
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Sensor Plot Kit: An iOS Framework for Real-time plotting of Wireless Sensors

Permalink
https://escholarship.org/uc/item/1tt4h1v7

Author
Lo, Derrick Allen

Publication Date
2015

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1tt4h1v7
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Sensor Plot Kit: An iOS Framework for Real-time plotting of Wireless Sensors

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Electrical and Computer Engineering

by

Derrick Allen Lo

Thesis Committee:
Professor Pai H. Chou, Chair

Professor Rainer Doemer
Professor Brian Demsky

2015

c© 2015 Derrick Allen Lo

DEDICATION

To my parents, Betsy and Simon.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

ACKNOWLEDGMENTS vi

ABSTRACT OF THE THESIS vii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2

2 Related Work 4
2.1 Sensor Data Capture . 4
2.2 Sensor Data Visualization . 5

3 Problem Statement 8
3.1 Requirements . 8

3.1.1 Functional Requirements . 8
3.1.2 Performance Requirements . 10

3.2 Objectives . 11
3.2.1 Performance . 11
3.2.2 Qualitative . 12

4 Technical Approach 13
4.1 Problems with Model-View-Controller Design . 13

4.1.1 Core Plot Framework . 14
4.1.2 MVC Architecture . 15

4.2 MVVM Solution . 16
4.2.1 MVVM . 16
4.2.2 Advantages of MVVM . 18

4.3 Architecture . 19
4.3.1 SPKModel . 19
4.3.2 SPKDataSource . 20
4.3.3 SPKController . 21
4.3.4 SPKPlotView . 22

4.4 Design Space Exploration . 23

iii

4.5 Development Process . 23
4.5.1 SPKPlotViewECG Class . 23
4.5.2 SPKFilter Class . 24
4.5.3 SPKDataStore Class . 25
4.5.4 SPKBuffer Class . 25
4.5.5 Demo Application Development . 26
4.5.6 Migration to MVVM Architecture . 27
4.5.7 Performance Improvements . 27

5 Experimental Results 29
5.1 Metrics . 29

5.1.1 Latency . 30
5.1.2 Sensor Data Rate . 30
5.1.3 View Refresh Rate . 30

5.2 Experiment Setup . 31
5.2.1 Case Study 1: Single Sensor Data Stream 31
5.2.2 Case Study 2: Wireless Multi-lead Sensor Data Stream 31
5.2.3 Case Study 3: High Sample Rate Sensor Data Stream 31

5.3 Performance Results . 33
5.3.1 Case Study 1: Single Sensor Data Stream 33
5.3.2 Case Study 2: Wireless Multi-lead Sensor Data Stream 35
5.3.3 Case Study 3: High Sample Rate Sensor Data Stream 35
5.3.4 Evaluation . 38

5.4 Qualitative Results . 40
5.4.1 Reusability . 40
5.4.2 Scalability . 40
5.4.3 Minimal Development Time . 41

6 Conclusion 42
6.1 Summary . 42
6.2 Future Work . 43

Bibliography 44

iv

LIST OF FIGURES

Page

2.1 Views of the Sensor Kinetics App . 6
2.2 Screenshot of the Graphical Analysis application 7

4.1 MVC Architecture . 14
4.2 MVVM Architecture . 17
4.3 Sensor Plot Kit Architecture . 19

5.1 Screenshot of 12-lead ECG sensor streaming on the iPad 3 demo application 32
5.2 Performance Results: Single Sensor Data Stream 34
5.3 Performance Results: Wireless Multi-lead Sensor Data 36
5.4 Performance Results: High Sample Rate Sensor Data Stream 37
5.5 Graphics Software Stack on iOS [7] . 39

v

ACKNOWLEDGMENTS

I would like to thank my Advisor, Dr. Pai H. Chou, for all of his support, inspiration, and guidance
throughout my research. His thoughtful perspectives and insight has allowed me to become a more
effective researcher. This thesis would have not been the same without his enthusiasm and passion
towards important research problems.

I am especially thankful of the loving support of my parents, Betsy and Simon. I would have not
been able to succeed without the sacrifices they have made. I am also thankful for the support and
kindness of my sisters, Carissa and Stefanie.

I would like to especially thank Mai for her continuing love and support throughout my research.
I am especially grateful for her constant encouragement and comfort.

I am very grateful to my colleague, Ting-Chou (Brett) Chien, who helped me get acquainted with
my research and has been instrumental in making it possible.

vi

ABSTRACT OF THE THESIS

Sensor Plot Kit: An iOS Framework for Real-time plotting of Wireless Sensors

By

Derrick Allen Lo

Master of Science in Electrical and Computer Engineering

University of California, Irvine, 2015

Professor Pai H. Chou, Chair

This thesis presents a new open-source framework for plotting and managing streams of sensor

data on iOS devices. The framework, called the Sensor Plot Kit (SPK), aims to help developers

build apps for viewing sensor data that can be streamed in real-time or pre-recorded. It can handle

multiple streams at relatively high data rates with short latencies, making it suitable for advanced

medical applications such as electrocardiograms (ECG). This framework also supports filtering,

post processing, and saving the data in non-volatile storage. A novel feature of our design is that

we adopt the Model View View-Model (MVVM) design pattern that reduces complexity and max-

imizes code reusability compared to the standard Model View Controller (MVC) pattern in iOS

while remaining compatible. Experimental results using a real-world ECG, on-board sensors, and

pre-recorded results over actual and simulated iOS devices confirm that SPK enables developers

to build feature-rich, robust apps that embed real-time, responsive plotting capability while signifi-

cantly shortening development time. This work has the potential to make a crosscutting impact on

science, engineering, medicine, the financial market, and many other fields that increasingly rely

on smart phones and tablets as the primary device for viewing and interacting live and historical

streams of data.

vii

Chapter 1

Introduction

There has been a dramatic increase in development and demand of software applications for mo-

bile computing devices. Advancements in technology has allowed these smart devices to include

a wide array of embedded sensors such as an accelerometer, gyroscope, GPS, microphone and the

ability to wirelessly connect to external sensors such as an electrocardiogram (ECG) or heart rate

monitor (HRM). These sensing technologies have enabled the potential for new frameworks and

applications to arise in all types of industries such as healthcare, automotive, logistics and man-

ufacturing [13]. Apple alone has sold over a billion smart phones and tablets, allowing mobile

software applications to broadly impact the masses through the accessibility and technology of

these devices.

1.1 Motivation

As an increasing number of scientific, engineering, medical, and even financial applications require

data plotting features in their mobile apps, it is surprising that the development of such a univer-

sal framework has received very little attention. A Dartmouth Survey on Mobile Phone Sensing

1

has stated that, “Although the potential of using mobile phones as a platform for sensing research

has been discussed for a number of years now, in both industrial and research communities, there

has been little or no advancement in the field until recently” [13]. The lack of a universal sens-

ing framework has created an abundance of functionally similar sensor applications that are only

compatible with one software platform.

