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Abstract

Pontrjagin forms on certain string homogeneous spaces

by

Qin Li

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Peter Teichner, Chair

In this thesis, we study the topology and geometry of homogeneous spaces of the

form G/T k, where G is a compact semisimple Lie group, T k is an embedded torus

in G. We say that a principal Spin(n)-bundle P → M admits a string structure if

the structure group lifts to String(n). In particular, a spin manifold is string if the

principal Spin(n)-bundle associated to the tangent bundle has a string structure. It’s

known that G/T k are string manifolds and we prove the uniqueness of string struc-

tures on G/T k when G is simply connected . There is a canonical metric on G/T k,

which has positive Ricci curvature. We deform this metric to a 1-parameter family

of invariant metrics on G/T k. We prove that the first Pontrjagin forms associated to

the Levi-Civita connection of these metrics do not vanish. This verifies a conjecture

by Redden-Stolz on the TMF-Witten genus of Ricci positive string manifolds.
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Chapter 1

Introduction

1.1 Original motivation

The motivation of this paper arose from the following conjecture, which remains open

Conjecture 1.1.1. (Höhn and Stolz [13]). Let M be a closed oriented n-manifold

admitting a string structure. If M admits a metric of positive Ricci curvature, then

the Witten genus φW (M) vanishes.

The heuristic argument of Stolz is the combination of two non-rigorous facts: one

is that the Witten genus should be the S1-equivariant index of the Dirac operator

on the free loop space LM, and the other is a Weizenboeck-type formula involving

Ric(M) such that if Ric(M) > 0, then Ker(DLM) = 0. The most known examples

of this conjecture are homogeneous spaces and complete intersections. Just as the

KO-valued α-invariant refines the Â-genus, there is a cohomology theory tmf , or

topological modular forms, with string-orientation refining the Witten genus.

tmf−n(pt)

ΩString
n (pt)

ΦW -

σ

-

MFn
?

The map tmf−∗(pt) → MF∗ is a rational isomorphism, with very interesting

kernels and cokernels.

A natural question is whether a string manifold M with a positive Ricci curvature

metric has vanishing tmf -valued Witten genus. The answer is no! There are several
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compact Lie groups whose tmf -valued Witten genus are nonzero torsion classes. This

is different from the case of α-invariants, since Stolz showed in 1992 that for simply

connected spin manifolds of dimension > 5, all the α-invariants vanish if and only if

M admits a metric of positive scalar curvature.

Redden constructed in his thesis a canonical 3-form Hg,S for each string manifold

M , with a Riemannian metric g, where S is a string structure on M . This canoni-

cal 3-form satisfies the condition that dHg,S = p1(M), d∗H = 0 and it’s H3(M,Z)-

equivariant. (The set of string structures on a string manifold M is a H3(M,Z)-

torsor). It’s known that for a compact simple Lie group G, there exists a unique (up

to a positive scalar) bi-invariant metric, and it has positive Ricci curvature. There

is a canonical string structure on G, which is induced from the left-invariant framing

on G, which is denoted by L. There is the following fact:

Ωstring
3 → tmf−3 ∼= Z/24, [SU(2),L] 7→ 1

24
, [SU(2), ∂D4] 7→ 0

.

Redden showed that SU(2) with the bi-invariant metric g and the bounding string

structure S has Hg,S = 0. Redden studied the Berger metrics on SU(2), which are

in general only left-invariant, instead of bi-invariant. These Berger metrics depend

on a positive real parameter α1. Ricci curvature is positive if and only if α1 >
1√
2

.

Redden showed that only when S = ∂D4 and α1 = 1 can we have both Ric(gα1) > 0

and Hg,S = 0. Based on this fact, he and Stolz made the following refined conjecture:

Conjecture 1.1.2. Let M be a closed n-dimensional string manifold with a specified

structure S. Suppose there exists a metric g such that

Ric(g) > 0, and Hg,S = 0 ∈ Ω3(M)

Then

σ([M,S]) = 0 ∈ tmf−n(pt)

1.2 Summary of results

The primary goal is to study more examples of manifolds with positive Ricci curvature

and verify Conjecture 1.1.2. The easiest examples which are close to Lie groups are

homogeneous spaces. In an unpublished paper, Hopkins showed by transgression

techniques that the tmf -valued Witten genus of certain homogeneous space Sp(3)/S1

is nonzero. It’s known that on homogeneous spaces G/H, where G is a compact simple
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Lie group, there is a canonical metric which has positive Ricci curvature. To verify

the conjecture, we need to show the non-vanishing of the canonical three form H. We

study in this thesis all homogeneous spaces of the form G/T k, where G is a compact

semisimple Lie group, and T k is an embedded torus in G. Since every embedded

torus T k in G is contained in a maximal torus of G, and any two maximal tori of G

are conjugate to each other, we can fix a maximal torus T k, for instance, for unitary

groups SU(n), we pick the diagonal matrices as the maximal torus. The first result

we have is

Theorem 1.2.1. Let G be a semisimple, simply connected compact Lie group, and

T k any k-dimensional embedded torus of G, then H3(G/T k,Z) = 0. In particular,

there is a unique string structure on G/T k.

Recall that the canonical 3-formHg,S has the property that dHg,S = p1(M), d∗Hg,S =

0. It’s not difficult to see that the vanishing of Hg,S is equivalent to the vanishing

of p1(G/T
k). (Since 0 is the only harmonic 3-form by the theorem). Hence we only

need to calculate the first Pontryagin form p1(G/T
k) associated to the Levi-Civita

connection. We don’t just calculate p1 with the canonical metric but deform the

metric in a similar way as Redden did. We have the following theorem:

Theorem 1.2.2. Let G be simple, simply connected Lie groups, and T k any embedded

torus in G. Let gλ be the one-parameter family of Riemannian metrics on G/T k,

which we will define in section 2.1, if G/T k 6= SU(3)/S1, then the first Pontrjagin

form associated to the corresponding Levi-Civita connection is nontrivial.

This verifies the conjecture of Redden and Stolz in these cases. It would be more

interesting to find more of such homogeneous spaces with nonvanishing tmf -valued

Witten genus.

The paper is organized as follows:

In Chapter 1, we review the preliminaries, which consists of three parts. In sec-

tion 1, we review the basic facts about compact Lie groups, including root systems

of semi-simple Lie algebras and Killing forms on Lie algebras. In section 2, we re-

call some known results on differential geometry of homogeneous spaces, including

invairant Riemannian metrics, Levi-Civita connections and the associated curvature

on homogeneous spaces G/H. In section 3, we briefly review Chern-Weil Theory and

define Pontrjagin forms. This part, together with the description of curvature tensor

on G/H, will serve for the proof of non-vanishing of the first Pontrjagin form p1 in

Chapter 3.

In Chapter 2, we prove the uniqueness of string structures on G/T k for semisimple

G. We first briefly recall the definition of string structures on spin manifolds. An
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important fact is that string structures on a spin manifold M form a H3(M,Z)-torsor.

Hence the uniqueness of string structures is equivalent to the vanishing of H3(M,Z).

It’s well known that G/Tmax has a cell decomposition which has only even dimensional

cells. Hence it’s obvious that H3(G/Tmax;Z) = 0. In section 2, we generalize this to

all G/T k, for 1 6 k 6 rank(G).

In Chapter 3, we prove the nonvanishing of the first Pontrjagin form p1 of homoge-

neous space G/T k for G simple of classical types. The proof will mainly be technical

computation. The procedure of the proof consists of two main steps: first, assuming

that p1 vanishes, we can get an estimate of the parameter of metrics λ in section 1.

Next, with the estimate of λ, we can get contradictions, which is done for two cases:

the generic cases and non-generic cases.
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Chapter 2

Preliminaries

We describe some basic differential geometry on homogeneous spaces G/H in this

chapter. In 2.1, we describe the root system of a compact Lie group, and the Killing

form on the Lie algebra g, which will be important to describe the tangent space at

the origin of G/H and invariant metrics on homogeneous spaces. We also review the

basics of Chern-Weil theory in section 2.3.

2.1 Preliminaries on compact Lie groups and semi-

simple Lie algebras

In this thesis, we will always assume that the Lie group G is compact, connected

and simply connected. We will review the basic concepts of such Lie groups in this

section. In the first part we will review maximal torus and roots of a Lie group G.

In the second part, we will compute the maximal tori and root systems of classical

matrix Lie groups. We will refer the details to [4] and [6].

2.1.1 Maximal tori and root systems of compact Lie groups

Definition 2.1.1. A subgroup T ⊂ G is a maximal torus if T is a torus and there

is no other torus T ′ with T ( T ′ ⊂ G. By a torus we mean a Lie group that is

isomorphic to Rk/Zk for some k.

The existence of maximal tori is clear: since tori are compact and connected, if

T ( T ′, then dimT < dimT ′. A maximal torus is the same as a maximal connected

abelian subgroup, since the closure of such a subgroup is also connected and abelian
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and hence is a torus. Maximal torus of a group G is not unique, but close to unique

in the following weak sense:

Theorem 2.1.2. Any two maximal tori in a compact connected Lie group G are

conjugate, and every element of G is contained in a maximal torus.

By restricting the adjoint representation of G on g to a maximal torus T , we can

study g as a T -module. It’s known that a T -module is determined by its weights and

weight spaces. We define the roots of G by this representation of T :

Definition 2.1.3. The non-trivial weights of the adjoint representation are called

roots of G. More precisely, we call θ : T → U(1) global roots of G, the corresponding

linear functional θ : t→ iR infinitesimal roots, the induced functional Φ : t⊗C→ C
the complex roots of G.

By theorem 2.1.2, for two different tori T and T ′, they are conjugate to each

other, the above definition of roots doesn’t depend on the choice of a maximal torus

T . From now on, we will always fix a maximal torus T .

The adjoint representation decomposes into the direct sum of root spaces:

g = M0 ⊕
⊕
α∈R+

Mα,

gC = L0 ⊕
⊕
α∈R

Lα,

Here Mα = (Lα ⊕ L−α) ∩ g, and R+ is supposed to contain exactly one element

from each pair {α,−α}, which is called positive roots of G.

Consider the complexification gC. For each positive root α, we can choose a

nonzero vector eα ∈ gα, and e−α ∈ g−α. It’s not difficult to see that [eα, e−α] ∈ t. We

can normalize eα and e−α, such that

[eα, e−α] = tα,

[tα, eα] = 2e−α,

[tα, e−α] = −2eα

In other words, {tα, eα, e−α} spans a sub algebra of gC, which is isomorphic to sl2(C).

hα is called the coroot corresponding to α.

The Lie algebra gC is generated additively by the root vectors eα, together with

the elements in tC. The relations are necessarily of the form
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[eα, eβ] =


nαβeα+β if eα + eβ is a root

2tα if α + β = 0

0 otherwise

(2.1.1)

[t, eα] = α(t)eα

So far the elements eα and e−α have been fixed only up to a multiplication by

complex numbers of modulus one. They can be chosen so the the numbers nαβ are

integers. We will describe explicitly such eα’s for classical Lie groups.

