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ABSTRACT OF THE DISSERTATION 

 
Design Space Exploration of Parameterized Systems using Design of Experiments 

by 

David Russell Sheldon 

Doctor of Philosophy, Graduate Program in Computer Science 
University of California, Riverside, December 2011 

Dr. Frank Vahid, Chairperson 
 
 

Recent trends have led to parameterization of many computing components, such 

as parameterized processors, caches, FPGAs or networks–on-chip, as well as parameters 

in design tools such as optimization flags. Tuning parameterized systems to meet design 

goals like performance, energy, size, or power, has become harder due to the enormous 

design space created by such parameters and due to the large time required to evaluate 

each system configuration. Previous design space exploration approaches for 

parameterized systems have either focused on custom or randomized search heuristics. 

We map such design space exploration onto a statistical paradigm known as Design of 

Experiments, a paradigm under development since the 1920s that uses methodical 

experiment selection and sophisticated analysis to obtain maximum information using a 

minimum number of experiments. We introduce our DPG (Design-of-experiments 

Pareto-point Generator) method that performs flexible exploration by allowing the 

designer to provide information about the number and types of parameters, the 

approximate time to evaluate a configuration, and the total allowable exploration time. 



 v 

From that information, DPG automatically determines a custom set of experiments to 

best explore the design space within the allowable time. Such customized design-of-

experiments-based exploration represents the unique contribution of this work. We show 

that DPG provides competitive results across different domains, without requiring the 

designer to have a detailed understanding of parameter impacts. We created a web-based 

DPG tool to support designers from various domains, which accepts information from the 

designer and generates experiments that the designer conducts (iteratively), and generates 

data and plots from the analysis, including Pareto-points. The effectiveness of the DoE 

paradigm for system tuning may have broad applicability for design automation. 
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Chapter 1  

Introduction 

Parameterized systems have become increasingly common during the past decade. For 

example, cache architectures may have configurable size, associativity, and line size 

parameters, either in hard-core (physical) form [Albonesi 2002][Scott 1999][Zhang 2004] 

or in soft-core (synthesizable) form [Altera 2011][Arm 2011][Tensilica 2011]. Soft-core 

microprocessors, such as cores targeted for field-programmable gate arrays (FPGAs) 

[Albonesi 2002][Xilinx 2011] or for application-specific integrated circuits, (ASICs) 

[Arm 2011][Tensilica 2011] may have optional data path units. Data path units consist of 

units such as floating-point or divider units, memory units or configurable pipeline 

lengths, and so on. System-on-chip platforms may have tunable parameters relating to 

processors, memories, and buses [Givargis 2002][Kumar 2004][Mohanty 2002][Palermo 

2003][Sekar 2003][Sherwood 2004][Szymanek 2004]. The communication networks on 

many chips are becoming more complex and tools like Noxim [Fazzino 2008] have been 

developed to help designers build the custom networks on the chips. Generators of 
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customized field programmable gate array (FPGA) fabrics which are useful for adding 

FPGAs onto portions of an ASIC for circuits likely to change, have parameters that can 

be tuned to a particular circuit or circuits [Ahmed 2001]. 

Tuning a parameterized system is a complex problem. The difficulty stems largely 

from both the very large configuration space, and the long runtime that may be required 

to evaluate each configuration. A configuration is a particular set of values for all 

parameters; e.g., a particular configuration of a configurable cache may be a 4 Kbyte, 4-

way set-associative, or a 32-byte line size cache. Configuration spaces have exponential 

size complexity (N parameters with M values yields MN configurations) with typical 

values being in the thousands or higher. For some systems the size of the configuration 

spaces can grow to over 1x1024 configurations. Evaluating just one configuration may 

require synthesis and/or simulation, where runtimes may measure in the minutes or hours. 

There are many different domains that make use of parameterized systems. The 

following sections describe various types of parameterized components and systems  

such as caches, processors, SoC, NoC and custom FPGA fabrics.  

1.1 Parameterized caches 

Albonesi [Albonesi 2002] proposed a new cache architecture where part of the cache can 

be disabled when the cache is not under heavy load. By shutting down a portion of the 

cache the power and energy that the cache uses decreases. The cache will only shutdown 

at times when the load on the cache is low so the overall impact on the performance of 

the system is relatively small. Albonesi used a technique called selective cache ways to 

shutdown a portion of the cache. Selective cache ways are able to shutdown one or more 

of the ways in the cache to save power. When more cache capacity is required based on 
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the workload, the ways are reactivated. Figure 1 shows how the selective way shutdown 

works. The cache controller is able to disable the clock to each way which effectively 

removes that way from the cache. When the cache controller enables the clock, the way 

would then resume normal operation within the cache.  

Zhang [Zhang 2004] created a cache with even more configurability. Zhang’s 

cache has three configurable parameters: the total cache size, associativity, and the line 

size. Zhang’s cache is able to change any one of the three parameters during runtime such 

that cache flushes are kept to a minimum after a change occurs. The increased level of 

configurability allows for greater control and customization of the cache during runtime 

which leads to an increase in energy savings. 

Scott [Scott 1999] developed the M*Core cache architecture. The M*Core cache 

is designed to be a unified cache. The M*Core cache is divided into different banks, 

where each bank is configurable. The banks are then set in one of four configurations: 

Figure 1: Albonesi’s [Albonesi 2002] 4 way set associative cache with selective cache ways. Data ways 1-3 are 
identical to way 0. The cache controller is able to control which cache ways are active  
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off, instruction only, data only, or unified. When a bank is set as instruction only, the 

only lines that will be stored in that bank corresponds to requests from the instruction L1 

cache, the same is true for the data only. The unified configuration allows both 

instructions and data to be stored within the bank. The banks can be turned off to reduce 

power consumption when the extra space is not needed. 

1.2 Parameterized processors 

Parameterized processors allow designers the ability to tune the processors to the needed 

tasks. By tuning a general purpose processor, the designer is able to achieve better 

performance while still maintaining the benefits of a general purpose processor. There are 

two main types of parameterized processors; processors that have a limited set of units 

that can be added or removed, and processors that can have custom units added to the 

processor.  

1.2.1 Tunable processors 

Tunable processors are distributed with a set of configurable units that can be added or 

removed depending on the needs of the designer. The tuning of the processors can be 

done in hardware by physically adding or removing the units from the processor or by 

software where units are disabled when not needed. The SimpleScalar tool [Burger 2011] 

is an example of one such processor.  

The Microblaze processor [Xilinx 2011], created by Xilinx, is one example of a 

tunable processor. The Microblaze core has multiple functional units that the designer 

can add or remove from the Microblaze core. The functional units that are available 

within the Microblaze core are a barrel shifter, multiplier, floating point unit, divider, a 

comparator, and a custom instruction to access special registers. When any of these units 
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is not present, the Microblaze compiler uses software to replace the functionality of the 

missing functional units. 

Arm [Arm 2011] produces multiple different processors, however, most of the 

processors have the same core processor and have multiple different preset 

configurations. The Cortex-M0 is an example of the basic Cortex processor. While the 

M4 version adds MAC units, a floating point unit, memory protection as well as a variety 

of other options. The Cortex uses a number of different fixed configurations which still 

gives designers the freedom to find the features that best match the needs of the 

applications.  

Sekar [Sekar 2003] introduced a dynamic method to modify a parameterized 

processor. Sekar used a software based technique similar to the approach used by 

Albonesi, and Zhang in cache configuration. By setting registers, components of the 

processor can be enabled or disabled. Also, clock generators can be modified to change 

the clock frequency of the processor.  

1.2.2 Application specific instruction set processor (ASIP)  

ASIPs are processors where the instruction set has been modified to better meet the needs 

of the domain of applications that will be run on the processor.  

Tensilica [Tensilica 2005] developed a parameterized processor, called the 

Xtensa, that includes different types of parameters. The Xtensa like the previous tunable 

processors has many different components that can be enabled to create a tuned 

processor. The Xtensa can be configured to include functional units like, multipliers, or 

floating point units. Also, different types of caches or pipeline architectures can be 

configured. The Xtensa tool chain allows for designers to add a variety of custom 
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instructions to the processor. The custom instructions can be complex multi-cycle 

instructions. Custom instructions can also have embedded registers or an embedded 

register file.  

Tensilica’s Xtenesa processor is a hardcore processor that is designed for an ASIC 

chip. Altera has created the NIOS soft core processor [Altera 2011], which is designed to 

be used on an FPGA. The NIOS, like the Xtenesa processor, has a base instruction set 

and additional instructions can be added to the ISA. The custom instruction slots in the 

NIOS are, however, more limited in size. The area available for the NIOS custom 

instructions is determined by the layout of the processor, which provides a limited 

amount of space to for the custom instructions. While the custom instructions may be 

multi-cycle there for instance is not sufficient area for a custom register file to be 

embedded within the custom instruction. 

Figure 2: The architecture of the eMIPS platform. The custom instruction units form a parallel pipeline to allow for 
dynamic nature of the ISA. [Pittman 2006] 
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The eMIPS core has a modified datapath that allows for custom instructions to be 

added to the ISA at runtime. eMIPS uses an FPGA fabric to implement the custom 

instructions within the datapath. Figure 2 shows the architecture of the eMIPS platform. 

The dynamic nature of the custom instructions means that the normal pipeline has no 

knowledge of the custom instructions. Unlike other approaches where the custom 

instructions are static, the dynamic nature of the instructions means that a new decode 

block is needed to decode the custom instruction. In the eMIPS architecture, each new 

instruction is passed to all the decode blocks and the block that understands that 

instruction will decode the instruction.  

1.3 Parameterized systems on a chip (SoC)  

Givargis [Givargis 2002] introduced a parameterized SoC called Platune. Platune consists 

of a processor and two levels of caches. The caches and the busses that connect the 

caches to each other and main memory are configurable as well as the voltage of the 

system. There are over a billion different configurations within the Platune SoC system.  

Schreiber [Schreiber 2000] developed a processor generator called PICO. PICO 

generates a custom VLIW processor that has a fabric that is used to implement systolic 

arrays to aid the processor. PICO uses the application as a base and designs the processor 

and one or more systolic arrays to accelerate the computations in the processor. Figure 3 

shows the high level architecture of the PICO designed chip. The VLIW processor 

communicates with one or more systolic arrays through a memory interface. Each 

systolic array has access to the memory bus to increase the memory bandwidth to the 

systolic arrays.  
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Shin [Shin 2004] introduced a configurable communication bus for SoC systems, 

shown in Figure 4. The communication bus consists of two main components; the bus 

and the memory scheduler. The bus controls the time-slice that is allocated to each bus 

master and the overall pipeline latency. Some of the parameters of the memory controller 

include the bandwidth per thread, prefetch limit and change limit. The number of 

configuration in the configuration space is over 100 billion configurations.  

1.4 Parameterized network on a chip (NoC)  

Dall’Osso [Dall’Osso 2003] developed a communication framework called xpipes. 

Xpipes are a scalable and high performance method for connecting components within 

Figure 3: The architecture of the PICO framework with the systolic array as a coprocessor. [Schreiber 2000] 

 

   

Figure 4: Shin’s configurable communication bus and the configurable parameters. [Shin 2004] 
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the SoC. The configurability of xpipes allow for both homogeneous and heterogeneous 

architectures. Xpipes utilize a wormhole switching technique to minimize the area and 

power usage at the switches. The switches in the xpipes architecture are configurable, 

where the designer can control parameters such as the number of input and output ports, 

the channel width, the number of virtual channels, and the size of the buffers.  

Fazzino [Fazzino 2008] developed a network on a chip simulator where a 

designer can model the on chip network. The model includes both the software traffic and 

the hardware properties such as the routing algorithms and channel widths. The Noxim 

simulator allows the designer to evaluate a wide range of different NoC configurations to 

determine the performance and energy usage of the on chip network.  The configuration 

space of the Noxim simulator is shown in Figure 5. The figure shows the design space 

with the energy on the X-axis and the combined throughput of all the channels within the 

Figure 5:  Noxim NoC design space with over 60,000 configurations. 
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NoC on the Y-axis. The NoC design space that we generated from Noxim [Fazzino 2008] 

consists of over 60,000 configurations. 

1.5 Tuned FPGA fabrics  

Hauck [Hauck 2006] introduced the Totem FPGA fabric generator. Totem generates a 

custom FPGA fabric for a domain of applications. Totem aids the designers in mapping 

the FPGA fabric onto silicon and in the creation of the synthesis tools needed to map 

applications onto the custom FPGA fabric. An advantage of domain specific fabrics is the 

fabric can include the type of additional resources that are likely to be needed by the 

domain. For example, in a fabric designed for signal processing a selection of hardcore 

units such as multiply accumulator (MAC) or a fast fourier transforms (FFT) could be 

included within the fabric itself. In addition, the cluster size of the LUTs and the size and 

length of the routing channels can vary considerably from one domain to another. Hauck 

found that by using domain specific FPGA fabrics the designer could see a 4.8x 

improvement in area-delay over traditional FPGA fabrics.  

Betz [Betz 2000] created the VPR and the T-VPACK tools that assist designers in 

creating custom FPGA fabrics. VPR is a tool that allows designers to create and use array 

based FPGA fabrics, while T-VPACK is a clustering tool to pack the application in to 

blocks. VPR can create fabrics for a wide range of different FPGA fabrics.  VPR allows 

designers to vary parameters from the size of the LUTS in the fabric including multiple 

sizes of LUTs within a single fabric, the number and length of the routing channels, as 

well as specialized hardcore units embedded within the FPGA fabric. The hardcore units 

could be multipliers, DSP block, or whole processors that are connected to the FPGA 
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fabric. The level of customization that VPR offers allows designers to generate and 

evaluate how the applications will run on the custom FPGA fabric.  

1.6 Design tools 

In addition to the customization of the hardware systems, the software tools that 

designers use have many parameters that can have an impact on the overall performance 

of the system. For example, synthesis tools [Xilinx 2011][Altera 2011][Tensilica 

2011][Synopsys 2011][Cadence 2011][Mentor 2011] used to map circuits onto ASIC or 

FPGA platforms go through multiple stages such as synthesis, mapping, placement and 

routing. Each of these stages consists of NP-complete problems that need to be solved, 

which is why the tools use heuristics to complete these stages. Each of the stages consists 

of dozens and in some cases over one hundred parameters to control how the heuristic 

functions complete the stage. The value of the parameters used to generate the final 

circuit has a large impact on the performance of the final system. 