Developers today are highly limited to either implementing their own customized application or

paying for a private API to visualize and analyze sensor data on iOS devices. This has forced

developers into duplicating effort across sensor applications and platforms. Without a standard

framework, developers may fall into the same pitfalls of scalability, programability and perfor-

mance limitations during development. Contrary to popular belief, programming sensor driven

applications on iOS can be extremely complex and time consuming even when adhering to the

commonly used Model View Controller (MVC) design pattern. Without the proper considerations,

application modules can be overly customized, hard to unit test and susceptible to errors. A well-

designed universal sensor framework is critical in reinforcing clear design patterns and enabling

new applications with minimal development time.

1.2 Contributions

In this thesis, we reveal a progressive iOS framework for real-time sensor data visualization that

is novel in design and far reaching in its impact. This highly extensible framework provides a

universal approach to interfacing with diverse types of sensors and the ability to visualize multiple

streams of sensor data simultaneously at relatively high data rates with short latencies. Our pur-

pose was to create a well-structured and easy-to-use framework for developers through the novel

use of the Model View View-Model (MVVM) design pattern. Our experimental results have es-

tablished the viability of our MVVM based framework by demonstrating reusability, testability

and extensibility of the core framework modules. Additionally, we provide developers with a test

2

bed to profile and tune the performance aspects of the framework. This test bed has allowed us

to determine and characterize the hardware performance limitations among the iPad and iPhone

devices. There has not been any other framework capable of enabling developers to create quality

sensor plotting applications that are performance and design driven to significantly reduce devel-

opment time. Our work will not only impact developers working on future mobile platforms for

data visualization but will also empower authors of existing applications to adopt and benefit from

our framework.

3

Chapter 2

Related Work

At a high level, sensor data platforms manage the processing of sensor data through three main

steps: sensor data capture, data processing, and data visualization. Sensor data capture entails

the acquisition, buffering, and transferring of the raw sensor data as it is received in real time

or through a storage medium. The data processing step, which is often optional, includes the

filtering and preprocessing of the raw sensor data. Finally, in the data visualization step, the raw or

processed data is rendered onto the mobile device’s screen as a graph or a basic numeric reading.

In this chapter, we survey existing frameworks that are within the sensor data platform space.

2.1 Sensor Data Capture

SensingKit is exceptional example of a sensor data capture framework that is capable capturing

sensor data continuously from all the embedded sensors on a mobile phone. The framework is

an open-source multi-platform library that enables developers to easily extend the framework to

include other sensors or functionality [11]. SensingKit provides a broad API to interface with

embedded sensors; however, they omitted the option to filter, preprocess, and most importantly,

4

visualize the sensor data on the mobile device. SensingKit intended users to rely on external tools

to analyze and visualize the raw sensor data. While the framework has great potential to interface

with a large set of sensors, it ultimately lacked any functionality after sensor data capture.

Our proposed Sensor Plot Kit framework was motivated by this unmet need for functionality to

visualize captured sensor data within the mobile device platform. Similar to SensingKit, we intend

to provide a universal interface to different types of sensors but beyond the scope of just sensors

internal to the mobile device.

2.2 Sensor Data Visualization

Sensor Kinetics and Graphical Analysis are both iOS applications that allow users to capture and

visualize sensor data.

The Sensor Kinetics app, as seen in Figure 2.1a, visualizes in real time the embedded sensors within

the iPhone or iPad [10]. Users can interactively adjust the sampling rate and click the individual

sensor for a graphical plot of the data as shown in Figure 2.1b. In addition, in the paid version of

the application, users can filter, record, and share data from these sensors. Sensing Kinetics overall

is a very precise and information rich application.

Graphical Analysis is developed by Vernier and is marketed towards students in STEM education

as a tool to wirelessly collect, analyze, and share sensor data in the classroom [17]. They exclu-

sively interface with only Vernier branded sensors (e.g., thermometers, heart rate, pH, motion, and

force sensors) and some of the iPhone’s embedded sensors such as the accelerometer. The app can

plot up to 3 graphs simultaneously as well as record and export the sensor data. One of the unique

benefits features of the application is that users can interactively analyze and make annotations on

the graphs as shown in Figure 2.2.

5

(a) Main Sensor Data view (b) Plotting of the Accelerometer

Figure 2.1: Views of the Sensor Kinetics App

There are, however, several common pitfalls among the Sensor Kinetics and Graphical Analysis

applications. Both these applications are closed-sourced projects that provide no documentation or

source code, which makes these platforms unextensible for anyone else but the authors. Another

limitation is that users only have an option of viewing up to one to three sensor data streams at a

time. These pitfalls not only make it impossible to customize or expand the functionality of the

applications, but it also prevents developers from leveraging or reusing the sensor interfaces and

features that these applications all share. Our proposed Sensor Plot Kit is designed to provide

developers with the freedom of extensibility and customization across all parts of the sensor data

platform.

6

Figure 2.2: Screenshot of the Graphical Analysis application

7

Chapter 3

Problem Statement

The purpose of this work is to create a plotting kit for sensor data that can be live-streamed or

pre-recorded, at a given rate and with minimal latency. This chapter states the requirements in

more formal terms and the objectives.

3.1 Requirements

Requirements are the features that must be implemented or properties that a correct implementation

must have. They can be divided into functional requirements and performance requirements.

3.1.1 Functional Requirements

The functional requirement can be characterized by the input-output characteristics of the plotting

framework.

8

Input

The framework receives incoming streams of raw sensor data either from the sensor directly or

through reading the data from a file. There can be a number of streams (n) of data within a single

sensor. Every stream of data must be sequentially ordered relative to the time (t) when they were

produced by the sensor. The first bits of sensor data produced will be the first bits fed into the

framework. The framework expects that the data will be pushed in at the real rate, sensor data

sampling rate (s), at which they are produced. In the case that data has been pre-recorded, it is

important to note that the data storage medium must be able to provide data to the framework at

the same rate at which it was captured or faster. Let Ninput denote the aggregate number of samples

of data the framework will receive over time. It can be defined by the equation

Ninput = n× s× t (3.1)

Output

The output of the framework is a time-history rendering of the input streams of sensor data onto the

screen of an iOS device. In addition to rendering the data points, our framework is also required

to support the application programming interface (API) for the appropriate axes and labels on the

screen to provide a meaningful reference to the sensor data.

Moreover, as this work targets specifically the iOS platform, the CorePlot framework in iOS is

utilized to help properly frame and further abstract the plot details to be drawn. The output of our

Sensor Plot Kit is considered up to the point to where the CorePlot framework in iOS is called to

request the rendering of data.

There is possibility for expansion of the framework to allow the output to be sent to other functions

9

or devices. The framework is required to allow the data to be output to a data structure such as an

array to allow further processing in the framework or usage by the developer.

Interactivity

The SPK should support developers to build interactive apps, in addition to providing real-time

or static renderings of sensor data. In the real time scenario, the framework will present the user

a window into the sensor data stream at the real rate that it is being sampled. Users will be able

to pause the live data and resume the stream from where it left off in part to the buffering of the

sensor data. In contrast, the static rendering provides a window into a subset of prerecorded data.

Data can be auto streamed or played back to simulate a real-time stream of sensor data. In both

scenarios the size of the window can be adjusted to allow users to view more data within the screen.

3.1.2 Performance Requirements

Performance requirements include both the latency and the view refresh rate. Latency is the delay

from the input sample to the corresponding output. View refresh rate is the rate at which the output

can be rendered on the screen.