2.1.2 Examples: root systems of classical Lie groups

In this part, we give the root systems of classical matrix groups. We will give the

proof for G = SU(n), and the proof for the other classical Lie groups are similar,

which we omit.

a) G = SU(n). The Lie algebra of special unitary groups consists of traceless

skew-Hermitian matrices,

su(n) = {A ∈ End(Cn)|Tr(A) = 0, A+∗ A = 0}

The maximal torus of SU(n) consists of the diagonal matrices:

D =

z1 . . .

zn

 , zk = exp(2πiθk)

We use the n-tuple (θ1, · · · , θn), θ1 + · · · + θn = 0 to denote D, and have corre-

sponding coordinates for the Lie algebra t ∼= Rn−1. It’s clear that the subgroup of

diagonal matrices is abelian.

Proposition 2.1.4. The subgroup of diagonal matrices is a maximal torus in SU(n).

Proof. Let T ⊂ SU(n) be any torus of SU(n), the inclusion gives rise to a unitary

representation of T on Cn. Since any complex representation of a torus is a direct

sum of one dimensional representations, T can be conjugated, such that it lives in

the subgroup of diagonal matrices.
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We now want to determine all the roots of SU(n). In other words, we are looking

for all linear functionals α : t → R, such that there is an element x in su(n) ⊗ C =

sln(C),

[t, x] = α(t) · x, for all t ∈ t

Let Ei,j ∈ sln(C), i 6= j be the matrix whose only nonzero entry is a 1 in the (i, j)

position. We have

[t, Ei,j] = (li − lj)(t) · Ei,j

where li is the functional which takes the value of the ith element on the diagonal.

Since such Ei,j’s, together with those traceless diagonal matrices span sln(C). We

have that the roots must be of the form li − lj, for i 6= j, 1 6, i, j > n. To conclude,

we have

Proposition 2.1.5. (i)The subgroup of diagonal matrices T of SU(n) is a maximal

torus

(ii)Roots: li − lj, i 6= j, 1 6, i, j 6 n.

(iii) Positive roots: li − lj, 1 6 i < j 6 n, for α = li − lj, eα = Ei,j, tα = Ei,i −Ej,j

We also have the following propositions for the other classical groups:

b) G = SO(2n+ 1)

To describe the maximal torus of SO(2n+ 1), notice that we may decompose

R2n+1 = R2 ⊕ · · ·R2 ⊕ R

to obtain inclusions

T (n) = SO(2n)× · · · × SO(2n) ⊂ SO(2n) ⊂ SO(2n+ 1)

Proposition 2.1.6. (i)The subgroup T (n) is a maximal torus of SO(n)

(ii)Roots: ±li ± lj, i 6= j, 1 6 i < j > n and ±li, 1 6 i 6 n

(iii) Positive roots: li ± lj, 1 6, i < j > n and li, 1 6 i 6 n.

For α = li−lj, we have eα = Ei,j−Ej+n,i+n, tα = (Ei,i−En+i,n+i)−(Ej,j−En+j,n+j)

For α = li+lj, we have eα = Ei,n+j−Ej,n+i, tα = (Ei,i−En+i,n+i)+(Ej,j−En+j,n+j)

For α = li, we have eα = Ei,i − En+i,n+i

d) G = Sp(2n) The diagonal matrices T (n) of the symplectic groups Sp(n) is a

maximal torus, and the root systems of symplectic groups Sp(2n) is given by the

following proposition.
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Proposition 2.1.7. (i)The subgroup T (n) is a maximal torus of Sp(n)

(ii)Roots: ±li ± lj, i 6= j, 1 6 i < j > n and ±2li, 1 6 i 6 n

(iii) Positive roots: li ± lj, 1 6, i < j > n and 2li, 1 6 i 6 n.

For α = li−lj, we have eα = Ei,j−Ej+n,i+n, tα = (Ei,i−En+i,n+i)−(Ej,j−En+j,n+j)

For α = li+lj, we have eα = Ei,n+j−Ej,n+i, tα = (Ei,i−En+i,n+i)+(Ej,j−En+j,n+j)

For α = 2li, we have eα = Ei,n+i, tα = 2(Ei,i − En+i,n+i)

c) G = SO(2n)

The maximal torus of SO(2n) is similar to the SO(2n + 1) case. And the root

system is described by the following proposition.

Proposition 2.1.8. (i)The subgroup T (n) is a maximal torus of SO(2n)

(ii)Roots: ±li ± lj, i 6= j, 1 6 i < j > n

(iii) Positive roots: li ± lj, 1 6, i < j > n

For α = li−lj, we have eα = Ei,j−Ej+n,i+n, tα = (Ei,i−En+i,n+i)−(Ej,j−En+j,n+j)

For α = li+lj, we have eα = Ei,n+j−En,n+i, tα = (Ei,i−En+i,n+i)+(Ej,j−En+j,n+j)

Remark 2.1.9. It’s clear that for these classical Lie algebras, if α+ β = γ for three

roots, then we have tα + tβ = tγ

Complex and Real Lie algebras, Invariant bilinear forms

For the computation in the next section, we will need to focus on the Lie algebra of

the compact groups G. So we would prefer the real decomposition:

g = M0 ⊕
⊕
α∈R+

Mα,

where each Mα is a real plane with Mα ⊗R C = Lα ⊕ L−α. In the previous section,

we have determined the basis eα for Lα in classical Lie algebras. Now we want to

determine the corresponding real basis of Mα. It’s not difficult to see that xα =

eα − e−α, x−α =
√
−1(eα − e−α) is a basis for Mα, and that M0 =

√
−1 · L0. Let

hα = itα We have

[hα, xα] = [itα, eα − e−α] = i(2eα + 2e−α) = 2x−α

[hα, xα] = [itα, i(eα + e−α)] = −1(2eα − 2e−α) = −2xα

[xα, x−α] = [eα − e−α, i(eα + e−α)] = i[eα, e−α]− i[e−α, eα] = 2hα
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More generally, we have

[hβ, xα] = [itβ, eα − e−α] = i[tβ, eα]− i[tβ, e−α] = iα(hβ)eα + iα(hβ)e−α = α(hβ)x−α

[hβ, x−α] = [itβ, i(eα+e−α)] = −[tβ, eα]−[tβ, e−α] = −α(hβ)eα+α(hβ)e−α = −α(hβ)xα

Definition 2.1.10. A symmetric bilinear form 〈 , 〉 on a Lie algebra g is invariant

if

〈[X, Y ], Z〉 = 〈X, [Y, Z]〉

Example 2.1.11. The Killing form

B(X, Y ) = Tr(adX ◦ adY ), for X, Y ∈ g

is an invariant form

It’s not difficult to see that if g is a simple Lie algebra, then invariant symmetric

bilinear forms on g are unique up to a real constant. For the classical Lie algebras:

we want to take the following bilinear forms :

(i) G = SU(n),

〈A,B〉 = −1

2
Tr(AB)

(i) G = SO(2n),

〈A,B〉 = −1

4
Tr(AB)

(i) G = SU(2n+ 1),

〈A,B〉 = −1

4
Tr(AB)

(i) G = Sp(n),

〈A,B〉 = −1

4
Tr(AB)

Lemma 2.1.12. g = M0 ⊕
⊕

α∈R+ Mα is an orthogonal decomposition

Remark 2.1.13. The reason we have different coefficients is the following: notice

that all these classical Lie algebras have roots of the form α = li − lj, we want to

normalize the bilinear forms, so that ‖xα‖ = 1.
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2.2 Differential geometry on homogeneous spaces

We review the basic differential geometry of homogeneous spaces in this section. The

main reference for this part is [7]. Let M = G/H be a homogeneous space, where

G is a Lie group and H is a closed subgroup of G. The coset H is called the origin

of M and will be denoted by o. The group G acts transitively on M in a natural

manner; an element f ∈ G maps a coset f ′H into the coset ff ′H. In particular the

subgroup H has the origin o as a fixed point and the linear isotropy representation

is by definition the homomorphism of H into the group of linear transformations of

To(M) which assigns to each h ∈ H the differential of h at o. A homogeneous space

G/H is called reductive if the Lie algebra g of G may be decomposed into a vector

space direct sum of the Lie algebra h of H and an ad(H)-invariant subspace m, that

is, if

(1)g = m⊕ h

(2)ad(H)m ⊂ m We define the notations [, ]h, and [, ]m by

[X, Y ] = [X, Y ]h + [X, Y ]m, [X, Y ]h ⊂ h, [X, Y ]m ⊂ m

.

Remark 2.2.1. In general the decomposition is not unique. For instance, if the Lie

group G is abelian, then any decomposition of g = h + m as a vector space satisfies

the conditions. If g is semi-simple, we can define a canonical decomposition in later

sections.

Remark 2.2.2. If G is compact, then every homogeneous spaces G/H must be reduc-

tive, since any finite dimensional representation of a compact Lie group is completely

reducible.

We first give the definition of isotropy groups and isotropy representations.

Definition 2.2.3. Let G be a group of smooth transformations on a manifold M .

Let x ∈ M , the isotropy group of the point x Gx is the subgroup of G that leaves x

fixed. The isotropy representation

Isx : Gx → (TxM)

associates to each h ∈ Gx the differential of h at x.

We have the following lemma, which describes the isotropy representation explic-

itly :
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Lemma 2.2.4. Let M = G/H be a reductive homogeneous spaces, the isotropy

representation Iso can be identified with the representation

h 7→ AdG(Gx)|m

The isotropy representation and linear isotropy group play an important role in

the study of invariant objects on homogeneous spaces. The invariant tensor fields on

a homogeneous space are in one-to-one correspondence with the tensors on that are

invariant with respect to the isotropy representation. In particular, invariant Rieman-

nian metrics, connections and curvatures on homogeneous spaces can be described

explicitly by the following propositions.

Proposition 2.2.5. If M = G/H is reductive with an Ad(H)-invariant decompo-

sition g = h + m, then there is a natural one-to-one correspondence between the

G-invariant Riemannian metrics g on M = G/H and the Ad(H)-invariant positive

definite symmetric bilinear forms 〈 , 〉 on m. The correspondence is given by

〈X, Y 〉 = g(X, Y )o, for X, Y ∈ m

The following theorem describes all metric compatible connections on the tangent

space of the origin o.

Theorem 2.2.6. Let g be a G-invariant Riemannian metric on a reductive homoge-

neous space M = G/H with decomposition g = h + m. Then there is a one-to-one

correspondence between the set of G-invariant connections compatible with g and the

set of linear mappings Λ : m→ so(m) such that

Λm(adh(Z)) = ad(λ(h))(Λm(Z)) for X ∈ m and h ∈ H

Where λ is the isotropy representation H → SO(m)

In particular, we can give the Levi-Civita connection explicitly.

