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Abstract

Small molecule transporters (SMTs) in the ABC and SLC families are important players in 

disposition of diverse endo- and xenobiotics. Interactions of environmental chemicals with these 

transporters were first postulated in the 1990s, and since validated in numerous in vitro and in vivo 

scenarios. Recent results on the co-crystal structure of ABCB1 with the flame-retardant BDE-100 

demonstrate that a diverse range of man-made and natural toxic molecules, hereafter termed 

Transporter-Interfering Chemicals (TICs), can directly bind to SMTs and interfere with their 

function. TIC-binding modes mimic those of substrates, inhibitors, modulators, inducers, and 

possibly stimulants through direct and allosteric mechanisms. Similarly, the effects could directly 

or indirectly agonize, antagonize or perhaps even prime the SMT system to alter transport 

function. Importantly, TICs are distinguished from drugs and pharmaceuticals that interact with 

transporters in that exposure is unintended and inherently variant. Here we review the molecular 

mechanisms of environmental chemical interaction with SMTs, the methodological considerations 

for their evaluation, and the future directions for TIC discovery.

Keywords: Transporter-interfering chemicals, environmental, small molecule transporter, ABC 

transporter, SLC transporter, chemosensitization, mixtures, allosteric, endogenous substrate 

competition, signaling interference

Abbreviations: TIC, transporter interfering chemicals; SMT, small molecule transporters; SLC, 

solute carrier; ABC, ATP-binding cassette; MDR, multidrug resistance; IMV, inverted membrane 

vesicle; DDI, drug-drug interaction; DFI, drug-food interaction; DECI, drug-environmental 

chemical interaction; BBB, blood brain barrier; BCSFB, blood cerebrospinal fluid barrier; BBIB, 

blood bile barrier; BUB, blood urine barrier; BIB, blood intestine barrier; BMB, blood milk 

barrier; BAB, blood air barrier; BPB, blood placenta barrier; BTB, blood testis barrier; BRB, 

blood retinal barrier; BHB, blood heart barrier. 
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Introduction – Evolution and function of the Small Molecule Transporter (SMT) system

Selective transport of diverse small molecules across the plasma membrane is central to 

intercellular communication and the interaction of organisms with their environment. These 

molecules include toxic xenobiotics in the environment, such as the byproducts of microbial 

metabolism, like secondary bile acids and short chain fatty acids, and/or endobiotics such as the 

diverse signal molecules including uric acid, prostaglandins, and cyclic nucleotides, necessary for 

coordinating cell behavior [1–8]. The major transporters responsible for these molecular 

movements are members of the ATP-binding Cassette (ABC) and Solute Carrier (SLC) families 

(Figure 1). These small molecule transporters (SMTs) are expressed at environmental barriers 

such as the epithelial cells lining the gut, where they can export toxic compounds for excretion 

[9,10]. They are also highly expressed in stem cells and embryos [11–17].

In humans there are more than 800 transporters, including 393 SLC and 81 ABC-type transporter 

proteins [18]. Seven, comprised of two ABC-type (ABCB1 and ABCG2) and five SLC (OAT1, 

OAT3, OCT2, OATP1B1 and OATP1B3) transporters, are already known to be of major 

importance in clinical drug interactions and relevance to toxicity [9]. The list has been growing to 

include additional transporters of emerging importance, including the multidrug and toxin 

extrusion transporters (MATEs), multidrug resistance-associated proteins (MRPs) and the bile salt 

export pump BSEP (ABCB11) [19,20]. 

Among the key features of many of these proteins is a broad substrate specificity – sometimes 

termed “polyspecificity” – that enables the interaction of a single transporter with numerous 

substrates [21–24]. As a result of this substrate promiscuity, SMTs also interact with the panoply 

of anthropogenic small molecule pollutants to which humans and other organisms are exposed. 

Indeed, the idea that environmental chemicals interact with transporters was demonstrated almost 

30 years ago [25,26] and later elaborated on in numerous studies using purified proteins, model 

organisms and cell lines [14,27–35]. The results pointed to a diverse range of ligands including 

pesticides, flame retardants, oil hydrocarbons, stain repellents, personal care products (PCPs), and 

numerous other ubiquitous environmental chemicals. Importantly, as these chemicals are regularly 

detected in the environment, humans and wildlife are continuously exposed. 
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These chemicals pose a possible threat to health through their potential to interfere with the 

functioning of the SMT system. While there is a large and growing literature on the interaction of 

transporters with environmental chemicals, the mechanisms of interaction and the implications 

considered remain limited. 

In analogy to treatment of multidrug resistant cancers with drug transporter inhibitors, most of the 

previous  studies examined the role of environmental chemicals as competitive inhibitors that limit 

detoxification capabilities of organisms, thereby acting as “chemosensitizers” [26,36,37]. 

However, as we will elaborate upon in this review, emerging structural and functional studies of 

transporters reveal that the interactions of chemicals with drug transporters can be complex, due to 

the existence of multiple ligand binding sites in these proteins and additional allosteric interactions 

[38,39]. Indeed, modern drug discovery and development efforts already seek to evaluate and 

validate transporter substrates, inhibitors or non-interacting compounds in the context of various 

confounding factors, including the type of assay system, physicochemical properties of the test 

compound, and mixture effects on the overall transport kinetics [40–46].   

Here, we posit that the interactions of “drug” transporters with environmental chemicals are likely 

to be more intricate than simply dose-dependent inhibition of transporter function. A number of 

additional effects including stimulation, partial inhibition and/or interference with transporter-

mediated signaling could lead to a range of adverse effects including unanticipated drug 

interactions and developmental defects through physiological disruptions. We discuss the 

potentially unanticipated mechanisms and implications of Transporter-Interfering Chemicals 

(TICs). 

Identity of Transporter-Interfering chemicals (TICs)

TICs – more than just inhibitors
Considering the promiscuity of SMTs for their ligands, it is not surprising that there are a diverse 

range of natural and anthropogenic chemicals that interact with these transporters (Table 1). 

Several terms have been used to describe TICs in the prior literature, perhaps most frequently with 

authors referring to them as transporter “inhibitors” or “chemosensitizers”. However, as will be A
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elaborated upon in this review, this partially reflects the fact that most assays to study these 

environmental chemicals are best suited to revealing inhibitory interactions. As has been shown in 

numerous structural studies [21,47–52], many of the key SMTs, such as ABCB1 have large 

binding pockets capable of binding the same ligand in different locations or even multiple 

different ligands simultaneously, leading to non-monotonic dose-response relationships of 

transporters with their ligands [53–56]. 

Transporter inhibition and ATPase stimulation can be properties of the same compound. For 

example, the potent ABCB1 transporter stimulators, verapamil and nicardipine, can also act as 

inhibitors to uncouple the ATP-dependent translocation mechanism at high concentrations [47]. 

