, %)

~ v U ~ U v
A G )~ o352
Lk Vk N VE £2(B kg (w))

N+1

+0 (k”*T> 1B, | c2(B k)

By the reproducing property, we obtain from Lemma 3.1.2,

B, ||2 W2 = B [ Y g ) pkenw) n
1Bs.5 P < 103 12 = B (=) = B () o <

where Bk,ﬁ(w) means section with respect to w and local coefficient function with respect

to w. Thus we have

N ) . ] " v N+1
B ,— | = { xx(w)B (w,—) , Bl <w,—>> +O (k2.
F <\/E \/E) < k( ) * \/E o \/E L2(B,kp(w)) < )

We next estimate the difference of the local Bergman kernel with the projection of the local
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kernel.

e
= Xk (%) By <%’ %) - <Xk(x)ék (x’ %) B (x7 %) >£2(B,k<p(z))
= Xk (%) By (%, %) - <X’“<x)B’l‘f(j]CV (x’ %) B (x’ %) >£2(B,k<p(x))

We can regard gy, as a global section of L* because of the cut-off function yj. Since

loc _ loc
<X/€Bk,N,ﬁ’ Bk,ﬁ>£2 = Pro (XkBk,N,ﬁ> ’
where Ppo is the Bergman projection and gy, is the £?-minimal solution to
d - d BlOC v ) .
G, = 0 (Xk kN, 2

Now we estimate E(XkBli"]cVL)

9 (Bl )

Sk

N
) 7\/E ) )
hand side ensures |w — v| > 1ki7% and |w| < ki~°. Furthermore, since B, ., (‘&) =
4 ) ) k’N7\/E \/E

We note that 0 (B}i"c v > = 0 because B}, is holomorphic. The term 9 (xx) on the right

O (e*?lvw[*"), and because

1
_Llpg—2e

512 —|wl? 5 |2 lw—w|2 ]2
|6wv|26 |w] 262Rewv |w] —e |lw—v|?+]v] < (e 16
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we obtain

1,12
< Cemh? ™

1906052 a1, <

"VE

So by the Horminder’s £2-estimate, the following inequality holds uniformly for v € B,
l— €
lg.oll 220ty < Cemh? ™™, (4.10)

By the same argument as in the Lemma 3.1.2 above, for all u € B we obtain the uniform

estimate

This concludes the estimate

u v u v Nt1
5 Gri) - Gl o
‘ AVEVE) T \VEVE) T
uniformly for all u,v € B. O
4.4 Higher Order Convergence
As the C™ norms depend on the choice of coordinates, we must give some care when dis-
cussing the convergence in higher order. The local kernel that we have constructed is an

expansion at one point p € M. We now show the regularity of the local kernel depending

on the point p.
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We have shown that at a point p € M

oc C N
Be(p+ z,p+w) — B’ (p, 2, w)| < k,]\,fﬂa

In fact, the C, x depends on the local potential, that is,

Cpn < sup  [D%p(z)]
|| <e(N)
x€Bp(26)

We first would like to show that given a point ¢ € B,(d), the constant C), y is uniform in

that neighborhood, i.e.

ocC C 7N
1Bi(q + 2, +w) — By (g, z,w)| < mv

Consider a smooth family of Béchner coordinates. The existence of such a coordinate is
given, for example in [18]. Then consider a finite cover of M by B,(29) of fixed radius. Then

for ¢ € B,(2), we have
sup [D%| < C' sup |D%],
26

Bq(9) Bp(26)

where C' is independent of ¢, and the derivatives D® on the left correspond to the Bochner

coordinates centered at p and the right corresponds to the Bochner coordinates centered at

q.