Latency

The framework must uphold real-time streaming of sensor data by maintaining a bounded latency

l from when sensor data is received to when it is requested to be rendered. There is a practical

limit at which streaming is considered real time, and any observed latency beyond that limit will

be considered unusable. We determined from early experiments that any latency beyond 1 second

(1000 ms) is considered unacceptable by the user depending on the domain of the application.

There are domains that can tolerate a higher latency such as lower frequency temperature based

10

applications; however, we are not concerned with those domains and are targeting applications that

consider 1 second a general upper bound.

View Refresh Rate

The view refresh rate is the number of times per second that a display updates the contents of

its buffer. There is no reason to render at a rate higher than the maximum view refresh rate of

a device’s display as the user will never see the extra frame buffer updates. iOS devices such as

the iPad and iPhone displays have been reported to have a maximum refresh rate of 60 Hz. The

framework must be able to maintain a stable view refresh rate to prevent any lag during rendering.

3.2 Objectives

Objectives are the cost functions to be maximized or minimized by the design. They are ways to

measure how good a design is.

3.2.1 Performance

Performance is the main quantitative objective. That is, the framework should aim to achieve the

highest refresh rate supported by the device’s display and the lowest latency, although it may be

impossible to achieve both. Further, achieving a low latency is paramount over a higher refresh rate.

Without a low latency, the system as a whole will lack sufficient performance and attainment of a

higher refresh rate would be fruitless. However, our performance objective is more general because

we also want to support a wide range of hardware. This means we will need to characterize the

performance trade-offs of rendering sensor data at different sampling and view rates on different

types of iOS hardware. Developers are typically not fully aware of these performance trade-offs

11

until their application code is complete and tested. We intend for developers to leverage these cost

functions in their application designs so that they can create quality applications that will endure

minimal latencies and maximum sensor sampling rates. Furthermore, we hope to provide insight

on the limitations of iOS hardware to aid in determining hardware requirements.

3.2.2 Qualitative

Qualitatively, we aim to maintain three characteristics of programability: reusability, scalability,

minimal development time. Reusability will allow modules of the framework to be used in mul-

tiple diverse applications. Reusability not only allows new applications to be deployed faster but

also enables existing applications to adopt this framework as well. Scalability is key as it pro-

vides developers with flexibility in visualizing multiple sensors and extensibility to build powerful

solutions utilizing the processed data from the framework. Lastly, minimal development time is

key as the intention of the framework is to aid the developer in bring up of complex sensor data

visualization rather than impeding or distracting developers from application design.

12

Chapter 4

Technical Approach

For iOS app programming, Apple recommends that developers adopt the model-view-controller

(MVC) pattern of organizing their program code. To be compatible with the development of most

apps, our proposed SPK should also support a similar style. However, a straightforward MVC

model that builds on top of the Core Plot framework in iOS results in an overly complex view

controller that is difficult to reuse. We solve the complexity problem by adopting a Model View

View-Model (MVVM) style. This chapter first provides a background on the problems with the

MVC pattern.

4.1 Problems with Model-View-Controller Design

Model-View-Controller (MVC) is the most commonly used design pattern within iOS as the ma-

jority of Apple’s frameworks follow this paradigm. Apple defines MVC as “a design pattern that

assigns objects in an application one of three roles: model, view, or controller” [4]. It requires

that every class in an application maintain one of these roles. This is to promote code separation,

reusability, extensibility and a well-defined interface. In addition, each role is subject to how they

13

Controller

Model View

User

• Data storage

• Encapsulates application state

• Responds to state queries

• Receive, interpret & validate input

• Create & update views

• Query & modify models

• Maps user actions to model updates

• Handle segues to other controllers

• Network logic

• Renders Model’s data

• Requests updates from models

• Send user input to controller

• Presentation assests

• Human

• Computer client

Figure 4.1: MVC Architecture

can communicate with the other MVC objects. Figure 4.1 is an overview of the MVC Architecture

and highlights the typical responsibilities of each role.

Our main design objective was to help manage the lengthy user interface (UI) setup for developers

as well as provide a clear interface for sensor data capture. By decoupling the front-end UI from

the backend sensor data capture, the sensor plotting process can be vastly simplified.

4.1.1 Core Plot Framework

Core Plot is the de-facto open source library on iOS for building graph based applications [15].

It is a powerful and customizable framework that is capable of plotting a wide variety of charts

14

and graphs. It is can used for creating static 2D bar and pie charts, scatter plots and graphing

mathematical functions. Drawing within the framework is executed through Apple’s Quartz 2D

drawing engine. Although Core Plot provides the functionality to create real time animated plots,

we have observed that the animations do not scale up well with higher data rates.

We could build our own plotting library from the ground up that would give us more control over

the design. However, it probably would not be as efficient, robust, or as evolvable over future

versions of the OS. In contrast, Core Plot has been proven to be extremely flexible and powerful

for plotting scatter plots and other types of graphs.

However, despite its popularity and exposure, the library requires significant setup in code and a

deep understanding in order to use the library effectively. Not only is utilizing the library inherently

difficult and time consuming but building a strong architecture around Core Plot has also proved

to be challenging. This is further exacerbated by Apple’s MVC design paradigm.

4.1.2 MVC Architecture

In the MVC design specification, Apple has a very broad definition of the Controller’s purpose.

Apple’s documentation specifies that “View Controllers are traditional controller objects in the

MVC design pattern. Their job is to provide many behaviors to iOS apps” [4]. This loose definition

causes developers to put the majority of their application logic in the View Controller class.

The View Controller should focus on only acting as a link between model and view and not carry

any “business logic” [9]. The problem only gets worse when applications involve complex external

frameworks such as Core Plot and frameworks that handle network connectivity such that the View

Controller is usually the most fitting class as these frameworks are strictly out of the scope of what

Apple defines for Model and View patterns. Furthermore, the View Controller ends up becoming

the data source and storing data rather than the actual model object [5]. Adhering to the MVC

15

paradigm can cause adverse effects as it ends up creating massive view controllers that are complex

and not re-usable within the application, resulting in duplication of code and the code to become

more error prone.

4.2 MVVM Solution

To solve the complexity of implementing Core Plot within the MVC paradigm, we adopted the

Model View View-Model (MVVM) design pattern. MVVM separates the concerns within the

View Controller into separate classes to reduce complexity and maximize their reusability [9].

4.2.1 MVVM

Because View Controllers are typically linked to distinct View classes, MVVM pairs the View and

View Controller components together. Now the logic responsible for preparing data for the View

that is normally found in the View Controller is being moved to the View Model class. The View

Model sits between the Model and the View/ViewController classes [5]. The diagram in Figure 4.2

describes the MVVM architecture and how the View Model fits into the new design.

View Controller Model

The View Controller is now solely responsible for the event handling logic of the UI and defining

the connections between the View, View Model, and Model.