Other compounds have been shown to be both substrate and inhibitor for drug transporters, 

including zearalenone and tariquidar for ABCG2 [48,49]. Similarly, the pesticide methoxychlor 

has been shown to both stimulate and inhibit P-glycoprotein activity [32,57]. Likewise, 

progesterone and verapamil can bind to high affinity sites in P-glycoprotein to stimulate ATPase 

activity at low concentrations and inhibit at higher concentrations by binding to a low affinity site 

[38]. Interestingly, this non-monotonic concentration dependence of effect may be analogous to 

what is seen in several endocrine disrupting compounds [50,51], and would suggest that TICs may 

have different effects on organisms depending on the concentration encountered. 

In addition, since real world exposures typically involve multiple ligands, TICs can interact with 

multiple independent binding sites that can be simultaneously occupied by inhibitors and 

substrates [52]. Depending on substrate and inhibitor affinities for each of those sites, transport of 

a substrate could be only partially inhibited when the inhibitor binds to the primary sites while the 

secondary sites could still transport the substrate. As such chemicals can interact with SMTs as 

single compounds or in concert to alter transport function. Understanding the molecular 

mechanisms and effects of drug mixtures on transport has long been a goal in clinical 

pharmacology, yet methods to clearly discriminate effects of more than two compounds remain 

challenging [58–60].  

Transporter-interfering chemicals and their conserved modes of interaction
Given what is known about these diverse modes of ligand interaction with transporters, a broader 

definition of the Transporter-Interfering Chemicals is proposed here. Known TICs include a wide A
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range of persistent legacy and emerging compounds and as such are ubiquitous in the 

environment, meaning that virtually all humans and wildlife are exposed. Exposure to TICs is 

unintentional, and environmental or dietary preferences can have a large impact on the overall 

chemical intake [61–73]. Effects of TICs will be dependent on both the dynamic regulation of the 

SMT system during development [13,14,74–77], and the modulated transporter activities due to 

polymorphism in specific ethnic populations [78,79]. 

Many environmental chemicals have known molecular interactions with the drug transporters 

(Table 1). We defined as inhibitors, compounds that competitively or non-competitively inhibits 

ATPase activity or the direct transport of a probe substrate across a membrane. Substrates are 

defined as compounds that have been directly transported across a membrane in an assay system. 

Inducers are compounds that induce the expression of a transporter. And weak interactors are 

compounds that have been shown to be either weak inhibitors or substrates of transporters in a 

given assay. A more detailed definition of TIC modes of interaction with transporter can be found 

in the Glossary.

To date only a few studies exist that test multi-compound mixture interactions on drug transporters 

[31,57,80,81]. Super-additive (synergistic) effects of binary combinations of pesticides have been 

shown for inhibiting ABCB1 [31] and an SLC drug transporter [80]. For instance, a mixture of the 

two pesticides fenamiphos and phosmet showed synergistic and additive effects on OCT2 

transporter inhibition over a wide range of concentrations (0.38 – 26.85 µM). Similarly, the binary 

combination of the pesticide diazinon together with either the drug verapamil or the pesticides 

phosalone, endosulfan, and propiconazole always showed synergistic inhibition of P-glycoprotein-

mediated calcein-AM transport. Both additive and synergistic effects of Transporter-Interfering 

Chemicals effectively reduce the concentration needed of a single compound to interfere with 

transport function. 

Interestingly, while those listed transporter interactions have been evaluated using different assay 

systems and drug transporters from different organisms, some interactions are conserved across 

assays. For instance, the insecticide endosulfan has been shown to inhibit human, hamster and 

mussel ABCB1 when tested for inhibition of transport or ATPase activity in gills, stably 

transfected cell lines and as purified membrane fraction [28,31,82–85]. Similarly, the antiparasitic A
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compound ivermectin has been shown to be transported by human, canine and mouse ABCB1 

using knock-out mouse models and whole cell monolayer assays [83,86–88].

Environmental levels of TICs

A major route of human exposure to TICs is through consumption of contaminated food. Large-

scale assessments of food contaminants have continuously detected elevated levels of several 

persistent TICs such as polybrominated flame retardants (PBDEs) and polychlorinated biphenyls 

(PCBs) were detected in dairy, meat and fish [63,68,70,71]. Lipid normalized levels of a single 

flame retardant and TIC, BDE-47, were 58.9 nanomolar in sardines [89] and as high as 175 

nanomolar in tuna [63]. Importantly, the cumulative lipid-based concentrations of the ten most 

potent TICs were as high as 3.3 μM, while all pollutants were 12.7 μM, respectively [63]. 

Similarly, the same persistent pollutants can be detected at high concentrations in human blood 

and urine [90,91] and breast milk [92–94]. For instance, the flame retardants BDE-47 and BDE-99 

had lipid-based concentrations in US mothers’ milk up to 559 nanomolar and 197 nanomolar [93]. 

For the organochlorine pesticide and TIC, p,p’-DDE, concentrations of up to 314 μM have been 

reported in breastmilk fat from South African women [94]. 

Another possibility is that TICs could act indirectly on upstream regulators like the nuclear 

receptors AhR, PXR or CAR to reduce transporter expression and further facilitate the retention of 

TICs and other persistent compounds [95–100]. However, recent studies have shown that while 

the transporters may not be able to eliminate these chemicals, TICs are nonetheless able to bind 

and interfere with transporter function. Notably the brominated flame-retardant and TIC, BDE-

100, was shown to tightly bind to the ligand binding sites in ABCB1 and to inhibit the function in 

mice and humans [57]. The binding occurs at evolutionarily conserved residues, indicating the 

potential for effects in a wide range of organisms (Figure 2). 

As we will discuss further below, TICs could also act in concert with other drugs and food 

ingredients, and both a continuous assessment of levels of environmental chemicals in food and a 

detailed analysis of their additive and super additive effects is necessary to provide appropriate 

dietary and food safety guidelines [101]. 
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Mechanisms and approaches for evaluating TIC interactions
The categorization of environmental chemicals as TICs requires careful consideration. Unlike 

analytical chemistry with its “gold standard” approved chromatography and mass spectrometry 

methods, there is no single assay for each TIC effect. Importantly, the choice of assay will 

influence the investigators’ ability to discern TIC effects. To date multiple in vitro and in vivo 

assays have been used to determine the nature of drug Transporter-Interfering Chemicals 

[57,102,103]. However, many of the assays used in the field of TICs are best suited for discovery 

of inhibitors. 

For SLC-type transporters, the majority of assays is determining the (competitive) inhibition of 

intracellular accumulation of a reference substrate by a test compound [80,104]. For ABC-type 

transporters, TIC interactions are often determined indirectly by inhibition of the pre-stimulated 

ATPase activity [85,105]. Alternatively, competitive uptake inhibition of reference compounds 

into membrane vesicles or competitive efflux inhibition and transport across cell monolayers have 

been employed. 

