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Abstract

Bayesian Deep Learning Methods in Magnetic Resonance Imaging

(MRI) and Simultaneous Positron Emission Tomography and

Magnetic Resonance Imaging (PET/MRI)

by

Andrew Palmera Leynes

Medical image reconstruction is the process of reproducing an image of an object from

the measurements produced from a scanner through some physical process. Deep image

reconstruction, which is utilizing deep learning in image reconstruction, has surpassed what

is possible compared to classical approaches. However, one requirement of deep learning is

a large dataset that covers as many cases as possible and covers different demographics, dis-

ease conditions, hardware configurations, and acquisition schemes. Thus, a major limiting

factor in deep learning in medical image reconstruction is the training data available. In this

dissertation, I address the challenge of imperfect and small data in deep learning. This is

addressed through the use of Bayesian deep learning. Bayesian deep learning allows a practi-

tioner to estimate uncertainty to quantify possible sources of error and reduce the tendency

of models to overfit. This is used in two application domains: simultaneous positron emis-

sion tomography and magnetic resonance imaging (PET/MRI) attenuation correction and

in sub-Nyquist accelerated MRI. The use of uncertainty in PET/MRI attenuation correction

has allowed the correction of intrinsic dataset errors due to bowel air movement, lack of bone

signal, misregistration, and metal implant artifacts. The use of uncertainty in sub-Nyquist

accelerated MRI has reduced the overfitting behavior of reconstruction models and allowed

for higher possible acceleration factors.
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Chapter 1

Introduction and outline

Medical image reconstruction is the process of reproducing an image of an object from

the measurements produced from a scanner through some physical process [1]. Classical

approaches to image reconstruction are based on the mathematical structure of the image

acquisition process and mathematically-definable properties of natural images [2], [3]. In

contrast, deep learning is a data-driven modeling technique driven by deep neural networks,

large datasets of examples, and modern optimization techniques [4].

Deep image reconstruction, which is utilizing deep learning in image reconstruction, has

surpassed what is possible compared to classical approaches [5].

For attenuation correction in simultaneous positron emission tomography and magnetic

resonance imaging (PET/MRI), MRI cannot be directly used for attenuation correction since

MRI measures nuclear spin density and it does not directly correspond to the PET photon

attenuation coefficients [6]. Whereas this is possible with x-ray computed tomography (CT)

as done in PET/CT since CT measures photon transmission [7]. Attenuation correction is

important since it compensates for photon attenuation. The lack of attenuation correction

leads to underestimation of radiotracer uptake concentration and image artifacts [7]. Thus,

deep learning has been used to produce pseudo-CT images directly from MRI by training a

deep learning model on a dataset of MRI and CT pairs [6], [8]. This has overcome all the
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limitations of previous approaches and now allows for PET/MRI to approach the quantitative

accuracy of PET/CT.

In accelerated magnetic resonance imaging (MRI), subsampling below the Nyquist limit

is a common approach to reduce scan times since this typically does not require any hardware

changes [9]–[11]. Utilizing deep learning has increased the possible acceleration (or subsam-

pling) factors by ∼2 to 3× more than previous approaches [12]. This is done by training

a deep learning model (or a deep learning augmented reconstruction algorithm) to produce

the high-quality fully-sampled reference images from the subsampled MRI over a database

of examples.

However, one requirement of deep learning is a large dataset that covers as many cases as

possible and covers different demographics, disease conditions, hardware configurations, and

acquisition schemes. Unlike computer vision and optical photography, data is much harder

to come by in medical imaging. The current largest dataset, fastMRI [13], for medical image

reconstruction consists of ∼170,000 raw 2D images compared to the ∼1.5 Million images in

the ImageNet dataset [14].

Thus, a major limiting factor in deep learning in medical image reconstruction is the

training data available.

In this dissertation, I address the challenge of imperfect and small data in deep learning.

This is addressed through the use of Bayesian deep learning [15]–[18], a version of deep learn-

ing that incorporates Bayesian statistical inference methods into the deep learning models.

In chapter 2, I first discuss the preliminaries and background information needed for this

dissertation. This chapter covers classical image reconstruction methods and deep learning

methods. Most importantly, this chapter gives an overview of how Bayesian inference is used

in medical imaging.

Subsequent chapters are then applications of Bayesian deep learning in specific problem

domains.

In chapter 3 is the application of Bayesian deep learning for attenuation correction in
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PET/MRI to address the problem of imperfect datasets. Acquiring a large dataset of per-

fectly matched MRI and CT images are practically impossible because the images are ac-

quired at different times. The most common mismatches are due to movement of bowel air

and registration errors due to different bed positions when imaging the pelvis. Furthermore,

the presence of metal implants cause mismatch since the metal artifacts appear different in

MRI versus CT. This chapter utilizes the measure of uncertainty in the produced synthetic

CT images to assess sources of likely error, and uses the PET photon emission data to correct

these regions.

In chapter 4 is the application of Bayesian deep learning in the limit of small data: N = 1.

Deep image reconstruction methods require large datasets with fixed hardware configurations

and acquisition schemes. However, as soon as there are changes in the hardware or the

acquisition scheme, a new dataset is required and the models need to be trained to account

for these changes. Furthermore, there are instances where it is impractical or impossible for

have a large high-quality database of training examples. This chapter utilizes the statistical

regularization capabilities of Bayesian inference to allow for deep image reconstruction at

high acceleration factors without the need for a training dataset and in a scan-specific manner

(much like classical reconstruction methods).

Finally, in chapter 5, I discuss the summary of the contributions of this dissertation and

possible future lines of inquiry.
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Chapter 2

Preliminaries

2.1 The medical image reconstruction problem

The first medical imaging modality was x-ray imaging or radiography [19]. Compared to

magnetic resonance imaging (MRI) or positron emission tomography (PET), radiography

was relatively simple. There are two components to an radiography system: an x-ray source

and a photographic plate. The imaging process is then done as follows: x-rays would be

emitted from a source and captured by a photographic plate, with an object or patient

in between. The photographic plate then represents how many x-rays passed through a

material. Image contrast and structure is then produced by the differing amounts of x-rays

that pass through depending on what material was in the path of the x-rays. Bone would

block more x-rays than soft tissues like muscle. Thus, bone appears dark on the photographic

plate and muscle appears light. On display, this contrast is reversed by placing the exposed

film on to a plate with a white backlight where bone when appears light and muscle appears

dark. This is a straightforward imaging process that does not require mathematical image

reconstruction because of the nature of the imaging process.

Modern medical imaging modalites like MRI, and PET are fundamentally different from

x-ray due to the need for image reconstruction. Image reconstruction is the process of tak-
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ing measured data and producing imaging from the acquired data. This process is required

because, unlike radiography, the measurements you get from MRI and PET are not images

themselves. In MRI, what’s measured is the behavior of the nuclei under a certain pertuba-

tions of the electromagnetic field. In PET, what’s measured is the number of photons that

are captured by the detectors. Figure 2.1 shows a diagram of the imaging process for MRI

and PET and visualizations of the data acquired.

It’s clear from fig. 2.1 that the measured data are not visually-interpretable images, but

there is some kind of structure in the data. Medical image reconstruction is the process

of taking this data and what’s known about the physics and image acquisition process to

figuring out what the image is that produced these measurements. A detailed description of

the physics and imaging of MRI can be found at [20], [21] and of the physics and imaging of

PET can be found at [22], [23]

The medical image data measurement process can be formalized mathematically in the

following way:

y = A(x) (2.1)

where y represents the measured data, A represents the physical process of obtaining

measurements from the underlying image, x.

In MRI, the acquisition process consists of an object (the image with a certain contrast,

x) being imaged with multiple receiver coils. Each receiver coil would see an image with a

spatially-weighted signal intensity profile. Each image is then linearly encoded into waves

of varying frequency (that depend on the underlying object) called k-space and the differ-

ent wave frequencies or k-space locations are sampled. The final measured data are these

wave responses for each receiver coil. The reconstruction problem is then to calculate the

underlying image, x, from the wave responses.

In PET, the acquisition process consists of a radiotracer being injected into the body.

This radiotracer gets localized in different regions of the body depending on the chemistry

of the radiotracer. The acquisition process consists of the localized radiotracer emitting
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Figure 2.1: Visualizations of the measured data and reconstructed images from MRI and
PET/MRI scanners.
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photons that are then captured by a ring of detectors. The final measured data are the

photon counts that occur at the detector ring along a line in the imaging field-of-view.

The image reconstruction problem would then be:

x = A−1(y) (2.2)

where A−1 is the inverse process of going from measurements to the actual underlying

image. Under certain cases and conditions such as non-accelerated MRI and high dose PET,

A−1 is well-defined and can be directly used to produce the image from the measurements.

But, using A−1 can be problematic if the problem is underdetermined or ill-conditioned

even if it is possible to derive and calculate (such as in parallel imaging MRI [24], [25] and

reduced dose filtered back-projection PET [26]) and there are cases where the inverse cannot

be calculated at all (such as in compressed sensing MRI [27]). In the next section, classical

methods to solve for x are discussed for PET and MRI.

2.2 Classical image reconstruction in MRI and PET

2.2.1 MR image reconstruction

MR image reconstruction is a relatively straightforward process when linear encoding gra-

dient fields are used and the k-space sampling follows the Nyquist sampling rate [21], [28].

Because the linear encoding process corresponds to a multi-dimensional Fourier transform,

an image from each coil may be produced using the inverse Discrete Fourier Transform

(DFT):

xi = DFT−1(yi) (2.3)

where i corresponds to each coil. The final image may then be produced using sum-of-

squares coil combination [29] if there is more than 1 receiver coil:
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x =

√√√√ N∑
i=1

x2
i (2.4)

An alternative approach to image reconstruction is by formulating the problem using

linear algebra [24]:

yi = DFT(Cixi) (2.5)

y =

[
y1 y2 ... yC

]T
(2.6)

where yi ∈ CM is a row vector of the measurements for each coil channel and y is a

concatenation of yi along the columns to form a vector with size MC× 1, where x ∈ CN is a

column vector consisting of N voxels of the image, M is the number of k-space measurement

locations and C is the number of coil channels. Equations (2.5) and (2.6) can be reformulated

as a single linear equation:

y = Ax (2.7)

where A is a matrix that represents the discretized forward model that results from

eqs. (2.5) and (2.6). In this case, A ∈ CMC×N is the forward encoding operator with

MC ≥ N . Using linear least squares [30], the solution to the over-determined equation is:

x = (ATA)−1ATy (2.8)

However, note that A is typically not expressed explicitly for the whole image due its

large size and memory limitations. For example, a typical modern 2D MRI acquisition may

involve M = 256 × 256 = 65536, C = 8, and N = 256 × 256 = 65536, which gives A a

size of (65536)(8) × 65536 = 524288 × 65536. If the matrix A is represented with 32-bit

floating point numbers (4 bytes each number), then a machine would need 128 GigaBytes of
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memory. Thus, practical implementations rely on splitting the problem into smaller pieces

when possible (e.g., solving for a few pixels at a time in the original SENSE implementation

[24]) or using iterative algorithms to reduce the computational complexity and memory

requirements [31].

The solution approaches given above are for cases when the MRI is fully-sampled (i.e.,

sampling follows Nyquist sampling rate). Modern approaches to accelerated MRI have relied

on sampling below the Nyquist sampling rate and require more sophisticated reconstruction

approaches.

Accelerated MRI: sampling below the Nyquist limit

Parallel imaging and compressed sensing [25], [27] are approaches that allow for MRI data

sampling that violate the Nyquist sampling limit and are called undersampled MRI. In this

regime, the linear system of equations described in eq. (2.7) becomes ill-conditioned. A is

ill-conditioned when the condition number, or the ratio of the first singular value and the last

singular value, is large (>> 1). This is due to the k-space sampling pattern that introduces

ambiguities to the solution space due to sampling below the Nyquist sampling limit. If A is

ill-conditioned, then the reconstruction of x from the measurements y is sensitive to noise

and model errors. Under this regime, more sophisticated reconstruction algorithms become

necessary.

Modern image reconstruction in MRI is centered around the concept that the image

reconstruction problem can be posed as an optimization problem. The beauty of posing the

reconstruction as an optimization problem is that the reconstruction is no longer limited to

analytical solutions that attempt to invert each stage of the image formation process. Rather,

the optimization formulate is more flexible since any desired constraints or image properties

can be imposed on the reconstructed image. For example, constraints on image smoothness

or structure can be easily incorporated into an optimization formulation compared to analytic

inversions.
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Very generally, an optimization problem is one that attempts to find the solution to the

following statement:

x̂ = arg min
x

f(x) (2.9)

or:

x̂ = arg max
x

f(x) (2.10)

where eq. (2.9) describes a minimization problem and eq. (2.10) describes a maximization

problem. Equations (2.9) and (2.10) can be made equal as follows:

x̂ = arg min
x

f(x) = arg max
x

−f(x) (2.11)

x̂ = arg max
x

f(x) = arg min
x
−f(x) (2.12)

One of the most common approaches to solving y = Ax is through least-squares opti-

mization. We can re-arrange y = Ax as follows:

y = Ax (2.13)

y − Ax = 0 (2.14)

We can see from eq. (2.14) that the solution to eq. (2.13) is x̂ that gives Ax as close as

possible to y. Then, we can define the following optimization function:

f(x) = ‖y − Ax‖2
2 (2.15)

where:
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‖x‖2
2 =

N∑
n=1

|xi|2 (2.16)

Thus, we have a minimization problem as follows:

x̂ = arg min
x

f(x) = arg min
x
‖y − Ax‖2

2 (2.17)

When this is solved analytically, the solution is eq. (2.8). However, the solution is very

sensitive to noise. Thus, regularization is employed to stabilize the solution (i.e., reduce the

sensitivity to noise and model errors) and to give a solution that has particular properties.

For example, noise signal amplification in parallel imaging MRI causes the magnitude of

signal intensities to be very large. In this case, L2-regularization, also called Tikhonov

regularization, is employed:

x̂ = arg min
x

f(x) = arg min
x
‖y − Ax‖2

2 + λ ‖x‖2
2 (2.18)

Adding the term ‖x‖2
2 suppresses the large signal intensities that may occur due to noise

asignal amplification and λ controls the strength of signal suppression.

As mentioned above, desired structure like image smoothness may be incorporated. One

such smoothness-enforcing expression is as follows:

x̂ = arg min
x

f(x) = arg min
x
‖y − Ax‖2

2 + λ((
N∑
i=2

|xi − xi−1|2) + (
N∑
j=2

|xj − xj−1|2)) (2.19)

where i indexes over horizontal pixel positions and j indexes over vertical pixel positions

in 2D.

In compressed sensing MRI [27], the desired image property is one of sparsity where an

image has the property that its transform produces only a few coefficients in some transform

domain. A compressed sensing reconstruction is formulated as follows:
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x̂ = arg min
x

f(x) = arg min
x
‖y − Ax‖2

2 + λ ‖Tx‖1 (2.20)

where T is a transform operator. Common choices for T are the discrete wavelet transform

(DWT) [32] or total variation (TV) operator [27]. When the DWT is employed, the desired

image structure is that the image can be described by a small subset of wavelets. When the

TV operator is employed, the desired image structure is that the image gradients are sparse

and causes the image to be piecewise-smooth.

The use of parallel imaging and compressed sensing to MRI has significantly decreased

scan times without any hardware modifications.

2.2.2 PET image reconstruction

PET image reconstruction can be performed using filtered backprojection (FBP) or through

iterative methods that are primarily based on Expectation Maximization. A detailed sum-

mary is provided in [2].

Filtered backprojection

Filtered backprojection is an analytical approach that obtains the images from the acquired

data:

f(x, y) =

∫ π

0

dφ pfiltered(x cos(φ) + y sin(φ), φ) (2.21)

pfiltered(s, φ) =

∫ FOVr

−FOVr
ds′ p(s′, φ)h(s− s′) (2.22)

where x and y are the spatial locations (in 2D), f is the signal intensity at the spatial

location (x, y), pfiltered(s, φ) is the filtered projection data along the line with distance s from

the center of rotation at an angle φ, p(s, φ) is the raw projection data, FOVr is the radius of
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the circular field-of-view, h(s) is a filter kernel that filters the projection data to normalize

the signal intensities and may additionally reduce noise and stabilize the reconstruction.

However, FBP only captures that data are acquired in projections and does not capture

the inherent statistical processes that occur in a PET imaging session. Incorporating the

statistics in the reconstruction can reduce image artifacts and improve signal-to-noise ratio.

Iterative reconstruction with Expectation Maximization

Expectation maximization is an iterative method that allows for reconstruction of an image

that considers the statistical processes that are inherent in the system. In the case of PET,

the statistical process comes from the random radioactive decay of the radiotracer that

induces photon emission.

Like in MRI, the PET acquisition process can be formulated as a discretized linear forward

model as follows [2]:

y = Pλ (2.23)

where y is the mean number of events along a line-of-response (LOR), P is the detection

probability matrix that encodes the probability of detecting a photon emission event along

the LOR, and λ is the radiotracer concentration at each pixel. Equation (2.23) can be solved

using Expectation Maximization (EM) and its variations [2]. Like undersampled accelerated

MRI, P is typically ill-conditioned and requires regularization to stabilize the solution and

is included in the EM algorithms through early stopping.

One common EM algorithm for PET reconstruction used in a clinical environment is the

ordered subsets expectation maximization algorithm (OSEM) [2]. The cost function is:

Q(x, p) =
J∑
j=1

(
−

N∑
i=1

aj,ixi + pj log(
N∑
i=1

aj,ixi)

)
(2.24)

where J is the number of lines of response, N is the number of voxels in the reconstructed
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image, xi is the i-th voxel in the reconstructed image x, pj are the photon counts along the

j-th line of response, and aj,i is the coefficient of the system matrix that maps the i-th voxel

to the j-th line of response. With the cost function defined, the EM updates are then:

xk+1
i = xki

1∑
j′∈Jk mod S

aj′,i

∑
j′∈Jk mod S

aj,i
pj∑N

i′=1 aj,i′f
n
i′

, i = 1, ..., N (2.25)

where n is the EM step number with a subset of the data, S is the number of disjoint

subsets of the lines of response projection data, Jn mod S is the k mod S subset of the

projection data. Only a subset of the projection data is used in each iteration to accelerate

reconstruction.

