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ABSTRACT OF THE THESIS 

 

XATAC-seq: Genome-wide Protein Occupancy Assay 
 

by  

 

Nathaniel Stephen Chapin 

 

Master of Science in Bioengineering 

 

University of California, San Diego, 2017 

 

Professor Karsten Zengler, Chair 

 

The binding of protein to DNA is central to the regulation of gene expression and 

the organization of chromosomal DNA. To date, there exist few techniques for the 

determination of genome-wide protein binding in prokaryotes, and none that are 

simultaneously simple, high-resolution, and rapid. I describe XATAC-seq, an adaptation 



 

xii 
 

of the eukaryotic assay for transposase-accessible chromatin with sequencing (ATAC-

seq), combining formaldehyde crosslinking of DNA-protein complexes, adapter-loaded 

transposase treatment for next-generation sequencing library generation, and high-

throughput sequencing to interrogate these genome-wide binding patterns in bacteria. The 

technique captures the binding of both major classes of prokaryotic DNA-binding 

proteins–transcription factors and nucleoid-associated proteins–genome-wide at the 

resolution of individual binding sites. XATAC-seq was applied to determine the protein 

occupancy landscapes of several bacterial species. Remarkably, the landscapes show a 

high degree of fidelity to specific nucleoid-associated proteins and demonstrate several 

conserved characteristics, including extended domains of high enrichment and 

preferential enrichment of AT-rich regions. This has led to the speculation that these 

nucleoid-associated proteins are members of a common high-level functional group, and 

that this class of nucleoid-associated protein is prevalent among a significantly wider 

range of prokaryotes than previously realized. In particular, the Mga protein of 

Streptococcus pyogenes is proposed to serve the high-level function of suppression of 

ectopic expression in an analogous fashion to the H-NS protein in E. coli. This work 

represents the first assessment of protein occupancy landscapes in gram-positive bacteria 

and a significant technical improvement over existing techniques for assaying genome-

wide protein binding in prokaryotes.
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INTRODUCTION 

 

 The binding of proteins to DNA is central to the cellular processes of DNA 

replication and repair, gene expression and its regulation, and DNA compaction and 

structural organization. The majority of research on protein-DNA interactions has 

focused on the binding behavior and binding loci of individual proteins. Understanding 

systems-level behaviors, such as genome replication, chromosomal organization, and 

regulatory network dynamics, requires observations encompassing the entire system.  

DNA must be compacted many fold to fit inside the volume of a cell. For 

example, the DNA of E. coli, if fully extended, would reach a length of 1 mm1. Its 

collapse to fit within a 2 µm-long cell requires compaction of 3 orders of magnitude2. 

Negative supercoiling provides part of the answer, causing DNA to take on an 

interwound, plectonemic conformation, with branches extending outward from a central 

hub.  Supercoiling provides only a partial solution, however. In eukaryotes, the majority 

of compaction is accomplished through the action of histones, which wrap DNA and 

organize it into nucleosomes3. Higher-order packaging of nucleosomes provides further 

reduction in size. Prokaryotes, by contrast, lack histones and accomplish DNA 

compaction through the action of a class of DNA-binding protein called nucleoid-

associated proteins (NAPs), many of which bend or wrap DNA4.  

Nucleoid-associated proteins have a strong impact on the overall determination of 

chromosome architecture in prokaryotes. Specifically, some NAPs are capable of forming 

boundary elements between chromosomal domains5. The organization of chromosomal 

DNA into domains affects the way genetic information is accessed, interpreted, and 
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implamented. For example, it prevents the spreading or propagation of looping or 

relaxation of one genome segment into the entire genome, allowing regional differences. 

In addition, domain organization can co-localize or spatially segregate transcription 

factors and their target genes, potentially making these domains adjustable functional 

units of gene regulation6. E. coli has around 450 nucleic structural domains, estimated to 

be between 10kb and 100kb, with variable boundaries, distributed sporadically along the 

chromosome7,8. Highly transcribed genes appear to be involved in defining domain 

boundaries by spatially isolating DNA regions and restricting the diffusion of 

supercoiling9. 

To date, nucleoid-associated protein binding and its effects on global gene 

expression and chromatin conformation remain understudied, largely due to technical 

limitations. There currently exist few techniques for comprehensive identification and 

assessment of NAP binding. 

Hi-C and similar techniques are powerful tools for determination of three-

dimensional chromosome structure, but despite breakthroughs in the elucidation of the 

chromatin structures of Caulobacter crescentus10 and Bacillus subtilis11, such 

investigations remain effortful. In particular, Hi-C is limited by its technical and 

bioinformatic intricacy as well as the requirement for highly synchronous cell cultures. 

As such, the study of bacterial chromatin remains challenging due to the difficulty of 

synchronizing most bacterial species, and Hi-C has not been widely adopted for the study 

of prokaryotic nucleoids.  

In vivo protein occupancy display has been shown to be capable of detecting 

individual protein binding sites, as well as large-scale regions of enrichment12. However, 
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the technique relies on several loss-prone reaction steps and a low-resolution method of 

sequence information extraction. This, in addition to the requirement for microarray 

design and post-processing of data, appears to have precluded its adoption, given that no 

studies have been reported beyond the original. 

Herein, I describe XATAC-seq, a modification of the assay for transposase-

accessible chromatin using sequencing (ATAC-seq) originally designed to interrogate 

nucleosome-free regions of eukaryotic chromosomes13. ATAC-seq takes advantage of a 

hyperactive mutant of the bacterial Tn5 transposase (Tnp)14. Rather than a single 

transposable element (transposon), the transposase dimer is loaded in vitro with a pair of 

double-stranded sequencing adaptors. As such, the transposition event results in 

simultaneous fragmentation and tagging of DNA segments for later amplification and 

sequencing. Because protein binding to DNA sterically hinders the transposase, the 

probability of transposition events is heavily weighted towards open, unbound regions of 

chromatin. The result is a distribution of fragment sizes depending on the region from 

which the DNA originates. Specifically, short fragments are associated with protein-free 

regions, whereas longer fragments are associated with regions bound by individual 

proteins or higher-order nucleoprotein complexes.
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CHAPTER 1: DNA-BINDING PROTEINS 

 

 In all domains of life, classes of proteins called transcription factors bind to 

regulatory regions of DNA and modulate the expression of target genes. In general, these 

factors target a specific DNA-sequence (consensus sequence) and regulate a small 

number of genes, although there are global regulators for which this is not the case. In 

bacteria, there is an additional class of DNA-binding proteins called nucleoid-associated 

proteins, which typically bind with little or no sequence specificity, targeting features of 

the DNA structure rather than a particular base sequence15.  

  

1.1 TRANSCRIPTION FACTORS 

Transcription factors are proteins that regulate gene expression by mediating 

transcription initiation through binding at specific, high-affinity cis regulatory elements 

in the vicinity of their target genes. This binding activity may be either activatory or 

inhibitory to gene expression, depending on the binding protein and the target site. 

Generally speaking, repressors bind directly to the promoter sequence, interfering with 

RNA polymerase binding. In contrast, activators generally bind upstream of the promoter 

and facilitate the recruitment of sigma factors16.   

There are several DNA-binding motifs that are well-conserved among 

transcription factors; in bacteria, the most common is the helix-turn-helix17. In addition, 

many transcription factors have domains responsible for signal-sensing, through ligand 

binding or protein-protein interactions18. The majority of prokaryotic transcription factors 

contain all required functional domains, but a major exception is two-component 
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systems, in which the signal-sensing and DNA-binding/transcriptional regulation roles 

are accomplished by separate protein partners19. Typically, transcription factors bind 

DNA as homo- or heterodimers, which is reflected in the fact that many consensus 

sequences contain palindromic or direct repeats20. In addition, they typically interact with 

the major groove of DNA, along which, in contrast to the minor groove, the pattern of 

hydrogen bond donors and acceptors and hydrophobic regions differs significantly 

depending on the base-pair21. 

 

1.2 NUCLEOID-ASSOCIATED PROTEINS 

 Nucleoid-associated proteins (NAPs) are important regulators of gene expression 

and chromatin structure in bacterial cells. Even the most reduced of bacterial genomes 

encode at least one NAP, and many contain a variety15,22,23. In general, NAPs bind with 

low sequence-specificity throughout the genome, making their binding more widespread 

and less focused than that of transcription factors. Some NAPs have been shown to be 

contained to particular chromatin macrodomains, though these appear to be specialized 

cases24. Many have been shown to exhibit a preference for DNA with particular structural 

features rather than base compositions, and nearly all NAP binding impacts DNA 

structure significantly. In addition to their effect on chromatin structure, NAPs have been 

shown to act as global regulators, mediating changes between growth phase or responses 

to particular environmental stressors by regulating the expression of large numbers of 

genes. The major nucleoid-associated proteins of E. coli will now be discussed, as they 

are the best studied.  
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1.2.1 HU 

 Heat unstable protein (HU) is the most highly conserved of bacterial NAPs, and is 

the bacterial protein with the most sequence homology to eukaryotic histones. It exists as 

both a homodimer and heterodimer in E. coli, depending on the growth phase, and the 

cell is able to tune the properties of its HU dimers by altering the relative concentration of 

the monomers produced25. HU lacks any strong sequence specificity, targeting bent DNA 

segments, and is able to wrap DNA upon binding. HU binds single- and double-stranded 

DNA, as well as RNA26. In the case of double-stranded DNA, HU proteins engage the 

double helix at a convex surface, with multiple exposed cationic side-chains. This surface 

provides electrostatic and steric complementarity for B DNA and has been confirmed as 

the nucleic acid binding site27. At low concentrations, HU increases DNA flexibility over 

short regions; at high concentrations, it increases DNA stiffness and rigidity28. HU 

binding has been shown to increase the thermal stability of double-stranded DNA4. In 

addition, HU interacts with topoisomerase I to regulate DNA superhelicity29. Finally, HU 

appears to play a role in initiating DNA replication30. 

