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ABSTRACT OF THE DISSERTATION

Design Space Exploration of Parameterized Systesing IDesign of Experiments
by
David Russell Sheldon
Doctor of Philosophy, Graduate Program in Comp8tzence
University of California, Riverside, December 2011
Dr. Frank Vahid, Chairperson

Recent trends have led to parameterization of ncanyputing components, such
as parameterized processors, caches, FPGAs ornketwo-chip, as well as parameters
in design tools such as optimization flags. Turpagameterized systems to meet design
goals like performance, energy, size, or power,d&me harder due to the enormous
design space created by such parameters and dbe targe time required to evaluate
each system configuration. Previous design spacploeion approaches for
parameterized systems have either focused on custaendomized search heuristics.
We map such design space exploration onto a statigtaradigm known as Design of
Experiments, a paradigm under development sincel1l8#)s that uses methodical
experiment selection and sophisticated analysibtain maximum information using a
minimum number of experiments. We introduce our DHBesign-of-experiments
Pareto-point Generator) method that performs flexibxploration by allowing the
designer to provide information about the numbed dgpes of parameters, the

approximate time to evaluate a configuration, amal total allowable exploration time.



From that information, DPG automatically determirsesustom set of experiments to
best explore the design space within the allowainhe. Such customized design-of-
experiments-based exploration represents the urdguiibution of this work. We show
that DPG provides competitive results across differdomains, without requiring the
designer to have a detailed understanding of paearmapacts. We created a web-based
DPG tool to support designers from various domairtsch accepts information from the
designer and generates experiments that the designéucts (iteratively), and generates
data and plots from the analysis, including Papstiois. The effectiveness of the DoE

paradigm for system tuning may have broad applitabor design automation.



Table of Contents -2

Chapter 1 ... 1
1.1Parameterized caches . .. ... . .o e 2
1.2Parameterized ProCeSSOIS . . . . . oottt ittt e 3

1.2.1 Tunable processors . .. Y

1.2.2 Application specific mstructlon set processor (R)SI .................. 5
1.3Parameterized systemonachip......... ... i i 7
1.4Parameterized networkonachip...... oo . 8
1.5Tunable FPGA fabrics . . . . ... e e 10
1.6DeSIgN to0IS . . . .ot 11
1.70utlineforthesis . . . ... ... e 12

Chapter 2 . .. 13

2.1 Design space exploration for system spetifiing algorithms . . . ............ 13
2.1.1Cacheand memory . ....... e i e 13
2.1.2 PrOCESSOIS . . o o ottt et e it e e e e e e 14
2. L B PP G A e 15
2.1.4Systemonachip(SoC)......coooeee v e i i i i i ... 15

2.2 Single factor analysis (SFA) . . . ... . 17

2.3 Randomized tuning algorithms . . . . .. oo e ... 118

Chapter B . . e 20
3.1 Background . .. ... 20
3.2 Application specific tuning of parameterimdtems . . .. ................ 26

3.2.1 Traditional CAD approach: 0-1 knapsack... w27
3.2.2 Synthesis-in-the-loop approach: impadeoed trees ................. 29.

Vi



BB EXPEIMENTS . . . oo e 33

Chapter 4. . . . 38
4.1 Single factor analysis . . . ..o i 38
4.2 Parameter interdependency graph . . P 922
4.3 Pareto point generation using deS|gn of emmrrts (DoE) .................. 44
4.4 Pareto point generation using DPG . . " ¥ 4
A5 EXPEIMENTS . . . oo e 52

Chapter B . . e 61
5.1 Challenges with invalid datapoints . ... ... ... ... i e 61
5.2 Handling invalid pointS . . . . . . .t e 63
5.3 Parameterized systems with invalid points..... . .. ............ ... ... 67

5.3 L VPR L 67
5.3 2 ISE . . 68
5.4 RESUIS . . 71
5.4 L VPR . 71
542 XilINX ISE . . .. e 76

Chapter B . . . e 80

6.1 DPG (DoE Pareto-point Generator) . . ........ . .. .. ... ... oot e, 80
6.1.1 2 level parameters — single metricsystem . . ... ....... ... ... 82
6.1.2 2 level parameters — multi-metric system. . . . .......... ... ... e 85
6.1.3 Multi-level parameters — single metristeyn . . . ............... .. ... 86
6.1.4 Multi-level parameters — multi-metric®m . . ... ... ... ... an. 86

6.2 ReSUItS . . . ... 87
6.2.1 Network on chip (NOC) . . . . . et e e e e e 87
6.2.2 FPGAUNING . . ... e 89
6.2.3 System exploration . . . . . ... oL 90

Chapter 7 . . 95

ReferenCes . . . .. 97

vii



List of Figures -2

Figure 1: Albonesi’s [Albonesi 2002] 4 way set asative cache with selective cache
ways. Data ways 1-3 are identical to way 0. Théneawntroller is able to control which
cacheways are active. ... ... ... 3
Figure 2: The architecture of the eMIPS platforrhe Tustom instruction units form a
parallel pipeline to allow for dynamic nature oéttSA. [Pittman 2006] ............ 6
Figure 3: The architecture of the PICO frameworthwie systolic array as a
coprocessor. [Schreiber 2000] . . ... .. ccccieee o oo ... 8
Figure 4: Shin’s configurable communication bus Hrelconfigurable parameters. [Shin
2004 . . .8
Figure 5: Noxim NoC design space with over 60,000figurations. . . ............ 9
Figure 6: Single Factor Example for aifir benchkn@ase configuration is in bold. . . 17

Figure 7: Equations for calculating Equivalent L\dlue of a configured Microblaze. . .