To show the convergence for higher order derivatives with respect to the variable p, we first
apply the Bochner-Martinelli formula to the difference of the local kernel and the global

kernel.
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We recall that

Lemma 4.4.1 (Bochner-Martinelli kernel). For w, z € C", we define the Bochner-Martinelli

kernel, M (w, z)

_ 1) 1 S .
(n—1) Y @ —F)dw Adw' A Adw! A A dT" A dw”

M(w,z) =
2m/=1)" |z — w|?" 5,

Suppose that f € C°(D) where D is a domain in C" with piecewise smooth boundary. Then

for z € D,

f(2) = ﬂmea—wawaw.

oD

Now let p € M and consider Bochner coordinates (2!, --- | 2") centered at p. The Bergman
kernel and the local kernel are both objects that depend on the base point and two argu-

ments,i.e.
Ki(p, z,w) i= Ky(p+2,p+ w)

By polarizing in the p variable and considering the almost holomorphic extension, we may

view the kernel as
Bk(p7 q,Z,U)) = Bk(p + Z,q + ’LU)

Let

fk(p7 qu7w> - Bk(p7Q7 Z,UJ) - B}g?}:\/(pa(b Zaw)

be the difference between the global and local kernel. Note that f; is defined for ¢,p+ 2, ¢+
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w e Bp(\/ig). From our previous result, we have

CVp,N 1
|fk(pﬂp7zaw)| S m, d(z,w) < ﬁ

We want to estimate

|agfk(p7 q)|

for ¢ = p, where we suppress the z, w variable because it it not essential to the argument.

Applying Lemma 4.4.1 to 99 fi(p, q) with D = B,(—=) X By(—=), we obtain

1
7) %

oD

oy fr(p,q) = fk(p’,q’)aﬁM(p/,qﬁp,q)—/5fk(p',q’)AaﬁM(p’,q’,p,q)-
D

The boundary integral term can be bounded by the £%-norm of f; multiplied by \/E_M.
By using the fact that f; is an almost holomorphic extension, 58“ fr in the second integral

is bounded by O,(|¢" — p'|>°). When p = ¢, we have d(p/,q') < and therefore the second

\/77
integral is of order O(k~).

Now we show the higher order convergence with respect to the z,w variable. We rescale
zZ f and w — f to match the notation as in the statement of our theorem. Since the
local kernel B}°}; and the global Bergman kernel are holomorphic in « and anti-holomorphic in
v, the derivatives can be bounded by the L*-norms using Cauchy estimates. More precisely,
let D, be any first order differential operator of x. By using the Cauchy estimates on

Bi°% (x,y) and By (z, ) on the ball of radius \/LE’ we obtain

Do(B5(w, 22) = Bile, 22))| < OVEIBE (5 2) = Bils 50 e

— O<k2n+§*T>
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The above holds for « € B($k~'/?), hence we have

oc [(u W S (U v n 1 ~vu1
DB (% =) — By(a )| = 038,

N
e

By similar argument, we can obtain the same estimates for the holomorphic variables .

Now let D® be any a-th degree differential operator with respect to x or y. By iterating the

previous argument, we obtain the following

! lod o, N1
|D*(Byy — Bi)| < O(k 2 27).

Hence we obtain the smooth convergence of the Bergman kernel asymptotics.
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Chapter 5

Off-Diagonal

In this section we prove the rapid decay of the Bergman kernel on the off-diagonal. We will

prove the following We prove the off-diagonal estimate of the Bergman kernel.

Theorem 5.0.1. Let (L,h) — (M,w) be a positive line bundle over a complete (not nec-
essarily compact) Kéhler manifold of dimension n. Assume the Ricci curvature is bounded
from below, Ric(g) > —Kw and assume the metric is only C?. Let By(x,y) be the Bergman
kernel for H2,(M,L*). For d(z,y) > 1, there exists gg > 0 such that the following off-

diagonal decay holds:

1Bi(z, )| < Cvol(By(1) " vol(By(1)) e <ok,

We actually only require the distance d(z,y) to be greater than some positive constant

independent of k.

The study of the off-diagonal behavior has gained interest due to a conjecture by Zelditch,

which relates the decay rate of the Bergman kernel with the regularity of the metric.

