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Dynamic Mesh Processing on the GPU
AHMED H. MAHMOUD, University of California, Davis, USA and Autodesk Research, Canada
SERBAN D. PORUMBESCU, University of California, Davis, USA
JOHN D. OWENS, University of California, Davis, USA

We propose a system for dynamic triangle mesh processing entirely on the
GPU. Our system offers an efficient data structure that allows fast updates
of the underlying mesh connectivity and attributes. Our data structure
partitions the mesh into small patches which allows processing all dynamic
updates for each patch within the GPU’s fast shared memory. This allows
us to rely on speculative processing for conflict handling, which has low
rollback cost while maximizing parallelism and reducing the cost of locking.
Our system also introduces a new programming model for dynamic mesh
processing. The programming model offers concise semantics for dynamic
updates, relieving the user from having to worry about conflicting updates
in the context of parallel execution. Our programming model relies on the
cavity operator, which is a general mesh update operator that formulates
any dynamic operation as an element reinsertion by removing a set of mesh
elements and inserting others in the created void. We used our system to
implement Delaunay edge flips and isotropic remeshing applications on the
GPU. Our system achieves a 3–18x speedup on large models compared to
multithreaded CPU solutions. Despite our additional dynamic features, our
data structure also outperforms state-of-the-art GPU static data structures
in terms of speed and memory requirements.

CCS Concepts: • Computing methodologies→Massively parallel algo-
rithms; Mesh geometry models.

Additional Key Words and Phrases: mesh, data structure, GPU, parallel

1 INTRODUCTION
The field of 3D geometric data processing, traditionally applied
to simulation, visualization, and computer-aided design (CAD), is
witnessing a surge in interest thanks to the demand for systems
that manipulate unstructured meshes. Geometry processing appli-
cations include shape analysis and synthesis, computational design,
virtual reality, and 3D printing. Moreover, the growing influences
of machine learning and data-driven algorithmic design have led to
breakthrough developments in the field as well as applications to
computer vision and AI-driven design of virtual assets. Despite the
growing influence of geometric data processing and recent coupling
to machine learning tools, most geometry processing algorithms
are implemented using serial processes on the CPU.
In computational modeling and simulation, there is an ongoing

demand for dynamic mesh processing. The importance of having
meshes that can adapt in real-time, altering their structures in re-
sponse to the stimuli of the operation or simulation, can be seen in
many applications. For example, to simulate complex turbulence
or multiphase flow phenomena, adaptive mesh refinement locally
refines and coarsens the mesh as needed. This adaptability ensures
that transient features are captured accurately, without burdening
the computational resources [Antepara et al. 2021]. Similarly, in
materials science, simulations that deal with crack propagation or
material failures often hinge on the ability of the mesh to refine

Authors’ addresses: Ahmed H. Mahmoud, Serban D. Porumbescu, and John D.
Owens, Department of Electrical and Computer Engineering, University of Califor-
nia, Davis, One Shields Avenue, Davis, CA, 95616, USA, {ahmahmoud, sdporumbescu,
jowens}@ucdavis.edu.
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Fig. 1. Our system casts local, dynamic mesh operations as cavitiy operators
which provide intuitive semantics for mesh updates (e.g., edge collapse
here, during one iteration of isotropic remeshing). With the cavity oper-
ator, the user defines mesh updates by creating cavities and then fills in
these cavities with new elements while our system handles potential con-
flicts. Additionally, we have designed a data structure for updating triangle
meshes that primarily uses the GPU’s shared memory for better locality.
Our approach significantly speeds up dynamic mesh processing compared
to multi-threaded CPU solutions and also results in better performance on
static mesh processing tasks over existing state-of-the-art GPU solutions.

around the evolving crack tip, ensuring that the details of the propa-
gation pathway are well-represented [Pfaff et al. 2014]. In topology
optimization [Li et al. 2021], where material distributions within a
design space evolve to meet performance metrics, the underlying
mesh must dynamically adjust to these innovative configurations.
Other domains that require dynamic mesh processing include real-
time interactive applications like surgical simulation [Zhu and Gu
2012] and cloth manipulation [Narain et al. 2012]. This situation
explains the multitude of libraries for dynamic mesh processing
(e.g., CGAL [Kettner 2019], OpenMesh [Botsch et al. 2002], and
VCGlib [Cignoni et al. 2023]) that have significantly lowered the
entry bar to facilitate efficient geometric data processing.
However, existing libraries are predominantly single-core CPU-

based. With the increase in size of geometric data, CPU/serial solu-
tions for processing geometric data are no longer sufficient to meet
the needs of performance and interactivity. One notable exception
is the Wild Meshing Toolkit (WMTK) [Jiang et al. 2022], which
leverages the parallelism of multi-threaded CPU systems. However,
even multicore CPUs cannot leverage the full parallelism in mesh
processing applications. Complex highly-detailed meshes contain
millions of mesh elements, while the most powerful CPU offers only
a few hundreds of parallel threads (e.g., AMD EPYC 9004 Series
offers 128 cores leading to 256 threads with hyperthreading [Ad-
vanced Micro Devices, Inc. (AMD) 2023]). Thus, the limited parallel
processing power in multithreaded CPUs is insufficient for handling
the increasingly complex and large-scale meshes required in modern
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computational applications, necessitating the exploration of more
powerful and parallel computing architectures.
The inherent data-parallel nature of mesh processing makes it

perfectly suited for execution on the GPU. GPUs offer a vast number
of processing cores that can concurrently execute computations,
allowing for significant acceleration in mesh processing tasks. With
a more principled design and implementation, the latent parallelism
in mesh processing algorithms can be unlocked, enabling dramatic
acceleration on highly parallel hardware such as the GPU. This
principled approach has been successfully applied in at least two
recently introduced systems: RXMesh [Mahmoud et al. 2021] and
MeshTaichi [Yu et al. 2022]. These systems offer general-purpose
solutions for mesh processing by designing efficient data structures
and generic programming models that cover a large set of applica-
tions. However, these systems are limited to static mesh processing
where the mesh topology does not change.

Current solutions for dynamic mesh processing on the GPU are
application-specific. Examples of these applications include surface
tracking [Chentanez et al. 2016], mesh simplification [Koh et al. 2018;
Papageorgiou and Platis 2014], mesh subdivision [Kuth et al. 2023],
and Delaunay refinement [Chen and Tan 2019]. Solutions within
these applications do not generalize well to other applications; e.g.,
a GPU data structure that is tailored for mesh simplification cannot
be used for refinement as each poses different challenges. A possible
solution—albeit hypothetical—is to serialize dynamic updates on the
CPU. This would leave the GPU underutilized for the duration of
memory transfer and serialized update operations on the CPU. Such
a solution will not scale well as the mesh size increases since the
transfer of increasingly large amounts of data between the CPU and
GPU becomes a significant bottleneck, severely limiting the overall
efficiency and scalability of the process in handling extensive mesh
datasets.
While processing unstructured meshes has ample latent paral-

lelism across the millions of geometric elements in a detailed mesh,
that processing involves complex dependencies, synchronization,
and many levels of memory reference indirections, potentially lead-
ing to inefficient utilization of massively parallel hardware. More
specifically, building a dynamic unstructured mesh processing on
the GPU requires tackling the following challenges:

(1) Locality: The majority of dynamic mesh operations change
a local neighborhood in the mesh. The ideal implementation
will take advantage of the locality of accessing and changing
the mesh data structure on the GPU.

(2) Conflict Handling: Conflict handling involves two related
challenges. First, we need a data structure that can detect
if two (or more) operations conflict, i.e., applying them si-
multaneously will lead to an invalid mesh. Second, we need
a data structure that can resolve conflicts, i.e., given two
(or more) conflicting operations, the data structure should
decide on which subset of these operations should proceed
and how.

(3) Compactness: A mesh data structure must satisfy two con-
flicting demands. On one hand, the limited GPU memory
favors lightweight data structures, since manipulating such
a data structure requires fewer memory transactions. On

Edge Collapse Vertex Split

Face Collapse Edge Split

Edge Flip Face Split

Fig. 2. Examples of dynamic triangle mesh local operators

the other hand, lightweight data structures offer limited
information about conflict detection and resolution.

(4) Scheduling: With serial execution, conflict resolution is
straightforward. However, high performance requires maxi-
mizing parallelism, and thus the need to process conflicts
in parallel. Our philosophy is that the data structure is re-
sponsible for detecting and resolving conflicts, maintaining
a valid mesh at all times, and the scheduler maximizes par-
allelism given the correctness constraints imposed by the
data structure.

In this paper, we propose a new dynamic mesh processing sys-
tem that operates entirely on the GPU. Our system leverages the
GPU’s parallelism for high-performance generic dynamic triangle
mesh updates and operations by tackling the above challenges. In
summary, our system achieves the following design goals:

(1) Efficient Incremental Mesh Updates: Our system’s pri-
mary goal is enabling high performance for incremental tri-
angle mesh updates on large meshes on the GPU. We do this
by avoiding CPU-GPU data transfer, maximizing GPU mem-
ory locality, improving load balance, and reducing thread
divergence. Our system sets the bar for dynamic mesh pro-
cessing on the GPU and delivers an order-of-magnitude bet-
ter performance compared to state-of-the-art multithreaded
CPU alternatives.