Figure 8: Equivalent LUT values for hard-coregnit. . . ................. ... 23
Figure 9: Size versus application runtime for altiblaze configurations executing the
aifir EEMBC benchmark, with all Pareto points ladztl An additional labeled point
(FPU) is highlighted to show the performance ovacdhef instantiating an underutilized
component, due to lengthening of the clock cycle. . . ............... ... ... 24
Figure 10: Speedups for base (Base Microblazd)(Full Microblaze), and optimal

(Optimal Microblaze) Microblaze configurations...... ......................25

viii



Figure 11: Average pairwise speedup-increment s@diaccuracies for all pairs of
benchmarks. . .. ... 28
Figure 12: Speedup increment, size increment, lagid tatio, for each MB component
for the aifir benchmark. . ... ... . e 29
Figure 13: Impact-ordered tree approach: (a) Appln-specific impact-ordered tree for
the aifir benchmark, (b) Fixed impact-ordered tidete that neither approach actually
generates the entire tree — both make a singleedesza leaf node. The thick red line
shows a single decent through thetree. . ... ... ... . . . . tmnn.... 31
Figure 14: Speedup increment, size increment, lagid tatio, for each MB component
averaged across all 12 benchmarks. . .. ..o ... 32
Figure 15: Average speedups obtained by the vaggpkration approaches, for: (a) no
size constraint, (b) a fixed size constraint s@&0& of the size of a full MB, (c) a per-
application-tailored size constraint of 80% of fiee of the optimal MB for that
application (as determined in (a) ), all on a \dirteEPro device. . .. ........... .. 34
Figure 16: Average speedups for the approachesSpadan2 FPGA. . ............ 35
Figure 17: Estimated tool run times for increasmgnber of configurable soft-core
PrOCESSOr OPLIONS. . . o ottt ettt e e e e e e e 36
Figure 18: lllustration of results of SFA extendedPareto points, showing dependency
on the base configuration selection: (a) A 3-patam&ystem where 2 parameters are
interdependent and the third is independent. Tleelfpoints are the points examined by
SFA. The circled points are Pareto points founyl A(bifferent base configuration yields

different Pareto points. . .. ... ..t e 40



Figure 19: SFA with three dependent parametesd!| three parameters are
interdependent, then single factor analysis breaka further. .. .............. 41.
Figure 20: Platune's parameter interdependencyhgiidpe arrows indicate dependencies
between the different factors. [Givargis 2002] . ... ... ...t . 42
Figure 21: DoE-based Pareto-point Generator (DRG)..................... 48
Figure 22: Parameter interdependencies found by.ORE& major interdependencies
have been overlaid over the original Platune parameterdependency graph — thicker
lines indicate larger dependencies. Parameters mair simulations have been crossed
OUL. Lo e e .50
Figure 23: Platune’s configurable architecture...... .. .....................52
Figure 24: Pareto curves for JPEG. SFA was abledothe valid endpoints in this
example. DoE IOT only found one of the needed emdp. DPG was initially able to
find good points on either side of the main parhef Pareto curve, and DPG'’s fill-in
process finds the remaining points. ... ........ ... ... ... .. ... 53
Figure 25: Runtime comparison for JPEG with défgralgorithms. . . ............. 54
Figure 26: Pareto points from Platune versus DPi@ (fM-in) for b1 _histogram. . . .. 55
Figure 27: Pareto points for Platune vs. DPG (Wikhn) for g3fax. . ............. 56
Figure 28: NoC Pareto graphs, (a) shows a singiécapion. Both DPG and SFA find
the Pareto curve. (b) has two applications and BR@d a shared set of Pareto points.
SFA found only one configuration, which is circleelow. . . .................. 58
Figure 29: DPG results for Microblaze configurati&our benchmarks, aifir, BaseFPO01,

canrdr, and engine are shown. These benchmarkgpacal of the results seen from the



DPG algorithm. DPG finds the complete set of Papeiats in all but the BaseFP01
example, where it misses the point near 50,000 @@y data points are extremely
close in value, when this occurs we added versipating to additional points which
creates the vertical bards seen in the Exhaustayghg. . . .. .................. 59

Figure 30: Percent of the design space that nedoks €xplored in the analysis phase of

Figure 31: DoE flow to handle invalid configurateon . . . .. ............... ... 64
Figure 32: Plackett-Burman screening runs. Theadbfe labeled Normal is the
beginning of the standard Plackett-Burman set n§ for 11 parameters. The bottom
table shows the reverse table, which we use tolaiplle invalid points. . ... ..... .. 65
Figure 33: VPR - Table showing experiments andlte$or two circuits. INV means that
the configuration was invalid. . . .. ... .. 66
Figure 34: VPR parameters and values used to gertbedesigns. Two parameters, fast
and router_algorithm, only have a low and highisgttinputs-per-cluster is a special
case since the value is dependent on the valuggadther parameters, Cluster size (A)
and LUT SIZze (B). . . .« o oottt e e i e e e e e e e e e e e 68
Figure 35: Parameters used in Xilinx ISE experirment. . . . ................. 69
Figure 36: VPR experiment—Determined critical patpacts (in seconds) from a
screening test on the dsip circuit for each pararfeelow and high settings, as
determined by: (a) single-factor analysis, (b) DNBte the large differences in the

determined impacts between the two techniques. ... . . ....................72

Xi



Figure 37: VPR experiment—Determined critical patpacts for dsip as determined by
single-factor analysis, this time with a base ogunfation using low values for all
parameters rather than high values. Note the dratifference from Figure 36(a);
single-factor analysis is very sensitive to theebesnfiguration. . ... ............ 73

Figure 38: VPR experiment—Ciritical path delayshe tuned FPGA for the 19 circuits. .

Figure 39: VPR experiment—Determined area impaeia@ured in terms of the feature
size of the transistors) on the dsip circuit fockeparameter’s low and high settings as
determined by: (a) single factor analysis, (b) &Bareeningtest. .............. 5.7
Figure 40: VPR experiment—Tool runtimes for apgima-specific tuning of an FPGA
platform for the 19 CirCUItS. . . . . . . . o o e e e e e i e 76

Figure 41: Xilinx ISE experiment—The top 10 paraenstfrom an interrupt handler, b06.

