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ABSTRACT OF THE DISSERTATION

Video and Image Analysis Using Local Information

by

Xiaochen Lian

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2017

Professor Alan Loddon Yuille, Chair

Local information is very crucial in many image and video analysis tasks. In this thesis,

we introduce four representative works in exploiting local information. We first introduce a

set of per-pixel labeling datasets, which provide a good platform for studies of using local

information in image analysis. Based on this dataset, we propose a novel segmentation

method which utilizes local appearance consistency for car semantic part parsing task. We

then address the attention issue in video action recognition tasks, by designing a latent

attention module, which is jointly learned with video recognition components. Last, we

improve the attention mechanism to explicitly detect spatial and spatio-temporal regions

that are related to actions (ROIs).

ii



The dissertation of Xiaochen Lian is approved.

Yingnian Wu

Hongjing Lu

Adnan Youssef Darwiche

Alan Loddon Yuille, Committee Chair

University of California, Los Angeles

2017

iii



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 PASCAL Per-Pixel Labeling Dataset . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Background: Related Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Semantic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Boundary Segmentation Dataset . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Semantic Part Segmentation . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 The Semantic Segmentation Dataset: PASCAL Context . . . . . . . . . . . 12

2.3.1 Annotation strategy for PASCAL Context . . . . . . . . . . . . . . . 13

2.3.2 Analysis and Comparison for PASCAL Context . . . . . . . . . . . . 13

2.4 PASCAL Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 PASCAL Boundaries: annotation strategy . . . . . . . . . . . . . . . 15

2.4.2 Analysis and Comparison for PASCAL Boundaries . . . . . . . . . . 15

2.5 PASCAL Semantic Part Dataset and Benchmark . . . . . . . . . . . . . . . 16

2.5.1 Annotation Strategy: PASCAL PARTS . . . . . . . . . . . . . . . . . 19

2.5.2 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Discussion: Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Parsing Semantic Parts of Cars Using Graphical Models and Segment

Appearance Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 The Method for Parsing Cars . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iv



3.3.1 Score Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Inference and Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Video Action Recognition Using Attention . . . . . . . . . . . . . . . . . . 47

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Classification Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2 Attention Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Conlusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Mining Spatial and Spatio-Temporal ROIs for Action Recognition . . . 61

5.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.1 ROI Proposal Generation . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.2 ROI Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 68

v



5.2.3 ROI Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.3 Diagnostic Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.4 Comparison with The State of The Art . . . . . . . . . . . . . . . . . 77

5.3.5 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

vi



LIST OF FIGURES

1.1 The challenges in video action recognition. . . . . . . . . . . . . . . . . . . . 3

2.1 PASCAL Context: Examples of our annotations, which contain semantic seg-

mentation of 459 categories in the PASCAL VOC 2010. . . . . . . . . . . . . 12

2.2 Distribution of pixels (above) and images (below) for the 59 most frequent

categories. See text for the statistics. . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Mean and variance of relative sizes of parts for 7 articulated object categories

used in Part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Examples of semantic part annotations. WHAT IS THE POINT OF THIS

FIGURE?? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Pixel-wise frequency of context classes in top, bottom, and left/right contex-

tual parts. The x-axis corresponds to size percentile and the y-axis represents

the frequency of appearance. Only the most correlated classes are shown. . . 25

2.6 Pixel-wise frequency of context classes in top, bottom, and left/right contex-

tual parts. The x-axis corresponds to size percentile and the y-axis represents

the frequency of appearance. Only the most correlated classes are shown. . . 26

2.7 Pixel-wise frequency of context classes in top, bottom, and left/right contex-

tual parts. The x-axis corresponds to size percentile and the y-axis represents

the frequency of appearance. Only the most correlated classes are shown. . . 27

2.8 Pixel-wise frequency of context classes in top, bottom, and left/right contex-

tual parts. The x-axis corresponds to size percentile and the y-axis represents

the frequency of appearance. Only the most correlated classes are shown. . . 28

2.9 Pixel-wise frequency of context classes in top, bottom, and left/right contex-

tual parts. The x-axis corresponds to size percentile and the y-axis represents

the frequency of appearance. Only the most correlated classes are shown. . . 29

vii



3.1 The goal of car parsing is to detect the locations of semantic parts and to

perform object part segmentation. The inputs (left) are images of a car taken

from different viewpoints. The outputs (right) are the locations of the car

parts – the wheels, lights, windows, license plates and bodies – so that each

pixel within the car is assigned to a part. . . . . . . . . . . . . . . . . . . . . 31

3.2 The proposed mixture-of-trees model. Models of left-front, right-back and

right views are not shown due to the symmetry. The landmarks connected by

the solid lines of same colors belong to the same semantic parts. The black

dashed lines show the links between different parts. Best view in color. . . . 31

3.3 Illustration of segmentation appearance consistency (SAC) and segment pairs.

Red and green squares represent two neighboring landmarks lying on the

boundary between window and body. Each landmark has two segments (a and

b for the red landmark, c d for the green landmark) close to it. Our method

models and learns the SACs for every pair of neighboring landmarks (blue

dashed lines) and uses them to enhance the reliability of landmark localization.

For the blue landmark, its segment pair is the same as the red landmark, which

is the closest one on the boundary. . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 The segments output by SWA at six levels. Note how the segments covering

the semantic parts change from level 1 to level 6 (e.g., left windows and left

wheels). This illustrates that different parts need different levels of segmen-

tation. For example, the best level for the left-back wheel is level 4 and the

best level for the left windows is level 5. Best view in color. . . . . . . . . . . 35

3.5 The landmark annotations for typical images. Yellow dots are the annotated

landmark locations. Please refer to Section 3.3.3 for landmark selection criteria. 36

viii



3.6 Illustration of segment pair assignment. Right: The look-up table for segment

pair assignment, which is divided into two parts (separated by the dashed

line). White represents 1 and black represents 0. Left: an example of how

to construct the binary matrix m(p) for location p and how to determine its

segment pair. The hit of m(p) in the look-up table is marked by the red

rectangle. Best view in color. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 70 out of all 256 3-by-3 binary matrices (black indicates “0” and white indi-

cates “1”), with the center fixed to one. Matrices in red rectangle are used to

generated the 32 binary matrices of the look-up table. Matrices in the blue

dashed rectangle are considered not suitable for indexing. . . . . . . . . . . . 40

3.8 The 32 binary matrices in the look-up table, separated by a dashed line. . . 41

3.9 Example of how segment pair assignment rule works. . . . . . . . . . . . . . 41

3.10 Illustration of the consistency of the segment assignment algorithm. . . . . . 42

3.11 Cumulative localization error distribution for parts. X-axis is the average

localization error normalized by image width, and Y-axis is the fraction of the

number of testing images. The red solid lines are the performance using SAC

and the blue dashed lines are the performance of [ZR12]. . . . . . . . . . . . 42

3.12 Cumulative segmentation error distribution for parts. X-axis is the average

segmentation error normalized by image width, and Y-axis is the fraction of

the number of testing images. The red solid lines are the performance using

SAC and the blue dashed lines are the performance of [ZR12]. . . . . . . . . 43

3.13 Visualized comparison of our method with [ZR12] on car part segmentation.

In each pair of results, the lower one is produced by our method. . . . . . . . 44

3.14 More segmentation results of our method on VOC10 (upper) and CAR3D

(lower). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ix



4.1 The overall framework of the proposed video action recognition model. The

feature extraction module takes a single frame and applies a deep convolu-

tional neural network (DCNN) on the the frame image in a sliding window

manner, yielding for each location a deep convolutional feature. The attention

module computes an attention map for those locations, based on a short clip

(i.e.,a sequence of frames) centered at the frame. . . . . . . . . . . . . . . . . 49

4.2 Architecture of VGG16 in [SZ14a], which adopts small convolution kernels of

size 3× 3 and stride 1× 1, and small pooling window of size 2× 2. . . . . . 52

4.3 Transforming fully connected layers into convolution layers enables a classifi-

cation net to output a heatmap. The figure is borrowed from [LSD15]. . . . 52

4.4 Type A attention module (orange rectangles), which takes inputs from the

outputs of fc7 layer in the classification module (the blue shaded part). . . . 53

4.5 Type B attention module (orange rectangles), which takes multiple frames as

input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Illustration of 2D and 3D convolutions. (a) Applying 2D convolution on an

image results in an image. (b) Applying 2D convolution on a video volume

(multiple frames as multiple channels) also results in an image. (c) Apply-

ing 3D convolution on a video volume results in another volume, preserving

temporal information of the input signal. The figure is borrowed from [TBF14]. 54

4.7 Attention module. The network inherits from C3D net 8 convolution, 5 max-

pooling layers. The first fully connected layer is transformed into a 2D convo-

lutional layer ”Conv fc6”, and the last fully connected layer and the softmax

output layer are replaced with a 2D convolutional layer “Conv att”. All 3D

convolution kernels are 3 × 3 × 3 with stride 1 in both spatial and temporal

dimensions. Number of filters are denoted in each box. The 3D pooling layers

are denoted from pool1 to pool5. All pooling kernels are 2× 2× 2, except for

pool1 which is 1× 2× 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

x



4.8 Visualization of the attention map learned by our model. For each video, the

upper row are video frames, and the bottom row is the attention map, where

brighter means more attention. . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 The pipeline of the proposed approach. The Static Model mines static ROIs

of individual video frames, and the Motion Model mines spatio-temporal ROIs

(i.e.,video tubes) of short video clips. The two models are fused at the end. . 62

5.2 The network architecture of the Static Model. Given an image frame I, a set

of 2D bounding boxes (indicated by colors) are selected as candidate static

ROIs. The deep features of ROIs with the dimension equal to the number of

categories are computed, which are passed to the mining component, which is

composed of an aggregation module and a softmax layer that transforms the

aggregated feature into final scores of actions. . . . . . . . . . . . . . . . . . 64

5.3 The network architecture of the Motion Model). Given a video clip, a set of

video tubes (indicated by colors) are selected as candidates spatio-temporal

ROIs. The deep features of ROIs with the dimension equal to the number of

categories are computed, which are passed to the mining component, which is

composed of an aggregation module and a softmax layer that transforms the

aggregated feature into final scores of actions. . . . . . . . . . . . . . . . . . 65

5.4 Four examples of our region proposals for Static Model. For each example,

the left is the original frame image, the middle is the edge map, the right

shows top 10 bounding box ROIs. . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 Left: Motion box generation on a single frame: two consecutive frames are

used to estimation the motion boundaries which is then used as edge map

input for Edge Boxes to produce motion boxes (red bounding boxes). Right:

Two video tubes proposals on the first four and last four frames of a 16-frame

video clips. Boxes with same color belong to the same video tube. The red

tubes localizes the diver and the yellow one finds the diving board. . . . . . 66

xi



5.6 Illustration of how the proposed sort aggregation module works on a case of

3 4-D instance features (i.e.,K = 3 and C = 4). . . . . . . . . . . . . . . . . 69

5.7 Visualization of the top two static ROIs from S-Box(6)-sort. Each row corre-

sponds to a video from the test partition of UCF101 split1. Red box corre-

sponds to the top score one, and the yellow is the second best one. For each

video we display five frames with equal temporal intervals. . . . . . . . . . . 79

5.8 Visualization of the top two scored spatio-temporal ROIs from M-Tube(6)-

sort. Each row corresponds to a video clip from the test partition of UCF101

split1. For each video clip we display first three and last two frames and omit

the between. The red boxes correspond to the video tube with best action

score, and the yellow is the one with second best score. . . . . . . . . . . . 80

xii



LIST OF TABLES

2.1 Definitions of semantic parts for 16 Categories in the PASCAL Part. For

boat, chair, dining table and sofa, we do not have parts. Bold font of part

names means the corresponding parts could appear multiple times in one

object instance∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Definition of semantic parts for 7 articulated object categories used in Part

Segmentation benchmark. In the second column are the higher-level parts

used in the benchmark and their constituent parts. The last column shows

the frequencies of these parts and their proportion (in terms of percentage of

pixels) in the training dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Working hours of annotation and polishing phases on training/validation and

testing sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Comparison of different variants of the proposed framework on UCF101. . . 57

4.2 Comparison of different variants of the proposed framework on HMDB51. . . 58

5.1 Average accuracy of different aggregation methods and ROI numbers for the

Static and the Motion Models on UCF101 split1. . . . . . . . . . . . . . . . 71

5.2 Average accuracy of different aggregation methods and ROI numbers for the

Static and the Motion Models on HMDB51 split1. . . . . . . . . . . . . . . . 72

5.3 Comparisons between stochastic out [ZHS16] and sort aggregation on UCF101 split1. 74

5.4 Comparison between joint and separate learning of deep feature and ROI

mining on UCF101 split1 and HMDB51 split1. . . . . . . . . . . . . . . . . . 75

5.5 Comparison with alternative ROI proposals in the Motion Model. . . . . . . 76

5.6 State-of-the-art results on UCF101. . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 State-of-the-art results on HMDB51. . . . . . . . . . . . . . . . . . . . . . . 78

xiii



ACKNOWLEDGMENT

I am sincerely thanksful to many people for their help and support along the way.

First and foremost, to my advisor, Alan L. Yuille. He is a smart person. He has deep

understanding about the fundamental problems in this field, and therefore can quickly find

out what is the problem is and give me suggestion. I’m often surprised by his ability to

connect different problems. He is a considerate advisor. He always gives me the freedom to

try my ideas and help me regardless of his interests. I’m also impressed by his passion and

inspire by it. We can talk over hours without feeling tired. Most importantly, I feel like my

personality has been influenced by him in a good way.

To my thesis committee, Professor Adnan Y. Darwiche, Professor Ying Nian Wu, and

Professor Hongjing Lu, for their feedback and advice of this work.

To many great researchers and engineers whom I was lucky to collaborate with during

the pursuit of Ph.D. degree. Thank Zhuoyuan Chen, Jiang Wang, Wei Xu and Yi Yang,

whose had helped me during my internship at Baidu. I will never forget their kindness and

patience. Thank Zhiwei Li, Changhu Wang, Lei Zhang, Xuezheng Liu, Xi Wang for their

help and advice during my internship at Microsoft Research Asia. Thank Professor Bao-

Liang Lu and all professors and teachers that I had class with during my study at Shanghai

Jiao Tong University. They help me build up a solid foundation of math and computer

science, which I have benefited, am benefiting and will benefit in the future.

Last but not least, to my family for their support. Thank my father, Huanxing Lian

and mother Hua Chen, for their unconditional love, understanding, and support. Thank

my girlfriend, Xin Lu, for accompanying me throughout the journey. I could not write any

sentence to express my love sufficiently to them.

xiv



VITA

2004-2008 B.E. in Computer Science and Engineering, Shanghai Jiao Tong University.

2008-2011 M.S. in Computer Science and Engineering, Shanghai Jiao Tong University.

2011-2017 Ph.D Candidate in Department of Statistics, University Of California, Los

Angeles.

PUBLICATIONS

Wenhao Lu, Xiaochen Lian and Alan Yuille, Parsing Semantic Parts of Cars Using Graphical

Models and Segment Appearance Consistency, BMVC 2014

Bing Li, Xiaochen Lian and Bao-Liang Lu, Gender classification by combining clothing,

hair and facial component classifiers, Neurocomputing 76(1), 18–27, 2012

Tianxiang Wu, Xiaochen Lian and Bao-Liang Lu, Multi-view gender classification using

symmetry of facial images, Neural Computing and Applications 21(4), 661–669, 2012

Mu Li, Xiaochen Lian, James Kwok and Bao-Liang Lu, Time and Space Efficient Spectral

Clustering via Column Sampling, C VPR 2011

Xiao-Chen Lian, Zhiwei Li, Bao-Liang Lu and Lei Zhang, Max-Margin Dictionary Learn-

ing for Multiclass Image Categorization, ECCV 2010

Xiao-Chen Lian, Zhiwei Li, Changhu Wang, Bao-Liang Lu and Lei Zhang, Probabilistic

Models for Supervised Dictionary Learning, C VPR 2010

xv



Xiao-Chen Lian, and Bao-Liang Lu, Gender Classification Combining Facial and Hair

Information, I CONIP 2008

Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiao-Chen Lian, Jian Tang, Ming

Wu, M. Frans Kaashoek, and Zheng Zhang, D3S: Debugging Deployed Distributed Systems,

N SDI 2008

xvi



CHAPTER 1

Introduction

When processing visual inputs coming from the environment, human does not have a detailed

and coherent representation of the entire scene. Instead, human can focus on local regions,

e.g., locations where are salient, where task-related objects are at, or where motion happens.

In the field of computer vision, human visual perception mechanism has been considered

as the oracle and the target model of computer vision algorithms. The idea of using local

information has been practiced by computer vision researchers for a long time. First, vari-

ous local descriptors have been proposed to capture local low-level appearance or semantic

information. In image analysis, we have Scale Invariant Feature Transform (SIFT) [Low04],

Histogram of Oriented Gradients (HOG) [DT05] and so on. In video applications, we have

Histograms of Optical Flow (HOF) [LMS08] and so on. These descriptors are aiming to

capture the local appearance. Also, a lot of studies have been done to make local representa-

tion more semantic meaningful, such as mid-level patches (e.g., poselet [BM09a]), supervised

dictionary [LLL10] and spatio-temporal sub-volumes (e.g., actons [ZWY13]). Then to aggre-

gate local descriptors, Hierarchical Graphic Models [ZM07, JG06, ZCY10] or Tree-Structured

Models [FH05] have been proposed.

Recently, deep learning techniques, especially deep convolutional neural network (DCNN),

have achieved great success in various image and video analysis tasks. DCNNs are usually

operated on a very large field of view (a typical spatial range is hundred pixels by hundred

pixels), yet they outperform existing shallow models even on tasks that requires very local and

detailed cues (e.g., image segmentation [CPK15] and fine-grained classification [LRM15]).

However, this does not mean local information becomes less important. In fact, DCNN

can be seen, implicitly, as a unified model of local descriptor and global aggregation, both of

1



which are learned jointly. There also has been a trend of explicitly integrate local information

with deep learning techniques.

