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ABSTRACT OF THE DISSERTATION

Towards Inclusive Low-Resource Speech Technologies:

A Case Study of Educational Systems for African American English-Speaking Children

by

Alexander Johnson

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2024

Professor Abeer A. Alwan, Chair

The potential of speech technology to improve educational outcomes has been a topic

of great interest in recent years. For example, automatic speech recognition (ASR) systems

could be employed to provide kindergarten-aged children with real-time feedback on their

literacy and pronunciation as they practice reading aloud. Within these systems, speaker

identification (SID) technology could additionally be used to identify the user’s speaker

characteristics in order to ensure that they receive age, language, and dialect-appropriate

feedback. While these technologies are more established for well-represented groups in STEM

(ie. able-bodied, adult, first-language speakers of mainstream dialects), they give much worse

performance for underrepresented groups (young children, speakers of non-mainstream di-

alects, people with speech-related disabilities, etc.). This work focuses on improving speech

technology performance for children’s speech and African American English (AAE) dialect

speech with the goal of creating more equitable outcomes in early education. The contribu-

tions of this work span three primary areas: 1) Dialect identification and density scoring, 2)

data augmentation for speech recognition, and 3) Natural Language Processing for fair and
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inclusive automatic speech assessment.

First, we create a robust system for dialect identification of African American English for

both children and adult’s speech. This system aims to take an input utterance from a speaker

of either African American English or Mainstream American English and determine which of

the two dialects the utterance belongs. The system fuses features from paralinguistics, self-

supervised learning representations, automatic speech recognition system outputs, prosodic

contours, and other descriptors of the speech signal in order to learn a mapping from the input

acoustic information to a dialect classification decision. We further explore this architecture

in automatic dialect density estimation, a task we create and develop. In dialect density

scoring, we train a system to automatically predict a speaker’s frequency of usage of dialect-

specific patterns. This information can then be passed to a speech recognition system for

more dialect-informed processing.

Second, we develop a data augmentation algorithm to improve zero-shot and few-shot

speech recognition of low-resource dialects. The algorithm, named LPCAugment, decon-

structs an input speech signal into a source and filter representation using linear predictive

coding (LPC) analysis. The poles of the filter representation can then be perturbed inde-

pendently of the source representation in order to model formant shifts that may be seen

across accents and dialects. We use this perturbation method to artificially generate speech

samples with shifted formant locations to serve as additional training data for a speech

recognition system. This speech recognition system is then evaluated on children’s speech

for child speakers of a Southern California dialect and child speakers of an Atlanta, Georgia,

area dialect.

Third, we explore automatic analysis and scoring of speech recognition transcripts for

educational assessments. Given information about a student’s spoken dialect and auto-

matically generated transcripts of their oral response to an assessment prompt, we train a

system to automatically grade the quality of the response with respect to a pre-determined

criterion. This system uses language modeling and spoken information retrieval to iden-
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tify key features in the spoken response and holistically decide if the response aligns with

the grading criteria. Combined, the steps in this work form a framework for inclusive spo-

ken language understanding technology that can be used to perform provide students with

dialect-appropriate language training or language assessment.
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CHAPTER 1

Introduction

1.1 Motivation

Artificial intelligence (AI) has revolutionized practices in finance, defense, and entertainment.

However, the education sector has significantly lagged behind in adopting machine learning-

based technologies in teaching. The deployment of AI technologies in schools could greatly

alleviate labor shortages and high work loads among educators. A 2022 technical report

found that the United States had a large shortage of teachers with 36,000 vacancies and

163,000 under-qualified individuals in teaching roles nationwide [1]. This shortage is even

more present in specialized education roles (working in dual-language immersion programs,

working with students with special needs, etc.), as illustrated by reports that 54% of speech

language pathologists in schools lack the personnel to adequately perform their duties [2].

Here, voice-based AI technology, such as automatic speech recognition (ASR) or spoken

language understanding (SLU) systems, could be used to lead students through educational

exercises, perform oral assessments, and screen for language difficulties in situations where

there is not enough staff to effectively do so for all students.

One reason for many educators’ hesitancy to use AI with their students stems from AI

researchers’ failure to prove the efficacy and fairness of the technology. For example, work

in [3] shows that many commercial ASR systems perform worse for speakers of African

American English (AAE) than for speakers of Mainstream American English (MAE). In

addition, studies have also shown that ASR systems designed to recognize adult speech
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perform much worse for younger children [4, 5]. These deficiencies and inequities make

current AI-based speech technologies unsuitable to handle the needs of classrooms consisting

of diverse groups of students. In fact, the inability of many speech technologies designed

for majority groups to generalize their performances to lower resource cases (eg. speakers

of low resource languages and dialects or children’s speech) remains a pressing problem in

the speech field. This is due in large part to the fact that many data-driven speech and

language systems are trained only on the most easily-accessible data, meaning that speech

from under-represented groups in technology are often excluded from the training process.

Solutions to this problem include the creation of new speech and language datasets which

include speech from typically marginalized linguistic groups, the creation of SLU system

architectures that do not rely solely on the availability of large datasets to train the model,

and the adaptation of existing systems for low-resource cases. This dissertation presents a

framework for more equitable training of speech and language models to perform well across

speaker age, dialect, and style. We focus here on achieving fair performance in educational

applications of spoken language technology for classrooms with speakers of African American

English-speaking students, as AAE is a large, underrepresented dialect in the United states.

The rest of this section provides background information on prior work in the fields of speech

technology and linguistics on which the rest of the dissertation builds.

1.2 Transformer-based Speech and Language Systems

Many current speech and language systems utilize the transformer architecture [6]. This

architecture was proposed as an efficient solution to sequence to sequence problems, or

problems in which an input sequence (eg. a sequence of words in a sentence, a sequence of

frames in an audio signal, or a sequence of images in a video) is mapped to an output sequence

(eg. a sequence of words in a different language as in machine translation, a sequence of words

corresponding to the input audio as in automatic speech recognition, or a sequence of object
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labels as in video tagging). A key feature of transformers is the attention module. For each

token in the input sequence, self-attention seeks to calculate three numerical representations

(a key, a value, and a query) such that a mathematical combination of those representations

between any two tokens will represent how related they are. For example, in the sentence

“I gave his wallet to him,” the words “his” and “him” reference the same object, and so

the combination of their keys, values, and queries should give a high number to represent

that these words are highly related. Likewise, the words “I” and “gave” are not significantly

related in meaning and thus should produce a lower number when their keys, values, and

queries are combined. Similar to self-attention, cross attention seeks to calculate keys, values,

and queries between an input sequence and an output sequence that represent how related

tokens in one sequence are to the other. For example, in a machine translation task which

translates the English sentence “I need to buy fruit,” to equivalent Spanish sentence “Necesito

comprar fruta,” the system should calculate a key, value, and query for each word so that

the combination of numerical representations for the equivalent words “fruit” and “fruta”

is higher than that for less related words. Transformers are composed of two portions: an

encoder stack and a decoder stack. In the encoder stack, neural network layers with self-

attention are used to map an input sequence to a high-level representation. Then the decoder

uses cross-attention to map this high-level representation to the output sequence. A diagram

of the transformer architecture is shown in Figure 1.1 Variations of this architecture have

been widely successful in many speech and language tasks. For example, the transformer-

based language model BERT (Bi-directional Encoder Representation from Transformers)

[7] has set a benchmark in text classification, and the Generative Pretrained Transformers

(GPT) [8] series of language models have set the state-of-the-art performance in generative

language models. The current leading ASR models such as Wav2Vec2 [9] and Whisper [10]

also heavily utilize the transformer architecture.
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Figure 1.1: The transformer architecture consisting of the input layer, encoder stack, and

decoder stack.

1.3 Underrepresented Voices in Speech Technology

Transformer-based speech systems often use a large number of trainable parameters (e.g 1.6

billion parameters in Whisper-Large [10]). In order to train a large neural network, the sys-

tem in turn requires large amounts of labeled training data. While this requirement does not

typically present challenges to well-resourced linguistic groups with a large digital footprint,

such large amounts of training data are not always available for speakers of under-resourced

languages dialects or speakers whose speech characteristics are not well-represented online

(young children, speakers with speech related-disabilities, etc.). This means that researchers

will not be able to train these systems on large amounts of data from speech of people of these

minority groups in the way that they can for majority groups, and the system will conse-

quently give lower performance for the minority groups. Therefore, further work is needed to

bridge the performance gap between majority and minority users of these data-driven speech

technologies. In the scope of inclusive educational technology, this paper focuses on speech-

language systems for two groups of underrepresented speakers in technology: Speakers of
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the African American English dialect and child speakers.

1.3.1 African American English

AAE is one of the most studied varieties of American English for both child and adult

speakers [11, 12]. While AAE can display several regional and generational differences, many

characteristics of AAE are common across most or all of the variants. Many scholars point to

the origin and evolution of AAE over time as the reason for the shared traits between these

variants [13]. The first large populations of Black people in the United States were enslaved

people who were brought to the US South in the 1600’s. There, AAE and White Southern

American English (SAE) grew out of British colonial dialects and heavily influenced each

other as they developed. While origins of specific AAE variants are often subjects of debate,

many scholars agree that several defining features of AAE were created during this time

and persisted through the Great Migration of African Americans throughout other regions

of the US [13]. Despite the historical and linguistic work done to better understand AAE,

the dialect is still understudied in the area of Spoken Language Systems. AAE impacts all

domains of American English (AE), but most significantly presents differences in rules for

production of the morphology , syntax, phonology, and prosody from those of Mainstream

American English (MAE).

AAE Phonology: A widely recognizable feature of AAE is it’s collection of phonolog-

ical differences, often expressed as differences in pronunciation of specific sounds or words,

from MAE. For example, AAE speakers can display word-initial labiodentalization of dental

fricatives (e.g. pronuncing “this” as “dis”), word final g-dropping (e.g. pronouncing “noth-

ing” as “nothin”), and word final r-lessnes (e.g pronouncing “four” as “fou”) [14]. While

many of these phonological patterns are not strictly unique to AAE (e.g. g-dropping has

become common in SAE and other dialects), they are more likely to appear in many AAE

speakers than in MAE speakers. Some phonological features of AAE also vary with region,

such as a regional vowel shift or lacktherof in a region where other speakers display a vowel
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shift [15].

AAE Morphosyntax: Morphosyntax, which encompasses features of grammar, word

choice, and word usage, is perhaps the most widely used studied aspect of the AAE dialect.

Grammatical features of AAE such as zero copula (e.g stating “they are rich” as “they

rich”), negative concord (e.g. “They ain’t never got no money”), and preterite “had” (e.g.

stating “she had went to the store” to express the simple past “she went to the store”)

are well-documented, and the evolution of their usage since the early 1900’s has been a

popular subject of study [16]. Interestingly, it has also been shown that the number of many

morphosyntactic AAE features used by AAE-speaking children declines as the children get

older [17]. This may be due to increased exposure to MAE with age or as a result of how

the US educational system structures its lesson instruction.

AAE Prosody: Prosody, which describes usage of pitch, intonation and rhythm in

speech, is perhaps one of the most difficult aspects of speech to document. Prosodic features

can occur both within words and across longer segments, change based on a speaker’s style

or intended subject of emphasis. Due to the complex nature of prosodic patterns, a trained

linguist is often needed to annotate the speech sample accurately. In general, linguistic work

in prosody has progressed less quickly than that in other areas such as phonology and syntax.

In studying AAE, this is no exception. Many scholars agree that AAE has unique prosodic

features that are distinct from other dialects [18]. However, it is difficult to document exact

rises and falls in pitch or segment-level intonations that would make an utterance sound like

an AAE construction. The relatively small body of well-agreed upon work on AAE prosody

makes the field an area in need of future analysis.

AAE Dialect Density AAE occurs on a continuum of low to high density usage.

Children who are high density users of AAE tend to be those who are growing up in poverty

[19, 20]. Factors such as isolation and widespread school segregation likely influence the

density of language variation in these low-income speakers [21]. In addition, children in

the Southern United States have been documented to use particularly high levels of dialect
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overall, as regional variation is also prevalent, and combines with AAE to result in oral

language that differs significantly from the language of print [22, 23].

Speakers of African American English often face bias, being perceived as less educated or

professional than speakers of MAE. For example, typically-developing child speakers of AAE

are often under-rated in language exams and put in special needs classes at significantly

higher rates than their MAE-speaking counterparts [24, 19]. AAE speakers with more ex-

posure to dialects outside of their own often learn to code-switch or translanguage, meaning

that they incorporate varying amounts of AAE and MAE dialectal characteristics into their

speech depending on the situation [25]. Low-income speakers typically do not get the same

number and quality of opportunities to hear and learn to use different types language, either

inside or outside of school, meaning that they often do not learn to code switch [21]. These

children in particular are at high risk for receiving assessment scores that do not reflect their

actual abilities and, subsequently, inadequate education.

Dialect density, or the frequency of one’s use of dialect-specific linguistic patterns, is a

commonly used term in discussing the effects of dialect in the classroom. The dialect dialect

density measure (DDM) of an utterance can be calculated as the number of dialect-specific

phonological and morpho-syntactic tokens in an utterance divided by the number of words

in that utterance. Of particular interest to the field of educational speech technology is the

fact that speakers who speak with higher AAE dialect density (i.e. their utterances have

a relatively high average DDM) have been shown to face more educational disparities than

their counterparts who speak with lower dialect density [19].

1.3.2 Children’s Speech

There are several well-known differences between children’s speech and adults’ speech that

cause performance discrepancies when neural network-based ASR systems trained only on

adults’ speech are tested on children’s speech [26]. First, young children have yet to master

the more complex articulatory gestures needed to produce conventional or adult-like English
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speech sounds [27]. This means that children’s speech often contains several production

errors (substituted speech sounds for example) and variability in how they produce speech

sounds. In fact, there is higher inter- and intra-speaker variability in child speech when

compared to adults [28]. Second, the frequency range of children’s voices is much higher

than that of adults, making them less compatible with systems trained on adult’s speech

[28]. Third, ASR systems trained to recognize the words of an adult’s vocabulary will likely

have bias towards interpreting the child’s words as ones more commonly used by adults

[29]. Therefore, in order to more effectively create an ASR system for children, that system

should be trained using child-specific speech data. While some children’s speech corpora

do exist, they are not nearly as plentiful as those for adults. In addition, the available

children’s speech datasets often do not contain dialectal or sociolinguistic information on the

participants, making it difficult to ensure fair performance across diverse child speakers.

1.4 Automatic Dialect Identification

Language identification (LID) and dialect identification (DID) are the processes of automat-

ically identifying a speaker’s spoken language and dialect from a short input utterance. LID

and DID identification have become integral parts of many large spoken language systems.

For example, many multilingual automatic speech recognition (ASR) systems like OpenAI’s

Whisper [10] and Meta’s Massively Multilingual Speech models [30] leverage large cross-

lingual speech corpora for training and then perform LID during inference. Other systems

like AWS transcribe [31] offer DID for commercial use cases, distinguishing input speech,

for example, between English variants from the US, UK, or India for better performance

on regional dialects. As these models expand to support more languages and dialects, sev-

eral challenges arise: First, data-driven DID methods that rely on the availability of large

amounts of dialect-labeled speech may not generalize to less well-resourced dialects and vari-

ations. Second, even within a dialect, these systems are typically only trained on adult
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speech. Therefore, many DID systems are unable to accurately predict dialect for children’s

speech, making them unsuitable for speech applications in early education. Third, some

speakers may use more or fewer aspects of a dialect than others (as how some people are

perceived to have a thicker accent than others). As such, categorizing all speakers of a dialect

into the same label group regardless of frequency of use of dialect-specific pronunciations,

grammar patterns, and prosodic patterns may lead to inaccurate representations of some

speakers in downstream applications.