16

View Model

Model

View

• Data storage

• Encapsulates application state

• Responds to state queries

• Gather data from Model

• Validate data from Model

• Prepare data for presentation

• Network logic

• Renders Model’s data

• Requests updates from models

• Send user input to controller

• Presentation assests

Controller

User
• Human

• Computer client

• Create & update views

• Maps user actions

• Handle segues to other controllers

View

Figure 4.2: MVVM Architecture

17

View Model

The View Model class will handle the presentation logic for the View Controller. The class basi-

cally ensures that all the data coming from the model is properly type cast and formatted so that

it can be used directly by the View. For example, the Model may have its values formatted as an

NSDate, but the View class expects the data to be an NSString variable [8] . In addition, network

logic can be placed within the View Model reducing the clutter in the Controller.

Model

Lastly, the Model class maintains control of the storage and persistence of the data used throughout

the application [8].

4.2.2 Advantages of MVVM

The advantage of MVVM over MVC is that it improves testability, reusability and compatibility.

Testability is improved as it allows developers to easily test functions in the View Model without

affecting the core View Controller logic. Unit testing within MVC designs is difficult because the

View Controller is responsible for so many aspects of the application. Data validation and UI logic

in Controller can intertwined within the same functions making it sometimes impossible to test

without changing the code.

Reusability of the Controller and View classes is facilitated by MVVM as different data sources

can now be defined in the View Model and Model classes without the need to make any significant

changes to the View and Controller.

Lastly, MVVM is compatible with existing MVC applications as it is just an expanded abstraction

of the MVC design.

18

Sensor Data

Model

Stage 1

Expanding data to SPK Protocol

SPKModel

Plot Parameters

Stage 2

Gather Data from Model

View Model

Stage 3

Presentation Logic

Controller

Stage 4

Drawing Logic

External Sources

SPK Modules

Implemented

Modules for

Developers

SPKDataStore

SPKModelDataSource

View

CorePlot

SPKPlotViewDataSource

Data Validation

SPKFilter

SPKDataSource

Plot Timer

SPKController

CPTPlotDataSource

UI HandlerPlot Data

SPKPlotViewECG

SPKPlotView

Figure 4.3: Sensor Plot Kit Architecture

4.3 Architecture

The Sensor Plot Kit (SPK) framework architecture is made up of four main classes: SPKModel,

SPKDataSouce, SPKController, and SPKPlotView[14]. They correspond directly to the Model,

View Model, Controller, and View design pattern of MVVM. Figure 4.3 illustrates the high-level

architecture and describes the data flow and relationships between the classes.

4.3.1 SPKModel

The SPKModel class is responsible for capturing and buffering the incoming raw sensor data from

the sensor. There are numerous ways an application developer can connect wireless sensors and

19

collect sensor data streams to iOS devices, so this class was intended to be the main interface to

the external sensors.

After buffering the sensor data, the data is sent to the SPKDataSource using the data source de-

sign pattern [1]. To provide SPKDataSource with data using this approach, the SPKModel class is

designated as the datasource for SPKDataSource within SPKController. The interface between

SPKModel and SPKDataSource is defined under the SPKModelDataSource protocol. This proto-

col is declared within SPKDataSource and contains two method prototypes, dataFromSensor()

and plotParamsFromModel(). The SPKModel class is responsible for implementing these method

prototypes in order to adhere to the SPKModelDataSource protocol.

The two methods, independently push the raw sensor data and plot parameters to the SPKDataSource.

The raw sensor data is pushed one datum at a time as it is received from the sensor. The plot pa-

rameters are only pushed once, as the plot does not dynamically change once it has been created

by Core Plot. The parameters are used to setup the graph’s sampling rate, plot name, duration of

view, plot scale, line color, and plot ranges.

The SPKModel class was designed to be reusable for different sensors as it will define where the

initial raw data is stored and how the plot will be configured for a particular sensor type. This

module is one of the application developer’s main responsibility for building out in order to rapidly

get data loaded into the SPK framework.

4.3.2 SPKDataSource

The SPKDataSource class prepares the data from the SPKModel to be rendered on screen by the

SPKPlotView class. Data will flow in from the model where the application developer can vali-

date, filter, and preprocess the raw data before sending the data through to the SPKPlotView class.

Plot parameters are validated separately from the sensor data stream as they are separate domains

20

of information and concerns. The benefit of separating the functionality of the SPKModel and

SPKDataSource classes is that it allows the data to not only be validated on the fly during run-time

but also allows the developer to create and run unit tests within the SPKDataSource class.

A FIFO display buffer is instantiated in SPKDataSource to act as a temporarily data store for data

that has been committed to be viewed on the screen. The display buffer size is defined by the

sensor sampling rate and plot duration. The buffer size directly dictates the fixed amount of data

points that will be rendered in the view at one instance.

After data has been validated and potentially filtered or preprocessed, it is flushed and committed

to the display buffer. SPKDataSource is responsible for reporting when new data is ready to be

plotted. Once the sensor data and plot parameters are committed, the data is pulled through the

SPKPlotViewDataSource protocol to the SPKPlotView. The SPKDataSource and SPKPlotView are

connected using the same data source design pattern used to connect the SPKModel and SPKDataSource

except that they adhere to different protocols.

4.3.3 SPKController

The SPKController class holds ownership of all the other classes in the SPK framework. The con-

troller is the first class that is loaded by the application and therefore responsible for instantiating

the SPKModel, SPKDataSource, and SPKPlotView classes. As the class name implies, the Controller

defines the delegates and datasources for the SPKModelDataSource and SPKPlotViewDataSource

protocols. By defining the framework’s module relationships solely within the Controller, the

application developer has the ability to dynamically change a module’s data source or delegate

through a single line of code.

Another key aspect of the controller is the plot timer, which sets the rate at which data is refreshed

in the SPKPlotView class. This timer is critical for rendering sensor data streams onto the device’s

21

screen. The timer is set to invoke a function call within a specified time interval. The time interval

is defined as the View Refresh Rate (v). Within the function call, if the SPKDataSource class

indicates new data is ready to be plotted, the Controller will flush the sensor data from the SPKModel

to the SPKDataSource and subsequently call a function within SPKPlotView to render the new data

in the FIFO display buffer.

The last responsibility of the Controller is to handle the logic of the User Interface (UI). For ex-

ample, if there is a button rendered on the touch screen to pause the sensor data stream. When the

SPKPlotView class detects the press of the button, the Controller will be notified and handle the

event with the proper action and logic to pause the sensor data stream. This is the case for not only

buttons but also sliders, zooming, and transitions or segues to other View Controllers.

4.3.4 SPKPlotView

The SPKPlotView class contains all the logic necessary to setup and interact directly with the Core

Plot framework. The View class utilizes the plot parameters passed in from the SPKPlotViewDataSource

and applies them within the data source method implementations for Core Plot. The sensor stream

data is passed directly to the data source methods from the protocol so the View class does not own

or buffer the data.

The decision was made to define SPKPlotView as a generic class for plotting generic data over time

with no defined axes. This allows other classes to subclass SPKPlotView and create sensor specific

plots that correlate to their data types. Most sensors stream data using established units, making

it unnecessary to modify this class once a subclass has been created to support a specific type

of sensor. This is especially beneficial when using medical sensors with this framework as they

typically follow an established standard of plotting, which can be complex and very technical. This

framework greatly reduces development time for medical applications that utilize standardized

medical data types as developers only need to define the SPKPlotView once or can use preexisting

22

implementations.