2.3 System calibration: when parts of the system are

unknown

Section 2.2 discussed the reconstruction problem and solution methods when the imaging

system under consideration is fully known (i.e., A in MRI and P in PET are fully determined).

However, in most imaging scenarios, these missing portions of the system must be measured

in a separate step, or estimated alongside image reconstruction.

2.3.1 MRI system calibration

In parallel imaging and compressed sensing MRI, the forward operator A can be decomposed

as follows:

A = SFC (2.26)

where S is the k-space sampling operator, F is the Fourier transform operator, and C is

the coil sensitivity operator. S and F are known by design of the acquisition. This leaves C

to be determined and is called the coil calibration problem. Knowledge of C is necessary in
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order to solve for the unknown image x as described in section 2.2.1.

In SENSE-type formulations [24], C can be determined by an external coil sensitivity

profile scan using a phantom. However, there are certain cases where imaging a phantom is

not suitable for coil calibration such as for body imaging where the coil position may not be

the same between the coil calibration scan and the actualy imaging scan. In these cases, a

GRAPPA-type formulation [25], [33], [34] is utilized:

A = SGF (2.27)

where G is the coil sensitivity kernel in k-space. This arises since a multiplication of the

coil sensitivity profile and the image in image-space is equivalent to a convolution of the

coil sensitivity kernel (the Fourier transform of the coil sensitivity profile) and the Fourier

transform of the image in k-space:

G(~k) ∗X(~k) = G(~k) ∗ F{x(~r)} = F{c(~r)} ∗ F{x(~r)} = F{c(~r)x(~r)} (2.28)

Thus, rather than acquiring the coil sensitivity profiles, C, in a separate scan, G can be

estimated from a fully-sampled low-frequency portion of k-space data in the imaging scan

itself.

Several papers [25], [27], [31], [33] provide a more detailed description of the coil calibra-

tion procedures.

Joint estimation of image and coil sensitivity profiles

There are situations where it’s not desirable or possible to take additional time for the

coil calibration procedure. In these situations, joint estimation of coil sensitivity profiles

and image content is utilized [35]–[37]. The joint estimation problem is formulated as an

optimization problem:
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x̂, Ĉ = arg min
x,C

‖y − SFCx‖+R(x,C) (2.29)

when formulating the problem in image-space [36], or:

k̂, Ĝ = arg min
k,G

‖y − SGk‖+R(k,G) (2.30)

when formulating the problem in k-space. R is some regularization operator.

Because x and C or k and G need to be solved jointly, the problem becomes a non-linear

optimization problem and require more sophisticated procedures to solve.

2.3.2 PET system calibration

The PET imaging system operator can be decomposed as follows [38]:

P = Pdet.sens.Pdet.blurPattnPgeomPpositronrange (2.31)

where Pdet.sens. is the detection probability due to detector sensitivity, Pdet.blur is the

detection probability due to a sinogram blurring factor, Pattn is the probability that a photon

reaches the detector due to attenuation effects, Pgeom is the probability that a photon reaches

the detector based on the scanner geometry, and Ppositronrange is the probability that a photon

is emitted in a certain position due to positron range effects. In this decomposition, Pdet.sens.,

Pdet.blur, and Pgeom are determined by the construction of the scanner and are fixed and known

at the time of imaging; and, Ppositronrange is known based on the specific radiotracer used for

imaging (e.g., Ppositronrange ≈ I for 18F-FDG); however, Pattn is dependent on the object being

imaged and must be calibrated for at the time of imaging.

Calibration of Pattn can be done using positron transmission imaging [23] or using x-ray

computed tomography (CT) [7].
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Joint estimation of activity and attenuation

In cases where positron transmission imaging or CT is not possible or desirable, joint es-

timation of the radiotracer activity image (x) and the attenuation image (Pattn) can be

done through optimization called maximum likelihood estimation of activity and attenua-

tion (MLAA) [39], [40].

In the original MLAA paper [39], the likelihood function is:

L(λ, µ) =∑
i

(
− exp

(
−
∑
k

likµk

)(∑
k

cikλk

)
+ yi ln

(
exp

(
−
∑
k

likµk

)(∑
k

cikλk

)))
(2.32)

where λ is the radiotracer activity concentration image, µ is the attenuation map, lik is

the length of the intersection of the i-th line of response of the i-th detector with voxel k,

µk is the attenuation at voxel k, cik is the sensitivity of the i-th detector to the radiotracer

activity from voxel k without the effects of attenuation, and yi is the measured number

of photons from the i-th detector. An alternating optimization scheme is then used where

either λ or µ is updated while keeping the other fixed at each iteration:

λn+1
k =

λnk∑
i aicik

∑
i

cikyi
bni

(2.33)

µn+1
k = µnk +

α

D

(
1−

∑
i cikyi∑
i cikaib

n
i

)
(2.34)

with
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ai = exp

(
−
∑
k

likµk

)
(2.35)

bni =
∑
k

cikλ
n
k (2.36)

where n is the iteration number, bni is the total activity along the i-th detector line for

the n-th iteration using the current activity image estimate λni , D is the diameter of the

reconstruction field-of-view, and α is a step-size parameter.

2.4 Deep learning in image reconstruction

Deep learning is a relatively new machine learning paradigm that relies on the use of deep

neural networks. In image reconstruction, convolutional neural networks are most often

used. A complete discussion of deep learning and convolutional neural networks (CNNs) can

be found in [4]. However, deep learning is more than just using CNNs. There are many

different ways that these CNNs can be utilized. There are three dominant approaches that

CNNs are used in a larger architectural scheme:

1. Direct mapping

2. Unrolled networks

3. Generative modeling

Then, these different architectural paradigms are used in different learning paradigms

that are based on what data are available:

1. Supervised learning

2. Unsupervised learning
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3. Semi-supervised learning

4. Self-supervised learning

5. Deep image prior

2.4.1 Architectural paradigms

Direct mapping

Direct mapping methods are the simplest use of CNNs. These are when the solution to the

inverse problem x = f−1(y) is directly learned through deep learning. Mathematically, the

learning is stated as follows:

θ̂ = arg min
θ

L(X, gCNN(Y ; θ)) (2.37)

where θ are the CNN parameters, L is some loss/objective function, and Y and X are in-

put and output training examples, respectively. What gets learned is then an approximation

to the inverse function:

f−1(y) ≈ gCNN(y; θ̂) (2.38)

For example, X can be the undersampled noisy image and Y would be the high-SNR

fully-sampled image for image reconstruction. Another example is in the conversion of MRI

to synthetic CT: X would be the MRI and Y would be the co-registered CT image.

On inference, the network is applied directly to any new observations ynew:

xnew = gCNN(ynew; θ̂) (2.39)
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Unrolled networks

Unrolled networks are a different paradigm that is based on gradient descent optimization.

For the minimization problem:

x̂ = arg min
x

f(x) (2.40)

The gradient descent update is as follows:

xk+1 = xk − ρ∇xf(x) (2.41)

where ρ is a step-size factor. Under deep learning, we have training pairs Yi, Xi that we

can then assign as our start and end points in our gradient descent scheme. Suppose that

we fix the number of gradient descent steps to be K, then we have:

x0 = Yi (2.42)

xK = Xi (2.43)

Then, rather than explicitly calculating for ∇xf(x), we can approximate it instead using

a CNN:

∇xf(x) ≈ gCNN(x; θ) (2.44)

and the updates are now:

xk+1 = xk − ρgCNN(x; θ) (2.45)

Finally, we then have the following learning problem:
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θ̂ = arg min
θ

L(X, xK) (2.46)

xk+1 = xk − ρgCNN(x; θ) (2.47)

x0 = Y (2.48)

This completes the mathematical description of the most basic unrolled network ar-

chitecture. Alternative variants based on more sophisticated optimization schemes (e.g.,

regularized least-squares, alternating direction method of multipliers, etc.) are discussed in

[41]. In a nutshell, the function of the CNN in this case is to provide the gradient steps from

our starting point x0 to a desired target point xK = Yi. The step size parameter ρ may be

included in the parameters of the CNN to simplify the expressions:

θ̂ = arg min
θ

L(X, xK) (2.49)

xk+1 = xk − gCNN(x; θ) (2.50)

x0 = Y (2.51)

and it is also possible to learn different parameters at each step rather than using the

same parameters for all steps:

Θ̂ = arg min
Θ

L(X, xK) (2.52)

Θ = {θ0, θ1, ..., θk, ..., θK} (2.53)

xk+1 = xk − gCNN(x; θk) (2.54)

x0 = Y (2.55)
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On inference, it behaves similarly to the direct mapping method but with several appli-

cations of a CNN:

x0 = ynew (2.56)

xk+1 = xk − gCNN(x; θ̂) (2.57)

xnew = xK = xk−1 − gCNN(ynew; θ̂) (2.58)

Generative modeling

Generative modeling for inverse problems is one of the newest approaches to tackling solving

inverse problems. Rather than forming a mapping from the observation y to the unknown

x, a generative model of possible realizations of x are first learned. The major advantage of

this method is that matched training pairs Yi, Xi are not necessary; only Xi are needed:

θ̂ = arg min
θ

L(X, gCNN(Z; θ)) (2.59)

where Z is some latent variable (usually a 1D noise vector). However, inference is much

more computationally intensive since another optimization problem needs to be solved:

ẑ = arg min
z

f(y, gCNN(z; θ̂)) (2.60)

where f is the objective function for fitting to the observations. For example in MRI

image reconstruction, the objective function could be:

f(Y, gCNN(z; θ̂)) = ‖Y − AX‖2
2 (2.61)

X = gCNN(z; θ̂) (2.62)

f(Y, gCNN(z; θ̂)) =
∥∥∥Y − AgCNN(z; θ̂)

∥∥∥2

2
(2.63)
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2.4.2 Learning paradigms

Supervised learning

Most of the architectural discussions above have been under the context of supervised learn-

ing (except for generative modeling). This is the most common learning paradigm in deep

learning since typically, the two sides of the mapping are known and are easy to obtain, and

only the function that maps between them (f : X → Y and/or f : Y → X) is unknown.

Unsupervised learning

Unsupervised learning is different from supervised learning since there are no training pairs

available. Only data from a single domain X is available. Under this regime, the task is to

find a set of patterns that fit the data and satisfy certain mathematically-defined properties

(e.g., sparsity). The most common example of unsupervised learning is clustering, where

data is attempted to be grouped together. Under the context of image reconstruction, the

classical image reconstruction tasks can be considered as unsupervised learning. Since the

reconstructed image is a pattern that fits the data in (usually) a different domain and may

satisfy certain properties (e.g., sparsity of Wavelet coefficients). The generative modeling

framework discussed in section 2.4.1 is also an example of unsupervised learning. This

domain is still an active research area in deep image reconstruction.

Semi-supervised learning

Semi-supervised learning is a hybrid of supervised and unsupervised learning techniques. It

is called semi-supervised because although you may have data from two domains X and

Y , they may not be exactly matched or paired. An example of semi-supervised learning is

domain translation using generative adversarial networks (GANs) [42]. In MRI reconstruc-

tion, one example that utilized GANs in a semi-supervised learning scheme with a database

of unrelated undersampled k-space data [43]. In their work, the supervision signals come
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from comparing the synthetic undersampled data of their reconstructed images with real

undersampled k-space data (with a different sampling pattern) from a different scan, and

their approach is unsupervised because there are no matching pairs of k-space data with the

same undersampling pattern nor are there fully-sampled images to learn from.

Self-supervised learning

Self-supervised learning is a variant of unsupervised and semi-supervised learning where only

the network parameters are shared across samples and ground-truth reference data is not

available. For example in an unsupervised image reconstruction regime, a CNN may be

trained to produce a reconstructed image from a latent code z that fits the measured data

ŷ through the model y = AgCNN(z; θ) in a GAN framework. In this scenario, the generated

images x̂ = gCNN(z; θ) would be compared against a dataset X = {x1, x2, ..., xM} using

a discrimator CNN D(x̂, X). In contrast in a self-supervised scenario, there would be no

discriminator to compare against the reconstructed images against the database of images.

The generative CNN gCNN would only be trained with measurements Y = {y1, y2, ..., yN}.

Deep image prior

The deep image prior framework [44] is (simply) self-supervised learning taken to smallest

possible dataset size (N = 1). It is very similar to classical image reconstruction regimes

with the exception of using a CNN as a generative model for producing the reconstructed

image from a random noise vector z:

θ̂ = arg min
θ

L(y, f(gCNN(z; θ))) (2.64)

y = f(x) (2.65)

x = gCNN(z; θ) (2.66)
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where L is some loss function appropriate to the reconstruction problem. In MRI recon-

struction, L would correspond to regularized least squares.

The unique aspect about deep image prior is that it is the first work to demonstrate the

effectiveness of convolutional neural networks as implicit priors for image reconstruction.

2.5 Bayesian deep learning in medical image recon-

struction

2.5.1 Probabilistic modeling and Bayesian inference

A probabilistic model consists of the following ingredients:

1. Probability distributions for random variables

2. Relationships between random variables

As an example, let us revisit the model in 2.1:

y = A(x) (2.67)

Suppose that A defines a linear projection model (a) that has its measurements corrupted

by additive noise:

y = ax+ n (2.68)

where n is a random variable. In many different situations (including in MRI), the

additive noise n is a zero-mean Gaussian-distributed random variable with variance σ2:

n ∼ Gaussian(0, σ2) (2.69)



26

where ∼ means that the random variable is drawn from a certain distribution. More

explicitly, we can write the probability density function:

p(n) =
1√

2πσ2
exp(− n2

2σ2
) (2.70)

where p(n) is the continuous probability density function of n. Given eqs. (2.68) and (2.70),

we can derive the following conditional distribution or likelihood function:

L(x|y) = p(y|x) =
1√

2πσ2
exp(−(y − ax)2

2σ2
) (2.71)

Note the subtle notational difference between the conditional probability, p(y|x), and

the likelihood function, L(x|y). The (supposed) rationale for the L notation is because L

is ultimately a function of x because y is the data that is observed and is thus constant.

However, it flips around the dependencies and commonly causes confusion (including for

me). Because of this, I will avoid using the notation for the likelihood function L(x|y) and

will only use the conditional probability form, p(y|x) moving forward.

Now, given the likelihood, we can then apply the principle of maximum likelihood to

estimate the unknown variable x:

x̂ = arg max
x

p(y|x) = arg max
x

1√
2πσ2

exp(−(y − ax)2

2σ2
) (2.72)

= arg max
x

−1

2
log(2πσ2)− 1

2σ2
(y − ax)2 − 1

2σ2
(y − ax)2 (2.73)

= arg max
x

− 1

2σ2
(y − ax)2 (2.74)

x̂ = arg min
x

(y − ax)2 (2.75)

assuming σ is known, which gives us the least squares optimization problem as before.

We may also add regularization terms if so desired.

In most discussions of statistical estimation in signal processing and image reconstruc-
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tion (the so-called frequentist perspective), we would stop the modeling and inference around

here. However, there is still one more thing that is undefined that separates the Bayesian

perspective from the frequentist perspective of modeling: defining p(x). In frequentist ter-

minology, only n is considered as a random variable and x is considered as a deterministic

object (with only a single value!) but is currently unknown. However, in the Bayesian per-

spective, everything that is not directly known or measured in the problem is treated as a

random variable. So, x is also a random variable that has a probability distribution.

This is a fundamental distinction in how probabilities and uncertainties are viewed. Be-

cause a quantity is fundamentally not known (even though there is only one unique value

for it), the quantity is viewed to have a probability distribution. In this case, the probability

distribution captures the uncertainty of knowledge about the exact value of the variable. In

contrast, the frequentist approach enforces right from the very beginning that there is only

one true unique value. A great video lecture around this topic can be found at [45].

Historically, the Bayesian perspective seemed to have been one of the dominant per-

spectives before the rise of frequentist statistics. In Laplace’s A Philosophical Essay on

Probabilities [46], he states (translated into English):

The curve described by a simple molecule of air or vapor is regulated in a manner

just as certain as the planetary orbits; the only difference between them is that

which comes from our ignorance.

Probability is relative, in part to this ignorance, in part to our knowledge. We

know that of three or a greater number of events a single one ought to occur; but

nothing induces us to believe that one of them will occur rather than the others.

In this state of indecision it is impossible for us to announce their occurrence

with certainty. It is, however, probable that one of these events, chosen at will,

will not occur because we see several cases equally possible which exclude its

occurrence, while only a single one favors it.

In other words: all of reality was considered to be deterministic and uncertainty was
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only due to the lack of knowledge. Of course, this was before the age of quantum mechanics

where (so far) there appears to be fundamentally probabilistic quantities. Furthermore, it’s

not that there are many solutions to a problem, it is that there is one solution but you do

not know which of the many possibilities is the truth due to the lack of knowledge.

So, following this Bayesian perspective, let us write a more complete description of the

probabilities. First, we start with a description of the joint distribution of all the variables

in the problem:

p(y, x, a, σ) = p(y|x, a, σ)p(x, a, σ) (2.76)

Given that we know that the measurement problem is y = ax + n (and a is known to

have the value ā), we can assume in this instance that x, a, and n are independent and thus

p(x, a, σ) = p(x)p(a)p(σ). We can further assume that σ is known and was measured. We

will then have:

p(y, x, a, σ) = p(y|x, a, σ)p(x)p(a)p(σ) = p(y|x, ā, σmeasured)p(x) (2.77)

with p(σ) = δ(σ − σmeasured) and p(a) = δ(a − ā). With the random variable y being

observed (having the value ȳ), a is known, and σ is measured, the only unknown is x. We

can then utilize Bayes theorem of inverse probability or Bayes theorem for short. Generally,

Bayes theorem allows to you define p(everything unknown|everything known). To solve for

p(x|ȳ, ā, σ):

p(x|ȳ, ā, σ) =
p(ȳ, x, ā, σ)

p(ȳ)
=

p(ȳ, x, ā, σ)∫∫∫
p(ȳ, x, a, σ)dxdadσ

=
p(ȳ|x, ā, σmeasured)p(x)∫
p(ȳ|x, ā, σmeasured)p(x)dx

(2.78)

=
1

Z
p(ȳ|x, ā, σmeasured)p(x) (2.79)

with Z = p(ȳ) =
∫
p(ȳ|x, ā, σmeasured)p(x)dx. Since we have a probability distribution for
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the parameter of interest, we define an estimator for x that extracts a single value from the

conditional probability distribution p(x|ȳ, ā, σ). A common choice is the conditional mean

estimator:

x̂ = Ep(x|ȳ,ā,σ)[x] =

∫
xp(x|ȳ, ā, σ)dx (2.80)

where Ep(x|ȳ,ā,σ) denotes taking the expectation with the distribution p(x|ȳ, ā, σ). Note

that I indicated the distribution that the expectation is taking over. This is because you

may take the expectation over different distributions, and it helps to be clear under which

distribution the expectation is being calculated. This becomes especially important when

variational Bayesian inference techniques are used.