(2) Efficient Static Performance: Our system does not com-
promise the performance of static applications for the benefit
of dynamic applications. On static applications, our system
delivers better performance to state-of-the-art GPU static
mesh systems, e.g., RXMesh [Mahmoud et al. 2021].

(3) Intuitive Semantics: Our system provides intuitive con-
cise semantics for mesh updates and for resolving conflicts.
Our design considers both the topology and geometry (i.e.,
attributes) of the mesh, liberating the user from low-level
intricate implementation details.

(4) Robust Update Operations: Our system handles generic
triangle meshes without hard requirements on mesh quality,
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i.e., non-manifoldness or orientability. Our system does not
impose any requirements on the type of dynamic operations—
so long as they have a local area of impact. We support
almost all common mesh operators found in open-source
libraries (see Figure 2 for examples). Our system is also ex-
tensible and allows the user to implement new operations.

(5) Compact Mesh Data Structure: The data structure used
in our system is compact to ensure that users are not limited
to small input meshes due to limited GPU memory. Our data
structure needs 2x less memory than RXMesh [Mahmoud
et al. 2021]. This compact data structure requires less book-
keeping and exhibits greater locality, both leading to higher
performance.

Using our system, we implemented two dynamic geometry pro-
cessing applications i.e., Delaunay edge flip and isotropic remeshing.
In comparison with the state-of-the-art multithreaded CPU frame-
work, our system speedup is between 3–18x on large meshes with
millions of faces. Besides memory efficiency, our data structure out-
performs state-of-the-art GPU static mesh data structure with a
geometric mean speedup of 1.5x.

Mesh zippering

Non-goals. Our system supports ap-
plications that rely on incremental mesh
updates and aims to set the baseline for
enabling such applications fully on the
GPU in a generic way. However, our sys-
tem does not support applications that
alter the whole mesh in one step, e.g.,
mesh subdivision [Mlakar et al. 2020], nor does it support operations
with non-topologically local are of impact for update operations,
e.g., mesh “zippering” [Brochu and Bridson 2009] (see inset). Addi-
tionally, our system does not have inherent support for (partially)
ordered update operations and relies on the user to manage the
order of updates. Finally, while we have implemented our system
using CUDA and use CUDA terminology throughout, the concepts
presented are general and are applicable to any GPU architecture
and GPU programming language. We will release our code as an
open source upon acceptance.

2 RELATED WORK

2.1 Mesh Data Structures
Efficient mesh data structures enable faster processing, reduced
memory usage, and enhanced accuracy in the representation and
manipulation of complex 3D geometries in computer graphics. Here
we focus on data structures of mesh topology (i.e., connectivity in-
formation) which is distinguished from the mesh geometry (i.e., geo-
metric attributes on the mesh elements). The study and development
of efficient mesh data structures, an area as old as the inception of
personal computers [Baumgart 1972], have been a significant focus
in computer graphics research. We still rely on this early work on
mesh data structures even with the massive evolution of computer
hardware architecture. The Winged Edge data structure [Baum-
gart 1972] stores adjacency information, enabling efficient naviga-
tion across the mesh by linking faces and vertices to edges. The
Halfedge data structure [Mäntylä 1988]—one of the most widely

used data structures for polygonal meshes—splits each edge into
two half-edges with opposite directions, facilitating the traversal
and manipulation of mesh surfaces with mature, well-maintained
implementations in various libraries, e.g., CGAL [Kettner 2019]. The
Quad-edge structure [Guibas and Stolfi 1985] extends this concept
by efficiently representing the topology of non-manifold surfaces.
The Cell-tuple [Brisson 1989] is used for higher-dimensional meshes,
providing a more flexible representation for complex geometries.
Recently, Linear Algebraic Representation (LAR) [DiCarlo et al.
2014] was introduced as an alternative representation for polygonal
meshes. Departing from the graph-like representation, LAR repre-
sents meshes as sparse matrices while query and update operations
are sparse matrix multiplication or matrix transpose. In this work
we adopt LAR, in part, as described by Mahmoud et al. [2021] in
RXMesh due to its compactness and suitability for the GPU, but
with modifications that further reduce memory use over RXMesh
by 50% (see Appendix A).

2.2 Parallel Mesh Processing
Due to the limited processing and memory capacity of a single-core
system, researchers and practitioners have long sought to process
meshes more quickly and efficiently through distributed and muli-
core systems. The data structures used in parallel systems are gen-
erally the same as those used in sequential processing systems but
with modifications to facilitate and reduce communication across
partitioned mesh boundaries, deal with attributes, and to maintain
correspondence between the geometric representation and its dis-
cretized mesh representation [Cirrottola and Froehly 2019; Ibanez
et al. 2016].
In an effort to leverage existing codes, Cirrottola and Froehly

[2019] design a system and algorithm where existing sequential
remeshers are used within a parallel framework. They also describe
a repartitioning algorithm to more easily move interfaces between
parallel regions. As we see in Section 4, we do not repartition our
mesh, but rather modify our patch boundaries as necessary to ensure
all mesh operations occur within a single patch.
Creating new parallel applications, improving performance, or

porting parallel systems to new hardware is often difficult because
of the tight coupling of code responsible for functionality with
code responsible for achieving performance. Tsolakis et al. [2022]
breaks this coupling by creating a tasking framework for speculative
mesh operations based on a separation of concerns, i.e., function-
ality vs. performance. Our work is similar in this regard and we
seek to abstract away mesh operations from how those operations
are performed in parallel on the GPU. Jiang et al. [2022] address
many of these issues through a declarative programming approach
where users focus on their desired mesh processing steps by speci-
fying invariants and desiderata and where the underlying system
deals with the necessary scheduling and parallelization of low-level
mesh operations. PUMI [Ibanez et al. 2016] focuses on alleviating
the bottleneck (i.e., geometry and mesh processing) in end-to-end
simulation runtime on massively parallel computers through infras-
tructure that provides a link between the mesh and the original
domain, a partitioning model that facilitates interactions across
nodes, and load balancing.

2024-01-28 11:05. Page 3 of 1–13.
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2.3 GPU Mesh Data Structure
Only recently, GPU mesh data structures started gaining traction
to make the best use of the modern GPU. The goal of these data
structures is to provide the same level of ease as CPU-based data
structures while also exploiting the GPU massive parallelism. Mesh
Matrix [Zayer et al. 2017] is built upon the foundation of the LAR
representation for surface meshes. In Mesh Matrix, the relationship
between faces and vertices is captured through a sparse matrix,
This method achieves a compact form by utilizing a singular array
complemented by an action map, a concise local structure detailing
vertex interactions. This configuration of Mesh Matrix forgoes the
necessity of generating intermediate data. RXMesh [Mahmoud et al.
2021] subdivides the mesh into patches and prioritizes efficient uti-
lization of the GPU’s memory hierarchy by confining most of the
computation in the GPU’s shared memory. RXMesh extends each
patch with ghost-cells, called “ribbons”, to improve data locality
when accessing out-of-patch neighbor mesh elements.

2.4 Domain Specific Languages (DSL)
DSL and compiler techniques can be used to improve portability
across different architectures. For example, MeshTaichi [Yu et al.
2022] takes the idea of partitioning the mesh and implements a
compiler and DSL for mesh-based operations with an intuitive pro-
gramming model. The user writes a single code that is deployed on
either GPU or CPU. By inspecting the user code during compilation,
MeshTaichi can precompute the “wanted” queries during compile
time, allowing them to leverage the GPU’s shared memory to cache
mesh attributes. Liszt [DeVito et al. 2011] is a DSL designed for
building mesh-based PDE solvers, featuring specialized language
statements for interacting with unstructured meshes and managing
data. Its compiler leverages program analysis to uncover parallelism,
locality, and synchronization in Liszt programs, enabling the gen-
eration of applications optimized for various platforms, including
clusters, SMPs, and GPUs. Ebb [Bernstein et al. 2016] is a DSL for
simulation that is efficiently executable on both CPUs and GPUs,
distinct from prior DSLs due to its three-layer architecture that
separates simulation code, data structure definitions for geomet-
ric domains, and runtimes for parallel architectures. This structure
allows for the easy addition of new geometric domains through
a unified relational data model, enabling programmers to focus
on simulation physics and algorithms without the complexities of
parallel computing implementation.
While compiler-based techniques could deliver state-of-the-art

results for static meshes, their main disadvantage is the need for rel-
atively time-consuming static analysis of the input data. These com-
piler techniques are not easily amenable to dynamic mesh updates,
which generate their workloads at runtime. Additionally, static anal-
yses are unable to reveal the parallelism in dynamic mesh update
applications, as the parallel schedule is heavily reliant on runtime
data and cannot be determined at the time of compilation [Kulkarni
et al. 2007].

Input Cavity creation Cavity fill in

Fig. 3. An example of edge collapse, cast as a cavity-based operator.