 

1.2.2 IHF 

 Integration host factor (IHF) is one of the most abundant sequence-specific 

binding proteins in E. coli15. The structurally important amino acids are conserved 

between HU and IHF, and they share the same basic tertiary structure4. Both proteins 

bend DNA, but IHF does so to a greater degree than HU, inducing a ~160º U-turn 

conformation. IHF, like HU, is predominantly a heterodimer. Another point of similarity 

is that IHF also impacts DNA replication from the chromosomal origin. In gram-negative 



 7 

 

bacteria, bending of DNA by IHF is associated with transcriptional activation of many 

σ54 promoters by bringing enhancer-binding proteins into proximity with RNA 

polymerase31. IHF can also induce open complex formation by restricting superhelical 

twist at its binding site, transmitting this torsional energy to neighboring regions where it 

facilitates transcription initiation32. The primary role of IHF appears to involve 

remodeling of local DNA structure. 

 

1.2.3 FIS 

The factor for inversion stimulation (Fis) is the most abundant NAP during 

exponential growth in E. coli15. Fis binds to an AT-rich consensus sequence as a 

homodimer, and its binding induces branched plectonemes. One of its major functions 

appears to be inactivating inessential genes during rapid growth22. In addition, it appears 

to be necessary for the transcription of rRNA and tRNA genes15. Fis functions as an 

activator of transcription initiation by either direct interaction with RNA polymerase or 

alteration of local DNA topology in the promoter region in a DNA structural transmission 

mechanism similar to IHF33. Fis also interacts with both major topoisomerases and 

therefore indirectly affects FDNA superhelicity34. In addition, like HU and IHF, Fis plays 

a role in initiation of chromosomal replication35. 

 

1.2.4 H-NS 

Histone-like nucleoid-structuring protein (H-NS), so-named because of its effect 

on bacterial chromatic rather than homology to eukaryotic histones, is as mall (~15kD), 

highly abundant (~20,000 copies/cell in E. coli) protein common to enteric bacteria, 
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particularly E. coli and its close relatives36. Several families of proteins sharing functional 

homology with H-NS have been identified in gram-negative bacteria, including the 

Mycobacteriaceae and Pseudomonadaceae families, though their similarity at the 

sequence level is minimal37–39. H-NS-like proteins share nonspecific DNA-binding 

behavior, targeting to the minor groove of DNA, along which the differences between 

bases are less pronounced, and exhibiting a preference for AT-rich regions of DNA40–43. 

H-NS is a pleiotropic repressor, regulating approximately 5% of E. coli genes, with 80% 

of that regulation being repressive, including autorepression of the hns gene44–47. This 

autorepression has been shown to act as a mechanism to ensure that the ratio of H-NS to 

DNA remains relatively constant throughout growth phases, although there is some 

contradiction as to that point36,48,49. H-NS comprises a C-terminal DNA-binding domain, 

and N-terminal dimerization domain, and a central linker domain involved in higher-

order oligomerization43,50–53. It has been shown to act as a silencer of horizontally-

acquired DNA, which for enteric bacteria generally has higher AT-content than that of 

the host genome. H-NS binding to DNA occurs in two steps: binding initiates at high-

affinity sites followed by oligomerization and expansion of the nucleoprotein filament to 

cover less well-suited binding sites and form a nucleoprotein structure conducive to 

silencing54–56. The fundamental units of such nucleoprotein structures are believed to be 

dimers, which combine in head-to-head and tail-to-tail fashion. It has been demonstrated 

that mutations to the oligomerization domain of H-NS disrupt its ability to silence 

expression, and the several models of H-NS silencing support this finding57,58. Briefly, H-

NS oligomers can bind to and occlude promoter sequences from RNA polymerase (Fig 

1A), H-NS bridge formation can loop DNA and trap RNA polymerase at the promoter 
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site (Fig 1B), binding within genes can stall RNA polymerase and lead to Rho-dependent 

transcriptional termination (Fig 1C), seed binding may occur at distal regions to the 

promoter, with oligomerization ultimately bringing H-NS protein into direct contact with 

RNA polymerase (Fig 1D), and channeling of RNA polymerase toward promoter sites in 

AT-rich regions of ambiguity (Fig. 1E)54,59–63. Of these direct mechanisms of 

transcriptional regulation, only the last is activatory. Interaction with accessory proteins 

of the Hha/YdgT family, which lack DNA-binding activity of their own, has been shown 

to facilitate H-NS oligomerization and H-NS-mediated gene silencing64,65. 

 
Figure 1: Modes of H-NS Transcription Mediation. H-NS oligomers shown in green; 
RNA polymerase (RNAp) in light red. Green and red regions of DNA are correct and 
incorrect promoter sites, respectively. A) Promoter exclusion. B) RNAp trapping. C) 
Transcription termination. D) Direct interaction with RNAp. E) Channeling of RNAp to 
canonical promoter. 
 

H-NS acts as a xenogeneic silencer in E. coli, repressing horizontally-acquired 

genes until they can become properly integrated into the regulatory network of the 

cell41,66–70. Additionally, it has been implicated with widespread repression of intragenic 

transcription, thereby preventing spurious RNA synthesis71. In fact, nearly half of all 
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transcripts (46%) repressed by H-NS in E. coli originate in intragenic regions, and a 

significant portion of those emanating from intergenic regions are non-coding RNAs71. A 

large part of the fitness cost associated with the loss of H-NS is due to this ability; when 

widespread intragenic transcription is allowed, the cell’s supply of RNA polymerase is 

sequestered at these promoters, making it unavailable for the transcription of required 

genes66. These two functions in combination posit H-NS as an important regulator of 

transcription genome-wide and as integral to cellular fitness. In agreement with this, 

many bacterial species encode multiple H-NS molecules, allowing them to modulate their 

response to environment al signals by adjusting the pool of H-NS-like dimers72. 

Other H-NS-like protein families include the Lsr2 family in Mycobacteria and the 

mvaT family in Pseudomonas.73,74.  All share similar binding preference and the ability 

for oligomerization, although as stated previously their homology at the amino–acid level 

is low.
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CHAPTER 2: XATAC-SEQ 

 

 XATAC-seq is an adaptation of the assay for transposase-accessible chromatin 

(ATAC-seq) originally designed to interrogate nucleosome-free regions of DNA in 

eukaryotes13. It relies on formaldehyde treatment to crosslink DNA to protein and 

subsequent treatment of cell lysate with a hyperactive Tn5 transposase to simultaneously 

fragment DNA and ligate adapters in a process termed tagmentation14. The resulting 

fragments are PCR-enriched without explicit reverse-crosslinking and sequenced. 

 
Figure 2: XATAC-seq Method. 
 

The major methodological difference between XATAC-seq and ATAC-seq is 

treatment with formaldehyde, which forms a methylene bridge between DNA and protein 

and is used to ensure that protein-DNA complexes are not disrupted by the chemical steps 

they undergo through the course of the procedure. The amino acids that undergo cross 

linking are cysteine, tryptophan, lysine, and histidine with dA, dC , or dG, with the most 

prominent reaction being between lysine and dG75. Lysine is extremely common in 

DNA-binding proteins because it facilitates interactions with the phosphate backbone, but 

formaldehyde crosslinking efficiency can still vary significantly between proteins76,77. 

The advantages of formaldehyde as a crosslinking reagent include cell permeability, fast 

crosslinking kinetics, short crosslink length, and controlled reversibility76. In addition, 



 12 

 

because crosslinking occurs very rapidly, crosslinked complexes are faithful to the 

protein-DNA interactions occurring in live cells78. 

The transposition step involves transposase binding at the target site, a 

transposase-mediated nucleophilic attack on the phophodiester bonds along the backbone 

of both DNA strands, and transposase release, followed by nick repair (Fig. 3)79. As a 

result of the final step, 9 base pairs are duplicated on either side of the inserted adapters, 

which becomes important in downstream data analysis (Fig. 3 and Appendix A3)14. The 

Tn5 transposase has an insertion preference (A-G-N-T-T/C-A/T-A/G-A-N-T/C) that is 

mirrored to a small degree in the bias of transposition events79–81. However, the average  

information content within 10 bases of the tagmentation site, on a two-bit scale, is 0.049, 

compared to 0.0056 and 0.018 for sonication and endonuclease treatment, respectively82. 

Therefore, the bias associated with transposase-mediated library construction is higher 

than that generated by other procedures, but only to a small degree. 
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Figure 3: Tagmentation. Left: model of tagmentation reaction in which transposases 
saturate available DNA, ultimately limiting the minimum fragment size to ~38 bp due to 
steric hindrance between attacking transposases. Top right: fragment length is indicative 
of the state of binding in the region of origin of that fragment. Bottom right: the 
transposase’s active site interacts with 9 bases of DNA, ultimately causing their 
duplication. Orange – transposase; purple – individual bound protein; blue – 
oligomerized bound protein. 
 
 The technique is highly reproducible, with replicates demonstrating Pearson 

correlation coefficients of 0.91 on average (Fig. 4). This consistency strongly suggests 

that the interaction of total protein with DNA, not just those with high sequence-

specificity, is very precise and well-regulated. 
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Figure 4: Replicate Correlations. Average XATAC-seq signal for sets of replicates is 
plotted over 5kb bins; correlations shown are for un-binned data. Note: this is not 
tagmentaion sites, but full read signal. 
 