Similarly to the hardware, compilers used to compile software have a large 

number of parameters. Compilers such as gcc [gcc 2011] have hundreds of different 

options to help optimize the code. Some of the gcc default levels that work well for a 

wide variety of applications are -01 and -03. The default options may not provide a 

sufficient level of optimization for the system. When additional optimization is needed 

the designer would then have to tune the optimization settings for the system, using the 

wide range of optimization options available within the compiler. Other compilers such 

as LLVM [LLVM 2011] and Intel’s ICC [Intel 2011] have a very large number of 

options that would probably need to be configured to maximize the size and performance 

of the code. 
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1.7 Outline for Thesis 

In chapter 2 we will discuss the related work in areas of parameterized systems, and 

algorithms used to navigate the design spaces. Chapter 3 describes an application specific 

method for design space exploration. The approach uses the characteristics of both the 

application and the system for the design space exploration. In chapter 4 we will discuss 

how to use application specific methods to generate the Pareto points for a given system. 

Chapter 5 discusses how a designer can quickly search a design space even if there are 

invalid configurations within the design space. Chapter 6 presents an algorithm to guide 

the designer through the design space exploration process. The algorithm adapts to both 

the time the designer has and to the properties of the individual system and application.  

Much of the work in this thesis is described in a series of papers [Sheldon 2006 (a)] 

[Sheldon 2006 (b)] [Sheldon 2007] [Sheldon 2009]. 
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Chapter 2  

Related Work 

2.1 Design space exploration for system specific tuning algorithms 

A common method to tune a parameterized system is for the designer to create a new 

system specific algorithm for each system the designer needs to tune. The designer needs 

to determine the metrics that are relevant and how best to guide the exploration process. 

System specific exploration methods often produce good results for the system, however, 

the system specific algorithms are useful for only the intended system. There are many 

different types of parameterized systems, such as caches and memory, processors, 

FPGAs, and System on a Chip (SoC), which are discussed in more detail below. 

2.1.1 Cache and memory 

Researchers have developed system specific tuning algorithms for tuning a parameterized 

memory hierarchy. For example, Zhang [Zhang 2004] developed a configurable cache, 

which has three configurable parameters: size, associativity, and line size. Zhang’s cache 

is a full hardware layout such that the cache is fully configurable at runtime. Zhang 

developed an algorithm that can vary the three parameters based on the current usage of 

the cache. Gordon-Ross used an M-Core [Scott 1999] [Malik 2000] second level cache 
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and Zhang’s cache for the first level cache for both the instruction and data caches. 

Gordon-Ross’s algorithm was designed to tune both cache levels to decrease the total 

energy based on the current workload of the system.  

Viana [Viana 2003] developed an algorithm that allowed system designers to 

explore cache configurations while the system is in development. Viana extended the 

ArchC [Rigo 2004] framework to include the ability to explore the effect of various cache 

configurations on the system. Expanding on the cache configuration, Szymanek 

[Szymanek 2004] explored the entire memory hierarchy for a given system. Szymanek 

generated the Pareto points for the memory hierarchy by modeling the memory hierarchy 

and the application. 

2.1.2 Processors 

Processors are another domain where designers tune the system using system specific 

algorithms. Mishra [Mishra 2001] created a method to explore processor architectures 

using Architecture Description Language (ADL). Mishra created a set of reusable models 

so that a single model may be used in multiple ADLs. Sherwood [Sherwood 2004] 

created Sherpa which quickly explores the processor configurations. Sherwood modeled 

the various components of the processor. The models contain information on how each 

variation affected the performance and area of the processor. Sherwood then used an 

integer linear programming (ILP) solver to explore the design space.  

Yiannacouras [Yiannacouras 2005][Yiannacouras 2006] added custom 

instructions to an application specific instruction set processor (ASIP) to improve the 

performance. Yiannacouras developed a tool that analyzes the application to determine 

the set of commonly repeated instructions. The tool then adds the custom instructions to 
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the instruction set architecture (ISA) and the tool updates the compiler for the new ISA. 

The compiler can then be used to compile the code for the new ASIP processor. ASIP 

processors have been explored by many in the field. Most approaches use a compiler 

aided approach [Atasu 2003] [Cheung 2003] [Clark 2005] [Fin 2001] [Gupta ] [Wang 

2001]. Bauer [Bauer 2008] modifies the instruction set at runtime. 

2.1.3 FPGA 

Researchers have developed tools and algorithms to help designers create FPGA fabrics 

tuned to the application or set of applications that run on a custom FPGA fabric. Hauck 

[Hauck 2006] developed the Totem tool. Totem used similar techniques to those used in 

high-level synthesis for ASICs. The FPGA fabrics produced by Totem are up to eleven 

times better in terms of the area-delay product, showing that a custom FPGA fabric can 

have a large impact on the final system. Hammerquist [Hammerquist 2008] developed an 

algorithm to design system specific FPGA fabrics. The algorithm varied parameters such 

as the lookup tables (LUT) and configurable logic block (CLB) size as well as routing 

resources like the channel width to create a custom fabric for the application. 

Hammerquist found that by tuning the system the overall energy usage of the FPGA can 

drop thirty-five percent on average when compared to a traditional FPGA fabric.  

2.1.4 System on a chip (SoC) 

System on a chip designs are becoming much more common in recent years which is 

increasing the need for designers to create tuned SoCs. Platune, developed by Givargis 

[Givargis 2002], was developed to allows the designer to quickly explore the design 

space of the memory hierarchy of the SoC. Platune does the exploration by using an 

interdependency graph that shows which parameters in the system are related to each 
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other and which can be tuned independently. By dividing the large design space into 

several smaller problems the total time to explore the design space decreases.   

The Metropolis framework [Balarin 2003] was extended by Densmore [Densmore 

2006] to help the designer to quickly analyze a large number of design choices, such as 

hardware / software partitioning, or the tradeoff space between area and frequency for 

parts of the overall system. Bossuet developed an algorithm that explores both the 

application and the underlying platform to optimize the overall system. The algorithm is 

able to analyze the different components of the application to determine the resources 

needed for each part of the application [Bossuet 2003]. In addition to determining the 

needs of the application, the algorithm examines many different architectures [Bossuet 

2007]. The hardware and software models are used to determine the level of parallelism 

in the system, the communication structure, and the functional unit sharing. Adding the 

application to the design space exploration opens up new solutions while increasing the 

overall size of the design space.  

The communication network was examined by Larihi [Larihi 2004] to tune the 

different components within the communication system. Larihi developed an algorithm 

that examined the communication structure of the application and explored custom 

communication networks to improve performance. Larihi showed that by adding more 

buses and carefully partitioning the communications across the different buses improved 

the performance of the overall system performance.  

Kumar [Kumar 2004][Kumar 2006] presented a different approach to system on a 

chip exploration. Kumar proposed a system where instead of finding the best 

configuration at design time, the designer creates a chip with many different 
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heterogeneous cores. Each core can be tuned for a particular task or general purpose core 

that vary in performance and energy. Kumar’s technique allows the application that is 

running the ability to switch processors during execution depending on the needs of the 

application. For example, if the application was doing a lot of input/output (I/O), then the 

slowest processor that could keep up with I/O devices would save the most power, while 

heavy computation would benefit from a faster processor and the time savings could 

provide saving in the total system power.  

2.2 Single factor analysis (SFA) 

Single factor analysis is another method that is used to tune systems. Single factor 

analysis is a simple approach that allows a designer to quickly determine the impact of 

each of the parameters in the system [Montgomery 1986]. Single factor analysis begins 

with a base configuration. The base configuration is the starting point for all future 

analysis of the system. The designer then varies each parameter individually. The result 

from each run is compared to the base configuration. The difference is the effect that the 

parameter has on the system, as seen in Figure 6. Figure 6 is an example of a single factor 

analysis experiment. The first row is the base case; all parameters are set to 0 or turned 

off. Then in each of the following rows one of the parameters is turned on and the effect 

Figure 6:  Single Factor Example for aifir benchmark. Base configuration is in bold.  

BS MUL FPU DIV MSR PCMP Cycles Effect 
0 0 0 0 0 0 12,696,265  
1 0 0 0 0 0 9,905,565 2,790,700 
0 1 0 0 0 0 12,696,265 0 
0 0 1 0 0 0 10,818,171 1,878,094 
0 0 0 1 0 0 12,696,265 0 
0 0 0 0 1 0 12,696,265 0 
0 0 0 0 0 1 12,696,265 0 
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on the system is recorded in the cycles column. The effect column shows the difference 

or the effect of turning on the parameter. The effect is then used by SFA to determine the 

overall importance of the parameter on the system.  

Single factor analysis is not a very robust method for tuning. The base case in 

single factor analysis biases the results and the designer is left with an inaccurate picture 

of how the parameters actually affect the overall performance of the system. If the 

designer already has a good configuration, then single factor might be able to find a 

slightly better configuration. However, the need for a good configuration to be known 

before the tuning begins limits the effectiveness of single factor analysis in tuning of 

systems.   

2.3 Randomized tuning algorithms 

Randomized algorithms have also been used to aid in the tuning of parameterized 

systems. One type of randomized algorithm is a genetic algorithm. Genetic algorithms are 

modeled after how DNA changes from one generation to next. Genetic algorithms use 

random numbers to determine if and how the DNA sequences will change from one 

generation to the next. To use genetic algorithms, for the tuning of parameterized systems 

the configuration is broken down into small parts that represent the genes in the DNA 

model. Once the designer has created the genome for the system, the genetic algorithm is 

then run. There are various parameters common to genetic algorithms that impact the 

overall performance of the genetic algorithm such as the size of each generation and the 

mutation rate. Another important part of genetic algorithms is the fitness function, which 

is very similar to an objective function. The fitness function is used to determine which 

configurations are the best within a single generation.  
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Genetic algorithms can be adapted to almost any parameterized system. The 

adaptive nature of genetic algorithms is one reason why genetic algorithms are popular in 

tuning systems. Palesi [Palesi 2002], Zitzler [Zitzler 2002], Erbas [Erbas 2006] and Ascia 

[Ascia 2004] all show that genetic algorithms work well even when compared to system 

specific algorithms.  

Slmoka [Slmoka 2004] used a different random approach to tune parameterized 

systems. Slmoka used a Tabu search algorithm to examine the design space. Tabu search 

is a version of simulated annealing where the algorithm stores the previous configurations 

so the algorithm does not need to rerun configurations.  

Palermo [Palermo 2003][Palermo 2008] used an algorithm called Random Search 

Pareto (RSP). RSP is based off of Monte Carlo methods. RSP uses random samples to 

sample the design space. RSP then uses the known points to generate a new set of 

random points. RSP is better able to avoid becoming stuck in local minima, which is a 

problem with most random algorithms.  

Randomized algorithms all share one major problem, unpredictable runtimes. 

Randomized algorithms are usually able to find the useful configurations, however, in 

order to find the configurations random algorithms need to evaluate many configurations. 

In most cases the extra configurations that are evaluated do not provide any useful 

information in the exploration process. The random approach, therefore, is often not a 

very useful approach since the designer does not know how long the algorithm will take 

to run or when the algorithm has reached the best configurations.  
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Chapter 3  

Single-factor exploration using an 

application-specific design space tree 

3.1 Background 

Presently, FPGA soft-core processor users must manually determine the best core 

configuration for a software application. Such manual configuration either results in 

unduly long exploration times due to evaluating too many configurations, or results in a 

sub-optimal configuration. We consider two approaches, a traditional CAD approach that 

maps to an abstract problem model and then solves the problem thoroughly while relying 

on estimations and a synthesis-in-the-loop approach that uses actual synthesis and 

execution during exploration but searches only a fraction of the solution space. While our 

work’s motivation lies in soft cores for FPGAs, our approaches may apply to ASICs also. 

We developed our methodology using a Xilinx Microblaze FPGA soft-core 

processor [Xilinx 2005], but the methodology would be applicable to other FPGA soft-

core frameworks. The Xilinx Microblaze is a 32-bit soft-core processor designed for 

efficient implementation on Xilinx FPGAs. The Microblaze is a single-issue in-order 

execution processor. The Microblaze can be configured to instantiate any combination of 
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the following five components: multiplier, barrel shifter, divider, floating-point unit 

(FPU), and data cache. The first four components are each “on/off” type, either being 

instantiated or not instantiated, and only one instance of each component type is needed 

since the Microblaze is a single issue processor. The data cache, when instantiated, can 

be 2 Kbyte, 4 Kbyte, or 8 Kbyte, but we only considered 4 Kbytes in this paper for 

simplicity. Furthermore, the Microblaze supports two cache types, an older basic cache, 

and a newer better performing “MCH” cache, although only the latter is considered in 

this paper. Thus we considered 25=32 possible Microblaze configurations. When any of 

the first four components are instantiated, the Microblaze ISA is updated to include a 

special instruction for the corresponding component (e.g., a multiply instruction), and the 

Microblaze compiler generates code utilizing that the special instruction. We refer to a 

Microblaze with none of the five extra components as a base Microblaze.  

Instantiating a component increases a Microblaze’s size, but may improve an 

application’s performance, depending on the application. We defined the task of 

customizing a Microblaze for a particular software application as the task of instantiating 

a particular combination of components, known as a configuration. Customizing allows 

the designer to meet the design goals, which may involve performance and/or size that 

are best met for an application running on the customizable Microblaze.  

We measured performance as the time to execute an application once from 

beginning to end (typically an embedded benchmark application loops back to its 

beginning after the end). The execution time is the number of clock cycles multiplied by 

the clock period, referred to hereafter as the application runtime. We utilized Xilinx ISE 

and EDK tools to determine the clock period by synthesizing a configured Microblaze 
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onto a specific FPGA device. We measured the number of clock cycles by executing an 

application on a Microblaze mapped to the FPGA device, with the application slightly 

modified to communicate with a clock-cycle counting circuit. The cycle counting circuit 

non-intrusively counts clocks cycles while the application executes but does not affect the 

application’s performance. 

A basic measure of a soft core’s size on an FPGA is the number of utilized lookup 

tables (LUTs)1. However, a soft core may also utilize hard-core FPGA resources, such as; 

hard-core multipliers or block RAMs. To be able to straightforwardly plot and compare 

sizes of different soft-core configurations, an equivalent LUT value is assigned to hard-

core resources. We did so by first measuring the regular LUTs, hard-core multipliers, and 

block RAM utilized in a full Microblaze. We then combined the individual size metrics 

into a single size metric representing equivalent LUTs.  

Figure 7 presents the equations for calculating equivalent LUTs for a given 

Microblaze configuration. Assuming each type of resource (LUT, hard-core multiplier, or 

block RAM) is of equal importance. Figure 8 lists the equivalent LUT values for each 

hardcore unit. For a given configured Microblaze, the equivalent LUTs, LUTEquivalent, is 

the sum of the regular LUTs, LUTRegular, used for logic to support datapath components, 

the equivalent LUTs for hard-core multipliers, LUTEquivalent(Mult), and the equivalent LUTs 
                                                 
1 We originally utilized configurable logic blocks (CLBs) as a measure of size, but Microblaze designers at Xilinx 

informed us that LUTs are a more accurate and useful measure.  

Figure 7:  Equations for calculating Equivalent LUT value of a configured Microblaze.  