My PhD research has always been driven by ideas about using local information to help

improve computer vision tasks. This thesis will present my research effort in this direction.

It starts with the area of image analysis. In order to better study and benchmark algorithms

that use local information in image tasks, we need a dataset with detailed annotations. Per-

pixel labeling image datasets are very good data sources for such purpose. My first and also

long-term project is to provide detailed per-pixel labeling on PASCAL VOC 2010 images

[EVW10a]. This includes a range of different, but related, annotations which are suitable

for a variety of visual tasks required for image understanding which involving high precision

tasks requiring per-pixel accuracy. More specifically, we conduct three related annotations.

Firstly, we provide a PASCAL Semantic Segmentation dataset, known as the PASCAL

Context dataset, which gives per-pixel annotations for up to 459 categories, of which 60

categories are most frequently represented. Secondly, we derive a Boundary Segmentation

Dataset which labels the boundaries between different objects and background regions (those

labeled in the PASCAL Semantic Segmentation dataset). Thirdly, we present the PASCAL

Semantic Part dataset, which provides object semantic part segmentation for 16 of the

PASCAL VOC objects, where each object is further partitioned into its semantic parts. We

believe these datasets can help the vision and machine learning communities for fine grained

and detailed object understanding.

With the help of the per-pixel labeling image dataset, I start to study object semantic part

segmentation and benchmark my algorithms on the dataset. I conducted the project to parse

car parts (i.e.,wheels, body, windows, lights and license plates). The problem is formulated

as landmark identification. We first select representative locations on the boundaries of the

parts to serve as landmarks. They are selected so that locating them yields the silhouette

of the parts, and hence enables us to do object part segmentation. We use a mixture of

graphical models to deal with different viewpoints so that we can take into account how the

visibility and appearance of parts alter with viewpoint. The novel aspect of our graphical

model is that we couple the landmarks with the segmentation of the image to exploit the
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Figure 1.1: The challenges in video action recognition.

image contents when modeling the pairwise relation between neighboring landmarks. In

the ideal case where part boundaries of the cars are all preserved by the segmentation, we

can assume that the landmarks lie near the boundaries between different segments. Each

landmark is then associated to the appearance of its two closest segments. This enables us

to associate appearance information to the landmarks and to introduce pairwise coupling

terms which enforce that the appearance is similar within parts and different between parts.

We call this segmentation appearance consistency (SAC) between segments of neighboring

landmarks.

Compared with images, videos are closer to what our visual system is processing, as

most of the time, we are perceiving the relative movement between us and the environment.

There are two major challenges in video recognition. First, difference between two actions

are sometimes subtle. For example, as shown on the left of Figure 1.1, applying eye makeup

and applying lipstick looks very similar, with the difference of where the hand is moving

around (eyes vs. mouth). Second, within the same action category, due to the variation

of lighting, view point and actor’s pose, videos can look quite differently, as shown on the

right of Figure 1.1. Using local regions is a very natural solution to this issues. There have

been lots of studies of the framework that incorporates location information. One typical

framework consists of three components: location sampling, hand-crafted representation and

feature encoding. Location sampling (e.g., spatial-temporal interesting points and dense

trajectories) detects where the actions are likely happening or where contain action-related

cues. Then hand-crafted features are extracted at these locations. Last, feature encoding

methods (e.g., Fisher Vector and VLAD) are applied to aggregate local features.

Motivated by the success of deep learning techniques, researchers start to exploit the

combination of local information and DCNN. My first attempt in this direction is a video
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action recognition framework that is able to estimate the action critical places of a video and

infer the action happening in the video by attending only to relevant places in each frame.

The framework consists of two parts: a classification module and a soft attention module.

The classification module applies a fully convolutional neural network (FCN) [LSD15], which

produces a dense classification score map for the input video. On the other hand, the

attention module, computes an dense attention map with the same size as the classification

score map, based on the same input video. The final output of our model is produced by the

weighted sum of classification scores across all locations. Intuitively, each value at a location

of the attention map indicates how much ”attention” we should pay to the classification

result at that location.

The attention learned from the above project is only latent, due to the lack of related

supervision information. To improve it, we need to have a more accurate attention detec-

tion mechanism. Oftentimes, action-related information exists in certain spatial and spatio-

temporal regions of interests (ROIs). For example, regions of single video frames (i.e.,static

ROIs) include not only the people performing the action but also the objects that people

interact with (e.g., bicycles in Biking) or which often co-occur with the actions (e.g., basket

board in Basketball). Similarly, the spatio-temporal ROIs can track motion of the entire

body, the motion of body parts, the movements of objects (e.g., barbell in Clean and Jerk),

and background motion (e.g., sea waves in Surfing). These considerations motivate us to

propose a video action recognition method that attends to regions of the videos. I design an

algorithm which can proposes candidates of action-related regions (ROIs). Information in

ROIs could be noisy, as some of ROIs are irrelevant to the actions or even causing confusions.

This issue becomes worse when only video-level labeling is available. To solve this, we use

multiple instance learning (MIL), where a video frame or a video clip is a “bag” and the

ROIs are its “instances”. In the mining component, we propose a novel aggregation module

that learns to robustly combine instance features. We combine MIL with deep convolutional

neural networks (CNNs) to enable joint learning of ROI mining and deep features.

In sum, I have investigated the following tasks in the direction of exploiting local infor-

mation for vision tasks during my PhD:
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1. Per-pixel image annotation dataset.

2. Car semantic part parsing using local appearance consistency.

3. Learning latent attention for video recognition.

4. Mining spatial and spatio-temporal ROIs for video recognition.

The thesis is organized as follows. In Chapter 2, we introduce the per-pixel labeling

datasets, which provides a good benchmark for studies of using local information. Then in

Chapter 3, we present a novel segmentation algorithm which incorporates local appearance

consistency into consideration. After that, we switch to video recognition tasks. In Chapter

4, we presents our model with latent attention module. Then in Chapter 5 we describe a

improved model that explicitly addresses the candidate ROIs.
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CHAPTER 2

PASCAL Per-Pixel Labeling Dataset

Per-pixel labeling image datasets are very good data sources for training and testing algo-

rithms that use local information. In this chapter, we describe a long-term image annotation

project which provides detailed per-pixel labeling on PASCAL VOC 2010 images [EVW10a].

This includes a range of different, but related, annotations which are suitable for a variety of

visual tasks required for image understanding which involving high precision tasks requiring

per-pixel accuracy. More specifically, we describe three related annotations. Firstly, we pro-

vide a PASCAL Semantic Segmentation dataset, known as the PASCAL Context dataset,

which gives per-pixel annotations for up to 459 categories, of which 60 categories are most

frequently represented. Secondly, we derive a Boundary Segmentation Dataset which la-

bels the boundaries between different objects and background regions (those labeled in the

PASCAL Semantic Segmentation dataset). Thirdly, we present the PASCAL Semantic Part

dataset, which provides object semantic part segmentation for 16 of the PASCAL VOC

objects, where each object is further partitioned into its semantic parts. We believe these

datasets can help the vision and machine learning communities for fine grained and detailed

object understanding.

2.1 Introduction

Humans can extract an enormous amount of information from natural images. We can detect

the objects, infer their positions, and even reconstruct the 3D structure of the scene. Extract-

ing this information requires the ability to solve a variety of detailed visual tasks including

semantic segmentation, boundary detection, semantic part segmentation, and instance seg-
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mentation. In order for vision researchers to address these visual tasks it is desirable to have

large annotated datasets on challenging images which can be used to train and test vision

algorithms.

This chapter provides benchmarked datasets for all these four visual tasks. We argue that

datasets of these types are of particular importance as researchers build on the successes

of object detection (e.g., the “cat in the box” problem) to more detailed and challenging

tasks such as image parsing and image understanding. With the increasing interests in

this area, it is necessity to have a platform for researchers to evaluate their methods. The

platform should have a publicly available dataset of challenging images and annotations, and

a standard evaluation methodology so that performance of algorithms can be compared.

The purpose of this chapter is to describe a set of four datasets which provide per-pixel

annotations. They are designed to serve the tasks of semantic segmentation, boundary

detection, and semantic segmentation of object parts. Studies on these datasets can provide

important cues and information about the objects in the images and the scenes structure,

which will be very helpful for solving many other vision tasks, such as image parsing and

scene understanding.

The datasets were constructed using PASCAL VOC 2010 images since these were care-

fully chosen to be representative of natural images. They include: (i) a large range of viewing

conditions (pose, lighting, etc.); (ii) objects of various sizes and at arbitrary locations; (iii)

images of objects with cluttered background and occlusions. These datasets are large which

makes them well suited for recent machine learning techniques, such as deep networks, which

rely on large amounts of training data. We focus on PASCAL VOC 2010 for all this anno-

tations because they complement each other.

PASCAL Semantic Segmentation Dataset (PASCAL Context). Semantic segmen-

tation is a classic visual task dating from the last century, e.g., see [KY00]. Previous

datasets have either restricted themselves to only labeling foreground objects (e.g., PAS-

CAL VOC [EVW10a] and Microsoft COCO [LMB14a]), or contain far fewer images (e.g.,

MSRC [SJC08], Sowerby [HZR06] and San Francisco [HZR06]). In this dataset, we label ev-
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ery pixel of the training and validation sets of the PASCAL VOC 2010 detection challenge.

This involves labeling multiple background classes (e.g., sky, water, and grass) as well as

objects. This new dataset has higher class entropy, and most pixels belong to a wide variety

of object categories beyond the 20 PASCAL object classes.

PASCAL Semantic Boundary Dataset (PASCAL Boundary). Performance on cur-

rent edge detection datasets, such as the BSDS dataset [MFT01], is becoming saturated

and there is need for a much larger dataset to suit the new generation of machine learning

methods. Moreover, although datasets like BSDS contain boundaries of objects they also

contain other internal edges [HYK13]. Segmentation annotations from Datasets like Mi-

crosoft COCO [LMB14a] and PASCAL Segmentation [EVW10a] only contain a fraction of

boundaries (roughly one half) because those datasets only label the boundaries of foreground

objects and neglect the backgrounds (e.g., sky and water) and other objects. In our semantic

boundary dataset, we provide instance-level labels for objects and with the labels we derive

the semantic boundary from the semantic segmentation labeling.

PASCAL Semantic Part Segmentation Dataset (PASCAL Part). Part segmentation

is a visual task that has started attracting attention. It is a pre-require for tasks such as

action recognition and image parsing. To the best of our knowledge, there have not been

datasets for part segmentation except for humans [YKO12, DCX13, BF11a, WSS07, BM09b]

and vehicles [TFL08b]. Our new dataset provides semantic part segmentation for 16 out of

20 categories from PASCAL VOC 2010 dataset. To ensure fair comparisons, we build a

benchmark, together with an evaluation server. The benchmark currently uses 7 articulated

categories, due to their popularity in part-based methods and significant variability in terms

of their poses and the sizes and shapes of their parts. An evaluation toolkit is also provided

to enable a “plug and play” training and testing harness.

This paper is organized as follows. In section (2.2) we discuss related datasets for the

four visual tasks. The following four sections (2.3,2.4 and 2.5) describe the semantic seg-

mentation, boundaries, semantic part segmentation and instance segmentation datasets re-

spectively. In all cases we describe the annotation strategy, the evaluation criteria, give

statistical analysis of how they relate to alternative datasets, discuss performance on the
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datasets and transfer to other datasets. Section (2.6) gives a discussion of future work.

2.2 Background: Related Datasets

The computer vision community has constructed many challenging annotated datasets, such

as PASCAL VOC [EVW10a]. These have served to greatly advance the performance of

computer vision algorithms by providing benchmarks for comparison and enabling the use

of machine learning methods. In this section we briefly review the datasets most similar to

those in this paper.

2.2.1 Semantic Segmentation

The Sowerby dataset (British Aerospace) was one of the first datasets to enable computer

vision researchers to benchmark semantic segmentation algorithms. This dataset contained

roughly 100 images annotated with XXX labels, Another samll dataset of 50 San Francisco

images was provided by [KY00]. These datasets concentrated on mainly on “background

regions”, such as sky and road, and only labeled a few objects. The larger MSRC [SJC08]

raised interest in semantic segmentation and contained xxx images and yyy classes. It played

an important role in the study of semantic segmentation but its limited size eventually led

to performance saturation and failure to transfer to other datasets.

The PASCAL segmentation dataset [EVW10b] is more challenging and much larger than

MSRC but it restricts itself to labeling the boundaries of the twenty main foreground objects

in PASCAL and treats the background as a single class (i.e. it does not include labels

like sky and water). The COCO dataset [LMB14b] includes more images and objects but

also only has a single background class. Hence both differ from the PASCAL Context

dataset [MCL14a] described in this paper which has 59 frequently occurring labels including

several different types of backgrounds, see sections (2.3,2.2) for more detailed comparisons.

There are other datasets which contain per-pixel labeling and include multiple back-

ground class. The SIFT flow dataset contains 2688 images and has 33 semantic labels
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including background reshions [LYT09]. SUN2012 [XHE10] is a subset of LabelMe, which

contains 16873 images and 3819 object classes, though many have only a few training ex-

amples. Barcelona [TL10] is another subset of LabelMe, which includes 15150 images and

170 categories. Other datasets have per-pixel labeling of material properties. There are

also datasets of indoor scenes [SKH12] which contains 1449 RGB-D images and 894 object

labels.

2.2.2 Boundary Segmentation Dataset

The Sowerby database of outdoor images [BP98] also gave annotations for edges and was used

for statistical edge detection [KYC99, KYC03]. Another smaller (50 images) edge detection

dataset, called the South Florida dataset, was presented in [BP98]. This removed textured

regions of the images and concentrated more on edge localization than edge detection. It

was observed [KYC99, KYC03] that while many edge detection methods, such as traditional

approaches like Canny [Can86], performed well on South Florida only the statistical methods

did well on Sowerby because they alone were able to avoid false positive edges in the texture

regions.

The BSDS dataset originally contained 300 images [MFT01, MFM04] but was later ex-

tended to 500 images in [AMF11a]. This was developed because of the limited size of Sowerby

and the concerns that the edges were found by running a set of edge detectors and using

annotators to prune out the false positives. Instead BSDS was annotated by assigning about

five annotators to each image, giving them intentionally vague instructions to label what

they considered to be edges. This meant that there was considerable variability between

different annotators, for example some would label detailed edges which others would only

label coarse one. Psychophysics studies [HYK13] tested the reliability of these annotations

and concluded that edges which were labelled by three or more annotators were typically

real edges those labelled by only one or two annotators where problematic, in the sense

that there were many unlabelled pixels in the image which appeared equally “edge-like” to

observers in the study.
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Although BSDS has significantly improved the state of the art of edge detection, e.g.,

see [AMF11a], BEL [DTB06], there is growing evidence that performance on it is becoming

saturated due to the success of recent methods such as random forests and Sketch Tokens

[LZD13], SE [DZ14] and deep neural networks like HED [XT15]. Larger datasets may be

needed to take advantage of the computational power of deep network methods. We also

note that BSDS labels internal edges as well as boundary edges. This motivates us to

propose the PASCAL boundary segmentation dataset. Endres and Hoiem [EH10] cleaned up

the BSDS300 dataset by grouping multiple segments within an object into a single object.

Another related work is that of Zhu et al. [ZTM15], who recently proposed an amodal

segmentation dataset, where they label the complete extents of an object (even if they are

occluded) on the 500 images of the BSDS500 dataset.

In addition other boundary datasets can be obtained from several of the semantic seg-

mentation datasets mentioned above [EVW10b] [LMB14b] [SKH12]. This is only possible

because these datasets are highly accurate near the boundaries. We will return to these

datasets in the boundary segmentation section.

2.2.3 Semantic Part Segmentation

Semantic part segmentation is like a more detailed way of doing segmentation. For ex-

ample, instead of labeling pixels as “horse” we label them as “horse head”, “horse torso”,

and so on. The most popular semantic part segmentation datasets are for humans. These

include F ashionista (FS) Dataset [YKO12] which consists of 685 photographs of models,

with labels for clothing items (e.g., t-shirt, blouse, bag) and human hair and skin. An-

other related dataset is Daily Photos (DP) Dataset [DCX13] with 2500 images. In [BF11a],

Bo and Fowlkes created a pedestrian parsing dataset, which contains 937 training images

from HumanEva [SBB10], and 170 testing images with 345 labeld pedestrians from Penn-

Fudan database [WSS07]. The authors provide segmentations into “hair”, “face”, “upper

clothes”, “arms”, “lower clothes”, “legs” and “background”. C UHK Pedestrian Parsing

(PPSS) Dataset [LWT13] contains 3,673 images from 171 videos of different surveillance
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Figure 2.1: PASCAL Context: Examples of our annotations, which contain semantic seg-

mentation of 459 categories in the PASCAL VOC 2010.

scenes, with the same part definitions as in [BF11a].

One drawback of these datasets is that the images are largely without clutter, occlusion.

or large pose variations (most people are standing). By contrast, the PASCAL images are

far more varied and more typical of real world situations. Also the number of humans in

PASCAL is much larger (7296 instances). Bourdev and Malik [BM09b] have labeled PASCAL

images with clothing items and human hair and skin. In our dataset, for human we use a

more pose-oriented definition of parts, which is based on the skeletal system (e.g., left lower

arm, torso). Besides human, we also include other 15 categories, which makes our dataset

more comprehensive. We have previously introduced this dataset in [CML14] and have also

presented mofified subsets of it on cars [LLY14] and some animals (horses and cows) [WY15].

2.3 The Semantic Segmentation Dataset: PASCAL Context

PASCAL context [MCL14b] contains pixel-wise labels for the 10,103 trainval images of the

PASCAL VOC 2010 detection challenge (Fig. 2.1 shows example labels). There are 459

categories in the dataset, divided into three types: (i) objects, (ii) stuff and (iii) hybrids.