2.1 VALIDATION 
 

In order to evaluate the ability of XATAC-seq to capture protein binding events, 

we have evaluated its ability to capture both transcription factor binding sites and 

nucleoid-associated protein binding. As further validation, we have compared our 

technique to IPOD, the only existing technique for genome-wide protein occupancy 

determination in bacteria. Finally, we have performed tests to ensure that XATAC-seq 

signal is not significantly impacted by tagmentation bias or inefficacy of reverse-

crosslinking.   
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2.1.1 XATAC-SEQ CAPTURES TRANSCRIPTION FACTOR BINDING 

Similar to the results obtained using the original ATAC-seq protocol, gaps in 

tagmentation are expected wherever protein is bound along the genome (greater than that 

between adjacent transposases, see Fig. 3). Therefore, the exact sites of binding can be 

accurately determined by evaluating the site of transposition events. Specifically, a 

binomial test is used to determine the significance of a potential footprint motif. The test 

compares the XATAC-seq signal immediately upstream and downstream of the putative 

binding site with the signal within to determine the degree of non-uniformity (Fig. 5). 

The test iterates through all possible footprint start positions and distances between a 

peak pair in order to determine which is most likely to represent the exact binding site. 

 
Figure 5: Quantitative Footprint Evaluation. Footprints, indicative of protein binding, 
are evaluated using a binomial test in order to assign to each a degree of confidence. The 
test compares total signal within the putative footprint region (FP) with that in shoulder 
regions immediately upstream and downstream (SH).  
 

When a p-value threshold of 1e-10 is imposed on the footprints from E. coli 

XATAC-seq, 13% of footprints align with transcription factor binding sites compiled in 

the model organism database EcoCyc (Fig 6)83. An additional 20% align with sigma 

factor binding sites. In addition, as shown in Figure 7, there is significant enrichment of 

tagmentation in non-coding regions relative to coding regions, indicating that these 
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alignments are not coincidental. 

 
Figure 6: XATAC-seq Footprinting Captures Transcription Factor Binding Sites. 
XATAC-seq signal and the footprints resulting from assessment of this signal are shown 
in comparison to transcription factor binding sites compiled from the literature (EcoCyc).  
 

 
Figure 7: Promoter Enrichment. A. View of XATAC-seq tagmentation sites. B. 
Average XATAC-seq signal per unit length of genes and intergenic regions in E. coli. 
The p-value was calculated using the Mann-Whitney U test. 
 
 
2.1.2 XATAC-SEQ CAPTUES NUCLEOID-ASSOCIATED PROTEIN BINDING 
 
 In order to assess the degree to which nucleoid-associated proteins impact 

XATAC-seq signal, we compared our data to ChIP-seq datasets from the literature for the 

predominant NAPs in E. coli – HU, IHF, Fis and H-NS84,85. ChIP-seq data was used 

because it was the highest resolution available. As can be seen in Table 1, XATAC-seq is 
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correlated with the binding of both HU and H-NS, with a significantly stronger 

correlation to H-NS. 

Table 1: Correlation of XATAC-seq to ChIP-seq of Various NAPs.  HU and IHF ChIP-
seq experiments were performed by Prieto et al. and H-NS and Fis ChIP-seq experiments 
were performed by Kahramanoglou et al.84,85  

Nucleoid-Associated Protein Pearson Correlation Coefficient 
HU 0.21 

IHF -0.10 

FIS -0.07 

H-NS 0.60 

 
 
2.1.3 XATAC-SEQ RECAPITULATES IPOD RESULTS 
 

Chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) 

provides comprehensive binding information for a single factor under a given set of 

conditions, but fails to provide specificity as to exact binding loci. ChIP-exo expands on 

the original ChIP methodology by adding double and single-strand-specific exonuclease 

digestions that digest DNA up to the binding site and thereby allow the technique to 

provide binding information to near single-base resolution 86. The drawback to this 

method remains that it is capable of surveying only a single binding protein at a time, and 

therefore that a comprehensive understanding of the protein occupancy landscape (POL) 

is considerably challenging to assemble. For example, in E. coli there are 271 identified 

transcription factors, of which any number may be active under any given set of 

conditions, making such analysis by ChIP-based techniques unfeasible 17. 

One technique that addresses this limitation is in vivo protein occupancy display 

(IPOD) – a genome-wide assay for protein occupancy that relies on formaldehyde 
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crosslinking, DNase I treatment, phenol:chloroform isolation of protein-DNA complexes, 

reverse-crosslinking, and detection by array hybridization in order to identify regions of 

protein binding12.  The detection of sequences by array hybridization results in lower 

resolution than next generation sequencing.  

XATAC-seq is able to re-capture the same regions of enrichment identified in 

IPOD (Fig. 8). It is apparent from the figure that XATAC-seq is significantly higher 

resolution that IPOD. In addition, IPOD is considerably more involved that XATAC-seq, 

requiring 7 major chemical steps and an estimated 9 hours to perform, from cell pellets to 

array-ready DNA (Fig. 9), compared to 3 hours and 2 reaction steps for XATAC library 

preparation from cell pellets, plus additional time for array hybridization and scanning 

and next-generation sequencing, respectively12.  

 
Figure 8: Recapitulation of EPODS. Enriched protein occupancy domains identified by 
IPOD are shown with their associated IPOD signal and the XATAC-seq signal in the 
same region.  
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Figure 9: Timeline of XATAC-seq and IPOD, beginning with formaldehyde-
crosslinked cell pellets, the preparation of which is common to both techniques. Not 
pictured are sequence detection methods for each technique, which take approximately 16 
hours for microarrays and a variable amount of time for next-generation sequencing, 
which is typically outsourced. 

 
Multiple experiments from different conditions or organisms may be multiplexed 

in a single sequencing run, whereas a separate microarray is required for each. 

Furthermore, an entirely new microarray must be designed for each new organism under 

study. Overall, we believe that XATAC-seq represents a significant methodological 

improvement over IPOD, the only existing technique for POL determination. 

 

2.1.4 TAGMENTAION BIAS ASSMENT 

 Tagmentation bias was assessed using a pure-DNA control. Briefly, DNA was 

extracted as in the standard XATAC-seq protocol using nitrogen grinding, but without 

formaldehyde crosslinking to secure protein-DNA complexes. A phenol:chloroform 

extraction was then used to isolated pure DNA in the aqueous phase, and this DNA was 

used as input for the Illumina Nextera kit, as in the standard procedure. The results show 
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a small bias in tagmentation toward GC-rich regions, so it can be concluded that the 

enrichment of XATAC-seq for AT (discussed in Chapter 3) is due to the preference of 

binding proteins and not that of the transposase (Fig. 10). For example, the correlation 

between the DNA-only control and XATAC-seq signal for wild-type GAS is only 0.17. It 

is worth noting that this control captures both tagmentation bias and differences in copy 

number of different regions of the genome, for example enrichment of origin-proximal 

regions caused by concurrent rounds of replication.   

 
Figure 10: DNA-only ATAC Control. It is evident that signal intensity is greatly 
reduced without protein bound, and the signal is to a great degree more uniform across 
the genome. The peak near position 450,000 is the well-characterized FM1T1Z phage, 
which encodes the virulence factor streptodornase and differentiates the M1T1 serotype 
from other closely related M1 strains87 (discussed in Chapter 3). 
 
 The effects of the length of incubation of the transposase reaction step on library 

size distribution was assessed by performing the incubation at lengths of 3, 5, 7, and 9 

minutes. The results show that the resulting size distribution is not greatly impacted by 

the tagmentation time (Fig. 11), but it appears that there is significantly more noise with 

very short tagmentation times. However, this is confounded slightly by the fact that the 
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library generated from 3-minute tagmentation was not sequenced as deeply as the others. 

 

 
Figure 11: Effects of Tagmentation Time. The length of fragments constituting each 
library is plotted against the percentage of library fragments at that length.  
 
 
2.1.5 REVERSE-CROSSLINKING EVALUATION 
 
 To determine whether fragments were being lost due to the inability of PCR to 

effectively reverse protein-DNA complexes and amplify DNA, a variation of XATAC-

seq was performed with an explicit reverse-crosslinking step. The results showed that 

more long fragments were retained than in the standard procedure, but there is significant 

loss of short fragments (shift right in Fig. 12). These large fragments must have 

originated from extended regions of occupancy, preventing the transposase from 

digesting them into smaller pieces. Therefore, the number of crosslinks, and thus the 

difficulty of reverse-crosslinking, increases with the length of the fragment, and the 

results of this experiment imply that a significant number of nucleoprotein filaments are 

lost in the standard method because they cannot be effectively reverse-crosslinked. As 

such, an extension of the pre-PCR heating step may be advisable as a simple means of 

increasing crosslink reversal. According to a study of formaldehyde crosslink reversal 

rate, the percentage of crosslinks reversed over time fits an exponential function of 

temperature88. They also demonstrate that the reversal rate is constant over time at a 

given temperature, and so overall: 
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𝑝/𝑡 = 0.00379𝑒+.+,-./ 

Where T is the temperature in degrees Celsius, t the time in minutes, and p the percentage 

of crosslinks reversed. This suggests that at 95ºC, 1.5% of crosslinks are reversed per 

minute. 

 
Figure 12: Effects of Reverse Crosslinking. The fragment size distributions of duplicate 
XATAC-seq libraries are compared with that of the reverse-crosslinked XATAC-seq 
library. It can be seen that the fragment lengths in the reverse-crosslinked library are 
more evenly distributed and that the average fragment is longer in this library than the 
standard.  
 

It is interesting to note the oscillatory behavior of the fragment length distribution 

(Fig. 12). The same was observed in ATAC-seq results at both the scale of the DNA 

helical pitch and the length of DNA wrapped by a nucleosome. In the case of XATAC-

seq, it appears that the period is roughly 10 nt, corresponding to the helical pitch of DNA 

as it extends away from the transposase82.  
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CHAPTER 3: XATAC-SEQ AND H-NS-LIKE NUCLEOID-ASSOCIATED 

PROTEINS 

 

In general, XATAC-seq signal is dominated by NAP binding, with H-NS-like 

proteins in particular being associated with the majority of signal. Correlations to the 

major NAPs in E. coli are shown in Table 1. For example, the genome-wide correlation 

between an H-NS ChIP-seq dataset obtained from work by Kahramanoglou and 

colleagues and E. coli XATAC-seq is 0.60 (Fig. 13).  