Strengths and limitations of current methods and assays to evaluate TICs 
Interactions of small molecule drugs with SMTs have been a major focus of pharmaceutical and 

toxicological sciences over the past four decades. A wide array of in vitro and in vivo assays to 

evaluate those interactions have been developed since then to quantify ATPase activity in a variety 

of assay systems [37,106–110] or to determine (competitive) transport inhibition [94–99], 

bidirectional transport across cell monolayers [40,111,112] or the binding affinities (Table 2)  of 

different drugs and small molecules to the transporters [113–116]. Some of the most prominent 

assays have sparked commercial interest and are readily available as purified protein kits, 

membrane fractions or drug-transporter expressing cell lines. 

In these assays, ABC-transporter inhibition is often measured indirectly by competitively 

inhibiting the efflux or uptake of a fluorescent or radiolabeled substrate or directly by ATPase 

stimulation or inhibition with a model drug compound. Arguably, the three most common assays 

to measure and quantify TICs with drug transporters are ATPase, unidirectional vesicular transport 

and bidirectional cell monolayer assays (i.e., transwell assays).A
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ATPase assays

ATPase assays were first developed for small soluble ATPases [117] and later applied to 

determine the activity of ABC drug transporters [118]. These assays offered the advantage of 

using the liberated orthophosphate from ATP hydrolysis as an indirect reporter for ATPase 

stimulation and hence activation of the transporters. Initial drug transporter purification attempts 

focused on plasma membrane preparations of drug-resistant cancer cell lines [119] and large-scale 

protein production has been traditionally performed heterologously in bacterial and yeast systems 

[120,121]. Sophisticated methods have been developed over the years, determining the ATPase 

activity in drug transporter expressing cell lines, lipid vesicles, membrane patches, artificial 

membranes and with purified and detergent-solubilized protein [37,107,109,122,123]. It is 

commonly accepted that substrate translocation requires both ATP binding and hydrolysis [123–

125], enabling the development of fluorescent and colorimetric assays to stoichiometrically relate 

Pi liberation to transporter activation. ATPase assays can be conducted in activation mode by 

measuring phosphate liberation with the drug alone or in inhibition mode by pre-stimulating the 

ATPase activity with a model stimulator and following the “knock-off” kinetics by inhibitory test 

compounds.  Interactions of drugs with ABCB1 in an ATPase assay have been characterized with 

solubilized protein, reconstituted protein, heterologous and homologous expressed protein (Table 

2). In those cases, ATPase activity was measured pre-stimulated with different ratios and types of 

stimulator or non-stimulated (basal activity). 

A wide range of factors can introduce variation into the results of ATPase assays. In some cases, it 

is not known if the basal activity has been properly subtracted from the final values due to lack of 

experimental details. Another confounding factor is the type of protein concentration assay used to 

calculate the specific ATPase activity of each protein.  Another major factor is the use of different 

detergents and lipids to purify and reconstitute P-gp and other drug transporters. Some authors had 

to “activate” P-gp with a lipid/deterrent mixture to become fully amenable for drug interaction 

assays [126]. Furthermore, the amount of ATP and reducing agent (DTT, BME) can vary 

dramatically. Buffer type, ions, and capacity have also not been standardized and assay pH can 

range from pH 7.0-8.0 [105,127–129]. Depending on the pKa of the TIC, the assay pH can 

influence both overall charge and membrane permeability of a given compound tested. Finally, the 

assay temperature and time course will affect overall kinetics and parameters. A decrease in assay A
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temperature from 37C to 25C has been previously shown to decrease ATPase activity [130], while 

an increase in the assay temperature above 37C could inactivate the transporter [131].

It is important to note that these ATPase assays have some common limitations. First they favor 

discovery of inhibitory effects [31,57,82,84,85,132], thereby skewing our potential understanding 

of TIC effects. Second, in a solubilized protein ATPase assay, the protein conformation does not 

resemble the native conformation in a membrane environment, and instead allows access to 

ATPase and other protein domains typically embedded in the membrane. Such non-native 

conformational changes could influence transporter kinetics [133]. Finally, low permeability 

compounds that typically cannot cross the membrane in an in vivo system, can interact with the 

ligand binding sites in a solubilized SMT and be falsely identified as TICs. 

By measuring ATPase activity of SMTs in a membrane environment, the active conformation can 

be preserved and non-specific binding to protein domains otherwise embedded in the membrane 

can be prevented. In this case, clear knowledge of apical or basolateral localization of the 

transporter under study and the tissue geometry are necessary to decide if the compound would be 

able to interact with the transporter under physiological conditions. 

Vesicular Transport Assays

Vesicular transport assays can be divided into two main systems: artificial (proteo-) liposomes and 

inverted membrane vesicles (IMVs) made from living cells. One of the first preparations of 

inverted membranes was done with human red blood cells [134]. The unique feature of these 

vesicles for the analysis of drug efflux transporters is the fact that most of the cell membranes 

overexpressing the transporter of interest will get inverted during the preparation. This inside-out 

orientation of the ABC drug transporters allows access to the ATPase domains and ligand binding 

sites to study uptake of substrates into the enclosed vesicles. The uptake of fluorescently or radio-

labeled control substrates and test compounds can then be determined using LC/GC mass 

spectrometry or by fluorescent microscopy, flow cytometry or spectrophotometry. 

Proteoliposomes are a type of artificial lipid vesicle, where the protein of interest gets 

reconstituted into preformed liposomes, often made from total membrane extracts of E. coli or 

yeast, chicken eggs or pig total brain. One of the first membrane protein reconstitutions was A
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carried out with bacteriorhodopsin in chicken egg phospholipids [135,136]. A key advantage of 

proteoliposomal systems are the almost unlimited types of natural or synthetic lipids available that 

can be combined to form unilamellar and multilamellar vesicles of any size [137–139]. Functional 

reconstitution and correct orientation of membrane proteins in liposomes depends on numerous 

factors, including protein stability, lipid quality and detergent suitability, and usually requires 

rigorous optimization [140–142]. Using proteoliposomes, the effects of lipid type, charge and size, 

buffer conditions and protein composition on the interactions of TICs with SMTs can be 

conveniently evaluated and compared. 

To preserve proper mammalian protein folding and posttranslational modification for structural 

and kinetic analysis, drug transporters are often expressed in insect cells [143–146] or human cell 

lines [147–150] to form inside-out vesicles. Such vesicles provide a native membrane environment 

in the absence of cytoplasmic proteins and enzymes that could interfere with the assay. Using 

these inverted membrane vesicles (IMV), the effects of TICs on small molecule transporters 

embedded in a natural cell membrane can be evaluated on two dimensions in the same system: the 

stimulation or inhibition of ATPase activity and the actual transport of TIC substrates into the 

vesicle lumen [151–154].