Theorem 2.2.7. Let M = G/H be a reductive homogeneous space with an ad(H)-

invariant decomposition g = h+m and an Ad(H)-invariant positive definite symmetric

bilinear form 〈, 〉 on m. Let g be the G-invariant metric corresponding to 〈 , 〉. Then

the Levi-Civita connection for g is given by

Λm(X)Y =
1

2
[X, Y ]m + U(X, Y )

where U(X, Y ) is the symmetric bilinear mapping from m×m into m defined by

2〈U(X, Y ), Z〉 = 〈X, [Z, Y ]m〉+ 〈[Z,X]m, Y 〉 for X, Y, Z ∈ m
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The following theorem gives the main tool for our calculation of the first Pontrjagin

form

Theorem 2.2.8. The torsion tensor T and the curvature tensor R of the invariant

connection corresponding to Λm can be expressed at the origin as follows:

T (X, Y )o = Λ(X)Y − Λ(Y )X − [X, Y ]m

R(X, Y )o = [Λm(X),Λm(Y )]− Λm([X, Y ]m)− λ([X, Y ]h)

2.2.1 Examples of computation of the curvature tensor on

homogeneous spaces

In this subsection, we will apply the theory in the previous two sections to a special

family of homogeneous spaces, namely, we will consider homogeneous spaces of the

form G/T k, where T k is a torus of dimension k. It’s known that all maximal tori of

G are conjugate to each other. Hence without loss of generality, we can assume that

T k is contained in a fixed maximal torus Tmax of G. In this case, we will choose the

decomposition g = m⊕ t in the following way: let

m = t′
⊕
α

(xα ⊕ x−α)

where α runs over all positive roots and t′⊕ t is the Lie algebra of the fixed maximal

torus and t′ is the orthogonal complement to t with respect to the Killing form. The

above decomposition of m is an orthogonal decomposition of m. For later calculation

of curvature tensors, we pick an orthonomal basis {t1, · · · , tn−k} of t′, where n is the

rank of G. Hence {xα, x−α}
⋃
{t1, · · · , tn−k} completes {xα, x−α} to an orthonormal

basis of m.

Each pair {xα, x−α} spans a two-dimensional irreducible (real) representation of

T k, and t′ is a trivial representation of T k, since the isotropy representation is just

the restriction of the adjoint representation of G to T k. Now we define a positive

definite bilinear form on m in the following way: we know that m = t′
⊕

α(xα ⊕ x−α)

is an orthogonal decomposition with respect to the Killing form. Let


〈x, y〉λ = 〈x, y〉 x, y ∈

⊕
α(xα ⊕ x−α)

〈t1, t2〉λ = λ〈t1, t2〉 t1, t2 ∈ t′

〈x, t〉λ = 0 x ∈
⊕

α(xα ⊕ x−α), t ∈ t′

(2.2.1)

In other words, we are only deforming the metric on t′ with a positive parameter λ.

In order to define a corresponding Riemannian metric on G/T k, by Proposition 2.2.5,
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we have to show that this bi-linear form is invariant with respect to the adjoint action

of T k. This is obvious: we only have to check the invariance on t′ and
⊕

α(xα⊕ x−α)

respectively, since they are still orthogonal to each other with respect to this new bi-

linear form. For t′, this is trivial since T k acts trivially. The metric on
⊕

α(xα⊕x−α)

is the same as the Killing form, which is even invariant with respect to the adjoint

action of G. Hence we can define:

Definition 2.2.9. Let gλ be the invariant Riemannian metric on G/T k corresponding

to the positive definite bi-linear form 〈 , 〉λ on m. In particular, g1 is just the metric

corresponding to the Killing form, which is bi-invariant.

In 3.2, we defined the symmetric bi-linear map m×m into m given by

2〈U(x, y), z〉λ = 〈x, [z, y]m〉λ + 〈[z, x]m, y〉λ for x, y, z ∈ m

The following lemma describes this bilinear mapping

Lemma 2.2.10. For M = G/T k with the Riemannian metric in Definition 2.2.9, we

have that


U(xα, xβ) = 0 α, β two roots

U(xα, t) ∈ Span{x−α} α a root, t ∈ t′

U(t1, t2) = 0 t1, t2 ∈ t′

(2.2.2)

Proof. Let α and β be two roots. Then to determine U(xα, xβ). We need to con-

sider 〈U(xα, xβ)〉λx for all basis vectors of m. For t ∈ t, we have 〈U(xα, xβ), t〉λ =
1

2
(〈[t, xα]m, xβ〉λ + 〈〈[t, xβ]m, xα〉λ). And it’s obvious that [t, xα]m = [t, xα], [t, xβ]m =

[t, xβ]. By the invariance of the metric , we have the inner product must be 0.

For x = xγ, if γ 6= −α,−β, we still have that [xγ, xα]m = [xγ, xα], [xγ, xβ]m =

[xγ, xβ].

For x = x−α, then we have that [xγ, xα]m = [x−α, xα]m ∈ t′. Hence we have

〈[x−α, xα]m, xβ〉λ = 0, similarly 〈[x−α, xβ]m, xα〉λ = 0

To see that U(xα, t) ∈ Span{x−α}. It’s enough to apply the fact that xα and xβ

are orthogonal to each other, if α and β are different roots.

Let’s compute some curvature transformations of G/T k, which will be important

for the computation of the first Pontrjagin forms of G/T k. We will be concerned
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mainly with curvature transformations of the form R(xα, x−α)x for α a positive root

of g. Recall that we fix a basis of m to be {xγ, x−γ} ∪ {t1, · · · , tn−k}. By Theorem

2.2.8 we have

(1). R(xα, x−α)ti

= Λm(xα)(Λm(x−α)ti)− Λm(x−α)(Λm(xα)ti)− Λ([xα, x−α]m)(ti)− [[xα, x−α]t, ti]

= Λm(xα)(
1

2
[x−α, ti]m + U((x−α, ti)))− Λm(x−α)(

1

2
[xα, ti]m + U((xα, ti)))

= Λm(xα)(c1xα)− Λm(x−α)(c2x−α)

= 0

(2). For positive root γ 6= ±α, we have

R(xα, x−α)xγ

=
1

4
[xα, [x−α, xγ]m]m −

1

4
[x−α, [xα, xγ]m]m −

1

2
[[xα, x−α]m, xγ]m

−[[xα, x−α]h, xγ]− U([xα, x−α]m, xγ)

=
1

4
[xα, [x−α, xγ]m]m −

1

4
[x−α, [xα, xγ]m]m −

1

2
[[xα, x−α], xγ]

−1

2
[[xα, x−α]h, xγ]− U([xα, x−α]m, xγ)

= −1

4
[[xα, x−α], xγ]−

1

2
[[xα, x−α]h, xγ]− U([xα, x−α]m, xγ)

We have by Lemma 2.2.10,

U([xα, x−α]m, xγ)

= 2 U((hα)m, xγ)

= 2 〈U((hα)m, xγ),
x−γ
‖xγ‖

〉λ
x−γ
‖xγ‖

,

=
1

‖xγ‖2
(〈(hα)m, [x−γ, xγ]m〉λ + 〈[x−γ, (hα)m], xγ〉λ)x−γ

= (−2
〈(hα)m, (hγ)m〉λ
‖xγ‖2

)xγ + [(hα)m, xγ]

Hence we have R(xα, x−α)xγ

= −1

4
[[xα, x−α], xγ]−

1

2
[[xα, x−α], xγ] + 2

〈(hα)m, (hγ)m〉λ
‖xγ‖2

x−γ

= −3

4
[[xα, x−α], xγ] + 2

〈(hα)m, (hγ)m〉λ
‖xγ‖2

x−γ

(3). R(xα, x−α)xα
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= Λm(xα)(Λm(x−α)xα)−Λm(x−α)(Λm(xα)xα)−Λ([xα, x−α]m)(xα)− [[xα, x−α]t, xα]

= Λm(xα)(
1

2
[x−α, xα]m)− Λ((2hα)m)(xα)− [(2hα)t, xα]

= Λm(xα)(−(hα)m)− Λ((2hα)m)(xα)− [(2hα)t, xα]

=
1

2
[xα,−(hα)m] + U(xα,−(hα)m)− (

1

2
[2(hα)m, xα] + U(2(hα)m, xα))− [(2hα)t, xα]

= −1

2
[(hα)m, xα]− 3U(xα, (hα)m)− [(2hα)t, xα]

= −1

2
[hα, xα]− 3

2
[(hα)t, xα]− 3U(xα, (hα)m)

We have that

〈3 U(xα, (hα)m), x−α〉λ

=
3

2
(〈[x−α, (hα)m], xα〉λ + 〈[x−α, xα]m, (hα)m〉λ)

=
3

2
(〈[x−α, (hα)m], xα〉λ + 〈−2(hα)m, (hα)m〉λ)

Hence we have

R(xα, x−α)xα

= −1

2
[hα, xα]− 3

2
[(hα)t, xα]− 3

2
(〈[x−α, (hα)m], xα〉λ + 〈−2(hα)m, (hα)m〉λ)x−α

= −2[hα, xα] + 3〈(hα)m, (hα)m〉λx−α

To generalize, we have

Lemma 2.2.11.
R(xα, x−α)t = 0 for t ∈ t′

R(xα, x−α)xγ = −3

4
[[xα, x−α], xγ] + 2

〈(hα)m, (hγ)m〉λ
‖xγ‖2

x−γ if γ 6= ±α

R(xα, x−α)xα = −2[hα, xα] + 3〈(hα)m, (hα)m〉λx−α

(2.2.3)

2.3 Chern-Weil theory: from curvature to Pontr-

jagin forms

The purpose of this section is to give a brief introduction to geometric aspects of

the theory of characteristic classes, which was developed by Shiing-shen Chern and

André Weil.
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2.3.1 Connections on vectors bundles and their curvature

Let E →M be a smooth real vector bundle over a smooth compact manifold M . We

denote by Ω∗(M,E) the space of smooth sections of the tensor product vector bundle

Λ∗(T ∗M)⊗ E,

Ω∗(M,E) := Γ(Λ∗(T ∗M)⊗ E)

Definition 2.3.1. A connection ∇E on E is an R-linear operator ∇E : Γ(E) →
Ω1(M,E), such that for any f ∈ C∞(M) and X ∈ Γ(E), the Leibniz rule holds:

∇E(fX) = df ⊗X + f∇E(X)

The existence of a connection on a vector bundle can be proved easily by using

the method of partition of unity. All connections on it form an infinite dimensional

affine space.

One can extend ∇E to

∇E : Ω∗(M,E)→ Ω∗+1(M,E)

We can hence take the composition of∇E with it self, which gives rise to the curvature

of ∇E.

Definition 2.3.2. The curvature RE of a connection ∇E is defined by

RE : Γ(E)→ Ω2(M,E)

It’s not difficult to check that RE is C∞(M)-linear, i.e., for any f ∈ C∞(M),

RE(fX) = fRE(X). Therefore, we can think of RE as an element of Ω2(End(E)).

More explicitly, let X, Y be two smooth sections of TM , then R(X, Y ) ∈ Γ(End(E))

by pairing X, Y with Ω2(M). For Z ∈ Γ(E), R(X, Y ) is given by

R(X, Y )Z = ∇E
X∇E

YZ −∇E
Y∇E

XZ −∇E
[X,Y ]Z

Definition 2.3.3. Let ∇ be a connection on a real vector bundle V of rank k. We

set

p(Ω) := det(I +
1

2π
Ω)

= 1 + p1(Ω) + · · ·+ pr(Ω),

where pi(Ω) ∈ Ω4i(M).

