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Free energy calculations play an essential role in the study of physical transformations and

chemical reactions. Within the universe of free energy calculation applications, solvation

free energies (∆Gsolv) have a leading role: they are easy to calculate and have a broad scope

of applications, from the study distribution coefficients between two phases to solubility

prediction. This dissertation discusses some of the uses of ∆Gsolv as a tool for method

development, as a way to calculate infinite dilution activity coefficients, and as a part of an

effort to predict solubilities of molecular solids.

In chapters 2 and 3, I discuss the general features of solvation free energy calculations

and their applications. We also introduced an update of FreeSolv, a hydration free energy

database, and the use of infinite activity coefficient calculations (IDACs) as assisting tools

(or potentially substitutes) of hydration free energies in force field parameterization and

method development. Chapter 4 discusses the reproducibility of relative alchemical free

energies (RAFE) across different software (AMBER, GROMACS, SOMD, CHARMM). We

demonstrated that ∆∆Ghyd can be reproduced to within about +0.2 kcal · mol−1 and we

highlighted the differences and particularities of each code. I was responsible for running

the simulations and analyzing the results of the GROMACS code. Chapter 5 discusses an
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application of free energy calculations to the prediction of solubilities. I attempted to predict

the solubility of acetylsalicylic acid (ASA) by calculating the absolute chemical potentials of

the most stable polymorph of ASA and of solutions of different concentrations. Despite not

finding a result that agreed with experimental error, I outlined the strengths and weaknesses

of the method used and suggested improvements for future attempts.
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Chapter 1

Introduction

1.1 Free energies have a central role in understanding

much of Chemistry, Biochemistry and Pharmaceuti-

cal Sciences

Various chemical processes of biological and pharmacological importance cannot be pre-

dicted without understanding their associated free energy changes. We call free energies the

thermodynamic potentials that can be used to generate non-expansive work in a system.

The minima in the free energy hyper-surface define the equilibrium states under certain

conditions. The Helmholtz free energy (A) is the thermodynamic potential for represent-

ing systems with constant number of particles (N), volume (V ) and temperature (T ). The

Gibbs free energy (G) is the corresponding potential for systems with constant number of

particles (N), pressure (P ) and temperature (T ). Statistical mechanics is the field of Physics

that studies the connections between macroscopic quantities such as A and G to microscopic

features of a system. The Helmholtz and the Gibbs free energies are defined as functions of
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the system’s partition function (Q):

A(N, V, T ) = −kBT lnQ(N, V, T )

G(N,P, T ) = −kBT lnQ(N,P, T )

(1.1)

where kB is the Boltzmann constant. Q(N, V, T ) and Q(N,P, T ) are respectively called the

canonical and the isothermal–isobaric partition functions. They represent the sum of all

available microstates for given constrained properties of their ensembles.

Obtaining accurate absolute free energies values is not an easy task because it is impossible

to sample the full configuration space and accurately determine the partition function. It

is often possible, however, to determine free energy differences between two end states – a

reference and the system of interest. The free energy difference between two states is related

to the ratio of the partition functions (Eq. 1.2) which can be numerically estimated [1, 2].

The free energy difference (∆G) is defined by:

∆G = −kBT ln
QNPT ;final

QNPT ;initial

(1.2)

where QNPT ;final and QNPT ;initial represent the end states of a transformation. Since free

energy methods are good for sampling Qfinal/Qinitial, [3] properties such as protein–ligand

affinities, partition coefficients, activity coefficients, relative solubilities, and phase diagrams

can be predicted or understood given the definition of an adequate reference state.

1.2 The theory behind free energy calculations

The theory behind free energy calculations is known since the first half of the twentieth

century. John G. Kirkwood set the basis for free energy calculations in 1935 when he

developed an expression for the change in free energy produced by the addition or removal
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of a single molecule from a fluid system [4]. The method created by Kirkwood, currently

known as Thermodynamic Integration (TI), is based on a fictitious Hamiltonian (Eq. 1.3)

in which two end states of a transformation HA and HB are coupled by a parameter λ:

H(q,p;λ) = f(λ)HA(q,p) + g(λ)HB(q,p) (1.3)

where q and p represent all the position and momentum coordinates that define the system.

The coupling functions f(λ) and g(λ) are usually set in such a way that H = HA at λ = 0

and H = HB at λ = 1. Eq. 1.4 defines the free energy difference between states A and B

in TI. In practice, Molecular Dynamics or Monte Carlo simulations generate distributions of

〈∂H/∂λ〉λ for discrete values of λ and the free energy difference between both states.

∆G =

∫ 1

0

〈∂H(q,p;λ)

∂λ

〉
λ
dλ (1.4)

TI performs well if the integrand is smooth [5, 6, 7], but it breaks down if this condition is

not met. Numerical integration error in TI is hard to estimate because it depends on the

smoothness of the integrand, which is not something usually known and complicates free

energy uncertainty estimation.

A second approach to calculate the free energy difference between two states was derived by

Robert W. Zwanzig in 1954 through a perturbative approach [8]:

∆G = −kBT ln
〈

e
− 1

kBT
(HB(q,p)−HA(q,p))

〉
A

(1.5)

where the ensemble average is calculated over the configurations of state A. Even though

Eq. 1.5, the theoretical basis of Exponential averaging (EXP), is exact in the limit of large

samples, it is inefficient and sensitive to the tails of the distributions sampled in the simula-

tion. One way of improving EXP free energy estimates is through multistage sampling [9], in

which a chain of bridging intermediate states with overlapping configuration distributions.
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Hence:

∆G =
∑

i

∆Gi (1.6)

where ∆Gi the free energy difference between two states in the path.

A common problem in multistage approaches is the possible presence of nonintegrable sin-

gularities in 〈∂H/∂λ〉λ at terminal λ values. These singularities can happen depending on

how the stages are defined; repulsive potentials are often prone to dramatic changes when

atoms are too close to each other. This issue usually results in numerical instabilities and

large errors in calculated free energies [10, 11, 12, 13]. Numerical instabilities can be avoided

by using soft-core potentials [10], which will be described further in Chapters 2 and 4.

Configuration sampling has always been a challenge for free energy calculations [14]. An

approach for removing the systematic bias in EXP calculations combines forward and re-

verse transformations between the end states of a transformation [15, 16] using the Bennett

Acceptance Ratio (BAR) [1]. BAR, developed by Charles Bennett in 1976, estimates the

ratio between the partition function of two states [1] and yields good estimates for the free

energy even if the overlap between the states is poor. The acceptance ratio estimator (Eq.

1.7) corresponds to the minimum free energy variance. The free energy difference between

two states A and B is given by:

〈
1

1 + NA

NB
eβ∆HBA(q,p)−β∆G

〉

A

=

〈
1

1 + NB

NA
eβ∆HAB(q,p)+β∆G

〉

B

(1.7)

where NA and NB are the number of statistically independent samples gathered from states.

Methods such as umbrella sampling [17] and parallel tempering (replica exchange) [18, 19,

20, 21, 22, 23] were also developed to improve the efficiency of free energy calculations. In

umbrella sampling, a biased weighting function forces the exploration of the configuration
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space in regions that otherwise would have been insufficiently sampled. Unbiased statistics

can be recovered because the bias is known. Parallel tempering/ replica exchange depends on

calculating a simultaneous series of molecular dynamics trajectories, or Monte Carlo walks

characterized by different values of a parameter (temperature, λ, etc). et Each simulation

occasionally attempts to swap configurations between states defined by proximal parameter

values. This exchange is accepted or rejected according to the Metropolis criterion [24]. The

Multistate Bennett Acceptance Ratio (MBAR) [2] is an extension of BAR that optimally

uses samples from multiple states to estimate the free energy difference between two states –

not only the adjacent ones as BAR uses. MBAR is the most robust and well-performing free

energy estimator [7]. The reliable estimation of free energy changes many times depends on

the combination between two or more of the methods addressed above. Comparison between

different estimators will be done more thoroughly in Chapter 2.

1.3 Free energy calculations have a wide range of appli-

cations

Physical quantities such as energy, pressure and volume can be obtained from a regular

molecular dynamics or Monte Carlo simulations. As shown in Section 1.2, however, free

energies cannot be found from simple ensemble averages. Because of this issue, pioneering

applications of free energy calculations were restricted to simple systems. Initial successes

in the study of Lennard-Jones fluids at supercritical temperatures [25], liquid argon [26],

atomic clusters [27, 28], and the hydrophobic effect [29] attracted due attention and led to

the development of the field. Solvation of chemical species was also an important initial

target for free energy calculations [30, 31, 32, 33].
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As computers became more accessible in the past few decades, free energy calculations

were used in more sophisticated problems. In 1984, Tembre and McCammon outlined a

perturbative (EXP-like) approach to model ligand–receptor pairs [34]. Jorgensen used a

similar reasoning to estimate the relative solvation free energy difference between methanol

and ethanol [15], a transformation that became a standard for relative free energy calculations

(see Chapter 4). The theoretical basis for deriving protein–ligand association constant was

provided by Gilson et al. [35]. Relative free energy calculations became essential tools in

computational studies of mutations in proteins [36] and are frequently used in drug design.

Free energy calculations also found fertile ground in non-biochemical problems. Partition

and distribution coefficients can be predicted from free energy calculations [37, 38, 39, 40, 41]

as well as solubilities [42, 43, 44, 45] and phase diagrams [46, 47, 48].

This work does not attempt to cover all the possible applications of solvation free energy

calculations. Instead, it is focused on a few applications involving solvation and hydration

free energies. In chapter 2, we briefly describe the theory of solvation free energy calculations

and outline a robust protocol to calculate hydration free energies (∆Ghyd). Chapter 2 also

discusses FreeSolv, a hydration free energy database containing experimental and calculated

free energies, hydration enthalpies and entropies. Free energies and enthalpies deserve special

attention because they are routinely used to test force field parameters.

Infinite dilution activity coeffients (IDACs) are the subject of chapter 3. IDACs are promising

additions to ∆Ghyd as force field parameterization and method development tools due to the

abundance of experimental techniques to measure activity coefficients and the use of IDACs

as parameters in phase equilibria studies [49, 50, 51]. We calculated 237 IDAC values and

compared them to their experimental values obtained from the NIST database, observing

an excellent agreement with experiment.

Chapter 4 outlines a collaborative project to determine how reproducible relative alchemical

free energy calculations (RAFEs) are across different software, namely GROMACS, AMBER,
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SOMD and CHARMM. We described the particularities of each code and demonstrated that

relative hydration free energy calculations are reproducible to a limit of about 0.2 kcal·mol−1.

Chapter 5 discusses the problem of predicting the solubility of molecular solids with the

knowledge of its crystal structure. Solvation free energies are an important component of

the calculation of the chemical potential of the solution at different concentrations, but the

focus of the chapter is the calculation of the absolute free energy of the solid. Using an

acetylsalicylic acid crystal as a testing probe, we tested the Einstein Molecule Method and

proposed modifications to improve the quality of the resulting chemical potential of the solid.
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Chapter 2

Approaches for calculating solvation free

energies and enthalpies demonstrated

with an update of the FreeSolv database

Abstract

Solvation free energies can now be calculated precisely from molecular simulations,

providing a valuable test of the energy functions underlying these simulations. Here,

we briefly review “alchemical” approaches for calculating the solvation free energies of

small, neutral organic molecules from molecular simulations, and illustrate by apply-

ing them to calculate aqueous solvation free energies (hydration free energies). These

approaches use a non-physical pathway to compute free energy differences from a simu-

lation or set of simulations and appear to be a particularly robust and general-purpose

approach for this task. We also present an update (version 0.5) to our FreeSolv database

of experimental and calculated hydration free energies of neutral compounds and pro-

vide input files in formats for several simulation packages. This revision to FreeSolv

provides calculated values generated with a single protocol and software version, rather
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than the heterogeneous protocols used in the prior version of the database. We also

further update the database to provide calculated enthalpies and entropies of hydration

and some experimental enthalpies and entropies, as well as electrostatic and nonpolar

components of solvation free energies.

2.1 Introduction

Solvation free energies give the free energy change associated with the transfer of a molecule

between ideal gas and solvent at a certain temperature and pressure. While solvation free

energies (∆Gsolv) in general, and hydration free energies (∆Ghyd, solvation in water) in

particular might not seem to have far reaching implications, in fact, researchers in diverse

areas can benefit from their prediction, because such solvation free energies are related to a

broad range of physical properties such as infinite dilution activity coefficients, Henry’s law

constants, solubilities, and distribution of chemical species between immiscible solvents or

different phases.

Solvation free energies are differences in thermodynamic potentials which describe the rel-

ative populations of a chemical species in solution and gas phase at equilibrium [52, 53].

In the thermodynamic limit in the solvated phase and the ideal gas limit in the gas phase,

∆Gsolv of component i is equal to µi,solv − µi,gas, the difference in chemical potentials in the

two phases. In the additional limit of one molecule of component i at infinite dilution, these

become the infinite dilution excess chemical potentials in the respective solvents.

Solvation free energies not only tell us how much a molecule prefers one phase over an-

other, but they also can provide insight into how solvent behaves in different environments.

For example, water solvates molecules of opposite polarity differently, due to its inherent

asymmetry [54], surfaces also have asymmetric effects on ion pairing which depend on the

curvature of the surface [55], and molecular geometry and chemical environment affects hy-
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drophobic solvation [55]. Although they can be difficult to measure experimentally, ∆Gsolv

and ∆Ghyd can be calculated to a precision better than 0.4 kJ·mol−1, even with a relatively

modest investment of simulation time, for relatively diverse small neutral molecules [56] such

as those seen in the FreeSolv database of hydration free energies [57] and in recent blind chal-

lenges such as the Statistical Assessment of the Modeling of Protein and Ligands (SAMPL)

challenges. These challenges aim to improve the quality of predictive computational tools in

drug design [56, 52, 58, 59, 60, 14, 61, 57, 62, 39, 63, 64, 65, 66, 67, 40], and have leveraged

solvation free energies to help drive improvements in modeling.

Since the solvation free energy of neutral compounds is an aggregate measure of many com-

peting interactions and entropic effects that can span many kJ/mol, comparison of com-

puted solvation free energies to experiment has proven to be an exacting test of force

field quality that has been useful in revealing deficiencies in small molecule force fields

[68, 69, 54]. The relative ease by which solvation free energies can be calculated – as op-

posed to protein-ligand binding free energies, which are fraught with a variety of sampling

issues – also makes them attractive for this purpose1. For instance, SAMPL has frequently

(in SAMPL1 through SAMPL4) included blind predictions of hydration free energies in

particular [52, 58, 59, 60, 14, 61, 57, 62]. However, to our knowledge, no laboratories are

currently measuring hydration free energies, leading the field to search for other simple

physical properties that can be rapidly computed – such as relative solubilities [70], dis-

tribution coefficients [41], and solvation free energies in organic solvents [71] – as a tool

to assess and improve small molecule force fields. In computational chemistry, hydration

free energies are of particular importance because they are frequently used in force field

parameterization [72, 73, 74, 71] and in the testing of free energy methods and force fields

[52, 58, 59, 60, 14, 61, 57, 62, 75, 76, 77, 78, 79, 80, 81, 82]. Furthermore, computed free en-
1But see the Supporting Information for how protonation state/tautomer challenges may apply here, as

in protein-ligand binding.
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ergies are in some cases found to be accurate enough to highlight problems with experiments

and assist in curation of experimental data [57, 83].

Solvation free energies are often calculated by alchemical free energy methods [84], which

simulate a series of non-physical intermediates to compute the free energy of transferring a

solute from solution to gas phase (as here) or vise versa. This alchemical path provides an

efficient way to move the solute from solution to the gas phase by perturbing its interactions

in a non-physical way. Since free energy is path-independent, this non-physical process still

yields the free energy change for transfer of the solute from solvent to gas [84, 85]. The path is

formed by constructing intermediate states with interactions that modulate between the end

states of interest, with the variable λ parameterizing progress along the path. A particularly

efficient set of intermediate states uses a two step process, first turning off the van der Waals

interactions using one parameter λv, and another turning off the electrostatic interactions

using a second λe. Here, we compute the free energy change to transition between each pair

of λ values, and the overall free energy change is the sum of these pairwise differences.

While other approaches have been used to calculate solvation free energies [86], alchemical

free energy calculations using explicit solvent have become a mainstream approach [87, 12],

in part because of their formal rigor. Alternative approaches include implicit solvent models

[79, 80, 81, 82, 88], which yield ∆Ghyd but do not take into consideration solvent configuration

around the solute, and Monte Carlo based approaches using the Gibbs ensemble[89, 37, 43,

90, 91, 92, 93] and expanded ensemble [38], though these are most commonly used for

molecules that are particularly small and/or rigid.
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2.2 Hydration and solvation free energies have a range

of applications

Solvation free energies are used to estimate infinite dilution activity coefficients (γ∞i ) in many

solvents by using a single molecule of solute i[94, 95, 96, 97, 98, 99, 100]. Experimental results

obtained from gas chromatography [101, 102] can be compared to γ∞i obtained from ∆Gsolv

to further test models and methodologies that use these free energy calculations.

Solubility prediction is another field where ∆Gsolv/hyd prediction can have great value. One

methodology computes the solubility free energy by computing both the sublimation free

energy (from solid to gas) and hydration free energy (from gas to water). [103]. Another

way to predict molecular solid solubilities depends on excess chemical potential calculations.

The chemical potential, µ, of a species is calculated at different concentrations to build the

concentration-dependent chemical potential curve of solutions [42, 44, 104, 105] in order to

discover phase equilibrium conditions. Free energies of solvation in pure melts and pure

amorphous matter have been used to find upper bounds for solubilities given that most

drug-like compounds have crystal polymorphs [106, 107, 108, 109]. Relative solubilities of a

given chemical species between different solvents can also be assessed with these calculations

[110, 70]. Henry’s law solubility constants [111, 112] and solubilities in supercritical fluids

[113] can also be predicted using solvation free energies.

The latest SAMPL challenge, SAMPL5, included blind prediction of distribution coefficients

between cyclohexane and water for 53 solutes [77, 78, 114, 115]. Distribution and partition

coefficients are important properties for toxicology and pharmacology because they play

a major part in predicting absorption and distribution of a substance in different tissues

[116]. Partition coefficients – which are the distribution coefficients of the neutral form of

a compound – can be estimated from the difference between solvation free energies of the

12



neutral form of the chemical species in two different solvents [40], as shown in equation 2.1:

log10 PA→B =
∆Gsolv,A −∆Gsolv,B

RT ln (10)
(2.1)

where ∆Gsolv,A and ∆Gsolv,B are the solvation free energies of a molecule in solvents A and

B, respectively. While in principle, the calculation could be done by transferring the solute

between phases, in many software implementations it is more straightforward to simply

compute the solvation free energy in each phase separately, or the free energy of removing

the solute from each phase. Thus, solvation free energy calculations have found relatively

widespread application in calculating partition coefficients, including in SAMPL5 [39, 63,

64, 65, 66, 67, 40]. Hydration free energies themselves are valuable quantities in drug design

[12, 117] and can be used to understand the impact of ligand desolvation on the binding

process [118, 119] or can be utilized as QSAR descriptors [120].

2.3 Theory and practical aspects of alchemical calcula-

tions

Solvation free energies can be calculated in various ways. In this paper we focus on alchemical

free energy calculations, which have been one of the most consistently reliable methods in

recent applications such as the SAMPL series of challenges [52, 58, 59, 60, 14, 61, 57, 62, 41].

Consider a pair of end states A and B, and their respective Hamiltonians HA(q,p;λ) and

HB(q,p;λ).

H(q,p;λ) = f(λ)HA(q,p;λ) + g(λ)HB(q,p;λ) (2.2)

where f(λ) and g(λ) are functions of λ used to mix the Hamiltonians, typically set such that

H = HA at λ = 0 and H = HB at λ = 1; q and p represent all the positions and momenta

13



of the system. With H(q,p;λ) we can calculate the free energy difference between A and

B:

∆G =

∫ λ=1

λ=0

〈∂H
∂λ

〉
λ
dλ (2.3)

This method, called thermodynamic integration (TI) [4], is implemented in practice via a

numerical quadrature approach after simulations are done at a discrete set of λ values. It

performs similarly to more efficient methods when the integrand is smooth [5, 6, 7]. However,

it can break down when the integrand is not smooth, and it can be difficult to capture

numerical integration errors in resulting uncertainty estimates.

Exponential averaging (EXP), also known as Free Energy Perturbation (FEP), was intro-

duced by Zwanzig [8]. In this method, the free energy difference between two states A and

B is given by:

∆G = − 1

β
ln 〈e−β[HB(q,p;λ)−HA(q,p;λ)]〉A (2.4)

where β = (kBT )−1. Although equation 2.4 is exact in the limit of large numbers of samples,

EXP is inefficient and particularly sensitive to the tails of the relevant distributions, leading

to unstable free energy estimates and other large biases when configurations sampled in

one state are very unlikely to be found in the other state, and vice-versa. The probability

that describes this likelihood is called the phase-space overlap between the two states. EXP

convergence is far from ideal, requiring states to have sizable phase-space overlap with one

another. [84, 6, 121]. Thus, addition of intermediate states (with values of λ between 0 and 1)

can improve overlap dramatically and thus the quality of the final result [122]. Another issue

is an asymmetric bias depending on which direction the free energy difference extrapolation

is performed [123, 124], so other analysis methods are now preferred[84]. In the limit of
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adequate sampling, EXP converges to the same free energy value in both directions, but

there are other ways to calculate free energies more efficiently.

An alternate method, the Bennett’s acceptance ratio (BAR), uses the information from both

directions to derive the following relationship (which can and has been written in numerous

ways):

〈
1

1 + NA

NB
eβ∆HBA(q,p)−β∆G

〉

A

=

〈
1

1 + NB

NA
eβ∆HAB(q,p)+β∆G

〉

B

(2.5)

where NA and NB are the number of statistically independent samples gathered from states

A and B, and ∆HBA(q,p) = HB(q,p) − HA(q,p) = −∆HAB(q,p) are the Hamiltonian

differences between the states at a given point in phase space.

This expression minimizes the free energy variance [1] and makes BAR much more efficient

than EXP [123, 124]. The Multistate Bennett acceptance ratio (MBAR) is an extension of

BAR that considers the overlap between a given state and all the others in the path between

the end states [2]. BAR and MBAR perform similarly when the spacing between interme-

diate states is moderate [7] and therefore only neighboring states have phase-space overlap.

Weighted histogram analysis method (WHAM) [125, 126] is essentially an approximation

to MBAR, and thus also gives very similar results when carefully done with appropriately

small bins. MBAR performs consistently well, and indeed is perhaps the most consistently

well-performing free energy estimator, [7] thus we recommend it as the analysis method of

choice whenever possible. TI usually is more sensitive to the choice and number of interme-

diate states than BAR [127], but it can perform as well as BAR and MBAR if the integrand

is smooth [5, 6]. EXP should generally be avoided due to its asymmetric bias and sensitivity

to the tails of the distribution [123].
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2.3.1 Choice of alchemical pathway

Alchemical free energy calculations were given this name because the pathway involves un-

physical changes to the atomic identities, such as to the interactions between components

[34, 12, 128]. Solvation free energy calculations can use several different approaches to

modulating interactions. One approach, called decoupling, modulates only the interactions

between the solute and its surroundings, retaining internal interactions (the approach we

use here). An alternative approach, called annihilation, removes internal non-bonded in-

teractions within the solute as well as those with the surroundings. Mixtures of the two

approaches are also possible, such as annihilating internal electrostatic interactions while de-

coupling non-polar interactions. Here, three main thermodynamic states are considered: a

single, non-interacting molecule of the solute in a box of solvent; the solute molecule that in-

teracts with its surroundings through nonpolar (dispersion and repulsion) forces; and a fully

interacting system, in which solvent molecules interact with the solute molecule through both

electrostatic and nonpolar (dispersion and exclusion) forces. Simulations are then conducted

over a series of intermediates connecting these states: going through a phase which changes

electrostatic interactions only, and another phase which modifies van der Waals interactions

only (figure 1). Each of these intermediates has high configuration space overlap with at least

neighboring states, allowing precise calculation of free energy differences [11, 129, 130, 131].

The most straightforward way to switch between states is the linear pathway

H(q,p;λ) = (1− λ)HA(q,p) + λHB(q,p) (2.6)

but this pathway is in general problematic for solvation of all but the smallest molecules. This

is because repulsive forces are often handled by a 1/r12 term (such as in the Lennard-Jones

functional form) which leads to non-integrable singularities in 〈∂H/∂λ〉 at terminal λ values

due to sudden changes in the potential at small r. This is a not a problem which is specific
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Figure 1: Thermodynamic cycle used to calculate hydration free energies (or, more gen-
erally, solvation free energies). In (A), we have states in which charge-charge interactions
between the solute and its environment are progressively turned off. In (B) dispersion in-
teractions between solute and water are progressively turned off. Colored atoms (green for
carbon, red for oxygen, white for hydrogen) have electrostatic and nonpolar interactions with
the environment; gray atoms retain only nonpolar interactions; and transparent atoms have
no interactions with their environment (and thus represent the solute in vacuum).

to TI; rather, this issue can still result in numerical instabilities or large errors in calculated

free energies even with other analysis approaches [12, 10, 13]. Thus, more complicated λ

pathways are required, such as soft-core potentials, which should in general be used to avoid

such numerical problems [10, 11, 13]. A common soft-core form for Lennard-Jones potential

between two particles i and j is:

ULJ
ij (rij, λ) = λn4εij

( 1

[α(1− λ)m + (rij/σij)6]2
− 1

α(1− λ)m + (rij/σij)6

)
(2.7)

where εij and σij are the Lennard-Jones well-depth and lengthscale parameters, respectively,

and α is a positive constant which should typically be set to 0.5 [13, 132]. The expo-

nents m and n are most efficient at n = 1 and m = 1, but other values have been used
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too [6, 130, 13, 132]. Improvements have been achieved by new soft-core functions that

ease the problem with additional minima within the formulation of the original soft-core

potential [133], and alternate potentials that construct near optimal paths for alchemical

simulations [134]. Linear basis functions can be used as an alternative to soft-core potentials

that approaches the minimum variance possible over all pair potentials [135, 131]; these can

also enhance the efficiency of alchemical calculations.

The use of soft-core potentials promotes better convergence in many circumstances, and

provides much lower variance free energy estimates given a fixed amount of simulation time

[11, 10, 130, 132, 134], thus their use is highly recommended for successful free energy

calculations. Without soft-core potentials, convergence is much more difficult or nearly

impossible to achieve in many types of solvation free energy calculations.

2.3.2 Considerations for successful alchemical calculations

The accuracy of these calculations is affected by at least three factors [136, 137]: Is our

sampling representative and adequate? Is the free energy estimator good enough? Is the force

field adequate for the system? Are there critical chemical effects omitted from the simulation,

such as protonation state or tautomer effects? For solvation free energies of small molecules

in solvents with relatively fast dynamics, such as water, sampling is typically adequate with

a few nanoseconds of dynamics per λ window (at least for relatively rigid solutes), and the

free energy estimators above are robust when applied carefully.

