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ABSTRACT OF THE DISSERTATION

Language-Based Learning: Cognitive and Computational Perspective

By

Arseny Moskvichev

Doctor of Philosophy in Cognitive Science

University of California, Irvine, 2022

Professor Mark Steyvers, Chair

This thesis focuses on a challenging and long-standing problem of learning from language,

in other words, how humans or machines may use language to share and acquire knowl-

edge. The work has three distinct parts. First, I review how different disciplines define

and approach the problem of learning from language and argue that a number of areas in

Cognitive Science and Computer Science research have recently advanced enough to begin to

tackle this challenge. Second, I present a series of three behavioral experiments studying the

problem of learning from language in the context of pedagogical category communication.

The experiments demonstrate the flexibility of verbal communication as a means for sharing

category knowledge, as well as the advantage of mixing communication media (verbal and

exemplar-based) as opposed to relying on any one isolated channel. In the last part of the

dissertation, I focus on the question of how modern AI architectures can be adapted and

applied to the problem of lifelong learning from language. In particular, I identify the types

of operations that the model should be able to make, and propose a training procedure and

an architecture that support learning such operations in an end-to-end fashion. I test the

architecture on a number of simulated non-linguistic domains, leaving its NLP applications

to future research. Although it is only a small step towards creating a fully functioning

learning from language model, I still believe that this step is important.

xiii



Chapter 1

Overview

In this brief chapter, I summarize the contents of other parts of the thesis. Additionally, since

some parts of this thesis describe work that involved other researchers, I use this chapter to

clarify the contributions of my collaborators.

In Chapter 2, I present a literature review of the problem of language-based learning in

Cognitive Science and AI (by “language-based learning” I mean learning mediated through

language, that is situations when humans or machines use language to share or obtain knowl-

edge). First, I outline the scope of the problem and give a number of reasons to justify the

importance of studying it. In the main body of the chapter I review recent advances in AI

and Cognitive Science that are related to learning through language. Specifically, I argue

that a number of sub-fields on Cognitive Science and AI have recently reached a stage in

which language-based learning research is feasible and practical. In the domain of Cognitive

Science, I take a particularly close look at category learning, outlining a number of reasons

for why category learning is a promising test-bed behavioral task for Cognitive studies of

language-based learning.

In Chapter 3, I present a series of three behavioral studies on language-based category com-
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munication. In each study, there were two groups of participants: “teachers” and “students”.

First, teachers learned a visual category through randomly generated examples. Then the

teachers communicated their category knowledge to the students either verbally, by generat-

ing visual exemplars, or both. The experiments focused on whether there is a fundamental

difference between these communication media, specifically whether they are differentially

affected by changes in category structure (rule dimensionality, stimuli dimensionality, and

perceptual confusability).

Lastly, in Chapter 4, I focus on the problem of modeling learning from language in AI

systems. I propose an architecture and a training regime that, taken together, can archi-

tecturally support lifelong learning from language. It is important to clarify that I do not

claim to develop a fully realized system: rather, I aim to analyse the types of operations that

learning from language requires and develop a general architecture and a training procedure

that can allow to learn such operations. At present, I test the system on general sequence

processing tasks similar in structure to learning from language, rather than on actual natural

language.

A statement on collaboration

A large portion of the work presented in this thesis was done in collaboration with other

researchers, hence it is important to clarify the extent of their contributions.

The work in Chapter 3 was done in collaboration with Roman Tikhonov and Mark Steyvers

and almost verbatim matches the manuscript we submitted to the Cognition journal. In

that chapter I used “we” as the default pronoun. I felt that it was appropriate to use these

materials as part of my my dissertation as I am the first author on the paper and did most

of the writing and experimentation.
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Chapter 4 is based on work that I did in collaboration with James Liu. Many passages in the

chapter verbatim match parts of the pre-print that we made available online (Moskvichev

and Liu, 2021). I felt that it was reasonable for me to use these materials as part of my

dissertation since I proposed the original idea and the first version of the architecture, as well

as since I contributed more towards the theoretical developments, and towards the text of

the pre-print itself. Nevertheless, James’ contributions (especially with model development

and experimentation) were absolutely invaluable. In the chapter I use a combination of “I”

or “we” pronouns depending on whether the part was mostly done by me alone or in close

collaboration with James.

In both cases, my collaborators fully supported inclusion of the work into this thesis.
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Chapter 2

Language-based learning in Cognitive

Science and AI

In almost any discipline, there are a number of problems that combine extreme importance

with a surprising lack of clear theoretical understanding. In most cases such a disparity stems

from a lack of technical means needed to study the problem. For example, in the domain of

Psychology and Cognitive Science, it is natural that our progress towards understanding the

role of consciousness or qualia is painfully slow, since directly measuring or manipulating

anything related to these concepts is close to impossible. Similarly, it is understandable

that despite the clear promise of neural network-based architectures (everybody knows what

brains are made of), research into such architectures stalled around the time of AI winter,

when neither the computational power nor the necessary algorithms for training these models

(e.g. back-propagation) were available.

I believe that for the field of Cognitive Science, one of such problems is the problem of

learning through language (as opposed to learning by trial and error). Anywhere above the

elementary school level, most of human learning is mediated through language in one way or

4



another, and not having models to account for that presents a major gap in our knowledge. I

also believe that recently, the technical issues hindering investigation into this problem were,

to a large extent, resolved, which provides numerous new opportunities for novel research in

this direction.

In this chapter, I aim to give an overview of research on language-based learning in Cognitive

Science and AI, especially focusing on areas where an exchange of ideas is possible. Firstly, I

outline the scope of the problem of learning through language and give a number of reasons

to justify the importance of studying it. Then, I review the recent advances in AI that

fall under the category of learning through language. After that, focusing primarily on the

example of Category Learning, I aim to demonstrate that, until recently, we lacked some of

the necessary components for modeling learning through language.

2.1 What does learning through language mean?

Before delving into the main body of this review chapter, it is important to establish some

common ground in our understanding of what learning and language are, as well as what

would it mean to learn through language.

Unfortunately, as it often happens with fundamental concepts, giving a general definition

becomes extremely difficult. Consequently, there is no consensus on what exactly language

is, as well as no agreement on its origins, properties, and functions. Similarly, there is no

universally accepted definition of learning.

Resolving these disputes is outside the scope of this review: we only need a working and

relatively widely accepted definition. The fact that we review approaches to language-based

learning from both Cognitive Science and AI perspectives adds an additional requirement

for our definitions: they should be applicable to both human learning and to learning in the

5



context of AI algorithms.

2.1.1 Learning

Analysing some of the proposed definitions of learning gives an idea about difficulties of

defining learning in general. For example, Crowder (2014) defines learning as “A change in

the organism that occurs as a function of experience”. Clearly, according to this definition,

aging, dying, and eating all become a form of learning, which is, perhaps, not our intention.

A slightly more refined definition is given by Anderson (1995): “the process by which rela-

tively permanent changes occur in behavioural potential as a result of experience”. As Gross

(2015) notes, this definitions captures an additional “potentiality” aspect of learning: one

can learn to do something, but it does not necessarily mean that it will ever be demonstrated

through behaviour (e.g. consider the case of self-defence or first aid training).

This definition still has a number of vaguely defined elements. What should we consider an

“experience”? What does “relatively” mean in “relatively permanent”? Overall, this definition

is still overly broad, as it, again, fails to exclude aging from examples of learning. Luckily,

since in most cases, we are going to speak about learning in specific settings, these negative

aspects of this definition are not going to be crucial, and we can accept it as our imperfect,

but suitable solution.

2.1.2 Language

For our purposes, it is going to suffice to resort to any of the simple “commonsense” dictionary

definitions. For example, the Wikipedia page on language defines language as “a structured

system of communication”. Such a definition is going to be enough for the purposes of this

review. It is worth pointing out that according to this definition, any communication protocol

6



can be seen as language, regardless of whether the communication is occurring between two

humans or, for example, two data servers.

In this review, we are mostly going to be interested in human languages (often referred to

as “natural languages”).

2.1.3 Learning through language

Lastly, let’s combine our definitions to outline the problem I am going to consider in this

review. In the case of learning, we know that the change in behavioral potential (i.e. acquir-

ing new skills or knowledge) occurs as a result of some “experience”. By “learning through

language”, I am going to refer to cases when this experience is that of natural language

interaction. A natural language interaction may be short, such as hearing a sentence, or it

may be slightly longer: e.g. reading an article.

In this review I am going to focus on local interactions, restricted in time and volume. For

example, we are not going to be concerned with the general process of human language

acquisition or the process of training a general-purpose language model in NLP. These cases

may be seen as interacting with language, but in both of these situations, learning occurs

over a large timescale, through interaction with a vast body of often unrelated language

material.

Lastly, I would like to note that, as we are going to see later, in psychological literature, stud-

ies of phenomena similar to learning-from-language are sometimes referred to as “instruction-

based”, while in the domain of AI, the closest term may be “zero-shot-learning”. I prefer to

use the term “language-based-learning” or “learning-from-language” to assume a neutral po-

sition that would allow us to see the similarities in these disparate research areas and avoid

dragging specific expectations implied in these paradigms.
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2.2 Motivation

2.2.1 Evolutionary value

Now, when we have established what learning through language may mean, we can discuss

why it may be worth studying.

To better understand the importance of learning through language, it is helpful to step back

and consider another, arguably more primitive, instance of knowledge transmission: that of

observation-based social learning. Social learning can be defined as learning that “occurs

when the learner watches another agent act” (Joiner et al., 2017). Even the most primitive

form of such learning, imitation learning, occurs in a wide variety of situations, in a number

of different species (Heyes, 1994; Galef Jr, 2013).

It is easy to see the immense biological value of such learning. An agent does not have to

“reinvent the wheel” every time they learn something that was already known in their group.

It lowers the biological cost of learning. A famous example of that is the study by Cook

et al. (1985), which demonstrated that rhesus monkeys with no fear of snakes learn to fear

them when observing other monkeys behave fearfully around snakes. Clearly, obtaining a

fear of snakes in this way (by following other’s reactions) is much less costly (in a biological

sense) then learning it “the hard way” based on individual experience (by being bitten by a

snake).

When considered in this context, learning through language can be seen as a highly en-

hanced way of observation learning. Instead of learning from a demonstration of a certain

behaviour, language allows, essentially, to skip the demonstration, while still resulting in the

same behaviour being learned. This brings immense benefits. Indeed, consider an example

analogous to that of snake fear conditioning, but with a tiger in a role of a threatening

object. For the learner to acquire the biologically valuable fear of tigers, the learner would
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have to observe animals of their kind in close proximity of a tiger, acting fearfully. This

necessarily places both the learner and the animal giving the demonstration (intentionally

or not) in great danger. Thus, having an option to help a learner develop a useful fear of

tigers through purely verbal means provides great evolutionary benefits.

It’s interesting to note that some folk culture examples suggest that learning through lan-

guage is indeed often used for this relatively primitive fear-conditioning. For example, one

Russian lullaby literally reads “rock-a-by, rock-a-by, don’t lay near the edge of the bed, or a

grey wolf will come and bite you”, which may help in learning to avoid wolves and laying too

close the edge (and, thus, potentially falling). And indeed some works in the domain of cul-

turology suggest that “instilling caution” is one of the functions of folktales across the world

(Boudinot, 2005). On top of that, Deltomme et al. (2018) experimentally demonstrated that

purely verbal instructions are very efficient in eliciting fear conditioning, resulting in a visual

attention bias (i.e. affecting relatively low-level perceptual processes).

Overall, through the examples above, I intended to show the natural connection between

language-based-learning and other forms of social learning (present in other animals, not

only humans), as well as the fact that the response elicited by language-based-learning spans

a range of levels of cognitive functions. These considerations speculatively suggest that this

way of learning could be deeply integrated into the structure of human cognition and could

have given an evolutionary advantage during early days of humankind, as opposed to being

a simple positive side-effect of recent cultural developments.

2.2.2 Widespread use

In the previous section, I aimed to illustrate the fundamental role of learning through lan-

guage in how some of its forms may link far back into the history of humankind. In this

section I would like to argue that learning through language is a cornerstone building block
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of human culture as it functions today.

Thankfully, this task is not very difficult, since both individual anecdotal evidence (that

anybody who ever attended a talk has) and a number of widely accepted classical theoretical

accounts (Tomasello, 2009; Vygotskii, 2012) stress the overwhelming importance of language

as a means of transferring knowledge in our modern society.

To illustrate how this type of learning can take place outside the classroom setting, we can

imagine a family forest trip where a parent wants to teach their child about poisonous mush-

rooms. It is easy to envision a parent instructing their child through definitions, e.g., not

to collect pale, thin-legged mushrooms with a flat cap since they are usually poisonous. Is

also easy to imagine this parent giving examples, e.g. “look: this is one of the poisonous

mushrooms I told you about". A key difference is that the former involves a verbal explana-

tion of a rule, while the latter relies on non-verbal ways of concept communication (relevant

examples only need to be pointed at). Common sense knowledge suggests that situations

like that are ubiquitous, and that instance-based learning is often flexibly combined with

language-based learning.

Overall, I believe that the considerations mentioned in this section warrant treating learning

from language as both a distinct and a highly important phenomenon, and justify the effort

needed to investigate it.

2.3 Modeling learning through language

2.3.1 Historical overview of learning through language in AI

Early research on symbolic AI presented itself fairly naturally to learning from language.

The reason is that internal representations were, most commonly, fully interpretable, with
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Figure 2.1: Blockworld environment used in (Winograd, 1971). Different blocks can have
different shapes, sizes and colours, and can be stacked together.

the model knowledge usually expressible in some form of formal logic. While the task of

parsing verbal instructions into such language was (and remains) a challenge, in restricted

domains (or by using some simplified interface (e.g. natural language restricted to a specific

format)), interfacing with such models using natural language was possible.

One of the notable early examples of that is the famous SHRDLU program, designed by

Winograd (1971). The program was able to operate in a restricted “block world” setting

(see Figure 2.1). This environment was simple enough to allow enumerating all possible

configurations, as well as modeling relevant language-based interactions via an intricate

template-based system. The model was able to follow instructions and, what is especially

relevant for us, form new concepts based on purely verbal explanations. For example, the

communication excerpt on Figure 2.2 illustrates the acquisition of a “steeple” concept by the

model.

Unfortunately, the initial excitement and high expectations were soon superseded by disap-

pointment, as it became clear that such an approach is not scalable enough to be useful in

real-world applications. Firstly, the purely symbolic knowledge representation severely limits
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Person : DOES A STEEPLE
Computer i n t e r r up t i n g : SORRY, I DON’T KNOW
THE WORD "STEEPLE" .
Person : A "STEEPLE" IS A STACK WHICH CONTAINS
TWO GREEN CUBES AND A PYRAMID.
Computer : I UNDERSTAND.
Person : ARE THERE ANY STEEPLES NOW?
Computer : NO.

Figure 2.2: SHRLDU concept learning interaction excerpt (Winograd, 1971)

model capacity. Secondly, realistic domains made translating natural language instructions

into symbolic knowledge representations impractical (especially given the relatively limited-

capacity semantic parsing methods available at the moment).

This and similar disappointments and unmet expectations eventually led to the phenomenon

called “AI winter”: a period of decreased funding and interest to AI research in 1970s.

After the AI winter, the domains of Computer Science and Cognitive Science AI research

grew further apart, as each field matured and developed its standard research practices.

Moreover, as the capacity of existing models increased (largely due to immense success of

Neural Network and Deep Neural Network models), the domain of Machine Learning studies

largely restricted itself to focused, practical problems, as opposed to attempting to model

human-like intelligent behaviour in toy settings.

As a result, for a prolonged period of time, the problem of learning from language was not

commonly encountered in most practical settings for AI applications. Indeed, switching to

learning through language would have probably led to a substantial drop in performance

metrics on any of the standard tasks. I.e. it would, most likely, be difficult to beat the

state-of-the-art (SOTA) algorithms in any of the standard tasks, given how specialized the

SOTA algorithms became and given that the “learning through language” algorithms are not

yet widely developed.
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Thankfully, the last five years have been marked by a steep increase in the performance of

deep neural network architectures and distributed representation learning. This led to both

a large number of newly proposed applications and a series of works revisiting old, unsolved

problems. While not always phrased as “learning through language”, much of recent research

in AI and machine learning fits into this category.

Overall, while learning from language is not yet often used as a sufficient tool to achieve

good performance in some specific standardised task, fortunately, more and more works in

AI start to recognize the importance of studying learning from language and treat is as the

task itself. On top of that, we will see applications when learning through language serves

as a source of auxiliary information, allowing to beat the SOTA in certain settings.

2.3.2 Learning distributed representations from language

Word embedding learning from language

Learning distributed representations for various types of entities proved to be a widely ap-

plicable tool in a number of applications.

One of the most commonly distributed representation learning examples is learning word

embeddings. In such a setting, given a large corpus of unsupervised language data, the goal

is to infer a vectorized representation for every word, such that words with similar meanings

stay close in the vector space Pennington et al. (2014); Mikolov et al. (2013). Relative

simplicity of training and extremely wide reusability of such representations has made word

embeddings an indispensable tool in modern NLP systems.

By default, word embedding learning methods assume a fixed vocabulary, and at least a

moderate number of samples involving any specific word is necessary to find a good rep-

resentation for such a word (although there are works that aim to relax this restriction
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(Lazaridou et al., 2017; Lampinen and McClelland, 2017)). Given how fast the modern

language is evolving, the absence of a reliable way of expanding the vocabulary becomes a

major limitation. Thankfully, a number of works looked into ways of inferring distributed

representations for out of vocabulary words based on their short verbal descriptions.

For example, Hill et al. (2016) proposed a sentence embedding method based on mapping

dictionary definitions to the word embedding of the word being defined. The primary purpose

of this work was to devise a sentence embedding method, i.e. after the model is trained,

a new sentence (not necessarily a dictionary definition) can be fed through the network to

obtain its distributed representation. The intuition is that since the model is trained to map

dictionary definitions to vectors representing their meaning (a dictionary definition simply

defines one word, so we can hope that its meaning is close to that of the word being defined),

we hope that the model will generalize to sentences that convey more information.

Apart from inspiring a number of works in the domain of sentence embeddings, the work by

Hill et al. (2016) also resulted in an extremely useful side-effect: the ability to obtain word

embeddings for unseen words based purely on their verbal descriptions. In this sense, the

model can learn new word meanings through natural language.

This idea was further developed in (Bahdanau et al., 2017). The approach in that paper was

very similar to that in (Hill et al., 2016), with the key difference being that Bahdanau et al.

(2017) trained their model in a task-specific end-to-end fashion: the main model received

word embeddings as an input to predict a task-specific label, while an auxiliary model was

trained to produce such word embeddings for out-of-vocabulary words, based on auxiliary

data (e.g. dictionary definitions). Hill et al. (2016), in contrast, aimed to obtain a more

general-purpose representation. This dichotomy illustrates that learning through language

may serve both as a general-purpose mechanism for expanding the knowledge of a pre-trained

model, or as a way to enhance a task-specific performance by utilizing additional sources of

information.
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Another work in this direction, (Weissenborn et al., 2017) explores the problem of refining

word embeddings on the fly, not only for out of vocabulary words, like in Bahdanau et al.

(2017), but for every word present in the input. In particular, for every problem instance, the

authors iteratively refine the available word embeddings using additional textual descriptions

from Concept Net (Speer et al., 2017) and Wikipedia.

The examples by Hill et al. (2016), Bahdanau et al. (2017), and Weissenborn et al. (2017)

illustrate the whole range from a clear example of language-based learning to borderline

cases, barely falling under the “learning from language” idea. Thus, in the case of Hill

et al. (2016), when a new embedding is computed, the model’s general-purpose knowledge is

permanently expanded using textual information, clearly showing a case of language-based

learning. In case of Bahdanau et al. (2017), the knowledge is expanded (an OOV embedding

is computed), but only temporarily, and with a focus on a very specific task at hand. Lastly,

Weissenborn et al. (2017) presents a case where knowledge representation (word embeddings)

is not expanded, but only temporarily corrected using external textual knowledge.

It is interesting to note that all of these types of language-based learning may be present in

humans. Thus, similarly to the work by Hill et al. (2016), sometimes we may stumble upon

a completely new concept and infer its meaning by looking up its definition, remembering

it for a long time. Sometimes we can look up an rare obscure term to understand a specific

sentence, quickly forgetting it afterwards, which is analogous to the case explored by Bah-

danau et al. (2017). Lastly, sometimes we can temporarily adjust our concept understanding

while, for example, reading a specific paper that uses a concept in an unusual way, which

would be closer to Weissenborn et al. (2017).
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KG embedding learning from language

The idea of predicting or correcting embeddings based on textual descriptions is by no means

limited to the domain of word embeddings. Another prominent field benefitting from such

an approach is that of Knowledge Graph embeddings. A Knowledge Graph can be thought

of as a collection of triples of the form (h, r, t), where h and t are entities, and r is a relation

(h, r, and t stand for head, relation and tail respectively). The presence of such a triple

in a knowledge graph is interpreted as h is related to t via a relation r. For example, the

statement “cats like milk” can be represented via a triple with h set to “cat”, r set to “likes”

and t set to “milk”.