Conjecture 1 ([7] page 2). Let d(z,y) > 6 > 0. The Bergman kernel decays at a rate

64



O(e~*) for some ¢ = ¢(d) > 0 if and only if the metric potential ¢ is real analytic.

Results regarding the off-diagonal Agmon estimates in the compact setting can be found in

(71, [8], [9], [22], [25].

5.1 Preliminary Discussion

5.1.1 Comparison between Bergman and Green kernel

For compact manifolds by the Hodge decomposition, any smooth section f € I'(M, L*) can

be decomposed into its harmonic and 8" exact component,
f=fu+0 f
Define the d-Laplacian on L"-valued 0-forms (sections) and (0, 1)-forms by

AO = 5*5

Al = 5*5 + %*
This gives us a decomposition of the identity operator into
[ — Py = NGy = 9 IGy,

where P}, is the Bergman projection and Gy is the Green operator of Ay for sections I'(M, L¥).

Now we assume that M is noncompact. By restricting ourselves to I'z2(M, L¥), we can

obtain the same Hodge decomposition as above by the spectral theorem.

We will need the following identity to commute the 9 operator and the resolvent of A; in
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our estimates.

Lemma 5.1.1. Let Ay and A; be the Laplacian for T'z2(M, L¥) and T'z2(M, A% (M) ® L¥)

respectively. For a > 0 and s > 0, we have

E(AO + Oé)_s = (Al + Oé)_sg,
on the algebra C5°(M) of smooth function with compact support.

Proof. For any f € C5°(M), we define the operator

Ay = e HBt) g _ GetBota),

Taking the derivative, we have

dA. f
dt

- _(Al + Oé)Atfv

where we use that fact that 0A; = A10. Since Ay f = 0, since the Ricci curvature is bounded
below, by [10] we have by the uniqueness of the solution of the heat equation, A;f = 0 for
all t and f € C§°(M). Multiplying the equality through by ¢*~! and integrating both sides

we have
/ e Mg = / e~ HAota)ys—1 gy
0 0
gives us the result. O]

Now on I'z2(M, L*), we have the following decomposition

I —P,=AGy=00G, =0 G0.
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Applying f € T'z2(M, L*), we have
f(x) = Pef(x) + 0" Grf ().

and the corresponding integral kernel is given by

| twsends = [ (). Butya)dy + | 0,50).5:61(0. 0y

M M M

From the above argument, we conclude the following relation between the Bergman kernel
and Green’s operator

Theorem 5.1.1. For d(z,y) > 1, we have the following estimate for the Bergman kernel

1Bx(x, y)ll = 10,0, G (z, )|

5.1.2 Heat kernel for L* section

Since the Green kernel of the Laplacian is given by the time integral of the heat kernel, we
give some initial estimates on the heat kernel for sections I'(M, L¥). An initial computation

gives the following heat inequality for the norm of the heat kernel on sections:

Proposition 5.1.1. Let A := gﬁ@-@% be the (complex) Laplacian on functions. Let hg be

the heat kernel on sections of L*. The following heat inequality holds:

d

(5 - 3) (nal?) < bl (5.0
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Proof. Viewing hg € I'(LF) we directly calculate:

A(||h0||2) = gi78i0;<h0, ho)

= g7 ((V;Vs5ho, ho) + (ho, VsV ;ho)) + | Vhol[* + [V hol|?
The first term, the rough Laplacian is equal to the d-Laplacian,
g’E(VlV;hg, ho) = —<A0h0, ho)

For the second term, due to the inner product being Hermitian, we require the use of the

Ricci formula to commute the covariant derivatives. This yields
Then

97 (ho, ViV ho) = (ho, 97"V ;Vzhe) — nk||hol|* = (ho, Aoho) — nk|[hol|*.

Combining everything together, we have

Ao(|hol|*) = —(Ao(ho), ho) — (ho, Aoho) — nk||ho||* + [Vho|* + || Vho|)?