MBfull
LUT

MBfull
sizeBRAM

Used
sizeBRAM

BRAMEquivalent
LUT

MBfull
LUT

MBfull
Mult

Used
Mult

MultEquivalent
LUT

BRAMEquivalent
LUT

MultEquivalent
LUT

Regular
LUT

Equivalent
LUT

*/
)(

*/##
)(

)()(

=

=

++=



 23 

for block RAMs, LUTEquivalent(BRAM). The equivalent LUTs for the utilized multipliers is 

equal to ratio of multipliers used, #MultUsed, to multipliers in a full Microblaze, #Multfull 

MB, multiplied by the number of regular LUTs in a full Microblaze, LUTfull MB. Likewise, 

the equivalent LUTs for the utilized block RAMs is equal to ratio of block RAM used, 

sizeBRAMUsed, to block RAM in a full Microblaze, sizeBRAMfull MB, multiplied by the 

number of regular LUTs in a full Microblaze, LUTfull MB . Of course, a user can weigh 

regular LUTs, multipliers, or block RAMs more heavily if that resource happens to be 

more valuable to the developer. We noted that another research group working closely 

with Altera independently developed a similar equivalent LUT concept for similar size 

comparison purposes [Yiannacouras 2006] thus lending confidence to the use of the 

equivalent LUT size metric during soft-core exploration. All LUT data in this paper 

represents equivalent LUTs. Interestingly, we discovered that our equivalent LUT 

concept correlates almost perfectly with Xilinx’s own equivalent gate concept. 

Note that the equivalent LUT concept is essentially a cost function that combines 

three terms by normalizing and weighing them equally. Our approach is not strictly 

dependent on the above-described cost function; other functions could be used, including 

an approach where users specify the relative weights, or where different normalization 

methods could be used.  

Figure 8:  Equivalent LUT values for hard-core units.  

Component Equiv LUT Count 

LUT 1 

MULT 18x18 569 

BRAM 1328 
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In our experiments, we considered eleven benchmarks selected at random from 

EEMBC [EEMBC 2006], a benchmark suite intended for embedded systems. We 

reported data for all of the randomly selected EEMBC benchmarks that we were able to 

compile and execute on the Xilinx Microblaze. In addition, we considered an internally 

developed ray tracing application (raytrace) that is predominantly a floating-point 

application.  

Figure 9: Size versus application runtime for all Microblaze configurations executing the aifir EEMBC benchmark, 
with all Pareto points labeled. An additional labeled point (FPU) is highlighted to show the performance overhead of 

instantiating an underutilized component, due to lengthening of the clock cycle.   
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For each benchmark, we utilized scripts to run our search heuristics, where those 

scripts automatically performed FPGA synthesis and evaluated the application whenever 

necessary. The scripts were executed on a computer connected to an FPGA development 

board (an ML310 board in our case).  

Figure 9 demonstrates the benefits of customizing an FPGA soft-core processor 

for one application. The figure presents the application runtimes for the EEMBC 

benchmark aifir running on each of the 32 possible Microblaze configurations. 

Considering only the Pareto-optimal configurations, the Microblaze configurations have a 

2X variation in application runtime and a 2X variation in LUTs, clearly demonstrating 

the benefits of configuring the Microblaze to a particular application and its performance 

and size constraints.  

Figure 10 presents the performance speedups of the performance-optimal 

configured Microblaze for all 12 benchmarks, as determined by exhaustively examining 

Figure 10: Speedups for base (Base Microblaze), full (Full Microblaze), and optimal (Optimal Microblaze) Microblaze 
configurations. 
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all possible configurations for each application. The optimal Microblaze configuration on 

average has a 3.5x speedup compared to a base Microblaze and a maximum speedup of 

11.1x for the application matmul. However, obtaining that data by performing exhaustive 

exploration for this application required approximately 15 minutes per configuration 

(with 99% of that time spent on synthesis and with certain configurations requiring more 

than 15 minutes), resulting in over eleven hours of exploration tool runtime. Even for the 

relatively small number of configurable options we considered, exhaustively evaluating 

all possible configurations is quite prohibitive. A core user would need to re-evaluate all 

configurations anytime significant changes and potentially even small changes were 

made to the application, a common occurrence in a software design cycle. Furthermore, 

we expect that the number of configurable options will continue to increase for soft-core 

processors in the future. As such, if the configurability is doubled from five options to ten 

options, the execution time for an exhaustive evaluation increases from approximately 11 

hours to 11 days. 

We sought to develop methods that would execute in approximately 1-2 hours – a 

tool runtime that we believe FPGA designers would find reasonable during the 

optimization step of design. By using synthesis which takes on the order of tens of 

minutes during the exploration process the key feature of our developed heuristics must 

be that of executing only a few synthesis runs such that total customization time is on the 

order of 1-2 hours. 

3.2 Application specific tuning of parameterized systems 

We considered the problem of customizing a Microblaze to minimize a particular 

application’s runtime, with and without a size constraint. Fast tuning of configurable 
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hardware platforms has been the subject of several recent research efforts. Most efforts 

assume that hundreds or thousands of configurations can be examined  [Abraham 

2000][Givargis 2001][Mishra 2001][Mohanty 2002][Sherwood 2004][Szymanek 2004], 

but the 15 minute synthesis time in the FPGA soft-core problem means that only about 5-

15 synthesis runs can be conducted. 

3.2.1 Traditional CAD approach: 0-1 knapsack 

We first considered developing a traditional CAD approach to tuning soft cores. The 

approach pre-characterizes the application and processor, then maps the problem to an 

abstract (and inexact) model, and then uses the model to solve the problem.  

The soft-core configuration problem could be approximately cast to a 0-1 

knapsack problem, wherein, one seeks to maximize the value of items placed in a 

knapsack having a weight constraint, with each item having a value and a weight. In the 

fractional knapsack problem, one can include any fraction of items, while in the 0-1 

knapsack problem, the only allowed fractions are 0 or 1, meaning the items are 

indivisible. We considered each optional MB component as an indivisible item. We 

assigned a component’s value to be the ratio of the speedup increment that occurs when 

instantiating that component compared to a base MB (e.g., a speedup of 1.4 has an 

increment of 0.4), over the size increment compared to a base MB. Note that the speedup 

increment for a component depends on the application, but the size increment is 

application independent. This cast is approximate, because speedup increments may not 

always be strictly additive when multiple components are instantiated. For example, 

component A may have an increment of 0.4 and B of 0.3, but A and B together may only 

yield an increment of 0.6, not 0.7. Likewise, size increments may not be strictly additive.  
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Figure 11 presents the inaccuracy of the additive assumption for all pairs of 

components. The additive assumption holds well (near-zero inaccuracy) for four pairs of 

components. Adding the multiplier and the barrel shifter speedup increments yields a 

10% inaccuracy, since some bit shifts are achievable with a multiplier, and vice versa. 

Adding multiplier and divider speedup increments yields 26% inaccuracy.  

A well-known optimal algorithm for solving the 0-1 knapsack problem first sorts 

items by their value/weight ratio, and then finds the optimal solutions using a dynamic 

programming algorithm [Toth 1980]. To execute that algorithm, the speedup increment 

(value) for each component must first be computed. As the speedup is application 

dependent, the first six synthesis and executions must be evaluated first: for the base MB, 

for the MB with a multiplier only, for the MB with a barrel shifter only, with an FPU 

only, with a divider only and finally with only a cache. Figure 12 shows speedup 

increments, size increments, and their ratios, for the aifir EEMBC benchmark application. 

 The dynamic programming algorithm has what is known as a “pseudo-

polynomial” runtime complexity of O (n*W), where n is the number of items, and W is 

the knapsack weight constraint. This algorithm is known to be fast when W is a “small” 

integer, with a magnitude of perhaps 10,000 – 1,000,000, and of course when n is also 

small. Fortunately, W is indeed a small integer in the case of our MB configuration 

Figure 11: Average pairwise speedup-increment additive inaccuracies for all pairs of benchmarks.  

Component Cache Floating Point Divider Multiplier 

Barrel Shifter 5.2 % 1.0 %  0.0 % 10.4 % 
Multiplier 6.7 % 1.9 % 26.0 % 

Divider 2.9 % 0.0 %  

Floating Point 5.1 %   
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problem (a full MB is only 12,000 equivalent LUTs) and n is also small in our problem (5 

instantiatable units).  

This approach applies six synthesis/execution runs when initially determining the 

component speedup and size increments, requiring about an hour, which dominates the 

approach’s runtime. The inputs to the dynamic programming algorithm – n (number of 

soft core parameters) and W (number of available LUTs) – can each accommodate large 

increases before the 0-1 knapsack algorithm runtimes approach a non-negligible time 

(versus synthesis) of tens of minutes. Even then, we have found that we can “quantize” 

the knapsacks weights by dividing all weights by 10 to yield a 10x algorithm speedup 

with almost no degradation in quality of results. 

3.2.2 Synthesis-in-the-loop approach: impact-ordered trees 

Casting the soft-core configuration problem to 0-1 knapsack yields an approach with 

Figure 12: Speedup increment, size increment, and their ratio, for each MB component for the aifir  benchmark. 
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desired tool runtime and near-optimal results. However, the approach makes an 

assumption that speedup and size increments are additive, which is inaccurate for some 

pairs of components. As demonstrated in the experiments section later, those inaccuracies 

can result in sub-optimal solutions. We thus sought to develop an approach that did not 

rely on the additive speedup increment assumption, but rather used synthesis/execution 

during exploration (synthesis-in-the-loop) while still executing just a few 

synthesis/execution runs.  

We developed a greedy search method based on an approach proven effective in 

other parameterized architecture configuration research. The greedy method pre-

determines the impact each parameter has on design metrics, and then searches the 

parameters in sequence, ordered from highest impact to lowest. For example, Zhang 

[Zhang 2004] used the greedy method for customizing a highly configurable cache, 

where evaluating each configuration which took many minutes due to lengthy 

simulations, and found near optimal results. Thus we investigated such an impact-ordered 

approach.  

The first phase of the approach determines the impact of each component. We can 

define impact simply as the speedup. Through experimentation, we found that a better 

definition takes the ratio of speedup/size, just as in the knapsack problem. Thus, the first 

phase of the approach computes speedup increments, size increments, and their ratio; 

requiring six synthesis and execution runs and resulting in the same data as in Figure 6. 

This method used is called single factor analysis. The second phase considers the 

components in order of their impact. For the current component, the approach instantiates 

the component, then synthesizes and executes to determines the application’s runtime and 
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size. If instantiating the component improves runtime and meets size constraints, the 

component is added; otherwise, it is not. The approach then moves on to the next 

component.  

We refer to the above approach as an application-specific impact-ordered tree 

approach. Essentially, if we envision the entire solution space as a tree, as in Figure 13. 

The approach orders the levels of the tree, and then descends into only one sub-tree at 

each level, until reaching a single leaf node. The first phase orders the tree’s levels, while 

the second phase makes a single descent. The thick red line shown is an example of how 

the algorithm descends the tree. This approach requires six synthesis/executions for phase 

one, and five synthesis/executions for phase two, resulting in 11 total 

synthesis/executions.  

We also investigated a variation of the above approach with the goal of reducing 

the number of synthesis/execution runs, by pre-determining average component impacts 

on a suite of typical benchmarks, rather than determining impacts on a per-application 

basis. The approach essentially moves phase one of the above approach from the tool 

user to the tool developer, thus cutting out six of the eleven synthesis/execution runs, 

leaving just five such runs. We refer to this approach as a fixed-order impact-ordered tree 

Figure 13: Impact-ordered tree approach: (a) Application-specific impact-ordered tree for the aifir  benchmark, (b) 
Fixed impact-ordered tree. Note that neither approach actually generates the entire tree – both make a single descent 

to a leaf node. The thick red line shows a single decent through the tree.  

(a) (b) 

Barrel shifter 
 

Multiplier 

 

Divider 

 
FPU 

Cache 

Divider 
Barrel Shifter 

 
Multiplier 
 

FPU 

Cache 

single decent 



 32 

approach, because the impact ordering is fixed. Figure 14 shows the data averaged for all 

our benchmarks, with the speedup/size data resulting in the impact ordering shown in 

Figure 13(b). 

Each of our algorithms assumes the problem uses an objective function to 

determine the best soft-core processor configuration given a limited size constraint. Some 

design scenarios impose no size constraint on the FPGA soft-core processor, instead 

seeking only the minimum application runtime. In the absence of a size constraint, one 

might assume minimal application runtimes could be achieved by simply instantiating a 

full MB. However, this assumption is false, as was illustrated in Figure 10. Figure 10 

presented the performance speedup for different MB configurations: a base MB, a full 

MB, and an MB configured for optimal application runtime (determine by exhaustive 

search) for the corresponding application compared to the base MB configuration. Notice 

Figure 14: Speedup increment, size increment, and their ratio, for each MB component averaged across all 12 
benchmarks.  
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for some applications the full MB is actually slower than the optimal. The reason is 

because as more components are instantiated, the MB clock period may be lengthened, 

due in part to longer delays necessary for the increased wire routing within the larger 

MB. The point labeled FPU in Figure 9 clearly illustrates the impact of longer delay 

caused by adding an underutilized FPU component.  

To handle the no size constraint situations, in either the 0-1 knapsack approach or 

the impact-ordered tree approaches, we simply use a size constraint that is equal to or 

larger than the size of a full MB. 

3.3 Experiments 

We implemented the knapsack, application-specific impact-ordered tree, and fixed-order 

impact-ordered tree approaches as scripts executing with Xilinx Platform Studio 

synthesis tools, coupled with a Xilinx Virtex-II Pro FPGA development board (ML310), 

for all 12 embedded benchmark applications. To compare the approaches with optimal 

results, we implemented an exhaustive search approach that simply performed 

synthesis/execution for all 32 possible soft-core configurations.  

Figure 15(a) presents the average speedups and tool runtimes for each approach 

for the scenario of unconstrained size. Exhaustive search requires over 700 minutes (11 

hours) and finds average speedups of 2.3. The knapsack approach finds near-optimal 

solutions with a speedup of 2.2. Both impact-ordered tree approaches find the optimal 

solution. The fixed impact-ordered tree approach has the fastest runtime of 108 minutes. 

The knapsack approach should actually have roughly the same runtime, as both 

approaches synthesize about the same number of configurations. One particular 

configuration examined by the knapsack approach, namely a base MB with a barrel 
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shifter alone, happened to have an unusually long synthesis time. Such anomalous 

synthesis runtimes are an artifact of the nature of FPGA physical design heuristics. In 

general, one should assume that the knapsack approach and the fixed impact-ordered tree 

approach will have equally fast tool runtimes. 

One might wonder whether any ordering of the tree levels in the fixed impact-

ordered tree approach would in fact yield the optimal configuration. Thus, we 

implemented another heuristic using a random ordering: barrel shifter, cache, FPU, 

divider, multiplier. Figure 15(a) shows that this random impact-ordered tree approach 

performs worse; though for the unconstrained size problem this approach is actually 

somewhat competitive.  