Several recent studies have offered promising DID systems for a limited number of di-

alects. [32] introduces a time delay neural network, as popularized by the X-vector speaker

embedding [33], with attention across both time and frequency for classifying between a

set of 16 dialects. The experiments performed in [34] additionally found frequency-based

data augmentation to be beneficial in training a recurrent neural network to classify low-

resource dialects with either speaker embeddings or a combination of Mel frequency cepstral

coefficients (MFCCs) and other acoustic features. The authors of [35] designed a multi-

task learning framework for a conformer-based system that jointly learns to output ASR

transcripts and DID labels for speech from three Telegu dialects. In order to overcome per-

formance degradation caused by domain mismatch in end-to-end DID systems, [36] creates

a domain-attentive fusion technique to better classify African and Arabic dialects across

recording conditions and speaking styles.

Despite these advancements, several challenges remain in DID, especially for widely spo-

ken languages such as English which display wide variability both within and across groups.

For example, while many current paradigms may categorize US English as distinct from

British English, they do not recognize differences between Mainstream American English

(MAE), African American English (AAE), Southern American English, Creole English, and

other variants. The work in [37] shows that ASR systems with more knowledge of the dif-

ferent dialects, achieved by joint training on DID and ASR, often perform better across

those dialects, implying that adding more specificity to the DID pipeline would improve
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the performance of downstream tasks. However, it is neither simple nor scalable to simply

attempt to train current DID systems to distinguish between larger sets of dialects. First,

several dialects are low resource dialects, meaning that there is not enough publicly avail-

able speech data to train large spoken language models to recognize them. Second, speech

samples cannot always be categorized neatly into one dialect. Many speakers code-switch,

alternating between different languages or dialects [38], or incorporate aspects of multiple

dialects into their speech. Assigning discrete labels to samples from these speakers and

forcing a model to choose a single dialect for them would likely propagate error through

the system. Third, many current DID models only classify dialect from acoustic features

like spectrograms or Mel frequency cepstral coefficients which mainly discern differences in

pronunciation (e.g. [39, 40, 41]). However, dialects are a multi-faceted aspect of language

which can differ in prosody, grammar, and diction in addition to pronunciation. Previous

works which have combined prosodic cues with spectral information [42], or that have at-

tempted to classify language or dialect from grammatical features of text [43] have shown

that considering other aspects of language can improve automatic DID. This is especially

beneficial in DID for speakers with relatively high acoustic variability like children. Although

children’s developing vocal tracts and articulatory motor skills may cause their speech to

display different acoustic properties than adults [44], work in [45] shows that incorporating

prosodic and grammar information into DID systems trained on adults speech can make

them more robust for children.

Improving DID for children’s speech is of particular interest in educational speech technol-

ogy. Applications like Read Along by Google [46] use ASR and natural language processing

(NLP) to recognize and provide pronunciation and literacy feedback to children as they prac-

tice reading aloud. As education literature has demonstrated, speakers of minority dialects

like AAE are often underrated in language abilities due to raters who are unfamiliar with

AAE interpreting dialectal differences as language deficiencies [19]. In particular, children

with higher AAE dialect density have been shown to underachieve in schools that primarily
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teach in MAE [19]. Children’s DID in educational spoken language systems could be used

to detect and mitigate this bias.

1.5 Automatic Speech Recognition

Automatic Speech Recognition (ASR) is the task of generating a text transcript of the

spoken words contained within an audio recording. Many traditional ASR systems operate

in the following way[47]: First, a training corpus of matched audio data and corresponding

text transcripts is compiled. From each audio file, a frame-level acoustic representation of

speech is extracted. These representations may be calculated deterministically, as with Mel

Frequency Cepstral Coefficients [48], or learned by the input layers of a neural network.

These frame-level features are then passed to an acoustic model which aims to predict which

speech sound, if any, was spoken in each frame of the input audio data [49]. As the output

of the acoustic model is a sequence of speech sounds that has the same length as the number

of input audio frames, a lexical model is then tasked with mapping this sequence of speech

sounds to the intended words that most likely produced them. Finally, a language model

incorporates grammatical and semantic knowledge to determine the most likely sentence

spoken by the speaker that would produce the given output of the lexical model [50]. During

training, the ASR system is trained to learn the optimal parameters that will produce the

closest transcript to the ground truth transcript. Many current end-to-end models seek

to combine the acoustic model, lexical model, and language model into one step which is

learned by a large neural network. These end-to-end models have been shown to achieve

high performance when trained on large datasets whose speaker distribution matches that

of the evaluation set. For example, OpenAI’s Whisper [10] achieves high state-of-the-art

after training on 680,000 hours of audio data scraped from the internet. However, these

end-to-end systems often experience large degradations in output quality when tested on

out-of-domain data. That is, these systems perform worse for speakers whose linguistic
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group or speech patterns were not well-represented in the training data. Therefore, Whisper

and other widely-used ASR systems typically show less efficacy when transcribing speech

from young children, speakers of African American English, and speakers with other accents

and dialects. In order to overcome these and other effects of domain mismatch, researchers

have proposed several training strategies such as data augmentation and self-supervised pre-

training.

1.5.1 Data Augmentation

Many ASR systems have been shown to perform better when trained with more audio data.

Therefore, researchers have sought out methods to cheaply generate more training data from

the existing datasets. Data augmentation methods seek to create artificial training data

containing deviations from the original samples in order to make the model less sensitive

to expected variations. For example, vocal tract length perturbation (VTLP) [51] applies a

piece-wise mapping to the frequency axis of input spectral features of a speech signal in order

to simulate speech having come from a speaker with a different vocal tract length. Speed

perturbation [52] speeds up or slows down portions of an audio signal to simulate having

speech of different speaking rates. SpecAugment [53] masks out and re-scales portions of

an input spectrogram to simulate speech time-frequency components that are missing or

changed from the original recording. By training a speech recognition system to process the

augmented speech, the system learns to transcribe the speech in an invariant manner with

respect to target characteristics such as speaking rate or vocal tract length.

1.5.2 Self-supervised Pre-training

Thus far, we have described ASR systems as trained with supervised learning. Supervised

learning means that the system is given audio data and corresponding human-labeled text

transcripts at the time of training and then tasked with finding an optimal mapping from
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the audio data to the transcripts. This process requires that all audio recordings used have

corresponding human-written labels in the form of transcripts. However, there is much more

audio data available than just what has been curated by transcribers. For example, websites

like YouTube contain many hours of audio recordings that do not contain human-written

text transcripts. This begs the question of whether or not non-labeled data can be leveraged

for training an ASR system. This task of leveraging unlabeled data is commonly referred to

as unsupervised learning if no label is used during training, or self-supervised learning if a

training task in which the system learns to predict an attribute of the data itself is created.

One of the most popular architectures for unsupervised or self-supervised learning is Meta’s

Wav2Vec2 system [9]. Before performing supervised training on the matched audio-text

pairs in the training data, Wav2Vec2 first attempts to learn information about the structure

of the audio data through a self-supervised pre-training step. Ideally, after the system

completes the pre-training step, it will learn a better neural network weight initialization

from which to start supervised training. At the input, Wav2Vec2 uses a convolutional

neural network to extract acoustic features from the speech signal. Some of these features

are intentionally masked out or removed from the system. These features are then fed to a

BERT (Bidirectional Encoder Representation from Transformers) [7]. The BERT encoder is

then tasked with learning a feature representation from which the missing information from

the masked out frames can be interpolated. After the system has been trained to do this,

the output features of the BERT encoder can be readily applied to a downstream speech

recognition model or another task. A diagram of the Wav2Vec architecture is shown in

Figure 1.2. This self-supervised pre-training task has been shown to significantly improve

model performance. Other architectures like HuBERT [54] have improved on Wav2Vec2’s

design for increased accuracy. HuBERT uses much of the same architecture as Wav2Vec2.

However, one notable difference is that the system is also tasked with learning to cluster

similar acoustic features in order to discover hidden units which may correspond to sounds

or characteristics of the language. Notably, the features output by the BERT encoder in
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HuBERT have been shown to be useful for a variety of speech tasks outside of ASR such as

emotion recognition, keyword spotting, and automatic speaker verification [55].

Figure 1.2: The Wav2Vec2 architecture, demonstrating how self-supervision is used to train

the encoder layer to create a robust speech representation for downstream ASR or other

tasks.

1.6 Spoken Language Understanding for Education

After transcribing a student’s spoken response to a question, we may then want to offer

feedback on completeness, complexity, or overall quality of their answer. For this, we design

natural language processing (NLP) pipelines to extract information from or categorize the

ASR transcripts of student responses. Given a text representation of the student’s answer,

we can build on common methods in NLP for education to adapt them for spontaneous

speech and speech diverse dialects. Here, we build on methods in automatic assessment

scoring and question answering.
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1.6.1 Automatic Oral Assessment Scoring

Automatic Oral Assessment scoring seeks to train a machine to give a score to a student’s

verbal response to a prompt such that the score has high agreement with that assigned by

a human rater. In recent years, great strides have been made to automate spoken language

assessments (SLAs) that measure fluency and goodness of pronunciation. For example, [56]

explores multitask learning as an approach to overcoming the problem of limited data in

automatic oral English proficiency SLAs for Mandarin speakers. In addition, [57] compares

the performance of Wav2Vec2.0 [58] and Kaldi TDNN-based [59] grapheme embeddings as

features for evaluating children’s phonological working memory for nonwords. Similarly,

the authors of [60] use hidden states from Wav2Vec2.0 [58] to predict mispronunciations

and abnormalities in children’s speech. Such methods that take advantage of large pre-

trained automatic speech recognition (ASR) systems seem particularly promising given the

recent advancements in training strategies for architectures like HuBERT [54], WavLM [61],

and Whisper [10]. However, challenges remain in automatic SLA, especially for children.

Children’s developing language skills and growing speech articulators cause their speech to

be highly variable [44], which in turn creates challenges in recognition and assessment [62, 63].

In order to assess language abilities such as grammar usage, coherence, and reasoning,

NLP systems that infer over longer contexts are necessary. This task has been explored in

tasks such as automatic essay scoring. Studies in essay scoring have used natural language

understanding (NLU) to score written essays for narrative language proficiency [64, 65].

Notably, [66] combines hand-crafted linguistic features which capture advanced semantics

with soft label predictions from the language model, RoBERTa [67], in a hybrid model

which achieves state-of-the-art-performance readability score classification (i.e. classifying

the complexity and depth of an essay).

However, further work is needed to adapt these state-of-the-art essay scoring systems to

spoken language.
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1.6.2 Spoken Question Answering

In addition to scoring the overall quality of an oral response, a rater may also want to ex-

tract specific pieces of information from the answer in order to give targeted feedback on the

completeness and correctness of certain sections of the response. For example, if a student

is asked to verbally describe a person’s appearance, the rater may consider the description

incomplete (i.e. deserving of a lower score) if it does not mention the person’s hair color.

Using automatic question answering, an NLU system could query the student’s response for

any mention of hair color to determine the student’s score in that area. Recent advance-

ments in BERT [7] and GPT [68]-based language models have revolutionized performance in

question answering and information retrieval tasks on text. Now, a desirable outcome is to

replicate the performance of these systems in the speech domain. That is, given a set of audio

recordings and a user’s input query for information, we seek to return audio recordings or

spans that are relevant to the query. Successful architectures for this task typically take one

of two frameworks: a cascade system or an end-to-end model. A cascade system first uses

automatic speech recognition (ASR) to transcribe a spoken document and then passes that

transcript to a downstream language model for text-based question answering. End-to-end

systems seek to bypass the need for transcription and answer a question directly from audio

features. Notable cascade models include [69] which introduces a self-supervised dialogue

learning framework from conversational question answering and [70] which proposes a uni-

fied pipeline for multiple spoken language understanding tasks. End-to-end spoken question

answering models of interest include SpeechBERT [71], which jointly encodes audio and text

information for downstream spoken question answering, GhostT5 [72] which extracts and

passes a lightweight speech feature representation to a pre-trained language model to answer

questions from speech without the need for complete automatic speech recognition (ASR)

transcription, and [73] which implements a dual attention mechanism for smoother incorpo-

ration of both text and audio. While end-to-end models show promise in eliminating errors

propagated by ASR systems [74], cascade models are able to leverage large language models
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trained on massive amounts of text data for open domain question-answering. Currently,

these cascade models may be especially preferable in low-resource applications for which

there does not exist enough in-domain data to effectively train an end-to-end model from

scratch. End-to-end systems may match or surpass the performance of cascade models as

more labeled datasets for spoken question answering become available.

Despite the achievements presented by the aforementioned studies, several challenges

remain in creating robust spoken question answering and information retrieval systems.

First, much of the work done in spoken question answering is evaluated on datasets such as

the Spoken SQuAD dataset [75] or Spoken CoQA dataset [73]. These datasets often only

contain spoken questions and contexts that were either generated using text-to-speech or

read from a script created from an existing text question answering dataset. This means

that further work may be necessary to create spoken language understanding systems that are

robust to the disfluencies and lack of proper logical organization often found in spontaneous

speech [76]. Second, many of these works format the problem of spoken question answering

as finding an answer from a short context (e.g. a one minute audio recording). Many contexts

(e.g. a lecture, an instructional video, or a meeting recording) may be significantly longer,

and it is non-trivial to scale a model trained for short contexts to infer answers from a longer

context. Last, further work is needed to ensure that these systems are robust to differences

in dialect, accent, speaking style, and regional diction or other out of vocabulary words. This

may be especially true for cascade systems employing pre-trained models that were trained,

for example, on only one dialect.

1.7 Outline of the Dissertation

The rest of this dissertation is organized as follows:

Chapter 2 describes the primary databases used in this work

Chapter 3 describes the work done in African-American English Dialect Identification
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and Dialect Density scoring. We frame this work in the context of performing linguistic

evaluation for more linguistically-informed downstream tasks such as speech recognition and

spoken language understanding

Chapter 4 outlines a method created for improving automatic speech recognition for child

speakers of low-resource dialects such as African American English. This method uses data

augmentation to produce additional training data with targeted characteristics of

Chapter 5 details frameworks for spoken language understanding from speech recogni-

tion transcripts of diverse children’s speech. These frameworks use state-of-the-art natural

language processing algorithms and large language models to automatically score children’s

oral language exam responses and retrieve specific pieces of information from oral responses

for use in educational technology.

Chapter 6 describes methods for spoken language understanding and spoken question

answering from long audio files which contain speech from speakers of African American

English.

Chapter 7 is a conclusion of the dissertation which offers a summary of key findings and

suggestions for future work
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CHAPTER 2

Datasets

This dissertation primarily uses data from three datasets. The Corpus of Regional African

American Language [77] was used to perform experiments in dialect identification and di-

alect density estimation on adult African American English speech signals. We additionally

created a spoken question answering dataset from CORAAL, CORAAL QA, for use in a spo-

ken question answering task on dialectal speech. The Georgia State University Kids Speech

Corpus (GSU Kids Corpus) [78, 79] was used in both children’s AAE DID experiments and

automatic oral assessment scoring. Last, the UCLA JIBO Kids speech database [78, 80]

was collected and used as non-AAE speech in cross-dialect children’s speech recognition

experiments.