...................................................................... 77
Figure 42: Xilinx ISE experiment—Ciritical paths dg$ for the circuits. . . . ........ 78
Figure 43: DoE tool flow for architecture tuning.. . . .. ........... ...t 80
Figure 44: DPG flow using design space exploratfodashed line marks decision
points. The bold stages mark the stages affectedebtype of system. .. ........... 83
Figure 45: Example of the initial screening analysing DPG Plackett-Burman
EXPEIIMENES. . o ot 84
Figure 46: NoC results for a synthetic applicatlon. . . ................. ... 88
Figure 47: NoC results for a synthetic applicadon. . . ................. ... 89
Figure 48: Results from VPR for a single metriside. . ... .................. a0

Xii



Figure 49: Results from the g3fax Platuneexample. . ................. ... 92

Figure 50: Results from the jpeg Platune example. ... ................ ... 93

Xiii



Chapter 1

Introduction

Parameterized systems have become increasingly oondaring the past decade. For
example, cache architectures may have configursizle, associativity, and line size
parameters, either in hard-core (physical) formbpXlesi 2002][Scott 1999][Zhang 2004]
or in soft-core (synthesizable) form [Altera 20A}in 2011][Tensilica 2011]. Soft-core
microprocessors, such as cores targeted for fiedldrpmmable gate arrays (FPGAS)
[Albonesi 2002][Xilinx 2011] or for application-spdic integrated circuits, (ASICs)
[Arm 2011][Tensilica 2011] may have optional datdtpunits. Data path units consist of
units such as floating-point or divider units, meyanits or configurable pipeline
lengths, and so on. System-on-chip platforms mase ltanable parameters relating to
processors, memories, and buses [Givargis 2002]a£W004][Mohanty 2002][Palermo
2003][Sekar 2003][Sherwood 2004][Szymanek 2004 Thmmunication networks on
many chips are becoming more complex and toolsNi&eim [Fazzino 2008] have been

developed to help designers build the custom nédsvan the chips. Generators of



customized field programmable gate array (FPGA)iéabwhich are useful for adding
FPGAs onto portions of an ASIC for circuits likely change, have parameters that can
be tuned to a particular circuit or circuits [Ahm2@01].

Tuning a parameterized system is a complex problédra.difficulty stems largely
from both the very large configuration space, dralong runtime that may be required
to evaluate each configuration. A configurationaisparticular set of values for all
parameters; e.g., a particular configuration obafigurable cache may be a 4 Kbyte, 4-
way set-associative, or a 32-byte line size caCloamfiguration spaces have exponential
size complexity (N parameters with M values yieM$ configurations) with typical
values being in the thousands or higher. For sommtemis the size of the configuration
spaces can grow to over 1%¥i@onfigurations. Evaluating just one configuratiomy
require synthesis and/or simulation, where runtimag measure in the minutes or hours.

There are many different domains that make useatdrpeterized systems. The
following sections describe various types of par@mzed components and systems

such as caches, processors, SoC, NoC and custor faBfcs.
1.1 Parameterized caches

Albonesi [Albonesi 2002] proposed a new cache &chire where part of the cache can
be disabled when the cache is not under heavy Badhutting down a portion of the

cache the power and energy that the cache usesadesr The cache will only shutdown
at times when the load on the cache is low so Weeatl impact on the performance of
the system is relatively small. Albonesi used dméque called selective cache ways to
shutdown a portion of the cache. Selective cachgs\aee able to shutdown one or more

of the ways in the cache to save power. When mache capacity is required based on



Figure 1: Albonesi’s [Albonesi 2002] 4 way set associativehmawith selective cache ways. Data ways 1-3 are
identical to way 0. The cache controller is ableaatrol which cache ways are active
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the workload, the ways are reactivated. Figuredwshhow the selective way shutdown
works. The cache controller is able to disabledleek to each way which effectively
removes that way from the cache. When the cachiatien enables the clock, the way
would then resume normal operation within the cache

Zhang [Zhang 2004] created a cache with even mordigurability. Zhang's
cache has three configurable parameters: the ¢atdie size, associativity, and the line
size. Zhang’s cache is able to change any oneedhtiee parameters during runtime such
that cache flushes are kept to a minimum afterangé occurs. The increased level of
configurability allows for greater control and cwsiization of the cache during runtime
which leads to an increase in energy savings.

Scott [Scott 1999] developed the M*Core cache #echire. The M*Core cache
is designed to be a unified cache. The M*Core cashdivided into different banks,

where each bank is configurable. The banks are $lkémn one of four configurations:



off, instruction only, data only, or unified. Whenbank is set as instruction only, the
only lines that will be stored in that bank cormsgs to requests from the instruction L1
cache, the same is true for the data only. Theiaghitonfiguration allows both

instructions and data to be stored within the baie banks can be turned off to reduce

power consumption when the extra space is not meede
1.2 Parameterized processors

Parameterized processors allow designers theatulifune the processors to the needed
tasks. By tuning a general purpose processor, #sggaer is able to achieve better
performance while still maintaining the benefitsaajeneral purpose processor. There are
two main types of parameterized processors; procgghat have a limited set of units
that can be added or removed, and processors dhabave custom units added to the

processaor.
1.2.1  Tunable processors

Tunable processors are distributed with a set ofigorable units that can be added or
removed depending on the needs of the designertdrhieg of the processors can be
done in hardware by physically adding or removing tinits from the processor or by
software where units are disabled when not neeleel SimpleScalar tool [Burger 2011]
is an example of one such processor.

The Microblaze processor [Xilinx 2011], created Xilinx, is one example of a
tunable processor. The Microblaze core has mulfiptetional units that the designer
can add or remove from the Microblaze core. Thectional units that are available
within the Microblaze core are a barrel shifter,ltiplier, floating point unit, divider, a

comparator, and a custom instruction to accessapegisters. When any of these units



is not present, the Microblaze compiler uses softwa replace the functionality of the
missing functional units.

Arm [Arm 2011] produces multiple different processohowever, most of the
processors have the same core processor and haveplenulifferent preset
configurations. The Cortex-MO is an example of biasic Cortex processor. While the
M4 version adds MAC units, a floating point unitemory protection as well as a variety
of other options. The Cortex uses a number of ffefixed configurations which still
gives designers the freedom to find the featureg thest match the needs of the
applications.

