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Abstract

Design and Evaluation of Pervasive Augmented Reality Systems

by

Brandon Huynh

Augmented Reality (AR) is an interactive technology that delivers rich and immersive

computer-generated perceptual information overlaid onto the real world. AR technology con-

tinues to improve over time, potentially enabling an ”always-on” AR future, where wearable

AR devices are as comfortable to wear as glasses and have an all-day battery life. This concept

has been termed ”Pervasive Augmented Reality”, in which AR is the predominant form of per-

sonal computing, instantly accessible, constantly providing information and available to assist

in everyday tasks.

Pervasive AR represents a shift in how, when, and where we use computers, but there are

few guidelines for how to effectively create these types of systems. Current research focuses

on single-purpose use cases, designed for specific tasks and environments, such as navigation

or maintenance. They rarely consider AR as a mobile experience that can be taken anywhere,

where computing happens continuously and persistently. This dissertation addresses that in-

sufficiency by analyzing the design and evaluation of AR artifacts for 3 use cases: AR Recom-

mender Systems, AR Language Learning, and AR Multitasking. We conduct our investigation

in 3 parts. 1) What benefits do AR applications provide over non-AR based systems? 2) What

additional inputs and signals can AR applications benefit from? and 3) How do we evolve

current AR systems towards a pervasive AR future? Our work makes contributions through

empirical user studies, prototype systems, and the development of new interaction techniques,

revealing insights into the tools and techniques needed for developing pervasive AR, as well as

the opportunities and new possibilities it enables over existing technologies.
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Chapter 1

Introduction

Augmented Reality enhances the user’s experience of the real world through computer gen-

erated perceptual information. Research on Augmented Reality (AR) traces its roots back to

Ivan Sutherland’s demonstration of a head-mounted display in 1968, though the idea of adding

information to the physical world to annotate it likely goes back even further. Historically, re-

search has focused on enabling technologies for AR devices, such as enhancements in displays,

camera sensors, and 3D registration algorithms. That research culminated in the widespread

availability of AR camera applications today, turning AR from niche concept to widely recog-

nized computing paradigm.

Large technology companies are now investing billions of dollars to develop better head-

mounted AR displays. Products like the Microsoft HoloLens can map the environment in real

time with increasing accuracy, using that information to deliver virtual graphics that exhibit

realistic dynamic behavior, such as occluding virtual objects behind real objects. Trends in the

development of AR hardware as well as adjacent technologies suggest that future devices may

very well be “always-on”, similar to and even more so than smartphones.

Comfort and Display Size. Current headsets are heavy and difficult to wear for long peri-

ods of time. However, there are already a number of industrial research prototypes with much
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Introduction Chapter 1

smaller, more lightweight displays, including the North Focals, Nreal Glasses, and Meta’s

Project Aria, whose form factor more closely resembles a pair of eyeglasses. We believe it is

reasonable to expect future displays to be not much larger than standard prescription eyewear,

especially if computation is offloaded to an external device such as a smartphone.

Battery Life. Today’s standalone HMDs have a battery life of about three hours, which

is not ideal for everyday use. Tethered devices such as the Magic Leap AR headset offer one

potential solution, as they can improve on battery life by offloading battery storage and com-

putation to another more thermally efficient device. Increased power efficiency from smaller

semiconductor manufacturing processes can be expected from a variant of Moore’s law. While

the HoloLens uses a Qualcomm system-on-chip (SoC) fabricated with a 10 nanometer (nm)

process, 5nm chips are already in production for other mobile devices, such as Apple’s iPad,

with 3nm and even 2nm processes estimated to arrive by 2025. Finally, battery capacity im-

provements from other technologies, like electric cars, might eventually trickle down to these

devices.

Connectivity. Many of the current AR devices use the same SoC components typically

found in modern smartphones. Thus it is reasonable to expect that connectivity features, such

as 5G networking, will be easy to integrate into future devices. This would provide access to

a variety of services that would be difficult to achieve on the fly, or with limited computation

power. Detailed models of public environments could be downloaded on the fly to improve

tracking. Sensor data could be streamed to machine learning services to semantically analyze

the user’s context.

These trends suggest future devices will be lighter and more comfortable, last longer, and

be powered by intelligent algorithms. The improved ergonomics will encourage a continuous

and near omnipresent AR experience, shifting from the sporadic single-purpose usage of to-

day. The possibility of a computer system having a constant role in our lives presents new

design challenges, and more and more researchers have shifted from enabling technologies to

2



Introduction Chapter 1

enabling interfaces and experiences. In a 2018 survey of papers published at the International

Symposium of Mixed and Augmented Reality (ISMAR), Kim et al. distilled research trends

from the last 10 years and proposed research directions for the next decade [1]. They identi-

fied a trend towards increasing context-awareness and semantic understanding and highlighted

challenges in human factors research. A new vision is emerging of Augmented Reality as a

personal computing medium, taking the act of computing out of individual devices and em-

bedding them into the physical world. The next challenge is not in determining whether these

displays are feasible, but how we will interact with them.

Grubert et al. provided a name for this concept, termed “Pervasive Augmented Reality” [2].

Other similar terms include “Always-on Augmented Reality” or “Context-aware Augmented

Reality”. Pervasive AR represents a dramatic shift in the way we use computers. Never has the

operation of a computer system been so closely aligned with our own perception of the world.

AR systems can directly augment the information received by our senses. It is imperative that

we understand the right and wrong ways to develop these systems. This dissertation focuses on

generating new knowledge in the design and evaluation of pervasive AR systems, recognizing

that these systems need to be developed ethically and responsibly.

1.1 Motivation

Augmented Reality research has expanded significantly in the past two decades, with the

increased availability of affordable AR displays. Most of this work has focused on addressing

technical and user experience challenges, such as spatial mapping, view management, or in-

teraction techniques [1, 3]. There hasn’t been much work focusing on the pervasive qualities

of the medium, namely the combination of mobility, presence, and context sensitivity [4, 5].

AR headsets can potentially be operated on the move, anywhere in the world, unlike desktop

PCs. They can immerse your senses, unlike smartphones. And they situate their content di-

3



Introduction Chapter 1

rectly onto your physical environment, unlike VR headsets. Together, these features produce a

distinct computing medium, in search of a new operating paradigm.

The construction of systems in this paradigm is an open research challenge, as they touch

upon many domains that have not been traditionally studied in the AR literature. Take, for

instance, the role and impact of human perception and cognition. Work has been done on core

aspects of visual perception, such as increasing realism in AR graphics [6–8], but compared to

the desktop space [9], we know very little about the other cognitive processes invoked when

using AR. Another example is the presentation and visualization of AR content. Most AR

applications are built to be used in a specific environment and can be optimized through trial

and error for that environment. But once we start to move around in the world, the placement

and integration of AR content becomes much more complex. Researchers have only recently

begun to explore solutions to this problem [10, 11].

This work aims to address these shortcomings and inform the design of future AR experi-

ences through the investigation of three key research questions:

• What benefits do AR applications provide over non-AR based systems?

• What additional inputs and signals can AR applications benefit from?

• How do we evolve current AR systems towards a pervasive AR future?

I chose these questions because I believe the answers will help to drive increased adoption

of Augmented Reality. In the following sections, I provide further justifications for these modes

of inquiry, and also provide a brief overview of the background literature that informed my

choice of projects in service of these questions.

4
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1.1.1 Benefits of AR

What benefits do AR applications provide over non-AR-based systems? The goal of

this question is to help identify the value proposition for pervasive AR. Despite significant

progress, it is still unclear what the distinct benefits and advantages of using AR systems are,

and it is difficult to convey why they should be more widely adopted to a general audience. For

AR to become a mainstream computing platform, we need to identify what value it can provide

for the average user, and what distinct qualities developers should focus their applications

around. By answering this question, we can provide guidelines for developers to assess whether

their applications will be effectively persuade users away from existing technologies.

There has been work done to identify benefits in the context of specific tasks, such as in

the deployment of AR for maintenance and repair tasks. Henderson and Feiner, for example,

developed a head-worn AR prototype for mechanics to use when repairing armored personnel

carriers [12]. Their study found that mechanics were able to identify task locations more

quickly using the AR system, compared to the same information presented on an LCD screen.

In a related study, the same authors demonstrated an AR prototype to provide assistance during

procedural maintenance tasks [13]. Again comparing to an LCD display, they found AR to be

faster during the psychomotor phases of these tasks. These works demonstrated the value of

AR in its ability to assist users in accomplishing spatial tasks.

Researchers have also explored the use of AR for assembly tasks, particularly in factory

settings. One of the earliest instances was at Boeing research, where Caudell and Mizell ex-

plored the use of an AR headset for assembling wire bundles in an aircraft [14]. This was later

tested in the field by Curtis et al. in 1999 [15]. Later works directly compared the use of AR

against other forms of assembly instructions, including paper manuals [16–18] and computer

screens [16]. These works generally found AR to yield faster assembly times with fewer errors.

It is clear that AR can succeed when applied to tasks that have a high degree of spatial
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coordination. However, these types of tasks are niche and typically performed by those with

additional prior training and education, rather than your everyday computer user. Additionally,

due to the highly technical nature of the operations, there are few alternative methods besides

text instructions to compare against, making their results difficult to generalize. In contrast, ap-

plications of AR to tasks in personal and domestic settings are less explored. In these settings,

pervasive AR systems are more likely to compete with existing forms of consumer technology,

such as smartphones or online services.

One example of a personal use case where AR has recently become popularized is shop-

ping or e-commerce. For instance, smartphone applications such as those provided by IKEA

and Houzz allow users to visualize 3D models of furniture in their living spaces to assist in

purchasing decisions. Clothing companies like ZOZO and Nike are experimenting with AR

apps to allow users to virtually try on clothing. However, the majority of research in this space

has focused more on the benefits of using AR with regards to marketing and branding [19,20].

While these benefits are certainly appealing to businesses, they don’t provide many insights on

the potential incentives for end users. Additionally, as these works focus on smartphone based

AR, it is unclear how many of these effects would hold in head-worn AR.

Billinghurst et al. summarized decades of research in their 2015 Augmented Reality sur-

vey [4], and in it they also identified modern applications of AR in a variety of domains.

Unsurprisingly, most of these domains were also highly technical and industry specific, such

as Marketing, Medicine, and Architecture. However, one domain they focused on could be

considered a personal use case: Education. While education technology is usually driven by

external forces such as school boards and curriculum standards, it is also something private

individuals choose to adopt. Many education technologies and products exist that are not

adopted by schools but still used by consumers on a daily basis, such as spaced repetition

applications [21] or gamified learning tools [22].

An early example of the use of AR in education is the MagicBook project [23], which

6
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used a physical book to facilitate transitions between the real world and virtual reality content.

Later work on AR books have focused on the use of physical books with tracking markers

that indicate AR content users can interact with, viewed through a secondary device such as

a mobile computer or PC computer with a webcam [24, 25]. The results of these studies are

encouraging as they demonstrated slight improvements to learning outcomes when using AR.

However, they are also not using head-worn AR, so it is unclear whether factors like immersion

or visual-spatial processing would have an effect.

Comparative research that identifies the benefits of AR has largely focused on highly spe-

cialized applications or non-spatial presentations of content. These are either too specific to

be relevant to your average consumer, or they aren’t taking into consideration other important

qualities of future AR systems that are more mobile and spatially aware. To really understand

what are the benefits of AR, especially when used pervasively, we need to be looking at con-

sumer use cases, and comparing them to other consumer technologies. In chapters 2 and 3

of this dissertation, we extend the existing body of work through new studies focusing on the

e-commerce and education scenarios. By using prototype applications deployed onto spatial

mapping enabled AR headsets, the benefits we discover will be more applicable to pervasive

AR. In both instances, we also implement the same algorithms and graphical content into an

existing consumer technology. This allows us to evaluate their acceptability as replacements,

as users are already familiar with the existing technology and could speculate on whether they

preferred to use our AR versions instead.

1.1.2 Additional Inputs and Signals

What additional inputs and signals can AR applications benefit from? The field is still

in the early stages of understanding the needs and demands of pervasive AR, and there is not an

accepted standard for what technical capabilities should be incorporated into a pervasive AR

7
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system. By answering this question, we provide researchers, designers, and platform develop-

ers with evidence to help them assess where to direct their efforts. This is especially valuable

for design considerations of large software libraries and platform APIs, which will ultimately

influence the kinds of pervasive AR apps that get created.

The taxonomy laid out by Grubert et al. provided a broad overview of the concepts of per-

vasive AR, and highlighted additional work that needs to be done to make it a reality [2]. When

summarizing the existing body of research, they discussed the surprising lack of works on per-

formance optimization and energy use optimization (only [26–28]), as well as the lack of works

utilizing user-centric context sources (e.g. current task, physical conditions, cognitive factors),

as an input for managing AR content. Indeed, only two prior works featuring user context mod-

els reached the prototype state of investigation [29, 30] at the time of publication. Ultimately,

the authors felt that existing approaches up till now were “isolated islands of topics” that were

not mature enough for use in implementing pervasive AR, and that the biggest challenge ahead

of us is to build AR interfaces that are actually multi-purpose and context-controlled.

Performance optimization is a notable oversight in the AR literature, considering that the

desired goal of pervasive AR is to allow for long-term usage and increased context-awareness.

Simultaneous Localization and Mapping (SLAM) algorithms, which AR systems utilize for

spatial mapping, make increasing use of deep learning methods to improve accuracy at the

cost of performance [31, 32]. State-of-the-art context-awareness algorithms now almost uni-

versally use large deep learning models for tasks such as object recognition [33] and natural

language processing [34]. Unfortunately, model optimization and inference speed is usually

an afterthought for most machine learning researchers. Minaee et al. surveyed image segmen-

tation models using deep learning, and found only 7 models out of 38 that reported inference

speed at all, and only two of which might be considered real-time (25 FPS or higher accord-

ing to the authors) [35]. They concluded there was plenty of room for improvement in terms

of both inference speed and memory efficiency, especially if we want to fit them into mobile

8
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devices. Given that researchers continue to focus on accuracy and create larger and more com-

putationally expensive models, it is not clear how we can cram all these algorithms into a small

AR form factor that is still comfortable to wear and has an all-day battery life.

There has been some work on improving the inference efficiency of deep learning models.

Jacob et al. introduced the quantization of weights and activation functions as integers [36],

reducing memory footprint by 4x and improving latency by up to 50% on some models. Other

works have taken advantage of sparsity to improve performance, following the observation that

traditional deep learning models are dense and over-parameterized while biological brains are

typically hierarchical and sparse, reusing recurrent structures for different tasks [37]. This typ-

ically comes in the form of graph pruning, which reduces model size by removing infrequently

used parts of the network, or parameter sharing, which exploits redundancy by combining and

reusing similar weights in different clusters of the network [38–40]. Despite these efforts,

we are still far away from using deep learning models in real-time and performance critical

settings, let alone using multiple context-awareness models in AR simultaneously.

There is another possible solution to enable performant context-sensing, which is to offload

computation to a separate device [41], or even to a remote server [28]. However, requiring

an additional wearable computer, such as backpack computer, should only be a short-term

solution, as it increases the form-factor of AR which would reduce comfort and likely drive

away consumers. Remote servers may be the more desirable approach. With the ongoing

deployment of 5G networking, it may soon be possible to send the large amounts of data

needed for deep learning models through wireless networks [42].

Some or all of these challenges will need to be solved before we can develop full fledged

pervasive AR systems. But simply waiting for the technologies to mature is not an ideal so-

lution. Given that context-sensing will likely rely on large machine learning algorithms, if we

apply them to augmented reality, we are potentially exposing tons of sensitive and private in-

formation about our daily lives in order to use a pervasive AR system. There needs to be a
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balance between the amount of data that users make available, and the goals that users want

to accomplish. In order to understand what that balance should be, we need to start designing

pervasive AR prototypes and evaluating them now, so that we are ready for these questions

when the technology becomes more readily available for developers outside the AR space.

This dissertation makes new contributions to this body of work by looking at how to enable

context-sensing inputs and signals with respect to one well defined use case: AR language

learning. Specifically, we investigate the use of eye tracking and object recognition to modulate

the presentation and spatial layout of learning content, in chapters 4 and 5 respectively. As part

of these efforts, we develop and test the use of a remote server for offloading deep-learning-

based context-awareness algorithms from the AR headset. By providing the perspective of

feature development through a well defined use case, we can produce insights into the amount

of contextual and sensor information necessary to enable certain features of a pervasive AR

system. In doing so, we can create expectations around data privacy, allowing users to make

decisions on the trade-off between desired privacy and AR tasks the user wants to accomplish.

While primarily focusing on language learning, the lessons from these prototypes can also be

applied to other pervasive AR systems. For instance, in chapter 6 of this dissertation, we apply

techniques developed for AR content management using object recognition into our situated

context menu for AR multitasking.

1.1.3 Evolution to Pervasive Systems

How do we evolve current AR systems towards a pervasive AR future? While the

previous question addressed the development of technologies far into the future, we cannot

forget that AR already exists in many forms right now. In the current tech landscape, system

development often happens iteratively and incrementally [43], focusing on immediate goals

instead of long-term requirements [44]. The direction of future systems is informed but what
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has already been built in the now, and what immediate things could be built next. By answering

this question, we can identify and act on the incremental steps that can be taken in the short

term to direct the course of AR system development towards the vision of pervasive AR.

Today’s AR experiences are mostly static, sporadic, and single-purpose affairs, akin to

Virtual Reality that simply happens to use your physical environment as a backdrop. These,

along with hardware limitations such as small field of view, poor display fidelity, and short bat-

tery life, have made it difficult to market AR devices to consumers, with the Google Glass,

HoloLens 1, and Magic Leap 1 being prime examples [45]. Newer devices, such as the

HoloLens 2 and Magic Leap 2, have since shifted their target audience towards business and

industry customers for that reason. In order for AR to be accepted as a personal computing

paradigm, users will need significantly more varied use cases.

In the past, a main issue was likely a lack of understanding around what the best uses of

augmented reality are. Researchers tried to take advantage of the immersive qualities of AR,

using as much of the physical space as possible to create interesting and unique applications.

Considerable work was focused on identifying novel applications such as maintenance [12],

tourism [46], games [47], or medicine [48]. Relatively few works considered the use of AR

in multi-purpose settings. Di Verdi et al. introduced ARWin and level-of-detail widgets [49,

50] for a desktop-like AR experience with multiple applications. Grubert et al. surveyed

the development of AR browsers [51], multimedia platforms that display relevant information

based on geolocation and points of interest. These applications built on the works of Feiner

et al. [41], Höllerer et al. [52], and Kooper et al. [53], but the inclusion of many sources of

information thanks to broader integration with the world wide web makes recent ARBrowser

work more multi-purpose. Additionally, though these works supported multiple applications,

they did not make use of automatic context detection. To move towards pervasive AR, we need

UI mechanisms that handle use cases that are both multi-purpose and also context-aware.

In recent years, we have seen the mainstream acceptance of AR concepts through games

11



Introduction Chapter 1

such as Pokemon Go [54]. Suddenly, AR moves away from the realm of niche applications

and laboratory prototypes and into the hands of millions of consumers. We can observe that

AR can be used in a wide variety of tasks and situations, and it becomes apparent that we don’t

have many solutions for how to merge them into a single seamless interface. Coupled with the

wider availability of AR capable devices, researchers are starting to consider how to actually

use multiple applications simultaneously and concurrently. Recent concepts have emerged for

display and interaction with multiple applications, especially in dynamic or mobile settings,

such as Glanceable AR [11] and adaptive workspaces [10].

Today, the current bottleneck is the application models used by wearable AR platforms. As

AR shares many similarities with VR when it comes to software and hardware infrastructure,

it is no surprise that platform builders combine and conflate the two when making platform

decisions. For example, the Microsoft HoloLens is the most popular series of AR headsets

currently used by AR researchers. Yet it shares the same development tools and application

lifecycle as Microsoft’s VR headsets. This may be a practical business decision, but it severely

limits what researchers can do with the platform, which in turn may dissuade them from devel-

oping and studying multi-purpose AR usage scenarios.

To resolve this bottleneck, we need to provide alternative application models for AR sys-

tems to adopt. This dissertation extends the existing body of work with new app model designs

that support multitasking with multiple applications. Recent work like Glanceable AR has al-

ready looked at dynamic usage of applications in different situations, therefore we focus our

efforts on other aspects that are important to pervasive AR. Namely, in chapter 6 we look at

how to support multiple context-aware applications, and in chapter 7 we look at how to sup-

port multiple applications with different presentation styles, as well as how to support different

levels of augmentation.
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1.2 Scope and Objective

My work takes inspiration from and contributes to the emerging vision of pervasive aug-

mented reality, a trend in AR research that emphasizes always-on accessibility, implicit interac-

tions, context-awareness, and dynamic adaption of computer-generated content to the current

social and physical situation. This dissertation can loosely be grouped into three sections, each

structured as a response to the research questions laid out in previous sections.

In the first part of this dissertation, encompassing chapters two and three, I examine the

potential benefits that AR systems can have in everyday tasks and situations. To accomplish

this, I design prototypes for applications in two domains, E-Commerce and Foreign Language

Learning in both AR and a contemporary medium (websites and mobile apps respectively),

and conduct user studies, analyzing metrics such as user perception, trust, enjoyment, as well

as task performance. The results of these studies contribute to a growing body of evidence

demonstrating the beneficial effects and potential use cases for pervasive AR in domestic tasks.

The second part of this dissertation, encompassing chapters 4 and 5, focuses on investi-

gating new inputs and signals that could be added to pervasive AR systems to improve their

functionality. Continuing the language learning use case, I conducted investigations into what

new capabilities would be necessary to realize a fully automated learner feedback loop. I iden-

tified two desirable capabilities, object detection and understanding classification, theorizing

that the combination of these signals would enable a pervasive AR app to identify objects to

use as semantic anchors for automatically generating educational content and automatically

scaffold difficulty and progression for the learner based on their current understanding of said

content. For object detection, I leverage recent advancements in deep learning algorithms from

the Computer Vision field, and focus my efforts in the design of systems and technical infras-

tructure required to incorporate these algorithms into the low-power and real-time processing

constraints of a head-mounted display. In the case of understanding classification, I explore
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the use of eye tracking signals captured via near-infrared light eye cameras in the similar but

distinct space of Virtual Reality (VR) head-mounted displays. The research efforts in these

chapters push the boundary of what is possible in terms of contextual and situational aware-

ness in AR.

In the final part of this dissertation, encompassing chapters 6 and 7, I look at how to im-

prove currently available AR systems by incorporating pervasive AR concepts in their design.

This work ultimately came about after realizing that the current direction of the industry was

trending towards monolithic all-encompassing applications owned entirely by a few stakehold-

ers, creating a potential AR future that is monopolistic, exclusionary, and divided by the haves

and have-nots. In order to counter these trends and offer a differing perspective, I conducted

research into the usability of AR systems that extend contemporary AR with more democratic

methods of program execution. In these chapters, I introduce two prototypes that separate app

functionality and provide the user with more agency in determining what parts of their world

is augmented and to what degree. I develop exemplar applications to be used within these

prototypes, and conduct user studies to examine task performance, usability, and enjoyment

while interacting and multitasking between said applications. Notably, I also examine differ-

ences between novice users and experienced users, insight which is valuable when considering

the design of a system that might be incorporated into consumer AR products targeting mass

markets. The results of this work provide an alternative and more inclusionary perspective into

the why and how of AR applications design.

Pervasive Augmented Reality is an exciting prospect, with the potential to transform our

relationship with computers. There are numerous challenges and questions that have yet to be

answered within this vision. The contributions made in this dissertation improve our under-

standing of this space.
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1.3 Potential Risks

With every generation of computing comes socio-technical disruption and unintended con-

sequences. Pervasive AR is likely no different. There are significant pitfalls and potential risks

to the deployment of these systems that must be addressed. In this section, I highlight some of

these potential risks. Furthermore, I contextualize the contributions made in this dissertation

with regards to these risks.

1.3.1 Deskilling and Reality Distortion

In 2007, few people could’ve predicted the explosive growth of smartphones following

the successful launch of the iPhone. Today, they are so ubiquitous that more people in India

have access to smartphones than to toilets [55]. While these technologies have undoubtedly

improved our lives in terms of convenience and connectivity, they have also brought with them

a number of unexpected consequences.

For instance, some studies have demonstrated the so-called “Google effect”, a consequence

of having immediate access to a database of online information through your smartphone [56,

57]. Also called digital amnesia, it refers to the tendency to forget or misremember simple

facts that can be easily found using search engines. The consensus on whether this change

is positive or negative is mixed. At best, it may simply be the case that smartphone users

are re-prioritizing what is and is not important to remember. At worst, it may be a sign that

frequent smartphone users are losing or reducing their capacity to retain large amounts of facts

and information, since they are so readily searchable.

Another example is the filter bubble phenomenon that has emerged throughout various cor-

ners of the internet [58]. It refers to a state of intellectual isolation caused by the personalization

and selective presentation of content catered to what the user wants to see, without presenting

opposing or disagreeing viewpoints. Events like the Facebook-Cambridge Analytica data scan-
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dal have brought to attention the potentially harmful effect of filter bubbles, suggesting they

perpetuate media echo chambers and amplify the efficacy and spread of misinformation.

To date, filter bubbles are largely restricted to online platforms like search and social media.

When we step outside into the real world, we cannot deny the existence of things that don’t

reflect our beliefs. But if we were to assume a future with perfectly lifelike augmented reality,

then that may no longer be true. What I experience in one space may be entirely different from

what you experience. I could, for instance, design an application that selectively subtracts

things I don’t want to see in the world, such as garbage, graffiti, or even homeless people on

the street. State-of-the-art computer vision techniques can already generate realistic imagery

to replace missing parts of an image, referred to as inpainting [59]. In this future, we only

see what we want to see, which further perpetuates the information bubble and distorts our

perception of reality.

Proponents of augmented reality predict a coming revolution in the personal computing

space. If true, AR could potentially catalyze an even greater shift in how we process and

consume information, by virtue of its constant presence, temporal immediacy, and ability to

augment our perception of the world. It is imperative that we start understanding these effects

earlier rather than later, lest we risk enabling and propagating poor behaviors and cognitive

habits. As stewards of this technology, it is our ethical and moral responsibility to ensure

it does more good than harm. AR systems should not de-emphasize the physical world in

favor of the virtual world, lest users became overly reliant on AR systems to function in their

everyday lives. Ideally, AR should improve human capabilities such that, even when the AR

system is removed, the user has still gained tangible skills and benefits from their experiences.

The work of ensuring the ethical development of pervasive AR technologies starts with the

people who create these systems. It is imperative that designers and engineers think critically

about the systems we create and their impact on society from the beginning. AR practitioners

need to think holistically about the technologies we choose to bring into the world and the
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benefits or drawbacks they may have. In my work, I address this challenge in two specific ways.

I conduct experiments that analyze the positive effects of AR on the user, compared to existing

modalities, providing a foundation for future designers to build upon. It is important that we

understand fundamentally what benefits AR actually provides to the user through scientific

validation, rather than let external forces like marketing or commercialization dictate them. A

common application theme throughout this dissertation is foreign language learning, which I

view as a potential “killer application” for pervasive AR. By taking advantage of the unique

qualities of pervasive AR, such as the reinforcement of learning content via situated graphics,

or continuous personalization for more efficient instructional scaffolding of learning content,

we can demonstrate that pervasive AR systems can be both beneficial to its users and more

effective than existing methods.

1.3.2 Gaps in Human and Computer Perception

There is a large gulf between the spatial representation capabilities of current state-of-the-

art augmented reality techniques, and the spatial representations employed by users. AR vision

systems locate physical surfaces on a three-dimensional Cartesian coordinate system. On the

other hand, humans typically employ representational and semantic correspondences [60]. For

instance, one might represent a room by its doors and windows, important markers for entry

and egress that allow for quick decision making in case of emergency. This gap, between

human-readable and machine-readable models of the same environment, make it difficult for

developers to align their goals with the user’s aims [61] and is a significant barrier to develop-

ment and iteration of AR applications.

Proponents of pervasive augmented reality often mention the necessity of integrating context-

awareness and semantic understanding to AR systems, to the extent that some authors see

context-aware AR and pervasive AR as the same concept [2]. Going from sporadic to con-
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tinuous experiences invariably conflicts with our natural behaviors. We are fundamentally

dynamic creatures whose conditions change and constantly evolve. Semantic understanding

of situational and environmental context would seem a necessity to avoid information clutter

and poor user experience. Understanding the user’s context takes it one step further, allow-

ing applications to align themselves to the user’s behavioral and emotional state without being

disruptive.

The definition of what exactly constitutes “context” has been in debate for hundreds of

years. Even in the realm of computing and information systems, there are competing defi-

nitions depending on what level of abstraction you operate in. Computer Vision researchers

for instance, might consider context to be any nearby visual phenomena that could be used to

more accurately identify the target of interest. Systems researchers might consider context to

include all nearby computing devices, and other technical resources such as power capacity,

or the availability of certain wireless frequencies. In 1999, Dey and Abowd provided the most

commonly cited definition used in HCI research [62]:

“Context is any information that can be used to characterize the situation of an

entity. An entity is a person, place, or object that is considered relevant to the

interaction between a user and an application, including the user and applications

themselves.”

This definition is notable for its lack of specificity, instead defining context as a construct

emerging from the actions and interactions of the user and the system. Through this lens,

it can then be understood that user context is any information that characterizes the current

state of the user during a particular interaction, which may or may not include the physical

context or computing context, depending on the type of interaction. This definition also helps

us understand other, less explored ideas of context, such as user goals and intentions, prior

experiences with the system, or existing procedural knowledge. Similarly, we can define user
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context-awareness as when a system makes use of user context to present relevant information

or services for a given task.