 

 

Figure 13: H-NS Correlation. Correlation between XATAC-seq in E. coli and H-NS 
ChIP-seq; data points are 5kb average signal, but correlation is genome-wide at the single 
nucleotide level. 
 
 Because H-NS is known to perform functions that appear to address fundamental 

difficulties faced by cells, namely the silencing of horizontally-acquired DNA and 

prevention of spurious expression, we wondered if similar proteins perform the same 

functions in a wide range of bacteria. Specifically, it appears that an AT-binding 
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repressor would provide advantages regardless of the species’ native AT-content. For 

those with a high genomic GC, foreign DNA is more likely to be AT-rich by comparison. 

In contrast, a high-AT genome would be expected to include more intragenic promoter-

like sequences. As such, we decided to apply XATAC-seq to determine if proteins 

exhibiting widespread binding to AT-rich DNA and broad repression of transcription are 

more universal than currently realized. 

 

3.1 ROK OF BACILLUS SUBTILIS 

 Bacillus subtilis is a model gram-positive, spore-forming bacterium. Among 

gram-positives, it is one of the most well studied and is a widely-used species in industry. 

When XATAC-seq was applied to B. subtilis cells, a correlation was observed 

between XATAC-seq signal and regional AT content. A large portion of the singal 

appears to be contributed by the Rok protein – the correlation between Rok ChIP-seq and 

XATAC-seq was found to be 0.27. 

 
Figure 14: Rok of B. subtilis. Relationship between XATAC-seq, rok binding, and AT 
content of the B. subtilis genome. 
 

Rok is a repressor of many genes in B. subtilis, including those associated with 

competence development89. Like H-NS, it binds to extended, AT-rich genome regions73. 
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In addition, Rok, like H-NS, is an autorepressor89. The C-terminal domain of Rok has 

been identified as responsible and sufficient for DNA binding and Rok has been shown to 

possess the same AT hook DNA-binding motif as H-NS43,73. The degree to which Rok 

binding contributes to genome-wide binding, as measured by XATAC-seq, indicates that 

it may have a larger role in determining cellular phenotype than previously recognized. 

Overall, there is considerable evidence that Rok is a functional homolog of H-NS 

in Bacillus subtilis. Because of the fact that it is restricted to a small number of closely 

related Bacillus species, it has been speculated that Rok was acquired by lateral gene 

transfer sometime in B. subtilis’s recent evolutionary history73. However, when the 

sequence homology of H-NS and Rok is compared using BLAST, there is no significant 

agreement. In fact, when the homology of all major H-NS-like protein families is 

compared, none share the degree of sequence similarity that would be expected were they 

to have a common evolutionary origin (Table 2). As such, these proteins, and specifically 

their DNA-binding properties, appear to be a result of convergent evolution, reinforcing 

the idea that the functions of AT-binding proteins meet fundamental cellular needs. 

Table 2: Homology of H-NS-family Proteins. Homology was assessed using BLAST 
two-sequence comparison. The total score is the sum of the quality of alignments of 
individual segments of the protein. In many cases where no significant similarity was 
observed. 

Total BLAST 
Scores H-NS Rok MvaT Lsr2 

H-NS 276 0 52.3 0 

Rok 0 381 23.9 0 

MvaT 52.3 23.9 249 26.2 

Lsr2 0 0 26.2 221 
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3.2 MGA OF GROUP A STREPTOCOCCUS PYOGENES 
 
 Group A Streptococcus pyogenes (GAS) is a human pathogen responsible for 

numerous invasive diseases that cause an estimated 163,000 deaths each year90. M1T1 is 

the GAS serotype most frequently associated with severe infections, which are often 

difficult to treat with antibiotics and may require surgical intervention91,92. Invasive 

bacterial disease is dependent upon the action of virulence factors that moderate 

interactions of bacteria with host tissues and facilitate subversion of the innate immune 

system. Pathogenesis in GAS serotype M1T1 is potentiated by mutations in the genes 

encoding the two-component CovRS system, causing upregulation of the several 

virulence-associated genes it regulates93. In total, CovRS is responsible for regulation of 

approximately 15% of the genes in GAS94 – CovS is a membrane-associated histidine 

kinase that controls the phosphorylation state of CovR, the response regulator of the 

system94. A summary of virulence genes in M1 GAS is provided in Table 3, along with 

known effects of CovR or CovS on each, if applicable.  

Table 3: GAS Virulence Genes. CovR negatively regulates hyaluronic acid capsule 
synthesis, streptolysin S, streptodornase D, streptokinase, spyCEP, IdeS, and positively 
regulates exotoxin B87,95,96. SIC repression appears to be covS-dependent97.  
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We have applied XATAC-seq to study the changes in protein binding associated 

with the transition from non-pathogenic M1T1 GAS to the hypervirulent covR deletion 

mutant (DcovR) as well as another hypervirulent mutant containing a covS point-mutation 

at position 877, procured from subcutaneous animal passage (AP). 

 

3.2.1 GAS XATAC-SEQ AND AT CONTENT 

XATAC-seq in each of the mutants shows a similar AT-preference, each with a 

correlation of approximately 0.2. To ensure that this signal preference is due to affinity of 

the binding proteins, we conducted an experiment in which we treated each of the GAS 

strains with rifampicin, an antibiotic that prevents transcriptional elongation beyond 2-3 

nt98. In theory, this should allow DNA-binding proteins access to essentially all genomic 

DNA, and resulting XATAC-seq signal should be representative of their binding 

preferences. With rifampicin, the association between XATAC-seq signal and AT 

increases significantly (Fig. 15). This leads to the conclusion that expression prevents 

binding of proteins in GAS from accessing some high-affinity targets, and implies an 

inverse relationship between binding and transcription at these genes. Overall, this 

finding lends credence to the hypothesis that an H-NS-like AT-binding protein, or 

multiple, exist in GAS. In addition, the similarity of rifampicin-treated XATAC-seq 

signal between mutants implies that the same DNA-binding proteins are active in both 

phenotypes. 

`
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Figure 15: Effects of AT Content on Binding in Untreated and Rifampicin-Treated 
Cells. The correlation between XATAC-seq and AT improves significantly upon 
rifampoicin treatment in both of the mutants. With rifampicin treatment, XATAC-seq 
signal converges to become nearly identical. 
 

3.2.2: GAS XATAC-SEQ AND GENE EXPRESSION 

  In order to determine if the putative H-NS-like protein also shares its repressive 

capacity, we compared the binding of virulence genes between mutants. This analysis 

revealed that on the whole, virulence-associated genes are bound significantly more in 

wild-type GAS than in the mutants (Fig. 16). This, in agreement with the changes 

observed upon rifampicin treatment, suggests that the activity of AT-binding proteins in 

GAS is generally repressive. 
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Figure 16: Virulence Gene Binding. Binding (average XATAC-seq signal normalized 
by gene length). The p-value was calculated using the Mann-Whitney U test; the 
difference in binding between the hypervirulent mutants is not statistically significant. 
 

Clearly, since binding within genes antagonizes their transcription (see Fig. 2C), 

this represents an increase in expression of these genes, as has been shown previously for 

similar serotypes and as corroborated by RNA-seq experiments performed on these 

strains (Table 4).  

Differential expression was determined from the RNA-seq data using DESEq. 

Briefly, DESeq models the number of reads assigned to each gene as a binomial 

distribution, estimating the mean and variance from the data so that it is able to accurately 

infer whether differences in expression are the product of noise or a true, relevant 

difference between the samples99. In total, 158 genes are differentially expressed between 

the wild type and both of the mutants (Fig 17). Among these, 16 are virulence genes. 
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Figure 17: RNA-seq Differential Expression Venn Diagram. As expected, few genes 
are differentially expressed between the two hypervirulent mutants (pink region), and 
many genes were commonly differentially expressed between the wild type and each 
mutant (light blue region). 
 

Interestingly, these differences in expression are mirrored by overall differences 

in the protein occupancy landscapes of the strains (Fig. 18). The correlation between the 

hypervirulent mutants is on the same order as that of replicates (0.94), whereas that 

between each of the mutants and the wild type is considerable lower (~0.6). 

 

Figure 18: GAS POL Comparison. GAS XATAC-seq signal is plotted across the entire 
genome. The data shown has been smoothed in order to make it easier to visualize. 
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 Differential gene binding, as assessed by DESeq of XATAC-seq data, shows a 

negative correlation with differential expression (Fig. 19). This correlation (-0.4) is on the 

same order of magnitude as that observed from ChIP-chip experiments performed with 

RNA polymerase and H-NS47. This implies that global binding of protein in GAS, on the 

whole, has the same repressive effect as that of H-NS in E. coli. In particular, many of the 

virulence genes identified as active in the mutants by RNA-seq are differentially bound in 

the mutants compared to the wild type. Despite this result, we do not have a clear 

mechanistic understanding of the relationship of binding to expression, nor is it clear 

whether changes in gene binding are a cause or an effect of changes in gene expression. 

 
Figure 19: Differential Expression vs. Differential Binding. A negative correlation 
between change in binding and change in expression is observed at a significance 
threshold of 1e-3. 
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Figure 20: Gene binding vs. Expression. Left: comparison of the average RNA-seq 
signal (expression) for genes whose average XATAC-seq signal (binding) is above the 
75th percentile and below the 25th percentile. Right: comparison of the average XATAC-
seq signal (binding) for genes whose average RNA-seq signal (expression) is above the 
75th percentile and below the 25th percentile. P-values were calculated using the Mann-
Whitney U-test. 
 
 
3.2.3 MASS SPECTROSCOPY ANALYSIS 

In order to determine whether there is a protein of a similar functional nature to 

H-NS in GAS, we performed mass spectroscopy (MS) analysis on protein isolated from 

wild type GAS. DNA probes were amplified in vitro from regions of the GAS genome 

corresponding to bound, closed chromatin, and unbound, tagmented chromatin (Fig. 21). 