4.4 Design Space Exploration

In order to understand the design of plotting applications, we analyzed the available source code

of the ECGWavesPlayer which was a simple application demonstrating the visualization of three

ECG leads on an iOS device [18]. We attempted to reconstruct parts of the source code to plot

data from physical sensors rather than a fixed array of values. The effort proved to be futile as

the code was too convoluted to be reused for alternative applications. There was a lack of general

interface and ability to customize the plot characteristics. Thus the ECGWavesPlayer was not a

suitable basis for a framework.

Focus shifted to investigating the design of BabyECG [6], an iOS application developed by a lab

mate, which utilized the well-known iOS plotting framework Core Plot. The application utilized

Core Plot to plot a simple ECG lead in real time but did not incorporate any axes to give the user

reference of the precision or units of the data.

4.5 Development Process

The design and development of Sensor Plot Kit was taken step-by-step, where each class was

developed according to priority and necessity.

4.5.1 SPKPlotViewECG Class

We first focused on the development of the SPKPlotViewECG class to aid in creating a graph view

that adhered to the medical specifications of a standard Electrocardiogram plot. This was a top

23

priority because we wanted to prove that the Core Plot framework would be viable for plotting

ECG graphs. Although it was trivial to setup up the axes to plot according to the standard, there

were some nuances of the iOS devices that produce an unintended result. Because the aspect

ratio on iPad and iPhone devices differ depending on the generation of the device, the grid would

often appear as rectangles rather uniform squares. Typically, Apple promotes developers to use

AutoLayout to provide a uniform View experience across devices, but because the grid is setup

programmatically through the Core Plot framework, it prevented the direct use of Autolayout. The

issue was worked around by adjusting the bounds of which the grids were created, which would

force a uniform grid. In addition, there were troubles plotting grid lines with higher precision of

units, from say mV to uV. Because of the larger range of computation by a magnitude of 1000, the

device struggled to render the grid lines in the uV scale. A workaround was to force a conversion

of the input data from the sensor to mV to accommodate for the lack of support plotting in uV

units. After overcoming these hurdles, we were able to demonstrate that Core Plot was capable of

creating precise and detailed ECG plots.

4.5.2 SPKFilter Class

We focused next on creating the SPKFilter class to help filter incoming raw sensor data streams.

The class design was inspired by Apple’s Image Filter API, which applies image filters on raw

images. There are two public methods:

• init(filterWithName: String, filter: FilterType, filterValue: Any)

• applyFilter(inputBuffer : [Double]).

Using init, the developer can create a custom filter based on our provided FilterType and specify

the parameters of that filter. For example, if the developer wanted to set a Lower Limit filter to

remove data lower than a limit of 10, they would instantiate the SPKFilter class with the following

24

parameters SPKFilter("lowerLimitFilter", SPKFilter.FilterType.LowerLimit, 10). Once

the filter is created, the developer can apply the filter to an array using the applyFilter method.

This method utilizes Swift’s built-in filter method to filter out items from an array. Once the items

are filtered, the method will return the new array.

4.5.3 SPKDataStore Class

Driven by the necessity to replay captured ECG data, we focused on developing the SPKDataStore

class to load and store captured data from the iOS device’s internal flash storage. SPKDataStore has

three main methods: update(), saveToDisk(), and readFileFromDisk(filename). The update

method is an interface to SPKDataStore’s internal data buffer to store the Sensor data when it

is captured. The developer must add a call to this update function in order for the data to be

saved. The SaveToDisk function will create a new file in the application’s documents folder and

save the captured data from the DataBuffer into an array. We have implemented storing the plot

parameters into a plist file, while the remaining features are left for future work. This would allow

for seamless playback of the data array as it was captured. The readFileFromDisk function takes

in the filename that the user wants to read and outputs the array within the file. Both SaveToDisk()

and ReadFileFromDisk() methods utilize Apple’s NSFileManager API to access iOS’s file system.

In the demo application, we built out a View Controller to act as a file picker from the documents

folder and a player to view back the recorded sensor data stream. Overall, this class proved to be

not only useful for development of the framework but also a key feature for application developers

to allow users to offload data to their iOS devices.

4.5.4 SPKBuffer Class

Next we focused on the SPKBuffer class, which is a FIFO buffer that can be modified to be a cir-

cular buffer. The motivation behind creating the SPKBuffer was to be able to dynamically transfer

25

data between the SPK modules. The BabyECG application implemented a simple FIFO buffer,

which allowed the developer to enqueue or dequeue unit-length data, but with Sensor Plot Kit,

we needed the ability to enqueue or dequeue data of varying lengths. The SPKBuffer design was

inspired by the TPCircularBuffer [16], which allowed multiple methods to produce and consume

data into the buffer at varying counts. When producing data, the data is appended to the tail of the

array where consuming data is dequeued and removed from the head.

4.5.5 Demo Application Development

We next focused on determining the performance boundaries of our framework through building

a simple test bed to allow us to interactively modify the sensor data and view refresh rate within

a demo applications UI. We observed that the modifying the view refresh rate would not have

much of an affect on the performance, whereas changing the sensor data rate would cause a longer

latency in displaying the data as the framework was working harder to keep up with the plotting.

In an attempt to push the performance boundaries further, we decided to scale up the demo appli-

cation by linking the QT Medical ECG device and plotting the full 12 leads in real time. On the

initial run of the full 12-lead ECG view, the application struggled to plot the data as the latency

had delays of over 12 seconds.

We then investigated possible explanations and solutions to the sluggish latencies. After further

research on the Core Plot forum, we realized that we did not account for the difference in per-

formance that would occur on iPads with and without Retina screens. Retina screens are high-

resolution displays with up to 4x the pixel density of a non-Retina screen. So comparing an iPad

3 with a Retina screen to an iPad 2 without, the iPad 3 would have to do up to four times more

work. After disabling the number of simultaneously leads, we were able to get 4 leads to plot at

comparable speeds to that of a single lead display. Furthermore, we investigated moving the ren-

dering of the plot data onto the main thread of the CPU, but later realized through experiments that

26

rendering is best kept off the main thread as it may starve other important processes. Lastly, we

investigated other options to improve performance and found that avoiding the use of transparent

colors and colors with an alpha less than one will increase the amount of work when rendering the

plot.

4.5.6 Migration to MVVM Architecture

With the test bed, network logic, and SPK framework integrated into the demo application, it

became apparent that the framework was overloaded and cluttered, because the majority of the code

existed within the View Controller. After further research, we determined that it was suitable to

adapt SensorPlotKit to use an MVVM based architecture versus the loosely defined MVC design

pattern. We then adapted a delegate and protocol based structure for communication between

modules. This allowed for a structured and clear interpretation of the frameworks API as the

majority of iOS frameworks utilize the same delegate and datasource protocol.

4.5.7 Performance Improvements

Another minor improvement was changing the method at which plot parameters were set. The

BabyECG application created an interface within the Storyboard development environment using

IBDesignable variables, which are settable within each View. While creating the 12-lead ECG

demo application, we found that using the storyboard to set the plot parameters was extremely te-

dious and often unstable as Xcode would constantly crash while setting the variables. To make the

process more efficient, we created a structure to hold on the plot parameters and utilized datasource

methods within our protocols to pass the structure from the model to the view. Because the 12-lead

ECG views had identical plot parameters for every lead, we were able to set the parameters once

and have it applied to all 12 leads. Using the IBDesignable method, it would have required setting

8 or more variables on each of the 12 leads.