In particular, we have

p1(Ω) =
Tr(Ω2)

4π2
=

1

4π2

∑
det(ΩI,I)

. It’s now clear that our object is to show the nonvanishing of
∑
det(ΩI,I) for certain

Riemannian homogeneous spaces.
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2.3.2 From curvature to Pontrjagin forms: an example

In this paper, to show the non-vanishing of p1 of M = G/H, we will only focus on

the coefficient of the terms dxαdx−αdxβdx−β,for each pair of positive roots α and β

of the Lie algebra g, or equivalently, the pairing of p1 with xα ⊗ x−α ⊗ xβ ⊗ x−β.

Notice that according to Chern-Weil theory, the first Pontrjagin form p1 is the sum

of determinants of all 2 × 2 minor of the curvature matrix Ω. Notice that the four

form dxαdx−αdxβdx−β can be the wedge product of the following three pairs,

dxαdx−α ∧ dxβdx−β, dxαdxβ ∧ dx−αdx−β and dxαdx−β ∧ dx−αdxβ and

Let’s call the coefficient of the term we can get from the above 3 ways by fα,β,

gα,β and hα,β. It’s obvious from the definition that

fα,β + gα,β + hα,β = p1(xα ⊗ x−α ⊗ xβ ⊗ x−β)

.

A special case is when the homogeneous space is trivial, i.e. , when H = {1},
G/H = G.

We will fix an orthonormal basis of the tangent space of M = G/T k as we did in

the previous section. We will denote fα,β, gα,β and hα,β by fG,α,β, gG,α,β and hG,α,β.

We have an orthogonal decomposition

m =
⊕
α

(xα ⊕ x−α)⊕ t′

We pick any orthonormal basis of t′, then together with {xα, x−α}, we can get an

orthonomal basis of m.

We try to calculate fG(xα, x−α, xβ, x−β) for the group G = SU(n) with the bi-

invariant metric. We have seen that RG(x, y)z = −1

4
[[x, y], z]. We have

R(xα, x−α)ti = 0

R(xα, x−α)xγ ∈ Span{x−γ}
(2.3.1)

So we only need to focus on those 2× 2 submatrices corresponding to the pair of

basis of vectors {xγ, x−γ}. Let’s take the group SU(n) as an example, all the roots

of su(n) are of the form li − lj for i, j 6 n, i 6= j. Let α = l1 − l2, β = l1 − l3. Then

−1

4
[[xα, x−α], x−γ] 6= 0 if and only if 〈hα, hγ〉λ 6= 0, hence γ = ±(l1− lk), or ±(l2− lk).
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Hence −1

4
[[xα, x−α], x−γ] and −1

4
[[xβ, x−β], x−γ] can be simultaneously nonzero only

when γ = ±(l1 − lk). We have

−1

4
[[xα, x−α], x(l1−lk)] = −1

2
x−(l1−lk),−

1

4
[[xα, x−α], x−(l1−lk)] =

1

2
x(l1−lk)

−1

4
[[xβ, x−β], x(l1−lk)] = −1

2
x−(l1−lk),−

1

4
[[xβ, x−β], x−(l1−lk)] =

1

2
x(l1−lk)

The corresponding 2× 2 submatrix is

Ωxγ ,x−γ =

 0 −1

2
dxαdx−α −

1

2
dxβdx−β

1

2
dxαdx−α +

1

2
dxβdx−β 0


And the determinant is

1

2
dxαdx−αdxβdx−β. Notice that k = 2, · · · , n, It’s not difficult

to see that

fG,α,β =
1

2
(n+ 1)

Similarly, we have that gG = hG = −1

4
(n+ 1).

We have seen in the previous section that all Lie algebras of classical type have

roots li − lj. It’s straightforward to generalize the above computation to all classical

Lie groups

Lemma 2.3.4. (1) For G = SU(n), fG,α,β =
1

2
(n+ 1)

(2) For G = Sp(n), fG,α,β = n+ 3

(3) For G = SO(2n), fG,α,β = n+ 1

(4) For G = SO(2n+ 1), fG,α,β = n+
3

2
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Chapter 3

String structure on G/T k

In section 3.1, we give the definition of string structures on principal Spin(n)-

bundles. In particular, a Spin-manifold M is called string if the principal Spin-

bundle associated to the tangent bundle TM has a string structure. In section 2.2,

we describe string structures on homogeneous spaces G/T k. We first give the proof

of the known fact that homogeneous spaces G/T k are stably framed, which gives the

existence of string structures on such spaces. We then prove Theorem 3.1.5, which is

our first main result.

3.1 String structures on Spin(n)-bundles

To define the string group, we first recall the Whitehead tower of a space X. The

Whitehead tower of a space X consists of a sequence of spaces X〈n+ 1〉 → X〈n〉 →
· · · → X, such that the arrows induce isomorphisms πi(X〈n〉) ∼= πi(X) for i > n, and

πi(X〈n〉) = 0 for i < n. The first spaces in the Whitehead tower of O(n) are the Lie

groups SO(n) and Spin(n).

Definition 3.1.1. String(n) is the topological group that has the homotopy type of

O(n)〈4〉. It is the homotopy fiber of the canonical map Spin(n)→ K(Z, 3).

Since πi(SO(n)) = 0 for i = 4, 5, 6, String(n) is homotopy equivalent to O(n)〈7〉.
We have the following sequences

O(n)← SO(n)← Spin(n)← String(n)

BO(n)← BSO(n)← BSpin(n)← BString(n)
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String(n) is not a finite dimensional Lie group since H3(String(n),Z) = 0. There

are by now several constructions of String(n), including those based on Von Neumann

algebras [14], 2-groups, and by conformal field theory.

Definition 3.1.2. A String structure on a principal O(n)-bundle P →M is a homo-

topy lifting f̃ of the classifying map f : M → BO(n) to BString(n).

In particular, a manifold M together with a lifting of the classifying map τ : M →
BO(n) of the tangent bundle to BString(n) is called a ”string manifold”, or we may

say M is string for the existence of a string structure of the tangent bundle.

Proposition 3.1.3. A string structure on a principal spin bundle exists if and only

the characteristic class
p1
2

= 0 ∈ H4(M ;Z), and the space of string structures is a

H3(M ;Z)-torsor.

Proof. The statements following from the fact that in the universal case, the generator

of H3(Spin(n);Z) transgresses to
p1
2
∈ H4(BSpin(n);Z) in the Leray-Serre spectral

sequence.

3.1.1 Existence and uniqueness of string structures on G/T k

We first show the existence of a string structure on G/T k by showing that the tangent

bundle of G/T k is actually stably trivial, which is well-known, see [3],[2] and [10]

Proposition 3.1.4. The tangent bundle of G/T k is stably trivial, in other words,

there exists a trivial bundle E on M = G/T k, such that E ⊕ TM is isomorphic to a

trivial vector bundle. In particular, M = G/T k is a string manifold.

Theorem 3.1.5. Let G be a simply connected, compact and simple Lie group. Then

for any embedded torus T k, H2(G/T k;Z) = Zk,H3(G/T k;Z) = 0, in particular, there

is a unique string structure on G/T k

Proof. G is simple and simply connected, and hence H3(G;Z) = Z,H4(G;Q) = 0.

We can consider the following tower of S1-principle bundles.

S1 → G/T k−1 → G/T k, where 1 6 k 6 n = rank G.

From the long exact sequence of homotopy groups

...→ π2(S
1)→ π2(G/T

k−1)→ π2(G/T
k)→ π1(S

1)→ π1(G/T
k−1)→ π1(G/T

k)→
π0(S

1)→ ...
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we can see that G/T k is always simply connected. From the middle short exact

sequence 0 = π2(S
1) → π2(G/T

k−1) → π2(G/T
k) → π1(S

1) → 0 we can show

inductively that π2(G/T
k) = Zk. By Hurewicz Theorem, H2(G/T k;Z) = Zk. Now

we need the following

Lemma 3.1.6. dim(H4(G/T n;Q)) = (n2 + n− 2)/2

Proof. This proof is a simple application of the Bruhat decomposition of the flag

variety Gc/B. For more details about Bruhat decomposition, we refer to [6]. It’s

known that G/T n ∼= Gc/B, where Gc is the complexified Lie group of G and B is

the Borel subgroup. It’s known that Gc/B has a cell structure, which has only even

dimensional cells. So the dimension of H4(G/T n;Q) is the same as the number of 4

dimensional cells of Gc/B. Gc/B is a disjoint union of the Bruhat cells XW , with

W varying over the Weyl group. XW is isomorphic to the affine space Cl(W ), where

l(W ) is the minimum number of reflections in simple roots whose product is W , i.e.,

the length of W . We only need to find all elements in the Weyl group of length 2.

The Weyl group has a presentation r2i = 1, (rirj)
mij = 1, where ri’s are the reflection

of simple roots and mij = 2, 3, 4, 6,depending on whether roots i, j are unconnected,

connected by a simple edge, double edge,triple edge. So actually rirj = rjri if and

only if roots i, j are unconnected. So the number of elements of length 2 is equal to(
n
2

)
+ number of edges in the Dynkin diagram). It’s easy to see that the number of

edges in the Dynkin diagram of any simple Lie algebra of rank n is equal to n − 1.

So we have dim(H4(G/T n;Q)) = n(n−1)
2

+ n− 1 = (n2 + n− 2)/2

We first show inductively thatH3(G/T k;Z) is always torsion free. For k =rank(G),this

is obvious since G/T n has no 3 dimensional cells. By looking at the Gysin sequence

associated to the S1 bundle

S1 → G/T k−1 → G/T k,

H1(G/T k;Z) - H3(G/T k;Z) - H3(G/T k−1;Z) - H2(G/T k;Z)
∪c1- H4(G/T k;Z)

The arrow d in the exact sequence is given by cup product with the Euler class,

which is just c1 of the circle bundle. Notice that H1(G/T k;Z) = 0 since G/T k is

simply connected, and we have a short exact sequence

0→ H3(G/T k;Z)→ H3(G/T k−1;Z)→ ker(∪c1)→ 0

ker(∪c1) is a subgroup of H2(G/T k;Z) = Zk, so ker(∪c1) is a free abelian group. So

the middle term H3(G/T k−1;Z) is also free.
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Hence to show that H3(G/T k;Z) = 0, we can just consider rational cohomology

and show that dim(H3(G/T k;Q))= 0.

Now we look at the Gysin sequence of cohomology with rational coefficients

· · · - H3(G/T k−1;Q) - H2(G/T k;Q)
∪c1- H4(G/T k;Q) - H4(G/T k−1;Q) - · · ·

we can see that

dim(H4(G/T k−1)) > dim(Coker(∪c1))

= dim(H4(G/T k)− dim(Im(∪c1))

> dim(H4(G/T k)− dim(H2(G/T k))

= dim(H4(G/T k)− k.