Alternatively, we may also use the maximum a posteriori (MAP) estimator that takes

the maximum value of p(x|ȳ, ā, σ), which may be solved using optimization:

x̂ = arg max
x

p(x|ȳ, ā, σ) (2.81)

= arg max
x

1

Z
p(ȳ|x, ā, σmeasured)p(x) (2.82)

= arg max
x

log(p(ȳ|x, ā, σmeasured)) + log p(x)− logZ (2.83)

= arg max
x

log(p(ȳ|x, ā, σmeasured)) + log p(x) (2.84)

= arg max
x

−1

2
log(2πσ2)− 1

2σ2
(y − ax)2 + log p(x) (2.85)

= arg min
x

1

2σ2
(y − ax)2 +R(x) (2.86)

which is equivalent to penalized least-squares with R(x) = − log p(x).

All the derivations above are only for a univariate model. When multivariate models

are considered (e.g., in imaging), the derivation must consider the multivariate nature of the

problem. A common mistake is to consider a single image as a univariate variable. An image
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is composed of many different pixels and is thus multivariate. Each pixel must be treated

appropriately. As an example, let us extend the model above to a multivariate imaging

setting such as multi-coil MRI. Our data generating model is now as follows:

Y = AX + U (2.87)

where X ∈ RN×M , A ∈ RK×N , U ∈ RK×M , N is the number of voxels, M is the number

of coils, and K is the number of k-space sampling locations. U is additive noise that is

zero-mean and independent across the k-space sampling locations, but may be correlated

across the coils:

p(u11, u12, ..., ukm, ..., uKM) =
K∏
k=1

1

(2π)n/2|Σ|1/2
exp (−1

2
UT
k Σ−1Uk) (2.88)

Uk =

[
uk1 uk2 ... ukM

]T
(2.89)

with positive-definite covariance matrix Σ ∈ RM×M . Suppose then that the coil co-

variance matrix, Σ, is measured and the forward model operator, A, is fully known. The

probability distributions for these can then be defined as:

p(σ11, σ12, ..., σij, ..., σMM) =
M∏
i=1

M∏
j=1

δ(σij − σ̄ij) (2.90)

p(a11, a12, ..., akn, ..., aKN) =
K∏
k=1

N∏
n=1

δ(aij − āij) (2.91)

where σij and āij are the known values, and δ is the Dirac delta function. With the

known noise distribution and data generating model, we can derive the likelihood:
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p(Y |X, Ā, Σ̄) =
K∏
k=1

p(Yk|X, Āk, Σ̄) =
K∏
k=1

1

(2π)n/2|Σ|1/2
exp (−1

2
(Yk − ĀkX)TΣ−1(Yk − ĀkX))

(2.92)

Yk =

[
yk1 yk2 ... ykM

]T
(2.93)

Ak =

[
ak1 ak2 ... akN

]T
(2.94)

and by Bayes theorem:

p(X|Ȳ , Ā, Σ̄) =
p(Ȳ , X, Ā, Σ̄)

p(Ȳ )
(2.95)

=
p(Ȳ , X, Ā, Σ̄)∫

p(Ȳ , X,A, σ)dx11...dxNMda11...daKNdσ11...dσMM

(2.96)

=
p(Ȳ |X, Ā, Σ̄)p(X)∫

p(Ȳ |X, Ā, Σ̄)p(X)dx11...dxNM
(2.97)

p(X|Ȳ , Ā, Σ̄) =
1

Z
p(Ȳ |X, Ā, Σ̄)p(X) (2.98)

where Ȳ is the measured values of Y , and Z =
∫
p(Ȳ |X, Ā, Σ̄)p(X)dx11...dxNM . The

conditional mean estimator is then:

X̂ = Ep(X|Ȳ ,Ā,Σ̄)[X] =

∫
Xp(X|Ȳ , Ā, Σ̄)dx11...dxNM (2.99)

and the MAP estimator is:

X̂ = arg min
X

K∑
k=1

1

2
(Yk − AkX)TΣ−1(Yk − AkX)− log p(X) (2.100)

The MAP estimator is equivalent to solving a penalized least-squares problem and there

are multitudes of optimization techniques that can be leveraged to solve the problem for
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specific forms of p(X). For example, when p(X) is based on a Laplace distribution:

p(X) =
N∏
n=1

M∏
m=1

p(xnm) =
M∏
n=1

M∏
m=1

λ

2
exp (−λ|xnm|) (2.101)

this is equivalent to L1-regularized least squares or LASSO [47]:

X̂ = arg min
X

K∑
k=1

1

2
(Yk − AkX)TΣ−1(Yk − AkX) + λ ‖X‖1 (2.102)

If we further suppose that Σ = σ2I, then we get the much more familiar form of L1-

regularized least squares regression:

X̂ = arg min
X

K∑
k=1

1

2σ2
(Yk − AkX)T (Yk − AkX) + λ ‖X‖1 (2.103)

= arg min
X

1

2σ2
‖Y − AX‖2

2 + λ ‖X‖1 (2.104)

In contrast, solving the inference problem defined in eq. (2.98) is an active area of research

and highly depends on the form of the prior p(X). I refer the reader to the following

references for discussions on solving the inference problem using classical techniques: [48]–

[51]. To briefly summarize, solving the inverse probability inference problem is analytically

tractable in only very specific cases: one of which is that the distributions must belong

to the exponential family [48]. For all other models, numerical or approximate techniques

are necessary. When the dimensionality is low (i.e., not so many variables, 10’s-100’s of

variables, depending on compute capacity), then numerical Monte Carlo approaches can

be used to solve the inference problem. However, in imaging problems and especially in

deep learning, the models are very high-dimensional (e.g., a single 1024 × 1024 image has

1 million parameters; each pixel is one unknown parameter) and approximate Bayesian

inference techniques become necessary [48], [52], [53].
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2.5.2 Approximate Bayesian Inference

In a nutshell, approximate Bayesian inference techniques either modify the model to make it

analytically tractable, or modify the model that the dimensionality is greatly reduced. This

is especially important in deep learning and medical imaging reconstruction as the number of

parameters that we deal with is on the order of millions. Generally, the goal of approximate

Bayesian inference is to find an approximate form of the true posterior that is tractable to

solve:

p(X|Ȳ , Ā, Σ̄) ≈ q(X|Ȳ , Ā, Σ̄) (2.105)

where q is some function that approximates p using some metric of similarity (e.g.,

Kullback-Leibler divergence)

There are several texts that go over the different approximations methods [48], [52]–[56]

so I will only discuss the few that are relevant to this thesis: variational Bayesian inference

[52]–[54], and Monte-Carlo Dropout [57].

Variational Bayesian Inference

Variational Bayesian inference uses the Kullback-Leibler divergence (KL-divergence) as the

backbone for forming the approximation. The KL-divergence is defined as follows:

DKL(q(X|Ȳ , Ā, Σ̄)||p(X|Ȳ , Ā, Σ̄)) = −
∫
q(X|Ȳ , Ā, Σ̄) log

p(X|Ȳ , Ā, Σ̄)

q(X|Ȳ , Ā, Σ̄)
dX (2.106)

= Eq(X|Ȳ ,Ā,Σ̄)[log
p(X|Ȳ , Ā, Σ̄)

q(X|Ȳ , Ā, Σ̄)
] (2.107)

under the same context of image reconstruction as above. We can derive what’s called

the Evidence Lower Bound (ELBO) that allows us to solve for q. We start by expanding the

marginal likelihood or evidence, p(Ȳ ):
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log p(Ȳ ) = log

∫
p(X, Ȳ , Ā, Σ̄)dX (2.108)

= log

∫
p(X, Ȳ , Ā, Σ̄)q(X|Ȳ , Ā, Σ̄)

q(X|Ȳ , Ā, Σ̄)
dX (2.109)

= logEq(X|Ȳ ,Ā,Σ̄)[
p(X, Ȳ , Ā, Σ̄)

q(X|Ȳ , Ā, Σ̄)
] (2.110)

Applying Jensen’s inequality, we then get:

logEq(X|Ȳ ,Ā,Σ̄)[
p(X, Ȳ , Ā, Σ̄)

q(X|Ȳ , Ā, Σ̄)
] ≥ Eq(X|Ȳ ,Ā,Σ̄)[log

p(X, Ȳ , Ā, Σ̄)

q(X|Ȳ , Ā, Σ̄)
] = L(q(X|Ȳ , Ā, Σ̄)) (2.111)

Thus,

log p(Ȳ ) ≥ Eq(X|Ȳ ,Ā,Σ̄)[log
p(X, Ȳ , Ā, Σ̄)

q(X|Ȳ , Ā, Σ̄)
] (2.112)

The principle of evidence maximization [48] is to make the data that we observed (Ȳ ) the

most likely across all possibilities of all the other variables (X in this example, but may also

include A,Σ, and any other unknown variables) and (if we’re using variational inference) all

the approximating functions (q). The evidence maximization framework is typically used in

model selection when there are no approximations involved. However, it becomes extremely

useful for selecting the best possible approximation given the constraints.

A possible approximate Bayesian inference reconstruction can defined as follows:

q(xi) = Normal(µxi , σxi) (2.113)

q(X|Ȳ , Ā, Σ̄) =
N∏
i=1

q(xi) (2.114)

and the optimization problem is then finding the values of the variational parameters
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{µxi , σxi}∀i:

µx1 , ..., µxN , σ1, ..., σxN = arg max
µx1 ,...,µxN ,σ1,...,σxN

Eq(X|Ȳ ,Ā,Σ̄)[log
p(X, Ȳ , Ā, Σ̄)

q(X|Ȳ , Ā, Σ̄)
] (2.115)

One such approach is through Variational Expectation Maximization [53].

Bayesian Deep Learning and Monte-Carlo Dropout

In deep learning, the goal optimization is to learn network parameters that minimize the

given loss function. In this case, the objective functions given above for image reconstruction

is modified to solve for network parameters. For example, in a generative modeling paradigm

we may have:

Y = AgCNN(Z; θ) +N (2.116)

L(q(θ|Ȳ , Ā, Σ̄, Z)) = Eq(θ|Ȳ ,Ā,Σ̄,Z)[log
p(θ, Ȳ , Ā, Σ̄, Z)

q(θ|Ȳ , Ā, Σ̄, Z)
] (2.117)

where θ are the network parameters and Z is a random noise vector. This is more

involved to solve due to the requirement of evaluating the expectation Eq. One approach

to solve this is to use a Monte Carlo approximation of the expectation function and using

stochastic gradient descent [58], [59]. However, this requires implementation changes that

are not trivial and highly depend on the particular network architecture under consideration.

Monte-Carlo Dropout (MC-Dropout) MC-Dropout [57] is an alternative method that

requires little to no changes to the standard deep learning training algorithm and can be

deployed for practically any deep convolutional neural network. The theory is fundamentally

based on variational Bayesian inference and the major benefit of MC-Dropout is in the ease

how it can be implemented. The use of MC-Dropout is summarized in two steps:
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1. Train the network with dropout layers [60] (if not already), while keeping everything

else the same (e.g., loss function, regularization, etc.)

2. On inference, continue using dropout, and generate T inference samples using different

dropout masks.

Once the inference samples are produced, final results can then be derived such as taking

pixel-wise mean and standard deviation for the final reconstructed image and uncertainty

estimates, respectively.

X = gCNN(Z; θ) (2.118)

X̄ =

∫
gCNN(Z; θ)q(θ)dθ ≈ 1

T

T∑
i=1

gCNN(Z; θi) (2.119)

σ2
X =

∫
(gCNN(Z; θ)− X̄)2q(θ)dθ ≈ 1

T

T∑
i=1

(gCNN(Z; θ)− X̄)2 (2.120)

where θi ∼ q(θ).

2.5.3 Summary

Taking a Bayesian approach to medical image reconstruction allows you to not only capture

a single solution, but to estimate a whole family of possible solutions. This leads to estimates

of uncertainty that can capture limitations in the training dataset during inference. This

feature is utilized in the work in chapter 3. Furthermore, by having a family of solutions

that takes into consideration the statistics of the problem, this can give more accurate

reconstructions in the face of noise and undersampling in MRI reconstruction, as shown in

the work in chapter 4.
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Chapter 3

Attenuation Coefficient Estimation

for PET/MRI With Bayesian Deep

Learning pseudo-CT and Maximum

Likelihood Estimation of Activity and

Attenuation (UpCT-MLAA)

A major remaining challenge for magnetic resonance-based attenuation correction methods

(MRAC) is their susceptibility to sources of MRI artifacts (e.g. implants, motion) and

uncertainties due to the limitations of MRI contrast (e.g. accurate bone delineation and

density, and separation of air/bone). I propose using a Bayesian deep convolutional neural

network that, in addition to generating an initial pseudo-CT from MR data, also produces

uncertainty estimates of the pseudo-CT to quantify the limitations of the MR data. These

outputs are combined with MLAA reconstruction that uses the PET emission data to im-

prove the attenuation maps. With the proposed approach (UpCT-MLAA), I demonstrate

accurate estimation of PET uptake in pelvic lesions and show recovery of metal implants.
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In patients without implants, UpCT-MLAA had acceptable but slightly higher RMSE than

Zero-echo-time and Dixon Deep pseudo-CT when compared to CTAC. In patients with metal

implants, MLAA recovered the metal implant; however, anatomy outside the implant region

was obscured by noise and crosstalk artifacts. Attenuation coefficients from the pseudo-CT

from Dixon MRI were accurate in normal anatomy; however, the metal implant region was

estimated to have attenuation coefficients of air. UpCT-MLAA estimated attenuation coef-

ficients of metal implants alongside accurate anatomic depiction outside of implant regions.

This chapter was previously published at [61].

3.1 Prior work

My prior work surrounding this topic can be found at [8], [62]–[64]. Initially, a segmentation

and model-based approached was used to produce pseudo-CT images from a combination of

zero echo time (ZTE), Dixon fractional fat, and Dixon fractional water MRI [62] to address

the problem of missing bone in the pseudo-CT. This was then expanded to use deep learning

to avoid the manual segmentation and produce a synthetic CT directly from MRI [63]. I later

found that ZTE may not be completely necessary since bone can be reliably estimated using

only Dixon MRI [8]. Other groups have corroborated this finding [65]. And on the sequence

optimization side, I leveraged optimization techniques to identify what kind of features the

input MRI needs in order to produce the most realistic CT images possible [64]. I found

that the bone delineation needs to be much sharper to obtain the same sharpness of bone

definition that CT provides. However on the MRI sequence side, it is still an open question

how to achieve that kind of image sharpness.

3.2 Introduction

The quantitative accuracy of simultaneous positron emission tomography and magnetic reso-

nance imaging (PET/MRI) depends on accurate attenuation correction. Simultaneous imag-
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ing with positron emission tomography and computed tomography (PET/CT) is the current

clinical gold standard for PET attenuation correction since the CT images can be used for

attenuation correction of 511keV photons with piecewise-linear models [7]. Magnetic reso-

nance imaging (MRI) measures spin density rather than electron density and thus cannot

directly be used for PET attenuation correction.

A comprehensive review of attenuation correction methods for PET/MRI can be found

at [66] . Briefly, current methods for attenuation correction in PET/MRI can be grouped

into the following categories: atlas-based, segmentation-based, and machine learning-based.

Atlas-based methods utilize a CT atlas that is generated and registered to the acquired

MRI [67]–[70]. Segmentation-based methods use special sequences such as ultrashort echo-

time (UTE) [71]–[75] or zero echo-time (ZTE) [76]–[80] to estimate bone density and Dixon

sequences [81]–[83] to estimate soft tissue densities. Machine learning-based methods, in-

cluding deep learning methods, use sophisticated machine learning models to learn mappings

from MRI to pseudo-CT images [63], [65], [84]–[88] or PET transmission images [89]. There

have also been methods that estimate attenuation coefficient maps from the PET emission

data [90], [91] or directly correct PET emission data [92]–[94] using deep learning.

For PET alone, an alternative method for attenuation correction is “joint estimation”,

also known as maximum likelihood estimation of activity and attenuation (MLAA) [39], [40].

Rather than relying on an attenuation map that was measured or estimated with another

scan or modality, the PET activity image (λ-map) and PET attenuation coefficient map

(µ-map) are estimated jointly from the PET emission data only. However, MLAA suffers

from numerous artifacts and high noise [95].

In PET/MRI, recent methods developed to overcome the limitations of MLAA include

using MR-based priors [96], [97] constraining the region of joint estimation [98], or using deep

learning to denoise the resulting λ-map and/or µ-map from MLAA [99]–[102]. Mehranian

and Zaidi’s [97] approach of using priors improved MLAA results however this was not

demonstrated on metal implants. Ahn et al and Fuin et al’s methods [96], [98] that also use
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priors were able to recover metal implants in the PET image reconstruction, but the µ-maps

were missing bones and other anatomical features. Furthermore, their methods require a

manual or semi-automated segmentation step to delineate the regions where to apply the

correct priors (such as the metal implant region). The approaches by Hwang et al [100]–

[102] and Choi et al [99] that utilize supervised deep learning resulted in anatomically correct

and accurate µ-maps; however, the method was not demonstrated in the presence of metal

implants.

Utilizing supervised deep learning is considered a very promising method for accurate

and precise PET/MRI attenuation correction. However, the main limitation of a supervised

deep learning method is the finite data set that needs to have a diverse set of well-matched

inputs and outputs.

In PET/MRI, the presence of metal implants complicates training because there are

resulting metal artifacts in both CT and MRI. Furthermore, the artifacts appears differently:

a metal implant produces a star-like streaking pattern with high Hounsfield unit values in

the CT image [103] and a signal void in the MRI image [96]. This makes registration between

MRI and CT images difficult and the artifacts lead to intrinsic errors in the training dataset.