However, when designing new studies, it is still important to choose robustly performing

estimators and ensure adequate sampling. As discussed above, we recommend MBAR as

the best and most reliable general-purpose estimator [7]. Sampling remains a critical issue

[14, 136], both as the solute size and flexibility grows and as solvent dynamics or environment
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become heterogeneous, for example, for solvation free energies in octanol which can form local

clusters of hydrophilic and hydrophobic sites [40], or in mixed solvents [41].

2.4 We updated FreeSolv, the free community solvation

free energy database

2.4.1 About FreeSolv

FreeSolv [57] is a hydration free energy database for neutral2 compounds that contains

experimental and calculated hydration free energy values, SMILES strings, PubChem com-

pound IDs, IUPAC names, and now (as of version 0.5, presented in this work) calculated

enthalpies and entropies of hydration of 643 small organic molecules. The molecular weights

for compounds in FreeSolv range from 16.06 Daltons (methane) to 498.88 Daltons (de-

cachlorobiphenyl). The number of rotatable bonds runs as high as 12, but most compounds

are largely rigid. Since experimental and calculated hydration free energies, ∆Ghyd, can

be computed quite precisely for quantitative comparison, FreeSolv can provide information

for force field development [72, 73, 71, 74], and can assist the testing of new solvation free

energy methods [138, 139]. One example of the use of hydration free energies as target

physical properties to fit in force field development is the Automated Force Field Topology

Builder and Repository (ATB) [140, 141, 142]. ATB is an online platform based in large

part on FreeSolv and provides similar information, though with force field parameters of the

GROMOS family. However, the database is not available in an easily downloadable public

format and is only accessible via web queries. ATB partly relies on data taken from previous

works from Mobley and collaborators [143], which are included in FreeSolv [57].
2For additional discussion of why we focus on neutral compounds, see the Supporting Information Section

I.
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While calculated hydration free energies for all compounds have been available in FreeSolv

since the database was constructed [57], previous values had been calculated with somewhat

heterogeneous protocols in a variety of different studies spread over roughly 10 years [69,

56, 143, 54, 87, 53, 14, 57]. In this work, we have updated FreeSolv by repeating all of

the calculations using a single protocol, now also computing enthalpies and entropies of

hydration.

2.4.2 Method details

We obtained FreeSolv’s calculated hydration free energies using alchemical free energy cal-

culations, connecting the end states (corresponding to the solute in vacuum and in solution)

via a λ path with 20 intermediate states (full details in SI). The first five states corresponded

to changes in electrostatic interactions, while the last 15 modified the Lennard-Jones terms

in the potential. This separation allows electrostatic interactions to be changed linearly,

and soft-core potentials to be used only when changing non-polar interactions.[131]. Box

size does not affect the result of solvation free energy calculations as long as good practices,

which recommend that box edges be at least twice the Lennard-Jones cutoff distance, are

followed [144]. We ran 5 nanoseconds of Langevin dynamics per state with 2 femtosecond

time steps in GROMACS 4.6.7 [145, 146, 147, 148, 149, 150] at 298.15K. Van der Waals

interactions were neglected beyond a smoothly switched cutoff of 1.2 nm. Different cut-off

radii are commonly used, but one should be aware the choice of cut-off can affect calculated

solvation free energies. However, long range dispersion corrections can be employed (as here)

to remove the cutoff-dependence of calculated free energies [151]. (However, it is worth not-

ing that in the case of heterogeneous systems, such as for binding free energy calculations,

it may be necessary to use reweighting techniques instead). [151] Our choice of soft-core is

the so called 1-1-6 (m and n equal to 1 in equation 2.7) which leads to statistical uncer-

tainties approximately of the same size as uncertainties from simulations using optimized
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path soft-cores [132]. Pressure was maintained at 1 atm by the Parrinello-Rahman baro-

stat [152]. Enthalpy and entropy decomposition required 60 nanosecond Langevin dynamics

simulations, with two femtosecond timesteps at 298.15 K and 1 atm in water and in vacuo

for each molecule in the database. These long simulations were necessary to reduce error

bars on the computed enthalpies to levels around 2.9 kJ · mol−1, roughly the level of typical

thermal energy ( 1 kBT ) as done in, for example, host-guest binding calculations [153]. We

used the default Langevin dynamics’ friction coefficients implemented in GROMACS (see

SI). The size of friction coefficient only affects equilibration and correlation times, but should

not affect the calculated hydration free energies and enthalpies. In order to obtain consistent

results, we used simulation boxes with 1, 309 water molecules and one solute molecule. The

same system parameters and water model were used as in the free energy calculations. Full

details can be found in the supporting materials.

Input files for version 0.5 of FreeSolv were constructed from scratch from the isomeric

SMILES strings for the compounds which are deposited in the database. From these SMILES

strings, we used the OpenEye Python toolkits [154, 155, 156] to generate molecular struc-

tures and assign AM1-BCC partial charges [157, 158], then charged mol2 files were writ-

ten out. The AMBER Antechamber package (as distributed with AMBER14) was then

used to to assign parameters from the GAFF[67] small molecule force field (version 1.7),

and these were then converted to GROMACS format and solvated with the TIP3P water

model [159]. The script which performs the setup and re-generates all input and molecular

structure files in the database is available in the scripts directory of FreeSolv and provides

full details. Following the calculations, MBAR hydration free energies were obtained using

alchemical-analysis.py (github.com/mobleylab/alchemical-analysis)[128]. Here we

also introduce FreeSolv v0.51, which extends v0.5 by making the small molecule parameter

sets available additionally in CHARMM, DESMOND, and LAMMPS formats. Additional

details can be found in the supporting material and in the FreeSolv README files.
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2.4.3 FreeSolv hydration free energy results

Computed hydration free energies are compared with experiment in figure 2.
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Figure 2: Calculated versus experimental hydration free energies for the compounds in
FreeSolv version 0.5. Calculated values are on the vertical axis and experimental on the
horizontal.

In the calculations described in this study, we found an average error of 1.3± 0.3 kJ·mol−1,

RMS error of 6.4± 0.3 kJ·mol−1, average absolute error of 4.7± 0.2 kJ·mol−1, Kendall τ of

0.80 ± 0.01, and Pearson R of 0.933 ± 0.008, comparable to those in the original FreeSolv

set [57], though some individual compounds have reasonably significant discrepancies (see

SI). This level of accuracy is consistent with what is often seen from classical fixed-charge

force fields, which typically yield RMS errors around 4-8 kJ/mol in computed hydration free

energies [12]. We have previously used this data to address force field issues on hydroxyl

groups [73], and also to highlight functional groups in the set which pose particular challenges

[87]. Full details about which compounds have systematic errors, along with the functional

groups represented in each compound, are present in the FreeSolv database itself.
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In addition to experimental and calculated values, FreeSolv now includes the free energy

of decoupling the solute-solvent electrostatic interactions (∆Gq) and the free energy of de-

coupling the nonpolar interactions in water (∆GvdW ) (available at github.com/mobleylab/

FreeSolv). These quantities have been used for various purposes, including to assist in the

study, development, and testing of implicit solvent models [160, 161]. However, it is impor-

tant to remember that these components come from our particular decomposition of the free

energy [162, 163, 164, 165], and are not state functions; other decompositions are possible,

so considerable care needs to be taken in interpreting these components. For example, anni-

hilation rather than decoupling of Coulomb interactions would result in somewhat different

decompositions due to electrostatics-induced conformational differences while van der Waals

interactions are being decoupled.

2.4.4 Hydration enthalpy calculations

In addition to hydration free energies, we have also computed enthalpies (∆Hhyd) and en-

tropies of hydration (∆Shyd), and have added these to the database. Enthalpies of transfer,

due to their larger dynamic range and lack of compensating entropic effects, are generally

more sensitive to force field parameters than free energies [166, 153, 167], and thus can be

sensitive probes of force field accuracy, providing an additional point of comparison to ex-

periments. While only a few hydration enthalpies are available experimentally, there are a

sufficient number to note that significant discrepancies between experiment and computed

values exist for some compounds (Figure S2 and Table S1). We find that compounds which

have accurate hydration free energies do not necessarily have accurate hydration enthalpies

and vise versa; for example, the calculated hydration free energy of benzene is within error of

the experimental value, but the enthalpy is off by approximately 12 kJ/mol. In contrast, the

hydration free energy of cyclohexanol is off by more than 5 kJ/mol but the enthalpy is within

error of the experimental value. Thus, clearly these quantities yield different information.
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To compute hydration enthalpies, we used a difference in potential energies between a water

box solvating the compound and a neat water box with the compound removed to vacuum:

∆Hhyd = 〈Usolution〉 − ( 〈Uwater〉+ 〈Uvacuo〉 ) (2.8)

Here, 〈Usolution〉 is the internal energy of the solution (containing the solute); 〈Uwater〉 is the

internal energy of a box of the same number of water molecules (under the same conditions)

without the solute; and 〈Uvacuo〉 is the internal energy of the solute molecule alone in vacuum.

We have neglected the pressure-volume contribution to the enthalpies, P∆V , since for solutes

of this size, the contribution is much smaller than our typical uncertainties of ≈ 2.9 kJ ·

mol−1 [166]; at larger pressures or for larger solutes than in this set, this term could become

significant. Notably, this scheme also omits other contributions that may be relevant in

making direct comparison with experimental enthalpies of hydration, including contributions

from the cost of polarizing the molecule from vacuum to solvated phase charges (relevant to

fixed-charge force fields), corrections to the vibrational modes due to the quantum chemical

nature of real solutes, nonideality of the gas phase, and the fact that the simulation of the

liquid is carried out at atmospheric pressure rather than at the vapor pressure of the gas

phase; for a review of these contributions, see [168]. We note that other groups have also

omitted these contributions, which still await a thorough assessment of relative magnitude

for small molecule hydration enthalpies [166].

Hydration entropies are calculated via the equation:

∆S =
∆H −∆G

T
(2.9)

with ∆G and ∆H calculated as described previously. Calculated hydration enthalpies exhibit

some correlation with calculated hydration free energies, but the correlation is not perfect,

indicating that enthalpies can indeed provide additional constraints on the force field [153].
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The Kendall τ and the Pearson R between the calculated ∆Hhyd and ∆Ghyd respectively

were 0.76± 0.02 and 0.943± 0.005 (see supplementary information).

Our conclusion that enthalpies can provide an additional constraint on the force field is fur-

ther supported by comparison to experimental data. Specifically, 11 experimental hydration

enthalpies and entropies from ORCHYD, a database of experimental hydration properties

[169], were added to FreeSolv. Calculated and experimental enthalpies have a Kendall τ of

0.77±0.05, and a Pearson R of 0.87±0.03 (see SI). These values indicate that the computed

hydration free energies are relatively predictive of experimental values, though there is also

clear room for improvement. Calculated hydration enthalpies and their experimental coun-

terparts show significant differences that are not observed in the plot of experimental versus

calculated free energies of the same 11 compounds, suggesting (as in previous studies [166])

that enthalpies provide additional information on the thermodynamics and constraints on

the force field (though as noted above, additional enthalpy corrections may be needed [168]).

While ∆Hhyd and ∆Shyd can act as additional constraints for force field parameters, one of

them can always be calculated from the other and the corresponding ∆Ghyd, meaning that it

is not worthwhile to use all three values as constraints simultaneously. That is, ∆Hhyd and

∆Shyd are always highly anti-correlated because of how they are calculated. More details

can be found in the supporting information.

2.4.5 Components of hydration enthalpies

We also partitioned the hydration enthalpy, ∆H, into two components: a solvent interac-

tion term and a conformational change term, ∆Hhyd
int and ∆Hhyd

conf , respectively, in order to

understand how much the solvation enthalpy is influenced by the solute conformation, and

how much solute conformation is modulated by solvation. We obtained the solvent interac-

tion component by taking the average energy of the solute in water and subtracting off the
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solute internal energy and the energy of a corresponding box of pure water, leaving only the

enthalpy change due to changing solute-solvent interactions and solvent reorganization:

∆Hhyd
int = 〈Usolv〉s − 〈Uvac〉s − 〈Uwater〉w (2.10)

where 〈Usolv〉s is the average potential energy over the original solvated trajectory, 〈Uvac〉s is

the average potential energy of the solute molecule in the solvated trajectory after removing

its water molecules, and 〈Uwater〉w is the average potential of a box of pure water containing

the same number of water molecules under the same conditions. ∆Hhyd
int thus corresponds to

the change in solvation enthalpy due to transferring a solute molecule from vacuum to water

with a fixed set of configurations (as given by the solvated trajectory) – i.e., it treats the

solute as if there is no conformational change going from gas to water, so it includes only

changes in solvent structure and solute-solvent interactions.

The conformational change component of the enthalpy is obtained by taking the change in

solute internal energy on going from gas to water, which we can evaluate as follows:

∆Hhyd
conf = 〈Uvac〉s − 〈Uvac〉v (2.11)

where 〈Uvac〉v is the potential energy of the solute molecule in vacuum evaluated from the

trajectory run in vacuum, and 〈Uvac〉s is the potential energy of the solute molecule in vacuum

evaluated from the trajectory run in solvent (after stripping the solvent molecules). ∆Hhyd
conf

thus gives the enthalpy change due to solute conformational changes on solvation; these

occur because interactions with water can stabilize configurations that are not common in

vacuum. If a compound’s distribution of configurations is unchanged on transfer to solvent,

∆Hhyd
conf will be zero. It can trivially be verified that these components still sum to the total
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enthalpy change:

∆Hhyd = ∆Hhyd
solv + ∆Hhyd

conf (2.12)

These components, while certainly not a unique decomposition of the total enthalpy, do

provide a way to intuitively understand one important set of contributions to the enthalpy

of hydration in a way which provides some insight into changes undergone by the solute

and environment. For example, solutes which undergo significant conformational changes on

solvation may tend to have a large change in the conformational component of the hydration

enthalpy (fig. 3). This happens because solutes that make hydrogen bonds with water or

have strong internal electrostatic interactions in the gas phase can assume conformations

that were energetically unfavorable in vacuo when solvated.

Figure 3: Conformational enthalpies and associated entropies of compounds with highest
∆Hhyd

conf . Error bars represent the standard error.
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2.5 Conclusions

Solvation free energies have been the subject of considerable scientific interest for many years

because they are related to a large number of physical properties. Here, we have provided

a short review of alchemical methods for computing solvation free energies of small organic

molecules, and discussed their application to hydration free energies. Solvation free energies

for such molecules can be calculated precisely and effectively using alchemical free energy

calculations, as described here. In our experience, BAR and MBAR require less tuning to

work well, while TI requires special care to get the gradients right in rapidly varying regions

and introduces unknown integration error, thus we recommend MBAR as our preferred

general-purpose method, even though TI can in principle also work well. EXP should be

avoided, in general, in partly because of the large bias introduced.

We also introduced an update to FreeSolv [57] (v0.5), a database of calculated and experi-

mental hydration free energies, enthalpies and entropies. The database was designed to be

easily incorporated into automated workflows: we provide IUPAC names, PubChem com-

pound IDs and SMILES strings, as well as topology and coordinate files, but additional

data is welcome. Additionally, we provide calculated and experimental free energy values

that can be used to assist method and force field development. Unfortunately, experimental

hydration enthalpies and entropies are not available for every compound.

Calculated free energies show reasonable agreement with experimental values (fig. 2) with

an RMS error around 6 kJ· mol−1 and an average error close to 1 kJ· mol−1. With the

aid of ORCHYD [169], we were able to extend FreeSolv to contain experimental hydration

enthalpies for a few (11) compounds for the first time. We observe significant errors for

hydration enthalpies that are much larger than those for hydration free energies, so fur-

ther investigation will be needed. This result also suggests that enthalpies can be used as

additional constraints in force field development.
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Our intention is that FreeSolv serve as an updateable, extensible community resource. While

it already covers a large number of molecules, we would be delighted to include input files

and calculated values from other force fields and/or methods so it can further serve as a

benchmark of methods, simulation packages, and so on. Additionally, while hydration free

energy data is not abundant, certainly at least some data is available that is not presently

included in FreeSolv, so community contributions of experimental data with references will be

appreciated. Additional curation of the experimental data already present is likely needed –

for example, much of the experimental data still needs to be tracked back to its original source

material rather than literature compilations of data which are currently cited. FreeSolv is

available on GitHub at http://github.com/mobleylab/FreeSolv and contributions are

welcomed there.

We believe that this update of FreeSolv will assist future efforts in force field development

and development and testing of new methods. We also hope that FreeSolv’s new features

help serve the scientific community, and provide a valuable resource the community will help

extend.

2.6 Supporting Information

2.6.1 FreeSolv has hydration free energies for neutral compounds

FreeSolv focuses on hydration free energies of neutral compounds. While many studies have

computed hydration free energies for charged species, measuring hydration free energies for

charged species in isolation is impossible, so extracting these can require extrathermodynamic

assumptions or introduce other complexities. Thus, we agree with previous work suggesting

that the main focus should be on hydration free energies of neutral compounds [54] (see

particularly footnote 61), as also discussed elsewhere [57].
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It is worth noting, however, that the database does contain a variety of carboxylic acids.

In solution, these are typically charged at neutral pH. However, hydration free energies are

typically reported for the neutral form of the molecule [57] so those are the values used here.

2.6.2 Additional practical considerations for calculation of solvation

free energies

One of the appeals of hydration free energies is that they could be relatively free of the

protonation state and tautomer issues which can challenge predictions of protein-ligand

binding; however, this seems unlikely to be true in general (though it may be true for

many of the relatively small, fragment-like compounds in FreeSolv). Particularly, small

molecules can certainly have multiple relevant tautomers in solution, tautomers which change

on transfer between environments (such as gas to water transfer), or tautomers which are

uncertain yet important for solvation and transfer properties. While these issues may not

play a major role in solvation of the present compounds, they certainly can become a factor

elsewhere, as was amply illustrated in the recent SAMPL5 challenge, which focused on

calculation of cyclohexane-water distribution coefficients. Many participants estimated these

from solvation free energies in both solutes, and protonation and tautomer issues played an

important role [41].

It is also worth noting one important issue that can affect interpretation of literature solvation

free energies – these can use different standard states. Values reported in FreeSolv are for

transfer free energies from gas (at a 1 M standard state) to solution (at a 1 M standard

state). It is also possible to report and/or calculate values for transfer from an alternate 1

atm standard state in gas to a 1M standard state in solution [54], resulting in values which

differ by an additive constant relating to the difference in gas phase standard state. Thus,
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care must be taken when pulling values from the literature in order to ensure a consistent

standard state is used.

2.6.3 Rebuilding the FreeSolv database

All input files deposited in FreeSolv were re-generated using the rebuild_freesolv.py

script deposited on our GitHub repository at github.com/mobleylab/FreeSolv. To re-

build the input files, one can simply run this script, which requires the Chodera lab’s ‘open-

moltools’ package and the Mobley Lab’s ‘SolvationToolkit’, both of which are conda instal-

lable from the omnia channel, and are also available on GitHub at github.com/choderalab/

openmoltools and github.com/mobleylab/solvationtoolkit respectively. In this partic-

ular iteration of rebuilding FreeSolv and re-running the calculations, we used openmoltools

version 0.6.7.

2.6.4 Additional plots and statistics

Figure 4(a) statistics:

• Kendall τ = 0.76± 0.02

• Pearson R = 0.943± 0.005

Figure 4(b) statistics:

• Kendall τ = 0.40± 0.02

• Pearson R = 0.60± 0.03

Figure 5(a) statistics:
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Figure 4: Correlation plots between (a) calculated enthalpies and hydration free energies
in FreeSolv, and (b) calculated entropies and hydration free energies in FreeSolv. Error bars
are given as standard errors in the mean.

• Average error = −5± 2 kJ ·mol−1

• RMS = 9± 2 kJ ·mol−1

• Average unsigned error = 7± 2 kJ ·mol−1 ·K−1

• Kendall τ = 0.7± 0.2

• Pearson R = 0.88± 0.08

Figure 5(b) statistics:

• Average error = 2.3± 0.8 kJ ·mol−1

• RMS = 3.2± 0.9 kJ ·mol−1
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Figure 5: Correlation plots between (a) the 11 calculated enthalpies in FreeSolv, and their
corresponding experimental values from ORCHYD, and (b) calculated hydration free energies
for these same 11 compounds, and their corresponding experimental values. The shaded area
indicates values within 4 kJ/mol of the x = y line.

• Average unsigned error = 2.3± 0.8 kJ ·mol−1 ·K−1

• Kendall τ = 0.85± 0.2

• Pearson R = 0.96± 0.05

2.6.5 Simulation details

The following are GROMACS 4.6.7 simulation input parameters, as are the MDP files with

full details which are deposited in the Supporting Information and on GitHub.

General information

• Friction coefficient = massparticle/τt, τt = 2.0 ps.

• Parrinello-Rahman barostat: τp = 10 ps and compressibility = 4.5 · 10−5 bar−1.
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Table 1: The 11 FreeSolv compounds with known experimental enthalpies from ORCHYD.
All values are in kJ·mol−1. Sources of experimental data are given in the FreeSolv database
itself.

FreeSolv key CID SMILES ∆Ghyd
FreeSolv ∆Ghyd

expt ∆Hhyd
FreeSolv ∆Hhyd

expt

mobley_2689721 8078 C1CCCCC1 6.3 ± 0.1 5 ± 3 -34 ± 3 -33.2 ± 0.3
mobley_2784376 6351 C1CC1 10.40 ± 0.07 3 ± 3 -19 ± 3 -23.3 ± 0.2
mobley_3053621 241 c1ccccc1 -3.4 ± 0.1 -3.8 ± 0.8 -46 ± 3 -31.8 ± 0.2
mobley_3183805 7247 Cc1ccc(c(c1)C)C -3.3 ± 0.1 -4 ± 3 -55 ± 3 -42 ± 2
mobley_3211679 8079 C1CCC=CC1 4.9 ± 0.1 0.6 ± 0.4 -38 ± 3 -35 ± 3
mobley_3452749 10686 Cc1cccc(c1C)C -3.7± 0.1 -5 ± 3 -56 ± 3 -42 ± 2
mobley_7010316 7966 C1CCC(CC1)O -17.5 ± 0.1 -23 ± 3 -71 ± 3 -70.6 ± 0.4
mobley_8006582 9253 C1CCCC1 6.90 ± 0.09 5 ± 3 -35 ± 3 -31 ± 1
mobley_8127829 7500 CCc1ccccc1 -2.5 ± 0.1 -3 ± 3 -52 ± 3 -40.3 ± 0.4
mobley_8885088 8882 C1CC=CC1 5.15 ± 0.08 2 ± 3 -33 ± 3 -26 ± 3
mobley_9100956 7962 CC1CCCCC1 7.0 ± 0.1 7 ± 3 -33 ± 3 -37 ± 2

Electrostatics

• PME cut-off: 1.2 nm.

• PME order: 6

• Fourier spacing = 0.10 nm

• additional details can be found in the MDP files deposited with this paper and on

GitHub at github.com/mobleylab/freesolv.

vdW interactions

• Cut-off: 1.0nm

• Switch at 0.9nm

• DispCorr = AllEnerPres

Free Energy calculation control parameters
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• vdW lambda schedule: 0.0, 0.0, 0.0, 0.0, 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7,

0.75, 0.8, 0.85, 0.9, 0.95, 1.0

• FEP lambda schedule (all non-specified lambdas use this schedule): 0.0, 0.25, 0.5, 0.75,

1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0

• soft-core α = 0.5

• soft-core power (m in Equation 8) m = 1

• additional details can be found in the MDP files deposited with this paper and on

GitHub at github.com/mobleylab/freesolv.

All input files were generated (as noted above) via the rebuild_freesolv.py script de-

posited in the FreeSolv GitHub repository. This relies on openmoltools; we used version

0.6.7. As noted in the main body of the text, AM1-BCC charges were assigned with Open-

Eye’s quacpac python module; we used openmoltools to drive this process. Specific source

code used for charging is available at https://github.com/choderalab/openmoltools/

blob/v0.6.7/openmoltools/openeye.py#L13 and generates molecular conformations prior

to charging, as was recommended at http://docs.eyesopen.com/toolkits/cookbook/

python/modeling/am1-bcc.html. We have found this procedure considerably more robust

than the Antechamer AM1-BCC procedure used in earlier versions of the database, in part

because it removes the dependence of charges on the input conformation.

For solvated systems, all solutes were placed in cubic boxes with at least 1.5 nm from the

solute to the nearest box edge, and then solvated with TIP3P water using the gromacs tool

genbox, so the number of water molecules used varied depending on the solute (but can be

obtained from the topology and coordinate files deposited in the database).
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2.6.6 Absolute differences between old and new FreeSolv ∆Ghyd val-

ues

Table 2 shows the largest differences between the calculated values previously deposited in

FreeSolv and those shown here. For most compounds in the set, differences are relatively

modest, but for this particular group some of the changes are quite significant. Some of these

compounds are carboxylic acids in their neutral form, which can suffer from slow sampling

of the orientation of the hydroxyl proton [53] so that may be one possible explanation for

some of the discrepancies.

Table 2: Fifteen biggest differences between old and new ∆Ghyd values, in kJ·mol−1.

FreeSolv key name old ∆Ghyd new ∆Ghyd ∆∆Ghyd

mobley_2099370 ketoprofen -49.82 -72.19 22.37
mobley_1527293 flurbiprofen -36.43 -58.42 21.99
mobley_820789 butyric acid -22.86 -39.50 16.64
mobley_2078467 ibuprofen -28.93 -45.46 16.53
mobley_2850833 2-hydroxybenzaldehyde -20.47 -36.88 16.41
mobley_4792268 pentanoic acid -22.48 -37.90 15.42
mobley_2929847 3-methylbutanoic acid -23.07 -37.03 13.96
mobley_1735893 hexanoic acid -21.27 -32.98 11.71
mobley_7758918 propionic acid -26.84 -38.05 11.21
mobley_8207196 simazine -36.13 -45.69 9.56
mobley_2913224 acetylsalicylic acid -47.10 -39.35 7.75
mobley_8916409 malathion -54.39 -46.88 7.52
mobley_1821184 3-methyl-1H-indole -27.42 -34.17 6.74
mobley_7690440 methyldisulfanylmethane 6.20 -0.39 6.59
mobley_1792062 1,2-dibromoethane 0.80 -5.34 6.13

It is possible that other discrepancies could result from parameter differences, though we

have not been able to identify any clear origins of differences. Lennard-Jones parameters

seem to be identical between the (potentially different) GAFF versions used in these setups,

though potentially there could be differences in bonded parameters (because of differences

in how input files were generated between when the database was originally constructed and

now, GROMACS topologies use different function types for these parameters so equivalent
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parameters will not appear identical). However, a more likely origin of discrepancies is par-

tial charges, as charging procedures for the studies originally used in constructing FreeSolv

in some cases used Antechamber’s AM1-BCC charging procedure on a database conforma-

tion of the molecule, rather than our current, more modern charging procedure which uses

reasonable molecular conformations before assigning AM1-BCC charges with the OpenEye

toolkits. However, we have not yet verified whether these issues can definitively be linked to

the charging procedure.

Another possibility is simply protocol differences and differences in software versions. For

example, some of our early work used constant volume simulations for our free energy calcu-

lations (after equilibration at constant pressure) which we later found could, in some cases,

introduce additional noise to calculated hydration free energies due to artifactual densities

at some λ values [87].