Briefly, probes were biotinylated, then mixed with cell lysate in order to fish out proteins 

with binding affinity for this region. Upon analysis, it was found that the Mga protein 

was the most enriched in the test sample compared to the control (Table 5). In addition, it 

was significantly more enriched than the next highest protein, and the only member of the 

ten most enriched that is known to be a DNA-binding protein. This indicates that Mga is 

the sole AT-binding protein responsible for a large portion of XATAC-seq signal, and 

therefore genome-wide binding in GAS. 
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Figure 21. Mass Spectroscopy Probe Design. Test probes were amplified from regions 
of minimal tagmentation, representing occupied DNA. Control probes were amplified 
from regions of frequent tagmentation, representing accessible DNA. Two of each were 
used. 

Table 5: Mass Spectroscopy Results. The number of peptide spectral matches (PSMs) 
associated with each protein in the test and control samples is compared to determine 
which is most responsible for binding as assessed by XATAC-seq.

 

Mga is a large (62kD) DNA-binding protein in GAS. It binds DNA at its N-

terminal domain, which contains a pair of helix-turn-helices100. It is known to repress 

genes associated with sugar metabolism, as well as directly bind the promoter regions of 

several virulence genes associated with cell-surface proteins and interactions with host 

tissues in order to activate their expression101–103. For this reason, it is currently classified 

as a specific regulator. Despite this, Mga lacks a consensus binding sequence104. In 
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addition, the regulatory behavior is modulated by the phosphorylation state of the 

protein105. In particular, the phosphorylation state of Mga is known to determine whether 

or not it is capable of oligomerizing, which for H-NS is known to determine its ability to 

repress expression. Another point of similarity is that Mga autorepresses mga, just as H-

NS does hns106. This indicates that it is important for the cell to carefully control the ratio 

of Mga to DNA. Furthermore, in vitro studies have shown that Mga binds regions of E. 

coli DNA that are strongly bound by H-NS; and conversely that H-NS strongly binds a 

promoter regulated by Mga107. Overall, Mga has been shown to regulates approximately 

10% of the GAS genome, which, in combination with our XATAC-seq findings, lends 

itself well to the hypothesis that Mga acts in a role more similar to that of H-NS-family 

proteins93. As such, we conclude that Mga is likely to be a functional homolog of H-NS 

in GAS, and that the current understanding of its function and role is incomplete. 
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APPENDIX 

 

A1. BACTERIAL STRAINS AND GROWTH CONDITIONS 

E. coli K12 cells were grown to mid-log phase (OD600 = 0.5) in LB media at 37ºC with 
  

shaking. 
Bacillus subtilis cells were grown in rich CH media at 37ºC with stirring108. 
 
Group A. Streptococcus pyogenes strain 5448 Wild type (serotype M1T1), DcovR mutant,  

and covS point-mutation at position 877 - “Animal Passage” mutant were used. 
Cells were grown in Todd Hewitt broth (Hardy Diagnostics) at 37ºC with shaking.  
 

Clostridium ljungdalhii, were cultured in carbon monoxide and high-fructose media at  
27ºC with stirring.  

 

A2. EXPERIMENTAL METHODS 

A2.1 XATAC-seq 

Crosslinking and Protein-DNA Complex Isolation 

Bacterial cultures were grown to mid exponential phase (OD600 = 0.3-0.5) in 
appropriate media (Appendix A1) at 37ºC, with shaking. Crosslinking was achieved by 
treatment with 1% formaldehyde for 20-30 minutes. Cells were pelleted by centrifugation 
and cell pellets were lysed by grinding in liquid nitrogen. 500 uL SET buffer (75mM NaCl, 
25mM EDTA pH 8, 20nM Tris-Hcl pH 7.5) were used for grinding. Lysate was 
resuspended in 2X protease inhibitor solution (cOmplete mini, Roche) and centrifuged for 
10 min. at 14,000 rpm and 4ºC. 25 uL of supernatant was used for buffer exchange with 
Tris-EDTA (10M Tris, 1mM EDTA, pH 8) with a 45 minute incubation period at room 
temperature.  

Xatac-seq Library Preparation 

700 pg DNA were used as input for the Illumina Nextera kit. After library 
preparation, AMPure beads were used to purify the library as recommended by the 
manufacturer. 

Sequencing 

Libraries were sequenced on Illumina MiSeq or HiSeq for 100 or 150 cycles in 
paired-end mode. 
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A2.2 DNA Control ATAC-seq 

 The procedure for performing the DNA-only control experiment is the same as 
that for XATAC-seq, with the following exceptions and additional steps:  

1) The formaldehyde crosslinking step is skipped. 
2) After cell lysis by nitrogen grinding, 2 rounds of phenol:chloroform extraction are 

performed.  
3) Ethanol precipitation is performed with glycerol. 

700 pg of this genomic DNA are used as input to the Illumina Nextera kit, as in XATAC-
seq. 
 

A2.3 Rifampicin Treatment Experiments 

 Rifampicin treatment experiments are performed using the standard XATAC-seq 
protocol, but before treatment with formaldehyde, cells are treated with a final 
concentration of 25ug/mL Rifampicin and incubated at 37ºC for 30 minutes, with 
shaking.  
 

A2.4 RNA-seq 

RNA Extraction 

S. pyogenes cultures were grown to mid exponential phase in Todd Hewitt media. 
Cells were pelleted by centrifugation and cell pellets were lysed by grinding in liquid 
nitrogen with 300 µl RLT buffer (Qiagen). Lysates were resuspended in 1 ml Trizol and 
200 uL chloroform. Solution was vortex mixed and centrifuged to separate phases, after 
which the aqueous phase was extracted. Finally, the sample were purified with Qiagen 
RNEasy columns.  

rRNA Removal and RNA-seq Library Preparation 

2 µg of total RNA were used as input to the RiboZero kit (Illumina). 50 ng of 
purified, rRNA-depleted RNA was used as input to the KAPA Stranded RNA-seq 
Library Preparation Kit. 
Sequencing 
 Libraries were sequenced on Illumina MiSeq or HiSeq for 100 or 150 cycles in 
paired-end mode. 
 

A2.5 Protein Extraction for MS 

Probe Amplification  
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Biotinylated primers for select regions of the GAS genome (2 control, 2 test) were 
requisitioned from IDT. Cell lysate was prepared as per protocol outlined in “Crosslinking 
and Protein-DNA Complex Isolation” of A2.1. Each set of primers was mixed with 1 µl 
lysate, dNTPs, and Q5 DNA polymerase in Q5 buffer. The following PCR thermocycler 
program was run for 30 cycles in order to amplify target regions: 

 98ºC 2 min.  

 30x: 98ºC 25 sec. 

         43ºC 15 sec. 

         72ºC 15 sec. 

Bait Purification 

 PCR products were washed with Quiagen columns. 5X PBS added to each sample 
containing amplified primer to bind columns. Columns were washed twice with PE, and 
DNA was eluted in 25 µl H2O. 

Protein Extraction 

 10 µl of each test bait mixed and added to 500 µl cell lysate. The same was 
repeated for the controls. Solutions were incubated on a rotating stand mixed for 1 hr. at 
4ºC. Dynabeads were washed according to manufacturer’s instructions. 100 µl bead 
solution was added to each sample, and washed 6 times with wash buffer (50mM Tris, 
250mM NaCl, 0.1% Triton 100X) at 4ºC. Proteins were eluted by incubation in 2.5M 
NaCl solution for 1 hr. at room temperature. 

    

A2.6: XATAC-seq with Reverse-Crosslinking  

The procedure for performing the revere-crosslinking experiment is the same as 
that for XATAC-seq, with the following additional steps: 

 
1) After quenching the transposase reaction with NT buffer, sample was purified 

wirg 1.8X volume AMPure bead solution.  
2) Sample was incubated with 1 ul proteinase K at 65ºC overnight to reverse 

crosslinks. 
3) Sample was purified again to remove protein debris and protease, using 1.8X 

volume AMPure bead solution.  
4) Nextera PCR amplification and subsequent steps were performed as in the 

standard XATAC-seq protocol. 
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A3. DATA ANALYSIS 

 In the general procedure, primers and adapter sequences are removed using 
trim_galore in paired-end mode (--paired) with the quality cutoff (-q) set to 22 and -fastqc 
enabled. Next, reads are aligned to the reference genome using bowtie2, with the 
maximum length limit (-X) set to 1000109. Wig files containing the number of mappings 
at each genome position are then generated using the samtools mpileup command and 
normalized by reads per million (RPM). The resulting wig files are then processed using 
in-house Python scripts. 
 When evaluating differential expression (or differential binding) of genes, 
trimming is performed as in the general procedure. Next, featureCounts is used to 
determine the number of fragments corresponding to each region of interest (features), 
which could be a gene or promoter. A minimum of 2/3 of each read must be within the 
gene in order for it to be assigned (--fracoverlap 0.66). DESeq is then implemented in R 
to determine the level and significance of differential signal for each feature using a 
negative binomial distribution99. Further analysis, including imposition of significance 
thresholds and sorting by magnitude of differential signal, is performed using custom 
Python scripts. 
 In order to accurately determine the location of specific transposition events so as 
to precisely pinpoint individual binding sites, mapped reads must be trimmed to a single 
base. Therefore, trimming and alignment are performed as in the general case using 
trim_galore and bowtie2. Afterward, the position field, sequence field, and CIGAR field 
of the sam file are adjusted appropriately. An additional offset of +4 bases for reads on 
the forward strand and -5 for those on the reverse strand is applied because the Tn5 
transposase introduces a 9bp gap on either side of its transposition site which is 
subsequently duplicated and must be corrected for in order to obtain the true site of 
transposition14. Once this is done, wig files can be generated from the modified sams with 
samtools commands as usual, and footprints are detected and evaluated in Python.