2.5 Dynamic Mesh Processing Programming Model
While DSLs are restricted to static mesh processing, different run-
time libraries expose different programming models for manipu-
lating meshes. The most widely used approach for exposing mesh
manipulation is through local operators, e.g., edge flip [Botsch et al.
2010, 2002; Cignoni et al. 2023; Dawson-Haggerty et al. 2019; Kettner
2019]. These operators are inherently linked to the underlying data
structures, leading to an inseparable intertwining of the user inter-
face and the implementation details. The cavity operator [Loseille
and Löhner 2013] was introduced for anisotropic mesh adaptation
as a generic operator for implementing mesh updates. With the
cavity operator, every operation creates a hole in the mesh and
then fills it with a different set of mesh elements. A similar idea
was used for mesh improvement [Abdelkader et al. 2017] where the
cavity could shrink or expand to meet different objectives for mesh
improvement e.g., non-obtuse triangulation. While not extensively
explored in prior work, the cavity operator offers an elegant and
generic programming model for mesh updates, distinguished by its
independence from specific data structures.

3 PROGRAMMING MODEL
Goals. We begin by describing what we believe are the impor-

tant attributes of a programming model for GPU dynamic mesh
processing:

• Allow generic mesh update operations that have local area
of impact

• Separate operations on meshes (the “what”) from the imple-
mentations of those operations (the “how”). The program-
ming model should hide internal data structure details.

• Have an intuitive interface for the user to reason about
conflicting operations

• Propagate dynamic topological changes to mesh attributes
Next, we will discuss different alternative designs for such a

programming model to better motivate our programming model.

Alternative design: A collection of low-level operations. The pre-
dominant programming model for dynamic mesh updates relies
on defining local operations, e.g., half-edge data-structure-based
systems such as PMP [Botsch et al. 2010] and CGAL [Kettner 2019].
These systems offer the user a set of basic dynamic operators (e.g.,
edge flip, vertex split) that the user could compose to implement a
dynamic application. However, the user here is limited to the set of
operators offered by these systems. We surveyed all major dynamic
mesh processing libraries (PMP [Botsch et al. 2010], CGAL [Kettner
2019], OpenMesh [Botsch et al. 2002], WMTK [Jiang et al. 2022],
libigl [Jacobson et al. 2018]) and found no consistency in the set
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Vertex Edge

Edge & its incident vertices Face & its incident edges

Fig. 4. Examples of cavity templates provided by our system. The seed for
each cavity is highlighted in yellow and the deleted neighborhood is shown
in brown.

of operators that they offer—each library is missing at least one
core operator offered by another. This inconsistency argues against
implementing a similar programming model on the GPU because
of the lack of portability to other existing (CPU-based) systems.

While the two green edges
could be flipped concur-
rently, Jiang et al. [2022]
locks the one-ring of the
edge’s vertices leading to
serializing these two inde-
pendent edge flips.

Another problem with building a
system that relies on a fixed set of
dynamic operators is conflict han-
dling. These operators do not provide
an out-of-the-box conflict handling
mechanism because they did not tar-
get parallel processing in their design.
The straightforward solution to en-
abling parallelism is to lock a local
neighborhood during processing. For
example, WMTK [Jiang et al. 2022]
locks the entire two-ring neighbor-
hood of an edge for any edge-based operation, e.g., edge flip (see
the inset). This approach might be justified for a limited-parallelism
environment like a multithreaded CPU. However, on the GPU, with
its many thousands of parallel threads, the extensive locking of
neighborhoods for each update operation significantly restricts the
potential for parallelism, leading to severe underutilization of the
GPU and hence lowered performance.

To mitigate the contention problems from overlocking, we could
consider a system where the user implements different local oper-
ators where the locking region is user-defined. For example, not
all dynamic mesh libraries offer 1→3 triangle split operations, but
a user (who knows the details of the underlying data structure)
could implement it. The main issue with such a design is the locking
region must be defined based on the internal data structure. For
example, in the 1→3 triangle split operator, users might assume that
they do not need to lock the vertices of the split triangle. However,
if the data structure stores topological information per vertex, not
locking those vertices may lead to race conditions and result in an
invalid mesh. Thus, such a system requires exposing its internal
data structure implementation details to the user, violating our de-
sign goal of separating the concerns of mesh operations from the
underlying implementation.

Our programming model. Given these difficulties, we choose a dif-
ferent abstraction for our programming model. To support dynamic
operations, we choose the cavity operator [Loseille and Menier 2014]
as our fundamental abstraction. A cavity is a set of vertices, edges,
and faces that forms a single connected component such that remov-
ing this set creates a single hole in the mesh. The cavity operator
is a universal operator that encompasses all local dynamic mesh
operators (Figure 2). The cavity operator defines any mesh update
operation as element reinsertion by removing a set of mesh elements
and inserting others in the created void. The cavity operator splits
a local mesh update into two operations: cavity creation and cavity
fill-in. First, cavity creation removes a mesh element and its inciden-
t/adjacent elements effectively creating a hole/cavity in the mesh.
Then, cavity fill-in covers the cavity by optionally adding mesh
elements inside the hole. Figure 3 shows an example of edge col-
lapse operations cast as a cavity-based operation. While the cavity
operator was originally proposed for metric-based anisotropic mesh
adaption on serial and multithreaded CPUs, we generalize it and
use it as the basis of our programming model. More importantly,
we use the cavity operator as an intuitive interface for conflict de-
tection. Cavities create a simple mental model that a user can use
to reason about conflicts: overlapping cavities lead to conflicting
operations. We further use cavities to resolve conflicts (Section 5).
The cavity-based operator provides the right ingredients for an
extensible framework, lowering the cost of maintaining the sys-
tem without limiting the user to a predefined set of operators. It is
possible to easily cast all major local operators (e.g., edge collapse,
vertex split, edge split, edge flip, face collapse, face split, and delete
vertex/edge/face) as cavity-based operations. Cavity fill-in allows
the user to expand beyond the traditional dynamic operator, e.g.,
instead of adding a single vertex during Figure 3’s cavity fill-in, the
user may instead add three vertices to create a more refined mesh.

Separating the update operation into two steps allows the system
to present an intuitive model of conflicting operations to the user.
The user first declares a set of cavities. Then the underlying system
detects conflicting cavities and only proceeds with a subset of the
cavities that are conflict-free. The user, then, fills in this subset of
cavities. Our system maximizes the set of conflict-free cavities, e.g.,
the two edge flips in the inset above can be done concurrently since
their cavities do not overlap. Thus, separating update operations into
two steps allows us to have a simple interface for conflict handling
without exposing any internal data structures or requiring the user
to reason about locking.
To create a cavity, the user needs to add one or more mesh ele-

ments to the cavity. For example, for a vertex split operation, the
cavity will be the vertex and all its incident edges and faces. A single
cavity could be declared by a single or multiple threads; however,
commonly it is easier to declare a single cavity using a single thread.
To facilitate cavity declaration, our system optionally offers a set of
predefined templates that resemble the common mesh update oper-
ations. Each template consists of a seed and a neighborhood around
it that will be deleted. The seed could be any type of mesh element,
i.e., vertex, edge, or face. The neighborhood to be deleted is defined
in terms of incidence/adjacency relation on the seed. For example,
a template used for edge flip has the edge as a seed and the faces
incident to the edge as the neighborhood. With these templates, the

2024-01-28 11:05. Page 5 of 1–13.



571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

6 • Mahmoud, Porumbescu, and Owens

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

user can create a cavity by only specifying the seed and our system
handles assigning the local neighborhood to the cavity. Figure 4
shows a subset of templates that our system offers. Note that using
these templates is entirely optional.
After the underlying system resolves conflicts, it returns a set

of conflict-free cavities to the user. This set can be processed in
parallel. For each cavity in the set, our system offers an iterator to
retrieve the edges and vertices of the cavity’s boundary. Using this
iterator, the user can iterate over the cavity boundary edges/vertices
and connect them with new vertices, edges, or faces that the user
adds into the interior of the cavity. Additionally, the user can access
the old connectivity of the created cavity. This aids the user in
creating fill-in that may require old information from the cavity
(e.g., calculating the mid-point of a collapsed edge). Our system also
handles attribute allocation and facilitates accessing attributes of
deleted cavities during fill-in.

4 DESIGN PRINCIPLES
The core of our system is the combination of data structure and
scheduler that together allow us to implement the programming
model (Section 3) while achieving our design goals (Section 1). Here
we discuss the design principles we followed in designing the data
structure (Section 4.1) and the scheduler (Section 4.2). Finally, we
discuss how the whole system works (Section 4.3).

4.1 Data Structure
Maximize Locality. In a design where all mesh data is stored

in global GPU memory, mesh-based operations are mostly out-of-
cache. Topological query operations involve multiple levels of mem-
ory indirection, frustrating attempts at exploiting locality. Geometric
information (i.e., mesh attributes) is hard to coalesce when neighbor
attributes are accessed, leading to irregular memory accesses. To
mitigate this problem, state-of-the-art unstructured GPU mesh data
structures [Mahmoud et al. 2021; Yu et al. 2022] rely on partitioning
the mesh into small patches that fit into the GPU’s small but fast
shared memory, which additionally does not require coalesced ac-
cess to achieve high bandwidth. In this work, we follow a similar
approach, which helps localize both query (static) and update (dy-
namic) mesh operations. For static operations, our system is similar
to RXMesh, except for how we access ribbon information and how
we localize accessing geometric attributes (see Section 5.1 for more
details). With this design, once a CUDA block is assigned to a patch,
the block operates on the patch and performs all update operations
by reading from/writing to shared memory. Once complete, the
block commits the updated patch to global memory. This way, read-
ing and writing the patch requires only one coalesced patch-sized
read and write to global memory. The majority of update opera-
tions that require irregular memory access happen in low-latency,
high-bandwidth shared memory.