In the Knowledge Graph embedding problem setting (see (Nickel et al., 2015; Wang et al.,

2017) for a comprehensive overview of available techniques), the goal is to obtain distributed

representations for all entities and relations, maximally preserving the graph structure. For

example the RESCAL method (Nickel et al., 2011) represents entities as vectors and relations

as matrices. The model is trained so that a quadratic form hT
vMrtv gives high values for true

triples present in the graph and low values otherwise.

In recent years, more and more attention is paid to applications in which, apart from the

triples mentioned above, there is some additional information about entities or relations.

What makes it relevant for our review is that often such information comes in a form of

verbal descriptions of entities or relations. For example, the work by Xie et al. (2016)

proposes a KG embedding method that uses textual descriptions of entities, along with the

traditional relational statements. As a result, they obtain higher-quality representations,

and, in addition to that, a way to compute embeddings for new entities based purely on

verbal descriptions, which again, presents and example of language-based learning.

Now that we saw that learning from language can be represented in a number of specific

applications, it may be helpful to take a look on a more general framework for solving such
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problems, that of zero-shot-learning.

Zero-Shot learning

Zero-shot learning refers to a classification problem setting with a number of special “un-

seen” classes. The instances belonging to such classes are never shown to the model during

training (see Wang et al. (2019) for a detailed overview). Thus, for example, a model

can be first trained to classify ten types of animals. After that, three additional types of

animals are introduced, and the model needs to accurately classify them as well, without

additional training. Of course, this would be impossible, unless there is some additional in-

formation about the classes (both old and new). There is no universal standard on the form

of such information, and it may range from fixed-dimension manual feature-based descrip-

tion (e.g. an array of binary features, like “is_small=0”, “is_predator=0”, “is_fictituous=1”,

“is_color_white=1”) to textual descriptions in natural language (e.g. “A fictitious animal,

looking like a horse, with a big horn on their head, oftentimes white or pink”). The latter

case falls neatly under our definition of language-based learning.

For us it is important to note that a large proportion of zero-shot learning methods (referred

to as correspondence methods in (Wang et al., 2019)) requires only some feature representa-

tion (for example, a distributed representation) of the class auxiliary information to learn a

mapping from this representation to a binary classifier function for that class. This general

approach is especially promising as a standardized pipeline for introducing learning from

language into a problem of interest. Since with the advent of widely available powerful

methods for obtaining distributed sentence representations (a popular technique being using

the “CLF” token from the BERT model (Devlin et al., 2018a)), it becomes routine work

to transform language descriptions into a format suitable for Zero-Shot-Learning method

application.
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The downside of zero-shot learning (in the way it is most often encountered) is that usually

ther research focuses on linearly expanding knowledge (e.g. adding a new class), and it is

often impossible to restructure or correct existing knowledge.

Model editing

One currently emerging technical term that is very close to the idea of language-based

learning is that of Model Editing (Mitchell et al., 2021). The authors propose a way to

train a collection of small auxiliary networks to update the weights of the main network

(language model) based on incoming knowledge update requests.

While the approach explored in the paper is radically different from what I explore in Chap-

ter 4, the goal is similar, namely to create an architecture that can adjust its knowledge “on

the fly” based on incoming instructions (which may be linguistic for the true language-based

learning scenario, but may also be encoded in other ways).

The approach I explore in Chapter 4, is different in that I aim to create an architecture with

two distinct parts – a general knowledge part of it that stays unchanged, and a persistent

memory representation that reflects the network’s belief about the world. Conceptually,

while (Mitchell et al., 2021) offers a way to identify parts of a large network that must be

changed in order to incorporate incoming information, I suggest re-structuring the network

and the training procedure in order to decouple transient factual knowledge from general

unchanging intuitions about the world, and then learn to update the factual knowledge only.

Overall, I believe that the emergence of such terms as Model Editing highlights the impor-

tance and the readiness of the field to begin moving towards the development of general-

purpose language-based learning systems.
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2.3.3 Non-deep learning works

Not all progress toward learning from language is related to Deep Learning. Indeed, recent

works demonstrate that the revived interest in language-based learning is not just a con-

sequence of the increase in DL models capacity or popularity. For example, in Srivastava

et al. (2018), the authors devise a system for inferring concept meanings based on verbal

explanations, using a more traditional feature-based approach to semantic parsing.

This work is highly important since it provides a clear bridge between Cognitive Science

and AI research, since it is focusing on learning through language in a common Cognitive

Science research setting - that of category learning. Studying learning from natural lan-

guage explanations is clearly associated with a number of difficulties of such explanations

are unrestricted. Thus, even developing a baseline model may be an insurmountable tech-

nical challenge for a typical work in the Cognitive Science domain. The method proposed

by Srivastava et al. (2018) provides a working solution and is not restricted to a specific

application considered in the paper.

There is, however, a number of limitations. Perhaps the most dramatic one is a fairly re-

stricted concept space: the concepts are represented via a naive-bayes-like model. Such a

model, most likely, is not expressive enough to represent the actual concept space that hu-

mans use. Consider the following example from the paper: “emails that I reply to are usually

important”. From this sentence, the model can infer that p(important|replied) = pusually,

where pusually is a fixed constant. A simple modification can make this example too difficult

for the model to capture: “emails that I reply to are usually important, unless they are from

my friend Jimmy”. Here we would like to infer p(important|replied ∧ ¬FromJimmy) =

pusually, which is not possible for the model.

What makes matters worse, the whole pipeline is structured around extracting specific and

fixed logical forms, and thus, the model won’t be able to adjust itself to account to new
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logical forms that may naturally occur in language, but were not hard-coded in the model.

Secondly, while the ability to handle quantifiers (such as “often”, “some”, “many”, etc.) is an

interesting and strong feature of the model, at present, the authors handle them without any

account of the context. Moreover, the quantifier probabilities were simply assigned manually,

based on author’s intuitions. It is clearly problematic, since, for example, a quantifier “often”

in the context of drug side-effect description may mean “one in a thousand cases”, while saying

“I often watch TV in the evening” can mean “I spend half of my evenings watching TV”).

The model also can not handle nested quantifiers (e.g. "very often").

These issues are very reminiscent of the problems that plagued the early-day research in AI

and continue to haunt most traditional feature-based approaches today. The interpretability

of such models and the initial boost that the model receives through the human intuitions

hard-coded into the model structure (often making those model less data-hungry) are ex-

tremely appealing. But the initial appeal fades away when the model is applied in realistic

scenarios: the need to manually handle a large number of special cases makes hand-crafted

approaches too rigid to capture the full richness of human language.

2.3.4 Semantic Parsing and Learning from Language

It is important to say a few words on the relation between learning from language (as defined

in this review) and Semantic Parsing, since the distinction is rather subtle. There are many

subtypes of Semantic Parsing, but in general, it is usually defined as “the precise translation

of natural language utterances into logical forms” Jia and Liang (2016). In other words,

Semantic Parsing methods aim to distill the content of language utterances into a formalized

and structured representation. Thus, in a way, via semantic parsing, we aim to extract

everything that can be learned from an utterance. The problem of language-based learning

considered in this chapter is, however, a little different. I am not primarily concerned with
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the question of distilling the contents of an utterance into its “pure” logical form, but rather

in the stage that comes after: in how this distilled information is then assimilated into one’s

knowledge system.

For example, a simple sentence “Turtles are reptiles” can be easily parsed into the appropriate

structured representation, such as, for example, (turtle, isA, reptile). Nevertheless, the

question of what it means to learn this fact remains. One possible answer could be that

learning it involves simply storing it in a database, in which case semantic parsing indeed

becomes equivalent to language-based learning. But it is also reasonable to say that learning

from the phrase “Turtles are reptiles” involves making appropriate generalizations, such as

that turtles are likely to be cold-blooded and to lay eggs.

The idea that important aspects of learning from language are separate from handling the

difficulties of parsing natural language is what largely inspires the project described in Chap-

ter 4.

2.3.5 Language-based learning in AI: summary

In general, the works described in this section illustrate that language-based-learning is

being actively introduced in a broad number of AI subfields. Moreover, there is a potential

standardized pipeline for introducing language-based learning into a very broad range of

applications. Essentially, as long as we have a distributed representation (embedding) of

the thing we want to learn, such learning can be converted into a learning-from-language

problem. What is also encouraging is that embedding techniques are now available for

a very broad set of entities (words, sentences, KG entities, graphs (Goyal and Ferrara,

2018), and even emojis (Eisner et al., 2016)), which provides numerous opportunities for

studying learning-from-language in different settings, as well as serving as a potential basis

for cognitive modeling of learning-from-language.
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Of course, it must be noted that whether this approach works efficiently will depend on the

quality of verbal descriptions, difficulty of the task, the amount of available data, and many

other factors. Overall, we can not guarantee that by blindly wrapping a cognitive model

into a BERT-based Zero-Shot-Learning envelope we will get a working (let alone cognitively

plausible) solution. Nevertheless, having a clear starting point is a necessary first step in

most modeling applications, and is, undoubtedly, a positive thing.

2.3.6 Language-based learning in Cognitive Science

The importance of language-based learning was voiced at least as early as in 1977 (Bandura

and Walters, 1977). Learning through language is mentioned in this work as one of impor-

tant types of modeling behaviour in social learning. In particular, the author notes that

“as linguistic skills are developed, verbal modeling is gradually substituted for behavioral

modeling as a preferred form of response guidance”. Nevertheless, despite its overwhelming

importance and ubiquitous use, until recently, learning through language did not receive

much attention as a separate subject of study (Liefooghe et al., 2018).

Perhaps it may have been the strong behaviourist underlying interpretation adopted in (Ban-

dura and Walters, 1977) that hindered a transition from seeing verbal communication as a

source of behavioral modeling signal to a more general interpretation of it as a way of trans-

ferring knowledge or information.

Recent years, however, have seen a revived interest in language-based-learning in Cognitive

Science research. For example, Verhoeven et al. (2018) investigated how verbal instructions

may be used to change pre-learned habits, Deltomme et al. (2018) looked into how verbal

instructions can be used to learn emotional associations (specifically, induced fear), while

Pfeuffer et al. (2018) investigated the differential impact of priming repetition on S-R learning

for practice-based and verbal-based instructions.
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Category learning through language

Category learning paradigm is especially convenient as a framework for studying learning

through language, for a number of reasons. First, the paradigm is well-established, with

many widely accepted results available. This essentially eases all ablation studies. That

is, if we remove the novel “language” component from a study, we know what to expect in

most category learning settings. Second, category learning naturally allows to connect Cog-

nitive Psychology and AI research settings (since category learning is, essentially, a standard

classification task). This may allow to unite the efforts of AI and Cognitive Psychology in

understanding the phenomenon of learning from language.

The importance of language in Category learning was emphasised long before explicit re-

search of learning through language began. For example, in Ashby et al. (1998), the authors

propose two systems of category learning: verbal and implicit. The verbal system works

with verbalizeable rules, while information-integration subsystem handles cases where there

is no simple verbal description.

Surprisingly, despite the fact that the system is called “verbal”, there were very few works

that would investigate whether the “verbal” system can acquire a category through verbal

means. Instead, the term “verbal” is used to stress the idea that the rules learned by this

system can be verbalized in human language. The main underlying hypothesis is that the

verbal system is responsible for conscious attempts to construct a relatively simple rule

defining a category (e.g. “feature A is high and feature B is low”). That is, the model is

that of internal verbalization during instance-based learning, and not an actual model of

language-based learning.

Overall, learning through verbal communication has not received much attention in em-

pirical studies of category learning and has been largely ignored in corresponding compu-

tational models. Well-established paradigms for category learning predominantly focus on
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the communication and acquisition of categories through examples only. Considering the

overwhelmingly important role of verbal communication in education and the impact of in-

ternal verbalization on the learning outcomes (Vinner, 2002; Lombrozo, 2012; Williams and

Lombrozo, 2010, 2013), this omission makes the well known ironic definition of category

learning as the “class of behavioral data generated by experiments that ostensibly study

categorization” (Kruschke, 2008) exceedingly appropriate.

There may be two related reasons for this surprising oversight. First, the fact that people

use language to acquire knowledge (including category language) is so apparent, and, at

the same time, so difficult to model rigorously, that it is very tempting to dismiss either

as “boring” or “impractical” to study. Sometimes it seems that authors make an unstated

assumption that verbal communication would allow to simply transfer category knowledge,

as long as the rule is verbalizable.

Nevertheless, even though the works in this area are very scarce, they still manage to demon-

strate that the research in this area is neither trivial nor impractical. The main line of

investigation in the domain of language-based category learning was directed towards the

question of whether exemplar similarity effects would interfere with explicit rule applica-

tion. This (fairly thin) line of research culminated in a study by Hahn et al. (2010). In this

study, the authors demonstrated that in a broad range of experimental conditions, exemplar

similarity seems to affect categorization performance, even when participants are provided

with explicit rules that don’t depend on this similarity, and even in the case of very sim-

ple one-dimensional rules (this effect is sometimes referred to “interference effect”). This

demonstrates that even though providing a verbal description may seem to be a trivial way

of “giving away the answer”, it is, in fact, very far from truth. Thus, the exact mechanisms

of how explicit verbal knowledge is incorporated into category learning models remains an

unsolved and a relevant question.

The second potential reason for low popularity of studying category learning through lan-
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guage is that it is inherently pedagogical. Until recently, we lacked the tools to properly

model such situations even in the case of simple category learning, let alone category learn-

ing from language. Historically, category learning literature focused on extracting knowledge

from a neutral instance-generating environment (although there are a few notable exceptions:

(Avrahami et al., 1997)), and the formal apparatus for modeling pedagogical reasoning in

category learning was developed only recently (Shafto et al., 2014; Aboody et al., 2018; Frank

and Goodman, 2012), in a rational analysis paradigm.

It may be that these relatively recent developments motivated a resurgent interest to the

problem of language-based learning. There are two studies which are especially relevant in

this context: (Chopra et al., 2019) and (Moskvichev et al., 2019) (which is a part of this

thesis). Both studies focused on an interactive teacher-student setting. The former demon-

strated that linguistic communication can be used to efficiently transfer category information,

and complemented their results with the analysis of specific linguistic constructions used by

the teachers. The second work made a step further, investigating how efficiency of different

communication channels (verbal and example-based learning) may depend on the properties

of the communicated rule. Moskvichev et al. (2019) also proposed a high-level computational

model, extending the work of Shafto et al. (2014) on modeling pedagogical interactions in

category learning to handle the case of verbal communication. The weakness of the proposed

model, however, is that verbal communication is handled on a very high-level, with no link

to actual language.

Even though it seems the field only now became ready to model learning from language,

a small number of highly innovative and largely underappreciated works already appeared

more than a decade ago, as a result of a notable (and, apparently, almost solitary) effort.

I am referring to a fully connectionist model of learning from language proposed by D.

Noelle in his dissertation (Noelle, 1997, 2006). Among other things, this model was able

to handle instruction-modulated category learning. At the time of publication, all available
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Figure 2.3: Connectionist model of instructed category learning from (Noelle and Cottrell,
1996)

learning-from-language systems were either fully or partially symbolic. As noted by Noelle

(1997), such systems, when used in realistic scenarios, often reach a stage when they become

impossible to maintain, due to the complexity of the problem at hand.

The model (see Figure 2.3) adjusted its behaviour according to the language-based advice,

passed through the auxiliary plan network. The activation from the plan network modulated

the behaviour of the categorization network so that the categorization behaviour differed

depending on the received advice.

While still relatively simplistic and limited (i.e. it does not seem possible to communicate

a truly novel rule using this network), D. Noelle’s proposed fully connectionist model was a

bridge that could have helped the community to continue developing models for instruction-

based learning, when the purely symbolic models fell out of the mainstream research focus.

Unfortunately, this work did not receive much attention from the field, and this fundamen-
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tally innovative contribution remained largely unnoticed by the community.

This work is interesting for us not only as a rare example of a cognitive model that can

handle learning from language, but also as a source of a number of important theoretical

observations about modeling learning from language. Firstly, the author points out an

important property of gradient-based weight updates: it is highly implausible that such

a mechanism could underlie rapid learning processes that we see during learning through

language. Indeed, the swiftness with which we can switch our behaviour or knowledge based

on linguistic input seems incompatible with the slow and iterative gradient-based re-training

procedures.

Therefore, instead of formalizing such updates through gradient-based changes in weights, D.

Noelle proposes to model learning through language as a result of a forward pass through an

auxiliary network. I.e. such an auxiliary network receives a verbal instruction and outputs

either an activation modifier, or a weight modifier for the main network. He discards the

latter option as potentially too prone to catastrophic forgetting or interference and chooses

the first option for his model. As of today, both options seem highly promising and very

reminiscent of current approaches in the zero-shot-learning domain and recent work on model

editing.

Lastly, it is important no note that this model was primarily a cognitive model. That is, the

goal was not only to obtain a model capable of learning from language (which is challenging

enough in itself), but also to demonstrate that both the model description and behaviour

are cognitively plausible. To that end, the most promising result is that the proposed model

was able to reproduce Noelle and Cottrell (1996) the “interference effect” I mentioned earlier.

Overall, we can see that even though the problem of category learning through language is

severely under-investigated, there are at least two approaches that provide potential path-

ways to handle this phenomenon. Both approaches have their benefits and drawbacks. Ra-
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tional models provide a principled way to handle the pedagogical aspect of category learning

through language, but at a price of staying very high-level, and not handling actual mappings

from language to internal representations. A connectionist approach, outlined by D. Noelle,

provides a way to model the process more fully (especially if we combine it with newer, more

powerful NLP models), but at the price of not being able to handle the pedagogical aspect

of it (explanation generation).

Instructed-task-learning

While we mostly focus on Category learning studies, it is worth mentioning a number of works

in a broader category of “instruction-based-learning” and “rapid-instructed-task-learning”.

Some of such works fall under our definition of language-based-learning. While the tasks

studied in these works are usually different from typical works in the domain of Category

Learning, the distinction sometimes becomes rather subtle. Therefore, there are two reasons

to give a brief overview of such studies. Firstly, it is important to understand the differences

between these branches of research, to avoid confusion. Secondly, if it turns that these lines

of research are similar enough, some insights obtained in the domain of instruction-based-

learning may be applicable in the domain of category learning.

What complicates the task of comparing language-based category learning and instructed-

task-learning research is that there are many subtypes of the latter. Cole et al. (2013)

identifies the following subtypes of instructed-task-learning: verbal and non-verbal, abstract

and concrete (as well as other types, which are not as relevant for us). Clearly, language-

based-category learning can only intersect with the case of verbal instructed-task-learning.

The question of whether language-based-category learning is closer to the “abstract” or “con-

crete” instructed-task-learning is more subtle. When we speak about category learning, in

most cases, there is an underlying rule that separates all object instances into two or more
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categories, and these instances usually have some natural similarity structure (i.e. in most

cases, they are assumed to be defined by a number of perceptually relevant features). In the

concrete instructed-task-learning setting (see Figure 2.4 for a typical instructed-task-learning

study of a “concrete” type), the association is usually formed between a unique stimulus (or a

set of stimuli) and a response. While technically, we can still interpret an arbitrary collection

of unrelated items as a category, this would not align well with a typical category learning

study.

Thus, the only case where we can potentially align language-based category-learning and

instructed task learning, is that of abstract verbal-based instructed task learning. Cole et al.

(2013) refers to Cole et al. (2010) as an example of such a study. The task at hand was to

compute a specific binary property of two objects (e.g. sweet(lemon) → no, sweet(banana)

→ yes)) and then apply a specified logical rule over the obtained values to get the final

answer (e.g. XOR(yes, no) → yes) (see Figure 2.5). Thus, in this case, a stimulus is actually

a pair of distinct objects. Moreover, this pair is presented sequentially, which furthermore

complicates its interpretation as a unique “entity” to be classified. Thus, this study, again,

does not fit into a typical category learning framework. There is still a possibility that some

other study in this domain may adopt a different procedure which will bring it closer to the

category learning setting, but at least we see that category learning is not a subset of such

studies. Moreover, to the best of my knowledge, the intersection is empty.

