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ABSTRACT 
 

by 

 

Erica Akemi Goto 

 

 

Landslides are natural events that occur in many parts of the world in both developed and 

developing countries. They can be triggered by rainfall, earthquakes, volcanos, and a 

combination of post-fire and rainfall. However, the impact they cause in a community can be 

very different, based on how the community can anticipate and respond. They can cause 

material losses and some minor property damage, but also, they can become natural disasters, 

resulting in significant material and human losses.  

 One way to avoid and mitigate landslide disasters is by implementing Disaster Risk 

Reduction measures, such as risk mapping or developing an evacuation plan. These measures 

help municipalities plan before an event occurs, thereby protecting their communities and 

being proactive. In this doctoral dissertation, the focus is on two of these Disaster Risk 

Reduction measures: risk and vulnerability assessments.  

 In the first part, the study is conducted in the Metropolitan Area of Sao Paulo, Brazil. 

In these urban areas, shallow landslides are frequent in low-income neighborhoods on 

hillslopes, especially during summer months, when intense rainfall frequently occurs. 

Chapters 2 and 3 propose two distinct methodologies to quantify an inventory-based shallow 

landslide risk mapping. The quantification is intended to reduce bias and standardize risk 

mapping methodology. In chapter 2, experts’ knowledge and the Analytical Hierarchical 

Process (AHP) method is applied to compute weights for variables, and application is 

developed and used to calculate the risk level automatically. In this study, variables that 



 

viii 

illustrate instability in the terrain were the ones with the highest contribution for a higher 

risk. In chapter 3, a large dataset from a previous mapping of Sao Paulo city and Ordinal 

Logistic Regression (OLR) was used to select essential variables and to compute their 

weights. The equation calculated can be used in the developed application to compute the 

risk level automatically. In chapter 4, a spatial analysis of the slope stability using 

SHALSTAB and Factor of Safety and saturated hydraulic conductivity was computed in two 

hillslopes of São Bernardo do Campo, in the Metropolitan area of Sao Paulo. In one of these 

sites, the hillslope is disturbed by human activities (previous homes, cut and filling, landfill), 

and in the second site, the hillslope is undisturbed. The saturated hydraulic conductivity and 

the slope stability analysis illustrate that the disturbed site has less homogeneous soil than 

does the undisturbed site. Additionally, based on the soil characteristics and results from 

SHALSTAB and Factor of Safety analysis, the undisturbed hillslope is more stable than the 

disturbed hillslope.  

 The second part of the study was conducted in Montecito, California. The study was 

proposed after the 2018 Montecito debris flows that killed 23 people and damaged more than 

400 homes. In this study, I used a parallel mixed-methods approach and a temporal-spatial 

analysis to understand the main factors that made the community vulnerable to debris-flows 

and to determine who were the most vulnerable people. The study concludes that the most 

vulnerable people were informal workers (gardens, housekeepers, caretakers, nannies), 

renters, and residents of areas that were in the voluntary evacuation zone. Lack of education 

about debris-flows and previous debris-flows in the region by the community increased the 

vulnerability of the entire community. Moreover, the institutional vulnerability was high for 

the entire community, but county measures in the aftermath contributed to the community 
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resilience.  

Keywords: landslide, debris-flows, risk, landslide assessment, weights of evidence, 

SHALSTAB, vulnerability, AHP, OLR, mixed-methods.  
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CHAPTER 1: INTRODUCTION 
 

Landslides are natural events that occur in many parts of the world in both developed and 

developing countries. They can be triggered by rainfall, earthquakes, volcanos, and a 

combination of post-fire and rainfall. However, the impact they cause in a community can be 

very different, depending on how the community can anticipate and respond. They can cause 

material losses and damage, but they can also become natural disasters, resulting in extreme 

material and human losses.  

One way to avoid and mitigate landslide disasters is to be proactive rather than reactive. 

For instance, through landslide risk assessment, it is possible to identify areas that require 

regular monitoring or where inhabitants must be relocated due to the high risk of landslides. 

Such assessments must consider the landslide hazard and the exposure of people and 

property to the hazard and their vulnerability, as well as its aftermath. In this dissertation, risk 

is seen as a combination of a natural hazard and vulnerability (Maskrey, 1989; Wisner et al., 

2003) for a specific type of natural hazard. Hazardous events are natural events that can 

threaten human lives and the things that are important for them (Keller, 2011), and 

vulnerability consists of the characteristics and circumstances of a community, system, or 

asset that make them more or less susceptible to damage due to hazardous events (UNISDR, 

2009).  

In the past, natural disaster studies would prioritize the assessment of natural hazards 

over vulnerability, and, if they do include vulnerability, it was only the vulnerability of 

infrastructure and the number of people and not the community’s socioeconomic 

characteristics (i.e., Mejianavarro et al., 1994). Recently, more risk and vulnerability studies 
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have included the socioeconomic aspects of the community (e.g., Maskrey, 1989; Flanagan et 

al., 2011; Cutter et al., 2003; Cardozo and Monteiro, 2019; Frigerio et al., 2018). However, 

most of these studies assess vulnerability as the same for all types of natural hazards. This 

assumption is problematic since natural hazards have singular characteristics, as do their 

impacts in the community. Their impact can be local or regional. A shallow landslide usually 

has a local impact, but a hurricane can impact larger areas (regional impact). Their impact 

characteristics are also different. Earthquakes can destroy huge buildings, roads, and damage 

infrastructure, and floods can impact the lower areas in which the water is concentrated.   

Natural hazards and vulnerability are interconnected. They occur at the same spatial 

location, and the impact in the community depends on the natural hazard and the 

vulnerability of the community. Therefore, understanding their interconnection or studying 

them together can enrich the assessment and avoid overlooking relevant characteristics of 

one of the parts. 

In the studies included in this dissertation, I worked on two main projects: shallow 

landslides in the Metropolitan Area of Sao Paulo and the debris flows vulnerability of the 

community of Montecito, California.  

The Metropolitan Area of Sao Paulo (Região Metropolitana de São Paulo or RMSP) is 

the largest metropolitan area of Brazil, with around 22 million residents (EMPLASA, 2019). 

This urban area has many people living in at-risk areas, especially shallow-landslides, 

riverbank erosion, and floods. These areas are mainly concentrated in low-income 

neighborhoods, the favelas. In these areas, favelas developed due to the rapid urbanization 

and lack of infrastructure (Fischer, 2014). Residents from different parts of Brazil migrate to 

RMSP for better job and life opportunities (Maricato, 2008). However, the city was not 
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prepared to receive all these new residents and did not have enough jobs, housing, and 

infrastructure to incorporate all these new incoming residents (Maricato, 2008). 

Consequently, many residents occupied and self-built their homes in available public lands, 

usually located on hillslopes and in floodplain areas (Maricato, 2008). These changes in the 

terrain by residents in these already hazardous areas resulted in a considerable number of risk 

areas.  

The Brazilian government has been using inventory-based landslide and riverbank 

erosion mapping to map risk areas. In this study, the methodology is referred to as the 

Brazilian Government Methodology (BGM). In the BGM, pairs of technicians do a field 

inventory and map the risk areas by observing local characteristics and using a checklist. 

Based on their evaluation and expertise and the BGM recommendations, they decide upon 

the overall risk level. The methodology is not standardized and does not apply mathematical 

computation to the risk level classification, allowing for classification variability and 

subjectivity. In chapters 2 and 3, I proposed two different methodologies to quantify the 

BGM. In chapter 2, I used the fieldwork evaluation form of the BGM, experts’ knowledge, 

and the Analytical Hierarchical Process (AHP) to compute weights for variables and 

automatically compute the risk level. In the first phase, I designed a pairwise questionnaire, 

using the information in the fieldwork evaluation form of the BGM, and I delivered the 

survey to experts that have been working in the disaster risk field for some years. Using their 

answers, I could compute the weight for each of the variables. Moreover, an application 

(app) using ShinyApp (R) was developed to collect data in the field and to automatically 

generate a table with data collected and the level of risk. Therefore, the technicians would not 

be able to subjectively decide the risk level.   
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In chapter 3, I used the São Paulo city risk mapping from 2010 and Ordinal Logistic 

Regression (OLR) to select essential variables and compute their weights. In this study, an 

equation that calculates the risk level automatically was developed. The equation also can be 

plugged into the application and used by field technicians to compute risk levels based on the 

data they collect in the field. Both studies contribute to quantifying the BGM, using different 

methodologies, helping to reduce the bias and standardizing the computation of the risk level.  

In chapter 4, the study areas are two sites in the city of São Bernardo do Campo, also in 

the RMSP. In this study, I selected one site that had anthropogenic activities (people 

previously lived in the site), also called the disturbed site, and another site with no 

anthropogenic activities, the undisturbed site. In urban risk areas, it is common for residents 

to change the land by cutting and filling the terrain, throwing garbage and sewage onto the 

slope, or even having municipality or companies throw unused and used construction 

material and waste onto slopes. Therefore, in this study, the goal was to conduct a geospatial 

analysis of the slope stability and the saturated-hydraulic conductivity in these two sites and 

to observe if there was a significant difference due to the anthropogenic activities. Fieldwork 

was conducted to collect a digital elevation model (DEM) and to compute saturated-

hydraulic conductivity, using the bottomless bucket methodology, and soil was collected to 

be analyzed in the laboratory. In the laboratory, three main tests were conducted: soil texture 

analysis, wet soil bulk density, and a shear stress test. These tests were essential to perform 

the slope analysis using SHALSTAB and to compute the Factor of Safety. 

These three studies, conducted in Brazil, aimed to contribute to Disaster Risk Reduction 

by quantifying, standardizing, and reducing the bias of the BGM, and to conduct and 
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compare landslide susceptibility analysis and saturated-hydraulic conductivity in disturbed 

and undisturbed sites.  

The second part of the dissertation took place after the 2018 debris flows in Montecito, 

CA. They occurred as a result of wildfire (Thomas Fire) followed by intense rainfall in the 

catchments of the Santa Ynez Mountains (Kean et al., 2019). Montecito is in Santa Barbara 

County, and the distance between the University California, Santa Barbara (UCSB), and 

Montecito is around 24 km or 20 minutes’ drive. The debris flows were a surprise for the 

local community, and it killed 23 people, injured at least 167, and damaged more than 400 

homes (Kean et al., 2019).  The main highway 101 was closed for ten days since the debris 

flows brought mud, boulders, and debris from the mountains towards the ocean; water was 

not considered safe for drinking; and utilities (gas and electricity) were shut down in parts of 

Montecito.   

In chapter 4, I focus on the debris flows and the vulnerability of the community. I used a 

parallel mixed-methods approach by conducting personal interviews with members of the 

community and sending surveys to residents. Individual interviews complemented the 

surveys, and both, together, tell a better story of who are the most vulnerable people and 

what are the main factors that made the community vulnerable. In this study, I took a spatial 

and temporal approach to vulnerability. The spatial part considers the local community 

affected by the debris flows, and the temporal part accounts for the different phases of the 

disaster (before, during, and after).  The main contribution of this study is to conduct a more 

inclusive and sophisticated discussion of variables that account for debris flows vulnerability 

in Montecito, such as revealing hidden elements that a traditional assessment would not 

consider.  
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CHAPTER 2: A Heuristic Approach to Map Risk Level of 

Shallow Landslides in Urban Areas in Brazil 
 

 

ABSTRACT 

Shallow landslides are common in Brazil’s urban areas. Geomorphology and land use are 

contributing factors, and rainfall is the triggering factor. In these urban areas, anthropogenic 

activities that contribute to increase the level of landslide risk are common, such as cutting 

and filling or discharging wastewater and garbage onto the slopes. The Brazilian government 

has developed a methodology to map the level of risk in landslide-prone areas. The 

methodology is based on field observation and divides the risk into four main categories: 

low, moderate, high, and very high (R1, R2, R3, and R4). Technicians in the field decide a 

landslide sector’s level of risk without mathematical calculations or using specific weights 

for the contributing factors. This study proposes a method for automatically computing the 

level of risk, thereby reducing the subjectivity in the selection of the final level of risk. A 

methodology was implemented that involves specific weights for classifiers and 

automatically computes a sector’s level of landslide risk. The weights were computed using 

the Analytical Hierarchical Process (AHP), based on experts’ knowledge. The thresholds of 

the risk levels were quantified by using a field-inventory dataset. Finally, an application 

(app) that can be used on a tablet, computer, or smartphone was created to facilitate data 

collection during field work and to automatically compute the level of risk.  

 

Key-words: AHP, risk assessment, Brazil, expert knowledge, landslide, application, 

Analytical Hierarchical Process 
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1. Introduction 

 

Landslides are common events in Brazil due to both geomorphology and land use. In the 

South and Southeast of Brazil, they are frequently triggered by intense rainfall during the 

summer (Tominaga et al., 2009). The region has experienced many landslide disasters and 

catastrophes, such as a 2011 event that killed 947 people in the Rio de Janeiro Mountainous 

Area (Dourado et al., 2012). 

In Brazil, the development of landslide risk areas is directly related to irregular and 

unplanned urbanization. Today, many of these areas are in former or current favelas.1 During 

the urbanization of major cities, such as São Paulo, inhabitants moved from rural areas 

towards the city for better jobs opportunities and to improve their quality of life (Maricato, 

2008). However, the city lacked the capacity to accommodate this new population, and many 

inhabitants ended up occupying and building informal housing in public areas unsuitable for 

dwellings (e.g., floodplains and steep slopes) (Maricato, 2008). These areas became favelas, 

and they usually have low-quality buildings and lack basic infrastructure. Frequently, 

inhabitants engage in activities that increase the landslide risk, such as cutting and filling 

slopes and throwing garbage and wastewater onto the slope (see Figures 2.1A and 2.1B). 

 
1 favela – the Portuguese name for slum and shanty town. According to the IBGE, the Brazilian Institute of 

Geography and Statistics, favela or ‘aglomeramento subnormal’ means a “set with at least 51 dweller units with 

no property title and at least one of the following characteristics: irregular paths and size and shape of the 

allotment and/or lack of basic public service (official garbage collection, sewage network, water network, 

energy network and street lighting).” 
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Figure 2.1. 1A and 1B. Fig. 2.1A illustrates a mixed-material building in a favela in São Paulo city (Source: 

Goto, 2012). Fig. 2.1B illustrates brick buildings in one of São Paulo’s favelas. Both brick and mixed-

material buildings are precarious, but mixed-material ones are less resistant than brick buildings and can be 

easily destroyed (Source: Goto, 2012) 

 

Today, many urban residents in Brazil are living in areas at risk to landslides, floods,  and 

riverbank-erosion. Major cities such as São Paulo, Rio de Janeiro, and Belo Horizonte have 

6%, 7%, and 16% of their population living in at-risk areas, respectively (IBGE, 2018). For 

instance, in São Paulo city, there were 1,179 risk sectors and 105,427 houses in these sectors 

(IPT, 2010), and 27% of these houses were in high or very high risk level categories (see 

Table 2.1).  

 

Table 2.2. Number of sectors and houses for each level of risk in São Paulo city 

Risk Degree  Number of Sectors Number of houses 

R1 (low) 153 13,778 

R2 (moderate) 420 62,923 

R3 (high) 445 20,513 

R4 (very high) 161 8,213 

 

 

Municipalities that mapped landslide risk areas know their sectors’ risk levels and 

locations. Still, they do not always have initiatives in place to relocate all of the residents or 

to implement infrastructure measures (modification of slope geometry, drainage, retaining 

structure, or internal slope reinforcement), and when they do, it requires time (to build new 

B 
A 



 

9 

dwellings) and financial resources.  Besides, these risk areas are dynamic, requiring constant 

updating in mapping since informal urbanization is constantly happening.  This current 

situation will not change in the short term.  In this context, proactive preventive measures can 

help manage the risk, i.e., outreach courses for residents and keeping municipalities’ risk 

mapping up to date.    

The Brazilian government has developed a methodology to map the level of risk of 

landslides and riverbank erosion-prone areas. In this study, we called this methodology the 

Brazilian Government Methodology (BGM). In the BGM, the mapping is done in the field by 

two technicians who fill out a paper evaluation form and decide the level of risk. The 

decision is based on the field perception of the technicians and does not involve any 

mathematical computation or weighting of classifier, and it can result in subjective choices of 

the risk level.  

This study proposes to reduce the subjective element and standardize landslide risk 

mapping by using mathematical equations to compute the risk level automatically, based on 

specific classifier weights.  The weights are based on expert knowledge and computed using 

the AHP (Analytical Hierarchical Process).  Moreover, an application (app) was developed to 

facilitate the data collection and automatically and simultaneously compute the level of risk.   
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2. Background 

 

2.1 The Brazilian Government Methodology for Landslide Risk Mapping 

 

The Brazilian Government, through the Ministério das Cidades (Ministry of Cities), together 

with the IPT (Instituto de Pesquisas Tecnológicas or Institute for Technological Research), 

developed a methodology to map the risk level of sectors that are prone to landslides and 

river bank erosion (Carvalho, Macedo, & Ogura, 2007). First, the methodology decides 

which landslide-prone areas should be mapped, based on municipality knowledge. After that, 

two technicians go into the field and map the level of risk of sectors by gathering information 

to fill out previously prepared forms and taking photos as proof.  

The prepared evaluation form has eight sections: (1) general information, (2) 

characterization, (3) determinants, (4) water, (5) vegetation, (6) signs of 

destabilization/movement, (7) type of destabilization process expected or in the past, and (8) 

level of risk (Table 2.2).  
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Table 2.3. Sections of the prepared evaluation form 

Sector Description/Aspects 

(1) General Information Name of the city 

District 

Neighborhood 

Sector 

Team members 

Date 

Type of unit: slope or riverbank erosion 

(2) Characterization Location (address – as reference) 

Name of inhabitant (as reference) 

Access to the area 

Type of housing: brick, wood, or mixed material  

(3) Determinants Natural slope, cut slope, rock formation, boulders and rock blocks, natural 

drainage, riverbank  slope, deposit onto the slope 

Slope angle 

Distance house to the base or top of the slope 

Maximum height 

Presence of material: landfill, garbage, and construction dumped material  

(4) Water Concentration of superficial water (rainfall accumulation) 

Wastewater onto the terrain 

Pipe leak 

Septic tank 

Spring 

Superficial drainage system: none, precarious, or adequate 

(5) Vegetation Trees 

Short vegetation (grass, shrubs, etc.) 

Deforestation 

Plantation 

(6) Signs of 

Destabilization/Movement  

Cracks in the house 

Cracks in the terrain 

Floor drawback 

Wall with a slump or “belly”  

Tilted trees, poles or walls 

Riverbank erosion 

Landslide scars 

Fracture in the rock  

(7) Destabilization process 

(expected or occurred in 

the past) 

Natural slide 

Cut slope slide 

Slope of material (landfill, garbage, or construction dumped material) 

Topple 

Block slides 

Rockfall 

Mudflow 

Erosion 

River bank erosion 

(8) Level of risk  R1 

R2 

R3 

R4 

Number of houses in the sector 
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2.2 The Analytical Hierarchical Process (AHP) 

The Analytical Hierarchical Process (AHP) is a Multi-Criteria Decision-Making method 

(MCDM) that relies on experts’ knowledge, using pairwise comparison (Kousalya et al., 

2012; Saaty, 1980, 2008). Each pairwise comparison is evaluated by a ranking scale 

comparing one criterion to another (Table 2.3). For instance, considering criteria a and b, 

first the expert chooses which criterion is more important for very high risk level and then 

how much more important it is. The pairwise comparison attempts to capture the subjective 

and objective elements inherent in the decision-making process (Saaty, 2008). 

Table 2.4. Table of ranking scale for criteria and alternatives (Source:  adapted from Saaty 1980) 

Value of a Interpretation 

1 a and b are equally important 

3 a is slightly more important than b 
5 a is more important than b 

7 a is strongly more important than b 

9  a is absolutely more important than b 

2,4,6, 8  intermediate values 

  

AHP can be used with different hierarchy structures or no hierarchy structure (Saaty, 

1980; Malczewski & Rinner, 2015). The specific classifier weight is computed, based on the 

pairwise comparison. The higher the weight, the more important is the criterion (Saaty, 

2008). The last level of the priority hierarchy is related with the final priority. For instance, in 

terms of satisfaction with school, the last level could be school A, B, and C, and the second 

level of the hierarchy could be criteria related with satisfaction with school (i.e., learning, 

friends, school life, etc.) (Saaty, 1980).    

AHP assumes experts are rational, and that their choices for the criteria are consistent. 

However, experts can be inconsistent, and the methodology uses a consistency ratio (CR) to 
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check for their consistency in pairwise comparison (Saaty, 1980). CR is computed to check 

for consistency for each criterion comparison (Saaty, 1980, 1984, 2008), and if greater than 

0.1, the pairwise comparison is not consistent and close to random (Saaty, 1980, 1984, 2008; 

Sedan & Suv, 2013). For instance, if an expert chooses A as heavier than B and B as heavier 

than C, they also should choose A as heavier than C; otherwise, the choices are inconsistent.  

 

3  Methodology 

 

In this study, we were interested in quantifying the qualitative methodology by using more 

experts than the field-inventory methodology to reduce the subjective element in the current 

methodology. We chose to use the AHP methodology because of its ability to achieve our 

goal of computing a specific weight for the classifiers. We used an inventory-dataset with our 

computed classifiers weights to define the risk level thresholds. In this section, we discuss the 

(1) hierarchical structure used and the parameters and classifiers, (2) questionnaire 

development, (3) experts involved, and (4) the application. 

 

3.1 Developing AHP for the Brazilian Government Methodology (BGM) 

 

The AHP approach has been used for landslide risk assessment in multiple studies 

(Kayastha et al., 2013; Barredo et al., 2000; Ayalew et al., 2004; Gorvevski et al., 2006; Wu 

& Chen, 2009; Akgun & Türk, 2010; Rozos et al., 2011; Akgun, 2012; Hasekiog˘ulları & 

Ercanoglue, 2012; Mondal & Maiti, 2012; Yalcin, 2008; Yalcin et al., 2011; Mezughi et al., 
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2012; Phukon et al., 2012; Pourghasemi et al., 2012; Long & De Smedt, 2012). Some studies 

compared AHP with another methodology (Akgun & Turk, 2010; Rozos et al., 2011, 

Pourghasemi et al., 2012) and other studies combined AHP with another methodology 

(Ayalew et al., 2004; Yalcin, 2008; Mondal & Maiti, 2012). Information regarding the 

experts consulted is usually not included in these studies (except for Wu & Chen, 2009).  

First, we defined the parameters and classifiers (see Figure 2.2). Parameters and 

classifiers are also called criteria in the AHP methodology. We called the choices users can 

make when mapping the landslide risk area classifiers. For instance, in the category of 

instability, the classifiers are (i) leaning wall; (ii) house crack; (iii) wall crack; (iv) floor 

downward sloping; (v) tilted trees, poles, walls; and (vi) landslide scars.  The IPT/Ministério 

das Cidades evaluation form (Table 2.2) was used to build a hierarchical structure and decide 

which classifiers we would include (see Figure 2.3).  Unlike the original AHP methodology, 

we didn’t include a final level in the hierarchical structure that represents the possible options 

since we are just interested in the criteria that contribute to a higher risk level.  

 

 
Figure 2.2. Flowchart of the Methodology 
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Figure 2.3. AHP hierarchy structure, based on BGM
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3.2 Questionnaire design and the experts involved  

 

We used the hierarchical structure (Figure 2.3) to design the questionnaire. The elements of each 

branch of the hierarchical structure were compared with each other. For instance, in the branch 

natural, we pairwise compared the angle, natural coverage, geology, and soil. The entire 

questionnaire is included as Appendix 2.1.  

 The questionnaire was delivered in person (paper survey) and by email, with a link to an 

online survey created by using Google Forms. The paper survey was delivered and collected at two 

events: i) Workshop of the Brazilian Committee of Geotechnical Cartography and Geoenvironment 

in São Bernardo do Campo – 2017 and ii) a visit to IPT.  The workshop and visit to IPT targeted 

experts in the field of landslide risk assessment, and the online questionnaires were sent to 

researchers who preferred to answer the survey at another time. Table 2.4 reports the number of 

experts and their gender, institution, and discipline. Detailed information about the experts can be 

found in Appendix 2.2.  

 

Table 2.5. Summary of experts involved in the study 

Number of Experts 23 

Female 9 

Male 14 

Mean years working with 

landslide assessment 

16 

Institutions Cemaden, IPT, JICA (Japan Internacional 

Cooperation Agency), Civil Protections and 

Habitation Ministry from different Municipalities 

( Santana do Parnaíba - SP, Castelo - ES, Jundiaí 

– SP, São Bernardo do Campo – SP, São Paulo – 

SP), DRM (Departamento de Recursos Minerais) 

-RJ, UFABC (Universidade Federal do ABC), 

Regea (Regea Geologia, Engenharia e Estudos 

Ambientais Ltda) 

Discipline Geography, Civil Engineering, Chemistry, 

Geoscience, Environmental Studies 

 

The total number of experts involved was 23, but due to the CR, the number of experts for 
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each classifier weight value involved between 7 and 13 experts (MEAN=9.77, SD=2.17). 

 

3.3 Classifiers Weight Value and Consistency Ratio 

 

Using an Excel spreadsheet developed by Business Performance Management Singapore 

(BPMSG), we computed classifier weight and checked their CR for each expert and collectively.  

See Appendix 2.3 for a detailed explanation with an example.  

Equation 2.1 computes each value (𝑎̅𝑗𝑘) of the pairwise comparison, and Equation 2.2, the 

weight for each criterion.  

 

 

𝑎̅𝑗𝑘 =
𝑎𝑗𝑘

∑ 𝑎𝑙𝑘
𝑛
𝑙=1

 

 

(2.1) 

𝑊𝑗 =
∑ 𝑎̅𝑗𝑘

𝑛
𝑖=0

𝑛
 

 

(2.2) 

 Where n is the number of criteria, 𝑎̅𝑗𝑘 is the normalized value of  ajk and Wj is the specific 

weight of each criterion.  

We checked the CR of the experts using Equation 2.3 (see Appendix 2.3 for detailed 

explanation). Pairwise comparisons from experts with CR > 0.1 were not used, as previous studies 

consider CR> 0.1 to be random and not consistent (Saaty, 1980, 1984, 1990, 2008; Sedan & Suv, 

2013).   
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𝐶𝑅 = 𝐶𝐼/𝑅𝐼 (3) 

 

CI stands for critical index and RI for random index. The values of RI were computed in 

previous studies, and Table 2.5 illustrates these values (Saaty, 1980). 

 

Table 2.6. Random Index Values (RI) 

n 2 3 4 5 6 7 8 9 10 

RI 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.51 

 

3.4 Classifiers rules 

 

Using the AHP methodology, we computed the specific weight of classifiers. Additionally, we 

created rules to account for the singularity of each classifier. Some branches of the hierarchical 

structure (3), such as water, can have more than one classifier chosen; other branches, such as type 

of building, can have just one classifier chosen. Rules of the classifiers are illustrated in Figure 2.4.  

 
Figure 2.4. Rules for classifiers. Classifier weight value is computed, based on these rules.  