Adding all these inequalities together, we have

dim(H4(G/S1)> dim(H4(G/T n)− (n+ (n− 1) + (n− 2) + · · ·+ 2)

= dim(H4(G/T n)− (
n2 + n

2
− 1)

= (n2 + n− 2)/2− (
n2 + n

2
− 1)

= 0.

If we can show that dim(H4(G/S1;Q) is actually 0, then we are already done, since

it means that all the inequalities above are actually equalities, so dim(Im(∪c1)) = k,

or in other words ∪c1 is an injection for every k and inductively we have

dim(H3(G/T k−1;Q))

= dim(H3(G/T k;Q))+dim(ker(∪c1))

= dim(H3(G/T k;Q)

= · · ·

= dim(H3(G/T n;Q) = 0

Let’s look at the Gysin sequence of the fibre bundle S1 → G→ G/S1

· · · - H3(G;Q) - H2(G/S1;Q) - H4(G/S1;Q)
d
- H4(G;Q) - · · ·

It’s easy to see that dim(H4(G/S1;Q)) can be at most 1, since H4(G;Q) = 0 and

H2(G/S1;Q) is 1 dimensional. Let’s consider the complex line bundle L = G×S1 C,

where the S1 acts on C by the natural action of S1 on C, it’s obvious from the Gysin

sequence that H4(G/S1;Q) is generated by c1(L)2.
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Hence to finish the proof, we only need to show that c1(L)2 = 0. T (G/S1) =

G×AdS1 (g/h), where g is the Lie algebra of G, h is the Lie algebra of the embedded

S1. So the complexification of the tangent bundle TC(G/S1) = G×AdS1 (gC/hC),where

gC and hC are the corresponding complification of the Lie algebras. Since all nontriv-

ial irreducible complex representations of S1 are 1-dimensional, the complex vector

bundle TC(G/S1) actually splits into line bundles, which we will analyze in detail.

Let the Lie algebra of the embedded S1 be spanned by the element t =
∑
nihi,where

ni’s are integers and hi consists of a basis of the Cartan subalgebra of g(also a basis

of gC over C). Notice that TC(G/S1) = G ×Ad(S1) ((g/h) ⊗ C). Recall the following

decomposition

g⊗ C = L0 ⊕
⊕
α

Lα

From this decomposition, we can conclude that TC(G/S1) is the direct sum of the

following vector bundles:

(1) A trivial vector bundle of dimension n− 1, where n is the rank of G, i.e., the

(complex) dimension of L0, since S1 acts trivially on L0/t

(2) A pair of complex line bundle Lα, L−α for each pair of roots α,−α.

Since T (G/S1) is stably trivial, we have that c2(TC(G/S1)) = 0. On the other

hand,

c2(TC(G/S1))

= c2(
⊕

(Lα ⊕ L−α))

= −
∑
c21(Lα)

= (−
∑

(α(t))2)c21(L)

The last equality follows from the fact that c1(Lα) = α(t)c1(L), which can be

explained in the following way: Lα is the complex line bundle associated to the circle

bundle S1 → G → G/S1 and the representation S1 → S1 : eiθ 7→ eα(t)·iθ, and hence

is isomorphic to the L⊗α(t). It’s also clear then L−α ∼= Lα. Notice that when g is

semisimple, all the roots α span the dual of the Cartan subalgebra of g, and there

exists a root α, such that α(t) 6= 0. And hence the conclusion.
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Chapter 4

Non-vanishing of p1

In this chapter we prove the main result, the non-vanishing of the first Pontrjagin

form p1 on homogeneous spaces G/T k for G a classical compact Lie group. We will

show by contradiction: in section 1, we assume that p1 vanishes, and we can get a

contradiction in section 2.

4.1 Estimate of λ

In this section we give an estimate of the parameter λ, which is necessary for showing

the non-vanishing of p1 ∈ Ω4(M).

4.1.1 A special case

In this subsection, we deal with a special case. Let α = l1 − l2, β = l1 − l3 be two

positive roots of the Lie algebra su(n). We assume in this subsection that in the

homogeneous space SU(n)/T k, we have both hα and hβ live in the Lie algebra of T k,

i.e., hα, hβ ∈ t.

Before stating the tedious calculation, we want to explain the basis idea of how

this estimate of λ comes about. We need to calculate fα,β, gα,β and hα,β. To calculate

fα,β, we have by lemma 2.2.11

R(xα, x−α)xγ = −3

4
[[xα, x−α], xγ] + 2〈(hα)m, (hγ)m〉λ

= −3

4
[[xα, x−α], xγ] since (hα)m = 0 by our assumption.

Similarly
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R(xβ, x−β)x−γ

= −3

4
[[xβ, x−β], xγ]

Hence, roughly, we have that fα,β is ”almost” 9 times fG,α,β. (Recall thatRG(xα, x−α)xγ =

−1

4
[[xα, x−α], xγ], by RG we mean the curvature tensor associated to the Levi-Civita

connection of the bi-invariant metric on G.) While hα,β is almost the same as hG,α,β,

gα,β is almost the same as gG,α,β. And the estimate of λ just come from this difference

here.

Now we start to calculate fα,β, gα,β and hα,β. To calculate fα,β, we calculate the

following curvature transformations:

1. R(xα, x−α)t, R(xβ, x−β)t for any base vector t ∈ t′.

R(xα, x−α)t

= [Λm(xα),Λm(x−α)]t− Λm([xα, x−α]m)− [([xα, x−α]t), t]

= 0

2. R(xα, x−α)xγ, R(xβ, x−β)x−γ, for any root γ 6= ±α,±β

R(xα, x−α)xγ

= Λm(xα)Λm(x−α)xγ − Λm(x−α)Λm(xα)xγ − Λm([xα, x−α]m)xγ − ([[xα, x−α]t, xγ])

=
1

4
[xα, [x−α, xγ]]−

1

4
[x−α, [xα, xγ]]−

1

2
[[xα, x−α]m, xγ]− U([xα, x−α]m, xγ)

−1

2
([[xα, x−α]t, xγ])−

1

2
([[xα, x−α]t, xγ])

=
1

4
[xα, [x−α, xγ]]−

1

4
[x−α, [xα, xγ]]− [[xα, x−α], xγ]

=
3

4
[[xα, x−α], xγ]

Similarly we have

R(xα, x−α)xγ =
3

4
[[xβ, x−β], xγ].

3. A little more complicated is when γ = ±α,±β

We have

R(xα, x−α)xα

Λm(xα)Λm(x−α)xα

= Λm(xα)(
1

2
[x−α, xα]m)

= Λm(xα)(−(hα)m)
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=
1

2
[xα,−(hα)m] + U((xα),−(hα)m)

=
1

2
[xα,−(hα)m] +

1

2
(〈[x−α, xα]m,−(hα)m)〉λ + 〈xαi , [x−α,−(hα)m]m〉)x−α

=
1

2
(〈[x−α, xα]m,−(hα)m〉λ)x−α

= 〈−(hα)m,−(hα)m〉λx−α

=
1

4
[xα, [x−α, xα]] + (λ− 1− 〈(hα)t, (hα)t〉λ)x−α

Hence we have

R(xα, x−α)xα = −3

4
[[xα, x−α], xα] + (λ− 1− 〈(hα)t, (hα)t〉λ)x−α

R(xβ, x−β)x−α = −3

4
[[xβ, x−β], x−α]

From the above calculations we have that

f(xα, x−α, xβ, x−β)

= 9fG(xα, x−α, xβ, x−β)− 3(λ− 1− 〈(hα)t, (hα)t〉λ)− 3(λ− 1− 〈(hβ)t, (hβ)t〉λ)

3. We also need to compute g(xα, x−α, xβ, x−β) and h(xα, x−α, xβ, x−β) For any

root γ 6= ±α,±β,±(α + β). We have

R(xα, xβ)xγ

= Λm(xα)Λm(xβ)xγ − Λm(xβ)Λm(xα)xγ − Λm([xα, xβ]m)xγ − ([[xα, xβ]t, xγ])

= Λm(xα)Λm(xβ)xγ − Λm(xβ)Λm(xα)xγ − Λm([xα, xβ])xγ

=
1

4
[xα, [xβ, xγ]]−

1

4
[xβ, [xα, xγ]]−

1

2
[[xα, xβ], xγ]

= −1

4
[[xα, xβ], xγ]

For γ = α, we have

R(xα, xβ)xα = −1

4
[[xα, xβ], xγ]

R(x−α, x−β)xα

= Λm(x−α)Λm(x−β)xα−Λm(x−β)Λm(x−α)xα−Λm([x−α, x−β]m)xα−([[x−α, x−β]t, xα])

= Λm(x−α)Λm(x−β)xα − Λm(x−β)Λm(x−α)xα − Λm([x−α, x−β])xα

= Λm(x−α)(
1

2
[x−β, xα]m)− Λm(x−β)(

1

2
[x−α, xα]m)− 1

2
[[x−α, x−β], xα]

Notice that

Λ(x−β)(
1

2
[x−α, xα]m)

= Λ(x−β)(−(hα)m)
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= −(
1

2
[x−β, (hα)m] + U(x−β, (hα)m))

= −1

2
[x−β, (hα)m]− 1

2
(〈[xβ, x−β], (hα)m〉λ + 〈[xβ, (hα)m], x−β〉λ)xβ

= −〈(hα)m, (hβ)m〉λxβ

=
1

2
[x−β, [x−α, xα]] + (

1

2
− 〈(hα)m, (hβ)m〉λ)xβ

=
1

2
[x−β, [x−α, xα]] + (

1

2
+ 〈(hα)t, (hβ)t〉λ −

λ

2
)xβ

We can conclude that g(xα, x−α, xβ, x−β) = gG + (
λ

2
− 〈(hα)t, (hβ)t〉λ −

1

2
)

Similarly h(xα, x−α, xβ, x−β) = hG + (
λ

2
− 〈(hα)t, (hβ)t〉λ −

1

2
)

Another thing we need to calculate is

R(xα, xβ)t for t ∈ t′.

Let {t1, · · · , tn−k} be an orthonormal basis of t′. We know that R(xα, xβ)t must

live in the line spanned by x−(l2−l3), i.e., R(xα, xβ)t = cx−(l2−l3).