Figure 15(b) presents the average speedups and tool runtimes for each approach 

for a fixed size constraint, chosen to be 80% of the size of a full MB. We also obtained 

data for a 50% constraint, with similar results (not shown). The plot again shows that the 

impact-ordered tree approaches find optimal speedups (2.2), the knapsack approach finds 

Figure 15: Average speedups obtained by the various exploration approaches, for: (a) no size constraint, (b) a fixed 
size constraint set at 80% of the size of a full MB, (c) a per-application-tailored size constraint of 80% of the size of the 

optimal MB for that application (as determined in (a) ), all on a Virtex-II Pro device. 
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near-optimal solutions (2.0), and the random impact-ordered tree approach is no longer 

competitive.  

We sought to see how each approach would perform in a scenario where the size 

constraint was tight enough to prohibit use of the best performing MB for a given 

application. We created a unique size constraint for each application. Figure 15(c) 

presents the average speedups and tool runtimes for each approach with a tailored size 

constraint being 80% of the best performing MB for each particular application (as 

determined through exhaustive search with no size constraint, and choosing the smallest 

among equally performing configurations). We also obtained data for a 50% constraint, 

with similar results (not shown). While the fixed and application-specific impact-ordered 

tree approaches found the optimal, the knapsack heuristic performed very poorly for this 

size constraint. We found that the reason for the knapsack’s poor results is due to the 

inaccuracy of the additive speedup increment assumption, which caused sub-optimal 

selection of components.  

To further evaluate the effectiveness of the approaches, we re-implemented the 

entire set of experiments for a Xilinx Spartan2 FPGA. Figure 16 presents the average 

Figure 16: Average speedups for the approaches on a Spartan2 FPGA. 
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speedups and tool runtimes for each approach for the case of unconstrained size. Again, 

the impact-ordered tree approaches were the best performing approaches, but the 

approaches chose configurations that were slightly below optimal on average. The 

application-specific approach found the optimal configuration in 11 of 12 cases, with a 

20% worsening in performance for only one application. The fixed approach also resulted 

in a 20% worsening of performance for that same application, along with a 10% 

worsening for another application, but overall found the optimal configuration in 10 of 12 

cases.  

From this data, the fixed-order impact-ordered tree approach seems preferable. Of 

course, one must consider that our fixed-order was determined from the very same 12 

benchmarks that we then used to compare the approaches. To examine this issue, we used 

six randomly selected benchmarks to define the fixed ordering, and then applied the 

approaches on the other six benchmarks only. The fixed impact-ordered tree approach 

again found the optimal for the constraint situations in Figure 15(a), (b), and (c), and even 

found the optimal for the situation in Figure 16. Applying a particular fixed order on a 

radically different benchmark may yield worse results. Vendors might address that 

Figure 17: Estimated tool run times for increasing number of configurable soft-core processor options. 
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situation by having different fixed orderings for different application domains (e.g., 

control, signal processing, etc.), allowing the user to select a domain.   

The application-specific impact-ordered tree approach is more robust in the 

presence of new benchmarks, but at the expense of about twice the tool runtime. 

Our formulation considered five components. One can expect the number of soft-

core parameters to increase beyond five. Figure 17 shows estimated tool runtimes for five 

to twelve two-valued parameters. While the approaches are significantly faster than 

exhaustive methods, the application-specific impact-ordered tree approach’s runtime does 

increase to nearly 10 hours for twelve parameters. In contrast, the fixed-order impact-

ordered tree scales well, requiring just less than 3 hours for twelve parameters. Note that 

the figure only shows runtime and not quality of results.  
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Chapter 4  

Pareto point generation using 

interdependency graphs  

In the previous chapter, we discussed how a tuning methodology can benefit from an 

application specific approach. In this chapter, we will go into more depth about the 

strengths and weaknesses of both single factor analysis and design of experiments. We 

will then discuss an alternative to the application-specific impact-ordered tree. The 

interdependency graph like the application-specific impact-ordered is built from data 

generated from the system, but is better able to handle interactions between the various 

parameters.  

4.1 Single Factor Analysis (SFA) 

Single Factor Analysis [Peterson 1986] is a common approach in design space 

exploration. SFA requires the designer to select a base configuration. The base 

configuration uses a default value for every parameter in the system. SFA changes each 

parameter, or factor, one at a time. The first parameter is changed to every possible value 

(or some subset therefore), while all other parameters are held in the default value. After 

examining all the values for the first parameter, the parameter is set back to the default 
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value, and the same process is repeated for each remaining parameter. The results from 

the SFA runs can be used to create a regression model. The model is then used to predict 

the best configuration for given design goals.   

We can extend SFA into an algorithm that generates Pareto points. The new 

algorithm would first determine the significance of each parameter, using an Impact 

Ordered Tree (IOT). The significance, or impact, is determined by the maximum change 

seen for a given parameter. The change is normalized to a value between 0 and 1, using 

the largest value seen for the metric as 1. Normalization is done for each metric for each 

parameter. The maximum of the normalized metrics for each parameter is the impact of 

that parameter. The impact of each parameter is then used to sort the parameters. Starting 

with the sorted list of parameters, the algorithm takes the two highest-impact parameters 

and generates all combinations of those two parameters. Assuming every parameter has 

three possible values, the algorithm generates nine points for this step. All other 

parameters are held at their default value. By saving the results from previous runs, this 

step actually only requires four additional runs. The results are then pruned of all non-

Pareto points. The resulting set of (intermediate) Pareto points is then used with the third 

most significant parameter to generate the next set of exhaustive data. The new data is 

also pruned, leaving only the Pareto points. This process repeats until all parameters have 

been combined. 
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Figure 18 shows an example of the results of the SFA approach, showing a 

simplified design space with only 3 parameters: cache size, cache associativity, and 

supply voltage. Cache size and cache associativity are interdependent, while supply 

voltage is independent. Each of the three symbols in Figure 18 represents a different 

supply voltage. Both the cache size and associativity have two possible values for a total 

of four configurations. When combining cache parameters and supply voltage, the four 

configurations move as a group when the supply voltage is varied. In (a), the base 

configuration is [cache size = 0, cache associativity = 1, supply voltage =1] which finds 

all but one Pareto point. Using the same environment but changing the base configuration 

to [0,0,2], three Pareto points are overlooked. SFA can only see the effect of the 

parameters in relation to the base configuration—a severe deficiency of this approach for 

Pareto point generation.   

Figure 19 shows an example when all 3 of the parameters are interdependent. In 

Figure 18: Illustration of results of SFA extended for Pareto points, showing dependency on the base configuration 
selection: (a) A 3-parameter system where 2 parameters are interdependent and the third is independent. The filled 

points are the points examined by SFA. The circled points are Pareto points found. (b) A different base configuration 
yields different Pareto points.   
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this case, SFA misses three Pareto points, for the base configuration shown. The SFA 

approach can only see points near the base configuration, but interdependencies require 

more complex explorations. With additional parameters and more interdependencies, the 

SFA approach fails to find a thorough set of Pareto points. 

As shown in the previous examples, SFA is not a very robust approach to finding 

the Pareto points in a system. One problem is that a base configuration must be chosen. 

The base configuration is the basis for all other measurements, so by choosing a bad base 

configuration results in exploration of an inappropriate design space region. Also, SFA 

performs a very limited search around the base configuration. This means that only the 

local effect of a parameter will be seen.  

The other major problem with SFA is that the interdependencies between the 

parameters are not taken into account.  SFA assumes that each parameter affects only 

itself. In most systems this is rarely the case. For example, in a cache, the best 

associativity for the cache can change as the cache size increases. However, changing the 

supply voltage of the system will not effect which associativity is best for a given cache 

size. 

Figure 19: SFA with three dependent parameters. If all three parameters are interdependent, then single factor analysis 
breaks down further.     

Pareto  
Points 
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4.2 Parameter interdependency graph 

Givargis [Givargis 2002] developed a more thorough method for determining the Pareto 

points of a system by introducing the idea of a parameter interdependency graph. The 

parameter interdependency graph shows the dependencies between the parameters in the 

system. Figure 20 shows the graph that was developed by Givargis for the Platune 

architecture consisting of a processor, two caches, buses, and memory, with each 

component having numerous parameters. There are many groups of connected 

parameters, but most of the groups consist of only a few parameters. Platune searches 

each group exhaustively, finds Pareto points for each group, and combines all points to 

find the global Pareto points. This approach thus avoids exhaustive search of all 

parameters, instead only exhaustively searching interdependent parameters, thus greatly 

reducing the search space while still searching the most important regions of the space.  

Figure 20 shows the parameter interdependency graph for the cache size, 

Figure 20: Platune’s parameter interdependency graph. The arrows indicate dependencies between the different factors. 
[Givargis 2002] 
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associativity and supply voltage example. Each shape in the graph represents a different 

supply voltage. The supply voltage is independent of the other two variables, so the curve 

for each shape is the same. The parameter interdependency graph shows that the cache 

parameters and the supply voltage can be searched independently of each other. The 

Pareto points for each group can then be combined to generate the Pareto points of the 

entire system.  

Givargis was able to greatly increase the accuracy of the Pareto points versus 

SFA, while also decreasing the time to generate the Pareto points (searching less than 1% 

of all configurations. However, the parameter interdependency graph was created 

manually, requiring that the designer have knowledge of possible interactions between 

the components’ parameters in the system. We observed that the interdependencies 

between parameters may change depending on which metrics are considered (as will be 

shown in the experiments section). The interdependency graph should be changed when a 

metric that was not considered when generating the graph is now being considered. 

Conversely, if the graph was generated for many metrics and the designer only is 

considering a small number of those metrics, then many of the edges may not be valid for 

the given metrics. Generating this graph can be difficult due to the complexity of the 

system and take an expert a significant amount time even for only a few cores. 

Integrating multiple parameterized cores, as is commonly done today, compounds the 

problem. Erring on the side of listing interdependencies slows the search; erring on the 

side of independence may cause Pareto points to be missed.  
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Furthermore, Platune’s parameter interdependency graph treats all dependencies 

as equal. Some dependencies are stronger than others. Neglecting the weaker 

dependencies can speed search with negligible negative impact on results. 

4.3 Pareto point generation using design of experiments (DoE) 

We propose a new algorithm in order to find the Pareto points. The algorithm combines 

aspects of the random approaches and the parameter interdependency graph. The 

algorithm eliminates the need for expert user knowledge, while automatically finding and 

using the interdependencies between the various parameters in the system. 

Design of Experiments (DoE), sometimes called Experimental Design, is a formal 

systematic method for investigating a process’ input factors and their relationship to the 

process’ output. DoE’s development began in the 1920s by statistician Sir Ronald Fisher 

[Peterson 1986] for the purpose of improving farm crop output and has since evolved for 

use in nearly any form of production (chemical, bio-technical, pharmaceutical) and is 

even used in company management techniques. The key assumption in DoE is that 

experiments are costly and thus must be minimized. In DoE, a factor is input process 

variable that can be controlled by the developer, such as whether a particular chemical is 

added to a process.  

One key aspect of DoE relevant to our purpose is to design a set of experiments 

that yield provably maximum information about a process’ input factors for a given 

number of experiments. For example, consider a process with three input factors A, B, 

and C; each with two possible levels (high or low, normally represented as +1 and –1 in 

DoE, often abbreviated as just + and -). The ideal number of experiments in this case 

would be 8 (or even more if the process includes random effects) and is known as a full 
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factorial design: --- (A off, B off, C off), --+, -+-, -++, +--, +-+, ++-, and +++. As a 

trivially-simple illustration of DoE, assume instead that cost constraints allow only four 

experiments. A poor experimental design would be ---, --+, ++-, and +++, while a better 

design would be --+, +--, -+-, and +++. The reason is that experiments should be 

orthogonal to each other in order to provide the maximum amount of information for 

subsequent analysis.  

An experimental design is orthogonal if the effects of any factor sum to zero 

across the effects of the other factors. The poor design had C on (+1) for three 

experiments and off (-1) for only one experiments (+1+1+1-1=2), whereas the better 

design had each factor on for exactly two experiments and off for two (+1+1-1-1=0). 

Orthogonality provides for improved subsequent analysis. It provides for a clear 

understanding of the limitations of the experiments. For example, the better design was 

created by enumerating all possible combinations of A and B (--, -+, +-, ++), and then 

appending C with a value being the product of A and B (so –1*-1=+1, which is why the 

first experiment was --+). Because C’s settings were created in this manner, C’s impact is 

confounded with the interaction of A and B. While unavoidable when doing fewer 

experiments than full factorial, such confounding can be clearly listed in what is known 

as an aliasing table to inform the experimenter of limitations (and perhaps to enable the 

experimenter to reorder the factors to avoid confounding factors more likely to interact). 

Orthogonality is just one of many aspects of the design of good experiments in the DoE 

framework. Others include randomization, replication, and blocking, which are beyond 

our scope of discussion.  
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DoE becomes increasingly challenging, and increasingly beneficial, as the 

number of allowed experiments differs from the number of possible factor combinations. 

For example, a process with 8 two-level factors has 256 possible experiments. If only 8 

experiments could be run, a naive approach would be to simply run each experiment with 

exactly one factor high (-------+, ------+-, -----+--, ----+---, ...). However, such 

experiments tell nothing about the interaction among factors or perhaps factors A and B 

each has little impact alone, but have a huge impact when combined. A good DoE design 

would have run experiments run with multiple factors at their high level in each 

experiment, carefully done to maximize orthogonality.  

The other aspect of DoE relevant to this discussion is to analyze a given set of 

experiments such as to obtain the maximum information about the impact of each factor 

on the process output and about the interaction among the factors from the given data. 

Such analysis can be applied to data from any set of experiments but will be of higher 

confidence if the experiments are well designed (e.g., orthogonal). The key techniques 

are referred to as ANOVA (analysis of variance), which is used to analyze the effect that 

each factor has on the final result.  Multiple regression methods are also used to 

determine which factors are statistically significant. Dozens of analysis techniques exist, 

focusing on different factor models and types of obtained information.  

The majority of DoE techniques use two-level factors rather than multi-level 

factors, due to the powerful statistical methods that two-level factors enable. A factor 

with a relatively small number of levels exceeding two-level can be mapped to multiple 

two-level factors in order to benefit from DoE methods, though some methods do directly 

allow three or more levels for some factors. The most popular DoE approach is known as 
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fractional factorial design involving experiments representing a fraction (1/2, 1/4, 1/8, 

etc.) of the full factorial design. Numerous fractional factorial design approaches exist.  