37



Chapter 3

Infinite Dilution Activity Coefficients as

Constraints for Force Field

Parameterization and Method

Development

Abstract

Molecular simulations see widespread use in calculating various physical properties

of interest, with a key goal being predictive molecular design. These simulations, in-

cluding molecular dynamics (MD) simulations, begin with a underlying energy model

or force field and then, based on this model, use simulations to compute properties of

interest. However, one of the most significant challenges in molecular dynamics and

modeling studies is ensuring that the force field is a good enough approximation of the

underlying physics that computed quantities can be used to reproduce experimental

properties with the desired level of accuracy. Parameterization of force fields depend

on various experimental properties including as much of the chemistry of interest as
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possible. Physicochemical properties measurable in a relatively straightforward manner

are particularly interesting for developers. Such properties can be measured for a rela-

tively diverse chemical set and used to expand the parameterization dataset as needed.

Here, we examine infinite dilution activity coefficients (IDACs) which are experimen-

tal quantities that can play this role. We retrieved 237 empirical IDACs from NIST’s

ThermoML, a database of measured thermodynamic properties, and we estimated the

corresponding values using solvation free energy calculations. We found that calculated

IDAC values correlate strongly with experiment. Specifically, the natural logarithm

of calculated and experimental IDAC values shows a Pearson correlation coefficient of

0.92 ± 0.01. The calculated IDAC values allow us to identify strengths and potential

weaknesses of force field parameters for specific functional groups in solutes and sol-

vents, suggesting these may be a valuable source of data for force field parameterization,

capturing some of the same type of information as hydration and solvation free energies

and thus potentially providing a useful new source of experimental data.

3.1 Introduction

Infinite dilution activity coefficients (IDACs) tell us how far an infinitely dilute mixture is

from ideal solution conditions [170, 49, 50, 51, 171] and they are of considerable experimental

and theoretical interest [172, 51, 95]. Deviations from ideality indicate whether a solute is

particularly good or particularly poor for a given solvent. This means that activity coeffi-

cients have a variety of downstream applications, such as for input to chemical engineering

models studying liquid-vapor coexistence [50, 171].

Ideal solutions are mixtures where the interactions between two solvent molecules are equal

to the interactions between two solute molecules and to the interactions between a solvent

and a solute molecule [170]. Real solutions, however, do not satisfy this condition; in most

cases, solute and solvent molecules have self-interactions which are not identical to their
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mutual interactions in solution. In this sense, activity coefficients can be interpreted as a

measure of the propensity of a solute molecule to interact with the solvent.

Activity coefficients are also important because they help us determine the effective concen-

tration of a particular component, or its propensity to react. Specifically, the activity of a

component in a system, or its effective concentration, is the product between the compo-

nent’s activity coefficient and its real concentration and is related to the chemical potential

of a component in a mixture (µi) (Eq. 3.1).

µi = µ0
i +RT ln γ · [i]

[i0]
, (3.1)

where γ is the activity coefficient, µ0
i is the standard chemical potential of the component,

[i] and [i0] are its concentration and standard concentration, R is the ideal gas constant, and

T is the absolute temperature. If γ = 1, the mixture is ideal; if γ > 1 or 0 < γ < 1, the

mixture behaves non-ideally.

There are different ways to express activity coefficients, including in terms of concentration,

mole fraction, or partial pressure. Here, we focus on activity coefficients expressed in terms of

mole fraction (χ) henceforth, but it is worth remembering the connections to concentration

and other forms. The reference ideal state also plays an important part in the definition of

activity coefficients. Here, we define activity coefficients with reference to an ideal solution

in the sense of Raoult’s law, where, for each component in a mixture, γi → 1 as χi → 1 [173].

In this definition, the pure liquid is considered an ideal solution because all the interactions

between its components have the same magnitude. With this reference state (called the

Lewis-Randall standard state), the activity coefficient is 1 for the pure solution. Other

reference states are also commonly employed. For example, a common textbook definition

uses an ideal dilute solution as a reference state, where the activity coefficient is 1 for a

40



solute at infinite dilution. Here, however, we use the Lewis-Randall reference state as it is

the state employed by the database of experimental values we will compare to.

An infinite dilution activity coefficient (IDAC) is the activity coefficient of a component

when its concentration is infinitely small in a mixture. It is related to the slope of isother-

mal pressure-composition phase diagrams when the mole fraction tends to zero, and is

proportional to the Henry’s Law constant [174]. The measurement of IDACs depends on

factors such as the volatility of solvent and solute [171]. Techniques such as gas-liquid

chromatography[171, 175], high-performance liquid chromatography[175] and differential

ebulliometry [171, 175, 176] are traditionally used to measure activities in extremely di-

lute systems at varying concentrations, leading to the infinite dilution activity coefficient

by extrapolation [175]. There has been considerable interest in predicting these coeffi-

cients [172, 177, 95, 178, 179, 97, 180, 181, 182, 183, 184, 185, 176, 175, 171] due to their use

in phase equilibria studies in chemical engineering applications [49, 50, 51, 179].

IDACs (also represented by γ∞) are related to solvation free energies by the following equa-

tion [172, 95, 178]:

γ∞i = exp
(∆Gsolv

i −∆Gself solv
i

kBT

)
· ρsolvent

molar

ρpure solute
molar

(3.2)

where ∆Gsolv
i is the solvation free energy of a solute i, ∆Gself solv

i is the solvation free energy

of a solute i in its bulk phase, kB is the Boltzmann constant, T is the absolute temperature,

and ρmolar is the molar density of component of the mixture.

The solvation free energy is the free energy change of transferring a molecule from an ideal

gas state to a solvent [33, 88, 53, 186, 187]. If the solvent is water, we call the solvation

free energy a hydration free energy (∆Ghyd). Solvation free energies tell us which phase a
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given molecule prefers in a multiphasic system and also provide information on how a solute

behaves in different environments [52, 53].

In this work, our interest is in physical models which can be used to calculate activity

coefficients and related properties from molecular simulations. Particularly, molecular sim-

ulations begin with a description of the energy and forces in a physical system as a function

of the coordinates — what is known as a “force field” — and allow calculation of numerous

physical properties from simulations of such systems [188] . In addition to potentially pro-

viding predictions of various quantities like host-guest and protein-ligand binding affinities

[189, 137, 190, 191, 192], distribution and partition coefficients [66, 40], solvation free ener-

gies [193, 194, 195] or other physical properties for design applications, comparison of such

results to experiment provides a quantitative test of the underlying physical model or force

field.

Hydration and solvation free energies have proved particularly valuable in quantitatively

testing all-atom molecular simulations and force fields and in highlighting systematic errors,

in part because ∆Gsolv and ∆Ghyd for small molecules can be calculated to a precision better

than 0.1 kcal/mol [68, 143]. The SAMPL series of blind challenges for computation have

helped illustrate this, with several challenges focusing on solvation and hydration free en-

ergy prediction [52, 58, 59, 83, 196]. SAMPL1 through SAMPL4 featured blind prediction of

hydration free energies [52, 58, 59, 83]. SAMPL5 included the prediction of partition coef-

ficients, which also required the calculation of solvation free energies in water, cyclohexane,

and octanol [197, 196]. Likewise, the FreeSolv database of calculated and experimental hy-

dration free energies has been broadly useful for similar reasons [57, 187]. Work on FreeSolv

has helped highlight and resolve various force field problems, such as with hydroxyl group

parameters [73].

Even though there are experimental and calculated hydration free energy databases such

as FreeSolv[57, 187] and ATB [142, 140], ∆Gsolv and ∆Ghyd measurements are difficult
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and require considerable expertise and specialized equipment, so few to no experimental

measurements are presently made [52]. Infinite dilution activity coefficients, however, are a

critical property of consideration when studying binary mixtures, and even more so as the

number of components and/or the system size grows for industrial applications [50], meaning

that they are subject to considerable experimental attention. Additionally, they are easier

to measure than ∆Gsolv and ∆Ghyd [50, 51, 101, 102], and can be calculated with similar

precision as the aforementioned free energies. This means they are an ideal candidate as an

alternative to hydration free energies for benchmarking computational chemistry methods

and force fields.

3.2 Computational Methods

We obtained experimental activity coefficients at infinite dilution from ThermoML [198, 199,

200], an XML-based system for storage and exchange of thermochemical data. ThermoML

was accessed on July 27, 2017 using thermopyl [201], a Python tool that allows interaction

with the database and provides access via a Pandas Dataframe. We made a search for

IDACs of organic compounds containing less than 40 heavy atoms at temperatures between

250 K and 400 K. All the activity coefficients were obtained approximately at 101 kPa.

The search was restricted to molecules containing no elements other than C, O, N, F, P, S,

and Cl. The heaviest solute molecule of the set was hexadecane (226.44 Da) and the lightest

was methanol (32.04 Da). The heaviest solvent molecule was tetradecanoic acid (228.37 Da)

and the lightest was water (18.02 Da). Most molecules were fairly rigid with less than three

rotatable bonds, but a few, such as hexadecane and undecane, had up to 13 rotatable bonds.

We found 263 coefficients but limited our study to 237 coefficients. The reduced set size re-

sulted from problems building the simulation boxes for some systems with solutes or solvents

with long chains, as well as parameterization issues for some tertiary amines. The final set
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contains a variety of combinations of a moderate number of different solvents and solutes.

This allows us to look for trends in accuracy both as a function of solute and as function of

solvent.

All solvation free energy calculations were performed using now relatively standard alchem-

ical free energy calculations described further below, but automated via the OpenEye Orion

cloud computing platform. The calculations could have been done on local computing re-

sources using an identical protocol, but Orion allowed for higher throughput.

Setup of calculations began with processing the solute and solvent names from the data

obtained from ThermoML. From names, SMILES strings were generated using OpenEye’s

OEChem toolkits, and stored as OEMol objects [202], with one OEMol for each solvation free

energy calculation to be done (i.e. one for calculation of the solvation free energy of each

solute in pure solute, and one for calculation of solvation free energy of the solute in pure

solvent). In each case we attached the SMILES string of the solvent (generated with OEChem)

to the OEMol for the solvent, along with the target temperature and pressure for each sim-

ulation (as these were required by the Orion workflow we constructed) and then output the

resulting set of molecules to an OpenEye binary file (.oeb) for use on Orion.

The Orion workflow then conducted solvation free energy calculations from these input files

in a straightforward manner, ultimately using Yank [203] to run free energy calculations as

further detailed below. Before input into Yank, however, simulation boxes were built and

parameters were assigned. Specifically, starting geometries for simulation boxes were built

(in PDB format) from the solute and the specified solvent (as indicated by SMILES strings

attached to the input molecule) using the OpenEye toolkits to generate molecular structures

and conformers, and PACKMOL (version 17.221) to build boxes consisting of the solvated

systems[204]. Force field parameters were then assigned via Antechamber and Ambertools

(version 16.16.0), using the GAFF 1.8 small molecule force field [67] and AM1-BCC charges

[157, 158] (the latter as assigned by the OpenEye toolkits, version 2018.2.1) to describe
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solvents and solutes, with the exception of water, which was modeled by using TIP3P [159].

Once parameterized, the resulting systems were stored as ParmEd [205] (version 2.7.3) objects

and attached to the OpenEye data record to progress through the workflow.

Following parameterization, equilibration stages were run using OpenMM [206, 207, 208]

(version 7.1.1), followed by production free energy calculations done with Yank (version

0.20.1), using protocols that are now relatively standard (e.g. as in [187]). Nonbonded in-

teractions were calculated for all inter-atomic distances under a cutoff of 9 . Electrostatic

interactions were computed using particle mesh Ewald (PME) [209, 210]. Each Hamilto-

nian replica exchange simulation run using Yank had 1000 iterations of 500 MD steps of 2

femtoseconds each at each λ value, totaling one nanosecond per replica. Bonds involving

hydrogen were constrained. All simulations were conducted at the target temperature and

pressure associated with the ThermoML data for the experiment, as provided by our input

files. Solvation free energies were estimated with the Multistate Bennett Acceptance Ratio

[2] (MBAR), an extension of the Bennett Acceptance Ratio [1] that considers the overlap

between a given state and all the others in the path between the end states, as provided by

Yank. MBAR is the most consistently well-performing free energy estimator [7] and is the

default free energy estimator in Yank. 5ns Langevin dynamics simulations were run using

OpenMM [207, 208] to obtain densities of pure solvents and pure solutes to calculate the

ratio in Eq. 3.2.

3.3 Results

IDACs (γ∞), as defined in the Introduction, tell us how far from ideality a mixture is when the

concentration of the solute is infinitely small. They are widely used as input for engineering

models, such as for prediction of liquid-vapor equilibria, and they can be calculated from

solvation free energies (Eq. 3.2) [172, 95, 178]. The natural logarithm of γ∞ is proportional
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to the difference between the free energy of solvation of a solute i in a given solvent (∆Gsolv
i )

and the free energy of solvation of the solute molecule in its pure bulk phase (∆Gself solv
i , free

energy of "self-solvation") plus the ratio between the densities of the solvent and the pure

solute:

kBT ln γ∞i = ∆Gsolv
i −∆Gself solv

i + kBT ln
( ρsolvent

molar

ρpure solute
molar

)
(3.3)

where kB is the Boltzmann constant and T is the absolute temperature.

Here, we calculated the solvation free energies using MBAR [2] and compared to experimental

values as shown in Figure 6.
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Figure 6: Calculated versus experimental kBT ln γ∞ for 237 solute – solvent pairs taken from
ThermoML. Calculated values are on the vertical axis and experimental on the horizontal.

We found an average error (in free energy units, as in Equation 3.3) of 0.06 ± 0.05 kcal·mol−1,

a root-mean-square (RMS) error of 0.73 ± 0.05 kcal · mol−1, an average unsigned error of
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0.48 ± 0.04 kcal ·mol−1, a Kendall τ value of 0.67 ± 0.03, and a Pearson R value of 0.92 ±

0.01.

Given that each IDAC tells us how well a solute molecule interacts with the solvent with

respect to how well it interacts with itself, Fig. 6 can potentially also give us some idea

whether a given force field underestimates or overestimates the intermolecular forces between

solvent and solute. The diagonal line in Fig. 6 corresponds to the cases where the simulation

agreed with the experiment. If a point is located below the diagonal line, the force field

potentially underestimates solute – solvent interactions relative to solute – solute interactions.

On the other hand, if a point is located above the diagonal line, the force field potentially

overestimates solute – solvent interactions relative to solute – solute interactions.

Having an extensive set of IDAC values allows us to look for systematic errors in the force field

and how it describes particular functional groups and solvents, as has been done previously

in studies with hydration free energies [143, 211]. Here, in order to detect possible issues

with force field parameters, we partitioned our dataset by functional groups and by solvents.

The absolute value of the average error of the free energy differences for functional groups

with more than five occurrences in the set can be seen in Figure 7.

Here (Fig. 7), analysis of errors by functional group is slightly complicated by the fact

that errors could depend on the identity of the solvent or the identity of the solute. In the

limit of very large datasets this should be easily surmountable, because a large number of

samples would ensure that analysis by solute would involve averaging over a large number

of solutes, and analysis by solvent would involve averaging over a large number of solutes.

Here, however, our set is relatively small, so it is important to not place too much confidence

in any analysis of systematic errors. Still, such analysis can suggest likely targets needed for

follow up studies to confirm potential problems, and some trends seem clear.
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Figure 7: Absolute values of the average errors (AE) for functional groups with more than
five occurrences in the set. Error bars denote the standard error in the mean of the quantity
on the vertical axis.

Here, based on our analysis of errors in activity coefficients broken down by the functional

group observed in the solute, we found that sulfoxide had the largest absolute value of

the average error of the set (Figure 7). In fact, the only sulfoxide present in the set was

dimethylsulfoxide (DMSO), and all IDACs involving DMSO were for this molecule in different

solvents (DMSO was never present as a solvent in the simulations). The average error of

+1.4 ± 0.2 kcal/mol suggests a systematic error in the GAFF description of DMSO (Fig.

8).

We did a similar analysis of IDAC values broken down by functional groups appearing in

the solvent. The absolute average error of the free energy differences by solvents with more

than five occurrences can be seen in Figure 9.
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Figure 8: As a solute, dimethylsulfoxide (DMSO) shows a positive shift (average error of 1.7
± 0.2 kcal·mol−1 for DMSO) with respect to the y = x line, suggesting a potential systematic
error in the force field. The set contained no measurements where DMSO was a solvent.

Given that solvents tended to occur many times in IDAC measurements, our analysis by

solvent provided more data concerning potential systematic errors than did our analysis by

solute. Methanol, formamide, and ethylene glycol were the solvents whose IDACs showed

the largest average absolute errors of the set (Figure 10).

Figure 10 singles out solvents containing four different functional groups for particular analy-

sis, and highlights several potentially important trends. For instance, when examining water

as a solvent, IDAC values are nearly evenly spread around the x = y line for IDACs in water

(Fig. 10(d)), which suggests that the differences with respect to the experimental IDACs are

random in nature or are caused by solute parameters. This is perhaps expected, given that

water models are typically given special attention and parameterized quite carefully. In con-

trast, Fig. 10 (a), (b), and (c) show systematic shifts away from the diagonal line, suggesting

potential systematic errors for these solvents. Average errors were 0.9 ± 0.1 kcal·mol−1, -0.7

± 0.2 kcal·mol−1 and -0.6 ± 0.3 kcal·mol−1 for kBT log γ for solutes in diethylene glycol,
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Figure 9: Absolute values of the average errors (AE) for solvents with more than five
occurrences in the set. Error bars denote the standard error in the mean of the quantity on
the vertical axis.

methanol and tetradecanoic acid, respectively. The plots in Fig. 10(a), (b) and (c) suggest

the potential presence of systematic errors, but the size of our sample (11, 7 and 11 IDACs

per solvent in (a), (b), and (c)) limits our ability to investigate in much detail. We believe,

however, that the expansion of the data set can help confirm our analysis.

3.4 Discussion

Here, we calculated a large number of infinite dilution activity coefficients and compared

with experimental values extracted automatically from NIST’s ThermoML database. We

used relatively standard (if computationally demanding), easily-automated approaches for

calculation of solvation free energies, and performed the calculations in a high-throughput
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(a) (b)

(c) (d)

diethylene glycol

Figure 10: Plots highlighting the IDACs for solutes in diethylene glycol (a), methanol (b),
tetradecanoic acid (c), and water (d) simulations. While points in (d) are consistently spread
around the y = x line, the remaining plots suggest systematic errors in the description of
diethylene glycol, methanol and tetradecanoic acid. Additional data can be found in the
Supporting Information. AE stands for the average error of the green star-shaped points.
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manner on OpenEye’s Orion cloud computing platform. This allowed the calculations to

run in a highly parallel and relatively efficient manner and complete on an overnight time-

frame. Interestingly, agreement between calculated and experimental values is actually quite

good, and these calculations are also able to highlight clear systematic issues for particular

functional groups or types of solutes/solvents, suggesting promising areas for investigation

of possible force field deficiencies. The fact that infinite dilution activity coefficients can

also be measured in a relatively straightforward manner means these will likely serve as a

valuable source of data for future tests of computational methods.

Our calculations were kept rather short for computational efficiency, resulting in somewhat

high statistical errors. For computational efficiency, we ran only 1 ns per lambda value,

allowing each kBT log γ∞ to be computed quite quickly. With additional sampling at each

lambda value we could further reduce the statistical error and better ensure that sampling

is adequate, so extending the simulations may be something to explore in future work.

Advances in hardware have already provided considerable gains in this area, already making

it possible to perform the large number of calculations reported here in a relatively short

amount of time, in part due to the availability of GPUs [212].

Each calculated kBT log γ∞ value requires two solvation free energy calculations, which mod-

estly increases the computational cost in comparison to our traditional approach of using

hydration free energies, which requires a single free energy calculation [187] . This small

increase is worthwhile given that hydration free energies involve gas-to-water transfers while

many events computational chemistry seeks to predict (e.g. binding, solubility, partitioning,

permeation, etc.) involve transfer between condensed phases. Thus IDACs may be particu-

larly appealing for force field parameterization since IDAC calculations involve the transfer

of molecules between condensed phases, similar to biological and pharmacological events

which typically involve transfer from one condensed phase environment to another.
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We also believe that there are two other advantages of using IDACs: First, IDACs for a given

solute of interest can be obtained in different solvents, allowing the potential to explore how

well a force field represents molecules both as solutes and as solvents. Second, molecules

become polarized when transferred from gas phase to water and hydration free energies with

conventional force fields (excepting polarizable force fields) might not be able to describe this

phenomenon well; parameterization to hydration free energies could even build in systematic

error resulting from lack of treatment of polarization. This may be particularly important;

while an IDAC calculation also involves a transfer between environments, it is a transfer

between two condensed phases, which usually is associated to a much smaller change in

polarization of the solute molecule in comparison to transfer from the gas phase, as in the

case of hydration free energies. IDAC values thus could potentially be an even better way to

test how a force field represents a condensed-phase environment than hydration free energies,

and potentially a better source of parameterization data.

The abundance of kBT ln γ∞ values around zero (Figure 6) is noteworthy and is potentially

an artifact of the type of data which is available in ThermoML. Recall that a value of 0

here corresponds to an activity coefficient of 1 (see Section 4.1). Specifically, a large portion

of the available data is for transfer of solute molecules to solvents of similar polarity — for

example, transfer of a polar solute to a polar solvent, or (more commonly) transfer of a

nonpolar solute to a nonpolar solvent. If the dataset contained more cases of transfer of a

nonpolar solute to a polar solvent, or a polar solute to a nonpolar solvent, we would expect to

see more values substantially different from 0. Thus, we believe that the IDAC data should

be expanded to include more activity coefficients for compounds of very different polarity

than the solvent, to capture more features of transfers between nonpolar (or weakly polar)

environments to very polar environments.
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3.5 Conclusion

Here we reported our results calculating some 237 different infinite dilution activity coef-

ficients (IDACs) for small molecules in various solvents, and comparing to experiment. In

general, results were quite promising and showed considerable predictive power over a range

of 6 kcal/mol in free energy units.

Our results suggest that IDAC values can potentially play an important role in testing force

fields and assisting with force field parameterization. They are frequently measured for

applications in engineering while other commonly used quantities, such as hydration free

energies (∆Ghyd), are not routinely measured. Furthermore, since IDACs can be calculated

in a straightforward manner using solvation free energy calculations, they can be calculated

with essentially the same degree of precision as solvation free energies, and with the same

procedures. IDACs actually could be even better than solvation free energies, which involve

transfer between gas and liquid phases, since they are related to transfer between two con-

densed phases – pure solute and pure solvent – which makes them an ideal candidate to test

how a force field represents condensed-phase environments.

Not only are IDAC calculations appealing in principle, but our results suggest that these cal-

culations can indeed be helpful in identifying force field issues needing attention. Specifically,

graphic analysis of experimental and calculated kBT ln γ∞ values enabled the identification

of possible systematic errors in the force field used in this study. We hope that the evi-

dence shown in this work drives future research in expanding the number of experimental

activity coefficients at infinite dilution in the literature, and in using γ∞ as a new source of

constraints for force field parameterization and method development.
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Chapter 4

Reproducibility of Free Energy

Calculations Across Different Molecular

Simulation Software

Abstract

Alchemical free energy calculations are an increasingly important modern simula-

tion technique to calculate free energy changes on binding or solvation. Contemporary

molecular simulation software such as AMBER, CHARMM, GROMACS and SOMD

include support for the method. Implementation details vary among those codes but

users expect reliability and reproducibility, i.e. for a given molecular model and set

of forcefield parameters, comparable free energy differences should be obtained within

statistical bounds regardless of the code used. Relative alchemical free energy (RAFE)

simulation is increasingly used to support molecule discovery projects, yet the repro-

ducibility of the methodology has been less well tested than its absolute counterpart.

Here we present RAFE calculations of hydration free energies for a set of small or-

ganic molecules and demonstrate that free energies can be reproduced to within about
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0.2 kcal/mol with aforementioned codes. Absolute alchemical free energy simulations

have been carried out as a reference. Achieving this level of reproducibility requires

considerable attention to detail and package–specific simulation protocols, and no uni-

versally applicable protocol emerges. The benchmarks and protocols reported here

should be useful for the community to validate new and future versions of software for

free energy calculations.

4.1 Introduction

The free energy is a fundamental function of thermodynamics as it explains how processes in

nature evolve. The equilibrium balance of products and reactants in a hypothetical chemical

reaction can be immediately determined from the knowledge of the free energy difference

of reactants and products and their concentrations. The free energy landscape of a given

system, however, can be very complicated and rugged with barriers which impose limits on

how fast the process can take place. It is therefore of little surprise that the determination

of free energy changes is of utmost importance in the natural sciences, e.g. for binding and

molecular association, solvation and solubility, protein folding and stability, partition and

transfer, and design and improvement of force fields.

The calculation of free energies via molecular simulations [137, 194, 213, 214, 215] has been

particularly attractive as it promises to circumvent certain limitations of experimental ap-

proaches. Specifically, processes can be understood at the atomic level and there is the

potential that computational techniques can be more cost and time effective, especially if

they can predict the properties of new molecules before their synthesis. Thus, a multitude

of methods have been devised to make reversible work estimates accessible through compu-

tation [137, 194, 213, 214, 215]. However, the reliability of estimates is still very much a

matter of concern [194, 216].
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Here we are interested in alchemical free energy methods because they are firmly rooted in

statistical thermodynamics and should give asymptotically correct free energy estimates, i.e.

they are correct for a given potential energy function in the limit of sufficient simulation

time [217, 218, 219, 137]. The method has been applied in various forms for several decades

now since the early days of computer simulation [220, 1, 30, 31, 34, 15]. The method is also

increasingly referred as free energy perturbatioBhati:2017:JChemTheoryComputn (FEP) in

the literature, even though different techniques may have actually been used to estimate

free energy changes. The method has gained renewed attention in recent years — concomi-

tant with improvements in computer hardware design — within the traditional equilibrium

framework [35, 221, 118] and also increasingly in combination with non-equilibrium tech-

niques [5, 222, 223]. The name “alchemical” comes from the nonphysical intermediates that

often need to be created to obtain reliable estimates of free energy differences between phys-

ical end states, and because parts or all of a molecule may effectively appear or disappear

in a transformation. In the context of force field methods the transformation takes place in

parameter space, i.e. the various force field parameters are varied by scaling. This can be a

particularly efficient approach compared to methods involving physical transition pathways

or order parameters, as it does not require sampling of diffusive motions, avoids crossing

prohibitively large energy barriers if transition pathways are not well chosen, and is easier

to automate.

Alchemical free energy simulations rely on the concept of thermodynamic cycles [34]. As

the free energy is a state function, the sum of free energy changes computed around any

closed cycle must be zero. This also implies that the reversible work can be computed along

conveniently chosen legs of the cycle, even if the cycle is artificial. For example, in Fig. 11 the

relative free energy of hydration can be computed along the vertical legs, that is, following

the physical process of moving a molecule from the gas phase to the liquid phase, or along the

horizontal legs in a non-physical but computationally more efficient alchemical calculation.
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Figure 11: The thermodynamic cycle to compute the relative free energy of hydration
∆∆Ghydr = ∆Gsol − ∆Gvac = ∆G′′ − ∆G′. The example is for the ethanol ↔ methanol
transformation. A blue background indicates water and a white background indicates gas
phase. Alchemical simulations are performed along the non-physical horizontal legs while
vertical legs illustrate the physical process of moving a molecule from the vacuum to the
solution. The latter is also accessible through absolute alchemical free energy simulation,
see e.g. Ref. 187.