 

 

3.5 Threshold for Risk Level 

 

Classifier 
Weight ValueRule

Choice 

Classifier

single classifier

(a) each classifier has a 
specific value

weight value

(b) 3 classifiers 

(100% value, 50% value, 
0)

weight value

multiple classifier
(c) value of the classifier 

is proportional weight value
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The BGM has four level of risk: low, moderate, high, and very high. However, the final value of 

risk computed with AHP is numerical. In this section, we go through the steps necessary to 

categorize the risk into these four levels.  

We used a field-inventory dataset of 2010 São Paulo landslide risk and riverbank erosion to 

define the risk level thresholds.  A total of 503 risk sectors from the field-inventory were used, in 

which 60 were mapped as R1, 194 as R2, 188 as R3, and 61 as R4. Numbers of R1 and R4 sectors 

are lower since there are fewer sectors at these risk levels when compared to R2 and R3. We plotted 

the dataset in a density histogram and used kernel density estimation in RStudio as it allows visual 

identification of the thresholds.  

 

3.6 The Application  

 

The application (app) has the same inputs as the prepared paper evaluation form and was developed 

to compute the level of risk of shallow landslides automatically. It has a simple interface, in which 

users select classifiers observed in the field and type their observations in one tab (Diagnóstico), 

and in the other tab (Respostas), a table with the data collected and the level of risk are displayed.  

The app was built using RStudio, and I used two main libraries, Shiny and Rmarkdown. The 

app runs on a tablet, smartphone, and computers with internet access or with RStudio installed. 

Also, the data can be easily collected and stored, both centrally and locally. Direct digital encoding 

of the form also reduces errors and misinterpretations on the written forms. The app is in 

Portuguese and has two main tabs: (i) Diagnostic (Diagnóstico): input dataset (Figure 2.5A); (ii) 

Data Collected and Degree of Risk (Respostas): display dataset collected in a table and computes 

the level of risk (Figure 2.5B). In the second tab, the user can export the data file in PDF, HTML, 

and CSV formats.  



 

20 

 

 

 

 

 

 

 

Figure 2.5. 5A and 5B. Fig. 2.5A illustrates the Diagnostic Tab in a 

Smartphone. Fig. 2.5B illustrates the Answer Tab in a Smartphone 

 

4 Results 

 

4.1 Classifier Specific Weight 

 

Instability is the category that contributes the most to very high risk level of shallow landslides 

(Figure 2.6). Experts consider the instability category (59.6) more than two times more important 

than the natural category (23.3) and 3.5 times more important than the anthropogenic category 

(17.1). This pairwise comparison, at level two of the hierarchical structure (Figure 2.3), impacts the 

overall weight of the classifiers (Figure 2.7). 

 

A B 



 

21 

 
 

Figure 2.6. Values of Pairwise Comparison  

Classifiers from the instability category have a higher specific weight value when compared 

with classifiers from anthropogenic and natural categories (Figure 2.7). Overall, anthropogenic 

classifiers represent the lowest specific weights, such as good drainage system (0.10), building far 

away from the top of the slope (0.29), and impermeabilization/urban coverage (0.34). Yet, natural 

category classifiers, like geology, soil, and natural coverage favorable to slope stability have a 

specific weight value equal to zero due to rule b (Methods section).  
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Figure 2.7. Classifiers Specific Weight Value Computed with AHP 

 

The instability category includes alternatives that represent past and present movement in the 

terrain, and the classifiers of this category have the highest specific weight, such as downward 

sloping floor (16.88), landslide scars (12.64), cracks (11.02), leaning wall (9.53), and tilted trees or 

poles (9.53). It is expected that these classifiers have higher weight values since their presence in 

the site contribute to a higher level of risk (Carvalho et al, 2007).  

The natural category, in the experts’ pairwise comparison, is the second most influential 

category. Slope angle classifiers α = 90 and 60 ≤ α < 90 have the highest specific weight in this 

category (5.85 and 5.69, respectively). Other classifiers with high specific values are soil and 

geology favorable to slope instability with specific weigh values of 4.72 and 4.65, respectively. 

Nevertheless, if these classifiers are contributing to slope instability, they are expected to have a 
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high weight value. However, we notice they are at least 3 times less important than downward 

sloping floor.  

Experts considered anthropogenic as the least important category to contribute to a very high-

risk level of shallow landslide. Garbage classifier (3.88) has the highest weight value in this 

category, followed by houses built with mixed materials (3.60) and wood (3.15) classifiers. 

However, in the anthropogenic category, water is the category with the highest weight value (5.52), 

followed by garbage (3.88), and land use (3.85). Water represents increase of water content on the 

terrain. In these risk sectors, it is common to find precarious buildings with no sewage system that 

discharge wastewater onto the terrain, and water leaks through their self-engineered pipelines. An 

increase of water in the terrain can decrease cohesion in soil and increase weight and pore water 

pressure in granular material, decreasing the shear strength (De Blasio, 2011); in the shallow 

landslides sites in Brazil, this is the most important trigger component (Carvalho et al., 2007). If the 

soil is almost saturated, even a light rainfall could trigger a shallow landslide. The garbage classifier 

has a higher weight value than classifiers from the water category because more than one classifier 

of the water category can occur at the same time, and they add up. For instance, a sector can have a 

pipe leak (1.94), wastewater on the terrain (0.96), and no drainage system (0.62). The total for the 

water classifiers in the sector is 3.5. The mixed material houses classifier (3.60) has the highest 

weight value of the building material category, followed by wood (3.15), and brick (0.77). Houses 

made of brick are more resistant and less prone to be destroyed during a shallow landslide when 

compared with wood and mixed material houses.  

More information about classifiers weight values and pairwise comparison values are given in 

Appendix 2.4. 
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4.2 Risk level classification  

 

We plotted a density histogram with the 503 risk sectors and used kernel density estimation to 

display a normal distribution in RStudio, where each normal distribution represents one risk level 

(R1 < 26, 26 ≤ R2 <42, 42 ≤ R3 < 67, R4 <67). 

 R1 has the larger number of sectors (N=128), followed by R3 (N=63), R4 (N=25), and R2 

(N=34).  

 

 
Figure 2.8. Density Histogram of risk value computed with AHP. Plot visualization and the four normal distributions 

were used to define the thresholds between risk levels (26, 42, and 67) 

 

5 Discussion 

 

The instability category was expected to have a higher weight value since classifiers of this 

category describe features of landslides that have already happened (landslide scars) in the sector or 

have already been initiated (crack, downward sloping floor, tilted poles and trees, leaning wall). 

There is a high probability of shallow landslides occurring in an area where they occurred in the 
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past (Highland & Bobrowsky, 2008). Therefore, we expect the landslide scars classifier to have a 

high weight value. Classifiers that demonstrate signs of landslide initiation are also expected to 

have high weight values since the sector has a very high risk of a landslide.  

Slope stability is expressed by the relationship between the driving and resisting forces (Keller, 

2011). These forces are determined by the relationship between some variables, such as type of 

earth materials, slope angle, climate, vegetation, water, and time (Keller, 2011). Experts considered 

slope angle the most important classifier in the natural category for a high level of risk. It is 

expected that shallow landslides occur more frequently on slopes with high angles than with a small 

angle; but in natural slopes, they don’t occur with α = 90o. On the other hand, in these informal 

urban areas, it is common for residents to cut the slopes at a vertical angle (equal or close to 90o). 

The self-engineering cuts in the slope change the stability of the slope and increase the landslide 

risk (Carvalho et al,. 2007; Nogueira, 2002). Based on field inventory by technicians and the field 

inventory form, the line that divides natural slope and slope angle changed by anthropogenic 

activity is a narrow one. Some field inventory had both angles collected, some didn’t have any, and 

others have one of them. 

The most important classifiers for high risk level in the anthropogenic category are garbage, 

landfill, and construction deposits. In the favelas, the presence of garbage, landfill, and construction 

deposits onto the slope is visible and very common (Figures 9A and 9B), and these materials 

commonly move downwards with soil (Carvalho et al., 2007). In this matter, experts point this out 

as being the most important anthropogenic classifier matches what have been observed in the field. 

Experts considered type of building the second most important classifier for a higher risk level, and 

this is related with the structure vulnerability of the dwellings. Mixed material and wood dwellings 

are more likely to be destroyed during a landslide than brick dwellings (see Figures 2.1A and 2.1B).  
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Figure 2.9. 2.9A and 2.9B. Fig. 2.9A illustrates slope with garbage and construction material mixed with soil in 

landslide risk area in Sao Paulo (Source: Goto, 2012). Fig. 2.9B is detailed photo of the material mixed with soil 

(Source: Goto, 2012) 

 

 

Shallow landslides or translational landslides move the mass material above the surface of 

rupture out or down and outward (Highland & Bobrowsky, 2008). Mass material moved on the 

surface of a rupture accumulates at the base of the landslide. Therefore, experts’ opinion on the 

level of impact based on the position of a dwelling aligns with the landslide literature and with what 

is observed in the field.  Dwellings near the slope base (2.15) have higher risk since the mass 

material is moving down and outward and might damage or destroy the dwellings suddenly, while 

dwellings far away from the slope have lower risk (0.35). However, based on the Sao Paulo city 

mapping dataset, these classifiers are not that relevant since most of the sectors consider the whole 

slope as one entire risk sector and don’t divide it up by base, middle, and top.  

Experts’ knowledge considers brick houses (0.77) less influential for a high level of risk than 

mixed material (3.60) and wood houses (3.15). Brick dwellings (Figure 1B) are more structured and 

resistant and less susceptible to being destroyed if a landslide is triggered, when compared with 

mixed material dwellings (Figure 2.1A) or wood. Less affluent residents in these underprivileged 

neighborhoods build their dwellings initially with very precarious materials, particularly with 

materials they find at the site, such as plastic, pieces of wood, and cardboard boxes (Figure 2.1A). 
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As their financial situation improves, residents also upgrade their dwellings by using better 

materials (first wood, then brick).  

To complement the sectors that did not have a slope angle recorded, we looked at the photos in 

the sector and manually classified them into one of the six slope angle sub-parameters (α < 10, 10 ≤ 

α <17, 17 ≤ α <30, 30 ≤ α <60, 60 ≤ α < 90, and α = 90). This could result in misinterpretation since 

photos are an interpretation of the reality and not necessarily the reality. Other aspects noticed when 

inputting the slope angle was the number of sectors with more than one slope; also, many sectors 

have more than one angle and different numbers of slopes with human interference (cut slope). 

Another aspect to point out is the diversity in area size of the risk sectors and number of dwellings 

in each sector (ranging from one to 97 dwellings). This diversity in sectors can likewise impact the 

landslide risk mapping.  

 

6  Conclusion 

 

This study improves the BGM mapping for shallow landslide risk by using the AHP 

methodology since it removes some of the subjective elements of the original methodology and 

standardizes the values for choosing the risk level. The AHP makes it less dependent on the 

personal experience of the two technicians in the field.  A contribution of this study is diminishing 

the subjectivity by becoming less dependent on the personal experience of the technicians, but some 

subjectivity still exists since AHP is built based on expert knowledge. Nevertheless, the subjectivity 

is smaller since the methodology involves more experts, provides objective weights for parameters 

and sub-parameters, and automatically classifies the risk level. Besides, the application makes the 

field data collection easier and less error-prone, and, as soon as data is entered, the sector can be 



 

28 

classified by its risk level. For future improvement of the application, researchers can use the tmap 

package to display Google Maps to allow the technicians to locate and draw in the map the sector 

being mapped. Also, a downloaded report in PDF and HTML generated by Shiny and RMarkdown 

packages in interactive documents is not visually simple, so more studies of how to generate 

displays from these downloaded documents should be explored by further researchers.  

This study quantifies only shallow landslides for the BGM. Therefore, similar studies could be 

done for other types of risk mapping of the BGM, such as riverbank erosion and other types of 

landslides. For future studies, different methodologies of landslide assessment for shallow 

landslides in urban areas, such as statistically and mathematically based ones, should be conducted 

to compare and validate the AHP results.  
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CHAPTER 3: Landslide Risk Assessment Using Ordinal Logistic 

Regression for Sao Paulo city, Brazil 
 

 

ABSTRACT 

Landslides are natural events that can cause disasters and catastrophes and threaten human lives and 

assets. Catastrophic landslides are more common in developing countries than developed countries.  

In Brazil, many people live within landslide risk zones, which amplifies the human impact and 

increases the number of disasters and catastrophes. Landslide risk mapping is one way to help 

prevent landslides and reduce the losses they bring. The mapping provides information about 

location and risk level, allowing better monitoring and the relocation of dwellings when possible. 

The Brazilian Government has developed an inventory-based assessment to map these risk areas. 

Pairs of technicians do field inventory and decide on the risk level, based on their personal and 

technical experience. However, the risk areas need to be constantly updated, and the inventory-

based assessments are not standardized and so carry the technicians’ subjectivity. In this study, we 

quantify the assessment methodology for shallow landslides by developing corresponding 

mathematical equations and automatically classifying the risk level regardless of the technicians’ 

decisions. Using a dataset from Sao Paulo city, risk mapping, and Ordinal Logistic Regression 

(OLR), we quantify the field methodology by assigning weights for classifiers and thresholds for 

risk levels. The mapping can be done using an application on a tablet or smartphone in the field. 

The application computes the risk level and creates and stores a table with the data collected in the 

field. In conclusion, this methodology, by more rapidly updating the sector risk levels, standardizes 

the methodology and diminishes the subjectivity of the mapping and so can contribute to the 

prevention of future landslides and the mitigation of their human impacts.  

Key-words: ordinal logistic regression, Sao Paulo, landslide, risk, landslide assessment 
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1. Introduction 

Landslides are natural events that threaten human lives and assets. Landslide disasters and 

catastrophes are more common in developing countries, as are deaths and loss of property 

(Alcántara-Ayala, 2002). For example, in 1987, 1,000 people were killed due to the Reventador 

landslides in Ecuador, and in 1994, 271 people were killed and 1,700 were missing due to the Paez 

landslides in Colombia (USGS, 2019). In these countries, a large number of people live in at-risk 

areas due to the rapid increase of population, unplanned urbanization, and poverty.  

Brazil is a developing country that has faced many landslide catastrophes. In the 

Southeastern states, these landslide events frequently occur during the rainy season (summer) and 

past landslides have resulted in major disasters, like those in Rio de Janeiro state in 2011 with 947 

people killed (Dourado et al., 2012). Rio de Janeiro’s landslide risk areas are a combination of the 

geography of the hazard events (landslides) and the vulnerability of the local residents. As a 

consequence of the residents’ financial situation, they often occupy public lands, commonly in 

flood-plain or hillslope areas, and self-engineer the construction of their homes (Maricato, 2008).  

Neither the local nor the federal government can remove all the residents that live in at-risk 

areas in the short term. As a preventative measure, it is important to monitor these areas to 

anticipate and prevent human casualties. By mapping the landslide-prone areas and their risk levels, 

local governments can closely monitor the risk conditions and allocate resources or prioritize 

removals of residents living in high and very high-risk level sectors. Moreover, these risk sectors 

need continuous updates since they are constantly changing.  

The Brazilian government has developed an inventory-based landslide risk mapping 

methodology to map landslide and river-bank erosion (Carvalho, Macedo, & Ogura, 2007). In this 
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study, we call this method the Brazilian Government Methodology (BGM). In the BGM, pairs of 

technicians do a field inventory and map the risk areas by observing local characteristics. Based on 

their evaluation and expertise, and the BGM recommendations, they decide upon the overall risk 

level. The methodology is not standardized and does not apply mathematical computation to the 

risk level classification, allowing for classification variability and subjectivity.  

In this study, we propose using ordinal logistic regression (OLR) to quantify the BGM for 

shallow landslides. The methodology allows the mathematical computation of classifier weights 

and standardization of the risk level classification, diminishing the subjectivity of field technician 

decisions. The developed application can help municipalities update and validate their mapped risk 

areas.  

 

2. Background 

2.1 Risk Areas in Brazil 

 

In Brazil, many people live in at-risk areas (IBGE, 2018). In the southeast, major cities like Sao 

Paulo and Rio de Janeiro have 6% and 7% of the population living in these risk areas, respectively 

(IBGE, 2018). Smaller cities also have a large number of people living in at-risk areas, such as 

Ribeirão das Neves (60.5%) and São João de Meriti (18.8%) (IGBE, 2018). Knowing the location, 

the type of risk, and the level of risk is important to preventing landslide disasters. By mapping 

these areas, local municipalities can manage and monitor the risk sectors. Also, they can allocate 

financial resources for removal or prioritize reallocation of residents in the very high-risk sectors.   

Risk, in this study, is a combination of hazard and vulnerability (Maskrey, 1989; Wisner et 

al., 2003). In developing countries, such as Brazil, the vulnerability of the residents contributes to 

the large number of people living in at-risk areas. Vulnerability, in the field of disaster reduction, 
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consists of “the conditions determined by physical, social, economic and environmental factors or 

processes which increase the susceptibility of an individual, a community, assets or systems to the 

impacts of hazards” (United Nations, 2015). These vulnerability conditions are related to the root 

causes of these communities, such as dynamic pressures, fragile livelihoods, and unsafe locations 

(Marchezini and Wisner, 2017). 

Disaster risk reduction (DRR) plays an important role to prevent and mitigate disasters. 

Mapping landslide risk areas is part of DRR, and it contributes to knowledge of the type, location, 

and level of risk, which is fundamental to closely monitoring risk and to helping local governments 

make decisions, such as dwelling removal or building infrastructure to reduce the risk.   

 

2.2 Landslide Assessment Methodologies 

 

We can assess landslides with four main types of methodologies: (i) inventory-based; (ii) 

deterministic; (iii) heuristic; and (iv) statistical (Das, 2011; Van Westen et al., 2006). The 

assessment can rely on one methodology or combine more than one. Decisions about which type of 

methodology to use is related to the data available, time, and the site scale. In our study, we are 

using a type of statistical methodology (ordinal logistic regression), that was chosen based on the 

data available (landslide risk mapping by risk level in Sao Paulo city).  

2.3 Ordinal Logistic Regression 
 

Ordinal Logistic Regression (OLR) is a statistical methodology that is frequently used in 

psychological, medical, and educational studies, in which the response variable (y or dependent 

variable) has an order, and the explanatory variables (x or independent variables) can be discrete 

(categorical, numerical, or ordinal) and/or contiguous. Examples of ordinal response variables are 
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restaurant satisfaction (low, moderate, high) or academic grades (F, E, D, C, B, A). OLR is not 

frequently used to assess landslides since the response variable commonly is not ordinal. However, 

the BGM classifies the landslide risk areas in an ordinal fashion with four risk levels (low, 

moderate, high, and very high), which makes OLR the most appropriate methodology for this study.  

 We used the MASS package in the open source R statistical software and the polr equation 

to estimate the ordinal logistic regression model. The method is also called the ordered logistic 

regression model, proportional odds model, cumulative link model, ordered logit model, and 

ordered probit model (Christensen, 2018).  Equation 3.1 represents how polr() computes the ordinal 

logistic regression.   

𝑙𝑜𝑔𝑖𝑡[𝑃(𝑦 ≤ 𝑗)] = ∝𝑗− 𝛽1𝜒1 − … − 𝛽𝑛𝜒𝑛 ,              𝑗 = 1, 2, … , 𝑐 − 1 

(Agresti and Finlay, 2009; UCLA, 2019) 

(3.1) 

  

 In which, y is the outcome with c categories and 𝑦 ≤ 𝑗 is the cumulative probability of y 

being less than equal to a specific category j.  

3. Method 

 

The flowchart in Figure 3.1 illustrates the steps of the methods used in this study. We used RStudio 

to do all the analysis in this section.  
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Figure 3.1. Flowchart of the steps in this study to find best OLR model  

 

3.1 Dataset 

The dataset for this study is from a 2010 Sao Paulo landslide and riverbank erosion mapping in 

which the BGM was used. The mapping was done by the Technological Institute of Research (IPT) 

and Sao Paulo Municipality during 2009 and 2010 and covered the entire city of Sao Paulo, 

including the risk level of sectors with any type of landslides and/or riverbank erosion.  

 We selected those sectors with shallow landslides and excluded the sectors with other type 

of landslides or riverbank erosion. The original dataset has 1,789 risk sectors, and it was reduced to 

754 sectors. The new dataset was divided into two: 70 % training (N=530) and 30% test (N=224) 

sets. We used the training set to create the OLR models and the test set to predict the models. 

Figure 3.2A and 3.2B illustrate the spatial distribution of training and test sets in Sao Paulo city.  
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Figure 3.2. 3.2A and 3.2B. Fig. 3.2A. Spatial distribution of location of training sets. Fig. 3.2B. Spatial distribution 

of location of test sets 

 

 

3.2  Classifiers Selection and Models 

 

We select the classifiers by looking into the dataset and selecting the ones related with shallow 

landslides. We divided the classifiers into four categories: not relevant, relevant but inconsistent, 

relevant, and outcome.  

a) Not relevant: spring, riverbank erosion, rockfall, earth slide, block slide, erosion, 

number of houses. 

b) Relevant but not consistent: maximum height, distance from the base, distance from the 

top. 
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c) Relevant: type of building (brick, mix material, wood), landfill, garbage, construction 

deposit, landslide scars, drawback steps, tilted pole, fractures, crack (terrain/houses), 

belly wall, water in the terrain (concentration of rainfall water, leak, septic tank, type of 

drainage (none, precarious, good)), vegetation (trees, grassland, deforestation, banana 

trees), density (1, 2, 3, 4), natural slope, cut slope, slope with landfill, type of soil, 

geology. 

d) Outcome: level of risk (low, moderate, high, very high) 

 

Initially, we had 97 classifier variables and we excluded those not related to shallow 

landslide risk (i.e., riverbank erosion or other landslide types) and the classifiers that were 

inconsistent (i.e., many had unavailable data). 

We tested the selected classifiers (N=32) for their ordinal fashion. In this test, a plot of each 

response variable with the predictor variable illustrates the ordinal fashion of the variable. Figure 

3.3 shows eight classifiers tested for their ordinal fashion (check Appendix 3.1 for all classifiers).  

The continuous line is how the response variable behaved, and the dashed line is how it was 

expected to behave.  Based on this test, we divided the classifiers into three groups: ordinal fashion 

(OF), moderate ordinal fashion (MOF), and non-ordinal fashion (NOF). An example of OF is 

conc_rainfall, for MOF is ground_veg, and for NOF is deforestation (check Figure 3.3 for the 

example and Table 3.1 for the classification of all classifiers).  
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Figure 3.3. Test for Ordinal Fashion (OF). Continuous lines connect circles of the computed values, and dashed lines 

connect the estimated expected values. Variables conc_rainfall, wastewater, leak, and banana are in the OF category. 

Variables tree and ground_veg are in the MOF category. Variables fracture and deforestation are in the NOF category.  

 

 The second test was to check for the proportion of the dataset across the predictor variables. 

Based on the representativeness of the predictor variables for one classifier, we divide them into 

two categories: good proportion (GP) and bad proportion (BP). Choices (i.e., True or False) of 

explanatory predictors with less than 5% of what is expected by each choice (i.e., 2 categories, 

expected N = 265; 3 categories, expected N= 177) in at least half of the choices are classified as BP. 

GP, on the other hand, has at least 5% of what is expected by each choice. Tables with the 

frequency of each classifier choice and percentage are listed in Appendix 3.2.  

Based on the proportion and ordinal fashion of the predictor variables, we selected the 

predictor variables for Equations 3.1 and 3.2. Categories (OF, MOF, NOF, GP, and BP), and 

respective predictor variables are illustrated in Table 3.1. 

 

Table 3.1. Category and respective predictor variables 

Category Predictor Variables 

OF (Ordinal Fashion) 

(N=21) 

angle (slope angle), brick, wood, mixed, EN, TC_mature_soil (slope cut 

with  soil ), TC_saprolite_soil (cut slope with saprolite), spring, landifll, 
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construction (slope with contruction material),  garbage, crack, 

leaning_wall, scars, downward_floor, tilted, conc_rainfall (concentration 

of rainfall water), wastewater, leak, septic_tank, banana                                                                                                                                                                    

MOF (Moderate Ordinal Fashion)  

(N=6) 

density, TC (slope cut), TC_unstable_structure (slope cut unstable 

structure), tree, ground_veg, drainage 

NOF (Non-Ordinal Fashion) 

(N=3) 

TC_weath_rock (cut slope with weathering rock), deforestation, fracture 

GP (Good Proportion) 

(N=27) 

all classifiers minus BP classifiers 

BP (Bad Proportion) 

(N=3) 

TC_weath_rock (True N=13 , False N=529), fracture (True N=1 , False 

N=529),  septic_tank (True N=4 , False N=526 ) 

  

 To test if a simple model would be better than more complex models for our dataset, we 

reduced the number of predictor variables while tracking the p-value.  The p-value can explain if 

the predictor variable is statistically significant as a predictor of the response variable. A 

significance level () of 0.05 is usually used, but for this study, we were more concerned with 

reducing the number of predictor variables while still keeping the important ones. Therefore, being 

conservative, we first used a p-value < 0.10, then, we accounted for a p-value < 0.5. We did these 

steps on our base models (Equation 3.1 and Equation 3.2), creating Equations 3.3 and 3.4 from 

Equation 3.2 and creating Equations 3.5 and 3.6 from Equation 3.1.  

 Regression equations should consider multicollinearity. Multicollinearity occurs when more 

than two predictor variables influence the response variable equally by inflating it. For instance, no 

drainage, density 3, and wastewater are correlated. Risk sectors classified as density 3 don’t have a 

drainage system; consequently, the dwelling wastewater is thrown onto the terrain. Therefore, no 

drainage, density 3, and wastewater predictor variables seem to have a similar influence in the 

response variable. When accounting for multicollinearity, we need to exclude predictor variables 

that can inflate the response variable. Model 7 was created by taking into consideration the 

multicollinearity. Table 3.2 has information for all the equations compared in this study.  
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Table 3.2. Equations, number of predictor variables, and aspects considered to choose predictor variables 

Equation  Number of 

Predictors 

Variable 

Aspects Considered 

to Choose 

Predictors Variable 

Predictors Variable 

Model 1 20 OF, GP angle, brick, wood, mixed, EN, TC_mature_soil, 

TC_saprolite_soil, spring, landfill, construction,  

garbage, crack, leaning_wall, scars, downward_floor, 

tilted, conc_rainfall, wastewater, leak, banana 

Model 2 26 OF, MOF, GP angle, brick, wood, mixed, EN, TC_mature_soil, leak, 

TC_saprolite_soil, construction, spring, landfill, 

garbage, crack, leaning_wall, scars, downward_floor, 

tilted, conc_rainfall, wastewater, banana, density, TC,  

TC_unstable_structure, tree, drainage, ground_veg 

Model 3 16 OF, MOF, GP,  

p-value ≤ 0.10 from 

Equation 2 

brick, wood, EN, TC_mature_soil, construction, 

crack, leaning_wall, scars, downward_floor, drainage, 

conc_rainfall, wastewater, leak, ground_veg, tilted, 

TC_unstable_structure 

Model 4 13 OF, MOF, GP, p-

value ≤0.05 from 

Equation 3 

brick, wood, TC_mature_soil , construction, crack, 

leaning_wall, scars, downward_floor, tilted, 

conc_rainfall , leak, ground_veg, drainage 

Model 5 20 OF, GP, p-value ≤ 

0.10 from Equation 1 

angle, brick, wood, mixed, EN, TC_mature_soil, 

TC_saprolite_soil, spring, landfill, construction,  

garbage, crack, leaning_wall, scars, downward_floor, 

tilted, conc_rainfall, wastewater, leak, banana 

Model 6 13 OF, GP, p-value ≤ 

0.10 from Equation 5 

brick, wood, EN, TC_mature_soil, crack, wastewater, 

leaning_wall, scars, downward_floor, tilted, banana, 

conc_rainfall, leak 

Model 7 19 OF, MOF, GP, 

multicollinearity 

angle, brick, wood, EN, TC_mature_soil,  tree, 

TC_saprolite_soil, TC_unstable_structure, landfill, 

garbage, crack, leaning_wall,  tilted, scars, banana, 

conc_rainfall, leak, wastewater, ground_veg 

              
 

 

3.3 Comparison of Models by Cross Validation 

 

To choose the model that best represents our dataset, we compared the seven models by cross 

validation. We used the test set to predict and compare the models created with the training set. We 

predicted the models ten times and compared the means, standard deviations, and ranges. Based on 

that, we chose the model with the best overall predictive power.  
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3.4 The application (app) 

 

We developed an application (app) that automatically computes the risk level of shallow landslides. 