In addition, there will arguably always be edge cases and rare features that cannot be

captured with enough representation in a training data set. Images of humans can have rare

features not easily obtained (e.g., missing organs due to surgery, a new or uncommon im-

plant). Under these conditions, a standard supervised deep learning approach may produce

incorrect predictions and the user (or any downstream algorithm) will be unaware of the

errors.

A recent study by Ladefoged et al [104] demonstrated the importance of a high-quality

data set in deep learning-based brain PET/MRI attenuation correction. A large, diverse set

of at least 50 training examples were required to achieve robustness and they highlighted

that the remaining errors and limitations in deep learning-based MR attenuation correction

were due to “abnormal bone structures, surgical deformation, and metal implants.”
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In this work, I propose the use of supervised Bayesian deep learning to estimate predictive

uncertainty to detect rare or previously unseen image structures and estimate intrinsic errors

that traditional supervised deep learning approaches cannot.

Bayesian deep learning provides tools to address the limitations of a finite training

dataset: the estimation of epistemic and predictive uncertainty [105]. A general introduction

to uncertainties in machine learning can be found at [106].

Epistemic uncertainty is the uncertainty on learned model parameters that arises due to

incomplete knowledge or, in the case of supervised machine learning, the lack of training

data. Epistemic uncertainty is manifested as a diverse set of different model parameters that

fit the training data.

The epistemic uncertainty of the model can then be used to produce predictive uncer-

tainty that capture if there are any features or structures that deviate from the training

dataset on a test image. This allows for the detection of rare or previously unseen image

structures without explicitly training to identify these structures.

Typical supervised deep learning approaches do not capture the epistemic nor predictive

uncertainty because only one set of model parameters are learned and only a single prediction

is produced (e.g., a single pseudo-CT image).

In this work for PET/MRI attenuation correction, the predictive uncertainty is used to

automatically weight the balance between the deep learning µ-map prediction from MRI and

the µ-map estimates from the PET emission data from MLAA. When the model is expected

to have good performance on a region in a test image, then MLAA has minimal contribution.

However, when the model is expected to have poor performance on regions in a test image,

then MLAA has a stronger contribution to the attenuation coefficient estimates of those

regions.

Specifically, I extend the framework of Ahn et al’s MLAA regularized with MR-based pri-

ors [96] and generate MR-based priors with a Bayesian convolutional neural network (BCNN)

[57] that additionally provides a predictive uncertainty map to automatically modulate the
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Figure 3.1: Schematic flow of UpCT-MLAA. Monte Carlo Dropout is first performed with
the BCNN, then the outputs are provided as inputs to PET reconstruction with regularized
MLAA.

strength of the MLAA priors. I demonstrate a proof-of-concept methodology that produces

anatomically correct, accurate, and precise µ-maps with high SNR that can recover metal

implants for PET/MRI attenuation correction in the pelvis.

3.3 Materials and Methods

UpCT-MLAA is composed of two major elements: initial pseudo-CT characterization with

Bayesian deep learning through Monte Carlo Dropout [57] and PET reconstruction with

regularized MLAA [96]. The algorithm is depicted in fig. 3.1 and each component is described

in detail below.

3.3.1 Bayesian Deep Learning

The architecture of the BCNN is shown in fig. 3.2. It was based on the U-net-like network

in [63] with the following modifications: (1) Dropout [57], [60] was included after every

convolution, (2) the patch size was increased to 64×64×32 voxels, and (3) each layer’s number

of channels was increased by 4 times to compensate for the reduction of information capacity

due to the Dropout. The PyTorch software package [107] (v0.4.1, http//pytorch.org) was
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Figure 3.2: Deep convolutional neural network architecture used in this work.

used. Inputs to the model were volume patches of the following dimensions and size: 64

pixels × 64 pixels × 32 pixels × 3 channels. Each channel was a volume patch of the bias-

corrected and fat-tissue normalized Dixon in-phase image, Dixon fractional fat image, and

Dixon fractional water image, respectively, at the same spatial locations [8]. The output was

a corresponding pseudo-CT image with size 64 pixels × 64 pixels × 32 pixels × 1 channel.

ZTE MRI was not used as inputs to this model since it has been demonstrated that accurate

HU estimates can be achieved with only the Dixon MR pulse sequence [8], [65].

Model Training

Model training was performed similarly to my previous work [8]. The loss function was

a combination of an L1-loss, gradient difference loss (GDL), and Laplacian difference loss

(LDL):
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Loss = |y − ŷ|+λGDL
(
|∇xy −∇xŷ|2 + |∇yy −∇yŷ|2 + |∇zy −∇zŷ|2

)
+λLDL

(
|∆y −∆ŷ|2

)
(3.1)

where ∇ is the gradient operator, ∆ is the Laplacian operator, y is the ground-truth CT

image patch, and ŷ is the output pseudo-CT image patch with λGDL = 0.01 and λLDL = 0.01.

The Adam optimizer [108] (learning rate = 1×10−5, β1 = 0.9, β2 = 0.999, ε = 1×10−8) was

used to train the neural network. An L2 regularization (λ = 1× 10−5) on the weights of the

network was used. He initialization [109] was used and a mini-batch of 4 volumetric patches

was used for training on two NVIDIA GTX Titan X Pascal (NVIDIA Corporation, Santa

Clara, CA, USA) graphics processing units. The models were trained for approximately 68

hours to achieve 100,000 iterations.

3.3.2 Pseudo-CT prior and weight map

Generation of the pseudo-CT estimate and variance image was performed through Monte

Carlo Dropout [57] with the BCNN described above. The Monte Carlo Dropout inference

is outlined in fig. 3.1. A total of 243 Monte Carlo samples were performed to generate a

pseudo-CT estimate and a variance map:

pCT =
1

N

N∑
i=1

fi (x) (3.2)

σ2 =
1

N

N∑
i=1

(fi (x)− pCT)2 (3.3)

where fi is a sample of the BCNN with Dropout, x is the input Dixon MRI, and N is

the number of Monte Carlo samples. Inference took approximately 40 minutes per patient

on 8 NVIDIA K80 graphics processing units.

The pseudo-CT estimate was converted to a µ-map with a bilinear model [7] and the
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variance map was converted to a weight map with a range of 0.0 to 1.0 with the following

empirical transformation:

w (~r) =
1

1 + exp
(

0.1
((

σ2(~r)
1000

)
− 25

)) (3.4)

where σ2 (~r) is the variance at voxel position ~r. The sigmoidal transformation was cali-

brated by inspecting the resulting variance maps. It was designed such that the transition

band of the sigmoid covers the range of variances in the body and finally saturates at un-

certainty values of bowel air and metal artifact regions. With the constants chosen, the

transition band of the sigmoid corresponds to variances of 0 to ∼100,000 HU2 (standard de-

viations of 0 to ∼300 HU). The weight map was then linearly scaled to have a range of 1×103

to 5×106, called βMR. The low βMR values correspond to regions with high uncertainty and

thus the estimation for these regions would be dominated by the emission data.

The empirical transformation was a heuristic developed to be compatible with the MLAA

algorithm of Ahn et al [96]. In the work of Ahn et al, the weight prior, βMR, was defined only

by two discrete values: one for the implant region and one for outside the implant region. My

work maintained the use of upper and lower bounds and I used a smooth curve that allows for

smoothness as the input values goes towards the saturation values. The predicted variance

values have a range of [0, ∞). I set an upper-bound threshold for variance values based on the

observed ranges and visual inspection of which anatomic structures the high-variance regions

corresponded to. The complete transformation function then has the following requirement:

f : [0, σ2
max]→ [βMRmin, βMRmax] and I desired a smooth transition towards the saturation

values. Thus, I chose a sigmoid function for initial transformation the transformation of the

variance values: f : [0, σ2
max ] → [0, 1], and the linear transformation re-maps it to the

range needed for βMR : g : [0, 1]→ [βMRmin, βMRmax].

The weight map was additionally processed to set weights outside the body (e.g. air

voxels) to 0.0 so that these were not included in MLAA reconstruction. A body mask was
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generated by thresholding (> −400 HU) the pseudo-CT estimate. The initial body mask

was morphologically eroded by a 1-voxel radius sphere. Holes in the body were then filled

in with the imfill function (Image Processing Toolbox, MATLAB 2014b) at each axial slice.

The body masks were then further refined by removing arms as in my previous work [62].

3.3.3 Sources of uncertainty and variations

There are three different predictive uncertainties that are utilized in my work: total voxel

uncertainty–and its components–patch uncertainty, and voxel-wise uncertainty.

Total voxel uncertainty is the combination of patch uncertainty (uncertainty due to

changes in input patch) and uncertainty of each voxel for the same input patch (uncertainty

due to changes in the model). These can be decoupled and independently estimated.

Patch uncertainty comes from variations of the response of the CNN due to changes in

the input data. Whereas voxel uncertainty (for the same input patch) come from variations

of the network parameters with respect to the same input. Mathematically, the predictive

likelihood for a single voxel can be written completely as follows:

p (y∗i | X∗, X, Y) =
1

N

∑
x∗∈X∗

∫
p (y∗|x∗, θ) p (θ|X,Y) dθ (3.5)

where y∗i is the predicted value at the i-th voxel, X∗ is the set of neighboring and over-

lapping input patches, N is the number of patches to predict the value of a single voxel,

θ are the network parameters, X,Y are the training input/output pairs, and p (θ|X,Y) is

the posterior distribution of the network parameters given the training pairs that is learned

during model training.

The final predicted value is obtained by taking the expectation of the model predictions

over the predictive likelihood:

p (y∗i | X∗, X, Y) =
1

N

∑
x∗∈X∗

p
(
y∗
∣∣∣x∗, θ̂) (3.6)
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≈ 1

NM

∑
x∗∈X∗

M∑
m=1

y∗i,m (By Monte-Carlo approximation of the integrals) (3.7)

=
1

NM

∑
x∗∈X∗

M∑
m=1

fCNN (x∗, θm) (3.8)

And the variance is:

σ2
y∗i

= E

[(
y∗i − ŷ∗i

)2
]

=

∫ (
y∗i − ŷ∗i

)2
(

1

N

∑
x∗∈X∗

∫
p (y∗|x∗, θ) p (θ|X,Y) dθ

)
dy∗i (3.9)

≈ 1

NM

∑
x∗∈X∗

M∑
m=1

(
y∗i,m − ŷ∗i

)2

(By Monte-Carlo approximation of the integrals) (3.10)

=
1

NM

∑
x∗∈X∗

M∑
m=1

(
fCNN (x∗, θm)− ŷ∗i

)2

(3.11)

where M is the number of Monte-Carlo samples used in inference.

Voxel uncertainty corresponds to the following term in the predictive likelihood:

∫
p (y∗|x∗, θ) p (θ|X,Y) dθ (3.12)

and corresponds to the following summation in the prediction and variance:

M∑
m=1

fCNN (x∗, θm) (3.13)

M∑
m=1

(
fCNN (x∗, θm)− ŷ∗i

)2

(3.14)
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The patch uncertainty comes from averaging the predictions of different input patches

for each single voxel and corresponds to the summation in the prediction and variance:

∑
x∗∈X∗

fCNN (x∗, θm) (3.15)

∑
x∗∈X∗

(
fCNN (x∗, θm)− ŷ∗i

)2

(3.16)

Suppose that there is no model uncertainty, and the network parameters are fixed to be

θ̂ (only one set of network parameters used in all inferences). The predictive likelihood will

then be:

p (y∗i | X∗, X, Y) =
1

N

∑
x∗∈X∗

p
(
y∗
∣∣∣x∗, θ̂) (3.17)

And the final predicted value will be:

ŷ∗i =
1

N

∑
x∗∈X∗

fCNN

(
x∗, θ̂

)
(3.18)

And the variance will be

σ2
y∗i

=
1

N

∑
x∗∈X∗

(
fCNN

(
x∗, θ̂

)
− ŷ∗i

)2

(3.19)

Suppose that we do not process overlapping patches and only extract voxel uncertainty,

the predictive likelihood will be:

p (y∗i | x∗, X, Y) =

∫
p (y∗|x∗, θ) p (θ|X,Y) dθ (3.20)

And the final predicted value will be:

ŷ∗i =
1

M

M∑
m=1

fCNN (x∗, θm) (3.21)
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And the variance will be:

σ2
y∗i

=
1

M

M∑
m=1

(
fCNN (x∗, θm)− ŷ∗i

)2

(3.22)

Thus, patch uncertainty and (patch-specific) voxel uncertainty can be independently

obtained but are tightly coupled together when calculating total voxel uncertainty. In the

final prediction for this work, we utilize total voxel uncertainty that incorporates both patch

uncertainty and (patch-specific) voxel uncertainty.

3.3.4 Uncertainty estimation and pseudo-CT prior for robust Max-

imum Likelihood estimation of Activity and Attenuation

(UpCT-MLAA)

UpCT-MLAA is a combination of the outputs of the BCNN and regularized MLAA. The

process is depicted in fig. 3.1. MRI and CT images of patients without metal implants were

used to train the BCNN.

I explicitly trained the network only on patients without metal implants to force the

BCNN to extrapolate on the voxel regions containing metal implant (i.e. “out-of-distribution”

features) to maximize the uncertainty in these regions.

Thus, a high variance (≥∼ 1× 105 HU2) emerged in implant regions compared to a low

variance in normal anatomy (0 to ∼ 2.5×104 HU2) with the uncertainty estimation as can be

seen in fig. 3.1. The µ-map estimate and the weight map were then provided to the regular-

ized MLAA [96] to perform PET reconstruction (5 iterations with 28 subsets, each iteration

consists of 1 TOF-OSEM iteration and 5 ordered subsets transmission (OSTR) iterations,

βMR as described above, βsmooth = 2× 104). Specifically, the MR-based regularization term

in MLAA is:

RMR (µ) =
∑
i

βMRi

2

(
µi − µMR

i

)2
(3.23)



50

where i indexes over each voxel in the volume. µMR is determined from the mean pseudo-

CT image and βMR is determined from the variance image through the weight map trans-

formation. The formulation in eq. (3.23) is slightly different than in Section 2.3.2 of [96] but

has the same effect.

3.4 Patient Studies

The study was approved by the local Institutional Review Board (IRB). Patients who were

imaged with PSMA-11 signed a written informed consent form while the IRB waived the

requirement for informed consent for FDG and DOTATATE studies.

Patients with pelvic lesions were scanned using an integrated 3 Tesla time-of-flight

PET/MRI system [110] (SIGNA PET/MR, GE Healthcare, Chicago, IL, USA). The pa-

tient population consisted of 29 patients (Age = 58.7±13.9 years old, 16 males, 13 females):

10 patients without implants were used for model training, 16 patients without implants

were used for evaluation with a CT reference, and three patients with implants were used

for evaluation in the presence of metal artifacts.

3.4.1 PET/MRI Acquistion

The PET acquisition on the evaluation set was performed with different radiotracers: 18F-

FDG (11 patients), 68Ga-PSMA-11 (7 patients), 68Ga-DOTATATE (1 patient). The PET

scan had 600 mm transaxial field-of-view (FOV) and 25 cm axial FOV, with time-of-flight

timing resolution of approximately 400 ps. The imaging protocol included a six bed-position

whole-body PET/MRI and a dedicated pelvic PET/MRI acquisition. The PET data were

acquired for 15-20 min during the dedicated pelvis acquisition, during which clinical MRI

sequences and the following MRAC sequences were acquired: Dixon (FOV = 500×500×312

mm, resolution = 1.95 × 1.95 mm, slice thickness = 5.2 mm, slice spacing = 2.6 mm, scan

time = 18 s) and ZTE MR (cubical FOV = 340 × 340 × 340 mm, isotropic resolution =
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2× 2× 2 mm, 1.36 ms readout duration, FA = 0.6°, 4 µs hard RF pulse, scan time = 123 s).

3.4.2 CT Imaging

Helical CT images of the patients were acquired separately on different machines (GE Dis-

covery STE, GE Discovery ST, Siemens Biograph 16, Siemens Biograph 6, Philips Gemini

TF ToF 16, Philips Gemini TF ToF 64, Siemens SOMATOM Definition AS) and were co-

registered to the MR images using the method outlined below. Multiple CT protocols were

used with varying parameter settings (110-130 kVp, 30-494 mA, rotation time = 0.5 s, pitch

= 0.6-1.375, 11.5-55 mm/rotation, axial FOV = 500-700 mm, slice thickness = 3-5 mm,

matrix size = 512× 512). Pre-processing consisted of filling in bowel air with soft-tissue HU

values and copying arms from the Dixon-derived pseudo-CT due to the differences in bowel

air distribution and the CT scan being acquired with arms up, respectively [62]. MRI and

CT image pairs were co-registered using the ANTS [111] registration package and the SyN

diffeomorphic deformation model with combined mutual information and cross-correlation

metrics [8], [62], [63].

3.4.3 PET reconstructions

In addition to UpCT-MLAA, additional PET reconstructions were performed for comparison.

For each patient without metal implants: (1) UpCT-MLAA was performed and time-of-

flight ordered subsets expectation maximization with a point spread function model (TOF-

OSEM) [112] (transaxial field of view (FOV) = 600 mm, 2 iterations, 28 subsets, matrix

size = 192 × 192, 89 slices of 2.78 mm thickness) with two µ-maps: (2) ZeDD-CTAC, (3)

initial AC estimate of the BCNN (BpCT-AC) and (4) CTAC, for comparison. BpCT-AC is

a surrogate for ZeDD-CTAC but without the use of a specialized MR sequence.

For each patient with metal implants, UpCT-MLAA was performed along with (1) naive

MLAA, (2 to 4) regularized MLAA with increasing regularization parameters (βMR =

[1× 103, 7 × 105, 5 × 106], constant over the volume), (5) TOF-OSEM with BpCT-AC,
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and (6) TOF-OSEM with CTAC for comparison.