2.1 CORAAL

The Corpus of Regional African American Language database contains spoken interactions

between an interviewer and an interviewee who speaks a regional variant of AAE. The set of

speakers range in age from under 15 to over 90 and contain roughly equal numbers of male

and female identifying participants. The interviewees were asked to describe their daily lives,

experiences, and opinions on their communities as well as given space to discuss other topics

of interest to them. The entire CORAAL database contains over 200 hours of speech that are

divided into 8 components, where each component is a set of speakers from a particular city

and time of recording 8. We used the following numbers of speakers with regional dialects

from the following five US cities: 22 speakers from Washington DC (DCB), 10 speakers from
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Princeville, NC (PRV), 11 speakers from Rochester, NY (ROC), 10 speakers from Lower

East Side Manhattan, NY (LES), and 12 speakers from Valdosta, GA (VLD). We chose to

use these components, or splits of the dataset, because of their use in prior work [3] and their

coverage of different regional speaking styles. These five splits contain 143 audio files total,

of which 34 are under 15min in length, 39 are between 15min and 45min in length, and 70

are greater than 45min in length. This totals over 100 hours of spontaneous AAE speech.

For each speaker, several utterances with good audio quality ranging from 5sec to 1min in

length were selected, and their dialect densities were scored by hand as ground truths. The

dialect densities of the speakers in DCB, PRV, and ROC were scored by the authors of [3]

while the dialect densities of the speakers in LES and VLD were scored by the authors of

this dissertation. This results in a total of approximately 3 hours of dialect density-scored

utterances from 65 speakers.

2.1.1 CORAAL QA

To assess performance in the spoken question answering task, we introduce the CORAAL

QA dataset 1. This dataset consists of hand-labeled answer question-answer pairs created

from speech contained in the LES, ROC, DCB, PRV, and DCB splits of CORAAL (same as

listed in the previous section). From each interview recording, we created a set of questions

using the following criteria: 1) The question can be factually and objectively answered by

information contained in a continuous time span of the audio file that is 45sec or less in length,

2) The answer to the question is given only once in the audio file, and 3) the answer to the

question is not common knowledge and must be answered through extraction from the given

audio file. The question answer pairs are given in the format: “query: answer start span,

answer end span” where the answer starting and ending span are given in seconds (e.g.

“Who is the speaker’s favorite basketball player? : 831.25, 842.76” where the numbers after

the colon indicate the start and stop time in the audio file where the speaker gives the answer

1data available at https://github.com/christinachance/CORAAL-QA/
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to the question).

2.2 GSU Kids Speech Corpus

This dataset contains recordings of approximately 200 students between the ages of 8 and

12 years old from the Atlanta, Georgia area. The data was originally collected in [79] for

educational studies. As part of that work, metadata about the student’s reading ability and

presence of any language impairments was recorded. We later annotated a portion of the

dataset for speech tasks. The children in the dataset were recorded while performing educa-

tional exercises in reading, language, and pronunciation with a facilitator. First, the students

were administered a portion of the GFTA [81] sounds in words exercise in which they were

recorded stating phonemically diverse words in isolation. The students were then adminis-

tered two portions of the Test of Narrative Language (TNL) [82], a story retelling task and a

set of picture description tasks, which assessed their oral narrative language abilities. Each

child was recorded in 4 sessions each lasting about 2 to 10 minutes. The students were also

given additional tasks including sentence formulation and non-word repetition. The entire

dataset contains approximately 100 hours of labeled and unlabeled speech data. All children

recruited to the study lived in the Atlanta Georgia Area and were native English speakers.

The audio was recorded by a computer microphone with a sampling rate of 44.1kHz.

2.3 UCLA JIBO Kids speech

This dataset contains recordings of approximately 130 children between the ages of 4 and 7

years old, the critical age range for early acquisition of literacy. The children were recorded

while they performed educational exercises in reading and pronunciation (eg. picture-naming

tasks). Each child was recorded in 3 sessions each lasting about 15 minutes. The entire

dataset contains approximately 90 hours of labeled audio. The child speakers in the dataset
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conversed with the social robot, Jibo 2, following a protocol created by experts in early child-

hood education [83]. A facilitator was also present at each session and intervened verbally if

the child had difficulty interacting with the social robot. Each child sat approximately two

feet away from the robot with a microphone placed equidistantly between them. The children

then were administered a portion of the Goldman Fristoe Test of Articulation-3 (GFTA3)

[81] as well as exercises in counting and spelling. All children recruited to the study lived

in Southern California and were proficient in English. Many of these children spoke second

languages at home. The audio was recorded by a Logitech C920 Webcam microphone with

a sampling rate of 48kHz.

2“Jibo Robot - He can’t wait to meet you,” Boston, MA, 2017. [Online]. Available: https://www.jibo.com
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CHAPTER 3

Dialect Identification and Dialect Density Scoring

In this chapter, we introduce novel systems to perform AAE dialect identification and di-

alect density scoring from short utterances. Recall from Chapter 1 that dialect density is

defined as the proportion of a speaker’s speech that contains dialect-specific phonological,

morphosyntactic, or prosodic cues. DID may be used to automatically provide dialect in-

formation to downstream tasks such as ASR or NLU for more dialect-informed processing.

Given that an utterance was detected as containing characteristics of AAE, we may want

to further estimate the dialect density measure of the utterance in order to processes low

and high density utterances differently. This task of dialect density estimation could also

be especially useful for data mining in building dialect-specific text-to-speech systems or for

linguistic cataloging of a dialect.

3.1 Dialect Density Estimation

This section focuses on performing dialect density estimation for AAE adult speech. The

focus of this work is to assess the feasibility of estimating dialect density in a low-resource

scenario such as AAE. In order to overcome the lack of data needed to train large language

models to perform such tasks, we incorporate linguistic knowledge to attempt to targetedly

extract features corresponding to well-documented aspects of AAE.
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3.1.1 Data Annotation

This work uses 208 utterances from the CORAAL database. The utterances ranged in length

from 15sec to one minute in length. For each utterance, the number of phonological aspects

of AAE and the number of morphosyntactic aspects of AAE were counted and divided by the

number of words in the utterance to calculate that utterance’s DDM. We calculate one DDM

that only takes into account the phonological aspects of dialect (DDMphon), one DDM that

only takes into account the morphosyntactic or grammatical aspects of dialect (DDMgram),

and one DDM that takes into account both (DDM). The utterances from the PRV, ROC, and

DCB sets of the CORAAL database were selected and annotated for dialect density by the

authors of [3]. The utterances from the LES and VLD sets of CORAAL were annotated for

DDM by the authors of this work. Only well-documented phonological and morphosyntactic

markers of AAE were counted as linguistic aspects of the dialect. The average DDM for each

city in the CORAAL dataset is shown in Table 3.1.

DDMphon DDMgram DDM

DCB 0.083 0.004 0.088

ROC 0.041 0.006 0.047

PRV 0.166 0.028 0.194

LES 0.018 0.025 0.042

VLD 0.122 0.029 0.141

Table 3.1: Average dialect density by city for each of the dialect density measures shown.

3.1.2 Methods

For each DDM-labeled utterance, we extract a feature set which is hypothesized to correlate

strongly with a particular aspeect of AAE dialect. We then train a backend classifier to map

the input features to a continuous dialect density prediction.
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3.1.3 Feature Sets

From each utterance, we extracted the following six feature sets:

Wav2Vec2.0 Transcripts: For the first three feature sets, we generated ASR tran-

scripts using a pretrained Wav2Vec2.0 model [9] trained on the 960hr LibriSpeech database

[84]. While these transcripts contained errors and misrepresented the out-of vocabulary

(OOV) words, we implicitly attempted to utilize consistent errors and accurate portions of

the transcripts to identify useful phonetic and grammatical information.

1. ASR Output Character Combination Frequency: The frequency of each se-

quence of two characters (bigram) in the transcript was counted and used as a feature. The

Wav2Vec2.0 model can output 31 different characters leading this feature to be a 961 x 1

vector which can be thought of as the flattened 31 x 31 matrix in which the element in row

i and column j is the number of times character i was followed directly by character j in the

generated transcript for the given utterance. We hypothesize that this feature will capture

consonant clusters that commonly occur in a particular dialect.

2. ASR Output Character Duration: From the output logits of the Wav2Vec2.0

model, the average duration of each output character was computed. We hypothesize that

this feature will be useful in determining which sounds are more or less frequently spoken or

stressed by speakers of a particular dialect.

3. ASR Output Language Modeling: In addition to the previously mentioned

features, we were interested in how neural language modeling techniques could be applied

to automatically generated transcripts of speech in order to predict dialect density. We

noticed that, of the most commonly noted features of AAE [21, 85], language differences

relating to the tense, collocation, and negation of verbs (eg. absence of copula, negative

concord, generalization of “is” and “was” to use with plural and second person subjects,

etc.) were especially prevalent. This led us to pay particular attention to verbs. First, the

verbs in each utterance were found using a pre-trained FLAIR part-of-speech tagging model
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[86]. We then used the Fisher corpus [87], consisting largely of MAE conversations, to train

word- and character-based LSTM language models, which provide probability distributions

over the next word or character in an utterance given the history. To measure mismatch of

verbs in the MAE training data and AAE testing data, we then extracted the verb OOV

rate (using the word-based model vocabulary) and the average verb surprisal [88] (using the

character-based model) for each utterance, where the surprisal of the i-th word (S(wi)) is

calculated from the letter LM as the negative log probability of the i-th word occuring in

sequence after words w1, ..., wi−1. We also calculate the overall utterance perplexity from

the character-based model (char ppl), the average surprisal for all words, and the ratio of

average verb surprisal to average overall surprisal. Since the LM is trained on MAE, word

choices more characteristic of AAE will have high surprisal.

4. ComParE16 Features: The widely used ComParE16 features [89] were extracted

from the audio segments using the OpenSmile toolkit [90]. This set includes pitch, energy,

spectral, cepstral coefficients (MFCCs) and voicing related frame-level features which are

referred to as low-level descriptors (LLDs). It also includes the zero crossing rate, jitter,

shimmer, the harmonic-to-noise ratio (HNR), spectral harmonicity and psychoacoustic spec-

tral sharpness. In total, this feature set contains 6373 features resulting from the computation

of various statistics, polynomial regression coefficients, and transformations calculated over

the low-level descriptor contours.

5. X-Vector: The popular X-vector was incorporated to capture speaker-specific infor-

mation [33]. These 512-dimensional neural network-generated embeddings contain speaker-

specific information that may relate to dialect. As described earlier, the 512-dimensional

vectors were projected into 5-dimensional feature vectors using the fully connected network

shown in Figure 3.1. This network achieved a validation accuracy of 72.6%.

6. Prosodic Embedding: Inspired by [91], four pitch and energy features were ex-

tracted across time from the utterances: F0 (extracted with Praat [92]), the total energy in

the frame, the energy in the spectrum below 1kHz, and the energy in the spectrum above
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1kHz. These features were then normalized and used as the input to a CNN (as shown in

Figure 1) that was trained to predict the region of origin of the speaker. This forces the

CNN to classify region specific information from only the prosodic information contained

in the speaker’s changes in pitch and energy. This CNN achieved a validation accuracy of

70.7%. The output probability vector was then used as the final prosodic embedding.

Weak Supervision: To create the X-vector and Prosodic Embedding Features, we

employed a weakly-supervised learning technique. We noticed that the five cities used from

the CORAAL database have widely varying average dialect densities, with the averages

from PRV and VLD being much higher than those from ROC and LES, and with the DCB

average in between. Therefore, we believed that an utterance’s city of origin could serve

as a weak label in a preliminary step before dialect density estimation. We gathered the

set of utterances from the entirety of the 200hr CORAAL database from the five cities of

interest that matched the following criteria: 1) Contained at least 10 words to have enough

speech to estimate dialect density, 2) Contained no interruptions from the interviewer 3)

Were not contained in the set of dialect density-scored utterances. We then used shallow

neural networks to map larger input feature vectors into 5-dimensional vectors for which the

ith element represents the probability that the utterance was spoken by a speaker from the

ith city in the database. This step is intended to project larger sources of information into

smaller features vectors which contain only relevant dialect information. The idea is that

training a model to classify diverse utterances by region would prompt it to learn region-

specific information such as dialectal traits without the need to label the dialect density of

all of the utterances in the training set. The output 5-dimensional vector is then used as the

representative feature. This framework is depicted in Figure 3.1
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Figure 3.1: The architecture for the fully connected (FC) network used to project the X-vec-

tors (left) and the CNN used to project the prosodic information (right). The inputs to the

CNN are the pitch (F0) and three energy contours of the utterance. The output of both

networks is a vector whose elements represent the probability of the speaker belonging to

each of the cities used from the CORAAL database.
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3.1.4 Experiments

First, one distinct XGBoost model [93] was trained for each of the six feature sets. This

boosted decision tree model has the advantage of allowing us to easily measure the impact

of the input features on the output value for explainability. Each of the six models was

trained to predict dialect density scores from one of the given input feature sets. Then

the correlation between the predicted dialect density labels and actual dialect density labels

was calculated. We chose correlation as the performance metric because human-performed

dialect density assessments are subject to possibly high inter-rater variability within the

ranges of their scores [94], and so evaluation methods that rely heavily on the absolute value

of the dialect density may be subject to measurement noise. However, raters do tend to

assign higher or lower scores to the same speakers, and so we expect correlation between

predicted and ground truth scores to be meaningful. As some features may only correlate

with phonological aspects or only correlate with morphosyntactic aspects of dialect density,

we train each model to predict each of the three types of dialect density scores (DDMphon,

DDMgram, and DDM). Finally, we used the set of all features as the input to the XGBoost

model, as shown in Figure 3.2. As the ComParE16 feature set was large, only the most

impactful 10 ComParE16 features were used in the combined feature set.

3.1.5 Results and Discussion

Table 3.2 gives the Pearson Correlation of the predicted dialect density measure with the

ground truth labels for the test set for an XGBoost model trained on the listed feature

sets. We also include the SHAP value plots [95] which give the relative importance of each

feature to the model during prediction. Figures 3.3 and 3.4 give the SHAP value plots for

the models trained on all features for predicting DDMphon and DDMgram, respectively.

As the DDMphon term dominiates the total dialect density measure, the SHAP value plot

for DDM is nearly identical to that of DDMphon. In these plots, the Wav2Vec2.0 Char
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Figure 3.2: Overview of the features used in the proposed dialect density estimation proposed

framework.

Comb features are listed as char1 char2 (e.g. N space is the frequency of the “N” character

being followed by a space character), and the Wav2Vec2.0 Char Dur features are listed as

the character whose duration was used as the input feature from the letters A-Z, period,

apostrophe, space, or silence (sil) characters.

In order to demonstrate the reliability of our results, we also perform random hold out

on the highest performing features. Here, we randomly select speaker-independent train and

test split (80% train, 20% test) from the data 200 times and report the average scores over

all runs in Table 3.3.

Looking at the individual features, we note that the Wav2Vec2.0 Character Combinations

and Wav2Vec2.0 LM features were especially effective in estimating dialect density. Many

of the character combinations appear to relate to word initial and word final sounds (eg.

N space (frequency of an “N” followed by a space character in the ASR transcripts), F space

(frequency of an “F” followed by a space), and space U (frequency of a space followed by

a “U”)). This is in line with observations that AAE includes dropping of word final nasals

and glides and simplification of word initial and word final consonant clusters. Character

perplexity (char ppl) from the language modeling features was the most impactful feature in
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Correlation DDMphon DDMgram DDM

Wav2Vec2.0

Char Dur.
0.382 -0.013 0.359

Wav2Vec2.0

Char Comb
0.303 0.124 0.503

Wav2Vec2.0 LM 0.520 0.108 0.637

X-vector 0.404 0.392 0.369

ComParE 0.102 0.189 0.443

Prosody 0.029 0.376 0.008

All features 0.552 0.430 0.718

Table 3.2: Pearson Correlation between actual and predicted dialect density measures for

each of the three metrics: only the phonological component of the dialect density (DDM-

phon), only the morphosyntactic component of the dialect density measure (DDMgram), and

the entire dialect density measure (DDM). The results for the model trained on six feature

sets individually as well as the model trained on the combination of all of the features are

shown.