Optimistic Parallelism. Processing patches from shared memory
creates two copies of the patch: a working copy in shared memory
and the original in global memory. This opens the door for optimistic
parallelism [Kulkarni et al. 2007], as we will discuss in Section 4.2.
From a data-structure perspective, optimistic parallelism requires
that the data structure has a cheap way to roll back its updates

when the scheduler detects a conflict. Since all updates happen in
shared memory, rollback is simple and no-cost: discard the changes
in shared memory. This strategy is enabled by CUDA’s explicit
programmer-controlled shared memory. Such a design principle
is unique to our data structure and system that, to the best of our
knowledge, has not been exploited in other optimistic parallelism
systems (e.g., Galois [Kulkarni et al. 2007]).

Trading global memory writes for reads. In our design, conflicting
updates within the patch can be easily detected and resolved. At any
instant in time, a mesh element may be part of no more than one
cavity. If more than one cavity aims to incorporate one particular
element, this causes a conflict and one cavity must be deactivated.
The restriction that each mesh element must belong to a single
cavity is enforced by our system. This constraint can be managed
either by the system itself or by the user (see Section 5.2).
Cavities that cross a patch boundary pose a challenge since de-

tecting and resolving their potential conflicts requires coordination
across patches and thus global memory accesses. To maximize per-
formance, these memory accesses should be kept to a minimum, and
to be as coalesced as possible. Consider a patch 𝑝 with a cavity that
has an imprint on a neighbor patch 𝑞. We considered an approach
that resolves possible conflicts by locking 𝑞 while processing 𝑝 and
then re-applying the cavity fill-in on both 𝑝 and 𝑞 (Figure 5, middle).
This approach had the disadvantage of locking 𝑞 for an extended
period, which limits parallelism. More importantly, applying fill-in
led to more writes to global memory. We instead chose to expand
𝑝 such that the entire cavity falls inside 𝑝 and has no imprint on 𝑞.
Compared to our initial approach, our choice reduces write opera-
tions and increases reads. Expanding a patch simply deletes a few
mesh elements from 𝑞, which amounts to flipping bits in a bitmask
(see Section 5), and can be easily coalesced. In contrast, our initial
approach required writing topological information (i.e., face and
edge connectivity).
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Strong scaling of WMTK [Jiang et al.
2022] onDelaunay Edge Flip application

Amortized Locking: The
above strategy for inter-
block cavities localizes all
changes for any cavity
within the patch that con-
tains that cavity. Patches
are large enough, and cav-
ities are small enough,
that one patch may con-
tain multiple cavities that
require cavity operations
within a single patch. In
this case, we can aggregate all requests to modify a neighbor patch,
lock the neighbor patch, and then satisfy all these requests at once,
thus amortizing the cost of locking the neighbor patch. This de-
sign prioritizes throughput over latency, which is a good match for
the throughput-oriented GPU hardware. In contrast, locking small
neighborhoods around each operator/cavity scales poorly even for
hardware with more limited parallelism like a multithreaded CPU.
The inset shows the result of running the Delaunay Edge Flip appli-
cation (Section 6.1) on a model with 2M faces on a 64-Core AMD
EPYC 7742 while varying the number of threads (i.e., strong scaling).
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Fig. 5. Illustrating inter-patch conflicts between two patches (top 𝑞, bottom
𝑝), where ribbon elements are shown in a lighter color. Note the bottom
row of the top patch (the ribbon) represents the same mesh elements as
the top row of the bottom patch. Potential conflicts occur when a cavity
(bottom blue) has an imprint on a neighbor patch (top). One way to resolve
the conflict is to lock 𝑞 and update both patches (middle). We choose to
instead remove the imprint from 𝑞 (right) by deactivating some of its mesh
elements, leading to reduced memory accesses because we don’t need to
write cavity fill-in in 𝑞. Our solution also maximizes parallelism, as we
lock 𝑞 for a shorter time, allowing other blocks to process 𝑞 afterward and
concurrently while we perform cavity fill-in on 𝑝 .

As the number of threads increases, locking and unlocking becomes
the dominant cost, overshadowing any benefits of increased paral-
lelism. A GPU requires considerably more parallelism than hundreds
of threads; reducing the cost of locking is critical to achieve good
performance.

4.2 Scheduler
In the below discussion we use CUDA terminology, but we believe
our scheduler design will be applicable to other programming lan-
guages that offer a similar level of flexibility as CUDA, i.e., access to
the GPU’s shared memory. The main responsibility of a scheduler
in our system is to manage how and when patches are assigned to
compute resources. Static GPU mesh processing systems rely on
the GPU hardware scheduler, i.e., they assign each patch to one
thread block and then the hardware scheduler assigns thread blocks
to the GPU’s streaming multiprocessors (SMs). Once an SM finishes
processing one thread block (patch), the hardware scheduler assigns
another thread block (patch) to it, continuing until all patches have
been processed.

As we noted above, our system processes cavities that may cross
patch boundaries. In this case, we expand one patch to remove the
dependence on the other patch, but this requires coordinating across
both patches. This strategy is potentially problematic if both patches
are simultaneously scheduled and are executing on different GPU
SMs (the resulting conflicts may result in incorrect output). Because
the hardware scheduler has no knowledge of patch dependencies,
we have no easy way to avoid this situation. Thus we turn to im-
plementing our own scheduler and next we discuss four potential
design choices.

(1) Serialization. One potential scheduler-based solution to con-
flicts is to serialize conflicting updates. Such a solution might be

fine for limited-parallelism environments such as a desktop multi-
threaded CPU, where a relatively few number of patches can be exe-
cuted concurrently. However, a modern GPU features more than 100
independently running SMs. Thus, serializing conflicting patches
will lead to idle SMs and a loss of performance.

(2) Two-Phase Approach. All cavities that are wholly within the
interior of a single patch can be processed concurrently. Thus we
can consider a scheduler that alternates between processing interior
cavities and boundary elements. In such a two-phase approach, the
first blocks process elements in the deep interior of the patch (i.e.,
those not incident to the ribbon elements). Then, in the second
phase, ribbon-element processing is done serially after a global
synchronization. This approach works well for large coarse-grained
partitions/patches that are suitable for CPUmulticores [Loseille et al.
2017] where the interface between partitions is relatively small. In
our system, however, the patch size is small enough to fit in shared
memory, thus the interface between patches is correspondingly
larger, and this approach serializes a large fraction of the work. Thus,
this approach has the same disadvantage as serializing conflicting
updates.

(3) Graph coloring. Since conflicts are only between neighbor
patches, we could potentially use graph coloring to generate an
independent set of patches that can be processed concurrently. We
could define a graph where each patch is a node and neighboring
patches share an edge. After coloring this graph, we could process
all patches of one color in parallel without any conflicts, and se-
quentially process colors. However, such an approach becomes too
expensive in dynamic workloads where we update the connectivity
of the patches, which would require a new coloring on each update.

(4) Speculative Processing. Our final alternative, and the one we
chose, is speculative processing. This strategy allows processes/threads
to execute independentlywithout synchronizationwith other threads.
If a conflict is detected, the process/thread rolls back to a conflict-
free state and then continues execution. Speculative processing was
characterized as “the only plausible approach to parallelizing many,
if not most, irregular applications” [Kulkarni et al. 2007]. Since we
process patches in shared memory, we require no synchronization
for processing, i.e., two possibly conflicting operations in two differ-
ent patches could both proceed since they both operate in separate
shared memories. Instead, synchronization is only necessary before
committing updates to global memory (and then only for updates
that impact both a patch and its neighbor). Of all alternatives above,
this design has the least overhead for synchronization, and thus has
the potential to exploit the most parallelism.
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Speculative processing,
however, has three costs.
The first is detecting con-
flicts, which happens if a
cavity crosses the patch
boundary and thus the
neighbor patch should
not be processed concur-
rently. However, this cost
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is inevitable and would be paid for other alternative designs as well.
The second is the cost of rolling back. In our design, this cost is low,
as it only requires discarding changes in sharedmemory (Section 4.1)
for conflicting updates without any impact on the global state of the
data structure. The third cost is the work that must be discarded. The
ample computational resources of a modern GPU, in general, moti-
vate reducing synchronization costs (that limit parallelism) even at
the cost of more work. While we do not have a theoretical bound on
the latter cost, we show empirically in our system that discarding
work is infrequent, and decreases proportionally with larger meshes.
The inset shows the ratio of discarded patches vs. the number of
scheduled patches for different input meshes. Here, we assume the
worst-case scenario where every patch has a dependency on all its
neighbor patches. With the smallest meshes, the cost is high (∼50%)
due to limited parallelism since the number of SMs in this case is
higher than the number of patches. As the mesh size increases, the
fraction of wasted work becomes negligible (less than 2%).