Objects are classes that are defined by shape. This includes the original 20 PASCAL cat-

egories as well as classes such as fork, keyboard, and cup. S tuff denotes classes that do

not have specific shape and appear as regions in images, e.g., sky, water. H ybrid classes
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are classes for which shape is so variable that it cannot be easily modeled, e.g., roads have

clear boundaries (unlike sky), but their shape is more complex than the shape of a cup. In

practice, only 59 of these types happen frequently.

2.3.1 Annotation strategy for PASCAL Context

Our annotation effort took three months of intense labeling performed by six in-house anno-

tators. This resulted in much more accurate segmentations than when using online systems

such as MTurk. While this increased the labeling cost significantly, we wanted to assure the

highest possible accuracy and consistency of the annotations. The annotators were asked to

draw a region and assign it a label using an interface similar to LabelMe [RTM08]. There are

about 12 regions in each image on average and the annotators spent about 3 to 5 minutes

per image.

We provided the annotators with an initial set of 80 carefully chosen labels and asked

them to include more classes if a region did not fit into any of these classes. Some cases

were ambiguous to annotate; for example, the annotators were not sure how to label a tree

visible through a window. We decided to go for a rich set of annotations, and thus allowed

some pixels to have multiple labels (tree and window in this example). If the annotators

were unable to recognize a region, they labeled it as unknown. We double checked each

annotation and revised the ones that were not coherent in terms of category name or the

region covering the object.

2.3.2 Analysis and Comparison for PASCAL Context

The occurrence of categories in PASCAL Context follow a power law distribution. If we

select the 59 most frequent classes and assign to the rest the background label then 87.2%

of the pixels are labeled as foreground, and the rest as background. By comparison, note

that the 20 object classes of PASCAL VOC cover only 29.3% of the pixels. Fig. 2.2 shows

the distribution of pixels and images among the 59 most frequent categories.

The PASCAL Context dataset was used [MCL14b] to study the frequency of contextual
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Figure 2.2: Distribution of pixels (above) and images (below) for the 59 most frequent

categories. See text for the statistics.

categories around objects in terms of different sizes of objects. Several interesting trends

were found. The amount of sky in the bottom region of airplanes increases as airplanes

become smaller, which shows that small airplanes typically appear in the sky. Also we see

more sky pixels in the top region of buses compared to cars, presumably because buses are

taller than cars. This suggests that context can help predict objects and may be of value for

small objects.

The statistics of PASCAL context differ from other datasets with contextual cues. These

suggest that PASCAL-context is more challenging. Among the 35 most frequent categories

of SUN [XHE10], 87.2% of the pixels are “stuff”, 94.5% for Barcelona [TL10], while 60.1%

for PASCAL. Thus, the number of “things” and “stuff” pixels is more balanced in PASCAL.

The entropy1 for the most frequent 35 classes in Barcelona is 1.78, for SUN is 2.11 and for

PASCAL is 3.11, which shows that more pixels are assigned to fewer classes in SUN and

Barcelona. Thus, PASCAL images are more diverse than SUN’s and Barcelona’s.

1For each category, we divide the number of pixels of that category to the total number of pixels in the
dataset. This probability is used to compute entropy.
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2.4 PASCAL Boundaries

The PASCAL Boundaries dataset was derived from PASCAL Context. Hence, unlike BSDS,

it only labels the boundaries of objects and backgrounds. If differs from “boundary datasets”

which can be derived from PASCAL segmentation and Microsoft COCO because its contains

boundaries between background classes such as “sky” and “ground”.

2.4.1 PASCAL Boundaries: annotation strategy

Converting PASCAL Context [MCL14b] to PASCAL Boundaries requires two stages: (I)

Fine-tuning the annotations at the boundaries, which are typically imprecise for segmen-

tation datasets (e.g., PASCAL Context and MRSC), by a two stage strategy with triage

(annotators rank boundaries from 1 to 5) and correction of the badly ranked boundaries.

(II) Providing instance level labels for objects.

Converting any semantic segmentation dataset into a boundary dataset is straightforward

provided the semantic annotations are accurate near the boundaries (i.e. within two or three

pixels). Considerable work was done to ensure that the Pascal Context dataset was very

accurate near the boundaries (after the initial annotations in Korea, there was refinement and

checking at UCLA over a period of several months). Not all semantic segmentation datasets

have this high precision near the boundaries because: (i) they are often unnecessary since the

proportion of pixels near the boundary is small and hence has negligible effect on evaluating

semantic segmentation, and (ii) obtaining precision near boundaries is hard and it much

simpler, for example, to label regions by allowing annotators to mark regions using polygons

which is very fast for annotating regions but is inaccurate near boundaries.

2.4.2 Analysis and Comparison for PASCAL Boundaries

We contrast PASCAL Boundaries with PASCAL Segmentation and BSDS by computing the

average number of boundaries in each image. PASCAL Boundaries has images of 360×496

pixels on average, from which an average of 1.45% of pixels are annotated as boundaries.
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This is in comparison to the SBD dataset [HAB11], which has only 0.77% of pixels labeled as

boundaries. This clearly shows that labeling the boundaries of only the foreground objects

ignores at least 50% of all the existing boundaries in an image. The percentage of pixels

labeled as boundary in the PASCAL Boundaries dataset, however, is slightly lower than the

1.81% of pixels annotated as edges in BSDS500, on images of 321×481 pixels size. This

is understandable since the BSDS annotations consisted of edges from different levels of

granularity (e.g. the interiors of objects). This number drops to 0.91% if we consider only

those pixels of the BSDS500 annotations that were labeled by all the annotators annotating

the image.

Many of the images in the PASCAL dataset are non-iconic. They contain multiple

objects, and so are not biased towards posed “photography images” which contain a salient

foreground object in the center with high contrast with respect to the background. It is

obviously important that computer vision algorithms are trained and tested on non-iconic

images. We also emphasize that the number of images in the PASCAL Boundaries dataset

(∼ 10k) is much larger than in existing edge detection datasets. The increased scale of this

dataset provides more variation in the boundary types and is beneficial for learning deep

models. Moreover, testing algorithms on thousands of images, as opposed to testing them on

a couple hundred images, will provide more credibility to future boundary detection models.

2.5 PASCAL Semantic Part Dataset and Benchmark

The goal of the dataset is to provide a platform on which researchers can investigate the per-

formance of semantic part segmentation methods on challenging PASCAL imagees. To this

end, it is required that the PASCAL Part contains well-defined and semantically meaningful

parts, and that the annotation of parts are consistent and accurate. This section describes

the processes used for annotating the PASCAL Part.
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Table 2.1: Definitions of semantic parts for 16 Categories in the PASCAL Part. For boat,

chair, dining table and sofa, we do not have parts. Bold font of part names means the

corresponding parts could appear multiple times in one object instance∗.

aeroplane body, engine, left wing, right wing, stern, tail, wheel

bicycle back wheel, chain wheel, front wheel, handlebar, headlight, saddle

bird beak, head, left eye, left foot, left leg, left wing, neck, right eye, right foot, right leg, right wing, tail, torso

bottle body, cap

bus back license plate, back side, door, front license plate, front side, headlight, left mirror, left side, right mirror,

right side, roof side, wheel, window

car back license plate, back side, door, front license plate, front side, headlight, left mirror, left side, right mirror,

right side, roof side, wheel, window

cat head, left back leg, left back paw, left ear, left eye, left front leg, left front paw, neck, nose, right back leg, right

back paw, right ear, right eye, right front leg, right front paw, tail, torso

cow head, left back lower leg, left back upper leg, left ear, left eye, left front lower leg, left front upper leg, left horn,

muzzle, neck, right back lower leg, right back upper leg, right ear, right eye, right front lower leg, right front

upper leg, right horn, tail, torso

dog head, left back leg, left back paw, left ear, left eye, left front leg, left front paw, muzzle, neck, nose, right back

leg, right back paw, right ear, right eye, right front leg, right front paw, tail, torso

horse head, left back hoof, left back lower leg, left back upper leg, left ear, left eye, left front hoof, left front lower leg,

left front upper leg, muzzle, neck, right back hoof, right back lower leg, right back upper leg, right ear, right eye,

right front hoof, right front lower leg, right front upper leg, tail, torso

motorbike back wheel, front wheel, handlebar, headlight, saddle

person hair, head, left ear, left eye, left eyebrow, left foot, left hand, left lower arm, left lower leg, left upper arm, left

upper leg, mouth, neck, nose, right ear, right eye, right eyebrow, right foot, right hand, right lower arm, right

lower leg, right upper arm, right upper leg, torso

pottedplant plant, pot

sheep head, left back lower leg, left back upper leg, left ear, left eye, left front lower leg, left front upper leg, left horn,

muzzle, neck, right back lower leg, right back upper leg, right ear, right eye, right front lower leg, right front

upper leg, right horn, tail, torso

train coach back side, coach front side, coach left side, coach right side, coach roof side, coach, head, head

back side, head front side, head left side, head right side, head roof side, headlight

tvmonitor screen

∗ We do not give these parts different names as most of time it is difficult to distinguish them.
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Table 2.2: Definition of semantic parts for 7 articulated object categories used in Part Seg-

mentation benchmark. In the second column are the higher-level parts used in the benchmark

and their constituent parts. The last column shows the frequencies of these parts and their

proportion (in terms of percentage of pixels) in the training dataset.

Category Higher-level Parts and Constituents Freq. / Prop.

head head, left ear, left eye, nose, muzzle, right ear, right eye 1388 / 46.1%

body torso, neck 1360 / 36.9%

leg left (right) back leg, left (right) back paw, left (right) front leg, left (right) front paw 1130 / 13.1%
dog

tail tail 577 / 1.87%

head head, left ear, left eye, nose, right ear, right eye 1124 / 39.2%

body torso, neck 1101 / 42.4%

leg left (right) back leg, left (right) back paw, left (right) front leg, left (right) front paw 881 / 14.0%
cat

tail tail 459 2.82%

head head, left ear, left eye, right ear, right eye, left horn, muzzle, right horn 390 / 34.5%

body neck, torso 410 / 54.5%

leg left (right) back lower leg, left (right) back upper leg, left (right) front lower leg, left

(right) front upper leg

312 / 8.42%
cow

tail tail 118 / 0.79%

head head, left ear, left eye, right ear, right eye, muzzle 593 / 27.2%

body neck, torso 616 / 53.5%

leg left (right) back lower leg, left (right) back upper leg, left (right) back hoof, left

(right) front lower leg, left (right) front upper leg, left (right) front hoof

525 / 12.6%
horse

tail tail 363 / 3.33%

head head, left ear, left eye, right ear, right eye, left horn, muzzle, right horn 607 / 28.2%

body neck, torso 663 / 61.2%

leg left (right) back lower leg, left (right) back upper leg, left (right) front lower leg, left

(right) front upper leg

163 / 3.07%
sheep

tail tail 201 / 0.77%

head hair, head, left ear, left eye, left eyebrow, nose, right ear, right eye, right eyebrow,

mouth

7252 / 25.5%

body neck, torso 7313 / 33.7%

arm left (right) hand, left (right) lower arm, left (right) upper arm 6739 / 22.0%
person

leg left (right) foot, left (right) lower leg, left (right) upper leg 4730 / 16.0%

head head, beak, left eye, right eye 897 / 18.9%

body neck, torso 934 / 55.6%

wing left wing, right wing 550 / 3.14%

leg left foot, left leg, right foot, right leg 364 / 15.3%

bird

tail tail 654 / 5.79%
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Figure 2.3: Mean and variance of relative sizes of parts for 7 articulated object categories

used in Part.

2.5.1 Annotation Strategy: PASCAL PARTS

We do not consider the categories of boat, chair, dining table and sofa because nstances

from these categories have extremely large variation in their constituent parts. For each

of the rest 16 categories, we define a set of semantic parts. Table 2.1 lists the semantic

parts. The parts of articulated categories (dog, cat, cow, horse, sheep, person and bird) are

defined based on their skeletal systems. We also define parts for the components of their

heads (e.g., eyes, ears, muzzle) as they are important discriminative information visually,

especially in fine-grained applications. For vehicles (car, bus, motorbike) and aeroplane, we

define the parts based on their functions (e.g., car doors and bicycle chain wheel) and visual

distinctiveness (e.g., car license plate). For bottle, pottedplant and tvmonitor, we choose

parts that are common across all instances. For example, pottedplant always has a plant

part and a pot part.

Notice that in Table 2.1, for some categories, especially the animals, we define parts at a

very detailed level and organize them in a hierarchical way. This gives researchers freedom

to build up a hierarchy of parts and focus on the level suitable to their projects.

The choice of parts also supports research in exploiting visual properties common to
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(a) Original image (b) Category map (c) Instance map (d) Semantic part map (e) Higher-level parts 

Figure 2.4: Examples of semantic part annotations. WHAT IS THE POINT OF THIS

FIGURE??
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categories e.g., vehicle wheels, for example in the form of “part sharing”This is very es-

sential for methods to scale up to more categories or images, and for learning intermediate

representation

We developed a web-based annotation tool. For each image, the annotation contains three

steps: First, we label each pixel in the image with one of the 20 categories or background,

which gives us a category map of the images (Column (b) of Figure 2.4); Second, we identify

different instances of the 20 categories in the image and label its pixels with a unique number,

which yields an instance map (Column (c) of Figure 2.4); Finally, within each instance, we

label its subregions as different semantic parts (Column (d) of Figure 2.4). We do not

consider object instances annotated as ”difficult” by VOC2010.

The accuracy of the annotation was ensured by one annotation phase and two polishing

phases, and to achieve consistency, we made each phase take place at a single place. At the

first phase, all the annotation took place at Korea University, following a set of annotation

instructions. We started with 15 labelers. We requested each annotator attend an in-

person training session. For each object, we selected 20-50 exemplar images and asked each

annotator to label object parts following the instructions. The annotations were observed

and meanwhile the instructions were discussed in details. An annotator could only proceed to

work on more images if he/she could correctly annotate all these exemplar images. Depending

on the training curve, this training session lasted 2-5 hours. After all the images were

annotated, we started a polishing phase immediately at Korean University, by the same

group of people. Then the annotations were sent to 15 graduate students of University of

California, Los Angeles with expertise at machine learning and computer vision for final

review.

2.5.2 Benchmark

We’ve constructed a Semantic Part Segmentation benchmark, which uses a subset of the 20

categories and higher-level parts.

Currently the benchmark focuses on the 7 articulated categories: dog, cat, cow, dog,
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horse, sheep, person and bird. These categories are widely used to evaluate part-based

methods [HAG15, AL12, DCS14, TKP15, ZDG14], and their large variation due to poses

and the interaction with other objects (e.g. occlusions) bring challenges. Table 2.2 lists the

7 categories and their semantic parts used in the benchmark. As illustrated in the second

column, we group the original parts defined in the PASCAL Part into higher-level parts:

head, body, arm and leg for the person, head, body, leg and tail for the quadrupeds, and

head, body, leg, wing and tail for the bird. See Column (e) of Figure 2.4 for examples. The

reasons are twofold: first some parts are very difficult to learn individually (e.g., bird’s beak

and horse’s left back lower leg); Second semantic parts at this level are commonly adopted

in many existing works [HAG15, TKP15, WY15, BF11a, LWT13].

The training images of the benchmark are those of the PASCAL Part that contain the

target categories (6,732 images in total). We do not divide them into training and validation

sets as suggested in VOC2010, which we leave to the users. The testing images are images

used in VOC2010 segmentation task that contain the target categories (498 images in total).

The ground truth annotation of part segmentation on testing images is not published. We

plan to include more categories and extend testing images to the whole testing set of PASCAL

Part in the future.

The last column of Table 2.2 shows the frequencies of these higher-level parts, and their

proportions (computed by the ratio of total number of pixels of a part and the total number of

pixels of its parent category), from which we can see that the benchmark contains both larger

parts (e.g., head and body) and smaller parts (e.g., wing and tail). Figure 2.3 illustrates the

variation of relative sizes of parts in the whole dataset, which indicates that our benchmark

is unbiased in the sense that the relative size of a part varies a lot across images.

For each test image, participants need to predict the part class of each pixel, or “back-

ground” if the pixel does not belong to one of the target categories. Participants are not

required to distinguish between instances from the same category.

For evaluation, we adopt the overall intersection over union (IOU) criteria used in PAS-

CAL VOC segmentation task. For part p of category c, the IOU is computed (across all
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testing images) as

IOU(p, c) =
#true positive pixels

#predicted pixels + #false negative pixels
(2.1)

Then the IOU of category c is the average of IOU of its parts, i.e.,

IOU(c) =
1

|Pc|
∑
p∈Pc

IOU(p, c) (2.2)

where Pc is the set of parts of category c.

2.6 Discussion: Future Works

A first extension is to include more categories in the Part Segmentation benchmark, and use

the whole testing set of VOC2010. Further we would like to go beyond the PASCAL VOC

dataset and increase the number of object categories, which will stimulate research in part

sharing. Fixing the level of part hierarchy in current benchmark setting is not ideal. We

plan to provide evaluation methodology for hierarchical part segmentation.
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Table 2.3: Working hours of annotation and polishing phases on training/validation and

testing sets.

Category trainval test polishing

aeroplane 59.04 65.28 46.62

bicycle 49.12 51.20 37.62

bird 67.97 76.44 61.89

boat 6.87 9.82 50.07

bottle 20.28 28.70 73.47

bus 49.80 55.80 31.68

car 177.40 130.96 102.33

cat 101.88 102.96 68.28

chair 18.90 35.31 162.63

cow 46.40 59.70 31.83

diningtable 4.68 10.18 44.58

dog 127.44 129.96 85.80

horse 74.52 85.80 40.08

motorbike 30.55 13.50 26.43

person 656.64 383.13 346.59

pottedplant 24.63 33.60 58.23

sheep 70.10 87.20 47.19

sofa 4.51 31.62 45.15

train 41.92 45.04 32.61

tvmonitor 13.66 16.10 44.64

Total 1,646.31 1,452.30 1,437.72

Average 82.32 72.62 71.89
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Figure 2.5: Pixel-wise frequency of context classes in top, bottom, and left/right contextual

parts. The x-axis corresponds to size percentile and the y-axis represents the frequency of

appearance. Only the most correlated classes are shown.