On top of that, there is another subtle, but important distinction between the instructed-

task-learning and category-learning settings. The latter usually implies forming new knowl-

edge, while the former is concerned with skill formation. Testing whether knowledge was

acquired inevitably involves some test task, and performing this task can be interpreted as a

skill. Therefore, on some level, the two approaches are equivalent. In practice, however, the

difference in these goals can lead to noticeable disparities in terminology and result inter-

pretation. In particular, since almost any task naturally ends with a motor act, the motor
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response component receives a more defined role in instructed-learning, when compared to

category learning studies. For example, Ruge et al. (2018) aimed to investigate the effects

of non-verbal instructions on concrete rule learning. Instructions, which authors called “re-

sponse cues”, were non-verbal and were shown along with the stimulus, after a short initial

stimulus-only presentation. These “response ques” were visual indicators of which response

button (out of four) is the correct one. At the same time, the “response” consisted of pressing

one of these buttons. For a category learning setting, such “instruction” would have likely be

seen simply as an alternative way of demonstrating a labeled example, with the “response”

part used to check whether participants are paying attention.

Overall, despite the apparent similarities between research on instructed-task-learning and

language-based category learning, numerous disparities exist between these research branches,

and any generalization of results between these domains must be made with extreme caution.

As mentioned above, category learning through language may provide an easier way to bridge

recent advances in AI and Cognitive Science research. This is primarily due to the fact that

the procedures in the instructed task learning experiments are not as well standardised as

those in category learning and adapting AI results to this domain would require developing

a unique AI algorithm for almost every experimental protocol.

Nevertheless, even though instructed task learning does not correspond as clearly to ML

and AI works as categorization, there are still results in the field of AI that may greatly

benefit cognitive model development for instructed task learning. One especially promising

work in this direction is the recently proposed task embedding method by Lampinen and

McClelland (2020), which provides a way to represent different tasks in a distributed manner,

as well as to perform certain vector-alebraic operations on them, in an intuitive way. As we

have discussed in the section 2.3.5, as long as we can represent the acquired knowledge in a

distributed fashion, there is a potential to introduce language-based learning into the model.

In this case, it would mean being able to easily obtain a baseline model for instructed task
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Figure 2.4: Example S-R association rules from (Ruge and Wolfensteller, 2010).

learning in the case when instructions are verbal.

2.3.7 Description-experience gap

Another area of research that comes close to the problem of language-based-learning is

that concerning the phenomenon known as “description-experience gap”. This phenomenon

refers to the systematic differences in human decision making between situations in which

people learn about the potential outcomes of their actions through a verbal description and

situations where people learn by directly experiencing the outcomes of their actions (see

Wulff et al. (2018) for a thorough review). Similarly to the previous section, what makes

it less relevant for the problem of language-based-learning (as considered in this chapter) is

the specific setting in which this phenomena is usually observed. Description-experience gap

is a phenomena that is almost exclusively studied in the monetary gamble scenario (known

in AI as the multi-armed bandit problem). This problem presents one of the most basic

forms of learning: estimating a small number of scalar entities (expected outcomes). In

contrast, in this review I primarily focus on higher-level learning processes. In the interests

of brevity, I decided to not delve deeper into summarising the description-experience gap

results (especially since most of them are specific to the monetary gamble experimental

setting).
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Figure 2.5: Experimental procedure from (Cole et al., 2010).
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It is, however, important to mention one of the results outlined in Wulff et al. (2018).

The observation is that in many instances, the gap may be explained by the recency effect.

While instructions usually present all information at once, experiencing the outcomes implies

gradual estimation of outcome probabilities. Due to forgetting effects, more recent outcomes

may get upweighted in the calculation of the final outcome estimate. To avoid such effects in

my study (described in Chapter 3), I devised an interface that allowed participants to see all

examples at once, zoom in to any particular example and explore it for as long as necessary,

and to return to it as many times as needed.

2.4 Literature review: Conclusion

A review of contemporary AI research shows that in recent years, many practical options

for formalizing learning through language have emerged. At the same time, in the domain

of Cognitive Science (especially category learning), we see relatively little research in this

direction, and even fewer formal models of the process. This gap presents a great opportunity

for cognitive science researchers to step in and develop realistic and plausible learning-from-

language models. For example, many zero-shot learning methods may naturally translate

into good baseline accounts of category learning through language, while the results on task

embedding may prove to be extremely beneficial for developing formal models of instructed

task learning. Of course, a lot of work is to be done to test and improve the cognitive

plausibility of such methods, but in the very least, there seems to be a well-defined starting

point promising a lot of exciting work ahead.
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Chapter 3

Teaching Categories via Examples and

Explanations

Abstract People often learn categories through interaction with knowledgeable others who

may use verbal explanations, visual examples, or both, to share their knowledge. Verbal and

nonverbal means of pedagogical communication are commonly used in conjunction, but their

respective roles are not fully understood. In this work, we studied how well these modes

of communication work with different category structures. We conducted three experiments

to investigate the effect of perceptual confusability and stimulus dimensionality on the ef-

fectiveness of verbal, exemplar-based, and mixed communication1. In each experiment, one

group of participants (teachers) learned a categorization rule and prepared learning materials

for the students. Students studied the materials prepared for them and then demonstrated

their knowledge on test stimuli. All communication modes were generally successful, but

not equivalent, with mixed communication consistently showing best results. We also find

that teachers were flexible in their teaching strategies, systematically adjusting the volume

and content of their messages depending on the structure of the communicated category.
1All data reported in this article are available via this OSF link
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Lastly, we find that when teachers are free to generate as many examples or words as they

wish, verbal and exemplar-based communication show almost equivalent performance; how-

ever, verbal communication is more robust when communication volume is restricted. We

believe that our work serves as an important step towards studying language as a means for

pedagogical category leaning.

3.1 Introduction

One of the most striking features of the human mind is our ability to share knowledge with

each other. Learning from direct experience takes time, effort, and might even be dangerous;

learning through communication is safer and more efficient, which provides numerous benefits

for humans as individuals and as a species (Bandura, 1977; Vygotsky, 1978; Tomasello,

1999). From personal experience, we know that knowledge communication can naturally be

mediated through different (verbal and nonverbal) channels. For example, imagine a family

forest trip with parents teaching their children about poisonous and edible mushrooms. It is

easy to envision a parent instructing through verbal explanations (e.g., not to collect pale,

thin-legged mushrooms with a flat cap since they are usually poisonous), thus providing a

definition of a concept that can be later reused. Another way to teach the same concept

is to give labeled examples: one may sort, together with the child, through the mushrooms

that the child collected, keeping the good ones, and throwing away the bad ones. The key

difference is that the former involves a verbal explanation, while the latter relies mostly on

nonverbal (exemplar-based) pedagogical communication.

Similarly to the example above, in this paper we focus on knowledge communication in

a category learning setting. Our ability to determine category membership based on past

experience is a fundamental skill, involved in many aspects of human cognitive organization,

and used ubiquitously in a wide range of situations (see Ashby and Maddox (2005); Ashby
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et al. (2011); Seger and Miller (2010); Dubova and Goldstone (2021)). At the same time,

category learning is extremely convenient methodologically: one gets a clear way to define

what exactly is being learned, fully control the learning procedure, easily measure learning

outcomes, and, finally, easily instantiate the process into a formal mathematical model.

These features made category learning one of the most common approaches for studying

knowledge acquisition. They also make category learning perfectly suitable for investigating

knowledge communication, although researchers have only recently begun to explore this

direction (e.g., Chopra et al. (2019); Aodha et al. (2018); Moskvichev et al. (2019)). A notable

exception is a pioneering study by J. Avrahami et al. Avrahami et al. (1997) who introduced a

teaching-by-examples paradigm and demonstrated that teacher-generated learning sequences

result in higher students’ performance than equivalent sets of stimuli presented in a random

order. This paradigm was further extended by Shafto et al. (2014) who built a Bayesian

computational model providing insight into the methods of formally describing pedagogical

interaction in a category learning setting (discussed in more detail later). They, however,

focused solely on communication via selecting category examples and ignored language-based

communication.

In this work, we investigate how people communicate perceptual categories using differ-

ent communication channels (verbal, exemplar-based, or mixed). We have conducted three

experiments, in which we varied perceptual confusability and stimulus dimensionality to

capture fundamental differences between the verbal and exemplar channels of communica-

tion. In Experiment 1, we investigated how varying category structures affect perceived and

actual communication efficiency of verbal, nonverbal (exemplar-based), and mixed teaching

formats. In our second experiment, we have addressed some limitations of our initial per-

ceptual confusability operationalization and tackled the problem of unequal dropout rate

among teachers. Experiment 3 complemented our previous findings by limiting the number

of examples and words that teachers were able to use to communicate categories. These

constraints mitigated the variability in teachers’ communication and allowed us to take a
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more nuanced look at the roles of different channels of communication.

3.1.1 Category learning in a pedagogical setting

Pedagogical learning, i.e., learning from someone who intentionally chooses teaching mate-

rials, is qualitatively different from learning categories by observing random data samples,

and its modeling presents unique challenges. A solution to this problem was proposed by

Shafto et al. (2014). Following the rational analysis framework (Anderson, 1990, 1991),

the authors proposed and empirically validated a computational model for the process of

exemplar-based pedagogical reasoning. The model is built upon the idea of mutual rational-

ity assumption: rational teachers choose materials that would maximize a rational learners’

ability to infer the categorization rule and achieve good performance. Rational learners, in

turn, base their inferences by assuming that teachers are behaving rationally and are being

helpful. This “mutual rationality” idea in the context of category communication has been

empirically illustrated in an earlier study by Avrahami et al. (1997). The study revealed

consistent and effective patterns of pedagogical communication employed when teachers use

a sequence of visual examples to communicate their category knowledge. Similar findings

have been obtained in children, where it has been shown that their decisions on what to

teach are made in a way that maximizes learners’ rewards (Bridgers et al., 2020). Overall,

formal theoretical frameworks clearly demonstrate the uniqueness of the pedagogical setting

in how it may affect category learning. And yet, even though much of our communication

(including category communication) is pedagogical in nature and involves both verbal and

exemplar-based modes of communication, the differences between these ways of teaching has

received little attention.
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3.1.2 Category learning and language

Many theories of category learning agree that both verbal and nonverbal processes are in-

volved in categorization. There is still, however, an ongoing debate on whether the verbal-

like and nonverbal processes are performed by two different (Ashby et al., 1998; Maddox

and Ashby, 2004; Ashby and Maddox, 2005; Minda and Miles, 2010) or only one (Keren and

Schul, 2009; Newell et al., 2011) cognitive system. Weighing in on this long-standing debate

is outside the scope of our paper. Nevertheless, there is ample evidence that regardless of

whether one or two systems are involved, one of them must be able to handle and utilize

verbal knowledge.

Language can facilitate category learning in many different ways. First, it can be used as a

tool for labeling dimensions: a number of recent studies demonstrated that feature name-

ability (ease of finding verbal labels for relevant dimensions) promotes categorization perfor-

mance (Zettersten and Lupyan, 2018, 2020; Kotov and Kotova, 2018). Second, language can

be helpful in directing attention to the most informative features of stimuli (Sloutsky, 2010;

Sloutsky et al., 2016). As a result, language can be especially useful in learning categories

consisting of objects with few relevant dimensions and multiple independently varying irrel-

evant features (i.e., statistically sparse categories as defined by Kloos and Sloutsky (2008)).

Finally, language can be used to account for unobservable characteristics of objects while

categorizing them and forming nested categories of different abstraction levels (Sloutsky,

2010). Even though the importance of language-related processes is largely acknowledged,

there is very little research into studying the properties of language as the primary means

of category acquisition.
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3.1.3 Identifying factors that may differentially affect verbal and

exemplar-based communication

To the best of our knowledge, no studies of category communication directly examined

the factors that affect verbal and exemplar-based pedagogical communication of categories.

Because of that, when looking for potential factors that might differentially affect verbal

and exemplar-based communication, we had to extrapolate from category learning studies

in individual settings.

We know from previous studies that categorization performance is affected by category struc-

ture (Shepard et al., 1961): some category structures (e.g., defined by a unidimensional rule)

are more easily learned through verbal means, while others (e.g., involving a combination of

multiple features or family resemblance categories) rely on procedural memory and nonver-

bal processes (Ashby et al., 1998; Maddox and Ashby, 2004). Overall, we believe that the

latter type is not well suited for investigating in a pedagogical setting, as these categories

are extremely difficult to verbalize and transfer to another person. Therefore, in our study,

we focus on the first type of categories.

Categories that follow the same rule type may vary in their difficulty, depending on the

perceptual similarity/confusability of its members. Perceptual similarity/confusability is

usually operationalized through within-category (Rips, 1989; Smith and Sloman, 1994; Cohen

et al., 2001) and between-category variability. The larger the within-category variability,

the harder it is to rely on prototype information when making judgments. At the same

time, it may facilitate rule abstraction since rule-based categorization strategy is the most

appropriate one for these categories (Kloos and Sloutsky, 2008). Between-category similarity

affects categorization performance by making it difficult to determine the boundary between

categories. Categories with fuzzy boundaries (i.e., with many borderline examples of different

categories located close to each other) are naturally more challenging to learn. Categorization
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difficulty is also related to the number of irrelevant dimensions varied within a category.

Stimuli with multiple irrelevant dimensions require larger training samples or additional

efforts to direct attention to the relevant dimension while ignoring the rest of the information

(e.g., Vong et al., 2019).

Kloos and Sloutsky (2008) combined perceptual similarity and dimensionality metrics to

calculate statistical density of categories. Statistically dense categories are the ones that

have multiple relevant covarying features that determine category membership. They also

have lower within-category variability and higher between-categories distinctiveness. Sparse

categories, on the contrary, have multiple independently varying irrelevant dimensions and

only few dimensions that determine category membership. Statistically dense categories

are better learned in nonverbal manner — by mere observation of category examples, while

sparse categories require prior verbal instruction to constrain learner’s hypothesis space and

enable selective attention to the relevant features (see also Aboody et al., 2018).

Based on these prior results, we formulated a number of hypotheses. First, we expected that

the relative efficiency of teaching via verbal explanations would increase with higher stim-

uli/rule dimensionality (compared to exemplar-based teaching). Second we expected that

higher confusability would increase the relative efficiency of teaching via visual examples

(compared to verbal explanations). Lastly, we also expected emergent effects when using

two channels of communication simultaneously; specifically, we hypothesized that commu-

nication of categorical information will be more efficient (per communication unit) if verbal

explanations are combined with learning-by-examples (compared to verbal explanations or

examples alone).
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3.1.4 Overview of the experiments

We conducted three experiments to investigate the effects of category structure and com-

munication channel (verbal, examples, or a mixture of both) on category communication

effectiveness and efficiency in a teacher-student format. In each experiment, one group of

participants (teachers) learned a categorization rule and prepared learning materials for the

students. Students studied the materials prepared for them and then demonstrated their

knowledge on test stimuli. Experiment 1 tested the broadest range of conditions: percep-

tual confusability, stimulus dimensionality, and rule dimensionality. Experiment 2 followed a

similar scheme, but was restricted to one-dimensional rules and used a different operational-

ization of stimuli confusability. Overall, Experiment 2 allowed us to replicate and refine

results from Experiment 1. Lastly in Experiment 3, we limited the amount of materials

that teachers were allowed to communicate to account for differences in teacher’s efforts.

Communication was asynchronous in all experiments. Students received learning materials

prepared by teachers in advance, and there were no other interactions between teachers and

students.

3.2 Experiment 1

3.2.1 Method

Procedure

There were two groups of participants, teachers and students. For teachers, the main part of

the experiment consisted of three stages: learning phase, test phase, and teaching phase (see

Figure 3.1). During the learning phase, teachers learned a specific category through 30 ran-

domly sampled labeled examples. Stimuli were presented simultaneously so that participants
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could easily infer a categorization rule by observing examples at their own pace. Teachers

were able to explore each stimulus in detail by enlarging it and had no time constraints.

Examples of teacher’s learning materials are provided in Appendix A.

Every block of 30 training examples was followed by a test phase, where teachers were

tested on 30 new examples with no feedback. If they achieved categorization accuracy of

85% or above, the teacher proceeded to the teaching phase, otherwise they returned to

training. If a teacher failed to pass the test five times, the experiment was ended without

transitioning to the teaching phase. We used this strict accuracy threshold for teachers to

minimize interference of teacher’s learning performance with communication efficiency and

effectiveness, as well as overall quality of their teaching materials. In other words, we wanted

to see how knowledgeable teachers communicate their knowledge, and so we had to make

sure that teachers master their category knowledge in all conditions before proceeding to

teaching.

During the teaching phase, teachers generated learning materials for their future students

in three different formats: verbal, exemplar-based, and mixed. The verbal format required

teachers to formulate a written message with an explanation of how to distinguish between

members of two categories. In the exemplar-based format, teachers generated labeled stimu-

lus examples (separately for each of the categories) through an interface that allowed them to

adjust stimulus characteristics using sliders for different features. In the mixed format, teach-

ers were able to use a combination of exemplars and verbal explanations (see Appendix A

for details on the interface). The order of teaching formats was randomized and teachers had

no ability to get back and copy previously created materials. Teachers were instructed to

make each set of instructions self-contained. That is, they knew that each of their students

would receive only one of these three teaching materials.

For the students, the experiment was shorter. In the learning phase, they observed the

materials prepared for them by their teacher. Just as with teachers, there was no time
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Figure 3.1: Experiment 1 procedure illustration. Note that every teacher generates three
types of teaching materials (for different students), but each student only receives one type.

restriction on how long they took to study the materials. When ready, they proceeded to

the test stage (containing 30 stimuli), where their mastery of the communicated category

was measured. See the details on the student interface in Appendix A.

Design: independent variables

We used a three factor between-subject design. Teachers were assigned into one of twelve

groups defined by the following category characteristics: rule dimensionality (one- or two-

dimensional rules), stimulus dimensionality (two, three, or four varying dimensions), and

perceptual confusability (low or high).
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Rule dimensionality. We had two levels of the rule dimensionality variable. In the one-

dimensional rule condition, we used rules in the form “if x > c then category A else category

B”, where x is the numerical value along a pre-specified stimulus dimension and c is a

threshold constant. In the two-dimensional rule condition, we used a conjunction of two

one-dimensional rules, i.e. “if x > c1 and y > c2 then category A else category B”.

Note that we only used “rule-based” or “verbalizeable” category types in our experiments

(according to the classification by Ashby et al. (1998)). Due to the nature of information-

integration (“nonverbalizeable”) rules, verbal communication of such rules is likely to fail

entirely. We, therefore, restricted ourselves to rule-based categories. It is important to clarify

that the name “verbalizeable” only means that such rules can conceivably be formulated

verbally (Ashby et al., 1998), and does not imply that all rules of this type are equally easy

to formulate or communicate verbally. As we will see, even simple verbalizeable rules provide

a number of challenges and insights.

Stimulus dimensionality. We varied the number of dimensions along which stimuli may

change (i.e. two-dimensional stimuli have two varying features). We had two-, three-, and

four-dimensional stimulus conditions. If rule dimensionality was smaller than stimulus di-

mensionality (e.g. two-dimensional stimuli and one-dimensional rule), we randomly varied

the stimuli along dimensions not involved in the rule.

Perceptual confusability. Confusability was defined as a ratio of the gap between the

categories to the variance within these categories (see Figure 3.2). If the gap is large,

compared to the within category variation, it is easy to distinguish between instances of

different categories. Moreover, it is likely that there is going to be a specific label one may

use to indicate the threshold.
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Category A Category B

Lowest value Highest Value Lowest value Highest Value

Low conf.

High conf.

Figure 3.2: Perceptual confusability illustration. The key feature in this case is how open
the mouth is. In the case of high confusability, the widest open mouth in category A is close
to the most narrowly open mouth in category B. In the case of low confusability, there is a
larger gap.

Communication format. In addition to the between-subject independent variables listed

above, we also had a within-subject variable (for teachers only). This variable (communica-

tion format) had three values: examples-only, verbal-only, and mixed. Each teacher created

three different learning materials, one of each type.

Students. Each student was randomly assigned a teacher and learned from materials pre-

sented in one of three communication formats (verbal, exemplar-based, or mixed).

Design: dependent variables

Performance metrics. First and foremost, we looked at teachers’ and students’ accu-

racies in different conditions. Additionally, since we were interested in how well teachers

communicated their knowledge in different conditions (as opposed to how well they had

mastered the category knowledge in the first place), when analysing student performance,
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we controlled for their respective teacher’s accuracy (by including it as a covariate).