The application was coded in RStudio software, and the two main packages used were Shiny and 

Rmarkdown. The app mimics the BGM field evaluation paper form on a digital device. It can be 

accessed with a smartphone, computer, or tablet with internet access and RStudio installed. The 

manipulation is simple, and the user simply checks the boxes with the preset classifiers observed in 

the field. The application has two main tabs: i) Diagnostic (Diagnóstico): input dataset (Figure 

3.4A) and ii) Answer (Respostas): display dataset collected in a table to compute and classify risk 

level (Figure 3.4B). In the second tab, the user can export the data file in PDF, HTML, and CSV 

formats. 

  

 

 

 

 

Figure 3.4. 3.4A and 3.4B. Fig. 3.4A. Display Diagnostic Tab in a 

smartphone. Fig. 3.4B. Display Answer tab in a smartphone. 

 

 

A B 
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4. Results and Discussion 

 

We computed the coefficient value of the classifiers using the MASS package in the RStudio 

environment (Table 3.1). In our study, the majority of classifiers are binary (classifierTRUE and 

classifierFALSE). ClassifierTRUE is the one displayed in Table 1; classifierFALSE is the dummy 

variable with value equal to zero. The name of the classifiers starts with the predictor variable 

followed by options (i.e., brick is the predictor variable and TRUE and FALSE are the options, or 

angle is the predictor variable and A, B, C, D, and E are the options). Detailed information on the 

models is included as Appendix 3.3.  
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Table 3.3. Classifiers and their specific weight (coef) and odds ratio (OR) for each model. OR is interpreted as the same 

within risk levels and it is computed by exponentiating the coef. For instance, in Model 1, OR =2.77 for woodTRUE. 

The odds of having higher level of risk is 2.77 times for sectors with wood houses (woodTRUE) when compared with 

sectors without wood houses (woodFALSE) if all other variables in the model are held constant.  

Classifier Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

  coef OR coef OR coef OR coef OR coef OR coef OR coef OR 

brick              -1.7 0.18 -1.48 0.23 -1.6 0.20 -1.6 0.20 -1.7 0.18 -1.8 0.17 -1.7 0.19 

wood                   1.02 2.77 0.79 2.20 0.84 2.32 0.94 2.56 1.02 2.77 1.04 2.83 1.04 2.83 

mixed  0.09 1.09 0.07 1.07     0.09 1.09     

EN  0.7 2.01 0.63 1.88 0.39 1.48   0.7 2.01 0.65 1.92 0.69 1.99 

TC    -0.12 0.89           

TC_mature_soil      0.58 1.79 0.58 1.79 0.54 1.72   0.58 1.79 0.65 1.92 0.78 2.18 

TC_saprolite_soil  0.25 1.28 0.24 1.27     0.25 1.28   0.13 1.14 

spring         -0.2 0.80 -0.08 0.92     0.22 0.80     

landfill               0.1 1.11 0.03 1.03     0.1 1.11   0.4 1.49 

garbage                 0.03 1.03 0.08 1.08     0.03 1.03   0.3 1.35 

construction                       0.46 1.58 0.54 1.72 0.61 1.84 0.69 1.99 0.46 1.58     

leak  -0.4 0.66 -0.62 0.54 -0.6 0.54 -0.6 0.57 -0.4 0.66 -0.4 0.68 -0.4 0.68 

conc_rainfall_water     1.63 5.10 1 2.72 1.01 2.75   1.63 5.10 1.75 5.75 1.66 5.26 

wastewater  0.6 1.82 0.39 1.48 0.39 1.48   0.6 1.82 0.64 1.90 0.57 1.77 

drainage.L2   1.31 3.71 1.31 3.71 1.4 4.06       

drainage.Q3   -0.03 0.97 -0.03 0.97 -0.1 0.95    1.00   

crack               2.18 8.85 2.28 9.78 2.27 9.68 2.26 9.58 2.18 8.85 2.23 9.30 2.14 8.50 

leaning_wall            2.03 7.61 2.26 9.58 2.21 9.12 2.26 9.58 2.03 7.61 2.06 7.85 2.14 8.50 

scars    4.25 70.11 4.25 70.11 4.2 66.7 4.21 67.4 4.25 70.11 4.31 74.4 4.29 73 

downward_floor          1.28 3.60 1.1 3.00 1.1 3.00 1.07 2.92 1.28 3.60 1.26 3.53   

tilted  0.85 2.34 0.73 2.08 0.75 2.12   0.85 2.34 0.87 2.39   

angleD                 0.24 1.27 0.15 1.16     0.24 1.27   0.4 1.49 

angleE 0.32 1.38 0.47 1.60     0.32 1.38   0.54 1.72 

tree    -0.27 0.76         -0.3 0.76 

banana  0.39 1.48 0.22 1.25     0.39 1.48 0.48 1.62 0.27 1.31 

ground_veg        0.92 2.51     1.13 3.10 

TC_unstable_structure     -1.1 0.33 -0.9 0.41       -0.7 0.50 

densityd2   0.07 1.07           

densityd3   0.21 1.23           

R1| R2                    -0.7 0.49 -1.07 0.34 -1.5 0.21 -1.6 0.19 -0.7 0.49 -1.1 0.33 -0.1 0.94 

R2| R3                     3.56 35.2 3.72 41.3 3.23 25.3 3.03 20.7 3.56 35.16 3.08 21.8 4.36 78.3 

R3| R4                   9.02 8267 9.3 10938 8.77 
643

8 
8.59 5378 9.02 8267 8.5 4915 9.78 17677 

 
2 drainage.L refers to precarious drainage system 
3 drainage.Q refers to no drainage system 
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 ScarsTRUE is the classifier, in all the models, with the highest coefficient value, and it does 

not differ much between models (see Table 3.1). It represents the presence of prior landslide scars 

in the sector, which means that in the past a landslide occurred in the sector. Past landslide indicates 

the possibility of reactivation of the same landslide (Highland & Brobrowsky, 2008). Classifiers 

that represent signs of instability have positive coefficient values (see crackTRUE, 

leaning_wallTRUE, downward_floorTRUE, and tiltedTRUE). Signs of instability specify 

movement on the terrain and suggest that a landslide could be initiated (Carvalho, 2007). Therefore, 

the classifier coefficient value should be positive since its presence in the sector contributes to a 

high-risk level.  

 Classifiers brickTRUE, woodTRUE, and mixedTRUE represent the type of dwelling.   

Mixed material dwellings are more precarious than wood since they combine pieces of cardboard 

boxes, plastic, wood, and any other material available, and mixed material and wood dwellings are 

more precarious than brick (see Figure 3.5A and 3.5B). Risk areas are usually located in 

impoverished neighborhoods, and residents commonly build their initial dwellings with any 

materials available on site (mixed material dwellings), later upgrading to wood dwellings and 

eventually to brick as their financial situation improves. One of the reasons mixed material 

dwellings have lower coefficient values than wood dwellings could be related to the fact that 

usually there are less mixed material dwellings in a sector or mixed material could be misclassified 

as wood (since it usually has some pieces of wood). Combining wood and mixed material would be 

one way to solve this problem and should yield a more consistent coefficient value for this 

classifier.   
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Figure 3.5. 3.5A and 3.5B. Fig. 3.5A. Brick dwellings are the ones with most of the dwellings made with bricks. 

They are more resistant than wood and mixed material dwellings. Fig. 3.5B . Mixed material dwellings combine 

different materials and the dwellings are very precarious 

 

Landfill (landfillTRUE), garbage (garbageTRUE), and construction material 

(construction_TRUE) can be found in the risk sectors, and they contribute to increase the level of 

risk. Garbage and construction material on the slope (see Figure 3.6A) can move downslope, and 

dwellings built on top of landfills or disturbed soil are less stable (Carvalho, 2007). The quantity 

and composition of the materials in each sector are different (see Figure 3.6A and 3.6B). They have 

positive coefficient values in the models, contributing to an increase of the risk level. However, p-

values for these coefficient values were higher than 0.05 (Appendix 3.3). Since garbage and 

construction material are usually found in the same site, combining both into one single classifier 

could improve models. Another aspect to consider is that in the field inventory form, the option is 

to choose if there are garbage, landfill, and construction materials on the sector, but whether the 

amount is small, moderate, or high, the choice is the same. A Likert scale for this factor could 

improve the data collection and contribute to better models.   

A B 
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Figure 3.6. 3.6A and 3.6B. Fig. 3.6A.  Slope with garbage and construction material. Notice the difference in amount 

of material in each part of the hill. Fig. 3.6B. Detail of the material on the slope. Notice the presence of garbage but 

also construction material. 

 

 Shallow landslides in these urban risk sectors in Brazil are triggered by rainfall (Tominaga 

et al., 2009). Increase of the soil water content in the slope can contribute to shallow landslide 

initiation. In these risk sectors, self-engineered dwellings have precarious pipelines that can leak, 

and sewage is left to flow onto the slope (see Figures 3.7A and 3.7B). Some sectors have dwellings 

with a septic tank. Overtime, as these informal sectors become more formal, municipalities attempt 

improvements in public utilities, like drainage systems and electricity. However, these 

improvements take time and depend on the municipality’s financial resources and priorities. 

Classifiers that contribute to increasing the water content on the terrain should have a positive 

correlation coefficient since they contribute to increasing the risk level. WastewarTRUE and 

conc_rainfall_waterTRUE have positive coefficient values. LeakTRUE has negative coefficient 

value in all the models, but it would be expected to be positive. A negative coefficient value of the 

classifier could be related to the difficulty of quantifying the leakage in the sector because on the 

field evaluation form you have just the options of presence or absence of leakages in the sector. For 

A B 
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instance, a sector with just one dwelling with a leakage has the same weight as a sector with all 

dwellings with leakages. 

  

Figure 3.7. 7A and 3.7B. Fig. 3.7A. Precarious wastewater pipes and pipes to conduct water. Fig. 3.7B. Self built 

pipelines. Note black tape to help keep pipes connected. 

 

Vegetation classifiers in all the models have coefficient values as would be expected. Banana 

trees (bananaTRUE) and ground vegetation (ground_vegTRUE) have positive classifiers values, 

and tree (treeTRUE) has a negative value. Banana trees are known to increase water content in the 

soil, which can increase the risk level since the soil is more saturated (Carvalho et al., 2007). 

Ground vegetation can increase risk level since the soil has less coverage protection than with the 

original vegetation. However, it would be expected that banana trees in the terrain would contribute 

more for a high-risk level than ground vegetation, but in the models, ground vegetation contributes 

more toward a high-risk level than banana trees. Aspects that are difficult to account for the 

classifiers related to vegetation are the quantity of vegetation, its location (near the dwellings or 

not), and the combination of one or more classifiers.  

We ran the models ten times to compare the predictive power of each of them (Table 3.2). 

Model 4 has the best prediction (Mean = 0.729, SD =0.024, Range = 0.071). Still, the mean 

prediction power of model 3, 6, and 7 is very similar (0.0720, 0.0721, 0.724, respectively). Based 

A B 
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on our results, models with smaller numbers of predictor variables performed better than those with 

larger number of classifiers.  

 

Table 3.4 - Comparison of Models Prediction (Mean, SD, and Range). Predictive power was tested ten times and mean 

of these tests were computed and compared. Model 4 (M4) has the highest overall predictor power of all the models.  

Model Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test9 Test10 Mean SD Range 

M1 0.714 0.763 0.690 0.719 0.688 0.696 0.701 0.696 0.777 0.728 0.717 0.031 0.089 

M2 0.714 0.723 0.696 0.710 0.701 0.688 0.714 0.696 0.768 0.737 0.715 0.027 0.080 

M3 0.710 0.732 0.696 0.741 0.710 0.696 0.701 0.705 0.750 0.755 0.720 0.023 0.058 

M4 0.705 0.759 0.714 0.746 0.741 0.688 0.723 0.705 0.755 0.755 0.729 0.024 0.071 

M5 0.714 0.763 0.692 0.719 0.688 0.696 0.701 0.696 0.777 0.728 0.717 0.028 0.089 

M6 0.710 0.746 0.683 0.723 0.714 0.701 0.710 0.705 0.777 0.741 0.721 0.028 0.094 

M7 0.710 0.741 0.719 0.737 0.696 0.710 0.719 0.696 0.768 0.741 0.724 0.024 0.072  

 

 

5. Conclusion 

Updating risk level more rapidly can prevent disasters in shallow landslides risk areas, allowing a 

local municipality to better monitor the area and to relocate financial resources to sectors with high 

risk levels. Automatically computing shallow landslide risk level using an application (app) allows 

the standardization of the BGM, rapid updates to the mapped areas, and results in a reduction in 

human subjectivity in assessing the landslide risks. 

In this study, when comparing the models, those with a smaller number of classifiers had 

better performance and were simpler. Model 4 had the best mean predictive power when compared 

with six other models. The mean predictive power was 0.73. The total number of predictor variables 

is 14 and it accounts for OF, MOF, GP, and p-value ≤0.05.  To improve the model for shallow 

landslides, we recommend that the BGM field evaluation form adopt a Likert scale for some 

classifiers, like leaks, presence of garbage, and construction material. This would allow the 

differentiation of sectors with small, moderate, and high leak or garbage and not treat the small and 
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high amounts as the same. Combining classifiers that are similar and found in the same sector, like 

wood and mixed material dwellings, or classifiers that are found in same site, like garbage and 

construction material, could improve the model as well.  
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CHAPTER 4: Shallow Landslide Susceptibility in Disturbed and 

Undisturbed Sites, São Bernardo do Campo, Brazil 
 

 

ABSTRACT 

Many people live in shallow landslide risk areas in São Bernardo do Campo, Brazil.  These risk 

areas are a result of the natural geomorphology, the intense rainfall during summer months, and 

human activities that disturb the terrain, such as cut and filling or discharging sewage onto the 

hillslope. Ideally, people should not be living in high and very high-risk areas. However, relocating 

all residents that live in these areas is not feasible in the short term since the measure would require 

the availability of financial resources coupled with political motivation. Therefore, actions that can 

mitigate and manage the risk, such as slope stability studies, can prevent human and material losses. 

In this study, the main goal is to measure and compare the slope stability and the saturated-

hydraulic conductivity of disturbed and undisturbed sites. The study was conducted at two sites: 

one disturbed and one undisturbed. First, soil tests were conducted to identify soil texture and to 

compute wet soil buck density, soil cohesion, and soil angle of internal friction. Using these values, 

a spatial analysis of the slope stability using SHALSTAB and the Factor of Safety was conducted. 

Additionally, in situ-saturated hydraulic conductivity was measured at each location in each site. 

The undisturbed site had a soil cohesion of 2.88 kPa, an angle of internal friction of 18.19o, and a 

wet soil bulk density of 1720 kg/m3, and the disturbed site had a soil cohesion of 2.04 kPa, an angle 

of internal friction of  22.90o, and a wet soil bulk density of  1534 kg/m3. Considering the soil 

characteristics, the disturbed soil is more stable with the slope stable in dry and wet conditions at an 

angle of 17o, which is not the case for the undisturbed site, in which it becomes unstable when 76% 

saturated.  The saturated hydraulic conductivity had greater variability at the disturbed site 



 

50 

(Mean=138.15 mm/h, SD=266.94 mm/h, and Range= 675.16 mm/h) than at the undisturbed site 

(Mean=19.80 mm/h, SD=12.12 mm/h, and Range=28.44 mm/h).  

 

Keywords: landslide, hydraulic conductivity, São Bernardo do Campo, Brazil, SHALSTAB, slope 

stability 

 

1. Introduction 
 

Shallow landslides are common in urban areas in the Metropolitan Region of Sao Paulo, Brazil. 

Over the last 30 years, many shallow landslides have resulted in material or human losses at São 

Bernardo do Campo (SBC) (Folha de São Paulo, 2005; SãoBernardo.Info, 2019; Diário do 

Transporte, 2020).  

The shallow landslides in SBC are a result of the geomorphology, including the slope angle 

and soil characteristics, and the intense rainfall of the region, but also due to the urbanization and 

consequent anthropogenic activities on the terrain. Part of SBC has hillslopes with medium to high 

slope angle in the Morraria do Embu and medium to high slope angle in the Serra do Mar (Regino 

et al, 2014), and intense and continuous rainfall are common during the summer months (December 

to March). In addition, Brazilian urbanization was fast and disorganized (Maricato, 2008), resulting 

in informal settlements built on hillslopes and in flood plain areas (Fischer, 2014). Residents in 

these informal settlements built themselves their own houses and these homes are not always safe. 

These houses are built on terrain that is cut and filled with soil and/or landfill, there is commonly 

wastewater disposal onto the hillslopes, garbage is thrown onto the hillslopes, and the houses are 

built with non-durable materials (wood, cardboard boxes, and any other material available on site). 



 

51 

Therefore, the combination of the geomorphology and the pressures on people to live in these areas 

has resulted in many residents living in at-risk locations.  

Ideally, people should not be living in high and very high-risk areas. However, relocating all 

people that live in these at-risk areas is not feasible in the near future since the measure would 

require the availability of financial resources coupled with political motivation. Therefore, actions 

that can mitigate and manage the risk, such as Disaster Risk Reduction (DRR) measures, can be 

used to prevent natural disasters. For instance, DRR measures include mapping of areas susceptible 

to shallow landslides and sending out early warnings.  In this study, we aim to answer the following 

research questions: i) what is the susceptibility to shallow landslides in a disturbed  hillslope when 

compared to an undisturbed hillslope in SBC?, and ii) how are these undisturbed and disturbed sites 

similar and different in terms of slope stability and saturated hydraulic conductivity?  

 

2. Background 

2.1 Study Area 

The study area is located in São Bernardo do Campo and on the boundary between SBC and Santo 

André (see Figure 4.1). Both cities are part of the São Paulo Metropolitan Area, São Paulo state, in 

Southeastern Brazil. The estimated population for SBC in 2019 was 838,936 (IBGE, 2020), and the 

population density was 1,869 people/km2 (IBGE, 2020).  
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Figure 4.2. The location of the city of São Bernardo do Campo (SBC), São Paulo state, Brazil. SBC is shown in black, 

and São Paulo state in green. (Source: Author) 

 

The city of SBC was chosen for this study due to its past shallow landslide history, 

researcher familiarity with the area, and support of the local municipality to conduct the field work. 

These risk areas are commonly located in favelas (slums) and are similar to other urban shallow 

landslide risk areas observed in Southeastern Brazil. Since 1996, at least 21 people have died due to 

previous landslides in SBC (UOL, 2017). 

Two main sites were selected (see Figure 4. 2) in which to conduct the study, using the 

following characteristics to define these locations: safety, previous landslides, geological formation, 

and variability (disturbed and undisturbed). Landslide risk areas are commonly located in favelas in 

São Bernardo do Campo, and some of these favelas are not safe for fieldwork due to drug cartels. 

Therefore, finding a favela that was safe was an important factor in choosing the disturbed site. The 
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choice of the location was made together with the local Civil Protection staff. To guarantee the 

safety of the fieldwork, the Civil Protection and the Social Work Secretary contacted residents and 

community leaders, asking for their local support. For the undisturbed site, we chose the location 

based on the municipality technicians’ knowledge. For the disturbed site, a hillslope in the Jardim 

Silvina (Figure 4.3) was selected, and for the undisturbed site, a hillslope at Monte Sião (Figure 

4.4).  

 

 

Figure 4.3. The location of São Bernardo do Campo city and the location where fieldwork was conducted. The red dot 

is the disturbed site (anthropogenic site) and the blue one is the undisturbed site (undisturbed site). (Source: Author) 
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Figure 4.4.  Disturbed site. Red dots indicate locations at which soil was collected and hydraulic conductivity test was 

conducted in situ.  (Source: Author) 
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Figure 4.5. Undisturbed Site. Red dots indicate locations where hydraulic conductivity was conducted in the site and 

soil samples were collected to be analyzed in the lab (Source: Author) 

 

At both sites we conducted field work. The red dots in Figs. 4.3 and 4.4 represent locations 

at which soil samples were collected to be analyzed in the lab, tests for saturated hydraulic 

conductivity were conducted in situ, and drone flights were made to collect imagery to produce 

DEM. In the laboratory, we conducted tests of granulometry, soil bulk density, and direct shear 

stress.  

 

2.2 Physical Characteristics  

 

The city of SBC has an area of 408.45 km2, which is divided into urban (118.21 km2), rural (214.42 

km2), and Billings Reservoir (75.82 km2); 53.7% of the total area of the city is located in the Spring 

Protection Area (Proteção aos Mananciais) (Município de São Bernardo do Campo, 2020).   
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The geomorphology is divided into three main zones: Colinas de São Paulo, Morraria do 

Embu, and Serra do Mar (Regino et al, 2014). The Colinas de São Paulo has gentle hill landforms 

and floodplain areas, the Morraria do Embu has primarily gentle hills with medium to high slope 

angle, and Serra do Mar has steep terrain (Regino et al, 2014). The majority of the city is located on 

a crystalline base of pre-Cambrian bedrock with shale, gneiss, and migmatites. In the northern part 

of the city and in some areas near the Billings Reservoir, the geological formations are originally 

from the São Paulo Sedimentary Basin of the Cenozoic Era (Regino et al, 2014).  

 The weather is warm and temperate with an average annual temperature of 17.8oC 

(64.04oF). Rainfall season is concentrated during the summer months (December-March), with 

January being the month with highest average total precipitation (see Figure 4.5) (Município de São 

Bernardo do Campo, n.d.).  

 

Figure 4.6. Average by Month of total precipitation by month from 2010 to 2014, in millimeters, in which 1 is January 

and 12 is December (Source: Município de São Bernardo do Campo, n.d.) 

 

 

2.3 Rainfall Threshold and Saturated Hydraulic Conductivity  
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Shallow landslides in SBC are triggered by heavy rainfall. Therefore, knowledge of the rainfall 

threshold allows the local Civil Protection to monitor the rainfall and to send early warnings to 

residents so they can evacuate their homes. In this way, natural disasters can be prevented, and lives 

saved.  

In this study, the field-saturated hydraulic conductivity was computed in situ using the 

Bottomless Bucket Methodology (Nimmo et al., 2009), and it was then used to calculate the slope 

factor of safety (FS) and level of soil saturation necessary for a shallow landslide to be initiated.  

 

2.4 Slope Stability 

The slope stability can be simplified as the forces acting on a slope (Keller, 2011). The main forces 

are the driving and the resisting forces. The driving forces are those acting to move the materials 

downhill, and the resisting forces are those acting to keep the materials stable and prevent them 

from falling.  

In this study, the landslides are translational slides, and they can be analyzed by the infinite 

slope method (Selby, 1993). The infinite slope method is a two-dimensional analysis of a slice of 

the slope (see Figure 4.6), and it assumes that the slope has an infinite extent, rests on a constant 

angle slope, and that the thickness of the mobile slice is uniform (Selby, 1993).  For a spatial 

analysis of the stability of the slope, we used the infinite slope methods: SHALSTAB and Factor of 

Safety.  
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Figure 4.7. Slope stability on an infinite slope. The angle of slope is represented by β, p is the height between the 

hillslope and the slide plain, h is the height of the water table, W is the weight, σ is the normal stress, and 𝝉 is the shear 

stress.  

(Source: adapted from Selby, 1993).  

 

 

 

3. Methods 

3.1 Saturated Hydraulic Conductivity 

The saturated hydraulic conductivity (Ksat) was computed using the bottomless bucket methodology 

(Nimmo et al., 2009). For the disturbed site, six locations were chosen (see Figure 4.3), and for the 

undisturbed site, four locations were chosen (see Figure 4.4).  

In the field, we measured the time that the water took to infiltrate into the soil. In each site, 

we first cleared the vegetation off from a small area (~ 0.4 m by 0.4 m) and leveled the soil using a 

shovel so we could perform the measurements (see Figure 4.7). Then, we dug a small trench (~ 1 to 

3 cm deep) and placed the bottomless bucket on top of it. On the outer side of the bucket, we used 

clay to seal the edges of the bucket to the ground to prevent lateral water leakage. Inside the bucket 

we placed a ruler in a horizontal position to measure the height of the water.  As we poured the 

water, we placed a small plastic bag to reduce the water impact. Then, we placed the water inside 

the bucket and used a stopwatch to measure the time that the water took to completely infiltrate the 

τ 
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soil from the initial height. We also used a GPS (Global Positioning System) device to get the 

GeoReference of each individual site.  

 

 

Figure 4.8. One of the sites in which the field-saturated hydraulic conductivity was measured. The area was first cleared 

with the shovel and the paintbrush to place the bottomless bucket. Between the outer part of the bucket and the soil, 

clay was spread to avoid lateral water leakage. Water was placed inside the bucket and the time that the water took to 

infiltrate the soil was measured.   

 

Measurements of the top and bottom diameters of the bottomless bucket were taken to 

compute the Ksat. At each site, we measured the height of the bucket in four locations (90o apart 

from each other) and averaged the values. The following two main equations (Eqs. 4.1 and 4.2) 

were used to compute Ksat.  

 

𝐾𝑠𝑎𝑡 =
𝐿𝐺

𝑡
∗ ln

𝐿𝐺 + 𝜆 + 𝐷0

𝐿𝐺 + 𝜆 + 𝐷
  

(4.1) 
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(Source: Ninmo et al., 2009) 

𝐿𝐺 = 𝐶1 ∗ 𝑑 + 𝐶2 ∗ 𝑏 

(Source: Ninmo et al., 2009) 

(4.2) 

 

where LG is the ring-installation scaling, D is the depth of ponding, D0 is the initial depth of 

ponding, λ is the macroscopic capillarity of the length of the soil and is equal to 0.8 cm, Ksat is the 

field-saturated hydraulic conductivity, t is the time from the initial depth to the depth of the 

ponding, C1 is Constant 1 and equal to 0.993, C2 is Constant 2 and is equal to 0.578, b is the ring 

radius, and d is the depth (part of the bottomless bucket that is inside the soil).   

 

3.2. Digital Elevation Model (DEM) 

The spatial analysis of the slope stability requires a Digital Elevation Model (DEM) of the terrain. 

Moreover, a high-resolution DEM increases the quality of the spatial analysis.  However, the 

highest resolution DEM available for SBC was 30m, which is too coarse for the proposed analyses. 