25



0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Bottle-top 

 floor 

 cabinet 

 board 

 table 

 window 

 wall 

 shelves 

 door 

 ceiling 

 person 

 bottle 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Bottle-top 

 floor 

 cabinet 

 board 

 table 

 window 

 wall 

 shelves 

 door 

 ceiling 

 person 

 bottle 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Bottle-bottom 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Bottle-top 

 floor 

 cabinet 

 board 

 table 

 window 

 wall 

 shelves 

 door 

 ceiling 

 person 

 bottle 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Bottle-bottom 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Bottle-left/right 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

Cat-top 

ground 

 chair 

 cat 

 window 

 wall 

 floor 

 clothes 

 building 

 bedclothes 

 sofa 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

Cat-top 

ground 

 chair 

 cat 

 window 

 wall 

 floor 

 clothes 

 building 

 bedclothes 

 sofa 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

Cat-bottom 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

Cat-top 

ground 

 chair 

 cat 

 window 

 wall 

 floor 

 clothes 

 building 

 bedclothes 

 sofa 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

Cat-bottom 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

Cat-left/right 

0 

0.2 

0.4 

0.6 

0.8 

1 

Car-top 

person 

bus 

road 

ground 

grass 

car 

tree 

sky 

building 

0 

0.2 

0.4 

0.6 

0.8 

1 

Car-bottom 

0 

0.2 

0.4 

0.6 

0.8 

1 

Car-left/right 

0 

0.2 

0.4 

0.6 

0.8 

1 

Aeroplane-top 

tree 

building 

road 

ground 

grass 

sky 

aeroplane 
0 

0.2 

0.4 

0.6 

0.8 

1 

Aeroplane-bottom 

0 

0.2 

0.4 

0.6 

0.8 

1 

Aeroplane-left/right 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

Bus-top 

road 

ground 

bus 

tree 

sky 

building 0 

0.2 

0.4 

0.6 

0.8 

1 

Bus-bottom 

0 

0.2 

0.4 

0.6 

0.8 

1 

Car-top 

person 

bus 

road 

ground 

grass 

car 

tree 

sky 

building 

0 

0.2 

0.4 

0.6 

0.8 

1 

Car-bottom 

0 

0.2 

0.4 

0.6 

0.8 

1 

Car-left/right 

0 

0.2 

0.4 

0.6 

0.8 

1 

Aeroplane-top 

tree 

building 

road 

ground 

grass 

sky 

aeroplane 
0 

0.2 

0.4 

0.6 

0.8 

1 

Aeroplane-bottom 

0 

0.2 

0.4 

0.6 

0.8 

1 

Aeroplane-left/right 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

Bus-top 

road 

ground 

bus 

tree 

sky 

building 0 

0.2 

0.4 

0.6 

0.8 

1 

Bus-bottom 

0 

0.2 

0.4 

0.6 

0.8 

1 

Bus-left/right 

0"

0.2"

0.4"

0.6"

0.8"

1"

0.0
~0
.1"

0.1
~0
.2"

0.2
~0
.3"

0.3
~0
.4"

0.4
~0
.5"

0.5
~0
.6"

0.6
~0
.7"

0.7
~0
.8"

0.8
~0
.9"

0.9
~1
.0"

Bus$top(

road"

ground"

bus"

tree"

sky"

building"

0 

0.2 

0.4 

0.6 

0.8 

1 

Car-top 

person 

bus 

road 

ground 

grass 

car 

tree 

sky 

building 

0 

0.2 

0.4 

0.6 

0.8 

1 

Car-top 

person 

bus 

road 

ground 

grass 

car 

tree 

sky 

building 

0 

0.2 

0.4 

0.6 

0.8 

1 

Car-bottom 

0 

0.2 

0.4 

0.6 

0.8 

1 

Car-top 

person 

bus 

road 

ground 

grass 

car 

tree 

sky 

building 

0 

0.2 

0.4 

0.6 

0.8 

1 

Car-bottom 

0 

0.2 

0.4 

0.6 

0.8 

1 

Car-left/right 

Figure 2.6: Pixel-wise frequency of context classes in top, bottom, and left/right contextual

parts. The x-axis corresponds to size percentile and the y-axis represents the frequency of

appearance. Only the most correlated classes are shown.
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Figure 2.7: Pixel-wise frequency of context classes in top, bottom, and left/right contextual

parts. The x-axis corresponds to size percentile and the y-axis represents the frequency of

appearance. Only the most correlated classes are shown.

27



0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

Horse-top 

 person 

 fence 

 horse 

 ground 

 tree 

 sky 

 mountain 

 grass 

 building 

0 

0.2 

0.4 

0.6 

0.8 

1 

Horse-top 

 person 

 fence 

 horse 

 ground 

 tree 

 sky 

 mountain 

 grass 

 building 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Horse-bottom 

0 

0.2 

0.4 

0.6 

0.8 

1 

Horse-top 

 person 

 fence 

 horse 

 ground 

 tree 

 sky 

 mountain 

 grass 

 building 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Horse-bottom 

0 

0.2 

0.4 

0.6 

0.8 

1 

Horse-left/right 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Motorbike-top 

 sidewalk 

 floor 

 motorbike 

 wall 

 tree 

 sky 

 road 

 mountain 

 ground 

 grass 

 building 

 person 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Motorbike-top 

 sidewalk 

 floor 

 motorbike 

 wall 

 tree 

 sky 

 road 

 mountain 

 ground 

 grass 

 building 

 person 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Motorbike-bottom 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Motorbike-top 

 sidewalk 

 floor 

 motorbike 

 wall 

 tree 

 sky 

 road 

 mountain 

 ground 

 grass 

 building 

 person 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Motorbike-bottom 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Motorbike-left/right 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Person-top 

road 

ground 

grass 

floor 

person 

table 

car 

boat 

wall 

tree 

sky 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Person-top 

road 

ground 

grass 

floor 

person 

table 

car 

boat 

wall 

tree 

sky 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

Person-bottom 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Person-top 

road 

ground 

grass 

floor 

person 

table 

car 

boat 

wall 

tree 

sky 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

Person-bottom 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

Person-left/right 

0 

0.2 

0.4 

0.6 

0.8 

1 

Pottedplant-top 

 shelves 

 ground 

 floor 

 table 

 window 

 wall 

 tree 

 building 

 pottedplant 

0 

0.2 

0.4 

0.6 

0.8 

1 

Pottedplant-top 

 shelves 

 ground 

 floor 

 table 

 window 

 wall 

 tree 

 building 

 pottedplant 

0 

0.2 

0.4 

0.6 

0.8 

1 

Pottedplant-bottom 

0 

0.2 

0.4 

0.6 

0.8 

1 

Pottedplant-top 

 shelves 

 ground 

 floor 

 table 

 window 

 wall 

 tree 

 building 

 pottedplant 

0 

0.2 

0.4 

0.6 

0.8 

1 

Pottedplant-bottom 

0 

0.2 

0.4 

0.6 

0.8 

1 

Pottedplant-left/right 

Figure 2.8: Pixel-wise frequency of context classes in top, bottom, and left/right contextual

parts. The x-axis corresponds to size percentile and the y-axis represents the frequency of

appearance. Only the most correlated classes are shown.
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Figure 2.9: Pixel-wise frequency of context classes in top, bottom, and left/right contextual

parts. The x-axis corresponds to size percentile and the y-axis represents the frequency of

appearance. Only the most correlated classes are shown.
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CHAPTER 3

Parsing Semantic Parts of Cars Using Graphical

Models and Segment Appearance Consistency

3.1 Introduction

This chapter addresses the two goals of parsing an object into its semantic parts and per-

forming object part segmentation, so that each pixel within the object is assigned to one of

the parts (i.e. all pixels in the object are labeled). More specifically, we attempt to parse

cars into wheels, lights, windows, license plates and body, as illustrated in Figure 3.1. This

is a fine-scale task, which differs from the classic task of detecting an object by estimating a

bounding box.

We formulate the problem as landmark identification. We first select representative

locations on the boundaries of the parts to serve as landmarks. They are selected so that

locating them yields the silhouette of the parts, and hence enables us to do object part

segmentation. We use a mixture of graphical models to deal with different viewpoints so

that we can take into account how the visibility and appearance of parts alter with viewpoint

(see Figure 3.2).

A novel aspect of our graphical model is that we couple the landmarks with the seg-

mentation of the image to exploit the image contents when modeling the pairwise relation

between neighboring landmarks. In the ideal case where part boundaries of the cars are all

preserved by the segmentation, we can assume that the landmarks lie near the boundaries

between different segments. Each landmark is then associated to the appearance of its two

closest segments. This enables us to associate appearance information to the landmarks and
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window&

light&light&

lic.&plate&

body&

lic.&plate&wheel&

wheel&

window& window&

body&

light&
light&

Figure 3.1: The goal of car parsing is to detect the locations of semantic parts and to

perform object part segmentation. The inputs (left) are images of a car taken from different

viewpoints. The outputs (right) are the locations of the car parts – the wheels, lights,

windows, license plates and bodies – so that each pixel within the car is assigned to a part.

front / back right front / left back I right front / left back II right side 

Figure 3.2: The proposed mixture-of-trees model. Models of left-front, right-back and right

views are not shown due to the symmetry. The landmarks connected by the solid lines

of same colors belong to the same semantic parts. The black dashed lines show the links

between different parts. Best view in color.

to introduce pairwise coupling terms which enforce that the appearance is similar within

parts and different between parts. We call this segmentation appearance consistency (SAC)

between segments of neighboring landmarks. This is illustrated in Figure 3.3, where both

of the two neighboring landmarks (the red and green squares) on the boundary between the

window and the body have two segments (belonging to window and body respectively) close

to them. Segments from the same part tend to have homogeneous color and texture appear-

ance (e.g., a and c, b and d in the figure), while segments from different parts usually do not

(e.g., a and b, c and d in the figure). The four blue dashed lines in the figure correspond to

the SAC terms whose strengths will be learnt.

However, in practice, it is always impossible to capture all part boundaries using single

level segmentation. Instead, people try to use a pool of segmentations [GFK09, CJG11,

KK10] or segmentation trees [AMF11b, LVZ11, Vek00]. Inspired by those, we couple the

landmarks to a hierarchical segmentation of the image. However, the difference of the sizes
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: (c, d) 

Figure 3.3: Illustration of segmentation appearance consistency (SAC) and segment pairs.

Red and green squares represent two neighboring landmarks lying on the boundary between

window and body. Each landmark has two segments (a and b for the red landmark, c d

for the green landmark) close to it. Our method models and learns the SACs for every

pair of neighboring landmarks (blue dashed lines) and uses them to enhance the reliability

of landmark localization. For the blue landmark, its segment pair is the same as the red

landmark, which is the closest one on the boundary.

of the parts (e.g., the license plate is much smaller than the body) and the variability of the

images mean that the optimal segmentation level for each part also varies. Therefore the level

of the hierarchy used in this coupling must be chosen dynamically during inference/parsing.

This leads us to treat the level of the hierarchy for each part as a hidden variable. By doing

this, our model is able to automatically select the most suitable segmentation level for each

part while parsing the image.

In the next section, we review related work. Then we describe the details of our method

in Sections 3.3. Experimental results are given in Section 3.4, which is followed by the

conclusions in Section 3.5.

3.2 Related Work

There is an extensive literature dating back to Fischler and Elschlager [FE73] which rep-

resents objects using graphical models. Nodes of the graphs typically represent distinc-

tive regions or landmark points. These models are typically used for detecting objects
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[FMR08, FGM10b] but they can also be used for parsing objects by using the positions

of the nodes to specify the locations of different parts of the object. For example, Zhu et

al. [ZCL08, ZCY10] uses a compositional AND/OR graph to parse baseball players and

horses. More recently, in Zhu and Ramanan’s graphical model for faces [ZR12] there are

nodes which correspond to the eyes and mouth of the face. But we note that these types of

models typically only output a parse of the object and are not designed to perform object

part segmentation. They do not exploit the SAC either.

Recently, a very similar graphical model for cars has been proposed by Hejrati and

Ramanan [HR12], which cannot do part segmentation since each part is represented by only

one node. The more significant difference is that the binary terms do not consider the local

image contents.

There are, however, some recent graphical models that can perform object part segmen-

tation. Bo and Fowlkes [BF11b] use a compositional model to parse pedestrians, where the

semantic parts of pedestrians are composed of segments generated by the UCM algorithm

[AMF11b] (they select high scoring segments to form semantic parts and use heuristic rules

for pruning the space of parses). Thomas et al. [TFL08a] use Implicit Shape Models to

determine the semantic part label of every pixel. Eslami and Williams [EW12] extend the

Shape Bolzmann Machine to model semantic parts and enable object part segmentation.

[TFL08a] and [EW12] did car part segmentation on ETHZ car dataset [TFL08a], which

contains non-occluded cars of a single view (semi-profile view).

Image labeling is a related problem since it requires assigning labels to pixels, such as

[SWR09, MBH10, LYT11, EF12, FCN12, TL13]. But these methods are applied to labeling

all the pixels of an image, and are not intended to detect the position of objects or perform

object part segmentation.

3.3 The Method for Parsing Cars

The silhouette, and hence the segment of a part is defined by the polygon formed by the

landmarks of the part. This allows us to formulate the segmentation problem as landmark
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localization. We model the landmark points and their spatial configuration as a mixture of

tree-structured graphical models, one model for each viewpoint. The model is represented

by G = (V , E). The nodes V correspond to landmark points. They are divided into subsets

V =
⋃N

p=1 Vp, where N is the number of parts and Vp consists of landmarks lying at the

boundaries of semantic part p. The edge structures E are manually designed (see Figure

3.2).

We define an energy function for each graphical model, which consists of unary terms at

the landmarks and binary terms at the edges. The binary terms not only model the spatial

deformations as in[ZR12, FGM10b], but also utilize local image contents, i.e.,the segment

appearance consistency (SAC) between neighboring landmarks.

To do that, we couple the landmarks to a hierarchical segmentation of the image which

is obtained by the SWA algorithm [SGS06] (see Figure 3.4 for a typical SWA segmentation

hierarchy). Then we associate with each image location at every segmentation level a pair

of nearby segments: If a location is on the segment boundary, the two segments are on

either sides of the boundary, otherwise it shares the same segment pairs with the nearest

boundary location. Then SAC terms are used to model the four pairings of segments from

neighboring landmarks (blue dashed lines in Figure 3.3 for example). The strengths of SAC

terms are learnt from data. In order to do the learning, the four pairings need to be ordered,

or equivalently, the two segments of each location need to be represented in the form of an

ordered tuple (s1, s2). In practice, choosing two segments for a segment boundary location

and ordering them is not straightforward (e.g., a location on T-junction where there are

more than two segments nearby). We put technical details about segment pairs in Section

3.3.3.

3.3.1 Score Function

In this section we describe the score function for each graphical model, which is the sum

of unary potentials defined at the graph nodes, representing the landmarks, and binary

potentials defined over the edges connecting neighboring landmarks.
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 Level 1 (lowest)  Level 2  Level 3  Level 5  Level 6  Level 4 

Figure 3.4: The segments output by SWA at six levels. Note how the segments covering

the semantic parts change from level 1 to level 6 (e.g., left windows and left wheels). This

illustrates that different parts need different levels of segmentation. For example, the best

level for the left-back wheel is level 4 and the best level for the left windows is level 5. Best

view in color.

We first define the variables of the graph. Each node has pixel position of landmark

li = (xi, yi). The set of all positions is denoted by L = {li}|V|i=1. We denote by pi the indicator

specifying which part landmark i belongs to, and by h(p) the segmentation level of part

p. Then the segment pair of node i, si, can be seen as the function of h(pi), which we

denote by si,h for simplicity. Similar to the definitions of L, we have H = {h(pi)}Ni=1 and

S(H) = {si,h}|V|i=1. The score function of the model for viewpoint v is

S(L,H, v | I) = φ(L,H, v | I) + ψ(L,H, v | I) + βv (3.1)

In the following we omit v for simplicity. The unary terms φ(L,H | I) is expressed as:

φ(L,H | I) =
∑
i∈V

[
wf

i · f(li | I) + we
i e(h(pi), li | I)

]
(3.2)

The first term in the bracket of Equation 3.2 measures the appearance evidence for landmark

i at location li. We write f(li | I) for the HOG feature vector extracted from li in image

I. In the second term, the term e(h(pi), li | I) is equal to one minus the distance between

li and the closest segment boundary at segmentation level h(pi). This function penalizes

landmarks being far from edges. The unary terms encourage locations with distinctive local

appearances and with segment boundaries nearby to be identified as landmarks. The binary

term ψ(L,H | I) is:

ψ(L,H | I) =
∑

(i,j)∈E

wd
i,j · d(li, lj) +

∑
(i,j)∈E
pi=pj

wA
i,j · A(si,h, sj,h | I) (3.3)
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Figure 3.5: The landmark annotations for typical images. Yellow dots are the annotated

landmark locations. Please refer to Section 3.3.3 for landmark selection criteria.

d(li, lj) = (−|xi−xj− x̄ij|,−|yi−yj− ȳij|) measures the deformation cost for connected pairs

of landmarks, where x̄ij and ȳij are the anchor (mean) displacement of landmark i and j.

We adopt L1 norm to enhance our model’s robustness to deformation. In the second term of

Equation 3.3, A(si,h, sj,h | I) = (α(s1
i,h, s

1
j,h | I), α(s1

i,h, s
2
j,h | I), α(s2

i,h, s
1
j,h | I), α(s2

i,h, s
2
j,h | I))

is a vector storing the pairwise similarity between segments of nodes i and j. This, together

with the strength term wA
ij, models the SAC. The computation of α(si,h, sj,h | I) is given in

Section 3.3.3. Finally, β is a mixture-specific scalar bias.