A potential drawback is that vesicle-based assays do not perform well with highly permeable 

chemicals since they likely cross the membrane by simple diffusion. This in turn would 

overestimate the actual uptake of compounds into the vesicles and possibly promote a futile cycle 

when highly hydrophobic compounds rapidly re-enter the lipid environment for another transport 

cycle [155–157]. In this case, the use of control membrane vesicles that lack the transporter under 

study should be used to estimate and subtract false positive transport values.

Transwell Monolayer Assays

Transwell assays measure transcellular transport across polarized epithelial or endothelial cell 

monolayer expressing the transporter of interest. The transwell assay is considered the gold 

standard for assessing drug transport and drug permeability [158]. The bidirectional transport of a 

substrate across a polarized cell layer can be measured by adding the test substrate to the apical 

(upper) or basolateral (lower) chamber and quantifying the compounds in the opposite chambers 

using GC or LC mass spectrometry. The derived drug permeability coefficient (Papp) and the A
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efflux ratios (PappB-to-A, PappA-to-B) can provide a wealth of information, including directionality of 

drug transport, the involved drug transporters, the specificity of substrates, inhibitors and 

modulators, and the prediction of drug permeability. The three most commonly used cell 

monolayers are formed from human Caco-2 cells, dog MDCK II cells and pig LLC-PK1 cells, the 

latter two cell lines expressing non-human endogenous transporters and often used to express 

human isoforms of transporters [40,159]. The same type of cell lines are also used in 

unidirectional fluorescent substrate transport assays with stably transfected transporters [160,161].

Both of these assays have important limitations to consider. For instance, when transfecting the 

common cell lines LLC and MDCK-II with the studied drug transporter genes, these cells show 

markedly lower expression of the endogenous transporters versus wildtype cells, leading to 

underestimation of substrate transport in transfected cells [162]. The differences in background 

transporter expression levels in these cells has also been suggested to be responsible for the high 

variability of IC50 values for ABCB1 inhibitors [163,164]. Furthermore, in order to measure efflux 

by an apically localized transporter, the compound need to first cross the basolateral membrane 

(either by another transporter, or by passive diffusion). Since low permeability compounds cannot 

cross the basolateral membrane in a polarized cell system in the absence of a suitable uptake 

transporter, the compound cannot interact with the efflux transporter.

Limitations of fluorescent dye assays include the availability, specificity and dynamic range of 

substrates to measure (competitive) inhibition of drug transporters in cells. While numerous 

fluorescent small molecules are transported by ABC and SLC transporters [165], very few have 

proven as robust as calcein-AM pioneered by Homolya and colleagues in the early 1990s 

[166,167]. Reasons for this are many, and include the high basal permeability of some substrates, 

low quantum yield of the fluorophores, intracellular compartmentation and fluorescence 

quenching [160]. Another challenge for dye uptake assay is the fact that numerous cell level 

studies have shown that there is considerable overlap in fluorescent substrates among transporters 

[160,168,169] and it may depend on the cellular background whether a given fluorescent 

compounds can be a specific reporter for a monitored transporter activity. However a handful of 

fluorescent substrates, along with specific inhibitors, have been useful for understanding the three 

key drug transporters ABCB1, ABCC1 and ABCG2, over the past 20 years [170–172]. A
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Evaluating molecular interactions of TICs
While the detailed molecular mechanism underlying TIC bioaccumulation is still unknown, the 

interactions of those chemicals with small molecule uptake and efflux transporters at epithelial 

barriers have been suggested to be a key step in entering the body via systemic circulation. 

Hydrophobic TICs could either inhibit ABC-type drug efflux systems to promote their passive 

transport into cells or – by mimicking beneficial nutrient structures – bind with higher affinity to a 

SLC-type nutrient and metabolite uptake system, or both. 

To begin to understand how TICs can interact with SMTs and how to best evaluate those 

interactions, multiple molecular interactions and binding sites within the transporter and its 

immediate membrane environment have to be considered. Similar to drug interactions with 

receptors and transporters, such interactions can be broadly divided into inhibitory or stimulatory 

effects. Inhibitory effects can be further discriminated based on the binding location. For instance, 

orthosteric compounds bind in the ligand binding site of a transporter and can competitively 

inhibit its function. The inhibition of verapamil-stimulated ATPase activity by cyclosporine A is a 

well-known example of competitive ABCB1 inhibition [38,52,173,174]. However, hydrophobic 

TICs could also bind specifically or non-specifically within the hydrophobic parts of the 

membrane spanning domains to cause transporter inhibition. Such non-competitive inhibition can 

occur either at a defined allosteric site or a non-specific site within the SMT. For instance, the 

drugs daunorubicin, colchicine and vinblastine are known to allosterically inhibit verapamil-

stimulated ABCB1 ATPase activity [38]. Allosteric non-competitive inhibition has also been 

shown for the ABCB1-mediated MDR reversal agent XR9576 (tariquidar) [47,175]. Tariquidar 

and the acridone carboxamide derivative GF120918 (elacridar) are also a competitive inhibitor for 

drug efflux transporter ABCG2 but do not inhibit ABCC1 [49,176,177]. 

Non-competitive inhibition of ABC-type transporters can also occur by interfering with ATP-

binding [178]. TICs could act directly at the two ATPase domains (i.e. NBDs) of these ABC 

transporters, inhibiting both ATPase activity and drug binding capacity [179–181]. A less explored 

option for TICs to disrupt MRP-type transporters would be non-competitive inhibition of the GSH 

binding site in these transporters [182–186]. Several drugs, including vincristine and daunorubicin, 

critically depend on GSH binding and/or co-transport to be effectively eliminated [187,188]. A
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A different kind of allosteric effect on the SMT activity regulation is the influence by its local 

membrane environment and in particular cholesterol interactions [133,189,190]. Early experiments 

with ABCB1 showed that the ATPase activity was not stimulated by the canonical drug substrates 

vinblastine, colchicine or daunomycin when reconstituted in E. coli lipids versus sheep brain or 

bovine liver extracts [119,126]. Similarly, the photoaffinity labeling of ABCB1 using the substrate 

[3H]azidopine was increased when increasing amounts of cholesterol were incorporated into 

liposomes [191]. In contrast, in cell lines expressing human ABCB1, the addition of cholesterol 

inhibited the efflux of daunorubicin [192]. 

This has several implications of TICs. First in an analogous way, long-chain, lipid-like TICs could 

change the immediate membrane environment of drug transporters, thereby changing transporter 

activity. Such non-competitive inhibition of ABCB1-mediated Rhodamine B efflux from mussel 

gills has been shown for synthetic perfluorochemicals that have high structural resemblance to 

fatty acids [193]. Second, the native lipid environment could affect assay results [133].