Therefore, the solution employed was to collect imagery with an unmanned aerial vehicle (UAV: 

DJI Phantom 4 quadcopter) and then to produce the DEM by processing the imagery collected 

using PhotoScan and Structure from Motion processing. To conduct the UAV flights, the 

application (app) Drone Deploy was used. The app can plan a flight and take photos at a constant 

interval, which is very difficult to do when the user is controlling the UAV.  

After processing the imagery, we manually removed trees, houses, and cars from the data. 

Figures 4.8A and 4.8B illustrate the original drone flight for the disturbed site and the one with the 

objects removed, respectively. Other raster grids used in the models (slope and flow accumulation) 

are included in Appendix 4.1.  
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Figure 4.9. 4.8A and 4.8B. Fig. 4.8A illustrates the original high-resolution DEM produced from imagery from the 

drone flight with houses and trees not removed. Fig 4.8B illustrates the DEM used in the model corrected by exclusion 

of houses and trees. 

 

Figures 4.9A and 4.9B illustrate the original DEM (0.046m by 0.046m pixel resolution) and 

the one used in the models (0.50m by 0.50m pixel resolution) for the undisturbed site, in which 

trees were excluded. Notice that Fig. 4.9B incorporates just a small portion of the raster grid and the 

hillslope and contains very few trees.  Comparing the original grids produced by the drone flight 

(Fig. 4.8A and Fig. 4.9A), the hillslope used in the analysis in the disturbed site (Fig. 4.8A) had 

more noise than the hillslope used in the undisturbed site, and the cleaning process was more 

complicated and took longer. First, the original DEM was converted into contour lines, and objects 

were removed by changing the value of the contour lines and retaining the natural tendency of the 

hillslope manually.  
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Figure 4.10. 4.9 A and 4.9B. Fig. 4.9A illustrates the original raster grid produced from the drone flights. In the North 

and parts of the East and West, it is possible to observe many trees. Fig. 4.9B illustrates the DEM used in the model. 

This DEM is a small part of the original raster. 

  

The original resolution of the grids from both the Disturbed and Undisturbed Sites were not 

used in the models. We tested the models at three raster sizes (0.046 m, 0.5 m, and 1 m) (see Figure 

4.10), and contrary to what would be expected, the high-resolution raster (4.10A) did not perform 

the best. The ability to capture an area of around 25cm2 made the analysis less smooth, capturing 

unnecessary small objects. We found the 0.5 m raster to have a better performance in this spatial 

analysis.  
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Figure 4.11. 4.10A, 4.10B, and 4.10C. Fig. 4.10A DEM at the original resolution with cell size 0.050m. Fig. 10B raster 

with cell size 0.5m. 10C raster with a coarser resolution of 1.0 m. Looking at the boundary of the three grids it is 

possible to notice that 4.10C has a sharper boundary than 4.10A and 4.10B, and 4.10B has a sharper boundary than 

10A. 

 

3.3 Soil Analysis 

The analysis of the soil collected in the field aimed to identify the type of soil and find the value of 

wet and dry bulk density, soil cohesion, and angle of internal friction of the soil. To compute these 

values and identify the type of soil, we conducted three analyses: granulometry, bulk density, and 

direct shear stress. The direct shear stress test allows us to compute the values of soil cohesion and 

the angle of internal friction of the soil. These soil analyses were conducted at the Laboratório de 

Mecânica dos Solos4 (LMS) at the University of Sao Paulo (USP) as would not be the best option to 

travel from Brazil to the United States carrying a bunch of soil samples.   

 

 

3.3.1 Granulometric Structure of Soil, Soil Texture Classification, and Bulk Density 

 
4 Laboratório de Mecânica dos Solos – LMS: Soil Mechanics Laboratory 
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We used the ABNT 5 NBR 6457 and ABNT NBR 7181 to prepare the soil and conduct the granular 

analysis of the soil, and, consequently, to classify the texture of the soil, based on the triangular 

classification system. The NBR 6457 is a standard test method to prepare for the soil samples, and 

the NBR 71781 is a standard test method to conduct the soil texture classification analysis. We used 

these standard test methods since they were the standard methods used in the Brazil and by LMS.   

 

3.3.1.1 Granulometric Structure of Soil and Soil Texture Classification 

The granulometric structure of the soil test finds the percentage of each grain size in the soil by 

shifting the soil or by combining soil sedimentation and soil shifting (ABNT, 1984).   

The soil samples were dried naturally in individual containers until the samples reached the 

hygroscopic humidity. Then, the soil samples were carefully broken apart, so their soil texture was 

more homogeneous to sift with a sieve #10 (2 mm). The material that was sifted was saved for the 

soil texture classification, and the sifted and unsifted materials were weighed. Two samples of the 

fine grains (sifted soil), each 40g, were placed in small metal containers. The coarse material 

(unsifted) was washed with distilled water in the sieve #10. The coarse material that did not sift was 

placed in a small metal container. These three containers were placed inside a greenhouse with a 

temperature between 105oC and 110oC for 12 hours to completely dry. 

 To sift the coarse grain sample (larger than 2mm), we used sieves on top of each other and a 

machine that shook the material (see Figures 4.11A and 4.11B). We shook each sample of the 

coarse soil for 15 minutes using a machine (Fig. 4.11 A) so the grains would be separated by their 

grain size. Based on the weight of the soil in the fine and coarse sieves, we are able to compute the 

percentage of each grain size. Therefore, we can identify the soil texture.  

 
5 ABNT: Associação Brasileira de Normas Técnicas (Brazilian Association of Technical Standards) 
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Figure 4.12. 4. 11A and 4.11B. Fig. 4.11A illustrates the machine with the sieves to sift the soil grain and 

separate them based on their grain size. Fig. 4.11B illustrates the coarse soil on top of the sieves ready to be 

placed in the machine. 

 

We used one of the samples of the fine grains that was dried in the greenhouse to conduct a 

sedimentation test. We mixed the fine soil sample with sodium hexametaphosphate (125 ml) and let 

it rest for 12h. After that, we put the mixed material in the dispersion machine and, using distilled 

water, we included the remaining soil grains. We mixed the material with the dispersion machine 

(Figure 4.12A) for 15 minutes. Then, we put the mixed material in a 1000 ml graduated cylinder 

and completed the mixed material with distilled water until it reached 1000 ml (Figure 4.12B). 

Covering the opening of the graduated cylinder with a hand, we used a rotational cycle, in which 

we switched the graduated cylinder from upside down to upright for 30s. We measured the 

temperature with a thermometer and the density of the mixed material with a hydrometer in a 

process that took 24h and 12 measurements. After 24h, the mixed material was sifted with a sieve 

A B 



 

66 

#200 (0.075mm) and the grains left in the sieve were put in a metal container to dry in the 

greenhouse.   

 

 

 

Figure 4.13. 4.12A and 4.12B. Fig. 4.12A illustrates the soil dispenser machine that mixed the dry sample soil, 

sodium hexametaphosphate, and distilled water. Fig. 4.12B illustrates mixed material (muddy color) in the 

graduated cylinder to measure the density and temperature over 24h. 

 

3.3.1.2 Density 

We used one of the dried samples of the fine grains to compute the soil grain density. Using the soil 

dispenser machine (Fig. 4.12A), we mixed the soil sample with distilled water for 15 min and put 

the mixed material in a Florence flask and plugged it into a vacuum pump (Fig. 4.13A). After the 

air was removed, more distilled water was carefully added until it reached 1000 ml. The sample was 

weighed (Fig. 4.13B), and the temperature measured. The density of the soil particles was 

computed with Equation 4.3.  

  

  

𝐷𝑝 =
𝑀𝑑𝑟𝑦 𝑠𝑜𝑖𝑙

[(𝑀𝑝   + 𝑤𝑎𝑡𝑒𝑟) + (𝑀𝑑𝑟𝑦 𝑠𝑜𝑖𝑙)] − (𝑀𝑝   + 𝑤𝑎𝑡𝑒𝑟 +  𝑑𝑟𝑦 𝑠𝑜𝑖𝑙)
∗  

1

𝐷𝑤𝑎𝑡𝑒𝑟
  

(4.3) 

A B 
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In which 𝐷𝑝 is the density of the soil particles, 𝑀𝑑𝑟𝑦 𝑠𝑜𝑖𝑙 is the mass of the dry soil, 𝑀𝑝 is the 

mass of the particles, and 𝐷𝑤𝑎𝑡𝑒𝑟 is the water density. 

 

 

 

 

Figure 4.14. 4.13A and 4.13B. Fig. 4.13A illustrates the air being removed from the mixed material with a 

vacuum pump.  Fig. 4.13B illustrates mixed material being weighed to compute the particle soil density 

 

3.3.2 Shear Stress Test 

A shear stress test was performed to compute the values of soil cohesion and angle of internal 

friction. We collected soil without disturbance from both sites using a hole digger and piece of PVC 

pipe (see Figs. 4.14A and 4.14B).  

A B 
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Figure 4.15. 4.14A and 4.14B. Fig. 4.14A illustrates the use of the hole digger to take the soil sample using PVC 

pipe. Fig. 4.14B illustrates soil collected with the PVC pipe. 

  

Each soil sample collected was molded inside the pipe with a square metal box (see Figure 

4.15A). After the soil was molded, the squared metal mold was removed, and the soil sample was 

ready for use (Figure 4.15B). The square metal molds the soil sample (see Figure 4.15B) so it can 

fit perfectly into the mold for the shear stress test (see Figures 4.16A and 4.16B). For each PVC 

pipe or soil sample location, three samples were necessary to do the test, applying three different 

normal stresses. We applied 50 KPa, 100 KPa, and 200 KPa for all four locations. In one of the 

locations, we were able to do one more soil mold, therefore, we applied an additional normal stress 

(150 KPa). With the measurement of the shear stress rupture with at least three normal stresses, we 

can compute the soil cohesion and angle of internal friction.  

A B 
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Figure 4.16. 4.15A, 4.15B, and 4.15C. Fig. 4.15A illustrates soil being molded inside the PVC pipe. 

Fig. 15B soil molded and ready to be used in the shear stress test. Fig. 4.15C shows the sample after 

its rupture. 

 

 

 

 

 

Figure 4.17.  Fig. 4.16A and 4.16B. Fig. 4.16A shows location in which the molded soil sample was placed to do the 

shear stress test. Fig. 4.16B illustrates the shear stress test machine used in this study.  

 

 

 

 

 

A B 

A B 
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3.4 SHALSTAB 

We used SHALSTAB (Shallow Landsliding Stability) model to compute landslide susceptibility, 

based on the slope stability and hydrological factors (Dietrich & Montgomery, 1998). For the slope 

stability part, SHALSTAB uses the infinite slope of the Mohr-Coulomb failure law, and for the 

hydrological part, the steady-state shallow subsurface flow proposed by O’Loughlin in 1986 

(Dietrich & Montgomery, 1998). The methodology was developed in 1998 by Dietrich and 

Montgomery and has been used in several studies with some variation to map shallow landslides 

(Michel, 2014; Listo & Vieira, 2012; Safaei et al., 2013; Dietrich et al., 2001; Reginatto et al, 2012; 

Dietrich et al, 1998; Montgomery & Dietrich, 1994; Witt, 2005; Vieira & Ramos, 2015; Zaidan & 

Fernandes, 2009; Reginatto, 2013; Hare, 2003). 

SHALSTAB requires some parameters to run the model, such as wet soil bulk density, soil 

cohesion, slope angle, flow accumulation, and angle of internal friction. The wet soil bulk density, 

soil cohesion, and angle of internal friction were obtained from the soil sample collected in the 

field. Slope angle and flow accumulation were computed using the high-resolution DEM produced 

with imagery from the UAV flights. The direction of flow accumulation was computed in ArcMap 

using the high-resolution DEM. 

To compute the final map, we coded the equations in R. We used Equations 4.4, 4.5, 4.6, 

and 4.7. The possible values of Equation 4.5 and the condition of the slope are presented in Table 

4.1. The two extreme values in Table 4.1 are represented by Equations 4.6 and 4.7.  Equation 4.6 

represents h/z = 0 (absence of water column), and if the condition in Equation 4.6 is true, the slope 

is unconditionally unstable (Michel et al., 2014).  Equation 4.7 represents the condition in which h/z 

is equal to one (totally saturated), and if the condition of Equation 4.7 is true, the slope is 

unconditionally stable (Michel et al., 2014).  
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𝑄

𝑇
=

𝑏

𝑎
∗ sin 𝜃 {

𝜌𝑠

𝜌𝑤
∗ (1 − 

tan 𝜃

tan 𝜙
) +

𝐶

cos2 θ ∗ tan 𝜙 ∗  𝜌𝑤 ∗ 𝑔 ∗ 𝑧
} 

 

(4.4) 

log(
𝑄

𝑇
) 

(4.5) 

tan 𝜃 ≥ tan 𝜙 +  
𝐶

cos2 θ ∗ 𝜌𝑠 ∗ 𝑔 ∗ 𝑧
 

(4.6) 

tan 𝜃 ≤  tan 𝜙 ∗ (1 − 
𝜌𝑤

𝜌𝑠
) + 

𝐶

cos2 θ ∗  𝜌𝑠 ∗ 𝑔 ∗ 𝑧
 

(4.7) 

 

These equations use: drainage area (a) [m2], outflow boundary (b) [m], hillslope angle (𝜃), 

wet soil bulk density (𝜌𝑠) [kgm-3], water density (𝜌𝑤) [kgm-3], angle of internal friction (𝜙), soil 

transmissivity (T) [m2/day], and the effective precipitation (Q) [m/day], cohesion (𝐶) [kPa] , and 

gravitational acceleration (g) [m/s2] (Dietrich & Montgomery, 1998).  

Table 4.7. SHALSTAB classes (Source: adapted from Reginatto et al., 2012; Michel et al., 2014) 

Condition Stability 

tan 𝜃 ≥ tan 𝜙 + 
𝐶

cos2 θ ∗  𝜌𝑠 ∗ 𝑔 ∗ 𝑧
 

Unconditionally unstable  

log(
𝑄

𝑇
) <  −3.1 

Unconditionally unstable and 

saturated 

−3.1 < log(
𝑄

𝑇
) <  −2.8 

Unstable and saturated 

−2.8 < log(
𝑄

𝑇
) <  −2.5 

Unstable and unsaturated 

−2.5 <  log (
𝑄

𝑇
) < −2.2 

Stable and unsaturated 

log(
𝑄

𝑇
) <  −2.2 

Unconditionally stable and 

unsaturated 

tan 𝜃 ≤  tan 𝜙 ∗ (1 −  
𝜌𝑤

𝜌𝑠
) + 

𝐶

cos2 θ ∗  𝜌𝑠 ∗ 𝑔 ∗ 𝑧
 

Unconditionally stable  
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3.5 Factor of Safety 

Slope stability can be measured by the factor of safety (FS), which can be computed as the ratio of 

resisting forces to driving forces illustrated by Equation 4.8 (Selby, 1993; Keller, 2011). The slope 

is stable when the FS is greater than one (the resisting forces exceed the driving forces). The greater 

the FS, the greater the stability of the slope. Changes in the local conditions can change the forces, 

and consequently change the FS (Keller, 2011). For instance, an intense rainfall might change the 

stability of a stable slope since it can saturate the soil, increasing the pore water pressure, increasing 

the slope weight, decreasing the resisting force, and decreasing the FS. However, the destabilizing 

effect of rainfall can be reduced by placing drains into the slope to remove surface and subsurface 

water and increasing the FS. 

𝐹𝑆 =
𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒𝑠

𝑠𝑢𝑚 𝑜𝑓 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒𝑠
 

(4.8) 

The factor of safety was computed using Equation 4.8 (Selby, 1993). Equation 4.11 was 

derived from Equations 4.9 and 4.10, in which Eq. 4.9 is based on the Mohr-Coulomb law, in 

which, at the moment of failure, the shear stress is equal to the resistance strength caused by 

cohesion and by the frictional resistance due to the effective normal stress on the failure plane. 

 

𝜏 = 𝐶 + (𝜎 − 𝑢) tan 𝜙 (4.9) 

𝜌𝑠 ∗ 𝑔 ∗ 𝑧 ∗ sin 𝜃 ∗ cos 𝜃 = 𝐶 + (𝜌𝑠 ∗ 𝑔 ∗ 𝑧 ∗ cos2 𝜃 − 𝜌𝑤 ∗ 𝑔 ∗ ℎ ∗ cos2 𝜃) ∗ tan 𝜙 (4.10) 

𝐹𝑆 =
𝐶 + (𝜌𝑠 ∗ 𝑔 ∗ 𝑧 ∗ cos2 𝜃 − 𝜌𝑤 ∗ 𝑔 ∗ ℎ ∗ cos2 𝜃) ∗ tan 𝜙

𝜌𝑠 ∗ 𝑔 ∗ 𝑧 ∗ sin 𝜃 ∗ cos 𝜃
 

(4.11) 

Here τ is the shear stress (N/m2), C is the cohesion (N/m2), 𝜎 is the normal stress (N/m2), u 

is the pore pressure opposed to the normal load (N/m2), 𝜙 is the angle of internal friction of the soil 
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(degree), 𝜌𝑠 is the soil bulk density (kg/m3), g is the gravity force (m/s2), θ is the slope angle, h is 

the height between the slip plane and the top of the soil, and z is the height of the water column.  

Using Equation 11, FS=1 is at balance state; when FS<1, slope failure occurs, and when 

FS>1, the slope is stable (Michel et al., 2014).  

 

3. Results 

3.1 Saturated Hydraulic Conductivity 

The saturated hydraulic conductivity was computed to understand the behavior of rainfall in the 

study sites. All the values measured in the field to compute in situ saturated hydraulic conductivity 

(Ksat) can be found in Appendix 4.2.  

Both undisturbed and disturbed sites have similar geological formations from Complexo 

Embu (CPRM, 2019). Therefore, some similarities in the Ksat would be expected in natural 

conditions. Table 4.2 illustrates values of Ksat computed in each of the locations for the undisturbed 

site (see Figure 4.4). The mean Ksat is 19.80 mm/h (SD=12.12 mm/h). The location N5 has a higher 

Ksat value than at all other locations, and can be considered an outlier since all the other locations 

are in the range between 10 to 20 mm/h. Therefore, Ksat in the undisturbed site is overall spatially 

homogeneous.  

 

 

 

 

 

 



 

74 

Table 4.8. Ksat computed for each of the specific locations of the undisturbed site 

Location  Ksat (mm/h) 

N1 12.47 

N2 18.14 

N3 16.15 

N4 11.30 

N5 40.91 

Site Mean 19.80 

Site SD 12.12 

Sites Mean without outlier N5 14.52 

Sites SD without outlier N5 3.18 

 

Table 4.3 illustrates Ksat at each location from the disturbed site (see Fig. 4.3). The mean Ksat 

is 138.15 mm/h (SD=266.94 mm/h). In this site, A5 has an extremely high Ksat (679.95 mm/h), and 

it is an outlier. Still, the mean Ksat without outlier A5 is six times smaller than the lowest value at 

location A1 and 2.5 times higher than the highest Ksat value at location A3. Therefore, Ksat is very 

heterogeneous, having very low to very high values in this site.   

Table 4.9. Ksat computed for each location for the Disturbed Site 

Location  Ksat (mm/h) 

A1 4.79 

A2 8.47 

A3 76.40 

A4 49.19 

A5 679.95 

A6 10.11 

Site Mean 138.15 

Site SD 266.94 

Site Mean without outlier A5 29.79 

Site SD without outlier A5 31.68 
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3.2 Soil Analysis 

3.2.1 Granulometric Structure of Soil and Soil Texture Classification  

Soil texture classification correlates with values found for Ksat, cohesion and angle of internal 

friction. Therefore, particle size analysis was performed on the soil samples collected in the field to 

identify the texture class of the soils (see Tables 4.4 and 4.5).  Appendix 4.3 contains the details of 

the percentage of each particle size in each location of the study sites. In the undisturbed site, all 

locations are clay loam, but N3 is a sandy clay loam. Moreover, N3 is also clay loam. In the 

disturbed site, there is more variability in the soil texture since five locations are some type of loam 

(silt loam, loam, or clay loam), and one location is sandy clay.  

A1 and A4 are loam, A2 and A5 are silt loam, A3 is sandy clay, and A6 is clay loam. 

Therefore, soil texture classes for the undisturbed site are more homogeneous than in the disturbed 

site.     

Table 4.10. Soil texture for each location at the undisturbed site 

Location 

Clay (%) Silt (%) Fine sand 

(%)  

Medium sand 

(%) 

Coarse 

sand (%) 

Soil Texture  

N1 18.26 20.35 16.75 1.40 22.57 sandy clay loam 

N2 23.25 18.87 17.68 1.51 21.18 sandy clay loam 

N3 33.45 25.03 21.46 1.59 13.33 clay loam 

N4 33.65 14.52 24.45 5.05 15.63 sandy clay loam 

N5 24.32 13.10 13.35 1.72 24.90 sandy clay loam 

 

Table 4.11. Soil texture for each location at the disturbed site 

Location 

Clay (%) Silt 

(%) 

Fine sand 

(%)  

Medium sand 

(%) 

Coarse sand 

(%) 

Soil Texture  

A1 18.03 49.70 27.49 1.65 2.64 loam 

A2 14.36 55.59 24.36 1.68 3.74 silt loam 

A3 35.53 11.59 15.91 0.60 36.12 sandy clay 

A4 13.60 36.12 23.29 0.08 10.67 loam 

A5 7.15 47.47 19.71 1.05 7.50 silt loam 

A6 37.60 31.70 21.72 0.75 5.13 clay loam 

3.2.2 Shear Stress Test  
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The Shear Stress Test was conducted to compute values of soil cohesion (C) and angle of internal 

friction (𝜙). These two variables are essential for the spatial distribution of the slope stability using 

SHALSTAB and Factor of Safety. The procedure requires at least three undisturbed soil samples 

from each location. In each of these samples, a different normal stress force is applied (usually 50, 

100, and 200 kPa) to find the shear peak for each of the normal stresses. These values are used to 

plot a best fit line to find the linear equation that computes C and  𝜙. We collected two random 

samples in the locations in which we conducted the in situ-hydraulic saturated conductivity. These 

locations were the ones in which the soil collected in the field was enough to get three undisturbed 

samples. Additionally, samples collected in the undisturbed sites were classified as NA and NB 

since we cannot match these locations with the locations of the saturated-hydraulic conductivity. 

After collecting the sample, GPS information of these two locations was lost due to mechanical 

failure of the GPS device.   

Figure 4.17 plots shear stress peaks versus normal stress. In the plot, the best fit line was 

adjusted to intersect x and y at the origin (0, 0), so the equation resulting from the line would have 

cohesion be zero and not negative, since negative soil cohesion is not possible. The Equation for A3 

is y = 1.41x (R2=0.81). Therefore, C is equal to zero and 𝜙 is equal to 54.68o. 
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Figure 4.18. Shear Stress Peak versus Normal Stress for location 3 at the disturbed site. In this plot, the line to build 

linear equation was adjusted to cross x, y at the origin (0,0), so soil cohesion would not be negative, which is not 

possible. 

 

The values to compute C and 𝜙 for location A6 in the disturbed site were computed with the 

linear equation from the best fit line of the shear peaks (see Figure 4.18). Since C was positive, the 

best fit line did not have to be adjusted to cross the intersection. Using the equation y = 0.33x+ 2.88 

(R2=0.95), we found the value of C= 2.88 kPa and 𝜙 = 18.19o. 

 

 

17.66

67.23

332.5

y = 1.4115x
R² = 0.9065

0

50

100

150

200

250

300

350

0 50 100 150 200 250

Sh
e

ar
 S

tr
es

s 
(k

P
a)

Normal Stress (kPa)

Site Disturbed - Location A3



 

78 

 
 

Figure 4.19. Shear Stress Peak versus Normal Stress for location A6 at the disturbed site. 

 

 The angles of internal friction at locations A3 and A6 are very different from each other, 

which could be related to the variability of composition of the soil in this site.  The variability of 

composition is a result of a previous landslide and landfill dumping in at least two different periods 

as described by local resident who lives near the hillslope. Moreover, a very high ϕ, such as 54.68o, 

is not an expected value for ϕ.  

 Figures 4.19 and 4.20 illustrate plots to compute C and ϕ at the undisturbed site. The best fit 

line of the plot from Figure 4.19 had to be adjusted slightly to intercept the origin; however, R2 was 

still very high (R2 =0.97). The linear equation computed with the shear stress peaks for each normal 

stress force is y = 0.6253x. In this location (NA), the computed C is equal to zero and ϕ is equal to 

32.02 o. For location NB, the line of best fit for the plot in Figure 4.20 resulted in the equation y = 

0.23x + 4.07 (R2=0.99). Therefore, C is equal to 4.07 kPa, and ϕ is equal to 13.02 o. 
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Figure 4.20. Shear Stress Peak versus Normal Stress for location NA at the undisturbed site. In this plot, the line to 

build equation was slightly adjusted to cross x,y at the origin (0,0), so soil cohesion would not be negative. 

 

 
Figure 4.21. Shear Stress Peak versus Normal Stress for location NB at the undisturbed site.  
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3.3 SHALSTAB  

The susceptibility to landslide in the disturbed and undisturbed sites was analyzed using 

SHALSTAB. Areas more susceptible to landslides have slopes that are less stable, and slopes that 

are more stable are less likely to trigger landslides. The SHALSTAB function was run in R, with 

the dataset collected in the field and computed in the lab. We used the drone flight DEM, the wet 

bulk density, C, and the ϕ computed in the lab (see values in Table 4.6). 

Table 4.12. Values of variables computed by lab analysis necessary to run SHALSTAB  

Location A3 A6 NA NB Average 

Undisturbed 

Soil Cohesion (kNm2) 0 2.88 0 4.07 2.04 

Angle of Internal Friction (degree) 54.68 18.19 32.60 13.20 22.90 

Wet Soil Bulk Density (kg/m3) 1720 1720 1534 1534 1534 

 

The slope stability distribution in the undisturbed site using different soil cohesion and angle of 

internal friction did not present great variability. We used the C and ϕ from location NA, NB, and 

Average Undisturbed (see Table 4.6) to plot three different maps with the spatial distribution of the 

slope stability (see Fig. 4.21A, 4.21B, and 4.21C). Figure 4.21A is the more stable map of the three 

(less dark green areas). However, the spatial distribution of the slope stability does not change that 

much between the three spatial analyses. Figure 4.21B is slightly less stable than Figure 4.21A, and 

Figure 4.21C is slightly less stable than Figures 4.21A and 4.21B.   
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Figure 4.21.  4.21A, 4.21B, and 4.21C. Spatial analysis of slope stability using SHALSTAB from the undisturbed 

site. Fig. 4.21A computed with C=0, and 𝝓=32.60. Fig. 4.21B computed with C=4, and 𝝓=13.2. Fig. 4.21C 

computed with average values of the undisturbed site (C=2.04, and 𝝓=22.9). The dark green in the plots are fewer 

stable areas, and the pink and white areas are the more stable ones.  

  

Variation in the value of cohesion and angle of internal friction can cause great variability in 

the spatial distribution of the slope stability using SHALSTAB. We notice this variability in Fig. 