Since x−(l2−l3) is of unit length, we have c = 〈R(xα, xβ)t, x−(l2−l3)〉λ. Now by the

basic symmetry property of the curvature tensor associated to Levi-Civita connection,

〈R(xα, xβ)t, x−(l2−l3)〉λ = −〈R(xα, xβ)x−(l2−l3), t〉λ. Hence

c = 〈R(xα, xβ)t, x−(l2−l3)〉λ

= −〈R(xα, xβ)x−(l2−l3), ti〉λ

= −〈−1

4
[[xα, xβ], x−(l2−l3)]m, ti〉λ

= 〈−1

4
[xl2−l3 , x−(l2−l3)]m, ti〉λ

= 〈−1

2
(hl2−l3)m, ti〉λ

On the other hand, we have

〈R(x−α, x−β)x−(l2−l3), ti〉λ

= −〈R(x−α, xβ)x−(l2−l3), ti〉λ

= 〈−1

4
[[x−α, x−β], x−(l2−l3)]m, ti〉λ

= 〈−1

4
[−xl2−l3 , x−(l2−l3)], ti〉λ

=
1

2
〈(hl2−l3)m, ti〉λ
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The determinant is just
1

4
〈(hl2−l3)m, ti〉2λdxαdx−αdxβdx−β

Taking the sum over the basis vectors t1, · · · , tk, we have

−1

4

∑
i

〈(hl2−l3)m, ti〉2λ = −1

4
‖(hl2−l3)m‖2

Now we can conclude that

gα,β = gG,α,β −
1

2
(‖(hl2−l3)m‖2 − 1)− (〈(hl1−l2)m, (hl1−l3)m〉λ −

1

2
)

Notice that (hl2−l3)m = (hl1−l3)m − (hl1−l2)m, hence ‖(hl2−l3)m‖2 = ‖(hl1−l2)m‖2 +

‖(hl1−l3)m‖2 − 2〈(hl1−l2)m, (hl1−l3)m〉λ

We can simplify the above as

gα,β = gG,α,β −
1

2
(‖(hl1−l2)m‖2 − 1 + ‖(hl1−l3)m‖2 − 1)

Similarly we have

hα,β = hG,α,β −
1

2
(‖(hl1−l2)m‖2 − 1 + ‖(hl1−l3)m‖2 − 1)

Remark 4.1.1. The calculation of gα,β and hα,β will also be used in later sections.

Hence we have

f + g + h = 9fG + gG + hG − 3(λ− 1− 〈(hα)t, (hα)t〉λ)− 3(λ− 1− 〈(hα)t, (hβ)t〉λ)

(‖(hl1−l2)m‖2 − 1 + ‖(hl1−l3)m‖2 − 1)

= 8fG − 5λ+ 5 + 3〈(hα)t, (hα)t〉λ + 3〈(hα)t, (hα)t〉λ − 〈(hα)t, (hβ)t〉λ

Since 3〈(hα)t, (hα)t〉λ + 3〈(hα)t, (hα)t〉λ − 〈(hα)t, (hβ)t〉λ > 0

we have the estimate

8λ− 8 > 8fG = 8
1

2
(n+ 1) = 4n+ 4

Hence

λ >
4n+ 4

8
+ 1 =

n+ 3

2
We can get a similar estimate for classical Lie groups of type B, C and D.

Remark 4.1.2. The estimate is only necessary λ. For the case we just considered,

actually now matter how big λ is , the coefficient of dxαdx−αdxβdx−β can’t vanish,

since (hα)m = (hα)m = 0. And hence we have actually proved the nonvanishing of p1

when T is a maximal torus.

Proposition 4.1.3. If T is the maximal torus of G, then the first Pontrjagin form

p1 doesn’t vanish.
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4.1.2 General case

In the previous subsection, we assumed that we can find two positive roots α and β,

such that hα, hβ ∈ t, which is a very special case. Let’s look at an example, which is

very close to the special case.

Example 4.1.4. Let G = SU(n), and U(1) an embedded circle in SU(n), which is

generated by hl1−l3 . Let α = l1− l2, β = l2− l3, γ = l1− l3, we have hα+hβ = hγ. The

idea is to look at the coefficient of the terms dxαdx−αdxγdx−γ and dxβdx−βdxγdx−γ.

Now let ζ 6= ±α,±β,±γ, then we know that as in the previous part, since hγ ∈ t,

We have

R(xγ, x−γ)xζ = −3

4
[[xγ, x−γ], xζ ]

ButR(xα, x−α)xζ 6= −
3

4
[[xα, x−α], xζ ], R(xβ, x−β)xζ 6= −

3

4
[[xβ, x−β], xζ ],since hα, hβ 6∈

t. However, when we take the sum

R(xα, x−α)xζ +R(xβ, x−β)xζ

= [Λm(xα),Λm(x−α)]xζ + Λm([xα, x−α]m)xζ + [[xα, x−α]t, xζ ]

+[Λm(xβ),Λm(x−β)]xζ + Λm([xβ, x−β]m)xζ + [[xβ, x−β]t, xζ ]

Notice that Λm([xα, x−α]m)xζ + Λm([xβ, x−β]m)xζ

= Λm(2hα + 2hβ)mxζ = Λm(2hγ)mxζ = 0

And [[xα, x−α]t, xζ ] + [[xβ, x−β]t, xζ ]

= [2(hα)t, xζ ] + [2(hβ)t, xζ ]

= 2[(hγ)t, xζ ]

= 2[hγ, xζ ]

= [2hα, xζ ] + [2hβ, xζ ]

Hence we have R(xα, x−α)xζ +R(xβ, x−β)xζ

= [Λm(xα),Λm(x−α)]xζ + [[xα, x−α], xζ ]

+[Λm(xβ),Λm(x−β)]xζ + [[xβ, x−β], xζ ]

= −3

4
[[xα, x−α], xζ ] +−3

4
[[xβ, x−β], xζ ].

From the above computation, we can assume without loss of generality that both

hα and hβ are in t. And we can get the same estimate in the previous section.

To conclude, we have the following proposition:

Proposition 4.1.5. (1) For G = SU(n), we have λ >
4n+ 4

8
+ 1
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(2) For G = SO(2n), we have λ >
8(n+ 1)

8
+ 1

(3) For G = SO(2n+ 1), we have λ >
8n+ 12

8
+ 1

(4) For G = Sp(n), we have λ >
8(n+ 3)

8
+ 1

4.2 Contradiction

With the estimate of λ, we can show the non-vanishing of certain terms in p1(M).

4.2.1 Generic case

Type An

We first deal with the generic case. Let α = l1 − l2, β = l3 − l4. It’s not difficult

to see that gα,β and hα,β are both zero. To see this, we only need to show that

R(xα, xβ)x = 0 for any x ∈ m. We can now focus on R(xα, xβ)xγ and R(x−α, x−β)x−γ

for all positive roots γ.

Recall that all positive roots of SU(n) are of the form li− lj, 1 6 i < j 6, to make

the procedure of the calculation clear, we divide the positive roots to the following

groups:

(1) First we look at positive roots γ = l1 − lk and l2 − lk for k > 4. By lemma

2.2.11 We have

R(xα, x−α)xl1−lk

= (−3

2
+ 2〈(hα)m, (hl1−lk)m〉λ)x−(l1−lk)

R(xβ, x−β)x−(l1−lk)

= 2〈(hβ)m, (h−(l1−lk))m〉λ

= −2〈(hβ)m, (hl1−lk)m〉λ (h−α = −hα)

The corresponding determinant is

−3〈(hβ)m, (hl1−lk)m〉λ + 4〈(hα)m, (hl1−lk)m〉λ〈(hβ)m, (hl1−lk)m〉λ

Symmetrically we consider γ = l2 − lk,

R(xα, x−α)xl2−lk
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= (
3

2
+ 2〈(hα)m, (hl2−lk)m〉λ)x−(l1−lk)

R(xβ, x−β)x−(l2−lk)

= 2〈(hβ)m, (h−(l2−lk))m〉λ

= −2〈(hβ)m, (hl2−lk)m〉λ

The corresponding determinant is

+3〈(hβ)m, (hl2−lk)m〉λ + 4〈(hα)m, (hl2−lk)m〉λ〈(hβ)m, (hl2−lk)m〉λ

Let’s take the sum of the above determinants.

−3〈(hβ)m, (hl1−lk)m〉λ + 4〈(hα)m, (hl1−lk)m〉λ〈(hβ)m, (hl1−lk)m〉λ

+3〈(hβ)m, (hl2−lk)m〉λ + 4〈(hα)m, (hl2−lk)m〉λ〈(hβ)m, (hl2−lk)m〉λ

= −3〈(hβ)m, (hα)m〉λ+4〈(hα)m, (hl1−lk)m〉λ〈(hβ)m, (hl1−lk)m〉λ+4〈(hα)m, (hl2−lk)m)〈(hβ)m, (hl2−lk)m〉λ

The identity follows from the fact that (hl1−lk)m − (hl2−lk)m = (hl1−l2)m

(2) For positive roots γ = l3 − lk, l4 − lk, k > 4. The calculation is similar to (1), and

we list the sum of determinants here:

= −3〈(hβ)m, (hα)m〉λ+

4〈(hα)m, (hl3−lk)m〉λ〈(hβ)m, (hl3−lk)m〉λ + 4〈(hα)m, (hl4−lk)m)〈(hβ)m, (hl4−lk)m〉λ

We notice that in all the sum of the determinants, we have a ”linear term” and

a ”quadratic term”. And all the linear terms are the same, −3〈(hβ)m, (hα)m〉λ, which

doesn’t depend on k. Notice that the number of such k is n − 4. Hence the sum of

the linear terms is −6(n− 4)〈(hβ)m, (hα)m〉λ

(3) We now consider the positive roots γ = l1 − l3, l1 − l4, l2 − l3, l2 − l4

R(xα, x−α)xl1−l3 = (−3

2
+ 2〈(hα)m, (hl1−l3)m))x−(l1−l3)

R(xβ, x−β)x−(l1−l3) = (−3

2
+ 2〈(hβ)m, (h−(l1−l3))m))xl1−l3 so we have

−9

4
+3〈(hα)m, (hl1−l3)m〉λ−3〈(hβ)m, (hl1−l3)m〉λ+4〈(hα)m, (hl1−l3)m〉λ〈(hβ)m, (hl1−l3)m〉λ

R(xα, x−α)xl1−l4 = (−3

2
+ 2〈(hα)m, (hl1−l4)m)〉λx−(l1−l4)

R(xβ, X−β)x−(l1−l4) = (
3

2
+ 2〈(hβ)m, (h−(l1−l4))m))xl1−l4

so we have
9

4
−3〈(hα)m, (hl1−l4)m〉λ−3〈(hβ)m, (hl1−l4)m〉λ+4〈(hα)m, (hl1−l4)m〉λ〈(hβ)m, (hl1−l4)m〉λ
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R(xα, x−α)xl2−l3 = (
3

2
+ 2〈(hα)m, (hl2−l3)m)〉λx−(l2−l3)

R(xβ, x−β)x−(l2−l3) = (−3

2
+ 2〈(hβ)m, (h−(l2−l3))m)〉λxl2−l3

so we have
9

4
+3〈(hα)m, (hl2−l3)m〉λ+3〈(hβ)m, (hl2−l3)m〉λ+4〈(hα)m, (hl2−l3)m〉λ〈(hβ)m, (hl2−l3)m〉λ

R(xα, x−α)xl2−l4 = (
3

2
+ 2〈(hα)m, (hl2−l4)m)〉λx−(l2−l4)

R(xβ, x−β)x−(l2−l4) = (
3

2
+ 2〈(hβ)m, (h−(l2−l4))m)〉λxl2−l4

so we have

−9

4
−3〈(hα)m, (hl2−l4)m〉λ+3〈(hβ)m, (hl2−l4)m〉λ+4〈(hα)m, (hl2−l4)m〉λ〈(hβ)m, (hl2−l4)m〉λ

Adding these terms together, we get the constant term cancel out, the ”linear

term” is −12〈(hα)m, (hβ)m〉λ. (We will add quadratic terms later).