3.4.4 Data Analysis

Image error analysis and lesion-based analysis were performed for patients without metal im-

plants: the average (µ) and standard deviation (σ) of the error, mean-absolute-error (MAE),

and root-mean-squared-error (RMSE) were computed over voxels that met a minimum signal

amplitude and/or signal-to-noise criteria [63]. Global HU and PET SUV comparisons were

only performed in voxels with amplitudes > −950 HU in the ground-truth CT to exclude air,

and a similar threshold of > 0.01 cm−1 attenuation in the CTAC was used for comparison of

AC maps. Bone and soft-tissue lesions were identified by a board-certified radiologist. Bone

lesions are defined as lesions inside bone or with lesion boundaries within 10 mm of bone

[113]. A Wilcoxon signed-rank test was used to compare the SUVmax biases compared to

CTAC of individual lesions.

In the cases where a metal implant was present, I qualitatively examined the resulting AC

maps of the different reconstructions and quantitatively compared SUVmax with reference

CTAC PET. High uptake lesions and lesion-like objects were identified on the PET images

reconstructed with UpCT-MLAA and separated into two categories: (1) in-plane with the

metal implant, and (2) out-plane of the metal implant. A Wilcoxon signed-rank test was

used to compare the SUV and SUVmax values between the different reconstruction methods

and CTAC PET.

3.5 Results

3.5.1 Monte Carlo Dropout

Representative images of the output of the BCNN with Monte Carlo Dropout is shown in

fig. 3.3. The same mask used for the weight maps was used to remove voxels outside the

body. The pseudo-CT images visually resemble the ground-truth CT images for patients
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Figure 3.3: Representative intermediate image outputs of the BCNN with Monte Carlo
Dropout compared to the reference CT images for patients without metal implants (columns
1 and 2) and patients with metal implants (columns 3 and 4). The voxel-wise standard
deviation map is shown instead of variance for better visual depiction. Regions with high
standard deviation correspond to bone, bowel air, skin boundary, implants, blood vessels,
and regions with likely modeling error (e.g. around the bladder in the standard deviation
map in the rightmost column.)
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Figure 3.4: Result of uncertainty estimation on without body masks on an MRI with motion
artifacts due to breathing and arm truncation due to edge of field-of-view inhomogeneity.
The orange arrow points to a region where motion artifacts were present and the dark red
arrow points to a region with arm truncation. Both artifact regions were highlighted in the
variance image without the network being explicitly trained to highlight these regions.

without implants. While in patients with implants, the metal artifact region in the MRI was

assigned air HU values. Nonetheless, the associated standard deviation maps highlighted

image structures that the network had high predictive uncertainty. The most important

of which are air pockets and the metal implant. The BCNN highlighted these regions and

structures in the standard deviation image without being explicitly trained to do so.

An additional example of the uncertainty estimation is provided in fig. 3.4. The input

MRI had motion artifacts due to breathing and arm truncation due to inhomogeneity at the

edge of the FOV. Like the metal implants, the BCNN highlighted the motion artifact region

and arm truncation in the variance image without being explicitly trained to do so.
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3.5.2 Patients without implants

The PET reconstruction results for the patients without implants are summarized in fig. 3.5.

The RMSE is reported along with the average (µ) and standard deviation (σ) of the error as

RMSE (µ±σ). Additional results for the pseudo-CT, AC maps, and PET data are provided

in figs. 3.6 to 3.9.

Pseudo-CT results

The total RMSE for the pseudo-CT compared to gold-standard CT across all volumes were

98 HU (−13 ± 97 HU) for ZeDD-CT and 95 HU (−6.5 ± 94 HU) for BpCT. The BpCT is

the same pseudo-CT image used in UpCT-MLAA.

Attenuation coefficient map results

The total RMSE for the AC maps compared to gold-standard CTAC across all volumes were

3.1× 10−3 cm−1 (−5.0× 10−4± 3.1× 10−3 cm−1) for ZeDD-CTAC, 3.2× 10−3 cm−1 (−3.8×

10−5±3.2×10−3 cm−1) for BpCT-AC, and 3.5×10−3 cm−1 (−2.6×10−5±3.5×10−3 cm−1)

for UpCT-MLAA-AC.

PET images

The total RMSE for PET images compared to gold-standard CTAC PET across all volumes

were 0.023 SUV (−0.005±0.023 SUV) for ZeDD PET, 0.022 SUV (−8.1×10−5±0.022 SUV)

for BpCT-AC PET and 0.027 SUV (1.5× 10−4 ± 0.027 SUV) for UpCT-MLAA PET.

Lesion uptake and SUVmax

The results for lesion analysis for patients without implants are shown in fig. 3.5. There

were 30 bone lesions and 60 soft tissue lesions across the 16 patient datasets. The RMSE

w.r.t. CTAC PET SUV and SUVmax are summarized in table 3.1. For SUVmax of bone

lesions, no significant difference was found for ZeDD PET and BpCT-AC PET (p = 0.116)
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Figure 3.5: Representative images of bone and soft tissue lesions for patients without im-
plants (A, reproduced from (20)), scatter plots of SUV in every lesion voxel (B), and box
plots of the SUVmax in each lesion (C). This shows that BpCT-AC and UpCT-MLAA-AC
is near equivalent to ZeDD-CTAC in patients without implants when comparing to CTAC.



57

Figure 3.6: CT and difference images of pseudo-CT images for one representative case with-
out implants. Both ZeDD-CT and BpCT have the least RMSE for this patient (RMSE=98.5
HU, and RMSE=98.9 HU, respectively).
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Figure 3.7: CTAC and the different AC maps produced from the different methods for one
representative case without implants.
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Figure 3.8: Difference images of the AC methods compared to ground-truth CTAC for one
representative case without implants.
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Figure 3.9: PET images of CTAC PET and difference images of the AC methods compared
to CTAC PET for one representative case without implants.
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Table 3.1: Lesion SUV errors over the volume compared to CTAC in patients without
implants

Bone Lesions
Method SUV RMSE (µ± σ)
ZeDD-CTAC 2.6 % (−1.3± 2.3 %)
BpCT-AC 3.2 % (−0.9± 3.1%)
UpCT-MLAA 3.6 % (−0.3± 3.6 %)
Method SUVmax RMSE (µ± σ)
ZeDD-CTAC 2.6 % (−1.3± 2.3 %)
BpCT-AC 3.1 % (−0.3± 3.1%)
UpCT-MLAA 3.4 % (0.03± 3.4 %)

Soft tissue Lesions
Method SUV RMSE (µ± σ)
ZeDD-CTAC 4.4 % (−2.9± 3.3 %)
BpCT-AC 3.5 % (0.01± 3.5%)
UpCT-MLAA 4.6 % (−1.1± 4.5 %)
Method SUVmax RMSE (µ± σ)
ZeDD-CTAC 4.1 % (−2.3± 3.4 %)
BpCT-AC 3.4 % (−0.1± 3.4%)
UpCT-MLAA 4.8 % (−1.6± 4.5 %)

while PET ZeDD PET and UpCT-MLAA PET were significantly different (p = 0.037). For

SUVmax of soft tissue lesions, ZeDD PET and BpCT-AC PET were significantly different

(p < 0.001) while no significant difference was found between ZeDD PET and UpCT-MLAA

PET (p = 0.16).

3.5.3 Patients with metal implants

Figures 3.10 and 3.11 show the different AC maps generated with the different reconstruction

processes and associated PET image reconstructions on two different radiotracers (18F-FDG

and 68Ga-PSMA) and fig. 3.12 shows the summary of the SUVmax results. Additional results

for pseudo-CT, AC maps, and PET images are provided in figs. 3.13 to 3.18.
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Figure 3.10: Representative images from metal implant patient #3 imaged with 18F-FDG.
Shown are the CT, Dixon in-phase, and NAC PET images (a), AC maps (b, first and second
column), and associated PET reconstructions (b, third column). The AC maps are shown in
two different window levels to highlight bone and soft tissue (b, first column) and the metal
implant (b, second column).
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Figure 3.11: Representative images from metal implant patient #1 imaged with 68Ga-PSMA.
Shown are the CT, Dixon in-phase, and NAC PET images (a), AC maps (b, first and second
column), and associated PET reconstructions (b, third column). The AC maps are shown in
two different window levels to highlight bone and soft tissue (b, first column) and the metal
implant (b, second column).
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Figure 3.12: Box plot summarizing the results comparing to CTAC PET for patients with
implants. The red crosses denote outliers.
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Figure 3.13: CT, pseudo-CT, line profiles, and difference images for a patient with a metal
implant imaged with PSMA.

Figure 3.14: AC maps, line profile, and difference images for a patient with a metal implant
imaged with PSMA.
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Figure 3.15: PET images and difference images for a patient with a metal implant imaged
with PSMA.

Figure 3.16: CT, pseudo-CT, line profiles, and difference images for a patient with a metal
implant imaged with FDG.
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Figure 3.17: AC maps, line profile, and difference images for a patient with a metal implant
imaged with FDG.

Figure 3.18: PET images and difference images for a patient with a metal implant imaged
with FDG.
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Metal implant recovery

Figure 3.10b (1st and 2nd column) and fig. 3.11b (1st and 2nd column) show the AC map

estimation results.

BpCT-AC filled in the metal implant region with air since the metal artifact in MRI

appears as a signal void. Although reconstructing using naive MLAA recovers the metal

implant, the AC map was noisy and anatomical structures were difficult to depict. The

addition of regularization (increasing βMR) reduces the noise, however over-regularization

eliminates the presence of the metal implant. The use of a different radiotracer also influenced

reconstruction performance: the MLAA-based methods performed worse when the tracer was

68Ga-PSMA compared to 18F-FDG with low regularization. In contrast, UpCT-MLAA-AC

recovered the metal implant while maintaining high SNR depiction of anatomical structures

outside the implant region for both radiotracers. The high attenuation coefficients were

constrained in the regions where high variance was measured (or where the metal artifact

was present on the BpCT AC maps).

PET image reconstruction

Figure 3.10b (3rd column) and fig. 3.11b (3rd column) show the PET image reconstructions

results.

Qualitatively, the MLAA-based methods (UpCT-MLAA and Standard MLAA) show up-

take around the implant, whereas BpCT-AC PET and CTAC PET show the implant region

without any uptake. When compared to the NAC PET, the MLAA-based methods better

match what is depicted within the implant region. Quantitatively, table 3.1 summarizes the

SUV results for voxels in-plane of the metal implant and out-plane of the metal implant.

SUVmax quantification

Figure 3.12 shows the comparisons of SUVmax of lesions in-plane and out-plane of the metal

implant and tables 3.2 and 3.3 list the RMSE values for SUV and SUVmax. There were
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Table 3.2: SUV errors over the volume compared to CTAC

Method SUV RMSE (µ, σ, p-value)
In-plane with metal implant
BpCT-AC 0.10 SUV (µ = −0.014, σ = 0.10, p < 0.001)
Naive MLAA 0.19 SUV (µ = 0.06, σ = 0.18, p < 0.001)
MLAA PET (βMR = 103) 0.16 SUV (µ = 0.047, σ = 0.15, p < 0.001)
MLAA PET (βMR = 7× 105) 0.09 SUV (µ = 0.001, σ = 0.09, p < 0.001)
MLAA PET (βMR = 5× 106) 0.09 SUV (µ = −0.008, σ = 0.09, p < 0.001)
UpCT-MLAA 0.12 SUV (µ = 0.018 SUV, σ = 0.12 SUV, p < 0.001)

Out-plane with metal implant
BpCT-AC 0.086 SUV (µ = 0.009 SUV, σ = 0.085 SUV, p < 0.001)
Naive MLAA 0.14 SUV (µ = 0.018 SUV, σ = 0.14 SUV, p < 0.001)
MLAA PET (βMR = 103) 0.13 SUV (µ = 0.016, σ = 0.13, p < 0.001)
MLAA PET (βMR = 7× 105) 0.09 SUV (µ = 0.012, σ = 0.09, p < 0.001)
MLAA PET (βMR = 5× 106) 0.09 SUV (µ = 0.010, σ = 0.09, p < 0.001)
UpCT-MLAA 0.086 SUV (µ = 0.012 SUV, σ = 0.085 SUV, p < 0.001)

Table 3.3: Lesion SUVmax percent errors

Method SUVmax % RMSE (µ, σ, p− value)
In-plane with metal implant (n = 6)
BpCT-AC 24.2% (µ = −18.0%, σ = 16.2%, p = 0.03)
Naive MLAA 26.9% (µ = −9.2%, σ = 25.3%, p = 0.31)
MLAA PET (βMR = 103) 21.0% (µ = −18.5%, σ = 9.9%, p = 0.03)
MLAA PET (βMR = 7× 105) 22.2% (µ = −19.3%, σ = 10.9%, p = 0.03)
MLAA PET (βMR = 5× 106) 23.1% (µ = −17.8%, σ = 14.8%, p = 0.03)
UpCT-MLAA 13.6% (µ = −2.4%, σ = 13.4%, p = 0.44)

Out-plane with metal implant (n = 15)
BpCT-AC 6.9% (µ = −2.5%, σ = −6.5%, p = 0.07)
Naive MLAA 27.9% (µ = 4.7%, σ = 27.5%, p = 0.72)
MLAA PET (βMR = 103) 18.7% (µ = −5.2%, σ = 18.0%, p = 0.28)
MLAA PET (βMR = 7× 105) 9.6% (µ = −1.3%, σ = 9.5%, p = 0.33)
MLAA PET (βMR = 5× 106) 7.4% (µ = −2.1%, σ = 7.1%, p = 0.21)
UpCT-MLAA 7.1% (µ = −1.9%, σ = 6.8%, p = 0.19)
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6 lesions in-plane and 15 lesions out-plane with the metal implants across the 3 patients

with implants. Only UpCT-MLAA provided relatively low SUVmax quantification errors on

lesions both in-plane and out-plane of the metal implant.

For lesions in-plane of the metal implant, BpCT-AC PET had large underestimation of

SUVmax, naive MLAA PET had better mean estimation of SUVmax but had a large stan-

dard deviation. The addition of light regularization to MLAA improves the RMSE by de-

creasing the standard deviation at the cost of increased mean error. Increasing regularization

increases RMSE but reduces the bias error with increased standard deviation. UpCT-MLAA

PET had the best agreement with CTAC PET. Only Naive MLAA and UpCT-MLAA had

results where a significant difference could not be found when compared to CTAC (p > 0.05).

For lesions out-plane of the metal implant, the trend is reverse for BpCT-AC PET and

the MLAA methods. BpCT-AC PET had the best agreement with CTAC PET and the

MLAA methods showed decreasing RMSE with increasing regularization. UpCT-MLAA

had the second-best agreement with CTAC PET. No significant difference could be found

for all methods when compared to CTAC (p > 0.05)

3.6 Discussion

This chapter presents the use of a Bayesian deep convolutional neural network to enhance

MLAA by providing an accurate pseudo-CT prior alongside predictive uncertainty estimates

that automatically modulate the strength of the priors (UpCT-MLAA). The method was

evaluated in patients without and with implants with pelvic lesions. The performance for

metal implant recovery and uptake estimation in pelvic lesions in patients with metal im-

plants was characterized. This is the first work that demonstrated an MLAA algorithm for

PET/MRI that was able to recover metal implants while also accurately depicting detailed

anatomic structures in the pelvis. This is also the first work to synergistically combine

supervised Bayesian deep learning and MLAA in a coherent framework for simultaneous



71

PET/MRI reconstruction in the pelvis. The UpCT-MLAA method demonstrated similar

quantitative uptake estimation of pelvic lesions to a state-of-the-art attenuation correction

method (ZeDD-CT) while additionally providing the capability to perform reasonable PET

reconstruction in the presence of metal implants and removing the need of a specialized MR

pulse sequence.

One of the major advantages of using MLAA is that it uses the PET emission data to

estimate the attenuation coefficients alongside the emission activity. This gives MLAA the

capability to truly capture the underlying imaging conditions that the PET photons undergo.

This is especially important in simultaneous PET/MRI where true ground-truth attenuation

maps cannot be derived. Currently, the most successful methods for obtaining attenuation

maps are through deep learning-based methods [63], [65], [84]–[90]. However, these meth-

ods are inherently supervised model-based techniques and have limited capacity to capture

imaging conditions that were not present in the training set nor conditions that cannot be

reliably modeled, such as the movement and mismatch of bowel air and the presence of metal

artifacts. Since MLAA derives the attenuation maps from the PET emission data, MLAA

can derive actual imaging conditions that supervised model-based techniques are unable to

capture. Furthermore, this eliminates the need for specialized MR pulse sequence (such as

ZTE for bone) since the bone AC would be estimated by MLAA instead. This would allow

for more accurate and precise uptake quantification in simultaneous PET/MRI.

To the best of my knowledge, only a few other methods combines MLAA with deep

learning [99]–[102]. Their methods apply deep learning to denoise an MLAA reconstruction

by training a deep convolutional neural network to produce an equivalent CTAC from MLAA

estimates of activity and attenuation maps. This method inherently requires ground-truth

CTAC maps to train the deep convolutional neural network and thus is affected by the

same limitations that supervised deep learning and model-based methods have. Unlike their

method, my method (UpCT-MLAA) preserves the underlying MLAA reconstruction while

still providing the same reduction of crosstalk artifacts and noise.



72

My approach is different from all other approaches because I leverage supervised Bayesian

deep learning uncertainty estimation to detect rare and previously unseen structures in

pseudo-CT estimation. There are only a few previous works that estimate uncertainty on

pseudo-CT generation [114], [115]. Klages et al [115] utilized a standard deep learning

approach and extracted patch uncertainty but did not assess their method on cases with

artifacts or implants. Hemsley et al [114] utilized a Bayesian deep learning approach to

estimate total predictive uncertainty and similarly demonstrated high uncertainty on metal

artifacts. Both approaches were intended for radiotherapy planning and this work is the first

to apply uncertainty estimation towards PET/MRI attenuation correction. I demonstrated

how likely µ-map errors can be detected and resolved with the use of PET emission data

through MLAA.

High uncertainty was present in many different regions. Metal artifact regions had high

uncertainty because they were explicitly excluded in the training process—i.e., an out-of-

distribution structure. Air pockets had high uncertainty likely because of the inconsistent

correspondence of air between MRI and CT—i.e., intrinsic dataset errors. Other image

artifacts (such as motion due to breathing) have high uncertainty likely due to the rare oc-

currence of these features in the training dataset and its inconsistency with the corresponding

CT images. Bone had high uncertainty since there is practically no bone signal in the Dixon

MRI. Thus, the CNN likely learned to derive bone value based on the surrounding structure

and the variance image shows the intrinsic uncertainty and limitations of estimating bone

HU values from Dixon MRI. Again, these regions were highlighted by being assigned high

uncertainty without the network being explicitly trained to identify these regions.