Communication volume metrics. Looking only at student accuracy is limiting because

two conditions may result in equal student performance while requiring different amounts of

communication to reach that performance. Such a result would still be important, hence we

also looked at communication volume in different conditions. To quantify communication

volume, the most natural approach is to use the number of words and the number of examples

for verbal and exemplar-based channels respectively. However, some of our hypotheses (de-

scribed in the next section) require comparing amounts of teaching materials across different

communication channels. We used a simple procedure for converting a number of commu-

nication units in one channel into another (i.e. how many examples, on average, correspond

to one word). Specifically, we used a median (across all participants) number of examples in

exemplar-based teaching materials and divided it by the median number of words in verbal

teaching materials, obtaining a conversion constant cex_per_word. This allowed us to calculate

total information: the amount of teaching material expressed in examples (communica-

tion units). Thus, in the exemplar-based channel, total information is simply equal to the

number of examples. In the verbal channel, total information is equal to nwords · cex_per_word.

In the mixed channel, total information is equal to nwords · cex_per_word + nexamples.

It is important to mention that here we use “information” in a colloquial sense, rather than

as defined in the context of information theory. Thus total information in our case simply

reflects how many materials a teacher generated. It is more of a measure of effort/volume

than of how much useful information is contained in those materials. While an information-

theoretic approach can be employed in an analogous situation, such methodology would

require a much larger dataset, hence we opted for a simpler approach.
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Communication content analysis. Lastly, we looked at the content of verbal messages

created by teachers, identifying a number of typical types of messages. The overall goal of

this analysis was to assess the relationship between stimulus characteristics (dimensional-

ity and confusability) and the frequency of occurrence of different types of communicated

information. Labeling of messages was not exclusive, as each teacher-generated verbal in-

struction could fall under more than one message type. After all messages were labeled, we

looked at distributions of these types of messages across conditions. Specifically, through

manual inspection, we identified seven common types of communicated information. For

example, the “Exemplars” message type included messages that verbally describe members

or prototypes of the categories being transferred, while “Dimensionality reduction” message

category included messages that explicitly indicate that certain dimensions are irrelevant

(see Table 3.1 for definitions and examples of all message types). We evaluated all teach-

ers’ messages, identifying which message types they contain. Judgments were made by two

authors independently solely based on teachers’ texts. No other information was available

during the evaluation to avoid possible biases. All disagreements were later resolved through

discussion on a case-by-case basis.

Materials

The stimuli were schematic images of fish with up to four independently varying visual

features (see a detailed description in Rosedahl and Ashby (2018)): mouth angle, dorsal

fin height, tail height, and belly color. There were nine possible values within each of the

dimensions.

We randomized over physical instantiations of stimulus dimensions to control for potential

effects of feature salience. For example, if the task involves two relevant dimensions (d1, d2)

and one irrelevant (n), for one participant, these two dimensions may be “d1 - tail fin, d2 -

belly color, n – mouth angle”, while for another, they may be “d1 - dorsal fin, d2 - tail fin,
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Table 3.1: Types of teachers’ verbal instructions and illustrative examples

Instruction Type & Definition Examples
Exemplars

Listing specific feature values
that fit the category

“Type A fish have no tail. Type B have tails.”,
“Type A fish have their mouths either closed or
slightly open, Type B fish have their mouths
open wide.”

Relative Rule
Values of the target attribute
relative to another category

“Type A have shorter top fins compared to type
B”, “Type A tend to have darker colored under-
sides”

Dimensionality Reduction
Explicit indication of relevant or
irrelevant dimensions

“Look at the color on the bottom”, “Ignore ev-
erything on the fish except for the mouth”

Distribution
Optional information about the
distribution of the exemplars
along relevant or irrelevant di-
mensions

“There are ones with the spike on the head and
then others without the spike”, “The belly color
of fish type A is always black”, “tend to have”,
“usually has”, “all have”

Boundaries and Threshold
Upper and lower boundaries of
the category or a value that sep-
arates categories along the key
dimension

“All else equal, look at the fins! Medium to long
length is type B, short to short-medium is type
A”, “The cutoff between A and B is about mid-
way between a triangle and a square shaped tail”

Strategies
Personal experience, heuristics,
and metacognitive strategies
useful for the task

“When in doubt, if the top fin looks like a trian-
gle rather than a little stub, then it is likely type
B”, “It is the easiest way to tell between the two
fish”, “you will need to pay attention to how far
open their mouths are”

Other
Reminding instructions, intro-
ducing definitions, and provid-
ing other information to the stu-
dents.

“It is your goal to distinguish between two types
of fish: A and B”, “dorsal fin (the topmost fin on
the fish’s back)”
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n - belly color”. These random assignments were kept fixed between any given teacher and

their students.

Participants

All participants were English speakers from the US, recruited through Amazon Mechanical

Turk. The initial sample consisted of 169 teachers and 188 students. However, we excluded

40 teachers who did not reach the predefined 85% accuracy threshold in five attempts to

learn the rule. Four more teachers did not finish the experiment and were also excluded.

Twenty-six teachers failed to provide adequate teaching materials (13 of them created no

examples or verbal instructions and 13 provided meaningless instructions). Most of the

excluded teachers (n = 50) were from the two-dimensional rule condition. Seven students

with an accuracy below 2 standard deviations (37%) and nine students who received materials

from previously excluded teachers were excluded as well. One student who indicated poor

knowledge of English was excluded. Thus, the final analysis included 99 teachers and 171

students. The majority of teachers who were not included in the final analysis were excluded

on the basis of the predefined 85% accuracy criterion (40 out of 70 excluded teachers).

Students received teaching materials from a subsample of 60 teachers. Most of the students

were in one-dimensional (n = 115) condition. Number of people in low-confusability condition

was higher (n = 107), than in high-confusability condition (n = 65).

3.2.2 Results

Due to the two-stage setup of our experiment, our results include a number of interdependent

subsections. First, we looked at teachers’ performance to see how it depends on conditions

(§3.2.2). This allowed us to verify the quality of our interventions. Then, we looked at how

the generated teaching materials changed depending on condition. Specifically, in §3.2.2 we
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analyse the differences in communication volume, while §3.2.2 presents a deeper look into the

actual content of teacher’s verbal messages. These analysis sections offer a comprehensive

look into the ways in which teachers adapt their communication strategies to varying cate-

gory structure. After that, we shift our focus to students in order to evaluate whether these

adaptations were effective. Thus, in §3.2.2, we analyse how student performance depends on

category structure (rule type, confusability, dimensionality) and the communication channel.

Lastly, in §3.2.2 we take a look at the relation between teachers’ subjective difficulty esti-

mates and students’ performance to evaluate whether teachers were aware of the potential

difficulties that their students will be facing in different conditions.

Teacher performance

Although teacher performance is not the main focus of our hypotheses, it was still important

for us to see whether our conditions affected teacher performance. First, it allowed us to

test the intervention quality. That is, if teachers were to perform exactly equally across the

board, it would have suggested that the category structures we consider are not sufficiently

different. On the other hand, if any differences are discovered, we must account for them

when analysing student data. Otherwise, a difference in student performance between two

conditions may simply be “inherited” from an analogous difference in teachers’ performance,

as opposed to reflecting differences in communication effectiveness.

As expected given our 85% accuracy threshold, median categorization accuracy among teach-

ers was high, 0.97 (IQR[0.93, 1]2). Nevertheless, some discrepancies remained: we observed

slightly lower values in high confusability condition (Mdn = 0.97; IQR[0.9, 1]) and higher

values in low confusability condition (Mdn = 1; IQR[0.97, 1]). Similarly, accuracy was

slightly lower in the two-dimensional rule condition (Mdn = 0.97; IQR[0.90, 1]) than in the
2“IQR” stands for Interquartile Range, and is reported in the format [a, b], where a is the 25th quantile,

and b is the 75th quantile.
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one-dimensional (Mdn = 0.97; IQR[0.97, Q3 = 1]).

Statistical analysis (binomial regression model with robust variance estimation) showed

that these discrepancies were indeed significant (deviance = 24.949, df = 3, pχ2 < 0.001).

Among individual coefficients, we observed a significant effect of one-dimensional rule type

(β = 0.61, p = .008) and low confusability (β = 0.87, p < .001) on teachers’ catego-

rization accuracy. The effect of stimulus dimensionality was not statistically significant

(β = −0.09, p = .54). On the other hand, we observed uneven teacher dropout (failure to

reach the 85% accuracy threshold) across different stimulus dimensionality values (18.75%,

20.37%, and 29.85% for 2, 3, and 4-dimensional stimuli respectively), suggesting that stim-

ulus dimensionality largely determined whether a categorization rule would be learned at

all, but did not significantly affect the performance when the rule was successfully learned.

Overall, we see that despite the high 85% accuracy threshold, the variables of interest still

had an effect on teacher accuracy. On the one hand, it confirmed that the category struc-

tures in the conditions we chose were substantially different in the context of learning these

categories. On the other hand, we must account for differences in teacher performance when

analysing and interpreting differences student performance.

Teaching materials content analysis

We performed content analysis on teacher-generated texts to see whether teachers adjusted

the content of their messages in systematic ways depending on the condition they were put

in. We identified seven common message types present in teacher’s messages and then tagged

all texts according to these types (each message may belong to more than one message type).

See §3.2.1 for detail on the approach. Most messages (74%) included descriptions of typical

members of each category (“Exemplars” message type). Dimensionality Reduction (explicitly

stating that certain stimuli dimensions are not informative) was the second most common

type at 39%. Other message types were found in less than 20% of cases each (see Table B.1).
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Table 3.2: Median (and interquartile range) number of words (converted to examples) and
exemplars communicated by teachers through different channels. The conversion rate was
calculated as the median number of examples across all teachers divided by the median
number of words.

Communication volume
Words (converted to examples) Exemplars Total

Isolated channels 4.00 (2.50–5.56) 4.00 (4.00–6.00) 8.88 (6.44-11.94)
Mixed channel 3.12 (1.69–5.00) 4.00 (2.00–6.00) 8.00 (4.38-10.34)

Among the seven message types, we identified two that, we expected, will be used more or less

depending on our interventions. Specifically, we expected that higher stimulus dimensionality

would result in a greater proportion of Dimensionality Reduction messages, while higher

confusability would be associated with increased usage of Boundaries and Thresholds (to

assist in distinguishing between borderline exemplars). Teachers were indeed less likely to

use Boundaries and Threshold messages in the low confusability condition (5% of cases)

than in the high confusability one (36%), χ2(1, N = 192) = 27.76, p < .001. However,

the difference in Dimensionality Reduction between two- (34%), three- (33%), and four-

dimensional (46%) conditions was not statistically significant, χ2(2, N = 192) = 2.8, p =

.246. The key takeaway is that verbal messages that teachers generate differ in systematic

ways, depending on condition. This conclusion should be treated as tentative, however, since

we identified the categories and performed statistical analysis on the same data.

Communication volume analysis

Teachers were free to choose how many materials (words or examples) they generate. We

refer to this as communication volume. In the previous section, we saw that teachers sys-

tematically adjusted the content of their verbal messages depending on conditions; it is

possible that teachers also adjusted communication volume. To see whether communica-

tion volume depends on condition, we first needed to define how exactly we were going to

measure communication volume in every condition and communication channel. For ver-
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Table 3.3: Median (and interquartile range) number of words and exemplars communicated
by teachers separated by communication format and stimulus type in Experiment 1.

Communication format
Mixed

Stimulus Type Verbal Exemplar-based Verbal Examplar-based
Rule dimensionality

One-dimensional 23.0 (18.00–34.00) 4.0 (2.00–6.00) 17.0 (10.00–32.00) 4.0 (2.00–6.00)
Two-dimensional 42.5 (30.25–53.50) 4.0 (4.00–6.00) 34.5 (20.50–47.75) 4.0 (4.00–5.75)

Perceptual Confusability
Low 26.0 (18.50–44.00) 4.0 (3.00–6.00) 24.0 (13.00–36.00) 4.0 (2.00–5.00)
High 33.5 (23.00–45.00) 4.5 (4.00–6.50) 29.5 (14.75–42.50) 4.0 (2.00–6.00)

Stimulus Dimensionality
Two 26.0 (18.00–45.00) 4.0 (4.00–6.00) 18.0 (13.00–36.00) 4.0 (2.00–5.00)
Three 27.0 (19.00–45.00) 4.0 (4.00–6.00) 20.0 (8.00–38.00) 4.0 (2.00–6.00)
Four 34.0 (24.00–44.00) 4.0 (4.00–6.00) 32.0 (18.00–44.00) 4.0 (4.00–6.00)

bal communication, a natural metric for volume is a number of words, for exemplar-based

communication, a natural metric is the number of generated examples. However, for the

mixed channel, which includes both words and examples, there is no obvious natural choice.

Moreover, to build a unified model that works across all communication channels, we needed

to be able to compare communication volume between communication channels, that is, to

convert the number of words and the number of examples into some unified metric.

To obtain such a metric, we assumed that on average, the volume of messages in verbal and

exemplar-based communication formats was equivalent (which is reasonable since average

student accuracy in these conditions was close). We then calculated the examples-per-

word ratio by dividing the median number of examples by the median number of words; the

resulting ratio was 0.125, or eight words per one example. We used this overall examples-per-

word ratio to convert the number of words into an equivalent number of examples and thus

computed the total communication volume comparable across all three teaching channels3.
3Our conversion method is, arguably, crude and simplistic, as it assumes a fixed linear conversion rate.

It, however, suffices for our purposes. Moreover, given the relatively limited amount of data, we can not
afford to fit a nuanced nonlinar or information-theory based conversion rate model.
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Generally (as seen in Table 3.2), teachers produced noticeably more teaching materials in the

mixed communication channel, although still less than simply the sum of materials in isolated

verbal and examplar-based channels. This suggests that either teachers are naturally more

motivated to produce diverse teaching materials, or that teachers believe that producing

more materials within isolated channels results in diminishing returns.

We also hypothesised that teachers changed communication volume based on conditions

(confusability, stimuli dimensionality, rule dimensionality). More specifically, that teachers

be counteracted difficulties in communication in specific conditions by creating more mate-

rials. Descriptive statistics corroborate this idea (see Table 3.3). Specifically, we see that

the volume of verbal communication responds all relevant variables, increasing as the diffi-

culty of the condition increases (i.e. when we go from one-dimensional to a two-dimensional

rule, from low to high confusability, or as we increase stimulus dimensionality from two to

three to four). This effect is present both in the isolated verbal channel and in the verbal

component of the mixed channel. At the same time, the number of generated examples is

more consistent, as the median remains exactly 4.0 in almost all conditions. Nevertheless, in

the overwhelming majority of cases, the quantiles either stay the same or go up as condition

difficulty increases, so it seems that the effect remains, although, potentially, less prominent.

To test this hypothesis statistically, we used a gaussian glm with a log link function and

robust variance estimation to evaluate the effect of stimuli characteristics (rule type, confus-

ability, stimulus dimensionality) and teaching format (verbal, examples, mixed) on the total

amount of communicated information. The log link function was chosen since the raw total

information variable has a strong right skew, while its log-transformed version is reasonably

close to a normal distribution. The overall model was significant (F (296, 291) = 19.03, p <

.001). Stimulus dimensionality (β = 0.09, z = 2.03, p = .043), low confusability (β =

−0.2, z = −2.36, p = .018), and two-dimensional rule (β = 0.39, z = 5.17, p < .001) were all

significant predictors of total information. Exemplar-based (β = −0.44, z = −3.93, p < .001)
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and verbal (β = −0.58, z = −8.28, p < .001) communication conditions were also statistically

significant, meaning that total communication volume was higher in the mixed condition,

compared to isolated exemplar-based and verbal channels.

Student performance

The results in previous sections provide a general picture of teachers’ communication strate-

gies and their adaptations to different conditions. However, we need to look at student

performance to see whether communication was successful.

Generally, students managed to learn categorization rules relatively well, although usu-

ally not reaching their teacher’s performance. Median categorization accuracy was 93%

(IQR[0.73, 1.00]) with highest value in the mixed condition (Mdn = 0.97, IQR[0.80, 1.00])

and exemplar-based condition (Mdn = 0.97, IQR[0.68, 1.00]) compared to the verbal con-

dition (Mdn = 0.90, IQR[0.68, Q3 = 1.00]). Accuracy was noticeably lower in the two-

dimensional rule condition (Mdn = 0.77, IQR[0.57, 0.93]) compared to the one-dimensional

rule condition (Mdn = 0.97, [0.87, 1.00]).

For statistical analysis, we regressed student accuracy onto learning format (verbal, examples,

mixed), rule type (one- or two-dimensional), confusability (low or high), and stimulus dimen-

sionality (two, three, or four), using a binomial regression model with robust variance estima-

tion. The overall model was statistically significant (deviance = 231.61, df = 5, pχ2 < .001).

We first identified the significant main effects: low confusability (β = 0.43, p = .05) and one-

dimensional rule (β = 1.14, p < .001) both led to improved student performance. The effect

of the number of irrelevant dimensions was not, however significant (β = 0.08, p = .51).

Verbal communication was significantly worse than mixed (β = −0.5, p = .04), although

exemplar-based communication (β = −0.46, p = .09) was only marginally worse than mixed

communication (using a two-sided interval).
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The results above, however, do not allow to conclude that knowledge communication is af-

fected by intervention variables (rule-type, confusability, dimensionality). Instead, it may be

that the differences in student performance simply reflect analogous differences in teacher per-

formance. To account for that, we also fit a regression controlling for the effect of teacher per-

formance, including a logit of the student’s teacher accuracy as a predictor. The new model

fit the data significantly better than the previous (deviance = 9.276, df = 1, pχ2 = 0.002).

Under this new model, however, the weakly significant coefficients got “explained away” by

teacher accuracy. Thus, only the effect of two dimensional rule type remained significant;

the verbal channel (as opposed to mixed) was marginally significant (β = −0.46, p = .07),

similar to the exemplar-based channel (β = −0.44, p = .11), all other effects were not signifi-

cant. Overall, when controlling for teachers accuracy, we only see marginal beneficial effects

of using mixed communication (as opposed to isolated channels), and the strong negative

effect of a two-dimensional rule condition.

Lastly, it must be noted that interaction effects could not be reliably tested on the obtained

data. Specifically, adding interactions between communication type and intervention vari-

ables results in unstable models, where conclusions highly depend on which interactions are

included, while the natural choice of including all interactions of interest results in multi-

collinearity issues.

Teachers’ subjective estimates of student performance

Teachers generally had a good grasp on how well their students were going to perform.

Thus, the Kendall correlation between teacher’s predictions about student performance and

students actual accuracy is highly significant: τ = 0.352, p < .001.

The estimate remains high for partial correlation controlling for teachers’ accuracy (τ =

.296, p < .001). This shows that the correlation is not driven simply by teacher’s awareness of
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their own knowledge, rather teachers are cognizant of difficulties of communicating knowledge

in different conditions and/or are meta-cognitively aware about how good their teaching skills

are relative to other participants.

3.2.3 Summary

First, teachers’ communication volume depended on condition (category structure): teachers

in more difficult conditions provided more information. Nevertheless, this adjustment was

not sufficient, in the sense that all conditions still affected student performance (except for

stimulus dimensionality which affects communication volume, but does not significantly af-

fect student accuracy). Second, teachers adjusted not only the volume, but also the content

of their messages in systematic ways, reflecting the difference in the structure of commu-

nicated categories. Third, mixed communication format resulted in higher student perfor-

mance (significantly for verbal compared to mixed, marginally for exemplar-based compared

to mixed). At the same time, teachers generally provided more information in the mixed

condition. Thus, although mixed communication format was the most effective, it was not

the most efficient among the three. Lastly, teachers demonstrated high awareness of the

quality of their teaching materials. Specifically, teachers’ estimates of their students’ per-

formance were significantly correlated with actual students’ accuracies, even when teachers’

mastery of category knowledge was controlled for.

Overall, the first experiment demonstrated the flexible nature of pedagogical category com-

munication. Teachers, aware of the difficulties their students are facing, used a variety of

techniques to adapt their messages to the category structure, changing both the volume and

the content of their messages. Despite those adaptations, however, using a mixture of two

different modes of communication was more effective than relying on isolated channels.

At the same time, we observed no specificity in how different channels are affected by confus-
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ability, dimensionality, or rule type. That is, our hypotheses stating that a) verbal communi-

cation will be more robust to changes in stimuli dimensionality b) exemplar communication

will be more robust to confusibility, received no confirmation.

3.3 Experiment 2

The first experiment provided partial support to our original hypotheses and helped us iden-

tify key strategies that people use when communicating category knowledge. At the same

time, we uncovered no specificity in how communication channels are affected by stimulus di-

mensionality and confusability. Moreover, when it comes to verbal message content analysis,

the same data was used to both identify common message types and to test our hypotheses

associated with them. Lastly, we observed an uneven dropout along one of the conditions

(higher dropout under the two-dimensional rule), which complicated the analysis.