> —([lho[l*) — nkl|ho|*.

dt

By rescaling, we get the heat inequality

d -
(4~ 8) e mal?) <o.
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Hence by a semigroup domination argument [12], we have the estimate

nkt

[holl < €72 [kol. (5.2)

We can see that we get an exponential growth with respect to ¢.

It was shown in [27] that for the heat kernel on functions ko, there exists constants 5y, C; < 0o

such that

2
Ol _d (z,y) ﬁlt

Vl(B, (Vi Fvol(B/NE ¢

k()(ta z, y) S

o=

Combining with our initial heat kernel estimate, we have

2
Cl — (=) Conkt

Vol(B (V) vl (B, V)E

[ho(t, z,y)|| <

N[

for some Cy > 0.

By a volume comparison argument from (6.6), there exists 35, C3 < oo such that

sup{t™", 1}652‘1(1’3’)

vol(B.(v1)) " vol(B, (V1)) 1/? < Wi(l))

By an application of Cauchy’s inequality, for any v € R,

- —yd(z,y) ,Ca’t
e, (53)

With the above considerations, we obtain

[ho(t, 2, y)|| < sup{t ™", 1}e(P2=7d@:y) o(Car*+Cank)t (5.4)

G
vol(B, (1))
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5.2 Proof of Theorem 5.0.1

5.2.1 Perturbation of the Green Operator

We consider the class of functions

V= {y € CH(M) [ [VY[* < gk},

where ¢y > 0 is a constant to be determined later. The choice of k in the upper bound will

also become evident in §5.2.4. Then we have that

inf{y(x) — P(y) | ¥ € U} = —coVkd(,y),

for any z,y € M. Let

D=

¢(z) = vol(B,(1)) 2.
First note that the integral kernel for the operator

A= ¢’1e¢5*A1’15€¢¢’1,
is given by

Az,y) = ¢ (2)e"0,0,G (2, y)e "D (y).
We want to show a uniform upper bound for A(z,y) when d(z,y) > 1 so that

1820;G (. w)]| < CHa)b(y)e"® @),
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Varying over ¢ € W yields
12,0,G .9l < Cola)o(y)e YV @0 for d(x,y) > 1.

and Theorem 5.1.1 will imply the off-diagonal decay of the Bergman kernel. Note that we
allow C' to be at most polynomial growth in k, as a proper choice of the constant in the
exponent will absorb the polynomial term. In the following, we will use a resolvent identity

to obtain a kernel identity and provide the necessary bounds.

5.2.2 Resolving the singularity

We consider the following resolvent and corresponding Green kernel for the operator (A;+«):

(A +a) > L f(x) = /M (Gusly,2), F())dy

1

= m(/o hi(tv Y, x)e_attsdta f(y))dy

1 =0,1. We abuse the notation for the Green kernel as it will be clear from context which we
are using. By choosing an appropriately large a > 0, we can “push away” the exponential
growth in k. The exponent s is used to remove the singularity of the heat kernel when t = 0

for x = y. To introduce such a term, we use the following resolvent identity:

ATV = (A1 +a) oA +a) AT

= (A + a)_l + a(A + oz)_l/ZAl_l(Al + a)_1/2
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By iterating, we obtain

AT'=(Ar+a) P +a(Ar+a) 2+ P (A 4 a) (55)

+ a2n+4(A1 + a)—n—QAl—l(Al —f—Oé)_n_Q.

Perturbing the operator, we get

2n+43
A= ¢—16w5*A1—156—w¢—1 = Z aqu_lewg*(Al + ) P ge Vgt

p=0
+ 042"+4¢_1e“’5*(A1 + a)_”_zAl_l(Al + a)_"_256_¢¢_1.
We can see that we have two cases to consider
1. A, = ¢ 'e?d (A + o) *0e Yo

2. B:=¢1e¥d (A + ) " 2ATH (A + o) 20 V!
where A, is singular if s < n. For the first case, we use Lemma 5.1.1 and we have

Ag(,y) = 071’0 (A + ) 0e Vo
= ¢ YD DAy + ) Ce Vo
= ¢ 'e?Ag(Ag + ) fe Vo

_ ¢7161/)(A0 + O[)78+1671/)¢71 _ Oé(ﬁilew(Ao + a)fsefz/)gbfl.