Correlation DDMphon DDMgram DDM

Wav2Vec2.0

Char Comb
0.339 0.126 0.495

Wav2Vec2.0 LM 0.502 0.173 0.629

All features 0.569 0.385 0.678

Table 3.3: Average Pearson Correlation between actual and predicted dialect density mea-

sures for each of the three DDMs over 200 iterations of Random Hold Out validation.
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estimating all three DDM scores. This feature is particularly useful in providing an objec-

tive distance metric between the MAE of the Fisher Corpus and the ASR transcripts of the

target dialect speech which, unlike WER, does not require ground truth transcripts or suffer

as heavily in the presence of OOV words. The features derived through weakly supervised

embedding (projected X-vector and Prosody embedding) have the most significant correla-

tion with DDMgram. This may indicate that learning grammar from audio files or imperfect

transcripts requires larger amounts of data which our method of weak supervision allows

us to utilize. In general, the ComParE features using Auditory Rasta filtering proved to be

most useful. The RASTA-style filtered auditory spectrum is inspired by psychoacoustics and

has been shown to capture context-dependent information useful in ASR [96].

As Figure 3.3 shows, the combination of the five most impactful features in predicting

DDMphon was: character perplexity (char ppl), mean rising slope of the Rasta-filtered au-

ditory spectrum, the frequency of an “N” character followed by a space character in the

ASR transcripts (N space), the standard deviation of distances between peaks in the Rasta-

filtered auditory spectrum, and the PRV component of the projected X-vector. As Figure

3.4 shows, the five most impactful features in estimating DDMgram are character perplexity,

duration of sounds predicted to be silence or unintelligible by Wav2Vec2.0 (sil), the PRV

component of the prosody embedding, the ROC component of the projected X-vector, and

the frequency of an “F” followed by an “A” in the ASR transcripts (F A). The frequency of

F A as a feature may due to a formant shift of the vowel following “F” in several words such

as “fell” or “fire” as is seen in some dialects of the US South. We note that the features taken

from the Wav2Vec2.0 output are most useful in predicting phonological aspects of AAE di-

alect density. The character perplexity in particular has a remarkably high correlation with

the DDMphon. A high character perplexity is indicative of the presence of character strings

that would be unlikely to occur in the MAE sentences of the Fisher corpus. Therefore,

this feature proves effective in separating MAE and AAE utterances by the pronunciation

perceived by the Wav2Vec2.0 model. The character duration and frequency of combinations
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of characters output by the Wav2Vec2.0 model similarly have high correlations with the

dialectal phonological differences. The prosody feature by far has the highest correlation

with DDMgram. This may indicate that grammatical differences between AAE and MAE

often co-occur with prosodic differences. We note that the utterances from different cities

of the CORAAL database contain largely disparate numbers of AAE grammatical features,

with the utterances from PRV and LES containing several and the utterances from DCB

and ROC containing relatively few of these. This may make our method of training prosody

embeddings with the utterances’ city of origin as target particularly effective in identifying

the expected amount of grammatical features. As there are many more phonological AAE

tokens than morphosyntactic AAE tokens in the dataset (ie. each spoken clause likely con-

tains only one verb phrase whose grammar structure can be modified but several words whose

pronunciation can be changed), the phonological features dominate the total dialect density

measure (DDM). As a result, the features that are most useful in predicting DDMphon (eg.

character perplexity and character combination frequency) are also more useful in predicting

DDM. The ComParE16 features are significantly better at predicting the total dialect den-

sity measure than either DDMphon or DDMgram alone. This set contains a large number

(approximately 6400) of features, and we note that the XGBoost model utilizes different

features from this set for predicting each dialect density measure. For predicting DDMphon,

the spectral feature, ‘RASTA-style filtered auditory spectrum,’ and the OpenSmile feature,

‘ZCR’ (zero-crossing rate), are the two features with the most impact. These may correlate

to dialectal aspects of pronunciation like vowel shifts and durations.

3.2 DID

The previous section describes methods for AAE dialect density estimation for adults given

that the utterance is known to be from a potential AAE speaker. In this section, we expand

the framework to perform dialect identification for both children and adults whose dialect
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Figure 3.3: SHAP value plot for the XGBoost model trained to predict DDMphon from the

set of all features. The features are listed from top to bottom in order of significance.

is not previously known. That is, we seek to determine whether a person is a speaker of

AAE or MAE from only a short utterance of their speech. In addition, we seek to create

a framework that can be applied regardless of speaker age (adult or child) or speaker style

(e.g. spontaneous or read speech).

3.2.1 Data Curation

The focus of this work is on dialect detection given spontaneous speech, particularly adult

and children’s AAE speech. There is no dataset available for this task, so we build on

multiple datasets, as described below. The AAE data used in this work reflects southern

variants, due to the availability of such data for children’s speech.

A particular challenge in this work is learning dialect representations that are robust to
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Figure 3.4: SHAP value plot for the XGBoost model trained to predict DDMgram from the

set of all features. The features are listed from top to bottom in order of significance.

recording conditions, speaker style, and speaker traits (eg. age, gender, et.). We select these

datasets for their coverage of a wide range of these scenarios. All speech data are resampled

to 16kHz for experimentation. The utterances used are each approximately 5-15sec in length.

CORAAL. To train the system to perform DID for AAE adult speech, we utilized the

recordings of speakers from the Princeville, NC, Valdosta, GA, and Washington DC, sets

of CORAAL. The speakers from these sets as had the highest average dialect density, or

frequency of use of dialectal characteristics [3, 97], making them more apt to use for DID.

From these speakers, we selected utterances that contained at least five spoken words, as

denoted by the ground truth transcripts, and were free of non-speech sounds. This resulted

in a speaker-independent training and test set totalling approximately 20 hours and 2 hours
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of speech, respectively.

Librispeech. In order to show how availabe large out-of-domain datasets can be used

for training, we use the popular Librispeech corpus [98] to train models to learn the negative

class (samples that contain only MAE and no AAE). We randomly selected utterances from

train-clean-100 dataset to create a training set and utterances from the dev-clean set to

create a validation set. These speaker-independent data splits were created to contain the

same number of utterances as those from CORAAL.

SITW. The Speakers in the Wild Challenge (SITW) dataset [99] contains recordings of

conversational speech in various recording environments, primarily involving MAE speakers.

We randomly selected a subset of the same number of utterances as that of the CORAAL

test set. This subset is used only for testing and serves as a reference for spontaneous,

non-dialect speech in background noise.

GSU Kids: The Georgia State University Kids’ Speech Dataset 1 (GSU Kids) [100]

is a speech dataset of approximately 200 children aged 8-13 from the Atlanta, GA area.

The children were recorded in a noisy classroom environment as they performed educational

assessments in story-telling and picture-description tasks. The children’s speech was anno-

tated by the authors for aspects of AAE dialect, and the dataset was subsequently divided

into AAE-dialect and non-AAE dialect speaking children. In this work, a subset of ap-

proximately 800 utterances totalling about 3 hours was randomly selected for use such that

approximately half of the utterances contained AAE speech. In order to determine which

children in the dataset spoke AAE, the dataset was annotated for dialect tokens that are

widely accepted to be common markers of AAE as in [3].

The speaking styles and train/test usage of different data sets are summarized in Table

3.4. We use “non-AAE” instead of MAE for the Kid’s speech, since it is mostly a southern

dialect. The adult corpora may also contain dialects that are not MAE, but the data are

1The GSU data was collected with support by the Eunice Kennedy Shriver National Institute of Child
Health & Human Development of the NIH under Grant P01HD070837.
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Source Dialect Style
# speakers

Train/Test

avg # test

utt./spkr

CORAAL AAE spon/noisy 61 11 72

Libri MAE read/clean 251 40 20

SITW MAE spon/noisy – 119 6

GSU Kids AAE spon/noisy – 117 3

GSU Kids non-AAE spon/noisy – 76 4

Table 3.4: Summary of characteristics and usage of speech datasets. We show the number

of speakers used in training and testing to highlight the low-resource problem caused by

the lack of available training data from AAE speakers. The datasets with no entry in the

“Train” column were used only for testing. We also include the average number of utterances

per speaker in each test set. There are approximatley 8000 utterances in each training set,

800 utterances in the CORAAL, Librispeech, and SITW test sets, and approximately 400

utterances in the GSU AAE and GSU non-AAE test sets.

dominated by the MAE dialect.

3.2.1.1 Text Data

In order to train language models for dialect detection, we utilize two large corpora of Twitter

text data. All Twitter text is preprocessed to match Wav2Vec2.0 ASR transcript format.

The data is lowercased, and we remove hashtags, mentions, and punctuation (excluding

periods and apostrophes). While primarily adult twitter data may be less applicable for

training models for children’s speech, the volume and availability of the data makes it an

interesting use case.

TwitterAAE [101] is a dataset of over one million tweets that were automatically

found to have a high probability of being authored by a speaker of AAE. Through training

a probabilistic model that took into account the geographic location of the tweeter, the N-
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gram probability of the words used in the tweets, the grammatical structure of the tweet

as identified by an automatic part-of-speech tagger, and the presence of AAE syntax, these

tweets were found to display many common aspects of AAE.

The Sentiment 140 dataset [102] is a database of 1.6 million tweets on various subjects

labeled with the corresponding user sentiment of the message. In this work, we use this

dataset as a reference set of non-AAE text of the same format as text of Twitter AAE.

3.2.2 Models

We train several models, each using one of three different architectures (CNN, LSTM, or

BERT-style masked language model), to learn different aspects of dialect from different

linguistically-focused features of the data. The goal of the model training is binary classi-

fication of the input data as containing or not-containing AAE speech. An overview of the

models used is shown in Figure 3.5.

Figure 3.5: The feature set and backend models used in the proposed dialect identification

scheme.

38



3.2.2.1 CNN

We use a modified version of the Convolutional Neural Network from [103] to map acoustic

and prosodic features to dialect. The CNN layers had kernel sizes of 4x4 with: kernel strides

of 1, 16 output channels in the first layer, and 32 output channels in the second layer. The

convolutional layers were followed by max pooling and then two fully connected layers that

mapped to the final output decision. While [103] found that the spectrogram was the best

feature for DID, [104] saw more success using MFCCs. We evaluate the performance of both

of these features for child and adult DID. We extract the spectrogram with a window size of

10ms and window shift of 5ms. For the MFCCs, we extract the 20dim-feature along with the

first and second derivatives. We additionally use prosodic features as described in [105, 97].

These include the F0 contour extracted with Praat [106], the energy contour of the signal,

the energy contour of the signal lowpass filtered at 1kHz, and the energy contour of the

signal highpass filtered at 1kHz. We perform DID both using the prosody features alone and

in concatenation with the best from the MFCC and spectrogram features in the CNN.

3.2.2.2 LSTM

We employ the popular self-supervised learning representations extracted by Hubert [54] in

this task. The Hubert hidden layer outputs are input into a one-layer 128-dim Long Short

Term Memory (LSTM) layer and then two fully connected layers with sizes of 64 and 1 to

make the binary dialect classification decision.

3.2.2.3 Language Models

One prominent difference between AAE and MAE is the pronunciation of certain words in

given contexts. For example, Southern AAE may include reductions of word final consonant

clusters (e.g. pronouncing “band” as “ban”) and a raising of the /IH/ vowel (e.g. pronouncing

“kill” as ’keel’) [107]. Character-level ASR systems may capture these pronunciation differ-
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ences. We use a Wav2Vec2.0 model [108] trained on the Switchboard Telephone Corpus

[109] to generate ASR transcripts for the speech data. We evaluate the performance of the

ASR system and find it consistent with previously reported results on AAE and non-AAE

speech for the given cases [3]. Using the ASR transcripts as input, we apply a character-level

BERT-style transformer language model (LM) [110], pre-trained using a masked language

model (MLM) objective and finetuned to distinguish between the AAE and MAE text in a

binary classification task. The use of the LM allows us to take advantage of large language

models that benefit from large amounts of text data and utilize the abundant text data on

Twitter. We explore two LM configurations, both building on a pretrained small BERT

model,2 with the CLS token embedding input to a single fully connected layer used to decide

whether or not the speech contains AAE dialect. One model simply trains this classifier with

a cross-entropy (CE) objective using the two sources of Twitter data, also updating weights

of the BERT model. For the second model, we further pretrain the model with the MLM

objective on the Twitter data, followed by additional pretraining on the Librispeech and

CORAAL ASR transcripts. We then train the last classification layer with the LM weights

frozen using CE with the CORAAL-Libri transcripts, and finally further fine-tune the full

model for a few iterations with CE on the ASR transcripts.

Grammatical features are another defining aspect of AAE. For example, AAE can include

a dropping of auxiliary verbs (e.g. “he gone” instead of “he is gone”) or a deletion of the

infinitive marker “to” (e.g. “it’s your turn go” instead of “it’s your turn to go”). In order

to capture these differences, we applied the automatic part-of-speech (POS) tagger from

the Python SpaCy library to the Twitter text data and the ASR transcripts. For example,

the POS tagger may take the transcript, “who all goin” as input and produce the output

sequence of the same length, “PRON DET VERB.” Anecdotally, we find that even when the

ASR system spells words differently than in the standard English dictionary, these words

are often tagged as the correct part of speech (e.g. tagging “goin” as a verb here). We then

2https://tfhub.dev/google/collections/bert/1
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learn a token-level transformer language model using MLM pretraining on the Twitter data

to predict dialect as MAE or AAE from the sequence of POS tags, similarly to the character

LM.

3.2.3 Experiments

Using the features listed above, we train the CNN, LSTM, and Bert MLM to perform

AAE DID. All systems are trained with the CORAAL training set as the positive class and

the Librispeech training set as the negative class. The language models are additionally

pre-trained on the Twitter text data. Although the positive samples come entirely from one

dataset and the negative samples come entirely from another, we chose training datasets that

are each compilations of various recordings from across different speakers, years, locations,

and recording devices, meaning that there will not likely be spurious channel effects or

recording conditions that can help distinguish recordings of the same database. We evaluate

the performance training on CORAAL (noisy, spontaneous) and Librispeech (clean, read)

in two cases: 1) Resolving AAE-speech in CORAAL from the non-AAE speech in SITW

(noisy, spontaneous) and 2) Resolving the AAE-speech from the non-AAE speech in the GSU

Kids’ speech database (noisy, spontaneous). This will show the robustness of the systems

to different speaking styles and recording conditions. We additionally show the performance

of score-level fusion of the best models. The model output scores are added and then the

new detection threshold is taken to be the median score of the test set. This method of

fusion allows us to fuse the scores in the case when we do not have enough data to create a

separate validation set to train a fusion model. We choose the median confidence score as

the threshold because we know in advance that the test sets are balanced in the number of

utterances in each class. In a real scenario, the demographics of a group of users would likely

be known, and the threshold could be chosen to match those demographics (eg. if the system

were used in an area where approximately two-thirds of the population spoke AAE then the

threshold could be set at the 33rd percentile value of the output scores if it could not be
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Feature Backend
Linguistic

Correlate

Validation Set

(CORAAL AAE vs.

Librispeech MAE)

CORAAL AAE vs.