4.22A and 4.22B. The slope stability distribution of Fig. 4.22A illustrates a more stable hillslope 

(mainly white, pink, and light green ramifications). The map from Fig. 4.22A was produced using 

cohesion and angle of internal friction from location A3 (see Table 4.6). However, when using 
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values of location A6, we observed a less stable hillslope (Fig. 4.22B) with more dark green areas 

(unconditionally unstable and unsaturated) and fewer white and pink areas when compared with 

Fig. 4.22A.  

  

 

Figure 4.22. 4.22A and 4.22B. Spatial Analysis from disturbed site. Fig. 4.22A computed with C=0, and 

𝝓=54.68. Fig. 4.22B computed with C=3.5, and 𝝓=17.37. The light green in both plots shows areas that are 

Unconditionally Unstable and Saturated, and the pink and white areas illustrate more stable areas. There is a clear 

difference between areas that are Uncond. Unstable and Sat. and Uncond. Stable and Unsat. in both plots. Based 

on the spatial analysis, Fig. 4.22B is less stable than Fig. 4.22A. 

  
Observing both spatial analyses from the disturbed and undisturbed sites, we can conclude 

that both C and ϕ play an important role in determining the stability of the slope. In addition, the 
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changes in the terrain, such as cut and fillings, seems to result in a less continuous hillslope, as can 

be observed by the small ramifications in the undisturbed site and not present in the disturbed site. 

Moreover, variability in these parameters can produce distinct slope stability distribution (as 

observed in the undisturbed site).  

 

3.4 Factor of safety 

 

The Factor of Safety (FS) uses a combination of parameters (see Eq. 4.11) to indicate if a slope is 

stable (FS >1), unstable (FS<1), or at balance state (FS=1). In this section, using parameters from 

undisturbed and disturbed sites, we illustrate, by plotting the FS, the height of water column 

necessary to make the slope angle unstable in each of the sites. 

Hillslopes have an average slope angle, but they present spatial variability in the slope angle 

(see Fig. 4.23A and B). Therefore, the slope stability also will present slope variability in the same 

hillslope. Additionally, slope angles in the undisturbed site are more homogeneous and clustered 

than in the disturbed site. In the undisturbed and the disturbed sites, the angle categories between 

17.01o and 30 o, and  between 30.01o and 60 o are predominant in the hillslope (see Table 4.7).  

 
 

Figure 4.23. 4.23A and 4.23B. Slope angle categories. Fig. 4.23A illustrates the slope angle categories in the 

undisturbed site, and Fig. 23B illustrates the slope angle categories the disturbed site. Both Fig. 4.23A and 4.23B, 

the angle categories 17.01o-30 o(orange) and 30.01o-60 o (yellow) categories are the most common in the hillslope.  
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Table 4.13. Percentage of each slope angle category in the undisturbed and disturbed sites. In both disturbed and 

disturbed sites more than 40% of the hillslope has angle higher than 30 degrees.  

Slope angle (degree) Undisturbed site (%) Disturbed site (%) 

0-10 1.69 3.28 

10.01-17 7.76 9.07 

17.01-30 48.21 42.02 

30.01-60 42.32 45.49 

60.01-90 0 0 

 

The slope angle plays an important role in the SF in both sites. In the undisturbed site, slope 

angles higher than 30.01o are unstable. However, slopes start to become unstable at lower angles, 

like the example of 17o.  Figures 4.24 A, B, and C illustrate different slope angles (10o, 17 o, and 30 

o) and how FS changes with the water column. Important to notice is that the maximum water 

column for the undisturbed site is 1 m, but in the plots, there are values higher than 1 m and 

negative values for the water column. These values are input in the plots to illustrate continuity, but 

they do not represent what would be observed in the site. In the slope angle equal to 17 o, the 

threshold at which the slope becomes unstable is 0.76 m (or 76%). At that height, FS is equal to 1, 

and when the water column is higher than 0.76, the slope is unstable. For 10o, slope is stable for all 

heights of the water column, and for 30o, slope is unstable even when the soil is nearly dry.  
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Figure 4.24.  4.24A, 4.24B, 4.24C. Factor of Safety illustrated by different slope angle and water column height at 

the undisturbed site. Figure 4.24A illustrates the factor of safety for slope angle of 10o. For that angle, slope is 

stable for all heights of the water column. Figure 4.24B illustrates the factor of safety for slope angle of 17o. For 

that angle, slope is stable until 0.76m and after that it becomes unstable.  Figure 4.24C illustrates the factor of 

safety for slope angle of 30o. For that angle, slope is unstable for all height of the water column. 

 

In the disturbed site, a slope angle equal to 30.01o is unstable when the water column is 

higher than 0.06 m. Figures 4.25 A, B, and C illustrate different slope angles (10o, 17 o, and 20 o) 

and how FS changes with the water column. For slope angles equal to 10o and 17 o, the slope is 

stable for all heights of the water column. Therefore, when keeping the slope angle constant, the 

undisturbed site is less stable than the disturbed site. Thus, C and ϕ are the variables responsible for 

the undisturbed site being less stable than the disturbed site.   
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Figure 4.25. 4.25A, 4.25B, 4.25C. Factor of safety illustrated by different slope angle and height of water column 

at the disturbed site. Figure 4.25A illustrates the factor of safety for slope angle of 10o. For that angle, slope is 

stable for all heights of the water column. Figure 4.25B illustrates the factor of safety for slope angle of 17o. For 

that angle, slope is stable for all heights of the water column. Figure 4.25C illustrates the factor of safety for slope 

angle of 30o. For that angle, slope is unstable for water column higher than 0.06m. 

 

3.5 Sensitivity 

Soil sensitivity can illustrate the loss of strength and structure of a soil that has being disturbed. 

Therefore, soil with less internal strength would be more susceptible to landslides. Therefore, 

testing for soil sensitivity can illustrate the change in strength between the undisturbed and 

disturbed sites.  

Soil sensitivity is the ratio between the shear stress peak of the undisturbed soil by the 

disturbed (Terzaghi et al., 1996; Abuhajar et al., 2010), and it can be illustrated by the following 

equation (Eq. 4.12). Soil sensitivity is normal for values between 1-4, sensitive for values between 

4-8, extra-sensitive for values between 9-15, and quick for values higher than 15.  

𝑆𝑜𝑖𝑙 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝜏𝑝𝑒𝑎𝑘 𝑢𝑛𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑

𝜏𝑝𝑒𝑎𝑘 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑒𝑑

 
(4.12) 

 

Table 4.14.  Soil Sensitivity Computed with Shear Peak of Disturbed and Undisturbed Sites 

Normal 

Stress 

Shear Peak 

Undisturbed 

 Shear Peak 

Disturbed 

Soil 

Sensitivity 

C 

- 

 



 

87 

kPa kPa  kPa  

50 18.01  15.07 1.20 

100 46.105  42.12 1.09 

200 148.815  66.5 2.24 

 

Using shear peak of the undisturbed and disturbed sites, we computed the soil sensitivity for 

each normal stress, using the shear peak obtained in the Shear Stress Test. We observed that, 

contrary from what would be expected, soil sensitivity is normal for all normal stresses since all 

values computed are between 1 and 4 (see Table 4.8).  

 

5. Discussion 

Previous studies in landslide susceptibility focused on slopes with natural hillslopes (Van Westen et 

al., 2003; Marjanović et al., 2011; Thiery et al., 2007; Ermini & Casagli, 2005) or larger areas with 

a combination of urban and natural areas (Feizizadeh & Blaschke, 2013; Süzen & Doyuran, 2004; 

Jäger & Wieczorek, 1994), and some studies discuss human actions (Xu et al., 2019; Jaboyedoff et 

al., 2016). Less common are landslide susceptibility studies on informal settlements (favelas, also 

known as slums) or studies comparing disturbed with undisturbed sites. By comparing the 

saturated-hydraulic conductivity of both sites, it is clear that the soil behavior of these disturbed 

sites is not predictable or homogeneous, which makes it harder to predict their safety and future 

behavior. In addition, these disturbed sites are frequently changing as new loads of construction 

materials and soil are dumped in the terrain. Therefore, this study contributes to the broad field of 

landslide susceptibility, addressing an urban environment that is common in many of the larger 

cities in developing countries, the favelas (slums). Moreover, it gives clues to the impact of these 
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informal settlements on the slope stability and provides evidence of the importance of 

municipalities to manage these areas and relocate residents to safer areas whenever possible.   

 

5.1 Saturated Hydraulic Conductivity 

Even though both disturbed and undisturbed sites have similar geological formations with schist 

and locally migmatite schist from Complexo Embu (CPRM, 2019) and similar soil texture (see 

Tables 4.4 and 4.5), the values of Ksat computed for the disturbed site have more variability than 

those at the undisturbed site (see Tables 4.2 and 4.3). This extreme variability can be explained by 

the anthropogenic interference and variability of material input in the terrain. Over time, different 

materials were input into the site artificially by humans, such as pieces of construction material and 

the remains of garbage, and the soil was cut and filled for building construction. In the hillslope of 

the disturbed site, houses were built previously and later removed due to a shallow landslide. 

Therefore, the soil has a mix of soil with other materials and can be classified as a Technosol (FAO, 

2006). This variability in the Ksat demonstrates how the hydraulic conductivity behavior of soil in 

these disturbed sites is challenging to predict, which makes the slope stability harder to measure 

since each part of the slope has its own behavior, based on material inputted over time.  

In the disturbed site, there is no correlation between Ksat and soil texture. For instance, 

locations A2 and A5 are both silt-loam soils, and their Ksat values are not similar at all (8.47 mm/h 

and 679.95 mm/h, respectively); or, A1 and A4 are both sand-loam soils but also have high Ksat 

variability (4.79 mm/h and 49.19 mm/h).  Moreover, a sand-loam soil texture would be expected to 

have higher Ksat than a silt-loam soil texture since it has a higher proportion of sand, but this 

behavior is not observed in site A5. However, A5 might be an outlier since Ksat is extremely high 

when compared with all other values of Ksat for the same site. The variability of Ksat in the disturbed 
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site can be explained by the variability of the material input by human activities over time in each 

location. Materials input are different, and they were input at different times; therefore, the 

Technosols are not the same in the locations of the disturbed site.   

The mean Ksat  of the disturbed and undisturbed sites are not similar, which would be 

expected, based on the presence of the Technosols in the disturbed site. In the disturbed site, mean 

Ksat was almost seven times higher than the undisturbed site (138.15 mm/h and 19.80 mm/h, 

respectively). Thus, the rainfall percolates the soil faster in the disturbed site since the soil is more 

permeable. However, even though the mean Ksat in the disturbed site is 138.15 mm/h, there is great 

variability between locations (SD=266.94 mm/h and Range=675.16 mm/h).   

 

5.2 Soil Analysis  

The variability in the disturbed site also was observed in the values computed in the lab for ϕ 

(54.68o and 18.19o), which again illustrates how variable are the soils in the same slope. In addition 

to the variability, when we computed the slope stability using SHALSTAB and Factor of Safety, we 

concluded that the disturbed site is a more stable slope than the undisturbed site. In this matter, for 

future research it would be relevant to compute stability with a model that accounts for saturated-

hydraulic conductivity to compare the results.  

 

5.3 SHALSTAB 

The accessibility of high-resolution data has become easier, but studies should consider the scale of 

their study area to define which raster resolution is most appropriate for the analysis. The analysis 

of slope stability using SHALSTAB was done at a large scale and choosing the correct resolution to 

conduct the analysis was essential for presenting the results in the final map. When running the 
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analyses, contrary to expectations, the very fine raster (4 cm) did not present a good visual map and 

showed discontinuities, which made it harder to interpret the map (see Fig. 4.26A). Also, using a 

coarser raster (1 m) would not be the best representation of the area. In this map, the pixels are 

visible, which resulted in a less smooth map (Fig. 4.26C), and a very coarse raster (30 m) resulted 

in a map with no data (Fig. 4.26D) since flow accumulation was equal to zero (see Appendix 4.5 for 

the DEM and Flow Accumulation raster used in the four analyses).  Based on the visual information 

of these maps, we concluded that a raster with a pixel resolution between 0.5m - 0.6m would 

produce a better visual map (Fig. 4.26 B).  
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Figure 4.26. 4.26A, 4.26B, 4.26C, and 4.26D. Slope stability computed with different pixel resolution.  Fig. 4.26A was 

computed with the original data collected from the drone with 4cm pixel resolution. Fig. 4.26B was computed with a 

0.5m pixel resolution. Fig. 4.26C was computed with 1m pixel resolution. Fig. 4.26D was computed with 30m pixel 

resolution. Notice how Fig. 4.26A seems to follow the elevation contour line and Fig. 4.26C is coarse when compared 

with Fig. 4.26A and Fig. 4.26B. Fig. 4.26D pixels were so coarse that could not produce a map that would represent the 

study area. Therefore, Fig. 4.26B illustrates the study area better.   

 

In accordance with the saturated-hydraulic conductivity results, the values of soil cohesion 

and angle internal friction computed in the lab for the disturbed and undisturbed illustrate the 

variability of the soil behavior in the disturbed site when compared with the undisturbed site. In 

each site, two soil samples were collected in two locations. For each location, soil cohesion and 

angle of internal friction were computed. The two maps produced using the values of each location 

in the disturbed site produced very distinct slope stability maps (see Figs. 4.21A and B), but this 

was not observed in the slope stability maps of the undisturbed site (see Figs. 4.20A and 4.20B).  

 

5.5 Factor of Safety 

Contrary to what would be expected, in the same slope angle, the disturbed site is more stable (see 

Figs. 4.22B and 4.23B and Figs. 4.22C and 4.23C).  The Factor of Safety was computed with Eq. 

4.11, and the equation does not include saturated-hydraulic conductivity. Therefore, for future 
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studies in disturbed sites, it would be interesting to use an equation that uses the saturated-

hydrologic conductivity to understand its impact on the stability of the slope.    

 

5.6 Sensitivity 

Values computed for soil sensitivity are normal, which indicates that the loss of strength and 

structure of the soil in the disturbed site is not a significant factor in their landslide risk.   

 

6. Conclusion 
 

The undisturbed site is overall less stable than the disturbed site when using SHALSTAB and 

Factory of Safety. However, the soil in the disturbed site is less homogeneous than the undisturbed 

site, and it can be classified as Technosol. The variability in the soil of the disturbed site was 

observed by the variability in the saturated-hydraulic conductivity and in the values computed for 

the angle of internal friction. Moreover, saturated-hydraulic conductivity in the disturbed site shows 

great variability between locations (Mean= 138.15 mm/h, SD=266.94 mm/h, and Range=675.16 

mm/h). In contrast, the undisturbed site has more homogeneous saturated-hydraulic conductivity 

(Mean= 19.80 mm/h, SD=12.12 mm/h, and Range=29.61 mm/h). Even though the disturbed and 

undisturbed sites have similar geological formations, we observed the saturated-hydraulic 

conductivity in the disturbed site to be almost seven times higher than in the undisturbed site. 

Therefore, saturated-hydraulic conductivity in the disturbed and undisturbed sites are not similar.  

While by using SHALSTAB and Factor of Safety, the undisturbed site seems to be more 

susceptible to shallow landslides than the disturbed site, we would recommend additional studies, 

using models that take into consideration saturated-hydraulic conductivity in order to compare the 

results. Moreover, the variability presented in the disturbed site makes monitoring the shallow 
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landslide risk harder, since each area of the same hillslope does not present the same soil 

characteristics.  Furthermore, informal areas in the urban areas of Brazil have similar urban settings 

as the one observed in the disturbed site, and this type of soil is very unstable and heterogenous, not 

being the best location for people to build their houses.  As people build, relocate, and rebuild, the 

soil keeps being altered. Therefore, to prevent natural disasters in these urban hillslopes, 

municipalities should monitor these areas, not allow new informal buildings, and educate residents 

about the negative consequences of human activities in these hillslopes, such as discarding garbage 

and sewage or cut and filling.   
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CHAPTER 5: The Importance of space, time, and type of natural 

hazard in assessing vulnerability: Lessons from the 2018 Montecito 

Debris Flows, CA 
 

Abstract 

More communities around the world are living in natural hazard risk-prone areas. These risk-prone 

areas are susceptible to natural disasters, which can be prevented by adopting Disaster Risk 

Reduction (DRR) measures. Understanding what makes the community vulnerable and who are the 

most vulnerable people in the community is one of the DRR measures. However, vulnerability 

assessments have historically failed to incorporate the spatial and temporal dimensions of 

vulnerability by type of natural hazard. In 2018, the Montecito community in Southern California 

was heavily impacted by debris flows, resulting in material and human losses. In this study, we use 

the case of Montecito and a mixed-methods approach to highlight the importance of the spatial and 

temporal dimensions of vulnerability.  Our results showed that informal workers and residents of 

voluntary areas were the most vulnerable people in the community. The main aspect that made the 

community vulnerable was the lack of understanding of their risk and the lack of proactive action, 

like education the community, by the local authorities. Local authorities failed to use historical and 

local data to educate the community of their risk and by using problematic evacuation map based on 

previous wildfire.  

 

1. Introduction 

“Even when they said the rains were coming, you don’t expect a mountain to 

come down.” (Respondent 04) 
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Natural hazard events impact communities negatively around the world. For instance, hurricanes in 

the United States and Central America or landslides in South America. The increase in negative 

impacts in these communities is linked to the increase of population and, consequently, more people 

living in at-risk areas.  

There are multiple ways to assess risk.  The framework we are using to understand risk is a 

combination of the hazardous events and vulnerability (Maskrey, 1989; Wisner et al., 2003). 

Hazardous events will continue to be hazardous, but a better assessment of the vulnerability can 

prevent disasters by building stronger and more resilient communities. In that matter, local 

governments have an essential role in their communities in preventing and reducing negative 

impacts of possible hazardous events by adopting Disaster Risk Reduction (DRR) measures.  

 Vulnerability assessment is part of DRR measures. A good vulnerability assessment should 

consider all members of the community, the local particularities, and the local dynamics. Broad 

quantitative assessments of vulnerability consider the spatial extent of the community but do not 

take into consideration the local heterogeneity as they use same variables in their regional or 

national assessments. Using the same variables to assess vulnerability nationwide or even at a 

county-level can help understand general vulnerability patterns but not specific aspects of the 

community, which can be influenced by cultural and local dynamics.  Therefore, quantitative and 

qualitative assessments targeting the local community can tell a better story about a community’s 

vulnerability. Furthermore, broad vulnerability assessments, especially those in the developed 

countries, commonly have no tools with which to include the marginalized population within the 

community, and these are usually the most vulnerable people (Wisner, 1998), for instance, the 

homeless during the Tokyo earthquake (Wisner, 1998) or informal workers during a wildfire 

(Thomas fire) in Ventura and Santa Barbara Counties, California. Not including the marginalized 
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populations keeps the cycle in which the marginalized people continue to be marginalized; even if 

they survive the natural disaster, they do not recover their livelihoods (Wisner & Luce, 1993) and 

become even more vulnerable.  

 In this study, we used lessons learned from the 2018 Montecito debris flows to illustrate the 

importance of using qualitative and quantitative data to explore the spatial, temporal, and type of 

natural hazards to understand the vulnerability of a community. In this study, we do not aim to 

assess the vulnerability, but we aim to point out how a mixed-methods approach can enhance the 

understanding of local characteristics that contribute to increasing the community vulnerability. 

Considering Montecito and the 2018 debris flows, we want to answer the following research 

questions: 1) Who are the most vulnerable people in the community? 2) What are the characteristics 

of the community that made it more vulnerable? We used a parallel mixed-method approach to 

explore in-depth the particularities of the local community and to develop a case study by using a 

survey, one-on-one interviews, local news, and records of community meetings.  

 

2. Background  

2.1 Natural hazard, vulnerability, and risk  

Natural hazards referred to natural events that threaten things that are important for human (Keller 

& DeVecchio, 2016; Hyndaman & Hyndman, 2012). Therefore, if a landslide occurs, but it does 

not affect things that are important for human, it is a natural event, not a natural hazard (Keller & 

DeVecchio, 2016). The vulnerability is defined as the condition of a community that makes it more 

susceptible to the impacts of a natural hazard (UNDRR, 2017). The combination of both natural 

hazards and vulnerability creates the risk (Maskrey, 1989; Wisner et al., 2003).  
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Figure 5.22. Risk as a combination of hazard and vulnerability of the community 

 

Disaster studies, in the past, have prioritized the assessment of natural hazards over 

vulnerability, and if they do include vulnerability, it was only the vulnerability of infrastructure and 

number of people and not the community socioeconomic characteristics (i.e., Mejianavarro et al., 

1994). Recently, more risk and vulnerability studies have included the socioeconomic aspects of the 

community (e.g., Maskrey, 1989; Flanagan et al., 2011; Cutter et al., 2003; Cardozo et al., 2019; 

Frigerio et al., 2018). However, most of these studies have considered vulnerability as the same for 

all types of natural hazards. This assumption is problematic since natural hazards have singular 

characteristics, as well as their impact in the community. They vary in size and how they impact. 

For instance, a shallow landslide is usually local, while a hurricane is regional. In terms of impact, 

floods impact low and flat areas and, frequently, can damage but not destroy buildings, but debris 

flows are faster and typically less predictable and can easily destroy buildings in the path of the 

flow.  
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Natural hazards and vulnerability are interconnected. They occur in the same spatial 

location, and the impact in the community will depend on the intensity and type of  natural hazard 

and the vulnerability of the community. Therefore, understanding their interconnection or studying 

them together can enrich the assessment and avoid overlooking relevant characteristics of one of the 

parts. 

2.2 The dissemination of information  

Small disasters caused by natural hazards do not get the same attention as catastrophes6 or large 

disasters7. Catastrophes and disasters are headlines in newspapers and get TV coverage for days to 

months, like Hurricane Katrina or the Camp Fire. But small disasters, with no deaths and some 

property lost, do not get the same coverage. However, these events are also important, and 

recognizing that can prevent future catastrophes and large disasters.  

The 2018 Montecito debris flow was a large disaster and a rare event. It killed 23 people, 

impacted at least 400 homes, and many people were injured. The disaster received headline 

coverage in the local news for days and was covered by regional and national news. Yet, other 

debris flows have occurred in the past in Montecito and Santa Barbara County with varying 

magnitudes in 1926, 1964, 1971, 1990, 2009, and 2016 (Kean et al., 2019). These debris flows did 

not get the same attention due to their small impact, or they were forgotten over time (i.e., 1926 and 

1964). Unsurprisingly, most Montecito residents did not know what a debris flow was before the 

disaster and were astonished by the impact on their community. The fact that media dominates the 

 
6 Catastrophe has a larger impact in a community than disasters.  Most or all community infrastructure is heavily 

impacted and community functions are almost all or fully interrupted; local officials are not able to do their usual work, 

so their work extends into the recovery period; help from nearby communities cannot be provided (Quarantelli, 2000) 
7 A serious disruption of the functioning of a community or a society due to hazardous events interacting with 

conditions of exposure, vulnerability and capacity, leading to one or more of the following: human, material, economic 

and environmental losses and impacts (UNDRR, 2016) 
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dissemination of information and selects what to broadcast can create a misunderstanding of the 

local environment. In this context, local governments have an important role. They should make 

sure that previous events and natural disasters and possible impacts on the community are 

communicated to the community, thus educating the community, and making it less vulnerable, 

and, consequently, protecting lives and assets.  

 

2.3 Vulnerability assessment 

Around the late 70s and early 80s, the discussion of vulnerability in disaster research emerged, and 

it was influenced by the field of geographic development and poverty (Birkmann, 2013). At the 

same time, in different parts of the world, the idea of risk as a cultural and socioeconomic 

phenomenon, and highlighting the importance of vulnerability, was happening (Birkmann, 2013).  

The focus of vulnerability assessment varies in the disaster research. These main foci (or 

dimensions) are social, economic, environmental, and institutional (Birkmann, 2013). The social 

dimension of vulnerability includes aspects of justice, social characteristics, and societal 

organization (Birkmann, 2013). The economic dimension includes economic aspects of households 

or their place within the economic system and how these economics aspects are part of the 

community (Birkmann, 2013). The environmental dimension includes the environmental system 

and how the impact of the natural hazard on the environmental system would affect the community, 

and the institutional dimension refers to the modes and constraints of governmental organizations 

and their capacity to include DRR measures (Birkmann, 2013).   

The fragmentation of vulnerability into these dimensions might help its assessment but also 

might favor one dimension over another. For example, when the focus is just on the social 
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dimension, it might wrongly imply that vulnerability is synonymous with poverty, but they are not 

the same thing (Chambers, 1989). In addition, it is important to recognize the difficulty of assessing 

vulnerability and the fact that none of the indicators/variables used in each dimension will perfectly 

explain the vulnerability of the community (Dwyer et al., 2014).  

2.3.1 Spatial Component of Vulnerability 

Vulnerability assessments use local, regional (e.g., Cardozo et al., 2019), or national scales (Cutter 

et al. 2003) and can assess one type of natural hazard (e.g., Kaynie et al., 2008; Cardozo et al., 

2019) or many (Cutter et al. 2003; Flanagan et al., 2011; Hummell et al., 2016; Frigerio et al., 

2018). In this study, we consider the spatial dimension of the vulnerability as a local scale so that 

we can have a complex understanding of the community and its vulnerability towards a specific 

natural hazard (in this study, debris flows). Moreover, the impact of a natural hazard in a 

community is not dependent just on the magnitude of the event but also on the damage caused by 

the conditions and dynamics to the different social groups inside of the community (Birkmann, 

2013).  Communities are unique, and generalization of the vulnerability assessment can exclude 

important variables or exclude the most vulnerable people.  Other than that, vulnerability 

assessment should consider the type of natural hazard. For instance, preparedness and education 

measures are unique for each type of natural hazard.  Earthquake education is not the same as for 

tsunamis or landslides; preparedness and mitigation measures for floods are not the same as for 

earthquakes; safe homes for landslides are not the same as for earthquakes. Furthermore, 

vulnerability is not static; it can change over time, and a community can become more or less 

vulnerable. Maybe more elderly people are living in the community because a retirement 
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community was built in the prior year, or perhaps the municipality has trained residents for a 

specific natural hazard, and they became more prepared to deal with future natural hazards. 

For example, consider communities A and B located in risk-prone areas for the same landslide 

in Time 1 (Figure 5.2). Both communities have similar socioeconomic characteristics and 

infrastructure. During Time 1, Community A has been working with DRR measures, and 

Community B has not. As a result, in Time 2, Community A is more educated about their local 

hazard, they know their risk, and they are more likely to evacuate when the local government issues 

an evacuation order. Therefore, Community A, in Time 2, is less vulnerable than B, even though 

their socioeconomic characteristics and infrastructure are the same.  
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Figure 5.23. Two communities at risk for the same landslide in Time 1. Community A has been working with 

education, preparedness and mapped the landslide hazard areas. Community B, on the other hand, has not adopted any 

DRR measures. Therefore, in Time 2, Community A is less vulnerable than Community B to landslides. 

 

2.3.2 Temporal Component of Vulnerability 

Natural disasters have three main phases: before, during, and after. Vulnerability assessment should 

be done in the before phase and take into consideration the conditions of the community before the 

disaster that can contribute to negative impacts in the during and after phases. The after phase 

(Figure 5.3) has three main phases: short-term, intermediate, and long term (Homeland Security, 

2016).  
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Figure 5.24.  Phases of disaster used by FEMA as part of the National Disaster Recovery Framework. During the After 

phase, you see the short-term, intermediate, and long-term periods (Source: Homeland Security, 2016) 

 

This temporal assessment of vulnerability helps to identify the people that are part of the 

community and how a negative impact would affect differently their members considering short-

term, intermediate, and long term period.  