One of the principle challenges to understanding context is its temporality. The state of the

user changes over time. User context doesn’t exist in isolation, but is often informed by our past

experiences. What characterizes a user’s situation might, for instance, be influenced by their

familiarity with the environment it takes place in. Within AR interactions, where computing

engages the physical senses and occurs in the physical environment, perception and cognition

also become relevant. After all, cognition is the way in which we organize and make meaning

out of all the information, sensory or otherwise, that we accumulate over time. The ultimate

challenge is to understand everything about the user up to their point of engagement with the

system, customize the interface to meet their unique sensibilities, and provide an enriching AR

experience symbiotic with the user and their dynamic circumstances. In a perfect world, that is

what we would strive for. However, we don’t live in a perfect world, but one where our personal

data can be used for malicious intent. We need to understand how and how not to make use of

user context, and ideally, allow the user to make choices around how much context to share for

the tasks they want to accomplish.

Grubert et al. surveyed 96 papers featuring context-awareness in AR and categorized them

into context targets (outputs) and context sources (inputs) [2]. Context sources were further

classified into human factors, environmental factors, and system factors. Of these works, the

majority of them focused on environmental context, likely a reflection of ocularcentrism in the

research community. From works related to human factors, the authors only found one [63] that

focused on the user’s perception or cognition. Indeed, practitioners interested in user context

will be left wanting.

Right now, most AR systems are static in their implementation, whether that be temporally

static (i.e. designed to be used in one sitting), physically static (i.e. designed to be used in

one location), or both. There is an immense amount of friction that prevents users from using
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AR applications dynamically or continuously, as their operation conflicts with the reality of

navigating their everyday lives. To build effective pervasive AR systems, we must understand

users in all types of situations. That doesn’t just mean environmental factors, but human factors

as well.

As Dey and Abowd suggest, ‘context’ is heavily task-dependent and we should treat it as

such. What are the user’s intentions and goals? Where is their attention placed and how is it

being used? How do users acquire, interpret, and represent situational knowledge? And how

do they use it to make decisions about the environment? These are the types of capabilities we

need AR systems to understand. In chapters 4 and 5 of this dissertation, I build upon these ques-

tions by exploring the feasibility of incorporating new task-dependent semantic understanding

capabilities into AR.

1.3.3 Technology Monopolies and Data-driven Algorithms

Pervasive Augmented Reality will demand vast technological infrastructure. It is possible

that such infrastructure, and ultimately the AR platforms and applications built on top of it,

will be monolithic systems owned by a single or small group of stakeholders. At least, that is

the vision being advocated by current proponents of “Metaverse” concepts such as Meta and

Epic Games.

Tech monopolies do not always have our best interest at heart, but rather those of sharehold-

ers and the capitalistic drive for profit. This can be seen by numerous transgressions on data

privacy and security, from Amazon giving out camera footage without user permission [64],

to Facebook and the Cambridge Analytica data scandal [65]. It is not in our best interest as

a society and as individuals to allow large corporations to have such an intimate relationship

with our day-to-day lives.

In 2010, artist Keiichi Matsuda presented a provocative and arguably dystopian depiction
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of domestic augmented reality with his concept film Hyper-Reality. He portrays an augmented

reality future in which our view of the world is oversaturated with virtual content, and every

interaction is needlessly overcomplicated by a layer of technology. In Hyper-Reality, ever-

present AR information is always available to assist you in any and every task, from the com-

plex to the mundane, whether you like it or not. Content is inescapable as advertisers have your

attention at all times, and they readily take advantage. The convenience of AR is now a crux

for humans. Without it, you won’t know which bus to take to get to work, or even worse, you

might simply forgot to eat, drink, or sleep. Hyper-Reality represents the kind of excess we can

expect when we drive technographic decisions using profit motives.

Notably, it is worrying that many of the biggest investors in AR are social media companies

(Meta and Snapchat), whose profits overwhelmingly come from advertising (97.9% for Meta)

[66]. That profit motive can incentivize companies to monopolize your attention in order to

sell more advertising, with potentially negative consequences. For instance, the use of data-

driven news feeds on social media platforms such as Twitter and Facebook led to significant

increase in the propagation of fake news [58], with real world political consequences in many

parts of the world. Their news feed algorithms prioritized user engagement metrics, rather than

using human moderation or curation. As it turns out, fake news or antagonistic content that

users disagreed with, actually kept them on websites longer, despite causing them unhappiness,

loneliness, and displeasure [67].

Many proponents of pervasive AR have concluded that data-driven algorithms will ulti-

mately be required to demystify and make sense of the massive amounts of data recorded by

AR systems. This view is supported by significant improvements to the fields of Computer

Vision and Natural Language Processing as a result of deep learning. It is unlikely that we will

ever achieve comparable or better performance using traditional methods in the near future.

To some extent, I agree with this perspective. The context awareness and computer perception

challenges in the previous section will likely require data-driven solutions. However, in my
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opinion, data-driven algorithms should not be a replacement for user choice. The presenta-

tion of application content, the degree of augmentation, and the ultimate choice of which AR

content to engage with, can and should be dictated by the end user. This doesn’t mean that

proactive interfaces don’t have a place in AR, but rather, that there needs to be balance be-

tween the amount of data we give access to and the goals we want to accomplish with our AR

applications.

This dissertation attempts to address this problem by exploring alternative AR application

models and introducing novel methods for application switching and interaction. The app

models we introduce place an emphasis on smaller-scale, service and functionality oriented

applications, instead of the one-stop-shop model championed by large tech companies. These

models have the additional benefit of distributing our personal and private data across multiple

application developers, rather than storing it all in one place, improving our data privacy and

reducing the effectiveness of data-driven algorithms.

In doing so, we set a precedent for research towards improving user autonomy, while de-

veloping an understanding of the value and usability of specific technological abstractions that

can convey the dynamic capabilities of AR in a variety of settings. Technology does not de-

velop in a vacuum, but is often inspired by things others have made before it. Hence, it is my

hope that this work will encourage other designers, researchers, and technologists to consider

privacy in future systems.

1.4 Permissions and Attributions

1. The work presented in Chapter 2 previously appeared in the proceedings of the 2018

IEEE International Conference on Artificial Intelligence and Virtual Reality [68], as well

Volume 13, Issue No. 03 of the International Journal of Semantic Computing [69].
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2. The work presented in Chapter 3 previously appeared in Volume 24, Issue No. 11 of the

IEEE Transactions on Visualization and Computer Graphics [70].

3. The work presented in Chapter 4 were results of collaboration with Jason Orlosky at Os-

aka University. It previously appeared in the proceedings of the 2019 IEEE International

Conference on Artificial Intelligence and Virtual Reality. It is reproduced here with his

permission [71].

4. The work presented in Chapter 5 previously appeared in the proceedings of the 2019

IEEE International Conference on Virtual Reality and 3D User Interfaces [72, 73].

5. The work presented in Chapter 6 previously appeared in the adjunct proceedings of the

2020 IEEE International Symposium on Mixed and Augmented Reality [74].

6. The work presented in Chapter 7 is scheduled to appear in the proceedings of the 2022

IEEE International Symposium on Mixed and Augmented Reality.
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Effects on User Perception and Trust in a

Recommender System

Pervasive AR presents significant human computer interaction challenges owing to its always-

on nature. In theory, a pervasive AR system would be accessible and operating ubiquitously

and continuously throughout our daily lives. The system would encounter a variety of every-

day situations and have to adapt itself in such a way as to remain functional while remaining

unobtrusive enough to allow the user to focus on the physical or real world task they need to

accomplish. Current interaction paradigms may not be appropriate for achieving this level of

seamless integration.

The interfaces we are familiar with today are typically reactive interfaces. They are reactive

in the sense that they respond to user input through a mouse and keyboard or a touchscreen.

They have no understanding of the user’s goals or intentions, but only function through explicit

user commands. In contrast to this are proactive interfaces. As the name implies, proactive

interfaces anticipate what the user wants and may even execute them without explicit confir-

mation.

Reactive interfaces work well when computing is limited to a specific object or task. Com-
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puting is something you set out to do. You set aside time to do it and you engage with a specific

object to accomplish it. As the walls between when we are “computing” and when we are “ex-

periencing the world” shrink, reactive interfaces become problematic. By constantly having

to convert our intentions into a series of interpretable computer commands, we create friction

between our experience of the real world and the augmented world.

For this reason, some proponents of pervasive AR suggest the use of proactive, sometimes

called implicit or noncommand user interfaces [75]. Instead of dictating what the computer

should do, the computer would determine for itself what it thinks is appropriate. For instance,

a wearable AR device might use camera and microphone sensors to interpret your context,

determining that you are jogging, and immediately start tracking your health and fitness metrics

and visualize the a recommended jogging path for your current fitness level. All of this happens

without explicit interaction. The user simply decides to jog, and starts jogging.

Proactive interfaces are not common in the current computing landscape. AI and sensing

technologies are not mature enough to feasibly design and evaluate large scale implementations

of proactive AR systems. But one form of proactive interface that has been successful is the

recommender system. Recommender systems proactively predict and show to users content

the algorithm thinks the user will enjoy, and are widely deployed on e-commerce and social

media platforms. Looking at recommender systems and how they are received in AR may tell

us more about the effectiveness of future proactive AR interfaces.

This chapter describes our efforts to create a product recommendation system in AR and

evaluate users subjective perceptions and trust in the system. We implement and deploy the

recommender system on a wearable AR headset and a web browser as control, and conduct a

study comparing the two, intentionally varying aspects such as quality of the recommendations.

The results provide novel insight into the ways participants perceive the AR content as part

of the environment, and whether that effect is positive or negative in their reception of the

interface.
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2.1 Introduction

Recommender systems first emerged over two decades ago and have since become standard

tools for dealing with information overload [76–78]. Major retail stores such as Amazon.com

have a heavy focus on data-driven marketing, of which collaborative and content-based recom-

mender systems are a core part. About 35% of sales on Amazon, and 75% of movies watched

on Netflix are derived from recommendations [79]. The vast majority of recommendations

for online retailers are delivered through email or in the traditional web browser interface.

Interface technology, however, is developing rapidly: global revenues of Augmented Reality

(AR) and Virtual Reality (VR) markets are expected to grow to over $162 billion in 2020 [80].

Heavy investment in AR and VR by major companies such as Apple, Alphabet, Facebook, and

Microsoft will mean that smaller, higher quality devices will become available at lower cost to

consumers. Large retailers such as Amazon and IKEA are exploring and introducing new AR

driven shopping experiences.

While there has been progress on in-store AR technology to improve shopping experiences,

e.g. [81], less work has been done on the concept of in-home shoppers taking advantage of what

we call ‘situated recommendations’, whereby personalized recommendations of products are

placed virtually where the real product will be used. In particular, we are interested in how

people perceive recommendations that are situated in AR, and how this perception differs from

that of traditional recommender system interfaces.

To answer these questions, we conducted a 3 by 2 within-subjects lab study (N=31). The

study examined the effects of three different interaction modalities: an Augmented Reality

interface, a web browser interface with 3D view controls, and a web browser interface with

2D view controls. We also looked at how users respond to differences in recommendation

algorithm quality (either high or low quality recommendations). We measured two key metrics,

user ratings of each recommended object (also called perceived accuracy), and user trust in the
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Figure 2.1: Left: Screen captures of the browser interfaces. For 2D browser, users can look
through photos of the mug taken from different predefined angles. For 3D browser, users can
freely rotate the mug and view it in any direction. Right: Mixed reality screen capture of a
user providing feedback to a recommended item.

recommender system. We collected subjective feedback on user perception of the modalities

through a post study questionnaire and verbal interviews.

For the purposes of this study, we implemented a common online shopping user interface

across all three modalities to allow for meaningful comparison. To avoid potential novelty

effects, study participants undergo significant pre-study training sessions for each modality.

Figure 2.1 shows an overview of our shopping interface. The right image shows a user wearing

the HoloLens interacting with a virtual model of a recommended item and providing rating

feedback to the system. The left images show the two web browser based interfaces that were

tested in the study. In the web browser UIs, participants interact either by rotating the object

with the mouse (3D), or clicking through static images (2D).

2.2 Related Work

Our study combines facets from multiple research fields, including human computer in-

teraction (HCI), recommender systems, and cognitive science. A discussion of the relevant

literature in each area is presented here, to frame our contribution in the context of existing
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research.

2.2.1 Augmented Reality in Retail Applications

Currently, there are many consumer applications for visualizing products in augmented

reality. For example, IKEA uses a mobile AR app to place virtual models of their furniture

in the physical world, with similar apps also coming from companies such as Walmart and

Amazon [82]. Recent work by Stoyonova et al. [83] reports on a cognitive study of purchase

intent using AR in a shopping scenario, but in contrast to this work, does not have a focus

on personalized recommendations, and is situated in a store as opposed to a home shopping

scenario. Lu et al. [84] perform a study of AR for home shoppers, where selected products can

be tried in AR before purchase. Olsson and colleagues [85] present a study of user experiences

with AR in a shopping center context and report mainly positive feedback for mobile AR

supported shopping.

While there are many other examples of AR for improving shopping experiences [85, 86],

to our knowledge there is no existing research that explores how users perceive personalized

recommendations in this modality. We believe that our results can provide useful insight about

this rapidly developing technology and its suitability as a channel for delivering personalized

recommendations.

2.2.2 Augmented Reality and Recommendation

Many applications that integrate AR and recommendation use mobile platforms to perform

location-based content recommendations. The Yelp monocle1 for service recommendations

is probably the most well-known example of this integration with AR. Balduini et al.’s Bot-

tari system [87] provides personalized, location-based AR recommendations of social media

1https://www.yelp-support.com/article/What-is-Yelp-s-Monocle-feature?l=en˙US
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content based on the Twitter network and evaluated the system in an urban area. While these

approaches integrate AR and recommendation, they contrast with our approach in that they do

not focus on evaluating perception of recommendations in AR compared to traditional UIs.

2.2.3 Interfaces and Decision Making

Prior research in recommender systems has a strong focus on algorithm performance. Re-

cently however, more research attention is being paid to so called user-aware recommendation

systems that attempt to improve the user’s experience with the recommender system by mech-

anisms that go beyond predictive accuracy, such as conversation [88], explanations [77,89,90],

and various different flavors of user interfaces [91–93], interaction designs [94] and evalua-

tions [95–97].

In this study, we are interested in a novel user interfaces aspect –that of the impact of place-

ment of recommended content in physical contexts with augmented reality, on the metrics of

accuracy and trust. We are also interested in how the interplay of AI performance (quality of

the recommendation) with the choice of user interface influences these metrics. It is likely that

user specific factors such as experience with visualizations, recommender systems, or multi-

modal display technology will impact the observed results. Nilashi et al. [98] performed a

mixed-model evaluation of recommender system users on two real world e-commerce sites

and analyzed the impact of many observed and latent factors on trust and purchase intention.

Similar mixed model evaluations for recommenders were performed on a hybrid music predic-

tion system by Knijnenburg et al. in [97] and in a system for analysis of commuter traffic data

from microblogs by Schaffer et al. [96]. In this paper we also apply a mixed-model evaluation,

designed to capture user-specific characteristics that impact our performance metrics.
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2.2.4 Trust Dynamics in Recommender Systems

Understanding and building user trust in predictions is an important goal of most rec-

ommender systems. Prior research has studied this from a computational model perspective

to improve automated recommendations for collaborative filtering [99] and matrix factor ap-

proaches [100]. Others, such as [101, 102], have leveraged network information to build and

propagate trust. In contrast to those relatively static approaches, we are interested in real-time

human judgements of trust in both the system and its individual item predictions.

Recent work by Harman et al. [103] examines trust dynamics in a fictional and controlled

online dating scenario under a repeated choice experiment with 200 trials. They found that

users quickly learn to identify when poor recommendations are being made and lower their

trust accordingly. An interesting aspect of their study looked at a personalized treatment against

a non-personalized treatment and found that failures (poor recommendations) in the personal-

ized condition had a more damaging impact on trust than in the non-personalized treatment. In

our experiment design, we evaluated trust dynamics in a similar repeated choice and personal-

ized scenario, but based on a simple home shopping task. A similar study by Yu et al. [104]

also explores trust dynamics for an automated system under a variety of performance quality

conditions. They find that increasing user familiarity with the system decreases the rate of

change of trust after successes or failures of the automated system.

Building on the work from [103] and [104], we aim to explore the dynamics of trust for

situated product recommendations in AR under conditions of high or low quality recommenda-

tions. Our study includes repeated interactions with the system to explore differences in trust

dynamics and we hope to see trends similar to those found in the previous two approaches,

with poor recommendation conditions showing less trust with each interaction.
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2.3 System Architecture

To test our hypothesis, we implemented online shopping interfaces for each modality as

well as a content recommendation system which generates a set of distinct high and low quality

recommendations based on user profile data. These recommendations are distributed evenly

across the three modalities, where they are rendered using the Unity game engine. During the

study, users interact with each modality and give ratings which are sent back to the server to be

recorded.

2.3.1 Browser Interface

We implemented a simple e-commerce graphical interface in a web browser (see Fig-

ure 2.1). The interface shows the recommended object, the store logo, and generic text de-

scriptions of the object. The browser interface is broken up into two presentation modalities:

2D browser and 3D browser. In the 2D browser modality, item recommendations are presented

as a set of 2D pictures of the product taken from different angles. Users cycle through these

pictures by clicking on the arrow buttons below the image. A pencil is shown in the images to

provide a point of reference for scale. Users can rate the items by clicking on the radio buttons

provided on the right side of the image. The 3D browser modality displays a 3D model of item

recommendations that users can interact with. In this modality, users click and drag within the

display window to rotate the object about its central X and Y axes. Users can provide ratings

in the same way as the 2D browser. Note that both kinds of browser interactions take place on

a traditional computer and monitor.

2.3.2 Augmented Reality Interface

For the AR interface, we use a Microsoft HoloLens device. Our application uses the de-

vices’ Spatial Mapping API to map the environment and situate virtual products and UI el-
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Table 2.1: Attributes for item classification.

Attribute High-level choice Value

Shape
Non-cylindrical -1
Cylindrical 1

Size
Small -1
Large 1

Color
Disliked -1
Neutral 0
Liked 1

ements within the environment. We use HoloLens’ World Anchor system to fix the recom-

mended item and UI elements in the same position throughout the study. Users are able to

walk around and look at the virtual items from different directions and provide feedback via

the rating interface, presented through two panels as shown in Figure 2.1. The graphical inter-

face is bare-bones, only displaying the store logo and generic text descriptions similar to the

browser implementations.

For interacting with the interface, we implemented a 3D cursor using a raycast formed

by the user’s head gaze direction. We define head gaze direction as the forward direction of

the headset. Using the 3D cursor, users can aim and click on the rating panel. Although the

HoloLens device supports hand gestures for clicking, we opted to use the HoloLens bluetooth

clicker. This provides a fairer comparison to the browser interface, as there may be additional

effects introduced by gesture-based interaction.

2.3.3 Content Based Recommendation

In order to generate personalized recommendations, we use an algorithm based on attribute

Preference Elicitation (PE) and Multi-Attribute Utility Theory (MAUT). The item attributes

considered by the recommender are color, shape, and size. We provide a validation for this

choice of attributes in the Experimental Design section. For each attribute, we compute the

error between the recommender choice for that attribute, denoted as recAttChoice, and the
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user’s preference, userAttPref.

If the attribute considered is a binary attribute (here, shape or size), let recBinAtt ∈ {−1,1}

denote the recommender’s choice for that attribute, where each possible value corresponds to

a specific high level choice, as indicated in Table 2.1. The reported user preference for that

attribute, userAttPref, has values in J1,5K. In the pre-study questionnaire, values of 1 and 5

corresponded to a strong preference toward one of the possible values of the binary attribute,

values of 2 and 4 to a slight preference, and 3 to no preference. The error can be computed

from those two variables as:

ErrrecBinAtt = L(recBinAtt,sgn(userAttPref−3)) ·WrecBinAtt (2.1)

where L(ŷ,y) is the 0-1 binary loss function which equals 1 if ŷ ̸= y and 0 otherwise, and

the weight is defined based on the importance given by the user to that particular attribute as

WrecBinAtt = (userAttPref−3)2. Note that 3 is subtracted from the user’s rating in order to turn

the values ranging from 1 to 5 from the pre-study questionnaire into values in J−2,2K. The

sign function is then applied to map the user’s rating to its corresponding value in Table 2.1.

This essentially decouples the user’s preference into a binary choice and a weight.

Color was treated slightly differently: users were asked how much color weighed in their

decision, and then asked to choose colors they liked and colors they disliked among 13 colors;

colors not selected are considered neutral. The estimation of the error on a given color choice

by the recommender recColChoice therefore is:

ErrrecColChoice = (1DislikedCol (recColChoice)

+0.5 ·1NeutralCol (recColChoice)) ·Wcol (2.2)

where 1A(x) is the indicator function on set A defined as 1 if x ∈ A and 0 if x /∈ A. The weight
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(a) Good recommendations (b) Bad recommendations

Figure 2.2: Example of recommendations for a user indicating preference for large, non–
cylindrical mugs with navy, lime, cyan as liked colors and indigo, magenta, fuchsia as dis-
liked colors.

Wcol has the same range of values as the weights used for the binary attributes, and the 0.5

factor for a neutral color ensures that picking a neutral color will yield an error superior to

that of a liked color and inferior to that of a disliked color. The overall error is then obtain by

summing the individual attribute errors:

Error = ErrrecColChoice +ErrrecShapeChoice +ErrrecSizeChoice (2.3)

It is worth noting that the errors can easily be turned into utility measurements by replacing

L by (1−L) in Equation 2.1 and 1DislikedCol by 1LikedCol in Equation 2.2.

The personalized recommender system computes all the possible values of the total error

based on the user weights, and stores for each value of the total error the incorrect attributes

contributing to that value of the total error. There are 2card({WBinAtt :WBinAtt ̸=0}) possible ways to get

an error from potentially incorrect binary attributes that the user indicated having a preference

for, and 3L(Wcol ,0) different possible values for the error from the color. Note that the error is

degenerate; that is, different choices of incorrect attributes may yield the same value of the

total error, which can be used to diversify the recommendations. The recommender system can

then use a look-up table to show products in order of increasing error.

We define high quality recommendations as ones for which every attribute satisfies the

user’s preferences, and low quality recommendations as ones maximising the error, i.e. none

of the attributes satisfy the user’s preferences. Extreme values of the error were picked to avoid
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issues with parameter tuning in the recommender algorithm (e.g. power used in the calculation

of the weights), which may depend on the granularity of the preference scales or the different

possible interpretations of the scale labels by the users. In a longer sequence of interactions,

or real-world deployment of the system, less strict parameters could be adopted to improve

diversity and novelty of predicted items. An example of the two classes of recommendations

are shown in Figure 2.2.

2.4 Experiment Design

Our main study had a 3 by 2 within subjects design with counterbalancing. The two inde-

pendent variables were UI modality and algorithm quality, and the main dependant variables

were item ratings (accuracy) and user trust in the recommender system. A preference pro-

file was gathered from each participant in the experiment several days before the in-person

study, via a Qualtrics2 online survey. In this preference elicitation questionnaire, participants

were asked for basic demographic information and experience with recommenders and AR/VR

technology. They were also asked to select preferences for each of the classification dimen-

sions for our domain items. These consisted of size (large or small), mug shape (cylindrical or

non-cylindrical) and color preference. For color, participants were shown images of 13 coffee

mugs of different colors and were asked to select their favorite 3 and least favorite 3. This infor-

mation was stored on a server which computed sets of high and low quality recommendations

for each user, based on the algorithm previously described.

To compare the effect of recommendation quality among the three different modalities,

two different virtual retail stores were created: 4Buy and iMart. 4Buy always attempts to

provide high quality recommendations and iMart always attempts to recommend items from

the database that the user will dislike. Distinct logos for 4Buy and iMart were visible in each

2https://www.qualtrics.com/
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Table 2.2: Validation of Item Classification Features from 110 participants in an online survey.
Mean Std Dev

Color 57.84 25.49
Pattern 58.45 27.5
Size 71.27 23.15
Shape 60.75 26.17

modality (see Figure 2.1) to allow users to recognize which store they are in and form different

perceptions of trust for each store.

2.4.1 Item-space Classification

As it is difficult to find free high-quality 3D models, we chose to modify the models on

the fly to provide variance in recommendations. We began with a total of 18 different models,

and applied transforms over size and color parameters to provide different virtual mugs for

participants. The patterns on the mugs varied. To ensure that the pattern variable would not

impact user preference more than the controlled features (size, shape and color), an MTurk

study of 110 users was performed where each participant provided ratings between 1 to 100

for each of the four features. The mean and standard deviation for these ratings are found

in Table 2.2. We found no significant difference between pattern and the other features and

so assume that manipulation of the other three features will be sufficient to provide good or

bad recommendations based on the user profile. This is further confirmed in our results which

show user ratings for good recommendations are significantly higher than those for bad ones.

Different patterns in the mugs can contribute to novelty and diversity in recommendations, but

overall quality can still be controlled in a meaningful way through manipulations on the other

features.
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2.4.2 Experimental Procedure

The experiment was conducted at an American university campus. Participants were as-

signed to particular orderings for each condition. Participants were given a brief introduction to

the study by the experimenter. They were provided with a simple background story as follows:

“You have just broken your coffee mug and are looking online to shop for a new one. You will

shop at two different stores using a variety of their interfaces”.

For the AR condition, participants were given a training task where they had to observe

several virtual items and use interaction in AR to provide feedback ratings. Once comfortable

with the AR environment and rating procedure, they began the main rating phase. Here, they

were shown a sequence of three recommendations, either from iMart (low quality) or 4Buy

(high quality). They were asked to walk around and inspect the items, and then provide a

rating for how much they liked the recommended item on a scale of 1 to 5, and how much

they trusted the system’s current ability to provide good recommendations on a scale of 1 to

10. There was no time limit imposed during the rating phase. Participants typically took less

than 30 seconds to provide a rating, irregardless of the modality. Similar training steps were

performed for the browser-based conditions.

Participants complete all three conditions for a given store (and recommendation quality)

first, before repeating the conditions in the same order for the other store. We alternated which

store the participants start with. Once all conditions were complete, participants completed

a post study questionnaire and were given a brief post study interview by the experimenter.

In the post study questionnaire, participants were asked to rate their overall trust for each

recommender, the helpfulness of the recommender, how much they liked interacting with each

modality, and how much they liked each store overall. In the interview, participants were asked

about their thoughts on the AR device, and whether they would choose to use it over the other

modalities in a real world shopping scenario.
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2.4.3 Novelty Effect

Since Augmented Reality is a new and emerging technology, and there is a “wow factor”

with cutting edge devices such as the Hololens, novelty effects will always be challenging to

deal with. To mitigate novelty effects in the experiment, participants were allowed up to 10

minutes to familiarize themselves with each modality. In the AR condition, participants played

with the built-in holograms application on the Hololens device. Note that this familiarization

period takes place before the training task begins.

After the experiments, we compared performance between the participants who started with

the AR condition versus those who started with the browser-based conditions. We ran paired

t-tests on our key metrics but found no significant differences between the two groups, giving

us confidence that our balancing and familiarization procedures were helpful in controlling

novelty effects of the Hololens device in the AR condition. This was further supported through

post study interviews, during which participants reported that the familiarization period helped

them to “get comfortable” using the AR headset.

2.5 Results

To answer our research questions, we looked at user ratings for individual product recom-

mendations and overall trust in the recommender system. We examined differences in ratings

across each modality in order to assess relevant effects on user’s perception of recommenda-

tions. Additionally, we examine self-reported UX metrics from a post study questionnaire and

verbal interview.
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Figure 2.3: Mean accuracy rating with standard error.

2.5.1 Participants

In total, 31 participants completed the in-person study. Data from three participants were

removed due to being provided incorrect instructions on the rating system. These participants

misunderstood the task and rated other aspects such as the design of the logo. We also removed

two additional participants due to system failure of the HoloLens during the experiment, leav-

ing a total of 26 for analysis. Participants had a median age of 23, mean age of 27 with std.

deviation of 9.58. 77% were male and 23% female. All had at least some college education.

Participants were recruited through a user study pool at the university and were paid $10 for

the study, which lasted about 40 minutes.
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Table 2.3: Accuracy: Pairwise comparison between modalities.

contrast estimate SE df t.ratio p.value

Browser2D - Browser3D -0.2641 0.1095 440.51 -2.413 0.0428
Browser2D - AR -0.2791 0.1091 438.92 -2.557 0.0293
Browser3D - AR -0.0150 0.1091 438.42 -0.138 0.9896

Results are averaged over the levels of: Recommendation Quality

P value adjustment: Tukey method for comparing a family of 3 estimates

2.5.2 Perception of Product Recommendations

Our first research question focuses on the perception of the products recommended by the

system. To begin our analysis we looked at the average accuracy ratings within each condition.

The resulting data is graphed in Figure 2.3. We tested for significance using paired t-tests.

For these ratings, our initial hypothesis was that increased reality and immersion provided

by the AR modality would amplify users’ perception of recommendation accuracy. More real-

istic inspection methods might cause users to have a greater awareness of how well a product

fits their preferences. Thus, we expected bad recommendations to be rated lower in AR com-

pared to browser based methods, and likewise good recommendations would be rated higher

in AR.

When looking at ratings in the bad recommender, we found a significant difference between

the 2D modality (µ = 1.97) and the 3D modality (µ = 2.32) conditions; p = 0.024. There was

almost significance between 2D modality and the AR modality (µ = 2.24); p = 0.064. In the

good recommender, we found significance between the 2D modality (µ = 3.12) and the AR

modality (µ = 3.4); p = 0.035, but not between 2D and 3D modalities.

Additionally, we see a significant difference in ratings between the good and bad recom-

menders for all three modalities (all p < 0.0005). This gives us confidence that our recommen-

dation algorithm is correctly providing high and low quality recommendations based on the
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Figure 2.4: Q-Q plots of residuals of LME models for accuracy and trust.

user’s preferences.

These results appear to reject our hypothesis. Irregardless of recommender quality, AR and

3D modalities seem to improve perception of recommendations. However, the signal does not

appear consistently between bad and good recommenders. Thus, to look at the effects of each

modality across both good and bad recommender conditions, we opted to perform further anal-

ysis using linear mixed effects models. Specifically, the modality type and recommendation

quality are modeled as fixed effects, while participants and item design are modeled as random

effects.