SITW MAE

GSU AAE vs.

GSU non-AAE

Acc. F1 Acc. F1 Acc. F1

1. Spectrogram CNN Acoustic 91.1 92.2 72.9 76.5 55.3 54.2

2. MFCC CNN Acoustic 73.8 83.5 60.5 69.8 55.7 58.3

3. Prosody feat CNN Prosody 90.8 91.2 83.3 80.1 52.4 52.9

4. concat(Spec.,Pros) CNN Acoust, Pros. 91.8 92.9 88.9 88.9 58.2 55.6

5. Hubert feat LSTM Acoustic 78.1 87.7 71.1 82.9 64.8 74.3

6. Char-level text

pre-train Twitter
MLM Phonology 82.6 79.9 66.9 56.8 51.5 58.9

7. Char-level text

finetune CORAAL-Libri
MLM Phonology 91.0 89.3 88.2 81.4 62.7 71.2

8. POS-token

pre-train Twitter
MLM Grammar 69.2 60.7 67.5 60.1 46.8 61.4

9. POS-token

finetune CORAAL-Libri
MLM Grammar 84.8 77.4 87.1 77.5 55.2 68.4

Table 3.5: The results of binary classification for each model using 0.5 as the detection

threshold. For each model, we present the targeted linguistic correlate of dialect (Acoustic

Phonetics (Acoustic), Phonology, Morphology/Syntax (Grammar), or Prosody (Pros)) and

the Accuracy (Acc.) and F1 score (as calculated by Python SKlearn). Twitter refers to both

TwitterAAE and Sentiment140 text data.

found through validation). In order to show the performance of the fused models without

respect to threshold, we also calculate their Area under the ROC Curve (AUC) values.

3.2.4 Results and Discussion

Table 3.5 shows the performance of the individual models trained on a particular feature or

a concatenation of 2 features. Each row shows the input features to the model, the model

backend, the target linguistic correlate of the model, and the accuracy and F1 score of that
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Model
CORAAL AAE

vs. SITW MAE

GSU AAE vs.

GSU non-AAE

Acc. F1 AUC Acc. F1 AUC

4. 90.0 89.6 90.2 55.4 55.4 55.6

5. 76.9 84.4 75.4 65.6 76.2 57.3

7. 88.6 85.4 77.3 61.8 70.2 62.3

4 + 5 88.6 89.8 78.1 67.3 72.5 65.5

4 + 7 86.1 86.3 77.3 61 68.2 62.6

5 + 7 89.2 83.4 79.4 68.6 74.4 69.2

4 + 5 + 7 89.5 86.8 81.1 70.7 77.6 70.4

Table 3.6: The results of binary classification for the individual and fused models when

the threshold is taken as the median output score. We also report the AUC values as

threshold-invariant metrics.

model for the validation set and two test sets. Table 3.6 shows the Accuracy, F1 score, and

AUC for the models. In Table 3.5, the models are trained with a detection threshold of

0.5. The fused models in Table 3.6 use the median value of the test set as the detection

threshold. Therefore, we recalculate the performance of the individual models with the

median threshold for inclusion in Table 3.6 in order to show the effects of thresholding and

fusion separately.

We observe that several of the individual models, including those trained on the spec-

trogram, MFCC, and prosody features perform significantly worse for the children’s speech

test set than for the adult speech test set. This may be an indication that these models

overfit to the acoustic features or speaker style of the adult speech. The largest drop is for

prosody features; it may be that prosody is less reliable for children because of the high F0

and disfluencies and/or because of greater variability,

The model trained on the concatenated spectrogram and prosody features performs bet-
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ter than the models trained on either feature individually in nearly all cases, showing that

these features may provide complementary dialect information. This model (4) does better

than any other individual models for the CORAAL vs. SITW test set, suggesting that the

combination of spectrogram and prosody made the model more invariant to the change in

speaker style between the training and test case. However, this model still does not gener-

alize well to the children’s test set. Although the model trained on Hubert self-supervised

learning representations performs worse for the validation set than the other acoustic fea-

tures, it appears to generalize much better to the children’s speech. This may be because the

wide range of speaker variability seen by Hubert during pre-training has allowed it to learn

more robust representations of higher-pitched voices and disfluent speech as seen in children.

Both language models see a significant improvement after being fine-tuned on data from

the ASR transcripts. The character-level MLM trained directly on the transcripts seems

to learn information about AAE pronunciations from the Twitter and ASR transcript data

that meaningfully translate to other datasets. The grammar-based MLM trained on POS

tags does more poorly. This may be due to tagging errors or indicate that dialect-specific

grammatical patterns are not consistent enough across age and geographic region to be useful

for classification.

Table 3.6 shows that fused models improve performance over individual models for the

children’s data, but give no significant benefit for the adult test set. The model trained on

Hubert features seems most important to obtaining good results on the kids’ speech, as the

fused model without it does less well for the GSU test set. The fusion of the models trained

on concatenated spectrogram and prosody features, the Hubert features, and the language

modeling representations gives the best results for children, with statistically significantly

higher accuracy and F1 scores than any other model.

The table also shows that use of the median threshold with the individual models im-

proves performance for the adult test set compared to the 0.5 threshold, especially for the

Hubert features. This may suggest that the detection threshold should be shifted with a
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shift in domain, and further studies are needed to create thresholding strategies that do

not require large amounts of in-domain development data for low-resource cases. For the

children’s speech case, only the model (5) sees an improvement from the change in threshold.

Comparing the individual models in Table 3.5 to the fused model, we see that the model

(4 + 5 + 7) still shows significantly better performance for the children’s speech and is not

significantly worse than any model for the adult speech. Note that this model also has the

highest AUC for the children’s case and good AUC for the adult’s case. This indicates that

fusion may be a promising method of capturing dialectal differences in children’s speech.

3.3 Summary

This section describes novel frameworks for both AAE dialect density estimation and AAE

dialect identification. We introduce a custom feature set for predicting the extent of a

speaker’s dialect usage for AAE-speaking adults from the CORAAL database. We then

extend that work, incorporating self-supervised learning representations and pre-training on

larger amounts of data, to perform dialect identification for both adult and children’s speech.

This work was presented in part at Interspeech 2022 [97] and ICASSP 2023 [45].
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CHAPTER 4

Data Augmentation for Low-Resource ASR

After the stage of automatic dialect identification or dialect density classification decisions

for a speech utterance, we may then desire to select a dialect-specific down-stream language

tasks. For example, we may train ASR models for specific dialects, regional variants of the

dialect, age groups of speakers of the dialect. However, there is often not enough training

data to train a large language model with such specificity of the speaker’s sociolinguistic

identity. The research question then becomes: How can we train ASR systems to perform

dialect or age-specific recognition with limited training data?

In this chapter, we investigate methods for data augmentation for low-resource ASR

applications such as ASR for AAE-speaking children. In other words, we seek to create arti-

ficial training data that can be used to train an ASR system to learn to be more invariant to

characteristics of AAE and children’s speech when transcribing audio data. We hypothesize

that an LPC-based method of estimating the formant frequencies (i.e. poles) of the signal,

shifting the poles of the LPC filter, and reconstructing the signal with the perturbed filter

coefficients can model formant shifts found in southern AAE variants in available non-AAE

training data. Training on this perturbed data would then teach the ASR system to recog-

nize speech even with these formant shifts. We evaluate the performance of this method,

named LPC Augment, in both low-resource and zero-resource training scenarios for Georgia

AAE and California English-speaking children.

46



4.1 Methods

This work uses speech from the UCLA JIBO Kids’ Speech Database and the GSU Kids’

Speech Database as described in Chapter 2. In this chapter, we seek to evaluate how well

data augmentation algorithms can transfer aspects of dialect to the newly generated training

data. To test this, we attempt to use LPC Augment to add characteristics of Georgia dialect

(we henceforth refer to the combination of Southern American English and African American

English represented in the dataset as “Georgia English”) vowel shifts to the California English

contained in the UCLA JIBO Kids’s Speech database in order to train a system to recognize

the US southern dialect with little to no prior in-domain training data. Conversely, we

also attempt to warp the formant locations of the Georgia English contained in the GSU

Kids’ Speech Database to the expected frequency locations of California English to train

the systems to recognize California English with little or no in-domain training data. We

use recordings of children performing the Goldman-Fristoe Test of Articulation from both

datasets. This creates a matched-vocabulary set of words being spoken in isolation by child

speakers of either Georgia English or California English. There are approximately 5 hours

of speech available for either dialect, making this a low-resource training case.

4.1.1 The LPC Augment Algorithm

In this section, we propose a novel data augmentation technique. We use the notation from

the linear prediction equation s[n]−
∑P

k=1 aks[n−k] = e[n] where s[n] is the windowed frame

of the signal and e[n] is the residual, the prediction order, P, is estimated as P = 2Fmax (in

kHz) +2 where Fmax is one half the sampling frequency.

The algorithm is then given as follows assuming an all pole model. For each frame:

1: Compute the LPC coefficients, a1, a2, ...aP of the windowed signal.

2: Compute the residual e[n] as the result of passing s[n] through the filter A(z) = 1 −∑P
k=1 akz

−k
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3: Solve for the complex conjugate roots, rk, of the prediction filter polynomial A(z)

4: Compute the magnitude and phase of each root rk

5: Multiply the phase of each complex conjugate pair of roots by a warping factor wk∀k =

1, 2, ...P where the warping factor values are chosen from a random uniform distribution

∈ [x, y] once for each utterance and held constant across all frames of the utterance.

6: Recombine the magnitude with phase of each pole, creating the warped polynomial roots

r̂k = |rk| ∗ ej(wk∗̸ rk). The warping does not affect the magnitude in order to ensure filter

stability.

7: Determine the new prediction polynomial, Â(z) as the polynomial whose roots are the

warped prediction filter roots, r̂k

8: Create the perturbed output frame by passing the residual e[n] through the filter with

transfer function 1/Â(z)

An example of the spectrum of signal perturbed with LPC Augment is shown in Figure

4.1. A block diagram of the algorithm is shown in Figure 4.2.

4.1.2 Model Training

In this section, we introduce the experimental setup including the data and models. For

the data, both the Californa English speech data from the UCLA JIBO kids’ dataset and

Georgia English from the GSU Kids’ Dataset are split into training, validation, and test sets

with a ratio of 7:1:2 with no overlap between speakers. As a result, approximately 3.5 hours

of data are used for training. We verify the proposed method across both a hybrid HMM-

DNN model and an end-to-end attention-based model to demonstrate that LPC Augment

is not model-dependent.

The hybrid system is built based on Kaldi [59] and Pykaldi2 [111], where Pykaldi2 is used

for acoustic model training. Specifically, a four-layer bidirectional long short term memory

(BLSTM) model with 512 nodes in each direction is used. The input is 80 dimensional log
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Figure 4.1: An example of the LPC spectra of a child in the UCLA JIBO kid’s Database

pronouncing the phoneme \AA\, and the result of perturbing it with LPC Augment. In the

perturbed signal, the first two formant peaks have been shifted to the left, and the third has

been shifted to the right.

filter-bank energy extracted with a frame length of 25ms and a frame shift of 10ms. We also

use a frame skipping strategy [112] by concatenating two adjacent frames and then skipping

the frame by a ratio of 2 to accelerate the model training. The acoustic model then outputs

an approximately 3488 dimensional vector representing the senone probabilities for each

frame, which are then decoded using a pre-constructed WFST graph in Kaldi. Prior to the

acoustic model training for kids’ data, HMM-GMM and BLSTM models are trained using

the Librispeech clean 100 hours data [84], as the model for the forced alignment acquisition

and the start point for kids’ acoustic model training, respectively.

The end-to-end model is the sequence-to-sequence (S2S) Speech Transformer as proposed

in [113]. The model input is the spectrogram calculated with a frame size of 25ms and a

frame shift of 10ms. The input is then passed to the network which consists of a series of

three convolutional layers each with a receptive field of size 11, and an encoder and decoder

49



block both composed of six stacked multi-head attention units and fully connected layers with

residual connections. The output then contains 31 classes: 26 lowercase letters, apostrophe,

period, space, noise marker, and end-of-sequence tokens.

We use the proposed data augmentation scheme to train the model and evaluate the

performance across training and testing conditions. Data augmentation was performed us-

ing MATLAB’s LPC coefficient algorithm. Each utterance is windowed using a 20ms long

Hamming window before being passed into the augmentation algorithm. The length of the

Hamming window was determined empirically in pilot experiments. The perturbed audio

sample is then input into the neural network. We first optimize the range of the warping

factors wk using the validation set. The training set size was increased by 3x with the

proposed method. Preliminary experiments showed that augmenting the training set size

to 5x yielded no additional increase in performance. We then compare the performance of

the optimized proposed method with that of other common data augmentation methods in

recognizing children’s speech of both the in-domain dialect and an out-of-domain dialect.

We first train the models on speech from one of the English dialects and test on the

other dialect for the zero resource scenario. We then train a model jointly on both children’s

datasets for the low-resource scenario.

4.2 Experiments and Results

4.2.1 Optimizing the Warping Factor

In order to optimize the range of warping factors, wk, used in the proposed method, we first

train the transformer model on the California English training set and evaluate it on both

the California English and Georgia English validation set (CA val and GA val respectively).

We use the training set containing California English because it is considered a widely-

spoken American dialect. Adapting the California English training set to the Georgia English

validation set then represents adapting from a more standard dialect to the less standard
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Warping Factor CA val GA val

w ∈ [0.8, 1.0] 16.41 63.44

w ∈ [1.0, 1.2] 15.97 69.16

w ∈ [0.8, 1.2] 14.63 51.63

w ∈ [0.9, 1.1] 14.86 55.93

w ∈ [0.7, 1.3] 13.94 58.85

Table 4.1: Results of the recognition experiment (in %WER) on the validation set with the

proposed method for different warping factors using the transformer model. CA Val denotes

the performance of the system trained with data augmentation on the speech data containing

dialects found in Georgia and validated on speech containing dialects found in California.

GA val similarly denotes the performance of the system trained with data augmentation on

the speech data collected in California and validated on the speech data collected in Georgia.

The lowest WER for each case is shown in boldface.

dialect as in low-resource scenarios. Table 4.1 shows the performance in percent word error

rate (%WER) of the proposed algorithm for warping factors within the indicated range.

4.2.2 Zero Resource Scenario

Here, we are primarily concerned with achieving the best result on the out-of-domain data

(GA Test), and so we continue with the warping factor chosen in the range [0.8, 1.2]. Zero

resource scenarios occur when the model is trained on only one dialect and tested on another.

We proceed to compare the performance of the proposed method (abbreviated LPC Aug) in

zero resource dialect children’s ASR with three of the most commonly used data augmen-

tation algorithms: VTLP, Speed Perturbation (Speed Pert.), and Spec Augment (SpecAug)

(described in Chapter 1). We also combine the more successful data augmentation methods

to determine their cumulative effects. The results of both the transformer and hybrid model
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are shown in Table 4.2. The proposed method, LPC Augment, achieves a statistically sig-

nificant (p < 0.05) reduction in WER over the baseline (“No Aug”) for mismatched dialect

cases. The lowest WER when training on one dialect and testing on the other is achieved

when LPC Augment is used in conjunction with SpecAugment. In testing and training on

the same dialect, the lowest WER is achieved by using SpecAugment alone in three out of

four cases.

4.2.3 Low Resource Scenario

We train the models on data from both the CA dataset and the GA dataset in order to

create an ASR system that performs well over multiple dialects and ages. This represents

the low-resource case, as the training sets from both dialects are small. We show the results

in %WER in Table 4.3. Note that the high baseline WERs observed in Tables 4.2 and 4.3

have been observed in previous low-resource accented children’s ASR tasks in other languages

as well [114].