Sekar [Sekar 2003] introduced a dynamic method twlify a parameterized
processor. Sekar used a software based technigu&arsio the approach used by
Albonesi, and Zhang in cache configuration. By isgttregisters, components of the
processor can be enabled or disabled. Also, cletleigitors can be modified to change
the clock frequency of the processor.

1.2.2  Application specific instruction set processor (ARSI

ASIPs are processors where the instruction sebéas modified to better meet the needs
of the domain of applications that will be run twe fprocessor.

Tensilica [Tensilica 2005] developed a parametdrizgocessor, called the
Xtensa, that includes different types of parameféhe Xtensa like the previous tunable
processors has many different components that @rertabled to create a tuned
processor. The Xtensa can be configured to incfudetional units like, multipliers, or
floating point units. Also, different types of cashor pipeline architectures can be

configured. The Xtensa tool chain allows for designto add a variety of custom



Figure 2: The architecture of the eMIPS platform. The custoestruction units form a parallel pipeline to alldar
dynamic nature of the ISA. [Pittman 2006]
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instructions to the processor. The custom instoastican be complex multi-cycle
instructions. Custom instructions can also have ezfdbed registers or an embedded
register file.

Tensilica’s Xtenesa processor is a hardcore procéisat is designed for an ASIC
chip. Altera has created the NIOS soft core prameigdtera 2011], which is designed to
be used on an FPGA. The NIOS, like the Xtenesaessmr, has a base instruction set
and additional instructions can be added to the. [B#e custom instruction slots in the
NIOS are, however, more limited in size. The argailable for the NIOS custom
instructions is determined by the layout of thecessor, which provides a limited
amount of space to for the custom instructions. [gVthie custom instructions may be
multi-cycle there for instance is not sufficientearfor a custom register file to be

embedded within the custom instruction.



The eMIPS core has a modified datapath that alfowsustom instructions to be
added to the ISA at runtime. eMIPS uses an FPGAidab implement the custom
instructions within the datapath. Figure 2 showes dhchitecture of the eMIPS platform.
The dynamic nature of the custom instructions mehas the normal pipeline has no
knowledge of the custom instructions. Unlike ottegproaches where the custom
instructions are static, the dynamic nature ofitteructions means that a new decode
block is needed to decode the custom instructiorthé eMIPS architecture, each new
instruction is passed to all the decode blocks #rel block that understands that

instruction will decode the instruction.
1.3 Parameterized systemson a chip (SoC)

Givargis [Givargis 2002] introduced a parameterided called Platune. Platune consists
of a processor and two levels of caches. The caahdsthe busses that connect the
caches to each other and main memory are configuesbwell as the voltage of the
system. There are over a billion different confagions within the Platune SoC system.
Schreiber [Schreiber 2000] developed a processoergeor called PICO. PICO
generates a custom VLIW processor that has a fémaicis used to implement systolic
arrays to aid the processor. PICO uses the applcas a base and designs the processor
and one or more systolic arrays to accelerate ahgatations in the processor. Figure 3
shows the high level architecture of the PICO desigchip. The VLIW processor
communicates with one or more systolic arrays thho@ memory interface. Each
systolic array has access to the memory bus teaser the memory bandwidth to the

systolic arrays.



Figure 3: The architecture of the PICO framework with thetglys array as a coprocessor. [Schreiber 2000]
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Shin [Shin 2004] introduced a configurable commatian bus for SoC systems,
shown in Figure 4. The communication bus consistsvo main components; the bus
and the memory scheduler. The bus controls the-siioe that is allocated to each bus
master and the overall pipeline latency. Some efpdwrameters of the memory controller
include the bandwidth per thread, prefetch limid arhange limit. The number of
configuration in the configuration space is ove® billion configurations.

1.4 Parameterized network on a chip (NoC)

DallOsso [DallOsso 2003] developed a communicativamework called xpipes.

Xpipes are a scalable and high performance metboddnnecting components within

Figure 4: Shin’s configurable communication bus and the qpmfible parameters. [Shin 2004]
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Figure5: Noxim NoC design space with over 60,000 configurations.
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the SoC. The configurability of xpipes allow fortbchomogeneous and heterogeneous
architectures. Xpipes utilize a wormhole switchieghnique to minimize the area and
power usage at the switches. The switches in thgegparchitecture are configurable,
where the designer can control parameters sudheasumber of input and output ports,
the channel width, the number of virtual channatg] the size of the buffers.

Fazzino [Fazzino 2008] developed a network on g ddimulator where a
designer can model the on chip network. The madslides both the software traffic and
the hardware properties such as the routing algostand channel widths. The Noxim
simulator allows the designer to evaluate a widgeaof different NoC configurations to
determine the performance and energy usage ofrttehip network. The configuration
space of the Noxim simulator is shown in Figurel'be figure shows the design space

with the energy on the X-axis and the combinedughput of all the channels within the



NoC on the Y-axis. The NoC design space that wemgged from Noxim [Fazzino 2008]

consists of over 60,000 configurations.
1.5 Tuned FPGA fabrics

Hauck [Hauck 2006] introduced the Totem FPGA falgemerator. Totem generates a
custom FPGA fabric for a domain of applicationstého aids the designers in mapping
the FPGA fabric onto silicon and in the creationtlod synthesis tools needed to map
applications onto the custom FPGA fabric. An adagatof domain specific fabrics is the
fabric can include the type of additional resourtiest are likely to be needed by the
domain. For example, in a fabric designed for digmacessing a selection of hardcore
units such as multiply accumulator (MAC) or a fémtrier transforms (FFT) could be
included within the fabric itself. In addition, tictuster size of the LUTs and the size and
length of the routing channels can vary considgr&ioim one domain to another. Hauck
found that by using domain specific FPGA fabrice tthesigner could see a 4.8x
improvement in area-delay over traditional FPGArifah