(3) For γ = li − lj, 3 < i < j 6 n, R(xα, x−α)xli−lj

= 2〈(hα)m, (hli−lj)m〉λx−(li−lj)

R(xβ, x−β)x−(li−lj)

= 2〈(hβ)m, (h−(li−lj))m〉λxli−lj
And the corresponding determinant is

4〈(hα)m, (hli−lj)m〉λ〈(hβ)m, (hli−lj)m〉λ

(5) Now the only positive roots left are just α and β.

R(xα, x−α)xα = (−4 + 3〈(hα)m, (hα)m〉λ)x−α

R(xβ, x−β)x−α = 2〈(hβ)m, (h−α)m〉λxα

R(xα, x−α)xβ = 2〈(hα)m, (hβ)m〉λx−β

R(xβ, x−β)x−β = (4 + 3〈(hβ)m, (h−β)m〉λ)xβ

The sum of the determinants is

−8〈(hα)m, (hβ)m〉λ+6〈(hα)m, (hα)m〉λ〈(hβ)m, (hα)m〉λ+6〈(hα)m, (hβ)m〉λ〈(hβ)m, (hβ)m〉λ

Adding all these determinants together, we have

4
∑
γ∈R+

〈(hα)m, (hγ)m〉λ〈(hβ)m, (hγ)m〉λ+(2‖(hα)m‖2+2‖(hβ)m‖2−6n−4)〈(hα)m, (hβ)m〉λ
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It turns out the ”quadratic term”∑
γ

4〈(hα)m, (hγ)m〉λ〈(hβ)m, (hγ)m〉λ

can be expressed in a simple form. Let

(hα)m = a1e1 + · · ·+ anen

(hβ)m = b1e1 + · · ·+ bnen

〈(hα)m, (hγ)m〉λ = 〈(hα)m, hγ〉λ =
λ

2
(ai − aj)

〈(hβ)m, (hγ)m〉λ = 〈(hβ)m, hγ〉λ =
λ

2
(bi − bj) for γ = li − lj

Hence ∑
γ

4〈(hα)m, (hγ)m〉λ〈(hβ)m, (hγ)m〉λ =
∑

16i<j6n

λ2(ai − aj)(bi − bj)

The coefficient of the a1 in the above expression is λ2(b1−b2+b1−b3+· · ·+b1−bn) =

λ2((n− 1)b1 − (b2 + b3 + · · ·+ bn)) = nλ2b1.

So the above expression is nλ2(a1b1 + · · ·+ anbn) = 2nλ〈(hα)m, (hβ)m〉λ

Hence

4
∑
〈(hα)m, (hγ)m〉λ〈(hβ)m, (hγ)m〉λ+(2‖(hα)m‖2+2‖(hβ)m‖2−6n−4)〈(hα)m, (hβ)m〉λ

= (2nλ+ 2‖(hα)m‖2 + 2‖(hβ)m‖2 − 6n+ 8)〈(hα)m, (hβ)m〉λ

By lemma 4.1.5, we have

2nλ− 6n− 4 > 2n(
n+ 3

2
− 6n− 4) = n2 − 3n− 4 > 0 for n > 4. Combined with

the condition that 〈(hα)m, (hβ)m〉λ 6= 0, we get the nonvanishing of the coefficient of

dxαdx−αdxβdx−β

Type Bn, Cn and Dn

In this subsection, we prove the nonvanishing of p1 for G of type Bn, Cn and Dn. The

root system of type B,C and D are very similar. We will only prove for type B, the

proof for type C and type D are almost the same.

For type Bn, we only consider the case when n > 3, since when type B2 is

the same as type C2. We can hence find i < j, such that 〈(hli)m, (hlj)m〉λ 6= 0.

Hence for l 6= i, j(since n > 3), we have either 〈(hli)m + (hll)m, (hlj)m〉λ 6= 0 or
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〈(hli)m− (hll)m, (hlj)m〉λ 6= 0. We can assume without loss of generality that 〈(hli)m−
(hll)m, (hlj)m〉λ 6= 0, and assume that i = 1, j = 2, l = 3

Let α = l1 − l2, β = l3. Since neither α + β or α − β is a root of g, we have that

gα,β and hα,β, by an argument similar to type An.

So we only need to calculate fα,β. We have the following:

(1) R(xα, x−α)t = 0 for any t ∈ t′

(2) R(xα, x−α)xl1−l3 = (−3

2
+ 2〈(hα)m, (hl1−l3)m〉λ)x−(l1−l3)

R(xβ, x−β)x−(l1−l3) = (−3

2
− 2〈(hβ)m, (hl1−l3)m〉λ)xl1−l3

The corresponding determinant is

−9

4
+3〈(hα)m, (hl1−l3)m〉λ−3〈(hβ)m, (hl1−l3)m〉λ+4〈(hα)m, (hl1−l3)m〉λ〈(hβ)m, (hl1−l3)m〉λ

Similarly,

R(xα, x−α)xl1+l3 = (−3

2
+ 2〈(hα)m, (hl1+l3)m〉λ)x−(l1+l3)

R(xβ, x−β)x−(l1+l3) = (
3

2
− 2〈(hβ)m, (hl1+l3)m〉λ)xl1+l3

The corresponding determinant is

9

4
−3〈(hα)m, (hl1+l3)m〉λ−3〈(hβ)m, (hl1+l3)m〉λ+4〈(hα)m, (hl1+l3)m〉λ〈(hβ)m, (hl1+l3)m〉λ

R(xα, x−α)xl2−l3 = (
3

2
+ 2〈(hα)m, (hl2−l3)m〉λ)x−(l2−l3)

R(xβ, x−β)x−(l2−l3) = (−3

2
− 2〈(hβ)m, (hl2−l3)m〉λ)xl2−l3

The corresponding determinant is

9

4
+3〈(hα)m, (hl2−l3)m〉λ+3〈(hβ)m, (hl2−l3)m〉λ+4〈(hα)m, (hl2−l3)m〉λ〈(hβ)m, (hl2−l3)m〉λ

R(xα, x−α)xl2+l3 = (
3

2
+ 2〈(hα)m, (hl2+l3)m〉λ)x−(l2+l3)

R(xβ, x−β)x−(l2+l3) = (
3

2
− 2〈(hβ)m, (hl2+l3)m〉λ)xl2+l3

The corresponding determinant is

−9

4
−3〈(hα)m, (hl2+l3)m〉λ+3〈(hβ)m, (hl2+l3)m〉λ+4〈(hα)m, (hl2+l3)m〉λ〈(hβ)m, (hl2+l3)m〉λ

Taking the sum of the above determinants, we have

−18〈(hα)m, (hβ)m〉λ+ ”quadratic terms”

For k > 3. Let γ = l1 − lk, then
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R(xα, x−α)xl1−lk = (−3

2
+ 2〈(hα)m, (hl1−lk)m〉λ)x−(l1−lk)

R(xβ, x−β)x−(l1−lk) = −2〈(hβ)m, (hl1−lk)m〉λxl1−lk

R(xα, x−α)xl2−lk = (−3

2
+ 2〈(hα)m, (hl2−lk)m〉λ)x−(l2−lk)

R(xβ, x−β)x−(l2−lk) = −2〈(hβ)m, (hl2−lk)m〉λxl2−lk
The sum of the corresponding determinant is

−3〈(hα)m, (hβ)m〉λ+4〈(hβ)m, (hl1−lk)m〉λ〈(hα)m, (hl1−lk)m〉λ+4〈(hβ)m, (hl2−lk)m〉λ〈(hα)m, (hl2−lk)m〉λ

R(xα, x−α)xl1+lk = (−3

2
+ 2〈(hα)m, (hl1+lk)m〉λ)x−(l1+lk)

R(xβ, x−β)x−(l1+lk) = −2〈(hβ)m, (hl1+lk)m〉λxl1+lk

R(xα, x−α)xl2+lk = (−3

2
+ 2〈(hα)m, (hl2+lk)m〉λ)x−(l2+lk)

R(xβ, x−β)x−(l2+lk) = −2〈(hβ)m, (hl2+lk)m〉λxl2+lk
The sum of the corresponding determinant is

−3〈(hα)m, (hβ)m〉λ+4〈(hβ)m, (hl1+lk)m〉λ〈(hα)m, (hl1+lk)m〉λ+4〈(hβ)m, (hl2+lk)m〉λ〈(hα)m, (hl2+lk)m〉λ

R(xα, x−α)xl3−lk = 2〈(hα)m, (hl3−lk)m〉λx−(l3−lk)

R(xβ, x−β)x−(l3−lk) = (
3

2
− 2〈(hβ)m, (hl3−lk)m〉λxl3−lk

R(xα, x−α)xl3+lk = 2〈(hα)m, (hl3+lk)m〉λx−(l3+lk)

R(xβ, x−β)x−(l3+lk) = (
3

2
− 2〈(hβ)m, (hl2−lk)m〉λ)xl2−lk

The sum of the corresponding determinant is

−6〈(hα)m, (hβ)m〉λ+4〈(hβ)m, (hl3−lk)m〉λ〈(hα)m, (hl3−lk)m〉λ+4〈(hβ)m, (hl3+lk)m〉λ〈(hα)m, (hl3+lk)m〉λ

For l > k > 3, we have

R(xα, x−α)xlk−ll = 2〈(hα)m, (hlk−ll)m〉λx−(lk−ll)

R(xβ, x−β)x−(lk−ll) = −2〈(hβ)m, (hl3−lk)m〉λxlk−ll
The corresponding determinant is 4〈(hβ)m, (hlk−ll)m〉λ〈(hα)m, (hlk−ll)m〉λ

We can thus take the sum and conclude that the coefficient is

(−9n−9)〈(hα)m, (hβ)m〉λ+4
∑
γ∈R+

〈(hβ)m, (hγ)m〉λ〈(hα)m, (hγ)m〉λ+6〈(hα)m, (hβ)m〉λ(‖hα‖2+‖hβ‖2)

Now let (hα)m = a1hl1 + · · ·+ anhln , (hβ)m = b1hl1 + · · ·+ bnhln
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〈(hα)m, (hβ)m〉λ =
λ

2

∑
i

aibi

Then

4
∑
γ∈R+

〈(hβ)m, (hγ)m〉λ〈(hα)m, (hγ)m〉λ = 4(
∑
i

λ2

4
aibi+

∑
i<j

λ2

4
(ai−aj)(bi−bj)+

∑
i<j

λ2

4
(ai+aj)(bi+bj))

= (2n− 1)λ2
∑
aibi

= (4n− 2)λ〈(hα)m, (hβ)m〉λ

By lemma 4.1.5 λ >
8n+ 12

8
+ 1, we have

(4n−2)λ−9n−9 > (4n−2)(n+
5

2
)−9n−9 = 4n2+8n−5−9n−9 = 4n2−n−14 > 0

for n > 2. We then get the nonvanishing by the genericity.