The second experiment served as a replication of Experiment 1, in which we improved the

operationalization of confusability and narrowed the range of conditions (focusing exclusively

on one-dimensional rules) to address the uneven dropout issue.

3.3.1 Method

Procedure and materials

The procedure was similar to Experiment 1 except for the following changes. First, we

changed the operationalization of perceptual confusability, making between-category dis-

tance lower than within-category variability, in the high-confusability scenario, which this

was done to strengthen the intervention effect. Specifically, under the initial operational-

ization, high confusability only affected stimuli which were close to the category boundary,
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while a substantial number of exemplars was still easily classifiable. We decreased the within-

category variance so that in the in the high confusability condition, all stimuli are close to

the boundary. This change was made so that the effect of confusability is not watered down

by exemplars that are always easy to classify. Second, we only used one-dimensional rules,

in order to avoid high dropout rates in specific conditions that we observed earlier. The last

change was that, in contrast with the first experiment, teacher bonus compensation was not

bound to their student performance. This change was made primarily due to technical and

ethical reasons as sometimes students might perform poorly even if the teacher did their best

to ensure reasonable performance; in the first experiment, we had to resolve a large number

of bonus assignment cases manually.

Participants

We recruited 123 teachers and 345 students via Amazon Mechanical Turk. We excluded ten

teachers: three of them did not reach the accuracy criterion, seven more failed to provide

adequate verbal instructions. We also excluded nine students that received materials from

previously excluded teachers and 24 more students who had accuracy below two standard

deviations from the mean (lower than 32%). Such an accuracy is substantially below chance,

meaning that these students had most likely misunderstood their teacher, learning a rule

opposite to the actual one. Six students who indicated that they have poor knowledge of

English or did not respond to the question were excluded as well. The final sample consisted

of 113 teachers and 316 students.
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3.3.2 Results

Teacher performance

As in the first experiment, teachers’ accuracy was relatively high across all conditions (Mdn

= 1.00, IQR[0.93, 1.00]). As before, experimental conditions significantly affected teacher

performance (deviance = 57.7, df = 2, pχ2 < 0.001 for the overall model). As in Experiment

1, low confusability positively affected teachers’ accuracy (β = 1.83, p < .001), and stimulus

dimensionality was not a significant predictor (β = 0.1, p = .49).

Teaching materials content analysis

The most commonly used types of information in teachers’ text were Exemplars (71%),

Dimensionality Reduction (42%), Relative Rule (26%), and Strategies (23%). As in Ex-

periment 1, higher confusability was associated with an increased use of Boundaries and

Threshold categories (from 3 to 24%), χ2(1, N = 218) = 18.29, p < .001. The effect

of dimensionality on the frequency of Dimensionality Reduction messages between two-

(39%), three- (55%), and four-dimensional (38%) conditions was only marginally significant

(χ2(2, N = 218) = 5.39, p = .067).

Communication volume

As in Experiment 1, we used a log-link glm to test the effects of conditions on communication

volume (F (338, 334) = 11.16, p < .001). Similar to Experiment 1, teachers produced more

materials in the case of mixed-channel communication, compared to exemplar-based and

verbal channels (p < .001 in both cases). However, low confusability was only marginally

significant (β = −.14, p = .08), and the effect of stimulus dimensionality was not significant
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(β = 0.03, p = .38). Overall, the effects of conditions on communication volume were weaker

than in Experiment 1.

Student performance

Students’ accuracy was relatively high across all experimental conditions, (Mdn = 0.833,

IQR[0.567, 0.975]). The overall pattern remained the same as in the first experiment (both

in direction and in significance), although the effects were more clearly pronounced. Specif-

ically, in Table 3.4 we see that all estimates remained the same in direction and similar in

magnitude, but statistically more significant (this is most likely due to the absence of two-

dimensional rule condition, which led to a decrease in variance and hence increased power).

After significant main effects were established, we added the interactions between significant

main effects (between confusability and channel). The interaction was not, however, signif-

icant. Moreover, adding the interaction shifted the confusability coefficient into “marginal

significance” region (β = 0.54, p = .07) and made the difference between exemplar-based

communication and mixed communication non-significant (β = −0.30, p = .136). We believe

that this shift is due to moderate multicollinearity issues that appear when the interaction

is included (GVIF1/2·df = 1.98 for confusability and 1.69 for the interaction variable).

One crucial difference with Experiment 1 was that controlling for teacher accuracy did not

qualitatively change the results (both the direction and significance levels of all coefficients

remained the same). This supports the idea that it is the effectiveness of communication

that varies between conditions, as opposed to effectiveness of category learning on teachers’

part.
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Table 3.4: Experiment 2: regressing student accuracy on experimental conditions (corre-
sponding results from Experiment 1 are given in parentheses).

β z-value p-value
Intercept 1.34 (2.03) 4.25 (4.64) <.001

(<.001)
Low confusability 0.45 (0.43) 3.02 (1.96) .003 (.05)
Irrelevant dimensions 0.01 (0.08) 0.12 (0.66) .897 (0.51)
Channel: verbal (vs mixed baseline) -0.48 (-0.5) -2.72 (-2.01) .006 (0.045)
Channel: exemplar (vs mixed base-
line)

-0.55 (-0.46) -3.09 (-1.69) .002 (0.091)

3.3.3 Summary

Most effects observed in Experiment 1 were replicated in Experiment 2. Notably, however,

in Experiment 2, experimental conditions affected student performance even when controlled

for the teachers’ accuracy. This result supports the claim that the conditions that we consider

not only affect teachers’ ability to understand the material, but also communication efficiency

and effectiveness.

At the same time, the effects of condition on volume were less pronounced. Mixed commu-

nication still resulted in the largest communication volume, but the effect of confusability

was only marginally significant, and the effect of dimensionality was not significant at all.

It seems possible that in Experiment 2, teachers leaned more towards keeping the experiment

short as opposed to optimizing their students’ performance at any cost. Experiment 3

mitigates these issues by placing strong restrictions on communication volume, thus taking

this flexibility away from teachers and standardizing the volume.
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3.4 Experiment 3

In the first two experiments, we have found that teachers often adjust the volume of their

messages to counteract the study interventions, generating more materials in difficult con-

ditions. Thus, even in conditions where communication was difficult (as indicated by higher

communication volume), it was still effective (students were able to achieve relatively high

accuracy). In the third experiment, we introduced strict limits on communication volume.

This was done since in previous experiments, teachers in difficult conditions generated longer

explanations and more examples, weakening the observed effects of conditions on accuracy.

The procedure was similar to previous experiments. We excluded the mixed condition, how-

ever. Enforcing a limit on the total communication volume would have involved explaining

"example-to-word" conversions to participants, severely complicating the procedure. As in

Experiment 2, we manipulated perceptual confusability and stimulus dimensionality, but

this time we only included extreme values of the stimuli dimensions variable (two and four

dimensions).

3.4.1 Method

Conditions

Teachers had two independent variables: confusability (high vs low) and stimuli dimension-

ality (2 or 4). Students had one additional independent variable (mode of learning): verbal

or exemplar-based.

Communication volume was restricted to 2 examples and 10 words in the exemplar-based and

verbal conditions respectively. These numbers were chosen based on previous experiments.

Specifically, we looked at the easiest condition (low confusability, low dimensionality), and
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picked the minimal number of words and examples that resulted in successful communica-

tion as our communication volume limits. These numbers were 2 examples and 10 words

respectively.

It is worth mentioning that this scheme was slightly more restrictive towards verbal com-

munication. For verbal communication, 10 words was an unusually small number (there

was only one successful teacher with such a short message). The 25th percentile for verbal

message length was at 15.75 words, while the median number was 21.5. At the same time,

for exemplar-based communication, using only 2 examples was typical and coincides with

the median number of examples.

Procedure

The procedure mirrored that in Experiment 2, with the only difference that during the

teaching stage, there was a limit on the number of words and examples that teachers were

allowed to generate, and there was no mixed condition.

Participants

We recruited 108 teachers and 311 students via Amazon Mechanical Turk. Pre-defined

accuracy criterion of 85% was reached by 85 teachers, the rest were excluded from further

analysis. Fourteen teachers failed to provide adequate verbal instructions and thus were

excluded as well4. We also excluded 20 students: 18 of them had categorization accuracy

below two standard deviations from the mean (below 20%) and two students indicated poor

knowledge of English. The final sample of teachers consisted of 71 teachers and 291 students.
4Here we refer to cases when teaching materials demonstrate misunderstanding of the instructions. For

example, instructions like “Look at the tail” in the verbal-only condition.
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3.4.2 Results

Teacher performance

As expected, teachers showed high accuracy overall. The median accuracy was 1.0 (IQR[0.967,

1.0]), ranging from 0.966 to 1.0 in different conditions. The difference in performance between

conditions was not significant.

Teaching materials

Most teachers used all or almost all available communication volume to communicate their

knowledge. Exemplar-based communication channel showed no variability at all, with all

teachers using 2 examples in all conditions. For the verbal channel, there is a marginal

variation with the median ranging from 9 to 10 across all conditions.

The content of teachers’ verbal messages mostly contained descriptions of typical Exem-

plars and Relative Rules, as before. However, the proportion of Dimensionality Reduction

messages (4%) dropped substantially compared to Experiments 1 (39%) and 2 (44%). A

similar decline was found for the use of Strategies (1% compared to 19% in Experiment

1 and 24% in Experiment 2). We attribute this to the word limits that were introduced

in this experiment. As in the previous two experiments, high confusability increased the

use of Boundaries and Thresholds from 3 to 20%. This time, however, the effect was only

marginally significant (χ2(1, N = 71) = 3.68, p < .055). No statistically significant differ-

ences in Dimensionality Reduction were found between two- (6%) and four-dimensional (3%)

conditions (χ2(1, N = 71) < 0.01, p = .980).
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Student performance

In line with our previous experiments, category communication was, overall, successful:

median student accuracy was 0.87 (IQR[0.57, 1.0]). When compared to the perfect median

teacher performance, we see that some information was, however, lost in the process.

We also observed that the distribution of students’ accuracies in most conditions was dis-

tinctly bimodal, with one peak around 0.5 and the second peak always higher. Using a

binomial glm for statistical analysis was not appropriate anymore. A likely explanation for

such a distribution is that a student either succeeds in understanding the gist of the com-

municated message and gets into the high-performing group, or fails to understand anything

and performs at chance. A Bayesian mixture model is a natural choice for statistical analysis

of such data.

We modeled student performance in each condition as a mixture of two distributions: the

high-performing subgroup and the communication failure subgroup (performing at chance).

Thus, every condition had two variables associated with it: 1) Probability of successful

communication. 2) Accuracy in the successful subgroup, i.e. the probability of giving a

correct answer in the case of successful communication. We then estimated the effect of

each experimental variable on these probabilities, separately for verbal and exemplar-based

channels.

When we apply this model, first, we see in Table 3.5 that confusability negatively affected

accuracy in successful subgroups (both in exemplar-based and in verbal communication).

Second, the probability of communication (getting into the successful subgroup) in the

exemplar-based condition was negatively affected by both confusability and dimensional-

ity. Both effects are borderline on 0.95 two-sided level, but consistent with previous results

and significant if a one-sided interval is used. At the same time, the probability of successful

verbal communication is not significantly affected neither by confusability nor by dimen-
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Table 3.5: Credible intervals for the impact of conditions on student accuracy and on the
probability of successful communication, split by communication channel. Coding: ** –
strong influence, * – moderate influence (two-sided 95% credible interval overlaps with zero,
but a one-sided does not). samples.

Channel Independent vari-
able

Change in the probability of
learning 95% c.i.

Change in accuracy
95% c.i.

Verbal Confusability (-0.498, 0.11) (-0.211, -0.111)**
Dimensionality (-0.397, 0.213) (-0.036, 0.063)

Examples Confusability (-0.584, 0.041)* (-0.191, -0.096)**
Dimensionality (-0.611, 0.013)* (0.003, 0.097)**

sionality, although in the case of confusability, there seems to be a trend suggesting that a

weaker effect is potentially present.

Overall verbal-based communication was noticeably more consistent, especially when it

comes to the probability of successful communication. These results are in line with our

original hypothesis about the disparate roles served by verbal and exemplar-based commu-

nication. Specifically, it seems that verbal communication is more robust when it comes

to conveying a general form of the solution, even when communication volume is severely

restricted.

One seemingly counterintuitive result warrants a separate mention: increasing dimensional-

ity positively affects accuracy within the successful subgroup in the case of exemplar-based

communication. A likely explanation is that higher dimensionality makes it harder to com-

municate the concept, but does not severely affect concept application if the communication

is successful. Indeed, when one learns which features to look for, other features can be easily

ignored, but it might be difficult to identify/communicate relevant vs irrelevant dimensions

initially. Thus, if the communication is successful, dimensionality does not dramatically af-

fect performance. Naturally, in high dimensionality condition, only the more motivated or

talented teacher-student pairs make it to the successful subgroup. They show better results

than a successful subgroup in a low dimensionality condition, which, due to the ease of com-

munication in that condition, includes a mixture of students of different levels of motivation
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and ability. In short, dimensionality seems to affect learning the concept, not its application,

hence the “communication success” group under high dimensionality condition is formed by

more talented/motivated participants, who perform slightly better.

The effects of confusability, in contrast, do not exhibit such a pattern. A likely reason is that

confusability not only affects the difficulty of concept communication, but also the difficulty

in applying the concept, even after it was successfully communicated. Hence the successful

subgroup, although consisting of slightly more motivated individuals, still experiences a drop

in performance in the high confusability condition.

3.4.3 Summary

When the amount of communication is restricted, we see a qualitatively different pattern

in how communication channels are affected by confusability and dimensionality. Verbal

communication is more robust when it comes to ensuring that at least some useful informa-

tion is communicated. The most pronounced difference is the way in which communication

channels react to changes in stimulus dimensionality: verbal communication is unaffected by

this factor, while exemplar-based communication becomes problematic. Specifically, under

high stimulus dimensionality, there is a high risk that exemplar-based communication will

fail entirely.

This effect of dimensionality on communication effectiveness presents an interesting contrast

with previous experiments. In the first two experiments, stimuli dimensionality did not

affect student accuracy, but affected communication volume (in the first experiment). Now,

when communication volume is fixed, we see the effect on accuracy, which supports the idea

that the influence of irrelevant dimensions can be compensated by increasing communication

volume. We also see that under a restricted volume scenario, stimuli dimensionality affects

exemplar-based communication more than verbal communication.
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3.5 Discussion

Historically, there has been a number of substantial differences between how category learning

looks in a typical Cognitive Science experiment and how it looks in real life. In other words,

category learning research often struggles with ecological validity. In recent years, however,

there has been a shift towards more realistic category learning experiments. Thus, realistic

stimuli are now used more often (Nosofsky et al., 2017; Rosedahl and Ashby, 2018). Similarly,

more attention is paid towards studying category learning in pedagogical settings (Shafto

et al., 2014), where people acquire knowledge from knowledgeable others, as opposed to

extracting knowledge from a neutral environment.

One major discrepancy still remains, however: in real life, language plays an indispensable

role in aiding knowledge transmission, but there is little research on language as a means

for category communication. To bridge this gap, we conducted three experiments studying

verbal, exemplar-based, and mixed-channel category communication. We were especially

interested in the differences between these modes of communication.

One prominent result present in all three experiments is the general robustness of pedagogical

communication. Teachers were able to successfully communicate their knowledge in all con-

ditions, even when communication volume was severely restricted. This result expands two

previous lines of research. On the one hand, Avrahami et al. (1997) and Shafto et al. (2014)

showed the benefits of learning categories through exemplars generated in a pedagogical,

rather than random fashion. At the same time, Chopra et al. (2019) showed that verbal cat-

egory communication can be effective (students get accuracy close to that of their teachers),

but provided no direct comparison with exemplar-based pedagogical communication. Our

results are the first to directly compare exemplar-based and verbal pedagogical communica-

tion and to establish that when communication volume is not restricted (Experiments 1 and

2), these two modes of pedagogical communication result in near-equivalent performance.
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Another important universal result that we observed is superior student performance under

mixed communication (when teachers were allowed to communicate both verbally and by

generating exemplars). Although, as in the previous studies, performance was relatively high

for isolated verbal and exemplar-based channels, the communication process was by no means

perfect: students generally performed worse than their teachers. This gap in performance

between teachers and students was, however, smaller when mixed communication was used.

In other words, communication was most successful when teachers used both exemplar-based

and verbal communication.

We see two potential reasons for the advantage of mixed communication. On the one hand,

it is possible that not all knowledge can be reliably transferred via isolated channels, hence

when communication is restricted to a single channel (verbal or exemplar-based), some in-

formation is lost. On the other hand, people generate more materials overall in the mixed

condition (compared to isolated channels); therefore, it may be that teachers communicate

more successfully in the mixed condition simply because of higher communication volume.

The latter seems less likely for two reasons. First, when controlling for condition, we observed

no evidence that higher communication volume leads to higher student accuracy. That is,

more materials is not always better. Second, communication volume in Experiments 1 and

2 was not restricted, i.e. teachers were free to generate more materials in isolated channels,

but apparently did not believe that doing so would help their students. Overall, it seems

most likely that mixed communication is advantageous because verbal and exemplar-based

communication are tailored to different aspects of category knowledge. Previously, it had

been shown that verbal descriptions can help category learning when explicitly linked to

specific regions/dimensions of the stimulus (Miyatsu et al., 2019). We expand this result by

showing that a mixture of verbal and exemplar-based communication generally outperforms

communication via isolated channels.

Contrary to our initial expectations, Experiments 1 and 2 did not show any qualitative differ-
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ences between verbal and exemplar-based channels; such differences only became apparent

in Experiment 3, where communication volume was heavily restricted. As hypothesised,

stimulus dimensionality negatively affected exemplar-based communication, but had no in-

fluence on verbal communication. This supports the idea that language may play a role

in dimensionality reduction when teaching categories. At the same time, exemplar-based

communication was not more robust against stimulus confusability. Overall, verbal com-

munication was more robust against both confusability and stimuli dimensionality when

it comes to the probability of successful communication. The verbal channel seems to be

tailored towards ensuring that at least the gist of category structure is communicated.

One pressing question is why the qualitative differences between verbal and exemplar-based

communication were only present in the third experiment. We believe that the likely answer

is that teachers employ a number of adaptive strategies to counteract the study interventions,

especially when communication volume is not restricted. Specifically, we observe that teach-

ers adapt both the content and the volume of their messages depending on the conditions,

thus compensating the difficulties in communication.

We believe that in order to provide a deeper theoretical account of the observed differences

between verbal and exemplar-based communication, it is necessary to develop a computa-

tional model of the process. In this paper, we only aimed to provide empirical support for the

presence of qualitative difference between the channels, and gain a high-level understanding

of what these differences are. Although developing a computational model is outside of the

scope of this paper, we would like to mention a few directions that could provide a starting

point for such modeling. One would be to build upon a prototype that was suggested in

(Moskvichev et al., 2019); the authors expanded the model by Shafto et al. (2014) by adding

a high-level account of verbal communication. That model aims to capture which categories,

generally, are better suited for verbal communication, but does not make any predictions

about specific words that participants might use. An alternative approach would be to de-
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velop a more explicit model of category learning from language that would be capable of

learning categories from natural language texts. Such prospects become realistic due to the

advance of neural Natural Language Processing architectures (Radford et al., 2019) that,

after pre-training on a large corpus, can be fine-tuned to novel tasks with relatively small

amounts of data (Malte and Ratadiya, 2019) and can be adapted to model learning after the

initial training stage is over (Moskvichev and Liu, 2021; Hutchins et al., 2022a).

Our study has a number of limitations that are important to mention. The most substantial

limitation is the narrow range of category structures we considered; in Experiments 2 and

3, we focused on a family of simple one-dimensional rules. In the first experiment, we also

used a two-dimensional rule, but again, with a very simple structure (a conjunction of two

one-dimensional rules). Such rules may be better suited for language-based communication

than, for example, information integration category structures (Ashby et al., 1998; Ashby

and Maddox, 2005; Minda and Miles, 2010). Although such simplifications were necessary

to keep the scope of the study manageable, we believe that in the future, it is important to

expand the range of category structures. That will allow us to better understand the benefits

and limitations of different modes of pedagogical communication in category-learning.

Another limitation is that we do not collect field data on the frequency of verbal category

communication in real life situations (e.g. when a mother teaches a new concept to her

child, or when a teacher presents new material). We do see that when mixed (verbal and

exemplar-based) communication is allowed, teachers do use both communication channels,

showing that people often choose to communicate categories verbally, at least in a laboratory

setting. Nevertheless, we believe that collecting more naturalistic data on category teaching

behavior would be highly beneficial and should be done in the future.
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3.6 Conclusion

There has been a push for studying category learning in situations with more realistic and

higher-dimensional stimuli, as well as in pedagogical (teacher-student) rather than neutral

(environment-student) scenarios. Building upon the previous results, our study makes the

next step by focusing on language-based category communication, which is common in day-

to-day category communication, but is rarely studied.