Inserting this into the above identity leads to a cancellation in all the middle terms. The
leading term becomes the delta kernel, which vanishes for d(x,y) > 0. Hence we have the

operator identity

A — ¢—lewle—w¢—l . a2n+4¢—161j)<A0 + a)—?n—46—w¢—l 4 Oé2n+4B.
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Let A(z,y) and B(z,y) be the kernel of the operator A and B respectively. We then have

the kernel identity
Az, y) = —a” o7 (2)e" D Cognrs(x,y)e Vo™ (y) + o* T B(x, ).

for d(z,y) > 0.

5.2.3 Estimates

Since the « terms will be at most a polynomial in k, we will incorporate it into the exponential

decaying term.

Lemma 5.2.1. There exists a > 0 and C' < oo such that for ¢ € ¥,
sup lo™! () G s, y)e " Wo ()| < C.

Proof. We modify Lemma 6.6 and consider both the volume of x and y so
vol(B.y(2)) ™2 vl (Bs(y)) ™2 < Coo(@)(y) sup{t ™, 1},

Applying the heat kernel estimates, we have

||Goc72n+3 (ZE, y) H

< C30(x)o(y) / sup{t ™", 1} 1U@w) 20t (Car™+ Conk—a)t
0

< Csp()p(y)e ",

for any v and o > Cyy? + Cynk. ]
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Using this, we have a bound on the Green function

sup |07 (2)e" W G pnis(y, 2)e Vo7 y) |
x?y

< C'sup e*’YJrCO\/Ed(xvy)

x?y

<C.

By choosing appropriate ~.

Next we consider the £! — £ bound for the B operator. This would imply the same bound

on the kernel B(z,y). We first show the following lemma

Lemma 5.2.2. There exists o > 0 and C' < oo such that for all v € ¥

sup ¢ 2(x) / |Gan(z,y) || PWgy < C
M

zeM

Proof. We repeat the steps of the previous lemma and applying Lemma 6.6 to obtain

HGa,n(xa y)”

< 03¢2 (ZL‘) / sup{t”, 1}6—7d(z,y)6(0472+C'2nk—a)t
0

< C’gbz(x)e_”d(““y).
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Again, by choosing appropriate o. Then by direct computation,

/ |Gas(@,y) |22V gy
§C¢2(5L’)/ 6—2(7—ﬁz—coﬂ)d(x7y)dy
M

< VOl(By ()
< 2(y—p2—coVk)(j—1) Y25 \E))
= CZ ‘ Vol(Bi(z))

<CZJ” —2(y=P2—coVk)(j=1) o (n=1) VK

where the second to last inequality is obtained by splitting the integral as M = (J;Z {y | j —
1 < d(x,y) < j} and the last inequality is by volume comparison. The series is convergent

when

2y — B2 — coVk) > (n — 1)VK. (5.6)
Hence we choose v which satisfies the above. ]
Decomposing B = A, 2Ty An1 where

2= ¢ eV (A4 a) eV
Ay = V(A +a) " 10e V!