Finally, stimulatory effects of compounds can be exerted on the SMTs when binding to a 

modulatory site. A special case of these stimulatory effects are positively cooperative interactions 

between two or more compounds that either bind at overlapping or different modulatory sites 

within the SMT [59]. Such cooperative stimulation is a versatile and non-invasive mechanism to 

transiently modulate transporter activity and current clinical efforts focus on the discovery and 

development of modulating small molecules [178,194,195]. For instance, prolonged ABC 

transporter stimulation could be costly in terms of dramatically increasing the ATP usage of a 

(cancerous) cell and ultimately trigger apoptosis [155,196,197].  

A more standardized set of assays is needed to probe for transporter- and possibly organism-

specific evaluation of their modes of interaction due to known variations in drug transporter 

substrate recognition and differences in protein stability across species [198–201]. Since 

interaction of TICs with SMTs can occur at different ligand binding sites, the use of multiple 

reference probes with different binding sites could help to capture unknown TIC interactions. 

Finally, since real-world exposures to environmental chemicals typically involve multiple 

compounds, the standardized assay criteria have to be expanded to probe for additive, synergistic 

and antagonistic effects of chemical mixtures.A
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Insights from Structural Biology
To fully elucidate the intricate network of intramolecular interactions of environmental chemicals 

with SMT proteins, a detailed knowledge of protein structure and dynamics is essential. Until 

recently, the exact mode of SMT transport inhibition by environmental chemicals was unknown. 

The co-crystal structure of mouse ABCB1 in complex with the flame-retardant BDE-100 revealed 

for the first time, that TICs can specifically bind within the ligand binding site of the transporter 

and inhibit its function [57]. In general, to be able to successfully resolve a transporter-ligand co-

crystal structure, a transporter has to bind its ligand with high affinity and specificity (i.e. high 

level of occupancy) and in a stable conformation for crystal packing [202,203]. Thus, the co-

crystal reveals that binding of the flame retardant to specific sites in the ligand binding pocket of 

ABCB1 could be responsible for competitive inhibition observed in the corresponding ATPase 

and yeast growth inhibiting assays. 

When comparing the residues in mouse ABCB1 that have been shown to interact with BDE-100 

and other known ABCB1 inhibitors, the flame-retardant shares the critical aromatic residue 

phenylalanine 724 (F728 in human ABCB1) with all three other inhibitors (Figure 2). It has been 

shown recently for the human ABCB1 transporter that the aromatic residue pairs F728-Y310 and 

F978-Y953 can form important hydrogen bonds with the third-generation inhibitors zosuquidar, 

elacridar and tariquidar, which in turn mediates the inhibition of ATP hydrolysis and transport 

function [204]. One of those corresponding residue pairs in mouse ABCB1 is F724-Y306, which 

has been shown to interact with BDE-100 in the crystal structure (Figure 2). Hence, inhibition of 

ATP hydrolysis could be the major mode of action for TICs to interfere with ABCB1 function and 

possibly other ABC transporter. Interestingly, nine additional residues interacting with BDE-100 

in mouse ABCB1 are conserved in five model vertebrates, indicating a structural basis for 

predicting TIC interactions across species.

Conclusions and Future directions
Nearly 45 years ago, the first multidrug transporter, P-glycoprotein (ABCB1), was identified and 

shown to increase drug resistance in cancer cells. Since then, a race for the detailed elucidation of A
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its structure, function and molecular mechanism of ligand interactions has started and fueled 

academic, governmental and industrial efforts to identify the common pharmacophore to develop 

transporter inhibitors or therapeutic drugs that are not recognized by these types of multidrug 

resistance (MDR) efflux pumps. Pharmacological studies on ABCB1 and other drug transporters 

have done pioneering work for a basic understanding of its drug recognition and interactions. 

Multiple ‘generations’ of synthetic and natural inhibitors and substrates have been synthesized or 

identified, but a clear understanding of how small molecules are recognized and interact with these 

types of transporters is still mysterious.

Given the scale of the environmental chemical problem, high throughput assays to determine 

interactions of the multitude of emerging environmental chemicals with SMTs are urgently 

needed. More importantly, SMT interactions with chemical mixtures, representing real-world 

combinations of drugs, food ingredients and chemicals, have to be tested to predict individual and 

combined chemical uptake and disposition in humans. Existing TIC data have been collected 

through a wide variety of in vitro assays and approaches, and there is urgent need to standardize 

the conditions for establishing environmental chemicals as TICs. Some of the key criteria for the 

establishment of such standardized methods would include assay accuracy, specificity and 

reproducibility, both between measurements and analysts in the same lab and when performed in 

different laboratories. The International Transporter Consortium (ITC) has been pioneering such in 

vitro assay standardization with clinically important transporters for identifying drug-drug 

interactions that may inform clinical studies in drug development [9,20,205]. A similar approach 

could be applied to TICs so as to identify and predict possible adverse drug-TIC and TIC-TIC 

interactions with SMTs. The results of these approaches could also serve as guidelines for the 

design of environmental chemicals that do not interfere with the SMT system and are better 

eliminated from the body [206,207].  

An alternative and emerging approach to narrow down drug and chemical candidates to test for 

transporter interactions in the wet lab is the combination of in vitro or in vivo assays and in silico 

analysis. Such data-driven, predictive approaches that combine computational methods with 

pharmacokinetic and exposome data sets are essential for developing a holistic understanding of 

transporter-interactions with drugs and xenobiotics. The main advantages of these in silico tools 

are the ability to rapidly analyze large data sets, to prioritize chemicals, to develop predictive A
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models and to guide the selection for pharmacokinetic and toxicokinetic lab analysis [51,208,209]. 

Together with recent advances in the application of machine learning (ML) algorithms combined 

with network analysis tools in biological science [210–215], in silico tools could prove valuable 

for predicting and deciphering novel drug-drug interactions (DDIs), drug-food interactions (DFIs) 

and drug-environmental chemical interactions (DECIs) with SMTs. The ultimate goal would be to 

use in silico analysis as a high throughput, non-invasive SMT:chemical interaction tool to identify 

SMT interactions with small molecules and to predict chemical accumulation potential and 

chemical toxicities in humans and other organisms. 

Finally, to better understand and validate the organismal effects of TIC:SMT interactions, 

including cell signaling disruption and chemosensitization, the development of animal knock-out 

models is necessary. Emerging model systems should include food organisms across multiple 

trophic levels to investigate the role of SMT disruption in environmental chemical 

bioaccumulation, trophic transfer and ultimately (dietary) exposures to humans [216–221].  

Collectively, these advances in TIC research are likely to help us better predict how environmental 

chemicals bioaccumulate and how they cause harm to humans and wildlife.
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Figure legends

Figure 1: Subcellular localizations of ABC- and SLC-type small molecule transporters in ten different biological barriers. 