4.3 Putting it All Together
Finally, we discuss the high-level architecture of our system and
how we put the above design principles into practice. We defer
implementation details to the next section. The main controller in
our system is the scheduler, which runs in a loop. On each iteration
in the loop, the scheduler launches as many blocks as possible to
maximize GPU occupancy, while avoiding processing two neighbor
patches at the same time. This strategy minimizes the cost of specu-
lation. The loop terminates when all patches in the mesh have been
processed.
Within each iteration, the scheduler assigns blocks to patches.

Once a block is assigned to a patch, threads within the block call a
user-defined (or system-defined for the predefined cavity templates)
function to create cavities within the patch. Such a function may
involve both query operations and accessing the mesh attributes.
Next, our system resolves intra-patch conflicts before attempting to
resolve inter-patch conflicts. By imposing the constraint that a mesh
element belongs to a single cavity, our system resolves intra-patch
conflicts and proceeds with a subset of conflict-free cavities within
the patch. The user can attempt running the cavities that do not
proceed later. Then, our system resolves the inter-patch conflicts
by checking if there are cavities that have an imprint on neighbor
patches. If at least one cavity has an imprint, the whole block coop-
erates to expand the patch. Using the whole block to compute here
allows coalesced accesses and reduces thread divergence. Expanding
a patch requires locking the neighbor patches before reading from
them. If locking fails, then the patch is discarded. Our system will
reschedule the discarded patches in subsequent iterations. Other-
wise, if the patch successfully locks its neighbor patches, we proceed
with expanding the patch and write this information in shared mem-
ory. After a successful expansion, we unlock the neighbor patches,
allowing them to be processed by other blocks. Finally, the block
calls the user-specified cavity fill-in before finally committing the
patch to global memory.

(a) RXMesh’s approach: accessing attributes allocated as a single array

(b) Our approach: accessing attributes allocated per patch

Fig. 6. Allocating attributes as a single array requires mapping local indices
to their global ones (top). Localized attribute allocation eliminates the need
to map indices and leads to better caching and overall higher performance
(bottom).

5 IMPLEMENTATION DETAILS

5.1 Patch Data Structure
Mesh Topology. As mentioned in Section 4.1, we partition the

mesh into small patches that fit in shared memory. Here, we dis-
cuss how we represent patch information and how we perform
operations on it. Similar to RXMesh, we store for each patch the
connectivity from face to edges (FE) and from edges to vertices
(EV). Since the patch is small, we use 16-bit indices to index and
enumerate all mesh elements, which saves memory allocation and,
more importantly, reduces the amount of needed shared memory
per patch. For static query operations, our implementation is similar
to RXMesh (see Mahmoud et al. [2021] for more details). In addition,
we store a bitmask that indicates if a mesh element is active or not.
Thus, deleting elements amounts to changing their bit in the active
bitmask. Adding new elements requires knowing their top-down
connectivity, i.e., incident edges for faces, and incident vertices for
edges. Adding new vertices requires only incrementing the num-
ber of vertices since we do not store any per-vertex connectivity
information.

Mesh Geometry. RXMesh stores mesh attributes as a single array
in global memory. To access this array, RXMesh requires mapping
per-patch local indices to global ones to index the attribute array.
In dynamic settings, resizing a patch would necessitate updating
this global index space, leading to costly synchronization across all
patches. Instead, we make a different choice, inspired by MeshTaichi.
We localize mesh attributes by allocating them on a per-patch basis.
With per-patch allocation, we eliminate the need for the local-to-
global mapping (Figure 6). We essentially rely on the GPU’s L1/L2
to cache accesses to the mesh attributes. Topology queries and
updates are instead cached in shared memory since mesh queries
and updates require extra temporary buffers that can be allocated
in shared memory.
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Ribbons. Ribbon elements require special treatment for dynamic
changes since they duplicate mesh elements that reside in neigh-
boring patches. For example, during a query, we do not return the
ribbon elements themselves but instead the owner patch of the
ribbon elements so that the user can subsequently access their at-
tributes. To store the ribbon elements, we first classify the mesh
element as either owned by the patch or a ribbon element (not owned
by the patch). For any mesh element, we need to (1) check if it is
classified as a ribbon element and (2) store the corresponding owner
patch and its local index within the owner patch. During dynamic
updates, an owned mesh element may become a ribbon and vice
versa. So, the storage for ribbon elements changes over time.

Ideally, we would like to allocate just enough memory for the
ribbon elements to store their information without extra storage.
Since RXMesh is a static data structure, it divides mesh elements
into owned and ribbon elements, and that status never changes
during computation. Consequently, ribbon elements can be assigned
consecutive indices and their storage can be contiguous and compact.
But in a dynamic scenario, an internal element may become a ribbon
element after topology changes.

Local Index 
Stash 
Index 

Index in Owner
 Patch

13-bits 6-bits 13-bits

The key-value of our hash table.

Given the above require-
ments on storing ribbon el-
ements, we store them in a
simple GPU-based dynamic
cuckoo hash table [Awad
et al. 2023]. Hash tables are
an excellent choice to meet our requirements because (1) they allow
compact data storage (i.e., their load factor can be as high as 0.9)
and (2) they have constant-time insertion and deletion. First, every
patch stores all its neighbor patches in a small array called a patch
stash. Since a patch is surrounded by very few patches, the size
of the patch stash is restricted to 64 (26) patches, and so we only
need 6 bits to store this index. While we do not have a theoretical
guarantee about the upper bound of neighbor patch count, we have
not found any realistic scenario (based on our experiments) where
a patch is surrounded by more than 64 patches. We then use the
mesh element index (represented using 13 bits) within the patch as
a key in the hash table. The value stored per key is another 19-bit
concatenation of the index in the patch stash (6-bit) and the local
index in the owner patch (13-bit) (see the inset). The hash table
allows us to add/remove mesh elements to/from the ribbon in con-
stant time without excessive memory allocation, which is critical
for performance given the limited shared memory resources and its
impact on GPU occupancy. Finally, we also use a bitmask to check
if an element is a ribbon or owned to save access into the hashtable
when the mesh element is owned, i.e., optimizing for the common
case.

5.2 Cavity Operations
As mentioned, our system first automatically assigns CUDA blocks
to patches and then performs the cavity operations. From the user’s
perspective, cavity operations can be divided into three stages:
(1) register a new cavity, (2) process the cavity, and (3) fill in the
cavity. Internally, the first stage collects all the cavities that the user
created on the given patch. The second stage ensures that there

is a (sub)set of conflict-free cavities available for the next stage.
The third stage finalizes the operation by (optionally) filling in the
cavities before writing everything to global memory. Conflicting
cavities will be attempted in subsequent iterations (Section 4.3).

Cavity Registration. Our system provides predefined templates
that cover a wide range of cavity configurations (Figure 4). A tem-
plate consists of a seed element and a local neighborhood that will
be deleted. It is possible to add a user-defined template by specifying
these two requirements. Note that deleting a mesh element leads
to deleting all upward elements incident to it, e.g., deleting an edge
leads to deleting its incident faces. To register a new cavity, the
user calls a cavity template on a specific mesh element. Our system
atomically increments the number of cavities associated with the
patch and stores the seed’s cavity ID in the shared memory.

Cavity Processing. We first detect intra-patch conflicting cavities
before attempting to resolve inter-patch conflicts. We detect con-
flicting cavities within the patch by propagating the cavity ID from
the seed to its adjacent/incident elements as described by the cavity
template. Propagating information from an 𝑛-dimensional element
to an𝑚-dimensional element is a gather operation if 𝑛 < 𝑚, and an
atomic operation if 𝑛 > 𝑚. For example, a face checks the cavity ID
of its three edges if the edge is the seed (i.e., propagating informa-
tion from edges to face) while a seed edge atomically sets the cavity
ID of its two vertices (i.e., propagating information from edges to
vertices). In both cases, we can detect if two cavities write to the
same element. Then, we construct a graph where cavities represent
the vertices of this graph and two vertices are connected with an
edge if their corresponding cavities overlap. Now, in order to maxi-
mize the number of non-conflicting cavities that we can process in
parallel, we compute Blelloch et al’s greedy maximal independent
set algorithm [Blelloch et al. 2012] on this graph in parallel. Then,
we use an atomically updated bitmask in shared memory to indicate
if the cavity is deactivated. This helps inform the user which cavity
is successful. This approach guarantees that we process as many
cavities concurrently as possible.
As we mentioned in Section 4.1, cavities that cross the patch

boundaries must ensure that their changes are not visible to other
patches. We do this by expanding one patch so that such cavities
are fully contained in the patch. To do this, we first attempt to lock
the neighbor patches that may be impacted by these cavities. If
we cannot acquire the lock on these neighbor patches, we discard
this patch and schedule it to be processed later. If we successfully
acquire the lock, then we can read from the neighbor patch and
change the ownership of some of its elements. The whole block is
engaged in this process: all threads within the block collaborate to
expand the patch, which maximizes the memory throughput and
reduces thread divergence.
A patch may have too many cavities along its boundaries and

expanding the patch may require more memory than what we can
store in shared memory. In such cases, we slice the patch into two
patches. We schedule all patches that need to be sliced at the end of
every update iteration.