Tw = 6¢A1_1€_w
Lemma 5.2.3. There exists some o > 0 and C > 0 such that

| Aol <C

HAOL,ZHQ,OO S C

Proof. Let Ggny1(2,y) be the Green kernel from (Ag 4+ )™ 2. By direct computation, we

1)



have

/ 18, G (, ) P20V
< 80%]6/ VYD Gy o (2, y) |Pda
M

+/ 2@ (G, 1 (2,Y), 0,0.Gang (z,y))da
M

Now using Lemma 5.1.1, we have

[e0(A + )" e Vo |12

< / |e¥@D(Ag + @)~ n—Q(e—%—lu)(x)H?dx)

:(/M

[NIE

1
2 2
dx)

3, ( [ Gomlia)e 670, u<y>>dy)

2
< supgb / ||8Gan+1 T y)||2 2((@) =) o )

N[

< sup(b 8c? V(@) =vly HGanH(x y)H dx

o (
<supo (o) ([ DTG (o))
(

N[

+/ W@, (2, ), A1 G (, Zl/))dJE)
M

When the Laplacian acts on the Green kernel, we have

Aa@G’a’S(x,y):/ Ag,wk(t,x,y)e’att‘gdt
0

_ / Okt 2, y))e et
0
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Integrating by parts,

:/ k:(t,x,y)sts_le_atdt—/ ak(t,z,y)e” “t°dt
0 0

= SGa,sfl(wa y) - @Ga,s(xa y)

Inserting the identity, we have

/ @2(1#(33)71’0(11)) (Ga,nJrl (l’, y)a AE,zGa,nJrl(x? y))dl‘
M
= —(n —+ ].) / 62(1/1(:B)—1/1(y)) (Ga,n—l-l(I? y)7 Ga,n(x7 y))dfb’
M

+ a/ AW@W| G, i (2, y)| 2de
M

1
) [ Gy P
M

_n+l / @YW G, (z, )| 2de
2 M ’

< (a—

Hence combining we obtain

[e¥0(A + )" e Vo713,
n+1

<sup¢(y)(8cgh +a — ) / VDD Gy i ()P de
Y M

_n+l / V@ W) |G, (2, y)||2dx
2 Ju ’

n+1

< sup ¢~*(y)(8cgk +a — ) / VDN Gy (2, y) P da
Y M

1
dsupg(g) 0 [ OO DG (o) P
Y M

Lemma 5.2.2 gives us the upper bound. For the A, we note that the dual operator
Af = ¢Le™0 (A + @) " le¥ has the operator bound |[A% |20 < C for ¢ € ¥, hence

varying over the class of functions in ¥, we obtain the same bound for A, s. O]

7



Next we show the £2 — £? bound of Ty.

Lemma 5.2.4. Assume that the Ricci curvature of M has a lower bound. Then for suffi-

ciently large k and for ¢ € ¥, we have
[Ty]l22 < C < 0.
Proof. Define the operator
TV = e Aje™ — Ay
By the Weitzenbock formula, we have
Ay =-V?*+ E=-V?+kw+ Ric(M).
We denote A = —V?2 to be the rough Laplacian. Then we can write

TV = eYAe? — A.

For any LF-valued (0,1) form u, we have

(T% u,u) = (V(e™%u), V(eYn)) — (Vu, Vu)

chk/ |ul|* + 2Im (/ V¢Vﬂu)
M M

Using the Cauchy inequality, using the fact that |V| < by, we have

, 1
(T w,u)|| < 4037€/ HUH2+§/ IVl
M M
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Since the Ricci curvature has a lower bound — K, integrating the Weitzenbock formula gives

/ IVull? < / (D) + K / ul® — & / .
M M M X

In summary, we have

|(T¢/u,u)| < —(Aju,u) + (4c§k + K — k‘)/ |u|2,

M

N | —

and for ¢y < %, we have

|(T¢/u, w)| < =(Aju,u)

N | —

for k sufficiently large.

We have

A lower bound for the quadratic form of an operator implies an upper bound for its inverse.

Here we see that the order ¢yv/k is necessary in our choice of the class of functions ¥. [

Combining Lemmas 5.2.1, 5.2.3, and 5.2.4 proves Theorem 5.0.1.
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Chapter 6

Appendix

6.1 Useful Formulas

6.1.1 Bound of normalizing constant for peak section

Lemma 6.1.1.