Theoretically, we establish a number of ways in which teachers adjust the content of their

messages in response to changes in category structures. We also see that verbal and exemplar-

based communication may be tailored towards slightly different situations, with verbal com-

munication being better suited for quick communication of the gist of the category knowledge.

On the practical side, our results provide a controlled illustration of the importance of using

both verbal explanations and examples when sharing knowledge in a pedagogical setting.

We believe that our methodology can be expanded to study pedagogical communication

in a wider range of conditions. This may provide a viable alternative for field studies of

pedagogical methods, which are notoriously difficult to execute and are often associated

with ethical conflicts (when two groups of students are separated to receive different types

of instruction, one of which is not yet proven to be effective).

We hope that the methodology that we developed and the results that we obtained will serve

as a foundation for further research on the role of language in category communication, and,

more generally, in understanding how humans share knowledge via language.
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Chapter 4

Algorithmic and Architectural solutions

for learning through language

In Chapter 3 we saw that humans readily use language to communicate their category knowl-

edge. Unfortunately, modern AI architectures are lagging behind humans in their ability to

learn from language, and one might argue that modern NLP models are architecturally unfit

for the task. In this chapter I1 propose an architecture and a training regime that, taken

together, can bring us closer to modeling lifelong learning from language. It is important to

clarify that I do not claim to develop a fully realized system: rather, I aim to analyse the

types of operations that learning from language requires and develop a general architecture

and a training procedure that can allow to learn such operations. At present, I test the

system on general sequence processing tasks that share a number of properties with learning

from language, rather than on natural language.

In §4.1 I discuss the intuitive requirements that modeling learning from language poses.
1Much of this chapter is based on my collaboration with James Liu. I use “I” or “we” depending on what

seems appropriate in the context. Please see the overview chapter (Chapter 1) for detail on our relative
contributions.
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Then, in §4.2 I describe and formalize a problem setting consistent with the task of learning

from language, although more general. In the sections §4.3 and §4.4 I propose a transformer-

based architecture and a training algorithm that allow to approach the problem in a practical

manner; I also provide a theoretical justification for the training procedure. Lastly, in §4.5

I describe a number of simple experiments testing the algorithm and the architecture.

4.1 General Architectural Considerations

Although the goal of creating a fully fleshed learning from language system is still distant,

it may be useful to think of what are the general properties that such a system should ex-

hibit. I believe that we can identify at least two requirements for any architecture capable

of learning from language 1) the architecture should be suitable for processing natural lan-

guage inputs 2) the architecture should allow for long-term changes in behaviour based on

incoming instructions. The first requirement is self-evident, while the second is necessary

to capture the immediacy and long-lasting effects of language-based learning. For example,

if somebody unfamiliar with the word “ouroboros” were to hear “ouroboros is an ancient

symbol depicting a serpent or dragon eating its own tail” (Wikipedia contributors, 2022),

they would immediately be able to apply this concept in new circumstances, as well as to

retain their “ouroboros” concept knowledge, potentially for the rest of their lives.

These two requirements are, however, in conflict. Indeed, most modern NLP architectures

are transformer-based (Radford et al., 2019; Vaswani et al., 2017), but a traditional trans-

former architecture has no recurrent or persistent memory component. Without such a

component, long-term learning based on linguistic inputs becomes architecturally impossible

since information retention is limited by the model’s context window size.

In other words, at application time, there is no mechanism for long-term changes in the
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model’s knowledge or behaviour based on linguistic inputs. Most models can process a few

paragraphs of text and perform the task they were trained for, such as question answering,

summarisation, named entity recognition, and so on. Unfortunately, however, they cannot

retain knowledge between application-time instances. For example, summarising a Wikipedia

article about World War II has no effect on the model’s ability to summarise related articles

in the future.

In contrast, when humans process natural language, they continuously learn from it. Reading

a book or an article, as well as having a meaningful conversation with a friend may change

our views on a wide variety of topics. These views, in turn, directly affect our personal and

professional decisions. Thus, in humans, processing natural language is tightly bound to the

problem of adjusting one’s beliefs about the world, and can have a lasting impact on one’s

behaviour.

What complicates matters is that due to the large size of transformer models, adding per-

sistent world representations through recurrence becomes problematic: Backpropagation

Through Time (Werbos, 1990) can not be used practically due to memory requirements,

while Truncated Backpropagation Through Time (TBTT) lacks the theoretical guarantees

and is known to be unstable.

Overall, state of the art NLP models grow larger and larger, are predominantly transformer-

based and usually2 don’t have a recurrent state representation. At the same time, some form

of recurrence seems necessary or, at least, highly desirable in order to model lifelong learning

from language.

I propose a two-component solution to introduce recurrence into transformer architectures
2In this context it is important to mention a number of recently proposed alternative approaches (Kasai

et al., 2021; Hutchins et al., 2022b; Rae et al., 2019). In most cases, these approaches may be seen as com-
plementary to the ideas described further in the chapter in the sense that they can be potentially combined
for mutual benefit. Moreover, their presence illustrates that introducing recurrence into transformers may
be relevant for reasons beyond that of modeling learning from language.
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in a practical way, in order to make the architecture more suitable for modeling lifelong-

learning from language. The first component is a new training procedure called Thorough

Training. The procedure allows to reliably train recurrent models with only one-step gradient

propagation (an extreme case of TBPTT). This allows the model to be orders of magnitude

larger than if we were to use BPTT, making it possible to train or fine-tune architectures

comparable in size with those used in modern NLP applications. In section 4.4, I provide

a mathematical justification of the approach. The second component is a modification of

the transformer architecture that introduces recurrence and persistent world representations

into the model. Training this modified architecture only becomes practical thanks to the

Thorough Training approach.

4.2 Problem setting

In this section I formalize the problem. The problem formulation that I will use is consistent

with that of modeling learning from language, but is more general in that it does not assume

that inputs are linguistic. Thus, we will treat the problem of learning from language from

a more general perspective of modeling the evolution of a world state, where two sources of

information are present: 1) – World dynamics, 2) – External instructions. Additionally,

I will assume that different facts about the world may become relevant (queried) at any given

time.

Intuitively, 1) refers to changes that naturally follow from what the model knows about

the world. For example, if the model is deployed as an NLP-based house assistant, it may

know that every weekday, kids go to school. Therefore, when the weekend is over, a model

should update its world state representation, so that the question (query) “where are the

kids” results in the answer “at school”.
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On the other hand, 2) reflects the intuition that certain pieces of information cannot be

realistically predicted within the scope of the model’s knowledge of the world. Continuing

the above example, one of the kids may get a sore tooth and go to the dentist instead of

school. A reasonable house assistant system needs to be able to meaningfully incorporate

such information into the world state (and to update its answer to queries like “where are

the kids?” and “how much money do we owe to the insurance company?”).

Other external world state updates may also reflect setting personal information (getting to

know the family members, their tastes and preferences), changes in personal preferences (e.g.

somebody wants to stop eating fast food), changes in one’s occupation, moving to another

house, and so on. While these events do not come out of nowhere and, on some level, may

be predicted, their causes are out of the model’s scope, and thus can be treated as arbitrary.

A non-linguistic example of the same problem type could be tracking a state of a bank ac-

count, with inputs being types of operations (taking a loan, withdrawing/depositing money,

etc.), which can be encoded in a non-linguistic way. At every stage, different types of in-

formation may become relevant, e.g. “what is the total debt”, “what is the current account

balance”, or “what is the expected total the next week” which again, can all be encoded

non-linguistically.

4.2.1 Formal setup

Our formal approach is built around the notion of a world state trajectory. A world

state trajectory W (or simply a world) is an abstract entity with two important properties.

First, it is indexed by time. Thus, Wt represents a world state at time t (time can be discrete

or continuous, depending on the application). We will denote the space of all possible Wt

as W . Second, world states support the information extraction operation the we define

below.
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Abstract entity Representation (if dif-
ferent)

Interpretation

W World trajectory
Wt ∈ W wt ∈ Rn World state
q A query
v An instruction
Q

(i)
t = {qk}i, Q(i)

t ∈ Q Queries for the world i at
time t

I
(i)
t = {vk}i, I(i)t ∈ I Instructions for the world i

at time t

fε : W ×Q → {0, 1} f̂ε : W ×Q → [0, 1] Extractor function
fδ : W × I∗ → W f̂δ : W × I∗ → W Updater function

Table 4.1: Notation summary. For cases where representation is the same as the abstract
entity notation, it should be clear from context if we speak about a representation (e.g.
query embedding versus an abstract query) or an abstract object. The I∗ notation denotes
a sequence of finite instruction sets.

Let Q be the space of all possible queries (statements about the world that may be true or

false). For any query q ∈ Q, the extractor function fε(Wt, q) represents a binary answer

to this query (whether or not the query holds in the world W at the moment of time t).

When the query is provided along with its answer, it is an instruction, i.e. an instruction

v for a world W at time t is a pair (fε(Wt, q), q).

It may happen that more than one piece of information becomes available or relevant at a

given time, therefore it will be more convenient to think of queries and instruction as coming

in sets: Q = {q1, q2, q3, ...} and I = {v1, v2, v3, ...}.

In the “house assistant” example, the instruction sets could be I0 = {(True,The house owner’s name is John),

(True, John broke up with his girlfriend)}, and I1year = {(True, John is still single)}. In

this example, a reasonable model should answer “no” to the query q1year = (John has a wife).

The notation is summarized in Table 4.1.

Using the definitions above, we can now formulate the problem. At any time, we want to

be able to provide answers to all possible queries based on previously received instructions.
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Formally, we are given a world W and a current time t together with a history instructions

received before t: It′ = {(fε(Wt′ , q
(k)), q(k))}, k ∈ {1...Kt′}, for t′ < t. The goal is to compute

the value fε(Wt, q) for all q ∈ Qt (all possible queries at time t).

Of course, in the way it is stated above, the problem is impossible to solve, as it could

happen that instructions on step one are not sufficient to answer some of the queries that

could occur on step two. Coming back to the personal assistant example, if the model is

given “John” and “Mary” as its owners’ names, it still won’t know the names of its owners’

parents. Naturally, the best we could ask of a model is to approximate the probabilities of

different answers.

To make the model amenable to such approximation, we assume that the worlds (world

trajectories) and associated instructions come from some probability distribution PW,I . We

then define the updater function fδ : W ×I∗ → P(W) as P (Wt+1|Wt, It+1), where P(W)

denotes the space of probability distributions over world states. In other words, the updater

function outputs a distribution of world states at time t+1, given a previous state and a set

of incoming instructions at time t.

In practice, the problem then comes down to approximating (learning) the updater and

extractor functions given samples of world trajectories (that is, samples of instructions and

queries at different steps).

Putting notation in context

The problem described above is highly general. Many existing models can be interpreted in

our notation. For example, traditional autoregressive language models can be interpreted as

receiving a single instruction (True, “the word at position t is x”) on each step, and updating

the world state representation (auto-regressive hidden state) accordingly. Predicting the

next word from a hidden state is equivalent to providing answers to all possible queries in
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the form “the word at position t + 1 is x”, where x ranges over all words in the vocabulary.

Time in this case runs from 1 (the first word) to n (sentence length).

In contrast, transformer language models (Vaswani et al., 2017) can be seen as receiving all

instructions and queries at a single time-step. There is no recurrent world state representa-

tion to update, so in our notation, a vanilla transformer architecture has only one processing

time-step. The context representation is created from the set of incoming instructions (all

in the form of “the word at position k is x”), is used to answer all queries (e.g. “the masked

word at position n is x”), and then discarded.

In this chapter, I focus on problems that have many processing steps (as in recurrent models)

as well as many instructions and queries per step (as is usually done with transformer-based

models). The former ensures that we can work with sequences of arbitrary length, while the

latter allows us to provide dense supervision on every step, training the model to properly

update its beliefs about the world (more on that in §4.4).

4.3 Model structure

In this section I describe the general structure of the model we used for the problem described

above. For now, I omit implementation details, and only provide a template for how a model

that learns from language could look like, identifying the main components that such a model

should have3. The structure is illustrated in Figure 4.1.

The model performs two types of operations on world states: querying, and updating. In the

case of querying, the model receives a world state embedding wt and a query set q. Each

query encodes a specific inquiry about the state of the world; in the house assistant example

above, a query may encode a question “Is John at home?” or “Does John has anything
3It is important to mention that although I aimed for the structure to be general, I do not argue that

every architecture approaching learning from language must have this exact layout.
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Figure 4.1: Updater-Extractor Architecture. The notation is introduced in the subsec-
tion 4.2.1. The dashed arrow indicates that no gradient is passed through the connection.
The instructions and world state representation at time t−1 are passed to the updater which
outputs a new world state representation for time t. This updated representation is then
queried via the Extractor and the answers are compared to the ground truth. The gradient
is not propagated through wt−1, hence there is no need to store previous activations as in
(Werbos, 1990) or similar algorithms.

planned for the evening?”. Given a query, the model f̂ε(wt, q) needs to approximate the true

answer fε(Wt, q). The part of the model responsible for the query processing is called the

Extractor. The Extractor works in tandem with the Updater which is described below.

In the updating operation, the model needs to process a set of instructions and incorporate

them meaningfully into a world state representation wt, obtaining wt+1, while also accounting

for the natural world state dynamics. The part of the model responsible for this is called the

Updater, as its role is analogous to the updater function fδ introduced in subsection 4.2.1.

4.3.1 Architectural decisions

The general model architecture described in the previous section can be implemented in

different ways. For example, the Updater on figure Figure 4.1 can be as simple as a single

matrix (as in a vanilla RNN), or as complicated as a transformer network. In our experiments,
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we touch upon both of these extremes. In this section, I describe the transformer-based

recurrent architecture that we used in the more challenging problems.

Representing world states: We split a fixed-length world state vector representation into

a sequence of tokens with positional embeddings. This allows the world state to be passed

into the Updater and Extractor directly, and lets the model to split information between

different tokens.

One important thing to clarify is that although the representation we use is fixed-length,

it does not automatically make it inferior to that of a traditional transformer architecture.

One often quoted advantage of transformer architectures is the absence of fixed-length rep-

resentations, but this point is much less clear than it may seem at first. Firstly, in practice,

representations that transformers create are limited to the number of elements equal to con-

text window length × token size. Thus, although the representation length is technically

variable, it still has an upper limit. Moreover, in practice, for many classification and trans-

fer learning tasks, the representation is in any case collapsed into a fixed-size vector ([CLS]

token).

The second consideration worth mentioning is that a fixed-length representation could still

provide a basis for lifelong language-based learning. Not all worlds require infinite capacity

representations; for a simple “light-switch” world, a complete world state representation

would take exactly one bit of storage. We don’t know how large the representation needs to

be in order for the model to function as, for example, a housing assistant, but we know that

it can’t be infinite (since even humans, who can function as housing assistants don’t have

infinite-sized brains). The capacity of the representation we use can be adjusted according

to the demands of the task. Moreover, sparse representations and dynamic expansion can be

potentially added to the model if the capacity of the representation becomes the performance

bottleneck.
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Overall, we believe that 1) the fixed-length representation does not automatically disqualify

the model from achieving its stated goals 2) if necessary, the model can be modified to work

with dynamic memory structures, although I don’t explore this topic further in my thesis.

Representing the Extractor and the Updater: The Extractor and Updater modules are

implemented as Transformers (Vaswani et al., 2017). The Updater is a transformer decoder

with the world state as input and the instructions as context. I.e., the world state tokens

use self-attention with themselves, and cross-attention with the instructions. In contrast,

the Extractor is a transformer decoder with queries as input and the world state as context.

The decoder processes many queries in parallel, but we disable self-attention between queries

(since queries are independent of each other).

Representing queries and instructions: Each query and instruction is represented as a

fixed-sized vector (embedding). The way in which such embeddings are constructed is task-

dependent. For example, if the task uses a knowledge-graph format, we can concatenate

the embeddings of the source and target entities, together with a relation embedding (e.g.

(Nickel et al., 2011)). NLP applications may use sentence or paragraph embeddings from a

pre-trained language model, such as BERT (Devlin et al., 2018b).

4.4 Inductive World State Representations and Thorough

Training

Knowledge internalization eliminates the need for long gradient pathways. It

seems intuitive that for any recurrent model, if there is a gap between when the information

is introduced and when it is first used, then keeping the gradients flowing through the gap is

necessary. It creates a conflict; on the one hand, recurrence is highly desirable to model long-

lasting learning from language, while the other hand, training Transformer-sized recurrent
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models is computationally prohibiting.

However, it turns out that if we can ensure that the model internalizes all relevant information

into its world state representation, then the need for keeping gradients between steps becomes

less pressing. We call such representations inductive.

Since an inductive representation contains all relevant information for the task, it becomes

reasonable to train the model on individual steps from the sequence, as opposed to full

sequences. This greatly reduces the memory needed, and resolves the problem of explod-

ing/vanishing gradients.

A natural way to ensure that the model incorporates all important information into the world

state is to extensively query the world state representation on every step, making sure that

no potentially useful information is lost. The architecture and the training procedure that

we propose are designed to support such querying. The next section provides a theoretical

background for our approach.

4.4.1 Inductive World State Representations: Theory

In this section, we formalize the intuitions described above. Before introducing the result,

however, we need a few additional definitions.

First, a query qt′ is a recall query for an instruction vt (t ≤ t′) if P ({fε(q,Wt) == True}|I1 . . . It\

vt . . . I
′
t) = 0 and P ({fε(q,Wt) == True}|I1 . . . It . . . I ′t) = 1, for any instruction history s.t.

∃t : vt ∈ It. In other words, the query is a recall query for an instruction if its answer is

determined by whether or not the instruction was provided at an earlier step. A simple

real-life example could be qt = “Didn’t I tell you to do your homework an hour ago?”, which

is a recall query for an instruction vt−1hour = (“You must do your homework now”, True).
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Next, we define a thorough query distribution. We call a query distribution thorough

if for all instruction sequences I with nonzero probability, for all times t, for all individual

instructions vt, ∀t′ ≥ t, there is a nonzero probability of sampling a recall query qt′ for the

instruction vt. Intuitively, it means that all incoming information may turn out to be crucial

at any point of time in the future. It is worth mentioning that this condition is not as

restrictive as it might seem. Indeed, since we are free to interpret what an individual query

is, one may think of conjunctions of queries as belonging to the query space as well. Then

as long as for any possible instruction there is a combination of questions that depends on

this instruction being provided, the condition will be satisfied.

Lastly, we need to define the notions of stepwise-optimal and sequence-optimal models.

Consider a distribution of worls and instructions PW,I . When we pass instructions I1 . . . It−1

through a model, we also obtain a distribution over world state representations P (wt) at any

time t.

A model is stepwise-optimal if ∀W, I ∼ PW,I ,∀qt such that the probability of sampling qt

is positive, P (qt = True|wt) = P (qt = True|wt−1, It), where wt = f̂δ(wt−1, It). That is, at

every step, the model optimally uses all information passed through incoming instructions

at time t as well as any information potentially coming from previous steps through wt−1.

A sequence-optimal model is a model such that ∀W, I ∼ PW,I , ∀t > 0,∀qt such that the

probability of sampling qt is positive, P (qt = True|wt) = P (qt = True|I1 . . . It). In other

words, it is a globally optimal model that uses all incoming information and stores all relevant

information in the world state representation.

Note that these two conditions only speak about the updater part of the model, as it is the

most crucial part of the model responsible for incorporating incoming information and world

dynamics into the world state. An optimal extractor is such that f̂ε(wt, q) = P (q = True|wt)

everywhere.
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With these definitions, we can formulate the result that will provide theoretical justification

for our training procedure.

Lemma 4.1 (thorough querying). Under thorough querying, any stepwise-optimal model is

also sequence-optimal.

The full proof is given in Appendix E. The main idea is that since the model may have to

re-use incoming instructions at any moment, it is incentivised by stepwise(local)-optimality

to keep all relevant information in the world state representation. Then, since all useful

information always remains available at any local step, a locally optimal model becomes

globally optimal as well.

Note that the lemma does not hold without the thorough querying assumption. For example,

if we provide one bit of information on step 1 and ask to recall it on step 3, with no queries

using this information on steps 1-2, a model that completely ignores the first input and

outputs wt = 0,∀t is stepwise-optimal, but not sequence-optimal.