Betz [Betz 2000] created the VPR and the T-VPAC#ddhat assist designers in
creating custom FPGA fabrics. VPR is a tool thiived designers to create and use array
based FPGA fabrics, while T-VPACK is a clusteringltto pack the application in to
blocks. VPR can create fabrics for a wide rangditbérent FPGA fabrics. VPR allows
designers to vary parameters from the size of th&3.in the fabric including multiple
sizes of LUTs within a single fabric, the numbeddength of the routing channels, as
well as specialized hardcore units embedded withenFPGA fabric. The hardcore units

could be multipliers, DSP block, or whole processtirat are connected to the FPGA

10



fabric. The level of customization that VPR offalows designers to generate and

evaluate how the applications will run on the costePGA fabric.
1.6 Designtools

In addition to the customization of the hardwarestegns, the software tools that
designers use have many parameters that can hawgaant on the overall performance
of the system. For example, synthesis tools [XiliBQ11][Altera 2011][Tensilica
2011][Synopsys 2011][Cadence 2011][Mentor 2011dusemap circuits onto ASIC or
FPGA platforms go through multiple stages suchyasghgsis, mapping, placement and
routing. Each of these stages consists of NP-cdmple®blems that need to be solved,
which is why the tools use heuristics to complétse stages. Each of the stages consists
of dozens and in some cases over one hundred parante control how the heuristic
functions complete the stage. The value of therpatars used to generate the final
circuit has a large impact on the performance effital system.

Similarly to the hardware, compilers used to compbftware have a large
number of parameters. Compilers such as gcc [gdd]2Bave hundreds of different
options to help optimize the code. Some of the dgfault levels that work well for a
wide variety of applications are -01 and -03. Thefadlt options may not provide a
sufficient level of optimization for the system. A additional optimization is needed
the designer would then have to tune the optinomasiettings for the system, using the
wide range of optimization options available witlire compiler. Other compilers such
as LLVM [LLVM 2011] and Intel's ICC [Intel 2011] heae a very large number of
options that would probably need to be configuethtiximize the size and performance

of the code.
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1.7 Outlinefor Thesis

In chapter 2 we will discuss the related work ieas of parameterized systems, and
algorithms used to navigate the design spaces.t@hdjescribes an application specific
method for design space exploration. The approaels the characteristics of both the
application and the system for the design spac®mtmpn. In chapter 4 we will discuss

how to use application specific methods to gendfraePareto points for a given system.
Chapter 5 discusses how a designer can quicklglseadesign space even if there are
invalid configurations within the design space. flea 6 presents an algorithm to guide
the designer through the design space exploratioceps. The algorithm adapts to both
the time the designer has and to the propertigbeoindividual system and application.

Much of the work in this thesis is described inesies of papers [Sheldon 2006 (a)]

[Sheldon 2006 (b)] [Sheldon 2007] [Sheldon 2009].
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Chapter 2

Related Work

2.1 Design space exploration for system specific tuning algorithms

A common method to tune a parameterized systerorishe designer to create a new
system specific algorithm for each system the desigeeds to tune. The designer needs
to determine the metrics that are relevant and best to guide the exploration process.
System specific exploration methods often produmedgesults for the system, however,
the system specific algorithms are useful for ahly intended system. There are many
different types of parameterized systems, such aahas and memory, processors,

FPGASs, and System on a Chip (SoC), which are déstlisn more detail below.
2.1.1 Cache and memory

Researchers have developed system specific tulgongtams for tuning a parameterized
memory hierarchy. For example, Zhang [Zhang 20@ijetbped a configurable cache,
which has three configurable parameters: size ceésoty, and line size. Zhang's cache
is a full hardware layout such that the cache I foonfigurable at runtime. Zhang
developed an algorithm that can vary the threerpatars based on the current usage of

the cache. Gordon-Ross used an M-Core [Scott 1@8&ljk 2000] second level cache
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and Zhang's cache for the first level cache forhbthte instruction and data caches.
Gordon-Ross’s algorithm was designed to tune batthe levels to decrease the total
energy based on the current workload of the system.

Viana [Viana 2003] developed an algorithm that w#d system designers to
explore cache configurations while the system isléwelopment. Viana extended the
ArchC [Rigo 2004] framework to include the abilttyexplore the effect of various cache
configurations on the system. Expanding on the eacbnfiguration, Szymanek
[Szymanek 2004] explored the entire memory hienaifch a given system. Szymanek
generated the Pareto points for the memory hieydsghmodeling the memory hierarchy
and the application.

2.1.2 Processors

Processors are another domain where designerstiiengystem using system specific
algorithms. Mishra [Mishra 2001] created a methodcexplore processor architectures
using Architecture Description Language (ADL). Migltreated a set of reusable models
so that a single model may be used in multiple ADEkerwood [Sherwood 2004]
created Sherpa which quickly explores the processofigurations. Sherwood modeled
the various components of the processor. The maael&in information on how each
variation affected the performance and area ofpleeessor. Sherwood then used an
integer linear programming (ILP) solver to expltne design space.
Yiannacouras [Yiannacouras 2005][Yiannacouras 200&jlded custom

instructions to an application specific instructiset processor (ASIP) to improve the
performance. Yiannacouras developed a tool thayzem the application to determine

the set of commonly repeated instructions. The tloeh adds the custom instructions to
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the instruction set architecture (ISA) and the toptlates the compiler for the new ISA.
The compiler can then be used to compile the codéhie new ASIP processor. ASIP
processors have been explored by many in the fidlukt approaches use a compiler
aided approach [Atasu 2003] [Cheung 2003] [ClarR5}(JFin 2001] [Gupta ] [Wang

2001]. Bauer [Bauer 2008] modifies the instructsa at runtime.

213 FPGA

Researchers have developed tools and algorithrhslpodesigners create FPGA fabrics
tuned to the application or set of applicationd tiiéd on a custom FPGA fabric. Hauck
[Hauck 2006] developed the Totem tool. Totem usedla techniques to those used in
high-level synthesis for ASICs. The FPGA fabriceduced by Totem are up to eleven
times better in terms of the area-delay produaiwahg that a custom FPGA fabric can
have a large impact on the final system. Hammetdidesmmerquist 2008] developed an
algorithm to design system specific FPGA fabridse Rlgorithm varied parameters such
as the lookup tables (LUT) and configurable lodiack (CLB) size as well as routing
resources like the channel width to create a cusfabric for the application.
Hammerquist found that by tuning the system theaalvenergy usage of the FPGA can
drop thirty-five percent on average when compaocedl traditional FPGA fabric.