 

 40 

REFERENCES 

1. Deng, S., Stein, R. A. & Higgins, N. P. Organization of supercoil domains and 
their reorganization by transcription. Mol. Microbiol. 57, 1511–21 (2005). 

 
2. Holmes, V. F. & Cozzarelli, N. R. Closing the ring: links between SMC proteins 

and chromosome partitioning, condensation, and supercoiling. Proc. Natl. Acad. 
Sci. U. S. A. 97, 1322–4 (2000). 

 
3. Kornberg, R. D. Chromatin Structure: A Repeating Unit of Histones and DNA. 

Science (80-. ). 184, (1974). 
 
4. Drlica, K. & Rouviere-Yaniv, J. Histonelike Proteins of Bacteria. Microbiol. Rev. 

51, 301–319 (1987). 
 
5. Noom, M. C., Navarre, W. W., Oshima, T., Wuite, G. J. L. L. & Dame, R. T. H-

NS promotes looped domain formation in the bacterial chromosome. Curr. Biol. 
17, R913–R914 (2007). 

 
6. Dekker, J. & Heard, E. Structural and functional diversity of Topologically 

Associating Domains. FEBS Lett. 589, 2877–84 (2015). 
 
7. Postow, L., Hardy, C. D., Arsuaga, J. & Cozzarelli, N. R. Topological domain 

structure of the Escherichia coli chromosome. Genes Dev. 18, 1766–79 (2004). 
8. Worcel, A., Burgi, E. & Burgti, E. On the Structure of the Folded Chromosome of 

Escherichia coli. J. Mol. Biol. 71, 127–147 (1972). 
 
9. Le, T. B. & Laub, M. T. Transcription rate and transcript length drive formation of 

chromosomal interaction domain boundaries. EMBO J. 35, 1582–1595 (2016). 
 
10. Le, T. B. K., Imakaev, M. V, Mirny, L. A. & Laub, M. T. High-resolution 

mapping of the spatial organization of a bacterial chromosome. Science 342, 731–
4 (2013). 

 
11. Wang, X., Le, T. B. K., Lajoie, B. R., Dekker, J., Laub, M. T. & Rudner, D. Z. 

Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus 
subtilis. Genes Dev. 29, 1661–75 (2015). 

 
12. Vora, T., Hottes, A. K., Tavazoie, S., Cornet, F., Boccard, F., McLeod, S. M., 

Marko, J. F., Johnson, R. C., Hannett, N., Kanin, E. & al.,  et. Protein occupancy 
landscape of a bacterial genome. Mol. Cell 35, 247–53 (2009). 

 
13. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. 

Transposition of native chromatin for fast and sensitive epigenomic profiling of 
open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 



 41 

 

10, 1213–1218 (2013). 
 
14. Vaezeslami, S., Sterling, R. & Reznikoff, W. S. Site-directed mutagenesis studies 

of tn5 transposase residues involved in synaptic complex formation. J. Bacteriol. 
189, 7436–41 (2007). 

 
15. Ali Azam, T., Iwata, A., Nishimura, A., Ueda, S. & Ishihama, A. Growth phase-

dependent variation in protein composition of the Escherichia coli nucleoid. J. 
Bacteriol. 181, 6361–70 (1999). 

 
16. Collado-Vides, J., Magasanik, B. & Gralla2, J. D. Control Site Location and 

Transcriptional Regulation in Escherichia coli. Microbiol. Rev. 55, 371–394 
(1991). 

 
17. Madan Babu, M. & Teichmann, S. A. Evolution of transcription factors and the 

gene regulatory network in Escherichia coli. Nucleic Acids Res. 31, 1234–44 
(2003). 

 
18. Martínez-Antonio, A., Chandra Janga, S., Salgado, H. & Collado-Vides, J. 

Internal-sensing machinery directs the activity of the regulatory network in 
Escherichia coli. doi:10.1016/j.tim.2005.11.002 

 
19. Balleza, E., Opez-Bojorquez, L. N., Martínez-Antonio, A., Resendis-Antonio, O., 

Lozada-C Avez, I., Balderas-Martínez, Y. I., Encarnací On, S. & Collado-Vides, J. 
Regulation by transcription factors in bacteria: beyond description. (2008). 
doi:10.1111/j.1574-6976.2008.00145.x 

 
20. Browning, D. F. & W Busby, S. J. Local and global regulation of transcription 

initiation in bacteria. Nat. Publ. Gr. 14, (2016). 
 
21. Alberts, B., Johnson, A. & J, L. Molecular Biology of the Cell. (Garland Science, 

2002). 
 
22. Browning, D. F., Grainger, D. C. & Busby, S. J. Effects of nucleoid-associated 

proteins on bacterial chromosome structure and gene expression. Curr. Opin. 
Microbiol. 13, 773–780 (2010). 

 
23. Dorman, C. J. Regulation of transcription by DNA supercoiling in Mycoplasma 

genitalium: global control in the smallest known self-replicating genome. Mol. 
Microbiol. 81, 302–304 (2011). 

 
24. Dame, R. T., Kalmykowa, O. J. & Grainger, D. C. Chromosomal Macrodomains 

and Associated Proteins: Implications for DNA Organization and Replication in 
Gram Negative Bacteria. PLoS Genet. 7, e1002123 (2011). 

 



 42 

 

25. Dillon, S. C. & Dorman, C. J. Bacterial nucleoid-associated proteins, nucleoid 
structure and gene expression. (2010). doi:10.1038/nrmicro2261 

 
26. Balandina, A., Kamashev, D. & Rouviere-Yaniv, J. The bacterial histone-like 

protein HU specifically recognizes similar structures in all nucleic acids. DNA, 
RNA, and their hybrids. J. Biol. Chem. 277, 27622–8 (2002). 

 
27. Serban, D., Arcineigas, S. F., Vorgias, C. E., Thomas, G. J. & Jr. Structure and 

dynamics of the DNA-binding protein HU of B. stearothermophilus investigated 
by Raman and ultraviolet-resonance Raman spectroscopy. Protein Sci. 12, 861–70 
(2003). 

 
28. Luijsterburg, M. S., White, M. F., van Driel, R. & Dame, R. T. The Major 

Architects of Chromatin: Architectural Proteins in Bacteria, Archaea and 
Eukaryotes. Crit. Rev. Biochem. Mol. Biol. 43, 393–418 (2008). 

 
29. Bensaid, A., Almeida, A., Drlica, K. & Rouviere-Yaniv, J. Cross-talk Between 

Topoisomerase I and HU in Escherichia coli. J. Mol. Biol. 256, 292–300 (1996). 
 
30. Dixon, N. E. & Kornberg, A. Protein HU in the enzymatic replication of the 

chromosomal origin of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 81, 424–8 
(1984). 

 
31. Huo, Y.-X., Zhang, Y.-T., Xiao, Y., Zhang, X., Buck, M., Kolb, A. & Wang, Y.-P. 

IHF-binding sites inhibit DNA loop formation and transcription initiation. Nucleic 
Acids Res. 37, 3878–3886 (2009). 

 
32. Sheridan, S. D., Benham, C. J. & Hatfield, G. W. Activation of Gene Expression 

by a Novel DNA Structural Transmission Mechanism That Requires Supercoiling-
induced DNA Duplex Destabilization in an Upstream Activating Sequence*. J. 
Biol. Chem. 273, 21298–21308 (1998). 

 
33. Opel, M. L., Aeling, K. A., Holmes, W. M., Johnson, R. C., Benham, C. J. & 

Hatfield, G. W. Activation of transcription initiation from a stable RNA promoter 
by a Fis protein-mediated DNA structural transmission mechanism. Mol. 
Microbiol. 53, 665–674 (2004). 

 
34. Weinstein-Fischer, D. & Altuvia, S. Differential regulation of Escherichia coli 

topoisomerase I by Fis. Mol. Microbiol. 63, 1131–1144 (2007). 
 
35. Leonard, A. C. & Grimwade, J. E. Building a bacterial orisome: emergence of new 

regulatory features for replication origin unwinding. Mol. Microbiol. 55, 978–85 
(2005). 

 
36. Spassky, A., Rimsky, S., Garreau, H. & Buc, H. H1a, an E. coli DNA-binding 



 43 

 

protein which accumulates in stationary phase, strongly compacts DNA in vitro. 
Nucleic Acids Res. 12, 5321–40 (1984). 

 
37. Bertin, P., Benhabiles, N., Krin, E., Laurent-Winter, C., Tendeng, C., Turlin, E., 

Thomas, A., Danchin, A. & Brasseur, R. The structural and functional organization 
of H-NS-like proteins is evolutionarily conserved in Gram-negative bacteria. Mol. 
Microbiol. 31, 319–329 (1999). 

 
38. Navarre, W. W. Selective Silencing of Foreign DNA with Low GC Content by the 

H-NS Protein in Salmonella. Science (80-. ). 313, 236–238 (2006). 
 
39. Singh, K., Milstein, J. N. & Navarre, W. W. Xenogeneic Silencing and Its Impact 

on Bacterial Genomes. Annu. Rev. Microbiol 70, 199–213 (2016). 
 
40. Owen-Hughes, T. A., Pavitt, G. D., Santos, D. S., Sidebotham, J. M., Hulton, C. S. 

J., Hinton, J. C. D. & Higgins, C. F. The Chromatin-Associated Protein H-NS 
Interacts with Curved DNA to Influence DNA Topology and Gene Expression. 
Cell 71, 255–265 (1992). 

 
41. Oshima, T., Ishikawa, S., Kurokawa, K., Aiba, H. & Ogasawara, N. Escherichia 

coli Histone-Like Protein H-NS Preferentially Binds to Horizontally Acquired 
DNA in Association with RNA Polymerase. DNA Res. 13, 141–153 (2006). 