To validate this approach, we assessed the fit of our models using pseudo-R2 values [105].

Marginal pseudo-R2 was computed for fixed effects, and conditional pseudo-R2 for random

effects. For the accuracy model, the marginal pseudo-R2 was 0.216 and the conditional pseudo-

R2 was 0.369. Additionally, mixed effects models assume that the residuals of the model

are normally distributed. We plotted the residuals of each model as Q-Q plots to check this

assumption and found that the residuals fall about a fairly straight line, suggesting normality.

These plots can be found in Figure 2.4. Finally, we created separate models where Modality
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and Recommendation Quality were modeled as having an interaction effect. We performed a

likelihood ratio test against these to determine any significant interaction effects, but did not

find any significant inter-dependence between them thus we did not include interaction effects

in our models.

The full pairwise comparisons between each modality are shown in Table 2.3. These tables

describe the difference in ratings after averaging over the levels of recommendation quality and

performing p-value adjustment using the Tukey method. Here, we can see a significant differ-

ence between Browser2D and the AR modalities (p = 0.0293), as well as between Browser2D

and Browser3D (p = 0.0428). This provides further evidence that AR may improve user per-

ception of product recommendations.

When comparing AR against the 3D interface, pairwise comparisons within our model

did not show a significant difference in product rating. We believe that this result was due to a

hidden variable created through differing levels of control in the interaction. In the 3D browser,

users could rotate the items and view them from all angles. However, in the AR condition, the

item was in a fixed position, and therefore could not be viewed from the bottom angle, since

it was positioned on a table. During the verbal interview, three participants mentioned they

prefer the 3D view because it “allows you to see the mug in every possible orientation”.

2.5.3 Perception of the Recommender System

The next research question focuses on the perception of algorithm quality within the dif-

ferent modalities. Similar to the product ratings, we hypothesized that the AR condition could

help improve user awareness of a recommendation algorithm’s performance, leading to lower

ratings for the low quality recommender and higher ratings for the high quality recommender

compared to the other modalities.

Our analysis on trust ratings mirrored the methods used for product ratings in the previous
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Figure 2.5: Mean trust ratings with standard error.

Table 2.4: Trust: Pairwise comparison between modalities.

contrast estimate SE df t.ratio p.value

Browser2D - Browser3D -0.6474 0.1697 442 -3.815 0.0005
Browser2D - AR -0.4679 0.1697 442 -2.757 0.0167
Browser3D - AR 0.1795 0.1697 442 1.058 0.5410

Results are averaged over the levels of: Recommendation Quality

P value adjustment: Tukey method for comparing a family of 3 estimates
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section. In Figure 2.5 you can see the graphed trust ratings. In the bad recommender, we found

significant differences between 2D (µ = 3.51) and 3D (µ = 4.27); p < 0.001, as well as 2D

and AR (µ = 3.95); p = 0.034. In the good recommender, we also found significance between

2D (µ = 5.41) and 3D (µ = 5.95); p = 0.005, and also between 2D and AR (µ = 5.91); p

= 0.008. Again, we see a significant difference between the good and bad recommenders for

all three modalities (all p < 0.0005). Figure 2.5 clearly show that users perceived a difference

between good and bad algorithms in all conditions. For example, participants in the 2D browser

condition rated trust in the iMart (low quality recommender algorithm) at 3.51 and 4Buy at

5.41, which is a relative improvement of 54% over the iMart algorithm.

We again used linear mixed models to analyze trust ratings across recommendation quality.

We performed the same steps to validate the model as in the previous section. For the trust

model, marginal pseudo-R2 was 0.184 and conditional pseudo-R2 was 0.555. Table 2.4 is the

resulting pairwise comparisons. In particular, we highlight the differences between Browser2D

and the AR modalities which are significant for trust ratings (p = 0.0167). Ultimately, the

results we found did not support our hypothesis. Instead, our results suggest that Trust is

improved for the AR and 3D modalities, despite the differences in recommender quality.

Trust Dynamics

We build on recent work in recommender systems research by examining the perception

of trust in the recommender system over time, for the high and low quality recommendation

algorithms. We plot these trends for each modality in Figure 2.6. The first clear effect from

this is the separation between the high and low quality recommendation strategies (4Buy and

iMart). This provides further support of the effectiveness of our recommender system, despite

its relative simplicity.

Looking at the slopes of these distributions, all but one of the data points for the low quality

recommender (iMart) follow a downward sloping trend, while those for the high quality recom-
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Figure 2.6: Dynamics of trust for each condition.

mender (4Buy) have an initial upwards trend. This supports similar results found in [103], in

which users trust in the system dropped swiftly following repeated interactions with poor rec-

ommendations. This is further supported by our post study questionnaire, where participants

significant preferred 4Buy over iMart.

Additionally, we see a decrease in the rate of change of trust after repeated interaction, be-

tween the first and second recommendation to the second and third recommendation. However,

this is only present for the good recommender system. This trend is similar to results found

in [104].

For further analysis, we used Analysis of Covariance (ANCOVA) to compare trust ratings

categorized by condition, controlling for rating sequence. Our test did not find any significant

interaction between rating sequence and condition (p = 0.515), suggesting that there aren’t

any significant differences in the slopes of the regression lines between each condition. We
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Figure 2.7: Mean subjective ratings from the post study questionnaire with standard er-
ror. Participants were asked to rate how much they trust the recommendations, how helpful
each store’s interface was, the interaction quality of each modality, and overall preference for
each store. Brackets show the level of significance between particular values (* p<0.05, **
p<0.01, *** p<0.001). Additionally, there was significance (p<0.01) in recommendation
trust between each HQ modality and their LQ counterparts.

believe this may be due to the limited amount of repeated interactions. Additionally, we looked

at whether trust changed over time for high and low quality recommendations regardless of

modality. We analyzed the average ratings for the first and last modality used for both the low

and high quality recommender using a paired t-test, but did not find a significant difference in

either case (p = 0.783).

2.5.4 Participant Sentiment

Our last research question focused on the general sentiment of participants towards an AR

recommender system for in-home shopping. Our primary source of analysis for this research

question are through a post-study questionnaire and semi-structured verbal interview conducted

immediately after the experiment.

Post-Study Questionnaire

The results of the post questionnaire are shown in Figure 2.7. The leftmost plot shows the

perceived trust in the system’s recommendations broken down for each of the six conditions.
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Here the browser-based conditions are abbreviated to B2D and B3D, and algorithm quality is

represented as HQ or LQ for high and low respectively.

The first point to note is that the questionnaire responses for trust in the recommendations

align well with the observed ratings during the experiment, with both AR-HQ and B3D-HQ

showing a significant rating improvement of about 20% over the traditional UI B2D-HQ. There

was no significant difference between the B3D and AR conditions. However, our post study

interviews revealed that people either had a strong preference for the 3D-browser condition or

the AR condition. Those who strongly preferred AR, tended to mention the value of being able

to see the item in real-world context (situated recommendations), while those who preferred

the 3D browser version tended to like the familiarity of the interface for shopping.

Perceived helpfulness of the stores was also evaluated and showed a similar trend to trust,

with AR and B3D having significant rating improvement over B2D for both recommender

algorithms (LQ and HQ). However, the differences between recommender quality (LQ and

HQ), was not as pronounced as it was on the trust metric. We believe this is an indication

that users were considering other aspects than recommendation quality for their decisions on

helpfulness, such as the quality of the UI design.

Figure 2.7 also shows results for perceived quality of interaction with the system. As

expected, both AR and B3D received very positive ratings. This is consistent with our interview

feedback where participants preferred B3D almost as much as the AR condition due to better

inspection capabilities. Participants were also asked to rate each store overall. Here we see that

participants did perceive the difference in algorithm quality across the two stores. The store

with high quality recommendations (HQ) showed a 50% improvement over the LQ store. This

was consistent with our observed ratings-based results.
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Verbal Interview

Participants were given a verbal interview immediately after the post-study questionnaire,

which typically lasted about five minutes. For the verbal interview, we provided some structure

by asking in order the following questions:

1. What did you think of the HoloLens?

2. Would you use this in a real world shopping scenario?

3. Did you find the ability to walk around and view objects in a real world environment to

be helpful or distracting in your shopping decisions?

Participants were asked all three questions regardless of if they had already mentioned any

related comments in a prior question. This means that some participants touch on the same

topic multiple times over the course of the interview.

When asked what they thought of the HoloLens, participant opinions were generally quite

high. Most participants thought the AR device was cool, interesting, and enjoyable. Even

before being prompted in question 3, participants often commented about the ability to walk

up to the object, see it from different angles, and compare the object to its surroundings. The

most common negative opinion was the color fidelity of the display. Five participants had

complaints about colors being washed out and difficult to perceive. Other complaints include

the limited field of view, and discomfort due to weight of the device.

When asked about whether they would consider using the AR interface in a real world

shopping scenario, participants responses were very positive. All but five of the participants

reported that they would choose to use the AR system if it were available to them. Out of many

different reasons cited, the most common was the ‘try before you buy’ reason –to visualize

and interact with the item in the context where it is to be used. An equally common opinion

was the desire to use the interface for purchasing certain types of items. Typically, participants
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Figure 2.8: Summary of common responses in the verbal interviews for questions 1 (left) and 2 (right).

mentioned it would be very useful for purchasing large items such as furniture. A few par-

ticipants commented that they would use AR shopping once the interface was improved. In

this case, they felt the interface was very useful for shopping but wanted a more “polished”

user interface design. The participants who did not want to use it argued that the interaction

was not sufficient and that the 3D browser version allowed for a better inspection of the item.

Additionally, participants reported feelings of frustration and discomfort that would dissuade

them from using the device.

A summary of the most common responses to the first two questions can be found in Fig-

ure 2.8. Note that participants may have commented on multiple topics during the course of

answering each question.

For the third question, we were able to bucket the responses into four categories. 13 partic-

ipants said the ability to view products in-situ was very helpful, while seven participants said

it was only slightly helpful. Five participants said it was neither helpful nor distracting to the
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shopping task. Only one person said it was somewhat distracting to see while shopping. This

same participant ultimately commented that they preferred the browser version because it was

much faster and more efficient to use.

Ultimately, these responses show a lot of positive sentiment for the future of AR recom-

mender systems. Our study participants don’t view in-situ shopping as more distracting or

more difficult. The biggest concerns came from hardware limitations or lack of polished de-

signs, issues that would surely be addressed by future commercialization efforts and design im-

provements that were not the focus of our controlled test interfaces. Already, recently deployed

or announced products such as the MagicLeap One3 or HoloLens 24 are lighter, more comfort-

able, and have twice the field of view. These additional technological capabilities should lead

to better audience acceptance regarding these issues.

2.5.5 Demographic Analysis

We wanted to look at potential differences between demographics in their experience of the

AR recommender system. We recorded participant demographics and looked at mean trust and

accuracy ratings between each demographic group. We grouped participants by age, gender,

and their familiarity or prior experience with AR devices.

When looking at gender, we had 20 males and 6 females take part in our study. Our analysis

showed that females gave higher product ratings (µ = 2.96) in AR conditions when compared

to males (µ = 2.66); p = 0.045, using Welch’s t-test. However, there were no significant

differences for mean trust ratings. Additionally, females reported having less familiarity with

the modality than males. When asked on a scale of 1 to 5 about their prior experience with AR,

the mean for females was 3.12 compared to 3.4 for males.

To look at age, we grouped participants into two age bins around the median, and a similar

3https://www.magicleap.com/magic-leap-one
4https://www.microsoft.com/en-us/hololens
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analysis was performed. We performed similar t-tests for mean ratings and mean trust but did

not find any significant differences between the two age groups. Additionally, older participants

tended to have more prior AR experience, with an average rating of 3.21 vs. 3.0 for the younger

participants.

Finally, we separated participants based on their familiarity with AR into two groups: those

with low or no experience with AR, and those with some prior AR experience. The low expe-

rience group was composed of the 12 participants whose prior experience with AR was 1 or 2

out of 5, leaving 14 participants for the other group. Using Welch’s t-test, we found that partic-

ipants with little AR experience had significantly higher product ratings (µ = 2.91) compared

to those with some AR experience (µ = 2.57); p < 0.005. They also had higher trust ratings

(µ = 5.21) compared to those with more AR experience (µ = 4.51); p < 0.005.

To help explain these results, we look to participant comments in their post study question-

naire. Participants who have more AR experience tend to be more critical of the AR device’s

limitations, noting things like the weight of the device or the poor resolution of the display.

Whereas those who are newer to the interface are more excited about its potential, and are

more willing to forgive these faults.

2.6 Discussion

This chapter presented a study that to our knowledge is the first empirical analysis of the

effects of Augmented Reality interfaces on the perception of recommender systems. A 3 by 2

within subjects experiment assessed user perception of high and low quality personalized rec-

ommendations in three modalities: Augmented Reality with recommended items placed in a

real world scene, web browser with 2D images, and web browser with 3D interaction. Quanti-

tative metrics for product ratings and recommender trust were assessed, along with perception

of the system through a post study questionnaire and verbal interview.
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Results of our main research questions show that overall product ratings for recommended

objects, and trust in the recommender, are significantly higher in AR and interactive 3D than

in a traditional browser UI. However, there is no significant difference in either metric between

interactive 3D and AR modalities. Furthermore, people perceive differences between high and

low quality algorithms in all three modalities, but there is no significant trend that suggests

better awareness of quality differences in AR. Finally, a majority of participants preferred

to use AR over browser based interfaces for product recommendations, finding it helpful for

visualizing in the context where it will be used.

The results from our study contribute to an emerging body of work focused on understand-

ing user perception of AR with proactive AI systems such as recommender systems. Through-

out the study, AR and Browser3D modalities performed on par with each other, whereas both

tended to improve ratings and other metrics compared to Browser2D. Participants generally

fell into two camps, those preferring Browser3D and those preferring AR.

Many of the verbal interview responses seem to indicate that participants appreciate quali-

ties from both mediums. In the case of AR, participants enjoy being able to visualize a product

in a real world context and grasp the actual scale of the object. However, AR is marred by

issues with a low quality display and headset discomfort. 3D on the other hand is quick and

easy to use, and still allows users to view recommended products from a variety of viewing

angles.

While some of these problems will be solved in future iterations of AR devices, it is im-

portant to understand what the role of interaction should be moving forward. It is clear that

some users actively preferred the browser based interaction methods. For many shopping ex-

periences, and possibly other types of tasks, it is likely that users will prefer methods they are

accustomed to over an AR experience. Where AR has the potential to excel is when offering

an experience that has tangible real world implications, such as when delivering recommen-

dations that have great impact on daily life, or where scale and contextual information can be
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compared in a real life setting, such as home appliances and interior design. These qualities

should be emphasized and communicated when designing for the future of AR driven recom-

mender systems.
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Chapter 3

Effects on Learning and Memory

In the previous chapter we saw that AR was not always the most preferred interface. Depending

on the task, many users might prefer to a different style of interface because it might allow them

to focus better or provide a more efficient set of controls for accomplishing the task. For AR

to grow and attract users organically, we need to ask ourselves, what benefits are unique to

pervasive AR.

Thinking about the problem from an augmented human perspective, pervasive AR can be

seen as an extension of our visual processing capabilities, since it is consistently and contin-

uously rendering an altered view of the world for us to process. If that is the case, then it is

possible that augmented content could incorporate itself into the cognitive processing loop of

visual perception. This brings up serious implications for pervasive AR. As detailed in the first

chapter of this dissertation, we need to be careful not to deskill users by acting as a permanent

crutch or replacement for existing skills, and we need to be careful not to enable users with

rose colored lenses that show the world as they prefer to see it, rather than as it truly is. But

that doesn’t stop us from taking advantage of the positive aspects of close integration with our

daily lives and sensory processing.

For example, if we persistently see and associate new information in AR with features of
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the physical environment, does it then lead to improvements in learning and memory? There is

some evidence to suggest that, with the right training, we can improve our memory and retain

significantly more knowledge by incorporating spatial cues [106, 107] in our learning process.

A highly effective technique familiar to every memory champion and polyglot is the memory

palace, in which the desired information is arranged alongside the layout of some building,

street, or other geographical entity. Can we use AR to provide everyday users with some of the

advantages of a trained memory palace user, even without any training?

In this chapter, we explore the potential of AR to facilitate improved memory by associ-

ating information with physical objects arranged in an unfamiliar environment, comparing the

situated AR language learning interface against a tablet-based flash card interface mode. In this

work, we collaborated with educators from Gervitz Graduate School of Education to carefully

craft a curriculum for learning vocabulary words in the Basque language, and conduct a within

subjects study to discern benefits to recall, both immediately after the study and delayed, sev-

eral days after. In addition, we lay out the foundation and long-term vision for AR language

learning as an ideal pervasive AR use case. We carry this theme forward and continue to iterate

on it in later chapters.

3.1 Introduction

This paper addresses the problem of facilitating and understanding the process of language

learning in immersive, augmented reality (AR) environments. Recent heavy investment in AR

technology by industry leaders such as Google, Microsoft, Facebook and Apple is an indica-

tion that both device technology and content for this modality will improve rapidly over the

coming years. Looking forward, we believe that AR can have significant impact on the way we

learn foreign or technical languages, processes and workflows, for example, by creating new

personalized learning opportunities in a physical space that is modeled, processed and labeled
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Figure 3.1: An illustrative mock up of a language learner using the ARbis Pictus system.
Note that the user will only see annotations in an approximately 30◦×17◦ field of view, due
to current constraints with the HoloLens.

by automated machine learning (ML) classifiers, assisted by human users. These augmented

learning environments can include annotations on real objects, placement of virtual objects,

or interactions between either type to describe complex processes. Thus, without significant

extra user effort, a future “always-on” AR system could seamlessly provide a user with the

foreign-language terms describing objects (or later possibly even processes) in their own phys-

ical environments, enabling casual reminders and incidental learning of vocabulary.

Such learned language skills will still be in effect and valuable when the AR device is not

in use. This is in contrast to using automatic translation services, which can also strongly ben-

efit from AR technology but which require being online and may not actually help in learning

a language if relied upon without reflection, much like unconsidered reliance on online nav-

igation services might not improve navigation skills, and in fact can lead to inferior spatial

knowledge [108].

AR devices will eventually become affordable and portable enough to be commonly used

in day-to-day tasks. In this setting, learning can occur passively as people interact with ob-

jects and processes in their environments that are annotated to support personalized learning

objectives.
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Our project towards this vision is called ‘ARbis Pictus”, named after Orbis Sensualium

Pictus (Visible World in Pictures), one of the first widely used children’s picture books, written

by Comenius and first published in 1658. To study the benefits of using AR for memorization

tasks such as used in language learning, we conducted a foundational user study to evaluate

the impact of learning simple noun terms in a foreign language with augmented reality la-

beling using a purpose-built AR object labeling tool. While the scenario given above for the

medium-to-longer-term vision includes the potential for casual incidental learning, this first

study examines active intentional learning efforts. We focus on the following three research

questions in our user study:

• RQ 1: When learning vocabulary (or individual lexical items) in an unknown second lan-

guage, is there a benefit of learning with AR over a traditional flashcard-based method?

• RQ 2: In the above setting, how does productive recognition and recall vary after some

time has passed?

• RQ 3: How do users perceive the language learning experience in Augmented Reality

compared to traditional flashcards?

In the process of answering these research questions, we make the following contribu-

tions, results and insights. To carry out our study, we designed and implemented a system

that supports foreign language vocabulary learning with augmented reality and with traditional

flashcards. We then designed and implemented a user experiment to evaluate the impact of

AR-based learning for foreign language vocabulary. Key findings include 1) better recall (7%,

p<0.05) for AR learning compared to traditional flashcards; 2) an increased advantage (21%,

p<0.01) for AR in productive recall four days after the initial test, compared to traditional

flashcards; 3) Qualitative survey and interview data shows that participants believe that AR is

effective and enjoyable for language learning. During the study, attention and gaze data was
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collected through the AR device, through an eye tracker, and through click interactions. We

also describe an early-stage analysis of this data, and how it reveals learning patterns in each

modality.

3.2 Related Work

Our study aims to show that there is a measurable benefit to learning vocabulary through

AR labeling of real world objects. Before we discuss the design, we briefly describe existing

work on multimedia learning and on AR in education settings.

3.2.1 Multimedia Learning

Our framework is motivated by Mayer et al.’s cognitive theory of multimedia learning

(CTML) [109] [110], one of the most compelling learning theories in the field of Educational

Technology. The theory posits, first, that there are two separate channels (auditory and visual)

for processing information, second, that learners have limited cognitive resources, and third,

that learning entails active cognitive processes of filtering, selecting, organizing, and integrat-

ing information. The CTML predicts, based on extensive empirical evidence, that people learn

better from a combination of words and pictures than from words alone [111]. In the field of

Second Language Acquisition, studies using the CTML as their theoretical basis have shown

that when unknown vocabulary words are annotated with both text (translations) and pictures

(still images or videos), they are learned and retained better in post tests than words anno-

tated with text alone [112] [113] [114]. A second principle of the CTML is that people learn

better when corresponding words and pictures are presented near rather than far from each

other on the page or screen, as the easy integration of verbal and visual information causes

less cognitive load on working memory, thereby facilitating learning [115]. Second Language

Acquisition research has found that simultaneous display of multimedia information leads to
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better performance on vocabulary tests than an interactive display [116]. Our approach ex-

tends the CTML by simultaneously displaying information next to physical objects, allowing

learners to further integrate spatial information of the object and its surroundings.

A recent study by Culbertson et al. in [117] describes an online 3D game to teach people

Japanese. Their approach used situated learning theory, and they found excellent feedback on

engagement. Specifically, people were learning eight words in 40 min on average. Experts

who already knew some Japanese were the most engaged with the system. Learning results

from that study informed the design and complexity of the learning tasks in our experiment.

The broader vision for our ARbis Pictus system, including personalized learning and real-time

object recognition was influenced by work by Cai et al. in [118], which found that we can

leverage the small waiting times in everyday life to teach people a foreign language, e.g. while

chatting with a friend electronically.

3.2.2 Virtual and Augmented Reality in Education

The use of Augmented Reality for second language learning is in its infancy [119] [120],

and there are only a small number of studies that link AR and second language learning. For

example, in [121], Liu et al. describe an augmented reality game that allows learners to collab-

orate in English language learning tasks. They find that the AR approach increases engagement

in the learning process. In contrast, our experiment is an evaluation of the effects of immer-

sive AR on lexical learning, using simple noun terms only, analogous more to a traditional

flashcard-based learning method. The benefits and shortcomings of flashcards are well docu-

mented in the second language learning literature [122]. In this study, we employ this method

as a simple benchmark, purposely chosen to minimize effects of user interactions, and to ex-

pose the impact of immersion in AR. Grasset et al. [123] and Scrivner et al. [119] have studied

AR textbooks in the classroom. Their approach differs from ours in that we use minimal vir-
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tual objects (labels only), but incorporate physical objects in the real world as a pedagogical

aid, including their spatial positioning in the augmented scene. Godwin-Jones [120] provides

a review of AR in language learning, focusing on popular games such as Pokemon Go! and

general AR devices and techniques, but doesn’t discuss formal evaluations of AR for sec-

ond language learning. Going beyond simple learning of lexical terms, the European Digital

Kitchen project [124] incorporates process-based learning with AR to support language learn-

ing. They apply a marker-based tracking solution to place item labels in the environment to

help users prepare recipes, including actions such as stirring, chopping or dicing, for example.

Dunleavy et al. [125] discuss AR and situated learning theory. They claim that immersion

helps in the learning process, but also warn about the dangers of increased cognitive overload

that comes with AR use. In our experimental design, we consider this advice and allow ample

time for familiarization with the AR device to reduce both cognitive overload resulting from

the unfamiliar modality, and other novelty effects.

AR has been shown in first experiments to support better memorization of items [126],

[127], making use of spatial organization and the memory palace technique. Our study is

in line with these promising results and shows that there can be a distinct benefit of AR for

vocabulary learning, comparing with tried-and-true flashcard-based approaches.

Another benefit of AR is that it brings an element of gamification to the learning task,

making it particularly suitable for children to learn with. There have been several interactive

games involving AR for learning in a variety of situations. Costabile et al. [128] discuss an

AR application for teaching history and archaeology. Like [125], they hypothesized that en-

gagement would be increased with AR compared to more traditional displays. However, the

results found that a traditional paper method was both faster and more accurate than AR for

the learning task. Another notable example is Yannier et al.’s study [129] on the pedagogy of

basic physical concepts such as balance, using blocks. In their study, AR outperformed bench-

marks by about a 5-fold increase, and was reported as far more enjoyable. A similar, but much
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Order Device used — word subgroup(s) seen during each learning phase

I AR - A1 AR - A1, A2 AR - A1, A2, A3 FC - B1 FC - B1, B2 FC - B1, B2, B3
II AR - B1 AR - B1, B2 AR - B1, B2, B3 FC - A1 FC - A1, A2 FC - A1, A2, A3
III FC - A1 FC - A1, A2 FC - A1, A2, A3 AR - B1 AR - B1, B2 AR - B1, B2, B3
IV FC - B1 FC - B1, B2 FC - B1, B2, B3 AR - A1 AR - A1, A2 AR - A1, A2, A3

Table 3.1: Table of conditions and balancing across the six learning phases. AR shows the
augmented reality conditions and FC represents flashcards. A and B are distinct term groups
for the within-subject design, and the group number indicates one of the subgroups of 5 words.

earlier approach that applied AR to collaboration and learning was Kaufman’s work [130] on

teaching geometry to high-school level kids. An updated version of this system was applied to

mobile AR devices by Schmalstieg et al. in [131]. Now that we have described relevant related

work that has informed our experimental design and setup, we can proceed with details of our

designs. This will be followed with a discussion of results.

3.3 Experimental design

52 participants (33 females, 19 males, mean age of 21, SD of 3.8) took part in a within-

subject study. Learning modality and word groups were systematically varied, resulting in a

2x2 counterbalanced design. Participants were recruited through a paid pool at a university,

and were a mix of students and non-students.

In terms of ethnic background, 16 participants self-identified as White or Caucasian, 14

as Asian, 9 as Hispanic or Latina/Latino, 3 as Asian and Caucasian, 4 as Latino/Latina and

Caucasian, 3 as African American, 1 as African American and Mexican, 1 as Middle Eastern,

and 1 as Mixed without further elaboration. No participant had high proficiency in three or

more languages. 19 participants reported being natively or fully professionally proficient in a

second language. Of the other 33 participants, four reported speaking more than one language

with intermediate proficiency, and 24 with some elementary proficiency. 16 people reported

having some kind of proficiency in three or more languages.
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English was by far the most commonly well-spoken language, with 48 participants re-

porting “Native or Multi-lingual Proficiency” in it, and four participants “Full Professional

Proficiency”. The second most commonly well-spoken language was Spanish, with 30 par-

ticipants reporting having any kind of fluency in it. The third most spoken language group

consisted of Chinese languages, as reported by 9 participants. No participant reported any kind

of proficiency in Basque, the language of choice for our experiment.

30 Basque words were divided into two groups of 15, called A and B, further divided into

fixed subgroups of 5 referred to as A1, A2, A3 and B1, B2 and B3. Each subject saw one of

the two word groups on one of the devices, and the other group on the other device. In total, 13

people saw the word group A in AR first, 13 word group B in AR first, 13 word group A with

the flashcards first, and 13 word group B with the flashcards first, as described in Table 3.1.

After answering a set of background questions, participants were told what the objects were

in English and started using one of the devices after the instructors informed them about the

learning tasks and the specifics of the tests. On the AR device, the participants first undertook

a training task where they could take as much time as they wanted to set up the device, get used

to the controls and reduce the novelty aspect of it while interacting with virtual objects. Before

using the flashcards, an eye-tracker was calibrated for each participant. Then, the participants

moved on to the learning task, which consisted of 3 learning phases and 4 tests (3 productive

recognition tests, 1 productive recall test) per device. In the first learning phase, the participants

had 90 seconds to learn the 5 words of the first subgroup of one of the word groups on a given

device. After a distraction task, they took a productive recognition test. Afterwards, they

undertook a second learning phase on the same device, and had 90 seconds to learn the 5 new

words from the second subgroup of the same word group, along with the 5 previous words.

Following a distraction task, they took a recognition test on the 5 new words. They then had a

third learning phase on the same device during which they saw for 90 seconds the 5 words of

the last subgroup of the selected word group, alongside the 10 previous ones. After a distraction

62



Effects on Learning and Memory Chapter 3

and a recognition test on the 5 words from the last subgroup, they took a productive recall test

on all 15 words from the word group chosen. They then had another, similar set of 3 learning

phases and 4 tests on the other device using the other word group, as illustrated in Table 3.1.

The AR learning task, flashcard learning task and tests took place in three different rooms to

avoid potential biases.

At the conclusion of the learning task, the participants answered a questionnaire on how

efficient and engaging they perceived each device. A short interview allowed us to gather more

feedback on their preferences. Four days after the learning phases, the participants were asked

to take again the same eight tests they took the day of the study to assess long-term recall. 32

users agreed to take the tests.

Every participant was compensated $10, and the study lasted a total of 40 to 65 minutes for

every user (with most of the variance due to the AR training phase’s flexible length).

3.4 Experimental setup

Our experiment setup consisted of two modalities. An AR learning tool and a traditional

flashcard tool, implemented as a browser-based web application. We now present the details

of both, along with the learning and distraction tasks that were completed by each participant.

3.4.1 Flashcards

The flashcard modality was designed as a web application emulating traditional physical

flashcards, running on a desktop computer that the user interacted with using a mouse (see Fig-

ure 3.2). After entering a user ID and one of the combinations of word subgroups seen in Table

3.1, the instructor let the participants interact with 1, 2 or 3 rows of 5 flashcards, all visible on

a single page, with each flashcard consisting of a word in the foreign language on the back and

an image of the corresponding object on the front. The images used were pictures of the real
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Figure 3.2: Screen shot of the web-based flashcard application that was used in the study.

objects used in the AR condition. A recording of the word being pronounced was automati-

cally played through speakers every time the user clicked on the back of a flashcard. The same

recording of the Basque word being spoken by a human (male) was used in both modalities.