The parameters of the score function are W = {wf
i } ∪ {we

i } ∪ {wd
ij} ∪ {wA

ij} ∪ {β}. Note

that the score function is linear in W , therefore similar to [FGM10b] we can express the

model more simply by

S(L,H | I) = w · Φ(L,H | I) (3.4)

where w is formed by concatenating the parameters W into a vector.

Special case Without the second term in the bracket of Equation (3.2) and the second

term of Equation (3.3) (i.e. setting we
i = 0 and wA

i,j = 0), the model is equivalent to [ZR12],

which we will compare our performance with.

3.3.2 Inference and Learning

Inference. The viewpoint v, the positions of the landmarks L and the segmentation levels

H are unobserved. Our model detects the landmarks and searches for the optimal viewpoint

and segmentation levels of parts simultaneously, as expressed by the following equation,

S(I) = max
v

[max
H,L

S(L,H, v | I)] (3.5)
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s1#

s2#

Figure 3.6: Illustration of segment pair assignment. Right: The look-up table for segment

pair assignment, which is divided into two parts (separated by the dashed line). White

represents 1 and black represents 0. Left: an example of how to construct the binary matrix

m(p) for location p and how to determine its segment pair. The hit of m(p) in the look-up

table is marked by the red rectangle. Best view in color.

The outer maximizing is done by enumerating all mixtures. Within each mixture, we ap-

ply dynamic programming to estimate the segmentation levels and landmark positions of

parts. Then the silhouette of each part can be directly inferred from its landmarks. In our

experiment, it took a half to one minute to do the inference on an image about 300-pixel

height.

Learning. We learn the model parameters by training our method for car detection (this is

simpler than training it for part segmentation). We use a set of image windows as training

data, where windows containing cars are labeled as positive examples and windows not

containing cars are negative examples. A loss function is specified as:

J (w) =
1

2
‖w‖2 + C

∑
i

max(0, 1− ti ·max
Li,Hi

w · Φ(Li,Hi | Ii)) (3.6)

where ti ∈ {1,−1} is the class label of the object in the training image and C is a constant.

Let’s take a closer look at the inner maximization. The segmentation levels of the semantic

parts H are hidden and need to be estimated. The CCCP algorithm [YR03] is used to

estimate the parameters by minimizing the loss function through alternating inference and

optimization.
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3.3.3 Implementation Details

Landmarks. The landmarks are specified manually for each viewpoint. They are required

to lie on the boundaries between the car and background (contour landmarks) or between

parts (inner landmarks), so that the silhouettes of parts and the car itself can be identified

from landmarks. For front/back view, we use 69 landmarks; for left and right side views, we

use 74 landmarks; for the other views, we use 88 landmarks. The assignment of landmarks

to parts is determined by the following rule: contour landmarks are assigned to parts they

belong to (e.g., landmarks of the lower half of wheels), and inner landmarks are assigned to

parts that they are surrounding (e.g., landmarks around license plates). See Figure 3.5 for

some examples. It took about two minutes to label one image.

Appearance features at landmarks. The appearance features f at the landmarks are

HOG features. More specifically, we calculate the HOG descriptor of an image patch centered

at the landmark. The patch size is determined by the 80% percentile of the distances between

neighboring landmarks in training images.

Appearance similarity between segments. The similarity α(·, ·) is a two dimensional

vector, whose components are the χ2 distances of two types of features of the segments:

color histograms and the grey-level co-occurrence matrices (GLCM) [HSD73]. The color

histograms are computed in the HSV space. They have 96 bins, 12 bins in the hue plane and

8 bins in the saturation plane. The GLCM is computed as follows: We choose 8 measure-

ments of the co-occurrence matrix, including HOM, ASM, MAX and means (variances and

covariance) of x and y (please refer to [HSD73] for details); The GLCM feature is computed

in the R, G and B channels in 4 directions (0, 45, 90, 135 degrees); As a result, the final

feature length is 96 (8 measurements × 3 channels × 4 directions).

Segment pair assignment. For each location on boundaries, we need to choose two

segments from its neighborhood and assign s1 or s2 to them. In order to do this, we build a

look-up table which consists of 32 3-by-3 binary matrices, as shown in the right of Figure 3.6.

At each boundary location p we first construct a 3-by-3 binary matrix m(p) according to the

segmentation pattern of its 3-by-3 neighborhood. Then we search for m(p) in the look-up
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table. If m(p) matches to one of the upper 16 matrices, gp will be s1 and ḡp be s2 of p; If it

matches to one of the lower 16 matrices, ḡp will be s1 and gp be s2 of p. In the following, we

will explain the design of the look-up table, describe how the segment assignment is done,

and at the end demonstrate how the look-up table makes segment assignments consistent.

• The first design criterion of the look-up table is that the assignment should be consis-

tent, which is twofold: 1) Moving a contour point in its vicinity should not change its

segment pair assignment; 2) For two nodes in the graphical model whose landmarks

are from the same part, their segment pairs should have the same order (e.g., boths s1

are assigned to segments inside the part and s2 assigned to segments outside the part)

across different images. This criterion guarantees that learning the parameters (wA
i,j

in Eq 3.3) of SAC terms are statistically meaningful. The second criterion is that the

look-up table should be able to identify locations with jagged edges for our model to

ignore considering them as potential landmark locations, as in such locations it is very

hard to guarantee consistency.

We use 3-by-3 binary matrices to index the local segmentation patterns around contour

locations. Figure 3.7 shows 70 out of all 256 possible matrices (the center is fixed to

one), the rest of which are obtained by rotating these 70 prototypes. Not all of the

256 matrices are suitable for indexing. Some of them correspond to jagged edges and

some of them will not occur on the contours in practice. We discard those that are not

suitable and pick the remaining 8 matrices as shown on the first row in figure 3.7. The

we rotate them to generate a set of 32 matrices which compose of the look-up table as

shown in figure 3.8.

• At each boundary location p we construct a 3-by-3 binary matrix m according to

the segmentation pattern of its 3-by-3 neighborhood: locations covered by the same

segment which covers p are given value 1 and other locations are given value 0. We

denote the segment which p belongs to by gp, and denote by ḡp the segment which

most 0-valued locations in m belong to. Then we search in the look-up table for the

same binary matrix as m. If there is a hit from one of matrices 1 to 16 in figure 3.8,
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Figure 3.7: 70 out of all 256 3-by-3 binary matrices (black indicates “0” and white indicates

“1”), with the center fixed to one. Matrices in red rectangle are used to generated the 32

binary matrices of the look-up table. Matrices in the blue dashed rectangle are considered

not suitable for indexing.

gp will be s1 and ḡp will be s2; if there is a hit from one of matrices 17 to 32, gp will be

s2 of p and ḡp will be s1 of p; otherwise, we will not apply SAC terms to p in the score

function.

As an example, Figure 3.9 shows how to compute the binary matrices for contour

locations. The green rectangle marks the 3-by-3 neighborhood with p in the center.

The bronze segment is gp and the cyan segment is ḡp. According to the above rule, the

bronze region is given value 1, and the rest is given value 0; then we got a hit in the

look-up table with matrix 31, and hence assign s2 to the bronze segment and s1 to the

cyan segment.

• On Figure 3.10, we show two segmentation patterns from two locations p and p′ not far

from each other. Although different from each other, they all assign s1 to the bronze
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Figure 3.8: The 32 binary matrices in the look-up table, separated by a dashed line.

gp gp gp gp gp

gp gp gp gp gp

p gp

gp gp gp

gp gp gp gp gp m(p)

Figure 3.9: Example of how segment pair assignment rule works.

segment and s2 to the violet segment. In fact, in this example, all points along the

segment boundaries have the same assignment (i.e.,bronze segment to s1 and violet

segment to s2). This shows the consistency of the assignment algorithm.

3.4 Experiments

3.4.1 Dataset

We validate our approach on two datasets, PASCAL VOC 2010 (VOC10) [EVW] and 3D

car (CAR3D) [SL07]. VOC10 is a hard dataset because the variations of the cars (e.g,
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Figure 3.10: Illustration of the consistency of the segment assignment algorithm.
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Figure 3.11: Cumulative localization error distribution for parts. X-axis is the average

localization error normalized by image width, and Y-axis is the fraction of the number of

testing images. The red solid lines are the performance using SAC and the blue dashed lines

are the performance of [ZR12].

appearance and shape) are very large. From VOC10, we choose car images whose sizes are

greater than 80× 80. This ensures that the semantic parts are big enough for inference and

learning. Currently our method cannot handle occlusion, so we remove images where cars

are occluded by other objects or truncated by image border. We augment the image set
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Figure 3.12: Cumulative segmentation error distribution for parts. X-axis is the average

segmentation error normalized by image width, and Y-axis is the fraction of the number of

testing images. The red solid lines are the performance using SAC and the blue dashed lines

are the performance of [ZR12].

by flipping the cars in the horizontal direction. This yields a dataset containing 508 cars.

Then we divide images into seven viewpoints spanning over 180◦ spacing at 30◦. CAR3D

provides 960 non-occluded cars. We also divide them into seven viewpoints (instead of using

the original eight viewpoints). We collect 300 negatives images by randomly sampling from

non-car images of PASCAL VOC 2010 using windows of the sizes of training images. These

300 negative images are used for both datasets. In our experiments, for each dataset, we

randomly select half of the images as training data and test the trained model on the other

half.

3.4.2 Baseline

We compare our method with the model proposed by Zhu and Ramanan [ZR12] on landmark

localization and semantic part segmentation. We simply use their code to localize landmarks

and assume the regions surrounded by certain landmarks are the semantic parts. Note that
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Figure 3.13: Visualized comparison of our method with [ZR12] on car part segmentation. In

each pair of results, the lower one is produced by our method.

we use the same landmark and part definitions for both the baseline and our methods.

3.4.3 Evaluation

We first evaluate our method on landmark localization. We normalize the localization error

as Zhu and Ramanan did in [ZR12]. In this and the following experiments, we consider parts

of same category as a single part (e.g., two lights of a front-view car are treated as one part).

Figure 3.11 shows the cumulative error distribution curves on both datasets. We can see

that by using SAC we had a big improvement of the landmark localization performance of

all semantic parts on VOC10. We achieved better or comparable performance on CAR3D.

Images in CAR3D are relatively easier than those in VOC10 and therefore SAC cannot bring

big performance gain.

Then we evaluate our method on semantic part segmentation. The segmentation error

of a part is computed by (1 − IOU), where IOU is the intersection of detected segments

and ground truth segments over the union of them. Figure 3.12 shows the cumulative

error distribution curves on both datasets. Again, using SAC our method improves the

performance on almost all parts (improvement on lights and license plate is significant).

However, we got slightly worse result on wheels. The errors occurred when SWA produces
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Figure 3.14: More segmentation results of our method on VOC10 (upper) and CAR3D

(lower).

segments that are crossing the boundaries of wheels and the nearby background at all levels.

The reason is that due to illumination and shading, it is difficult to separate wheels and

background by appearance.

Figure 3.13 shows the visualization comparison, from which we can see that our method

works better on part boundaries, especially for lights and license plates. Figure 3.14 shows

more segmentation results on VOC10 and CAR3D.

3.5 Conclusion

In this chapter, we address the novel task of car parsing, which includes obtaining the posi-

tions and the silhouettes of the semantic parts (e.g., windows, lights and license plates). We

propose a novel graphical model which integrates the SAC coupling terms between neighbor-

ing landmarks, including using hidden variables to specify the segmentation level for each

part. This allows us to exploit the appearance similarity of segments within different parts

of the car. The experimental results on two datasets demonstrate the advances of using seg-

ment appearance cues. Currently, the model cannot handle large occlusion and truncation,
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which is our future direction.
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CHAPTER 4

Video Action Recognition Using Attention

It has been noted in visual cognition literature that humans do not have a detailed and

coherent representation of the whole world around them [Ren00]. Instead, there is a focused

attention mechanism in their visual perception which can detect the change in an scene.

Then attention is coordinated so that a sparse set of stable structures are created to form a

stable and detailed scene representation.

Attention mechanisms are not employed in most previous computer vision algorithms and

hence information lying within local regions of images or sub-volume of videos is not fully

exploited. With the recent success of deep neural networks, attention based models have

been shown to achieve promising results on several challenging tasks, including caption gen-

eration [XBK15] and image recognition (e.g., Street View House Numbers dataset [BSG15]).

There are two types of attention models: hard attention and soft attention models. Hard

attention models usually produce a set of locations that need to be attended and they can be

trained by reinforcement learning methods [MHG14] or by maximizing a variational lower

bound [BMK15]. On the other hand, soft attention models estimate the “importance” of all

locations, which is usually present as a heat map (i.e.,attention map). The numerical values

of the heap map intuitively indicate how much attention is needed for each location.

In this chapter, we propose a video action recognition framework that is able to estimate

the action critical places of a video and infer the action happening in the video by attending

only to relevant places in each frame. The framework consists of two parts: a classification

module and a soft attention module, as illustrated in Fig. 4.1. The classification module

applies a fully convolutional neural network (FCN) [LSD15], which produces a dense classi-

fication score map for the input video. On the other hand, the attention module, computes
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an dense attention map with the same size as the classification score map, based on the same

input video. The final output of our model is produced by the weighted sum of classification

scores across all locations. Intuitively, each value at a location of the attention map indicates

how much ”attention” we should pay to the classification result at that location.

In Fig. 4.1, inputs of the attention module can come from the intermediate outputs of the

classification module (type A) or directly from the input video (type B). By taking inputs

from outputs of a intermediate layer of the classification module, the two modules of type A

network share parameters of early-stage layers, which leads to a model of less complexity and

easier learning. On the other hand, type B network can have its attention module exploit a

different input modality than its classification module (e.g., the classification module takes

RGB image as input and the attention module takes optical flows), so that the network can

benefit from the complementary information from different modalities [WXW16]. We will

evaluate both type of networks in Section 4.3.

We jointly train the classification module and the attention model. We demonstrate the

effectiveness of our model on two challenging datasets, UCF101 and HMDB51. Experimental

results show that our proposed method consistently improves over strong baselines. The

attention module also outperforms average and max-pooling methods. In addition, the

proposed attention module can be visualized, unveiling the insights of what the black box

network has learned.

The rest of the paper is organized as following: In Section 4.1 we briefly review the liter-

ature and related work. Then we describe the proposed method in Section 4.2. Evaluation

are given in Section 4.3 followed by conclusions in Section 4.4.

4.1 Related Work

Computational limitations have received much attention in the computer vision literature.

For instance, for object detection, much work has been dedicated to reducing the cost of the

widespread sliding window paradigm, focusing primarily on reducing the number of windows

for which the full classifier is evaluated, e.g. via classifier cascades (e.g. [FGM10a, VJ01]),
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Figure 4.1: The overall framework of the proposed video action recognition model. The

feature extraction module takes a single frame and applies a deep convolutional neural net-

work (DCNN) on the the frame image in a sliding window manner, yielding for each location

a deep convolutional feature. The attention module computes an attention map for those

locations, based on a short clip (i.e.,a sequence of frames) centered at the frame.

removing image regions from consideration via a branch and bound approach on the classifier

output (e.g. [LBH08]), or by proposing candidate windows that are likely to contain objects

(e.g. [SUG11]). Even though substantial speedups may be obtained with such approaches,

and some of these can be combined with or used as an add-on to CNN classifiers [GDD14],

they remain firmly rooted in the window classifier design for object detection and only exploit

past information to inform future processing of the image in a very limited way.

A second class of approaches that has a long history in computer vision and is strongly

motivated by human perception are saliency detectors (e.g. [IKN98]). These approaches

prioritize the processing of potentially interesting (“salient) image regions which are typically

identified based on some measure of local low-level feature contrast. Saliency detectors

indeed capture some of the properties of human eye movements, but they typically do not

to integrate information across fixations, their saliency computations are mostly hardwired,

and they are based on low-level image properties only, usually ignoring other factors such as

semantic content of a scene and task demands (but see [TOC06]).

In computer vision, attention models have been widely used for image classification [CLY15,
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KDG15, XXY15] and object detection [BMK15, CL15, YPL15]. Mnih et al. learn an at-

tention model that adaptively selects image regions for processing [MHG14]. However, their

attention model is not differentiable. On the other hand, Gregor et al. employ a differentiable

attention model to specify where to read/write image regions for image generation [KDG15].

Bahdanau et al. propose an attention model that softly weights the importance of input

words in a source sentence when predicting a target word for machine translation [BMK15].

Following this, Xu et al. [XBK15] and Yao et al. [YTC15] use attention models for image

captioning and video captioning respectively. These methods apply attention in the 2D spa-

tial and/or temporal dimension. Jaderberg et al. have proposed a soft-attention mechanism

called the Spatial Transformer module [JSZ15] which they add between the layers of CNNs.

Instead of weighting locations using a softmax layer, they apply affine transformations to

multiple layers of their CNN to attend to the relevant part.

Some work uses long short-term memory (LSTM) to model the spatial or temporal atten-

tion of videos. Yeung et al. do dense action labelling using a soft temporal attention, which

is essentially a set of weights. The weights are computed based on the context [YRJ15].

Sharma et al. models spatial attention of videos, as does our work. Unlike their method,

which uses LSTM to determine one frame’s attention based on its predecessor’s attention

and content, our method learns a 3D DCNN for that and yields much better performance.

Chen et al. proposed a very similar attention module to learn the attention to multiple

scales for image segmentation. The attention module uses the second to the last convolution

layer of the segmentation network as input.

4.2 Approach

In this section, we first briefly introduces some commonly-adopted input modalities for

DCNN and some state-of-the-art network architectures in video analysis, then we describe

in details the proposed video recognition framework.
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4.2.1 Classification Module

The classification module applies a 2D deep convolutional neural network to single-frame

images, which gives dense predictions across locations. In the past several years, many fa-

mous network structures have been proposed, such as AlexNet [KSH12], GoogLeNet [SLJ15],

VGGNet [SZ14a], ResNet [HZR16] etc. Several works have shown that deeper structures

improve object recognition performance [SLJ15, SZ14a, HZR16]. In the application of

video recognition, Simonyan et al. proposed a two-stream network with 16-layer VGGNets

(VGG16), which is the first structure that outperforms the combination of hand-crafted

features and shallow classifiers [SZ14b]. Our proposed classification module is built based

on the two-stream model, which plays essential roles in state-of-the-art action recognition

models [WXW15, WFG15, ZHS16, WXW16].