Absolute (standard) alchemical free energy calculation has been of particular interest for

many years [35, 221, 118, 5, 223, 224]. Absolute here really means that the equilibrium

constant of a physical reaction, e.g. binding and dissociation, can be calculated directly by

completely decoupling or annihilating a whole molecule from its environment. This term

is mostly used to distinguish it from techniques usually referred to as relative (see below).

It should be emphasized that the “absolute” approach still results in a relative free energy

between the state where the solute fully interacts with its environment and the state where it

does not. The term decoupling here is taken as meaning the scaling of the non–bonded inter–

molecular interactions between the perturbed group (all atoms that differ in at least one force

field parameter between the end states) and its environment. We distinguish decoupling

from annihilation, as the latter also includes a scaling of the intra–molecular non-bonded
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interactions in addition to the inter–molecular interactions. [85]1 Torsional interactions may

also be scaled in an annihilation protocol, but bond and angle terms are usually not scaled as

this leads to poorly converging free energy estimates. [225] These schemes may require two

simulations along the opposite edges of a quadrilateral thermodynamic cycle but approaches

that produce the reversible work directly in one simulation have been proposed as well [226,

227].

Relative alchemical free energy (RAFE) calculations transform or mutate one molecule into

another. An appealing aspect of RAFE calculations is the hope that they may be somewhat

less demanding computationally or converge better than the more ambitious approaches that

require a complete decoupling or annihilation of a ligand from its environment. RAFEs have

proven useful for instance to rank sets of related molecules according to their binding affinity

for a given receptor. This approach has recently gained increased traction in the context of

relative free binding energies between small molecules, e.g. drug or lead like molecules and

biomolecules [136, 228, 191, 229].

RAFEs can be calculated by making use of either the so–called single or dual topology

method. Dual topology means that groups of atoms of the end states are duplicated and

thus both sets are present at all times but do not interact with each other [230, 225]. The

atom types are not changed, and, in principle, the groups of both states would need to

have the same total charge to avoid partially charged intermediates. In practice this could

require, depending on force field, to duplicate all atoms of the end states. Only non–bonded

interactions need to be scaled such that the disappearing end state is fully decoupled from

its environment [225]. The dual topology method is the most straightforward approach to

compute RAFEs when the two molecules are structurally dissimilar. In situations where all

atoms in a perturbed molecule are duplicated a dual topology calculation is the technically
1It is worth noting that the terms “double decoupling method” and “double annihilation method” also

employ the words “decoupling” and “annihilation” but used in an entirely different sense in the context of
standard binding free energy calculations.
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same as two absolute calculations executed simultaneously in opposite directions. This,

however, comes with additional complications as the two independent molecules can drift

apart and sample completely different environments (e.g. binding site versus bulk solution).

It has been shown though that with the introduction of special restraints or constraints this

can be a viable option [231, 232, 233]. Restraints between corresponding atoms can also be

used without affecting the free energy [233]. A recent alternative considered molecules with

a common core where all atom types are the same. [234] The charges that would be typically

different in individual parameterization due to the local chemistry were made equal. This

means that the core does not need to be duplicated and thus is not included in the mutation.

Single topology means that the alchemical transformation of one molecule into another

molecule is handled via a single set of connected atoms. Atoms of a given type are di-

rectly transformed, typically by linearly scaling the force field parameters, into atoms of

a different type. The single topology method offers a straightforward route to implement

RAFE calculations.[230, 119, 15, 225]

An example of single topology is the simple transformation of methane (CH4) into tetraflu-

oromethane (CF4), in which real atoms are mapped into real atoms with different force

field parameters at the two end states. However, in most typical implementations, a certain

number of non-interacting “dummy” atoms must hold the place of disappearing/appearing

atoms in order to balance the number of atoms in both end states. For example, one dummy

atom is necessary to match a methane molecule (5 atoms) transforming into methanol (6

atoms). Dummy atoms have no non–bonded interactions in the end state but normally retain

the bonded terms of the original atom to avoid complications with unbound atoms [225].

Some practitioners stress that a given dummy atom should retain at most only one angle

term with respect to “real” non-dummy atoms to yield correct results [225, 235, 236]. For

example, if the angle term Atom2–Atom1–Dummy1 is included then additional angle terms

such as Atom3–Atom1–Dummy1 should not be included. Likewise, if the dihedral term
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Atom3–Atom2–Atom1–Dummy1 is included then additional terms such as Atom4–Atom2–

Atom1–Dummy1 should not be included.

The single topology approach seeks to exploit the topological and structural similarity of

the two end states. [230] Chemical similarity is also of importance; e.g. chirality and binding

modes where the relative three dimensional arrangement of groups in space must be taken

into account. These considerations notwithstanding, the single topology approach is broadly

applicable to a wide range of transformations. For example, ring breaking is technically

challenging, [229] but it has been shown this can be done in certain circumstances [237, 235].

Generally, modern MD software (e.g. AMBER, [238] CHARMM, [239] GROMACS, [150]

GROMOS, [240] and SOMD. [241, 208]) support a hybrid approach that combines aspects

of single and dual topology [235].

Another algorithmic decision for single topology is whether the implementation scales force

field parameters (“parameter scaling”) and/or energy components (“energy scaling”) [225]. In

the former case each parameter is scaled individually, e.g. in the case of a harmonic bond

or angle term, the force constant and the equilibrium distance/angle are scaled individually.

In the latter case, the total energy is scaled, all at once, or, equivalently for each individual

force field contribution. While free energy is a state function that depends only on the end

points, the pathways taken by the two methods through state space or alchemical space are

different.

As alluded to above, consistency and reliability are the principal matter of concern. In

particular, we need to ensure reproducibility of free energy results among computer codes. To

the best of our knowledge this has not been systematically tested yet for a set of different MD

packages. However, there have been some recent efforts to test energy reproducibility across

packages [242] — a necessary but not sufficient prerequisite. Another study went further

and also compared liquid densities across packages, revealing a variety of issues [243]. For

free energies, given a predefined force field and run–time parameters we ought to be able to
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obtain comparable free energy results within the limits of statistical convergence. Prior work

has successfully compared calculated absolute hydration free energies across GROMACS and

DESMOND codes. [53] This comparison has not yet been carried out for relative free energies.

Nevertheless, it is critical that free energy changes computed with different simulation soft-

ware should be reproducible within statistical error, as this otherwise limits the transferabil-

ity of potential energy functions, and the relevance of properties computed from a molecular

simulation to a given package. This is especially important as the community increasingly

combines or swaps different simulation packages within workflows aimed at addressing chal-

lenging scientific problems [244, 245, 246, 247, 248].

In this work we compute the relative hydration free energies of a set of small organic molecules

using several software and protocols (see Fig. 12). Solvation free energies have a wide range

of uses and various methods exist to compute them [86]. They are also needed for calculations

of a variety of important physical properties, and to calculate binding free energies where

the solution simulation (see Fig. 11) is combined with a mutation of the molecule bound to

a partner [86]. A large database of hydration free energies computed from alchemical free

energy (AFE) simulations, FreeSolv, has been presented recently. [57, 187] Here, we focus on

the reproducibility of RAFE with the simulation programs AMBER, CHARMM, GROMACS

and SOMD. We will discuss the reversible work results obtained with these packages and

make observations regarding simulation protocols, setup procedures and analysis techniques.

We will also deliberate on what needs to be done to progress the field, both from a usability

perspective as well as from the view point of code development.
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4.2 Methods

One practical challenge is that the free energy methodologies used in one MD program are

not always available in another package, or the same functionality is provided via differ-

ent algorithms (e.g. algorithms for pressure and temperature scaling, integrators, cufoffs for

Coulomb and vdW interactions, etc). We also note that the implementation of alchemical

free energy calculations is very different among the simulation codes (see Section 4.2.1 for

details). This implies that using the same free energy parameters across all codes, and espe-

cially using the same lambda schedule, will not automatically lead to equivalent free energies.

In Fig. 13 we show various plots of the free energy derivative versus lambda to demonstrate

this. Hence, the protocol and especially the choice of lambda values was adjusted individu-

ally for each code based on previous experience of the researchers involved. In addition there

may be differences in the choice of physical constants used for evaluating potential ener-

gies. A previous study noted that variations in the hardcoded values of Coulomb’s constant

lead to detectable differences in single point energies calculated by CHARMM, AMBER or

GROMACS [242].

To circumvent some of these practical problems, we will compare relative free energies cal-

culated via three protocols. In the “unified protocol” we calculate relative free energies by

scaling together all force field parameters simultaneously along the alchemical path — i.e.

partial charges, van der Waals parameters, and bonded parameters. In the “split protocol”

we calculate relative free energies by scaling separately the van der Waals parameters and

the partial charges parameters. The order in which this has to be done is detailed in sec-

tion 4.5.3. The scaling of the bonded terms can be combined with either transformation. In

the “absolute protocol” we calculate relative hydration free energies as the difference between

two calculated absolute hydration free energies.
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4.2.1 Alchemical Free Energy Implementations

We begin by examining the differences in the alchemical free energy implementations of

the four MD codes we consider — AMBER, CHARMM, GROMACS and SOMD. One

key difference is in the softcore functions implemented in each code as summarized in sec-

tion 4.5.1. [10, 11] Softcore functions are used to avoid the numerical stability problems of

the conventional Lennard-Jones (LJ) and Coulombic inverse power law potentials [249, 130],

as they display singularities at zero distance (vertical asymptotes). Attempting to modify

interactions by linearly scaling back the LJ potential as a function of an interaction pa-

rameter, λ, causes the r−12 term to increasingly behave as a sharp repulsive singularity as

λ → 0 [249]. This means that there is an unbounded discontinuous change between λ = 0

where particles can overlap, and λ = δ, even as δ → 0, where particles still behave like

minuscule hard spheres. This can lead to strongly fluctuating forces/energies and to severe

instabilities in the integrator, as well as numerical errors in post processing analyses even

when simulations do terminate normally [10, 11, 130].

One additional important issue is whether the code allows holonomic constraints to be applied

to bonds, which may change bond lengths in some transformations, e.g. C–H to C–C. Changes

in bond length need to account for the associated change in the free energy. These and other

details will be outlined below.

AMBER. This code uses a hybrid dual/single topology approach. All terms are energy

scaled. The perturbed group must be entirely duplicated, i.e. for sander this means two

topology files with one end state each, and for pmemd both end states in one topology file. In

AMBER16 sander and pmemd implement free energy simulations in an equivalent fashion.

However, pmemd does not support vacuum free energy simulations in that version. Hence,

all vacuum simulations needed to be run with sander while all solution runs were done with

pmemd.
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The code loads two separate input topologies that describe the end states of interest and

allows users to map atoms between the two end–states that will share the same coordinates

for the free energy calculation. Evaluation of the interactions involving these atoms as a

function of the coupling parameter is done by default via linear scaling of the energy and

forces of the end–states. Alternatively the user can request that a softcore potential be used.

Atoms that are not paired between the end–states are are effectively treated as dummy

atoms in one of the two end–states. Bonded terms involving different unpaired atoms are

ignored and their non–bonded interactions are handled with a softcore potential. We call this

the “implicit dummy protocol” since the procedure is handled automatically by the software

through analysis of the end–state topologies rather than via explicit introduction of dummy

atoms that is required in computations based on a single topology framework.

The code cannot handle bond length changes involving a constraint. There is only one global

λ for parameter transformation. Protocols that couple only some parameters (split protocols,

see below) must be emulated through careful construction of topologies. For instance one

can keep the LJ and bonded terms fixed at the initial state for a charge transformation. The

setup for the two end–states must therefore use identical atom types with only the charges

varying.

Alternatively it is possible for the user to construct an input topology of a single molecule

that explicitly contains dummy atoms such that the desired end–states can be simulated.

This is a similar approach to that employed by SOMD and GROMACS, and we call this the

“explicit dummy protocol”.

CHARMM. The PERT module duplicates the topology similarly to sander but mapped

atoms are given in the topology only once. The module requires balancing with explicit

dummy atoms. All energy terms are linearly scaled by the coupling parameter λ. The

softcore potential (activated with the PSSP keyword and used here as identifier in the further
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discussion, see the SI for implementation details) is applied to all atoms in the perturbed

group (see section 4.5.1). The code can handle constraints of changing bond lengths in the

perturbed group but this may cause incorrect results with PSSP softcores (Stefan Boresch,

private communication). There is only one global λ for parameter transformation, however,

the scripting facilities in CHARMM allow run time modification of topologies e.g. by setting

charges or LJ parameters to arbitrary values.

GROMACS. This code uses a single topology description. Bonded terms are strictly

parameter–scaled, which requires proper balancing of multi–term dihedrals, i.e. each indi-

vidual term in the Fourier series must have an equivalent in both end states. If the term

does not exist it must be created with parameters zeroing its energy. The softcore potential

applies to dummy atoms only determined from atoms having zero LJ parameters in the end

states. The code allows changing bond lengths involving constraints within the perturbed

group but this can lead to instabilities and wrong results (Michael Shirts, private communica-

tion). There are separate lambda values for LJ, Coulomb and bonded parameters (and some

other possible terms in the potential) which allows easy implementation of split protocols.

SOMD. SOMD is a software built by linking Sire and OpenMM molecular simulation

libraries. [241, 208] This code uses a single topology description. The alchemical state is

constructed at run time from an input topology together with a “patch” (list of force field

parameters to be modified). All dummy atoms needed to describe the transformation must

be present in the initial state. Bond and angle terms are parameter–scaled while the dihedral

term is energy–scaled. The softcore potential applies to atoms that become dummy atoms in

one end–state. Dummy atoms are specified by a keyword in the patch file. The code cannot

handle constraints of changing bond lengths in the perturbed group. There is only one global

λ for parameter scaling. Separated protocols (see below) must be emulated through careful

construction of the patch file.
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4.2.2 RAFE Setup

The setup for all relative free energy simulations has been carried out with the tool FESetup

(version 1.2). [247] FESetup is a perturbed topology writer for AMBER, CHARMM, GRO-

MACS, SOMD and NAMD [250] (NAMD is currently a purely dual–topolgy code and has

thus not been considered in this study due to the technical differences as explained in the

Introduction). The tool makes use of a maximum common substructure search algorithm to

automatically compute atoms that can be mapped, i.e. atoms that have a direct relationship

to an equivalent atom in the other state – atoms undergoing atom type conversion or mod-

ification. The only current limit is that rings are required to be preserved [237]. With this

strategy, a single topology description is achieved: any atom that does not match is made a

dummy atom. FESetup allows equilibration of the solvated simulation systems and ensures

that “forward” and “backward” simulations have the same number of total atoms. With

SOMD the mass of each perturbed atom is taken as the mass of the heavier end–state atom

(e.g. a hydrogen atom that is perturbed to a carbon atom has an atomic mass of 12 amu at

all lambda values). The masses of perturbed atoms are set to the mass of the heavier atom

description they are being perturbed to for SOMD. The other codes use the atom masses

of the initial state (AMBER, CHARMM) or allow the user to define how masses vary as a

function of lambda (GROMACS). The tool creates all input files with control parameters,

topologies and coordinates as required for RAFE simulations. Full details on FESetup can

be found in Ref. 247.

Fig. 12 shows all 9 transformations, run in forward and backward directions, considered in

the present study. In the limit of sufficient sampling, RAFE simulations should not depend

on the “forward” and “backward” direction of change with respect to the coupling parameter

λ. However to test for possible discrepancies, we have run simulations in both directions.

As we shall discuss in the Results section, we do see differences in some cases.
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Figure 12: The thermodynamic cycles considered in this study. To compute the free energy
of hydration, all pair–wise transformations have to be carried out once in solution and once in
vacuum. Green and blue colours in neopentane show two alternative mappings for methane.
The numbers in red denote the number of dummy atoms.

The ethane → methanol transformation is traditionally regarded as a standard test for

RAFE simulations [15, 251]. The other transformations are centered around mutations

from and to methane, and are meant to mimic components of typical transformations

that could be attempted in the context of e.g. protein–ligand binding calculations. The

2–cyclopentanylindole to 7–cyclopentanylindole (2–CPI to 7–CPI in our notation) transfor-

mation has been added to include both deletion as well as insertion of sub–parts of the

perturbed group in one transformation, an aspect not tested by the other transformations.

For neopentane → methane two alternative mappings have been considered, see Fig. 12.

One mapping has methane matched to a terminal methyl (green) and the other one has the

methane carbon matched with the central carbon in neopentane (blue). The first approach

will be called “terminally mapped” and the second one “centrally mapped”.
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4.2.3 Free Energy Simulation Protocols

One of the major goals of the present study is to ensure consistency and reproducibility from

the computational protocols. This is complicated by the fact that a given MD software may

employ a range of methods and algorithms that one may not be able to duplicate exactly

with other MD software. In particular, how the alchemical transformation is controlled via

the coupling parameter may be very different. At the most basic level, important differences

could even result from pressure and temperature scaling, integrators and other algorithms. It

is unclear if and how any of these implementation details affect results. The implementation

details of alchemical free energy simulation in code are discussed in subsection 4.2.1.

In this study we consider a set of simple organic molecules (see Fig. 12). As the focus here is

on probing for reproducibility among various MD packages, we chose fairly small, rigid and

neutral molecules to minimize statistical sampling errors, and avoid difficulties with charged

particles [232, 252]. The force field was chosen to be GAFF (version 1.8), [67] utilizing

AM1-BCC charges for the solute,[157, 158] and TIP3P for the solvent. [159] Charges were

computed with the antechamber program and missing bonded and vdW terms were gener-

ated with the parmchk2 program, both from the AmberTools16 distribution. All parameters

and input files are available at https://github.com/halx/relative-solvation-inputs. The qual-

ity of free energies estimated using various small molecule force fields has been discussed

elsewhere and is not a focus of this work; here we focus on reproducibility given a particular

force field. [253]

While the MD packages employed principally allow a “one–step” transformation [13], that

is, with both LJ and Coulombic parameters varied simultaneously (what we call a unified

protocol), it has also been proposed that carrying out a split protocol may be more effi-

cient. [254, 135, 131] In such a protocol the charges are transformed linearly between the end

states followed by a mutation of the van der Waals parameters using a softcore potential (see
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section 4.5.1) on the LJ term only. [10, 11] It is important to note that in the split protocol,

charges have to be switched off before LJ parameters (and vice versa for the transforma-

tion in opposite direction) to avoid collapse of other atoms, e.g. solvents, onto a “naked”

charge,[255, 256, 13] see section 4.5.3.

All simulations were started from simulation boxes prepared by FESetup [247]. During

construction of the perturbed systems, steric overlaps between the solute and the solvent

may happen. This is because each unperturbed solute is independently equilibrated but the

final perturbed system is a composite of coordinates from those potentially differently sized

solutes. To make the number of atoms the same for forward and backward setups, the water

coordinates of the larger of the two boxes are chosen. Thus, in transformations from a smaller

to a larger solute, water molecules may be in close proximity to the solute. At the end of

the construction process, FESetup performs a minimization onto the system. In addition,

some simulation protocols started with an additional (redundant) minimization step. All

production simulations were run at 298 K and 1.0 bar in the NPT ensemble. Water molecules

were constrained. Atomic masses were not changed along the alchemical transformations as

this would affect only the kinetic energy, and would not contribute to the free energy change.

A summary of the main algorithmic differences between each simulation package is given in

Tab. 3.

AMBER. The AMBER16 program was used for this set of free energy calculations. Typ-

ically 11 windows were used for charge mutations and 21 windows for VdW mutations. In

some instances, steep variations in TI gradients were observed by visual inspection with this

protocol and additional windows were added to obtain smoother integration profiles. The

starting coordinates were usually taken directly from the pre–equilibrated setup step but no

further λ specific equilibration was carried out, i.e. RAFE MD simulations were started with

new velocities appropriate for the final simulation temperature. In a very few cases it was
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necessary to use coordinates from the end of the simulation at a nearby λ state because of

simulation instabilities. This happened in transformations with a larger number of dummy

atoms. Absolute transformations were carried out using a one step protocol featuring 21

windows initially. For some perturbations additional windows were run in regions where

the free energy gradients varied sharply. Each window was simulated for 2.5 ns, with the

first 0.2 ns discarded prior to analysis. Water hydrogens (TIP3P) were constrained with

SHAKE. None of the atoms in the perturbed group were constrained and hence the time

step was set to 1 fs. An alternative protocol with SHAKE on bonds that do not change during

transformation and a time step of 2 fs was also tested (see SOMD protocol below). The tem-

perature was controlled through a Langevin thermostat with a friction constant of 2.0 ps−1

and pressure rescaling through a Monte Carlo barostat with 100 steps between isotropic

volume change attempts. Long–range electrostatics in solution was handled with Particle

Mesh Eward (PME) and an atom–based cutoff of 8.0Å for the real-space Coulomb and vdW

interactions. No cutoff was used for the vacuum simulations. A Long Range Correction

(LRC) term for truncated VdW interactions was applied during the MD simulations.

CHARMM. The version c40b1 was used for this set of free energy calculations. The

PERTmodule was used to handle the alchemical transformations. Three different approaches

were used to calculate the relative Gibbs free energy: (i) RAFE simulation where electro-

static and VdW interactions were changed separately (split-protocol), (ii) RAFE simulation

where electrostatic and VdW interactions were changed together (unified-protocol), and (iii)

difference between free energies from two AFE simulations where AFE simulations followed

unified-protocol. In total, 21 evenly spaced windows were used and all windows were run for

1.5 ns with a timestep of 1 fs. Most windows used the same pre-equilibrated configuration. A

few windows at the end-points (involving hydrogen being transformed to heavy atom or vice

versa) were unstable due to steric clashes with starting coordinates and were equilibrated

using 0.1 fs to 0.5 fs. Only water hydrogens (TIP3P) were constrained with SHAKE. Con-
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ditions of constant temperature and pressure control were maintained using the Berendsen

weak coupling method, with a compressibility of 4.63× 10−5 atm−1 and temperature and

pressure coupling constants of 5.0 ps−1. Long–range electrostatics in solution was handled

with PME to order 6 with a cutoff of 12.0Å for the real-space Coulomb and vdW interac-

tions. No cutoff was used for the vacuum simulations. No LRC term was applied during the

alchemical MD simulations but a solute-solvent LRC term was included in post-processing

to calculate the final free energy. The PSSP softcore potential function was used for the per-

turbed atoms. The PERT module currently does not currently support the force switching

(option VFSwitch) for LJ potentials with softcores. The CHARMM PARAM27 force fields,

however, is parameterized to use force switching [239]. Accordingly, we used the potential

switching only (option VSwitch) with an inner cutoff of 10Å and outer cutoff of 12Å.

GROMACS. GROMACS version 4.6.7 was used to carry out this set of free energy cal-

culations. Each transformation had its Gibbs free energy calculated: (i) in a single topol-

ogy approach in which LJ energy terms were changed separately from the electrostatic and

bonded components; (ii) in a single topology approach in which bonded, LJ, and electrostatic

terms are changed together; and (iii) via the difference between two absolute calculations.

In the first two cases, each alchemical transformation was described by 31 and 16 states,

respectively, and simulated for 4.2 ns with time steps of 1.0 fs in water and vacuum. We

used a 20-window alchemical protocol with five windows for charge coupling and fifteen win-

dows for LJ coupling [57, 187]. Our choice allows soft core potentials to be used only when

changing nonpolar interactions, and allows electrostatic interactions to be changed linearly

[131]. The free energies were calculated from 5 ns Langevin dynamics at 298 K. A friction

coefficient of 1.0 ps/matom was used, where matom is the the mass of the atom. No holonomic

bond or angle constraints for the solutes were used. Waters were constrained with LINCS.

A Parrinello–Rahman barostat with τp = 10 ps and compressibility equal to 4.5× 10−5 bar−1

was used. Two methods were used to calculate electrostatic interactions: Particle Mesh
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Ewald (PME) and charge group-based Reaction Field with a dielectric of 78.3, as imple-

mented in the software. PME calculations were of order 6 and had a tolerance of 1.0× 10−6,

with a grid spacing of 1.0Å. We set the real-space electrostatic and VdW cutoffs to 10.0Å;

a switch was applied to the latter starting at 9.0Å. A cutoff of 50.0Å was used for the

vacuum simulations. A Long Range Correction (LRC) term for truncated VdW interactions

was applied during the MD simulations. All transformations required the use of softcore

potentials to avoid numerical problems in the free energy calculation. We chose the 1–1–6

softcore potential for LJ terms (α=0.5 and σ=0.3) for atoms whose parameters were being

perturbed and used the default softcore Coulomb implementation in paths where charges,

LJ, and bonded terms were modified together, but no soft core potentials were applied to

Coulomb interactions when electrostatic interactions were modified separately.

SOMD. This set of free energy calculations was carried out with SOMD from the Sire

2016.1 release. [241, 208] Each alchemical transformation was divided into 17 evenly spaced

windows and simulated for 2 ns each both in water and in vacuum. The absolute hydration

free energies were computed by annihilating non-bonded interactions of the solute in two

steps. In the first step the free energy change for discharging the solute was computed. In

the second step the free energy change for turning off the Lennard-Jones terms of the dis-

charged solute was computed. Each step was carried out using 17 evenly spaced windows.

The starting coordinates for each window were obtained by an additional energy minimiza-

tion of the same pre-equilibrated and minimized configuration generated by FESetup. A

velocity-Verlet integrator was employed with a 2 fs time step. Water hydrogens (TIP3P)

were constrained with SHAKE. For the alchemical solute, only bonds involving hydrogens

which are not alchemically transformed were constrained. This approach is referred as the

“unperturbed H bond constraint protocol”. Given the number of the perturbed hydrogen

bonds in the solutes (Fig. 12, this constraint allows to use a 2 fs time-step through use of

higher atomic masses for perturbed hydrogen atoms (see discussion below). Temperature
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Table 3: Summary of the technical details for the relative hydration free energy calculations
carried out with the various codes.