On evaluation with patients without implants, I demonstrated that BpCT was a suffi-

cient surrogate of ZeDD-CT for attenuation correction across all lesion types: BpCT pro-

vided comparable SUV estimation on bone lesions and improved SUV estimation on soft

tissue lesions. However, the BpCT images lacked accurate estimation of bone HU values

that resulted in average underestimation of bone lesion SUV values (−0.9%). The average
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underestimation was reduced with UpCT-MLAA (−0.3%). Although the mean underesti-

mation values improved, the RMSE of UpCT-MLAA was higher than BpCT-AC (3.6% vs.

3.2%, respectively) due to the increase in standard deviation (3.6% vs. 3.1%, respectively).

This trend was more apparent for soft tissue lesions. The RMSE, mean error, and standard

deviation were worse for UpCT-MLAA vs. BpCT. Since the PET/MRI and CT were ac-

quired in separate sessions, possibly months apart, there may be significant changes in tissue

distribution. This could explain the increase in errors of BpCT-AC under UpCT-MLAA.

On the patients with metal implants, UpCT-MLAA was the most comparable to CTAC

across all lesion types. Notably, there was an opposing trend in the PET SUVmax results

for lesions in/out-plane of the metal implant between BpCT-AC and the MLAA methods.

These were likely due to the sources of data for reconstruction. BpCT-AC has attenuation

coefficients estimated only from the MRI whereas Näıve MLAA has attenuation coefficients

estimated only from the PET emission data. The input MRI were affected by large metal

artifacts due to the metal implants that makes the regions appear to be large pockets of

air. Thus, in BpCT-AC, the attenuation coefficients of air were assigned to the metal ar-

tifact region. For lesions in-plane of the implant, this led to a large bias due to the bulk

error in attenuation coefficients and a large variance due to the large range of attenuation

coefficients with BpCT-AC, while this is resolved with MLAA. For lesions out-plane of the

implant, the opposite trend arises. For MLAA the variance is large due to the noise in the

attenuation coefficient estimates. This is resolved in BpCT-AC since the attenuation coef-

ficients are learned for normal anatomical structures that are unaffected by metal artifacts.

The combination of BpCT with MLAA through UpCT-MLAA resolved these disparities.

A major challenge to evaluate PET reconstructions in the presence of metal implants

is that typical CT protocols for CTAC produce metal implant artifacts that may cause

overestimation of uptake and thus does not serve as a true reference. Since my method

relies on time-of-flight MLAA, I believe that my method would produce a more accurate AC

map, and therefore more accurate SUV map. This is demonstrated by the lower SUV¬max
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estimates of UpCT-MLAA compared to CTAC PET. However, to have precise evaluation,

a potential approach to evaluate UpCT-MLAA is to use metal artifact reduction techniques

on the CT acquisition [103] or by acquiring transmission PET images [116].

Accurate co-registration of CT and MRI with metal implant artifacts was a limitation

since the artifacts present themselves differently. Furthermore, the CT and MRI images were

acquired in separate sessions. These can be mitigated by acquiring images sequentially in a

tri-modality system [117].

Another limitation of this study was the small study population. Having a larger popula-

tion would allow evaluation with a larger variety of implant configurations and radiotracers

and validation of the robustness of the attenuation correction strategy.

Finally, the performance of the algorithm can be further improved. In this study, I only

sought to demonstrate the utility of uncertainty estimation with a Bayesian deep learning

regime for the attenuation correction in the presence of metal implants: that the structure

of the anatomy is preserved and implants can be recovered while still providing similar PET

uptake estimation performance in pelvic lesions. My proposed UpCT-MLAA was based on

MLAA regularized with MR-based priors [89], which can be viewed as uni-modal Gaussian

priors. I speculate that this could be further improved by using Gaussian mixture priors

for MLAA as in [97]. The major task to combine these methods would be to learn the

Gaussian mixture model parameters from patients with implants. With additional tuning

of the algorithm and optimization of the BCNN, UpCT-MLAA can potentially produce the

most accurate and precise attenuation coefficients in all tissues and in any imaging conditions.

3.7 Conclusion

I have developed and evaluated an algorithm that utilizes a Bayesian deep convolutional neu-

ral network that provides accurate pseudo-CT priors with uncertainty estimation to enhance

MLAA PET reconstruction. The uncertainty estimation allows for the detection of “out-of-
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distribution” pseudo-CT estimates that MLAA can subsequently correct. I demonstrated

quantitative accuracy in pelvic lesions and recovery of metal implants in pelvis PET/MRI.
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Chapter 4

Scan-specific Self-supervised Bayesian

Deep Non-linear Inversion for

Undersampled MRI Reconstruction

(DNLINV)

Magnetic resonance imaging is subject to slow acquisition times due to the inherent limi-

tations in data sampling. Recently, supervised deep learning has emerged as a promising

technique for reconstructing sub-sampled MRI. However, supervised deep learning requires a

large dataset of fully-sampled data. Although unsupervised or self-supervised deep learning

methods have emerged to address the limitations of supervised deep learning approaches,

they still require a database of images. In contrast, scan-specific deep learning methods

learn and reconstruct using only the sub-sampled data from a single scan. Current scan-

specific approaches require a fully-sampled auto calibration scan region in k-space that cost

additional scan time. Here, we introduce Scan-Specific Self-Supervised Bayesian Deep Non-

Linear Inversion (DNLINV) that does not require an auto calibration scan region. DNLINV

utilizes a deep image prior-type generative modeling approach and relies on approximate
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Bayesian inference to regularize the deep convolutional neural network. We demonstrate

our approach on several anatomies, contrasts, and sampling patterns and show improved

performance over existing approaches in scan-specific calibrationless parallel imaging and

compressed sensing.

4.1 Introduction

Magnetic resonance imaging is subject to slow acquisition times due to the inherent limita-

tions in data sampling. The acquisition speed may be increased by either having gradients

with higher slew rates, or by sub-sampling data below the Nyquist limit as in Parallel Imag-

ing [9], [10], and Compressed Sensing [11]. Sub-sampling of data has been the focus of most

research efforts as this allows for acceleration of scans without costly hardware changes.

Parallel imaging relies on the redundancy offered by multiple coils when evenly sub-

sampling k-space. By having multiple coils with its own local sensitivity profile, each coil

image would result in different aliasing patterns. SENSE and SENSE-like approaches model

the problem as a solution to a linear system of equations that unravels the aliasing artifacts

to solve for the unaliased image with known coil sensitivity profiles [9], [118]. Alternatively,

GRAPPA and GRAPPA-like approaches attempt to fill in the missing k-space regions using

an auto calibration scan (ACS) [10]. At high acceleration rates, residual aliasing and severe

noise amplification are encountered in these methods [25]. In 2D MRI at 3 Tesla, ∼ 2× to

3× acceleration factors are typically possible with these methods.

Compressed sensing relies on a different mechanism. Rather than relying on the re-

dundancy of multiple coils with even sub-sampling, compressed sensing requires that the

sub-sampling pattern would result in the aliasing having a noise-like appearance in a spar-

sifying domain [119]. Then, non-linear algorithms are used to remove the noise-like aliasing

patterns [119]. Compressed sensing can achieve higher acceleration factors than SENSE and

GRAPPA, up to ∼ 12.5× in certain applications such as MR Angiography [120]. Neverthe-
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less, at high acceleration rates, various artifacts may be encountered that obscure anatomy

and are difficult to identify [120].

Supervised deep learning has emerged as a promising technique for reconstructing sub-

sampled MRI [12]. Supervised deep learning approaches learn to reconstruct images from

sub-sampled data using a database of images consisting of matched pairs of sub-sampled

data and fully-sampled data. These methods have shown possible acceleration factors that

exceed what is possible in parallel imaging and compressed sensing, up to an additional ∼ 2×

to 3× more acceleration [12]. However, supervised deep learning requires a large dataset of

fully-sampled data.

There are scenarios where acquiring a large high-quality database of fully-sampled data

may be impractical or even impossible. For example, simultaneously having 1 mm spa-

tial resolution at 100 ms temporal resolution in 3D dynamic imaging is not possible with

current hardware configurations and has required sophisticated reconstruction algorithms

[121]. Large high-quality databases are also challenging for SNR limited techniques such as

non-proton imaging (e.g. 2H, 23Na, and 31P) and chemical exchange saturation transfer

(CEST) MRI. Finally, obtaining large datasets of rare disease conditions are impractical. In

one recent study for a differential diagnosis machine learning system, there were only two

cases of Susac syndrome that were imaged with MRI over a 10-year period [122].

Recently, unsupervised or self-supervised deep learning have emerged to address the lim-

itations of supervised deep learning approaches [43], [123]–[126]. Rather than estimating the

fully-sampled image from the sub-sampled images, these methods utilize only sub-sampled

data without the need for fully-sampled data. Unsupervised approaches train a deep neural

network using a set of sub-sampled data from different scans whereas self-supervised ap-

proaches train a deep neural network using only sub-sampled data of each individual scan

with network parameters shared across examples (thus still utilizing a database). Differ-

ent approaches to accomplish this are currently being actively explored: some have utilized

generative adversarial networks (GANs) [43], while others have directly used model-based
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approaches [123]–[126]. These methods have shown competitive performance compared to

fully supervised methods and have been demonstrated to be superior to classical reconstruc-

tion approaches when fully-sampled data is unavailable. However, these unsupervised and

self-supervised methods fundamentally still require a database of images.

Unlike the deep learning approaches mentioned above, scan-specific deep learning meth-

ods learn and reconstruct using only the sub-sampled data from a single scan (N=1). The

major benefit of a scan-specific approach is that it removes the need for a training database

and removes the dependency of performance on the size and quality of the training dataset.

Scan-specific approaches operate at the lower bound of data sampling and data set size.

Thus, scan-specific approaches are generalizable to any hardware configuration, contrast

mechanism, pulse sequence, or data sampling scheme, much like classical reconstruction

methods.

Currently, there are only a few scan-specific deep learning approaches that exist [127]–

[130] compared to approaches that use a training database. These scan-specific methods

train a deep convolutional neural network to learn how to interpolate the sub-sampled regions

of k-space from the fully-sampled auto-calibration scan region (like GRAPPA) [127], [128],

[130],, or rely on ESPIRiT to estimate the coil sensitivity maps and use deep learning to only

reconstruct the image [129]. Scan-specific methods are found to have superior performance

compared to classical reconstruction approaches and competitive performance compared to

supervised deep learning approaches. However, the fully-sampled auto calibration scan region

in k-space costs additional scan time.

In this context, ideas from calibrationless parallel imaging and compressed sensing acqui-

sitions that are interesting jointly estimate image content and coil sensitivity profiles without

the need for the auto calibration region [36], [37]. However, there are currently no existing

scan-specific deep learning methods for calibrationless parallel imaging and compressed sens-

ing.

We introduce Scan-Specific Self-Supervised Bayesian Deep Non-Linear Inversion (DNLINV)
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for under-sampled MRI reconstruction. Our contribution is two-fold. First, we utilize a net-

work architecture that allows for the joint estimation of image content and coil sensitivity

profiles. Second, we use Bayesian deep learning to statistically regularize the network and

reduce overfitting to noise. We demonstrate our approach on several anatomies, sampling

patterns, and show superiority over existing approaches in scan-specific calibrationless par-

allel imaging and compressed sensing.

4.2 Theory

4.2.1 Generative modeling

We define x as the underlying true image. Then, using a SENSE signal model [9], the

acquired coil-by-coil k-space data can be written as a linear equation:

yi = SFCix+ n | 1 ≤ i ≤ N (4.1)

where N is the number of coils, yi is the k-space data for the i-th coil, Ci is the coil

sensitivity matrix for the i-th coil, F is the Fourier transform operator, S is the k-space

sampling operator, and x is the underlying MR image. The coil sensitivities are acquired

either through a calibration scan [9] or by estimating the sensitivities from an autocalibrating

scan region [118]. The optimization problem then reduces to an inverse problem of obtaining

x from the k-space measurements yi.

Using compressed sensing for reconstruction leads to the following optimization problem:

x̂ = arg min ‖y − Ax‖2
2 + λ1 ‖Ψx‖1 (4.2)

y = [y1 y2 . . . yN ]T (4.3)
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A = [SFC1 SFC2 . . . SFCN ]T (4.4)

Where y is the complete measured k-space data from all coils, A is the forward operator,

x is the image to be estimated, Ψ is a sparsifying transformation, and λ1 is a regularization

parameter. This enforces that the image x would be sparse in the transformed domain

defined by Ψ. Common choices for Ψ are the Wavelet transform or the finite difference

operator [11].

We can recast the compressed sensing model as a generative model in the following

manner:

ẑ = arg min
z

1

2

∥∥y − AΨ−1z
∥∥2

2
+ λ1 ‖z‖1 (4.5)

Instead of solving directly for x, we solve for the sparse coefficients z and generate x from

the known transformation Ψ−1:

x̂ = Ψ−1ẑ (4.6)

In general, we can write this generative modeling problem as follows:

ẑ = arg min
z

1

2
‖y − Ag(z)‖2

2 +R(z) (4.7)

And produce the final image estimate as follows:

x̂ = g(ẑ) (4.8)

Where g is a function that generates an image x from a set of coefficients z, and R is a

regularization function that specifies the desired properties of z.

We may also want to estimate the generative function g in addition to estimating z.
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ẑ, ĝ = arg min
z,g

1

2
‖y − Ag(z)‖2

2 +R(z, g) (4.9)

This general generative modeling perspective can then be used to describe the Deep

Image Prior [44] method. Deep Image Prior is a generative modeling technique that gen-

erates an image from a random noise vector using a learned convolutional neural network.

Mathematically, we can write it as:

θ̂ = arg min
θ

1

2
‖y − AgCNN(z; θ)‖R(θ) (4.10)

Where gCNN is a deep convolutional neural network, and θ are the parameters of the

neural network. The parameters θ can be found using stochastic gradient descent using

backpropagation [131] with an optimizer such as Adam [108]. The final image can be obtained

similarly:

x̂ = gCNN(z; θ̂) (4.11)

4.2.2 Joint estimation of image and coil sensitivities

In calibrationless parallel imaging and compressed sensing MRI, the lack of an autocalibra-

tion scan region means that the image and coil sensitivities in eq. (1) must be solved jointly.

Thus, the problem becomes non-linear. The ENLIVE [36] approach formulates the problem

as a low-rank matrix factorization problem:

x̂, Ĉ = arg min
x,C

1

2
‖y − SFCx‖2

2 + λ2(‖x‖2
2 + ‖C‖2

2) (4.12)

C = [C1 C2 ... CN ]T (4.13)

where λ2 is a regularization parameter. We can reformulate the deep image prior ap-
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Figure 4.1: Deep convolutional neural network architecture used for generative modeling.
The spatial size is denoted at the bottom left of each block (e.g., X) and the number of
channels is denoted at the top of each block (e.g., C). The final image estimate and each coil
image have 2 channels for real and imaginary dimensions, respectively.
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proach by considering a new deep convolutional neural network (DCNN) architecture that

simultaneously produces the image and coil sensitivities. The DCNN architecture is shown

in fig. 4.1. Mathematically, the optimization problem is then:

θ̂ = arg min
θ

1

2
‖y − SFgCCNN

(z; θ)gxCNN
(z; θ)‖2

2 +R(θ) (4.14)

x,C = gCNN(z; θ) (4.15)

This can also be solved using learning and inference procedures typical for deep neural

networks.

4.2.3 Bayesian inference

The Deep Image Prior (DIP) formulation (eq. (4.10)) is known to overfit to noise [44], [132].

In fact, stochastic gradient descent is simply gradient descent and deep neural networks

achieve zero loss under a scan-specific self-supervised regime (training N=1) where cross-

validation cannot be performed [133]. Thus, we rely on Bayesian inference combat the

overfitting problem.

In contrast to regularized least-squares optimization (which is equivalent to maximum a

posteriori (MAP) estimation) performing Bayesian inference provides uncertainty estimates

that has been demonstrated to reduce overfitting of the Deep Image Prior model [44], [132].

In particular, we utilize variational inference [52] and Monte-Carlo Dropout [57].

Reformulating the DIP problem (eq. (4.14))) under Bayesian probabilistic modeling, we

obtain the following:

y = AgCNN (z; θ) + n (4.16)

n ∼ Normal (0,Σ) (4.17)
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p (θ|y, z) =
p (y|θ, z) p (θ, z)

p (y)
(4.18)

However, unlike deep image prior that only solves for the network parameters θ, we also

perform inference for the input coefficients to the network z to solve for all unknowns in

DNLINV:

p (θ, z|y) =
p (y|θ, z) p (θ, z)

p (y)
(4.19)

We then define the following priors:

p (zj) = Normal (0, 1) (4.20)

p (θs) = Normal (0, λ) (4.21)

p (z) =
J∏
j=1

p (zj) (4.22)

p (θ) =
S∏
s=1

p (θs) (4.23)

where λ is the precision for the parameter θs, J is the number of latent variables, and S

is the total number of network parameters.

Since directly solving for the true posterior is intractable, we utilize a mean-field approx-

imation to the posterior as follows:

p (θ, z|y) ≈ q (θ|y) q(z|y) (4.24)

Then, each of the approximate posteriors can be solved for independently. The full

derivation is provided in 4.A.
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To solve for the approximate posterior of the network parameters q(θ|y), Monte-Carlo

Dropout is a method that converts a deep convolutional neural network into a Bayesian deep

convolutional network. This is an implicit method that solves for q(θ|y) through numerical

sampling of dropout masks.