As its name indicates, two-stream architecture has two streams: spatial stream and tem-

poral stream. Each stream is implemented using a DCNN. Spatial stream DCNN operates

on individual video frames, performing action recognition from still images. Since this is

essentially a image classification task, our classification module is built upon the VGG16

network pre-trained a large image classification dataset, such as the ImageNet challenge

dataset.

Temporal stream DCNN is for capturing motion information and therefore use inputs

from consecutive frames. First, dense optical flows of L consecutive frames are computed.

A dense optical flow in frame t has a horizontal component dtx and a vertical component dty.

At location (u, v), dtx(u, v) and dty(u, v) together represents the displacement at (u, v) from

frame t to frame t+1. Then to represent the motion across a sequence of L frames starting at

frame t, the optical flow components are stacked to form a volume of 2L channels. Formally,

the input of the temporal stream DCNN It ∈ Rh×w×2L is constructed as follows:

It(u, v, 2k − 1) = dt+k−1
x (u, v),

It(u, v, 2k) = dt+k−1
y (u, v),

(4.1)

where h and w are the height and the width of a video respectively.

We ends this section by briefly introducing the architecture of VGG16 and how to trans-
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Figure 4.2: Architecture of VGG16 in [SZ14a], which adopts small convolution kernels of

size 3× 3 and stride 1× 1, and small pooling window of size 2× 2.

Figure 4.3: Transforming fully connected layers into convolution layers enables a classification

net to output a heatmap. The figure is borrowed from [LSD15].

form it into a FCN. In [SZ14a], the authors systematically investigated the influence of

network depth on the recognition performance, by building and pre-training deeper archi-

tectures based on the shallower ones. One of the best architectures they came up with is

VGG16, which is composed of 13 convolutional layers and 3 fully-connected layers. VGG16

adopts small convolution kernels of size 3 × 3 and stride 1 × 1, and small pooling window

of size 2 × 2. Figure 4.2 shows the network architecture. Please refer to [SZ14a] for more

details.

Typical DCNNs like VGG16 take fixed-sized inputs and produce non-spatial outputs.

The fully connected layers of these nets have fixed dimensions and throw away spatial co-

ordinates. However, these fully connected layers can also be viewed as convolutions with

kernels that cover their entire input regions. Doing so casts them into fully convolutional
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Figure 4.5: Type B attention module (orange rectangles), which takes multiple frames as

input.

networks that take input of any size and output classification maps [LSD15]. This trans-

formation is illustrated in Figure 4.3. Furthermore, while the resulting maps are equivalent

to the evaluation of the original net on particular input patches, the computation is highly

amortized over the overlapping regions of those patches.

4.2.2 Attention Module

As previously introduced, the attention module can take inputs from either some interme-

diate layer of the classification module (type A) or the input video directly (type B). Type

A modules, as illustrated in Figure share the same input modality. In [CYW16], Chen et al.

directs the output of fc7 of a FCN into an attention module which learns attentions from

different scales for image segmentation. Such design is reasonable for image tasks. How-

ever, in videos of actions, most of the time the critical information lies within motions, and

therefore the attention module should cover the temporal dimension.

In our proposed model, we solve this issue in two ways. One way is using type A module

with a temporal stream network as the classification module, whose input is stacked optical

flows. Another way is to adopt type B module, where we can choose any modalities that
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Figure 1. 2D and 3D convolution operations. a) Applying 2D convolution on an image results in an image. b) Applying 2D convolution
on a video volume (multiple frames as multiple channels) also results in an image. c) Applying 3D convolution on a video volume results
in another volume, preserving temporal information of the input signal.

the temporal stream network takes multiple frames as input,
because of the 2D convolutions, after the first convolution
layer, temporal information is collapsed completely. Simi-
larly, fusion models in [18] used 2D convolutions, most of
the networks lose their input’s temporal signal after the first
convolution layer. Only the Slow Fusion model in [18] uses
3D convolutions and averaging pooling in its first 3 convo-
lution layers. We believe this is the key reason why it per-
forms best among all networks studied in [18]. However, it
still loses all temporal information after the third convolu-
tion layer.

In this section, we empirically try to identify a good ar-
chitecture for 3D ConvNets. Because training deep net-
works on large-scale video datasets is very time-consuming,
we first experiment with UCF101, a medium-scale dataset,
to search for the best architecture. We verify the findings on
a large scale dataset with a smaller number of network ex-
periments. According to the findings in 2D ConvNet [37],
small receptive fields of 3 ⇥ 3 convolution kernels with
deeper architectures yield best results. Hence, for our ar-
chitecture search study we fix the spatial receptive field to
3 ⇥ 3 and vary only the temporal depth of the 3D convolu-
tion kernels.

Notations: For simplicity, from now on we refer video
clips with a size of c ⇥ l ⇥ h ⇥ w where c is the number of
channels, l is length in number of frames, h and w are the
height and width of the frame, respectively. We also refer
3D convolution and pooling kernel size by d⇥k⇥k, where
d is kernel temporal depth and k is kernel spatial size.

Common network settings: In this section we describe
the network settings that are common to all the networks we
trained. The networks are set up to take video clips as inputs
and predict the class labels which belong to 101 different
actions. All video frames are resized into 128 ⇥ 171. This
is roughly half resolution of the UCF101 frames. Videos
are split into non-overlapped 16-frame clips which are then
used as input to the networks. The input dimensions are
3⇥ 16⇥ 128⇥ 171. We also use jittering by using random
crops with a size of 3 ⇥ 16 ⇥ 112 ⇥ 112 of the input clips
during training. The networks have 5 convolution layers
and 5 pooling layers (each convolution layer is immediately
followed by a pooling layer), 2 fully-connected layers and
a softmax loss layer to predict action labels. The number
of filters for 5 convolution layers from 1 to 5 are 64, 128,
256, 256, 256, respectively. All convolution kernels have a

size of d where d is the kernel temporal depth (we will later
vary the value d of these layers to search for a good 3D ar-
chitecture). All of these convolution layers are applied with
appropriate padding (both spatial and temporal) and stride
1, thus there is no change in term of size from the input
to the output of these convolution layers. All pooling lay-
ers are max pooling with kernel size 2 ⇥ 2 ⇥ 2 (except for
the first layer) with stride 1 which means the size of output
signal is reduced by a factor of 8 compared with the input
signal. The first pooling layer has kernel size 1 ⇥ 2 ⇥ 2
with the intention of not to merge the temporal signal too
early and also to satisfy the clip length of 16 frames (e.g.
we can temporally pool with factor 2 at most 4 times be-
fore completely collapsing the temporal signal). The two
fully connected layers have 2048 outputs. We train the net-
works from scratch using mini-batches of 30 clips, with ini-
tial learning rate of 0.003. The learning rate is divided by
10 after every 4 epochs. The training is stopped after 16
epochs.

Varying network architectures: For the purposes of
this study we are mainly interested in how to aggregate tem-
poral information through the deep networks. To search
for a good 3D ConvNet architecture, we only vary kernel
temporal depth di of the convolution layers while keeping
all other common settings fixed as stated above. We ex-
periment with two types of architectures: 1) homogeneous
temporal depth: all convolution layers have the same ker-
nel temporal depth; and 2) varying temporal depth: kernel
temporal depth is changing across the layers. For homoge-
neous setting, we experiment with 4 networks having ker-
nel temporal depth of d equal to 1, 3, 5, and 7. We name
these networks as depth-d, where d is their homogeneous
temporal depth. Note that depth-1 net is equivalent to ap-
plying 2D convolutions on separate frames. For the varying
temporal depth setting, we experiment two networks with
temporal depth increasing: 3-3-5-5-7 and decreasing: 7-
5-5-3-3 from the first to the fifth convolution layer respec-
tively. We note that all of these networks have the same size
of the output signal at the last pooling layer, thus they have
the same number of parameters for fully connected layers.
Their number of parameters is only different at convolution
layers due to different kernel temporal depth. These differ-
ences are quite minute compared to millions of parameters
in the fully connected layers. For example, any two of the
above nets with temporal depth difference of 2, only has
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Figure 1. 2D and 3D convolution operations. a) Applying 2D convolution on an image results in an image. b) Applying 2D convolution
on a video volume (multiple frames as multiple channels) also results in an image. c) Applying 3D convolution on a video volume results
in another volume, preserving temporal information of the input signal.

the temporal stream network takes multiple frames as input,
because of the 2D convolutions, after the first convolution
layer, temporal information is collapsed completely. Simi-
larly, fusion models in [18] used 2D convolutions, most of
the networks lose their input’s temporal signal after the first
convolution layer. Only the Slow Fusion model in [18] uses
3D convolutions and averaging pooling in its first 3 convo-
lution layers. We believe this is the key reason why it per-
forms best among all networks studied in [18]. However, it
still loses all temporal information after the third convolu-
tion layer.

In this section, we empirically try to identify a good ar-
chitecture for 3D ConvNets. Because training deep net-
works on large-scale video datasets is very time-consuming,
we first experiment with UCF101, a medium-scale dataset,
to search for the best architecture. We verify the findings on
a large scale dataset with a smaller number of network ex-
periments. According to the findings in 2D ConvNet [37],
small receptive fields of 3 ⇥ 3 convolution kernels with
deeper architectures yield best results. Hence, for our ar-
chitecture search study we fix the spatial receptive field to
3 ⇥ 3 and vary only the temporal depth of the 3D convolu-
tion kernels.

Notations: For simplicity, from now on we refer video
clips with a size of c ⇥ l ⇥ h ⇥ w where c is the number of
channels, l is length in number of frames, h and w are the
height and width of the frame, respectively. We also refer
3D convolution and pooling kernel size by d⇥k⇥k, where
d is kernel temporal depth and k is kernel spatial size.

Common network settings: In this section we describe
the network settings that are common to all the networks we
trained. The networks are set up to take video clips as inputs
and predict the class labels which belong to 101 different
actions. All video frames are resized into 128 ⇥ 171. This
is roughly half resolution of the UCF101 frames. Videos
are split into non-overlapped 16-frame clips which are then
used as input to the networks. The input dimensions are
3⇥ 16⇥ 128⇥ 171. We also use jittering by using random
crops with a size of 3 ⇥ 16 ⇥ 112 ⇥ 112 of the input clips
during training. The networks have 5 convolution layers
and 5 pooling layers (each convolution layer is immediately
followed by a pooling layer), 2 fully-connected layers and
a softmax loss layer to predict action labels. The number
of filters for 5 convolution layers from 1 to 5 are 64, 128,
256, 256, 256, respectively. All convolution kernels have a

size of d where d is the kernel temporal depth (we will later
vary the value d of these layers to search for a good 3D ar-
chitecture). All of these convolution layers are applied with
appropriate padding (both spatial and temporal) and stride
1, thus there is no change in term of size from the input
to the output of these convolution layers. All pooling lay-
ers are max pooling with kernel size 2 ⇥ 2 ⇥ 2 (except for
the first layer) with stride 1 which means the size of output
signal is reduced by a factor of 8 compared with the input
signal. The first pooling layer has kernel size 1 ⇥ 2 ⇥ 2
with the intention of not to merge the temporal signal too
early and also to satisfy the clip length of 16 frames (e.g.
we can temporally pool with factor 2 at most 4 times be-
fore completely collapsing the temporal signal). The two
fully connected layers have 2048 outputs. We train the net-
works from scratch using mini-batches of 30 clips, with ini-
tial learning rate of 0.003. The learning rate is divided by
10 after every 4 epochs. The training is stopped after 16
epochs.

Varying network architectures: For the purposes of
this study we are mainly interested in how to aggregate tem-
poral information through the deep networks. To search
for a good 3D ConvNet architecture, we only vary kernel
temporal depth di of the convolution layers while keeping
all other common settings fixed as stated above. We ex-
periment with two types of architectures: 1) homogeneous
temporal depth: all convolution layers have the same ker-
nel temporal depth; and 2) varying temporal depth: kernel
temporal depth is changing across the layers. For homoge-
neous setting, we experiment with 4 networks having ker-
nel temporal depth of d equal to 1, 3, 5, and 7. We name
these networks as depth-d, where d is their homogeneous
temporal depth. Note that depth-1 net is equivalent to ap-
plying 2D convolutions on separate frames. For the varying
temporal depth setting, we experiment two networks with
temporal depth increasing: 3-3-5-5-7 and decreasing: 7-
5-5-3-3 from the first to the fifth convolution layer respec-
tively. We note that all of these networks have the same size
of the output signal at the last pooling layer, thus they have
the same number of parameters for fully connected layers.
Their number of parameters is only different at convolution
layers due to different kernel temporal depth. These differ-
ences are quite minute compared to millions of parameters
in the fully connected layers. For example, any two of the
above nets with temporal depth difference of 2, only has
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Figure 1. 2D and 3D convolution operations. a) Applying 2D convolution on an image results in an image. b) Applying 2D convolution
on a video volume (multiple frames as multiple channels) also results in an image. c) Applying 3D convolution on a video volume results
in another volume, preserving temporal information of the input signal.

the temporal stream network takes multiple frames as input,
because of the 2D convolutions, after the first convolution
layer, temporal information is collapsed completely. Simi-
larly, fusion models in [18] used 2D convolutions, most of
the networks lose their input’s temporal signal after the first
convolution layer. Only the Slow Fusion model in [18] uses
3D convolutions and averaging pooling in its first 3 convo-
lution layers. We believe this is the key reason why it per-
forms best among all networks studied in [18]. However, it
still loses all temporal information after the third convolu-
tion layer.

In this section, we empirically try to identify a good ar-
chitecture for 3D ConvNets. Because training deep net-
works on large-scale video datasets is very time-consuming,
we first experiment with UCF101, a medium-scale dataset,
to search for the best architecture. We verify the findings on
a large scale dataset with a smaller number of network ex-
periments. According to the findings in 2D ConvNet [37],
small receptive fields of 3 ⇥ 3 convolution kernels with
deeper architectures yield best results. Hence, for our ar-
chitecture search study we fix the spatial receptive field to
3 ⇥ 3 and vary only the temporal depth of the 3D convolu-
tion kernels.

Notations: For simplicity, from now on we refer video
clips with a size of c ⇥ l ⇥ h ⇥ w where c is the number of
channels, l is length in number of frames, h and w are the
height and width of the frame, respectively. We also refer
3D convolution and pooling kernel size by d⇥k⇥k, where
d is kernel temporal depth and k is kernel spatial size.

Common network settings: In this section we describe
the network settings that are common to all the networks we
trained. The networks are set up to take video clips as inputs
and predict the class labels which belong to 101 different
actions. All video frames are resized into 128 ⇥ 171. This
is roughly half resolution of the UCF101 frames. Videos
are split into non-overlapped 16-frame clips which are then
used as input to the networks. The input dimensions are
3⇥ 16⇥ 128⇥ 171. We also use jittering by using random
crops with a size of 3 ⇥ 16 ⇥ 112 ⇥ 112 of the input clips
during training. The networks have 5 convolution layers
and 5 pooling layers (each convolution layer is immediately
followed by a pooling layer), 2 fully-connected layers and
a softmax loss layer to predict action labels. The number
of filters for 5 convolution layers from 1 to 5 are 64, 128,
256, 256, 256, respectively. All convolution kernels have a

size of d where d is the kernel temporal depth (we will later
vary the value d of these layers to search for a good 3D ar-
chitecture). All of these convolution layers are applied with
appropriate padding (both spatial and temporal) and stride
1, thus there is no change in term of size from the input
to the output of these convolution layers. All pooling lay-
ers are max pooling with kernel size 2 ⇥ 2 ⇥ 2 (except for
the first layer) with stride 1 which means the size of output
signal is reduced by a factor of 8 compared with the input
signal. The first pooling layer has kernel size 1 ⇥ 2 ⇥ 2
with the intention of not to merge the temporal signal too
early and also to satisfy the clip length of 16 frames (e.g.
we can temporally pool with factor 2 at most 4 times be-
fore completely collapsing the temporal signal). The two
fully connected layers have 2048 outputs. We train the net-
works from scratch using mini-batches of 30 clips, with ini-
tial learning rate of 0.003. The learning rate is divided by
10 after every 4 epochs. The training is stopped after 16
epochs.

Varying network architectures: For the purposes of
this study we are mainly interested in how to aggregate tem-
poral information through the deep networks. To search
for a good 3D ConvNet architecture, we only vary kernel
temporal depth di of the convolution layers while keeping
all other common settings fixed as stated above. We ex-
periment with two types of architectures: 1) homogeneous
temporal depth: all convolution layers have the same ker-
nel temporal depth; and 2) varying temporal depth: kernel
temporal depth is changing across the layers. For homoge-
neous setting, we experiment with 4 networks having ker-
nel temporal depth of d equal to 1, 3, 5, and 7. We name
these networks as depth-d, where d is their homogeneous
temporal depth. Note that depth-1 net is equivalent to ap-
plying 2D convolutions on separate frames. For the varying
temporal depth setting, we experiment two networks with
temporal depth increasing: 3-3-5-5-7 and decreasing: 7-
5-5-3-3 from the first to the fifth convolution layer respec-
tively. We note that all of these networks have the same size
of the output signal at the last pooling layer, thus they have
the same number of parameters for fully connected layers.
Their number of parameters is only different at convolution
layers due to different kernel temporal depth. These differ-
ences are quite minute compared to millions of parameters
in the fully connected layers. For example, any two of the
above nets with temporal depth difference of 2, only has

(c) 3D convolution

Figure 4.6: Illustration of 2D and 3D convolutions. (a) Applying 2D convolution on an image

results in an image. (b) Applying 2D convolution on a video volume (multiple frames as

multiple channels) also results in an image. (c) Applying 3D convolution on a video volume

results in another volume, preserving temporal information of the input signal. The figure

is borrowed from [TBF14].

preserve temporal information. Straightforward choices are stacked frames or optical flows.