AMBER CHARMM GROMACS SOMD
Version AMBER16 c40b1 4.6.7 2016.1
Module pmemd, sander PERT gmx somd-freenrg
Protocol Split protocol Unified protocol Split protocol Unified protocol

Number of λ windows 11 (charge mutations)
21 (vdW mutations) 21 evenly spaced 31 (charge mutations)

31 (vdW mutations) 17 evenly spaced

Starting coordinates FESetup pre-equilibration FESetup pre-equilibration FESetup pre-equilibration FESetup pre-equilibration
Simulation length per window 2.5 ns 1.5 ns 4.2 ns 2 ns
Timestep 1 fs 1 fs 1fs 2fs
Electrostatic method PME PME PME atom-based RF
Solvated phase cutoff 8 Å 12 Å 10 Å 10 Å
Vacuum phase cutoff no cutoff no cutoff 50 Å no cutoff
Constraint none none none H-bonds not perturbed
LRC corrections during MD post-processing during MD post-processing
Barostat Monte Carlo Berendsen Parrinello-Rahman Monte Carlo
Thermostat Langevin Berendsen Langevin Andersen

Soft core parameters

rLJ = (2σ6
ijλ+ r6

ij)
1/6

rCoul = (βλ+ rpij)
1/p

n = 1

rLJ = (2λ+ r2
ij)

1/2

rCoul = (βλ+ r2
ij)

1/2

n = 1

rLJ = (2σ6
ijλ+ r6

ij)
1/6

rcoul = rLJ

n = 1

rLJ = (2σijλ+ r2
ij)

1/2

rCoul = (λ+ r2
ij)

1/2

n = 1

control was achieved with the Andersen thermostat, [257] with a stochastic collision fre-

quency of 10 ps−1. A Monte Carlo barostat assured pressure control, with isotropic box edge

scaling moves attempted every 25 time steps. A shifted atom–based Barker–Watts reaction

field, [258] with a dielectric constant of 78.3 was adopted for the solution phase simulations

with a cutoff of 10Å. A similar cutoff was used for LJ interactions. The reaction field was

not employed in the vacuum legs, where a Coulombic potential without cutoff was used. A

protocol to account for the different treatment of intramolecular electrostatics in vacuum

and solution is described in the supporting information. The softcore parameters (Eq. 4.5)

were set to default values for all the transformations, specifically n = 0 for Coulombic in-

teractions and α = 2.0 for the LJ potential [231]. Additionally, an end-point correction

for truncated VdW potentials was applied by post-processing of end-state trajectories as

described previously elsewhere. [151, 259]
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4.2.4 Free Energy Estimations

In this work we primarily focus on TI as this is supported by all the tested MD packages

“out–of–the–box”. Equation 4.1 computes the free energy as

∆G =

∫ λ=1

λ=0

〈
H (q,p;λ)

∂λ

〉

λ

dλ (4.1)

where H (q,p;λ) is the Hamiltonian as a function of the coordinate vectors q and the

momentum vectors p, and parametric dependence on the coupling parameter λ is explicit.

The angle brackets denote the ensemble average of the gradient of the Hamiltonian with

respect to λ, at a given λ value. Results from additional estimators will be given where

available. We have used the alchemical analysis tool [128] for all analyses. This tool

provides various estimators such as TI, TI with cubic splines, BAR and MBAR. We have

used the cubic splines method to integrate the free energy. All data was sub–sampled to

eliminate correlated data [260].

All RAFE simulations were run in triplicate in forward as well as backward direction for a

total of 6 simulations per mutation. The final hydration free energy ∆∆Ghydr was computed

as the average for each direction separately. For comparison we have also calculated the

absolute (standard) hydration free energies for all molecules in Fig. 12.

To estimate the reliability and convergence of the results, the standard error of the mean

(SEM) has been calculated. The SEM is defined as

err(∆∆Ghydr) =
σ√
n

(4.2)
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where σ is the sample standard deviation of the three ∆∆Ghydr values, and n = 3. For each

free energy change the SEM was evaluated as:

err(combined) =

√∑

i

σ2
i . (4.3)

We also make use of the mean absolute error MAE (also called mean unsigned error, MUE)

to compare data sets.

MAE =
1

N

N∑

i=1

|yi − xi| (4.4)

where N is the total number of samples, yi and xi are the i–th datum to be compared.

4.3 Results

4.3.1 Overall comparison

In the following we will present our RAFE results for the thermodynamic cycles shown

in Fig. 11. We will use absolute hydration free energies here as our standard point of

comparison because for the present dataset they can be calculated with high precision [187],

and are simpler to set up and implement than relative calculations.

Tab. 4 summarizes results for the absolute hydration free energies. The table shows the

data from simulations with the protocol our groups considered most trustworthy for the

respective MD code used, as discussed in detail in the following subsections. The precision

of the calculated free energies is similar between AMBER, CHARMM and GROMACS,

whereas the SOMD free energies are less precise. This may reflect differences in the lambda

schedules and length of trajectories between the different codes. Nonetheless the standard
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Table 4: Absolute hydration free energies (in kcal/mol) and end-state densities (in g/cm3) as
obtained from AFE calculations. Uncertainties on the last decimal are given in parenthesis.

Solute AMBER CHARMM GROMACS SOMD
Free energy Density Free energy Density Free energy Density Free energy Density
(kcal/mol) (g/cm3) (kcal/mol) (g/cm3) (kcal/mol) (g/cm3) (kcal/mol) (g/cm3)

methane 2.47(1) 0.986(1) 2.48(1) 0.977(1) 2.44(1) 0.987(1) 2.52(2) 0.982(1)
methanol -3.73(1) 0.988(1) -3.72(1) 0.980(1) -3.51(1) 0.988(1) -3.70(5) 0.987(1)
ethane 2.50(1) 0.988(1) 2.50(1) 0.979(1) 2.48(1) 0.988(1) 2.56(1) 0.984(1)
toluene -0.72(1) 0.991(1) -0.64(1) 0.983(1) -0.72(1) 0.991(1) -0.55(2) 0.989(1)
neopentane 2.61(1) 0.990(1) 2.58(2) 0.981(1) 2.58(1) 0.990(1) 2.71(6) 0.987(1)
2-methylfuran -0.49(2) 0.991(1) -0.42(1) 0.983(1) -0.51(1) 0.991(1) -0.39(2) 0.989(1)
2-methylindole -6.24(1) 0.993(1) -6.06(1) 0.984(1) -6.35(1) 0.993(1) -6.06(4) 0.990(1)
2-CPI -6.05(2) 0.995(1) -6.18(4) 0.992(1) -6.54(1) 0.994(1) -6.14(9) 0.991(1)
7-CPI -5.66(3) 0.995(1) -6.28(3) 0.982(1) -6.52(2) 0.995(1) -6.1(1) 0.992(1)

errors are typically well under 0.1 kcal/mol, thus it becomes meaningful to investigate small

differences of a few tenths of kcal/mol between codes.

The ∆Ghydr obtained with the various MD packages in this way agree quite well given

statistical errors, although some larger deviations are apparent as well. GROMACS predicts

a smaller ∆Ghydr for methanol by about 0.2 kcal mol−1. The largest deviation can be found

for one of the largest molecules (7–CPI) with the AMBER result being less negative than

with the other MD packages by 0.4–0.8 kcal mol−1. This particular discrepancy does not

correlate with significant variations in density between AMBER and other codes.

As an additional check we computed densities in the fully decoupled states and compared

the results to reported densities for a pure TIP3P water box. The average densities across

all simulations are (0.980± 0.002) g/cm3, (0.973± 0.002) g/cm3, (0.979± 0.002) g/cm3,

(0.976± 0.003) g/cm3 for AMBER, CHARMM, GROMACS and SOMD respectively. AM-

BER and GROMACS show higher densities presumably because a LRC term was applied

during the MD simulations, whereas LRC terms for SOMD and CHARMM are only applied

via post-processing of trajectories. For reference, a recent study from Wang et al. reports a

TIP3P water density of 0.980 g/cm3 [261].
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Table 5: Mean Absolute Error (MAE) (kcal mol−1) between relative free energies obtained
with the absolute protocol for the SOMD, GROMACS, AMBER and CHARMM packages.

Package GROMACS AMBER CHARMM

SOMD 0.20± 0.03 0.13± 0.04 0.08± 0.02
GROMACS 0.19± 0.01 0.15± 0.01
AMBER 0.12± 0.01

Tab. 5 shows the MAE between SOMD, GROMACS, AMBER and CHARMM. CHARMM

produces figures that agree the most with other MD packages. The largest difference reaches

0.2 kcal mol−1 for SOMD and GROMACS. Variabilities between the codes may be partly

explained by differences in densities due to different treatments of long range electrostatics

and vdW interactions.

Having established the predictive value from absolute transformations we now turn to com-

puting ∆∆Ghydr from relative mutations. Tab. 6 summarizes the results for the four MD

packages. Again the data is from the recommended protocol for each package (see detailed

discussions in the following subsections).

We reviewed firstly internal consistency of the different codes with the computed absolute

hydration free energies. For each implementation we counted the number of times a calcu-

lated relative free energy deviates from the difference in reference absolute hydration free

energies by more than 0.1 kcal/mol. This is significantly above the estimated uncertainties in

calculated free energies in most instances. According to this criterion, the AMBER explicit

implementation is the least consistent (10 deviations), followed by AMBER implicit (6 de-

viations), SOMD (6 deviations), CHARMM (5 deviations), GROMACS (5 deviations). The

perturbations that give a discrepancy are not the same across codes, for instance methane-

>toluene with AMBER explicit deviates from the reference absolute hydration free energies

by 0.33 kcal/mol, but at most 0.04 kcal/mol with other codes. SOMD and GROMACS show

deviations of ca. 0.25 kcal/mol for methanol->methane but this is not the case for AMBER

(implicit or explicit) or CHARMM.
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Table 6: Comparison of relative free energies of hydration for various MD packages as
obtained from absolute (AFE) and relative (RAFE) transformations via unified or split
protocols. The values deduced from AFE transformations (given in the first row) were taken
from Tab. 1. Signs of the backward transformation have been reverted to correspond to the
forward transformation.

Transformationa AMBERb CHARMMc GROMACSb SOMDc

implicitd explicitd

ethane methane −0.02± 0.01 −0.03± 0.01 −0.04± 0.01 −0.05± 0.02
ethane methane 0.02± 0.01 −0.13± 0.02 −0.09± 0.02 −0.04± 0.02 0.05± 0.02
methane ethane 0.00± 0.03 −0.19± 0.03 −0.04± 0.01 −0.02± 0.01 0.01± 0.06
methanol methane 6.20± 0.01 6.20± 0.02 5.95± 0.01 6.21± 0.06
methanol methane 6.19± 0.01 6.20± 0.02 6.18± 0.01 6.20± 0.01 5.99± 0.05
methane methanol 6.20± 0.03 6.15± 0.01 6.21± 0.01 6.20± 0.01 5.97± 0.04
ethane methanol −6.22± 0.01 −6.22± 0.02 −5.98± 0.01 −6.26± 0.05
ethane methanol −6.20± 0.01 −6.27± 0.01 −6.25± 0.01 −6.19± 0.01 −6.09± 0.03
methanol ethane −6.20± 0.01 −6.25± 0.01 −6.28± 0.01 −6.19± 0.01 −6.09± 0.02
toluene methane 3.19± 0.01 3.12± 0.01 3.16± 0.01 3.07± 0.03
toluene methane 3.24± 0.02 3.39± 0.02 3.04± 0.02 3.21± 0.01 2.89± 0.09
methane toluene 3.42± 0.03 3.52± 0.03 3.09± 0.02 3.20± 0.01 3.06± 0.02
neopentane methane −0.13± 0.02 −0.11± 0.02 −0.14± 0.01 −0.19± 0.06
neopentanee methane 0.32± 0.04 −0.03± 0.06 −0.35± 0.01 −0.15± 0.02 −0.20± 0.05
methanea neopentane 0.25± 0.03 −0.07± 0.03 −0.24± 0.02 −0.16± 0.05 −0.13± 0.05
neopentanef methane −0.13± 0.01 −0.12± 0.02 −0.56± 0.02 −0.14± 0.01 −0.11± 0.01
methaneb neopentane −0.13± 0.03 −0.12± 0.03 −0.40± 0.02 −0.18± 0.03 −0.10± 0.06
2–methylfuran methane 2.96± 0.02 2.90± 0.01 2.95± 0.01 2.90± 0.03
2–methylfuran methane 3.09± 0.01 3.10± 0.01 2.84± 0.03 2.93± 0.05 2.92± 0.05
methane 2-methyfuran 3.10± 0.03 3.15± 0.03 2.84± 0.02 2.96± 0.01 2.83± 0.03
2–methylindole methane 8.72± 0.01 8.53± 0.02 8.79± 0.02 8.57± 0.03
2–methylindole methane 8.78± 0.03 8.78± 0.04 8.49± 0.01 8.73± 0.03 8.64± 0.06
methane 2-methylindole 9.14± 0.02 9.13± 0.03 8.56± 0.02 8.74± 0.01 8.67± 0.08
2–CPI 7–CPI 0.39± 0.04 −0.11± 0.04 0.02± 0.05 0.08± 0.14
2–CPIg 7–CPI 0.36± 0.03 0.63± 0.06 −0.01± 0.01 −0.01± 0.03 −0.11± 0.07
7–CPIg 2–CPI 0.34± 0.05 0.50± 0.03 0.04± 0.01 −0.20± 0.04 −0.01± 0.08

aThe values deduced from the AFE absolute of Table 1 are given first.
bsplit protocol.
cunified protocol.
dusing either the implicit or the explicit dummy atom approach.
ecentral mapping.
fterminal mapping.
gpartial re/discharge i.e. only the charges of the appearing and the disappearing 5–rings are switched.
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Table 7: MAE (in kcal mol−1) comparing relative free energies from relative simulations
between SOMD, GROMACS, AMBER and CHARMM.

Package GROMACS AMBER CHARMM

SOMD 0.11± 0.01 0.23± 0.01 0.15± 0.01
GROMACS 0.16± 0.01 0.13± 0.01
AMBER 0.26± 0.01

We next reviewed consistency between forwards and backwards relative hydration free en-

ergies. Again counting the number of deviations that exceed 0.1 kcal/mol indicates that

AMBER explicit is the least consistent (3 deviations), followed by AMBER implicit (2 de-

viations), CHARMM (2 deviations), GROMACS (1 deviation), SOMD (1 deviation). The

largest deviation is observed with AMBER implicit for 2-methylindole <-> methane (0.36

kcal/mol).

Next we compared relative free energies across packages. CHARMM tends to show relative

free energies with smaller values for a number of transformations: neopentane, 2–methylfuran

and 2–methylindole. SOMD displays smaller values ∆∆Ghydr for the methanol and toluene

transformations. The largest discrepancy, however, is in the neopentane transformation

with central mapping where AMBER with implicit dummy atoms is about 0.5 kcal mol−1

higher and CHARMM about 0.2 kcal mol−1 lower than the other two codes. The terminal

mapped neopentane case reveals AMBER to be in line with GROMACS and SOMD while

CHARMM’s results deviate further. AMBER deviates also quite strongly from the other

codes in the cyclopentanyl indole cases. It is possible that the discrepancies observed with

AMBER are partly due to inconsistencies in the end point geometries (see section 4.3.2).

The MAEs of the relative free energy simulations are presented in Tab. 7. They are on

average slightly larger than the MAEs from the absolute simulations (Tab. 5) and reach

0.26 kcal mol−1 for AMBER compared with CHARMM.
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Table 8: Cycle closure errors in kcal mol−1) for ethane→ methanol. → methane → ethane.
Uncertainties denote a 95% confidence interval.

Package and Protocol Closure Error

AMBER implicit 0.07 ± 0.08
AMBER explicit 0.02 ± 0.10
GROMACS split reaction field 0.05 ± 0.04
GROMACS unified reaction field 0.13 ± 0.06
GROMACS split PME 0.04 ± 0.02
GROMACS unified PME 0.18 ± 0.06
CHARMM 0.01 ± 0.06
SOMD -0.11 ± 0.16

We also computed cycle closure errors from Tab. 8 for the closed cycle ethane→ methanol

→ methane → ethane (see Fig. 12). The results are shown in Tab. 8. Uncertainties were

estimated by propagating uncertainties from the individual perturbations. The AMBER

protocols, CHARMM and SOMD are consistent within uncertainty estimates, but the devi-

ations observed with the GROMACS protocols are small. The largest discrepancy is observed

with the GROMACS unified PME protocol, with the error just under 0.2 kcal/mol.

Finally we also examined whether the codes reproduced consistent changes in mean box vol-

umes between forward and backward transformations. We find that the codes are generally

consistent with GROMACS giving the most precise volume changes, whereas SOMD gives

the least precise volume changes (See Tab. S1 in the SI). This indicates that the barostats

used by the different simulation packages relax volume fluctuations with different efficiency,

or that they sample different volume fluctuations.

We now turn to considerations for individual packages.
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4.3.2 AMBER

Using AMBER for RAFE simulations has revealed several problems with the implementa-

tion. Some issues were identified and the developers have fixed those for AMBER16, e.g.

energy minimization in sander led to diverged coordinates for mapped atoms. For a single

topology description, however, it is necessary to have the same coordinates. Other issues are

that vacuum simulations can only be carried out with the sander program because pmemd

cannot handle AFE simulations in vacuum as of this writing. This will, however, be rectified

in future versions [262]. A disadvantage of sander is that it cannot be used to simulate

the λ end points, [263] such that the TI gradients need to be extrapolated (minimum and

maximum allowed λs are 0.005 and 0.995). Also, sander considers the whole system as the

perturbed region while pmemd restricts this to a user chosen atom selection. This has obvious

implications for performance [263].

We also found that, in contrast to the other three codes, AMBER does not yield correct

relative free energies with the unified protocol, i.e. when all force field parameters are scaled

simultaneously (see Tab. 14). The issue becomes apparent when more than a few dummy

atoms are involved, while the unified protocol works for the smaller transformations (refer

to Fig. 12). The split RAFE protocol and absolute free energies, however, are very close to

the other MD packages as demonstrated in Tab. 9 below.

End point geometries appear to be another issue with AMBER simulations both in solution

and vacuum. This is most obvious in the neopentane → methane test case with central

mapping (see RAFE Setup and Fig. 11). As shown in Fig. 16, the methane end state exhibits

incorrect distances between the carbon and the four attached hydrogens of approximately

1.23Å. This value is about 1.12Å for the terminal dummy atoms in the other test cases but

still higher than the expected 1.09Å on average. Fig. 16 demonstrates how this depends on

the number of dummy atoms immediately surrounding the central atom.
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Table 9: Comparing AMBER results for simulations with various split protocols. The em-
phasis is here on the data with SHAKE enabled and a time step of 2 fs (last column). Implicit,
explicit and absolute protocols had SHAKE disabled and a time step of 1 fs. Signs of the
backward transformation have been reverted to correspond to the forward transformation.

implicit explicit absolute SHAKEa

transformation ∆∆G ∆∆G ∆G ∆∆G

ethane methanol −6.20± 0.01 −6.27± 0.01 −6.22± 0.01
−6.18± 0.01

methanol ethane −6.20± 0.01 −6.25± 0.01
toluene methane 3.24± 0.02 3.39± 0.02

3.19± 0.01
3.27± 0.03

methane toluene 3.42± 0.03 3.52± 0.03
neopentaneb methane 0.32± 0.04 −0.03± 0.06

−0.13± 0.02

0.35± 0.02
methaneb neopentane 0.25± 0.03 −0.07± 0.03
neopentanec methane −0.13± 0.01 −0.12± 0.02
methanec neopentane −0.13± 0.03 −0.12± 0.03

aimplicit dummy atom protocol with δt = 2 fs and SHAKE on all H–bonds except perturbed bonds.
bcentral mapping.
cterminal mapping.

We also compare free energies obtained from the implicit dummy approach in AMBER with

results from explicit dummy atom simulations and results from absolute transformations

described in Tab. 4 and 6. The relative simulations have been carried out with the split

protocol while the absolute simulations used a unified protocol throughout. SHAKE was

explicitly deactivated for all bonds in the perturbed region in these protocols. Tab. 9 shows

selected results for transformations with SHAKE enabled for all bonds to hydrogens except

those bonds that change bond length during transformation.

The time step has been increased from 1 fs as used in the other three protocols to 2 fs. As

the results are essentially the same as the non–SHAKE simulations, this SHAKE protocol

appears to be a viable solution to increase the performance of RAFE simulations. We have

repeated this protocol with AMBER in response to the results obtained with SOMD using

this implementation. From a practical point of view, AMBER uses an atom based mask for

application of bond constraints such that the mask must be set for the hydrogens in question
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while the same is not possible for their non–H counter–part in the other state because all

bonds emanating from the atom would be affected.

In general, the free energies computed with each approach are in good agreement with each

other and with the results of the other MD packages (Tab. 4 and 6). There are, however,

a few notable deviations. Neopentane → methane with central mapping differs from the

result with terminal mapping by about 0.4 kcal mol−1. The terminal mapping and the free

energies from the explicit dummy simulations are, however, consistent with the absolute

transformations (Tab. 4). We also observe a systematic deviation between forward and

backward vacuum transformations in the 2–methylindole simulation (see Tab. 15). The

gradient is consistently shifted by 0.2–0.4 kcal mol−1 for each λ step of the vdW plus bonded

transformation with both implicit and explicit dummy atoms.

4.3.3 CHARMM

CHARMM for alchemical free energy calculation (AFE) has been widely used with the PERT

module, but few issues not previously reported in CHARMM c40b1 were found and careful

AFE setup is needed to produce robust and accurate results. Bugs regarding TI gradient

accumulation in the parallel version were identified and fixed by Dr. Stefan Boresch. The

PERT module does not allow a hydrogen bond constraint (SHAKE) to be applied on the

perturbed region, and this requires end point lambdas to be equilibrated carefully. These

windows at end-point lambda were started with their own equilibration using timesteps of

0.1 fs to 0.5 fs before the production run. The VSwitch option was used to apply a switching

function to the potential since that option cannot be applied to forces for calculations run

with the PERT module.

The PSSP softcore potential function cannot handle Long-Range Correction (LRC) correctly.

This effect is not clearly shown when the initial and final states are comparable in size, but
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Table 10: Comparing CHARMM results for simulations with various split protocols. Signs
of the backward transformation have been reverted to correspond to the forward transfor-
mation.

transformation split unified absolute(unified)
∆∆G ∆∆G ∆∆G

ethane methane −0.09± 0.01 −0.09± 0.02 −0.03± 0.01methane ethane −0.04± 0.01 −0.04± 0.01
methanol methane 6.20± 0.01 6.18± 0.01

6.20± 0.01methane methanol 6.30± 0.01 6.21± 0.01
ethane methanol −6.21± 0.01 −6.25± 0.01 −6.22± 0.02methanol ethane −6.25± 0.01 −6.28± 0.01
toluene methane 3.22± 0.01 3.04± 0.02

3.12± 0.01methane toluene 3.28± 0.01 3.09± 0.02
neopentanea methane −0.29± 0.01 −0.35± 0.01

−0.11± 0.02
methanea neopentane −0.15± 0.01 −0.24± 0.02
neopentaneb methane −0.42± 0.01 −0.56± 0.02
methaneb neopentane −0.31± 0.01 −0.40± 0.02
2-methylfuran methane 2.87± 0.01 2.84± 0.03

2.90± 0.01methane 2-methylfuran 2.93± 0.01 2.84± 0.02
2-methylindole methane 8.88± 0.01 8.49± 0.01

8.53± 0.02methane 2-methylindole 8.81± 0.01 8.56± 0.02
2-CPI 7-CPI −0.02± 0.01 −0.01± 0.01 −0.11± 0.047-CPI 2-CPI −0.01± 0.01 0.04± 0.01

acentral mapping.
bterminal mapping.

the deviation becomes larger for perturbations that involve large changes in solute size,

or for absolute alchemical free energy calculations. It is necessary to disable the LRC to

obtain consistent free energies from relative and absolute alchemical free energy calculation

protocols (see SI for details).

Tab. 10 shows the relative free energies obtained from CHARMM simulations. While

results from all three protocols (split, unified, absolute) seem to be in good agreement with

each other, the split-protocol results are more precise due to the additional amount of data

generated. It is notable that the split-protocol results are more similar to the ones obtained

by other MD packages (i.e. neopentane and toluene), but the relative-unified results are
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more consistent with the CHARMM absolute simulations (e.g. 2-methylindole). Overall,

the relative free energies obtained by these three different protocols are in good agreement

with those reported for the other MD packages (Tab. 1 and 3).

4.3.4 GROMACS

GROMACS has some run input options which can simplify the procedure for setting up

free energy calculations. Specifically, couple-moltype implicitly defines the initial and final

states by giving a special tag to a molecule and controls whether intramolecular interactions

of the tagged molecule are retained or not along the alchemical path. It should be used in

absolute free energy calculations to tag the molecule which will be decoupled from the rest

of the system. Using this in relative calculations is possible, but will result in unintended

behavior and errors. The keywords couple-lambda0 and couple-lambda1 control the in-

teractions of the molecule specified by couple-moltype with its surroundings. The entries

vdw-lambdas and fep-lambdas define the lambda schedule. The former indicates the value

of the λ vector component that modifies van der Waals interactions for each state, while the

latter changes all λ vector components that are not specified in the .mdp file.

Here, we use these options to simplify our setup. For instance, in split protocol simula-

tions, these entries are sets such that the components of the energy are modified in different

stages. If the transformation involves particle deletion (“forward process”), fep-lambdas is

set to change charges and bonds before vdw-lambdas changes van de Waals components.

If the process involves particle insertion (“backward process”) we reverse the roles. In this

work, mass-lambdas were all set to zero to avoid mass changes during the the free energy

calculations. Unified protocols set all λ vectors the same.

Tab. 11 lists the relative free energies obtained from GROMACS simulations. Relative

free energies are in good agreement with each other and with ∆∆Ghydr obtained from the
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Table 12: Relative hydration free energies of methanol → methane and methane →
methanol transformations without and with the use of Coulomb softcore potentials from
GROMACS. Signs of the backward transformation have been reverted to correspond to the
forward transformation. The complete version of this table is in the SI.

split split+sc absolute
RF PME RF PME RF PME

transformation ∆∆G ∆∆G ∆∆G ∆∆G ∆∆G ∆∆G

methanol methane 6.163± 0.006 6.197± 0.004 7.32± 0.03 7.42± 0.04 5.77± 0.01 5.95± 0.01
methane methanol 6.168± 0.005 6.199± 0.008 7.14± 0.03 7.21± 0.03

other software used in this study (Tab. 4 and 6). A noteworthy exception is the difference

between the unified and split results of methane → methanol and its reverse process. This

was investigated further with additional split protocol simulations using Coulomb softcore

potentials (Tab. 12).

We noticed a difference of approximately 1.5 kcal mol−1 between the split protocol without

Coulomb softcore potentials and both protocols that use it. The data shown in Fig. 20

suggests that softening of the electrostatic interactions requires adjustments in the λ-distance

between states in the rapidly varying part of the ∂H/∂λ. A variant that combined the bonded

terms with the vdW transformation did not change this result. Thus, we find that the split

protocol without Coulomb softcore potentials is the most effective way to calculate relative

free energies with the current GROMACS implementation.

Additionally it is worth mentioning that relative free energy simulations that feature alchem-

ical transformations of a hydrogen atom into a heavy atom will crash if the bond involving

the hydrogen atom is constrained with algorithms such as SHAKE or LINCS. Successful

simulations require turning off the bond constraint and decreasing the time step to 1 fs.

Alternative protocols that require some scripting and changes in the topology file could be

pursued in the future. For instance 2 fs constraints protocols similar to those used in SOMD

or AMBER in this study could be implemented via the definition of a new atom type for

alchemically perturbed hydrogen atoms.
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4.3.5 SOMD

Fig. 17x compares relative free energy of hydration ∆∆G according to the protocol with

unperturbed H bond constraints, with relative ∆∆G obtained from two absolute free en-

ergy calculations. Tab. 6 summarizes all the computed relative free energy of hydration

for the dataset in Fig. 12. A very good agreement is observed between both methodolo-

gies (R2=0.99± 0.01 and MAE = (0.10± 0.03) kcal mol−1), highlighting internal consistency

within SOMD.