Minimal run experiments refer to the situation of running only a small number of 

experiments relative to the number of possible factor combinations. Numerous techniques 

have evolved specifically for this purpose, with popular techniques being the Plackett-

Burman and the Taguchi techniques [Mishra 2001][Peterson 1986][Scott 1989]. These 

techniques are used to gather the necessary information while only running a few more 

runs then there are factors being examined.   

In addition to design experiments and analyzing generated data, some DoE 

techniques predict the best settings of the factors to optimize the output of the given 

process. Such prediction involves another set of well-developed techniques based on 

models (mostly linear and continuous) of the input factors.  

DoE is a vast statistical discipline comprising a variety of thoroughly studied 

techniques. This section just lightly touched on some subjects. A thorough understanding 

requires a textbook of information. While a good understanding is helpful, a key idea of 

applying DoE to architecture tuning is to not have to thoroughly understanding DoE 

techniques, but rather to apply existing DoE techniques as embodied in well-established 

commercial DoE toolsets, thus obtaining the benefits of the established discipline. We 

examined numerous DoE tools and selected DoePRO XL [DOE XL 2006] due to its 

sufficient coverage of experiments of interest and its integration with Excel spreadsheets. 

4.4 Pareto point generation 

We developed the DoE-based Pareto-point Generation (DPG) algorithm that combines 

two new techniques. The first technique automatically generates a parameter 
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interdependency graph, which is a weighted graph whose edges show the dependencies 

between the parameters. The second technique generates Pareto points from the weighted 

parameter interdependency graph.  

Figure 21 shows an overview of the DPG algorithm. The first step in the DPG 

algorithm is to evaluate the initial DoE set of experiments. We used the DOE Pro XL 

[DOE Pro XL 2006] tool to assist in the generation and analysis of the DoE experiments. 

Each parameter in the system is mapped to either a two or three level DoE parameter. In 

cases where the parameter has more than three values, DPG chooses the largest and 

smallest and a midpoint as the three parameters. For the best results, the two level 

parameters should be used only for parameters that have exactly 2 levels. 

After mapping of the parameters, the DoE tools are used to generate a set of 

Figure 21: DoE-based Pareto-point Generator (DPG)  
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experiments. DPG uses a Plackett-Burman (PB) [Peterson 1986] set of experiments. 

Using a PB set of experiments provides the accuracy needed while only growing linearly 

as the parameter count grows. The number of experiments needed for a PB experiment 

grows linearly with the number of factors. The PB test will gives DPG the average value 

of each of the parameters in the system, as well as the impact of each parameter.  

DPG begins by estimating the values for the unknown configuration for each pair 

of parameters and for each metric. The system is evaluated for each estimated 

configuration to determine the accuracy of the estimate. The difference between the 

actual and estimated values is then used to compute the edge error for each pair of 

parameters. An edge error of zero means the estimates were accurate. The edge error 

grows as the two parameters are more dependent on each other. The edge error is the 

weighted parameter in the interdependency graph. Figure 22 shows the primary edges 

from the parameter interdependency graph found by DPG overlaid on Platune’s original 

graph. In Platune’s original parameter interdependency graph, the buses that connect the 

processor to the caches and then to memory are all considered to be independent of each 

other.   

DPG found that the bus network and the cache parameters are sometimes 

interdependent. The interaction between the caches and buses varies over the 

benchmarks, as shown in Figure 22. In Figure 22 B, C, and D represent the instruction 

cache. The data cache’s parameters are E, F, and G. Parameters I, K, and Q represent the 

coding method for each of the three buses in the system. In the jpeg application, only the 

instruction cache is interdependent with the buses, while the buses have some 

interdependencies between each other. For b1_histogram, the caches and bus network are 
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all highly interconnected. In g3fax, the supply voltage is interdependent with the cache 

and bus network. For g3fax, the bus network has no strong interdependencies between 

the buses. 

DPG is able to create application specific parameter interdependency graphs for 

each metric, using both the application and the platform, which will generate a more 

accurate interdependency graph. The interdependency graphs for each metric are then 

normalized and combined to create a single error value for each pair of parameters. This 

normalization step allows DPG to handle an arbitrary number of metrics. To continue to 

the ultimate goal of generating the Pareto points, the edges are sorted based on the error 

between the actual and estimated values. 

DPG starts with the pair of parameters that has the highest edge value. The subset 

of parameter values that was chosen earlier is then used to generate exhaustive data for 

that pair of configurations, a maximum of nine configurations. The set of points is then 

pruned to contain only the local Pareto points. The edge is then removed from the graph 

and the two nodes are merged into one. The generated Pareto points now become the 

Figure 22: Parameter interdependencies found by DPG. The major interdependencies have been overlaid over the 
original Platune parameter interdependency graph – thicker lines indicate larger dependencies. Parameters not in our 

simulations have been crossed out.       

 (a) (b) (c) 



 51 

valid values for the combined node. This process repeats until all nodes have been 

merged into a single node. Edges are only used when two different nodes are connected 

by that edge. For example, in Figure 22(a), parameter D and I will merge first into one 

node. Then D and K will merge, but this new node consists of D, I and K. When the edge 

that connects I and K is visited, the two nodes are already part of the same node, so the 

edge is ignored. 

If the system has parameters with more that three values, a partial Pareto graph 

will be generated. This partial Pareto graph will show the extremes of the system and 

give the designer the general shape of the Pareto curve. The designer then can see what 

part of the Pareto curve is the most interesting and focus on that subsection only. We 

extended DPG to fill in the missing region, by using the points on either end of the region 

of interest. DPG fills in the region by seeing which parameters vary between the points 

on either edge of the region. DPG then determines which parameters are held constant on 

either side of the region and locks those parameters. The remaining parameters are then 

varied based on the ranges seen at the edges of the region. By using the parameter 

interdependence graph, a local search of the region is done. This search can either add 

some of the intermediate values or run a complete search, depending on time and 

resources available. This step allows DPG to search a much larger design space while 

focusing initially on a much smaller and manageable space.   
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4.5 Experiments 

To test the DPG algorithm, we used three different platforms, the Platune SoC simulator, 

Noxim Network on Chip simulator, and the Microblaze platform. Platune SoC simulator 

will be examined first. Figure 23 shows three values used in our tuning for each 

parameter and the constants used for the remaining parameters, along with the basic 

block diagram of the system. Platune has 19 parameters that the developer can modify, 

ranging from the properties of caches, memory buses, and voltage scaling. These 19 

parameters can be combined to form approximately 6x1012 configurations. For this work, 

we used a subset of the parameters that limited the design space to 1.3 million 

configurations. 

We randomly chose six benchmarks from the EEMBC [EEMBC 2006] and 

Powerstone benchmark suites. We compared to SFA and for thoroughness, we also 

considered another DoE approach, in which SFA rather than DoE (using Plackett-

Figure 23: Platune’s configurable architecture. 
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Burman experiments) was used to find the impact of each parameter, followed by the 

Pareto point generation approach for SFA – we refer to this approach as DoE IOT. Figure 

24 shows the results for the JPEG benchmark. SFA was able to find similar points as was 

our DPG algorithm for the reduced three level set of configurations having a total of 729 

configurations.  

The DoE IOT approach also achieved similar results on average, but on JPEG was 

unable to find any point near the top of the region shown in Figure 24. However, as 

previously shown, SFA can perform badly depending on the base configuration. Three 

different base configurations were used and significant variation was found in the results. 

As the design space of the system increases, the negative effects of SFA will increase. 

Figure 24: Pareto curves for JPEG. SFA was able to find the valid endpoints in this example.  DoE IOT only found 
one of the needed endpoints. DPG was initially able to find good points on either side of the main part of the Pareto 

curve, and DPG’s fill-in process finds the remaining points.    
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DoE IOT achieved similar results to SFA, but in less time, as shown in Figure 25. 

The DPG algorithm was always able to find points that were at least as good as 

SFA. Figure 24 shows the filled-in portion of the Pareto curve, as well as two end points 

used to fill in the region. We compared the randomized algorithms [Ascia 2005] and our 

work from chapter 3 since both used Platune for similar design spaces, and both used 

JPEG as a benchmark. Our DPG techniques evaluate three to four times fewer 

configurations. The randomized approached used 1500 and 2000 runs respectively, while 

DPG required 576 runs to complete. Such reduction intuitively makes sense – 

randomized approaches intentionally search large numbers of configurations and then 

narrows in on good configurations, while DPG carefully pre-specifies which 

configurations to consider such that the design space is thoroughly searched in a 

statistically rigorous manner. Platune’s parameter interdependence graph approach 

required over 10,000 runs. In our experiments, involving relatively small benchmarks, 

DPG executed for about one hour while the randomized approaches would have executed 

Figure 25:  Runtime comparison for JPEG with different algorithms. 
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for four to six hours (based on the number of configurations examined as reported in 

previous papers).  

While DPG is able to achieve a 3-4x application speedup over genetic and 

simulated annealing approaches, DPG also produced better results than randomized 

approaches and for Platune’. DPG was able to generate a better Pareto curve than 

Platune’s parameter interdependency graph. Platune covered only 75% of the Pareto 

points found by DPG for the JPEG example. A Pareto point is considered covered if 

Platune found a point within 5% from DPG’s Pareto point. By comparing minimum 

Euclidian distance between the two Pareto curves yields an average error of 12%. 

Previous randomized approaches were reported to find fewer Pareto points than the 

Platune approach (typically 90%-95% coverage), and thus would have even less coverage 

of DPG’s points. 

Figure 26 compares Platune’s parameter interdependency graph with DPG for the 

Figure 26: Pareto points from Platune versus DPG (with fill-in) for b1_histogram. 
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b1_histogram benchmark. As seen in the figure, DPG generates better Pareto points over 

the entire region. The average distance between the two curves is 26%. DPG needed 270 

runs compared to the 1800 needed by Platune, for a speedup of over 6x in terms of tool 

runtime. 

Figure 27 examines the g3fax benchmark. Platune requires 3500 runs to generate 

the Pareto curve, while DPG requires 750 runs. The average distance between the two 

curves is 14%. DPG consistently finds more points on the horizontal tail of the curve. 

Platune’s parameter interdependency graph has large gaps in this portion of the graph, as 

seen in the three graphs. DPG is able in all our tests to generate points within this region.   

DPG is able to quickly find the location of the Pareto curve. The designer is then 

able to use this location to determine what region will best suit the designer’s needs. DPG 

then can focus only on that region to complete the Pareto curve. The designer finds the 

Pareto points of interest without needing to find all Pareto points. 

Figure 27: Pareto points for Platune vs. DPG (with fill-in) for g3fax. 
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We also experimented with Noxim, a Network on Chip simulator. We evaluated 

ten of Noxim’s parameters. The parameters were divided into two groups, those that 

represent the hardware on the system and those that represent the software running on the 

platform. From the possible applications, we randomly selected a series of benchmarks 

with one, two, or seven applications in each benchmark. When combining multiple 

applications to create a new benchmark, equal weight was given to each application. We 

then ran the DPG algorithm and SFA to determine the Pareto points.   

Figure 28 shows the final results from two of the seven benchmarks that we ran 

on Noxim. Part (a) shows a single algorithm, where both SFA and DPG performed well.  

All the other single application benchmarks that we examined showed similar results. 

Part (b) shows a two-application benchmark. In the multi-application benchmarks, the 

metrics for each application were combined to form the new metrics. However, if both 

applications need to be run, the designer may need to examine not just the combined 

performance but how each benchmark individually performs on the platform. Part (b) 

shows the individual performance of each application. The graph has two clusters of 

points. Application 1 is the larger curve, and Application 2 is the small cluster of points 

below Application 1. DPG was able to find a good set of Pareto curves for the combined 

benchmark as well as the individual applications. By using synthesis which takes on the 

order of tens of minutes during the exploration process the key feature of our developed 

The point SFA found is the Pareto point for both applications, however, a single point 

does not allow the designer many design options.  
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We also tested the DPG algorithm on the Microblaze platform. For these tests we 

used Xilinx Platform Studio and the ML310 development board. We examined 64 

configurations for 12 benchmarks from the EEMBC and powerstone benchmark 

[EEBMC] suites. 64 configurations were examined; the parameters examined are the 6 

datapath components that can be added to the Microblaze: barrel shifter, floating-point 

unit, multiplier, divider, MSR, and PCMP instructions. Figure 29 shows the results of the 

DPG algorithm for four of the benchmarks. DPG was able to find almost all of the Pareto 

Figure 28: NoC Pareto graphs, (a) shows a single application. Both DPG and SFA find the Pareto curve. (b) has two 
applications and DPG found a shared set of Pareto points. SFA found only one configuration, which is circled below. 
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points, when compared to the exhaustive data set. DPG was unable to find all the Pareto 

points in the BaseFP01 benchmark. The point around 50 million equivalent LUTs was 

not found. DPG examined on average 38 configurations, for the examples shown in 

Figure 29.  

The aifir, BaseFP01, canrdr, and engine benchmarks required 38, 44, 38, 38 

configurations respectively to generate the Pareto points. The average runtime was 10 

hours to complete the exploration, while exhaustive took 16.5 hours to complete. DPG 

requires some initial configurations for analysis of the platform and application. This 

analysis step consists of the Design of Experiments Test Runs and Compute Edge Error 

Figure 29: DPG results for Microblaze configuration. Four benchmarks, aifir, BaseFP01, canrdr, and engine are 
shown. These benchmarks are typical of the results seen from the DPG algorithm. DPG finds the complete set of Pareto 

points in all but the BaseFP01 example, where it misses the point near 50,000,000. Many data points are extremely 
close in value, when this occurs we added vertical spacing to additional points which creates the vertical bards seen in 

the Exhaustive graphs.  

 



 60 

stages as shown in Figure 21. As the number of parameters increases, the total design 

space will increase exponentially, while the analysis phase increases linearly.  

Figure 30 shows the growth of both the analysis phase and the design space, as 

the number of parameters increases. As the number of parameters increases, the percent 

of the overall design space that needs to be searched decreases quickly. We wanted to 

show the exhaustive data as a point of comparison, so we limited the total number of 

parameters. With multiprocessor systems, the benefit of DPG in the Pareto search will 

become much more pronounced in reduced tool runtimes.   

 
 
 

Figure 30: Percent of the design space that needs to be explored in the analysis phase of DPG.      
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Chapter 5  

DoE exploration in the presence of invalid 

data points 

Many configurable systems with a high level configurability have some invalid 

configurations. An invalid configuration is a configuration where the application is 

unable to execute using the configuration. Design of experiments assumes that every 

configuration is valid in the design space. In design spaces where some configurations are 

invalid modifications are needed in the DoE approach. In this chapter, we will present a 

method to handle invalid configurations and to predict invalid configurations and avoid 

the invalid configurations.  

 
5.1 Challenges with invalid data points 

FPGAs are an example of a system that has invalid configuration with the design space. 

FPGAs are used in a variety of cases from general logic to application specific 

acceleration. To explain the challenges we will use FPGAs as an example.  