3. Methods  

 

Figure 5.25. Method workflow.  Parallel mixed methods were used in this study. The first phase is the literature review 

to design the survey and semi-structured interview guide. The data were collected from people that answered the 

surveys and by interviewers, and we analyzed both datasets. Based on our analysis, we came to our result (who were the 

most vulnerable people in the community and the variables to be considered) 

 

3.1 Literature Review 
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A literature review was fundamental to define the research question and to design survey questions 

and the semi-structured one-on-one interview guideline. We divided our research into five main 

topics: demographics, risk perception, evacuation, education, and climate change. In this study, we 

are most interested in the questions that explain the vulnerability of the community (demographics, 

risk perception, evacuation, and education).   

3.2 Quantitative Survey Design 

Quantitative surveys are a useful tool for collecting particular information from a large population. 

The information collected is based on a set of questions designed to collect responses to the 

questions by the population. In our study, we asked target questions that would provide information 

about community vulnerability, which includes demographic, evacuation behavior, and risk 

perception questions.  

Quantitative surveys also can target a larger group of people in a shorter time when 

compared with qualitative interviews. We had 529 surveys answered, and interviewing and 

transcribing the same number of people would take longer, and did not match the financial and 

human resources we had available.  

We targeted residents of Montecito by including all buildings in the postal zip code 93108 

(Figure 5.5). First, we sent postcards with a survey hyperlink, and two weeks later, we sent a paper 

survey by mail with a pre-paid envelope. The online survey was developed using Qualtrics 

software, which facilitated data collection and analyses. Considering that 32% of Montecito’s 

residents are more than 60 years old (Census, 2010), we choose to use both online and paper 

surveys. The paper survey gave options for respondents that did not want to use a digital platform to 

answer the survey and increased the response rate. We sent 4,798 postcards and paper surveys, and 
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we got a response rate of 11%. Since questions were voluntary, some questions had fewer answers 

than others. Therefore, the total number of answers varies from one question to another.  

 

Figure 5.26. Zip code 93108 (Montecito) in red is the location to which the survey was sent by mail. Light gray in both 

maps represents Santa Barbara County.  

 

3.3 Qualitative Interview Design 

One-on-one interviews give a richer understanding of the vulnerability of the community. They 

allow the interviewee to tell their own story, since interviews are not as rigid as surveys. We used a 

semi-structured technique, which included a guideline with our main topics of interest, but we 

allowed some flexibility for interviewers to talk about their reasoning, opinions, feelings, values, 

and any topic they thought was relevant. We did 25 one-on-one interviews, starting three months 

after the disaster. These interviews included residents and residents’ relatives, members of 

grassroots organizations, workers, and officers of government organizations that were directly 

affected by or worked with people affected by the debris flows.  
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The first interviewees were residents that had their property impacted by the event. A local 

community organization, the Montecito Community Center, reached out by email and invited 

individuals to contact us if they were interested in giving an interview about their experience with 

the debris flows. After these first interviewees, we reached out to more interviewees by snowball 

sampling. As we began receiving surveys, we contacted more residents who said they were 

interested in participating in an individual interview.   

We audio-recorded the interviews and transcribed and edited the transcriptions. Interviews took 

around one hour, but some were shorter (around 20 minutes) and others longer (more than 120 

minutes).  

3.4 Data Analysis 

We applied descriptive statistics in the survey data to summarize and describe our sample of the 

Montecito population, and we used inferential statistics to draw conclusions, using R software. 

Moreover, to use a phenomenological approach by exploring the meaning of people involved with 

the debris flows, we coded the interviews and used themes in NVivo software. Themes emerged 

from our semi-structured survey, together with recurring topics brought up by different 

interviewees. Based on the themes and statistical analysis, we focused on developing a case study 

of the 2018 debris flow vulnerability in Montecito.  

 

4. Study Area: Montecito, CA 

In January 2018, debris flows heavily impacted the community of Montecito, Santa Barbara 

County, CA. They occurred as a result of wildfire (the Thomas Fire) followed by intense rainfall in 
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the catchments of the Santa Ynez Mountains (Kean et al., 2019). These catchments are steep and 

short and combine as they reach the Pacific Ocean. The debris flows killed 23 people, injured at 

least 167, and damaged at least 400 homes (Kean et al., 2019). Residents, workers, and businesses 

in the community were impacted. The area was covered by mud and debris for at least two weeks, 

the main highway (101) was closed for ten days, water was considered not safe for drinking, and 

utilities (electricity and gas) were shut down. Beyond these direct impacts, there were many indirect 

impacts. For instance, emotional and psychological issues caused by the loss of family members 

and/or loss of income due to closure of the highway, making it impossible to go to work.  

 

Figure 5.27 – Buildings impacted by the Montecito 2018 debris flows. Different colors show the building impact level.  
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The disaster was a surprise for residents and the local community.  During the prior month 

(December), Montecito had been subjected to several mandatory evacuations because of the 

Thomas Fire. Montecito residents had been observing the impacts of the Thomas Fire since it 

started in the neighbor county (Ventura County) and made its way to Santa Barbara County. The 

ashes were a real problem impacting the air and homes, and when the Thomas Fire burned 

Summerland and Montecito, it could be seen when driving on Highway 101. Moreover, wildfires 

had been occurring all over California, had good media coverage, and you could see them 

progressing and causing destruction from one region to another (i.e., the Thomas Fire started in 

Ventura County and spread to Santa Barbara County). Debris flows, on the other hand, got less 

media coverage as they were rare events, and it was harder to predict where they were going to 

occur. However, because of previous natural disasters, local, state, and federal agencies were well 

aware of potential debris flows in the area (Kean et al., 2019).  The day before the event, voluntary 

and mandatory evacuation orders for Montecito were issued by the county. Debris flows and floods 

have occurred in the past in Montecito, and several debris flows have occurred post-wildfires in 

Santa Barbara County with diverse magnitudes, such as the ones in 1926, 1964, 1971, 1990, 2009, 

and 2016 (Kean et al., 2019). Moreover, Southern California, in general, has a history of debris 

flow disaster post-wildfire, like Camarillo Springs in 2014 and La Crescenta in 2010 (Kean et al., 

2019).  

5. Results and Discussion 

5.1 Spatial Dimension of Vulnerability 

The Montecito community is a combination of residents, workers, and businesses. There are no 

industries. Overall, Montecito residents are wealthy, have little ethnic diversity, and are old (Table 
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5.1).  The majority of residents live alone or with one other person (78.0%). The majority of 

residents make more than $150,000/year in income (66%), but in the same community, some 

residents make less than $25,000/year (4%).  Furthermore, the majority of residents (63%) hire at 

least one worker at their property. These workers are gardeners, housekeepers, caretakers, 

babysitters, and home cares for the elderly. These workers are commonly immigrants, both 

documented and undocumented.  Considering that one-third of the human losses during debris 

flows were from immigrant families and that only 9% of the Montecito residents are non-white, it is 

clear that people of color and workers were more vulnerable than white residents. Moreover, after 

the debris flows, workers were financially impacted because they could not work in the community 

for around two to four weeks. Part of the community and access to the community was closed due 

to debris and mud on the roads, and houses had no electricity. Indeed, some of these homes remain 

uninhabited almost two years after the event.  

Table 5.15. Descriptive statistics from the survey and 2010 Census 

  Survey 2010 Census 

Number  529 8,965 

Ownership Owner 91.0% 76% 

Renter 9.0% 24% 

Age  19 to 39 3% 21% 

40 to 59 24% 31% 

60 to 70 28% 18% 

70 or more 45% 30% 

Number Household (Mean)  2.5 2.5 

Race/Ethnicity White 91.0% 90.8% 

American Indian or Alaskan Native 2.0% 0.2% 

Asian or Pacific Island 2.0% 3.7% 

others 5.0% 5.3 % 

Education High school graduate or higher 99.5% 97.8% 

Bachelor’s degree or higher 87.3% 71.8% 

Years living in Montecito Less than two 4 % NA 

Between 2 and 5 9 % NA 

Between 5 and 10 16 % NA 

Between 10 and 20 22 % NA 

More than 20 49 % NA 

Employed caretaker/caregiver Yes 63% NA 

No 37% NA 
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About 24% of Montecito residents are renters (Census, 2010). The difference between our 

survey and the census might be explained by renters who moved out and did not answer the survey.  

Renters are a vulnerable population since they are a transient population, and they usually do not 

know about the previous history of debris flows or floods in the area. Commonly, renters in 

Montecito are families with school-aged children who attend Montecito Union School. These 

families  moved to Montecito so their children could get an excellent public education by attending 

the Montecito Union School District. The school is known to provide a good education and has a 

small student/teacher ratio.  

5.1.1 Sense of Community 

The sense of community differs from resident to resident. Some of the interviewees pointed out that 

they were close to their neighbors before the natural disasters (strong neighborhood dynamics) , 

others mentioned how they got even closer to their neighbors after the debris flows, and some 

mentioned that they do not feel they are part of a community.  

Residents that already had a sense of community were more likely to check if neighbors 

were going to evacuate. Neighbors' decisions influenced their own, or they tried to influence others 

to evacuate considering their previous experience with floods in the area. They communicated 

mainly by person, group text messages, or phone calls. During the event, residents tried to 

communicate with other residents to check in. However, cellphone service was unstable during the 

debris flows, and messages sometimes would go through and others would not. As mentioned by 

one of our interviewers:  
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“I had a fully charged phone, and we were calling to each other across like I 

can stand on my front porch with a flashlight and other neighbors across the 

street, and we were just like doing a calling chain. ‘Have you heard from so 

and so?’ ‘Does everybody know?’ Because in ninety-five when we flooded, 

what we would do is we would go and check on the elderly people because, 

you know, in those days, you didn’t have everybody’s phone number.” 

(Respondent 09) 

Residents were also checking on other neighbors after the disaster, and some relationships 

became stronger, as this resident describes: “Oh my gosh, the sense of community that has been 

created out of this for me- I knew many of my neighbors, but now I know them on a much different 

level.” (Respondent 19) After the natural disaster, a group of women in the community started to 

meet weekly to cook dinner together and chat. These weekly meetings helped these women cope 

better as they could rely on each other and talk about different aspects of their lives but also 

disaster-related topics.  

The debris flows almost totally destroyed the homes in some neighborhoods. In these 

neighborhoods, some residents moved out. Residents that decided to rebuild and continue in the 

community mentioned how difficult it was to come back and have to see nearby homes destroyed 

and not having their neighbors around.  

After the debris flows, organizations and the county groups were actively helping the 

community to bounce back. These organizations played different roles, from psychological health 

to cleaning up the mud. The main organizations that had an important role in the aftermath were the 

Montecito Union School District, Cottage Health with the Post-Disaster Healing Process, the 

Bucket Brigade, the Montecito Association, Habitat for Humanity, the Montecito Center for 

Preparedness, Recovery, and Rebuilding, and local churches.  
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Interviewees frequently mentioned the amazing work done by the Bucket Brigade. The 

organization was created to help residents with the cleanup of mud and debris of their properties in 

the aftermath. Volunteers would go to impacted homes and cleanup. Moreover, the volunteers 

created a hopeful environment, as mentioned by one interviewee: “Not just that they did it, but that 

they were there, they were comforting, they were happy.”  (Respondent 09) The volunteers would 

come to a home, clean it, and leave.  

Santa Barbara County organized community meetings in Montecito to help residents to deal 

with the aftermath. A center was opened in the community, the Montecito Center for Preparedness, 

Recovery, and Rebuilding, and it offered support to impacted people, especially residents. In the 

center, information about other organizations helping in the aftermath was available, such as 

Habitat for Humanity, the Bucket Brigade, the American Institute of Architects, and the 

Community Wellness Team/805 Hope. Interviewees highlighted the resources Santa Barbara 

County offered and how helpful the Montecito Center was, especially by locating these aid 

organizations on the same site. In addition to the Montecito Center, Santa Barbara County 

organized community meetings to help residents navigate in the aftermath, with topics like maps, 

insurance, rebuilding, and permitting. The survey showed that 55% of residents attended at least 

one community meeting planned by the county. These meetings were also broadcast online live and 

uploaded online, so people did not necessarily need to attend in person the meetings.  

Local churches and schools helped residents to deal with the aftermath. Interviewee that was 

evacuated during the debris flows described the support she got from her church and its members 

by having a place to stay in the aftermath and helping with the cleanup of her home.  The Montecito 

Union School District played an important role by not cancelling classes even though school was 
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closed.  The school would find places to keep the classes going so parents could deal with the 

aftermath. The school also hosted non-school related meetings and events to help families deal with 

insurance, contractors, and rebuilding. 

The local businesses gave discounts for people impacted or free products and meals.  

Cottage Health  by their Post-Disaster Healing Process program offered one year free phycological 

support to people that had personal or material losses during the debris flows. Residents that were 

part of the program describe how the program has helped them in the aftermath, how they would 

recommend it, and how grateful they were to be able to participate in the program.  

The landscape changed in the aftermath and during the rebuilding process. For most of 

Montecito, as an interviewee mentioned, you could not tell that something happened after the debris 

flows, but if you lived in the area and needed to drive around, you could see the closed roads and 

bridges and the areas being rebuilt. The new landscape brought negative memories for some of the 

residents. One interviewee was very disturbed by seen “green wall” when she would drive in the 

neighborhood. These green walls are properties that are rebuilding, and they would bring memories 

of the natural disaster to this particular interviewee. Another interviewee had her home in a 

neighborhood where most of the homes were destroyed and while driving in her neighborhood, 

memories of the natural disaster arose. 

5.2 Temporal Dimension of Vulnerability 

The temporal dimension of the vulnerability of the 2018 debris flows in Montecito can be divided 

into before, during, and after.  

5.2.1 Before the 2018 Debris flows 
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Some local aspects of the community contributed to their increase in the debris flow vulnerability 

before the event. Residents showed evidence of evacuation fatigue from the Thomas Fire. There 

were multiple evacuations orders for the Thomas Fire the month before the debris flow evacuation 

order, as described by one of the interviewees: “we were evacuated six times.” (Respondent 20). 

Furthermore, some residents had pets, which made the evacuation even more challenging.  

Both the evacuation order (69%) and the evacuation zone map (68%) were clear for 

residents (Appendix 5.1). One problem with the January debris flow evacuation order was that the 

county used U.S. Route 192 as a dividing line to delineate areas under voluntary and mandatory 

evacuation orders - the same line used during the Thomas Fire. Debris flows are very different from 

fire risk, and the impact of the debris flows confirmed that. Many homes in the voluntary zone were 

destroyed, and 19 of the people that died lived in the voluntary evacuation zone, not in the 

mandatory evacuation zone (Hayden, 2018).  

In addition to the problematic evacuation zones, there was a lack of knowledge about debris 

flows by residents and workers, as well as a “drought mentality.” Due to the weather characteristics 

of Santa Barbara County, some residents have doubts about possible intense rainfall:  

And you know they said the rain was supposed to start much earlier in the 

day. It had sprinkled a little bit but, we were kind of joking because that 

happens a lot, here in Santa Barbara. “It’s gonna come later, it’s gonna 

come later,” and then it never comes. (Respondent 04) 

All the interviewees with the exception of one had not heard the term debris flow prior to 

the event and had no idea that debris flows had happened in the past in Montecito and Santa 

Barbara County. “… I don’t remember hearing anything about a debris flow those words... I heard 

about how unstable the mountain was, that flash flooding means lots of water coming down really 
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fast … I don’t if I heard the term debris flow; it wasn’t explained so that you would I would you 

would click in.”Another resident that had his/her house destroyed mentioned “… so first and 

foremost, we were in a voluntary evacuation zone. And I did not understand the history of 

Montecito.” (Respondent 11) 

Residents that had lived in the area longer knew that creeks could flood or that La Conchita, 

in Ventura County, had landslides in the past, but they did not have any knowledge of past debris 

flows in Montecito or Santa Barbara County. Local, regional, and national public authorities, on the 

other hand, knew that there was high susceptibility for debris flows. For example, Montecito Union 

School District decided to close school the day of the debris flow, based on the convincing 

argument given by public authorities that a debris flow was very likely to occur, and the school 

could be isolated if the community was impacted.  

Some residents stated that their decision not to evacuate was based on being in the voluntary 

zone and/or on the opinions of their neighbors. “And the other thing is everybody in our 

neighborhood was staying, and so my neighbor across the street…”  (Respondent 19) In this 

matter, the county lacked sufficient communication with which to explain to the community what a 

debris flow consists of and the damage that past debris flows caused in Montecito and other places 

in Santa Barbara County and Southern California.  

The survey showed that the majority of residents got evacuation information from Santa 

Barbara County (76%), but other media also were releasing the information about the evacuation 

order. Some interviewees felt overwhelmed by the amount of information about evacuation and 

evacuation maps coming from different news sources.  
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 “Well yeah, it was constant, just constant. So we got numb, everybody 

goes numb to it. I don’t think when people describe they had weariness 

from evacuation, that definitely was part of the problem, but I think… 

there were too many cries of wolf. You know, it felt like that after a while, 

so you just you don’t hear it anymore…”  (Respondent 18) 

The cellphone signals in Montecito during the event was weak and unstable, which had a 

negative impact during the event as it was harder to communicate with other people. Another 

problem that increased the vulnerability of residents was a lack of maintenance of the local creeks, 

which were filled with boulders and the channels were not wide enough for the flow of the water 

that came during the event.  

5.2.2 During the 2018 Debris flows 

The lack of knowledge about debris flows increased residents’ vulnerability during the event. 

Without previous knowledge about debris flows, some residents decided to leave by car when they 

realized the mud was coming toward their home or when they saw the light in the sky caused from 

a gas explosion when boulders hit a gas pipeline during the debris flows. The decision to leave the 

house during the debris flows increased their risk. The interviewees were safer at their homes (none 

of those that described driving had much damage on their homes), but their lack of debris flows 

knowledge made them decide to evacuate during the event. These residents were driving during the 

storm, without street power, with mud and debris coming downhill. One interviewee mentioned that 

a family that did not get mud inside the home when trying to escape during the debris flow was 

swept away inside their car. 

During and right after the debris flow, there was no information for residents that got stuck 

in their homes. The area had no electricity, and cellphone signals were on and off. Some residents 
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tried to get information from the radio, but they mentioned they felt helpless. No information about 

what to do was available from the radio.  

5.2.2 After 2018 Debris flows  

5.2.2.1 Short Term After 2018 Debris Flows  

The combination of a lack of information right after the event and no debris flow knowledge 

increased the risk to residents. A couple of residents that did not have their houses impacted got 

stuck in the mud the day after the event when they went to the pharmacy to get medication.  

“…And we got caught in the mud and we were up to our waist  in mud in that 

orange grove mountain street and we were screaming for help in the evening 

and my wife is where you are and I was here in the mud I couldn’t even get to 

her because we couldn’t move our legs it was like quicksand it was up this high 

up to your thigh, middle thigh.” (Respondent 20) 

Another example was an older woman whose house was not impacted but was one block 

away from the homes that were.  She had no idea what was going on since there was no access to 

information, and she would go for walks in the neighborhood.  

“They couldn’t get my grandmother to leave… I’m like having to stay with my 

grandmother because we can’t get her to leave because the cops can’t get her 

to leave because she’s - I mean she was literally walking up and down the 

streets, and we were like, talking to the first responders … And she thought 

there was nothing going on. And they’re giving her sandwiches….  she was 

walking up to the village, and wouldn’t understand that the bank was closed, 

and the shops were closed. It was just, you know. My family is following her 

around…” (Respondent 05) 

The local authorities were able to respond quickly to the disaster since they had prepared for 

a worst-case scenario and had teams ready in case a disaster was to happen (Respondent 11). 

However, the timing of response by the local authorities was felt differently between interviewees 
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that had distinct experience with the debris flow. Interviewees that were injured or cover with mud 

felt that the rescue took a long time, and interviewees that were not injured and in their homes 

during the event did not experience the same timing.  “We were in shock, and I knew that [names 

omitted] had some injuries, I did not know how severe, but I had looked at [name omitted] shoulder 

and it was all bruised…” (Respondent 19) 

Workers at Montecito properties were impacted in a different fashion than residents. They 

were mainly impacted financially for at least two weeks. These workers were already financially 

vulnerable and going some weeks without a paycheck compromise their basic necessities, like rent. 

Since workers do not necessarily live in Montecito, attention to their plight and need of financial 

support from the government was minimal. Some financial resources were put together by an 

NGOS, CAUSE, by donations and small financial support by the county.  

5.2.2.2 Mid and Long Term After the 2018 Debris Flows  

In the initial process of the aftermath, there was much attention given to the people that were 

impacted, but after some time, the impacted people were left by themselves to deal with rebuilding, 

getting permits, dealing with insurance, contractors, and so on, which can be mentally challenging 

and can be frustrating, as interviewees brought to our attention. Many homes were totally or 

partially destroyed by the debris flows. These homeowners had to deal with the insurance and 

rebuilding process. 

Residents relied on their homeowner’s insurance to rebuild or fix their properties in the 

aftermath. Right after the debris-flows, fire insurance companies were refusing to pay insurance for 

homes impacted by debris-flows. However, on January 29, California’s Department of Insurance 
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released a notice indicating that the debris-flows and floods on January 9th were caused by the 

Thomas Fire and recommended that homeowners file a claim to their insurance program. Santa 

Barbara County also offered support to homeowners in that matter. This was an important 

achievement for homeowners since fire insurance companies were not going to pay insurance to 

impacted homes. But the fight with insurance companies did not end with the notice. Residents 

described how challenging their experiences with insurance companies were. Some insurance 

companies required residents to list every single item damaged to reimburse, which is the least 

someone wants to deal with immediately after having material or personal losses. Each affected 

resident has a different story about insurance companies, but, overall, the insurance companies do 

not seem to have cooperated with the rebuilding and healing process. Based on interviewees, agents 

can be rude or ageist, and, when things are already stressful and arduous, that is the least thing 

people want to deal with.     

The rebuilding process was different for each resident in terms of time and resources 

available. Some residents had their homes insured with insurance companies that paid the claims, so 

they were able to start the rebuilding process right after the disaster, other homeowners had a 

slower and more stressful process with their insurance companies, and others did not want to 

rebuild or wanted to wait a couple of winters before starting rebuilding.  

Rebuilding in Montecito can involve historic properties, which makes the rebuilding process 

more complicated and requires the involvement of the planning department, architects, and 

historians — making the process more expensive and longer. Another problem in the aftermath was 

defining lines between properties that were destroyed. Some property document surveys were lost 

during the event, so the lines needed to be redrawn as mentioned by the interviewee “… no one 
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knows where their property lines are anymore, and it’s like the wild west out there.” (Respondent 

14) 

The rebuilding also brought some tension between neighbors. To protect themselves from 

future debris flows, some residents decided to build high walls or rebuild their homes on higher 

elevation ground. However, these changes in the landscape might impact other homes since they 

change the pattern of how water flow, so homes that were once safe might not besafe anymore.  

In the aftermath, some real estate agencies wanted to buy properties that had homes 

destroyed and build new homes. These homes are in at-risk areas, and people impacted commonly 

want to move out and are willing to sell their homes cheaper than the market value. These real 

estate agencies buy these properties, rebuild them, and sell or rent them to new families who have 

never experience such a natural disaster. Another resident, when commenting about the rebuilding 

of their home, stated: “From an ethical perspective, I don’t think that we should be allowed to 

rebuild. We’re in a flood zone, and that’s not gonna change.” (Respondent 19). However, if their 

home was totally destroyed, they are legally allowed to rebuild, and depending of the insurance, the 

rebuilding need to be in the property that was destroyed.   

Real estate agencies have been offering to buy homes that were severely damaged or totally 

destroyed by debris flows. Interviewees who had houses destroyed by debris flows had real estate 

agencies reaching out to buy their properties.  

“We had someone approach us when we soon after we bought this house 

[where they are living now] and asked if we were interested in selling [the 

house that was destroyed], and we had a couple of offers, and they were way 

people thought they were going to get into a deal …”  (Respondent 18) 



 

121 

Post-traumatic stress disorder (PTSD) can be triggered by a traumatic event, like the 2018 

Montecito debris-flows. Community Wellness Team/805 Hope offered a free one-year service for 

people that had personal or material losses during the event. Interviewees mentioned how important 

and helpful they were for their healing process. Different than the deaths and home destroyed, 

PTSD does not get the same attention as well as injured people. The natural disaster resulted in 

many people injured, trapped in the mud, and also people that survived but lost someone they knew. 

6. Conclusion 

In conclusion, we discussed the spatial and temporal dimensions of vulnerability and why it is 

important to point out whom the vulnerable people of the community are and the main aspects that 

made the community more vulnerable. Considering the socio and economic dimensions, 

homeowners that were in the voluntary evacuation zone and workers were the most vulnerable 

people in the community. The main characteristic that made the community more vulnerable was 

the lack of knowledge about debris flows and the fact that they occur in this region. Due to this lack 

of knowledge, some people increased their risk unnecessarily by driving in an unsafe environment 

when they were actually safer at home. Moreover, the institutional dimensionality of vulnerability 

was high for the whole community. Public authorities did not educate the community about past 

debris flows and also made a poor choice by choosing to use the same evacuation line used during 

the Thomas Fire. One the other hand, public authorities have been very supportive of residents in 

the after phase, creating the Montecito Center for Preparedness, Recovery, and Rebuilding and 

hosting many community meetings in the aftermath, which contributed to reducing the negative 

impact on homeowners.  
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These findings can help public authorities in their DRR measures and Disaster Risk 

Management. Moreover, the present study can provide valuable information for a future assessment 

of the spatial distribution of debris flow vulnerability and consequent debris flows risk in 

Montecito.  
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CHAPTER 6: CONCLUSION 

Landslides occur in different parts of the world, regardless of whether the country impacted is a 

developed or a developing country. However, the choice of which disaster risk reduction (DRR) 

measures to use differs, based on financial resources and political priorities. Some countries choose 

to invest in risk mapping, reinforcement walls, or maybe evacuation planning and drills. This 

dissertation has presented two environments in which natural disasters can occur, but which have 

very distinct realities. The first studies are in poor neighborhoods in urban areas in Brazil that are 

prone to shallow landslides, and the second study is in a wealthy community in Montecito, CA, 

prone to debris flows. Despite their differences, both projects suggest that DRR measures can 

contribute to protect communities and make them better prepared to deal with future natural 

disasters.  