To achieve this level of reproducibility within SOMD it was crucial to pay close attention to

constraints. Specifically, bonds that involve unperturbed hydrogen atoms are constrained.

Bonds involving hydrogen atoms that are perturbed to a heavy element are unconstrained.

Additionally the atomic mass of any perturbed hydrogen atom is set to the mass of the heavy

atom it is being perturbed to. Bonds involving hydrogen atoms that are perturbed to another

hydrogen atom type are constrained. We stress that it is acceptable to artificially increase

the atomic mass of hydrogen atoms because the calculated excess free energy changes do not

depend on atomic masses.

This protocol suppresses high frequency vibrations in flexible bonds involving hydrogen

atoms, thus enabling a time step of 2 fs, whilst giving essentially negligible errors due to

the use of constraints for perturbed bonds. This is apparent from the comparison with the

absolute hydration free energy calculations. Additionally, the protocol yields relative hydra-

tion free energy very similar (MAE = 0.09 kcal mol−1) to those computed from simulations

where no constraints are applied for solutes and a timestep of 1 fs is used (See Fig. 19).

By contrast, a protocol that constrains all bonds in a solute leads to significant differences

with the absolute hydration free energies. For instance neopentane → methane (centrally

mapped) gives a RAFE ∆∆G=(2.04± 0.01) kcal mol−1 whereas the absolute hydration free

energy calculations give ∆∆G=(−0.19± 0.06) kcal mol−1 as shown in Tab. 18 and fig. 19.
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This discrepancy occurs because in the SOMD implementation, the energies of constrained

bonds are not evaluated, but the calculation of the energies of the solute at perturbed λ values

is carried out using the coordinates of the reference λ trajectory. This leads to a neglect of

contributions of the bonded term (and associated coupled terms) to the free energy change.

The effect is more pronounced for perturbations that feature a large change in equilibrium

bond lengths, such as those where a hydrogen atom is perturbed to/from a heavy atom.

The reaction fields implemented in SOMD and GROMACS differ somewhat (atom-based

shifted Barker Watts, [258] versus group-based switched Barker Watts), but nevertheless

SOMD and GROMACS RF produce comparable results with a MAE of 0.18 kcal mol−1.

Overall, the SOMD free energy estimations are in good agreement with the other MD pack-

ages, as the MAE suggests (see Tab. 7). For the methane → neopentane transformations

SOMD yields consistent results between central and terminal mappings, as shown in Tab. 17.

Reaction field and PME results are in good agreement. All SOMD RAFE simulations were

carried out with simultaneous transformation of Lennard-Jones, charges, and bonded terms.

This suggests that the failure of the GROMACS “unified protocol” in some instances may

be due to differences in the softcore Coulomb implementations.

4.4 Discussion and Conclusions

This study addressed whether contemporary MD packages such as AMBER, CHARMM,

GROMACS and SOMD are able to reproduce relative alchemical free energies of hydration

for a set of neutral small organic molecules, given a pre–defined force field. We have found

that establishing a simulation protocol that leads to consistent results across codes has

been cumbersome due to technical difficulties encountered with every code. This was the

case despite our best efforts to maintain fairly consistent protocols for settings which were

expected to significantly impact results. For example, we used nominally the same form
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of soft core potentials in most of the codes compared, and implementations of many other

algorithms which should be the same or are thought to be equivalent. Still, we encountered

numerous difficulties. Overall, the MD codes have a wide range of options and setup features

which makes it difficult for the inexperienced user to decide on the most appropriate ones.

The free energies we have computed appear to be in reasonably good agreement with each

other (see Tab. 4 and 6). The average MAE between all codes 0.14 kcal/mol for absolute free

energies and 0.17 kcal/mol for relative free energies. This can be interpreted as the current

“limit of reproducibility” for the field. We have found viable protocols for each MD code

to achieve this level of reproducibility. There is some doubt, however, over the AMBER

results because the particular version of the software we tested cannot reproduce the correct

end-point geometries. This is particularly evident in the case of the transformation from

neopentane to methane with central mapping, where the relative free energies are clearly

different from the other packages. We suspect these reflect issues in the AMBER package

but have been unable to isolate it; we have reported the issue to the AMBER developers.

We were unable to define a universal protocol that could be recommended for use with all four

codes. Unified protocols do not appear to work adequately with AMBER and GROMACS

while SOMD and CHARMM had no problem in this regard. We cannot rule out that the

problem may lie e.g. only with the vacuum leg of the thermodynamic cycle. In the case

of AMBER the vacuum simulation has currently been done with the separately developed

sander module. The problem may be a consequence of the different softcore functions (see

Eq. S??x) used in these MD packages but further investigations are needed to resolve this

issue.

The unperturbed H bond protocol is an interesting alternative which applies constraints

to all non–transforming bonds and thus allowed us to increase the time step to 2 fs. The

split protocol was found to work well for all codes. It appears to be the most effective

approach for GROMACS as shown with the methanol to methane case because the unified
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protocol produces a less smooth function [84]. A complete separation of lambdas may not

be necessary though as a certain degree of overlap between vdW and Coulumb λ may be a

viable solution [264] for equilibrium AFEs.

Comparison between codes is hampered by several factors. Firstly, the codes use different

simulation algorithms — e.g. electrostatics are handled differently in vacuum i.e. infinite

cutoff vs. reaction field. Temperature and pressure control, time step, integrators, etc. are

other examples. But the data here suggest that, if there are any systematic errors introduced

through these algorithms, then they are small. It is reassuring that AFEs for the systems

tested here show only a small dependence on MD protocol decisions (provided a correct

implementation).

Some of the differences between protocols used in this comparison could have been avoided,

and it may be worth pursuing further harmonizing the protocols in follow up work. For

example, the number of lambda values, length of simulations, and choice of Lennard-Jones

cutoff were varied across packages in some cases. While previous studies have suggested

results are relatively insensitive to these choices, it may be worth further exploring these

issues in follow-up work to ensure results are robust with respect to these settings. This

could also allow for a direct comparison of efficiency across codes.

To aid with follow-up studies, we make our input data and protocols available. We recom-

mend using this dataset to test and benchmark future RAFE implementations to validate

reproducibility against other simulation packages. Where possible, we recommend comparing

results from both absolute and relative transformations to verify internal consistency. The

relative transformation should be run in both forward and backward directions, even if the

free energy estimator is agnostic to this decision, as other implementation details (e.g. pa-

rameters, atomic masses, use of bond constraints, or details of the number of dummy atoms

and how they are handled) may lead to inconsistent results depending on the transformation

direction.
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More specifically, various issues with current code bases have been revealed through this

work. We have found that constraints in connection with varying bond length can cause

errors with GROMACS, just as masses (in many codes) must not be allowed to vary in RAFE

simulations, both to avoid crashes and incorrect results from the software. CHARMM has

problems handling constraints and the PSSP softcores, and the PERT module cannot make

use of the force switch as is now standard for CHARMM force fields. Care must be taken

when using the LRC long range correction keyword to avoid producing inconsistent results.

AMBER’s problem with end point geometries and unified protocols has been pointed out

above.

Another question is the ease of use of the different software. For example, when a mutation

entails both appearing and disappearing parts in split protocols there is the problem of

intermediates having a non–integral total charge on the molecule. An alternative would be

to totally discharge and then recharge the whole molecule which would have the advantage

of eliminating one additional evaluation of the reciprocal sum in PME [263]. However this

is not attractive as this could significantly increase the sampling needed to obtain converged

free energy changes.

In general we found that split protocols perform well, but these can necessitate complex

steps to set up the calculations. For instance, in GROMACS it is necessary to carry out

two separate simulations per lambda because discharging and recharging groups cannot be

selected separately. Lambda paths as implemented in GROMACS could also be beneficial

for other codes as they make the setup of split protocols easier. The alternative we have

used in codes lacking this feature is to mimic this protocol through careful construction of

topologies via scripting.

It may seem remarkable that of the computed free energies, the absolute hydration free

energies seem to be more reproducible across codes than relative free energies. Conventional

wisdom is that relative free energy calculations are computationally less demanding than
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absolute free energy calculations, which tend to lead to the opposite result [193, 119, 265].

However, absolute calculations are considerably simpler to implement and deploy correctly

as they do not involve as many challenging technical issues such as atom mapping [265,

266], and the lambda protocols which must be employed have been optimized fairly well,

since such calculations always involve either removal or insertion of atoms but never both

simultaneously. This has made absolute calculations valuable as large-scale tests of free

energy methods and force fields (e.g. [57, 253, 187] and others), and in the SAMPL series of

blind challenges (e.g. [73, 59, 57]). Thus absolute calculations are already well automated,

robust across codes (e.g. [53]), and well-performing protocols are available. Apparently

similar is yet needed for relative free energy calculations.

The primary focus of this work was to achieve low statistical errors to establish if codes are

able to reproduce free energies. We have not investigated the efficiency of the respective

protocols as this would require further, complex investigations. As noted, the work reported

here used different protocols and in some cases even different numbers of simulation steps for

each code. Thus a direct comparison of efficiency is outside the scope of this work. However,

it is worth briefly noting the number of steps employed in each study. For absolute calcula-

tions the most demanding and (perhaps not surprisingly) precise protocol is GROMACS (200

million aggregate time–steps per solute, average SEM 0.011 kcal/mol). The least demanding

protocol is CHARMM (31.5 million time–steps per solute, average SEM 0.015 kcal/mol).

SOMD’s aggregate time–steps is comparable to CHARMM (34 million time–steps) but the

free energies are less precise (average SEM 0.045 kcal/mol). For relative calculations, the

least demanding protocol is SOMD (17 million time–steps), and this is also the least precise

(average SEM 0.048 kcal/mol). The most demanding protocol (GROMACS 197.4 million

time–steps, average SEM 0.020 kcal/mol) is less precise than the CHARMM protocol which

used fewer time–steps (31.5 million time-steps, average SEM 0.015 kcal/mol). Further work

should be pursued to understand what algorithmic details in the various implementations are
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important for the efficiency of the free energy calculations. In particular it may be interesting

to apply overlap measures to explore the relative efficiency of the different protocols. [267]

Beyond careful protocol validation, further automation of alchemical free energy studies will

also decrease user errors, and thus increases reproducibility. Various attempts in this direc-

tion are currently underway for both absolute and relative setups [136, 222, 265, 246, 268,

269, 247]. To conclude, we hope this study will stimulate the field to improve the trans-

ferability of alchemical free energy calculation protocols across software. Reproducibility is

crucial to enable robust use of alchemical free energy methods in molecular design.

4.5 Supporting Information

4.5.1 Softcore Functions

We describe here the softcore functions [10, 11] as implemented in the MD packages AMBER,

CHARMM, Gromacs and SOMD. Both the van der Waals, VLJ (Lennard–Jones potential)

and the electrostatic interactions, VCoul (Coulomb potential) as a function of the order pa-

rameter λ are given for the disappearing atoms only. For the appearing atoms replace λ with

1−λ and vice versa. Eq. (4.5) is the generalized form for all codes while the specific distance

dependent functions are outlined in eq. (4.6) for SOMD, eq. (4.7) for AMBER, eq. (4.8) for

Gromacs and eq. (4.9) for CHARMM.

V = VLJ + VCoul = 4εij(1− λ)

[(
σij
rLJ

)12

−
(
σij
rLJ

)6
]

+ (1− λ)n
qiqj

4πε0rCoul

(4.5)
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For SOMD

rLJ = (ασijλ+ r2
ij)

1
2

rCoul = (λ+ r2
ij)

1
2

(4.6)

For AMBER

rLJ = (ασ6
ijλ+ r6

ij)
1
6

rCoul = (βλ+ rpij)
1
p

n = 1

(4.7)

For Gromacs

rLJ = (ασwijλ
p + rwij)

1
w

p = 1, 2;w = 6, 48;

rCoul = rLJ

αCoul = 0, αLJ

n = 1

(4.8)

For CHARMM (PSSP), applied to all “reactant” and all “product” atoms

rLJ = (αλ+ r2
ij)

1
2

rCoul = (βλ+ r2
ij)

1
2

n = 1

(4.9)

rvdW, rCoul and rCoul are distance dependent functions, εij and σij are the Lennard-Jones

parameters, qi and qj are the charges and ε0 is the vacuum permittivity, α and β are the
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softcore tuning parameters determining the softness of the potential, and rij the distance

between atoms i and j.

The exponent n is only used in the Coulomb softcore funtion of SOMD. Gromacs allows

additional exponents for λ (p = 1 or 2) and w for the distance dependency with values of

either 6 or 48. AMBER allows an exponent p (namelist option sceeorder) for the Coulomb

softcore. The Coulomb softcore parameter αCoul in Gromacs is the same as for the Lennard–

Jones parameter αLJ unless the Coulomb softcore function is requested not to be used and

thus αCoul = 0. The CHARMM softcore function (PSSP) is applied to all atoms in the

perturbed group and not only to dummy atoms as in the other codes. The perturbed group

comprises of all atoms that need to be transformed, i.e. any atom that differs in at least one

force field parameter in the other end state. “Dummy” atom is used here as a shorthand

notation for any atom that appears or disappears during the course of the transformation.

4.5.2 TI gradients

The free energy derivative versus lambda from thermodynamic integration simulations (TI

gradients) for all four codes are summarized in Fig. 13 by example of the absolute transfor-

mation of methanol. The derivatives demonstrate how the different transformation functions

especially the softcore potentials (see section 4.5.1) influence the TI gradients. As can be

seen these are very different from each other implying that the lambda schedule must be

appropriately planned for each simulation code and also for the particular transformation.

4.5.3 Split Protocols

When the AFE (alchemical free energy) simulation is separated (split) into van der Waals

and Coulomb steps it must be ensured that charges of vanishing atoms are switched off
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Figure 13: TI gradients obtained from various simulation codes for the absolute trans-
formation of methanol. a) and b) AMBER charge and vdw transformations. c) Gromacs
where green is from the vdw only transformation and red for the free energies from all other
contributions, d) and e) SOMD charge and vdw transformations. f) CHARMM unified
protocol.

before the vdW radius is scaled to zero. This is to avoid that other atoms e.g. from solvent

come in close contact to a charged atom without the associated excluded volume from the

van der Waals term as this could lead to large forces and thus instabilities in the integrator.

Fig. 14 depicts how force field parameters vary for a transformation carried out in the

direction of disappearing atoms. The mutation is shown with the charge step first followed

by the vdW step but each step can really be run independently. Please note that both charge

and vdW step would be simulated at a range of individual λs. Typically the charge transfer

is done with linear scaling while the vdW mutation is done with softcores (see above). The
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Figure 14: The mutation of ethane into methanol and explicit topologies for three states.
a) The two circles denote atoms that have both vdW and Coulomb terms switched on with
parameters for the respective hydrogen atom type. b) The two hydrogen atoms have their
charges switched to zero (gray symbols in black circle). All other charges are the ones from
the methanol end state c (green) to ensures charge neutrality at each step. VdW parameters
are constant in the charge transfer step (see annotations in magenta). c) vdW and Coulomb
parameters as for methanol while dummy atoms (gray Du) have those parameters all set to
zero.

transformation is fully symmetrical that is the parameters must be switched on in opposite

order if atoms are to be “created”. The intermediate state b has the vdW parameters from

state a but the charges from state c.

Fig. 14 shows how topology files may be created in cases where the MD software does not

allow independent λs for electrostatic and vdW mutations. With Gromacs, for instance,

the transformation only requires a single topology file with both A and B states (in single

topology fashion, see main text) and a single simulation control file with separate λ vectors

for charge and vdW transformations. Any intermediate state from Fig. 14 is thus created

“on–the-fly” i.e. implicitly during the simulation run. With AMBER (up to version 16 as of

this writing), however, three explicit topology files (with sander, two with pmemd) and two

control files would need to be created. The state b in Fig. 14 would be created from state

a with the charges from state c. The bonded terms can be combined with either mutation

step or run separately. For AMBER the easiest way is to combine vdW with bonded terms

because charges are independent of atom types.

Fig. 15 illustrates explicit topologies for transformations with both appearing and disap-

pearing atoms in one simulation. The principle is essentially the same as in Fig. 14: charges

of dummy atoms must be switched off before vdW parameters are set to zero to avoid in-

teractions of “naked” charge sites with other atoms possibly leading to very close contact,
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large energies and forces, and thus to unstable simulations and/or noisy statistics. However,

charge neutrality at every λ step is not supported in most MD codes i.e. the total system

charge varies with λ unless the charges of all atoms are switched off. Possible strategies

would be to explicitly create topology files for each intermediate λ state and distribute the

diminished charges from the dummy atoms over to the non–dummy atoms. MD software

like CHARMM allows to do this through internal scripting although this would be just as

extensive as external scripting the aforementioned strategy.

N

N
ϵ,σ

ϵ,σN

2

7

N

a) b)

c) d)

Figure 15: Explicit topologies involved in a mutation with both appearing and disappearing
atoms by example of the cyclopentanyl transfer from the 2 position in indole to the 7 position.
Blue lines denote atoms which have their charges switched off but with vdW parameters from
the left (state b) or right (state c). Gray lines are dummy atoms with Coulomb and vdW
parameters all zero. Note, the hydrogen bound to the 2 (state d) and 7 positions (state a)
can be directly mutated from the respective carbon atom type without ring breaking [237].

With the MD packages tested in this study the number of input files are as follows. With

Gromacs this can be done with only two topology and two control files where one charge

transfer can be combined with a vdW on/off step. Gromacs’ λ vectors only apply to the

perturbed group as a whole and so it is not possible to define a λ vector for only a subset.

AMBER requires two such files with sander and three topology/two control files with pmemd

for the three steps charge off, vdw on/off and charge on. This is possible because with

AMBER a subset of the perturbed group can be chosen to have zero charges (namelist
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Table 13: Changes in volumes (in cubic angstrom) for selected perturbations across packages

transformation AMBER CHARMM GROMACS SOMD

methane ethane 38±6 24±3 31±3 61±25
ethane methane -29±7 -30±4 -28±3 -50±30
ethane methanol -33±9 -36±2 -36±5 -66±36
methanol ethane 38±8 37±3 36±5 46±31
methane methanol -5±11 -9±2 -3±5 11±20
methanol methane 8±10 1±2 4±3 27±16
methane toluene 93±11 89±3 110±2 120±56
toluene methane -106±8 -89±8 -113±3 -145±23
methane 2-methylindole 164±11 64±3 142±3 140±22
2-methylindole methane -138±8 -120±7 -139±5 -166±45
methane neopentane 99±9 90±2 115±4 117±50
neopentane methane -105±11 -100±2 -114±4 -68±43

option crgmask; but AMBER does not have λ vectors). CHARMM has scripting facilities

that let the user manipulate force field parameters of any arbitrary subset of the system

such that intermediate states can be defined “on–the-fly” with only one control script and

one topology file. The tool FESetup [247] automates most of these setup steps for all these

MD packages.

4.5.4 Detailed Results

AMBER

Tab. 14 compares the split protocol with the unified protocol. The split protocol transforms

Coulomb force field parameters separately from the Lennard–Jones and all bonded param-

eters. The unified protocol transforms all force field parameters simultaneously and thus

invokes both Coulomb and vdW softcore functions.

The split protocol produces consistent results in both solution and in vacuum. The values

are in line with the free energies obtained with the other MD packages (see main text). Each
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Table 14: Comparison between split and unified protocol in AMBER. The data for the
unified protocol highlights inconsistencies in the code in red. ∆Gsol has been computed with
pmemd. ∆Gvac has been computed with sander.

split protocol unified protocol
transformation ∆Gsol ∆Gvac ∆∆G ∆Gsol ∆Gvac ∆∆G

ethane methane 1.79 1.77 0.02 2.78 2.85 -0.07
methane ethane -1.80 -1.80 0.01 -2.87 -2.86 -0.01
methanol methane 2.74 -3.44 6.19 7.10 0.87 6.23
methane methanol -2.75 3.45 -6.19 -7.18 -0.86 -6.32
ethane methanol -2.84 3.36 -6.20 -2.25 3.99 -6.25
methanol ethane 2.83 -3.36 6.19 2.20 -3.99 6.20
toluene methane 9.22 5.98 3.24 6.09 0.45 5.64
methane toluene -9.29 -5.86 -3.42 -6.15 -0.54 -5.61
neopentanea methane 70.16 69.85 0.31 65.76 58.50 7.28
methanea neopentane -70.17 -69.92 -0.25 -65.82 -58.78 -7.04
neopentaneb methane 11.41 11.54 -0.13 4.42 3.48 0.94
methaneb neopentane -11.43 -11.55 0.12 -4.45 -3.49 -0.96
2-methylfuran methane 14.62 11.53 3.09 2.20 -0.94 3.15
methane 2-methylfuran -14.60 -11.50 -3.10 -2.22 -0.06 -2.15
2-methylindole methane 24.25 15.47 8.78 7.11 -4.02 11.13
methane 2-methylindole -24.31 -15.17 -9.14 -7.13 1.86 -8.97

acentral mapping.
bterminal mapping.
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∆G is the sum of the charge and vdW plus bonded contributions. The unified protocol on the

other hand displays various problems. While the smaller systems with only a few dummy

atoms show ∆G and ∆∆G consistent with the split protocol, the larger transformations

show, in part, striking differences and even inconsistencies in forward and backward vacuum

simulations. It is not clear, however, if the inconsistencies can be attributed to the vacuum

transformations only.

Fig. 16 shows a problem with end point geometries. This is demonstrated with the average

distance between the carbon atom and the four attached hydrogens atoms in the neopentane

to methane case. The methane carbon atom is mapped here to the central atom of neopen-

tane. The distances are recorded for the vdW plus bonded transformation i.e. the charges

correspond to the methane end state.

The geometrical variation along λ for the data in the main text is shown in the black and red

graphs. The initial distance is slightly smaller than what is expected from a C–H distance for

the particular atom types at λ = 0. The final distance is about 1.23Å which is in contrast

to the 1.09Å of the c3–hc bond of the GAFF force field. The crosses in violet mark the

geometries of the “pure” (non–perturbed) end points and are connected with a straight line.

The other crosses denote test cases which successively replace the methyls on neopentane

with hydrogens. The C–H distance decreases in correlation with the number of the methyl

groups i.e. tert-butane, propane, ethane. This seems to suggest that a “crowding” of dummy

atoms around a central atom compounds the problem of a too long C–H distance. Neither

of these three test cases, however, displays the expected end point distance.

To further test this hypothesis methyl and ethyl groups are added to all terminal methyl

groups of neopentane, see cyan and green lines in Fig. 16. In both cases the end point

distance is about 1.12Å with a slightly lower value for the ethyl substitution but which are

still too high.
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Table 15: AMBER: Free energy components for 2–methylindole computed from implicit
dummy RAFE simulations. The data are averages over three runs.

transformation ∆GvdW
sol SEM ∆GvdW

vac SEM ∆Gelec
sol SEM ∆Gelec

vac SEM

2-methylindole methane 4.83 0.02 3.48 0.01 19.41 0.01 11.99 0.01
methane 2-methyindole -4.90 0.02 -3.18 0.01 -19.41 0.01 -11.90 0.01

As Gromacs conveniently allows us to use a separate λ for bonded terms we tested this on

the neopentane case. After the charges were transformed to the methane end state (dummy

atoms have zero charges), the bonded terms were mutated from neopentane to methane while

the vdW parameters were kept constant at the neopentane initial state. The observed end

distance was about 1.23Å which is to be expected given that the symmetrically arranged

methyl groups will repel each other and thus not allow to reach the final distance. Only

after the final vdW (only) mutation had been carried out, were the final distances of 1.09Å

reached.

Tab. 15 summarizes the free energy components for the 2–methylindole to methane case

for both forward and backward transformations. The electrostatic contributions display a

very small SEM and the averages from both directions agree with each other up to the

second digit after the comma. The van der Waals contributions show a higher SEM and

the averages from the solution simulations agree well with each other. However, the van der

Waals contributions from the vacuum transformation are apart by 0.3 kcal mol−1 (highlighted

in red).

In sum, this indicates a problem of the RAFE code in AMBER. Whether that is a bug or a

conceptual issue with the particular implementation can not be explained at the moment.

Tab. 16 summarizes the free energies obtained from forward and backward simulations of the

cyclopentanyl transfer from position 2 to position 7 on indole and vice versa. Results from

three different protocols are shown: 1) implicit dummy atoms and partial re/discharge of the

5–ring only; 2) implicit dummy atoms and full re/discharge of all atoms; 3) explicit dummy
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Table 16: AMBER: Free energies of hydration for the 2–cyclopentanylindole to 7–
cyclopentanylindole case with three different protocols. The data are averages over three
runs.

transformation ∆Gsol SEM ∆Gvac SEM ∆∆Ghydr SEM

implicit, partial
2–cyclopentanylindole 7–cyclopentanylindole 4.19 0.03 3.83 0.01 0.36 0.03
7–cyclopentanylindole 2–cyclopentanylindole -4.30 0.04 -3.96 0.01 -0.33 0.04

implicit, full
2–cyclopentanylindole 7–cyclopentanylindole 4.28 0.06 3.92 0.02 0.36 0.07
7–cyclopentanylindole 2–cyclopentanylindole -4.41 0.03 -4.10 0.01 -0.32 0.03

explicit, partial
2–cyclopentanylindole 7–cyclopentanylindole 4.14 0.04 3.51 0.04 0.63 0.06
7–cyclopentanylindole 2–cyclopentanylindole -4.25 0.03 -3.76 0.01 -0.50 0.03

atoms and partial re/discharge. The free energies from the implicit dummy simulations agree

very well with each other while the explicit dummy atom results are about 0.2 kcal mol−1

higher and forward and backward simulations have a larger hystersis of 0.1 kcal mol−1.

SOMD

As discussed in the main tex, the presend SOMD calculations used a shifted atom-based

Barker-Watts reaction field cutoff to handle electrostatic interactions in solutions and a

Coulomb laws without cutoffs to handle electrostatic interactions in vacuum. This leads

to an inconsistent description of the intramolecular electrostatic interactions of the solute

in the solvated and vacuum phases. To maintain a consistent description of intramolecular

energetics across vacuum and water legs, a free energy correction term ∆Gc was evaluated
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as detailed in Ref. [259]. The ∆Gc term was obtained via post-processing of the end state

trajectories of each water phase simulation, using the Zwanzig relationship [8]:

∆Gc = −β−1 ln〈exp [−β(Uic,nc(r)− Uic,sim(r))]〉sim (4.10)

where Uic,nc(r) is the solute intramolecular electrostatic-no cutoff potential that depends on

the coordinates r of the solute and is given by Coulomb’s law computed without cutoffs.

Uic,sim(r) is the intramolecular electrostatic potential term as computed in the simulation

with the shifted atom-based Barker-Watts Reaction Field cutoff.

Fig. 17 compare relative free energy of hydration ∆∆G with relative ∆∆G estimations

from absolute free energy calculations for all the transformation of the dataset.
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Table 17: SOMD: Final relative free energy of hydration ∆∆G estimations and standard
error SEM with Sire/SOMD unperturbed hydrogen bonds protocol, RAFE, compared with
relative free energy of hydration computed from absolute free energy simulations, RAFE-
absolute. Signs in backward transformation are reverted for better comparison.