Clicks were logged during every phase to track possible learning strategies. Additionally, an

eye tracker was calibrated before the learning task with the flashcards to track the participants’

gaze during the learning phases.

3.4.2 Augmented Reality

The augmented reality modality (shown in Figure 3.3) made use of a Microsoft HoloLens,

an augmented reality head-mounted display. The application was set up in a room containing

all of the objects from the two word groups, but only allowed the participants to see labels

annotating the objects from the currently chosen subgroups with the relevant words in the

foreign language. The device’s real-time mapping of the room let the users walk around the

room while keeping the labels in place, and save the location of the labels throughout the study,

between users and after restarting the device. As a precaution, before every learning phase on
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Figure 3.3: Example of the Basque labels shown in the AR condition of the experiment. This
is a HoloLens mixed reality capture of the scene, which exaggerates the AR field of view. The
approximate actual field of view for the label annotations is highlighted in red.

the HoloLens, the administrators of the study verified that the labels were in place, and after

handing over the device to the participants, that they were able to see every label. The app had

two modes: “admin mode”, allowing the instructor to place labels with voice commands or

gestures, select which word subgroups to display, or enter a user ID; and a “user” mode that

restricted these functionalities but allowed the participants to interact with labels during the

learning task.

On the HoloLens, the cursor’s position is natively determined by the user’s head orienta-

tion; in the app, moving the blue circle used as a cursor close to a label would turn the cursor

into a speaker, signalling to the user the possibility to click to hear a recording of the word

being pronounced through the device’s embedded speakers. Each label had an extended, invis-

ible hitbox to allow the users to click the labels more comfortably. Moreover, the labels’ and

hitboxes’ sizes, along with the real objects’ locations, were adjusted based on the room’s di-

mensions and the device’s field of view to ensure that the participants could not see more than
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two labels at the same time, and that looking at a label would most likely lead to the cursor

being in that label’s hitbox. This was used to log the attention given to each word during the

learning task, in “user mode”.

In between the learning phases, “admin mode” was switched on to display a new subgroup,

check on the labels, and temporarily disable logging of attention data.

Due to the HoloLens’s novelty, the participants were allowed to interact with animated

holograms for as long as they wished before the AR learning task to get used to the controls,

adjust the device and overcome some of the novelty factor of the modality.

3.4.3 Learning Task

The Basque language was chosen after ruling out numerous languages that shared too many

cognates (words that can be recognised due to sharing roots with other languages) with English,

Spanish and other languages that are commonly spoken in the region where the study was

administered. Basque presented interesting properties: Latin alphabet to facilitate the learning,

but generally regarded as a language isolate from the other commonly spoken languages [132],

allowing us to control the number of cognates more easily, with one of the authors being fluent

in the language. The 30 words were carefully chosen and split into two groups A and B based

on difficulty and length, and further split into three subgroups per word group where each

subgroup corresponded to a topic: A1 was composed of office related words (pen, pencil,

paper, clock, notebook), A2 of kitchen related words (fork, spoon, cup, coffee, water), A3 of

clothing related words (hat, socks, shirt, belt, glove), B1 of some other office related words

(table, chair, scissors, cellphone, keyboard), B2 of printed items (newspaper, book, magazine,

picture, calendar), and B3 of means of locomotion (car, airplane, train, rocket, horse). The

study’s counterbalancing helped address possible issues arising from A and B potentially not

being balanced enough. The learning task on a device was constituted of three learning phases,
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each of which lasted 90 seconds, for a total of two learning tasks (one per device) or six learning

phases across both devices. The limit of 90 seconds was adjusted down from 180 seconds after

a pilot study had shown a large ceiling effect with the users reporting having too much time.

Once A or B was chosen as a group of words, the users successively saw subgroup 1 (5 words)

during the first learning phase, then subgroups 1 and 2 (10 words) during the second learning

phase, and then 1, 2 and 3 (15 words) in the last learning phase. The decision to allow the users

to review the previous subgroups came as a solution to avoid the floor effects in the productive

recall tests observed in the pilot study.

3.4.4 Distraction Task

In order to prevent the users from going straight from learning to testing, a distraction was

used to reduce the risk of measuring only very short-term recall. The task needed to have

enough cognitive load to distract the participants from the words they had just learnt. The

participants’ performance at the task should also be correlated to their general performance

regarding the study, in order to avoid introducing new effects – for example, a mathematical

computation may bias the results as a participant with above average computational skills but

below average memory skills may pass it fast enough that they would perform as well as an-

other participant with below average computational skills but above average memory skills.

Therefore, the distraction was chosen to be a memorisation task, in which the participants were

asked to learn a different alphanumeric string of length 8 before every recognition test. The

six codes used were the same for everyone, and were presented in the same order for every

participant for the 2x2 balancing to mitigate possible ordering effects.
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Figure 3.4: Format of the Productive Recognition Test.

3.5 Metrics

To best understand the lasting impact of learning in the different modalities, our metrics

included production and recognition of vocabulary, both immediately after a learning session,

and also in test several days afterwards.

3.5.1 Productive Recognition Test

The productive recognition tests were administered on the desktop computer used for the

questionnaire, in a different room from the two used for the learning tasks. Figure 3.4 shows

the format of the test. The questions consisted in 5 images, each accompanied by a choice of 4

words from which the participants had to pick the appropriate one. Each image corresponded

to one of the 5 new words seen in the preceding learning phase: A1 or B1 after the first

learning phase, A2 or B2 after the second learning phase, and A3 or B3 after the third learning

phase, depending on which one of A or B was chosen as the word group for that learning task,

for a total of 6 recognition tests across the two learning tasks. All 5 images were available

on the same page, allowing the participants to proceed by elimination. There was no time
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constraint, to avoid frustrating the participants, who were encouraged to use the tests as a way

to prepare for the productive tests due to the strong floor effects observed in the pilot study.

The performance was measured as either 1 for a correct answer, or 0 for an incorrect answer.

Every question was accompanied by a confidence prompt on a scale of 5 ranging from “Lowest

Confidence” to “Highest Confidence”.

3.5.2 Productive Recall Test

The productive recall tests took place on the same computer used for the recognition tests,

immediately after the third recognition test at the end of each learning task. Figure 3.5 shows

the format of the test, which also required a confidence evaluation for each answer. The pro-

ductive recall test had 15 images corresponding to the 15 words from the selected word group,

and participants were asked to type the corresponding word in Basque below each image. The

error on a participant’s answer was measured using the Levenshtein distance, which counts the

minimum number of insertions, deletions and substitutions needed to transform a word into

another, between their answers and the correct spellings [133]. Participants were therefore en-

couraged to try their best guess to get partial credit if they did not know the answer, and had to

provide an answer to every question to end the test. The Levenshtein distance was also upper

bounded in our analysis by the length of the (correctly spelled) word considered, to prevent

answers such as “I don’t remember” from biasing a participant’s average error, and divided by

the length of the correct answer to get a normalised error:

AdjLev(w, ŵ) =
min(Lev(w, ŵ),Length(ŵ))

Length(ŵ)
(3.1)

where w is the participant’s answer on a given question, and ŵ the correct answer. The score

was then computed as

Score(w, ŵ) = 1−AdjLev(w, ŵ) (3.2)
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Figure 3.5: Format of the Productive Recall Test.

where 1 indicates a perfect spelling, and 0 a maximally incorrect answer. As in the recognition

tests, every question was accompanied by a confidence prompt on a scale of 5 ranging from

“Lowest Confidence” to “Highest Confidence”.

3.5.3 Delayed Test

The delayed tests consisted of the same tests used for the same-day testing, in a slightly

different order: the productive recall test of each word group was administered before the three

recognition tests to prevent participants from reviewing with the recognition tests due to the

absence of a time constraint. The tests were sent in a personalized email to the participants four

days after the study. Only tests completed in the 24 hours after receiving the email were kept in

the analysis. Further, the test did not allow the participants to press the back button, and only

tests completed in a similar amount of time as the same-day tests were kept. Participants were

informed that the study being comparative, the absolute number of words they remembered did

not matter, and that the goal of the study was to measure how many people performed better

with either device with no expectation of a modality being better than another. This was done in
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Figure 3.6: User performance on same-day and 4-day-delayed productive recall tests. The
left group shows the flashcard and AR accuracy score for the same-day test and the right side
shows the comparison for the 4-day-delayed test. Error bars show standard error here.

order to reduce the impact of potential demand effects such as bias towards either modality, and

only their remembrance of the words (i.e. no qualitative feedback) was evaluated in the delayed

test to further diminish such biases. In total, 31 participants’ delayed test answers satisfied the

criteria mentioned above. Note that the 2x2 counterbalancing was conserved (eight participants

had followed order I, II and IV and seven order III as defined in Table 3.1).

3.6 Results

Now that we have described our experimental setup and metrics, we present a discussion of

results, organized by test type (recall and recognition), a brief discussion of attention metrics

(gaze and click behavior), and a discussion of qualitative feedback from post-study questions

and interviews.

3.6.1 Productive Recall

Figure 3.6 shows the accuracy results of the same-day productive recall test compared

to the delayed test for both modalities. The AR condition is shown in the lighter color. The
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Figure 3.7: User performance on delayed productive recall tests, ranked by term. Colors
show exposure groups. The accuracy score on the y-axis is computed from the mean of the
normalized Levenshtein distance between the participants’ spelling and the correct spelling.

delayed test was administered four days after the main study, and there was some attrition, with

780 question responses in the main study and 465 for the delayed. Accuracy was measured

using the score function previously defined in Eq.3.2 as 1 minus the normalized Levenshtein

distance between the attempted spelling and the correct spelling. In the same-day test, the AR

condition outperformed the flashcards condition by 7%, and more interestingly, in the delayed

test, this improvement was more pronounced, at 21% better than the flashcard condition. The

test results were analyzed in a non-parametric way after Shapiro-Wilk tests confirmed the non-

normality of the data. This is due in part to the many occurrences of words perfectly spelled.

Both differences are significant with Wilcoxon Signed-rank tests: p=0.011 and p=0.001 for

Dependent Variable (Accuracy) Z p effect size

Same-day Prod Recall -2.5397 0.01109 0.352
Delayed Prod Recall -3.1959 0.001394 0.574
Same-day Recognition -0.7926 0.42799 0.110
Delayed Recognition -0.1239 0.901389 0.022
Same-day Prod Recall (FC pref group) 1.1589 0.246488 0.237
Delayed Prod Recall (FC pref group) -0.0580 0.95367 0.016

Table 3.2: Key results from statistical analysis. Results highlighted in bold face are statisti-
cally significant effects.
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the same-day and the delayed productive results respectively, as seen in Table 2. The table

also reports productive recall scores for those users who reported that Flashcards were more

effective than AR (FC pref Group). Interestingly, no significant difference was found between

the modalities for this sub-group, in contrast to the results for the general population.

Based on interviews with the participants, we believe that the significant improvement in

delayed recall is linked to the spatial aspect in the HoloLens condition. Several participants

reported qualitative feedback to this effect, such as in the following example: “One reason

the AR headset helped me recognize the words better is because of the position of the object.

Sometimes, I’m not memorizing the word, I’m just recognizing the position of the object and

which word it correlates to. ”

3.6.2 Productive Recognition

Productive recognition was analyzed in the same manner as productive recall, however a

histogram of response accuracy revealed a ceiling effect in the data, where many participants

provided fully correct responses. The mean productive recognition score was 0.89 for the same-

day test in both modalities and 0.84 in the 4-day delayed test again for both modalities. In the

delayed test, the productive recall was presented first to avoid learning effects from viewing

multiple choice options. There was no significant difference between the modalities in this

test.

3.6.3 Attention Metrics

Gaze data was gathered for both modalities. For the flash card application, we collected eye

tracking data using a screen-based eye tracker, and for the HoloLens application we recorded

head orientation focus as described above.

For each of the terms in the three different exposure groups we computed the average time
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that participants’ attention was focused on that item. This was performed primarily to examine

why repeated exposure to terms did not produce an observed improvement in accuracy. For the

first group, the mean was 13.5 seconds (SD 6.3 seconds), for the second, the mean was 10.8

seconds (SD 7.2 seconds), and third group had a mean attention time of 7.2 seconds (SD 4.5

seconds). The differences in attention times not being significant between the different groups

may imply that during the learning phases, participants focused mainly on the new items, or

that users chose to focus on different words on average. This is reinforced by the fact that no

significant accuracy improvement was measured for repeated-exposure items, as evidenced by

Figure 3.7 where the most significant effect is word length.

Click data was recorded for the flashcard application to help identify potential learning patterns.

Recall that the flashcards had two sides and required a click to turn from text to image and back

again (Figure 3.2). The click patterns showed that people tended to click more often towards

the end of the study. 18 of the participants had a pattern of clicking the same flashcard over five

times in a row, perhaps indicating a desire to see both image and text at the same time, or testing

themselves during the learning phase. Both possibilities are supported by users reporting in the

post-study interview that they enjoyed the ability to see the object and the word simultaneously

in AR, while others mentioned making use of the flashcards’ two-sided nature to self-test.

3.6.4 Perception and Qualitative Feedback

Participants were asked about their experience using AR and flashcards, and their subjective

ratings correspond with their learning performance. In terms of what was fastest for learning

words, 54% found AR fastest, compared to 46% who found flashcards fastest. As a side note,

13 among the delayed test population had reported preferring the flashcards, as opposed to 18

for AR. As for the learning experience, 75% of participants rated AR “good” or “excellent”,

while 63% rated flashcards “good” or “excellent”.
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Figure 3.8: Qualitative feedback from the 52 participants

Figure 3.8 shows that when asked about the effectiveness of each platform for learning

words, 88% of participants “somewhat agreed” or “strongly agreed” that the AR headset was

effective, while 79% “somewhat agreed” or “strongly agreed” that the flashcards were effective.

Participants’ comments comparing the two platforms revealed that about 20% (10 of 52)

felt AR and flashcards were equally effective for learning because of the visual imagery both

provide. 14 of 52 specifically mentioned that they found AR better because they saw the word

and object at the same time. Almost 20% (10 of 52) stated that AR was better because it was

more interactive, immersive, and showed objects in real time and space (e.g., “The flashcards

are classic and I have experience learning from them but the AR headset was more immersive”

and “The headset was more interactive because it was right in front of you with physical ob-

jects rather than through a computer screen”). Only 13% of the participants commented that

flashcards were better, due to their familiarity with similar apps and computers in general.

A stark/striking difference was found in participants’ opinions about which platform was

enjoyable for learning. Figure 3.8 shows that 92% of participants “somewhat agreed” or

“strongly agreed” that using the AR headset was enjoyable for learning words, compared to

only 29% for using the flashcards. Open-ended comments from the participants pointed to
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the not unexpected novelty effect of AR (21 of 52 or 40%), “The AR Headset because it was

an incredibly futuristic experience.” In addition, 16 of 52 participants (31%) commented ex-

plicitly on how AR is more interactive, engaging, hands-on, natural, and allowed for physical

movement (e.g., “The AR headset was more interactive and required movement which engaged

my mind more” and “The AR Headset was more fun because it’s more fun to be able to move

around and see things in actual space than on a computer screen” or “The AR headset was

more enjoyable because it allowed for you to interact with the objects that you are learning

about. It felt more realistic and applicable to real life, plus I had the visual image that helped

me remember the words”). Only 8 of 52 participants (15%) indicated that flashcards were more

enjoyable because they were familiar, practical, and straightforward.

As we noted earlier in the discussion of productive recall results (Section 3.6.1, several

participants commented in interviews or left text feedback related to the spatial aspect of the

AR condition, generally saying that it helped give them an extra dimension to aid in learning.

For example, one participant reported that: “The AR headset put me in contact with the objects

as well as had me move around to find words. I was able to recall what words meant by

referencing their position in the room or proximity to other objects as well. ***Seeing the

object at the same time as the word strengthened the association for me greatly***”. Another

participant said “the AR seems like it would work better with friends or family trying to learn

together, while the flashcards seem to work on an individual level.”. The latter comment points

towards a social or interactive aspect of AR-based learning which we have not focused on in

this study, but is nonetheless of potential interest to system designers and language learning

researchers. The potential for social interaction and learning that this participant mentioned is

likely linked to the availability of an interactive learning space.

Another possible benefit to learning in the AR condition is that it can facilitate the so

called “method of loci” or “memory palace” technique [106]. It has been shown to be useful

when applied to learn the vocabulary of a foreign language. The method is described for
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example in [107]. The author suggests to begin by creating a memory palace for each letter

of the German alphabet by associating it with a location in an imaginary physical space. Each

memory palace then is recommended to include a number of loci where an entry (a word or

a phrase) can be stored and recalled whenever it is needed. One of our participants made

a comment about this learning method after learning in the AR condition: “I use memory

palaces, so I really enjoyed AR as it felt somewhat familiar and made it easier for me to use

the technique than the flashcards”.

3.7 Limitations

Our proof-of-concept experiment shows that AR can produce better results on the learning

of foreign-language nouns in a controlled lab-based user study. However, the study has sev-

eral limitations. First, learning itself occurred in a controlled experimental context, in which

subjects were paid an incentive. This cannot be assumed to be representative of real-world

learning, and it is possible that our results may vary in real learning contexts. Second, and

related, it is likely that novelty effects had some impact on the study given that the HoloLens

remains in the category of new and exciting technology. Our design included a long accli-

matisation phase with the device, but it is difficult to be sure that our qualitative results have

not been impacted by novelty effects. Third, we chose to adopt a simple and standard im-

plementation of the flashcard system, with words and pictures on opposite sides. This was

fundamentally different from the AR condition, wherein labels and objects were visible at the

same time. A small number of participants noted that they preferred the ability to view the ob-

ject label and the object at the same time in the AR condition. On the other hand, others made

use of the ability to self test in the flashcard condition. We are aware that our design choices

and trade-offs will impact the learning experience. It is possible that other implementations

would produce different results. Our results here represent a black-box comparison of these
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two learning approaches, and we encourage other researchers to extend our study to include

other learning platforms and designs. Last, our productive recognition tests, while carefully

controlled based on informal pre-studies and performance information from existing literature,

showed ceiling effects with a large number of participants. No ceiling or floor effects were ob-

served for the productive recall test. In follow-up experiments, we will increase the difficulty

of the productive recognition tests.

3.8 Conclusions and Future Work

This chapter has described a 2x2 within-subjects experimental evaluation (N=52) to assess

the effect of AR on learning of foreign-language nouns compared to a traditional flashcard

approach. Key research questions were proposed, related to quantitative performance in imme-

diate and delayed recall tests, and user experience with the learning modality (qualitative data).

Results show that 1.) AR outperforms flashcards on productive recall tests administered same-

day by 7% (Wilcoxon Signed-rank p=0.011), and this difference increases to 21% (p=0.001)

in productive recall tests administered four days later. 2.) Participants reported that the AR

learning experience was both more effective and more enjoyable than the flashcard approach.

These results are a good indication that AR can be beneficial for language learning, and I

hope it inspires HCI and education researchers to conduct further research. AR language learn-

ing is a promising example application that appears to improve learning performance compared

to other more traditional forms of technology assisted learning interfaces. Furthermore, I the-

orize that it achieves this benefit due to intrinsic properties that can only be achieved in AR.

It only works because it sits in the cognitive feedback loop between your visual perception

(what you see), your memory, and the learning process that happens over time. Ultimately, this

is the kind of use case that we should be striving to achieve in our field. An AR system that

doesn’t simply grant the user a new suite of abilities, but empowers them to learn and retain
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new capabilities that persist even when the AR device is no longer in use. These are the kinds

of next generation killer applications that I hope will drive the adoption of pervasive AR.

There are several avenues to continue research on the ARbis Pictus system, most notably,

by taking the system beyond the controlled learning environment that was described in this

paper and applying it to real-world learning tasks. However, there are numerous technical

challenges to be solved before this vision of AR language learning, one that is always-on, with

automatic personalization of the learning curriculum, and automatic generation of spatially

arranged learning content, can come to fruition. To solve the personalized learning problem,

we need to create a feedback mechanism for the system to determine how effective the current

curriculum is and whether or not adjustments need to be made to better fit the user. In the

next chapter of this dissertation, I will detail one possible avenue, eye tracking, and explore the

feasibility of using this technology within the context of language learning. As an initial step

towards tackling the content generation problem, I implement a first prototype of a real-time

object labeling system with the HoloLens. In chapter 5 of this dissertation, I describe some

preliminary evaluations of that system and how it can be incorporated into a language learning

application.

While this dissertation largely focuses on technical solutions for AR language learning,

there is also significant work to be done in the educational, psychological, and sociological

domains. While personalized language learning plans exist, they have not been deployed at the

temporal scale and with the degree of dynamicism that a pervasive AR system would demand.

We need to involve tech savvy educators and course administrators to assist in the development

of an appropriate language curriculum that can be deployed on ARbis Pictus. Furthermore,

evaluating the performance of a real-world AR personalized-learning system is clearly a non-

trivial task that will require complex longitudinal studies with many learners to account for

differences in user experiences brought about by uncontrolled data in real-world environments.

Ideally, we would lead a longitudinal study over the course of several weeks in a classroom,

79



Effects on Learning and Memory Chapter 3

in order to measure the potential of AR in less controlled environments where the influence

of novelty may be easier to measure and where students may interact with each others. In

terms of education and learning theory, it may be possible for these results to expand the

existing and established theories of CTML. It is also important to conduct further analysis

and understand the differences of how various groups, such as multilingual people, approach

vocabulary learning using this system.
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Chapter 4

Using Eye Tracking to Measure Word

Understanding

When designing pervasive AR applications, designers must think about all the various situa-

tions and use cases that a system might be deployed in, and adapt the application’s feature sets

accordingly. This can be a daunting task, and it can be difficult to know where to start. In

this chapter, as well as the following chapter, I look at the context sensing and feedback loop,

qualities of a pervasive AR system that enable increased application adaptability for everyday

situations. Namely, I try to bridge the gap between the system’s understanding of context and

the user’s experience of context, enabling new forms of context sensing capabilities to AR

headsets.

Context is a multitude of things, and much like application design, it can be difficult to

know where to start. In Grubert et. al’s taxonomy of pervasive AR [2], the authors break down

context sources into three types: Human, Environmental, and System factors. This is a helpful

start, but doesn’t really provide actionable goals for advancing the state of pervasive AR. In

my work, I have filtered much of my exploration through the lens of enabling the AR language

learning vision described in previous chapters. I have found it easier to narrow down research
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goals and scope projects by doing so, and the research described here is an outcome of that

process.

Using Grubert et. al’s taxonomy, we can describe this chapter as an exploration of human

context sources, further filtered to those that are relevant to AR language learning. Learning

is a cognitive process, so the human context we are most interested in is the learners cognitive

state. There are many states that are valuable to the learning process. Interest, doubt, confusion,

fatigue, could all be relevant when trying to infer the learners state of mind. However, the one

that is most directly actionable is probably understanding. Whether or not a user recognizes or

does not recognize something is indicative or whether they have retained the concept in their

minds. If we could measure their level of understanding, we could compare their measured

understanding to the application’s expectations based on the current curriculum and have a

quantifiable metric for how effective the application’s teaching methods are.

Unfortunately, there are not many methods currently available for inspecting the users cog-

nitive state. The most effective methods are often physiological and fairly invasive, something

the average AR user is likely not willing to use. EEG for instance, requires careful place-

ment of many electrodes on the users scalp, and often require the application of conductive

gel to achieve reasonable accuracy. Eye tracking on the other hand, while not as accurate, has

been correlated with a wide variety of cognitive states. Eye tracking hardware is also widely

expected to be present in AR headsets, as researchers pursue foveated rendering to optimize

rendering costs and increase performance on the small form factor, hardware constrained de-

vices. In fact, the HoloLens 2, and certain VR headsets with AR functionality like the HTC

Vive Pro, already have eye trackers embedded, though these devices were not yet available at

the time of this work. For these reasons, we sought to explore the feasibility of using eye track-

ing data to determine word understanding. This work was done in collaboration with Jason

Orlosky of Osaka University’s CyberMedia Center, an expert in eye tracking for mixed real-

ity. We conducted a user study in a VR environment to find and correlate eye tracking signals
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with word recognition, and the results of our exploratory research are detailed in the following

sections.

4.1 Introduction

In recent years, augmented and virtual reality (AR/VR) have started to take a foothold in

markets such as training and education. Although AR and VR have tremendous potential,

current interfaces and applications are still limited in their ability to recognize context, user un-

derstanding, and intention, which can limit the options for customized individual user support

and the ease of automation. AR has tremendous potential not only to add or modify content,

but to enhance vision, memory, and even cognition. Quite a bit of literature exists on this topic,

going back to the beginnings of AR [134, 135], but research on automatic assessment of user

cognition is still limited in many ways.

One specific research area with great potential is that of learning enhancement. Lack of

education across the globe is also still a significant problem. As a step towards improving ed-

ucation, our goal is to build an automated education framework that supports in-situ learning

through AR and VR. As one step in this process, we need to better determine when an indi-

vidual understands a particular concept and to what level. With respect to language learning,

we need to recognize when a user remembers a particular word in a given context. To do so,

we hypothesize that eye tracking can be used to classify a user’s level of understanding of a

particular event or concept when combined with context. In addition to observations of the

tendencies of the eye during learning tasks, we evaluate a variety of different eye metrics to

help with the classification of this kind of understanding.

More specifically, our system makes use of an eye tracked VR environment as a test bed.

Using metrics including eye and head movement, pupillary response, and focus duration, we

can to a certain degree classify the moment a user knows or is having trouble recalling a partic-
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ular concept. We also hypothesize that we can determine the level of understanding or extent

to which someone is able to recognize a particular concept based on the amplitudes and irreg-

ularities in some of these metrics. Most other work attempts classification of general cognitive

activities over time, such as that by Henderson et al. or Marshall et al. [136, 137].

Our research differs from most prior studies in that we are evaluating the understanding of

short-term, individual events as part of a specific context. Understanding events on a shorter

time scale is important for learning interfaces since humans often learn new words or concepts

in a matter of seconds.

Another contribution of this paper is the VR environment and series of experiments that

will help benchmark suitable algorithms and reveal more about the physiological processes that

occur during recall and understanding. Within our VR environment, we designed a series of

word memory and tasks that should facilitate a certain amount of cognitive load. In comparison

with previous studies that classify tasks based on viewing of images like that of Henderson et

al. [136], we use an interactive environment to more closely resemble interactions with in-situ

objects or tasks.

Results from our experiments show that fixation time, eye movement, and pupil size had

the highest correlation to perceived word difficulty. Using these metrics, we were able to

achieve a rate of 62.8% (known/recalled vs. unknown/forgotten) when trying to classify all

easy, medium, and hard words, and 75.6% classification accuracy when considering only easy

and medium difficulty words.

This work addresses the problem of automatically recognizing whether or not a user has an

understanding of a certain term, which is directly applicable to AR/VR interfaces for language

and concept learning. To do so, we first designed an interactive word recall task in VR that

required non-native English speakers to assess their knowledge of English words, many of

which were difficult or uncommon. Using an eye tracker integrated into the VR Display, we

collected a variety of eye movement metrics that might correspond to the user’s knowledge or
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memory of a particular word. Through experimentation, we show that both eye movement and

pupil radius have a high correlation to user memory, and that several other metrics can also be

used to help classify the state of word understanding. This allowed us to build a support vector

machine (SVM) that can predict a user’s knowledge with an accuracy of 62% in the general

case and and 75% for easy versus medium words, which was tested using cross-fold validation.

We discuss these results in the context of in-situ learning applications.

4.2 Eye Tracking

Eye tracking is a sensor technology that has a long history of use in both head-mounted

display research and the cognitive sciences. In HMD research, accurate and robust eye track-

ing is the cornerstone of all foveated rendering techniques, which greatly improves rendering

performance by reducing image quality outside of the current point of focus. The enormous

potential of foveated rendering has led device manufacturers to preemptively include eye track-

ing cameras in the design of their headsets, such as with the HTC Vive Pro and the HoloLens

2, even when algorithms are not yet mature enough for use.

Within cognitive sciences, eye tracking has frequently found use as a non-invasive tech-

nique for measuring attention mechanisms or investigating the most central and provocative

parts of a scene, otherwise known as saliency. But eye tracking is much more than just at-

tention patterns. Eye tracking also provides auxiliary metrics such as pupil dilation and blink

rate. Pupil dilation has been used to study mental workload, or the intensity and difficulty

of cognitive processing. And blink rate has been used to study learning, working memory,

decision making, and other aspects of cognitive development. Gaze can also be aggregated

and analyzed over time, which can reveal cognitive strategies being employed in a given task.

Eckstein et al. provide an excellent summary of the current uses of eye tracking in cognitive

sciences literature [138].
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Our investigation in this space revolves around the usability of eye tracking as a proxy for

cognitive states in an AR application. Can we define a cognitive state that tracks closely with

the goals of our application? How accurately can we measure it? What does that design process

look like?

4.3 Methods

To answer these questions, we start by focusing on one of our representative applications:

situated language learning. Situated language learning allows the user to utilize their envi-

ronment as scaffolding in the learning process, by taking advantage of the brain’s ability to

efficiently link information that is highly cognizant and contextually relevant to the user, such

as the familiarity of objects in their home. We have contributed some results in effectiveness

of situated language learning, which can be found in previous chapters.

One of the primary challenges in language learning is determining and adapting to the rate

of learning development, as every student is different. Some will learn faster than others, some

will be more amenable to certain concepts, and some will simply have variations in discipline

or motivation. In a classroom setting, it would typically be left to the teacher to determine the

needs of each student and adapt the rate of material presented accordingly. The adaptation step

can be relegated to personalized tutoring and curriculum software, but we still need humans-in-

the-loop to determine the current state of language understanding. If we can directly measure

the state of language understanding, we could create a fully automated interaction loop where

educational content is dynamically adapted to the rate of learning and development. Coupled

with the demonstrated efficacy of situated learning in AR, such a development would greatly

alleviate the burdens of language teachers and make it easier for users to learn new languages.