Cavity Fill-in. For each active cavity, our system provides an iter-
ator over the cavity boundary edges and vertices. Using this iterator,
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the user can add new mesh elements by connecting them to the
cavity boundary edges or vertices. Internally, we create these new
elements by appending to FE and EV connectivity information.
Thus, during cavity fill-in, the user can query the cavity’s old/deleted
topology as well as access their deleted-element attributes. After
committing the patch to global memory, the deleted topology can
be re-written in subsequent update operations.

5.3 Queue-based Scheduler
Our system design requires a scheduler that can dynamically assign
blocks to patches such that each patch is assigned at least once. If a
patch fails to be processed (e.g., is not able to acquire the lock of a
neighbor patch), the scheduler must schedule that block at a later
time. The scheduler should also issue locking requests and maintain
information about if a patch is locked.

We use a simple parallel array-based queue [Gottlieb et al. 1983]
to coordinate assigning patches to blocks. Every block declares a
leader thread that tries to dequeue a patch from the queue. If the
leader thread is successful in reading a patch, it communicates the
assigned patch to the other threads via shared memory. Queue-
based processing allows failed patches to be enqueued for future
processing. Additionally, it improves load balance since blocks that
complete their work can dequeue another patch to process. This
simple design also maximizes GPU utilization since both control
(the scheduler) and processing (patch computation) is local to the
GPU.

Locking Algorithm. Locking patches in our system to allow mu-
tual exclusion to read/update neighbor patches must satisfy two
challenging requirements. First, we need to make sure that attempt-
ing to lock a patch does not lead to a deadlock. For example, using
spin locks [Herlihy et al. 2021], patch 𝑝0 may spin waiting to lock
𝑝1 while 𝑝1 is also spinning waiting to lock 𝑝0. Second, we must
guarantee forward progress in the case of contention, i.e., in a sce-
nario where multiple blocks try to lock the same patch at the same
time, at least one block must be able to lock the patch and make
progress. In our implementation we allow the locking algorithm to
trade off fairness in favor of quick response time since it might be
beneficial to rollback updates (which is cheap) rather than waiting
to acquire the lock of a neighbor patch, which would leave the SM
idle for an extended period. Finally, we can and do optimize for a
scenario with only modest contention since any patch is a neighbor
of at most 64 other patches.
While many mature libraries implement locking mechanisms

for multithreaded CPU applications (e.g., Intel Threading Building
Blocks [Pheatt 2008] or Boost [organization 2023]), there are no
similar standards on the GPU and CUDA does not offer out-of-the-
box locking mechanisms that can be used inside the kernel. Thus,
we implemented a simple spinlock locking algorithm with a backoff
strategy [Herlihy et al. 2021] that achieves our design goals. To
reduce contention on the atomic operations used in the spin lock,
threads within a block elect a single thread to attempt locking the
desired patch. Upon return, the result is broadcast to all threads in
the block.

# F = 7.7M # F = 16.2M # F = 6.1M

Fig. 7. Examples of geodesic distance computation of large models

Table 1. Time and speedup of our system against RXMesh running geodesic
distance computation [Romero Calla et al. 2019].

# F (×106) RXMesh (s) Our (s) Speedup

5.2 1.1 0.85 1.32
6.1 1.0 0.86 1.17
7.7 2.4 1.4 1.65
16.2 5.5 2.9 1.90
19.9 6.4 3.6 1.75

6 APPLICATIONS
Here, we demonstrate the effectiveness of our design decisions
on a set of common geometry processing applications. We first
ensure that the changes in our data structure improve the static
applications performance by comparing against RXMesh [Mahmoud
et al. 2021]. For other dynamic applications, we compare against
WMTK [Jiang et al. 2022] as it is the onlymodern system for dynamic
triangle mesh processing that leverages the parallelism of multi-core
CPU systems. In all experiments, input meshes are collected from
the Smithsonian [2023] and ThreeDScans [Laric 2023] repositories
since they feature meshes with millions of faces. We conduct all
experiments on an A100 GPU with 40 GB of memory using CUDA
12.2 from an NVIDIA DGX machine featuring an AMD EPYC 7742
64-core 2.25 GHz Processor with 1 TB main memory.

Comparison against static-only system. We begin with a static
geodesic distance computation (Figure 7) to compare our system
performance against RXMesh. Geodesic distance refers to the short-
est path between a source vertex and all other vertices, traversing
across the surface of a given mesh. For this computation, we employ
a minimalistic parallel algorithm [Romero Calla et al. 2019], which
approximates geodesic distances. This algorithm operates by sequen-
tially computing geodesic distance, starting from vertices nearest
to the source and progressively reaching those farther away. The
algorithms first compute the topological level sets surrounding the
source vertex, essentially calculating the number of hops required
to reach each vertex. Subsequently, on the GPU, we process these
vertices in batches, based on their topological distance, to calculate
their geodesic distances and associated errors, all performed in par-
allel. This process involves activating a new group of vertices at each
level and deactivating those that have completed their calculations,
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Table 2. Time and speedup of our system on the Delaunay edge flip appli-
cation against Wild Mesh Toolkit (WMTK) [Jiang et al. 2022] using 32 CPU
threads.

# F (×106) WMTK (s) Our (s) Speedup

0.015 0.24 0.99 0.24
0.064 0.76 1.31 0.57
0.58 5.13 1.43 3.6
0.6 4.64 1.51 3.1
1.46 13.71 1.19 11.4
6.1 81.79 4.97 16.4
8.5 175.57 9.98 17.6
19.8 200.142 10.72 18.6

allowing for data propagation through the mesh. Our system outper-
forms RXMesh in this static application with an average geometric
mean speedup of 1.53x (Table 1). The major difference in the query
pipelines between our system and RXMesh is how ribbon element
information is accessed. While RXMesh maps all elements to global
indices, we use a hash table (within the shared memory) to map
ribbon elements to their corresponding elements in the owner patch.
Compared to RXMesh, we require more computation but obtain
better locality, and this tradeoff results in an overall performance
speedup. In addition, our system localizes geometric information
better since allocating geometric data is done per patch. Thus, in
our system, accessing geometric data will result in better memory
coalescing. In addition, our data structure for static applications
requires half the memory vs. RXMesh (Appendix A) using the same
patch size. In contrast, when our system addresses dynamic appli-
cations, we must allocate (ahead of time) more memory to permit
us to add more elements to patches and more patches to the mesh
to prevent allocating memory while processing. Thus, for dynamic
applications, our data structure may require more memory than the
(static) RXMesh.

Next, we assess the efficacy of our system through two distinct dy-
namic applications, each targeting a specific aspect of our system’s
capabilities. The first application, Delaunay edge flip, maintains a
consistent mesh size but requires potential expansion of patches for
conflict handling. This application serves as a benchmark to evalu-
ate our system’s ability to maximize parallelism and to determine
the impact of altering patch sizes on the overall performance. The
second application, isotropic remeshing, challenges our system with
fluctuating workloads, which include both increasing and decreas-
ing mesh sizes, alongside other dynamic operations that maintain
mesh consistency and static operations. Collectively, these applica-
tions offer a comprehensive insight into our system’s performance
across a range of scenarios commonly encountered in dynamic mesh
processing applications.

6.1 Delaunay Edge Flip

Input & output of Delaunay edge flip

A Delaunay mesh is one
where the sum of two op-
posite angles of an edge
is less than 180◦. Flip-
ping the edges of an in-
put mesh to meet the
Delaunay criterion is an
easy way to improve the
mesh quality, i.e., improv-
ing the minimum and maximum angles (see the inset). To achieve
the Delaunay criterion, we iteratively attempt to flip an edge if it is
not a Delaunay edge until all non-Delaunay edges have been flipped.
This algorithm is guaranteed to terminate for surfacemeshes [Cheng
and Dey 2008]. Here, to create cavities, the user simply checks the
two opposite angles of an edge. If their sum is greater than 180◦,
then the edge and its two incident faces form a cavity. To fill in a
cavity, the user connects the two opposite vertices and creates two
new faces. Table 2 compares our system implementation against
WMTK’s best configuration (32 threads, see Section 4.1). Our system
performance is lower for smaller meshes due to limited parallelism
in these models, which may be better processed serially. On the
larger meshes that we target (here, those that exceed 0.5M faces),
our system achieves an order of magnitude speedup thanks to max-
imizing parallelism. Our performance advantage is due to increased
parallelism (we can flip more edges concurrently) and due to the
better memory locality in our data structure.

6.2 Isotropic Remeshing
Isotropic remeshing [Botsch and Kobbelt 2004] improves the quality
of an input mesh by making the output triangles as equilateral as
possible (Figure 1). The algorithm consists of four phases; each does
a full pass over the mesh before starting the next phase. The four
phases are (1) split long edges, (2) collapse short edges, (3) equalize
vertex valence via edge flip, and (4) vertex smoothing. The first
two phases are guided by user input, specifically target edge length,
which here we set to the average edge length of the input mesh.
Unlike the Delaunay edge flip application, remeshing can either
increase or decrease the mesh size while alternating between differ-
ent phases. Thus, implementing such an application in our system
shows our system’s flexibility in handling such a workload. In our
tests, we run three iterations of the remeshing algorithm and the
results of both our implementation and WMTK match in terms of
the output mesh size and quality. Table 3 compares our implementa-
tion against WMTK implementation; our system achieves a 1.5–6x
speedup on meshes of at least 0.5M elements.