4.3 Discussion

We observe that LPC Augment creates a significant reduction in WER for zero resource

dialect children’s ASR as compared to the other frequency-based data augmentation method,

VTLP. This is likely due to the algorithm changing formant locations independently of each

other rather than according to a predefined warping function. It appears that LPC Augment

is complementary to SpecAugment, as they can typically be used together to give better

performance than either alone or compared to other data augmentation methods. In the

zero-resource scenario in Table 4.2, the HMM-DNN ASR system results in a much higher

reduction in WER for the CA test set than for the GA test set. This may be a result of pre-

training the model on Librispeech 100-clean which contains speech of a dialect more similar

to California English. Further work is necessary to determine how the pre-training dataset
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biases the model towards better performance for a given dialect. We also notice in Table

4.3 (low-resource case) that the transformer model typically benefits more (% improvement

over the baseline) from data augmentation than the HMM-DNN system. The transformer’s

implicit language modeling may allow it to better learn relevant groupings of characters and

hence may have a bigger advantage for the children’s small vocabulary task. In the low-

resource task, we observe that LPC Augment used simultaneously with SpecAugment and

Speed Perturbation appears to give improved performance across dialects. We conclude that

LPC Augment shows promise in creating robust low and zero-resource dialect ASR systems.

4.4 Summary

This chapter introduces the LPCAugment technique for training a cross-dialect children’s

speech recognition system. By decoupling the linear predictive coefficient representation of

the vocal tract filter effects from the speech source signal, perturbing the LPC coefficients,

and then reconstructing the speech signal, the LPCAugment attempts to model dialectal

formant shifts in the augmented training data. We apply this technique to few and zero-shot

children’s speech recognition tasks and achieve state-of-the-art performance.

This work was presented in part at ICASSP 2022 [100].
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Figure 4.2: Diagram of the LPC Augment Algorithm
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Train CA Train GA

%WER Transformer HMM-DNN Transformer HMM-DNN

Test Set CA test GA test CA test GA test CA test GA test CA test GA test

No Aug 18.34 70.00 16.39 76.29 56.56 24.01 92.26 37.74

VTLP [51] 20.07 71.46 15.85 77.83 65.41 25.10 91.26 37.29

Speed Pert. [52] 26.39 69.58 14.57 76.74 63.12 27.82 90.44 38.82

SpecAug [53] 17.85 62.84 13.93 76.47 54.84 22.64 88.71 34.84

LPC Aug 19.49 62.70 14.30 76.74 51.76 24.79 81.33 38.73

Speed Pert.

+ SpecAug
21.32 68.63 14.30 76.92 63.85 22.95 90.16 37.56

Speed Pert.

+ LPC Aug
23.86 71.88 13.75 77.29 55.68 23.54 83.15 36.83

SpecAug

+ LPC Aug
18.61 59.80 13.30 75.02 51.13 22.90 75.41 35.48

Table 4.2: Comparison of common speech data augmentation methods with the proposed

method. Each model (Transformer and HMM-DNN) is trained on either the California

English training set (Train CA) or the Georgia English training set (Train GA) and then

evaluated on both the California English test set (CA test) and the Georgia English test

set (GA Test). Columns representing zero-resource scenarios (where the model is trained on

only one dialect and tested on the other) are highlighted. The lowest word error rate for

each case is shown in boldface.
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Transformer HMM-DNN

%WER CA test GA test CA test GA test

No Aug 26.12 21.18 16.94 37.83

VTLP 21.47 15.84 17.49 36.83

Speed Pert. 19.68 14.57 15.76 37.92

SpecAug 19.23 13.80 15.03 35.20

LPC Aug 19.76 14.39 14.66 38.46

Speed Pert.

+ SpecAug
18.72 13.76 14.39 36.74

Speed Pert.

+ LPC Aug
19.01 13.52 14.30 37.47

SpecAug

+ LPC Aug
18.91 13.34 13.84 35.29

Table 4.3: Results of the models trained on both Train CA and Train GA and tested on CA

Test and GA Test with the proposed and other data augmentation methods. The lowest

WER for each case is shown in boldface.
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CHAPTER 5

Fair and Inclusive Automatic Oral Assessment Scoring

This chapter is concerned with producing natural language processing algorithms for spon-

taneous speech that are robust to disfluencies and patterns not found in written text. We

seek to apply these algorithms to the educational domain for tasks such as automatically

providing feedback on oral exercises and categorizing student responses. To accomplish this

task, we train a model to automatically grade recordings of oral responses from children tak-

ing portions of the Test of Narrative Language (TNL). We do so with the goal of designing

the system to be inclusive and robust to speech differences found across diverse dialects and

language abilities.

5.1 Educational Task

In this work, we use recordings from the GSU Kids’ Speech Corpus. This corpus contains

approximately 200 recordings of children in 3rd to 8th grade performing two types of tasks

from the TNL: A story retelling task and a picture description task.

5.1.1 TNL - Story Retelling Task

The TNL Story Retelling assessment is a task in which students are read a story by the

test administerer. The students are then asked to retell the story and are graded on their

ability to use the set of pre-determined test keywords from the original story-telling. These

keywords contain story elements (e.g. character names, locations, times, important objects,
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and action verbs) that must be retold in the same verb tense and order to receive credit in

the test scoring. For example, if a test item contained the sentence, “Tim eats his lunch

while Matt plays football” where the bolded words are the scored keywords, the child

will receive points for two of the four keywords if they retell it as “Tim played football

while Matt ate lunch,” as the word order or tense of the other two keywords are incorrect.

Each child’s assessment was administered and audio recorded by a trained member of the

project staff according to the TNL standardization manual protocols. The recordings were

then independently scored by a speech-language pathologist and a second trained speech-

language staff member. If disagreements occurred in scoring, the two scorers reviewed the

audio and discussed differences to come to a consensus. Each child’s score was an integer

value between 0 and the total number of test keywords. Although not necessary to the TNL

protocol or the training procedure below, the project team additionally transcribed ground

truth transcriptions for each audio recording. The dataset additionally contains demographic

metadata on the students in the following categories: 1) the presence of reading/language

impairment, 2) the student’s reading ability (good or poor) as rated by a team of experienced

teachers and learning specialists as a selection criterion for the study, and 3) the speaker’s

dialect (either African American English (AAE) or Southern American English) as labeled

by the authors according to the procedure in [115].

5.1.2 TNL - Picture Description Task

Picture description tasks are often used to elicit spontaneous speech from children. Students

are shown a picture with multiple characters or elements relating to a story plot. Images are

generally chosen by experts in education to be straightforward to describe and contain enough

content for the child to give a lengthy answer. The students are then asked to tell a story

about the picture. Students are graded based on completeness of the description, coherence

of the story, proper use of grammar, and other aspects relating to narrative language ability.

In the GSU Kids’ Speech Corpus data used in this work, children were shown an image
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from the TNL containing a character and several elements to describe. The students were

then asked to tell a story about the image, making their story as complete as possible.

Each child’s response to the prompt was recorded, and each child, on average, took about 3

minutes to complete their story. Then, specialists in children’s language education graded

the assessment as described in [79].

5.2 Experiment

Given the recordings and grades from the students’ TNL story retelling and picture descrip-

tion task responses, we then sought to train a model to automatically map an ASR transcript

of the response to an assessment score. We first map the test scores to discrete labels in

order to formulate the assessment scoring problem as a multi-class classification task. This

is intended to reduce over-fitting to negligibly small differences between scores. We sort the

scores into five equally spaced histogram bins and then assign a class to each sample based

on its bin, resulting in a five-class classification task. We predict the class automatically

from ASR-generated transcripts. We consider ASR transcripts from Whisper, Wav2Vec2.0,

and HuBERT. A 4-gram KenLM language model [116] trained on the LibriSpeech Corpus

[84] is applied to the the output transcripts of each ASR system, and we report scoring ac-

curacy both with and without the effects of the external language model. We also fine-tune

HuBERT on the MyST Database [117] to explore possible improvements from training on

additional children’s speech data. To establish a baseline performance for the task, we first

implement a deterministic string-search based assessment scoring method on the student

response ASR transcript. We then propose a Neural Linguistic Feature-based approach to

improve over the deterministic approach by training a system to more flexibly take dialectal

speech differences into account and learn despite ASR errors.

String-Search Rubric Matching-based scoring (SSRM) The TNL provides a com-

prehensive scoring rubric which assigns points to each keyword given. As a preliminary
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approach (shown in Figure 5.1, left), we apply fuzzy string matching with a similarity ratio

of 85% to the ASR transcripts to identify close matches to the specified keywords. This

method then awards points to a student’s predicted score if a word whose Levenshtein edit

distance with a test keyword is less than or equal to 15% of the word length appears in the

ASR transcript. We then present the accuracy and root mean square error (RMSE) of this

method for each ASR systems used.

Neural Linguistic Feature-based Scoring (NLF)

A weakness of the SSRM scoring is that it only considers whether or not a close match

to a keyword appears in the transcripts. It does not consider, for example, whether words

were used in reference to the right characters or appeared in the correct order. These

tasks require a neural network-based approach to capture finer scoring details. For this,

we split the samples from the TNL into a 45-15-40, train-val-test split. We arrived at this

split by starting with a 70-10-20 train-val-test split and reducing the amount of data in the

training set until performance significantly worsened. This was done to best simulate the

low-resource data scenario found in many children’s speech responses. With this data, we

employ methods used in readability assessment from [66]. We first apply transfer learning

to large language models to generate soft label features from the transcripts for downstream

scoring. Here, we experiment with BERT [118], RoBERTa, BART [119], and XLNET [120]

using Huggingface. A 5-dim fully-connected layer is appended to the output of the large

language model, and then, we fine-tuned this extended model on a combination the WeeBit

Corpus [121] and the training set of the TNL data for more task-specific text-scoring. A

parameter grid search over the validation set using the AdamW Optimizer found a linear

learning schedule (beginning with a learning rate of 2e-5 and a weighted decay of 0.01 after

10% of the total training steps were used in warmup) and a batch size of 8 as the best

system hyperparameters. The other model hyperparameters were not changed from their

original implementations. The WeeBit Corpus contains short news article-style texts used

for children’s reading comprehension tasks. These texts are each labeled with an integer
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difficulty rating between 1 and 5 with difficulty 1 meant for children ages 7-8 and difficulty 5

meant for children ages 14-16. By having the network simultaneously learn to both predict

difficulty levels of children’s texts and scores for narrative language proficiency on spoken

transcripts, we create a multitask learning framework in which the machine must learn to

combine both knowledge of age-appropriate reading texts (WeeBit) and knowledge of oral

language abilities (TNL). As education literature shows that children’s reading proficiency

and comprehension abilities are directly correlated with their oral language proficiency [122],

we use this strategy to make the machine use the same weights to jointly predict both tasks.

We report the accuracy of this system in predicting the TNL scores of the test set. Next, we

extract the subset of the 255 hand-crafted linguistic features found optimal for the WeeBit

corpus in [66] and try additional features from that study in the “Discourse”, “Semantic”,

and “Traditional” categories which capture several measures used to score essay quality (eg.

ease of identifying main topics, density of predicted entities, lexical difficulty of words used)

as proposed by [66]. Finally, we concatenate the hand-crafted features with the soft-labels

given by the large language model for input to a backend classifier trained to perform score

prediction (as shown in Figure 5.1, right). We experiment with logistic regression, support

vector machines, Random Forest, and XGBoost [93] and report the accuracy of each system.

As no training is necessary for the SSRM scoring, we report the accuracy over the entire

set of speakers. For the NLF scoring, we report metrics as averaged over 5 train-test splits.

To ensure that the model performs fairly for diverse students, we also report test accuracy

for the student demographic categories (reading or language disability, reading status, and

dialect spoken).

5.2.1 Results and Discussion - TNL Story Retelling

Table 5.1 shows the results of the SSRM method for the different ASR transcripts in com-

parison to the performance on the ground truth transcripts. We report ASR WERs and the

5-class classification accuracy and RMSE. In addition to lowest overall WER, Whisper also
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Figure 5.1: Overview of a) the string-search rubric-based approach and b) the neural lin-

guistic feature-based approach.

had 93.6% precision and 93.7% recall in correctly detecting and transcribing the test key-

words with a detection threshold of 85% string matching. Table 5.2 shows the performance

of the NLF method while only using the language model with a final classification layer (no

linguistic features) after being fine-tuned on the WeeBit corpus and training set of the TNL

transcripts. To better understand the effects of different steps in this training pipeline, we

perform an ablation study in which we remove stages from the training. Fine-tuning the best

performing language model on only the TNL with no WeeBit text data gives a maximum

classification accuracy of approximately 60%. Likewise, fine-tuning this language model on

only the WeeBit text without using the TNL transcripts gives a maximum classification ac-

curacy of about 58%. Next, Table 5.3 shows the performance of backend classifiers using a

concatenation of the soft-labels from the best system in Table 5.2 and hand-crafted linguistic

features. Table 5.2 shows that BERT performs equally well with either the Whisper ASR

transcripts or the Hubert-finetuned on MyST transcripts. We proceed with the Whisper

transcripts because of their higher semantic similarity with the groundtruth transcripts (de-

picted in Figure 5.2). Finally, we divide the student samples into the three demographic

groups listed in the previous section and show the performance of the best system for each

group in Table 5.4.
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Table 5.1: ASR Word Error Rate (WER) , Classification Accuracy (C. Acc), and classifica-

tion RMSE for the fuzzy string matching approach for each system

Transcripts WER C. Acc RMSE

Ground Truth - 88.0% 0.120

Wav2Vec2 37.0% 61.4% 0.402

HuBert 46.7% 62.0% 0.413

HuBert Finetuned 42.5% 64.1% 0.407

HuBert XL 43.9% 73.3% 0.282

HuBert XL

w/ 4-gram LM
38.9% 76.0% 0.282

Whisper Large 26.8% 86.4% 0.136

Whisper Large

w/ 4-gram LM
26.3% 87.0% 0.130

A comparison of the string-matching (SSRM) approach and neural (NLF) approach

shows that the machine learning method far outperforms the rubric-based baseline. The

proposed system (BERT soft labels + hand-crafted linguistic features + XGBoost) achieves

a classification accuracy of 98.5% using the Whisper ASR transcripts. In comparison, the

rubric-based approach achieves only about 87% classification accuracy and sees marginal

improvement even with the ground truth transcripts. Since the rubric-based method only

considers whether or not test keywords appeared in the story and not whether they’re used

coherently, the performance difference between the two approaches suggests that the pro-

posed system is able to capture grammar and logic rules used in scoring the assessments that

cannot be assessed with a simple fuzzy string search. The ablation study shows a significant

degradation in performance of the proposed approach when either the test set or the added

WeeBit set is removed from the fine-tuning process. This further suggests that the language

model only performs well given a sufficient amount of in-domain data but can make use
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Table 5.2: The classification metrics (C. Accuracy, F1-score, and RMSE) of each of the

fine-tuned language models considered when predicting scores. Numbers reported are the

average of 5 trials of random hold out.