The goal of this work is to investigate the feasibility of using eye tracking sensors on a

head-mounted display to determine language understanding. While other papers have explored
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Figure 4.1: Eye tracking camera setup. Pupil Labs eye trackers were installed in an HTC Vive headset.

eye tracking as a signal for learning and cognitive development, our work is distinguished by

its emphasis on the use of an HMD. Here, we opted to use an HTC Vive headset as our virtual

reality apparatus, due to the lack of augmented reality headsets with eye tracking capabilities

at the time of investigation. We installed Pupil Labs eye tracking cameras within the headset,

as seen in Figure 4.1. Our eye tracking software is based on the same framework used by Itoh

et. al., and makes use of a standard 5-point calibration procedure that was performed before

the start of the task. After calibration, the user was asked to focus on a central point so that

accuracy could be manually confirmed by the experimenter. If the calibration was off by more

than two degrees, the calibration procedure was re-conducted.

Our virtual reality environment consisted of a room with six spawn points distributed

equally in a circle around the participant. A visualization of this environment is shown in

bird’s eye view in Figure 4.2. English words were displayed within the centers of the spheres.

Each sphere was spaced 1.2 meters away from the participant and had a radius of 0.5 meters,

which defined a fixation point encompassing a field of view of approximately 23 degrees. Note
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Figure 4.2: Virtual reality environment for the study.

that the sphere itself was not visible during the experiment, only the words. Each participant

started at the center point equidistant to the spawn points during the tasks, though naturally that

position drifted over time as they moved around to search for words during the task.

During the task, words were displayed randomly in one of the six spawn points. Participants

were asked to read each word and answer yes or no, either by pulling the right or left trigger on

the HTC Vive controllers, as shown in Figure 4.3. Subsequent words never overlapped on the

same position as the previous word and always required participants to search and look around,

ensuring that there is always a consistent gaze and fixation event for each word.

The words presented ranged in difficulty from very common words like “question” and

“reason” to exceedingly rare words like “opsimath” and “cencacle”. They were selected by

randomly sampling words from a range of occurrence levels in the Google Ngrams database.

These ranges were divided into “easy”, “medium” and “hard” categories, defined by the oc-

currence ranges of 0.02% - 0.0011%, 0.001% - 0.0001%, and below 0.0001% occurrence,
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Figure 4.3: Task interface.

respectively.

The experiment was broken up into two tasks, 15 ordered words and 15 randomized words,

picked randomly from the list of 30 words for each participant, while still ensuring there was

even distribution of difficulties between the two tasks. The first 15 words were broken up

into three groups, sequentially going from easy to medium to hard, with presentation of each

of the 5 words in each group being randomized. The second set of 15 words was presented

completely randomized with no difficulty ordering.

A total of 16 individuals (mean age of 31.8, stdev 8.16, range from 24 to 50) participated

in the experiment. The participants came from a wide range of language backgrounds. All

were non-native English speakers but had some English language ability, which also ensured

a large distribution of answers. Moreover, any classification we achieve needs to be culture-

and language- independent, so the larger variety of language abilities benefited our results.

The experiment was conducted at Osaka University under IRB SA2016-2, and all participants

signed a consent form prior to starting the experiment.
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Figure 4.4: Word occurrence vs. Participant Answers.

4.4 Results

Due to the diverse backgrounds of the participants and variability in each individual’s un-

derstanding of the English language, we first sought to verify the veracity of our rating of word

difficulties. To test this, we mapped the words by Ngrams occurrence to the number of YES

answers per participant, indicating how many participants in our study understood each word,

shown in Figure 4.4.

As we can see from the graph, our method of ranking word difficulty by occurrence cor-

relates well with participants’ knowledge of the words. A statistical analysis further reveals a

Pearson Correlation of R(28) = 0.8983 and p < 0.01.

4.4.1 Focus Time

Next, we wanted to determine whether the time spent focusing on a particular word differed

by answer. The statistical analysis was conducted using a mixed effects model in R. For the

binary outcome of YES or NO, we tested each of the metrics listed above for differences in

means, while including participants as a random effect in the model. Within this model, type III
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ANOVA using Satterthwaite’s method and a separate Pearson correlation between each metric

and word difficulty were computed.

First the average time spent responding to NO answers was 2753.69 ms vs. 1731.28 ms for

YES answers. T-tests using Satterthwaite’s method confirmed a significant difference in means

for time F(1,347.07) = 14.402, p < 0.001. As a follow-up, we compared the time taken

for answers in the ordered set of words versus the random set of words. This effect was not

significant, F(1,367.29) = 2.02, p < 0.155, with the average times being 2396 ms for ordered

answers and 2027 ms for random answers. Secondly, we wanted to see whether average time

spent had a correlation to the number of known words and difficulty rank. Time and the number

of YES answers for a particular word were not strongly correlated, with R(28) = 0.291, p =

0.153, and R(28) = −0.351, p = 0.082, for ranked difficulty. Though time data can help us

classify binary understanding, it may not help establish the level of understanding of the word.

4.4.2 Head Movement

The next metric we explored was head movement. In particular, we analyzed head roll

since several participants were observed cocking their heads to the side when thinking during

the experiment. The average clockwise (from the participant’s perspective) roll angle (abs

value) was 3.61 degrees for NO answers versus 3.82 degrees for YES answers and counter-

clockwise roll was 2.95 degrees for NO answers versus 2.81 degrees for YES answers. Neither

of these were significant, with F(1,352.21) = 0.550, p = 0.458 and F(1,328.16) = 0.013,

p < 0.908, respectively.

4.4.3 Eye Movement

The next and arguably most interesting set of metrics we used were those pertaining to eye

movements. We analyzed saccades, blinks, and eye movement in pixels per second.
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Figure 4.5: Graph showing the average eye movement in pixels per second against word diffi-
culty ordered by increasing difficulty, or ranked difficulty. Pearson correlation with R= .8983,
P < 0.01.

First off, neither saccades nor blink frequency were found to be significant. These were

measured by dividing the total number of occurrences over fixation time to establish frequency.

No effect was found for saccades, with frequency for YES as 1.99 saccades/sec vs 1.97 sac-

cades/sec for NO, F(1,263.39) = 0.412, p = 0.522. Moreover, Pearson correlation was equal

to R = 0.056, p = 0.882, which was not significant. Blink frequency was also non-significant,

with YES as 0.211 blinks/sec vs 0.221 blinks/sec for NO, F(1,174.29) = 0.06, p = 0.807.

Pearson correlation was equal to R = 0.096, p = 0.743.

The most significant metric turned out to be eye movement, i.e., the average movement

per second from the time the participant began gazing at the word from the time they moved

on to the next word. Results are separated into X, Y, and total Euclidean distances. Average

magnitude of X velocity (in pixels per second) was 9.276 for NO and 14.422 for YES, for which

the difference was significant, F(1,362.39) = 43.41, p < 0.0001. For Y velocity, this was 7.28

for NO answers versus 10.274 for YES answers, for which the difference was also significant
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F(1,353.89) = 15.098, p < 0.0001. Total Euclidean distance was 12.048 for NO answers

versus 18.086 for YES answers, for which the difference was also significant F(1,365.04) =

38.591, p < 0.0001.

Moreover, all movement, including the Euclidean distance from the previous X,Y position

to the next yielded significant Pearson Correlations for:

• X mvt. vs total YES answers: R(28) = 0.798, p < 0.01

• Y mvt. vs total YES answers: R(28) = 0.693, p < 0.01

• X mvt. vs difficulty rank: R(28) = 0.674, p < 0.01

• Y mvt. vs difficulty rank: R(28) = 0.718, p < 0.01

• Euclidean total of mvt. vs answers: R(28) = 0.801, p < 0.01

• Euclidean total of mvt. vs rank: R(28) = 0.724, p < 0.01

A graph of euclidean total eye movement in pixels per second vs. ranked difficulty of words is

shown in Figure 4.5, where the correlation can be clearly visualized.

4.4.4 Pupillometry

Finally, we looked at metrics related to the pupil, namely pupil size and pupil deviation.

Some pupillometric measures were significant between answers.

Average absolute pupil radius for YES was 2.18 mm versus 1.92 for NO, F(1,375.59) =

2.643, p = 0.105. Pupil radius was well correlated to ranked difficulty, R(28) = 0.634, p <

0.01, and to answers, R(28) = 0.720, p < 0.01, which is also shown in Figure 4.6. Pupil

deviation was also very significant, resulting in YES answers at 0.478 mm/sec and NO answers

at 0.371 mm/sec, which represent the magnitude of any changes in pupil size, F(1,376.98) =

27.42, p < 0.0001.
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Figure 4.6: Graph showing the average pupil radius in millimeters versus ranked difficulty..
Pearson correlation of R(28) = 0.720, p < 0.01.

Table User Selections
Metric YES NO Unit

Fixation Time 1.73 2.75 seconds
Eye Movement (Eucl.) 18.086 12.048 pixels/second

Pupil Deviation 0.487 0.371 millimeters/second
Absolute Pupil Size 2.18 1.92 millimeters

Table 4.1: Summary of all statistically significant data to be used in the SVM classifier.

4.5 Learning State Classification

The most significant of these data are summarized in Table 4.1 below. All of these metrics

were then used to train a Support Vector Machine (SVM) for classification of Understood

(YES) vs. Not-understood (NO) words.

For the initial SVM design, we used a single class, supervised linear SVM from the Shark

library [139]. We first used all of the available data points (374 user selections) as input to the

SVM and ran a full cross-validation. This resulted in a subject-agnostic model with classifica-

94



Using Eye Tracking to Measure Word Understanding Chapter 4

tion accuracy of 62.8% (235 / 374) for any user. Note that a small number of outliers (16) were

removed due to issues with the eye tracker disconnecting during the study.

However, further inspection showed that hard words appeared to be more difficult to clas-

sify than easy or medium words. We believe this is because hard words tend to have a lower

fixation time than medium words, causing the SVM to mix up easy and hard responses.

As such, we re-ran the data to try and classify YES/NO answers for just the subset of words

containing easy and medium difficulties. As we hypothesized, the SVM classification improved

to 75.6% (198 / 262 correct). This accuracy will likely be even higher with a personalized

classification model, improved eye tracking, and additional training data.

4.6 Applications and Use Cases

Despite the existing body of research on cognitive state recognition, we still lack concrete

ways to modulate or present virtual content based on the resulting output, especially for short-

term events. For example, many systems can determine that a user is confused or engaged in

visual search over a longer period of time, but very few researchers have focused on how to

overlay instructions or augmentations in response to those mental states, let alone the environ-

ment. With this project, we have demonstrated a new capability — whether or not the user

recognizes and understands the content they are interacting with.

As mentioned in the beginning of this chapter, this study was motivated by the desire to

improve the capabilities of language learning interfaces in AR. This cognitive state detection

fits into a larger system, along with a language model and intelligent tutoring system, enabling

an automated recognition system that can provide a more intelligent, in-situ, natural way of

learning through AR. The theoretical design and implications of such a system is described in

chapter 5 of this dissertation. Here, we simply highlight the utility of cognitive state detection

via head-mounted eye tracking.

95



Using Eye Tracking to Measure Word Understanding Chapter 4

One other potential example is that of assistive technologies for the elderly and disabled.

Consider an elderly user who sometimes forgets to take their medication, follow procedural

instructions, or interact with an object of significance. To recall an appropriate augmentation

for that object at the right time, we need to understand 1) the user’s context, 2) the state of that

object within its context, and 3) the user’s mental state in relation to that object and task. In

other words, we need to determine whether a user would say yes or no to questions such as “do

you understand where you are,” “do you understand this word,” or “are you confused?” Being

able to classify a binary yes or no to these questions can help a ubiquitous computing system

determine how to display the appropriate navigation interface, word learning annotation, or

medication checklist, or signal an external party for help. We could train a model similar to the

one presented here for cognitive states and learning events related to conditions like dementia

or memory loss. These cognitive markers could then be associated with an external database to

assist the user in recovering relevant information, effectively extending their human memory

capacity.

4.7 Discussion

We have demonstrated the feasibility of detecting learning states in virtual reality. We also

identified features that correlate closely to learning states. We believe that there is a significant

degree of transferability to augmented reality settings. We discovered several statistically sig-

nificant eye camera signals and were able to train a simple classifier using these data points to

predict word understanding on our ground truth dataset with reasonable accuracy.

In the experiment, we were able to achieve between 62.8% and 75.6% accuracy for the

user’s understanding of a short-term word recognition task. However, our SVM classifier uti-

lizes aggregated values within a certain window of time: between when the word enters their

field of view up to the point they respond. At the time a user infers meaning in a practical
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situation, the fixation duration is not as easy to delineate, which may affect the accuracy of

classification. Creating a personalized model for each user could help alleviate bad classi-

fications. Coupled with future improvements, for instance increased eye camera resolution,

and better machine learning classifiers, such as attention based neural networks, we expect the

accuracy of this method to improve substantially.

One other source of error from the experiment could be our detection algorithms for blinks

and saccades. Several other APIs exist in addition to our custom built detectors, however we

do not have a way to benchmark these algorithms against ground truth. Updated eye track-

ing hardware may alleviate this potential source of error in the future. Moreover, better eye

tracking algorithms will also likely reduce the error in calculated pupil size, further improving

classification accuracy.

One interesting and somewhat counter-intuitive result from our experiments was that medium

difficulty words were more easily separable from easy words than were hard words. Through

observation and post-experiment discussion with participants, we concluded that it is easy to

know when a person doesn’t know a word at all since there is no stored memory of the word to

recall. Conversely, when a word of medium difficulty is unknown and the participant has either

known it and forgotten or had some visual or aural exposure to the word, he or she will have

to access his or her memory in more depth and expend more cognitive energy to determine

whether or not the meaning is known. This contrasts somewhat with results found by Karolus

et al., where increased fixation time was correlated with lower language ability [140]. As such,

context (for example reading versus recalling an individual word) seems to play an extremely

important role when deciding what data to use for which classifier.
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Chapter 5

Using Object Recognition for Content

Management

Previous chapters introduced a conceptual AR language learning system as a framework for ex-

ploring challenges in the design of pervasive augmented reality applications and investigated

the use of eye tracking as part of the larger envisioned system to utilize user context for learning

in augmented reality. Those results contributed towards solving the problem of personalized

learning adaptation, or how a pervasive AR application could adapt to human context informa-

tion. But we have yet to touch on environmental context however. Using the lens of our AR

language learning application, we can identify one major bottleneck in the creation of learning

content.

Generating new content is trivial, as it simply involves looking up the next stage of progress

in the learning curriculum. But that alone would not make for a unique AR application with

features distinct from other computing mediums. We want to take advantage of spatial arrange-

ment to improve learning and recall, as described in previous chapters. In other words, we need

a way to automatically and seamless arrange learning content within any physical environment

we encounter. To do so requires context awareness in the form of semantics and geograph-
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ical positioning. Thankfully, the deployment of deep learning in Computer Vision tasks has

drastically improved the accuracy of recognition, tracking, and localization algorithms for a

variety of context levels. Unfortunately, these deep learning models typically have billions of

parameters and require a powerful GPU or multiple GPUs to run. Current optical see through

headsets just aren’t capable of running these models natively.

This chapter tackles the challenge of how to enable automatic content arrangement and

adaptation to new physical environments. We introduce new context awareness capabilities

for augmented reality in the form of object recognition, specifically demonstrating that it is

possible to use state of the art object recognition models on a per-frame basis through over-the-

network video streaming to a local GPU server. Our implementation enables the usage of large

vision models without sacrificing portability or needing to wear bulkier hardware. We evaluate

real-world performance of the implementation in a small pilot study.

Additionally, this chapter discusses the entire process of designing this language learn-

ing system, including background and motivations, technical challenges, system architecture

and characteristics, and lessons learned. We detail which assumptions were made about user

context and environmental context for the system. We also describe and analyze the choices

made in terms of algorithm selection, including the choice of deep learning model. The design

of this system presents insights into the challenges of integrating multiple disparate compo-

nents, such as eye tracking and object recognition, which operate at different throughput, into

a resource-constrained mobile augmented reality headset. By undertaking the design and fea-

sibility evaluation process, we contribute insight into how to incorporate state-of-the-art tech-

niques such as deep learning and identify roadblocks towards future pervasive AR application

implementations.
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5.1 Motivation

For many years, learning new words has often been accomplished by memorization tech-

niques such as flash cards and phone or tablet based applications. These often use tem-

poral spacing algorithms to modulate word presentation frequency such as Anki [141] and

Duolingo [142]. A more effective, albeit time consuming, method of language learning is to

attach notes with words and illustrated concepts to real world objects in a familiar physical

space, taking advantage of the learner’s capacity for spatial memory. Learners constantly see

a particular object, recall the associated word and learn that concept more effectively since the

object is in its natural context and is consistently viewed over time. This type of learning is

also referred to as the method of loci [106, 107, 143].

Our goal is to replicate this in-situ learning process, but to do so automatically and with the

support of augmented reality (AR), as represented in Fig. 5.1 b. In other words, when a user

views an object, we want to automatically display the concept(s) associated with that object

in the target language and provide a method for both the viewing and selection of a particular

term or concept. Deploying such an interface in a real-world, generalized context is still a very

challenging task.

As a step towards this goal, we introduce a more practical framework that can function as a

cornerstone for improving in-situ learning paradigms. In addition to the process of trial and er-

ror to find a more effective and practical approach to designing such a system, our contributions

include:

1. a client-server architecture that allows for real-time labelling of objects in an AR device

(Microsoft HoloLens),

2. a description and solution to the object registration problem resulting from the use of

real-time object detectors (Fig. 5.1 a),
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3. a practical framework for exploring challenges in the implementation of AR language

learning, and a discussion of novel interaction paradigms that our framework enables.

The practical use of this system can enable in-situ learning for languages, physical phe-

nomena, and other new concepts.

5.2 Related Work

Prior work falls into three primary categories, 1) the implementation of object recognition,

semantic modeling, and tracking for in-situ labeling, 2) view management techniques for label-

ing in AR, and 3) the use of AR and VR to facilitate learning of concepts and language. While

all of these three categories are typically different areas of research, they are each essential for

the effective implementation of in-situ AR language learning.

5.2.1 Object Recognition and Semantic Modeling

Real-time object detection is a fairly new development, and there are not many works

discussing the integration of these technologies into an augmented reality system. Current

detection approaches utilize object recognition in 2D image frames, using learning repre-

sentations such as Deep and Hierarchical CNNs and Fully-Connected Conditional Random

Fields [144, 145], or, for fastest real-time evaluation performance just a single neural network

applied to the entire image frame [146]. Combined 2D/3D approaches [147, 148] or object

detection in 3D point cloud space [149, 150] may become increasingly feasible for real-time

approaches in the not-too-far future as more 3D datasets [148, 149] become available, but cur-

rently, approaches that apply 2D object detection to the 3D meshes generated by AR devices

such as HoloLens or MagicLeap One yield better performance.

Huang et al. [33] compare the general performance of three popular meta architectures
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for real-time object detection. They show that the Single Shot Detector (SSD) family of de-

tectors, which predicts class and bounding boxes directly from image features, has the best

performance to accuracy tradeoff. This is compared to approaches which predict bounding box

proposals first (Faster-RCNN and R-FCN). We experimented with the performance of both

types of detectors and ultimately settled on an implementation of SSD.

The most recent and closest work to our approach is that of Runz et al. [32] in 2018.

Using machine learning and an RGBD camera, they were able to segment the 3D shapes of

certain objects in real time for use in AR applications. Their approach utilized the Mask-RCNN

architecture to predict per-pixel object labels, which comes at a higher performance cost. In

contrast, our approach is implemented directly on an optical see-through HMD (HoloLens)

using a client-server architecture, and uses traditional bounding box detectors which can run in

true real time (30fps) with few dropped frames.

Our work links objects that are recognized in real time in 2D frames to positions in the

modeled 3D scene, which is akin to projecting and disambiguating 2D hand-drawn annotations

into 3D scene space [151].

5.2.2 View Management for Object Labeling

A body of work in AR research focuses on optimized label placement and appearance mod-

ulation. In a similar fashion that we use 2D bounding boxes of recognized objects in the image

plane to determine a 3D label position for that object, several view management approaches op-

timize the placement of annotations based on the 2D rectangular extent of 3D objects in the im-

age plane [152–154]. Other approaches allow the adjustment of labels in 3D space [155, 156],

a feature that might be gainfully employed in our system to subtly optimize the location of an

initially placed label over time as multiple vantage points accumulate. However, this would

pose the additional problem of disruptive label movement, due to loss of temporal coherence.
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Since potential mislabeling actions due to occlusions – the main motivation for 3D label ad-

justment – are automatically resolved by the HoloLens’ continuous scene modeling (occluders

are automatically modeled as occluding phantom objects), we can simply avoid label adjust-

ment after we arrived at a good initial placement. Label appearance optimization [157] and

assurance of legibility [158, 159] are beyond the scope of this paper.

5.2.3 Memory and Learning Interfaces

The idea of augmenting human memory or facilitating learning with computers appeared

almost simultaneously with the history of modern computing. For example, early work by

Siklossy in 1968 proposed the idea of natural language learning using a computer [160]. Since

then, much progress has been made, for example by turning the learning process into a serious

game [161]. Though not in an in-situ environment, Liu et al. proposed the use of 2D barcodes

for supporting English learning. Though relatively simple, this method helps motivate the use

of AR for learning new concepts, as a form of fully contextualized learning [162].

In addition to language learning, some work has been presented that seeks to augment or

improve memory in general. For example, the infrastructure proposed by Chang et al. facili-

tated adaptive learning using mobile phones in outdoor environments [163]. Similarly, Orlosky

et al. proposed the use of a system that recorded the location of objects, such as words in books,

based on eye gaze, with the purpose of improving access to forgotten items or words [164].

Other studies like that of Dunleavy et al. found that learning in AR is engaging, but still

faces a number of technical and cognitive challenges [165]. Kukulska-Hulme et al. further

reviewed the affordances of mobile learning, having similar findings that AR was engaging and

fun for the purpose of education, but found that technology limitations like tracking accuracy

interfered with learning [166]. One more attempt at facilitating language learning by Santos et

al. used a marker based approach on a tablet and tested vocabulary acquisition with marker-
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based AR. In contrast, our approach is designed to be automatic, and is a hands-free in-situ

approach.

Most recently, Ibrahim et al. examined how well in-situ AR can function as a language

learning tool [70]. They studied in-situ object labelling in comparison to a traditional flash

card learning approach, and found that those who used AR remembered more words after a

four day delayed post-test. However, this method was set up manually in terms of the object

labels. In other words, the objects needed to be labelled manually for use with the display in

real time. In order to use the display for learning in practice, these labels need to be placed

automatically, without manual interaction.

This is the main problem our paper tackles. We have developed the framework necessary

to perform this recognition, and at the same time we solve problems like object jitter due to

improper bounding boxes. This sets the stage for a more effective implementation of learning

via the method of loci, and can even enable reinforcement type schemes like spacing algorithms

[141] that adapt to the pace of the user based on real world learning.

5.3 AR Language Learning Framework

As further motivation for this system, we envision a future where Augmented Reality head-

sets are smaller and more ubiquitous, and are capable of being worn and used on a daily ba-

sis much like current smart phones and smart watches. In such an “always-on AR” future,

augmented reality has the potential to transform language learning by adapting educational

material to the user’s own environment, which may improve learning and recall. Learning con-

tent may also be presented throughout the day, providing spontaneous learning moments that

are more memorable by taking advantage of unique experiences or environmental conditions.

Furthermore, an always-on AR device allows us to take into consideration the cognitive state

of the user through emerging technologies for vitals sensing. Using this information, we can
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Figure 5.1: Images showing a) our object registration algorithm, which uses a set of uncertain
candidate object positions (in red) to establish consistent labels (in green) of items in the
real world b) a view directly through the HoloLens of resulting labels from our method in a
previously unknown environment, and c) a photo of a user wearing the system and calibrated
eye tracker used for label selection.

gain a better understanding of the user’s attention, and more readily adapt to their needs. To

enable research into these interaction paradigms, we propose a practical framework that can be

implemented and deployed on current hardware using current sensing techniques. We believe

the fundamental building blocks for AR language learning include three components:

• Environment sensing with object level semantics

• Attention-aware interaction

• Personalized learning models

These components provide the necessary set of capabilities required by the AR language

learning applications we envision. In the next section, we will introduce a system design which

implements this framework using existing technologies. Then, we will describe the realization

of the first component of our framework, through an object level semantic labeling system.

Finally, we will discuss our ongoing work regarding the second and third components.
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5.4 System Design

In this section, we introduce a client-server architecture composed of several interconnected

components, including the hardware used for AR and eye tracking, the object recognition sys-

tem, the gaze tracking system, and the language learning and reinforcement model. The overall

design and information flow between these pieces and parts is shown in Figure 5.2.

The combination of these pieces and parts allow us to detect new objects, robustly local-

ize them in 3D despite jitter, shaking, and occlusion, and label the objects properly despite

improper detection. Our current implementation targets English as a Second Language (ESL)

students, thus our labels are presented in English. But the label concepts could be translated

and adapted to many other languages.

5.4.1 Hardware

We chose the Microsoft Hololens for our display, primarily because it provides access to

the 3D structure of the environment and can stream the 2D camera image to a server for object

recognition. How we project, synchronize, and preserve the 2D recognition points onto their

3D positions in the world will be described later.

The HoloLens is also equipped with a 3D printed mount that houses two Pupil-Labs in-

frared (IR) eye tracking cameras, as shown in Fig. 5.1 c). These cameras are each equipped

with two IR LEDs, and have adjustable arms that allow us to adjust the camera positions for

individual users. The eye tracking framework employs a novel drift correction algorithm that

can account for shifts on the user’s face.

For the server side of our interface, we utilized a VR backpack with an Intel Core i7-

7820HK and Nvidia Geforce GTX 1070 graphics card. Since the backpack is designed for

mobile use, this allows both the Hololens and Server to be mobile, as long as they are connected

via network. To maximize throughput during testing and experimentation, we connected both
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Figure 5.2: Diagram of our entire architecture, including hardware in grey, algorithms and
systems in blue, and data flow in green. The left-hand block includes all processing done on
the Hololens and the right-hand block includes all processing done on the VR backpack.

devices on the same subnet.

5.4.2 Summary of Data Flow

Our system starts by initializing the Unity world to the same tracking space as the Hololens.

Next, we begin streaming images from the Hololens’ forward-facing camera, which are sent

to and from the server-side backpack via custom encoding. Upon reaching the server, they are

decoded and input into the object recognition module, which returns a of 2D bounding box with

an object label. The center of this bounding box is then sent back to the Hololens and projected
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into 3D world space by raycasting against the mesh provided by the Hololens. This projected

point is treated as a “candidate point”, which is fed into our object registration algorithm. The

object registration algorithm looks over the set of candidate points over time to decide where

to assign a final object label and position. Once an object and its position have been correctly

assigned, the object is synchronized with the Unity space on the server side. Finally, labels on

the objects are activated using eye-gaze selection, giving the user a method for interaction. The

results from this interaction are fed into a personalized learning model, providing the ability to

design content that adapts to the growth of the user.

5.5 In-Situ Labeling

The success of Convolutional Neural Networks (CNNs) has lead to technological break-

throughs in object recognition. However, it is not yet obvious how to integrate these tech-

nologies into AR. Three major parts need to be in place for these tools to be used practically.

First, they need to be tested in practice (not just on individual image data sets) and provide

good enough recognition to label an object correctly over time. Secondly, we need to establish

object registration that is resilient to failed recognition frames, jitter, radical changes to display

orientation, and objects entering/leaving the display’s field of view (FoV). Finally, current AR

devices are not powerful enough to run state-of-the-art CNNs. We need to handle the synchro-

nization and reprojection between streamed frames from the AR device and recognition results

from a server with a powerful GPU.

5.5.1 Object Recognition Module

The first step for the development of our system was finding a scalable object recognition

approach that could be used with the forward facing camera on the HoloLens. Due to the real-

time performance constraint, we had to test and refine a variety of approaches before finding
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one that worked. We finally found the Single Shot MultiBox Detector (SSD) by Liu et al. to

be effective [167]. Specifically, we use the implementation provided by the TensorFlow Object

Detection API, using the ssd mobilenet v1 coco model, which has been pre-trained on MS

COCO.

We stream video frames from the built-in HoloLens front facing camera to a server running

on an MSI VR backpack. To keep packet sizes small, we used the lowest available camera

resolution of 896x504. Each frame is encoded into JPEG at 50% quality, so that their final size

fits into a single UDP packet. We also encode and send the current camera pose along with

each frame. On the server side, we place all frames into an input queue. An asynchronous

processing thread takes the most recent frame from the input queue and feeds it through the

SSD network. The resulting 2D bounding boxes and labels are then sent back to the HoloLens,

along with the original camera pose. Back on the HoloLens, we project the center point of each

2D bounding box onto the 3D mesh by performing a raycast from the original camera pose.

This particular implementation of SSD takes 30ms per prediction on the VR backpack,

which just barely allows us to achieve 30fps under ideal network conditions. There is a slight

delay due to network latency, as our network has a round trip time of 150ms.

SSD and similar CNN based real-time object recognition architectures are known to per-

form poorly with small objects [33]. In practice, we found that small objects, such as spoons

and forks, experience much higher false positive rates and predictions are not consistent across

frames. Large objects are more reliable, such as predictions for TVs, chairs, and people. For

medium sized objects, typically performance improves under realistic environmental condi-

tions where the camera is able to capture more contextual information, such as keyboards and

mouses being near each other.

To solve this problem, we make use of multiple streamed frames to establish an initial

estimate of the object’s location, confirm this location using a sliding window approach based

on past labels and proximity, and finally assign a position for the label. This results in a very
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Figure 5.3: Left: Raw points returned from object recognition as projected into 3D space,
accumulated over several frames. This shows the variance in predicted positions and false
positive label predictions. Right: Scene correctly labeled with object-permanent labels.

stable, properly registered augmentation that is persistent despite various camera rotations or

traveling in and out of various areas of a workspace. The algorithm we use for this purpose is

described as follows:

First, an image streamed from the forward-facing HoloLens camera is passed to the SSD

network, which then provides an initial prediction for a given object location in the form of a

2D bounding box. This 2D pose (i.e. the center of the bounding box in screen space) is then

sent back to the HoloLens, and it is projected into 3D space as summarized previously.