To solve for q (z|y), we derive the evidence lower bound (ELBO) [52], [134], and utilize

the reparameterization trick [52], [134]. The ELBO cost function has the following general

form:

L = Eq(z|y)q(θ|y)

[
log

p (y|z, θ) p (z, θ)

q (z|y) q (θ|y)

]
(4.25)

and we restrict q(z) to be:

q (zj) = Normal
(
µzj , σzj

)
, q (z) =

J∏
j=1

q (zj) (4.26)

This leads to the following cost function:

L =− N

2
(log 2π + logdet(Σc))−

1

2M

M∑
m=1

K∑
k=1

(
yk − SkFgC

(
z(m); θ(m)

)
gx
(
z(m); θ(m)

))T
Σ−1
c

(
yk − SkFgC

(
z(m); θ(m)

)
gx
(
z(m); θ(m)

))
− 0.5

J∑
j=1

M∑
m=1

(z(m)
j )

2
+ 0.5

J∑
j=1

log
(
σ2
zj

)
+ 0.5

(4.27)

where y is the observed k-space data, z(m) is m-th sample of the input latent code to

the network, θ(m) is the m-th sample of the network parameters, M is the number of Monte

Carlo samples, Σc is the coil covariance matrix, gC is the coil sensitivity map outputs of

the network, gx is the image output of the network, σzj is the standard deviation of the

approximate posterior q(zj), J is the number of latent variables, K is the number of k-space

sampling points, and N is the total number of k-space samples across all coils.
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Finally, the optimization problem is:

arg min
µzj ,σzj θ,ΣC

L (4.28)

4.2.4 Implementation details

The optimization problem in eq. (4.28) is solved using backpropagation stochastic gradient

descent (SGD) using the Adam optimizer [108].

The nature of MC-Dropout is implicit: there is no explicit realization of q(θ|y) nor explicit

cost function for it. Furthermore, we utilize decoupled weight decay [135] that places the

gradient descent update corresponding to the Gaussian prior on the network parameters to

the optimization update and thus does not appear in the cost function. Therefore, in the

implementation of the optimization, we proceed using only L as the cost function but each

step of SGD is performed with a different dropout mask (as in MC-Dropout). The network

parameters are updated at each SGD step including the decoupled weight decay updates.

The coil noise covariance matrix ΣC is decomposed to a lower triangular Cholesky fac-

torization:

ΣC = LLT (4.29)

and L is estimated instead to guarantee that ΣC is positive semi-definite. The computa-

tional complexity is like that of deep learning training. The optimization is based stochastic

gradient descent (SGD) that has less than linear convergence. Using reparameterization

gradient variational inference [52] reduces the variance of the gradient estimates. Having a

larger number of Monte-Carlo samples per SGD step reduces the gradient estimate variance

and accelerates convergence at the cost of requiring more memory per SGD step.

The final image and coil sensitivity estimates are then constructed through Monte-Carlo

sampling of the expectation:
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x̂ = Eq(z)q(θ) [gx (z; θ)] ≈ 1

M

M∑
m=1

gx
(
z(m); θ(m)

)
(4.30)

Ĉ = Eq(z)q(θ) [gC (z; θ)] ≈ 1

M

M∑
m=1

gC
(
z(m); θ(m)

)
(4.31)

4.3 Numerical Experiments

In the spirit of reproducible research, we provide our code and scripts to reproduce all exper-

iments in this paper at https://www.github.com/LarsonLab/dnlinv. All reconstruction

parameters of the experiments can be found in the code and the results shown in this paper

are immediately provided in the repository.

4.3.1 Evaluation metrics

The evaluation metrics used were peak signal-to-noise ratio (PSNR) and structural similarity

index (SSIM). PSNR was calculated as:

MSE =
R∑
r=1

(xr − xref,r )2 (4.32)

PSNR = −20 log Imax + 10 logMSE (4.33)

where xr is the r-th voxel of the reconstructed sum-of-squares image, xref,r is the r-th

voxel of the reference fully-sampled sum-of-squares image, and R is the total number of

voxels in an image. SSIM was calculated in the same manner as in the fastMRI challenge

[13].

https://www.github.com/LarsonLab/dnlinv
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Figure 4.2: (left) 1d noiseless signal, (middle) 1d signal with noise σ = 0.01, (right) 1d signal
with noise σ = 0.1. There are 8 samples per location for the noisy signals.

Table 4.1: List of inference methods for 1d denoising experiment. MSE = mean-square error,
DIP = deep image prior, MC-z = monte carlo on z, MC-Dropout = monte carlo dropout,
MAP = maximum a posteriori, DNLINV = deep non-linear inversion

Inference method Loss function Inference on z Inference on θ
Deep image prior (dip) MSE Fixed z MAP θ
DIP MC-z
(dip mc inference)

MSE Draw from p(z) MAP θ

DIP MC-Dropout
(dip mc dropout)

MSE Fixed z Implicit q(θ)

DIP MC-z MC-Dropout
(dip mc z mc dropout)

MSE Draw from p(z) Implicit q(θ)

DNLINV ELBO Estimate q(z) Implicit q(θ)

4.3.2 1D Denoising

The data was simulated with a noise standard deviation of 0.01 and 0.1 with 8 random

samples to emulate the multiple sampling provided by multiple coils. The noiseless and

noisy signals are shown in fig. 4.2. The data was then denoised using deep image prior and

DNLINV. Note again that the only difference between deep image prior and DNLINV is the

inference method.

We include an ablation study of the effect of the inference method on the 1d denoising

experiment. The list of inference methods 1d denoising experiments is provided in table 4.1.

Deep image prior was recommended to be used in conjunction with early stopping due

to its overfitting behavior [44], [132]. Thus, we also keep track of performance vs. number
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of optimization steps.

In addition, we include the denoising performance the maximum likelihood estimator for

Gaussian noise (mean of samples).

The performance metric was peak signal-to-noise ratio (PSNR) for the 1d denoising

experiments.

4.3.3 SENSE numerical phantom image reconstruction

A SENSE numerical phantom experiment was performed where coil sensitivity profiles are

known. An evenly spaced sampling scheme was used to maximize the effect of noise amplifi-

cation. A birdcage coil configuration with 8 channels was simulated using the SigPy python

package (v0.1.16) [136]. A Shepp-Logan phantom was simulated with a maximum signal

intensity of 1.0. Additive white Gaussian noise (σ = 0.01) was added to the image. Deep

image prior and DNLINV reconstructions were performed and compared.

4.3.4 In vivo retrospective undersampling

Data from ENLIVE [36] and fastMRI [13] were used for retrospective undersampling exper-

iments.

ENLIVE data

For ENLIVE data, we use both head and knee data under high acceleration factor parallel

imaging and under calibrationless parallel imaging and compressed sensing sampling schemes.

Head data was retrospectively undersampled with a CAIPIRINHA sampling pattern

[137] at 4x, 9x, 16, and 25x acceleration factors and were reconstructed using L2-ESPIRiT

[118], ENLIVE [36], Deep Image Prior [44], and DNLINV, and retrospectively undersampled

with a calibrationless variable-density poisson disk sampling pattern [11] at 4x, 7x, and 8.5x

acceleration factors and were reconstructed using simultaneous autocalibrating and k-space

estimation (SAKE) [37], ENLIVE, Deep Image Prior, and DNLINV.
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Knee data was retrospectively undersampled with a calibrationless variable-density pois-

son disk sampling pattern [11] at 4x, 7x, and 8.5x acceleration factors and were reconstructed

using SAKE, ENLIVE, Deep Image Prior, and DNLINV. Additional knee data used in EN-

LIVE were from the Stanford 3D fast-spin-echo dataset provided in mridata.org and were

used to evaluate performance over a dataset.

fastMRI data

We performed similar experiments under autocalibrated and calibrationless settings using

fastMRI knee data [13]. Images were retrospectively undersampled with calibrationless paral-

lel imaging and compressed sensing sampling patterns (acceleration factors = [2, 3, 4]) were

reconstructed with ENLIVE, DNLINV, and the pre-trained U-net fastMRI. Additionally,

retrospectively undersampled with autocalibrated parallel imaging and compressed sensing

sampling patterns (acceleration factors = [2, 3, 4]) were reconstructed using L1-ESPIRiT,

ENLIVE, DNLINV, and a pre-trained U-net from the fastMRI project [13]. A uniform

distribution for selecting k-space lines was used for both sampling patterns.

4.3.5 Ablation study

Finally, we performed an ablation study using the knee ENLIVE data at 5x acceleration.

Noise estimation is performed in cases where acquiring noise samples cannot be done and

we investigate whether it is needed for accurate reconstructions. Then, the use of non-linear

activations (e.g., ReLU) in Deep image prior and DNLINV is what differentiates them from

multi-layer convolutional sparse coding [138]. We gradually removed portions of DNLINV

and assessed the performance impact. DNLINV was compared against DNLINV without

noise estimation (keeping ΣC constant), deep image prior, DIP MC-z, and DNLINV with

linear activations (without ReLU).
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Figure 4.3: 1d denoising experiment results demonstrating the effect of inference method in
both (left) high SNR and (right) low SNR regimes. Peak signal-to-noise ratio (PSNR) is
plotted over the number of optimization iterations for the inference methods described in
table 4.1. The optimal maximum likelihood estimator (MLE) PSNR is shown for comparison.

4.4 Results

4.4.1 1D Denoising Experiments

The results for the 1d denoising experiments are shown on fig. 4.3. Deep image prior by

itself (”dip”) has the same performance as the maximum likelihood estimator for signals

with Gaussian noise. The addition of drawing the latent variables from a prior distribution

(”dip mc inference”) deteriorated performance. Adding MC-Dropout to DIP (”dip mc dropout”

and ”dip mc z mc dropout”) improved denoising performance, even when drawing latent

variables from a prior distribution. Finally, DNLINV with dropout (”dnlinv dropout”)

achieved the highest possible peak signal-to-noise ratio (PSNR) for the low SNR scenario.

4.4.2 SENSE image reconstruction experiments

The result for the SENSE image reconstruction experiment is shown on fig. 4.4. Deep image

prior was severely affected by the noise amplification, which is expected based on the DIP

method as well as where the parallel imaging problem is under-determined in this high

undersampling regime. DNLINV, on the other hand, was largely unaffected by the noise
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Figure 4.4: SENSE phantom reconstruction experiment for a simulated 8-channel birdcage
coil with 8x undersampling. The reconstructed images are on the top row of the right half of
the figure and absolute difference images compared to the noiseless ground truth are shown
below each reconstruction. The absolute difference image intensities were amplified by 3x to
improve visibility. Deep Image Prior shows noise overfitting due to the uncertainty in the
reconstruction as characterized by the parallel imaging g-factor. DNLINV is robust to the
amplified noise. Both reconstructed images were at 7500 iterations.

amplification as was desired.

Reconstructions at different number of optimization steps are shown in fig. 4.5. Deep im-

age prior immediately overfits to the noise at just a few hundred iterations whereas DNLINV

slowly generated image content. DNLINV took around 2500 iterations to reach the peak

PSNR and SSIM (although residual aliasing artifacts remained) and took about 7500 it-

erations to largely eliminate the aliasing artifacts. Like in the 1d denoising experiments,

DNLINV beings to overfit to noise at 10,000 iterations and eventually overfits to the noise

at 20,000 iterations.

4.4.3 In vivo retrospective undersampling experiments

Figure 4.6 show the main results for the calibrationless parallel imaging and compressed

sensing sampling patterns. Aggregate PSNR and SSIM results over different datasets are

provided in figs. 4.14 and 4.15. Additional results for calibrationless as well as autocali-
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Figure 4.5: Phantom image reconstructions at different iterations for Deep Image Prior (2nd
column), Deep Non-linear Inversion (DNLINV) (3rd column), and SENSE (λL2 = 0.005)
(4th column). Under each image is the absolute difference image compared to the noiseless
Shepp-Logan phantom with the intensities amplified by 3x.
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Figure 4.5: (cont’d) Phantom image reconstructions at different iterations for Deep Image
Prior (2nd column), Deep Non-linear Inversion (DNLINV) (3rd column), and SENSE (λL2 =
0.005) (4th column). Under each image is the absolute difference image compared to the
noiseless Shepp-Logan phantom with the intensities amplified by 3x.
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Figure 4.5: (cont’d) Phantom image reconstructions at different iterations for Deep Image
Prior (2nd column), Deep Non-linear Inversion (DNLINV) (3rd column), and SENSE (λL2 =
0.005) (4th column). Under each image is the absolute difference image compared to the
noiseless Shepp-Logan phantom with the intensities amplified by 3x.
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Figure 4.5: (cont’d) Phantom image reconstructions at different iterations for Deep Image
Prior (2nd column), Deep Non-linear Inversion (DNLINV) (3rd column), and SENSE (λL2 =
0.005) (4th column). Under each image is the absolute difference image compared to the
noiseless Shepp-Logan phantom with the intensities amplified by 3x.

brated sampling patterns are shown in figs. 4.8 to 4.12. For the calibrationless and auto-

calibrated 2D undersampling patterns (fig. 4.6 and figs. 4.8 and 4.9), DNLINV provided

similar performance to prior reconstruction algorithms at low acceleration factors. At mod-

erate acceleration factors, classical reconstructions performed well but had increasing noise

whereas DNLINV was able to reconstruct with similar quality to low acceleration factors. At

high acceleration factors, classical reconstruction algorithms failed to properly reconstruct

the images while DNLINV was still able to provide a good reconstruction. The aggregate

results for calibrationless sampling patterns shown in fig. 4.14 demonstrate the improved

performance in a dataset compared to ENLIVE and DIP.

Similar results are seen for the calibrationless 1D undersampling results in fig. 4.7 and

fig. 4.10, although in this case DNLINV shows residual aliasing artifacts at moderate and

high undersampling factors. For the aggregate dataset results in fig. 4.15, DNLINV had

the highest PSNR but was 2nd only to the pre-trained fastMRI U-net in terms of SSIM. In

the autocalibrated 1D undersampling (figs. 4.11 and 4.12), DNLINV typically out-performed

ESPIRiT and ENLIVE, but the pre-trained fastMRI U-net network was the top algorithm.

For the head ENLIVE image in fig. 4.6, the highest acceleration factor tested at 8.5x was

notable for DNLINV because of the seemingly large error. However, on closer inspection in

fig. 4.13, the error comes from errors in coil sensitivity estimates while the image content
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Figure 4.6: Head calibrationless poisson disk retrospective undersampling results comparing
SAKE, ENLIVE, DIP, and DNLINV. The absolute difference image are shown below each
reconstruction and the error intensities were amplified by 3x to improve visibility. While
all methods perform qualitatively similar for the lowest AFacceleration factor (AF) = 4.0,
DNLIV showed fewer artifacts and higher PSNR/SSIM at moderate to high AF.
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Figure 4.7: Knee 1d calibrationless retrospective undersampling comparing ENLIVE,
DNLINV, and the fastMRI pre-trained Unet reconstructions. The absolute difference image
are shown below each reconstruction and the error intensities were amplified by 3x to im-
prove visibility. Even at the lowest AF = 2.0, only DNLINV is the only method largely free
of parallel imaging artifacts. At higher acceleration factors. What some aliasing artifacts
appear at AF = 3.0 and 4.0 in DNLINV, the error is still much smaller compared to the
other methods.
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Figure 4.8: Knee calibrationless poisson disk retrospective undersampling results. The ab-
solute difference images w.r.t. the reference image is shown under each reconstruction and
the magnitudes are multiplied by 3 to better visualize the error regions.
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Figure 4.9: Head CAIPIRINHA retrospective undersampling results. The absolute difference
images w.r.t. the reference image is shown under each reconstruction and the magnitudes
are multiplied by 3 to better visualize the error regions.
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Figure 4.10: Proton-density fat-suppressed knee 1d calibrationless retrospective undersam-
pling. The absolute difference images w.r.t. the reference image is shown under each recon-
struction and the magnitudes are multiplied by 3 to better visualize the error regions.
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Figure 4.11: Proton-density knee 1d autocalibrated retrospective undersampling. The abso-
lute difference images w.r.t. the reference image is shown under each reconstruction and the
magnitudes are multiplied by 3 to better visualize the error regions.
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Figure 4.12: Proton-density fat-suppressed knee 1d autocalibrated retrospective undersam-
pling. The absolute difference images w.r.t. the reference image is shown under each recon-
struction and the magnitudes are multiplied by 3 to better visualize the error regions.
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Figure 4.13: DNLINV sum-of-squares image reconstruction (left), DNLINV SENSE image
reconstruction (middle), and fully-sampled sum-of-squares image (right)

Figure 4.14: Aggregate reconstruction results for a calibrationless sampling pattern using
the Stanford 3d knee FSE dataset from mridata.org (n=20). Error bars correspond to 1
standard deviation of the metrics.
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Figure 4.15: Aggregate reconstruction results for a calibrationless sampling pattern from the
validation set of the FastMRI 3T proton-density knee dataset (n=10). Error bars correspond
to 1 standard deviation of the metrics.
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Figure 4.16: Ablation experiment in a knee. The absolute difference image compared to the
reference are shown below each reconstruction and the error intensities were amplified by 3x
to improve visibility.

was in fact sufficiently recovered with minimal artifacts.

fig. 4.16 shows the ablation experiment, illustrating the value of each component of the

DNLINV method. While DIP shows no obvious artifacts, it suffers from clear noise amplifi-

cation. As in the 1D denoising example, adding MC inference slightly degrades performance

and is no better than standard DIP. DNLINV suffers from artifacts or noise amplifica-

tion without ReLU non-linear activations or noise estimation, while adding these methods

achieves the best performance.

4.5 Discussion

In this paper, we introduced deep non-linear inversion (DNLINV). DNLINV is more robust

to noise than existing methods and thus can reconstruct data at higher acceleration factors

than previously possible, especially for calibrationless parallel imaging and compressed sens-

ing. Calibrationless parallel imaging and compressed sensing is especially difficult at higher

acceleration factors due to not only undersampling of the image content, but also due to

the undersampling of the low frequency k-space locations that are crucial for accurate coil

sensitivity estimation. We demonstrated that noise deteriorates the quality of coil sensitivity
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estimates and thus leads to failure in image reconstruction. With the inclusion of proba-

bilistic Bayesian inference in the reconstruction, we introduce noise robustness that allow for

successful coil sensitivity estimation and image reconstruction at higher acceleration factors

than were previously possible.

To the best of our knowledge, there is no other scan-specific nor self-supervised deep

learning method that incorporates Bayesian deep learning in reconstruction. Thus, DNLINV

is the first of its kind to utilize Bayesian inference to minimize overfitting. Other methods

have utilized splitting the dataset into disjoint sets to separately learn the regularizer and

the data fitting [124], use the autocalibation scan region for learning k-space interpolation

[127], [128], [130], or rely on an architecture search to find an optimal network architecture

[129].