 
42. Grainger, D. C., Hurd, D., Goldberg, M. D. & Busby, S. J. W. Association of 

nucleoid proteins with coding and non-coding segments of the Escherichia coli 
genome. Nucleic Acids Res. 34, 4642–4652 (2006). 

 
43. Gordon, B. R. G., Li, Y., Cote, A., Weirauch, M. T., Ding, P., Hughes, T. R., 

Navarre, W. W., Xia, B. & Liu, J. Structural basis for recognition of AT-rich DNA 
by unrelated xenogeneic silencing proteins. Proc. Natl. Acad. Sci. 108, 10690–
10695 (2011). 

 
44. Ueguchi, C., Mizuno, T. & Buc, H. The Escherichia coli nucleoid protein H-NS 

functions directly as a transcriptional repressor. EMBO J. 1, 39–1046 (1993). 
 
45. Falconi, M., Higgins, N. P., Spurio, R., Pon, C. L. & Gualerzi, C. O. Expression of 

the gene encoding the major bacterial nucleoid protein H-NS is subject to 
transcriptional auto-repression. Mol. Microbiol. 10, 273–282 (1993). 

 
46. Hommais, F., Krin, E., Laurent-Winter, C., Soutourina, O., Malpertuy, A., Le 

Caer, J. P., Danchin, A. & Bertin, P. Large-scale monitoring of pleiotropic 
regulation of gene expression by the prokaryotic nucleoid-associated protein, H-
NS. Mol. Microbiol. 40, 20–36 (2001). 

 
47. Lucchini, S., Rowley, G., Goldberg, M. D., Hurd, D., Harrison, M. & Hinton, J. C. 



 44 

 

D. H-NS Mediates the Silencing of Laterally Acquired Genes in Bacteria. PLoS 
Pathog. 2, e81 (2006). 

 
48. Free, A. & Dorman, C. J. Coupling of Escherichia coli hns mRNA levels to DNA 

synthesis by autoregulation: implications for growth phase control. Mol. 
Microbiol. 18, 101–113 (1995). 

 
49. Afflerbach, H., Schroder, O. & Wagner, R. Effects of the Escherichia coli DNA-

binding protein H-NS on rRNA synthesis in vivo. Mol. Microbiol. 28, 641–653 
(1998). 

 
50. Ueguchi, C., Suzuki, T., Yoshida, T., Tanaka, K.-I. & Mizuno, T. Systematic 

Mutational Analysis Revealing the Functional Domain Organization of 
Escherichia coli Nucleoid Protein H-NS. J. Mol. Biol 263, 149–162 (1996). 

 
51. Bloch, V., Yang, Y., Margeat, E., Chavanieu, A., Augé, M. T., Robert, B., Arold, 

S., Rimsky, S. & Kochoyan, M. The H-NS dimerization domain defines a new fold 
contributing to DNA recognition. Nat. Struct. Biol. 10, 212–218 (2003). 

 
52. Esposito, D., Petrovic, A., Harris, R., Ono, S., Eccleston, J. F., Mbabaali, A., Haq, 

I., Higgins, C. F., Hinton, J. C. D., Driscoll, P. C. & Ladbury, J. E. H-NS 
Oligomerization Domain Structure Reveals the Mechanism for High Order Self-
association of the Intact Protein. J. Mol. Biol. 324, 841–850 (2002). 

 
53. Dorman, C., Hinton, J. & Free, A. Domain Organization and Oligomerization 

Among H-NS-like Nucleoid-Associated Proteins in Bacteria. TRENDS Microbiol. 
124, (1999). 

 
54. Rimsky, S., Zuber, F., Buckle, M. & Buc, H. A molecular mechanism for the 

repression of transcription by the H-NS protein. Mol. Microbiol. 42, 1311–1323 
(2001). 

 
55. Ulissi, U., Fabbretti, A., Sette, M., Giuliodori, A. M. & Spurio, R. Time-resolved 

assembly of a nucleoprotein complex between Shigella flexneri virF promoter and 
its transcriptional repressor H-NS. Nucleic Acids Res. 42, 13039–50 (2014). 

 
56. Lang, B., Blot, N., Bouffartigues, E., Buckle, M., Geertz, M., Gualerzi, C. O., 

Mavathur, R., Muskhelishvili, G., Pon, C. L., Rimsky, S., Stella, S., Babu, M. M. 
& Travers, A. High-affinity DNA binding sites for H-NS provide a molecular basis 
for selective silencing within proteobacterial genomes. Nucleic Acids Res. 35, 
6330–7 (2007). 

 
57. Spurio, R., Falconi, M., Brandi, A., Pon, C. L. & Gualerzi, C. O. The oligomeric 

structure of nucleoid protein H-NS is necessary for recognition of intrinsically 
curved DNA and for DNA bending. EMBO J. 16, 1795–1805 (1997). 



 45 

 

58. Winardhi, R. S., Fu, W., Castang, S., Li, Y., Dove, S. L. & Yan, J. Higher order 
oligomerization is required for H-NS family member MvaT to form gene-silencing 
nucleoprotein filament. Nucleic Acids Res. 40, 8942–8952 (2012). 

 
59. Dame, R. T., Wyman, C., Wurm, R., Wagner, R. & Goosen, N. Structural Basis 

for H-NS-mediated Trapping of RNA Polymerase in the Open Initiation Complex 
at the rrnB P1. J. Biol. Chem. 277, 2146–2150 (2001). 

 
60. Shin, M., Song, M., Rhee, J. H., Hong, Y., Kim, Y.-J., Seok, Y.-J., Ha, K.-S., 

Jung, S.-H. & Choy, H. E. DNA looping-mediated repression by histone-like 
protein H-NS: specific requirement of Esigma70 as a cofactor for looping. Genes 
Dev. 19, 2388–98 (2005). 

 
61. Kotlajich, M. V, Hron, D. R., Boudreau, B. A., Sun, Z., Lyubchenko, Y. L., 

Landick, R., Yamazaki, T., Marchadier, E., Hoebeke, M., Aymerich, S., Becher, 
D., Bisicchia, P., Botella, E., Delumeau, O., Doherty, G., Denham, E., Fogg, M., 
Fromion, V., Goelzer, A. Hansen, A., Härtig, E., Harwood, CR., Homuth, G., 
Jarmer, H., Jules, M., Klipp, E., Chat, L. Le, Lecointe, F., Lewis, P., 
Liebermeister, W., March, A., Mars, RA., Nannapaneni, P., Noone, D., Pohl, S., 
Rinn, B., Rügheimer, F., Sappa, PK., Samson, F., Schaffer, M., Schwikowski, B., 
Steil, L., Stülke, J., Wiegert, T., Devine, KM., Wilkinson, AJ., Dijl, JM. van, 
Hecker, M., Völker, U., Bessières, P., Noirot, P. Bridged filaments of histone-like 
nucleoid structuring protein pause RNA polymerase and aid termination in 
bacteria. Elife 4, 1199–1208 (2015). 

 
62. Shin, M., Lagda, A. C., Lee, J. W., Bhat, A., Rhee, J. H., Kim, J.-S., Takeyasu, K. 

& Choy, H. E. Gene silencing by H-NS from distal DNA site. Mol. Microbiol. 86, 
707–719 (2012). 

 
63. Singh, S. S. & Grainger, D. C. H-NS Can Facilitate Specific DNA-binding by 

RNA Polymerase in AT-rich Gene Regulatory Regions. PLoS Genet. 9, e1003589 
(2013). 

 
64. Ueda, T., Takahashi, H., Uyar, E., Ishikawa, S., Ogasawara, N. & Oshima, T. 

Functions of the Hha and YdgT Proteins in Transcriptional Silencing by the 
Nucleoid Proteins, H-NS and StpA, in Escherichia coli. DNA Res. 20, 263–271 
(2013). 

 
65. Nieto, J. M., Madrid, C., Miquelay, E., Parra, J. L., Rodríguez, S. & Juárez, A. 

Evidence for Direct Protein-Protein Interaction between Members of the 
Enterobacterial Hha/YmoA and H-NS Families of Proteins. J. Bacteriol. 184, 629–
635 (2002). 

 
66. Lamberte, L. E., Baniulyte, G., Singh, S. S., Stringer, A. M., Bonocora, R. P., 

Stracy, M., Kapanidis, A. N., Wade, J. T. & Grainger, D. C. Horizontally acquired 



 46 

 

AT-rich genes in Escherichia coli cause toxicity by sequestering RNA polymerase. 
Nat. Microbiol. 2, 16249 (2017). 

 
67. Dorman, C. J. H-NS-like nucleoid-associated proteins, mobile genetic elements 

and horizontal gene transfer in bacteria. Plasmid 75, 1–11 (2014). 
 
68. Navarre, W. W., McClelland, M., Libby, S. J. & Fang, F. C. Silencing of 

xenogeneic DNA by H-NS-facilitation of lateral gene transfer in bacteria by a 
defense system that recognizes foreign DNA. Genes Dev. 21, 1456–71 (2007). 

 
69. Ali, S. S., Xia, B., Liu, J. & Navarre, W. W. Silencing of foreign DNA in bacteria. 

Curr. Opin. Microbiol. 15, 175–181 (2012). 
 
70. Higashi, K., Tobe, T., Kanai, A., Uyar, E., Ishikawa, S., Suzuki, Y., Ogasawara, 

N., Kurokawa, K. & Oshima, T. H-NS Facilitates Sequence Diversification of 
Horizontally Transferred DNAs during Their Integration in Host Chromosomes. 
PLoS Genet. (2016). 

 
71. Singh, S. S., Singh, N., Bonocora, R. P., Fitzgerald, D. M., Wade, J. T. & 

Grainger, D. C. Widespread suppression of intragenic transcription initiation by H-
NS. Genes Dev. 28, (2014). 