Theory consequences Lemma 4.1 allows us to focus on making the model optimal on

single steps (which can be done via regular back-propagation), which makes it possible to

train large-scale recurrent transformer models. The result guarantees that, as long as we

organize a thorough training schedule, if we achieve stepwise-local optimality, the model will

also be optimal globally. At present, I do not provide a formal treatment of the behaviour

of near-optimal models, but it is reasonable to expect the model to gradually come closer

to global optimality as it approaches stepwise local optimality, as opposed to making an

abrupt jump in global performance at the moment when true local optimality is achieved.

This intuition is strongly supported by the experiments reported in the following sections.

That being said, I hope that future research will provide a formal analysis and performance

bounds for stepwise near-optimal models.
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On a conceptual level, the most important takeaway from this theoretical result is that we

can solve some of the technical problems (e.g. exploding gradients / memory limitations)

by changing the way we structure training and organize our data. The Thorough Training

approach allows to teach models to work with long sequences not by providing many examples

of long sequences, but by providing detailed examples of one-step transitions, teaching the

model to learn all it can from every interaction with incoming data.

4.4.2 Thorough Training algorithm: putting theory to practice

The procedure directly mirrors the theory; the pseudocode is provided in algorithm 1. The

algorithm is similar to an extreme case of TBTT, but there is a crucial difference: tradi-

tionally, TBTT is applied to sequence-to-sequence models, which only ask one query at each

step. The key idea behind Thorough Training is that at each step, it should be possible

to ask multiple queries, not necessarily bound to the latest provided instruction. Having

multiple queries on each step allows us to freely add recall queries, satisfying the thorough

querying condition. The practical importance of this difference will be empirically illustrated

in subsection 4.5.1.

In practice, one should verify whether the querying schedule is indeed thorough based on the

nature of the problem. Although one can always construct artificial recall queries (“was the

instruction q provided n steps ago”), obtaining the theoretical guarantees, for most tasks,

such querying is superfluous. For example, it often irrelevant when exactly an instruction

was provided and some instructions become irrelevant when an overwriting instruction is

provided. Overall, there is no need to ask recall queries about aspects of the world that one

knows are not important.

For example, if one is to model the dynamics of a binary “lightswitch” world (where there is

only one switch with two possible positions), one can construct a thorough querying schedule
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without thinking, by having queries about the whole history of instructions (“was the switch

on at time 0?”, “was the switch on at time 1”, etc.). Alternatively, since the last provided

instruction completely determines the state of the world, one can simply make sure that

there is always a chance to query the last available instruction, which would be much easier

for the model to learn. In this sense, although in theory the algorithm allows for “plug and

play” application, in practice it is beneficial to consider the nature of the problem when

designing the querying schedule.

for N outer cycles do
Data: sample K world trajectories W (1), . . . ,W (K), each of length T

Initialize K world state representations w
(1)
0 , w

(2)
0 ...w

(K)
0 ;

for t in 1 . . . T do

for k in 1 . . . K do

Sample instructions I
(k)
t valid at time t.

Obtain new world state representations

wk
t = f̂δ(STOP_GRADIENT (wk

t−1), It).

Sample queries Qk
t , obtain model predictions Ŷ = f̂ε(w

(k)
t , Qk

t ).

Compute the loss L(Ŷ , fε(W
(k)
t , Qk

t )).

Backpropagate the loss gradients.

end

if t % update_freq = 0 then
Make a gradient step, zero accumulated gradients

end

end
Algorithm 1: Training procedure pseudocode
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4.5 Experiments

4.5.1 Experiment 1: LSTM recall

Although I believe that introducing recurrence into modern transformer architectures is the

most promising application of the Thorough Training algorithm, I decided to start with a

simpler task to study the properties of the algorithm in a more manageable scenario. Hence,

this first experiment tested the theory developed in §4.4.1 on a simple single-layer LSTM

architecture (Hochreiter and Schmidhuber, 1997).

To re-interpret the LSTM in our notation, we can say that the Extractor is represented by a

single matrix, mapping the hidden state to the distribution over output tokens. The Updater

comprises all other parts of the network responsible for updating the hidden state and the cell

states. Crucially, this architecture can not query the Extractor without passing the query

itself through the world state. In other words, the question that the model needs to answer

has to be encoded in the world state representation along with the actual information about

the world. This architectural limitation is common to most sequence-to-sequence models.

Unfortunately, for such models, querying the world state necessarily changes it.

In the next few sections, I first describe an insightful failure case (in that scenario, thorough

querying condition is violated because of the architectural limitation mentioned in the previ-

ous paragraph). Then I show how a simple fix can better align the LSTM architecture with

that of Updater-Extractor, and demonstrate that this change indeed dramatically improves

the model’s performance. Specifically, I will consider two successful scenarios, one of which

exactly satisfies the thorough query condition, while the other satisfies its weaker version,

although still resulting in optimal performance.
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Figure 4.2: LSTM interpreted as Updater-Extractor. Compared to the architecture pre-
sented in Figure 4.1, the main difference is that the extractor does not receive queries, only
the world state; requests to generate an answer are treated as part of the state of the world.
Hence the world state (hidden state of the LSTM) needs to dedicate some of its capacity to
keep track of which information is currently requested.

Failure case (thorough querying violation) The task I used is extremely simple. We

have a vocabulary of K distinct tokens (one of them is a special RECALL token). The

model receives a sequence of tokens of length T . The token provided on the initial step is

the target token for the sequence (which can not be RECALL). On all steps, if the input

token is not RECALL, the model must repeat the input in its answer. If the input token is

RECALL, the model must output the token memorized on the first step. The last token is

always RECALL. For example, for an input sequence “4, 3, 6, RECALL, 3, RECALL”, the

correct output sequence is “4, 3, 6, 4, 3, 4”.

In the experiment, I used 10 different tokens and a sequence length of 12. I randomly

generated a sequence of numbers and then flipped input tokens in each position (except

the first) to RECALL with a probability of 0.3. The model was trained using AdamW

(Loshchilov and Hutter, 2017) with a batch size of 128, learning rate of 1e-4 and default

parameters otherwise. I used a standard Cross-Entropy loss function. The LSTM has the

hidden state dimension of 64.

The task is, of course, easily learned by an LSTM model with full BPTT training, but cutting

the gradients between different steps results in a complete failure; the model learns to copy
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the inputs, but performs at chance in the recall task.

This failure is highly insightful, as it shows the consequences of violating the thorough

querying assumptions when gradients are truncated. First, let’s discuss where the thorough

querying violation occurs. It occurs when the model receives any token other than RECALL

on any step after the first one. Indeed, in such cases, there is no (local) incentive for the

model to not forget the information about the hidden token. In traditional sequence-to-

sequence modeling, the set of queries is exactly the same on every step: {yt = A?, yt = B?,

yt = C?... }, i.e. “is the output token at time t equal to A/B/C/etc.”. Because of that,

for an instruction sequence 4, 6, after the instruction 6 is provided at the second timestep,

there is no dependence between the value of the number at the first timestep and the current

output. Therefore, the model is not incentivised to remember this information.

This illustrates the crucial difference between traditional sequence-to-sequence training and

our approach: in sequence-to-sequence training, the set of queries is rigid; the same queries

are answered on every step, and if a certain piece of information is not immediately relevant

given the incoming instructions (the input is not requesting it), there is no local incentive

to keep it in the world state representation. Thus, unless the representation is of infinite

capacity, non-thorough querying actively incentivises forgetting past information.

This negative result highlights another limitation of traditional sequence to sequence training:

the boundary between the instructions and queries is blurred. The inputs are used to both

provide information about the world and to request the necessary information out of the

network (like in our recall task). The absence of independent mechanisms for probing the

world state makes it difficult to investigate the model’s beliefs about the world or to explicitly

train it to change those beliefs. That is, the information about the consequences of any

incoming information must be spoon-fed, one element at the time, as there is usually only

one answer at any timestep.
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Overall, this negative result does not contradict our theory since the thorough querying

condition is not satisfied. On the contrary, it highlights the practical importance of the

result. Indeed, in Theorem 4.1, I did not try to show that thorough querying is a necessary

condition, and the negative result described above shows that it is often crucial in practice.

Modified LSTM success case In order to fully satisfy the thorough querying require-

ment, we need to disentangle providing instructions and querying, which requires a slight

modification to the architecture and to the data itself. Specifically, to satisfy the thorough

query condition, the hidden states that are generated should not be used to generate just

one answer (as in traditional sequence-to-sequence training), but should rather be queried

either about the target token, or about the current incoming token. Consequently, there is no

reason to have RECALL inputs in the data anymore, since querying is done independently.

I tried to achieve that with minimal changes to model architecture and capacity. To allow for

independent querying, instead of a linear mapping from the hidden state directly to output

tokens (as in traditional LSTM), I first concatenate the hidden state with the query encoding

and then pass the result through an MLP with one hidden layer (width 64) to obtain the

answer. There are only two different queries: “recall” and ”repeat”. Since in this case the

updater does not know what the hidden state is going to be queried about, it always remains

optimal to remember the target token (apart from encoding the current input).

The setting described above fully satisfies the thorough querying assumption. Consequently,

the TBPTT model quickly reaches ceiling performance.

Reminder noise success case An alternative way to reach ceiling performance is to

inject “reminder noise”. In this scenario, all model and training parameters remained the

same as in the vanilla LSTM failure case.
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Optimal performance is obtained by injecting reminder noise into the data. At any step,

with a fixed probability (I tested values 0.05 and 0.01), the correct answer is replaced with

the target token for the given sequence. The resulting data distribution does not strictly

satisfy the conditions of Lemma 4.1, but it is still never beneficial to forget the target to-

ken4. Consequently, though the data becomes noisier, the model reaches ceiling performance

(accuracy of 1 if we remove reminder noise at test time). This result, again, suggests that

the sufficient conditions in Lemma 4.1 can be weakened.

Simulating TBPTT Lastly, as an additional test, I varied the time at which the first

recall query (for the modified LSTM training case) or the reminder noise (for the second

approach) appeared in the dataset. As expected, performance dropped substantially as

the location of the first recall query was shifted away from the beginning of the sequence

(violating thorough querying). Moreover, oftentimes the model struggled to converge at all

and experienced rapid jumps in performance. This mirrors practical difficulties associated

with using TBPTT, and illustrates that even small periods of information “irrelevance” may

dramatically affect the model performance.

4.5.2 Experiment 2: World of Numbers

In the first experiment we tested our approach on a simple LSTM architecture and a very

simple toy problem. The “World of Numbers” experiment tackled a slightly more challenging

problem on which we tested our proposed Updater-Extractor architecture. Specifically, we

aimed to qualitatively investigate the model’s capacity to 1) follow instructions (incorporate

directly given incoming information into its world state) 2) extrapolate information given in

the form of direct instructions onto related facts, using its knowledge of world dynamics.
4The cross-entropy loss incentivises the model to keep at least some confidence allocated to the target

token, even if the input does not request it
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In this “World of Numbers” experiment, the world states were n-tuples of handwritten digit

images. The queries were in the form (e1, e2, r), where e1 and e2 represented pixel coordinates

and r represented the index of the image. For example, the query (14, 7, 3), requests the

pixel at x = 14, y = 7 from the third image in the n-tuple. We used a binarized version of

the MNIST dataset (LeCun et al., 1998) to obtain the images. This problem representation

mimics the structure of working with a knowledge graph: r corresponds to relation numbers,

and e1 and e2 denote different entities. Importantly, we don’t treat binary images as images,

but rather as sources of easily visualizable relational data.

The world dynamics were simple: at each timestep, the n-tuple was “semantically” rotated

forward. That is, if the initial tuple at t0 comprised images of digits 1, 2, 3, 4, and 5,

the tuple on the step t1 would comprise the (newly sampled) images of digits 2, 3, 4, 5,

and 6 (see Figure 4.3). Additionally, to model the situation when different relations are

highly intertwined, as we always sampled sequences of adjacent digits in ascending order

(for example, we can sample worlds 1, 2, 3 or 4, 5, 6, but not 1, 3, 5 or 1, 3, 2). This way

knowing the structure of the one relation (the first digit) gives a lot of information about

the rest.

During training, on every step, the updater was provided with information about some of the

pixel values and then the extractor was queried about the values of both seen and unseen

pixels5. To make the task more challenging, we only provided very limited information:

we sampled (uniformly at random) between 0 and 75 pixels out of 2352 (i.e. 282 · 3) as

instructions on every step after the first one. On the firs step, we provided 0-500 pixels.

Since the data that the model received was sparse, it had to rely on its knowledge of world

dynamics to make reasonable inferences. See Figure 4.4b for an illustration. Lastly, during
5In this experiment, the updater consisted of 4 transformer layers, with 2 heads, 1024 for the hidden

dimension of fully connected blocks, and 32 for the query/key/value dimensions. The extractor was the
same but only used 2 transformer layers, with an additional full-connected layer on top for the output. The
world state representation consisted of 8 tokens. The batch size is 128 and the model is trained for 50000
iterations, using Adam with a learning rate of 1e-3, which converges in around 5 hours on our hardware.
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(a) (b)

Figure 4.3: “World of numbers” problem setting. a) World state transition example. b) Providing
sparse information. Left column - true world. Middle - information given at step 1 (black pixels are not
shown to the model). Right - the model’s predictions about the world after only receiving the information
in the middle column. Since very little information was given, the model predicts generic shapes roughly
matching the inputs.

training, we advanced the model no more than eight times, and did not propagate gradients

between steps.

There is a number of reasons why I believe that despite its apparent simplicity, this problem

is a useful test-bed for our model. First, it allows to visualize whether the model makes com-

monsense inferences based on sparsely available information. Since the relation structure

between different entities has a visual interpretation, one can see at a glance what, seman-

tically, the model is doing. Second, the data has both general patterns (generic number

shapes and identities) and individual idiosyncrasies (the font/handwriting style in which a

digit is written). This mimics the type of situations we ultimately want to capture. Thus, if

we return to the housing assistant example, many relations are closely interconnected; e.g.

if a small child is known to be at a mall, it is almost certain that one of her parents will be

there two: that would be an example of a generic pattern the model might utilize in almost

any family. At the same time, knowing which specific store the family goes to may be an

example of an idiosyncratic behavior that the model will need to account for based on direct

instructions.

Our results indicate that the model achieves its stated goals. First, the model

quickly reaches ceiling performance when it comes to incorporating direct instructions. That
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(a) (b)

Figure 4.4: Trajectory stability. a) Top-true world state on step 1. Bottom-model beliefs on step
1, after 1500 out of 2352 pixels values are provided. Notice that the model captures each handwritten
digit style: for example, 1’s are tilted at different angles, reflecting the data. b) A world at t=50, where
again, all information is given on the first step, with no input afterwards. The model has no information
about specific digit instances, but knows (from step 1) about their identities. Therefore, the model predicts
generic digit shapes with correct identity. Notice that all digits having the same identity are reconstructed
identically. Notably, rolling a world, 10, 1000 or a 10000 steps forward with no input information results in
visually identical reconstruction, showing that the model retains its world state knowledge across apparently
arbitrary horizons.

is, the reconstruction accuracy for pixels directly provided to the model is 1.0. It then retains

the information for apparently arbitrary horizons (we trained the model on sequences of up

to eight steps, and tested on sequences on up to 10000, see Figure 4.4). Second, the model

learns to extrapolate from sparsely provided information, and, crucially, does so in a stable

way on sequences of arbitrary lengths, extending the training regime by several orders of

magnitude. For example, if no information is given to the model on the first step, and

only 0-5 pixels are revealed at each step afterwards, the model learns to integrate the clues,

converging on correct digit identities after approximately 100 steps. Similarly, if only one

relation is revealed to the model, it fills the gaps by reasonably extrapolating across relations.

Overall, we see that the proposed architecture indeed learns to learn from incoming informa-

tion and to integrate information across timesteps even though during training, no gradient

flow was allowed between timesteps. That being said, “World of Numbers" is still, of course,

a very simple task: if we ignore the differences in handwriting style, it has only ten funda-

mentally different world states (digit identities). The next experiment tested the model’s

capacity to work with worlds that has 264 semantically different world states.
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4.5.3 Experiment 3: Game of Life with interventions

The “world of numbers” experiment handles worlds with a relatively small number of possible

“semantic” world states (even though the actual images may vary greatly, in total, there are

only 10 different image classes). In this experiment, we test the model’s ability to handle

much more complex scenarios, where the space of possible world states is exponentially large

and requires modeling local entity-to-entity interactions between timesteps.

For this purpose, we created a Game of Life with interventions environment. In this

experiment, an 8 by 8 grid world evolved according to the rules of Conway’s Game of Life

(Adamatzky, 2010). Queries were in the form (x, y) requesting information about the state

(dead or alive) of the cell with corresponding coordinates at time t.

To test whether the model can handle external changes in the state of the world, we used

interventions: arbitrary (not predictable from world dynamics) instructions to change the

state of any specific cell. The model should be able to incorporate these interventions into

the world state and meaningfully propagate them forward in time.

We trained the model on sequences of lengths up to 5, without propagating gradients be-

tween steps6. This time, we provided full world state information on the first step and gave

a variable number instructions on every step afterwards. The model reached ceiling perfor-

mance, and as was the case with the World of Numbers task, the model was able to continue

updating the world state over an arbitrary number of steps during test time (we tested the

model by rolling the world up to 10000 steps, with no drop in performance).

To put these results in perspective, it may be useful to compare them to the toy dataset
6In this experiment, the updater consisted of 4 transformer layers, with 4 heads, 2048 for the hidden

dimension of fully connected blocks, and 256 for the query/key/value dimensions. The extractor was the
same but only used 2 transformer layers, with an additional fully-connected layer on top for the output. The
world state representation consisted of 32 tokens. The batch size was 256 and the model was trained for
60000 iterations, using Adam with a learning rate of 1e-4, which took about 3 days on an NVIDIA 1080Ti.
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results in Henaff et al. (2016). In that paper, the authors tracked a world state on a 10x10

grid with 2 agents, each of which had 4 possible states (facing top/down/left/right) and

could be located in any square. The agents also did not affect each other in any way. Thus,

the world had 16 · 104 < 28 possible states.

In contrast, game of life on an 8x8 grid has 264 possible initial states and involves learning non-

trivial agent interaction dynamics. In addition, interventions pose an additional challenge

as they require the model to break the natural world dynamics upon request.

The problem dynamics considered in Henaff et al. (2016) can be exhaustively learned even

by a very moderately sized network. In the Game of Life with interventions, exhaustively

memorizing 264 state transitions is not feasible, so the model has to internalize the rules in

order to perform well.

4.5.4 Experiment 4: Progressive Pathfinder

Although we obtained promising behaviour on three simulated tasks, it was still important

to check whether our model can show competitive performance on a problem known to be

challenging for modern transformer architectures. Do do so, we applied our model to the

Pathfinder task (Houtkamp and Roelfsema, 2010; Linsley et al., 2019). In that problem, an

image containing two dots and many dashed paths is given, and the task is to determine

whether two dots are connected (see Figure 4.5). The problem is known to be challenging:

for example, Tay et al. (2020) used the Pathfinder problem as a benchmark for testing the

long-range capabilities of transformer architecture variants.

To re-interpret the static problem to fit our sequential setting, we randomly group the pixels

into equally-sized chunks. At each time step, we feed a new chunk to the model, and the

model is then asked to provide the values of previously observed pixels, as well as to predict

99



Figure 4.5: Pathfinder challenge problem example. The task is to determine whether the big
dots lie on the same path (left) or on different paths (right). This task proved to be fairly
challenging for a number of models (Houtkamp and Roelfsema, 2010; Tay et al., 2020).

the class of the image instance.7

The results are provided in Table 4.2. As we can see, the model shows competitive per-

formance, showing that the training procedure that we developed is applicable not only for

simple toy tasks, but also for problems that are still challenging for modern architectures.

Notably, compared to the more standard transformer models tested in (Tay et al., 2020),

our model is more memory-efficient as it does not receive the entire image at once.

Unfortunately, when applied to Pathfinder XL, the model performs at chance (as all other

architectures tested in Tay et al. (2020). One advantage of our architecture is that it readily

allows to query the world state representation to understand what might have gone wrong.

What we noticed is that the model seems to struggle to precisely incorporate incoming

instructions in the sense that the newly introduced pixels bleeds into their neighbors. Based

on that, we believe that the universal failure Tay et al. (2020) observed may be related not to

memory or representation constraints, but simply to interpreting the inputs. We hypothesise

that positional embeddings that all tested architectures rely upon may not provide detailed

enough resolution, and that using some form of hierarchical encoding may be beneficial.