BERT ROBERTA BART XLNET

Transcript C. Acc F1 RMSE C. Acc F1 RMSE C. Acc F1 RMSE C. Acc F1 RMSE

Ground Truth 96% 0.95 0.04 91% 0.90 0.15 80% 0.78 0.40 84% 0.83 0.16

Whisper 96% 0.95 0.04 90% 0.89 0.16 78% 0.77 0.43 82% 0.82 0.18

HuBert Large 95% 0.94 0.04 86% 0.85 0.27 75% 0.60 0.50 80% 0.79 0.24

HuBert Base 89% 0.88 0.11 83% 0.83 0.16 71% 0.69 0.29 80% 0.77 0.35

HuBert Base Ft 96% 0.95 0.04 93% 0.93 0.09 82% 0.82 0.18 82% 0.81 0.19

Wav2Vec2 85% 0.83 0.15 87% 0.84 0.25 70% 0.70 0.40 85% 0.83 0.30

of the correlation between reading proficiency measures (with WeeBit readability scores)

and oral proficiency measures (with the TNL training set) in order to learn relationships

in children’s language well. Given that we only use 45% of the 184 samples in training,

this approach appears to successfully deal with the low-resource data problem in children’s

language assessments. The demographic splits in Table 5.4 imply that our method performs

fairly across language ability (or presence of disability), reading ability, and dialect. Across

the Reading/Language Impairment demographics, the NLF method matches or outperforms

the rubric-based approach in all cases. We note, however, that the rubric-based approach

performs more fairly across these categories, with scores from the ASR transcript varying

by less than 3% absolute value from the control students (no impairment) to the students

with both a reading disorder and language impairment. The NLF method achieves nearly

perfect accuracy for the control case. However, this system performs worse for students with

impairments who may make non-standard language errors not present in the WeeBit train-

ing set. The complex nature and differing severities of these language disorders creates high

variability in the narrative language abilities of the students in these groups. This suggests
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Table 5.3: System performance using a backend classifier to predict assessment scores from

an input concatenation of hand-crafted linguistic features and soft labels from the best-per-

forming large language model (BERT) extracted from the best ASR transcripts (Whisper).

Backend classifiers tested are: Support Vector Machines (SVM), Logistic Regression (Lo-

gReg), Random Forest (RandFor), and XGBoost.

BERT Soft Labels + Linguistic Features

Transcripts Classifier C. Acc F1 Score RMSE

Ground

Truth

SVM 96.9% 0.96 0.034

LogReg 97.0% 0.96 0.032

RandFor 98.5% 0.97 0.029

XGBoost 99.2% 0.99 0.025

Whisper

SVM 96.5% 0.95 0.038

LogReg 96.0% 0.96 0.039

RandFor 97.6% 0.97 0.032

XGBoost 98.5% 0.98 0.030
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Figure 5.2: Semantic Similarity between each student’s ASR and ground truth transcript.

ASR transcripts generated with Whisper, Hubert, and Hubert fine-tuned on MyST.

the need for additional data or data augmentation strategies to model disordered children’s

language in order to improve performance more fairly across these demographics. We ob-

serve a similar trend in the poor vs good reading status demographics. However, the NLF

approach performs better than the rubric-based approach across both the “good” and “poor”

reading students. The almost 6% drop in performance of this system from the ground truth

transcripts to the Whisper transcripts for the Poor reading status group may mean that

further ASR improvements are needed for the speech differences that these children display.

We observe relatively unbiased performance across dialect for the proposed system. While

the work in [115] demonstrates that many commercially available ASR systems give worse

performance for US East-coast AAE speakers than California General American English,

little has been done to compare ASR performance for AAE vs other American dialects like

Georgia’s Southern American English. The comparably high WERs for these two Georgia

dialects shown in Table 5.4 demonstrate that further work is needed in understanding and

improving ASR for multiple types of children’s regional dialectal speech.
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5.2.2 Results and Discussion - TNL Picture Description Task

Given the success of the Neural Linguistic Feature Approach in automatically scoring the

story retelling responses, we adapt it for use in scoring the picture description task responses.

To generate the language model soft labels used in the NLF approach, we experimented with

the four language models: 1) BERT [118], which performed best in the story retelling task

scoring, 2) ALBERT [123], which has shown good performance in the sentence reordering

pre-training task and may consequently have the ability to deal with misordered phrases

that can appear in spontaneous speech 3) DistilBERT [124] which is trained by distilling the

BERT model into a smaller, more computationally efficient model, and XLNET [120], whose

autoregressive structure has proven advantageous over BERT in several text classification

tasks. 75% of the GSU Kids Speech was used for training and the other 25% for testing.

We performed a 4-fold split to ensure that all data was used in testing and report the

average performance over all folds. In addition to the GSU Kids dataset, we also jointly

train the system with text from the VHED dataset [125] to augment the size of training

corpus. This dataset contains image captions corresponding to sequences of images which

form short stories. Each set of captions is also labeled by human annotators with an average

quality ranking of the overall story on a scale of 1 to 5. The VHED dataset is a composite

of multiple audio-visual story-telling datasets with a wide representation of story tasks. Our

intention in using it here is to implicitly teach the model to score story quality in addition to

being trained on in-domain data from the GSU Kids training set. We use 80% of the VHED

dataset (roughly 10,000 text samples) in training the language model to simultaneously

predict cumulative scores of the GSU Kids story-telling assessment and average quality

rankings of the VHED text samples. We show the classification accuracy to demonstrate

overall system performance, F1-score to demonstrate fair performance across imbalanced

classes, and root mean square error to show the magnitude of the machine’s errors in Table

5.5.

Our results show that the proposed multitask training scheme used with BERT achieves
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high accuracy in predicting the overall scores in the GSU Kids story-telling samples. The next

sentence prediction training objective and larger parameter size of BERT may contribute to

its improved performance over the other models. We note that ALBERT, the model with

the fewest parameters, is least robust to an increase in WER in the input transcripts. While

transcriptions for children’s speech generated from ASR systems still contain several errors,

we demonstrate that the usage of language models helps extract high level linguistic features

in spite of the high WER of these systems. In the near future, we will train the system to

predict individual score components in order to return a detailed score report for each system.

For example, the annotators have marked whether or not the child included character names

in their story, if they have described key parts of the scene in the picture, and if they keep

the same verb tense throughout their story. The promising results in Table 5.5 imply that,

given the annotator labels, the system can be trained to predict these characteristics of the

student response individually. Teachers can use use such results to understand which areas

a student needs to improve in.

5.3 Summary

This section details our frameworks for automatic oral language assessment scoring. We

demonstrate the performance of the systems for both a story-retelling task and a picture

description task. Using state-of-the-art ASR and downstream BERT-based classification,

the systems perform well in categorizing the participants’ performance across tasks. We also

show that the system performs relatively fairly across the participants’ ability levels and

spoken dialect.
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Demographic String-Search Rubric (SSRM) Approach Neural Linguistic Feature (NLF) Approach

Reading/Language

Impairment
WER

# of

students

GT

RMSE

GT

C. Acc

Whisper

RMSE

Whisper

C. Acc

GT

RMSE

GT

C. Acc

Whisper

RMSE

Whisper

C. Acc

Control 21.1% 32 0.125 87.5% 0.125 87.5% 0.020 99.9% 0.025 99.9%

RD only 26.8% 60 0.116 88.3% 0.133 86.6% 0.061 87.5% 0.064 87.5%

RD+LI 34.5% 27 0.111 88.8% 0.148 85.0% 0.110 87.8% 0.130 85.0%

Reading Status WER
# of

students

GT

RMSE

GT

C. Acc

Whisper

RMSE

Whisper

C. Acc

GT

RMSE

GT

C. Acc

Whisper

RMSE

Whisper

C. Acc

Poor 27.0% 142 0.119 88.0% 0.140 85.9% 0.022 95.0% 0.033 89.5%

Good 21.1% 32 0.125 87.5% 0.125 87.5% 0.086 97.5% 0.094 96.9%

Dialect WER
# of

students

GT

RMSE

GT

C. Acc

Whisper

RMSE

Whisper

C. Acc

GT

RMSE

GT

C. Acc

Whisper

RMSE

Whisper

C. Acc

AAE 26.8% 116 0.119 87.9% 0.155 84.4% 0.062 94.0% 0.061 94.1%

Non-AAE 25.4% 68 0.108 88.2% 0.102 89.7% 0.013 99.2% 0.013 99.2%

Table 5.4: Results for both the SSRM and NLF approaches across different student demo-

graphics. We present a breakdown of best performing ASR system (Whisper) word error

rate, the classification C. Accuracy and RMSE of the system on the ground truth (GT)

transcripts, and those metrics on the Whisper ASR transcripts for the following three demo-

graphic splits: 1) Type of Reading or Language Impairment from i) control - no impairment,

ii) RD Only- student has reading disorder like dyslexia that does not occur with or as a

secondary effect of a primary learning or language impairment or other condition, iii) RD

+ LI - A reading disorder that occurs with a primary Language impairment 2) Reading

status from i) Poor - the student is evaluated to read at a level below their appropriate

grade level or ii) Good - the student reads at or above their appropriate grade level, and 3)

Dialect from i) African American English (AAE) or ii) Non-AAE - a mix of characteristics

of General American English and Southern American English native to the Atlanta, Georgia

Area. Note that the number of students in the Reading/Language Impairment and Reading

Status demographic categories do not sum to the full 184. For this analysis, we excluded

children with other disorders like ADHD that may complicate the test taking and children

who were not able to be assessed for reading status into either the Poor or Good category.
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Model (Size) BERT (110M) ALBERT (11M) DistilBERT (66M) XLNET (110M)

Metric %WER C. Acc F1 RMSE C. Acc F1 RMSE C. Acc F1 RMSE C. Acc F1 RMSE

Groundtruth - 98.0 97.5 0.06 95.5 93.0 0.09 84.0 83.0 0.3 92.0 90.0 0.072

Whisper-Large 22.4 96.5 95.0 0.067 95.5 93.0 0.1 84.0 82.5 0.44 91.3 91.0 0.12

HuBERT-Large 33.5 96.0 96.0 0.12 87.5 85.0 0.22 83.0 83.0 0.27 91.0 90.0 0.16

Table 5.5: Percent Classification Accuracy (C. Acc), Percent F1 Score, and Root Mean

Square Error of each language model in predicting student scores from the input transcripts

(ground truth, Whisper ASR transcript, or HuBERT asr transcripts) along with the word

error rate (WER) for each.
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CHAPTER 6

Inclusive Automatic Spoken Question Answering

In the previous chapter, we introduced speech-robust NLP methods for cumulative oral

assessment scoring. However, an educator assessing a student’s oral response may want

to provide more detailed feedback to a, such as which target words from a story retelling

task were missed or whether or not a student correctly described a character’s appearance

in a picture description task. In order to provide this more fine-grain feedback, a system

would need to retrieve target pieces of information from the input context. This information

retrieval task has been explored in spoken question answering, as in [69, 70, 71, 72]. However,

several challenges remain in creating robust spoken question answering and information

retrieval systems. First, much of the work done in spoken question answering is evaluated

on datasets such as the Spoken SQuAD dataset [75] or Spoken CoQA dataset [73]. These

datasets often only contain spoken questions and contexts that were either generated using

text-to-speech or read from a script created from an existing text question answering dataset.

This means that further work may be necessary to create spoken language understanding

systems that are robust to the disfluencies and lack of proper logical organization often found

in spontaneous speech [76]. Second, many of these works format the problem of spoken

question answering as finding an answer from a short context (e.g. a one minute audio

recording). Many contexts (e.g. a lecture, an instructional video, or a meeting recording)

may be significantly longer, and it is non-trivial to scale a model trained for short contexts

to infer answers from a longer context. Last, further work is needed to ensure that these

systems are robust to differences in dialect, accent, speaking style, and regional diction or

other out of vocabulary words. This may be especially true for cascade systems employing
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pre-trained models that were trained on only one dialect or speaking style.

In this work, we aim to advance methods for spoken question answering from long con-

texts on spontaneous speech. We introduce the CORAAL Question Answering (CORAAL

QA) dataset which is composed of hand-labeled question-answer-span pairs about informa-

tion present in long audio files (typically 30min-1hr) from the Corpus of Regional African

American Language [77]. Next, we train a model to rank the relevance of segments of ASR

transcripts of a long audio file to an input query and return the most likely span to contain a

corresponding answer. Finally, we leverage large language models to generate new questions

for data augmentation and further process the returned outputs to improve performance.

6.1 Methods

This work uses spoken question answer pairs from the CORAAL QA dataset. We designed

this dataset with the intention of creating a spoken question answering dataset benchmark

dataset with 1) speakers of diverse regional dialects such as AAE, 2) spontaneous speech,

and 3) long audio files whose context far exceeds just the span of the answer segment. We

format the question answering from long audio files as the following information retrieval

task: an audio file, D, is composed of several short segments, D = {s1, s2, s3, ..., sn}. The

user inputs a query, q, whose answer, a, can be found in one or more consecutive segments,

i.e. a = {si, ..., si+k}. Given the input query, q and audio file, D, which may be up to an

hour or more in length, we then seek to return the set of answer segment, a. We accomplish

this by assigning a score to each segment in D based on its likelihood of answering q and

return the segments with the highest scores. For simplicity, we do not consider queries that

can not be answered by any segment in the audio file.

72



6.1.1 Model

An overview of the framework is given in Figure 6.1. The input audio file is first divided

into short segments with an overlap between them. To identify the ideal segment size and

overlap, we validate over several choices (shown in Table 6.2) and arrive at an ideal segment

size of 60 sec and overlap size of 20 sec. The input audio segments are then transcribed

using the Whisper-Large [10] ASR model. Prior work shows that Whisper achieves state-of-

the-art performance for the African American English contained in the CORAAL database

(16.2% WER) [10, 126]. From the ASR transcript generated from each audio segment, we

then use Sentence-BERT [127] to compute a sentence embedding. BERT-based sentence

embeddings have been shown to be useful for separating information by topic relevance in

text information retrieval tasks [128], and so we seek to apply those benefits in the spoken

domain. Inspired by the popular speaker embedding approach of [33], we train a Probabilistic

Linear Discriminant Analysis (PLDA) [129] model to score the relevance between the 384-

dim BERT sentence embeddings from an input query and the BERT sentence embeddings

from the segment-level ASR transcripts. During training, embeddings of text questions from

the training set and ASR transcripts from the corresponding answer segments are labeled

as coming from the same distribution. During inference, we then use embeddings of target

questions as the enrollment set and embeddings of segment-level ASR transcripts as the test

set. We then evaluate the system performance by the equal error rate (EER) as well as

the precision, recall, and F1-score in correctly retrieving the relevant audio segments. For

calculating precision and recall, the PLDA scores for each segment are converted to binary

detection decisions through thresholding at the equal error rate. We then compare these

scores to the ground truth segment-level labels.
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6.1.2 Experiments

We use the VLD split of CORAAL as testing data and the other splits of CORAAL as

training and validation splits. This creates an approximately 80%, 10%, 10% split. Splitting

data in this way ensures that no speaker appears in more than one split, and that the regional

diction and dialect from the test set has not been previously seen by the model. We first

establish the performance of the baseline model with this test-train split in Table 1, validating

over different input audio segment lengths. Then, we experiment with two methods designed

to improve the model performance: Data augmentation and Prompt Engineering. Inference

for all models utilized for these tasks is conducted on a single Nvidia A6000 GPU.

6.1.2.1 Data Augmentation with Question Generation

In order to improve model performance, we investigate using large language models to gen-

erate more diverse training data. In addition to the hand-written questions of the training

set, we also use question generation with DeBERTa [130], ChatGPT (gpt-3.5-turbo) [8], and

Llama 2-7b [131] to generate additional training questions. Each language model is given

the Whisper ASR transcript from each 60sec segment of each audio file in the training set.