The former choice has been shown not ideal in [SZ14b], while the latter one is essentially a

two-stream model whose performance we will evaluate in Section 4.3.

A drawback of stack multiple frames or optical flows as input to a traditional 2D DCNN

is that temporal information is lost after the first convolution by doing so, as shown in

Figure 4.6a. The Slow Fusion model in [KTS14] extends the connectivity of all convolutional

layers in time and carrying out temporal convolutions in addition to spatial convolutions to

compute activations 4.6b, but its performance is not very promising.

Tran et al. proposed a 3D DCNN (C3D) [TBF14], which originally has 8 3D convolution,

5 3D max-pooling, and 2 fully connected layers, followed by a softmax output layer. 3D

convolution and pooling have a temporal dimension for kernels, and hence preserves the

temporal information of the input signals resulting in an output volume. All 3D convolution

kernels of C3D are 3× 3× 3 with stride 1 in both spatial and temporal dimensions. All the

3D pooling layers, except for the first one, are using pooling kernels size 2× 2× 2. The first

pooling layer’s kernel size is 1× 2× 2.

We apply C3D as our type B attention module due to its ability to model appearance and

motion information simultaneously. In order to get a attention map out of C3D, we transform

the first fully connected layer into a 2D convolutional layer as in the VGGNet, and replace
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Figure 4.7: Attention module. The network inherits from C3D net 8 convolution, 5 max-

pooling layers. The first fully connected layer is transformed into a 2D convolutional layer

”Conv fc6”, and the last fully connected layer and the softmax output layer are replaced

with a 2D convolutional layer “Conv att”. All 3D convolution kernels are 3 × 3 × 3 with

stride 1 in both spatial and temporal dimensions. Number of filters are denoted in each box.

The 3D pooling layers are denoted from pool1 to pool5. All pooling kernels are 2 × 2 × 2,

except for pool1 which is 1× 2× 2.

the last fully connected layer and the softmax output layer with a 2D convolutional layer

“Conv att” which has kernel size 1× 1. The network structure is illustrated in Figure 4.7.

In both types, we use a convolutional layer of 512 filters with kernel size 3× 3, followed

by another convolutional layer of kernel size 1× 1 to reduce the dimension to 1, to produce

the attention map.

Each short clip is passed through the attention module which then produces a score map

v. The score map has the same spatial dimension as the feature map produced by the feature

extraction module. The final score sc for category c at location l is

sc =
∑
i∈L

al · hl,c (4.2)

where L is a set of all locations, and al is computed as

al =
exp (vl)∑L
i∈L exp(vi)

(4.3)

4.3 Experiment

In this section, we first introduce the details of our experimental settings. Then we study

the effectiveness of the components of the proposed models through a series of diagnostic

experiments. After this, we compare the performance of our method with the state of the

art.
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4.3.1 Datasets

The evaluation is performed on UCF101 [SRS12] and HMDB51 [KJG11] benchmarks. UCF101

contains 13, 320 videos of 101 action classes; HMDB51 includes 6, 766 videos of 51 actions.

In both datasets, the videos of the same action class are divided into several groups; The

videos from the same group may share some common features, such as similar background,

similar viewpoint, etc. Both datasets provide three official splits into training and test data.

The performance is measured by the average classification accuracy across the splits.

We begin by conducting diagnostic experiments on the first splits of UCF101 dataset

(UCF101 split1) and HMDB51 dataset (HMDB51 split1). For comparison with the state of

the art, we follow the standard evaluation protocol on both UCF101 and HMDB51.

4.3.2 Implementation Details

4.3.2.1 Classification Module

For UCF101 dataset, we initialize the parameters of the classification module with VGG16 [SZ14c]

pre-trained on ImageNet dataset. The last fully connected layer is initialized with random

weights. When the inputs are stacked optical flows, where in this paper we set L = 10,

there is a dimension mismatch between the input channel and the input size of the first

convolutional kernel (20 vs 3). We modify the kernel by first averaging it across the channel

dimension and copying the results 20 times, as is done in [WXW15]. For HMDB51 dataset,

as the number of training videos are relatively small (around 3.7K), we fine-tune the classifi-

cation module trained on all videos of UCF101 dataset, a strategy that is commonly adopted,

e.g., [SZ14b, WFG15].

4.3.2.2 Attention Module

For type A attention module, we initialize the parameters with random weights. For type

B module using the temporal network, we use the same initialization as in classification

module. For the one using C3D network, the C3D part is pre-trained on Sports-1M dataset,
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None Type A Type B (temporal) Type B (C3D)

split 1 79.8% 80.0% 80.3% 80.6%

split 2 77.3% 77.4% 77.8% 78.2%

split 3 77.8% 77.9% 78.1% 78.4%
Spatial

average 78.4% 78.4% 78.7.0% 79.1%

split 1 85.7% 85.8% 85.8% 86.7%

split 2 88.2% 88.3% 88.4% 89.1%

split 3 87.4% 87.6% 87.7% 88.0%
Temporal

average 87.0% 87.2% 87.3% 87.9%

Table 4.1: Comparison of different variants of the proposed framework on UCF101.

as in [TBF14]. The rest parameters (i.e.,two convultional layers) are initialized with random

weights.

4.3.2.3 Training

The corner cropping and the multi-scale cropping suggested in [WXW15] are used on video

frames for data augmentation. For the spatial network and the temporal network, we fix

the input video size as 256 × 340 and randomly sample the cropping width and height

from {256, 224, 192, 168} and the cropping location from the center and the four corners.

After that, we resize the cropped regions to 224 × 224. Horizontal flipping is applied with

probability 50%. The cropped regions are resized to 112 × 112 for C3D network. The

learning rate starts with 0.001, decreases to its 1/10 every 4, 000 iterations and stops at

10, 000 iterations. The dropout ratios for the fully connected layers are set to be 0.5, as we

observed performance degradation with higher dropout ratios.
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None Type A Type B (temporal) Type B (C3D)

split 1 54.3% 54.6% 54.8% 55.2%

split 2 50.3% 50.5% 50.8% 51.0%

split 3 50.1% 50.4% 50.5% 50.9%
Spatial

average 51.6% 51.8% 52.0% 52.4%

split 1 65.6% 65.8% 65.9% 66.4%

split 2 62.4% 62.5% 62.6% 63.2%

split 3 62.0% 62.2% 62.4% 62.7%
Temporal

average 63.3% 63.5% 63.6% 64.1%

Table 4.2: Comparison of different variants of the proposed framework on HMDB51.

4.3.2.4 Testing

We sample 25 frames of a video with equal temporal intervals. From each of these sampled

frames, we obtain 10 regions, i.e. 4 corners, 1 center, and their horizontal flippings as

in [WXW15]. The final prediction score is obtained by averaging across the cropped regions

from all sampled frames.

4.3.3 Experimental Results

Tables 4.1 and 4.2 show the performance of different combinations of classification mod-

ules (spatial network and temporal network) and attention modules (no attention, type A

attention, type B attention using the temporal network and type B attention using C3D)

on UCF101 and HMDB51. Using attention generally improves the performance than not

using attention. In the first half of both table, where the spatial network is used in the

classification module, two Type B models perform better than the Type A one. This is

because temporal inputs in this case bring complementary information to single frames.

Within Type B attention modules, using C3D achieves better results than using the tem-

poral network. Same thing happens in the second half of both tables, where the temporal
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network is used in the classification module. However, this time “Type B (temporal)” only

shows marginally improvement over “Type A”, which is because they both use the same

input modality, i.e.,stacked optical flows. On the other hand, as it preserves the temporal

dimension in convolution layers which essentially uses a different input modality, “Type B

(C3D)” improves over “Type A” and “Type B (temporal)” more significantly.

4.3.4 Visualization

In this section, we visualize the attention map learned by our model in Figure 4.8. The

model we use here is temporal network with C3D as type B attention module. Although

our model is estimating latent attention as no relevant supervision is available, the learned

attention map can find the actual important regions in the video. For example, look at how

our model can focus on the right facial parts in action “Apply Eye Makeup” and “Apply

lipstick” that distinguish these two actions. Also, in other examples in the figure, our model

can locate the people doing the actions, and also the objects related to the actions (e.g.,

basketboard in “Basketball” and the dumbell in “Bench Press”).

4.4 Conlusion

In this work, we introduce a novel deep action recognition method with a structure that

learns latent attention on videos. By exploiting the complementary information brought

by different input modalities, the learned attention maps can help the classification task.

Extensive experiments on UCF 101 and HMDB51 benchmarks demonstrate this.
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Ice Dancing

Apply Eye Makeup

Apply Lipstick

Basketball

Bench Press

Figure 4.8: Visualization of the attention map learned by our model. For each video, the

upper row are video frames, and the bottom row is the attention map, where brighter means

more attention.
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CHAPTER 5

Mining Spatial and Spatio-Temporal ROIs for Action

Recognition

Recognition of human actions in realistic videos is a challenging problem because of complex

content, cluttered backgrounds, and large intra-class variations caused by scale and location

variations and viewpoint changes [AR11].

Recently, convolutional neural networks (CNNs) have been explored for video action

classification. A problem with most of these works is that they are indifferent to various

parts of videos. Oftentimes, action-related information exists in certain spatial and spatio-

temporal regions of interests (ROIs). For example, regions of single video frames (i.e.,static

ROIs) include not only the people performing the action but also the objects that peo-

ple interact with (e.g., bicycles in Biking) or which often co-occur with the actions (e.g.,

basket board in Basketball). Similarly, the spatio-temporal ROIs can track motion of the

entire body, the motion of body parts, the movements of objects (e.g., barbell in Clean

and Jerk), and background motion (e.g., sea waves in Surfing). Previous studies also have

shown a promising direction of using the ROIs of videos to better understand the video

content [SCT14, JGR13, ZNH15, ZHS16].

These considerations motivate us to propose a video action recognition method that

attends to regions of the videos, instead of to the entire videos. Figure 5.1 illustrates the

pipeline of our method, which consists of two models: the Static Model and the Motion

Model. Both models attend to ROIs in the video to obtain discriminative action cues.

The Static Model works on single video frames, and mines static ROIs (i.e.,2D bounding

boxes). The Motion Model works on video clips (i.e.,a short sequence of frames), and
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Figure 5.1: The pipeline of the proposed approach. The Static Model mines static ROIs

of individual video frames, and the Motion Model mines spatio-temporal ROIs (i.e.,video

tubes) of short video clips. The two models are fused at the end.

mines spatio-temporal ROIs which we call video tubes. Each video tube links a sequence

of 2D bounding boxes from a sequence of video frames based on motion smoothness and

appearance consistence. The Static and the Motion Models classify image frames and video

clips respectively, and are combined in the final step.

Information in ROIs could be noisy, as some of ROIs are irrelevant to the actions or even

causing confusions. This issue becomes worse when only video-level labeling is available. To

solve this, we use multiple instance learning (MIL), where a video frame or a video clip is

a “bag” and the ROIs are its “instances”. In the mining component, we propose a novel

aggregation module that learns to robustly combine instance features. We combine MIL

with deep convolutional neural networks (CNNs) to enable joint learning of ROI mining and

deep features.

In summary, main contributions of this work are:

1. We propose an unsupervised algorithm to generate spatial and spatio-temporal ROIs

of videos as candidates regions that contain discriminative cues for action recognition.

2. We design a novel instance feature aggregation module in MIL and integrate it into

CNN structure, enabling unified learning of deep features and the aggregation.

3. Our model achieves state of the art performance on two action recognition datasets:
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UCF101 [SRS12] and HMDB51 [KJG11].

The rest of the paper is organized as following: In Section 5.1 we briefly review the liter-

ature and related work. Then we describe the proposed method in Section 5.2. Evaluation

are given in Section 5.3 followed by conclusions in Section 5.4.

5.1 Related Works

Action recognition on videos has been extensively studied in computer vision community,

and it is beyond the scope to review the entire literature. We refer readers to [AR11] for a

detailed survey .

Recently, motivated by the great success of deep learning techniques in image-based

tasks [KSH12], there have been attempts to learn deep representations for video action recog-

nition, e.g., CNN [KTS14], 3D CNN [JXY13, TBF14, VLS16], and Two-Stream CNN [SZ14b,

FPZ16, WXW15]. The first deep learning framework with matching performance to the

hand-crafted features [WS13] is Two-Stream network [SZ14b], which uses two separate CNNs

to model color and motion. Different from previous two-stream models where features are

extracted on the whole spatial extent, our model utilizes local regions (in the Static Model)

and flexible video tubes (in the Motion Model). Wang et al. applied the trajectory-based

pooling on the convolutional descriptors output by the Two-Stream network and encoded

them using Fisher vector [WQT15]. Their pooling strategy shares some similarities with our

motion tubes.

Action localization and spatio-temporal action proposals are popular topics in action

video analysis. Some of existing methods maximize a temporal classification path of 2D

boxes through static frames and hence require strong supervision (e.g., locations of human

actors) for learning models [WHS15, GM15, WQT16, SSS16]. In contrast to them, our video

tube proposal method is unsupervised and can be applied to any videos to detect subvolumes

with motions. Some other methods generate proposals based on dense trajectories [GJG15]

or by grouping segments produced video segmentation [JGJ14, ORV14]. Comparing with
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Figure 5.2: The network architecture of the Static Model. Given an image frame I, a set of

2D bounding boxes (indicated by colors) are selected as candidate static ROIs. The deep

features of ROIs with the dimension equal to the number of categories are computed, which

are passed to the mining component, which is composed of an aggregation module and a

softmax layer that transforms the aggregated feature into final scores of actions.

these methods, our method does not need to compute dense trajectories or do video segmen-

tation, which are usually time-consuming. In [YY15], Yu and Yuan proposed a real-time

action proposal methods which does not require learning. However, their method requires

human detection and dense trajectory computation. In this paper, we modify their method

to remove such requirement. The existing methods are usually designed to detect human

motions, while our method is able to find subvolumes of videos containing motions not only

from human, which enables our models to discover more action-related cues in the videos.

Multiple instance learning (MIL) has been recently integrated within deep learning frame-

works. [WYH15], [GGM15] and [XVR15] used max to combine instance-level scores [WYH15,

GGM15, XVR15]. [ZHS16] proposed a stochastic sampling method to replace the determin-

istic max operator. Instead of picking only one of a few values, our aggregation module

learns to combine all values, which is less sensitive to outliers.

There are a lot of studies about exploiting spatio-temporal subvolumes of videos for video

action recognition [SCT14, JGR13, ZNH15]. We implement this idea into a deep learning

framework. The work most similar to ours is by [ZHS16], which shares the same motivation

and also mines discriminative spatio-temporal ROIs using MIL framework. Code for this

method is not yet available so we cannot compare all the technical details, but we do compare

the final performance and obtain better results.
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Figure 5.3: The network architecture of the Motion Model). Given a video clip, a set of

video tubes (indicated by colors) are selected as candidates spatio-temporal ROIs. The deep

features of ROIs with the dimension equal to the number of categories are computed, which

are passed to the mining component, which is composed of an aggregation module and a

softmax layer that transforms the aggregated feature into final scores of actions.

Figure 5.4: Four examples of our region proposals for Static Model. For each example, the

left is the original frame image, the middle is the edge map, the right shows top 10 bounding

box ROIs.

5.2 Approach

In this section, we describe in details the Static Model and the Motion Model. Figure 5.2 and

Figure 5.3 shows the architectures of the two models, both of which have three steps: ROI

proposal generation, ROI feature extraction, and ROI mining. First a set of candidate ROIs

are generated. Then deep convolutional features of these ROIs are computed. Finally, in the

mining step, we apply the MIL framework to discover discriminative information from ROIs,

using video labels as bag labels, the ROIs as instances, and the features of these ROIs as the

instance-level features. In the reset of this section, we will describe each step in details.
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Frame t+1

Frame t

Motion boxes for frame t

Figure 5.5: Left: Motion box generation on a single frame: two consecutive frames are used

to estimation the motion boundaries which is then used as edge map input for Edge Boxes

to produce motion boxes (red bounding boxes). Right: Two video tubes proposals on the

first four and last four frames of a 16-frame video clips. Boxes with same color belong to

the same video tube. The red tubes localizes the diver and the yellow one finds the diving

board.

5.2.1 ROI Proposal Generation

Our ROI proposal algorithm is class-agnostic, since no labels of ROIs are provided. It is

able to score the proposals, so that our models only need to process a few, top scored, ROIs.

This saves computation time and simplifies learning discriminative classifiers.

5.2.1.1 Static ROIs

To obtain a list of K ROIs R(I) = {r1, . . . , rK} from frame I, we use the formulation of Edge

Boxes [ZD14], which estimates bounding boxes for objects based on the amount of contours

wholly within the box, together with an “objectiveness” score. We remove small boxes

(i.e.,with shorter side less than 50 pixels), and keep K boxes with highest “objectiveness”

scores. We also include the whole frame region in case the full background context is needed.

Figure 5.4 shows some examples.
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5.2.1.2 Video Tubes

Given a video clip of L frames V = (I1, . . . , IL), the goal is to propose a set of K video tubes

T = {t1, . . . , tK}, where each tube tk = (r1
k, . . . , r

L
k ) is a temporal series of 2D bounding

boxes rlk that localize motions. We call these 2D bounding boxes “motion boxes”. Our

algorithm build up a video tube by generating motion boxes on individual frames in V and

then linking the boxes across frames to form video tubes.

The left part of Figure 5.5 illustrates motion box generation on a single frame I. Unlike

the object boxes in the Static Model, motion boxes are intended to capture moving parts in

the video. We apply Edge Boxes again, but use the motion boundaries [WRH15] detected

based on two consecutive image frames as edge map. In this case, the objectiveness score

estimated by Edge Boxes actually reflects the amount of motion contours within in a motion

box b, which we call the “motionness” score m(b).