Second, for every subsequent prediction, we check every instance of the same label in 3D

space for the past W frames. A grouping of some of these labels can be seen on the left of Fig.

5.3. If the Euclidean distance between these subsequent 3D positions are within a threshold

D (e.g. 50 centimeters away for a keyboard object), we average these positions and affix the

object. After thorough testing and refinement, we found that object predictions converge well if

there are 20 positively identified instances over a window of W = 60 frames under the defined

threshold. An example of successful assignment of objects can be seen on the right of Fig. 5.3.

One advantage of this approach is that we can use semantic information to help guide the
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Figure 5.4: Pseudo-code describing our object permanence algorithm used to eliminate jitter
and poor network results.

distance threshold. For example, a sofa might use points spaced one meter away versus a pencil

with points less than ten centimeters away.

First, an image streamed from the forward-facing HoloLens camera is passed to our object

recognition system, which then provides an initial prediction for a given object location in the

form of a 2D bounding box. This 2D pose (i.e. the center of the bounding box in screen space)

is then sent back to the HoloLens, and it is projected into 3D space as summarized previously.

Second, for every subsequent prediction, we check every instance of the same label in 3D

space for the past W frames. A grouping of some of these labels can be seen on the left of Fig.
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5.3. If the Euclidean distance between these subsequent 3D positions are within a threshold

D (e.g. 50 centimeters away for a keyboard object), we average these positions and affix the

object. After thorough testing and refinement, we found that object predictions converge well

if there are R = 20 positively identified instances over a window of W = 60 frames under the

defined threshold.

One advantage of this approach is that we can use semantic information to help guide the

distance threshold. For example, a sofa might use points spaced one meter away versus a pencil

with points less than ten centimeters away. Pseudo-code for this algorithm is shown in Fig. 5.4,

and successful assignment of objects can be seen on the right of Fig. 5.3.

5.5.2 Evaluation of Object Registration

We performed a simple evaluation of our object registration algorithm in order to determine

the quality of the label positioning (registration). To do so, we laid out five objects on a table: a

computer monitor, keyboard, scissors, plastic bottle, and a paper cup. We marked a target point

on the desk from which to compare each object and measured the distance with millimeter

accuracy between the target point and the center of each object using a tape measure. This

measurement served as the ground truth (GT in Table 5.1) for our position estimation.

During the evaluation, a user stood in a fixed position in front of the desk wearing the

HoloLens and was given a handheld input device (a small bluetooth keyboard). The user is

asked not to move or rotate their body but only their head. The user is instructed to look around

the desk until the mesh is constructed, which is indicated by the appearance of a blue cursor in

the center of the display. They were then asked to look at each object and confirm that a label

has been placed for each object. Afterwards, the user was directed to point the blue cursor onto

the marked target point and click a button on the handheld input device. This triggers a raycast

from the center of the display in order to determine the target point pose within the HoloLens’
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Table 5.1: Data for ground truth (GT) and Estimation error in cm of the Euclidean distance
between user-selected center points of each object in cm and a known 3D point in the tracking
space.

Object GT User 1 User 2 User 3 Avg Error

TV 49.5 57.29 57.33 56.75 7.62
Keyboard 17.8 18.69 18.14 24.9 3.19

Scissors 50.8 50.3 51.06 51.32 0.90
Bottle 61 74.46 63.2 67.88 7.51

Cup 66 67.33 60.77 61.63 3.64

Overall 4.57

coordinate system. We then measure the distance between the estimated label positions and the

target point and compare them to ground truth in Table 5.1. This evaluation was conducted by

three users who had some prior experience with the HoloLens.

These preliminary results show that, on average, our object registration algorithm auto-

matically converges on an object position up to 4.6cm away from the actual center position.

Naturally, this is influenced by a number of factors, such as the size of the object to be labeled,

and the initial vantage point when the label is first placed, but these values proved to be quite

stable between users and repetitions.

In the future, we plan to evaluate performance on more challenging conditions. For in-

stance, where the user is moving around the environment, or under poor lighting conditions.

For now, the current registration performance is good enough for our needs.

5.6 Eye Tracking, Interaction, and Discussion

One more challenge in achieving a practical AR Language Learning system is the imple-

mentation of a method for selecting or activating an item for labelling. Simply labelling all

objects in the environment is not feasible since the objects would clutter the user’s view, so

a method (either active or passive) for selection or specification is necessary. We believe the

natural solution is an attention-aware interface such as eye tracking. Such an interface allows

113



Using Object Recognition for Content Management Chapter 5

us to deliver learning content when the user is in an amicable state, and provides interaction

without a cumbersome external device or difficult to use gestures.

In order to facilitate basic interaction with content, we implemented a calibration frame-

work for our system to allow users to activate items via eye gaze. Though the evaluation of this

area is a work in progress, we describe the implementation, how eye gaze fits into our overall

framework, and several possible mechanisms for interaction below.

5.6.1 Eye Tracking and Calibration Module

Gaze based selection of objects provides an intuitive interface for managing AR content

without the need for additional input devices or complex gestures. Since individuals almost

always tend to gaze upon an item or object when learning through the method of loci, unknown

concepts should be displayed quickly. In this way, our learning framework allows us to explore

the effects of passive learning, in which educational content may be consumed throughout a

user’s daily routine.

Our calibration framework is based on the open source eye tracker built by Itoh et al. [168]

for VR headsets, but with modifications made for the HoloLens. Much like a typical eye-to-

video tracker calibration, we utilize a 5-point calibration interface in the Hololens. However,

most eye tracking calibration procedures are executed with a sufficiently large field of view

(FoV); i.e. the user gazes at several points on a 2D screen within the world-camera’s wide

FoV. In VR implementations, calibration points are often affixed to the display rather than

registered in the world to counteract head movement. Since the Hololens FoV is only 35

degrees, we modified the same procedure used for VR and located vertical calibration points

on the viewable portion of the screen. Though this can result in a minor reduction in vertical

calibration accuracy, it sufficed for the purposes of activating labels on objects of interest.
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5.6.2 Personalized Learning Model

The final component of our language learning framework is a personalized learning model.

Specifically one that automatically adapts to the learners growth. We believe this is a funda-

mental difference between AR language learning and other existing language learning tech-

nologies. In our view, the future of augmented reality includes a collection of other vitals

sensors which can monitor the physical and mental state of the user, similar to the trend of

including health sensors in smartwatches. Already, we see devices like the Magic Leap One

which include built-in eye trackers. This provides the ability to gauge the user’s current un-

derstanding of the foreign language through continued monitoring of their cognitive response

when consuming educational content.

As a first step, we plan to utilize eye and gaze signals, which have been shown to be good

indicators of a user’s point of focus. To validate a user’s understanding of foreign words, we

can use the duration of focus as an indicator of understanding. For example, labels that are

gazed upon longer or multiple times within a short time period are likely to be unlearned. We

plan to use these eye signals to develop a machine learning classifier that can detect whether a

user understands or is confused about a foreign word. With such a classifier, we could identify

how much foreign vocabulary a student has learned, and adapt by modifying the content (i.e,

by introducing new words and removing words they have already learned).

We have recorded some preliminary results through a pilot study of 15 users. During the

study, we presented English words in increasing difficulty to non-native English speakers while

they wore a head mounted eye tracker. When presented with a word, the participants responded

whether they did or did not know the meaning of the word. Afterwards, we developed an SVM

classifier using the eye signals that was able to achieve 75% accuracy on the most difficult

words. We plan to improve the performance by gathering more data and testing other classifi-

cation techniques such as Recurrent Neural Networks.
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5.6.3 Discussion and Future Work

Upon trying to implement a practical object labelling system in AR, we encountered many

challenges that are not present in other object recognition implementations. For example, even

though object recognition rates can exceed 90% on many 2D image datasets, this does not

guarantee consistent use in the real world. Especially for a lower resolution camera that uses

compressed images (such as the camera on the HoloLens), recognition from these algorithms

is almost unusable unless modified as described in Section 5.5.1.

One other approach that we would like to explore is the re-training of object recognition

models on video streams. Since integrated eye tracking in combination with the environment

mesh can help determine the scale and depth of an object, we could potentially use this in-

formation to continuously re-train recognition for that particular object. User confirmation of

recognition results also deserves consideration. For example, classification results may return

the terms “tool” and “pen” for a ball-point pen. Allowing the user to select the term pen from

a list could not only confirm the registered label in the immediate environment but improve

recognition of that item upon the next encounter.

Our framework also tracks eye metrics such as pupil diameter and eye movement while

users consume learning content in AR. As future work, we are investigating the use of machine

learning based approaches to fuse and classify these signals for real time use. If we can auto-

matically determine when a user understands a word, we can automate the learning algorithm

used and suggest better, more relevant words to learn.

5.7 Conclusion

In this chapter, we introduced a framework for realizing in-situ augmented reality lan-

guage learning. As part of this framework, we describe our current progress implementing a
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client-server architecture that provides the ability to conduct both object recognition and envi-

ronment mapping in real time using a convolutional neural network. We explored the problem

of object registration when using such a network, and provide a solution that accounts for the

mismatched recognition errors that may occur. Our method is implemented directly on an AR

headset. We described how to integrate eye tracking into our framework to allow for user se-

lection or activation of annotations. We also described how to integrate a personalized learning

model into our framework including initial results. We hope that this work will open up new

avenues of research into methods and interactions for AR language learning and encourage

others to contribute to this growing field.

We attempted to implement our language learning vision into a tangible prototype to the

best of our ability, utilizing state-of-the-art techniques for eye tracking and object detection.

Ultimately, the current state of research for these algorithms proved to be not mature enough

to completely implement the system. However, the augmented reality community is in need of

more in-depth analysis of machine learning techniques and how to incorporate them in mobile

augmented reality headsets. In describing our ideas and efforts at implementation, we can posit

the near-term feasibility of the system, and lay a path to follow for future application designers

who wish to incorporate user context in their work.

Our framework shares some similarities but also notable differences to the Touring Machine

prototype first presented in 1997 [41]. The Touring Machine demonstrated how to combine a

collection of disparate AR systems and technologies into a novel prototype which enabled new

AR use cases, namely mobile computing in large outdoor environments. In a similar manner,

our work demonstrates how we can use AR for continuous and recurring interactions with the

world, through a combination of hardware and software components that enable AR language

learning. In that sense, our work can be seen as an extension of the Touring Machine work

by considering the use of extended temporality (over the many interactive sessions) in the

interface. Another notable similarity is the distribution of computation over several devices. In
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their case, the authors used a backpack PC to drive the display, GPS, and orientation tracker,

while they used another handheld PC to drive the information database and access offline and

online information sources. In the framework presented in this chapter, we also demonstrate

how to distribute computaitons across a wearable display and a backpack computer. Except

in our case, the display is now capable of driving itself and all of its required tracking, and

instead we use the backpack computer to power the context-sensing and machine intelligence

capabilities instead. It is telling that after 20 years of progress, we are still not able to reduce

the form-factor substantially and continue to offload computational tasks. This is not a failure

of hardware efficiency or software optimization, but rather, indicative of the vast amounts of

information and data needed to power mobile AR systems. The Touring Machine was not

concerned with the amount of information being used by the system, just about getting enough

information at all to demonstrate a usable interface. Our framework today suggests that we

may need to be more prudent with decisions on how much information is enough, so that we

can begin to reduce the performance and computational requirements of mobile AR systems.

It is unlikely for AR headset to become a widespread consumer electronic on the level of

smartphones and PCs, unless they can solve the context awareness problem. Without that, AR

headsets will likely be resigned to special purpose use cases such as skilled labor or 3D mod-

eling and visualization. Unfortunately, current AR systems still have a long way to go, and it

is difficult to know where researchers should focus their efforts on. This problem is exacer-

bated by the increasing parameter size of deep learning models and the chase for superhuman

performance on benchmark tasks. This work highlights the growing gap between the compute

requirements of state-of-the-art context awareness models and AR devices. I hope it encour-

ages researchers to focus more efforts on creating energy efficient systems and algorithms with

low compute cost to better target AR headsets.

One meta contribution of this thesis is the practice of viewing current and future technical

challenges through the perspective of long-term idealistic application goals, as I have done here
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with AR language learning. Though it is not a new practice, it is one that I believe the field

has lost sight of in recent years. In my view, contemporary AR/VR and AI researchers are too

focused on short-term results and small iterative changes. There is an emphasis on marginally

beating the next benchmark, on developing research projects that can be spun off into start

up companies and sold to the highest bidder. Instead, I urge researchers to think of what we

want this technology to look like in the long term. 10, 15 years from now, what is our perfect

vision of the augmented reality future. If we work backwards from that vision, we might have

a chance of actually achieving it. But if we only focus on short-term goals, who knows what

technological dystopia awaits us in the future.
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Chapter 6

Situated Context Menus as a Model for

Multitasking

We began this dissertation by identifying unique advantages of Augmented Reality compared

to other mediums, establishing the value proposition or the ‘why’ augmented reality is im-

portant and how it might be beneficial for personal or domestic computing use cases. Next,

we explored challenges to pervasive AR design using a top-down approach, focusing on an

ideal use case and working backwards to identify long-term problems and contribute progress

towards potential solutions. In the final stretch of this dissertation, we’ll take a more bottom-

up approach, identifying core insufficiencies present in currently deployed AR paradigms and

developing improvements that push the medium forward.

These chapters focus primarily on the problem of multitasking. How do we interact with

multiple applications at a time? Existing AR headsets use an single-app paradigm that is more

akin to smartphones than PCs. Smartphones typically only display one full-screen application

at a time. More than one application may be executing operations on the CPU, GPU, or other

hardware. But in practice, the user only experiences one application’s content, visual elements,

UI elements, and interaction possibilities. Thus, a better term for this style of application might
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would be exclusive display. In contrast, desktops use concurrent display. That is, multiple ap-

plications can be displayed at the same time, and it is up to the user to switch their focus

between each applications visual and interactive elements. This chapter specifically, presents

an application model that uses object recognition to suggest applications that may be appropri-

ate for the user given a specific situation or scenario. It takes inspiration from the context menu

systems that exist in current desktop computers.

There is ultimately a more philosophical question at play as well. That is, to what degree

should the user have control over the display of augmented reality content. Some proponents

of pervasive AR believe that machine learning models should be widely deployed. That an

always-on augmented reality device presents an infinite combination of interaction possibilities

and situational use cases, to the extent that it is better off if an AI takes the lead and determines

for itself what it deems useful for the user. This of course is not a new idea, but an extension of

Nielsen’s noncommand user interfaces [75]. Others might argue the opposite as well, opting

for command-based interaction that places all of the control in the users hand. The answer, in

my opinion, is somewhere in the middle. The real question we should be asking is, What is the

right balance between automation and agency?

6.1 Introduction

As Augmented Reality gains popularity and moves closer to the hands of consumers, many

questions still remain about how personal computing will actually occur on these devices. One

of the most important features of modern personal computers is multitasking, the ability to

switch between multiple running applications.

Currently available commercial HMDs, such as the Microsoft HoloLens 1, HoloLens 2, and

the Magic Leap One, all have a centralized organizational system in which apps are launched

one at a time through the use of a singular menu. While this may help lower the barrier to en-
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try for new users, utilizing menus designed for traditional window-based systems comes with

a variety of downsides. Likewise, application launch and management mechanisms used in

modern smart phones or watches have not strayed too far from such manual switching between

apps, one at a time, and have decided challenges due to the small screen space. This limitation

is often referred to as the “single window constraint” and has been linked to lower multitask-

ing performance on smartphones compared to traditional desktop counterparts, as the user is

required to retain information from one application in their working memory as they switch to

another [169].

In contrast, AR applications do not have to be limited to screen space and can potentially

augment the entirety of a physical space with information. For example, the HoloLens allows

users to place menus or other items using its airtap interaction, so menus can be physically

tied to a location of choice. This type of annotation and menu system was demonstrated early

on in the history of AR and refined over time [49, 52, 170, 171]. However, manually placing,

inspecting, and manipulating menus in large open spaces may be even more mentally taxing

and visually disruptive.

One of our goals in this paper is to improve upon existing task switching paradigms by

designing a more adaptive in-situ menu system. In a future with always-on and contextually

aware AR displays, we envision applications that depend on or react to the existence of physical

objects and phenomena. In this case, switching between applications through a central menu

could be awkward and cumbersome since users often do not know what applications might be

available to interact with or augment real world items. For example, you might switch to a

geocaching or wiki application, only to find that none of the objects in your immediate vicinity

can interact with any installed applications. In order to test adaptive menus in context-aware

settings, we had to develop a real-time object recognition framework which we also describe

in this work.

Finally, concerns exist that AR applications may compete to monopolize a user’s attention.
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Without an easy-to-use and democratic multitasking system, applications might be encouraged

to augment the world indiscriminately, knowing that it is easier for the user to stay in the current

application than to look for alternative ways to spend their time. In the same way that users

spend an inordinate amount of time with social media on smartphones, the same may become

a reality for AR applications that augment the physical environment. Applications may take

a disproportionate amount of display space that could occlude and distract the user from real

world tasks such as driving or locomotion.

With these issues in mind, we sought to design a multitasking system that would be more

efficient, practical to use in always-on scenarios, and would make appropriate use of available

screen and real world space. In short, our contributions include:

• a new multitasking interface that detects and reacts to the objects in the environment,

demonstrated with the help of three context-based applications to test: a to-do list app, a

workplace assistance app, and a vocabulary learning app.

• a comparison of this interface with existing approaches such as the aforementioned static

menu app switching, which are tested with a novice user, domain expert, and system

expert.

• a distillation of design considerations based on what we learned, along with a discussion

of several new interface designs that build on our approach.

6.2 Related Work

Related work within the field can primarily be divided into three general areas. We start

out on the more general side by discussing the field of context-aware AR interfaces. Related

research in view- and content-management also helped motivate our approach. Finally, we

review other systems that assist with or facilitate multitasking.
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6.2.1 Context-Aware User Interfaces

Pervasive user interfaces describe computer interfaces that operate continuously and are

aware and responsive to the user’s context. Abowd et al. [172] provided a formal description of

what constitutes context and context-awareness in user interfaces, which was further expanded

by Schmidt [173]. Just prior to that, Starner et al. described the concept of mobile augmented

reality [174], a precursor to pervasive AR, which included the idea of user modelling and adapt-

ing to user context. The Columbia Touring Machine [41] and its extension for situated outdoor

storytelling [52] enabled the first outdoor AR information browsers including early application

(story) switching mechanisms. The Studierstube AR system and application framework [175]

demonstrated how AR applications can be distributed over, and collaboratively used from,

multiple platforms, leading into the concept of social augmented reality [176].

More recently, Kim and colleagues conducted an excellent survey on the current state of

AR research [1], highlighting pervasive interfaces as an emerging trend that is likely to define

the next 10 years of research in the field. Around the same time, Grubert et al. [2] provided

a taxonomy for pervasive user interfaces in AR, highlighting potential sources of context in-

formation and ways to act on that information to benefit the user. One example of the use

of physical context is OmniTouch, a system that takes advantage of nearby objects to enable

interactions [177]. Just like OmniTouch makes use of gesture recognition to enable projections

on a user’s hand, we similarly use object recognition to enable interactions with environmental

objects.

6.2.2 Object Detection in Augmented Reality

Additionally, object detection will play a key role in context-aware AR interfaces moving

forward. In order to interact with objects in-situ, the system has to know information about the

object, and we have to assume that tagged (e.g. geospatially placed) information for an object
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is not likely to exist. There are several works [32, 178] that focus on segmenting dynamic

objects from RGB-D point clouds in real time, often by extending existing real-time image-

based detection algorithms such as Yolo [146] or Mask R-CNN [179]. Microsoft Azure and

Google’s Vision API also provide some functionality for doing object detection in images.

However the adaptation of these detection algorithms for practical use with AR applications is

still far from complete. Our work makes a step in this direction by effectively detecting and

determining the correct location of objects for in-situ, real-world labeling in real time.

6.2.3 View Management

A number of works have tackled user interface management [180] in Augmented Reality.

One such body of work focuses on view management, optimized label placement and appear-

ance modulation. In a similar fashion to our use of 2D bounding boxes for recognizing objects

in the image plane to determine a 3D label position for that object, several view management

approaches optimize the placement of annotations based on the 2D rectangular extent of 3D

objects in the image plane [152–154]. Other approaches allow the adjustment of labels in 3D

space [155, 156, 181].

DiVerdi et al. proposed a system design for a marker-based AR window manager [49]. The

authors consider several issues, such as input management and application focus, differences

between physical and virtual applications, and inter-application communication. The authors

extended this work [50] by considering different levels of rendering quality based on user

dynamics.

Works have also looked at the layout of text and visual information in AR applications.

For example, Grasset et al. [154] used visual saliency as a cue for driving the layout of text in

an AR browser. We take a similar image-based context sensing approach, instead using object

detection to drive view management. Moreover, our design of the icon size, placement, trans-
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parency, and leader lines draw from techniques developed in prior view management work.

When a multitude of annotations is placed in front of the user, information filtering techniques

are necessary to de-clutter the AR view [182, 183].

6.2.4 Multitasking in Augmented Reality

One key area in AR has always been the question of how to manage the user’s time. He

or she is always switching between a number of real-world and virtual tasks, and the ability to

switch effectively, efficiently, and safely is paramount to solid interface design. For example,

the Kimura system developed by MacIntyre et al. provided a way to view and interact with a

desktop environment and wall sized display that share virtual windows for office tasks [184].

They present a number of different methods for arranging these windows that preserve the spa-

tial arrangement and priority of data. Another system proposed by DiVerdi et al. described a

design for a marker-based AR window manager [49]. The authors consider several issues, such

as input management and application focus, differences between physical and virtual applica-

tions, and inter-application communication. The authors extended this work [50] by consider-

ing different levels of rendering quality based on user dynamics. Lages et al. [10] examined

view management for multiple applications in an HMD walking scenario. They positioned

windowed application views projected onto flat surfaces, and dynamically shifted the position

of each application as the user walked. Lu et al. [11] looked at head-locked HMD interfaces

that used eye-tracking to provide access to different application information by glancing in

certain directions.

However, while they support multiple applications, these systems are constrained to 2D

windowed application views. Multitasking was straightforward, as applications did not overlap

in terms of their relevance to world-located objects and were small enough for the user to

simply switch their focus by moving their head. In contrast, our work considers multitasking
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Figure 6.1: Initial prototype multitasking interfaces we designed, including a) Static App
Switcher and b) In-situ App Switcher, along with three prototype AR applications including
c) Packer: a workplace assistance application, d) ToDo: for managing day-to-day reminders
(top), and Lang Learn: for foreign language flash cards (bottom), and e) the testing environ-
ment.

in environments where applications are capable of augmenting the entirety of a given space.

6.3 Methodology

This section describes our initial prototype multitasking interface. We implemented the

interface using the real-time object detection framework for HoloLens described in Chapter 5,

trained on on the MS COCO dataset to identify its 80 object categories. We developed three

prototype applications that make use of objects within each category to provide augmented

reality interactions. Examples of the interface design and testing environment can be seen in

Figure 6.1, and details are further described below.

6.3.1 Hardware and Software Apparatus

We are using the Microsoft HoloLens as our AR head mounted display (HMD). The

software running was developed in Unity utilizing Microsoft’s Mixed Reality toolkit. The

HoloLens was used in conjunction with an Xbox One bluetooth controller. The object de-

tection procedure is based on a client-server modelthat communicates using UDP messages.

Images from the HoloLens are sent to a remote server to be recognized, and then the relative
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positions of the recognized objects are returned to the HoloLens to be projected into world

space. On the client side (the HoloLens), we first encode frames from the camera stream to

JPEG before sending them to a server that was written in Python 3.6. The server receives client

messages, decodes the camera frame, and hands it off to a separate thread for processing by a

neural network. We used TensorFlow to implement this neural network, which is a variant of

the Single Shot MultiBox Detector (SSD) [185]. The network is trained on Microsoft’s Com-

mon Objects in Context (MS COCO) data set. We send the network output back to the client

(HoloLens), where we project detected object centers from the 2D image onto the 3D mesh.

On the client, we then filter and aggregate the neural network output in real time similar to

the method used by our previous work on object recognition for AR language learning [72] in

chapter 5, and provide that information in an easy to use event-based API.

6.3.2 Prototype Applications

We designed and implemented three different AR applications that operate on real-world

objects, which can be seen in Figure 6.1.

ToDo: Interactive context-based Todo List

This application uses situated post-it notes to assist in the creation of a reminder list for

everyday tasks, much like the work of Rekimoto et al. [186]. In this “ToDo” app, the user can

see virtual, in-situ messages from friends and family members that have been placed throughout

the environment on various objects, just like a “Post-it” or sticky note. These notes are coupled

with physical objects in the environment to provide additional context for a potential task the

user might want to add to their todo-list. For instance, a note from your wife reminding you to

pick up groceries after work would be affixed to specific grocery items, such as fruit or wine

bottles. The user can choose whether to add these task items to their todo-list or dismiss them
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from the AR application.

Lang Learn: In-situ Language Learning

Augmented Reality is a prime candidate for assisting with vocabulary or language learn-

ing. The learning of new words is often conducted in-situ, which is usually referred to as the

“method of loci.” This means that learners are better able to absorb the meaning of a word if

that word is learned in context, i.e., when the object is physically present at the time of learning.

A number of works in AR have looked into this effect, including [70] and [187].

We implemented a new application that can take advantage of this phenomenon. In the

“Lang Learn” app, physical objects are labeled with a flash card showing the word’s name in a

target foreign language, in this case Spanish. The user is tasked with remembering the English

translation. Once they feel they have remembered the correct translation, or if they give up,

they can click a button to show the answer. Afterwards, they are asked to rate the degree of

familiarity with the answer, a technique commonly used in spaced-repetition-based learning

applications [188].

Packer: Workplace Assistance

The third application is a typical workflow assistance application that might be used in

a workplace such as an office or shipping company. “Packer” assumes that the user is an

employee in a packing and distribution warehouse. In such an environment, AR could be

helpful for identifying or locating a specific object within a large and cluttered space. The

premise of our app is that the user is a facility manager in such a warehouse. They are tasked

with locating defective objects indicated by other workers, and confirming whether they are

indeed defective or not. The application labels these objects with relevant comments from

workers, and the user can choose to create a work ticket to track resolution of the problem.
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6.3.3 Multitasking Interfaces

Our in-situ app switcher system attaches menu options directly to an object via co-located

menu icons, as shown in (b) of Figure 6.1. To compare this with a more traditional approach,

we implemented a static app switcher, which mimics menu systems found in existing HMDs,

shown in (a) of Figure 6.1. The implementation details of each are described below. Addition-

ally, in experiments, we test a hybrid combination of static and in-situ app switching where the

user can freely choose between each as convenient for the situation.

Static App Switcher

The static app switcher is a variant of the traditional screen-centered menu systems in

the HoloLens and Magic Leap interfaces. The user can press the A button (on the controller

provided in our experiments) to bring up or send away this menu. When summoned, the menu

appears directly in front of the user’s field of view and is fixed in place in 3D, and remains in

that location until the user sends the menu away. To open a menu item, the user can gaze at

the item within the menu and press the A button. The menu is sent away automatically once an

app is selected.

In-Situ App Switcher

Our in-situ app switcher is a novel extension of context menus for traditional 2D GUIs, by

presenting them in association with physical objects and situated in 3D space. Our in-situ app

switcher provides a list of all applications that have content relevant to a particular object and

is unique to each object. To activate, the user gazes at the object marker and presses the A

button on the controller to bring up the in-situ menu. Moreover when the user’s gaze intersects

with the cube, a green circle will appear and the brightness of the cube will be increased

(transparency reduced), signifying that an application has relevant content for that object.
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Figure 6.2: Venn diagram of interactive objects and which applications provided content for
those objects. This design ensured that groups of objects have content relevant to 1, 2, and 3
applications.

Once the user brings up any relevant in-situ menus, he or she can gaze at the menu item

and press the A button to select an application within that menu. Our context menu design

utilizes the same rectangular panels as the static app switcher menu for objective comparison,

but they always appear directly to the right of the object marker. Additionally, all of the panes

are presented in billboard style to ensure readability.

6.3.4 Pilot Study: Novice vs. Experts Comparison

This study was designed to evaluate the performance of different multitasking presentation

strategies for switching between applications. To do so, we set up a test where the user had to

conduct language learning, update a to-do list, and carry out work tasks (inspect and submit

tickets) within our three representative AR applications. These applications were applied to

the test environment shown in (e) of Figure 6.1, and used the aforementioned object detection

algorithm on the objects in the environment. We assigned 12 object subtasks to each of the
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three representative AR applications. Some were associated with multiple applications, while

some only worked with one specific application. This was distributed as equally as possible as

shown in the Venn diagram in Figure 6.2, leading to a total of 21 objects with 36 subtasks. The

user’s goal was to carry out these subtasks as quickly as possible with each of the multitasking

interfaces.

In the experiments, we were interested in how our three presentation methods, as described

in Section 3.3, would affect multitasking performance and usage in the test environment. To

reiterate, the methods were:

• Static App Switcher - App-drawer approach where users select another application by

first opening a static menu that appears directly in front of the users head.

• In-situ App Switcher - Situated approach where users select from a list of compatible

applications for an object through a menu which is placed directly next to each object.

• Combined Selection - In the combined approach, the user can activate either type of menu

and use them interchangeably.

The goal of the study was to get through the all of the subtasks as quickly as possible with

the given interface. The same novice user, domain expert, and system expert that participated

in Experiment 2 also participated in this study. They completed each of the 36 subtasks for each

of the three multitasking interfaces, starting with the Static App Switcher, followed by In-situ

App Switcher, and finally Combined. Participants were instructed to complete the subtasks as

quickly as possible while still reading the text in each of the apps from start to finish. Note that

participants were given a training period of 10 minutes before the study to get accustomed to

the HMD and learn the controls for each interface.
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Figure 6.3: Timeline of usage for applications ToDo (TD), Lang. Learn (LL) and Packer
(PK), in seconds. Columns from left to right are Novice, Domain Expert, and System Expert
participants, while rows from top to bottom are Static App Switcher, In-situ App Switcher,
and Combined interfaces. For combined interfaces, a black dot at the start of the segment
indicates using the Static App Switcher, otherwise it was In-situ App Switcher.