The major component that makes DNLINV successful is the use of Bayesian evidence

maximization [48], [52], using the ELBO cost function. The evidence maximization frame-

work is what allows the network complexity to be better controlled. In deep image prior,

only Lp regularization is available to control the network complexity and since the network

is overparameterized, the network still overfits as has been observed by the original authors

and other works as well [44], [132]. To the best of our knowledge, there is no other work

that exists for deep self-supervised MR image reconstruction that utilizes Bayesian evidence

maximization. We demonstrated the impact that this can on image reconstruction.

The next major component is the use of ReLU non-linear activations in the network.

With the use of only linear activations, the network behaves like a convolutional coding model

[138]. We demonstrated that using only linear layers lead to failure in image reconstruction

(fig. 4.16), showing the necessity of the non-linearities. The use of ReLU activations make

the network like a multi-layer semi-non-negative convolutional coding model [139].

The scan-specific and self-supervised nature of our approach allows for it to perform

much like classical reconstruction algorithms and can be used for any hardware configu-

ration, contrast, pulse sequence, or sampling pattern without any re-training. Supervised
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reconstruction algorithms have difficult handling test cases that are far from the training

distribution. In the test example using the fastMRI data under the calibrationless context

(fig. 4.7 and fig. 4.10), the pre-trained U-net produced significant artifacts due to the lack

of the autocalibration region that was used for training data.

By eliminating the need of the autocalibration region, calibrationless parallel imaging and

compressed sensing acquisitions achieve the highest possible sub-sampling factors. Thus far,

only deep learning methods trained on a database have been demonstrated to reconstruct

calibrationless parallel imaging and compressed sensing data [140], [141]. The advantage of

our scan-specific approach is that it can be used even in the most experimental of hardware

configurations and pulse sequences.

DNLINV is able to compete with supervised approaches but only up to a moderate

acceleration factors. Supervised approaches have the benefit of learning from a database in

specific circumstances whereas DNLINV does not.

4.5.1 Limitations

DNLINV still tends to overfit to noise over time. This is due to the variational approxi-

mations used. This mode-seeking and overfitting behavior is a well-known characteristic of

variational Bayesian inference [52]. Despite this, iterative methods such as ESPIRiT and

ENLIVE have similar behavior and the number of iterations is chosen as a hyperparameter

in reconstruction. Using more sophisticated and computationally intensive inference meth-

ods such as through Langevin dynamics [132], expectation propagation [142], or ensemble

methods [143] may be used to ultimately conquer the overfitting aspects.

There are several other limitations to DNLINV. The Bayesian inference used has heavy

compute requirements due to the Monte Carlo approximation of the expectations and in-

tegrals and the high noise of SGD. The reconstructions performed take 15 minutes to 2

hours on GPU depending on number of iterations required for convergence. Possible ways

to accelerate this process is by pre-training on a database to initialize the network to a good
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configuration and thus require less iterations on reconstruction (i.e., transfer learning) [129].

Alternatively, meta-learning approaches may be used to learn an optimizer that also reduces

the number of gradient steps needed (i.e., learning-to-learn [144]). Finally, the use of deep

convolutional neural networks has a large memory requirement. Possible ways to save on

memory is with the use of more compact neural network architectures (e.g., DCGAN [145])

or by reducing the overall size of the network using an architecture search [129].

4.A Derivation of cost function

Using Bayes theorem, we can write the inversion problem generally as follows:

p(z, θ|y) =
p(y|z, θ)p(z, θ)

p(y)
(4.34)

With the generative model defined as

y = AgC(z; θ)gx(z; θ) + n (4.35)

And the additive noise n is defined as

n ∼ 1√
(2π)Nc det |Σc|

exp

(
−1

2
nTΣ−1

c n

)
(4.36)

where y is the observed k-space data, Nc is the number of coil channels, z is the input

latent code to the network, θ are the network parameters, Σc is the coil covariance matrix,

A is the forward operator, gC is the coil sensitivity map outputs of the network, and gx is

the image output of the network. In the case of linearly-encoded MRI:

A = SF (4.37)

where F is the Fourier transform operator and S is the k-space sampling operator.

The Bayesian evidence maximization framework in Chapter 3.4 of [48] poses the following
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optimization problem:

max
M

p(y|M) (4.38)

where M is a model for the data. This optimization problem searches the space of all

possible models and attempts to find the model that explains the data the best. In the

context of DNLINV, the evidence maximization function becomes:

max
p(z,θ|y)

p(y) = max
p(z,θ|y)

Ep(z,θ|y)[log (
p(y|z, θ)p(z, θ)

p(z, θ|y)
)] (4.39)

since the model M is fixed to be a deep convolutional neural network. In effect, this cost

function solves for the posterior distribution of the network parameters and latent code that

makes the observation the most likely.

Derivation:

max
z,θ

p(y) = max
z,θ

log p(y) (4.40)

log p(y) = log p(y)

∫∫
p(z, θ|y)dzdθ (4.41)

(Multiplication by 1 since the integral results to 1)

=

∫∫
log p(y)p(z, θ|y)dzdθ (4.42)

(log p(y) can be placed inside the integral since y is not the integration variable)

=

∫∫
log (

p(y|z, θ)p(z, θ)
p(z, θ|y)

)p(z, θ|y)dzdθ (4.43)
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(by expansion of p(y) = p(y|z,θ)p(z,θ)
p(z,θ|y)

)

= Ep(z,θ|y)[log (
p(y|z, θ)p(z, θ)

p(z, θ|y)
)] (4.44)

(using the definition of the expectation)

The problem now shifts to solving for the posterior distribution p(z, θ|y). Given the

non-linear nature of the generative model, solving for the posterior is intractable and thus,

a variational approximation must be used (Chapter 10.1 in [48]). We define a factorial

variational approximation (Chapter 10.1 in [48]):

p(z, θ|y) ≈ q(z, θ|y) ≈ q(z|y)q(θ|y) (4.45)

This considers that the approximate posterior for z and θ are independent. These two

approximations cause variational inference to fit to local modes of the posterior space. Now,

we utilize the Kullback-Leibler (KL) divergence (Chapter 10.1 in [48]). to formulate the cost

function to fit the approximate posteriors q to the true posteriors p:

min
q(z|y),q(θ|y)

DKL(q(z|y)q(θ|y)||p(z, θ|y)) (4.46)

To solve the above minimization problem, we derive the Evidence Lower Bound [52]

under the model that uses approximate posteriors:
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DKL(q(z|y)q(θ|y)||p(z, θ|y)) = −Eq(z|y)q(θ|y)[log
p(z, θ|y)

q(z|y)q(θ|y)
] (4.47)

= −Eq(z|y)q(θ|y)[log

p(y|z,θ)p(z,θ)
p(y)

q(z|y)q(θ|y)
] (4.48)

= −Eq(z|y)q(θ|y)[log
p(y|z, θ)p(z, θ)
p(y)q(z|y)q(θ|y)

] (4.49)

= Eq(z|y)q(θ|y)[log p(y)− log
p(y|z, θ)p(z, θ)
q(z|y)q(θ|y)

] (4.50)

DKL(q(z|y)q(θ|y)||p(z, θ|y)) = log p(y)− Eq(z|y)q(θ|y)[log
p(y|z, θ)p(z, θ)
q(z|y)q(θ|y)

] (4.51)

DKL(q(z|y)q(θ|y)||p(z, θ|y)) = log p(y) + L (4.52)

Since log p(y) is a constant (because the data has already been observed, even though

the form is unknown), then minimizing the KL-divergence is equivalent to maximizing L,

which is known as the “Evidence Lower Bound” or “Variational Free Energy”. This name

is derived by rearranging the equation above and noting that because the KL-divergence is

a distance metric it must be ≥ 0, then log p(y) ≥ L. Equation (4.52) may also be derived

using Jensen’s inequality (Section 2.2 and A.1 in [52]).

Our cost function is then:

L = Eq(z|y)q(θ|y)[log
p(y|z, θ)p(z, θ)
q(z|y)q(θ|y)

] (4.53)

Expanding this:
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Eq(z|y)q(θ|y)[log
p(y|z, θ)p(z, θ)
q(z|y)q(θ|y)

] =Eq(z|y)q(θ|y)[log p(y|z, θ) + log p(z, θ)

− log q(z|y)q(θ|y)]

(4.54)

=Eq(z|y)q(θ|y)[log p(y|z, θ) + log p(z, θ)]

− Eq(z|y)q(θ|y)[log q(z|y)]− Eq(z|y)q(θ|y)[log q(θ|y)]

(4.55)

=Eq(z|y)q(θ|y)[log p(y|z, θ) + log p(z, θ)]

−
∫∫

q(z|y)q(θ|y) log q(z|y)dzdθ

−
∫∫

q(z|y)q(θ|y) log q(θ|y)dzdθ

(4.56)

=Eq(z|y)q(θ|y)[log p(y|z, θ) + log p(z, θ)]

−
∫ (∫

q(θ|y)dθ

)
q(z|y) log q(z|y)dz

−
∫ (∫

q(z|y)dz

)
q(θ|y) log q(θ|y)dθ

(4.57)

(by Fubini’s theorem)

=Eq(z|y)q(θ|y)[log p(y|z, θ) + log p(z, θ)]

−
∫
q(z|y) log q(z|y)dz −

∫
q(θ|y) log q(θ|y)dθ

(4.58)

=Eq(z|y)q(θ|y)[log p(y|z, θ) + log p(z, θ)]

+H[q(z|y)] +H[q(θ|y)]

(4.59)

Assuming that p(z, θ) = p(z)p(θ), we then arrive at the general form of the cost function

for DNLINV:

L = Eq(z|y)q(θ|y) [log p (y|z, θ) + log p (z) + log p(θ)] +H [q (z|y)] +H [q (θ|y)] (4.60)
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4.B Numerically solving the inference problem

Because the expectation Eq(z|y)q(θ|y) is intractable, we solve this using stochastic optimization

[52]. Stochastic optimization approximates the expectation with Monte-Carlo samples by

drawing from the approximate posteriors q. The cost function then becomes:

L =
1

M

M∑
m=1

log p
(
y
∣∣z(m), θ(m)

)
+ log p

(
z(m)

)
+ log p

(
θ(m)

)
+H [q (z|y)] +H [q (θ|y)] (4.61)

where M is the number of Monte Carlo samples, z(m) ∼ q(z) and θ(m) ∼ q(θ) are sampled

for each Monte Carlo sample.

We define the following priors:

p (zj) = Normal (0, 1) (4.62)

p (θs) = Normal (0, λ) (4.63)

p (z) =
J∏
j=1

p (zj) (4.64)

p (θ) =
S∏
s=1

p (θs) (4.65)

where J is the number of latent variables, λ is the precision for the parameter θs, and S

is the total number of network parameters.

Monte-Carlo dropout (MC-Dropout) is an approach that converts a deep convolutional

neural network into a Bayesian deep convolutional neural network [57]. Using MC-Dropout

in the deep convolutional neural network gives us q(θ|y) by training the network with dropout

and sampling the different dropout masks during inference.
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With q(θ) taken care of using MC-Dropout, we now solve for q(z). Vanilla stochastic

variational inference has high variance estimates of the ELBO, thus we utilize the “repa-

rameterization trick” [52], [134], to reduce the variance of the gradient estimates. The

reparameterization trick is performed as follows:

First, we define a factorized approximation for q(z):

q (zj) = Normal
(
µzj , σzj

)
(4.66)

q (z) =
J∏
j=1

q(zj) (4.67)

where J is the number of latent variables. By defining q(zj) as a Gaussian distribution,

we may reparametrize zj as follows:

zj = µzj + σzjεj (4.68)

where

ε
(m)
j ∼ Normal (0, 1) (4.69)

Thus, εj is sampled and a sample of zj is constructed using eq. (4.68):

z
(m)
j = µzj + σzjε

(m)
j (4.70)

The reparametrization trick removes dependencies on an unknown probability distribu-

tion and exposes the parameters of the approximate distribution, µj and σzj , to the back-

propagation computational graph, which can then be solved for as a typical parameter in

deep learning.

Plugging in the specifics that are known about the problem (eqs. (4.35), (4.36), (4.66)

and (4.67)) to the general form of the cost function (eq. (4.60)), the cost function becomes:
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L =− N

2
(log 2π + logdet(Σc))−

1

2M

M∑
m=1

K∑
k=1

(
yk − SkFgC

(
z(m); θ(m)

)
gx
(
z(m); θ(m)

))T
Σ−1
c

(
yk − SkFgC

(
z(m); θ(m)

)
gx
(
z(m); θ(m)

))
− 0.5

J∑
j=1

M∑
m=1

(z(m)
j )

2
+ 0.5

J∑
j=1

log
(
σ2
zj

)
+ 0.5

(4.71)

where y is the observed k-space data, z(m) is m-th sample of the input latent code to

the network, θ(m) is the m-th sample of the network parameters, M is the number of Monte

Carlo samples, Σc is the coil covariance matrix, gC is the coil sensitivity map outputs of

the network, gx is the image output of the network, σzj is the standard deviation of the

approximate posterior q(zj), J is the number of latent variables, K is the number of k-space

sampling points, and N is the total number of k-space samples across all coils.

Since both approaches for solving are based on sampling and stochastic gradient descent,

we may simply proceed with the optimization procedure the same as standard deep learning,

with the addition of sampling z(m) ∼ q(z|y) and dropout masks at each iteration.

To improve estimates of the ELBO, multiple Monte Carlo samples may be drawn at

each optimization step. Additionally, we utilize decoupled weight decay [135] to induce

L2-regularization on the network parameters and does not appear in the cost function.
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Chapter 5

Summary and Future Directions

This dissertation was focused on the applications of Bayesian deep learning to problems in

medical image reconstruction. A rule of thumb in deep learning is you need hundreds of

thousands of images that cover as many cases as possible to properly deploy it in practice.

This is typically not the case in medical image reconstruction due to the many possible

variations in hardware, acquisition schemes, and disease conditions. Furthermore, training

data may be imperfect to due many factors such as registration errors or limits in possible

signal-to-noise ratio (SNR). Thus, I utilize Bayesian deep learning to address the challenges

in imperfect data and small data regimes.

In the case of imperfect data, the application domain was on attenuation correction for

simultaneous PET/MRI. Pairs of MRI and CT images were used to train a deep convolutional

neural network so that pseudo-CT images may be generated from the MRI. However, there

were two major challenges in this application. First was the challenge of co-registration and

anatomical correspondence between the MRI and CT. Since the images were acquired at

different times, the patient body position are different and deformable registration techniques

are employed. However, there are still errors that remain due to natural changes inside the

body: such as those due to the movement of bowel air, or changes in tissue composition over

time. Additionally, the presence of metal implants pose a challenge since metal implants
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produce different imaging artifacts on MRI than CT. These are intrinsic dataset errors that

cannot be eliminated. Bayesian deep learning was used to quantify the uncertainty to due

these intrinsic dataset errors. Once the uncertainty was localized and quantified, additional

information from the PET emission data was then used to correct for these regions of error

and allow for more accurate attenuation correction in PET/MRI.

In the case of small data, the application domain was on accelerated MRI reconstruction

that relied on below Nyquist sub-sampling to achieve the acceleration. Deep image recon-

struction methods require large datasets with fixed hardware configurations and acquisition

schemes. However, as soon as there are changes in the hardware or the acquisition scheme,

a new dataset is required and the models need to be trained to account for these changes.

Furthermore, there are instances where it is impractical or impossible for have a large high-

quality database of training examples. Thus I developed DNLINV, a scan-specific method

that is applicable to any acquisition scheme or hardware configuration that uses only the

measurement data of a single scan itself, much like classical image reconstruction methods.

The use of Bayesian deep learning allows us to incorporate the full statistical model into

the reconstruction and quantify the uncertainty surrounding the solution space. This allows

DNLINV to overcome the overfitting behavior that is present in highly accelerated MRI and

has pushed the possible acceleration factors another step further.

These are two specific contributions that Bayesian deep learning can provide however

there are still limitations to this work and the general approach. Addressing these would

likely be the immediate steps for future research.

First, this was a first exploration of the feasibility of using Bayesian deep learning in these

specific applications. Thus, there were only a (relatively) small number of cases explored.

There needs to be more validation of the uncertainty metrics on a larger variety of cases to

establish baselines and benchmarks [146]. In particular, characterizing false positive and false

negative behavior of the uncertainty maps is important to better understand the behavior

of the uncertainty quantification.
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Second, Bayesian deep learning is computationally intensive. This is due to the require-

ment of recognizing the space of possible solutions and taking these into account when solving

the problems. This addition requires more compute than standard deep learning methods.

Utilizing new developments in theory or more efficient algorithms [52], [147]–[151] would be

important to make Bayesian deep learning more accessible in practice.

Third, utilizing the mean-field variational approximation to achieve Bayesian deep learn-

ing still leads to overfitting in certain situations. Modern advances that allow for approximate

Bayesian inference beyond the mean-field variational approximation would largely resolve any

remaining issues surrounding the overfitting behavior [52], [152]–[154].

These are the most pressing limitations to develop the methodology further. Other

possible lines of inquiry are then more related to how Bayesian deep learning and uncertainty

quantification is used in a larger workflow.

The current uncertainty estimates may not necessarily be semantically meaningful. Other

MR image reconstruction research groups have started exploring uncertainty quantification

in MRI reconstruction [155] however there have been no examples of the semantic behavior

of uncertainty quantification on disease findings. Incorporation of a method such as Counter-

factual Latent Uncertainty Explanations (CLUE) [156] would be valuable for interpretability.

Finally, the uncertainty measures itself may be utilized in a larger clinical workflow. I’ve

only demonstrated two possible use-cases of the uncertainty metrics. Once the uncertainty

has been provided, how exactly can it be incorporated into the clinical workflow aside just

its algorithmic applications to improve performance [157]? Can it be a human-readable heat

map? How can it be used to guide image interpretation and decision making? These are

broader questions that medical imaging scientists would be better posed to answer than

computer scientists who are more focused on the algorithmic details [158].

In summary, Bayesian deep learning allows for the quantification of uncertainty that

recognizes the space of possible solutions and is specifically designed to make a user aware

of the limitations of the training data, unlike standard deep learning approaches. This
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feature has allowed for advances in PET/MRI attenuation correction and accelerated MRI

reconstruction.
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