 
72. Williams, R. M., Rimsky, S. & Buc, H. Probing the Structure, Function, and 

Interactions of the Escherichia coli H-NS and StpA Proteins by Using Dominant 
Negative Derivatives. J. Bacteriol. 178, 4335–4343 (1996). 

 
73. Smits, W. K. & Grossman, A. D. The Transcriptional Regulator Rok Binds A+T-

Rich DNA and Is Involved in Repression of a Mobile Genetic Element in Bacillus 
subtilis. PLoS Genet. 6, e1001207 (2010). 

 
74. Gordon, B. R. G., Imperial, R., Wang, L., Navarre, W. W. & Liu, J. Lsr2 of 

Mycobacterium represents a novel class of H-NS-like proteins. J. Bacteriol. 190, 
7052–9 (2008). 

 
75. Lu, K., Ye, W., Zhou, L., Collins, L. B., Chen, X., Gold, A., Ball, L. M. & 

Swenberg, J. A. Structural Characterization of Formaldehyde-Induced Cross-Links 
Between Amino Acids and Deoxynucleosides and Their Oligomers. J. Am. Chem. 
Soc. 132, 3388–3399 (2010). 

 
76. Hoffman, E. A., Frey, B. L., Smith, L. M. & Auble, D. T. Formaldehyde 

Crosslinking: A Tool for the Study of Chromatin Complexes *. (2015). 
doi:10.1074/jbc.R115.651679 

 
77. Gavrilov, A., Razin, S. V & Cavalli, G. In vivo formaldehyde cross-linking: it is 

time for black box analysis. (2014). doi:10.1093/bfgp/elu037 



 47 

 

78. Toth, J. & Biggin, M. D. The specificity of protein–DNA crosslinking by 
formaldehyde: in vitro and in Drosophila embryos. Nucleic Acids Res. 28, (2000). 

 
79. Goryshin, I. Y. & Reznikoff, W. S. Tn5 in vitro transposition. J. Biol. Chem. 273, 

7367–74 (1998). 
 
80. Goryshin, I. Y., Miller, J. A., Kil, Y. V, Lanzov, V. A. & Reznikoff, W. S. 

Tn5/IS50 target recognition. Genetics 95, 10716–10721 (1998). 
 
81. York, D. & Reznikoff, W. S. DNA binding and phasing analyses of Tn5 

transposase and a monomeric variant. Nucleic Acids Res. 25, 2153–60 (1997). 
 
82. Adley, A., Morrison, H. G., Asan, Xun, X., Kitzman, J. O., Turner, E. H., 

Stackhouse, B., MacKenzie, A. P., Caruccio, N. C., Zhang, X. & Schendure, J. 
Rapid, low-input, low-bias construction of shotgun fragment libraries by high-
density in vitro transposition. Genome Biol. 11, (2010). 

 
83. Keseler, I. M., Mackie, A., Peralta-Gil, M., Santos-Zavaleta, A., Gama-Castro, S., 

Bonavides-Martinez, C., Fulcher, C., Huerta, A. M., Kothari, A., Krummenacker, 
M., Latendresse, M., Muniz-Rascado, L., Ong, Q., Paley, S., Schroder, I., Shearer, 
A. G., Subhraveti, P., Travers, M., Weerasinghe, D., Weiss, V., Collado-Vides, J., 
Gunsalus, R. P., Paulsen, I., Karp, P. D.EcoCyc: fusing model organism databases 
with systems biology. Nucleic Acids Res. 41, D605–D612 (2013). 

 
84. Kahramanoglou, C., Seshasayee, A. S. N., Prieto, A. I., Ibberson, D., Schmidt, S., 

Zimmermann, J., Benes, V., Fraser, G. M. & Luscombe, N. M. Direct and indirect 
effects of H-NS and Fis on global gene expression control in Escherichia coli. 
Nucleic Acids Res. 39, 2073–91 (2011). 

 
85. Prieto, A. I., Kahramanoglou, C., Ali, R. M., Fraser, G. M., Seshasayee, A. S. N. & 

Luscombe, N. M. Genomic analysis of DNA binding and gene regulation by 
homologous nucleoid-associated proteins IHF and HU in Escherichia coli K12. 
Nucleic Acids Res. 40, 3524–37 (2012). 

 
86. Rhee, H. S. & Pugh, B. F. Comprehensive genome-wide protein-DNA interactions 

detected at single-nucleotide resolution. Cell 147, 1408–19 (2011). 
 
87. Cole, J. N., Barnett, T. C., Nizet, V. & Walker, M. J. Molecular insight into 

invasive group A streptococcal disease. Nat. Rev. Microbiol. 9, 724–736 (2011). 
 
88. Kennedy-Darling, J. & Smith, L. M. Measuring the formaldehyde Protein-DNA 

cross-link reversal rate. Anal. Chem. 86, 5678–81 (2014). 
 
89. Hoa, T. T., Tortosa, P., Albano, M. & Dubnau, D. Rok (YkuW) regulates genetic 

competence in Bacillus subtilis by directly repressing comK. Mol. Microbiol. 43, 



 48 

 

15–26 (2002). 
 
90. Carapetis, J. R., Steer, A. C., Mulholland, E. K. & Weber, M. The global burden of 

group A streptococcal diseases. Lancet Infect. Dis. 5, 685–694 (2005). 
 
91. Young, M. H., Aronoff, D. M. & Engleberg, N. C. Necrotizing fasciitis: 

pathogenesis and treatment. Expert Rev. Anti. Infect. Ther. 3, 279–294 (2005). 
 
92. Aziz, R. K. & Kotb, M. Rise and persistence of global M1T1 clone of 

Streptococcus pyogenes. Emerg. Infect. Dis. 14, 1511–7 (2008). 
 
93. Sumby, P., Whitney, A. R., Graviss, E. A., DeLeo, F. R. & Musser, J. M. Genome-

wide analysis of group a streptococci reveals a mutation that modulates global 
phenotype and disease specificity. PLoS Pathog. 2, e5 (2006). 

 
94. Dalton, T. L. & Scott, J. R. CovS inactivates CovR and is required for growth 

under conditions of general stress in Streptococcus pyogenes. J. Bacteriol. 186, 
3928–37 (2004). 

 
95. Levin, J. C. & Wessels, M. R. Identification of csrR/csrS , a genetic locus that 

regulates hyaluronic acid capsule synthesis in group A Streptococcus. Mol. 
Microbiol. 30, 209–219 (1998). 

 
96. Heath, A., DiRita, V. J., Barg, N. L. & Engleberg, N. C. A two-component 

regulatory system, CsrR-CsrS, represses expression of three Streptococcus 
pyogenes virulence factors, hyaluronic acid capsule, streptolysin S, and pyrogenic 
exotoxin B. Infect. Immun. 67, 5298–305 (1999). 

 
97. Kansal, R. G., Datta, V., Aziz, R. K., Abdeltawab, N. F., Rowe, S. & Kotb, M. 

Dissection of the Molecular Basis for Hypervirulence of an In Vivo–Selected 
Phenotype of the Widely Disseminated M1T1 Strain of Group A Streptococcus 
Bacteria. J. Infect. Dis. 201, 855–865 (2010). 

 
98. Campbell, E. A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A. 

& Darst, S. A. Structural Mechanism for Rifampicin Inhibition of Bacterial RNA 
Polymerase. Cell 104, 901–912 (2001). 

 
99. Anders, S. & Huber, W. Differential expression analysis for sequence count data. 

doi:10.1186/gb-2010-11-10-r106 
 
100. McIver, K. S. & Myles, R. L. Two DNA-binding domains of Mga are required for 

virulence gene activation in the group A streptococcus. Mol. Microbiol. 43, 1591–
1601 (2002). 

 
101. Ribardo, D. A. & McIver, K. S. Defining the Mga regulon: comparative 



 49 

 

transcriptome analysis reveals both direct and indirect regulation by Mga in the 
group A streptococcus. Mol. Microbiol. 62, 491–508 (2006). 

 
102. Terao, Y., Kawabata, S., Kunitomo, E., Murakami, J., Nakagawa, I. & Hamada, S. 

Fba, a novel fibronectin-binding protein from Streptococcus pyogenes, promotes 
bacterial entry into epithelial cells, and the fba gene is positively transcribed under 
the Mga regulator. Mol. Microbiol. 42, 75–86 (2008). 

 
103. Hondorp, E. R. & McIver, K. S. The Mga virulence regulon: infection where the 

grass is greener. Mol. Microbiol. 66, 1056–1065 (2007). 
 
104. Hondorp, E. R., Hou, S. C., Hempstead, A. D., Hause, L. L., Beckett, D. M. & 

Mciver, K. S. Characterization of the Group A Streptococcus Mga Virulence 
Regulator Reveals a Role for the C-terminal Region in Oligomerization and 
Transcriptional Activation. Mol. Microbiol. 83, 953–967 (2012). 

 
105. Hondorp, E. R., Hou, S. C., Hause, L. L., Gera, K., Lee, C.-E. & Mciver, K. S. 

PTS Phosphorylation of Mga Modulates Regulon Expression and Virulence in the 
Group A Streptococcus. Mol. Microbiol. 88, 1176–1193 (2013). 

 
106. Mciver, K. S., Thurman, A. S. & Scott, J. R. Regulation of mga Transcription in 

the Group A Streptococcus: Specific Binding of Mga within Its Own Promoter and 
Evidence for a Negative Regulator. J. Bacteriol. 181, 5373–5383 (1999). 

 
107. Baker, B. M., Creamer, T. P., Piepenbrink, K. H., Lucius, A. L., Juárez, A., Bravo, 

A., Solano-Collado, V., Hüttener, M. & Espinosa, M. MgaSpn and H-NS: Two 
Unrelated Global Regulators with Similar DNA-Binding Properties. 3, (2016). 

 
108. Harwood, C. & Cutting, S. Molecular biological methods for Bacillus. (Wiley, 

1990). 
 
109. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biol. 
10, R25 (2009). 

 