27

Lastly, to further improve plotting performance, we realized that it would be more efficient to

draw over the prior set of data points rather than pushing and popping points one at a time out of

the display buffer. Even to the untrained eye there is noticeably less jitter in plotting over points

naturally from left to right on the x axis versus using the original method of pushing points from

the furthest right point on the x axis so that they would shift and animate over to the origin of

the x axis. This method required less rendering as it only had to redraw log(n) points as more

points were draw on the screen vs. a static n redraw. We reattempted to use this method in the

demo application to plot all 12 leads and we were able to achieve our plotting objective with a

reasonable latency.

28

Chapter 5

Experimental Results

After the implementation of the Sensor Plot Framework, we challenged our functional and perfor-

mance claims by building out several applications that would be practical in the real world. Three

applications were built to validate plotting of a single lead sensor, an ECG sensor with twelve 1 out-

put leads and a prerecorded data stream to simulate a high sample rate sensor. These applications

were tested, measured and analyzed for both performance and qualitative measures.

5.1 Metrics

Several metrics are used to evaluate the framework’s performance. They include latency, sensor

data rate, and view refresh rate.
1Standard electrocardiograms have a twelve output leads however when plotting their data, there is typically an

additional lead present on the plot called Rhythm II which is interpreted from the 12 leads

29

5.1.1 Latency

The most critical metric is latency, especially when evaluating a real-time application. If the data

cannot be plotted shortly after it is received, it shows poorly on its precision and usability. Latency

is affected by many different factors, hence demonstrating low latency will in turn improve per-

formance. A major factor that will affect latency is the number of simultaneous streams of sensor

data being handled.

5.1.2 Sensor Data Rate

The sensor data rate or sampling rate is the rate at which the sensor data is received by framework

from the sensors or read in through a file. If there are multiple sensor data streams the framework

must work harder to maintain the highest data rate possible. If the sensor data rate is higher than

the rate at which the framework can process and plot data, the framework will have buffer the data,

putting additional load onto the framework.

5.1.3 View Refresh Rate

View refresh rate is another metric that measures how fast the device can render images on the

host device’s screen relative to time. It can be controlled within the framework to help tweak

performance of the plotting.

Several trade-offs can be inferred from the metrics mentioned above such as latency vs. sampling

rate vs. view refresh rate when evaluating a single stream of sensor data and latency vs. number of

sensor streams.

30

5.2 Experiment Setup

5.2.1 Case Study 1: Single Sensor Data Stream

In this application, our purpose was to observe the effects of varying the sensor’s sampling rate and

the framework’s view refresh rate. We chose the iPad and iPhone’s onboard accelerometer as our

data source to the framework, because Apple’s Core Motion framework allows developers to easily

capture real-time data at a specified sample rate in just a few lines of code. The accelerometer’s

data was also very stable and predictable, making it an obvious choice since it did not need any

filtering, and the range of the data was easily controlled.

5.2.2 Case Study 2: Wireless Multi-lead Sensor Data Stream

To further scale and stress our framework, we created an application to plot a 12-lead ECG sensor

in real time as shown in Figure 5.1. In contrast to the first case study, the ECG sensor has a

fixed sampling rate of 50 Hz and data is transmitted wirelessly over Bluetooth Low Energy (BLE)

Technology. The purpose of this case study was to demonstrate the framework’s ability to manage

buffering and rendering of a multi-lead sensor data stream in real time. In our tests, we modified

both the view refresh rate and number of streams (leads) rendered to understand its implications

on overall latency.

5.2.3 Case Study 3: High Sample Rate Sensor Data Stream

In this high performance driven application, we utilized pre-recorded ECG data stored in non-

volatile memory (flash) to act as the data source for a single-lead view output. Because we were

no longer limited by the on-device sensor or BLE ECG sensor to stimulate the framework, we

31

Figure 5.1: Screenshot of 12-lead ECG sensor streaming on the iPad 3 demo application

32

were able to utilize the iOS Simulator to simulate the application on a wider array of hardware.

We tested our application on the iPhone 6S, iPad 2, and iPad 3 simulators along with the physical

iPhone 6S and iPad 3 devices to cross-reference the latencies observed. The data is read from the

flash into DRAM, which allows the data to be available instantly so the sensor data sampling rate

was dictated by the view refresh rate. We dramatically increased the view refresh rate to push the

rendering boundaries in an attempt to find the highest rate that would incur no latency.

5.3 Performance Results

For all the applications, we calculated latency through the same method. We first measured the du-

ration of time from when a single point of data was received from the sensor in the SPK framework

to when it was submitted to be rendered by Core Plot. Since we explicitly set a timer to dictate how

often the View should render new points from the sensor, we took the delta between the set view

refresh interval to the observed duration to determine the latency of the framework plotting. It was

our initial intention for the latency calculation to include the duration of time it took the internal

Core Graphics framework to plot the physical pixels on the screen after receiving the request from

Core Plot, but we were unable to find a callback API within Core Graphics to notify the completion

of rendering.

5.3.1 Case Study 1: Single Sensor Data Stream

In our experimental run when plotting the accelerometer data, we noticed minimal latency when

the view refresh rate and data-sampling rate were set to 30 Hz. We attempted to adjust the sampling

rate to be faster than the view refresh rate but observed that data will be bottlenecked by the view

refresh rate. In addition, setting the view refresh rate greater than the data-sampling rate would be

inefficient and impractical as the process would attempt to refresh the view data despite no new

33

Sensor Data Rate (Hz)

Device 30 40 50 60 70 80 90 100 110 120 130 140 150

iPhone 6S < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms 4ms 13ms 17ms 114ms 152ms 1058ms

iPad 3 182ms 687ms 1090ms 1598ms 1948ms 2055ms 2315ms 2370ms 2449ms 2611ms 2794ms 3000ms 3650ms

La
te

nc
y

in
 m

illi
se

co
nd

s
(m

s)

0

0.925

1.85

2.775

3.7

Sensor Data Rate (Hz)
30 40 50 60 70 80 90 100 110 120 130 140 150

iPhone 6S iPad 3

Figure 5.2: Performance Results: Single Sensor Data Stream

available sensor data.

We experimented further by increasing the refresh and data rates to determine the threshold at

which the devices could maintain minimal latency. The results are seen in Figure 5.2.

The iPhone 6S had a dramatically better performance over the iPad 3 as it had a smaller LCD

screen and more powerful processor. There was a negligible latency at refresh and data rates up

to 100 Hz. Once we pushed the rate to 150 Hz did we start noticing latency of around 1 sec. In

addition we observed significant signs of interpolation of the accelerometer data when the sample

rate was at 150 Hz.2

2The accelerometer within the iPhone has an observed minimum and maximum sampling rate of 10 Hz and 100
Hz to conserve battery power. [12]

34

The iPad 3 was slower overall, with mediocre latencies when plotting under 50 Hz. Above 50 Hz,

the latency was not feasible for use.