In the Brazilian study, quantifying the Brazilian Government Methodology (BGM) allowed 

standardization of the methodology and permitted the system to avoid relying on the subjectivity of 

two technicians in deciding the risk level; therefore, it reduces the bias. In the first study, expert 

knowledge and the AHP methodology were used to assign specific weights to causal variables. The 

second study used a large dataset from a previous risk mapping of Sao Paulo city and OLR to select 

important variables and compute their weights. In conclusion, both methodologies were successful 

in quantifying the BGM.  However, OLR used fewer variables (14) than the AHP methodology (39) 

an important principle of regression is data reduction. But the AHP methodology did not focus on 

reducing the variable, instead the goal was to keep all the primary variables that the BGM uses in 

the field to decide on the risk level. Moreover, results using different OLR models were not that 

different (Mean=0.72, SD=0.005). Future studies using OLR could include mapping datasets from 

other cities to improve the model. 
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The challenges encountered in the landslide risk mapping in Brazil were related to 

anthropogenic activities in the terrain, such as sewage and garbage disposal onto the slope. For 

instance, one sector can have several houses disposing sewage onto the slope and another sector can 

have just one home, but they will weigh the same when computing the risk since the original BGM 

just accounts for presence or absence of an aspect (variable). Other characteristics that make the 

assessment challenging are signs of movement in the same sector, like cracks in the house or 

leaning walls. Considering two sectors, one may have signs of movement in a single house, and 

another sector may have signs of movement found in many homes; if all other variables are kept the 

same, both sectors will have the same risk level. Therefore, an improvement in the methodology 

considering these observations would be necessary to improve quantitative methodologies assessing 

shallow landslides in these urban settings. Complementary to these two studies, an app was 

developed to compute the risk level automatically. In this app, the weight of both methodologies 

can be used. The benefit of using the app is that it is a fast way to map these areas and automatically 

compute the risk level based on the field data and not the personal decision of a technician. The app 

can be used by municipalities to update their risk mapping rapidly since these sectors change very 

fast and the mobile app would allow them to monitor these changes without depending of another 

risk mapping.  

Even though the BGM is called a risk assessment, the vulnerability is not fully assessed in 

the methodology. The BGM includes some variables that partially account for vulnerability, but not 

for the complexity present in a complete vulnerability assessment. For instance, the type of building 

(wood, brick, or mixed materials) indicates to some level the economic characteristics of the 

households. Residents that live in mixed materials homes have the most precarious homes since 

these houses are a combination of everything found available on the site. As residents become more 
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financially stable, they improve their homes, initially upgrading to wood and later to brick.  

However, other aspects that are essential to a more robust vulnerability assessment, such as age 

group and race/ethnicity, are not accounted for in the BGM. Therefore, the assessment tends to be a 

hazard assessment accounting for anthropogenic changes in the land, and not a risk assessment.  

The variability in these anthropogenic risk sectors can be observed in the variability of 

saturated hydraulic conductivity found in the disturbed site (Mean= 138.15 mm/h, SD=266.94 

mm/h, Range=675.16 mm/h) when compared with the undisturbed site (Mean= 19.80 mm/h, 

SD=12.12 mm/h, Range=29.61 mm/h). In the undisturbed site, soil texture does not play an 

important role in the saturated hydraulic conductivity, suggesting that the variability is related to 

different materials that were placed onto the terrain over time. In the same study, values of soil 

cohesion, soil angle of internal friction, and soil bulk density computed in the lab were used to 

compute slope stability by using SHALSTAB and FS (factor of safety). In both studies, the 

undisturbed slope is more stable than the disturbed slope. However, based on field observation and 

values of hydraulic conductivity, the soil in the disturbed site is heterogeneous, and even though it 

seems to be more stable than the undisturbed soil, a study of slope stability that included saturated 

hydraulic conductivity could arrive at a different outcome. Moreover, shallow landslides in these 

urban settings are initiated by intense rainfall; therefore, the role of water is fundamental. 

In the Montecito study, the main conclusion deals with the importance of assessing 

vulnerability by considering the type of natural hazard and the temporal and spatial dimensions. 

The spatial dimension is the area prone to the natural hazard, and the temporal dimension consists 

of the phases of a natural disaster (before, during, and after). In a natural disaster with a similar 

magnitude as the one in Montecito, we tend to focus on the material and human losses. These 

aspects are essential, but it is also important to understand the community dynamic and who are the 
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members of the community, and not consider just the residents as the members of the community. 

Moreover, there are side effects that come with material and human losses, such as psychological 

trauma and injuries, which are given less attention.  

In Montecito, resources were offered to residents, such as free counseling, free cleaning of 

the mud by a local non-profit organization, and community meetings organized by the county to 

help residents navigate the rebuilding and insurance procedures.  These resources helped residents 

cope with the aftermath and bounce back. But wealthy communities like Montecito have hidden 

elements that also need to be accounted for. A survey of residents illustrated that 60% of the 

residents employ at least one worker, such as a gardener, housekeeper, nanny, or caregiver. 

Regardless of whether or not these workers were in the community daily or spent more time than 

their employers in the property (such as vacation homes), they were not accounted as a critical 

people impacted in the community. Some of these workers lost their financial resources in the 

aftermath and since they were already vulnerable, they were highly financially impacted; some of 

them had to move to other areas to work since they could not afford to stay without a salary.    

Another aspect that made the entire community vulnerable was the institutional 

dimensionality, which was high for the entire community. On the one hand, public authorities 

offered informational support to residents in the after phase, creating the Montecito Center for 

Preparedness, Recovery, and Rebuilding and hosting many community meetings, which 

contributed to reducing the negative impact on homeowners. On the other hand, public authorities 

did not educate the community about past debris flows in Montecito and Santa Barbara county area, 

and the county made a poor choice when using the same evacuation zones for the mandatory and 

voluntary zones used during the Thomas Fire, despite both natural hazards being completely 

different. This lack of information and education and the problematic evacuation zones resulted in 
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residents not evacuating, residents driving during the debris flows, trying to escape and putting 

themselves at higher risk than staying in their home, and residents walking around their 

neighborhood after the natural disaster and getting stuck in the mud.  

These two studies present different realities and ways to deal with natural hazards, but both 

can use knowledge of DRR to adapt to their reality and protect their community. Both in Brazil and 

Montecito, public authorities can educate communities so they can understand their risk and make 

better decisions. Moreover, communities in risk-prone areas would benefit from correct risk 

mapping and evacuation zones maps, thereby lessening the chance of having members of the 

community not evacuating because they wrongly think they are safe.  

In summary, this dissertation proposes methodologies for both developing and developed 

countries that contribute to the DRR, considering the local particularities. Future studies in shallow 

landslide risk in Brazil should include a more complex assessment of the vulnerability to account 

for the complexity of the vulnerable population. Moreover, before starting a vulnerability 

assessment in any community, interviews with a variety of members of the community would 

benefit from the vulnerability assessment. Communities have their own dynamics, and not taking 

these aspects of vulnerability in consideration limits the quality of the assessment since the most 

vulnerable people might be left behind, as observed in the case of Montecito.  
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APPENDIX 
Appendix 2.1 

 

 

Nome   

Instituição   email   

Formação   Idade   

Tempo de atuação em áreas de risco   Sexo F M  outro 

  
                

 

AHP para áreas de risco de escorregamento 
     

O AHP (Analytical Hierarchy Process) é um processo desenvolvido por Thomas L. Saaty que calcula pesos para diferente 

parâmetros baseado no seu grau de influência sobre o processo estudado. O AHP, neste estudo, será usado para computar 

o peso de cada um dos parâmetros utilizados no mapeamento de áreas de risco de escorregamento raso (translational 

slide), em áreas urbanas, e desencadeadas por chuvas.  

 

Instrução:  

As próximas questões apresentarão fatores naturais e antrópicos que contribuem para o grau de risco de escorregamento 

raso em áreas urbanas.  

Cada questão compara dois parâmetros. Você deve selecionar um dos parâmetros (A ou B)  que, em sua opinião, 

contribui para um maior grau de risco; ou, caso considere os dois parâmetros de igual importância, você deve selecionar a 

opção (1). Caso tenha selecionado um dos parâmetros (A ou B), você deve apontar qual o seu o grau de importância para 

um maior grau de risco (valores entre 2 e 9) em relação ao outro parâmetro (o que não foi escolhido). Explicação para os 

valores 1 a 9 na tabela a seguir.   

  
               

Valores 1 2 3 4 5 6 7 8 9 
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  igual 

importância 

  moderadamente 

mais  importante 

  fortemente 

importante 

  muito 

forment

e 

importa

nte 

  extremam

ente 

important

e 

     

*2, 4, 6, 8: valores intermediários entre seus adjacentes. 
          

 

 

 

 

Questões: 

  
                 

  

PARTE A: Aspectos naturais, aspectos antrópicos, e sinais de instabilidade/evidências de movimentação. 

Aspectos naturais (A) ou aspectos antrópicos (B). A B 1 2 3 4 5 6 7 8 9 

Aspectos naturais (A) ou sinais de instabilidade (B).  A B 1 2 3 4 5 6 7 8 9 

Sinais de instabilidade (A) ou aspectos antrópicos (B).  A B 1 2 3 4 5 6 7 8 9 

 

PARTE B - Aspectos Naturais 

Ângulo de inclinação (A) ou tipo de solo (B).   A B 1 2 3 4 5 6 7 8 9 

Ângulo de inclinação (A) ou cobertura natural do terreno (B).   A B 1 2 3 4 5 6 7 8 9 

Ângulo de inclinação (A) ou geologia do terreno (B).   A B 1 2 3 4 5 6 7 8 9 

Tipo de solo (A) ou cobertura natural do terreno  (B).  A B 1 2 3 4 5 6 7 8 9 

Tipo de solo (A) ou geologia do terreno (B).   A B 1 2 3 4 5 6 7 8 9 

Cobertura natural do terreno (A) ou geologia do terreno (B).   A B 1 2 3 4 5 6 7 8 9 

  

B1 - Estrutura geológica  

Favorável à estabilidade (A) ou não observada (B).  A B 1 2 3 4 5 6 7 8 9 

Favorável à estabilidade (A) ou desfavorável à estabilidade 

(B).  A B 1 2 3 4 5 6 7 8 9 

Não observada (A) ou desfavorável à estabilidade (B). A B 1 2 3 4 5 6 7 8 9 

  

B2 - Ângulo de Inclinação (𝛳) em graus  (𝛳 < 10, 10 ≤ 𝛳 < 17, 17 ≤ 𝛳 < 30,  30 ≤ 𝛳<60, 60 ≤ 𝛳< 90, 𝛳 = 90) 

𝛳 < 10 (A) OU  10 ≤ 𝛳 < 17 (B).   A B 1 2 3 4 5 6 7 8 9 

𝛳 < 10 (A) OU   17 ≤ 𝛳 < 30 (B) A B 1 2 3 4 5 6 7 8 9 

 𝛳 < 10 (A) OU  30 ≤ 𝛳 <60 (B) A B 1 2 3 4 5 6 7 8 9 
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𝛳 < 10 (A) OU  60 ≤ 𝛳 < 90 (B) A B 1 2 3 4 5 6 7 8 9 

𝛳 <10(A) OU 𝛳 = 90(B).   A B 1 2 3 4 5 6 7 8 9 

10 ≤ 𝛳 < 17 (A) ou 17 ≤ 𝛳< 30 (B).   A B 1 2 3 4 5 6 7 8 9 

10 ≤ 𝛳 < 17 (A) ou 30 ≤ 𝛳 <60 (B).  A B 1 2 3 4 5 6 7 8 9 

10 ≤ 𝛳 < 17 (A) ou 60 ≤ 𝛳 < 90 (B).  A B 1 2 3 4 5 6 7 8 9 

10 ≤ 𝛳 < 17 (A) ou 𝛳 = 90 (B).   A B 1 2 3 4 5 6 7 8 9 

17 ≤ 𝛳 < 30 (A) ou 30 ≤ 𝛳<60 (B).  A B 1 2 3 4 5 6 7 8 9 

17 ≤ 𝛳 < 30 (A)  OU  60 ≤ 𝛳 < 90 (B). A B 1 2 3 4 5 6 7 8 9 

17 ≤ 𝛳 < 30 (A) ou 𝛳 = 90 (B).   A B 1 2 3 4 5 6 7 8 9 

30 ≤ 𝛳 <60 (A) OU 𝛳 = 90 (B).   A B 1 2 3 4 5 6 7 8 9 

30 ≤ 𝛳 <60 (A) OU  60 ≤ 𝛳 < 90 (B). A B 1 2 3 4 5 6 7 8 9 

60 ≤ 𝛳< 90 (A) OU 𝛳 = 90 (B).  A B 1 2 3 4 5 6 7 8 9 

 

PARTE C: Aspectos antrópicos 

(Tipo de construção: olhar C1,  

Posição da construção: olhar C2,  

Densidade da ocupação: olhar C3) 

Tipo de construção (A) ou água no terreno (B).  A B 1 2 3 4 5 6 7 8 9 

Tipo de construção (A) ou lixo no terreno (B).  A B 1 2 3 4 5 6 7 8 9 

Tipo de construção (A) ou posição da construção (B).  A B 1 2 3 4 5 6 7 8 9 

Tipo de construção (A) ou densidade da ocupação (B).  A B 1 2 3 4 5 6 7 8 9 

Água no terreno (A) ou posição da construção(B).   A B 1 2 3 4 5 6 7 8 9 

Água no terreno (A) ou lixo no terreno(B).  A B 1 2 3 4 5 6 7 8 9 

Água no terreno (A) ou densidade da ocupação(B).   A B 1 2 3 4 5 6 7 8 9 

Lixo no terreno (A) ou posição da construção(B).   A B 1 2 3 4 5 6 7 8 9 

Lixo no terreno (A) ou densidade da ocupação (B).   A B 1 2 3 4 5 6 7 8 9 

Posição da construção (A) ou densidade da ocupação (B) A B 1 2 3 4 5 6 7 8 9 

  

C1 - Tipos de Construção:  

Qual tipo de construção contribui para um maior grau de risco? E para o tipo de construção escolhida, qual o seu grau de 

importância para um maior grau de risco? 

Madeira (A) ou alvenaria (B).   A B 1 2 3 4 5 6 7 8 9 

Madeira (A) ou mista (papelão, madeira, e/ou outro material) (B).   A B 1 2 3 4 5 6 7 8 9 

Mista (papelão, madeira, e/ou outro material) OU alvenaria (B) A B 1 2 3 4 5 6 7 8 9 
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C2 - Posição da construção. 

(Moradia próxima a base da encosta:  localizada em uma distância menor ou igual altura do talude,  

moradia distante da base da encosta:  localizada numa distância maior do que a altura do talude) 

Moradia próxima a base da encosta (A) ou moradia próxima ao 

topo da encosta (B).  A B 1 2 3 4 5 6 7 8 9 

Moradia próxima a base da encosta (A) ou moradia no meio da 

encosta (B).   A B 1 2 3 4 5 6 7 8 9 

Moradia próxima a base da encosta (A) ou moradia distante da 

base da encosta (B). A B 1 2 3 4 5 6 7 8 9 

Moradia próxima a base da encosta (A) ou moradia distante do 

topo da encosta (B) A B 1 2 3 4 5 6 7 8 9 

Moradia no meio da encosta (A) ou moradia próxima do topo da 

encosta (B).   A B 1 2 3 4 5 6 7 8 9 

Moradia no meio da encosta (A) ou moradia distante da base da 

encosta (B).   A B 1 2 3 4 5 6 7 8 9 

Moradia no meio da encosta (A) ou moradia distante do topo da 

encosta (B).   A B 1 2 3 4 5 6 7 8 9 

Moradia próxima do topo da encosta (A) ou moradia distante da 

base da encosta (B) A B 1 2 3 4 5 6 7 8 9 

Moradia próxima do topo da encosta (A) ou moradia distante do 

topo da encosta (B) A B 1 2 3 4 5 6 7 8 9 

Moradia distante da base da encosta (A) ou moradia distante do 

topo da encosta (B) A B 1 2 3 4 5 6 7 8 9 

  

C3 - Densidade da ocupação  

(Área consolidada: áreas densamente ocupadas, com infraestrutura básica. 

Área parcialmente consolidada: áreas em processo de ocupação, adjacentes as áreas de ocupação consolidada. 

Densidade da ocupação variando de 30% a 90%. Razoável infraestrutura básica.  

Área parcelada: áreas de expansão, periféricas e distantes de núcleo urbanizado. Baixa densidade de ocupação (até 

30%). Desprovidas de infraestrutura básica.  

Área mista:  considera-se a área quanto à densidade de ocupação e a implantação de infraestrutura básica. ) 

Área consolidada (A) ou Área parcialmente consolidada (B).  A B 1 2 3 4 5 6 7 8 9 

Área consolidada (A) ou Área parcelada (B).  A B 1 2 3 4 5 6 7 8 9 

Área consolidada (A) ou Área mista(B).  A B 1 2 3 4 5 6 7 8 9 
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Área parcialmente consolidada (A) ou Área parcelada (B). A B 1 2 3 4 5 6 7 8 9 

Área parcialmente consolidada (A) ou Área mista (B). A B 1 2 3 4 5 6 7 8 9 

Área parcelada (A) ou Área mista (B). A B 1 2 3 4 5 6 7 8 9 

  

C2 - Água no terreno 

Lançamento de água servida em superfície (A) ou concentração de 

água de chuva em superfície(B) A B 1 2 3 4 5 6 7 8 9 

Lançamento de água servida em superfície (A) ou vazamento da 

tubulação (B) A B 1 2 3 4 5 6 7 8 9 

Lançamento de água servida em superfície (A) ou fossa septica 

(B) A B 1 2 3 4 5 6 7 8 9 

Lançamento de água servida em superfície (A) ou tipo de sistema 

de drenagem (B) A B 1 2 3 4 5 6 7 8 9 

Concentração de água da chuva em superfície (A) ou vazamento 

da tubulação (B) A B 1 2 3 4 5 6 7 8 9 

Concentração de água da chuva em superfície (A) ou fossa séptica 

(B) A B 1 2 3 4 5 6 7 8 9 

Concentração de água da chuva em superfície (A) ou tipo de 

sistema de drenagem (B) A B 1 2 3 4 5 6 7 8 9 

Vazamento da tubulação (A) ou fossa séptica (B) A B 1 2 3 4 5 6 7 8 9 

Vazamento da tubulação (A) ou tipo de sistema de drenagem (B) A B 1 2 3 4 5 6 7 8 9 

Fossa séptica (A) ou tipo de sistema de drenagem (B) A B 1 2 3 4 5 6 7 8 9 

  

C3 - Tipo de sistema de drenagem. 

Inexistente (A) OU precário (B).   A B 1 2 3 4 5 6 7 8 9 

Inexistente (A) OU satisfatório (B). A B 1 2 3 4 5 6 7 8 9 

Precário(A) OU satisfatório (B).   A B 1 2 3 4 5 6 7 8 9 

  

C4 - Cobertura do terreno. 

Presença de árvores (A) ou vegetação rasteira/arbustiva (B).  A B 1 2 3 4 5 6 7 8 9 

Presença de árvores (A) ou área desmatada/solo exposto (B).  A B 1 2 3 4 5 6 7 8 9 

Presença de árvores (A) ou gramado/campo (B).   A B 1 2 3 4 5 6 7 8 9 

Presença de árvores (A) ou presença de bananeira (B).   A B 1 2 3 4 5 6 7 8 9 

Presença de árvores (A) ou cobertura urbana(B).   A B 1 2 3 4 5 6 7 8 9 
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Vegetação rasteira/arbustiva (A) ou área desmatada/solo exposto 

(B).   A B 1 2 3 4 5 6 7 8 9 

Vegetação rasteira/arbustiva (A) ou gramado/campo (B).   A B 1 2 3 4 5 6 7 8 9 

Vegetação rasteira/arbustiva (A) ou presença de bananeira (B).   A B 1 2 3 4 5 6 7 8 9 

Vegetação rasteira/arbustiva (A ou cobertura urbana(B).  A B 1 2 3 4 5 6 7 8 9 

Área desmatada/solo exposto (A) ou gramado/campo (B).   A B 1 2 3 4 5 6 7 8 9 

Área desmatada/solo exposto (A) ou presença de bananeira (B). A B 1 2 3 4 5 6 7 8 9 

Área desmatada/solo exposto (A) ou cobertura urbana(B).   A B 1 2 3 4 5 6 7 8 9 

Gramado/campo (A) ou presença de bananeira (B).   A B 1 2 3 4 5 6 7 8 9 

Gramado/campo (A) ou cobertura urbana(B).   A B 1 2 3 4 5 6 7 8 9 

Presença de bananeira (A) ou cobertura urbana(B).   A B 1 2 3 4 5 6 7 8 9 

 

 

  

D - Sinais de instabilidade no terreno 

  

Muro e/ou parede embarrigado (A) ou trinca na moradia (B).  A B 1 2 3 4 5 6 7 8 9 

Muro e/ou parede embarrigado(A) ou árvores, postes, muros 

inclinados (B).   A B 1 2 3 4 5 6 7 8 9 

Muro e/ou parede embarrigado (A) ou degrau de abatimento (B).   A B 1 2 3 4 5 6 7 8 9 

Muro e/ou parede embarrigado (A) ou cicatriz de escorregamento 

(B).   A B 1 2 3 4 5 6 7 8 9 

Muro e/ou parede embarrigado (A) ou trinca no terreno(B).  A B 1 2 3 4 5 6 7 8 9 

Trinca na moradia (A) ou árvores, postes, muros inclinados  (B).   A B 1 2 3 4 5 6 7 8 9 

Trinca na moradia (A) ou degrau de abatimento (B).   A B 1 2 3 4 5 6 7 8 9 

Trinca na moradia (A) ou cicatriz de escorregamento (B).   A B 1 2 3 4 5 6 7 8 9 

Trinca na moradia (A) ou trinca no terreno (B).   A B 1 2 3 4 5 6 7 8 9 

Árvores, postes, muros inclinados (A)  ou  degrau de abatimento 

(B).   A B 1 2 3 4 5 6 7 8 9 

Árvores, postes, muros inclinados (A) ou cicatriz de 

escorregamento (B).  A B 1 2 3 4 5 6 7 8 9 

Árvores, postes, muros inclinados (A) ou trinca no terreno (B).  A B 1 2 3 4 5 6 7 8 9 

Degrau de abatimento (A) ou cicatriz de escorregamento (B).   A B 1 2 3 4 5 6 7 8 9 

Degrau de abatimento (A) ou trinca no terreno (B).   A B 1 2 3 4 5 6 7 8 9 

Cicatriz de escorregamento (A) ou trinca no terreno (B).   A B 1 2 3 4 5 6 7 8 9 
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Appendix 2.2 
 

Respondent  Institution Field Time working 

with landslide 

assessment 

(years) 

Age 

(years) 

Gender 

Respondent 1 JICA8 Geology 

engineering 

10 30 Female 

Respondent 2 IPT9 Geology 10 45 Male 

Respondent 3 Civil Protection of City of 

Jundiai  

Geology 3.5 27 Male 

Respondent 4 Ministry of Habitation of 

city of São Bernardo do 

Campo  

Geology 7 43 Female 

Respondent 5 COMPDEC10, Castelo – 

Espirito Santo State 

Geology 8 35 Female 

Respondent 6 DRM 11– Rio de Janeiro 

State 

Geology 10 32 Female 

Respondent 7 Cemaden12  Geography 9 34 Male 

Respondent 8 Regea 13 Geology 40  Male 

Respondent 9 UFABC14 Geography  48 Female 

Respondent 10 Santana de Parnaiba 

Municipality 

Geology 15 54 Male 

Respondent 11 Cemaden Geology 25 50 Male 

Respondent 12 Cemaden Geography 11  Male 

Respondent 13 IPT Civil 

technician 

25 58 Male 

Respondent 14 IPT Civil 

engineering 

38 63 Male 

Respondent 15 IPT Geology 3 32 Female 

Respondent 16 IPT Civil 

engineering 

3 30 Female 

Respondent 17 IPT Geology 13 46 Female 

Respondent 18 IPT Chemistry 20 54 Male 

Respondent 19 IPT Geology 30 61 Male 

Respondent 20 IPT Civil 

technician 

37 61 Male 

Respondent 21 São Paulo Municipality Geology 25 59 Male 

Respondent 22 São Paulo Civil Protection Geoscience  4 26 Female 

Respondent 23 Santos Civil Protection  Geology 4 months 26 Male 

 

 

 

 
8 JICA - Japan International Cooperation Agency 
9 IPT – Instituto de Pesquisas Tecnológicas (Institute for Technological Research)  
10 COMPDEC - Coordenadoria Estadual de Defesa Civil (State Dean of Civil Protection) 
11 DRM - Departamento de Recursos Minerais (Mineral Resource Department) 
12 Cemaden - Centro Nacional de Monitoramento e Alertas de Desastres Naturais (National Center for 

Natural Disaster Monitoring and Alerts)  
13 Regea – Geologia Engenharia e Estudos Ambientais (Engineering Geology and Environmental Studies) 
14 UFABC - Universidade Federal do ABC (Federal University of ABC) 
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Appendix 2.3 

 

We used answers from expert 10 and Section A of the survey to explain how AHP computes each 

criterion weight and CR of each expert.  

Based on the choices made by expert 10, we built the matrix for each level of the hierarchy 

structure. Table 6 illustrates expert 10A’s choices for the pairwise comparisons on Section A of the 

survey. Section A compares three criteria: (i) natural aspects; (ii) anthropogenic aspects; and (iii) 

instability signs. For each pairwise comparison, the expert chooses which criterion is more 

important (a or b) and how many times it is more important, based on ranking table (Table 2.7). In 

the case of a and b having the same weight, the choice is 1.  

Table 2.6. Answer chosen for Section A - expert 10 A 

Pairwise comparison Choice 

(1) Natural aspects (a) or Anthropogenic aspects (b) 1 

(2) Natural aspects (a) or Instability signs (c) B3 

(3) Anthropogenic aspects (b) or Instability signs (c) 1 

 

Table 2.7. Table of ranking scale for criteria and alternatives (source: adapted from Saaty, 1980) 

Value of a Interpretation 

1 a and b are equally important 

3 a is slightly more important than b 

5 a is more important than b 

7 a is strongly more important than b 

9  a is absolutely more important than b 

2,4,6, 8  intermediate values 

 

The start table is represented by Table 2.8 and illustrates the possible combinations based on the 

pairwise comparison. It represents numerical values of a matrix A with n x n, where n is the number 

of criteria - in this case, n=3. Each entry of the matrix A is represented by ajk, and it represents the 

importance of criterion j relative to the criterion k. If ajk >1, criterion j is more important than 

criterion k; if ajk < 1 criterion k is more important than criterion j, and if ajk =1, both criteria have the 

same importance.  
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Table 2.8. Combination of possible answers for pairwise comparison of Natural aspects (N), Anthropogenic aspects 

(A), and Instability signs (I) 
 

N A I 

N 1 NA NI 

A 1/NA 1 AI 

I 1/NI 1/AI 1 

 

  Table 2.9 illustrates Table 2.8 filled with numerical values based on expert 10’s choices.  

The green cells are filled with expert answers, and the yellow cells are filled by the opposite value 

revealed by the expert’s choice.  For instance, the pairwise comparison of N and I has a numerical 

value equal to 1/3 (row N and column I), and the cell that represents the opposite pairwise 

comparison (row I and column N) is filled with the inverse numerical value (3). 

Table 2.9.  Numerical values of answer that represents the choices from Table 8 

 N A I 

N 1 1 1/3 

A 1 1 1 

I 3 1 1 

 

After filling the table with numerical values that represent the pairwise comparisons, we 

computed the specific weight of the criteria by summing the values on N, A, and I in each column 

(Table 2.10) and then normalizing the values. Equation 2.4 represents how each value (𝑎̅𝑗𝑘) of the 

normalized matrix Anorm is computed, and Equation 2.5 illustrates how the weight for each criterion 

is computed. Columns in blue from Table 10 represents matrix Anorm. 