1 . !
2p —mr? _ —mr? E p 2(p—k)
/T ¢ rdr= om" —~(p— k)!mkr (6.1)

Corollary 6.1.1. Let P € Z} and use the following notations: P! = p!---p,! and p =

Prt D
2 P!
P2 _—m|z]| _
. |2 dVy = e (6.2)
Corollary 6.1.2 (lower bound for integral). Let ¢,, — 0o
2 C
P2 _—mlz| dVe > 6.3
/Zl<cmm S 0= mntr (6.3)
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Proof. By using (6.1.1), we have

/ |Zl|2p16—m|21\2dv0

>|z

vm

p1 ]
—_ T m 3 PU_ a(pi—k)
m
mpitl — (p1 — k)!
P11 2(p1—k
nlm Cngpl )
- mp1+1 ecgn

2
(p1 + Dlw e
mp1+1 ecgn

IN

For large t > 0, we have

tpl 1 6 4
— < .
et (p1 -+ 1)71' ( )
So taking m sufficiently large, we have
2p1 ,—m|z1|? Cl
/&’izm e o = mp1t1 (6.5)
for C < |P| Then we have
/ |ZP|2€fm|z\2d‘/0 — / |ZP|2€fm|z\2d‘/0 . |ZP|2efm|z\2d‘/0
|2|< o " |2|> o
P! ¢ C
= mnte gqntp e
O

6.1.2 Weitzenb6ck Formula for L"-valued (0, 1)-forms

We define the covariant derivative for holomorphic indices of L¥-valued (0, ¢)-forms as
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Definition 6.1.1 (Holomorphic covariant derivative).

., 0
Vs(¢ger) =h lﬁ(gbﬁh)eg

We use the notation

kaoz - foc;k:

so that for a local frame {e,} of a vector bundle E and section f =) fa€a,

Vf = Z fa;kea X dzk

= Zakfa+r<f)

where I'(f) is a zero order operator involving the connection matrix, and depends on the

bundle E.

Proposition 6.1.1 (Anti-holomorphic covariant derivative). Let ¢ € Q%(LY), locally writ-
ten ¢ = ¢-dz'.

0(¢) = Viosdz" A d7’
and rewriting in skew symmetric form,

gqb = (ngb; — V;QSE) dz" A dZ

N | —

Proof. We have

do;

o dz* A dz’

(@) = 0(¢rdz") =
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On the other hand, we have by definition:

00, 5

So that
a _

substituting the above to the first equation yields
3(¢) = (Vgos + ¢;TL)dz" A dZ'

By the alternating 2-form and the symmetry of I'¥., we have

17
It =0
which gives us the result.

We now show the formula for the @ operator for L¥-valued (0,1) and (0, 2)-forms.

Lemma 6.1.2 (9 for LN-valued (0, 1)-forms).

Oh

h e = ="V (0ed)

a* i i 0
7' (6.0 ® ) =~ (6)e} — o7
Lemma 6.1.3 (9 for LN-valued (0, 2)-forms).

(0 ¢)pdz" = —29" (Vo (d3pel)) — Srgnng™ Tyl )dz"
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Proof. We use the defining relation (5*(@]) ) = (65, BLF) Expanding, we obtain

W
b5, 8_l / ¢U8 9 g Th det gdVEg

= —2/ 77_%@( Eglggk;hdetg)dVE
M

and

@ (65), ) = / ¢ (D' )i det gV

M

Comparing coefficients, we have
0 = 7 —x
—29kmm(¢rjgllgkjh detg) = (0 ¢)mhdetyg
2z
The left hand side splits into

a i ki aQs,T 1
~gim 5 (650"g hdet g) = —— 29" gumg" h det g
d i
— 059 ”gmh@(g det g)
ki _

dg i
- gmaﬁrngl hdet g

oh
— b5 qmg" 9" = oo detg

The second term vanishes due to the Kahler symmetries, and we simplify the remaining

terms:

8(;#2 . gl’h det g

+ 6" g9 T det g

B -
_gkm@(%ghghh det g) =

— OO det g
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Using the covariant derivative identity, we have

(0 Oy = 29" (Vi(¢ime? ) — drgumg el

Lemma 6.1.4. Let ¢ € Q%'(LY). Under normal coordinates, we have

90 (¢) = —¢" (ViV(gred)) dzF = = (V5Vi(ogel)) 7

k.j

and
Z ViVildsel) + ViVi(ggel )
Lemma 6.1.5 (Ricci Formula). Let ¢ be a LY-valued (0,1)-form, i.e. ¢ = ¢*dz' ® e,
[V, V3167 = ¢:R 55 + ¢rRic(h),;

Proof. First calculate in normal coordinates

ol
ViV3(97) = V(o= 5zr — $ml; )
P E)F%
0207 om 0zk

Next we calculate the opposite term

9, Oh
ViVi(or) = V3( a(b,i + ¢z o h ™)
aQ(bl 82

- ~1
0702k ¢l82k8_]h ’
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Combining the terms yields

[V, V3l(¢p) = ¢:R5q + ¢y Ric(h);

Proposition 6.1.2 (Weitzenbéck Formula for LY-valued (0, 1)-forms.).

Ag(¢) =09 + 9 0(¢)

=Y —=ViVi(e5) + ViVi(ep) — ViVi(er)

k,j,i

= (—=ViVi(¢;) + ¢; Ric(g);; + o5 Ric(h);) d’ @ eff

k.,j,i

6.1.3 0O estimate

The following Hérmander’s £?-estimate for the 0-equation is used:

Theorem 6.1.1. Let (M,w) be a complete Kéahler manifold, and let L — M be Hermitian

line bundle with Hermitian metric h. Assume that the curvature Ric(h) > Cw is positive

for some C' > 0. Then there is an integer Ny depending on M, L and h such that for any

N > Ny, the following holds: for any g € £2(M, \”" M @ L™) satisfying dg = 0, there exists

f € £L2(M, L™) such that 0f = ¢ and

1
[ Uty < & [ lafnav,
M M

where C' is the same constant as in the hypothesis.
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6.1.4 Hodge Theory and Kahler identities

Theorem 6.1.2 (Hodge Theorem). Let E be a Hermitian vector bundle over a compact

Hermitian manifold X. For p,q > 0, let
HP(X,E)={¢p e I'(X,QP(E)) | Agp =0}
i.e. the harmonic (p, ¢) forms. Then

1. dim H?(X, F) < o0;

2. For any n € I'(X, QP9(E)), we have
n=nn+0m +0 n,
where 7, is harmonic.
On Kahler manifolds, we have the equivalence between the different Laplacians.

1
Do = A5 = 54

6.1.5 Volume Comparison

Proposition 6.1.3 (Bishop Volume Comparison). Let M be a complete n-dimensional
Riemannian manifold such that Ric > —K. Let Bg(r) be a ball in the Riemannian space

form of constant sectional curvature —%. Then

Vol(B(r)) < Vol(Bg(r))

87



We have
wns" < Vol(Bg(s)) < wps"eV nmDEs,

For any ball B,(r) C M, we have

Vol(B,(s)) _ Vol(Bk(s))
Vol(B,(s')) ~ Vol(Bx(s'))’

0<s <s<2r
Hence we deduce that
Vol(B,(s)) < Vol(B,(s")) <£>n e\/ms, 0<s <s<2r
Setting d = d(z,y), we can compare the volume of balls centered at points as follows,

Vol(B,(s)) < Vol(B,(d + s))

< Vol(B,(s")) (d s

SI

) eV (nmDE(d+s) 0<s' <s<r, yeB
Let ¢(x) = Vol(B,(1))"2. Combining the above, there exists 85, Cy < 0o such that

Vol(B, (V1)) "2 Vol(B, (V1)) ™/? < Cop?(x) sup{t = , 1}eH24 =)
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