6.3.5 Quantitative Results

We first calculated how much time each participant spent with each application as well as

how many switches occurred. A detailed breakdown of application usage is shown in Figure 6.3

as a 3x3 matrix of timelines, allowing us to see switch frequency and observe usage patterns.

Participants averaged 11.4 switches in order to complete all 36 subtasks. The domain expert

averaged 9.3 switches, the system expert averaged 12, and the novice user averaged 13.

In terms of completion time, we observed that both the novice and domain expert took

longer using the static app switcher compared to other interfaces. The system expert also took

longer using the static app switcher, though the difference was not as pronounced. It is difficult

to determine if this could be due to order effects. However, the fact that the system expert also

took longer despite having extensive experience supports the observation that at least some of

the difference in duration of the static interface is not due to ordering effects.

By looking at the rows in the timeline matrix, we can compare usage patterns between each
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Figure 6.4: Average app session length w/ standard error . Yellow is the average over all users.

condition. We noticed that participants tend to stay in apps longer with Static App Switcher.

In the other two conditions, participants tend to use apps for shorter periods of time. This can

also be seen in Figure 6.4, which summarizes the average app session lengths. Looking at the

average session length for all users, we can see that it was higher when using the Static App

Switcher versus the In-situ App Switcher or Combined conditions.

The bottom row of Figure 6.3 shows usage during the Combined condition, in which par-

ticipants were free to use either Static App Switcher or In-situ App Switcher at any time to

switch apps. Both experts only used Static App Switcher once, at the very start of the session.

The Novice user also used it to start the session and used it three additional times. However,

73% of their app switches were still through the In-situ App Switcher. Despite having both

options available, participants preferred to use the In-situ App Switcher a majority of the time.
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6.3.6 Qualitative Results

At the end of Study 3, we conducted a semi-structured interview with the novice and do-

main expert. The goal of this interview was to determine which interface the participants pre-

ferred and to see if there were any notable issues they struggled with. Topics for the interview

were grouped into the five categories below.

Contextual Consistency. When asked Was it clear at all times which app you were in?

Why or why not?, our domain expert responded that it was “kind of hard to understand what

kind of app I am in, probably because all the UI are the same color”. The novice user mentioned

having to frequently check the icon in the corner to know which app they were in. They also

mentioned that “the content is kind of the same based on the app”, indicating that content

differences could be used to determine which app they were in. In general, participants did not

seem to think any of the multitasking interfaces had a large effect on their understanding of the

current app context.

Attention Management. When asked Did you prefer to spend a lot of time in one app or

did you prefer to switch between apps often?. The domain expert felt that “For the todo and the

language learning I prefer to stay quite long because I want to complete it as much as possible.”

He also noted while using other applications that he would sometimes see an object and get

really curious about the Spanish word, and choose to switch to the language learning app right

away, mentioning “The [context] menu at the box is easier for this.” The novice user stated that

their strategy was to “do everything I could see in one app. Then I would use the little diamond

[cube] menu on the closest object to see if there’s anything left.”

Status Visibility. We asked Was it easy to understand which objects had augmentations

remaining? Was one better than the other?. The domain expert responded that he had an easier

time understanding how many subtasks were left with the In-Situ App Switcher and Combined

interfaces. The novice user also felt that only with the in-situ menu could she “tell if there
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was anything left.” When asked Did it ever feel like you were missing some augmentations

that you couldn’t find?, the domain expert responded “yes a little bit, because of the object

recognition.” While the novice user said they had difficulty finding augmentations with the

Static App Switcher, stating “yeah with the first one I was going from right to left... there

[were] two left [but] I didn’t know where.”

Natural Interaction. When asked Which modality felt more natural to you?, the domain

expert responded with In-situ App Switcher. The novice user response was also the same,

mentioning it felt natural to fidget with it when they weren’t sure what else to do. When asked

Did you feel like you did a lot of unnecessary switching in any modality? The expert responded

with “Not really.”, while the novice user responded “maybe in the first one because I was going

through the apps in order”, referencing the above comment about it being difficult to find the

last two objects. This behavior can be seen in the timeline in Figure 6.3 where the last three

app sessions in the Novice-Static graph might be short bouts of searching in each app, distinct

from the rest of the session. When asked Did one feel faster than the others, the domain

expert responded with the In-situ App Switcher and Combined options, while the novice user

responded with the Combined option. When asked Did you feel more productive using one vs.

the other?, the expert responded with the In-situ and Combined options while the novice user

responded with the Combined option.

Overall Preference. When asked Which interface did you prefer the most and why? our

domain expert responded that they preferred the Combined option as it was the most flexible.

He also felt that the In-situ option would work just fine, as he felt he used the context menu

the majority of the time. When asked why he preferred to use the context menu most of

the time, he responded “It’s good because when I see the object I was kind of remind [sic]

what I have left [to do]. In terms of function I’m gonna use the menu on the cube a lot.” The

novice user responded that they also preferred the Combined option as well for similar reasons.

They mentioned using in-situ menu most of the time “to check what was left if I couldn’t find
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anything else to do.” This is backed up by our quantitative results, which showed that both

participants used the Static App Switcher very infrequently during the combined session.

6.4 Design Considerations

Based on comments and findings from our user study, as well as our own practical experi-

ence in developing and using these interfaces, we identified some important points to consider

when designing multitasking systems for AR. These design considerations can be used to help

design multitasking systems for AR content in the future, especially for devices that may have

a number of AR applications running at once.

6.4.1 Contextual Consistency

Because of the immersive nature of 3D Situated applications, it can be difficult to actually

know which application you are in when frequently switching between multiple applications

with different content. This feedback was common among our study participants. One par-

ticipant suggested having different colors to represent different applications. However, when

implementing these applications, we realized that requiring a unique design for every app is not

always feasible or desirable. Due to the limited FOV of current generation AR HMDs, adding

too many colorful visual design elements could lead to clutter and distract from the real world.

One element we did add was a HUD icon in the top left corner that identified the current app,

but this did not seem to help our participants considerably. Instead, one way of maintaining

contextual consistency could be through predictable content. One participant mentioned that

the thematic similarity of the content within an app helped her to recognize which app she was

currently using. Text labels on the app content itself may also be useful for this purpose.
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6.4.2 Context-dependent Functionality

Due to the cognitive costs of task-switching, friction-less multitasking will likely be invalu-

able for context-aware AR applications. These applications are likely to rely on the presence of

specific objects in the environment, and it would be frustrating to open apps and find out they

don’t work properly because those objects are not considered. There could also be scenarios

where, while using one app, changes in the environment trigger new content in another app

unbeknownst to the user. An effective multitasking system should allow the user to quickly

check for available content in all apps. In the post-study interview, our domain expert also

suggested inclusion of an accompanying notification element to summarize or provide hints

about the content.

When designing our In-situ App Switcher, we considered two different approaches for

presenting context-dependent app content:

• Object content only - When selecting the app in the in-situ menu, only content related

to the detected object is displayed. If the user moves away from the object, the app is

suspended and returns to the previous app.

• All content - When switching apps, all available content for all currently detected objects

is displayed. Moving away does not suspend the app.

We initially thought the object-content-only method would allow users to preview the app

content for each object and easily jump in and out for short interactions. We tested both in

a small pilot study but ultimately found that with this method, users frequently lost track of

which app they were in and which objects they had already interacted with. Based on these

experiences, we went with the all-content approach.

During the course of our research, we identified a few objects that were difficult to detect for

users new to our system. The challenges can be broken down into two categories of problems:

scale invariance and context of use. First, many state-of-the-art object detection networks are
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not fully scale invariant, including the one we used. The network struggled to detect objects

that are typically seen at large scales, for example cars and giraffes. Second, our network

was trained on the popular MS COCO dataset which emphasizes objects in their context of

use. This means objects such as donuts or apples are frequently shown surrounded by other

foods, which was not the case in our test environment. These remain important challenges for

improving the stability and reliability of object detection algorithms for use in real-time AR

applications.

6.4.3 Natural Interaction and User Well-being

In considering always-on AR devices, it is important to design solutions that feel natural

to interact with. One comment we heard from participants was how easy it was to open and

check apps with the In-situ App Switcher and how they were compelled to play with with

nearby in-situ menus during idle moments. There may be something natural or organic about

contextualizing the point of entry for an application closer to the object itself. Additionally, as

we were implementing more and more object intelligence into our system, we were naturally

compelled to try picking up and moving around objects in the space. Picking up objects can

explicitly signal a user’s intended activity and acts as a natural filtering mechanism for apps.

This level of context awareness is difficult to achieve with current technologies but could prove

a useful vector for multitasking strategies in the future.

3D Situated applications can run the risk of monopolizing too much of a user’s attention,

potentially distracting them from real world tasks. Additionally, multitasking in general has

been shown to have a high task switching cost [189], which is the time and cognitive effort it

takes for humans to adjust their mental control settings from one task to another. This effect

could be even more pronounced in AR. As we move forward in the design of these systems,

we need to ensure that we prioritize user well-being.
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6.5 Discussion and Future Direction

In this chapter, we focus on the design and evaluation of a multitasking technique for per-

vasive augmented reality. The work addresses an important challenges when using augmented

reality everyday in a variety of different situations, namely how to effectively switch between

different applications, moving away from single-purpose AR. This solution was inspired by

right-click context menus which first appeared in desktop graphical user interfaces in the 1970s,

and are ubiquitous today. Our version applies this technique to individual objects, anticipating

a shift towards context-aware applications that utilize said objects in their functionality.

We identified several promising directions for future work. One potential multitasking

strategy is the creation of a common standard for presentation and placement of augmented

reality content. This would look similar to layout engines in modern web browsers, allowing

AR displays to arrange the content in a user’s space by optimizing a set of display constraints

among the user, device, available objects in the environment, and the applications themselves.

Another option would be organizing applications into layers over the physical space, much

like layers in an image editing program. Each layer could link one or more applications into

meaningful groups. Applications can augment the space at their own discretion, but only the

currently visible layers would be seen. The user would use a quick-access menu to toggle on

and off visible layers at any given time. Yet another option is to segment different portions of

the physical space itself and restrict each app to only display within those geometric bounds.

In this model, apps first start by requesting the user to “slice,” or indicate an area within the

current environment. This could be done easily by moving and placing a cube or view frustum.

This also provides an opportunity for the user to preview the content as they are deciding where

to place the app. Once apps start, they are only capable of displaying their content within that

predetermined space.

This work only explored object-level context awareness, but other sources of context could
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be used to improve multitasking. For instance, the HoloLens 2 provides eye-tracking and

hand-tracking sensors. Eye-tracking can be used as a context cue to indicate user’s attentive

state [190] or determine salient points of interest [191] in the environment. Hand motions offer

contextual information about a user’s current activities and state of motion [192]. Other sensors

could be integrated, like GPS or heart rate, to contextualize general location and physical state.

Our image-based approach could be extended to incorporate detection of events [193], scene

characteristics [194], and even social constructs [195].

As researchers working on the cutting edge of new technologies, we have a tendency to

believe technology is a panacea that can cure all problems. Newer is always better, or so the

thinking goes. Perhaps it is this mindset that has pushed many fields of computer science

towards machine learning as the next big solution to all our problems. After all, it is newer, and

it has outperformed all previous solutions thus far. But just because it is newer, doesn’t mean

it is better. Newer methods often come with unintended consequences. Machine learning

relies on massive amounts of data collected from humans or annotated by humans, which

can exhibit biases especially towards the socioeconomically disadvantaged. The training of

ML algorithms take massive amounts of time, computing resources, energy, and money, with

significant impact to the environment. The price to create state-of-the-art machine learning

models is so cost-prohibitive that only the most wealthy companies can afford to invest in

them.

Given these inequalities and other potential downsides to large machine learning models,

it is crucial that we step back and think about how we deploy large ML models and what role

they play in our AR future. This work proposes some potential benefits of using ML models as

a form of information filtering and recommendation, while still allowing user agency through

the actual choice of which application to launch. Is that an appropriate boundary? Or would

another work better? We don’t have enough information to know at this point.
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Chapter 7

Layerable Applications as a Model for

Multitasking

In this last chapter, we look at the design of a multitasking system and application model called

Layerable Apps. The goal of this work is to provide alternative app models to those that already

exist on current AR systems, as well as those that are being proposed by large tech companies

for the future, such as “Metaverse” concepts [5]. The current trend of app models seems to

favor large one-stop shop style applications where a single application will compete for users

attention. This makes it exceeding difficult for smaller developers to make an impact in the AR

space, and increase the likelihood that AR use cases of the future will be dictated by entrenched

companies with large amounts of cash reserves needed to create as many features as possible

into a single application. Additionally, that means these individual companies are likely to be

the single point of failure for all your private and personal information that is collected in their

application.

Instead, we developed the concept of Layerable Applications, an application model that

supports multitasking and interaction with multiple applications of smaller scope. Our system

supports different styles of application models, providing a starting point for further develop-
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ment of interoperability methods between disparate types of applications. Additionally, we also

look at different levels of augmentation and increased user control of augmentation amount,

and find some evidence to suggest different users have different amounts of augmentation they

can tolerate. Ultimately, these findings rebuke the notion of a one-size-fits-all AR application.

7.1 Introduction

Today’s AR systems are often operated in a single-application paradigm, in which users

switch between one active application at a time. Though this model is good for interacting

with individual pieces of content, it is not suitable for interaction with and viewing of multiple

applications that might be displaying content using different modalities and might need to be

cross-referenced with each other. For example, one application may require the use of a pin-

pad for text entry, whereas another may augment existing waypoints with annotations. Current

devices require the user to switch from one application to another, despite the fact that the

applications may be used together, such as note taking during navigation.

In this work, we propose and evaluate the concept of Layerable apps: applications which

can be quickly and easily layered on top of each other by the user. Layerable apps provide

an increased degree of control and granularity, allowing the user to decide how much of their

world is augmented, while still being able to perform tasks that integrate information between

multiple applications or require simultaneous interaction between them. One of the goals of

this paradigm is to provide a more consistent user experience in which interaction is seamless

and application switching is less noticeable. Our primary research questions include:

• Do Layerable Apps provide advantages for multitasking performance?

• What effect does the use of Layerable Apps have on users’ application usage and spatial

awareness?
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• What do user preferences look like when presented with Layerable Apps vs. traditional

approaches?

In service of these questions, we implemented a prototype system consisting of an applica-

tion switcher and four example applications, which are shown in Figure 7.1. This system allows

for application switching via exclusive display (i.e., the currently adopted application switching

scheme in most AR operating systems) and concurrent display (our Layerable Apps approach).

We designed an experimental task with 44 participants that required users to actively engage

with each application, and we used quantitative and qualitative methods to examine how users

interact with multiple AR applications under the Layerable Application model.

7.2 Related Work

Related work primarily falls into two categories, including research that seeks to develop

Augmented Reality as a personal computing paradigm, and view management systems that

deal with menu placement and interaction.

7.2.1 Augmented Reality for Personal Computing

Throughout the development of AR technologies, one goal has been to integrate AR sys-

tems into everyday life as a type of personal computing device. For example, Starner et al.’s

conceptualization of an augmented reality wearable interface [196] focused on the use of wear-

able AR as an assistive technology, acting as a kind of extended memory for the user, capable

of storing and retrieving timely information.

A recent survey by Merino et al. [197] provided a comprehensive review of Mixed and

Augmented Reality research and identified pervasive and always-on AR as a growing and im-

portant topic. Grubert et al. laid a foundation and taxonomy for describing this type of work,
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termed pervasive augmented reality [2]. Many works have examined individual application

scenarios targeting everyday consumers, for example interior design [198], cooking [199,200],

and retail shopping [82, 201].

One such application by Knierim et al. utilized a technology probe to explore the potential

of augmented reality usage in the home [202]. They found that most domestic participants were

very accepting of AR as a personal technology to be used in domestic spaces, although they had

some concerns about privacy and transparency. They identified potential use cases, including

the use of AR to support everyday activities like grocery shopping, and the enhancement of

everyday objects with new AR functionality.

Our work builds on these usage scenarios by investigating user behaviors and expectations

for how to switch between these applications, and how to design the interfaces such that they

can operate in seemingly seamless and non-obtrusive ways.

7.2.2 Information Placement and AR App Management

More recently, researchers have begun to more thoroughly explore different interfaces and

paradigms for interacting with multiple information sources, including the simultaneous inte-

gration of menus, annotations, and augmentations in the same environment. One of the early

attempts at managing a user’s view was the work by Bell et al. [152], which allowed for im-

proved placement of text and images such that all content was viewable. Hoang et al. developed

a similar system for interacting with in-situ 3D objects from world-relative and head-relative

in-situ menus [203]. Probably one of the most comprehensive menu systems was that of Brudy

et al, who came up with a number of different menu styles that allowed for in-situ selection and

manipulation of menu items [204]. Though not a menu system, Ubii provides for interaction

with and selection of icons or other widgets in-situ [205]. Pourmemar took this a step further

and developed hierarchical menus that could be used to select from multi-level lists as well as
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conduct manipulations [206].

In addition to menu-based interaction, context sensitivity has often been integrated into

information presentation in AR. Integration of context or context awareness is present in many

applications, such as location detection for relevant content placement [207], activity detection

for AR video instruction [208], face detection for conversation-based AR [209], and object

detection for in-situ language learning [72]. Other interfaces such as Glanceable AR allow for

a combination of context and natural glance-based interaction for easy information access [11].

On the commercial front, both the Microsoft HoloLens 2 and the Magic Leap AR headsets

have implemented limited forms of multi-app management. On the HoloLens 2 users are

limited to certain combinations of a single ‘mixed reality app’ and a single ‘2D view’ app

alongside it [210]. Magic Leap has a ‘Landscape’ experience which allows multiple apps to

display simple 2D content only [211].

While these systems provide a variety of different ways to interact with and view individual

applications or specific groups of applications, the management of multiple applications that

may be constantly available to the user is still not well explored. Lebeck et al. identified the

problem space of multi-app AR laying the foundation for our work [212]. They suggested user-

managed application output as a potential solution to the challenges of multi-app AR, which is

our central focus.

Our work seeks to address this problem by determining what methods of application ac-

tivation are most effective for dealing with multiple AR paradigms that are simultaneously

available to the user. Simply put, we ask if it is better to manage applications through currently

available menu systems that launch apps that take over the user environment exclusively, or if

an in-situ layered approach may be more effective?
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7.3 Layerable Applications

Augmented reality can often be described as the layering of digital information on top of the

real world. Many futurists envision this digital layer to be a monolithic application that services

all the needs of a user. For example, the concept of the Metaverse, where an AR user would

engage with a single shared digital layer for all their entertainment and productivity needs,

as is the current vision of companies such as Meta and Epic Games. While such efforts are

necessary, they are also susceptible to privacy and security implications and could significantly

limit users’ technology choices, while giving an unprecedented degree of personal access to

the companies and stakeholders who own the Metaverse platforms.

In this work, our goal was to explore AR applications not as monolithic do-everything

systems, but as smaller, single-purpose, modular elements, with the goal of empowering the

user to decide to what extent they want to engage with an augmented world. For this purpose,

we came up with Layerable applications, which treat content as a series of “layers” on top of

the physical world that can be toggled quickly and seamlessly. Multiple application layers can

be used at the same time. This encourages the creation of applications that are still singular in

scope, but allow the user to mix and match preferred functions depending on the situation.

When approaching the design and evaluation of Layerable applications, our goals were to

(1) create a working prototype system capable of simulating the experience of using Layerable

apps, (2) create a set of example applications to implement within the prototype system, and

(3) develop an experimental task that required users to engage with each application modality

to solve tasks.

7.3.1 System Design

We implemented a prototype of Layerable applications using Unity and deployed it to the

Microsoft HoloLens 2. The system features an application menu that is brought up by looking
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Figure 7.1: Images of the Layerable Apps paradigm showing (left to right) Code Entry and the
Application Switcher, Atlas, Item Inspector, and Device Groups, all of which can be displayed
concurrently to facilitate passing of information among them. In experiments, users were
required to switch between and integrate information from all apps using different methods
of application selection.

at the palm of your hands. With one hand, users can bring up the application menu, and with

their other hand, they can tap the application icons to toggle the respective application layer

on and off. Currently open layers are indicated with a green underline, as shown in leftmost

image in Figure 7.1. The menu is ambidextrous and can be viewed on either hand.

When the system is in Layerable mode, application layers can be toggled on and off based

on user preference. Users may prefer to use more or fewer applications, or to activate certain

applications which have higher or lower amounts of augmentation, depending on their goals

and physical situation.

Our system also features an implementation of the single-focus app model for the purposes

of comparison in our user study. This model, which we call Immersive mode, imitates the

behavior of applications in most contemporary AR headsets. In this mode, apps are launched

one at a time, and opening an app will suspend any other currently open app. We chose to

re-implement this behavior within our system instead of using HoloLens’ default application

launcher to provide a fairer comparison, as a) the HoloLens performs other operating system

tasks that dramatically increase the time it takes to open an application, and b) this choice

allowed us to use matching visual identities for the UI design of either mode.
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Table 7.1: Application Categories
Context-aware Context-free

2D Presentation Item Inspector Code Entry
3D Presentation Device Groups Atlas

7.3.2 Representative Applications

The visual presentation and interaction capabilities of an AR application can vary signifi-

cantly depending on the intent of the application designer. There is no widely accepted stan-

dard by which AR apps should look and feel. This makes it difficult to implement meaningful

exemplar applications for testing an application switching system. With the Layerable Apps

prototype, we identified a minimal taxonomy for the most common styles of AR applications

that the system should support. We identified 2D and 3D as modalities of application presen-

tation. 2D applications are those where all of their graphics are rendered within the confines

of a 2D plane, though the plane itself may exist in 3D space. Notably, this encompasses all

instances of traditional applications found on desktops and touch-screen devices, making it

plausible to port those applications into our Layerable App system (a pathway that Microsoft

has outlined for their 2D windows universal platform (UWP) apps and Windows Mixed Real-

ity). 3D applications are all other applications that render graphics at multiple 3D positions.

We found these categories to be representative of nearly all types of AR applications found on

current commercially available HMDs.

Additionally, we wanted to incorporate some element of context awareness into our de-

sign. This was inspired by Grubert et. al’s work on pervasive augmented reality [2], which

suggests that future AR applications are likely to feature context-sensitive functionality. We

chose to further categorize applications by whether or not they utilize context. Thus, our final

design includes four example applications, with each app representing one of the four possible

combinations of context-awareness and spatial interaction (cf. Table 7.1).

After enumerating the desired application types to support in our system, we implemented
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representative applications for each category. When conceptualizing the design of these apps,

we tried to think of functionality that would be desirable to users in a real world setting. Images

showing the contents of each application are shown in Figure 7.1. The applications we arrived

at over many iterations and pilot evaluations are the following:

Item Inspector. Inspired by Internet of Things (IoT) applications, Item Inspector allows you

to visually inspect the status and associated technical information about objects and devices in

your home, such as battery life, model number, and manufacturing date. Information about

each object is displayed within a 2D plane fixated above the object itself as shown in the 2nd

and 3rd images in Figure 7.1. Object locations were tracked using manually placed spatial

anchors in our controlled testing environment.

Device Groups. Using device groups, participants can group physical objects together in

their space in order to perform aggregate actions such as turning all devices in a group on or

off. Device groups are visually represented with colored lines connecting every object in a

particular group to every other object in that group. These lines are rendered in 3D space,

allowing the user to quickly grasp which objects are part of a group and where their locations

are in the space.

Code Entry. This app enables users to virtually enter passcodes and pin numbers in place

of traditional keypads on door locks, ATMs, and other security systems. In practice, the app

functions similar to a calculator, displaying a number pad on a 2D plane, but not with any

spatial dependency on any specific objects in the environment. This makes it suitable as a

representative for a context-free and 2D application.

Atlas. Atlas displays a large 3D model of planet Earth that users can explore, displaying

geographical information about cities and landmarks around the world. The model is rendered

intentionally large – it can be scaled within certain limits but maintains a minimum size so as

to ’fill’ the space and require users to walk around when looking for a particular location.
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7.3.3 Experimental Task

Our goal was to design an experimental task that would require the user to engage with

all four applications in order to complete the task. We chose to employ a split-information

task where the necessary pieces of information needed to complete the task are split up and

distributed to each representative application.

In the study, users were tasked with finding pieces of a six digit code. Each code was split

into three code fragments and each fragment was embedded into random ‘flavor text’ within

the Item Inspector, Device Groups, and Atlas applications. Each code fragment also featured

two leading alphabetical characters to help identify which fragments belonged to the same

code. For instance, the user might encounter the fragment SC-12 in one app, SC-23 in another

app, and SC-89 in a third app. After finding all three code fragments for a corresponding code,

users could enter the digit pairs into the Code Entry application in any order. Participants were

scored by the number of correct codes entered within a fixed amount of time. There were no

penalties for incorrect codes (apart from the elapsed time used to enter them).

7.4 Experiment Design

We conducted a within-subjects user study with 44 participants over the course of two

weeks. The study was conducted primarily with students and affiliates at a university cam-

pus and included students from different departments as well as local community participants

signed up with a human subjects pool managed by the university. Study sessions took approx-

imately 1.5 hours to complete. The average age of participants was 22.9, with 16 male, 25

female, and three identifying as non-binary.
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7.4.1 Procedure

Participants filled out a demographics questionnaire and consent form prior to arriving for

the experiment. Upon arriving, participants were trained on how to perform hand gestures

within the HoloLens. Specifically, they were taught how to press a button and how to air tap

on buttons that were far away. Participants used a training application that provided multiple

opportunities to test their ability to execute the gestures correctly. Participants were asked if

they were confident in their ability to execute the gesture before proceeding.

Following training, participants were placed into the Layerable Apps prototype and pro-

vided with a guided tutorial on how to complete the experimental task. The tutorial provided

step-by-step instructions with text bubbles and text-to-speech voiceover, demonstrating how to

open application layers, how to find codes hidden in each application, what the structure of

the codes were, and how to input them. Participants were required to find and enter a code

successfully to complete the tutorial. Afterwards, participants were asked to verbally describe

to the experimenter, in their own words, what the task was and how to complete it.

After completing the training and tutorial, participants performed four task sessions of

seven minutes each, alternating between layerable and immersive modes. Participants were

counter-balanced with respect to their starting application mode. After the 1st task session,

participants were asked to fill out a post-task questionnaire to capture their thoughts on the

usability of that mode, as well as an object recognition quiz and object placement quiz where

they were asked to recall information about objects in the scene. After the 2nd task session,

participants were administered another post-task questionnaire to capture their thoughts on

the alternative app switching mode. Finally, a post-study questionnaire and semi-structured

interview was administered following the 4th and final task session. Throughout the study,

modes were coded to “Mode A” for layerable and “Mode B” for immersive to avoid name bias.

To validate the sufficiency of our training procedures, we asked participants to rate their
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understanding of the tutorial, the task, and ease of use of the HoloLens, on a 7-point Likert

scale.

7.4.2 Metrics

For task metrics, we measured participants score after each task session. We also tracked

the number of mistakes made during each session. We measured the number of times par-

ticipants opened and closed applications, as well as the average time they spent using each

application. For layerable modes, we calculated the average number of application layers open

on a per-frame basis.

To measure the usability of each mode, we employed the System Usability Scale [213],

which was part of the post-task questionnaires. We also employed a single ease question in the

post-task questionnaire to assess how difficult users found the task under each mode.

To measure spatial awareness, we employed an object recognition quiz as well as an object

placement quiz. We used the same testing and scoring methodology as Suma et al. [214] in

their previous work evaluating cognitive effects of exploration in mixed reality spaces. For the

object recognition quiz, participants were given a list of 30 objects, with half of the objects

actually being present in the experiment space, and the other half being absent. Participants

were asked to answer true or false for each object. The number of false positives was subtracted

from the number of true positives, yielding a score between 0 and 15. Following the object

recall quiz, participants took an object placement quiz in which they were given the correct list

of 15 present objects, and asked to mark their locations on a 2D top-down view floor plan of

the space to the best of their memory. Participants were scored based on the number of objects

that were correctly placed relative to other objects, for a max score of 15.

In our post-study questionnaire we focus on overall preferences. Participants were asked to

rank in which mode they felt the most productive, fastest, focused, distracted, spatially aware,
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or tired. We asked participants which mode they preferred the most, which was the easiest to

use, and which was the most enjoyable.

7.5 Results

We examine differences between users in Layerable and Immersive modes, with a focus on

evaluating Layerable apps in the context of personal computing. Additionally during the course

of piloting the user study, we also noticed a trend where users who had prior AR experience

tended to score higher overall. Recognizing the importance of application switching in the

context of productivity tasks, we decided to examine differences between experienced AR

users vs. novice users. Expertise was determined based on subjective responses from the pre-

study questionnaire, where participants were asked on a scale of 1 to 5 how familiar they were

with Augmented Reality. Those who answered 4 or 5 were considered as experienced AR

users. Using this criteria resulted in 23 users categorized as experienced and 21 as novice.

7.5.1 Tutorial Adequacy and HoloLens Usability

We assessed the suitability of our training procedures in post-hoc questionnaires employing

a 7-point Likert scale (higher numbers indicating higher amounts of understanding of the tuto-

rial, the task, and ease of use of the HoloLens). 86.4% of participants rated highly (5 or higher)

for tutorial understanding, 95.5% of users rated highly for task understanding, and 97.7% of

participants rated highly for ease of use.

7.5.2 Task Performance

Participants were scored based on the number of codes they were able to find and enter

successfully within a 7-minute task session. We averaged scores for both Immersive and Lay-
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Figure 7.2: Average task score in terms of number of codes successfully found. These are
shown according to user group and application mode.

erable modes for all participants, as well as for the subgroups of Expert and Novice, shown

in Figure 7.2. We compared scores between modes using the Wilcoxon signed-rank test with

Bonferroni correction to account for multiple comparisons error. We report effect size r adopt-

ing Cohen’s classification [215] of small (0.1 to 0.3), medium (0.3 to 0.5) and large (> 0.5)

effect sizes. For significance tests, we used α of 0.05.