Overall, our last experiment shows that our architecture performs on par with other modern

architectures. It can serve as a way to reduce memory requirements during training, and
7In this experiment, both the updater and extractor consisted of 4 transformer layers, with 4 heads,

2048 for the hidden dimension of fully connected blocks, and 128 for the query/key/value dimensions; the
extractor had an additional fully-connected layer on top for the output. The world state consisted of 16
tokens. The model was trained for 130 epochs, using Adam with a learning rate of 3e-4 and a batch size of
64, which took about 2 days on one NVIDIA 1080Ti.
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Model Accuracy Model Accuracy Model Accuracy
Local Attention 66.63 Longformer 69.71 BigBird 74.87
Sinkhorn Trans. 67.45 Transformer 71.40 Linear Trans. 75.30
Reformer 68.50 Sparse Trans. 71.71 Linformer 76.34
Synthesizer 69.45 U-E (ours) 72.52 Performer 77.05

Table 4.2: Pathfinder Test Accuracy. All other model results are from Tay et al. (2020).

allows to introduce recurrence into transformer architectures without the usual perils of using

BPTT or TBPTT.

4.6 Discussion

Our theoretical results allow to use TBPTT in novel settings with new theoretical perfor-

mance guarantees. I believe that our result has broad implications, since the idea of focusing

on one-step predictions was often voiced before, but was usually rejected due to reasons

that we resolve in the present contribution. For example, in the domain of Reinforcement

Learning, next-step prediction was previously discussed but rejected (Gregor et al., 2019)

because of the concern that long-term dependencies may be irrelevant for short-term pre-

diction (this concern is resolved through thorough querying). Similarly, in the domain of

NLP, most works try to avoid situations requiring BPTT or TBPTT because of practical

issues (see, e.g. (Rae et al., 2019), section 3.2), lack of stability, and theoretical guarantees,

all of which are resolved in our paper. Overall, restructuring training to satisfy the

thorough querying assumption makes TBPTT practical, theoretically justified,

and empirically reliable.

We test our theoretical results both on a simple LSTM and on a modified transformer

architecture. Empirical results strongly support the theory, demonstrating that 1) strong

violations of sufficient conditions that we identified lead to TBPTT failures 2) when sufficient

conditions are only partially satisfied, high performance can still be achieved, suggesting that
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with further theoretical development, our sufficient conditions may be weakened 3) compet-

itive results on challenging long-horizon tasks can be obtained by applying our method to

transformer architectures, making our approach applicable in a wide range of circumstances.

There are three limitations of our approach. First, the data for our model must be

structured differently than in traditional sequence-to-sequence training. In some cases (as in

the Pathfinder problem), simple re-interpretation is sufficient and leads to good performance,

but in other cases (e.g. bAbI (Weston et al., 2015)) the dataset needs to be significantly

changed. Second, for the tasks that require rote memorization (such as Game of Life, where

knowing one fact (pixel activation) tells very little about whether or not other facts are true),

a very high knowledge retention rate is required. Otherwise, the model knowledge will quickly

deteriorate. We, therefore, believe that our approach is best suited for domains allowing for

rich common sense reasoning, where different pieces of information are highly entangled,

allowing the model to reconstruct forgotten knowledge from what it still remembers. Last,

although the model is developed to support language-based-learning and can perform the

types of operations that such an architecture needs to do, I did not directly apply it to

natural language tasks. The most challenging part of such an application is to develop a rich

enough natural language dataset from which the model could learn not only about internal

dynamics of language, but also ground it (though extensive querying) in the world dynamics

behind the language.
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Chapter 5

Conclusion

In this dissertation I made an attempt to advance our understanding of the problem of

learning from language, that is, how humans and machines could use language to acquire

and share knowledge. First, in Chapter 2, I gave a broad overview of how the problem

is understood in different disciplines. The review showed that elements of learning from

language are indirectly present in many subfields of Cognitive Science and AI, but that

language-based learning is rarely studied as an independent problem and is rarely directly

compared to other modes of learning. Additionally, I argued that recent developments in AI

and Cognitive Science open new opportunities to study language-based learning in a wide

range of circumstances.

Language-based category communication

In Chapter 3, I focused on the problem of language-based category communication and

learning. Category learning is an example of a deeply studied problem that often relies on

language in real life, but not in the lab. For example, if an art teacher were to explain how

to distinguish between the styles of artists A and B, most likely, the teacher would show
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a few works of each, accompanying the demonstration with a verbal commentary. Thus,

both exemplar-based (showing pictures) and verbal (explaining) channels would be used by

the teacher to share visual category knowledge with his or her students. In the laboratory

setting, however, only the exemplar-based channel is usually studied.

This apparent oversight is part of the larger problem of ecological validity in traditional

category learning studies. Historically, category learning experiments used simple low-

dimensional and often unrealistic stimuli, and focused on non-pedagogical category acquisi-

tion. Recently, however, the field overcame that trend, with more studies using realistic and

higher-dimensional stimuli (Nosofsky et al., 2017; Rosedahl and Ashby, 2018), and studying

category learning in pedagogical settings (Shafto et al., 2014). Nevertheless, the absence

verbal-based communication remained a problem.

In Chapter 3, I described a series of three behavioral studies of language-based category

communication, contrasting it with communicating category knowledge via examples. To

the best of my knowledge, it is the first study to directly compare these modes of category

communication. The goal was to establish an experimental paradigm and to identify initial

characteristics of language-based category communication, thus breaking a path for further

research in this direction.

Generally, I found that verbal category communication presents a viable alternative to teach-

ing from examples: when communication volume was unrestricted (i.e. teachers were allowed

to generate as many exemplars or words as they wanted), exemplar-based and verbal com-

munication resulted in equivalent performance. Combining both modes of communication,

however, was most effective. In restricted communication volume conditions, language-based

learning was more robust in the sense of ensuring that at least the gist of knowledge is trans-

ferred. The experiments also highlighted the flexibility inherent in verbal communication:

teachers adapted the volume and the content of their messages in systematic ways to coun-

teract study interventions. For example, when stimuli were perceptually close, teachers spent
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extra effort to formulate the precise boundary between the categories, creating new concepts

on the fly such as, for example, a shape “midway between a triangle and a square”.

One limitation of this part of my thesis is that to keep the experiments manageable, the

category structures I considered were rule-based and low-dimensional. In the future, it is

important to study whether language could be effectively used in other cases, e.g. to enhance

communication of “information-integration” (Ashby et al., 1998) categories that are tradi-

tionally thought to be incompatible with language. Despite this limitation, I believe that my

work may serve as a basis for further research into language-based category communication.

Language-based learning in modern NLP architectures

The work in Chapter 4 was motivated by a long-standing and, perhaps, an idealistic dream

of mine: to have a meaningful conversation with an AI within my lifetime. A meaningful

conversation may mean many things, but to me, change is key. To be meaningful, a con-

versation must change its participants, help them learn something about the world or about

themselves. Although simplistic, this requirement for change already poses an unsolvable

challenge for Transformer architectures (Vaswani et al., 2017), and, by extension, for mod-

ern Natural Language Processing (NLP) models, the overwhelming majority of which are

Transformer-based.

Despite the staggering successes of Transformer models in a wide variety of NLP applications,

they are fundamentally limited by their fixed-size context window and their lack of persistent

memory. Architecturally, transformer models have no way of learning anything new from

linguistic interactions after initial training. It means, for example, that a transformer-based

dialogue model discards everything except for the last ∼ 500 words, while a model trained to

summarize Wikipedia articles will never learn anything new from what it reads, forgetting

all previously read articles as soon as it begins to read another. One can say that modern
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NLP models suffer from the most severe anterograde amnesia, by design.

To remedy this issue, in Chapter 4, I proposed the “Updater-Extractor” architecture. The

architecture is Transformer-based, but includes a persistent world-state representation and is

explicitly trained to learn from incoming information. In other words, an NLP model based

on the proposed architecture will satisfy the change requirement I mentioned above.

Of course, training a recurrent transformer-based network using traditional Backpropagation

Through Time (BPTT) is computationally infeasible. Because of that, along with the ar-

chitecture, I proposed a “Thorough Training” procedure. The key idea behind the approach

is that instead of focusing on long sequences, we could focus on a single step, but do so

“thoroughly”, by extensively querying the model to ensure that it indeed learns to incor-

porate incoming information into its world state representation. The theoretical result in

Lemma 4.1 provides a theoretical basis for the approach. Specifically, it guarantees that if

we properly structure our data and training procedure, we can safely cut gradients between

recurrent steps, while still obtaining a globally optimal model. The experiments align with

the theory, while also suggesting that stronger theoretical results might hold as well.

The main limitation of this part of my work is that at present, I tested the model on simulated

tasks. The experiments showed that the method works, but applying it to real-world NLP

tasks would require additional effort, especially in data collection. I believe that the most

promising applications of the model include improving dialogue agents, creating models for

long narrative understanding (e.g. for book summarization), and developing personal NLP

assistants.
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Fin

In this thesis, I made two steps towards understanding learning from language, one in Cat-

egory Learning and one in AI. Although these steps were undoubtedly small, I believe that

they were important, and I hope that they will inspire others to make more steps in the

same direction.
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Appendix A

Study interface detail

Exemplar-based learning phase interface is illustrated on Figure A.1. The overall teaching

interface is illustrated on Figure A.2, with the interactive slider-based window for providing

examples is illustrated separately on Figure A.3.
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Figure A.1: Learning interface (study phase). All examples are presented at once (as seen
for category A on the left), and participants are free to zoom into any given example to
study it in detail (right). For teachers, there are always 15 examples randomly sampled for
each category, for students, the number of displayed examples and examples themselves are
generated by their respective teachers.
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Figure A.2: Teaching phase interface for the case of mixed communication. In verbal
and exemplar-based communication conditions, the interface was analogous, but with the
exemplar-based and verbal textbox removed, respectively. Text input is done via keyboard,
while examples are added via an interactive interface, illustrated on Figure A.3.
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Figure A.3: Slider interface that teachers used to create examples for their students. Each
slider controls one of the stimuli features (mouth size, dorsal fin size, tail fin size, belly color).
In the picture, feature 2 (dorsal fin) is set to its minimal value, hence the fin on the fish’s
back is almost entirely gone.
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Appendix B

Content analysis detail

Message type distribution across all experiments in Chapter 3 is given in Table B.1. One

can see that in the restricted volume condition (Experiment 3) some key message types

such as “Exemplars” and “Relative rule” remain as frequent as in the first two experiments.

At the same time, “Dimensionality reduction” and “Strategies” message types experience a

precipitous drop. This shows that, although highly frequent in Experiments 1 and 2, these

types are secondary and are often sacrificed when communication volume is restricted.

Table B.1: Frequency of different message types in teachers’ texts in all three experiments.

Experiment 1 Experiment 2 Experiment 3
Exemplars 74% 73 % 69%
Dimensionality Reduction 39 % 44 % 4 %
Relative rule 17 % 27 % 27%
Distribution 12% 18% 11%
Boundaries and Threshold 18 % 14 % 11%
Strategies 19% 24% 1%
Other 7% 7% 4%
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Appendix C

Bayesian model detail

Since the distribution of students’ accuracies in Experiment 3 (within specific conditions)

was bimodal, with one peak about 0.5 and the second peak higher. We needed to account

for that when analysing the data. Specifically, a binomial glm that we used in the first two

experiments was not appropriate anymore. A likely explanation for such a distribution is

that a student either succeeds in understanding the gist of the communicated message and

gets into the high-performing subgroup group, or fails to understand anything and performs

at chance. A Bayesian mixture model is a natural choice for statistical analysis of such data.

We modeled student performance in each condition as a mixture of two distributions: the

high-performing subgroup and the communication failure subgroup (performing at chance).

Thus, every condition had two variables associated with it: 1) Probability of successful

communication, denoted c. 2) Accuracy in the successful subgroup, i.e. the probability of

giving a correct answer in the case of successful communication, denoted a.

To write the model formally, we are going to use upper index to indicate communication

channel, the first lower index to specify dimensionality (high or low), and the second lower

index to specify confusability (high or low). For example, avhl denotes the accuracy in the
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successful subgroup in the case of verbal communication with high dimensionality and low

confusability. To estimate the overall effect of a given independent variable, we look at

the total difference between conditions corresponding to different levels of that variable. For

example, for the verbal channel, the effect of dimensionality on the accuracy of the successful

subgroup is measured as (avhh − avlh) + (avhl − avll).

The unsuccessful subgroup accuracy was fixed to 0.5 in all conditions, the successful subgroup

accuracy prior was uniform between 0.5 and 1 for all conditions, and the probability of

learning prior was uniform between 0 and 1.

The model was implemented in JAGS. The credible intervals reported in the paper are based

on 10000 MCMC iterations, with 4 chains and a 10000 burn-in period.
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Appendix D

Data availablity

All data and code reported in Chapter 3 are available via this OSF link
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Appendix E

Thorough Querying lemma proof

Assumptions, notation recap, and the lemma statement

We assume that there is a probability distribution over world trajectories, instructions, and

queries W, I,Q ∼ PW,I,Q. Sampled instructions I contain instruction sets for every step,

i.e. {I1, I2, I3 . . . In . . . }. We assume that the space of all possible instruction sequences is

countable (and therefore we must assume that we are working with sequences of finite length

or, for convenience, infinite sequences with redundant (repeating) tails).

Notation details for the proof. For convenience, we denote {I1...In} as I1...n. Addition-

ally, we use I1...n \ vt to denote {I1, . . . , It \ vt, . . . , In}. Q contains queries sampled for every

step. For simplicity, we assume that we only sample individual queries (as opposed to query

sets) for every step. That is, Q = {q1, q2, q3, . . . }. In the proof, we use P (q = True|I1...n) or

P (q|I1...n) instead of P ({fε(q,Wt) = True}|I1...n).

A query qt′ is a recall query for an instruction vt (t ≤ t′) if P ({fε(Wt, qt′) = True}|I1 . . . It \

vt . . . I
′
t) = 0 and P ({fε(Wt, qt′) = True}|I1 . . . It . . . It′) = 1, for any instruction history s.t.

∃t : vt ∈ It.
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A query distribution is called thorough if for all instruction sequences I with nonzero proba-

bility, for all times t, for all individual instructions vt, ∀t′ ≥ t, there is a nonzero probability

of sampling a recall query qt′ for the instruction vt. Intuitively, it means that all incoming

information may turn out to be crucial at any point of time in the future.

Next, fix a model (a pair f̂δ, f̂ε). We define random variables wt = f̂δ(wt−1, It) for all t > 0.

We assume that w0 is either a constant or a random variable sampled independently of I,

W and Q. We also assume the f̂δ, f̂ε output point estimates and are deterministic.

A model is stepwise-optimal if ∀W, I ∼ PW,I ,∀t > 0,∀qt (such that the probability of

sampling qt is positive), P (qt = True|wt) = P (qt = True|wt−1, It).

A sequence-optimal model is a model such that ∀W, I ∼ PW,I ,∀t > 0,∀qt (such that the

probability of sampling qt is positive), P (qt = True|wt) = P (qt = True|I1 . . . It).

Lastly, the statement of Lemma 1 is as follows: under thorough querying, any stepwise-

optimal model is also sequence-optimal.

The proof

Assume that the model f̂δ is stepwise-optimal. Then the model is also sequence-optimal, by

induction.

Base Note that w0 is a world state representation before any information is provided. It

is either a fixed constant for the initial world state representation or a random variable

drawn from some fixed initialization distribution. That is, w0 is independent from W, I,

and Q. Therefore, at t = 1,∀q1, p(q1 = True|I1, w0) = p(q1 = True|I1). Then, by stepwise-

optimality, we have P (q1 = True|w1) = P (q1 = True|I1), which is the condition for sequence

optimality at t = 1.

125



Step Assume that sequence optimality holds for all t ≤ n ∈ N. We want to show that at

t = n + 1, the condition holds as well, i.e. that ∀W, I ∼ PW,I , ∀qn+1 with positive sampling

probability, P (qn+1|wn, In+1) = P (qn+1 = True|I1,...n+1).

Let’s consider an arbitrary qn+1 with a nonzero sampling probability.

First, note that by stepwise-optimality, we have P (qn+1 = True|wn+1) = P (qn+1 = True|wn, In+1).

Therefore, it remains to show that P (qn+1 = True|wn, In+1) = P (qn+1 = True|I1...n+1).

Fix any instruction vt ∈ I1...n. Since sampling is thorough, there exists a recall query q′n for vt

with a nonzero sampling probability. I.e. a query at time n s.t. P (q′n = True|I1...n \ vt) = 0

and P (q′n = True|I1...n) = 1. Fix any such query q′n.

By the inductive assumption, P (q′n = True|wn) = P (q′n = True|I1...n), which is equal to 1

by definition of the recall query. But then notice that, again, by definition, the event {q′n =

True} is equivalent to the event that the instruction vt is in the history I1...n. Therefore,

P (vt|wn) = 1.

Next, we want to show that adding In+1 to the conditioning set of P (vt|wn) will not change

the probability. First, notice that P (wn, In+1) > 0, since both wn and In+1 are coming

from the sequence of instructions I that was sampled (and hence had positive probability)1.

Consequently (since P (wn, In+1) = P (In+1|wn)P (wn)), P (wn, In+1) > 0 as well. There-

fore, we can condition on wn, In+1 without creating a contradiction, as well as divide by

P (In+1|wn). Therefore, note that 1 = P (vt|wn, In+1) + P (v̄t|wn, In+1). But P (v̄t|wn, In+1) =

P (v̄t∩In+1|wn)
P (In+1|wn)

≤ P (v̄t|wn)
P (In+1|wn)

= 1−P (vt|wn)
P (In+1|wn)

= 0. Hence, overall, P (vn|wn, In+1) = 1.

Then, if we come back to the original query qn+1, notice that P (qn+1|wn, In+1) = P (qn+1 ∩

vn|wn, In+1) + P (qn+1 ∩ v̄t|wn, In+1), but P (qn+1 ∩ v̄t|wn, In+1) ≤ P (v̄t|wn, In+1) = 0. Thus,

overall, P (qn+1|wn, In+1) = P (qn+1 ∩ vt|wn, In+1).
1Note that we use our countability assumption here: because of it, we can have a discrete probability

defined over sequences of instructions and so that any sampled instruction has positive probability.

126



We can, therefore, proceed as follows:

P (qn+1|wn, In+1) =

P (qn+1 ∩ vt|wn, In+1) =

P (qn+1|vt, wn, In+1)P (vt|wn, In+1) =

P (qn+1|vt, wn, In+1)

We have shown that we can add any individual instruction vt, t ≤ n from the conditioning

set. Notice that we can repeat the reasoning with any other instruction from the history I1...n.

Moreover, the reasoning holds exactly analogously if we replace In+1 with In+1, vt1 , vt2 , . . . ,

as long as all vti are instructions the true history I1...n.

Therefore, we can add all individual instructions v ∈ I1...n into the conditioning set. In other

words, we get the following result: P (qn+1|wn, In+1) = P (qn+1|wn, {vt : vt ∈ I1...n}, In+1) =

P (qn+1|wn, I1...n+1)!

Since wn is a deterministic function from I1...n (i.e. wn = f̂δ(f̂δ(. . . f̂δ(f̂δ(w0, I1), I2), . . . ), In−1),

we have P (qn+1|wn, I1...n) = P (qn+1|I1...n+1), which completes the proof. ■

127


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Overview
	Language-based learning in Cognitive Science and AI
	What does learning through language mean?
	Learning
	Language
	Learning through language

	Motivation
	Evolutionary value
	Widespread use

	Modeling learning through language
	Historical overview of learning through language in AI
	Learning distributed representations from language
	Non-deep learning works
	Semantic Parsing and Learning from Language
	Language-based learning in AI: summary
	Language-based learning in Cognitive Science
	Description-experience gap

	Literature review: Conclusion

	Teaching Categories via Examples and Explanations
	Introduction
	Category learning in a pedagogical setting
	Category learning and language
	Identifying factors that may differentially affect verbal and exemplar-based communication 
	Overview of the experiments

	Experiment 1
	Method
	Results
	Summary

	Experiment 2
	Method
	Results
	Summary

	Experiment 3
	Method
	Results
	Summary

	Discussion
	Conclusion

	Algorithmic and Architectural solutions for learning through language
	General Architectural Considerations
	Problem setting
	Formal setup

	Model structure
	Architectural decisions

	Inductive World State Representations and Thorough Training
	Inductive World State Representations: Theory
	Thorough Training algorithm: putting theory to practice

	Experiments
	Experiment 1: LSTM recall
	Experiment 2: World of Numbers
	Experiment 3: Game of Life with interventions
	Experiment 4: Progressive Pathfinder

	Discussion

	Conclusion
	Bibliography
	Appendix Study interface detail
	Appendix Content analysis detail
	Appendix Bayesian model detail
	Appendix Data availablity
	Appendix Thorough Querying lemma proof