Off-the-shelf FPGAs support a wide variety of circuit applications. Occasionally, 

FPGAs are incorporated into an integrated circuit (IC) as a core, to implement a circuit 

application likely to be revised after the IC is manufactured, accommodating changes in 
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published standards, bug fixes, or upgrades. The core FPGA supports reprogrammability 

while obtaining better performance than a microprocessor. Incorporating the core FPGA 

into the IC rather than using an off-the-shelf FPGA chip can reduce parts, board size, 

power, and cost. Major FPGA vendors offer core versions of their architectures, though 

not broadly advertising this feature. 

For core FPGAs, tuning the FPGA architecture to the application can reduce size 

or improve performance compared to the general architecture of off-the-shelf FPGAs. For 

example, a low-complexity application may only need 4-input LUTs (lookup tables), 

while a more complex application might benefit from 6-input LUTs. Similarly involves 

application-specific processors versus general-purpose processors [CHUNHO et al. 2000; 

CONG et al. 2004]. Application-specific FPGAs were proposed before 

[HAMMERQUIST  2008][LYSECKY 2008] and are available commercially.  

A problem with some configurable systems is that not all applications can be 

mapped onto all possible configurations of a platform; for example, dense connectivity in 

a particular application may cause place-and-route on an FPGA to fail for a configuration 

lacking sufficient routing resources. Such failure results in invalid points in the design 

space. Such points can derail convergence of design space exploration algorithms. 

We mapped the core FPGA tuning problem to the DoE paradigm to see what 

effects the architecture and tool parameters have on application performance and FPGA 

size. The DoE tool flow for such tuning appears in Figure 31. The DoE tool generates an 

initial set of “screening” experiments based on allowable exploration time as specified by 

the designer. The user runs the experiments and provides the resulting performance/size 

data back to the DoE tool. The tool analyzes the data for parameter impacts. The DoE 
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tool uses the information about each parameter to determine the overall impact of the 

parameter on the design. Then, in this work, the tool predicts the best configuration 

directly from the impact of the parmeters, ordering parameters by positive impact 

magnitude and greedily selecting the high or low value which yielded the positive impact. 

Alternatively, the prediction heuristic could involve running more experiments. 

5.2 Handling invalid points 

The non-continuous nature of the IC and FPGA domains yields invalid points in the 

design space. Two types of invalid points exist. The first is a structural invalid point. 

Structural invalid points are points where the configuration defines an invalid system. For 

example, an FPGA with 48 inputs but containing only one LUT of 4 inputs is invalid; a 

single 4-input LUT cannot handle 48 FPGA inputs. The second type of invalid point is a 

runtime invalid point. A runtime invalid point occurs when the configuration defined is 

valid but the CAD tools cannot map the application onto the configuration. For example, 

a configuration may have 20 routing channels, but a tool may not be able to find a routing 

using less than 30 channels. We assume that the DoE tool does not know why a 

configuration fails. Rather, the DoE tool merely is informed that the point is invalid. The 

tool then tries to determine if the invalid points follow a recognizable pattern. 

Figure 31 shows the process the tool uses to analyze the invalid points. The tool 

first determines if the results are usable or if a retest is needed. If the number of valid 

points is greater than the number of parameters plus one, the tool proceeds to the next 

stage. However, when the threshold is exceeded, the tool analyzes the invalid points by 

checking if a parameter’s values strongly correlate with the invalid points. To determine 

if a parameter has a correlation to the invalid data points the tool examines the ratio of 
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invalid to valid data points for each parameter. The ratio is developed by counting the 

number of invalid points for each level of the parameter. The ratios are computed for all 

parameters. Parameters that have no correlation to the invalid configurations typically 

have a ratio of one to one, meaning that the number of invalid points is equal for both the 

high and low levels for the parameter. If the number of invalid configurations is at least 

20% more than the number of valid configurations, the tool assumes that the parameter 

correlates with the invalid points. A correlating parameter is assumed to be responsible 

for the invalid points. The tool then generates new experiments where the parameter is set 

to its “good” value which does not cause the invalid points. When no single correlating 

parameter is found, the tool looks for pairs of parameters that correlate, using an n-

squared algorithm. The same method is used when looking for pairs of parameters as 

when finding a single parameter which correlates to the invalid points. 

In many cases, not all invalid points will be explained with the above correlations. 

When there are unexplained points left, the tool will increase the number of experiments. 

If the number of unexplained points is less than half of the total runs, then the tool will 

Figure 31: DoE flow to handle invalid configurations.  
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double the number of runs. If the number of unexplained points is greater than half of the 

total runs, the runs are quadrupled.  

DPG uses two methods to increase the number of experiments. The first is to 

reverse the array. Figure 32 shows an example of how this is done. The top table is the 

normal method for generating a Plackett-Burman table. To generate the reversed table, 

the defining run is reversed, from which the remaining runs are generated via left shifts, 

as before. The last run on the reversed table is the same as the last run in the original table 

(all -1s), so can be omitted when the two tables are combined. 

The second method to increase the number of experiments is to invert the table. 

The tool uses this method after the above reversal method. The values for each parameter 

are inverted, i.e., all 1s are changed to -1s, and all -1s are changed to 1s.  

When the two methods are combined, the number of experiments is quadrupled. 

The increased number of experiments allows for a greater number of failed experiments 

while increasing the final quality of the results. Figure 33 illustrates a screening test for 

Figure 32: Plackett-Burman screening runs. The top table labeled Normal is the beginning of the standard Plackett-
Burman set of runs for 11 parameters. The bottom table shows the reverse table, which we use to help handle invalid 

points. 

Normal P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 
run 1 1 1 -1 1 1 1 -1 -1 -1 1 -1 
run 2 1 -1 1 1 1 -1 -1 -1 1 -1 1 
run 3 -1 1 1 1 -1 -1 -1 1 -1 1 1 
run 4 1 1 1 -1 -1 -1 1 -1 1 1 -1 

… 
run 11 -1 1 1 -1 1 1 1 -1 -1 -1 1 
run 12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

            
Reverse P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 

run1 -1 1 -1 -1 -1 1 1 1 -1 1 1 
run2 1 -1 -1 -1 1 1 1 -1 1 1 -1 
run3 -1 -1 -1 1 1 1 -1 1 1 -1 1 
run4 -1 -1 1 1 1 -1 1 1 -1 -1 -1 

… 
run 11 1 -1 1 -1 -1 -1 1 1 1 -1 1 
run 12 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
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two benchmark circuits, dsip and clma, on an FPGA with 11 parameters (to be introduced 

shortly). INV means the tool obtained an invalid result for that benchmark with that 

configuration of parameters. 

The dsip circuit’s 20 runs resulted in six invalid points; the 14 valid points are 

greater than the minimum of 12 needed for basic analysis. The tool will recommend to 

the user that, time permitting, a new set of 20 experiments be run, but the tool can 

proceed with the given runs. 

The clma circuit’s 20 runs resulted in 12 invalid points. The eight valid points are 

insufficient for a meaningful analysis. The tool seeks a correlating parameter and finds 

that parameter 4 has the strongest correlation—eight of the ten experiments with 

parameter 4 at -1 are invalid. The tool sets parameter 4 to 1 and generates a new set of 

Figure 33: VPR - Table showing experiments and results for two circuits. INV means that the configuration was 
invalid 

 0 1 2 3 4 5 6 7 8 9 10 dsip clma 
1 1 1 -1 1 1 1 1 1 -1 1 -1  INV 
2 1 -1 -1 1 1 1 1 -1 1 -1 1   
3 -1 -1 1 1 1 1 -1 1 -1 1 -1   
4 -1 1 1 1 1 -1 1 -1 1 -1 -1   
5 1 1 1 1 -1 1 -1 1 -1 -1 -1 INV INV 
6 1 1 1 -1 1 -1 1 -1 -1 -1 -1   
7 1 1 -1 1 -1 1 -1 -1 -1 -1 1   
8 1 -1 1 -1 1 -1 -1 -1 -1 1 1 INV INV 
9 -1 1 -1 1 -1 -1 -1 -1 1 1 -1   

10 1 -1 1 -1 -1 -1 -1 1 1 -1 1  INV 
11 -1 1 -1 -1 -1 -1 1 1 -1 1 1 INV INV 
12 1 -1 -1 -1 -1 1 1 -1 1 1 -1 INV INV 
13 -1 -1 -1 -1 1 1 -1 1 1 -1 -1 INV  
14 -1 -1 -1 1 1 -1 1 1 -1 -1 1  INV 
15 -1 -1 1 1 -1 1 1 -1 -1 1 1  INV 
16 -1 1 1 -1 1 1 -1 -1 1 1 1  INV 
17 1 1 -1 1 1 -1 -1 1 1 1 1   
18 1 -1 1 1 -1 -1 1 1 1 1 -1  INV 
19 -1 1 1 -1 -1 1 1 1 1 -1 1  INV 
20 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 INV INV 
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experiments. Since parameter 4 does not fully explain all invalid points, the tool will 

double the total number of runs for the new set of experiments. 

5.3 Parameterized systems with invalid points 

5.3.1 VPR 

This section describes our experimental setup for application-specific FPGA tuning with 

the Virtual Place and Route (VPR) framework using DoE methods. Our objective is to 

find the best FPGA configuration in terms of critical path or area for each application. 

Invalid points present a challenge, as previously discussed.  

We examined 11 parameters within the VPR framework’s flow. The eleven 

parameters span the three parts of the framework’s flow, known as T-VPack, VPR, and 

the architecture file. Six of the parameters affect the VPR tool and the remaining five 

affect the FPGA architecture. T-VPack uses three of the architecture parameters to cluster 

the logic into larger blocks. The VPR documentation lists expected tradeoffs for many of 

the parameters.  

Figure 34 shows each parameter and which part of the flow uses the parameter, 

and shows each parameter’s possible values. A brief description of the parameters 

follows; for further information consult the VPR User Manual [BETZ 2000]. Below, P 

means Parameter, and # means number: 

• P 0 – Fast place and route 
• P 1 – # of iterations per simulated annealing step 
• P 2 – # of routing channels available.  
• P 3 – Algorithm used to route the circuit 
• P 4 – Starting temperature of simulated annealing 
• P 5 – Algorithm used to place circuit.  
• P 6 – # of inputs per cluster within the FPGA 
• P 7 – # of LUTs per cluster 
• P 8 – # of I/O ports per row and column of the FPGA 
• P 9 – Size of each LUT in the FPGA 
• P 10 – Type of switch matrix used in the FPGA 
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5.3.2 ISE 

We created an experimental setup for application-specific tuning of the Xilinx ISE 

[XILINX 2011] synthesis process using DoE methods. Our objective is to find a 

parameter configuration for each application leading to the best critical path. A challenge 

is that not all configurations are valid for each application being examined, as discussed 

earlier. ISE has a great number of parameters that can affect the critical path of the final 

circuit. In this study, we examined 81 of those parameters. The parameters were picked 

as if the user had no understanding of the parameters. Part of our goal is to show that 

even with “useless” parameters, the tool can still determine the meaningful parameters 

and ignore the useless parameters. For example, the “Generate Asynchronous Delay 

Report” parameter will not have any effect on the final circuit since the parameter only  

generates documentation for the designer. However, designers may not fully understand  

Figure 34: VPR parameters and values used to generate the designs. Two parameters, fast and router_algorithm, 
only have a low and high setting. Inputs-per-cluster is a special case since the value is dependent on the values of 

two other parameters, Cluster size (A) and LUT size (B) 

     Settings 
# Parameter vpr vpack arch Low Middle High 
0 Fast X   disable   enable 
1 Inner number X   1 10 20 
2 Route channel width X   50 100 150 

3 
Router algorithm X   

breadth 
first   timing driven 

4 Initial temperature X   50 100 150 

5 
Placement algorithm X   

bounding 
box 

net timing 
driven 

path timing 
driven 

6 Inputs per cluster  X X A (A*B)/2 A*B 
7 Cluster size  X X 4 6 8 
8 Pads   X 4 6 8 
9 LUT size  X X 4 5 6 
10 Switch type   X subset wilton universal 

 



 69 

the parameters that can be configured and the tool must be able to handle equally well 

parameters that have a large impact and parameters that have little to no effect.  

The 81 parameters are divided into four general groups: translate, synthesize-

XST, map, and place and route. The four groups represent the four major stages in the  

Figure 35: Parameters used in Xilinx ISE experiments 

ID Parameter name Stage -1 1 
1 Allow Logic Optimization Across Hierarchy Map FALSE TRUE 

2 CLB Pack Factor Percentage Map 33 100 

3 Combinatorial Logic Optimization Map FALSE TRUE 

4 Extra Effort Map None Continue on 
Impossible 

5 Generate Detailed MAP Report Map FALSE TRUE 

6 Ignore User Timing Constraints Map FALSE TRUE 

7 Map Effort Level Map Standard High 

8 Map Slice Logic into Unused Block RAMs Map FALSE TRUE 

9 Optimization Strategy (Cover Mode) Map Area Speed 

10 Pack I/O Registers/Latches into IOBs Map Off For Inputs and 
Outputs 

11 Perform Timing-Driven Packing and 
Placement 

Map FALSE TRUE 

12 Power Reduction Map FALSE TRUE 

13 Power Reduction Map FALSE TRUE 

14 Register Duplication Map Off On 

15 Starting Placer Cost Table (1-100) Map 1 67 

16 Trim Unconnected Signals Map FALSE TRUE 

17 Use RLOC Constraints Map No Yes 

18 Extra Effort (Highest PAR level only) Place & Route None Continue on 
Impossible 

19 Generate Asynchronous Delay Report Place & Route FALSE TRUE 

20 Generate Clock Region Report Place & Route FALSE TRUE 

21 Generate Post-Place & Route Power Report Place & Route FALSE TRUE 

22 Generate Post-Place & Route Simulation 
Model Place & Route FALSE TRUE 

23 Ignore User Timing Constraints Place & Route FALSE TRUE 

24 Place & Route Effort Level (Overall) Place & Route Standard High 

25 Placer Effort Level (Overrides Overall Level) Place & Route None High 

26 Power Reduction Place & Route FALSE TRUE 

27 Power Reduction Place & Route FALSE TRUE 

28 Router Effort Level (Overrides Overall Level) Place & Route None High 

29 Starting Placer Cost Table (1-100) Place & Route 1 67 

30 Use Bonded I/Os Place & Route FALSE TRUE 

31 Add I/O Buffers Synthesize - XST FALSE TRUE 

32 Asynchronous To Synchronous Synthesize - XST FALSE TRUE 

33 Automatic BRAM Packing Synthesize - XST FALSE TRUE 

34 BRAM Utilization Ratio Synthesize - XST 33 100 

35 Case Implementation Style Synthesize - XST None Full-Parallel 

36 Case Synthesize - XST Maintain Upper 

37 Cross Clock Analysis Synthesize - XST FALSE TRUE 

38 Decoder Extraction Synthesize - XST FALSE TRUE 

39 Equivalent Register Removal Synthesize - XST FALSE TRUE 
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synthesis process. Translate has 5 parameters, Synthesize-XST has 46, Map has 17, and 