When looking at all participants as a whole, we found significantly higher scores (p =

.002,r = .365) when completing the task under Layerable mode, averaging 6.92 (SD = 3.39)

compared to 5.8 (SD = 2.39) under Immersive mode. We also found significance among ex-

perienced AR users (p = .012,r = .425), with an average score of 7.57 (SD = 3.29) compared

to 6.22 (SD = 2.27) in Immersive. We did not find significance between modes for the novice

group (p = .178,r = .291), with an average score of 6.21 (SD = 3.4) under Layerable and 5.33

(SD = 2.46) under Immersive.

We used the Mann-Whitney U test to analyze differences between experienced and novice

users. When aggregating across both modes, experienced users scored significantly higher

(p = .005,r = .242) in the experimental task (M = 6.89,SD = 2.89) compared to novice users

155



Layerable Applications as a Model for Multitasking Chapter 7

Figure 7.3: Average percentage of time spent in each app. Note that this includes all time that
the application was open, not necessarily time spend directly interacting with content.

(M = 5.77,SD = 2.98). They also scored significantly higher (p = .035,r = .26) when using

Layerable mode compared to novice users. Results were inconclusive (p = .068,r = .225)

when comparing Immersive scores between expert and novice users, with a trend to higher

performance by expert users.

We also looked at the number of mistakes participants made during each task session but

did not find any significant differences between modes or experience levels. Mistakes were

defined as incorrect code entries. On average, participants made 1.59 (SD = 1.7) mistakes

with Layerable and 1.61 (SD = 1.97) with Immersive. Experienced AR users averaged 1.78

(SD = 1.78) mistakes compared to 1.4 (SD = 1.89) for novices.

7.5.3 Application Usage

We examined application usage behaviors by looking at time spent in each app as well as

app switching actions. We measured the duration of time applications were kept open during

a task session. Applications were automatically closed at the end of each task session, so the

maximum length of time is seven minutes. Among the total sample population, participants
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kept apps open significantly longer (p < .001,r = .867) in layerable mode (M = 130,SD =

156.22), compared to immersive mode (M = 9.01,SD = 21.58). While this is unsurprising, it

is noteworthy that applicants did not simply leave apps open continuously, as one might expect

that to be an optimal strategy. We discuss this further in Section 6.

Additionally, we calculated the average proportion of time spent in each app within a single

task session. A breakdown of the mean proportion of time spent in each application during a

task session can be found in Figure 7.3. Though we did not find any significant differences,

we can see interesting trends in usage that may warrant further exploration. For instance, users

appear to engage with context-free applications (Atlas and Code Entry) slightly more often

than context-aware applications (Device Groups and Item Inspector). This may be due to users

perceiving the space as more cluttered with context-aware applications. We also see that in

general, Code Entry is used more often than any other app, with the exception of novice users

under layerable mode. This is surprising and may by an indication of choice overload amongst

novice users who are inexperienced with the different capabilities of AR.

For application switching behavior, we measured application open and close actions per-

formed by each user. It should be noted that since apps can be layered and open simultaneously,

opening an application does not necessarily mean a user has switched their attention to that ap-

plication’s contents. The average number of application open actions in layerable mode were

21.3 (SD = 12.96) and 90.34 (SD = 26.19) in immersive mode. A Wilcoxon Signed-Rank test

showed these to be significantly different (p < .001,r = .859). Average counts for the close

app action were 14.8 (SD = 13.49) for layerable and 88.64 (SD = 26.1) for immersive modes.

We found these means to also be be significantly different (p < 0.001,r = .851).

When comparing between user groups, we did not find differences between experts and

novices on the amount of open actions in layerable (p = .541) or immersive (p = .125), nor

did we find differences for close actions in layerable (p= .663) or immersive modes (p= .126)

modes.

157



Layerable Applications as a Model for Multitasking Chapter 7

Specifically for layerable mode, we were interested in the number of applications partic-

ipants kept open at any given time. We averaged the number of apps open on a per frame

basis for each task session when using layerable mode. Mean apps open was 3.39 (SD = .694),

with that number being slightly higher amongst AR experts (M = 3.43,SD = .610) and slightly

lower (M = 3.35,SD = .781) amongst AR novices. We wanted to know if participants cycled

between different applications or if they chose to keep all applications open simultaneously to

provide themselves with the most available information for completing the task. We used a

one-sided Wilcoxon Signed-Rank test, subtracting the expected mean of 4 from all our sample

observations to fit the test hypothesis. We found average apps open to be significantly less

(p < .001) than our expected mean, suggesting users don’t opt to use all apps simultaneously

even though that is, in our opinion, the more efficient strategy.

7.5.4 Usability

We employed the System Usabiliy Scale (SUS) [213] after the first use of each mode, as

well as a Single Ease Question (SEQ) rating the ease of task completion from 1 (easy) to

7 (difficult). A Wilcoxon Signed-Rank test showed no differences in SUS score (p = .607)

between modes with a mean layerable mode score of 67.27 (SD = 13.91) and mean immersive

mode score of 68.47 (SD = 15.58). There were also no differences found between modes

when examining the scores of the experienced user groups (p = .425) and novice user groups

(p= .708). When interpreting SUS scores, an ’OK’ score is generally 51-71 and a ’Good’ score

is generally 72-85, so both layerable and immersive modes fall somewhere between ’OK’ and

’Good’ [216]. We also found no differences in SEQ score between modes (p = .549), nor

amongst experienced users (p = .773) or novices (p = .598).
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7.5.5 Spatial Awareness

We tested the effects of each mode on spatial awareness with an object recognition and

object placement quiz. Quizzes were administered after the first task session only, as we did

not want to influence task performance by having participants divert attention to memorizing

parts of the space in later trials. As we counterbalanced the starting modes for each participant,

we can effectively treat these results as coming from independent groups, but with spatial

awareness results for only n=22 (half our user population) participants for each mode. We use

a Two-Way ANOVA to analyze the quiz scores, and confirmed normality using Shapiro-Wilk

test as well as homogeneity of variances using Levene’s test. We used system mode (layerable

vs. immersive) and AR experience (expert vs. novice) as our independent factors, using quiz

score as our dependent variable for the ANOVA model. Post-hoc analysis was performed using

Tukey’s HSD test for all pairwise comparisons.

Table 7.2: Two-Way ANOVA of Object Placement Scores
effect sum sq df F PR(>F)
Mode 50.62 1 5.64 0.022
Experience 16.97 1 1.89 0.177
Mode x Experience 8.58 1 0.96 0.334
Residual 358.99 40

Both quizzes had a max score of 15. Please refer to section 4.2 for details on how the

quizzes were scored. In the object placement quiz, we found a significant main effect of system

mode on the object score (p = .026,r = .665), with users averaging a score of 8.64 (SD = 2.5)

in layerable compared to 6.55 (SD = 3.47) in immersive. We did not find any effect for user

experience level (p = .212), nor did we find any significant interaction effects between mode

used and user experience (p = .334). Summary statistics for the ANOVA model are shown in

Table 7.2.

For the object recognition quiz, we did not find any statistical significance for either sys-
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Figure 7.4: Proportion of User’s Mode Preferences

tem mode (p = .497) or experience level (p = .245), nor did we find any significance for the

interaction between independent factors (p = .692). The average score was 6.5 (SD = 3.57)

for layerable and 5.73 (SD = 3.87) for immersive.

The significantly higher object placement score when using layerable is notable, as in the

next section we will see that most users rated themselves as more aware of their surroundings

in the immersive mode rather than the layerable mode. While immersive mode may give the

feeling of greater spatial awareness due to increased visibility of the physical scene, users’

actual spatial awareness performance may be better facilitated by the increased context-related

content and visual stimuli in the layerable mode. Similar results have been found in other

works regarding AR and memory [70].

7.5.6 Overall Preferences

In the post-study questionnaire, we asked users to rank their preferred modes based on sev-

eral different criteria, including which mode they felt faster, more productive, more distracted,

160



Layerable Applications as a Model for Multitasking Chapter 7

more fatigued, more focused, and more aware of their surroundings in. We also asked which

mode users enjoyed the most, found easiest to use, and preferred overall. Figure 7.4 shows the

proportion of user responses for each ranking criteria.

Concerning attitudes around multitasking, 79.5% of users felt faster in layerable, and 65.9%

of users felt more productive in layerable. These self-reported rankings fall in line with our task

performance results, suggesting that from a task efficiency standpoint, layerable appears to be

better.

However, a majority (63.6%) of users also found layerable more tiring to use. We had

designed layerable apps with the goal of reducing context switching fatigue, but that does not

appear to be the outcome. We believe that while context switching fatigue may be reduced

compared to immersive mode, overall fatigue is increased due to increased visual demands or

eye strain.

Only 36.4% of users felt more “aware of their surroundings” in layerable and only 29.5%

of users felt more focused. 70.5% of users ranked layerable as the more distracting option.

These results are counter-intuitive considering spatial awareness quiz scores were generally

higher and in some cases significantly higher for layerable mode. We believe these results are

due to participants attributing the quality of being “aware of surroundings” to their visibility of

the real world. When self-reporting on their spatial understanding, users appear to be biased

towards consciously perceived visual cues, which may not be indicative of their actual spatial

understanding. Even in AR/VR settings [217,218], spatial awareness is additionally facilitated

by other unconscious non-visual inferences such as orientation processing.

7.6 Discussion

Reviewing our initial research questions, our results show Layerable Applications to be

a promising application model for Augmented Reality. Layerable was ranked as the more
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preferred mode to use and was also ranked as more enjoyable by the majority of users in our

study.

Statistical analysis showed significant improvements in performance on our tasks (which

necessitated cross-referencing) when using layerable applications, compared to a traditional

single-application model, on average higher by 1.12 points. We also found significant im-

provements on layerable apps task performance for experienced AR users compared to novice

users, suggesting its suitability as an application paradigm for ‘power users’ who have more

technical knowledge or are willing to overcome the initial learning curve. We designed Lay-

erable Apps to increase the degree of control users have on the augmented world. One of our

main research questions was to determine user preferences around augmentation control, as

such information could be used to inform future application designs. We were concerned due

to the nature of the task that users would open all apps all the time, but that was not the case.

Rather, our results show that users do frequently choose to switch between applications in lay-

erable mode, switching apps an average of 21.3 times and using app instances an average of

130 seconds.

We found that the number of apps they kept open at any given time was significantly less

than the total number of apps available, even though opening all apps may have provided a

potentially faster pathway for the task (if one were to discount negative effects from clutter

and information overload). It looks like users self-regulated the amount of information display

they were willing to take in at a time, shielding against higher levels of clutter and information

overload. Additionally, we found some evidence of users being more spatially aware in layer-

able AR. When analyzing object placement scores, where users had to position objects on a 2D

floor plan of the experiment space, those who started in layerable scoring significantly higher.

However in contrast to that result, participants also ranked layerable as causing them to be less

‘aware of their surroundings’. These results are interesting, and more work needs to be done

to find the ‘sweet spot’ of number of applications and degree of augmentation that users prefer
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to use.

7.7 Future Work

This work focuses on a simple implementation of the Layerable Apps paradigm, where the

onus on view management is strictly on the user. While this form may be appealing to power

users and early adopters, it may not be appropriate for mass adoption. In future iterations, we

would like to explore how to incorporate view management [152, 154, 181] and information

filtering [219, 220] as an element, while preserving the degree of user control that helps dis-

tinguish Layerable Apps from other application paradigms. For instance, it may be possible

to define a standard set of rules for the presentation and layout of AR app elements, similar

to HTML and CSS for web design. Such a system could alleviate the issues of visual fatigue

while maintaining the productivity benefits of Layerable Apps.

There is also a mental load involved in determining which applications are appropriate to

use in which context and a related challenge for app developers in testing their application to

work well in a variety of contexts, as reported in recent developer surveys [61]. One potential

solution that we would like to incorporate into Layerable Apps is the inclusion of a “target

scene description” with each application, indicating the types of spaces that are appropriate

for the application, perhaps in the form of a hierarchical description of objects and surfaces

in the scene or similar spatial representation structure. This would provide the user with a

quantifiable indicator of how appropriate an application is based on how closely their current

space matches the target scene description. Developers would also benefit by being able to

narrowly scope their application’s operational context and having concrete test cases that they

could evaluate their app on.
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7.8 Conclusion

Simultaneous usage of multiple applications in Augmented Reality is a challenging but

important problem to solve. In this work, we set forth and evaluated one application model

that supports concurrent display of application content, which we call Layerable Apps. We

compared a prototype implementation against the commonly used single-application display

paradigm through a within-subjects user study with 44 participants. We found significantly

higher task performance and demonstrated spatial awareness when using layerable apps, and a

majority of users preferred this mode overall. We also analyzed results between experienced

and novice AR users and found that experienced users had significantly higher task perfor-

mance in Layerable as well, suggesting an additional benefit of the system for ‘power users.’

We documented our design process for the system prototype, experiment task, and choice of

sample applications, and analyzed application usage during the study to provide insight towards

the design of future multi-app AR interfaces.

Our Layerable Apps is an alternative application model that focuses on smaller scale apps

with separate and isolated functionality. Our results showed that users may not actually ap-

preciate having the amount of augmentation predetermined, and enjoy the ability to toggle on

and off application layers at will. This is encouraging, and hopefully can be taken as a sign

by future platform makers to enable more multitasking capabilities. Smaller scale applications

also naturally means less data in a single location. In a tech landscape where data breaches

are extremely commonplace, even at some of the largest companies in the world, we should be

wary of any AR system that asks us to place all our data in one basket. Our Layerable Apps

work shows some benefits of an app model with smaller scale apps, hopefully encouraging AR

practitioners to pay greater consideration to these concepts in future projects.
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Conclusion

This dissertation contributes to the growing body of academic work that considers Augmented

Reality as a potential new personal or domestic computing interface, exploring ways to im-

prove the design of AR systems and applications in anticipation of a pervasive AR future.

We define pervasive AR as the persistent availability of an always-on, always-connected, and

always-sensing augmented reality wearable device, most likely a headset. We discussed the

societal impact of such a device should it become the de facto consumer computing medium.

There are many pros, such as the potential for increased human capabilities and convenient

access to information, as well as many potential risks, such as, deskilling, friction between real

and virtual environments, destruction of privacy, and monopolization of attention. The contri-

butions in this dissertation are initially structured as a series of investigative research questions,

answering the questions of why AR is beneficial compared to other computing mediums, what

additional inputs we might want to incorporate into AR systems, and what advancements we

can and should implement to AR systems right now. However, the contributions of this disser-

tation can also be analyzed from other research perspectives as well. In the following sections,

we contribute additional meta-analyses into how the work in this dissertation also contributes

to the field through case studies, technological development, and risk management. A graphic
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Figure 8.1: Graphic showing how the chapters of this dissertation can be additionally analyzed
from different perspectives.

summarizing how each chapter is used for the additional analyses can be seen in Figure 8.1.

8.1 Case Study Perspective

The contributions of this dissertation can be viewed as a series of case studies that analyze

different aspects of pervasive AR. In total, three distinct AR use cases were explored: AR

Recommender Systems, AR Language Learning, and AR Multitasking.

Our work on AR recommender systems provides a case study on proactive interfaces, also

called implicit interfaces or noncommand interfaces [75]. Proactive interfaces make decisions

on behalf of the user, rather than requiring the user to explicitly command the interface through

user input. While proactive systems are a theorized component of future pervasive AR, their

usage has been underexplored as they are often difficult to implement. Our work provides

one of the first implementations of a simple proactive system in AR, and demonstrate how

the situated qualities of AR presentations can improve users perception of the recommender

system itself.

The AR language learning system is the largest case study in this dissertation, as we explore

it throughout multiple research projects. This use case provides an example of a necessarily
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continuous application. Pervasive AR systems ask us to consider how AR applications might

be used in an always-on AR scenario, everyday and throughout different situations in our lives.

Such continuous applications are difficult to design, difficult to implement, and difficult to

study. In this dissertation, we undertake that difficult work by breaking it up into individual

components. The resultant projects, when considered in their totality, inform designers on how

to create applications that utilize continuous and recurring interactions.

This dissertation showed different ways to perform AR multitasking. Our two projects,

situated context menus and layerable apps, provided insights towards the design of application

switching techniques. Pervasive AR places an emphasis on multi-purpose use of AR rather

than single-purpose or static usage. Yet there are few AR systems that are intended for per-

sonal computing use. Our AR multitasking projects can also be seen as examples of personal

computing use cases, and the results of those projects may be more transferable when designing

future AR personal computing interfaces.

8.2 Technology Development Perspective

The work presented in this dissertation can also be viewed from the perspective of in-

creasing the progress of technology development, by addressing near-term technical barriers

to pervasive AR. Within this perspective, we can analyze our contributions as part of top-down

and bottom-up approaches to feature development and system design.

We use a top-down approach to identify existing technical challenges, by conceptualizing

a theoretical use case, AR language learning, and working backwards to determine the missing

pieces. From there, we focus our efforts on how to design those pieces, and how to integrate

them into a coherent system architecture. This process allowed us to demonstrate the potential

of tools such as word understanding, object-driven view management, and spatial arrangement,

in always-on AR scenarios, and provide some insights on how to effectively design and incor-
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porate said features into an AR application.

From a bottom-up approach, we evaluated the limitations of current AR systems, and iden-

tified the application model as a significant limitation to the effective development of perva-

sive AR interaction techniques. Our work contributes to the development progress of multi-

application interaction through the design and evaluation of two multitasking prototypes. In

Situated Context Menus, we explored the balance between context-aware application recom-

mendations and user agency. The evaluation provides insights into the design of context-

dependent functionality, and how it can be useful to link said functionality to the context source,

for instance an object in the environment. In Layerable AR, we explored the degree of aug-

mentation that users prefer. Our results revealed notable insights that can be used by future

designers. For instance, despite being a more optimal strategy, users did not layer all appli-

cations concurrently. This suggests that there exists a limit to the amount of augmentation

that is acceptable to users, which is supported by other prior works related to visual clutter.

Our work also examined differences in novice and experienced users, suggesting that for more

experienced users that visual clutter threshold may be higher.

In addition to top-down and bottom-up approaches, our work also contributed knowledge

about the value-proposition of AR to users and developers through our studies on the effects of

AR on user perception, trust, learning, and memory.

8.3 Risk Management Perspective

The goal of this risk management analysis is to provide a long-term perspective of our work.

Technology can change quickly, and there is a significant chance that many of our contributions

could become irrelevant in just a few years. Move fast and break things’ has been the battle

cry of the tech industry for the last decade after all [44]. Unfortunately, short-term thinking

often comes with unintended consequences. It is useful to consider our work not just in the
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immediate context, but also 10, or 20 years from now.

In the introduction, we predicted several potential consequences of a pervasive AR future.

The first was deskilling and reality distortion. Deskilling refers to the over-reliance on technol-

ogy as a replacement for existing human skills and capabilities. We posited that the increased

convenience of information access would cause greater deskilling to the detriment of society.

Reality distortion is a related phenomenon, referring to the potential for an always-on AR sys-

tem to distort our perception of reality, causing us to overestimate our abilities or worse, to

disregard the true nature of the world in favor of the one that is seen through our AR display.

Our work attempts to address this risk in two different ways. First, we conducted user studies

to identify differences differences in user perception and other cognitive factors between AR

and other existing mediums. Through this work, we discovered that AR was not always the

preferred modality to accomplish a given task. Instead, it has certain advantages such as the

ability to spatially arrange information to improve retention or to conveniently compare items

side-by-side. This helps to establish a “right tool for the right task” mindset. To build on

that, we showed how to design an application that focuses on improving users skills, using the

unique advantages of AR, while still providing value to the user when you take away the AR

device. That application was our pervasive AR language learning concept.

The second risk we identified was the context awareness gap, referring to the differences

between how humans and computers process semantics and context. This gap, we posited,

could lead to interfaces that are high friction and could distract the user from the real world. To

address this challenge, we evaluate task-dependant semantic understanding techniques for our

AR language learning concept. Our results demonstrate the feasibility of using eye tracking

and object recognition to improve the relevant context awareness capabilities of current AR

systems, increasing the dynamism of our application and potentially enabling it to adapt more

seamlessly to daily life scenarios. This research also provided insights into the deployment

and integration of large machine learning models in AR applications. It suggests the need to
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focus ML efforts on targeted tasks, such as content arrangement, given the large disparity in

computational capabilities between AR headset and the GPU servers that ML algorithms are

typically developed on.

Finally, we focus on the problem of monopolization and the deployment of data-driven

algorithms. These are ongoing socio-technical challenges of today that may very well continue

on in the AR future. In this case, data-driven algorithms refer to the use of user data to drive the

functionality of a user-facing system or interface, a common practice for large tech companies,

particularly social media companies. The deployment of these algorithms has been linked to

increased political division, the proliferation of fake news, and increasing distrust in online

discourse. Many of the same companies are actively investing in augmented reality, vying to

be the first company to have access to the vast multitudes of user data that could be collected

from an always-on, wearable AR device. If they were to deploy the same algorithms, we

may be looking towards an AR future rife with attention grabbing advertisements, technology

overreach, and the deterioration of our personal data privacy and security.

To address this, our work provides alternatives to currently proposed application models.

Instead of the large all-encompassing applications that use AI to proactively determine func-

tionality, we designed and prototyped alternative application models, and evaluated them with

a focus on multitasking performance. Our systems tackle the issue of privacy through two

techniques: abstraction and segmentation.

The first system we designed, situated context menus, provided a balance between using

context data for information filtering while still allowing the user to choose for themselves

whether or not they want to use the available applications. Situated context menus is an exam-

ple of abstracting intimate data, in this case the user’s physical environment, to the operating

system level. Abstraction is one possible solution to improve data privacy, by providing dif-

ferent levels of privacy guarantees at different layers of the technology stack. In the future, we

could for instance guarantee that data used by the operating system, such as room information,
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is encrypted and not shared to other apps or distributed over the network.

The second system we designed, Layerable Apps, helps to improve data privacy by seg-

menting and separating who holds the data. As AR becomes more widespread, we need to be

careful to manage who holds what forms of personal data. Layerable apps is an application

model that encourages smaller-scale applications that are service-oriented, in that each app

provides only one service or function. This is due in part to our application taxonomy, which

treats all forms of apps equally and allows any app, big or small, to render on top of some-

thing else. Instead of trapping users in a single app, developers will now have to compete for

attention. As long as apps are competing with each other, they have no incentive to share data,

making sure no one entity holds all our data.

8.4 Future Directions

My journey as a researcher started with a desire to get in on the ground floor of new and

exciting technology, such as AR and machine learning. Today I realize it can be dangerous

to bandwagon onto technology trends without thinking of the ethical and long-term consider-

ations. I am more wary than ever about the role technology, and especially large technology

companies, have in our future. Looking forward, I want to have a stronger influence on the

direction this field takes, as I want to guide it towards more ethical and responsible uses of

technology. As the industry pushes forward, I see promising opportunities in the creation of

development tools and development platforms for AR applications, namely in the following

areas.

8.4.1 Testing Environments and Scene Descriptors

Currently, developers have little to no tools to test their applications within a physical envi-

ronment, let alone within all the possible environments that their users may encounter. Devel-
171



Conclusion Chapter 8

opers have been vocal about the lack of simulation tools and proper guidelines for making their

content fit in any given space [61]. This dissertation provided several solutions to the dynamic

adaption of content to space, and researchers continue to explore this field. But general view

management techniques may not be enough.

Instead, we might want to look at tools that enable AR apps to target specific spaces. For

instance, a developer might want to make an application that only works at certain retail stores,

or only works at home, or only works in the living room. If they can constrain their apps to

specific types of rooms, they might be able to design for that type of space better. For instance,

they could expect that a living room usually contains a TV or a couch, and could design the

placement of AR content around those objects. Unfortunately, the only way to do with today’s

tools is by through manual specification from the user.

A better solution would be to have a standard and generic way to describe scenes. That way,

developers could program their application to work on a specific set of scene descriptions. A

testing framework could then be created, likely in VR or a game engine, enabling developers to

create different unit tests based on representative scenes for each scene descriptor. Operating

systems for AR platforms could also use this information to indicate whether applications will

work in a given scene (and possibly notify the users as to why it won’t work).

Scene graphs are one possible solution for implementing such a scene descriptor. They are

commonly used in game development and 3D graphics to represent the positional relationships

between objects in a virtual scene. This allows objects, such as a camera, to move itself rel-

ative to another object, say a character. However, they can also be used to represent logical,

directional, and other forms of semantic relationships. For instance, in the living room exam-

ple, we could describe that scene as a graph with a root node that represents the room, and

two child nodes representing sofa and TV, each connected with the relationship “contains”.

Scene graphs have two desirable properties we want in a scene description. For one, they can

be directly compared through graph matching algorithms [221]. This allows us to provide a
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quantitative metric for how close (or far) away a scene description is from the current environ-

ment, allowing flexibility of scene targeting. Instead of just binary targeting, a developer could

warn the user that their current environment is close to their scene descriptions, and may still

allow them to use the app with certain caveats. Scene graphs can also be hierarchical, allowing

developers to be as specific or as general as they want. In the case of a retail store for instance,

an AR app developer might want to ensure a very specific set of target scenes in order to make

sure the app is never used except at a particular company’s stores. Scene graphs allow the

flexibility to do that.

8.4.2 Interoperability and Open Standards

Another component of the developer ecosystem that is necessary is an interoperability stan-

dard for AR content. Standards like OpenXR only provide low-level access to underlying

display and input hardware. What is necessary for AR applications to run concurrently, and

possibly display concurrently, is something more akin to a layout standard and rendering en-

gine, such as those used in web browsers. This would allow the structure of an application’s

visual content to be communicated to the operating system, providing information for the OS

to assist in displaying the content coherently with respect to other open applications.

Similar to the use of HTML on websites, a layout standard would allow for “soft failures”

when designing an application, enabling faster iteration and ease of content authoring and

creation. For instance, because there is a standard way to present certain types of HTML

elements, when developers use those elements in the design of their website, it is unlikely to

break the website entirely. Instead, the element will simply default to the standard way of

presentation based on where it is in the current DOM hierarchy. An AR layout engine could be

built in a similar way. For instance, if there is one application open that presents a 3D model,

that may default to being placed in the center. If then the user opens another AR application,
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instead of also displaying that in the center, the default may be to place them on the left and

right of the users field of view, to ensure the contents do not overlap. This ease of authoring

helps reduce the barrier to entry for AR designers and keeps app developers on an even playing

field as they must use the same standard to communicate the presentation of their applications.

8.4.3 Privacy and Security Guarantees

Lastly, another direction that I see promise in is the implementation of privacy and security

guarantees for data generated through AR. This can take the form of system design, policy

design, or interface design. For instance, an AR platform could provide OS-level implementa-

tions of context-sensing algorithms, abstracting it for the developer to use. The design of their

API can be built in a black-box manner so that the developer cannot directly inspect the raw

sensor data used, but can only utilize aggregate results, providing safeguards against developer

abuse. This is already used in some platforms. The HoloLens 2 includes eye tracking cameras,

however the only data that is provided is gaze information. The platform does not expose eye

camera images, since they may be used to circumvent biometric authentication systems that

utilize retinal or iris scans. However, more work can be done in this space, such as ensuring the

data is anonymized and encrypted, guaranteeing that the data can only be used on the device

and not wirelessly transmitted, and providing limits to frequency of access.

While systems demonstrating privacy and security guarantees are valuable, many of these

issues cannot be tackled without changes to policy. Government policies ensuring the protec-

tion of user data are uncommon, but the situation is slowly starting to change. The European

Union recently implemented the General Data Protection Regulation (GDPR) law to increase

data protection and privacy [222], becoming a model for similar laws in several other countries

as well. The law enhances user’s control and rights over their personal data, including how it

is transferred between EU and EEA areas. In the future, we might need to consider laws that
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regulate how data is transferred in and out of an AR system, as these devices become more

prevalent in our lives.

Interface design is also a meaningful next step to ensuring data privacy. This dissertation

has talked about enabling trade-offs between privacy and AR goals. Different users may have

different concerns around privacy, and some may be happy to share more data for the sake of

convenience or improved functionality. In those instances, we should provide interfaces that

effectively communicate the amount of data that is being shared, when it is being shared, to

whom it is being shared with, for what purposes it is being used for, and what functionality the

user is receiving in return. By offering these tools, we can promote app designs that focus on

privacy, and may influence the development of AR towards openness and transparency.

8.5 Discussion

This dissertation contributes research in the growing field of augmented reality, with an

emphasis on the design and evaluation of pervasive AR systems. Our research makes use of

speculative design, rapid prototyping, user studies, and statistical evaluation, presented through

three investigative research questions centered around: (1) The benefits of AR, (2) Additional

inputs for AR, and (3) The evolution of existing systems to pervasive systems.

In addition to this investigation, we also contribute three meta-analyses of the presented

research. We analyzed the work as a collection of case studies on AR recommender systems,

AR language learning, and AR multitasking. We also analyzed our work from the perspective

of systems development and iterative design, categorizing our work into top-down and bottom-

up approaches to system design. And we analyzed our contributions with a long-term view

directed at mitigating the potential risks and consequences of a pervasive AR future, addressing

topics we discussed in the introduction.

If you take anything away from this dissertation it should be this: get involved and partici-

175



pate. This field needs more active participation from researchers in influencing the growth and

development of pervasive AR and its perception to the public. One way this can be done is by

focusing on the design of applications that bring positive benefits even when the AR device is

not in use. Another way is by creating tools, systems, and designs, that can be easily deployed,

and whose values is quickly demonstrated, such as with Layerable Apps. Augmented Reality

has the power to change the world, much like the PC, Internet, and Smartphone before it. We

need more researchers not only to demonstrate the capabilities of this technology, but also to

understand the pitfalls and help to guide us away from them.
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