RAFE RAFE-absolute
transformation ∆∆G SEM ∆∆G SEM

ethane methane -0.01 0.05 0.04 0.02
methane ethane -0.04 0.02 0.04 0.02
methanol methane 5.99 0.05 6.21 0.05
methane methanol 5.96 0.04 6.21 0.05
ethane methanol -6.09 0.03 -6.26 0.05
methanol ethane -6.09 0.02 -6.26 0.05
toluene methane 2.89 0.03 3.06 0.03
methane toluene 3.06 0.02 3.06 0.03
neopentanea methane -0.20 0.054 -0.19 0.06
methanea neopentane -0.13 0.055 -0.190 0.060
neopentaneb methane -0.11 0.01 -0.19 0.06
methaneb neopentane -0.10 0.06 -0.19 0.06
2-methylfuran methane 2.92 0.05 2.90 0.03
methane 2-methyfuran 2.83 0.03 2.90 0.03
2-methylindole methane 8.64 0.06 8.57 0.03
methane 2-methylindole 8.67 0.08 8.57 0.03
2–cyclopentanylindole 7–cyclopentanylindole 0.11 0.077 0.08 0.14
7–cyclopentanylindole 2–cyclopentanylindole 0.01 0.081 0.08 0.14

acentral mapping.
bterminal mapping.

Tab. 17 shows relative free energy of hydration ∆∆G compared to ∆∆G values extracted

from absolute free energy calculations, depicted in Fig. 17.

Initially, SOMD RAFE protocols used all bonds constraint algorithm. In this way all the

solute bonds are constrained, which results in a systematic offset for each RAFE predic-

tions, compared to the RAFE from absolute free energy calculations. Fig. 18 shows the

discrepancy between RAFE computed with all bond constraints and RAFE from absolute

free energy calculations.
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Table 18: SOMD: Relative free energy of hydration ∆∆G computed with all bond con-
straints, All bonds, no constraints, None, and unperturbed hydrogen bond constraint, unpert
H bonds

All bonds None unpert H bonds
transformation ∆∆G SEM ∆∆G SEM ∆∆G SEM

ethane methane -0.48 0.01 -0.18 0.04 -0.01 0.05
methane ethane -0.49 0.01 -0.01 0.02 -0.04 0.02
methanol methane 6.06 0.01 6.49 0.01 5.99 0.05
methane methanol 6.08 0.01 6.15 0.01 5.96 0.04
ethane methanol -6.22 0.01 -6.14 0.03 -6.09 0.03
methanol ethane -6.23 0.01 -6.09 0.01 -6.09 0.02
toluene methane 3.73 0.27 3.09 0.06 2.89 0.09
methane toluene 3.79 0.03 3.07 0.06 3.06 0.02
neopentanea methane -2.09 0.01 -0.14 0.14 -0.20 0.05
methanea neopentane -2.04 0.01 -0.018 0.06 -0.13 0.05
neopentaneb methane -0.48 0.01 -0.14 0.06 -0.11 0.01
methaneb neopentane -0.59 0.02 -0.14 0.060 -0.10 0.06
2-methylfuran methane 3.38 0.02 2.81 0.03 2.92 0.05
methane 2-methyfuran 3.40 0.03 2.89 0.06 2.83 0.03
2-methylindole methane 9.29 0.06 8.72 0.05 8.63 0.06
methane 2-methylindole 9.10 0.04 8.61 0.04 8.67 0.08

acentral mapping.
bterminal mapping.

Finally, Fig. 19 and Tab. 18 compare relative free energy of hydration ∆∆G estimated

with RAFE using all bonds constraints, no constraints and unperturbed hydrogen bond

constraints.
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Figure 16: AMBER : The average C–H distance shown as a function of λ for the neopen-
tane to methane and related cases. The black and red lines display how the distance changes
in solution and the vacuum phase, and with and without explicit dummy atoms. The other
test systems are designed to reduce the number of dummy atoms that surround the central
carbon atom to show whether “crowding” is the cause of the issue. The crosses denote end
points only, in particular the violet crosses represent the non–perturbed end point distances.
For details see the text.
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Figure 17: SOMD: Relative free energy of hydration ∆∆G, computed with RAFE calcu-
lations, compared with ∆∆G derived from absolute free energy calculations for A: methane
to ethane, B: ethane to methanol, C: methane to methanol, D: methane to 2-methylfuran,
E: methane to toluene, F: methane to 2-methylindole, G: methane to neopentane, H: 2-
cyclopentanylindole to 7-cyclopentanylindole.
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Figure 18: SOMD: Comparison between RAFE of hydration computed with all bond
constraints and RAFE computed from absolute free energy calculations
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Figure 19: SOMD: Comparison between RAFE of hydration computed with all bond
constraints, no constraints and unperturbed hydrogen bonds constraint
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Table 19: GROMACS: ∆∆Ghydr results in different scenarios with or without Coulomb
softcore potentials, in kcal · mol−1.

without Coulomb softcore with Coulomb softcore absolute
RF PME RF PME RF PME

Transformations ∆∆G ∆∆G ∆∆G ∆∆G ∆∆G ∆∆G

ethane methane −0.02± 0.01 −0.03± 0.02 −0.03± 0.04 −0.02± 0.04 −0.06± 0.01 −0.04± 0.01
methane ethane −0.01± 0.02 −0.02± 0.01 −0.01± 0.04 −0.02± 0.04
methanol methane 6.16± 0.01 6.20± 0.01 7.32± 0.03 7.42± 0.04 5.77± 0.01 5.95± 0.01
methane methanol 6.17± 0.01 6.20± 0.01 7.14± 0.03 7.21± 0.03
ethane methanol −6.12± 0.01 −6.19± 0.01 −6.15± 0.02 −6.21± 0.02 −5.83± 0.01 −5.98± 0.01
methanol ethane −6.12± 0.01 −6.19± 0.01 −6.15± 0.02 −6.21± 0.02
toluene methane 3.22± 0.01 3.211± 0.010 3.22± 0.04 3.21± 0.04 2.97± 0.01 3.16± 0.01
methane toluene 3.25± 0.01 3.20± 0.01 3.27± 0.04 3.22± 0.04
neopentanea methane −0.10± 0.01 −0.15± 0.02 −0.13± 0.08 −0.13± 0.08 −0.18± 0.01 −0.14± 0.01
methanea neopentane −0.11± 0.02 −0.16± 0.05 −0.12± 0.08 −0.15± 0.08
neopentaneb methane −0.12± 0.01 −0.13± 0.01 −0.10± 0.04 −0.13± 0.04
methaneb neopentane2 −0.10± 0.03 −0.18± 0.03 −0.08± 0.06 0.15± 0.06
2-methylfuran methane 2.97± 0.01 2.93± 0.05 3.07± 0.03 3.02± 0.04 2.87± 0.01 2.95± 0.01
methane 2-methylfuran 3.00± 0.01 2.96± 0.01 3.08± 0.03 3.02± 0.04
2-methylindole methane 8.71± 0.02 8.73± 0.03 8.79± 0.04 8.82± 0.05 8.44± 0.02 8.79± 0.02
methane 2-methylindole 8.73± 0.03 8.74± 0.01 8.79± 0.05 8.81± 0.06
2-cyclopentanylindole 7-cyclopentanylindole −0.07± 0.02 −0.03± 0.03 −0.12± 0.03 −0.14± 0.05 −0.02± 0.05 0.02± 0.02
7-cyclopentanylindole 2-cyclopentanylindole −0.12± 0.06 −0.20± 0.04 1.20± 0.20c 1.50± 0.10c

acentral mapping
bterminal mapping
c inverted sign

GROMACS

Tab. 19 compares RAFE results subject to the use of Coulomb softcore potentials. In

principle, the use of softcore functions is redundant in the split protocol because charges are

changed while van der Waals parameters are fully tuned to the transformation’s final state

parameters. SEM values tend to be larger when they are used.

The effect of the Coulomb softcore potential can be seen in Fig. 20.
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Figure 20: GROMACS: 〈∂H /∂λ〉 plot for the change in electrostatic terms in methane
→ methanol.
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CHARMM

Fig. 21 shows the effect of turning long range corrections (LRC) on/off as function of the

cut–off values on the absolute solvation free energy of methane. The switching function

starts 2Å before the cut-off value. The figure shows that cutoff values greater than 10Å

give consistent results, if the LRC has been disabled. The bottom graph shows the relative

solvation free energy of 2–methylindole to methane from direct RAFE and from AAFEs

of methane and 2–methylindole with LRC on/off. This shows that the protocols will be

inconsistent by ca. 0.8 kcal.mol−1 if the LRC is not disabled. By post-processing LRC,

RAFE result was more comparable to the results from other MD packages.
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Figure 21: CHARMM: (top) Absolute solvation free energy of methane as a function of
different cut–off values and presence or absence of a Long Range Correction term. (bottom)
Relative solvation free energy between 2–methylindole and methane from relative or absolute
alchemical free energy protocols and with/out a LRC term.
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Chapter 5

Challenges of the Use of Atomistic

Simulations to Predict Solubilities of

Drug-like Molecules

Abstract

Background. Solubility is a physical property of extreme importance to the Phar-

maceutical industry whose prediction for potential drugs has so far been a hard task.

We attempted to predict the solubility of acetylsalicylic acid (ASA) by estimating ab-

solute chemical potentials of its most stable polymorph and of solutions with different

concentrations of the drug molecule.

Methods. Chemical potentials were estimated from all-atom molecular dynamics

simulations. We used the Einstein Molecule Method to predict the absolute chemi-

cal potential of the solid and solvation free energy calculations to predict the excess

chemical potentials of the liquid phase systems.

Results. Reliable estimations of the chemical potentials for the solid and for a single

ASA molecule using the Einstein Molecule Method required an extremely large number
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of intermediate states for the free energy calculations, meaning that the calculations

were extremely demanding computationally. Despite the computational cost, however,

the computed value did not agree well with experiment, potentially due to limitations

with the underlying energy model. Perhaps better values could be obtained with a

better energy model; however, it seems likely computational cost may remain a limiting

factor for use of this particular approach to solubility estimation.

Conclusions. Solubility prediction of drug-like solids still is a challenge on the

computational side, and it appears that both the underlying energy model and the

computational approach applied may need improvement before the approach is suitable

for routine use.
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5.1 Introduction

Solubility is a critical property for pharmaceutical drug discovery, and problems with sol-

ubility can frustrate drug discovery efforts and block treatments. The bioavailability of a

drug depends on the solubility difference between different crystal structures (polymorphs),

dose, drug permeability, and formulation [270], so solubility plays a key role. Solubility

problems can be unexpected and pose crucial obstacles that even threaten the administra-

tion of care. For example, a well-documented case occurred in the late 90’s when ritonavir,

an HIV-protease inhibitor marketed as Norvir, failed dissolution requirements [271]. Since

ritonavir is not bioavailable in its solid form, it was administrated in capsules containing so-

lutions designed not to be saturated with respect to the originally known molecular crystal

(form I) [271]. The newly identified polymorph, form II, was unusually stable and unusually

hard to crystallize; the preparation protocol of Norvir was inadequate to make capsules from

the new polymorph, which severely threatened the supply of the drug in the market and

endangered the lives of many HIV+ patients [271]. Considerable effort has already been

devoted to the methods to predict crystal polymorphs [272, 273, 274, 275, 276, 277, 278],

but much less attention has been given to methods to predict solubilities, with or without

likely polymorphs as input.

Due to the importance of aqueous solubilities in different industrial processes and environ-

mental applications, a scientific challenge consisting of the prediction of 32 solubilities given

a database of 100 reliable measurements [45, 279] was created with the goal of comparing

the outcomes of different solubility prediction techniques. Participants employed methods

such as artificial neural networks [280], quantitative structure-property relationship (QSPR)

[281], and deep learning [282] to predict the aqueous solubilities of drug-like molecules. All

of the employed methods were empirical and trained on existing measurements. The lim-

itation of these methods, however, is the dependence of a training set of data that limits
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their applicability to compounds similar to those in the training of the set and impairs its

transferability.

Some newer methods attempt to predict solubilities based on a physical description of the

interactions in solution and in the solid state, yielding results that are in principle rigorous

given an accurate energy model and an adequate method. In these approaches, molecular

systems are described by force fields, i.e, potential energy functions that contain param-

eters describing bonds, atoms, electrostatic and non-electrostatic interactions. Molecular

dynamics (MD) or Monte Carlo (MC) simulations are commonly used to sample different

configurations of the system described by an energy model called a force field. The simu-

lations then allow the estimation of physical properties such as internal energy, free energy,

and enthalpy under different conditions. The quality of the results of such methods depends

on how well the force field describes the system under study and how good the sampling

method is. Thus, some researchers have recently estimated aqueous solubilities using sim-

ulations of thermodynamic cycles encompassing the crystal, the ideal gas, and an infinitely

dilute solution of a given molecule [103, 283]. When the structure of the solid is unknown,

some studies have substituted simulations of solid melts in place of a structure of the solid

[106, 107, 108, 109].

While these physical methods for predicting solubilities have received some attention in the

literature, most are still in their infancy with only a handful studies applying them and it is

not yet clear how broadly applicable they will be [106, 107, 108, 109], and others have only

been suggested or demonstrated in proof-of-principle tests [42, 44, 283, 284]. Our view is that

the time is ripe for physical methods to predict solubility, especially given the routine nature

of solvation free energy calculations at present [53, 285, 253, 86, 187, 286] which comprise

essentially half of the solubility problem (see the Theory section). Polymorph and crystal

structure prediction successes also mean that we may often have a suitable crystal structure

of the compound as input [272, 287, 288, 289, 290, 273, 291, 274, 277, 278, 292], so what
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remains is to predict the solubility given a crystal structure and simulations of the relevant

phases.

Here, we focus on adapting and testing an existing approach for solubility prediction in the

hope that it will prove to be a generally applicable method for solubility prediction that can

be applied routinely. This method uses all-atom molecular dynamics simulations to estimate

absolute chemical potentials and predict aqueous solubilities of molecular solids, given the

crystal structure (or an estimate thereof) as input.

5.2 Theory

5.2.1 The solubility of a molecular solid is related to the chemical

potentials of each phase

Solubility is defined as the maximum concentration of solute that can be dissolved in a

selected bulk solvent. Chemical potentials (µ) of the solid-state solute and the solution are

by definition equal at the solubility point, when the solution is in equilibrium with the solid.

µsolidsolute = µsolutionsolute (5.1)

Solid particles precipitate in concentrations higher than the solubility point because the

solid phase becomes more stable in these conditions. In principle, we can predict at which

concentration a molecule precipitates in solution if we calculate the chemical potentials of

the components:

µi =
( ∂A
∂Ni

)
V,T,Nj, j 6=i

=
( ∂G
∂Ni

)
P,T,Nj, j 6=i

(5.2)
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where µi is the chemical potential of component i; A is the Helmholtz free energy; G is the

Gibbs free energy; Nj, j 6=i is the number of molecules of each component in the mixture; V is

the volume of the system; T its temperature; and P its pressure. Calculations from systems

under constant V and T yield A; G is obtained from simulations under constant P and T

conditions. In order to estimate the chemical potential of one component in solution and in

its molecular solid, however, we need to know the absolute free energy of the system in these

states. We calculated absolute free energies using alchemical free energy calculations.

5.2.2 Alchemical free energy calculations can be used to calculate

absolute free energies

The absolute free energy of a system can be determined if we know its partition function

(Q), a function that connects microscopic properties of the system with macroscopic ther-

modynamic quantities. Unfortunately, it is very hard to calculate the absolute free energy of

real systems because we don’t know their partition functions. Free energy calculations allow

us to bypass this problem, but require at least two states: a reference state whose free energy

can be analytically or numerically found, and a final state of interest [3, 293]. We chose to

calculate the free energy difference using alchemical free energy calculations, a method in

which we simulate a series of nonphysical intermediates between the end states [84].

Each intermediate state in the alchemical path is described by a Hamiltonian H(q,p;λ), i.e,

the energy of the state as a function of atomic positions (q), momenta (p) and a coupling

parameter (λ):

H(q,p;λ) = f(λ)Hinitial(q,p;λ) + g(λ)Hfinal(q,p;λ) (5.3)
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where Hinitial and Hfinal respectively are the Hamiltonians of the initial and the final state;

and f(λ) and g(λ) are functions used to mix the Hamiltonians and are usually set such that

H = Hinitial at λ = 0 and H = Hfinal at λ = 1.

A variety of different estimators can be used to analyze alchemical free energy calculations,

and have different strengths and weaknesses as well as different data requirements. Here, we

employ several different estimators we introduce briefly in the following.

One way to calculate the free energy difference (∆A) between the end states is Thermody-

namic Integration (TI) [4]:

∆A =

∫ λ=1

λ=0

〈∂H
∂λ

〉
λ
dλ (5.4)

in which a set of discrete λ values correspond to states along the alchemical path. 〈〉 means

that we are have to calculate the ensemble average of the derivative between the brackets.

TI performs as well as more efficient methods if the integrand is smooth, but breaks down

if this condition is not satisfied [5, 6, 7].

An alternate free energy estimation method computes ∆A directly via:

∆A = − 1

β
ln 〈e−β[Hfinal−Hinitial]〉initial (5.5)

where the ensemble average is calculated over the configurations of the initial state, and

β is the reciprocal of kBT , the product between the Boltzmann constant and the absolute

temperature. We call this approach exponential averaging [8] (EXP).

Most free energy calculations involve many intermediates associated with the coupling pa-

rameter (λ), allowing simulation of intermediate states in between the two end states of

interest. The free energy change between the end points of a path defined by N intermedi-
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ates is:

∆A =
N−1∑

n=1

∆An→n+1 (5.6)

where ∆An→n+1 is the free energy difference between (n + 1)-th and the n-th intermediate

states. Eq. 5.5 can be used to calculate the free energy difference between each adjacent pair

of states and yields the exact result at the limit of very large samples, but it is inefficient for

most applications [84].

The Bennett acceptance ratio[1] (BAR) provides an estimator which is superior for most

purposes. It calculates the free energy difference between the n-th and the (n+ 1)-th states

from the following relationship:

〈
1

1 + Nn

Nn+1
eβ(∆Hn→n+1−∆A)

〉

n

=

〈
1

1 + Nn+1

Nn
eβ(∆Hn+1→n+∆A)

〉

n+1

(5.7)

where Nn and Nn+1 respectively are the number of statistically independent samples in states

n and n + 1, and ∆Hn→n+1 = −∆Hn+1→n are the Hamiltonian differences between n and

n+ 1. BAR is more efficient than EXP[123, 124] and minimizes the free energy uncertainty

[1]. Multistate Bennett acceptance ratio [6] (MBAR) is an extension of BAR that takes in

consideration the degree of configuration space overlap between a given state and all other

states in the transformation, while BAR only uses the information of neighboring states.

MBAR and BAR perform similarly when the spacing between the intermediate states is

moderate, but MBAR is the most well-performing free energy estimator [7].
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Figure 22: (a) Thermodynamic cycle representing the Einstein Crystal Method (ECM).
(b) Thermodynamic cycle representing the Einstein Molecule Method (EMM). Notice that
EMM requires only two free energy calculations despite being a bigger thermodynamic cycle.
The canceling terms in (b) correspond to the free energies of fixing and releasing one atom
in the crystal lattice [48].

5.2.3 The absolute free energy of a solid is calculated using an ideal

system as reference

In this work, we seek to predict solubilities of molecular solids. Part of this problem requires

predicting the free energy or chemical potential of the solid. One way this has been attempted

in the past is via the Einstein Crystal Method (ECM) which calculates the absolute free

energy of a solid using an Einstein crystal as a reference state. In this method, the crystal

lattice is made of atoms restrained to their positions by a harmonic potential; additionally,

the center of mass of the system is held fixed [294].

In the ECM, and in this work, the absolute free energy of the molecular solid is found

by designing a path where force field terms are progressively turned on, and the harmonic

potential position restraints are turned off. The fixed center of mass is important to avoid

a quasi-divergence issue when calculating the free energy term of releasing the system from

the harmonic position restraints, but the contribution of the fixed center of mass needs to be
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included in the cycle to obtain the correct absolute free energy for the system (Fig. 22(a))

[294, 48, 295].

In ECM, the free energy is calculated by:

Asolid = AECFCM + ∆AEC→IEC + ∆AIEC→SFCM + ∆AreleaseCM (5.8)

where AECFCM is the free energy of the Einstein crystal (EC) with a fixed center of mass

(FCM); ∆AEC→IEC is the free energy difference between the Einstein crystal (EC) and the

interacting Einstein crystal (IEC), i.e., the free energy difference in a transformation where

the force field is progressively turned on throughout the calculation path. ∆AIEC→SFCM is

the free energy difference between the IEC and the solid with a fixed center of mass (SFCM),

i.e, turning off the harmonic restraints; and ∆AreleaseCM is the free energy of release of the

center of mass (CM).

ECM can be difficult to implement because of the need for a fixed center of mass, so our work

here is based on an alternative approach which is easier to implement. When particles move

in ECM, the lattice needs to be moved because the center of mass is fixed [294, 296, 48].

Our method of choice, the Einstein Molecule Method (EMM, see Fig. 22(b)), fixes a single

atom in the lattice instead of the center of mass and is more easily implemented than

ECM because of the relative difficulty of introducing center of mass restraints into existing

simulation packages[296, 44, 48, 104, 297]. EMM has been used to predict phase diagrams

of TIP4P and SPC/E water models [48], free energies of ice polymorphs, solid methanol and

toy systems [295, 297], and the solubilities of potassium and sodium chlorides [44, 104].

In EMM, the free energy of a solid is:

Asolid = AEM + ∆AEM→IEM + ∆AIEM→solid (5.9)
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where AEM is the free energy of the ideal Einstein molecule; ∆Aid→IEM is the free energy

difference between the ideal Einstein molecule and the interacting Einstein molecule (i.e,

turning on the force field); and ∆AIEM→solid is the free energy difference between the in-

teracting Einstein molecule and the solid (i.e, turning off the harmonic restraints). The

advantage of EMM over ECM is the absence of the need to calculate a free energy term

associated with releasing the fixed reference point [48].

Here, as per equation 5.9, we compute the free energy of the solid by combining the absolute

free energy of the ideal Einstein molecule with two terms that we calculate via alchemical free

energy calculations — ∆AEM→IEM and ∆AIEM→solid; these involve alchemically changing

the interactions in the system. Numerical integration of Eq. 5.10 allows the calculation of

the ideal term, AEM [297]:

AEM = − 1

β
lnQEM =

1

β
ln
NΛ3

V
− 1

β
ln

∫
e−βUEM,1(Ω1) dΩ1

− (N − 1)

β
ln

∫
1

Λ3
e−βUEM,2(r2,Ω2) dr2 dΩ2 (5.10)

where AEM and QEM are the free energy of the Einstein molecule and its partition func-

tion; UEM,1(Ω1) is the potential energy of the fixed particle 1; UEM,2(r2,Ω2) is the potential

energy of a non-fixed particle at a distance r2 of particle 1; Ω1 and Ω2 are all the possible

orientations the molecules can have in the lattice; Λ, V , N , and β respectively are the de

Broglie wavelength, the system’s volume, its number of particles, and the reciprocal of kBT ,

the product of the Boltzmann constant and the absolute temperature.
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5.2.4 The chemical potential of a component of a solution can be

calculated using free energy calculations.

Another critical component of computing the solubility of a compound is estimating the

chemical potential of a solute in solution, since the solubility point is the concentration at

which the chemical potentials of compound in the two phases are equal.

The chemical potential of a component i in solution, µi, has an ideal and and excess com-

ponent:

µi = − 1

β
ln qi +

1

β
ln

Λ3
iNi

V
− 1

β
ln 〈e−β[U(Ni+1)−U(Ni)]〉initial (5.11)

where qi is the internal partition function of a single molecule of the solute, U(Ni) is the

potential energy of the system with Ni particles, Λ is the de Broglie thermal wavelength,

and V is the system’s volume [170]. 〈〉initial means that the term was obtained from an

ensemble average over the configurations of the initial state (see Eq. 5.5). The first two

terms of the equation above correspond to the ideal component of µi; the last one, µexi ,

corresponds to the excess component of µi, and is associated with all non-ideal interactions

of the extra component i with the solution (i.e. physical interactions that differ from those

given by the ideal gas law). We obtained excess chemical potentials from solvation free

energy calculations; the solute molecule is inserted in the solution by progressively turning

on its interactions with the surrounding environment [53, 57, 187].

The challenge associated with the calculation of µi is the calculation of the standard chemical

potential of i, µ0
i , the first term of equation 5.11. qi, the internal partition function, includes

the rotation, vibrational, electronic and nuclear partition functions of a single molecule [170]

and is unknown. Here, we found a way of calculating µ0
i without the knowledge of qi by
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alchemically transforming a single solute molecule into a single Einstein molecule, whose

absolute free energy we know how to calculate [296, 48, 295].

5.2.5 Distinctives of this work

We are aware of three main approaches to compute the solubility of solids in solution using

physical approaches: ECM-based methods [42, 284], EMM-based methods [44, 104, 105],

and the approach of Michael Schnieders’ and collaborators which computes sublimation and

solvation free energies and uses these in an alternate thermodynamic cycle to obtain solubility

estimates [103, 298].

Many of the applications of these approaches have been to the solubility of ionic solids, with

both ECM [42] and EMM-based approaches [44, 104, 105] having some success. However,

molecular solids introduce substantial additional complexities for both of these approaches.

The ECM has seen an initial test on solubility estimation. Li et al. [284] used the ECM

to estimate the solubility of napthalene, but made several approximations such as assuming

that the internal partition function component of the solute cancels between environments

(perhaps justified given napthalene’s low solubility).

We are not aware of any work applying the EMM to solubility estimation of molecular solids;

to our knowledge our work is the first to make such an attempt, though EMM has been used

before to estimate the free energy of simple molecular solids [295, 297] but not the solubility.

This explains our need to find our own approach to estimate µ0
i for a single solute molecule.

The Schneiders approach is an orthogonal one that we do not examine here.
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5.3 Methods

5.3.1 Systems under study

Here, we chose three systems to study: An argon crystal for some small initial tests, α-

methanol to help establish our protocol, and acetylsalicylic acid (ASA) as our main object

of study. ASA is a known anti-inflammatory whose most stable polymorph, form I [299], has

an aqueous solubility of approximately 0.038 % mole fraction at 298 K [300]. We also used

α-methanol at 150 K and a toy face-centered cubic (fcc) argon crystal [301] to help us find

an optimal protocol to calculate the absolute free energy of a molecular solid. α-methanol

was chosen because it had been used before in a study which applied the EMM to calculate

the absolute free energy of the solid [297].

All simulations were run in GROMACS 4.6.7 [145, 147, 302, 149]. With one exception, all

simulations used the General Amber force field (GAFF) version 1.7 with AM1-BCC charges

[157, 158]; the exception was α-methanol, because we ran these simulations using the input

files – coordinates and force field parameters – provided by Aragonès et al., who used an

united atom version of the OPLS force field [297].