7 CONCLUSION AND FUTURE WORK
In this paper, we present the first system for dynamic mesh process-
ing entirely on the GPU, broadening the number of applications
that can now run a dynamic workload on the GPU (e.g., graph data
structures [Awad et al. 2020] and hash tables [Ashkiani et al. 2018]).
While our system focuses on dynamic mesh processing, it also im-
proves the performance of the static case. In our implementation
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Table 3. Comparing the performance of our system against WMTK using
three iterations of isotropic remeshing [Botsch and Kobbelt 2004] .

Input # F (×106) Output # F (×106) WMTK (s) Ours (s) Speedup

0.064 0.046 4.19 16.34 0.25
0.6 0.45 41.3 24.9 1.65
0.91 0.79 73.6 13.9 5.29
1.4 1.2 105.12 35.6 2.94
3.5 2.7 309.5 51.3 6.03
6.1 4.5 483.3 111.7 4.32

and application, we constrained ourselves to follow the descrip-
tion of the algorithms, which is often a serial description. For a
few applications, this constraint does not impose any restriction
on exploiting parallelism, e.g., Delaunay edge flips. However, since
many algorithms depend on priority-based processing (e.g., mesh
simplification [Garland and Heckbert 1997], spherical parameteri-
zation [Hu et al. 2018], or Delaunay refinement [Shewchuk 2002]),
this limits the amount of parallelism the applications expose, which
subsequently limits the amount of parallelism that our system can
exploit. Our system facilitates exploring relaxing the priority in
geometry processing applications in favor of speedup on massively
parallel hardware like the GPU. We plan to explore this trade-off in
future work. Such a tradeoff was previously explored for multicore
systems, e.g., Delaunay refinement [Pingali et al. 2011], where it was
shown that in practice Delaunay refinement does not have to follow
the priority as described in the serial implementation. We plan to
expand this study into more geometric data processing applications
specifically on the GPU.

REFERENCES
Ahmed Abdelkader, Ahmed H. Mahmoud, Ahmad A. Rushdi, Scott A. Mitchell, John D.

Owens, and Mohamed S. Ebeida. 2017. A Constrained Resampling Strategy for
Mesh Improvement. Computer Graphics Forum 36, 5 (July 2017), 189–201. https:
//doi.org/10.1111/cgf.13256 Proceedings of the Symposium on Geometry Processing.

Advanced Micro Devices, Inc. (AMD). 2023. AMD EPYC™ 9004 Series Server Proces-
sors. https://www.amd.com/content/dam/amd/en/documents/products/epyc/epyc-
9004-series-processors-data-sheet.pdf.

Oscar Antepara, Néstor Balcázar, and Assensi Oliva. 2021. Tetrahedral adaptive mesh
refinement for two-phase flows using conservative level-set method. International
Journal for Numerical Methods in Fluids 93, 2 (Feb. 2021), 481–503. https://doi.org/
10.1002/fld.4893

Saman Ashkiani, Martin Farach-Colton, and John D. Owens. 2018. A Dynamic Hash Ta-
ble for the GPU. In Proceedings of the 32nd IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2018). 419–429. https://doi.org/10.1109/IPDPS.2018.
00052

Muhammad A. Awad, Saman Ashkiani, Serban D. Porumbescu, Martín Farach-Colton,
and John D. Owens. 2023. Analyzing and Implementing GPU Hash Tables. In
SIAM Symposium on Algorithmic Principles of Computer Systems (APOCS23). 33–50.
https://doi.org/10.1137/1.9781611977578.ch3

Muhammad A. Awad, Saman Ashkiani, Serban D. Porumbescu, and John D. Owens.
2020. Dynamic Graphs on the GPU. In Proceedings of the 34th IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2020). 739–748. https://doi.
org/10.1109/IPDPS47924.2020.00081

Bruce G. Baumgart. 1972. Winged Edge Polyhedron Representation. Technical Report
STAN-CS-72-320. Stanford University Computer Science Department, Stanford, CA,
USA. https://apps.dtic.mil/dtic/tr/fulltext/u2/755141.pdf

Gilbert Louis Bernstein, Chinmayee Shah, Crystal Lemire, Zachary Devito, Matthew
Fisher, Philip Levis, and Pat Hanrahan. 2016. Ebb: A DSL for Physical Simulation
on CPUs and GPUs. ACM Trans. Graph. 35, 2, Article 21 (May 2016), 12 pages.
https://doi.org/10.1145/2892632

Guy E. Blelloch, Jeremy T. Fineman, and Julian Shun. 2012. Greedy sequential maximal
independent set and matching are parallel on average. In Proceedings of the 24th

Annual ACM Symposium on Parallelism in Algorithms and Architectures (Pittsburgh,
Pennsylvania, USA) (SPAA ’12). Association for Computing Machinery, New York,
NY, USA, 308–317. https://doi.org/10.1145/2312005.2312058

Mario Botsch and Leif Kobbelt. 2004. A remeshing approach tomultiresolutionmodeling.
In Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry
Processing (Nice, France) (SGP ’04). Association for Computing Machinery, New
York, NY, USA, 185–192. https://doi.org/10.1145/1057432.1057457

Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy. 2010. Polygon
Mesh Processing. AK Peters / CRC Press. 250 pages. https://hal.inria.fr/inria-
00538098

M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt. 2002. OpenMesh – a generic and
efficient polygon mesh data structure. In 1st OpenSG Symposium. https://www.
graphics.rwth-aachen.de/media/papers/openmesh1.pdf

Erik Brisson. 1989. Representing Geometric Structures in 𝑑 Dimensions: Topology and
Order. In Proceedings of the Fifth Annual Symposium on Computational Geometry
(Saarbruchen, West Germany) (SCG ’89). Association for Computing Machinery,
New York, NY, USA, 218–227. https://doi.org/10.1145/73833.73858

Tyson Brochu and Robert Bridson. 2009. Robust Topological Operations for Dynamic
Explicit Surfaces. SIAM Journal on Scientific Computing 31, 4 (2009), 2472–2493.
https://doi.org/10.1137/080737617

Zhenghai Chen and Tiow-Seng Tan. 2019. Computing Three-Dimensional Constrained
Delaunay Refinement Using the GPU. In Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques (PACT 2019). 409–420. https:
//doi.org/10.1109/PACT.2019.00039

Siu-Wing Cheng and Tamal K Dey. 2008. Delaunay edge flips in dense surface triangu-
lations. In Proceedings of the 24th European Workshop on Computational Geometry
(EuroCG 2008). https://arxiv.org/abs/0712.1959

Nuttapong Chentanez, Matthias Müller, and Miles Macklin. 2016. GPU accelerated
grid-free surface tracking. Computers & Graphics 57 (June 2016), 1–11. https:
//doi.org/10.1016/j.cag.2016.03.002

Paolo Cignoni et al. 2023. VCGLib: The Visualization and Computer Graphics Library.
https://vcg.isti.cnr.it/vcglib//

Luca Cirrottola and Algiane Froehly. 2019. Parallel unstructured mesh adaptation using
iterative remeshing and repartitioning. Research Report RR-9307. INRIA Bordeaux,
équipe CARDAMOM. https://inria.hal.science/hal-02386837

Michael Dawson-Haggerty et al. 2019. trimesh. https://trimsh.org/
Zachary DeVito, Niels Joubert, Francisco Palacios, Stephen Oakley, Montserrat Medina,

Mike Barrientos, Erich Elsen, FrankHam, AlexAiken, Karthik Duraisamy, Eric Darve,
Juan Alonso, and Pat Hanrahan. 2011. Liszt: A domain specific language for building
portable mesh-based PDE solvers. In Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis (SC’11). 12. https:
//doi.org/10.1145/2063384.2063396

Antonio DiCarlo, Alberto Paoluzzi, and Vadim Shapiro. 2014. Linear algebraic rep-
resentation for topological structures. Computer-Aided Design 46 (2014), 269–274.
https://doi.org/10.1016/j.cad.2013.08.044 2013 SIAM Conference on Geometric and
Physical Modeling.

Michael Garland and Paul S. Heckbert. 1997. Surface simplification using quadric error
metrics. In Proceedings of the 24th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’97). ACM Press/Addison-Wesley Publishing Co.,
USA, 209–216. https://doi.org/10.1145/258734.258849

Allan Gottlieb, Boris D. Lubachevsky, and Larry Rudolph. 1983. Basic Techniques
for the Efficient Coordination of Very Large Numbers of Cooperating Sequential
Processors. ACM Transactions on Programming Languages and Systems 5, 2 (April
1983), 164–189. https://doi.org/10.1145/69624.357206

Leonidas Guibas and Jorge Stolfi. 1985. Primitives for the Manipulation of General
Subdivisions and the Computation of Voronoi. ACM Transactions on Graphics 4, 2
(April 1985), 74–123. https://doi.org/10.1145/282918.282923

Maurice Herlihy, Nir Shavit, and Michael Spear Victor Luchangco. 2021. The Art of
Multiprocessor Programming. Morgan Kaufmann.