Apical and basolateral membrane localization of ABC and SLC transporters in the indicated cell type. The anticipated direction of 

substrate and co-substrate flow are marked with arrows. Tight junctions are displayed as a group of three black bars in each cell 

type. (A) Blood-brain-barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) [20,205,222–230]. (B) Blood-intestine barrier 

(BIB) [10,20,230–234]. (C) Blood-milk barrier (BMB) in mammary glands [235–237]. (D) Blood-bile barrier (BBIB) in the liver 

[20,230,231,238–242]. (E) Blood-urine barrier (BUB) in the kidney [20,231,243–246]. (F) Blood-air barrier (BAB) in lung 

epithelial and endothelial cells [247–250]. (G) Blood-heart barrier (BHB) [251–254]. (H) Blood-placenta barrier (BPB) 

[74,230,255–260]. (I) Blood-testis barrier (BTB) [261–266]. (J) Blood-retinal barrier (BRB) in the eye [230,267–270]. Note that 

the common names for SLC-type transporters are used and the HUGO nomenclature for ABC-type transporters 

(https://www.genenames.org).

Figure 2: Similar residues in vertebrate ABCB1 interact with pharmaceutical inhibitors and the TIC and flame-retardant 

BDE-100. 

The Venn diagram displays all residues in mouse ABCB1a that interact with flame-retardant BDE-100 and known inhibitors 

verapamil, QZ59-SSS and QZ59-RRR according to [105] and [271]. Residues marked with an asterisk represent the “lower” 

binding site of QZ59-SSS. Residues marked in red are assumed to be involved in inhibition of ATP hydrolysis and transport 

function according to [204]. The amino acid alignment shows that 11 (marked in blue and red) of the 15 residues interacting with 

BDE-100 are conserved across model vertebrate species. 
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Table Legends

Table 1: List of drugs and environmental chemicals and their known modes of interactions with selected SMT transporters. 

The table summarizes literature data on 40 compounds and their interactions with ten different transporters. Physicochemical (MW, 

Log Kow) and kinetic (IC50, Km) parameters are provided. Interactions according to [28,29,31,80,82–88,105,272–293].

Table 2: List of common in vitro and in vivo assays to determine interactions of small molecules with transporters. 

The table summarizes the current arsenal of biochemical, biophysical and cell-based assays that have been developed to interrogate 

drug and environmental chemical affinity and potency towards small molecule transporters. Assays according to 

[13,21,54,102,105,118,123,147,159,166,167,180,286,294–332].
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Glossary – Modes and effects of environmental chemical interactions with small molecule 

transporters (SMTs)

A. Types of environmental chemical interactions

Inducers. Compounds that upregulate SMT function at the level of expression. 

Inhibitors. Compounds that bind to SMTs and inhibit transporter activity and function.

Modulators. Compounds that bind to orthosteric or allosteric sites in SMTs without being transported and 

alter the specificity towards inhibitors or substrates. 

Stimulators. Compounds that bind and activate SMTs but do not necessarily get transported. ABC 

transporter activation in absence of transport can be determined using ATPase assays.

Substrates. Compounds that bind to SMTs and get transported. 

Weak interactors. Compounds that are not recognized or weakly interact with SMTs and do not alter 

transporter activity or function.

B. Molecular mechanisms and interactions

Additive interactions. Concerted binding of two or more compounds to SMTs modulates transporter 

function equal to the sum of the compounds’ separate effects.

Allosteric interaction. Compounds that bind to SMTs at sites distinct from the ligand binding site(s) and 

modulate transporter function. 

Antagonistic interaction. Concerted binding of two or more compounds to SMTs negates or modulates 

transporter function to a lesser degree than the sum of each individual effect.  

Cooperative interaction. Binding of compound(s) to one site in SMTs influences the interaction of the 

same or different compound(s) at another functional site.

Orthosteric interaction. Compounds that bind to functional site(s) in SMTs and modulate function by 

competitive interactions with other ligands.

Synergistic interaction. Concerted binding of two or more compounds to SMTs modulates function to a 

higher degree than the sum of each individual effect.

C. Cellular and organismal effects

Chemical defense priming. Continuous exposure to xenobiotics alters SMT function by inducing transient 

or permanent, compensatory upregulation at the physiological, transcriptional or epigenetic level.   A
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Chemosensitization. Interaction of compound(s) with SMTs increases sensitivity of a cell or organism 

towards a (toxic) substrate.  

Endogenous substrate competition. Interaction of compound(s) with SMTs that interferes with 

physiological substrate transport and cellular homeostasis. 

Energy depletion. Increase in cellular energy (e.g., ATP) consumption due to constant exposure to 

compounds that activate SMTs. 

Futile cycling. Ineffective transport of (high permeability) compounds that immediately reenter 

membranes/cells for another transport cycle.   

Signaling interference. Interactions of compounds with SMTs disrupt cell signaling and/or signal 

transduction. 
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Assay type Assay System Species: Transporter(s) Reporter Molecule Original References
Inverted membrane vesicles (IMVs) in KB-V1 and KB-3-1 Human: ABCB1 VBL Horio et al. 1988

Proteoliposomes (protein from ﻿CHRC5) Hamster: ABCB1 COL Sharom et al. 1993

Membrane Nanodiscs Human: ABCB1 ﻿Nicardipine Ricthie et al. 2009

Styrene-maleic acid lipid particles (SMALPs) Human: ABCB1, ABCC1, ABCC4, ABCG2; Mouse: ABCC7 (CFTR) MIANS, Estrone sulfate, PheoA Gulati et al. 2014

Isolated membranes (from Sf9 cells) Human: ABCB1 VER, VBL, 5-Fluorouracil, Trifluoperazine Sarkadi et al. 1992

Amphipols Mouse: ABCB1a (MDR3); Human: ABCB1 N/A Lee et al. 2002 , Alam et al. 2017

Purified protein (protein from ﻿CH
R
C5) Hamster: ABCB1 VER, VBL, COL, Nifedipine, Daunomycin Doige et al. 1992 

Invertebrate embryos (S. purpuratus ) Sea urchin: ABCB1 Rhodamine Toomey and Epel 1993

BEWO (choriocarcinoma) Human: ABCB1, ABCC1 CAM, VBL, Fluorescein Utoguchi et al. 1999

Huh-7 (human hepatocellular carcinoma) Human: ABCB1, ABCC1, ABCG2 Rho123, Hoechst 33342 Jouan et al. 2016

HeLa cells (Henrietta Lacks cervical cancer) Human: ABCB1 Rho123, CAM Sauna et al 2002

K562 cells (human bone marrow chronic myelogenous leukemia) Human: ABCB1, ABCG2 ﻿Hoechst 33342, ﻿DyeCycle Violet Nerada et al. 2016