5.3.2 Case Study 2: Wireless Multi-lead Sensor Data Stream

In this case study, we experimented with plotting multiple leads simultaneously on a single screen.

We kept the view refresh rate fixed at 30 Hz and the sensor data rate at 50 Hz. The purpose of

this experiment was to determine the performance characteristics when plotting multiple leads by

adjusting the number of lead stream. We first tested running the full 13 streams at 30 Hz connected

to the QT Medical ECG device and observed negligible latency on the iPhone 6S at around 2 ms. In

stark contract, the iPad 3 had a latency of over 12 seconds, which rendered the application useless

for real-time use as shown in Figure 5.5

5.3.3 Case Study 3: High Sample Rate Sensor Data Stream

Here we wanted to expand our testing out to a wider range of iOS hardware. We wanted to get more

data specifically on the iPad 2 as it has the same size screen as the iPad 3 but with a lower pixel

density. As the results show in Figure 5.4 the iPad 2 held a low latency below 1 sec at 50 samples

per sec, whereas the iPad 3’s latency was nearly quadrupled. This aligns with our expectations as

forums on Core Plot have suggested that retina displays like that on the iPad 3 require four times

more work than a non-retina display.

35

Number of sensor streams

Device 13 12 11 10 9 8 7 6 5 4 3 2 1

iPad 3 12s 888ms 12s 739ms 11s 484ms 10s 141ms 8s 857ms 7s 710ms 6s 401ms 4s 788ms 3s 559ms 2s 343ms 1s 139ms 256ms < 1 ms

iPad 2 < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms

iPhone 6S < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms

La
te

nc
y

in
 m

illi
se

co
nd

s
(m

s)

0

3s 425ms

6s 850ms

10s 275ms

13s 700ms

Number of Channels
13 12 11 10 9 8 7 6 5 4 3 2 1

iPad 3 Linear Trend Line iPad 2 iPhone 6S

Figure 5.3: Performance Results: Wireless Multi-lead Sensor Data

36

Sensor Data Rate (Hz)

Device 30 40 50 60 70 80 90 100 110 120 130 140 150

iPhone 6S
Device

< 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms < 1 ms 9ms 9ms 10ms 83ms 153ms 211ms

iPad 2
Simulator

29ms 497ms 514ms 1600ms 2066ms 2079ms 2289ms 2431ms 2498ms 2669ms 2698ms 2779ms 2845ms

iPad 3 Device 6ms 1436ms 2000ms 2306ms 2630ms 2822ms 3003ms 3174ms 3265ms 3348ms 3438ms 3504ms 3620ms

La
te

nc
y

in
 m

illi
se

co
nd

s
(m

s)

0

0.925

1.85

2.775

3.7

Sensor Data Rate (Hz)
30 40 50 60 70 80 90 100 110 120 130 140 150

iPhone 6S Device iPad 2 Simulator iPad 3 Device

Figure 5.4: Performance Results: High Sample Rate Sensor Data Stream

37

5.3.4 Evaluation

When considering the fluid rendering performance of high definition video streams on the iPad 3,

the SPK framework lacks the efficiency and throughput performance relative to video rendering on

iOS. Apple has specified that the iPad 3 can support the rendering and decoding of 1080p H.264

encoded video streams at a rate of least 30 frames per second [3]. The SPK framework experiences

additional latency primarily due to the software stack. Core Plot is built on top of Core Graphics

or Quartz 2D framework which has been known to not be as efficient as interfacing directly with

the OpenGL (ES) library. Apple has specifically noted that Core Graphics (also known as Quartz)

is the native drawing engine for iOS apps and provides support for custom 2D vector- and image-

based rendering. Although not as fast as OpenGL ES rendering, this framework is well suited for

situations where you want to render custom 2D shapes and images dynamically” [2]. The diagram

below shows an overview of the graphics software stack [7]. Furthermore, Core Plot does not

efficiently utilize the Graphics Processing Unit (GPU) in comparison to the Core Video framework.

Core Video efficiently pipelines and caches video frames, allowing the CPU to continuously push

new frames to the GPU as well as reduce the load on the GPU through caching when presenting

frames with similar textures. Core Plot has some caching features but we have not fully evaluated

its effectiveness. Further, we believe there could be some performance improvements to SPK to

reduce the CPU load in order to increase throughput to the GPU.

38

Figure 5.5: Graphics Software Stack on iOS [7]

39

5.4 Qualitative Results

This section discusses evaluation results based on qualitative metrics.

5.4.1 Reusability

We have achieved reusability of the SPK framework through our MVVM based design, a struc-

tured interface through explicit protocols and the creation of demo applications with minimal

modification. The MVVM design allowed our demo applications to reuse the SPKDataSource

and SPKPlotView modules as they were turnkey ready and did not need any further modifica-

tion to be incorporated into the applications from case study 1 and 3. If our framework did not

properly modularize or separate out the concerns, the applications would have required modifica-

tions in all areas of the framework. The explicit protocol definitions, SPKModelDataSource and

SPKPlotViewDataSource, made it a frictionless process to modify the source of the sensor data in

both case studies. We were able to modify the sensor data source by changing only 6 lines of code

with the SPKController. Through the clarity of design and enforcement of protocols, SPK has

been able to demonstrate reusability.

5.4.2 Scalability

Scalability of the SPK framework has been exhibited through the extensibility of increasing the

number of sensor streams. In case study 2, we implemented an application that managed multiple

sensor streams through the simplicity of instantiating additional SPKPlotViewECG modules for each

sensor stream. Further, we established that there existed a linear increase in latency in relation to

the number of sensor streams outputted. We determined on the iPad 3 that each additional sensor

stream would inflict at least an additional 1000 ms of latency. The low latency results of iPhone

6S and iPad 2 clearly demonstrates SPK’s ability to scale up the number of sensor streams.

40

5.4.3 Minimal Development Time

When SPK was originally developed using a MVC design, it took a few days to complete the

implementation. Subsequently, when we attempted to modify the sensor data source on top of the

cluttered architecture, it took upwards of two hours to update and understand the implications of

changing the data source. After shifting the design to MVVM, we were able to drastically reduce

our development time of the demo applications. Once the initial demo application was built, we

were able to bring up the application in case study 3, through modification of the sensor data

source, in under ten minutes. The multi sensor stream application in case study 2 took around two

hours to implement. SPK’s strengths in structured MVVM design and reusability has allowed the

framework to significantly reduce development time of sensor plotting applications.

41

Chapter 6

Conclusion

6.1 Summary

This thesis presents the Sensor Plot Kit (SPK) for helping the development of iOS apps that must

perform viewing of real-time streaming sensor data or archived data. Our use of the Model View

View-Model (MVVM) design pattern addresses a pitfall with the standard Model View Controller

(MVC) pattern in iOS, where the view controller can quickly become too complex. MVVM re-

duces complexity and maximizes code reusability while remaining compatible with MVC. With

short latencies and high data rates, our proposed SPK is suitable for advanced medical applications

such as electrocardiograms (ECG). Our results on real-world applications show that developers

find it much quicker to build low-latency, high-throughput, real-time plotting apps that are robust

and maintainable. The fact that SPK is open-source makes it easy to customize and embed into a

wide range of apps in many application domains in science, engineering, medicine, the financial

market, and many other fields.