X. Hu, X. Fu, and L. Liu. 2018. Advanced Hierarchical Spherical Parameterizations. IEEE
Transactions on Visualization and Computer Graphics 24, 6 (June 2018), 1930–1941.
https://doi.org/10.1109/TVCG.2017.2704119

Daniel A. Ibanez, E. Seegyoung Seol, Cameron W. Smith, and Mark S. Shephard. 2016.
PUMI: Parallel Unstructured Mesh Infrastructure. ACM Trans. Math. Softw. 42, 3,
Article 17 (May 2016), 28 pages. https://doi.org/10.1145/2814935

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/.

Zhongshi Jiang, Jiacheng Dai, Yixin Hu, Yunfan Zhou, Jeremie Dumas, Qingnan
Zhou, Gurkirat Singh Bajwa, Denis Zorin, Daniele Panozzo, and Teseo Schnei-
der. 2022. Declarative Specification for Unstructured Mesh Editing Algorithms.
ACM Transactions on Graphics 41, 6, Article 251 (Nov. 2022), 14 pages. https:
//doi.org/10.1145/3550454.3555513

Lutz Kettner. 2019. Halfedge Data Structures. In CGAL User and Reference Manual
(4.14 ed.). CGAL Editorial Board. https://doc.cgal.org/4.14/Manual/packages.html#
PkgHalfedgeDS

2024-01-28 11:05. Page 12 of 1–13.



1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

Dynamic Mesh Processing on the GPU • 13

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

Naimin Koh, Wenjing Zhang, Jianmin Zheng, and Yiyu Cai. 2018. GPU-based Multiple-
Choice Scheme for Mesh Simplification. In Proceedings of Computer Graphics Inter-
national 2018 (CGI 2018). ACM, 195–200. https://doi.org/10.1145/3208159.3208195

Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala,
and L. Paul Chew. 2007. Optimistic Parallelism Requires Abstractions. In Proceed-
ings of the 28th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’07, Vol. 42). Association for Computing Machinery, New York,
NY, USA, 211–222. https://doi.org/10.1145/1273442.1250759

Bastian Kuth, Max Oberberger, Matthäus Chajdas, and Quirin Meyer. 2023. Edge-Friend:
Fast and Deterministic Catmull-Clark Subdivision Surfaces. Computer Graphics
Forum 42, 8 (Aug. 2023), 8. https://doi.org/10.1111/cgf.14863

Oliver Laric. 2023. Three D Scans. https://threedscans.com/.
Hao Li, Takayuki Yamada, Pierre Jolivet, Kozo Furuta, Tsuguo Kondoh, Kazuhiro Izui,

and Shinji Nishiwaki. 2021. Full-scale 3D structural topology optimization using
adaptive mesh refinement based on the level-set method. Finite Elements in Analysis
and Design 194 (Oct. 2021). https://doi.org/10.1016/j.finel.2021.103561

A. Loseille, F. Alauzet, and V. Menier. 2017. Unique cavity-based operator and hi-
erarchical domain partitioning for fast parallel generation of anisotropic meshes.
Computer-Aided Design 85 (2017), 53–67. https://doi.org/10.1016/j.cad.2016.09.008
24th International Meshing Roundtable Special Issue: Advances in Mesh Generation.

Adrien Loseille and Rainald Löhner. 2013. Cavity-Based Operators for Mesh Adaptation.
In 51st AIAA Aerospace Sciences Meeting. 8 pages. https://doi.org/10.2514/6.2013-152

Adrien Loseille and Victorien Menier. 2014. Serial and Parallel Mesh Modification
Through a Unique Cavity-Based Primitive. In Proceedings of the 22nd International
Meshing Roundtable, Josep Sarrate and Matthew Staten (Eds.). Springer International
Publishing, 541–558. https://doi.org/10.1007/978-3-319-02335-9_30

Ahmed H. Mahmoud, Serban D. Porumbescu, and John D. Owens. 2021. RXMesh: A
GPU Mesh Data Structure. ACM Transactions on Graphics 40, 4, Article 104 (Aug.
2021), 16 pages. https://doi.org/10.1145/3450626.3459748

M. Mäntylä. 1988. Introduction to Solid Modeling. W. H. Freeman & Co., New York, NY,
USA.

D. Mlakar, M. Winter, P. Stadlbauer, H.-P. Seidel, M. Steinberger, and R. Zayer. 2020.
Subdivision-Specialized Linear Algebra Kernels for Static and Dynamic Mesh
Connectivity on the GPU. Computer Graphics Forum 39, 2 (May 2020), 335–349.
https://doi.org/10.1111/cgf.13934

Rahul Narain, Armin Samii, and James F. O’Brien. 2012. Adaptive Anisotropic Remesh-
ing for Cloth Simulation. ACM Transactions on Graphics 31, 6 (Nov. 2012), 152:1–
152:10. https://doi.org/10.1145/2366145.2366171

The Boost organization. 2023. Boost C++ Libraries. https://www.boost.org/
Alexandros Papageorgiou and Nikos Platis. 2014. Triangular mesh simplification on

the GPU. The Visual Computer 31, 2 (Nov. 2014), 235–244. https://doi.org/10.1007/
s00371-014-1039-x

Tobias Pfaff, Rahul Narain, Juan Miguel de Joya, and James F. O’Brien. 2014. Adaptive
Tearing and Cracking of Thin Sheets. ACM Trans. Graph. 33, 4, Article 110 (July
2014), 9 pages. https://doi.org/10.1145/2601097.2601132

Chuck Pheatt. 2008. Intel® threading building blocks. Journal of Computing Sciences in
Colleges 23, 4 (April 2008). https://doi.org/10.5555/1352079.1352134

Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Amber Has-
saan, Rashid Kaleem, Tsung-Hsien Lee, Andrew Lenharth, Roman Manevich, Mario
Méndez-Lojo, Dimitrios Prountzos, and Xin Sui. 2011. The Tao of Parallelism in
Algorithms. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’11). 12–25. https://doi.org/10.1145/
1993498.1993501

Luciano A. Romero Calla, Lizeth J. Fuentes Perez, and Anselmo A. Montenegro. 2019.
A minimalistic approach for fast computation of geodesic distances on triangular
meshes. Computers & Graphics 84 (2019), 77–92. https://doi.org/10.1016/j.cag.2019.
08.014

Jonathan Richard Shewchuk. 2002. Delaunay refinement algorithms for triangular
mesh generation. Computational Geometry 22, 1 (2002), 21–74. https://doi.org/10.
1016/S0925-7721(01)00047-5 16th ACM Symposium on Computational Geometry.

Smithsonian Institution Digitization Program Office. 2023. Smithsonian 3D Digitization.
https://3d.si.edu/.

Christos Tsolakis, Polykarpos Thomadakis, and Nikos Chrisochoides. 2022. Task-
ing framework for adaptive speculative parallel mesh generation. The Journal of
Supercomputing 78, 5 (2022), 1–32.

Chang Yu, Yi Xu, Ye Kuang, Yuanming Hu, and Tiantian Liu. 2022. MeshTaichi: A
Compiler for Efficient Mesh-based Operations. ACM Transactions on Graphics 41, 6,
Article 252 (Nov. 2022), 17 pages. https://doi.org/10.1145/3550454.3555430

Rhaleb Zayer, Markus Steinberger, and Hans-Peter Seidel. 2017. A GPU-adapted Struc-
ture for Unstructured Grids. In Computer Graphics Forum (Proceedings of Eurograph-
ics 2017), Vol. 36. 495–507. Issue 2. https://doi.org/10.1111/cgf.13144

Bo Zhu and Lixu Gu. 2012. A hybrid deformable model for real-time surgical simulation.
Computerized Medical Imaging and Graphics 36, 5 (July 2012), 356–365. https:
//doi.org/10.1016/j.compmedimag.2012.03.001

A MEMORY FOOTPRINT:
We use a similar simplified manifold mesh for calculating memory
footprint as done in RXMesh [Mahmoud et al. 2021]. For such a
model, RXMesh requires 37.4 bytes/face. Using the Euler-Poincaré
characteristic, our data structure stores for each patch the connec-
tivity from face to edges (FE) and from edges to vertices (EV)
which requires 3𝐹𝑝 , where 𝐹𝑝 is the average number of owned faces
in a patch. We also store a bitmask for vertices, edges, and faces
that indicate if the mesh element is owned and if it is active (which
requires 0.75𝐹𝑝 ). Finally, we store the owner patch and local in-
dex within the owner patch for each not-owned mesh element in a
hashtable as a 32-bit unsigned integer. This requires 12𝑅𝐹𝑝

𝐿
, where

𝑅 is the ratio of the ribbon elements, and 𝐿 is the load factor of the
hashtable. Thus, the total memory requirement in our data structure
is 12.75 + 12𝑅

𝐿
bytes/face. Using the same patch size as in RXMesh,

the ribbon ratio is 𝑅 ≈ 0.4. The load factor in our hashtable is 0.8.
Thus, our data structure requires 18.75 bytes/face, which is 1.994x
less memory than RXMesh.
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