We simulated all solids and liquids using 5 ns Langevin dynamics simulations. ASA, α-

methanol, and argon were simulated respectively at 298.15 K, 150.0 K, and 4.0 K. Our sim-

ulations had the same length as the simulations run by Aragonès et al. All solid state

simulations were run in NVT conditions. Liquid state simulations were run in NPT condi-

tions; pressure was kept constant at 101.335 kPa using the Parrinello-Rahman barostat [303].

We used the TIP3P water model [159] for all our liquid state simulations. More simulation

details and example input files with full details can be found in the Supporting Information.
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5.3.2 Calculation of the absolute free energy of molecular crystals

The absolute free energies of the solids were calculated from trajectories of simulation boxes

with 64 ASA molecules, 100 OPLS methanol molecules, and 864 argon atoms with periodic

boundary conditions. ASA’s unit cell was obtained from Mercury CSD 3.8 [304] and the fcc

argon crystal was obtained from the literature [301]. Simulation box sizes were chosen to be

approximately between 2 nm and 3 nm to ensure that box sizes were large enough that atoms

and their periodic copies were not within cutoff distance of one another. α-methanol’s crystal

was obtained from the Supporting information of Aragonès et al.[297] We used Amber14’s

ambertools [238, 305, 306, 307] and ParmEd [205] to generate the ASA’s and argon’s solid

state input files. All atoms but one were subjected to harmonic constraints in the x, y, and

z coordinates. A single atom was kept fixed in space to act as the reference point for the

calculations, as explained in the Introduction.

Monte Carlo integration yielded AEM , the free energy of the Einstein molecule, as it was

previously done for α-methanol in the literature[297]. ∆Aid→IEM and ∆AIEM→solid were

estimated using Thermodynamic Integration (TI) [4] and the Multistate Bennett Acceptance

Ratio (MBAR) [2]. We used force constants of 4000 kBT/Å2 to restrain atoms to their

lattice positions in acetylsalicylic acid and argon simulations because it allowed us to use a

reasonable time step of 1.0 fs in all simulations. α-methanol simulations used the same force

constant that had been previously used by Aragonès et al. [297].

We used alchemical free energy calculations to obtain the difference in free energy between

the reference Einstein molecule and the solid. This step was divided in two parts: (a)

the force field parameters are alchemically turned on, and (b) the harmonic constraints are

turned off.
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Here, we deviate from earlier work which calculated the absolute free energy of a solid using

EMM by introducing additional intermediate states to improve accuracy, along with using

a superior free energy estimator.

For the calculation of ∆Aid→IEM , we found it was crucial to introduce intermediate states; we

also switched to using the MBAR estimator. The original EMM calculation of the absolute

free energy of a solid [48, 295, 296, 44, 104, 297] estimated ∆Aid→IEM using exponential

averaging (EXP) with just two states: the Einstein molecule (EM) and the interacting

Einstein molecule (IEM) [48, 295, 296, 44, 104, 297, 42, 105]. As EXP is known to have

convergence issues and biases [5, 84, 6, 123], we switched to the superior MBAR free energy

estimator[2]. Additionally, when we did so, we found that overlap of states (as measured

by the overlap matrix [267]) was insufficient so we created a series of intermediate states

connecting both ends of the transformation.

For ∆AIEM→solid., the original work used Thermodynamic Integration (TI) [4]. Here, we

replaced TI with MBAR as our analysis method of choice. Generally, the literature shows

that TI performs as well as more efficient methods like BAR and MBAR when the integrand

is smooth [5, 84, 6], but it is sensitive to the choice and number of intermediate states

[127]. MBAR is the most consistently well-performing free energy estimator [7] and exploits

the overlap between states more thoroughly than its predecessor, the Bennett Acceptance

Ratio (BAR) estimator [2]. Here, we chose to compare performance of MBAR and TI for

calculation of ∆AIEM→solid for ASA and α-methanol; we also applied EXP as a comparison

in the latter case only.
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5.3.3 Chemical potential calculations

The chemical potential of a pure solid is its molar free energy:

µ =
A

N
(5.12)

where N is the number of molecules in the solid, and A its Helmholtz free energy.

The chemical potential of a substance i in water is defined as the derivative of the free energy

of the system with respect to the composition:

µi =
( ∂G
∂Ni

)
P,T,NH2O

(5.13)

where G is the Gibbs free energy, and Ni is the number of molecules of i in solution; P , T ,

and NH2O are the pressure, absolute temperature, and number of water molecules in solution,

and are kept constant in the calculation.

One important aspect to discuss is reason why we chose to calculate the Helmholtz free energy

for the solid and Gibbs free energies for each solution. Solid state simulations with position

restraints required running under constant temperature and constant volume conditions due

to software limitations, therefore we were able to calculate A for the solids.. At constant

pressure, both kinds of free energy are related by:

∆G = ∆A+ P∆V (5.14)

Since solids are much less susceptible to volume changes than liquids, it is reasonable to

consider that P∆V is negligible and ∆G ≈ ∆A. For instance, the difference in volume

between the experimental ASA crystal structure and the simulation box after a constant

pressure equilibration stage is 0.14 nm3. The P∆V term – i.e., the free energy difference
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discounting possible structure relaxation effects – would be much smaller than the simulation

error.

As we explain in more detail in the Results section, successful absolute free energy cal-

culations for molecular solids require a pathway involving a large number of alchemical

intermediate states. The calculation of the absolute free energies of α-methanol at 150 K

and acetylsalicylic acid required 600 states. Since GROMACS reads each λ until its fourth

decimal place and the states need to be spaced more closely together as as the harmonic

restraints are turned off (See Supporting Information), we decided to split each free energy

calculation in sets of 100 states.

Liquid state simulation boxes were generated using the SolvationToolkit [40], a Python

package that uses packmol [204], OpenMolTools (v0.6.7) [308] and OpenEye Python Toolk-

its [202, 155, 156]. Excess chemical potentials were obtained with the same solvation free

energy protocol used in previous studies [187]: Starting from a fully interacting system, we

progressively decouple the interactions of a single solute molecule with the remaining of the

system, which allows us to calculate the free energy difference between a solute molecule in

vacuum and in solution, i.e, the solvation free energy.

We also used alchemical free energy calculations using a single Einstein molecule as a refer-

ence state to estimate the standard chemical potential of a substance, µ0
i :

µ0
i = µideali − (µFF off

i + µrestrainingi ) (5.15)

where µFF off
i and µrestrainingi respectively are the chemical potential associated with turning

off the force field and chemical potential of restraining the atoms of the molecule to their
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Table 20: Absolute free energy components for α-methanol at 150 K, in kBT .

Literature [297] Our replica
AEM 29.05 29.24

∆Aid→IEM −41.27± 0.01
−38.04± 0.07 (EXP)
−41.306 56± 0.000 04 (MBAR, 20 states)
−41.275 719± 0.000 007 (MBAR, 40 states)

∆AIEM→solid −17.33± 0.03

−18.421± 0.005 (TI, 18 states)
−18± 3 (MBAR, 18 states)
−17.1712± 0.0006 (TI 600 states)
−17.1692± 0.0004 (MBAR, 600 states)

lattice positions. µideali is calculated using the Monte Carlo integration procedure that we

used to calculate AEM to a single molecule.

5.4 Results

5.4.1 Chemical potential of molecular solids

The first step to predict aqueous solubilities with the aid of absolute free energy calculations

was the assessment of the methodologies we chose to use. Since our method is the same one

used by Aragonès et al.[297] and wanted to be sure that we could reproduce previous results,

we ran simulations for α-methanol at 150 K and estimated the free energies of solids using

MBAR. Turning off the harmonic restraints was the challenging step. Our MBAR calculation

of ∆AIEM→solid for α-methanol using 18 intermediate states yielded (−18± 3) kBT while our

TI result was (−18.421± 0.005) kBT and the literature result was (−17.33± 0.03) kBT using

17 states [297]. The MBAR error was unusually high (3 kBT) which is usually a signal of

overlap problems or other serious concerns.

MBAR is a free energy estimation method that minimizes the free energy variance and

considers the overlap between a given state and all the others in the transformation path
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[6], which means that high uncertainties (±3kBT ) suggest the presence of problems in the

transformation’s path. TI’s uncertainty estimates are much lower, but we believe this is

an artifact. Error analysis for TI simply does not work the same way and does not give

insight into whether exploration of phase space is adequate, unlike MBAR. Specifically,

uncertainty estimates from TI usually factor in only the uncertainty in the integrand at each

sampled lambda value and could potentially also factor in the smoothness of the integrand

(i.e. numerical integration error) but do nothing to factor in whether the integrand will in

fact vary smoothly in between lambda points; usually no data is available on this. BAR and

MBAR, in contrast, factor in information about how well the intermediate states overlap

in phase space and reflect high uncertainties when phase space overlap is poor. In our

experience, usually TI would suffer from similar problems if additional intermediate states

were added, but uncertainties in TI typically do not reflect this, as is the case here. Thus,

the high uncertainty of the MBAR value indicates a sampling/convergence problem which

warrants further exploration.

To explore the high uncertainty of our MBAR free energy estimates, we examined the degree

of overlap the intermediate states had with each other. Phase space overlap analysis [309,

194, 128] quantifies the probability that any given configuration of an intermediate state can

be found in other states. A good rule of thumb for designing a set of free energy calculations

spanning between two states is to ensure that the states along the path have significant

overlap with their neighbors as shown in Fig. 23. More overlap improves the quality of the

MBAR free energy estimation: Fig. 23(b) represents a set of restraining simulations where

the free energy uncertainty can potentially be accurately estimated using BAR and MBAR;

Fig. 23(a) shows a case where it cannot. In our case we find that the α-methanol simulation

using 18 intermediate states does not have adequate overlap (Fig. 24)– specifically, the

states 4 ≤ λi ≤ 17 do not have overlapping configurations with other states, which explains

the 3 kBT uncertainty in our MBAR estimate.
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...

λN

Figure 23: Phase space overlap between the states in a thermodynamic path for removing
restraints with λ. Γ represents the phase space that contains all the configurations for
all the states in the path. λ0 and λ1 (left) or λN (right) represent the end states along
the path, each shaded region represents a state in phase space and the red lines represent
the configurations visited by the simulation run in the λ0 state. The restrained state is a
subset of the unrestrained one. (a) and (b) represent simulations with different numbers of
intermediate states along the path between a fully restrained state (λ1 (a) or λN (b)) and
an unrestrained state (λ0). In (a), the simulation (red) only visits very few configurations
consistent with the restrained state – i.e, there is poor phase space overlap – indicating a
need for more intermediate states, otherwise any free energy estimates will be subject to
very high uncertainties; in (b) there is still almost no overlap between the simulation and
states consistent with λN , but there is overlap with the next shaded region, λ1, indicating
the potential for overlap and accurate free energy estimates. Thus simulations run in each
shaded region are more likely to have a bigger phase space overlap with λN than simulations
run in λ0.

Since prior work had appeared to do this estimation successfully [297], we were uncertain

why we were encountering such overlap problems, so we studied an even simpler system. We

calculated ∆AIEM→solid of fcc argon at 4 K with 18 states as in our α-methanol free energy

estimation. MBAR yielded an error estimate of infinity while TI estimated ∆AIEM→solid

to be (−1666.5± 0.8) kBT which, as we show below, is incorrect. This path resulted phase

space overlap diagram without overlap between the states after state number 2 (Fig. 25).

Apparently as the harmonic potential that holds atoms in their lattice positions tends to
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Figure 24: Phase space overlap between the states in the path between IEM and the α-
methanol solid. The sum of all the elements in a row should yield 1.0, a probability of 100 %.
A good free energy estimate is obtained when the states along the alchemical path contain
configurations that can be found in other intermediate states. In these situations, the phase
space overlap is non-zero, which results in non-zero off-diagonal elements. Here, however,
the phase space overlap plot shows that there is no overlap between the states λi, 4 ≤ i ≤ 17
indicating poor free energy estimates will result.

zero, atoms become rather mobile, dramatically decreasing phase space overlap and leading

to poor free energy estimates.

To improve phase space overlap, we introduced more intermediate states along the path for

removing the restraints (see Fig 23). We chose to break down the simulation in smaller parts,

adding a significant amount of states near the point where the harmonic restraints are ap-

proximately zero. The MBAR estimate of ∆AIEM→solid for fcc argon is (−1016.0± 0.2) kBT

using 300 states. TI’s corresponding value was (−1017± 1) kBT, differing by far from the

(incorrect) value of (−1666.5± 0.8) kBT obtained above with fewer states. Phase space over-

lap diagrams showed significant improvement in the configuration overlap between the states

(Supporting Information). Thus, increasing the number of states was an effective strategy,

and we used it in all subsequent calculations.

Even though our α-methanol results were similar to results previously published by other

authors [297], we need to emphasize that reliable free energies resulted from simulations with
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Figure 25: Phase space overlap between the states in the path between IEM and the fcc
argon solid. A good free energy estimate is obtained when the states along the alchemical
path contain configurations that can be found in other intermediate states. Here, however,
the phase space overlap diagram shows that there is no overlap between the states λi, 3
≤ i ≤ 17, which explains the poor quality of the free energy result.

a large number of intermediate states, as can be seen in Table 20. Despite its conceptual

simplicity, calculating the components of the absolute free energy of a solid to a point where

there is significant phase space overlap between the intermediate states is computationally

demanding. A 900-atom OPLS α-methanol system required 40 states to calculate ∆Aid→IEM ,

and 600 states for ∆AIEM→solid.

We chose these intermediate states in advance, and these ultimately led to free energy errors

smaller than 0.1 kBT; the estimated TI and MBAR values differed by no more than 0.3 kBT.

Our results for ASA using an optimal number of states can be seen in Table 21. The MBAR

chemical potential of ASA at 298.15 K equals to (−220.67± 0.03) kBT.

The computational cost of calculating AASA was high; Each state required a separate simu-

lation (of a 1344-atom ASA system), with 718 states in total. Simulations typically required

11 hours on a single CPU, so the calculation of a single absolute free energy of a molecular

solid required approximately 7898 CPU-hours.
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Table 21: Absolute free energy components for polymorph I of acetylsalicylic acid (ASA)
at 298.15 K, in kBT .

Acetylsalicylic Acid
AEM 48.047

∆Aid→IEM
−167.316± 0.001 (TI, 118 states)
−167.07± 0.03 (MBAR, 118 states)

∆AIEM→solid
−101.656± 0.002 (TI, 600 states)
−101.644± 0.002 (MBAR, 600 states)

5.4.2 Chemical potential of solutions and the solubility of GAFF

acetylsalicylic acid in TIP3P water.

Equation 5.11 states that the absolute chemical potential of a solution is determined by

three quantities: µ0
i , the standard chemical potential; µexi , the excess chemical potential

of the component at a concentration of χ; and a volume-dependent ideal gas component

of kBT · ln (Λ3
i ·NASA/〈V 〉solution). µ0

ASA only required information regarding the internal

structure of the molecule [170], thus we estimated µ0
ASA by alchemically transforming a

single solute molecule into a single Einstein molecule (Table 22), whose absolute free energy

we know how to calculate. We used the same number of states that we chose for the solid

state simulations and we found that µ0
ASA is equal to (−150.7± 0.2) kBT, as discussed in the

last subsection of the Methods section.

Table 22: Standard chemical potential of acetylsalicylic acid (ASA) at 298.15 K, in kBT .

Acetylsalicylic Acid
µidealASA 9.3
µFF off
ASA 65.7409± 0.0009 (MBAR 118 states)
µrestrainingASA 94.3± 0.2 (MBAR 600 states)

Concentrations, volumes and excess chemical potentials can be seen in Table 23. We obtained

the excess chemical potentials from solvation free energy calculations [53, 57, 187]. Volumes

were obtained from the state in the alchemical path where the solute was fully coupled to

the rest of the system.
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Table 23: Simulation data for solutions of acetyl salicylic acid in water in different concen-
trations.

Molar fraction (%) Volume (nm3) # solute molecules # solvent molecules µex (kBT )
2.000 e-03 3035.99± 0.05 2 99998 −16.80± 0.05
6.666 e-03 911.17± 0.02 2 30002 −15.88± 0.04
7.999 e-03 759.33± 0.01 2 25000 −15.51± 0.05
9.998 e-03 911.45± 0.03 3 30003 −15.65± 0.04
9.999 e-03 607.59± 0.02 2 20000 −15.47± 0.05
1.3330 e-02 911.72± 0.02 4 30004 −15.77± 0.04
1.3332 e-02 455.84± 0.02 2 15000 −15.61± 0.04
1.666 e-02 912.00± 0.03 5 30005 −15.96± 0.05
1.9992 e-02 912.27± 0.02 6 30006 −15.78± 0.04
1.9996 e-02 304.01± 0.01 2 10000 −15.62± 0.05
3.998 e-02 152.25± 0.01 2 5000 −15.41± 0.06
1.996 e-01 30.835± 0.007 2 1000 −16.37± 0.05
2.991 e-01 31.069± 0.003 3 1000 −16.40± 0.06
3.984 e-01 31.309± 0.007 4 1000 −16.62± 0.06
4.975 e-01 31.547± 0.003 5 1000 −17.1± 0.1

The experimental aqueous solubility of ASA is approximately 0.038 % in water at 298 K [300],

but our model predicts that ASA is effectively insoluble in water (Figure 26). While all-

atom simulations can yield solubility estimates given adequate simulation time and a correct

method, the computed solubility will be that dictated by the underlying energy model or

force field, and will not necessarily match experiment. Here, we use GAFF, a general-purpose

force field with known limitations [69, 306, 73, 187]; apparently, here, the right answer for

the force field is not correct. Perhaps this is because of limitations in describing the solid

state, as the force field is parameterized for liquid state simulations. Indeed, classical fixed

charge force fields have shown severe limitations for polymorph prediction for these reasons

[288, 291, 290, 274, 292] . Also, point partial atomic charges regularly used in molecular

dynamics do not describe electrostatic interactions in a solid particularly well [310]. In the

case of the ASA crystal, it is possible that its hydrogen bonds and π-stacking interactions

add layers of complexity that are not properly described by GAFF.
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Figure 26: Chemical potentials of ASA, solid and solution in different concentrations, with
respect to mole fraction.

5.5 Discussion and Conclusions

Despite its theoretical rigor, solubility prediction from absolute free energy calculations is a

difficult task: it is computationally expensive and, at least in the present approach, requires

many different steps and a great deal of care. Here, we attempted to develop and test a

general approach to compute the solubility of molecular solids by adapting the Einstein

Molecule Method (EMM) to tackle this problem, as discussed above.

To tune our methodology, we initially decided to reproduce the absolute free energy of solid

α-methanol, one of methanol’s polymorphs, at 150 K using EMM before doing the same

calculations for our compound of choice, ASA. We verified that the free energy differences

between the Einstein molecule and the interactive Einstein molecule (∆AEM→IEM) and be-

tween the latter state and the solid (∆AIEM→solid) were more reliably estimated with the

multistate Bennett acceptance ratio (MBAR). The absolute free energy of the crystal (as

computed for united-atom OPLS α-methanol) agreed with results found in the literature,

which suggested that we were on the right path. We did, however, require a very large
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number of intermediate alchemical states to obtain accurate free energy estimates, making

these simulations fairly computationally demanding.

We then chose to calculate the solubility of ASA due to its pharmacological importance and

due to its relative complexity in comparison to previous molecular solids whose absolute free

energies have been computed via EMM previously [297]. As for α-methanol, this calculation

required a large number of intermediate alchemical states and considerable computational

cost – approximately 8000 CPU hours for a single absolute free energy calculation for the

molecular solid, even with the crystal structure as input. Perhaps the number of intermediate

states could be further optimized, but clearly a large number of intermediate simulations

was required and thus considerable computational cost. Despite all of this, we still could not

reproduce the experimental aqueous solubility of acetylsalicylic acid (ASA); experimentally

it is modestly soluble, whereas our work would suggest it is essentially completely insoluble

in water, likely due to force field limitations.

The solubility of naphthalene was recently estimated using a similar methodology, the Ex-

tended Einstein Crystal Method [284], but with additional approximations. Specifically,

since naphthalene molecules interact very weakly with each other in the crystal lattice and

with water molecules in solution, the differences between the internal partition function of

a naphthalene molecule in the solid and in the solution were assumed to be negligible. This

allowed the authors to drop some complexities in treatment of the solution-phase part of

the calculation. However, that approach is only suitable for compounds that are only very

weakly interacting in solution and in the crystal. ASA, in contrast, is a molecule that in-

teracts strongly with other ASA molecules in its crystal lattice and with water molecules in

solution via hydrogen bonds. For instance, an important crystalline feature that is not nec-

essarily present in solution is the dimer structure, with two ASA molecules bound together

via hydrogen bonds between the carboxylic acid groups. Differences between the internal

partition functions of the molecule in the solid (qsolidASA) and in solution (qsolutionASA ) would prob-
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ably not be negligible in this scenario, thus a more general approach is needed for treatment

of such cases. Our work here provides one attempt in that direction.

Overall, the present approach seems to have significant limitations – most notably that

the computational expense is considerable, and the resulting estimated solubility is quite

inaccurate. Perhaps both of these may be surmountable; GPU-based free energy calculations

can be dramatically faster potentially making an 8000 CPU-hour calculation be 80 GPU

hours which would amount to overnight on 8 GPUs, and perhaps this could be optimized via

changes to simulation time and number of intermediate states. And with better force fields,

perhaps accuracy could be improved; the AMOEBA-based approach of Schnieders shows

considerable promise [103]. Alteratively, other approaches may be of interest. Solubility has

been predicted by simulations using pseudocritical paths (i.e., paths were molecular crystals

are transformed in tractable Einstein crystal-like states between the ending states of the

transformation [311, 312, 313, 314]) and a single experimental reference point [313]), and

with the aid of a thermodynamic cycle formed by the molecular crystal, the molecule in

vacuum, and the solvated molecule [103].

We believe the time has come for routine physical methods for estimation of solubility, even if

improved force fields prove necessary before results have significant accuracy for application

to biomolecular design problems.

5.6 Supporting Information

5.6.1 Simulation details

The following are GROMACS 4.6.7 simulation input parameters, as are the MDP files with

full details which are deposited in the Supporting Information.
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General information

• Friction coefficient = massparticle/τt, τt = 2.0 ps.

• Parrinello-Rahman barostat (when applicable): τp = 10 ps and compressibility = 4.5 ·

10−5 bar−1.

Electrostatics (solid)

• PME cut-off: 1.0 nm.

• PME order: 4

• Fourier spacing = 0.10 nm

• we used the same parameters as the Aragonès et al in solid state simulations. Additional

details can be found in the MDP files deposited with this paper.

Electrostatics (solution)

• PME cut-off: 1.2 nm.

• PME order: 6

• Fourier spacing = 0.10 nm

• we used the same parameters as the Aragonès et al. for solid state simulations. Addi-

tional details can be found in the MDP files deposited with this paper.

vdW interactions

• Cut-off: 1.0nm
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• Switch at 0.9nm

• DispCorr = AllEnerPres

• additional details can be found in the MDP files deposited with this paper.

Solution simulation files were generated using the SolvationToolkit module found at

https://github.com/MobleyLab/SolvationToolkit. Solvation Toolkit relies on openmoltools,

mdtraj, packmol, ParmEd, and OpenEye tools. As noted in the main body of the text, AM1-

BCC charges were assigned with OpenEye’s quacpac python module; we used openmoltools

to drive this process. Specific source code used for charging is available at https://github.

com/choderalab/openmoltools/blob/v0.6.7/openmoltools/openeye.py#L13. The code

generates molecular conformations prior to charging, as was recommended at http://docs.

eyesopen.com/toolkits/cookbook/python/modeling/am1-bcc.html.

We generated the simulation files for the acetylsalicylic solid simulations using the pdb file

containing the crystal structure, Antechamber and ParmEd. We used the Antechamer AM1-

BCC procedure to generate the charges for the solid state simulations.

Free energy estimation was done using the alchemical_analysis script which can be found

at https://github.com/MobleyLab/alchemical-analysis.

5.6.2 Supporting details

The DA_ideal_to_IEM.csv file containing the elements of the phase space overlap matrix

of a ∆AEM→IEM estimated from an alchemical path of 118 states can be found at https:

//f1000research.com/articles/7-686/.
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Chapter 6

Concluding Remarks

Computational resources now are more powerful and more accessible than they were in the

early days of computational chemistry and can perhaps be used to further the research on

the application of free energy calculations to more sophisticated problems. Amid free energy

calculations, solvation and hydration free energies have some degree of prominence: despite

their relative simplicity – one just decouples the interaction of a solute molecule with its

solvent surroundings and calculates ∆G from the energy differences or from how the energy

varies with respect to the state – solvation free energy calculations are applicable in force

field parameterization, modeling implicit solvents, drug design, and method development.

In this dissertation, I described and discussed the results of four different projects involving

solvation free energy calculations.

Chapter 2 outlines a general protocol to run solvation free energy calculations. It suggests to

decouple electrostatic and Lennard-Jones terms separately from each other, to use soft-core

potentials to avoid numerical instabilities, and to use MBAR whenever possible. Besides

the protocol for hydration free energy simulations, Ch. 2 contains calculated hydration

enthalpies and entropies and a few experimental enthalpies obtained from ORCHYD [169].
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Since enthalpies are more sensitive to force field parameters than free energies, a possible

future development would be an investment in obtaining experimental values of different

hydration enthalpies [153, 166, 167].

Chapter 3 discusses the calculation of infinite dilution activity coefficients (IDACs) and their

potential use in force field testing and assisting with force field parameterization. I calculated

a plethora of solvation free energies using Yank in OpenEye Software’s Orion platform, and

a series of densities using OpenMM. The results of the calculations were encouraging and

hopefully will drive future research in expanding the number of experimental IDAC values

and in perhaps using IDACs instead of hydration free energies in method development.

In chapter 4 I detailed a collaborative project that aimed at benchmarking relative alchemical

free energy calculations and reporting simulation protocols that could be reproduced using

different codes. Chapter 4 is a good example of how solvation free energies can be used to test

methods and validate simulation protocols. We found that relative alchemical free energy

calculations in AMBER [238], GROMACS [150], SOMD [241, 208], and CHARMM [239]

reproduce results to within 0.2 kcal ·mol−1. Our results were validated by comparison with

∆∆Ghydration obtained from absolute free energy calculations. It was not possible to define

a universal protocol for all four codes, but we made available our input data and protocols

to be used in follow-up studies.

Chapter 5 discusses the prediction of aqueous solubilities using solvation free energy calcu-

lations and the absolute chemical potential of acetylsalicylic acid. The chapter contains a

thorough discussion of the effect of poor phase space overlap between intermediate states and

the considerable expense of the method. A low number of intermediate states, as Aragonès

et al. had done it [297] does not generate a reliable estimate for the free energy uncertainty.

Since the method is physically exact, the chapter also discusses how we could more accurately

predict the solubility of molecular solids with the aid of better force fields and computational

resources.

147



There is much room for growth in the field of free energy calculations. Solvation free energy

calculations of small molecules can be very useful in this effort due to the simplicity of their

protocol and the ease to generate a set of uncorrelated samples. IDACs, on their turn, show

a lot of promise as tools for assisting force field development and method testing. I hope the

data and studies presented here will drive new work on the use of free energy calculations in

complex systems with the assistance of solvation free energies.
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