A431 cells (human skin epidermoid carcinoma) Human: ABCB1, ABCG2 ﻿Hoechst 33342, ﻿DyeCycle Violet Nerada et al. 2016

CHO K1 (Chinese Hamster Ovary) Hamster: ABCB1, ABCC1, ABCG2 CAM, eFluxx-ID, CMFDA, PheoA Lebedeva et al. 2011 

A549 (human lung carcinoma) Human: ABCB1, ABCC1, ABCG2 eFluxx-ID, CMFDA, PheoA, DiOC2(3) Lebedeva et al. 2011 

HL-60/MX1 (human acute promyelocytic leukemia) Human: ABCB1, ABCC1, ABCG2 CAM, eFluxx-ID, PheoA Lebedeva et al. 2011 

HCT-8 and HCT-15 (human ileocecal colorectal carcinoma) Human: ABCB1, ABCC1 CAM, eFluxx-ID, CMFDA, DiOC2(3) Lebedeva et al. 2011 

HepG2 cells (human liver hepatocellular carcinoma) Human: ABCB1 Rho123 Shabbir et a. 2005

NIH/3T3 murine fibroblasts Human: ABCB1 CAM Homolya et al 1993, Hollo et al. 1994

PLHC-1/dox cell lines (Poeciliopsis Lucida hepatocellular carcinoma) Clearfin Livebearer: ABCB1 CAM, Rho123 Caminada et al 2008, Zaja et al. 2011

MDCKII (Madin-Darby canine kidney strain II cells) Human: ABCB1 CAM Gannon et al. 2009

NCI-H441 (human lung adenocarcinoma) Human: ABCB1 Rho123 Salomon et al. 2014

KB-V1 and KB-3-1 cells (Cervix carcinoma - HeLa derivative) Human: ABCB1 CAM Ansbro et al. 2013

Renal proximal tubules Killifish: ABCB1 NBDL-CSA Schramm et al. 1995

Brain capillaries Rat: ABCB1a/b NBDL-CSA, BODIPY-Prazosin, SR101 Hartz et al. 2004

Caco-2 (Caucasian Colon Carcinoma) ABCB1, ABCG2, MRP2 VBL Hunter et al. 1993

LLC-PK1 (Epithelial-like pig kidney cell line) Human: ABCB1 DOX, Rho123, QUI, VER Van Der Sandt et al. 2000, Riede et al. 2019

MDCKII (Madin-Darby canine kidney strain II) Human: ABCB1 Rho123 Haemmerle et al. 2000

IPEC-J2 (Pig Illeum Epithelial cells) Human: ABCB1 Digoxin, VER, Citalopram, VBL, VCR Saaby et al. 2016

Calu-3 (Human lung adenocarcinoma) Human: ABCB1 CAM, Rho123 Hamilton et al. 2000

hCMEC/D3 (brain microvascular epithelial cell line) Human: ABCB1 eFLUXX-ID Gold Noack et al. 2016

CR1R12 (CHO subline) Hamster: ABCB1 COL Aller et al 2009

2-cell embryos (S. purpuratus ) Sea urchin: MRP-like VBL Hamdoun et al. 2004 

Functional complementation (S. cerevisiae ) Yeast: Human ABCB1 Valinomycin Kuchler and Thorner 1992

Competitive growth inhibiton (S. cerevisiae ) Yeast: Mouse ABCB1a (MDR3) DOX Jeong et al. 2007, Nicklisch et al. 2016

Proteoliposomes M. tuberculosis : TBsmr Ethidium bromide, TPP+ Basting et al. 2008

Purified protein E. coli : EmrE Ethidium bromide, TPP+ Chen et al. 2007

Purified protein L. lactis : LmrP ﻿Propidium and ethidium dyes Schaedler and Veen 2010

Purified protein E. coli : AcrB ﻿Rho6G, Ethidium, Proflavin, Ciprofloxacin Su et al. 2007

Purified protein S. aureus : MepA ﻿Acriflavine, Rho6G, Ethidium Banchs et al. 2014

Surface plasmon resonance (SPR) Human: ABCB1 MRK16, UIC2 mAB Ritchie et al. 2011, Chen et al. 1986

FRET analysis in Hek293T Human: ABCC1 E217βG, ATP, Vanadate Osa-Andrews et al 2018, Iram et al 2015, Swartz et al 2013

Intrinsic Trp fluorescence quenching in CHRB30 (CHO derivative) Hamster: ABCB1 Tryptophan Liu et al 2000 

Site-directed fluorescence labeling & quenching in CHRB30 Hamster: ABCB1 MIANS label Liu and Sharom 1996

Photo-affinity labeling in KB-3-1 (HeLa derivative) Human: ABCB1 Azidopine, IAAP, 6-AIPP-forskolin Bruggemann et al. 1989, Greenberger 1998

Cys & thiol reactive labeling in HEK293 cells Human: ABCB1 Dibromobimane, MTS-VER Loo and Clarke 1997, Loo and Clarke 2001

Nucleotide trapping assays in CR1R12 (CHO derivative) Hamster: ABCB1 Vanadate Urbatsch et al. 1995

Radioligand binding in CHRB30 (CHO derivative) Hamster: ABCB1 VBL, XR9576 Martin et al. 2000

VBL = vinblastine SR101 - Suforhodamine 101

VCR = vincristine MIANS = 2-(4′-maleimidylanilino)naphthalene-6- sulfonic acid

COL = colchicine E217βG = 17β-Estradiol 17β-D-glucuronide

VER = Verapamil TPP+ = Tetraphenylphosphonium

DOX = Doxorubicin NBDL-CSA = [N-∊-(4-nitrobenzofurazan-7-yl)-D-Lys8 ] cyclosporin A

QUI = Quinidine IAAP = Iodoarylazidoprazosin

PheoA = Phephorbide A 6-AIPP-forskolin = 6-O-[[2 -[3-(4-azido-3-[125I]iodophenyl)propionamido]ethyl]carba- myl]forskolin

Biochemical assays (binding sites)

ATPase Assays

Competitive dye transport assays 

(unidirectional accumulation)

Monolayer assay 

(bidirectional transport)

Cytotoxicity assays

Fluorescence anisotropy/polarization

Drug binding affinity



 

OATP1A1 OATP1A2 URAT 1 MATE1  OCT2 OAT4

Chemical Class Pubchem CID MW Log Kow IC50 (µM) Km (µM) IC50 (µM) Km (µM) IC50 (µM) Km (µM) IC50 (µM) Km (µM) Ki,app (µM) IC50 (µM) IC50 (µM) EC50 (µM) EC50 (µM) IC50 (µM) References

Endosulfan** Insecticide 3224 406.9 3.62(b), 3.83(a) 2.8 1, 11.4, 33.6 17 6.9  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Bircsak et al. 2013, Sreeramulu et al. 2007, Pivcevic and Zaja 2006, Bain and LeBlanc 1996, Buss et al. 2002, Smital et al. 2004