4.2.2 Non-generic case

We first show that for groups G of type Bn(n > 4), Cn and Dn, G/T k can be non-

generic only when T k is the maximal torus.

Type Bn, Cn and Dn

Proposition 4.2.1. If G of type Bn(n > 4), Cn and Dn, G/T k can be non-generic

only when T k is the maximal torus.

Proof. For type Dn, we have roots hi, for 1 6 i 6 n, and 〈hli , hlj〉λ = 0 if i 6= j.

If G/T k is generic, by definition we have 〈(hli)m, (hlj)m〉λ = 〈(hli)m, hlj〉λ = 0. Then

(hli)m can only be 0 or hli . If T k is not maximal, we can find 1 6 i, j 6 n, such

that (hli)m = hli , (hlj)m = 0. Then 〈(hli+lj)m, (hli+lj)m〉λ = 〈hli , hli〉λ 6= 0, which

contradicts the assumption that G/T k is non-generic. Similarly we can proof for type

Bn.

For type Cn, we are assuming here n > 4. We have that for any 4-tuples 1 6 i <

j < k < l 6 n, we must have

〈(hli±lj)m, (hlk±ll)m〉λ = 0

. Hence we also have 〈(hli)m, (hlj)m〉λ = 〈(hli)m, hlj〉λ = 0 for i < j. Then the

argument is the same as for type Cn.
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Remark 4.2.2. Here to consider Cn for n > 3 is enough, since when n = 2, Cn

is only semisimple, when n = 3, type C3 Lie algebra is isomorphic to type A3 Lie

algebra, i.e. the Lie algebra of SU(4).

Hence for type Bn, Cn and Dn, we have proved the non-vanishing of p1 for all

homogeneous space G/T k.

Type An

However, there are more non-generic homogeneous spaces when G = SU(n), which

is of type An.

Example 4.2.3. 1. Let G = SU(3), then any homogeneous space SU(3)/T k is non-

generic. Positive roots of su3 are l1 − l2, l1 − l3 and l2 − l3. for any two α, β, we have

〈hα, hβ〉λ 6= 0

2. Let G = SU(4), let U(1) ⊂ SU(4) be the circle generated by 3e1− e2− e3− e4.
Then the homogeneous space SU(4)/U(1) is non-generic. For instance, let α =

l1 − l2, β = l3 − l4, then 〈hα, hβ〉λ = 0 , but we also have 〈(hα)m, (hβ)m〉λ = 0

SU(n), n > 4

For the non-generic case, we will look at the two roots α = l1 − l2 and β = l1 − l3,
instead of l1 − l2 and l3 − l4. The calculation of the coefficient of dxαdx−αdxβdx−β is

more complicated than the generic case, since now gα,β and hα,β are no longer zero.

The calculation of fα,β is similar to the generic case.

1. R(xα, x−α)t = 0, R(xα, x−α)t = 0 for any t ∈ t′.

2. If γ = l1 − lk, l2 − lk, l3 − lk, k > 3.

We have

R(xα, x−α)xl1−lk

= (−3

2
+ 2〈(hα)m, (hl1−lk)m〉λ)x−(l1−lk),

R(xβ, x−β)x−(l1−lk)

= (
3

2
+ 2〈(hβ)m, (h−(l1−lk))m〉λ)xl1−lk
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The determinant corresponding to these two transformations is

−(−3

2
+ 2〈(hα)m, (hl1−lk)m〉λ)(

3

2
+ 2〈(hβ)m, (h−(l1−lk))m〉λ)

=
9

4
+ 3〈(hβ)m, (h−(l1−lk))m〉λ − 3〈(hα)m, (hl1−lk)m〉λ

+4〈(hα)m, (hl1−lk)m〉λ〈(hβ)m, (hl1−lk)m〉λ

For γ = l2 − lk, we have

R(xα, x−α)xl2−lk

= (
3

2
+ 2〈(hα)m, (hl2−lk)m〉λ)x−(l2−lk),

R(xβ, x−β)x−(l2−lk)

= 2〈(hβ)m, (h−(l2−lk))m〉λxl2−lk ,

The corresponding determinant is

(
3

2
+ 2〈(hα)m, (hl2−lk)m〉λ)2〈(hβ)m, (hl2−lk)m〉λ

= 3〈(hβ)m, (hl2−lk)m〉λ + 4〈(hα)m, (hl2−lk)m〉λ)〈(hβ)m, (hl2−lk)m〉λ

Similarly, if γ = l3 − lk, the corresponding determinant is given by

2〈(hα)m, (hl3−lk)m〉λ(
3

2
+ 2〈(hβ)m, (hl3−lk)m〉λ)

= 3〈(hα)m, (hl3−lk)m〉λ + 4〈(hα)m, (hl3−lk)m〉λ〈(hβ)m, (hl3−lk)m〉λ

Take the above three determinants, we have

9

4
− 6〈(hα)m, (hβ)m〉λ + 4〈(hα)m, (hl2−lk)m〉λ)〈(hβ)m, (hl2−lk)m〉λ

+4〈(hα)m, (hl3−lk)m〉λ〈(hβ)m, (hl3−lk)m〉λ

+4〈(hα)m, (hl1−lk)m〉λ〈(hβ)m, (hl1−lk)m〉λ

(3) For γ = li − lj, 3 < i < j 6 n, R(xα, x−α)xli−lj

= 2〈(hα)m, (hli−lj)m〉λx−(li−lj)

R(xβ, x−β)x−(li−lj)

= 2〈(hβ)m, (h−(li−lj))m〉λxli−lj
And the corresponding determinant is

4〈(hα)m, (hli−lj)m〉λ〈(hβ)m, (hli−lj)m〉λ
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(4) We consider γ = l1 − l3, l1 − l2, l1 − l3

R(xα, x−α)xl1−l2

= R(xα, x−α)xα

= (−4 + 3〈(hα)m, (hα)m〉λ)

R(xβ, x−β)x−α

= (
3

2
+ 2〈(hα)m, (h−α)m〉λ)xα

The determinant is

6− 9

2
〈(hα)m, (hα)m〉λ − 8(hα)m, (hβ)m + 6〈(hα)m, (hα)m〉λ〈(hα)m, (hβ)m〉λ

For l1 − l3, we have

R(xα, x−α)xβ

= (−3

2
+ 2〈(hα)m, (hβ)m〉λ)x−β

R(xβ, x−β)x−(l1−l3)

= R(xβ, x−β)x−β

= (4 + 3〈(hβ)m, (h−β)m〉λ)

The determinant is

6− 9

2
〈(hβ)m, (hβ)m〉λ − 8(hα)m, (hβ)m + 6〈(hα)m, (hβ)m〉λ〈(hβ)m, (hβ)m〉λ

R(xα, x−α)xl2−l3

= (
3

2
+ 2〈(hα)m, (hl2−l3)m〉λ)x−(l2−l3)

R(xβ, x−β)x−(l2−l3)

= (
3

2
+ 2〈(hβ)m, (h−(l2−l3))m〉λ)xl2−l3

The determinant is

−9

4
−3〈(hα)m, (hl2−l3)m〉λ−3〈(hβ)m, (hl2−l3)m +4〈(hα)m, (hl2−l3)m〉λ2〈(hβ)m, (hl2−l3)m〉λ

Taking the sum of the above three determinants, we get

12− 9

4
− 22〈(hα)m, (hβ)m〉λ −

3

2
‖(hα)2m‖ −

3

2
‖(hβ)2m‖+ ”quadratic term”

We can conclude that
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fα,β = 9× fG,α,β + 3− 3

2
〈(hα)m, (hα)m〉λ −

3

2
〈(hβ)m, (hβ)m〉λ

+(2nλ+ ‖(hα)m‖2 + ‖(hβ)m‖2 − 6n− 4)〈(hα)m, (hβ)m〉λ

By Remark 4.1.1, we have

gα,β = gG,α,β −
1

2
(‖(hα)m‖2 − 1 + ‖(hβ)m‖2 − 1)

hα,β = hG,α,β −
1

2
(‖(hα)m‖2 − 1 + ‖(hβ)m‖2 − 1)

We can conclude that the coefficient of the term dxαdx−αdxβdx−β

is 9× fG,α,β + 2(3− 3

2
〈(hα)m, (hα)m〉λ−

3

2
〈(hβ)m, (hβ)m〉λ) + gG,α,β −

1

2
(‖(hα)m‖2−

1 + ‖(hβ)m‖2 − 1) + hG,α,β −
1

2
(‖(hα)m‖2 − 1 + ‖(hβ)m‖2 − 1) + ”quadratic terms”

= 8 × fG,α,β + 2(3 − 3

2
〈(hα)m, (hα)m〉λ −

3

2
〈(hβ)m, (hβ)m〉λ) −

1

2
(‖(hα)m‖2 − 1 +

‖(hβ)m‖2 − 1)− 1

2
(‖(hα)m‖2 − 1 + ‖(hβ)m‖2 − 1) + ”quadratic terms”

= 8× fG,α,β + (8− 4‖(hα)m‖2 − 4‖(hβ)m‖2) + ”quadratic terms”

Now let γ = l1 − l4.

〈(hα)m, (hl1−l3)m〉λ = 〈(hα)m, (hl1−l4)m〉λ, since (hl1−l4)m − (hl1−l3)m = (hl3−l4)m

and 〈(hα)m, (hl3−l4)m〉λ = 0 by genericity.

The difference of the coefficients of dxαdx−αdxβdx−β and dxαdx−αdxγdx−γ is

c(||(hl1−l3)m||2 − ||(hl1−l4)m||2). If they both vanish, we must have

||(hl1−l3)m|| = ||(hl1−l4)m||.

||(hl1−l3)m||2

= 〈(hl1−l4)m − (hl1−l3)m, (hl1−l4)m − (hl1−l3)m〉λ

= ||(hl1−l4)m||2 − 2〈(hl1−l4)m, (hl1−l3)m〉λ + ||(hl1−l3)m||2

This implies that 〈(hl1−l4)m, (hl1−l3)m〉λ =
1

2
||(hl1−l4)m||2

By the Weyl group action, it’s clear that for any triple 1 6 i < j < k 6 n, we

have

〈(hli−lj)m, (hli−lk)m〉λ =
1

2
||(hli−lj)m||2 =

1

2
||(hli−lk)m||2

Notice that 〈(hli−lj)m, (hli−lk)m〉λ = 〈(hli−lj)m, hli−lk〉λ By the definition of 〈 , 〉λ,
we have that (hl1−l2)m must be must of the form

(hl1−l2)m = (a+ 2c)e1 + ae2 + (a+ c)e3 + (a+ c)e4 + · · ·+ (a+ c)en
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And

(hl1−l3)m = (a+ 2c)e1 + (a+ c)e2 + ae3 + (a+ c)e4 + · · ·+ (a+ c)en

for a, c ∈ R

Hence (hl2−l3)m = (hl1−l3)m + (hl1−l2)m = ce2− ce3, and it must be that (hl2−l3)m =

hl2−l3 , and this can only be the trivial homogeneous space.
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