Then, using each segment-level transcript as context, the language models are prompted to

generate a question with an extractive answer. This question and corresponding time frame

from the audio are then used as additional training data. In order to evaluate the quality of

the generated questions, we generate questions from the same context as the hand-written

questions and compare them with the following metrics: Semantic Similarity: the co-

sine distance between the BERT sentence embeddings of the hand-written question and the

generated question. Percent Words Shared: The number of words that the generated

and hand-written questions have in common after lemmatization and removal of stop words

divided by the number of words in the hand-written question. BLEU Score: As the BLEU

score is a commonly accepted metric for the quality of a machine-generated sentence with
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respect to a human-written sentence, we report the BLEU of the generated question with

respect to the hand-written question. Percent entities included: We report the number of

named entities that appear in the generated question divided by the number of entities that

appeared in the context from which the question was generated. We perform this both using

the ground truth transcript and ASR transcript as context. This metric gives a measure

of the language model’s ability to ask questions about specific names, dates, locations, and

other named entities as well as the ASR system’s ability to correctly transcribe these entities

before they are passed to the language model as context. Answer Precision, Recall, and

F1 score: We first ask a RoBERTa model optimised on the SQuAD dataset [132] to extrac-

tively answer both the hand-written and the generated question from the ASR transcript.

We then score the precision, recall, and F1-score of the retrieved answer of the generated

question with respect to that of the hand-written question using the SQuaD evaluation script

[133]. This gives a measure of similarity between the answers to the generated questions and

the answers to the hand-written question. Distractor Accuracy: For each question gen-

erated by each language model, we utilise the MQAG framework [134] to generate a correct

answer to the question as well as three incorrect distractor answers. We then ask ChatGPT

to answer the four-choice multiple response question from the created answers and report the

accuracy. We perform this with distractors both generated from the ground truth transcript

and from the ASR transcript. Answerable score: We use SelfCheckGPT [135] to derive a

score for how answerable a given generated question is given the context. This will ideally

return a low score if the generated question contains several errors or does not correspond

to the given input context. We perform this using both the ground truth and ASR tran-

scripts as input context. These metrics are shown in Table 2. The performance of the data

augmentation experiments is shown in Table 3.

For question generation with Llama 2 and ChatGPT, we elect to feed the models with

the following prompt:
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You are a Teacher. Your task is to setup a question for an upcoming quiz. The ques-

tion should be simple in nature. Restrict the question to the context information provided

TRANSCRIPT FROM AUDIO SEGMENT

In total we generated 7347 questions each using ChatGPT and DeBERTa, and 7230

questions from Llama 2, resulting in a combined total of 21924 augmented questions. The

discrepancy in the number of questions generated from Llama 2 arises due to safeguards

placed in the model that lead to a refusal to generate questions from certain segments

covering sensitive topics.

For predicting the right answer to a question from a set of distractors, we feed ChatGPT

with the following prompt:

You are a Student. Your task is to select the correct answer in a test. You are provided with

some context information, a question and some multiple choice options. Answer the question

only with the context information provided.Return only the correct option.

TRANSCRIPT FROM AUDIO SEGMENT

Question is below

GENERATED QUESTION

Options are below

A: OPTION 1 B: OPTION 2 C: OPTION 3 D: OPTION 4

6.1.2.2 Whisper Prompting

Whisper is powerful in its ability to provide previous context to the decoder in order to

improve transcription, and this has led to significant improvements in word error rate for

zero-shot spoken language tasks [136]. In this work, we apply Whisper’s prompting to take

advantage of the temporal relationship of audio segments upon being input into the classifier

model. We try prompting Whisper with the concatenation of ASR transcripts from the last

N segments upon transcribing the current segment. This is intended to ensure that segments
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Chunk Size \(Overlap) Precision ↑ Recall ↑ Macro F1 ↑ EER ↓

15s \(5s) 0.666 0.567 0.59 0.244

30s \(10s) 0.748 0.622 0.654 0.203

60s \(20s) 0.712 0.631 0.655 0.181

Table 6.1: Effect of the size of the Audio Segments for predictions from the PLDA model.

Precision, Recall and Macro F1 statistics are calculated from predicted scores from the

system. EER refers to the Equal Error Rate of the trained system

are transcribed with previous knowledge of the conversation and that important information

is preserved and consistently transcribed over time. We experiment with using the last N

segments as context in the prompt for N = 1, 2, and 3 (shown in Table 4).

6.2 Results

Table 6.2 shows the performance of the model with input segments of varying length and

overlap. We determine that the question answering model performed best (in terms of

both F1 score and EER) with input segments that were 60 seconds long with 20 seconds of

overlap between adjacent segments, and so we keep these parameters throughout the rest of

this paper. Table 6.2 gives the evaluation metrics for the questions generated by DeBERTa,

ChatGPT, and Llama 2 with respect to the hand-written questions. Table ?? reports the

performance of the question answering model using generated questions from each language

model as training data. Table 6.2 reports the performance of the question answering model

when using N segments of previous context as the prompt to Whisper in the current step.

6.3 Discussion

As all the language models used in this work are trained on text data, their metrics in

generating data for a spontaneous speech task are expected to be lower than if evaluated
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on written words. However, ChatGPT seems to be more robust to the differences in spoken

speech vs written text style than DeBERTa and Llama 2. We observe from Table 2 that

ChatGPT often produces questions most in line with the hand-written questions, having

the highest semantic similarity, number of shared words, and BLEU score with the human-

generated samples. ChatGPT’s questions also had higher distractor accuracy, though we

acknowledge that there may be bias in evaluating its performance, as we predict distractor

scores through a secondary prompt to ChatGPT itself. The questions generated by DeBERTa

give a significantly lower answerable score than those from either ChatGPT or Llama 2.

However, when asked to answer both its own generated question and a hand-written question

derived from the same audio segment, DeBERTa gives higher answer precision, recall, and

F1-score than Llama 2. However, the number of named entities that Llama 2 included in its

questions generated from the both the ground truth transcript and the ASR transcript was

significantly higher than that from DeBERTa and not significantly different from that from

ChatGPT.

Although using generated questions from ChatGPT in training improved the performance

(in terms of precision, recall, and F1 score) over the baseline without data augmentation, we

see that additional training data generated by DeBERTa and Llama 2 was also beneficial.

This may imply that using artificially generated questions in the question-answering system is

beneficial regardless of the generative model used, although some models may produce more

human-like or diverse sets of training samples. It also appears that the semantic similarity

and Whisper answerable score metrics of the generated questions correlate relatively well to

the precision, recall, and F1 score of the question answering model trained on that synthetic

data. These metrics may be useful for data mining or automatic quality analysis of generated

data in the future. Next, the combination of questions generated by DeBERTa, ChatGPT,

and Llama 2 together in data augmentation gives a larger benefit than the use of generated

questions from any one model. This result may mean that having a combination of questions

from different models, (i.e. a more diverse augmented training set) is more important than
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the quality of questions generated by any one model.

The model appears to benefit from the additional context in the prompt. The system

shows the highest F1 score when using N = 3 segments of previous context, implying that

the model performs better when given more context. However, the increase in performance

from N = 2 to N = 3 is marginal, and the benefits gained would likely be outweighed by

the additional memory cost if significantly more audio segments were used.

6.4 Summary

This chapter shows our work in automatic spoken question answering on the CORAAL QA

database introduced in here. We expand on existing ASR and NLP techniques to extract

semantic information from spontaneously spoken African American English speech. The

cascaded system of Whisper ASR, SentenceBERT neural embeddings, and PLDA scoring

achieves state-of-the-art precision and recall when identifying an answer span from a long

audio segment.

Part of this work was accepted to ICASSP 2023.
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Figure 6.1: Overview of the proposed system. The long audio file, D is segmented into one

minute segments, si. Each segment is then transcribed with ASR where the ASR system is

prompted with previous context. Then both the ASR transcript from each segment and the

text of an input query, q, are encoded with Sentence-BERT and scored for the likelihood

that si answers q by the PLDA classifier. Last, the ground truth scores are used to evaluate

performance.

80



Model
Semantic

Similarity ↑

Percent

Words

Shared ↑

BLEU ↑
GT % Entities

Included ↑

Whisper

% Entities

Included ↑

Answer

(precision/

recall/ f1) ↑

GT

Distractor

Acc ↑

Whisper

Distractor

Acc ↑

GT

Answerable

Score ↑

Whisper

Answerable

Score ↑

DeBERTa 0.3914 28.28 0.063 20.07 14.52 37.1 /35.4/34.2 72.97 71.86 68.62 63.55

ChatGPT 0.5670 43.17 0.065 43.19 20.49 41.3/ 40.8/ 39.2 73.43 72.97 92.88 92.55

Llama 2 0.4751 38.85 0.054 39.61 28.42 30.0/ 29.9/ 28.4 65.28 64.46 91.76 92.00

Table 6.2: Metrics for evaluating the quality of generated questions: Cosine distance between

BERT embeddings of the generated questions and hand-written questions (Semantic Simi-

larity), Percent Words shared between the generated questions and hand-written questions,

BLEU score between the generated questions and hand-written questions, % of named enti-

ties from the ground truth transcript not included in the generated question (GT % entities

included), % of named entities from the ASR transcript included in the generated question

(Whisper % entities included) ), Precision, Recall, and F1-score between the retrieved answer

to the hand-written question and that for the generated question (Answer precision, recall,

and F1-score), language model accuracy in correctly answering the question from a multiple

choice set with distractors generated from the ground truth transcript (GT Distractor Acc)

and distractors generated from the ASR transcript (Whisper Distractor Acc), and the An-

swerabile score given by SelfCheckGPT for the generated question with either the ground

truth transcript or the ASR transcript given as context (GT Answerable Score and Whisper

Answerable score, respectively).
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Model Precision ↑ Recall ↑ Macro F1 ↑ EER ↓

Deberta 0.732 0.64 0.667 0.183

ChatGPT 0.76 0.66 0.688 0.175

Llama 2 0.748 0.654 0.681 0.164

All 0.765 0.668 0.697 0.166

Table 6.3: Performance of PLDA systems trained with questions generated by different sys-

tems. Questions were generated by the respective systems from the non-prompted Whisper

generated ASR transcripts. All refers to a PLDA model trained by combining the questions

generated from all the individual models

#Seg Precision ↑ Recall ↑ Macro F1 ↑ EER ↓

N = 1 0.728 0.641 0.680 0.175

N = 2 0.759 0.658 0.688 0.174

N = 3 0.761 0.663 0.689 0.175

Table 6.4: Performance of the question answering model when the ASR transcripts from the

previous N segments are used in the Whisper prompt as previous context on transcribing

the current audio segment.
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CHAPTER 7

Summary and Conclusions

This dissertation examined novel methods for fair speech recognition and understanding

systems with applications towards educational technologies. We primarily focus on devel-

oping speech technology for speakers of African American English because of the pressing

social need to improve educational outcomes for such groups that are underrepresented in

the technology sector. The chapters of this work can be taken as the steps in a pipeline

which 1) performs dialect analysis on an input utterance to better inform downstream pro-

cessing, 2) perform dialect or age-specific speech recognition on the input utterance, and 3)

perform spoken language understanding on the ASR transcripts of the utterance for use in

educational settings.

7.1 Summary

Chapter 2 provided a summary of the main databases used in this work including CORAAL,

the CORAAL QA Spoken Question Answering dataset, the UCLA JIBO Kids’ Speech Cor-

pus, and the GSU Kids’ Speech Corpus. Notably, with the exception of the publicly available

CORAAL dataset, the other datasets mentioned were largely collected or compiled by the

authors of this work and their collaborators. Other publicly available databases used in this

work include the Librispeech database [84] and the Speakers in the Wild database [99].

Chapter 3 examined how dialect identification and dialect density estimation could be

performed on speech from a low-resource dialect by incorporating linguistic knowledge. We
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used ASR, acoustic, and language models to extract features relating to documented lin-

guistic phenomenon in AAE such as formant shifts, alternate pronunciations, grammar con-

structions, and prosodic patterns. We then achieved state of the art performance in using

these features to distinguish the speaker’s dialect. We also defined and set the benchmark

for the task of dialect density estimation where we correlated the features to the speaker’s

frequecny of dialect usage.

Chapter 4 proposed the novel ASR data augmentation method, LPC Augment, to syn-

thesize training data for low-resource dialect ASR. The LPC augment algorithm used LPC

analysis to decouple the speech source signal from the vocal tract filter, perturb the filter

pole locations to better match those that might be representative of formants in the tar-

get low-resource dialect, and reconstructed a speech signal with those formant locations.

We saw marked improvement over baseline data augmentation methods in training either a

transformer-based or a hybrid HMM-DNN system with this augmented data.

Chapter 5 proposed a novel framework for automatically scoring children’s oral narrative

language abilities. By training a system which predicted student oral assessment scores from

a combination of input BERT soft labels with hand-crafted linguistic features extracted

from the ASR transcripts, we were able to show high performance in the education task.

Furthermore, we showed relatively robust performance across the speakers’ dialects, reading

ability, and presence of language impairment, indicating a high potential for fair and inclusive

speech technology in the space.

Chapter 6 explained the construction of the new CORAAL QA database and describes

a PLDA-based spoken question answering system for answering questions from dialectal

spontaneous speech in long audio files. By using large language models to generate data for

data augmentation and experimenting with the ASR input context, we improved over the

baseline to create a high-performing spoken question answering system for the open-domain

spontaneous speech task.
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7.2 Novel Contributions

Some of the novel contributions of this dissertation work include:

• The creation and establishing of a benchmark performance for the automatic dialect

density estimation task

• The proposal of an AAE dialect identification system for both children and adults

• The LPCAugment data augmentation method for low-resource children’s dialectal

speech

• State-of-the-art performance in children’s oral narrative language assessment evalua-

tion

• The creation of the CORAAL QA database for open-domain spontaneous speech ques-

tion answering from long audio files

7.3 Ethics Statement

The work presented in this dissertation is intended to be used only in service of educators,

students, and stakeholders in education. It is not intended to be used to discriminate, violate

privacy, or otherwise cause harm. We acknowledge that the proposed systems are trained

with sensitive data such as voice bio-metric markers, demographic information, and educa-

tional testing scores which could be used to uncover protected characteristics of participants.

Malicious users may attempt to use this information to attack or discriminate against vul-

nerable community members. To prevent this, we propose the following recommendations:

1) This technology is to be used in conjunction with human evaluation and should not re-

place human intervention entirely. For example, the machine learning-based system may

provide an initial evaluation of a student’s oral language assessment abilities, and then a

human language specialist would verify the results before further action is decided. 2) All
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users of the system should be made fully aware of any risks involved. The system will not be

employed for any user before they have given informed consent, 3) The system should not be

used outside of educational purposes without the consent of all users and stakeholders, and

4) As little sensitive data as possible should be retained after training and inferring with the

system.

7.4 Future Work

A question that remains unexplored in some of this work is how well these models generalize

to other low resource cases. For example, it would be interesting to examine how well the

data augmentation methods we propose for ASR and spoken question answering on African

American English speech transfer to other low resource dialects, accents, languages, and

speech from speakers with speech-related disabilities like dysarthria. It also remains unseen

how well the proposed spoken language understanding systems generalize to applications with

specialized vocabulary or pronunciations, such as education for medical, legal, or business

fields. A future step is to evaluate these methods on other low resource domains.

In addition, scalability is another important consideration for low-resource speech sys-

tems. For example, the fact that a system performed relatively well with a small neural

network or when trained on a small number of hours of data does not guarantee that per-

formance will scale linearly with the number of parameters used or amount of training data

provided. We hypothesize that our proposed low-resource systems would perform signifi-

cantly better if given significantly more data or scaled to the size of current large language

models. However, the extent of this effect has yet to be shown.
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