2.1.4  System on a chip (SoC)

System on a chip designs are becoming much morenoomn recent years which is
increasing the need for designers to create tu€s.SPlatune, developed by Givargis
[Givargis 2002], was developed to allows the desigio quickly explore the design
space of the memory hierarchy of the SoC. Platures dhe exploration by using an

interdependency graph that shows which parametethe system are related to each
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other and which can be tuned independently. Byddig the large design space into
several smaller problems the total time to exptbeedesign space decreases.

The Metropolis framework [Balarin 2003] was extethdy Densmore [Densmore
2006] to help the designer to quickly analyze gdanumber of design choices, such as
hardware / software partitioning, or the tradeqfdcse between area and frequency for
parts of the overall system. Bossuet developed lgarithm that explores both the
application and the underlying platform to optimthe overall system. The algorithm is
able to analyze the different components of thdiegipn to determine the resources
needed for each part of the application [Bossu€®3R0n addition to determining the
needs of the application, the algorithm examinesyndifferent architectures [Bossuet
2007]. The hardware and software models are useéteyrmine the level of parallelism
in the system, the communication structure, andfuhetional unit sharing. Adding the
application to the design space exploration opgneaw solutions while increasing the
overall size of the design space.

The communication network was examined by Larikar[hi 2004] to tune the
different components within the communication systéarihi developed an algorithm
that examined the communication structure of thpliegtion and explored custom
communication networks to improve performance. hiashowed that by adding more
buses and carefully partitioning the communicatiaasoss the different buses improved
the performance of the overall system performance.

Kumar [Kumar 2004][Kumar 2006] presented a differapproach to system on a
chip exploration. Kumar proposed a system wherdgeats of finding the best

configuration at design time, the designer creaséeschip with many different
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heterogeneous cores. Each core can be tuned fotiautar task or general purpose core
that vary in performance and energy. Kumar's tegihaiallows the application that is
running the ability to switch processors during @xen depending on the needs of the
application. For example, if the application wagndaa lot of input/output (1/0), then the
slowest processor that could keep up with 1/0O deviwould save the most power, while
heavy computation would benefit from a faster pssoe and the time savings could
provide saving in the total system power.

2.2 Singlefactor analysis (SFA)

Single factor analysis is another method that isdut tune systems. Single factor
analysis is a simple approach that allows a designgquickly determine the impact of
each of the parameters in the system [Montgome8g]LBingle factor analysis begins
with a base configuration. The base configuratisrthe starting point for all future
analysis of the system. The designer then varies parameter individually. The result
from each run is compared to the base configurafibe difference is the effect that the
parameter has on the system, as seen in FiguiglBers is an example of a single factor
analysis experiment. The first row is the base ;cabgparameters are set to 0 or turned

off. Then in each of the following rows one of gh@ameters is turned on and the effect

Figure6: Single Factor Example for aifir benchmark. Basefiguration is in bold.

BS MUL FPU DIv MSR PCMP Cycles Effect

0 0 0 0 0 0 12,696,265

1 0 0 0 0 0 9,905,565 | 2,790,700
0 1 0 0 0 0 12,696,265| 0

0 0 1 0 0 0 10,818,171| 1,878,094
0 0 0 1 0 0 12,696,265| 0

0 0 0 0 1 0 12,696,265| 0

0 0 0 0 0 1 12,696,265| 0
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on the system is recorded in the cycles column. &ifext column shows the difference
or the effect of turning on the parameter. Theatffe then used by SFA to determine the
overall importance of the parameter on the system.

Single factor analysis is not a very robust metfmdtuning. The base case in
single factor analysis biases the results and ¢isggder is left with an inaccurate picture
of how the parameters actually affect the overalfggmance of the system. If the
designer already has a good configuration, theglesifactor might be able to find a
slightly better configuration. However, the need &good configuration to be known
before the tuning begins limits the effectivene$ssiagle factor analysis in tuning of

systems.
2.3 Randomized tuning algorithms

Randomized algorithms have also been used to aithentuning of parameterized
systems. One type of randomized algorithm is atyeakyorithm. Genetic algorithms are
modeled after how DNA changes from one generationext. Genetic algorithms use
random numbers to determine if and how the DNA seqgas will change from one
generation to the next. To use genetic algoritforghe tuning of parameterized systems
the configuration is broken down into small pattattrepresent the genes in the DNA
model. Once the designer has created the genontleefarystem, the genetic algorithm is
then run. There are various parameters common retigealgorithms that impact the
overall performance of the genetic algorithm sushhe size of each generation and the
mutation rate. Another important part of genetgoaithms is the fitness function, which
is very similar to an objective function. The fissefunction is used to determine which

configurations are the best within a single genenat
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Genetic algorithms can be adapted to almost angnpeterized system. The
adaptive nature of genetic algorithms is one reagongenetic algorithms are popular in
tuning systems. Palesi [Palesi 2002], Zitzler [&it2002], Erbas [Erbas 2006] and Ascia
[Ascia 2004] all show that genetic algorithms wevr&ll even when compared to system
specific algorithms.

Simoka [SImoka 2004] used a different random apgrda tune parameterized
systems. Simoka used a Tabu search algorithm toiagathe design space. Tabu search
is a version of simulated annealing where the #lyorstores the previous configurations
so the algorithm does not need to rerun configonati

Palermo [Palermo 2003][Palermo 2008] used an dlgarcalled Random Search
Pareto (RSP). RSP is based off of Monte Carlo nithBSP uses random samples to
sample the design space. RSP then uses the knowwts jo generate a new set of
random points. RSP is better able to avoid becorstagk in local minima, which is a
problem with most random algorithms.