 

𝑎̅𝑗𝑘 =
𝑎𝑗𝑘

∑ 𝑎𝑙𝑘
𝑛
𝑙=1

 
(2.4) 

𝑊𝑗 =
∑ 𝑎̅𝑗𝑘

𝑛
𝑖=0

𝑛
 

(2.5) 

  Where n is the number of criteria, 𝑎̅𝑗𝑘 is the normalized value of ajk, and Wj is the specific 

weight of each criterion.  
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Table 2.10. Numerical values summed by column 

 N A I 

N 1 1 1/3 

A 1 1 1 

I 3 1 1 

Asum 5 3 2.33 

 

The blue cells on Table 2.11 are the normalized values and the column Priority (W) is the 

specific weight of each criterion computed with Equation 2.5.  

 
Table 2.11. Normalized values of main matrix in blue and Priority (W) column is the specific weight of each criterion 

 N A I Priority (W) 

N 0.20 0.33 0.14 0.23 

A 0.20 0.33 0.43 0.32 

I 0.60 0.33 0.43 0.45 

 

After computing the specific weight for each criterion of the hierarchy level, based on expert 

10, we are interested in computing the CR. The AHP verifies consistency of the pairwise 

comparison of each hierarchy level by computing the CR. Values with CR larger or equal to 0.1 are 

not used since they are considered random.  

To compute CR, we first compute 𝜆𝑚𝑎𝑥 and CI (Consistency Index) with Equations 2.6 and 

2.7, respectively.  

𝜆𝑚𝑎𝑥 = (∑(𝐴𝑠𝑢𝑚 𝑖
∗ 𝑊𝑖)

𝑛

𝑖=1

) 
(2.6) 

 

𝐶𝐼 = ((𝜆𝑚𝑎𝑥) − 𝑛)/(𝑛 − 1) (2.7) 

 

In our example, 𝐴𝑠𝑢𝑚 = (5, 3, 2.33), and W = (0.23, 0.32, 0.45). Therefore, 𝜆𝑚𝑎𝑥 =

(5 ∗ 0.23 + 3 ∗ 0.32 + 2.33 ∗ 0.45) = 3.15. Computing CI with n=3, the numerical value is 0.074.  

Using Table 2.12 and Equation 2.8, we compute the CR of expert 10. 
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Table 2.12 - Values of Random Index (RI) 

n 2 3 4 5 6 7 8 9 10 

RI 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.51 

 

𝐶𝑅 = 𝐶𝐼/𝑅𝐼 (8) 

 

In our  example, n=3, so RI is equal to 0.58. Plugging these numbers into Equation 2.8,  we 

find CR equal to 0.128 (around 13%).  Since CR is higher than 0.1, pairwise comparision for this 

hierarchical level is considered random and should not be used.  
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Appendix 2.4 
 

Classifier, Category, and Specific Weight Value 
Classifier Category Specific Weight 

α < 10 N 0.64 

10 ≤ α <17 N 1.00 

17 ≤ α <30 N 1.798 

30 ≤ α <60 N 3.02 

60 ≤ α < 90 N 5.69 

α = 90 N 5.85 

soil favorable to instability (yes) N 4.72 

soil favorable to instability (not observed) N 2.36 

soil favorable to instability (no) N 0.00 

natural coverage favorable to instability (yes) N 1.88 

natural coverage favorable to instability (not observed) N 0.94 

natural coverage favorable to instability (no) N 0.00 

geology favorable to instability (yes) N 0.00 

geology favorable to instability (not observed) N 2.32 

geology favorable to instability (no) N 4.65 

wood A 3.15 

brick A 0.78 

mix material A 3.60 

near slope base A 2.15 

near slope top A 1.50 

far away from slope base A 0.35 

far away from slope top A 0.29 

middle of the slope A 2.06 

consolidated sector  A 0.95 

partially consolidated sector A 2.55 

developing sector A 2.96 

mix sector A 2.27 

waste water  A 0.96 

concentration of rainfall water (surface) A 0.98 

leak A 1.95 

septic tank A 0.84 

satisfy drainage system  A 0.54 

drainage system precarious A 0.04 

no drainage system A 0.62 

tree A 0.37 
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shrubs/bushes A 0.35 

deforestation/exposed soil A 1.14 

grass/ground vegetation A 0.41 

banana tree A 1.25 

urban coverage A 0.34 

garbage, land fill, or deposit A 3.88 

leaning wall I 9.53 

crack in the house I 11.01 

crack in the terrain I 11.01 

tilted trees, poles I 9.53 

downward sloping floor I 16.88 

landslide scars I 12.64 
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Appendix 3.1 
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Appendix 3.2 

Classifier Classifier Option Frequency Percentage 

brick FALSE 40 15.09 

brick TRUE 490 184.91 

wood FALSE 464 175.09 

wood TRUE 66 24.91 

mixed FALSE 484 182.64 

mixed TRUE 46 17.36 

TC_mature_soil FALSE 257 96.98 

TC_mature_soil TRUE 273 103.02 

T_construction  FALSE 216 81.51 

T_construction  TRUE 314 118.49 

spring FALSE 507 191.32 

spring TRUE 23 8.68 

landfill FALSE 329 124.15 

landfill TRUE 201 75.85 

garbage FALSE 355 133.96 

garbage TRUE 175 66.04 

crack FALSE 441 166.42 

crack TRUE 89 33.58 

leaning_wall FALSE 499 188.30 

leaning_wall TRUE 31 11.70 

DepTaludeAterro FALSE 325 122.64 

DepTaludeAterro TRUE 205 77.36 

scars FALSE 462 174.34 

scars TRUE 68 25.66 

tilted FALSE 415 156.60 

tilted TRUE 115 43.40 

conc_rainfall FALSE 20 7.55 

conc_rainfall TRUE 510 192.45 

wastewater FALSE 206 77.74 

wastewater TRUE 324 122.26 

conc_rainfall_water FALSE 328 123.77 

conc_rainfall_water TRUE 202 76.23 

septic_tank FALSE 526 198.49 

septic_tank TRUE 4 1.51 

angle C 24 22.64 
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angle D 137 129.25 

angle E 369 348.11 

 

 

Classifier Classifier Option Frequency Percentage 

EN FALSE 340 128.30 

EN TRUE 190 71.70 

TC FALSE 25 9.43 

TC TRUE 505 190.57 

TC_saprolite_soil  FALSE 451 170.19 

TC_saprolite_soil  TRUE 79 29.81 

banana FALSE 361 136.23 

banana TRUE 169 63.77 

drainage Y 72 40.75 

drainage P 240 135.82 

drainage N 218 123.37 

deforestation FALSE 495 186.79 

deforestation TRUE 35 13.21 

TC_unstable_structure  FALSE 515 194.34 

TC_unstable_structure  TRUE 15 5.66 

tree FALSE 210 79.25 

tree TRUE 320 120.75 

ground_veg FALSE 161 60.75 

ground_veg TRUE 369 139.25 

density d1 73 55.09 

density d2 422 318.49 

density d3 35 26.42 

TC_weath_rock  FALSE 517 195.09 

TC_weath_rock  TRUE 13 4.91 

fracture FALSE 529 199.62 

fracture TRUE 1 0.38 
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Appendix 3.3 

 

Model 1: Table with coefficient value, stander error, t-value and p-value 
====================================================== 

                      Value Std. Error t value p value 

------------------------------------------------------ 

angleD                0.49     0.49    0.31   

angleE                0.32     0.56     0.57    0.29   

brickTRUE             -1.70    0.53     -3.22   0  

woodTRUE              1.02     0.34     3.01    0  

mixedTRUE             0.09     0.51     0.18    0.43   

ENTRUE                0.70     0.39     1.82    0.03   

TC_mature_soilTRUE    0.58     0.23     2.53    0.01   

TC_saprolite_soilTRUE 0.25     0.29     0.86    0.20   

springTRUE            -0.22    0.68     -0.33   0.37   

landfillTRUE          0.10     0.33     0.29    0.39   

constructionTRUE      0.46     0.37     1.25    0.11   

garbageTRUE           0.03     0.31     0.11    0.46   

crackTRUE             2.18     0.36     6.11    0    

leaning_wallTRUE      2.03     0.57     3.55    0  

scarsTRUE             4.25     0.38     11.22   0    

downward_floorTRUE    1.28     0.40     3.23    0  

tiltedTRUE            0.85     0.34     2.47    0.01   

conc_rainfallTRUE     1.63     0.49     3.32    0  

wastewaterTRUE        0.60     0.24     2.46    0.01   

leakTRUE              -0.41    0.25     -1.65   0.05   

bananaTRUE            0.39     0.25     1.55    0.06   

R1| R2                -0.72    0.91     -0.78   0.22   

R2| R3                3.56     0.94     3.78    0  

R3| R4                9.02     1.05     8.60    0    

------------------------------------------------------ 
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Model 1: Test to check for ordinal fashion of the classifiers 
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Model 2: Table with coefficient value, stander error, t-value and p-value 
========================================================== 

                          Value Std. Error t value p value 

---------------------------------------------------------- 

angleD                    0.15     0.50     0.31    0.38   

angleE                    0.47     0.57     0.82    0.21   

brickTRUE                 -1.48    0.55     -2.72   0  

woodTRUE                  0.79     0.37     2.14    0.02   

mixedTRUE                 0.07     0.53     0.14    0.44   

ENTRUE                    0.63     0.42     1.50    0.07   

TC_mature_soilTRUE        0.58     0.24     2.38    0.01   

TC_saprolite_soilTRUE     0.24     0.31     0.77    0.22   

constructionTRUE          0.54     0.38     1.39    0.08   

springTRUE                -0.08    0.68     -0.12   0.45   

landfillTRUE              0.03     0.35     0.08    0.47   

garbageTRUE               0.08     0.32     0.24    0.40   

crackTRUE                 2.28     0.37     6.14    0    

leaning_wallTRUE          2.26     0.59     3.85    0  

scarsTRUE                 4.25     0.39     10.83   0    

downward_floorTRUE        1.10     0.39     2.78    0  

tiltedTRUE                0.73     0.35     2.12    0.02   

conc_rainfallTRUE         1.00     0.55     1.81    0.03   

wastewaterTRUE            0.39     0.26     1.51    0.07   

leakTRUE                  -0.62    0.26     -2.41   0.01   

bananaTRUE                0.22     0.27     0.83    0.20   

densityd2                 0.07     0.34     0.21    0.42   

densityd3                 0.21     0.59     0.36    0.36   

TCTRUE                    -0.12    0.56     -0.21   0.42   

TC_unstable_structureTRUE -1.10    0.81     -1.35   0.09   

treeTRUE                  -0.27    0.25     -1.08   0.14   

ground_vegTRUE            0.88     0.28     3.10    0  

drainage.L                1.31     0.29     4.48    0  

drainage.Q                -0.03    0.19     -0.17   0.43   

R1| R2                    -1.07    1.15     -0.93   0.18   

R2| R3                    3.72     1.17     3.19    0.001  

R3| R4                    9.30     1.27     7.35      0    

---------------------------------------------------------- 
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Model 2: Test to check  for ordinal fashion of the classifiers 
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Model 3: Table with coefficient value, stander error, t-value and p-value 
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========================================================== 

                          Value Std. Error t value p value 

---------------------------------------------------------- 

brickTRUE                 -1.60    0.44     -3.65   0  

woodTRUE                  0.84     0.34     2.45    0.01   

ENTRUE                    0.39     0.26     1.51    0.07   

TC_mature_soilTRUE        0.54     0.23     2.33    0.01   

constructionTRUE          0.61     0.24     2.49    0.01   

crackTRUE                 2.27     0.35     6.46    0    

leaning_wallTRUE          2.21     0.56     3.91    0  

scarsTRUE                 4.20     0.39     10.88   0    

downward_floorTRUE        1.10     0.39     2.79    0  

tiltedTRUE                0.75     0.34     2.22    0.01   

conc_rainfallTRUE         1.01     0.52     1.92    0.03   

wastewaterTRUE            0.39     0.24     1.59    0.06   

leakTRUE                  -0.62    0.25     -2.48   0.01   

TC_unstable_structureTRUE -0.88    0.77     -1.14   0.13   

ground_vegTRUE            0.88     0.26     3.32    0 

drainage.L                1.31     0.29     4.52    0  

drainage.Q                -0.03    0.19     -0.18   0.43   

R1| R2                    -1.54    0.68     -2.27   0.01   

R2| R3                    3.23     0.72     4.47    0  

R3| R4                    8.77     0.84     10.47   0    

---------------------------------------------------------- 
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Model 3: Test to check  for ordinal fashion of the classifiers 
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Model 4: Table with coefficient value, stander error, t-value and p-value 

 

 
=================================================== 

                   Value Std. Error t value p value 

--------------------------------------------------- 

brickTRUE          -1.59    0.43     -3.67   0  

woodTRUE           0.94     0.34     2.78    0  

TC_mature_soilTRUE 0.49     0.23     2.16    0.02   

constructionTRUE   0.69     0.24     2.86    0  

crackTRUE          2.26     0.35     6.52    0    

leaning_wallTRUE   2.26     0.56     4.04    0  

scarsTRUE          4.21     0.39     10.90   0    

downward_floorTRUE 1.07     0.39     2.78    0  

tiltedTRUE         0.86     0.33     2.57    0.01   

conc_rainfallTRUE  1.06     0.52     2.03    0.02   

leakTRUE           -0.56    0.25     -2.27   0.01   

ground_vegTRUE     0.92     0.26     3.57    0  

drainage.L         1.40     0.28     4.98    0  

drainage.Q         -0.05    0.19     -0.27   0.40   

R1| R2             -1.64    0.67     -2.46   0.01   

R2| R3             3.03     0.70     4.33    0  

R3| R4             8.59     0.83     10.41   0    

--------------------------------------------------- 
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Model 4: Test to check  for ordinal fashion of the classifiers 
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Model 5: Table with coefficient value, stander error, t-value and p-value 

 
====================================================== 

                      Value Std. Error t value p value 

------------------------------------------------------ 

angleD                0.24     0.49     0.49    0.31   

angleE                0.32     0.56     0.57    0.29   

brickTRUE             -1.70    0.53     -3.22   0  

woodTRUE              1.02     0.34     3.01    0  

mixedTRUE             0.09     0.51     0.18    0.43   

ENTRUE                0.70     0.39     1.82    0.03   

TC_mature_soilTRUE    0.58     0.23     2.53    0.01   

TC_saprolite_soilTRUE 0.25     0.29     0.86    0.20   

springTRUE            -0.22    0.68     -0.33   0.37   

landfillTRUE          0.10     0.33     0.29    0.39   

constructionTRUE      0.46     0.37     1.25    0.11   

garbageTRUE           0.03     0.31     0.11    0.46   

crackTRUE             2.18     0.36     6.11    0    

leaning_wallTRUE      2.03     0.57     3.55    0  

scarsTRUE             4.25     0.38     11.22   0    

downward_floorTRUE    1.28     0.40     3.23    0  

tiltedTRUE            0.85     0.34     2.47    0.01   

conc_rainfallTRUE     1.63     0.49     3.32    0  

wastewaterTRUE        0.60     0.24     2.46    0.01   

leakTRUE              -0.41    0.25     -1.65   0.05   

bananaTRUE            0.39     0.25     1.55    0.06   

R1| R2                -0.72    0.91     -0.78   0.22   

R2| R3                3.56     0.94     3.78    0  

R3| R4                9.02     1.05     8.60    0    

------------------------------------------------------ 
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Model 5: Test to check  for ordinal fashion of the classifiers 
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Model 6: Table with coefficient value, stander error, t-value and p-value 

 
=================================================== 

                   Value Std. Error t value p value 

--------------------------------------------------- 

brickTRUE          -1.77    0.43     -4.15   0  

woodTRUE           1.04     0.33     3.15    0  

ENTRUE             0.65     0.26     2.55    0.01   

TC_mature_soilTRUE 0.65     0.22     2.90    0  

crackTRUE          2.23     0.35     6.41    0    

leaning_wallTRUE   2.06     0.56     3.66    0  

scarsTRUE          4.31     0.38     11.43   0    

downward_floorTRUE 1.26     0.40     3.17    0  

tiltedTRUE         0.87     0.34     2.59    0  

conc_rainfallTRUE  1.75     0.49     3.60    0  

wastewaterTRUE     0.64     0.23     2.78    0  

leakTRUE           -0.39    0.24     -1.61   0.05   

bananaTRUE         0.48     0.24     1.98    0.02   

R1| R2             -1.12    0.62     -1.80   0.04   

R2| R3             3.08     0.66     4.67    0 

R3| R4             8.50     0.78     10.93   0    

--------------------------------------------------- 
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Model 6: Test to check  for ordinal fashion of the classifiers 
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Model 7: Table with coefficient value, stander error, t-value and p-value 

 

 
========================================================== 

                          Value Std. Error t value p value 

---------------------------------------------------------- 

angleD                    0.40     0.49     0.82    0.21   

angleE                    0.54     0.56     0.96    0.17   

brickTRUE                 -1.65    0.43     -3.82   0  

woodTRUE                  1.04     0.33     3.12    0  

ENTRUE                    0.69     0.39     1.77    0.04   

TC_mature_soilTRUE        0.78     0.23     3.41    0  

TC_saprolite_soilTRUE     0.13     0.30     0.43    0.33   

TC_unstable_structureTRUE -0.70    0.78     -0.90   0.18   

landfillTRUE              0.40     0.26     1.55    0.06   

garbageTRUE               0.30     0.25     1.22    0.11   

crackTRUE                 2.14     0.35     6.14    0    

leaning_wallTRUE          2.14     0.57     3.73    0  

tiltedTRUE                1.05     0.33     3.18    0  

scarsTRUE                 4.29     0.38     11.19   0    

conc_rainfallTRUE         1.66     0.50     3.34    0 

leakTRUE                  -0.38    0.24     -1.56   0.06   

wastewaterTRUE            0.57     0.24     2.36    0.01   

bananaTRUE                0.27     0.26     1.02    0.15   

treeTRUE                  -0.28    0.25     -1.14   0.13   

ground_vegTRUE            1.13     0.28     4.08    0  

R1| R2                    -0.06    0.86     -0.07   0.47   

R2| R3                    4.36     0.91     4.79    0  

R3| R4                    9.78     1.03     9.53    0    

---------------------------------------------------------- 
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Model 7: Test to check  for ordinal fashion of the classifiers 
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APPPENDIX 4.1   

 

Figure 4.27. 4.27A and 4.27B - Raster from the disturbed site.  Fig. 4.27A - Slope Angle in degrees. Part of the map has 

high slope angle (check orange and red). Fig. 4.27B – Higher flow accumulation values illustrate locations in which 

water would flow and accumulate. These rasters were used to compute slope stability using SHALSTAB.  
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Figure 4.28. 4.28A and 4.28B - Raster from the undisturbed site. Fig. 4.28A Slope Angle in degrees. Part of the map 

has high slope angle (check orange and red). Fig. 4.28B – Higher flow accumulation values illustrate locations in which 

water would flow and accumulate.  These rasters were used to compute slope stability using SHALSTAB.  
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APPENDEX 4.2 

 

We used Eq. 4.1 and 4.2 to compute the field-saturated hydraulic conductivity. Therefore, we took 

measurements of height (h) and diameters of the bottom (d1) and top (d2) of the bottomless bucket. 

The bottomless bucket h=23.5 cm, d1=23cm, and d2=25cm.  

Table 4.9 shows values measured in the field and necessary to compute Ksat (see Eq. 4.1 and 

4.2) in the disturbed site and Table 4.10 for the undisturbed site. 

 

Table 4.9. Values from the disturbed site necessary to compute Ksat. Height is the water height in the bottomless bucket 

when the infiltration rate is measured, area base is computed with d1, volume is the possible volume of the bucket, 

Depth is the depth of the bottomless bucket inside the soil, and LG measured and computed with Eq. 03. 

Location Height (m) Area base (cm) Volume (cm3) Depth (cm) LG(cm) 

1 20 418.88 8377.68 3.5 10.15 

2 18.25 418.88 7644.63 5.25 11.89 

3 22 418.88 9215.44 1.5 8.17 

4 21.98 418.88 9207.07 1.52 8.19 

5 22.8 418.88 9550.55 0.7 7.37 

6 21 418.88 8796.56 2.5 9.16 

 

  
Table 4.10. Values from the undisturbed site necessary to compute Ksat. Height is the water height in the bottomless 
bucket when the infiltration rate is measured, area base is computed with d1, volume is the possible volume of the 

bucket, Depth is the depth of the bottomless bucket inside the soil, and LG measured and computed with Eq. 03. 

Site Height (cm) Area base (cm) Volume (cm3) Depth (cm) LG (cm) 

1 21.25 418.88 8901.28 2.25 8.91 

2 21 418.88 8796.56 2.5 9.16 

3 22.25 418.88 9320.17 1.25 7.92 

4 21 418.88 8796.56 2.5 9.16 

5 21.13 418.88 8851.02 2.37 9.03 
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APPENDIX 4.03 

Site Disturbed A1 

 
 

Grain Size Percentage 

Clay 14.36 

Silt 55.59 

Fine Sand 24.36 

Medium Sand 1.68 

Coarse Sand 3.74 
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Site Disturbed A2 

 

 

 
 

 
Grain Size Percentage 

Clay 14.36 

Silt 55.59 

Fine Sand 24.36 

Medium Sand 1.68 

Coarse Sand 3.74 

 

 

clay 
silt fine sand 

medium 
sand 

course 
sand 

gravel 
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Site Disturbed A3 

 

 
 

 

 

 

 

 

 

 

 

 
Grain Size Percentage 

Clay 35.53 

Silt 11.59 

Fine Sand 15.91 

Medium Sand 0.60 
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Coarse Sand 36.12 

 

 

 

 

Site Disturbed A4 

 

 

 
 

Grain Size Percentage 

Clay 13.60 

Silt 36.12 

Fine Sand 23.29 

Medium Sand 0.08 

Coarse Sand 10.67 

clay silt fine sand 
medium 

 sand coarse sand gravel 
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Site Disturbed A5 
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Clay 7.15 

Silt 47.47 

Fine Sand 19.71 

Medium Sand 1.05 

Coarse Sand 7.50 

 

 

Site Disturbed A6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Grain Size Percentage 

Clay 37.60 

Silt 31.70 

Fine Sand 21.72 
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Medium Sand 0.75 

Coarse Sand 5.13 

 

 

 

 

 

 

Site Undisturbed N1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.0001 0.0010 0.0100 0.1000 1.0000 10.0000 100.0000

P
e

rc
e

n
ta

g
e

  
S

ie
v
e

d

Grain Diameter (mm)

SBC Site N1

Sieves 200 100 50 30 16 10 4

clay 
silt fine sand medium 

sand 
coarse sand gravel 



 

191 

Grain Size Percentage 

Clay 18.26 

Silt 20.35 

Fine Sand 16.75 

Medium Sand 1.40 

Coarse Sand 22.57 

 

 

 

Site Undisturbed N2 
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Grain Size Percentage 

Clay 23.25 

Silt 18.87 

Fine Sand 17.68 

Medium Sand 1.51 

Coarse Sand 21.18 

 

 

 

Site Undisturbed N3 

 
 

 

Grain Size Percentage 

Clay 33.45 

clay silt 
fine sand medium sand coarse  

sand 
gravel 
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Silt 25.03 

Fine Sand 21.46 

Medium Sand 1.59 

Coarse Sand 13.33 

 

 

 

 

 

 

 

Site Undisturbed N4 
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Grain Size Percentage 

Clay 33.65 

Silt 14.52 

Fine Sand 24.45 

Medium Sand 5.05 

Coarse Sand 15.63 

 

 

Site Undisturbed N5 
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Grain Size Percentage 

Clay 24.32 

Silt 13.10 

Fine Sand 13.35 

Medium Sand 1.72 

Coarse Sand 24.90 
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APPENDIX 4.5 
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Appendix 5.1 

Evacuation January 

1. Information about evacuation was clear (yes, no)  

   

 

 

 Value Perc15 

Yes 311 0.69 

No 141 0.31 
 

 

2. Evacuation maps were easy to read? (yes, no) 

 

  

 Value Perc16 

Yes 302 0.68 

No 145 0.32 
 

 
15 Value percentage computed excluding NA values.  
16 Value percentage computed excluding NA values.  
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3. Please check all that apply. Considering the January 2018 evacuation order, I heard about the 

evacuation order from: 

 

Source Value Per17 

county 361 0.76 

TV 205 0.43 

radio 105 0.22 

online 74 0.16 

social 

media 

121 0.26 

friends 120 0.25 

neighbors 94 0.20 

family 90 0.19 

police/ 

firefighters 

157 0.33 

 

 

 

 

 

4. Evacuated in January? (yes, no)  

  

 

 Value Perc18 

Yes 307 0.61 

No 193 0.39 
 

 

 

 
17 Value percentage computed excluding NA values.  
18 Value percentage computed excluding NA values.  
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5. Reasons to not evacuate 

 
 

 

 

reasons not to evacuate value perc 

voluntary 132 0.66 

did not think was at risk 92 0.46 

evacuation fatigue 30 0.15 

out of town 28 0.14 

felt safe 57 0.29 

pet 16 0.08 

police did not ask 16 0.08 

no debris flow knowledge 15 0.08 

others 18 0.09 
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6. When you evacuated, where did you go? 

 

 

location value perc 

hotel 198 0.60 

friends 113 0.34 

family 82 0.25 

shelter 4 0.01 

other 37 0.11 
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Appendix 5.2 

Evacuation March 

 

1. Information about evacuation was clear (yes, no)  

 

 Value Perc19 

Yes 355 0.81 

No 83 0.19 
 

 

2. Evacuation maps were easy to read? (yes, no) 

 

 Value Perc20 

Yes 330 0.73 

No 109 0.24 
 

 

 
19 Value percentage computed excluding NA values.  
20 Value percentage computed excluding NA values.  
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3. Please check all that apply. Considering the March 2018 evacuation order, I heard about the 

evacuation order from: 

 

Source Value Per21 

county 381 0.79 

TV 200 0.42 

radio 108 0.22 

online 81 0.17 

social 

media 

124 0.26 

friends 107 0.22 

neighbors 85 0.18 

family 87 0.18 

police/ 

firefighters 

113 0.23 

 

 

 

 

4. Evacuated in March? (yes, no)  

 

 Value Perc22 

Yes 298 0.65 

No 168 0.37 
 

 
21 Value percentage computed excluding NA values.  
22 Value percentage computed excluding NA values.  
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5. Reasons to not evacuate 

 
 

reasons not to 

evacuate # 
perc 

voluntary 114 0.66 

did not think was 

at risk 74 
0.43 

evacuation 

fatigue 16 
0.09 

out of town 23 0.13 

felt safe 53 0.30 

pet 12 0.07 

police did not 

ask 16 
0.09 

did not think was 

going to rain a 

lot 11 

0.06 

could not afford 

hotel 4 
0.02 

others 4 0.02 
 

 

 

 
 

 

6. When you evacuated, where did you go? 
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location value perc 

hotel 181 0.57 

friends 96 0.30 

family 62 0.19 

shelter 3 0.01 

other 32 0.10 
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