Place and Route has 13. The full list of the parameters is found in Figure 35. The table 

shows the parameter ID, the parameter name, which stage of the synthesis process the 

Figure 36 (cont.): Parameters used in Xilinx ISE experiments 

ID Parameter name Stage -1 1 

40 FSM Encoding Algorithm Synthesize - XST Auto One-Hot 

41 FSM Style Synthesize - XST LUT BRAM 

42 Generate RTL Schematic Synthesize - XST No Yes 

43 Global Optimization Goal Synthesize - XST All Clock Nets Maximum 
Delay 

44 Keep Hierarchy Synthesize - XST No Yes 

45 Logical Shifter Extraction Synthesize - XST FALSE TRUE 

46 Max Fanout Synthesize - XST 500 100000 

47 Move First Flip-Flop Stage Synthesize - XST FALSE TRUE 

48 Move Last Flip-Flop Stage Synthesize - XST FALSE TRUE 

49 Multiplier Style Synthesize - XST Auto LUT 

50 Mux Extraction Synthesize - XST Yes Force 

51 Mux Style Synthesize - XST Auto MUXCY 
52 Netlist Hierarchy Synthesize - XST As Optimized Rebuilt 

53 Optimization Effort Synthesize - XST Normal High 

54 Optimization Goal Synthesize - XST Area Speed 

55 Optimize Instantiated Primitives Synthesize - XST FALSE TRUE 

56 Pack I/O Registers into IOBs Synthesize - XST No Yes 

57 Priority Encoder Extraction Synthesize - XST Yes Force 

58 RAM Extraction Synthesize - XST FALSE TRUE 

59 RAM Style Synthesize - XST Distributed Block 

60 Read Cores Synthesize - XST FALSE TRUE 

61 Register Balancing Synthesize - XST No Yes 

62 Register Duplication Synthesize - XST FALSE TRUE 

63 Resource Sharing Synthesize - XST FALSE TRUE 
64 ROM Extraction Synthesize - XST FALSE TRUE 

65 ROM Style Synthesize - XST Distributed Block 

66 Safe Implementation Synthesize - XST No Yes 

67 Shift Register Extraction Synthesize - XST FALSE TRUE 

68 Slice Packing Synthesize - XST FALSE TRUE 

69 Slice Utilization Ratio Synthesize - XST 33 100 

70 Use Clock Enable Synthesize - XST No Yes 

71 Use Synchronous Reset Synthesize - XST No Yes 

72 Use Synchronous set Synthesize - XST No Yes 

73 Use Synthesis Constraints File Synthesize - XST FALSE TRUE 

74 Verilog 2001 Synthesize - XST FALSE TRUE 

75 Write Timing Constraints Synthesize - XST FALSE TRUE 

76 XOR Collapsing Synthesize - XST FALSE TRUE 

77 Allow Unexpanded Blocks Translate FALSE TRUE 

78 Allow Unmatched LOC Constraints Translate FALSE TRUE 

79 Create I/O Pads from Ports Translate FALSE TRUE 

80 Netlist Translation Type Translate Timestamp Off 

81 Use LOC Constraints Translate FALSE TRUE 
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parameter affects, and the low (-1) and high (1) values used in the experiments, for all 81 

parameters. For an explanation of each of the parameters, see the Xilinx documentation 

[XILINX 2011]. 

5.4 Results 

5.4.1 VPR 

We used our DoE technique to perform parameter screening on 19 benchmark circuits 

distributed with VPR. VPR has a total of 20 benchmarks but one of the benchmarks 

failed on all evaluations, so we have not included it. We also ran single-factor analysis 

for comparison, using it to generate parameter impacts, and then using the same best-

configuration prediction heuristic as used in our DoE approach. 

Figure 36 (a) shows the screening results of single-factor analysis for the critical 

path of the dsip benchmark circuit. Single-factor analysis requires 12 experiments, one 

for the base configuration and one for each of the eleven parameters. The cluster size 

parameter (circled) yields an invalid point so its impact can’t be determined. The 

parameter having the largest effect is init_t, the initial temperature for simulated 

annealing. The lower temperature setting appears to produce a better critical path than the 

higher setting. That finding is counterintuitive. Normally a higher temperature yields 

better results at the cost of longer runtime. Single-factor analysis’ determination is likely 

a fluke of the base configuration and not general across other configurations. Note that 

single-factor analysis determines several other parameters to have little or no effect.  

Figure 36 (b) shows results of our DoE screening for the same dsip circuit. DoE 

determines that all parameters have some effect. DoE determines inputs per cluster to 

have the largest effect on the critical path. The finding is intuitive. Increasing the number 



 72 

of inputs per cluster allows for more logic to be placed within each cluster, thus reducing 

critical path length. The parameter with the second largest effect is the cluster size. This 

finding is also intuitive. A larger cluster size allows more logic to be placed within a 

single cluster, reducing critical path length. In contrast to single-factor analysis, DoE’s 

determination of init_t’s effect is intuitive, with the higher setting yielding a shorter 

critical path. 

Using the data from the single factor and the DoE screening tests, the tool predicts 

the best configurations. The new configurations were then run to determine performance 

and area. The single-factor approach yielded a critical path of 7.10e-8 seconds, while the 

DoE approach yielded 2.56e-8—a 2.7x speedup, though requiring 20% longer to run the 

analysis. 

Figure 36: VPR experiment—Determined critical path impacts (in seconds) from a screening test on the dsip circuit 
for each parameter’s low and high settings, as determined by: (a) single-factor analysis, (b) DoE. Note the large 

differences in the determined impacts between the two techniques. 
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Furthermore, DoE does not require selection of a base configuration, in contrast to 

single-factor analysis. The earlier single-factor analysis base case had all parameters set 

to their high values. Figure 37 shows determined critical path impacts by single-factor 

analysis if instead the base case used the low values for all parameters. The configuration 

yielded by single-factor analysis yields a critical path of 2.29e-8 seconds in 12 runs. That 

path is shorter than obtained with the previous base configuration, though DoE still yields 

a 13% shorter path. Note that the all-low base configuration may not be best for a 

different tool/platform. In fact, the best base configuration for single-factor analysis could 

have some parameters high and others low. Finding the best base configuration is an 

exploration problem itself. Single-factor analysis can be improved by using multiple base 

configurations with a wider variety of parameter settings; such improvements are 

precisely the intent of DoE. 

We ran the DoE approach on all 19 circuits. 10 of the 19 circuits had sufficient 

valid points for the analysis. Nine circuits required additional experiments: apex2, clma, 

elliptic, ex1010, frisc, pdc, s38417, seq, and spla. For each, an additional set of 40 

experiments was sufficient to provide the needed data. For none of those 9 benchmarks 

Figure 37: VPR experiment—Determined critical path impacts for dsip as determined by single-factor analysis, this 
time with a base configuration using low values for all parameters rather than high values. Note the dramatic difference 

from Figure 36(a); single-factor analysis is very sensitive to the base configuration.  
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was a single parameter responsible for all invalid points. The DoE tool, therefore, could 

not assume that a new set of 20 would be free of invalid points, so the tool doubled the 

number of experiments from 20 to 40 for the second round. The DoE tool thus required a 

minimum of 20 experiments to determine the impact of each parameter and a maximum 

of 60, with an average of 38 experiments per benchmark.  

Interestingly, the experiments showed that three parameters had the highest 

likelihood of causing invalid points: the initial temperature for simulated annealing, the 

placement algorithm, and the inner number, tending to yield invalid points for their low 

values.  

Figure 38 shows the results from the tuning process for all 19 circuits, for DoE, 

single-factor, and two static configuration (all low, and all high) approaches. The results 

shown for single factor analysis use an all-high base configuration. The DoE approach 

yielded an average 1.3x improvement in the critical path speed versus single-factor 

analysis, as much as 2.2x for bigkey. The all-low static configuration performed on 

average almost as well as the DoE approach. The success of the all-low static 

Figure 38: VPR experiment—Critical path delays of the tuned FPGA for the 19 circuits. 
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configuration is by chance in this experiment. If the designer modified the meaning of the 

low and high parameters from Figure 34, the results would change. The DoE approach 

does not rely on such extremes. The extremes in some frameworks are not necessarily 

good or even valid choices. 

We also experimented with optimizing area rather than critical path. VPR 

provides a slightly optimistic area number when buffers are used, which is what we used 

here. Figure 39(a) shows determined impacts by single-factor using the all-high base 

configuration. Figure 39(b) shows DoE-determined impacts. For the b06 circuit when the 

final configurations were created, the areas of the two circuits were the same.  

We ran area optimization on all 19 circuits. DoE outperformed single-factor 

analysis (all-high base configuration) by 50%, whereas, single-factor analysis was better 

by 40% for the all-low base configuration. 

Figure 39: VPR experiment—Determined area impact (measured in terms of the feature size of the transistors) on the 
dsip circuit for each parameter’s low and high settings as determined by: (a) single factor analysis, (b) a DoE screening 

test. 
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Figure 40 shows the tool runtimes to generate the results. The static 

configurations required only one run each. On average, our DoE method ran 30% longer 

than single-factor analysis.  

While this paper deals with application-specific FPGA tuning, the same 

techniques can be used for domain-specific tuning of FPGAs. By running the tests on a 

suite of applications and combining the results for a given metric, a designer can tune the 

FPGA to the average case needed by the given domain. 

5.4.2 Xilinx ISE 

We also applied our techniques to synthesize the circuits for a fixed commercial FPGA, 

using Xilinx ISE. Xilinx ISE is a synthesis IDE (integrated development environment) 

used to generate circuits for FPGAs. We used the ITC’99 benchmarks [CORNO et al. 

2000]. We selected only the first 11 benchmarks due to time constraints. The benchmarks 

included simple finite state machines, interrupt handlers, and simple encryption 

algorithms. 

The DoE tool first runs a series of 84 experiments to try to determine the effect of 

each parameter. For the b06 benchmark, half of the first set of runs resulted in invalid 

Figure 40: VPR experiment—Tool runtimes for application-specific tuning of an FPGA platform for the 19 circuits. 
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points. Invalid points in the context of Xilinx ISE mean that ISE did not produce a 

working circuit. The tool found that one parameter correlated perfectly with the invalid 

points— the “Add I/O Buffers” parameter. When the buffers are disabled, the benchmark 

failed. After the tool set the value of the I/O Buffer parameter to always include the 

buffers, the second round of 84 tests was run. The second set of tests completed without 

any invalid points. After the completion of the 84 runs, the tool examined the results of 

the 125 valid runs and determined the effect of each parameter on the circuit. All the 

benchmarks behaved in the same manner. The “Add I/O Buffers” parameter must be 

enabled for any of the benchmarks to route successfully. 

Figure 41 shows the impact of the top 10 parameters on b06, an interrupt handler. 

The graph shows that the FSM encoding algorithm is the most important parameter, 

almost by a factor of 2x. After the first parameter, the impact of the parameters drops off, 

producing a long tail of low impact parameters. Additionally, the graph shows the critical 

path of the Xilinx default configuration.  

Figure 41: Xilinx ISE experiment—The top 10 parameters from an interrupt handler, b06. 
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Figure 42 shows the comparison between the base Xilinx configuration, our DoE 

approach, single factor, and two static configurations (all low and all high). The base 

Xilinx configuration needs to evaluate one configuration, while the DoE approach 

required 169 runs. The Single Factor approach with a high base case required 82 runs to 

complete. Single Factor with a low base case only produced one valid run, when the I/O 

buffers were enabled, which was not sufficient to determine a good configuration. The 

DoE approach took 3-5 hours to complete for each benchmark. The graph shows that the 

DoE approach outperformed the other options in all but one case. In one case, b06, single 

factor was best. The DoE approach on average produced circuits 40% faster than the 

Xilinx default. In the case of b08, DoE outperformed the Xilinx default by 85%. DoE 

outperformed single factor on average by 22%. 

After examining the impact of the parameters over all the benchmarks, we found 

the importance of the parameters varies greatly over these benchmarks. For example, in 

b06 the most important parameter was the FSM encoding algorithm. However, averaged 

over all the benchmarks, the encoding algorithm ranked in the bottom third in terms of 

overall importance.  
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Four parameters on average were in the top 10 across all the benchmarks: router 

effort level, place and route effort level, asynchronous to synchronous, and use 

synchronous reset. Router effort level and place and route effort level are always in the 

top 10 across all the benchmarks. The other two are sometimes part of the tail for a few 

benchmarks. DPG previously predicted that the “Generate Asynchronous Delay Report” 

parameter should have no impact on the final system and these results were confirmed. 

Figure 42: Xilinx ISE experiment—Critical paths delays for the circuits. 
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Chapter 6  

DPG: Flexible design space exploration for 

parameterized systems 

6.1 DPG (DoE Pareto-point Generator) 

We mapped the design space exploration problem to the DoE paradigm, which we call 

the DoE Pareto-point Generator. The DPG flow for such tuning appears in Figure 43. We 

developed a methodology that will guide the designer through the search space 

exploration process. We created a web frontend to the DPG flow, which will allow others 

to use the DPG flow. DPG works on the assumption that the designer does not always 

Figure 43:  DoE tool flow for architecture tuning.  
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understand the effect or interdependencies of the parameters within the system. DPG 

therefore asks the designer to input only basic information about the parameters in the 

system. DPG asks the designer to specify what outputs the designer wishes to use to 

evaluate the system, or the metrics of the system. DPG asks for the number of parameters 

and the number of levels each parameter has. DPG asks the designer the number of 

metrics and if there are any weights that the designer wishes to apply. The information 

DPG requests would be easily available to any designer trying to configure a system. 

DPG also requests the estimated time for each experiment and the amount of time the 

designer has available to run the experiments. DPG uses the times to estimate the 

maximum number of experiments that can be evaluated. DPG allows the designer to 

specify the total time for exploration unlike most randomized techniques where the 

overall runtime in unpredictable. DPG’s novelty lies in modifying the flow of the DoE-

based design space exploration. Previous methods have created a method to run the 

design space exploration but commonly use either random approaches or a fixed 

methodology. DPG tailors the search to both the system and the time restrictions of the 

designer.  

DPG uses the parameter, metric and time restrictions to determine the first step in 

the tuning process. There are two primary sources for variation in the execution of the 

flow; the number of levels each parameter has and the number of metrics. DPG can 

handle systems that have two levels for all parameters, or a mixture of parameters with a 

variety of levels.  

DPG has two major phases. The first is a characterization phase, where DPG 

looks at the parameters and tries to characterize the system under investigation. In the 
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second stage, DPG navigates the design space. DPG uses up to half the total number of 

experiments in the analysis phase and the remaining experiments are used to generate the 

Pareto points. 