Randomized algorithms all share one major problanpredictable runtimes.
Randomized algorithms are usually able to find ukeful configurations, however, in
order to find the configurations random algorithmeed to evaluate many configurations.
In most cases the extra configurations that arduated do not provide any useful
information in the exploration process. The randapproach, therefore, is often not a
very useful approach since the designer does rmt/ krow long the algorithm will take

to run or when the algorithm has reached the lmdtgurations.
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Chapter 3
Single-factor exploration using an

application-specific design space tree

3.1 Background

Presently, FPGA soft-core processor users must afigndetermine the best core
configuration for a software application. Such manoonfiguration either results in
unduly long exploration times due to evaluating toany configurations, or results in a
sub-optimal configuration. We consider two appreasgha traditional CAD approach that
maps to an abstract problem model and then sdieeproblem thoroughly while relying
on estimations and a synthesis-in-the-loop apprahelt uses actual synthesis and
execution during exploration but searches onlyaation of the solution space. While our

work’s motivation lies in soft cores for FPGAs, @pproaches may apply to ASICs also.

We developed our methodology using a Xilinx Micies® FPGA soft-core
processor [Xilinx 2005], but the methodology wolle applicable to other FPGA soft-
core frameworks. The Xilinx Microblaze is a 32-Bibft-core processor designed for
efficient implementation on Xilinx FPGAs. The Midilaze is a single-issue in-order

execution processor. The Microblaze can be corddjtio instantiate any combination of
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the following five components: multiplier, barrehifter, divider, floating-point unit
(FPU), and data cache. The first four componergseaich “on/off” type, either being
instantiated or not instantiated, and only oneains¢ of each component type is needed
since the Microblaze is a single issue processioe. data cache, when instantiated, can
be 2 Kbyte, 4 Kbyte, or 8 Kbyte, but we only comsatl 4 Kbytes in this paper for
simplicity. Furthermore, the Microblaze support®teache types, an older basic cache,
and a newer better performing “MCH” cache, althowgity the latter is considered in
this paper. Thus we consideret:22 possible Microblaze configurations. When any of
the first four components are instantiated, therbbtaze ISA is updated to include a
special instruction for the corresponding comporterg., a multiply instruction), and the
Microblaze compiler generates code utilizing threg special instruction. We refer to a
Microblaze with none of the five extra componergsadase Microblaze.

Instantiating a component increases a Microblas&e, but may improve an
application’s performance, depending on the appiina We defined the task of
customizing a Microblaze for a particular softwapplication as the task of instantiating
a particular combination of components, known @®mfiguration. Customizing allows
the designer to meet the design goals, which magive performance and/or size that
are best met for an application running on thearustable Microblaze.

We measured performance as the time to executepplication once from
beginning to end (typically an embedded benchmaglieation loops back to its
beginning after the end). The execution time isrthmber of clock cycles multiplied by
the clock period, referred to hereafter asdpplication runtime We utilized Xilinx ISE

and EDK tools to determine the clock period by bgsizing a configured Microblaze
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Figure7: Equations for calculatingquivalent LUTvalue of a configured Microblaze.

LU LUT, +LUT,
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onto a specific FPGA device. We measured the numbelock cycles by executing an
application on a Microblaze mapped to the FPGA aewvith the application slightly
modified to communicate with a clock-cycle countirigeuit. The cycle counting circuit
non-intrusively counts clocks cycles while the agadion executes but does not affect the
application’s performance.

A basic measure of a soft core’s size on an FPGBAeswumber of utilized lookup
tables LUT9)*. However, a soft core may also utilize hard-cdP&R resources, such as;
hard-core multipliers or block RAMs. To be ablestoaightforwardly plot and compare
sizes of different soft-core configurations, anieglent LUT value is assigned to hard-
core resources. We did so by first measuring tgalae LUTs, hard-core multipliers, and
block RAM utilized in a full Microblaze. We then ibined the individual size metrics
into a single size metric representing equivalédT .

Figure 7 presents the equations for calculatingivedent LUTs for a given
Microblaze configuration. Assuming each type obregse (LUT, hard-core multiplier, or
block RAM) is of equal importance. Figure 8 listetequivalent LUT values for each
hardcore unit. For a given configured Microblazes equivalent LUTS, LUdquivatent IS
the sum of the regular LUTs, Lidguas Used for logic to support datapath components,

the equivalent LUTs for hard-core multipliers, LE}divaentvury and the equivalent LUTs

! We originally utilized configurable logic block€IBs) as a measure of size, but Microblaze desggaerXilinx
informed us that LUTs are a more accurate and Lsefasure.
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Figure8: Equivalent LUT values for hard-core units.

Component Equiv LUT Count

LUT 1
MULT 18x18 569
BRAM 1328

for block RAMs, LUTequivalenteramy The equivalent LUTs for the utilized multiplieis
equal to ratio of multipliers used, #Mytq to multipliers in a full Microblaze, #Mulj
vs, Multiplied by the number of regular LUTs in alfilicroblaze, LUTy ws. Likewise,
the equivalent LUTs for the utilized block RAMseagual to ratio of block RAM used,
sizeBRAMyseq t0 block RAM in a full Microblaze, sizeBRAM vs, multiplied by the
number of regular LUTs in a full Microblaze, L¥fwvs. Of course, a user can weigh
regular LUTs, multipliers, or block RAMs more hegwvif that resource happens to be
more valuable to the developer. We noted that amatsearch group working closely
with Altera independently developed a similar eqlewnt LUT concept for similar size
comparison purposes [Yiannacouras 2006] thus Igndonfidence to the use of the
equivalent LUT size metric during soft-core exptaa. All LUT data in this paper
represents equivalent LUTs. Interestingly, we disced that our equivalent LUT
concept correlates almost perfectly with Xilinx\wmo equivalent gate concept.