Endrin Pesticide 12358480 380.9 5.34 1.1  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Nicklisch et al. 2016

Heptachlor Insecticide 3589 373.3 6.1 INH  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Bain and LeBlanc 1996

Malathion Insecticide 4004 330.4 2.36 INH  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Smital et al. 2004

﻿Musk ketone (MK) ﻿Synthetic musk 6669 ﻿294.3 4.3 0.74 2  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Luckenbach and Epel 2005

﻿Musk xylene (MX) ﻿Synthetic musk 62329 ﻿297.3 4.9 0.97 
2

 ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Luckenbach and Epel 2005

p,p'-DDE Insecticide 3035 318.03 6.51 31.3  --- 4  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Bircsak et al. 2013, Nicklisch et al. 2016

p,p'-DDT Insecticide 3036 354.49 6.36, 6.91 3.8-25.6  --- 5  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Bircsak et al. 2013, Nicklisch et al. 2016

PBDE-100 Flame Retardant 154083 564.69 7.24 23.2  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Nicklisch et al. 2016

Perfluorodecanoic acid (PFDA) ﻿Perfluorochemicals 9555 514.08 6.3a 7.1 2  ---  ---  ---  ---  ---  ---  --- 26.8 INH INH  ---  --- INH Stevenson et al. 2006, Yang et al. 2010, Yang et al. 2009

﻿Perfluorononanoic acid (PFNA) ﻿Perfluorochemicals 67821 464.08 5.48 4.8 2  ---  ---  ---  ---  ---  ---  --- 44.6 INH INH  ---  --- INH Stevenson et al. 2006, Yang et al. 2010, Yang et al. 2009

Permethrin Insecticide 40326 391.3 6.5 INH  --- 7  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Bircsak et al. 2013, Bain and LeBlanc 1996

Tetrabromobisphenol A (TBBPA) Flame Retardant 6618 543.9 4.75
b

22.9  --- INH  --- INH  --- 24  ---  ---  ---  ---  ---  ---  --- Dankers et al. 2013

Cyperquat (MPP+) Herbicide 39484 170.23 2.7a  --- SUB  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Lacher et al. 2015

Diazinon* Insecticide 3017 304.35 3.81  --- 9.7  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Lacher et al. 2015

Indinavir Antiviral 5362440 613.8 2.9, 3.49  --- SUB  ---  ---  --- SUB  ---  ---  ---  ---  ---  ---  ---  --- Van der Sandt 2001

Ivermectin* Antiparasitic 6321424 875.1 3.2c 0.1 9 1  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Eneroth et al. 2001, Buss et al. 2002, Schinkel et al. 1994, Griffin et al. 2005

Methoxychlor Insecticide 4115 345.6 4.68, 5.08  ---  ---  ---  ---  --- SUB  ---  ---  ---  ---  ---  ---  ---  --- Tribull et al. 2003

Paraquat Herbicide 15939 186.25  -4.22,-4.5
d

 --- SUB  ---  ---  ---  ---  ---  ---  ---  ---  --- SUB SUB  --- Chen et al. 2007, Wen et al. 2014

Parathion methyl ** Insecticide 4130 263.21 2.86 3.4 7.3  ---  ---  ---  ---  --- SUB 
3

 ---  ---  ---  ---  ---  --- Nornberg et al. 2015, Aurade et al. 2006, Sreeramulu et al. 2007

Ritonavir* Antiviral 392622 720.9 3.9  --- SUB  ---  ---  --- SUB  ---  ---  ---  ---  ---  ---  ---  --- Van der Sandt 2001, Alsenz et al. 1998, Srinivas et al. 1998
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Diazinon* Insecticide 3017 304.35 3.81  --- IND  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Lecoeur et al. 2006

p,p'-DDE Insecticide 3035 318.03 6.51  --- IND  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Shabbir et al. 2004

p,p'-DDT Insecticide 3036 354.49 6.36, 6.91  --- IND  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Shabbir et al. 2004

Prochloraz Fungicide 73665 376.7 4.1  ---  ---  --- IND  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Halwachs et al. 2012

Rifampicin Antibiotic 135398735 822.9 2.7  --- IND  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Westphal et al. 2000

Ritonavir Antiviral 392622 720.9 3.9  --- IND  ---  ---  --- IND  ---  ---  ---  ---  ---  ---  ---  --- Perloff et al. 2001

St. John's Wort Supplement 46507869 NA NA  --- IND  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Hennessy et al. 2001

TCDD Dioxin 15625 322 6.8  ---  ---  --- IND  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Halwachs et al. 2012

Aminocarb Insecticide 16247 208.26 1.73, 1.9 WI  --- WI  --- WI  ---  ---  ---  ---  ---  ---  ---  ---  --- Bain and LeBlanc 1996, Gueniche et al. 2020

BPA (Bisphenol A) Plastic monomer 6623 228.29 3.32 WI  --- INH  --- WI  --- WI  ---  ---  ---  ---  ---  ---  --- Dankers et al. 2013, Nicklisch et al. 2016

DEHP (Bis(2-ethylhexyl) phthalate) Plasticizer 8343 390.6 5.03, 7.6 WI  --- WI  --- WI  --- WI  ---  ---  ---  ---  ---  ---  --- Dankers et al. 2013, Nicklisch et al. 2016

MEHP DEHP metabolite 20393 278.34 4a WI  --- WI  --- WI  --- WI  ---  ---  ---  ---  ---  ---  --- Dankers et al. 2013

Warfarin Anticoagulant 54678486 308.3 2.7 WI  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Palmeira et al. 2011, Gschwind et al. 2013

Diazinon* Insecticide 3017 304.35 3.81 SI  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Pivcevic and Zaja 2006

﻿Endosulfan Insecticide 3224 406.9 3.62(b), 3.83(a) SI  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Pivcevic and Zaja 2006

﻿Fenamiphos Insecticide 31070 303.36 3.23  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- SI  --- Chedik et al. 2019

﻿Phosalone Insecticide 4793 367.8 4.38 SI  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Pivcevic and Zaja 2006

﻿Phosmet Insecticide 12901 317.3 2.78  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- SI  --- Chedik et al. 2019

﻿Propiconazole Fungicide 43234 342.2 3.72 SI  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  ---  --- Pivcevic and Zaja 2006

a
 estimated (Pubchem)  --- = not available

b
 ionizable compound WI = weak interaction

c
 Lumaret et al.  2012 INH = inhibitor (no IC50 determined)

d polar compound SUB = substrate (no Km or EC50 value determined)

* also inhibits transporter efflux IND = induction (no expression value determined)

** also stimulates transporter ATPase SI = synergistic inhibition

1 = EC50

2 = muscle gill transporters (predominantly ABCB1)

3 = Zebrafish ABCC4
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