Once we have motion boxes on individual frames, we produce a set of video tubes

by linking boxes across frames. A common strategy is defining an energy function with

unary and binary potentials and applying Viterbi Algorithm to maximize the energy, e.g.,

[GM15, WHS15, YY15]. In our case, a good video tube proposal tk should have a high mo-

tionness score, i.e.,m(tk) =
∑L

l=1m(rlk) is large, and satisfy the spatio-temporal smoothness

constraint
rlk ∩ rl+1

k

rlk ∪ rl+1
k

≥ σo, l = 1, . . . , L− 1 (5.1)

and appearance consistency constraint

‖ A(rlk)− A(rl+1
k ) ‖2≤ σa, l = 1, . . . , L− 1 (5.2)

where σo and σa are thresholds, and A(·) compute the color histogram within a box. In

this paper, we use σo = 0.5, σa = 0.2 and divide R, G and B channels into 16 bins when

computing color histogram.

Now for each motion box bLi in the last frame IL of V , we compute the best tube ending

at bLi , using dynamic programming

f(bli) = max
bl−1
j ∈Il−1

f(bl−1
j ) +m(bli) + d(bli, b

l−1
j ) (5.3)
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where d(bli, b
l−1
j ) is −∞ if bli and bl−1

i do not satisfy the constraints in Eq. 5.1 and Eq. 5.2,

and is equal to 0 otherwise. Then we can back-trace from every bLi ∈ M(IL) to recover a

video tube. For each video tube, say tk, we first crop from l-th frame a square patch plk with

its center at the center of rlk and size

a = max(median(h(r1
k), . . . , h(rlk)),

median(w(r1
k), . . . , w(rlk)))

(5.4)

where h(·) and w(·) returns the height and the width of a bounding box respectively. We

then update tk by replacing rlk with plk and obtain the final video tube tk. Finally, we

apply non-maximum suppress to prune out highly overlapping video tubes, according to

their motionness scores. The right part of Figure 5.5 shows an example video tubes.

5.2.2 ROI Feature Extraction

We apply CNN to compute the deep features of ROIs. In the Static Model, the inputs to

CNN are the RGB images within ROIs of I. In practice, we run forward pass once for a

frame image I, and use ROI Pooling layer [Gir15] to get all the features of the ROIs. In

the Motion Model, before applying CNN, we stack the optical flows of rlk in tk as is done

in [SZ14b].

In both models, the output of the last fully connected layer is used as feature. The

dimension of the output is set to be the number of categories, denoted by C, hence the

output can be seen as the unnormalized category scores.

5.2.3 ROI Mining

Our model utilizes the MIL framework to learn mining discriminative information from

ROIs. Suppose the features extracted by the previous step are {sk}Kk=1, where s ∈ RC . In

ROI mining step, they are used as instance features and are mapped to one bag-level feature

by an aggregation module g:

h = g(s1, . . . , sk; w) (5.5)
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Dimension-wise Sort

Fully Connected Layer

Figure 5.6: Illustration of how the proposed sort aggregation module works on a case of 3

4-D instance features (i.e.,K = 3 and C = 4).

where w is the parameters of g(·) and h ∈ RC is the bag-level feature. The loss we use is

cross-entropy classification loss

L = −
C∑
i=1

yi log pi (5.6)

where y = [y1, . . . , yc]
t is the one-hot vector representing the ground truth category label

and p = [p1, . . . , pc]
t is the softmax output of h.

5.2.3.1 Instance Aggregation

The aggregation module g in our model can be any operation that maps multiple features

into one feature regardless of the order of them and that can be blended into the gradient

descent optimization mechanism. An example of how our aggregation module works is given

in Figure 5.6. Suppose we have a set of K instances with features sk ∈ RC , and let ŝc ∈ RK

be the set of values on the c-th dimension of all sk. The aggregation module first sorts all

values of ŝc in non-ascending order, yielding sorted arrays denoted by oc(c = 1, . . . , C). Then

it concatenates all oc into a single vector

O = o1 ⊕ o2 · · · ⊕ oC (5.7)
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This re-arrangement can be represented by a mapping τ : ZK×ZC 7→ ZKC from components

of instance features to components of O, i.e.,τ(k, c) = t means the c-th component of sk,

skc, is placed at the t-th component of O, Ot. Finally linear projection is applied to O, i.e.,

h = w ×O (5.8)

where w ∈ RC×KC is the projection matrix. We name our module sort aggregation.

The parameters of the aggregation module, i.e.,w, are learned through SGD together

with the parameters of the rest models:

∂L
∂w

=
∂L
∂h

∂h

∂w
= (p− y)Ot. (5.9)

To do backpropagation, we need to compute

∂L
∂O

=
∂h

∂O

t∂L
∂h

= wt(p− y). (5.10)

Then the errors can be back propagated from O to sk by reversing the mapping τ

∂L
∂skc

=
∂L
∂Ot

for τ(k, c) = t. (5.11)

5.2.3.2 Discussion

What the sort aggregation does is organizing the instance features {sk}Kk=1 from K ROIs into

a new feature O which is invariant to the order of ROIs. By doing so, the linear projection

can be learned to capture the discriminative patterns in O, i.e.,the category scores of all

ROIs.

In previous work [ZHS16, GGM15], max and avg function have been used jointly with a

CNN to aggregate instance features. Our method can be seen as a generalization of these

functions, e.g., a w with all ones in the first column and zero elsewhere performs max

operation.

[ZHS16] proposed a stochastic sampling operation called “stochastic-out”, which ran-

domly chooses a number from a vector with a probability proportional to the value of this

number. Compared to this method, our method takes all values of {sk}Kk=1 into account,

which is less sensitive to the outliers.
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UCF101 split1 K max avg sort

3 76.5% 76.3% 84.0%

6 78.1% 78.0% 85.2%Static Model

12 79.0% 79.0% 85.7%

3 85.4% 85.3% 88.5%

6 86.4% 86.4% 89.3%Motion Model

12 86.6% 86.5% 89.4%

Table 5.1: Average accuracy of different aggregation methods and ROI numbers for the

Static and the Motion Models on UCF101 split1.

5.3 Experiments

In this section, we first introduce the details of our experimental settings. Then we study

the effectiveness of the components of the proposed models through a series of diagnostic

experiments. After this, we compare the performance of our method with the state of the

art.

5.3.1 Datasets

The evaluation is performed on UCF101 [SRS12] and HMDB51 [KJG11] benchmarks. UCF101

contains 13, 320 videos of 101 action classes; HMDB51 includes 6, 766 videos of 51 actions.

In both datasets, the videos of the same action class are grouped into several groups; The

videos from the same group may share some common features, such as similar background,

similar viewpoint, etc. Both datasets provide three official splits into training and test data.

The performance is measured by the average classification accuracy across the splits.

We begin by conducting diagnostic experiments on the first splits of UCF101 dataset

(UCF101 split1) and HMDB51 dataset (HMDB51 split1). For comparison with the state of

the art, we follow the standard evaluation protocol on both UCF101 and HMDB51.
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HMDB51 split1 K max avg sort

3 55.1% 55.1% 55.9%

6 56.5% 56.4% 57.1%Static Model

12 56.7% 56.7% 57.4%

3 65.6% 65.5% 66.2%

6 65.7% 65.6% 66.8%Motion Model

12 65.7% 65.7% 66.9%

Table 5.2: Average accuracy of different aggregation methods and ROI numbers for the

Static and the Motion Models on HMDB51 split1.

5.3.2 Implementation Details

5.3.2.1 Static Model

For UCF101 dataset, we initialize the parameters of the Static Model (i.e.,13 convolutional

layers and the first two fully connected layers) with VGG-16 [SZ14c] pre-trained on ImageNet

dataset. The last fully connected layer is initialized with random weights. For HMDB51

dataset, as the number of training videos are relatively small (around 3.7K), we fine-tune the

Static Model trained on all videos of UCF101 dataset, a strategy that is commonly adopted,

e.g., [SZ14b, WFG15]. The learning rate starts with 0.001, decreases to its 1/10 every

4, 000 iterations and stops at 10, 000 iterations. The dropout ratios for the fully connected

layers are set to be 0.5, as we observed performance degradation with higher dropout ratios.

The corner cropping and the multi-scale cropping suggested in [WXW15] are used on video

frames of size 256× 340 to get cropped frames of size 224× 224, which are later horizontally

flipped with probability 50%. When test, we sample 25 frames of a video with equal temporal

intervals. From each of these sampled frames, we obtain 10 regions, i.e. 4 corners, 1 center,

and their horizontal flippings as in [WXW15]. The final prediction score is obtained by

averaging across the cropped regions from all sampled frames.
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5.3.2.2 Motion Model

When training, the videos are split into non-overlapped 10-frame clips. For each clip, the

video tube proposals with fixed length L = 10 are generated and resized to 224× 224, hence

the channel of the network input is 20. For UCF101 dataset, we initialize the parameters of

the Motion Model also by a pre-trained ImageNet model. To solve the problem of dimension

mismatch between the input channel and input size of the first convolution kernel (20 vs.

3), we modify the kernel by first averaging it across the channel dimension and copying the

results 20 times, as is done in [WXW15]. The last fully connected layer is initialized with

random weights. For HMDB51 dataset, we again fine-tune the Motion Model trained on

UCF101 dataset due to the smaller size of the dataset. The learning rate starts with 0.0001,

decreases to its 1/10 every 10, 000 iterations and stops at 20, 000 iterations. The dropout

ratios for the fully connected layers are set to be 0.5. We use horizontal flipping as data

augmentation. When test, we again sample 25 temporal locations and the 10 regions, and

average the prediction scores across the cropped regions from all sampled temporal locations.

5.3.2.3 Model Fusion

We perform the inference with the two models separately. For each video, we use a weighted

linear combination of the prediction scores produced by the two models. We randomly

choose two groups of videos from the training partition of UCF101 split1 as validation set

and repeat the process three times. The weight is determined as 1/3 for the Static Model

and 2/3 for the Motion Model.

5.3.3 Diagnostic Experiments

All the experiments in this subsection are conducted on UCF101 split1 and HMDB51 split1.
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UCF101 split1 K stochastic out sort

3 84.1% 84.0%

6 84.8% 85.2%Static Model

12 85.3% 85.7%

3 88.5% 88.5%

6 89.1% 89.3%Motion Model

12 89.2% 89.4%

Table 5.3: Comparisons between stochastic out [ZHS16] and sort aggregation on

UCF101 split1.

5.3.3.1 Aggregation Methods

We first compare the proposed sort aggregation (“sort”) with two baseline aggregation meth-

ods, i.e.,max and avg in the Static and the Motion models. We try different number of ROIs

K, i.e.,K = 3, K = 6 and K = 12 for each methods. The results on UCF101 split1 and

HMDB51 split1 are shown in Table 5.1 and Table 5.2 respectively. We can see that in all

cases, our proposed sort aggregation performs better than max and avg.

Next we compoare sort aggregation with stochastic out [ZHS16] on UCF101 split1. The

method in [ZHS16] differs with ours in many parts, not just the ROI mining (“key volume

mining” in the original paper). In [ZHS16], 3D volumes instead of tubes are used to rep-

resent ROIs, and one stage of preliminary training is conducted with all ROIs are assigned

with video-level labels. In order to make a direct comparison of aggregation methods, we

implement the stochastic out in [ZHS16] and replace the sort aggregation with it in both

the Static and the Model Models. The results are shown in Table 5.3. At K = 3, sort ag-

gregation performs slightly worse than (in the Static Model) or the same as (in the Motion

Model) stochastic out. However, at K = 6, 12, ours outperform theirs with larger margins in

both models. This shows when K is large, it is more beneficial to consider all values instead

of a single value.
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methods avg. accuracy

SNet-Box(6)-sort 79.8%

S-Box(6)-sort 85.2%

TNet-Tube(6)-sort 87.7%
UCF101 split1

M-Tube(6)-sort 89.3%

SNet-Box(6)-sort 56.3%

S-Box(6)-sort 57.1%

TNet-Tube(6)-sort 65.2%
HMDB51 split1

M-Tube(6)-sort 66.8%

Table 5.4: Comparison between joint and separate learning of deep feature and ROI mining

on UCF101 split1 and HMDB51 split1.

In the following experiments, we will use sort aggregation and 6 ROIs per frame for both

models, which are denoted by S-Box(6)-sort and M-Tube(6)-sort respectively. 1.

5.3.3.2 Combining Deep Feature Learning and ROI Mining

In this part, we study the benefits of combining deep feature learning and ROI mining. We

use the spatial net (denoted by SNet) and the temporal net (denoted by TNet) trained in

[WXW15] to replace the CNN parts of the Static Model and the Motion Model, fix their

parameters and just learn the mining components. We call the two baselines SNet-Box(6)-

sort and TNet-Tube(6)-sort respectively. The results are shown in Table 5.4, from which

we can see that the performance drop a lot when learning the deep feature and ROI mining

separately

1We choose 6 instead of 12 ROIs as a trade-off of accuracy and efficiency, and for the sake of fair comparison
with [ZHS16]
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methods avg. accuracy

M-[SSS16](6)-sort 87.7%

M-APT(6)-sort 89.2%

M-Cubic(6)-sort 89.1%
UCF101 split1

M-Tube(6)-sort 89.3%

M-[SSS16](6)-sort 62.4%

M-APT(6)-sort 66.6%

M-Cubic(6)-sort 66.5%
HMDB split1

M-Tube(6)-sort 66.8%

Table 5.5: Comparison with alternative ROI proposals in the Motion Model.

5.3.3.3 ROI Proposal Methods

In this part, we test serveral alternative spatio-temporal proposal methods in the Motion

Model. The first one is [SSS16], the state-of-the-art action localization method on several

benchmarks. [SSS16] detects human actors, and is not for capturing the motion of human

parts, objects and background. We select 6 top scored proposals of length 10 (if less than 6

proposals available, we just duplicate the one with the highest score) using the code provided

by the authors of [SSS16]. We call this M-[SSS16](6)-sort. From Table 5.5 we can see that

[SSS16] is outperformed by our video tube method. This shows the advantage of using a

variety of motions not limited to human motion. The second alternative is APT [GJG15],

which produces a large amount of un-scored video tubes. In order to use these proposals in

our model, we score each of them with the summation of motionness scores (given by the edge

box scoring function) of all boxes in the tube, and then apply non-maximum suppression to

prune out highly overlapping ones. The method is denoted by M-APT(6)-sort in Table 5.5,

whose performance is slightly worse than ours at the cost of the computation of dense

trajectories. The last alternative is the “3D volumes” in [ZHS16], which are essentially 3D

bounding boxes with edge-box scores [ZD14]. We call it M-Cubic(6)-sort. From Table 5.5
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methods avg. accuracy

IDT+FV [WS13] 85.9%

Hybrid [PWW14] 87.9%

Two-Stream [SZ14b] 88.0%

LSTM+Two-Stream [YHV15] 88.6%

C3D+iDT+SVM [TBF14] 90.4%

Hybrid LSTM [WWJ15] 91.3%

Two Stream [WXW15] 91.4%

Two-Stream Siamese [WFG15] 92.4%

Two-Stream Fusion [FPZ16] 92.5%

Key-Volume [ZHS16] 93.1%

Ours 93.6%

Table 5.6: State-of-the-art results on UCF101.

we can see that by using more flexible and tighter video tubes, our method is better than

using 3D bounding boxes.

5.3.4 Comparison with The State of The Art

After exploring different settings of our models and comparing with the alternatives, we are

ready to test our models with the best configuration on the full benchmarks of UCF101 and

HMDB51. The results are summarized in Table 5.6 for UCF101 and Table 5.7 for HMDB51.

We compare our methods with hand-crafted features, shallow models, and deep learning

methods. On both datasets, our methods obtain the state of the art result.

5.3.5 Visualization

After the ROI feature extraction step, each ROI obtains a vector of category scores. For a

video of action category c, we visualize the ROIs with top scores for action c. Figure 5.7,
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method avg. accuracy

IDT+FV [WS13] 57.2%

Two-Stream [SZ14b] 59.4%

H-VLAD [PWQ14] 59.8%

Hybrid [PWW14] 61.1%

TDD+FV [WQT15] 63.2%

Two Stream Siamese [WFG15] 63.4%

SFV [PZQ14] 66.8%

Two-Stream by us 68.0%

Key-Volume [ZHS16] 63.3%

Two-Stream Fusion [FPZ16] 65.4%

Ours 69.6%

Table 5.7: State-of-the-art results on HMDB51.

shows the top two static ROIs from S-Box(6)-sort, using videos from the test partition of

UCF101 split1. From the figure we can see that the Static Model is able to give high scores

to body parts and objects which are related to the actions. Note that in the first two frames

of third row, the second scored ROIs are on the door of the building. The reason may be

the person is blending into the background bushes. However, our model manages to give the

basketboard top score when it cannot locate the human player. Figure 5.8 shows the top

two scored video tubes from M-Tube(6)-sort, from which we can see that the Motion Model

is able to acknowledge action-related spatio-temporal ROIs.

5.4 Conclusion

In this work, we introduce a novel deep action recognition method with ROIs. By exploiting

video benchmarks, we find that critical representations occur with in sub-regions of videos.

Based on this observation, we extract static and spatio-temporal regions of interest (ROI)
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Figure 5.7: Visualization of the top two static ROIs from S-Box(6)-sort. Each row corre-

sponds to a video from the test partition of UCF101 split1. Red box corresponds to the top

score one, and the yellow is the second best one. For each video we display five frames with

equal temporal intervals.

to enhance the performance of deep network. Features from different instances are naturally

integrated into our MIL framework to adaptively select the most discriminative ROIs to

enable end-to-end learning. Extensive experiments on UCF 101 and HMDB51 benchmarks

demonstrate that our algorithm outperforms existing methods.
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Figure 5.8: Visualization of the top two scored spatio-temporal ROIs from M-Tube(6)-sort.

Each row corresponds to a video clip from the test partition of UCF101 split1. For each

video clip we display first three and last two frames and omit the between. The red boxes

correspond to the video tube with best action score, and the yellow is the one with second

best score.
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