The rest of this section describes the four different paths that our DPG 

methodology can take depending on the inputs and outputs of the system. Each step of 

the methodology takes into account the number of remaining experiments which modifies 

the number of experiments DPG generates in the next step. 

6.1.1 2 level parameters – single metric system 

A 2 level design is a design where every parameter in the system has only two levels. The 

two levels are defined as high and low in this work. For unordered parameters, the choice 

of high and low is up to the designer. As seen in Figure 44, the first step is to determine if 

an exhaustive or near exhaustive set of tests is possible, given the number of experiments 

that the designer has available. In many cases, exhaustive runs will not be possible. DPG 

uses a set of Plackett-Burman experiments as a first step to begin the characterization of 

the system. The Plackett-Burman experiments are a small set of experiments which grow 

linearly with respect to the number of parameters. Unlike exhaustive search which grows 

exponentially, the linear growth of the Plackett-Burman experiments, allow DPG to work 

on systems with a high number of parameters. 

DPG then uses the information gathered from the initial set of experiments to 

determine the relative importance of the parameters in the system. Figure 45 shows the 

results of the initial screening tests, for the dsip benchmark using the Platune system. The 

first parameter has a very small effect compared to the other parameters. Parameters 7 
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and 8 appear to be most important to the overall system. Parameters 2, 4, 9, 10 and 11 are 

important but less so than parameters 7 and 8.  

DPG then uses the information about the relative importance of the parameters to 

determine how to proceed in finding the best configuration. DPG will use the most 

important parameters first in the search for Pareto points. After this first set of 

experiments, DPG can generate a guess as to the best configuration for the system. DPG 

uses a simple approach to generate the best configuration. The designer can then run that 

Figure 44:  DPG flow using design space exploration. A dashed line marks decision points. The bold stages mark the 
stages affected by the type of system.  
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configuration and see if that configuration or any previously seen configurations meet the 

designer’s requirements.   

In many cases, the first set of experiments will not produce a design that meets the 

designer’s requirements. DPG will then determine the interdepdencies between the 

parameters if there are experiments left in the characterization phase. DPG will then 

create a set of experiments that will build the interdependencies between the important 

parameters, using the remaining experiments in the characterization phase. Using the 

above example DPG will look at the interdependencies between parameters 7 and 8. DPG 

will include the interdependency tests for as many of the parameters as possible given the 

number of experiments. The interdependency information tells DPG which parameters 

are interdependent. The interdependencies for the parameters are computed and ranked 

from the most interdependent to the least. DPG computes the slope for each parameter. If 

the slopes are equal then the parameters are not interdependent. When the lines are not 

parallel then the angle that the lines meet determines the degree of interdependence 

within the system.  

Figure 45:  Example of the initial screening analysis using DPG Plackett-Burman experiments.  
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After the characterization phase, DPG moves into the second phase where DPG 

guides the designer through the search space. As shown in Figure 44, DPG builds the first 

set of experiments by first adding the parameter that has the highest impact on the overall 

system to the list of parameters that to be examined. DPG then adds any parameters that 

have a high degree of interactions to any of the parameters currently on the list. For this 

phase, a high degree of interactions means if the lines cross at an angle of 60 degrees or 

more. If there are additional experiments left, DPG will then add the next highest 

parameter that is not already on the list, along with any interdependent parameters. DPG 

will repeat this process until either there are no more experiments left. The designer can 

stop the processes at any point if the designer is satisfied with the current results. The 

goal of the second phase is to find the points in the design space that are on the Pareto 

frontier. The Pareto frontier is the optimal set of Pareto points [Peterson 1986]. 

6.1.2 2 level parameters – multi-metric system 

When multiple metrics are used is very similar to the single metric version. The main 

difference occurs when DPG is deciding which configurations are the best. In a multi-

metric system, DPG generates the Pareto-points rather than a single point. In the 

characterization phase, DPG will generate an interdependency graph for the major 

parameters for each of the metrics. The parameters will affect the metrics in different 

ways and have different interdependency graphs. With the interdependency graphs for 

each metric, the graphs are merged together. The merger happens by taking the maximum 

value from the graphs for each edge. By using the maximum value in the 

interdependency graph, the graph shows the interdependencies that may have the greatest 

impact on the system.  



 86 

The second phase will guide the designer to find the Pareto points for the system 

rather than the maximum or minimum of the system. In many multi-metric systems, an 

objective function is used to find the best configuration. However, with an objective 

function, the designer needs to know the exact relationship between the metrics in order 

to create the correct objective function. If the designer wants to use an objective function, 

the single metric flow is available. Pareto points generated by DPG have the advantage 

that the designer can see the range of each of the metrics and gain a better understanding 

of how the metrics affect each other. DPG uses the combined interdependency graph to 

generate the first set of experiments of the parameters that have the greatest effect on the 

system. 

6.1.3 Multi-level parameters – single metric system 

In designs that have parameters with more than two levels require changes to how DPG 

generates the experiments. The initial screening is modified to include a value in the 

middle of the two endpoints. The additional midpoint helps DPG to understand the shape 

of the curve for each parameter. DPG will then focus the rest of the characterization 

phase on looking at the interdependencies of the parameters, as was done in systems with 

only 2 level parameters. For designs that are a combination of multi-level and 2 level 

parameters, DPG will not add in the midpoint for the 2 level parameters.  

The initial experiment in the second phase is unchanged. After the first set of 

Pareto points are generated, DPG will continue to generate experiments, until DPG no 

longer finds any improvements. Once the Pareto-points have stabilized, then DPG will 

use the remaining experiments and allow all the levels of the parameters to be used. 

6.1.4 Multi-level parameters – multi-metric system 
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In systems that have both multiple levels and multiple metrics, combinations of the two 

flows are used. The multiple metric flow only affects the analysis of the points generated, 

while the multi-level flow only affects the generation of the experiments. These changes 

do not interfere with each other so DPG will combine them. 

6.2 Results 

We examined several different types of applications to see how the DPG approach would 

work in a variety of different system types. We examined three platforms that use the 

various paths through the DPG flow.  

For some systems, we were able to obtain exhaustive search results. Exhaustive 

search usually take much longer than the designer wishes to spend tuning the system. We 

obtained such results to evaluate how well DPG was finding the true Pareto points of the 

design space. The exhaustive data for the systems in this work took weeks to generate.  

6.2.1 Network on chip (NoC) 

We experimented with Noxim, a Network on Chip simulator [Fazzino 2008]. We 

evaluated ten of Noxim’s parameters. We divided the parameters into two groups, those 

that represent the hardware on the NoC system and those that represent the software 

running on the system. From the possible applications, we randomly selected a series of 

benchmarks with one, two, or seven applications in each benchmark. We combined 

multiple applications to create new benchmarks. We then ran the DPG algorithm and 

Single Factor (SF) analysis to determine the Pareto points. 
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DPG using the multi-metric flow previously discussed generated the Pareto points 

for the design space. We ran these tests using three different design times. Figure 46 

shows the results of DPG as well as the SF results. The graph shows the exhaustive 

design space for the application. DPG was able to find the Pareto curve for the 

application using only 50 experiments. The 50 experiments required less than one hour to 

execute. In this example, the SF method was able to produce almost the same results. We 

also examined how DPG would perform given two hours and three hours to explore the 

design space. In this example, DPG generated the same set of Pareto-points. For this 

example, DPG was able to find all the Pareto-points. When we allowed DPG to run for 

three hours, DPG had sufficient time to run a half factorial design. 

Another scenario we examined was a combined application where two 

applications are being run but the designer does not know which application will be run 

more often in the field, so both must work equally well. Since the designer needs both 

applications to run equally well, both applications must be tuned together. Figure 47 

shows the results when the design points are split up so the designer can see the results 

Figure 46:  NoC results for a synthetic application 1.  
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for each application. In this example, DPG was again able to find the same set of Pareto 

points, in contrast to SF which finds only one point. The point that SF found is on the 

Pareto curve but a single point does not give the designer options. Again, the full 

exhaustive data is shown for reference. In this case, the two applications are combined to 

form a new benchmark, Application 4. The new benchmark contains two applications, 

Application 2 is the smaller cluster of points below the Application 1 space. For 

Application 4, we gave DPG two hours and three hours to perform the exploration and in 

each case, DPG found the same set of Pareto-points. The three hour test was able to use a 

half factorial to determine the Pareto-points. 

6.2.2 FPGA tuning 

We examined VPR which is a routing tool for FPGAs. We used eleven VPR parameters 

to customize the FPGA architecture to the applications. Some of the parameters used are 

the size of each LUT, number of LUTs per cluster, the type of switch matrix, and the 

routing algorithm. We used DPG to minimize the critical path for the circuits. In this 

Figure 47:  NoC results for a synthetic application 4.  
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example, we are using two levels for each parameter and are optimizing the designs for 

one metric.  

We ran DPG three different times with different maximum runtimes for the 

exploration. Figure 48 shows the results across a range of VPR benchmarks. The three 

DPG bars show the final critical path generated by DPG for the given number of 

experiments. Each bar shows the critical path of the circuit after the exploration. The 

graph shows that DPG was able to perform well across the entire range of benchmarks. 

By adding in the extra experiments, the 60 experiment version was able to find a critical 

path that was 7% better than the 15 experiment version, while requiring an increase in the 

total exploration time from 30 minutes to 6 hours on average. The single factor results are 

presented for comparison in Figure 48. 

6.2.3 System exploration 

Givargis developed Platune [Givargis 2004] for tuning a configurable system-on-a-chip 

(SoC) platform. Platune allows the designer to tune the instruction and data caches as 

well as the buses that connect the processor to the main memory. Due to the complex 

interactions among the parameters, Givargis deemed a fast equation-based estimation 

Figure 48:  Results from VPR for a single metric design.  
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approach for evaluating a particular configuration to be too inaccurate. Platune instead 

simulates an application running on a configured SoC to evaluate a configuration. 

Simulation of one configuration can take seconds to minutes. Due to the enormous 

configuration space of 4.48 x1012 possible SoC configurations, simulation of all possible 

configurations for a given application could take decades. Platune thus heuristically 

prunes the configuration space based on assumptions of independence among parameter 

groups, allowing the designer to explore less than 0.1% of the configuration space, 

reducing exploration times to hours in general. Palesi [Palesi 2002] reduced exploration 

time further using genetic search heuristics, though still requiring tens of minutes to 

hours. Platune achieves 14x energy reductions by tuning a SoC to a given application, 

compared to running on a base configuration of the SoC. 

All of the above times were for small applications; large applications may require 

hours per configuration simulation, resulting in weeks or months for exploration. 

Platune has nineteen separate parameters that can be configured. Each parameter 

has anywhere from three to twenty-four levels. The parameters range from cache sizes, 

cache to memory bus widths, and even voltage levels. Due to the large number of 

parameters, we need to tune this system in stages. Based on the time required per 

configuration evaluation and the time available for tuning, we decided to first design a 

test with twenty-four experiments to determine what factors have a significant impact on 

the final energy consumption of the system. For the first stage, the parameters are 

mapped to two level DoE by using the largest and smallest value of each parameter. 

Using a two level Plackett-Burman experiment, we assign the low level to be smallest 

valid value for each factor and the high level to be the highest value for each factor. The 
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twenty-four experiments yield a set of four to seven factors that have a significant impact 

on the energy consumption of the entire system. Since we are using the largest and 

smallest values, if the change between these is not significant, we assume that the 

parameter does not have a significant effect on the energy of the system.  

To determine the best configuration, we need to further examine the significant 

factors. We therefore ran a second experiment with only the parameters that are found to 

be significant in the first experiment, with all other factors set to the value that was 

determined by the DoE tool to be the best for the non-significant values. The second 

experiment uses a three level experiment using twenty-seven experiments for all the 

benchmarks. The three level experiments allow better determinations of how each factor 

or group of factors affects the overall energy of the system. The third level allows DPG to 

see the design space for each parameter not as a line but as a curve for better estimation 

of the effect of the parameter. 

DPG was used to examine the Platune System Configuration tool [Givargis 2004], 

where we examined nine parameters each with three levels, and two metrics cycle count 

Figure 49:  Results from the g3fax Platune example.  
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plus the energy of the system. We show two representative benchmarks g3fax and jpeg, 

in three different scenarios. The three scenarios use 25, 150 and 300 experiments, which 

represent a total design time of 10 minutes, 35 minutes, and 70 minutes. Figure 49 shows 

the results from three different runs of DPG using different runtimes for the g3fax 

benchmark. In Figure 49 we see that the small and medium experiment produced the 

same Pareto points. The large 300 run experiment was able to find a set of Pareto points 

near the Pareto frontier. The full data set is shown in the graph for reference. In this 

example, the DPG did not find all the points on the Pareto frontier. However, in the large 

set DPG found a point that had the same cycle count and was within 0.001 J on the 

energy axis. 

Figure 50 shows the results from the jpeg example. In this case, we see the small 

set did not perform well but the medium and large experiments found the same point 

DPG found only one point was needed for the Pareto curve, since the point was better 

than all the other points in both dimensions. As with the previous example, DPG did not 

Figure 50:  Results from the jpeg Platune example.  
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find the optimal point but was within 0.02 Joules of the minimum energy and the same in 

terms of the cycles needed. 
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Chapter 7  

Contributions 

This work developed a flexible framework for the tuning of parameterized systems, 

which may include invalid configurations without the designer have any knowledge of 

how the parameters affect the system and the framework adapts to the designer’s 

requirements as well as the time available for the tuning.  

The DPG tool provides the designer guidance for design space exploration. The 

designer tells the tool the parameters and metrics that are of interest and the tool designs 

the experiments to determine which parameters are important to the overall system, and 

how the parameters relate to each of the metrics. The tool takes the time constraints of the 

designer when designing the needed experiments. After the tool determines the properties 

of the parameters, DPG begins to calculate the Pareto points for the system. Once the 

Pareto frontier has been found, DPG will begin to fill in the missing points of the frontier 

using the additional levels for the parameters with more than three levels.  

DPG is able to provide results that are comparable with application specific 

methods with fewer configurations evaluated. Using the Platune framework, DPG was 

able to find the Pareto points in 1.5 hours while genetic and Pareto simulated annealing 
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took about 4 and 6 hours respectively. The Platune method took 44 hours. The different 

approaches produced similar results.  

Some aspects of design space exploration still need improvement. As the number 

of parameters in a given system grow beyond one hundred the Plackett-Burman runs can 

not handle that large number of parameters. A modification will be required, probably 

using a hierarchical approach to divide the system parameters initially to determine the 

most important parameters. Another area where further study is needed is for parameters 

that have many levels. The current method uses three points for most of the analysis, 

which is effective when the parameter is either linear or quadratic. Higher order functions 

could cause a problem as the tool would not understand the real shape of the curve.  
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