42

6.2 Future Work

The SPK described in this thesis represents the first step in this direction. In terms of performance,

there is room for improvement in the reduction of software latencies especially for iPad devices

that plot simultaneous streams of sensor data. Characterization of the latencies would help iden-

tify areas of optimization. I believe the manner at which multiple views are refreshed could be

optimized to work in parallel rather than in a sequential manner.

Many new features remain to be implemented for future work, especially for medical applications.

The medical industry would highly benefit from the support of additional medical sensor types as

well as the ability to load and store data in medical standard formats such as DICOM. Furthermore,

SPK has the potential to expand its interface by supporting the loading and storing of sensor data

from cloud based servers or nearby mobile devices. This would broaden the framework’s impact

and increase the accessibility of its data. To take advantage of the touch screen and robust User

Interface, SPK could provide the ability for users to annotate and take in notes of the sensor data

as it streams in real-time.

43

Bibliography

[1] Apple. Delegates and Data Sources. https://developer.apple.com/

library/ios/documentation/General/Conceptual/CocoaEncyclopedia/

DelegatesandDataSources/DelegatesandDataSources.html.

[2] Apple. iOS Technology Overview. https://developer.apple.com/library/ios/

documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/

MediaLayer.html.

[3] Apple. iPad (3rd generation) - Technical Specifications. https://support.apple.com/

kb/SP647?locale=en_US.

[4] Apple. Model-View-Controller. https://developer.apple.com/

library/ios/documentation/General/Conceptual/CocoaEncyclopedia/

Model-View-Controller/Model-View-Controller.html.

[5] A. Chernish. Lightweight iOS view controllers. https://yalantis.com/blog/

lightweight-ios-view-controllers-separate-data-sources-guided-mvc/.

[6] T.-C. B. Chien. BabyECG. http://git.epl.tw/qtmedical/ecg_iosapp/tree/

master/BabyECG.

[7] D. Eggert. Getting Pixels onto the Screen. https://www.objc.io/issues/3-views/

moving-pixels-onto-the-screen/.

[8] A. Furrow. Introduction to MVVM. https://www.objc.io/issues/13-architecture/
mvvm/.

[9] E. Goloboyar. Graceful approach to working with Core Plot. https://yalantis.com/

blog/work-core-plot-library-alternative-approach/.

[10] INNOVENTIONS, Inc. Sensor Kinetics. https://itunes.apple.com/us/app/

sensor-kinetics/id579040333?mt=8.

[11] K. Katevas, H. Haddadi, and L. Tokarchuk. Poster: Sensingkit: A multi-platform mobile
sensing framework for large-scale experiments. In Proceedings of the 20th Annual Interna-
tional Conference on Mobile Computing and Networking, 2014.

[12] C. Labs. setAccelerometerInterval. https://docs.coronalabs.com/api/library/

system/setAccelerometerInterval.html.

44

https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/DelegatesandDataSources/DelegatesandDataSources.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/DelegatesandDataSources/DelegatesandDataSources.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/DelegatesandDataSources/DelegatesandDataSources.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/MediaLayer/MediaLayer.html
https://support.apple.com/kb/SP647?locale=en_US
https://support.apple.com/kb/SP647?locale=en_US
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/CocoaEncyclopedia/Model-View-Controller/Model-View-Controller.html
https://yalantis.com/blog/lightweight-ios-view-controllers-separate-data-sources-guided-mvc/
https://yalantis.com/blog/lightweight-ios-view-controllers-separate-data-sources-guided-mvc/
http://git.epl.tw/qtmedical/ecg_iosapp/tree/master/BabyECG
http://git.epl.tw/qtmedical/ecg_iosapp/tree/master/BabyECG
https://www.objc.io/issues/3-views/moving-pixels-onto-the-screen/
https://www.objc.io/issues/3-views/moving-pixels-onto-the-screen/
https://www.objc.io/issues/13-architecture/mvvm/
https://www.objc.io/issues/13-architecture/mvvm/
https://yalantis.com/blog/work-core-plot-library-alternative-approach/
https://yalantis.com/blog/work-core-plot-library-alternative-approach/
https://itunes.apple.com/us/app/sensor-kinetics/id579040333?mt=8
https://itunes.apple.com/us/app/sensor-kinetics/id579040333?mt=8
 https://docs.coronalabs.com/api/library/system/setAccelerometerInterval.html
 https://docs.coronalabs.com/api/library/system/setAccelerometerInterval.html

[13] N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. Campbell. A survey of mobile
phone sensing. Communications Magazine, IEEE, 48(9):140–150, Sept 2010.

[14] D. Lo. SensorPlotKit. https://github.com/derrickallenlo/SensorPlotKit.

[15] E. Skroch. Core Plot. https://github.com/core-plot/core-plot.

[16] M. Tyson. A simple, fast circular buffer implementa-
tion for audio processing. http://atastypixel.com/blog/

a-simple-fast-circular-buffer-implementation-for-audio-processing/.

[17] Vernier Software & Technology. Vernier Graphical Analysis. https://itunes.apple.

com/us/app/vernier-graphical-analysis/id522996341?mt=8.

[18] W. Yang. ECG Waves Player. https://github.com/hezone/ECGWavesPlayer.

45

https://github.com/derrickallenlo/SensorPlotKit
https://github.com/core-plot/core-plot
http://atastypixel.com/blog/a-simple-fast-circular-buffer-implementation-for-audio-processing/
http://atastypixel.com/blog/a-simple-fast-circular-buffer-implementation-for-audio-processing/
 https://itunes.apple.com/us/app/vernier-graphical-analysis/id522996341?mt=8
 https://itunes.apple.com/us/app/vernier-graphical-analysis/id522996341?mt=8
https://github.com/hezone/ECGWavesPlayer

	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE THESIS
	Introduction
	Motivation
	Contributions

	Related Work
	Sensor Data Capture
	Sensor Data Visualization

	Problem Statement
	Requirements
	Functional Requirements
	Performance Requirements

	Objectives
	Performance
	Qualitative

	Technical Approach
	Problems with Model-View-Controller Design
	Core Plot Framework
	MVC Architecture

	MVVM Solution
	MVVM
	Advantages of MVVM

	Architecture
	SPKModel
	SPKDataSource
	SPKController
	SPKPlotView

	Design Space Exploration
	Development Process
	SPKPlotViewECG Class
	SPKFilter Class
	SPKDataStore Class
	SPKBuffer Class
	Demo Application Development
	Migration to MVVM Architecture
	Performance Improvements

	Experimental Results
	Metrics
	Latency
	Sensor Data Rate
	View Refresh Rate

	Experiment Setup
	Case Study 1: Single Sensor Data Stream
	Case Study 2: Wireless Multi-lead Sensor Data Stream
	Case Study 3: High Sample Rate Sensor Data Stream

	Performance Results
	Case Study 1: Single Sensor Data Stream
	Case Study 2: Wireless Multi-lead Sensor Data Stream
	Case Study 3: High Sample Rate Sensor Data Stream
	Evaluation

	Qualitative Results
	Reusability
	Scalability
	Minimal Development Time

	Conclusion
	Summary
	Future Work

	Bibliography