Note that the equivalent LUT concept is essentialost function that combines
three terms by normalizing and weighing them equallur approach is not strictly
dependent on the above-described cost functiomy dtimctions could be used, including
an approach where users specify the relative wsight where different normalization

methods could be used.
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Figure9: Size versus application runtime for all Microblaznfigurations executing trefir EEMBC benchmark,
with all Pareto points labeled. An additional lazkpoint(FPU) is highlighted to show the performance overhead of
instantiating an underutilized component, due tgikening of the clock cycle.
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In our experiments, we considered eleven benchnmselected at random from
EEMBC [EEMBC 2006], a benchmark suite intended @nbedded systems. We
reported data for all of the randomly selected EEMienchmarks that we were able to
compile and execute on the Xilinx Microblaze. Irdaidn, we considered an internally
developed ray tracing applicatiomaytrace that is predominantly a floating-point

application.
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For each benchmark, we utilized scripts to runsmarch heuristics, where those
scripts automatically performed FPGA synthesis evaluated the application whenever
necessary. The scripts were executed on a companeected to an FPGA development
board (an ML310 board in our case).

Figure 9 demonstrates the benefits of customizimg-RGA soft-core processor
for one application. The figure presents the appibm runtimes for the EEMBC
benchmark aifir running on each of the 32 possibMe&roblaze configurations.
Considering only the Pareto-optimal configuratiahg, Microblaze configurations have a
2X variation in application runtime and a 2X vaigatin LUTs, clearly demonstrating
the benefits of configuring the Microblaze to atjgalar application and its performance
and size constraints.

Figure 10 presents the performance speedups of pgr@rmance-optimal

configured Microblaze for all 12 benchmarks, asedetned by exhaustively examining

Figure 10: Speedups for bagBase Microblaze)full (Full Microblaze) and optima(Optimal MicroblazeMicroblaze

configurations.
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all possible configurations for each applicatioheToptimal Microblaze configuration on
average has a 3.5x speedup compared to a basebMireoand a maximum speedup of
11.1x for the applicatiomatmul However, obtaining that data by performing extigas
exploration for this application required approxietg 15 minutes per configuration
(with 99% of that time spent on synthesis and wéttain configurations requiring more
than 15 minutes), resulting in over eleven hourexgfioration tool runtime. Even for the
relatively small number of configurable options eensidered, exhaustively evaluating
all possible configurations is quite prohibitive.cAre user would need to re-evaluate all
configurations anytime significant changes and pda#y even small changes were
made to the application, a common occurrence iafavare design cycle. Furthermore,
we expect that the number of configurable optioflsaantinue to increase for soft-core
processors in the future. As such, if the confibiity is doubled from five options to ten
options, the execution time for an exhaustive eatéba increases from approximately 11
hours to 11 days.

We sought to develop methods that would execusgproximately 1-2 hours — a
tool runtime that we believe FPGA designers wouidd freasonable during the
optimization step of design. By using synthesis clvhiakes on the order of tens of
minutes during the exploration process the keyufeadf our developed heuristics must
be that of executing only a few synthesis runs ghahtotal customization time is on the

order of 1-2 hours.
3.2 Application specific tuning of parameterized systems

We considered the problem of customizing a Micrbbldo minimize a particular

application’s runtime, with and without a size doamt. Fast tuning of configurable

26



hardware platforms has been the subject of seveceht research efforts. Most efforts
assume that hundreds or thousands of configurattams be examined [Abraham
2000][Givargis 2001][Mishra 2001][Mohanty 2002][Sh@od 2004][Szymanek 2004],

but the 15 minute synthesis time in the FPGA sofe@roblem means that only about 5-
15 synthesis runs can be conducted.

3.2.1  Traditional CAD approach: 0-1 knapsack

We first considered developing a traditional CADpigach to tuning soft cores. The
approach pre-characterizes the application andepsat, then maps the problem to an

abstract (and inexact) model, and then uses thelhnmdolve the problem.

The soft-core configuration problem could be appr@ately cast to a 0-1
knapsack problem, wherein, one seeks to maximieeveédue of items placed in a
knapsack having a weight constraint, with each itawving a value and a weight. In the
fractional knapsack problem, one can include amgtion of items, while in the 0-1
knapsack problem, the only allowed fractions areor01, meaning the items are
indivisible. We considered each optional MB compunas an indivisible item. We
assigned a component’s value to be the ratio ospleedup increment that occurs when
instantiating that component compared to a base (MB., a speedup of 1.4 has an
increment of 0.4), over the size increment comp&veslbase MB. Note that the speedup
increment for a component depends on the applicatbut the size increment is
application independent. This cast is approximbéegause speedup increments may not
always be strictly additive when multiple comporseare instantiated. For example,
component A may have an increment of 0.4 and B3fl@ut A and B together may only

yield an increment of 0.6, not 0.7. Likewise, Sizerements may not be strictly additive.
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Figure11: Average pairwise speedup-increment additive inaamias for all pairs of benchmarks.

Component Cache Floating Point Divider Multiplier
Barrel Shifter 5.2% 1.0% 0.0 % 10.4 %
Multiplier 6.7 % 1.9% 26.0 %
Divider 2.9 % 0.0 %
Floating Point 51%

Figure 11 presents the inaccuracy of the additssumption for all pairs of
components. The additive assumption holds wellr@eeo inaccuracy) for four pairs of
components. Adding the multiplier and the barrafteh speedup increments yields a
10% inaccuracy, since some bit shifts are achievalith a multiplier, and vice versa.
Adding multiplier and divider speedup incremenislds 26% inaccuracy.

A well-known optimal algorithm for solving the Okhapsack problem first sorts
items by their value/weight ratio, and then fintle pptimal solutions using a dynamic
programming algorithm [Toth 1980]. To execute thlgfjorithm, the speedup increment
(value) for each component must first be computks.the speedup is application
dependent, the first six synthesis and executiamnst ime evaluated first: for the base MB,
for the MB with a multiplier only, for the MB witla barrel shifter only, with an FPU
only, with a divider only and finally with only aache. Figure 12 shows speedup
increments, size increments, and their ratiostHeraifir EEMBC benchmark application.

The dynamic programming algorithm has what is kmoas a “pseudo-
polynomial” runtime complexity of O (n*W), whereia the number of items, and W is
the knapsack weight constraint. This algorithmnswn to be fast when W is a “small”
integer, with a magnitude of perhaps 10,000 — 1m0 and of course when n is also

small. Fortunately, W is indeed a small integerthe case of our MB configuration
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problem (a full MB is only 12,000 equivalent LUTa)d n is also small in our problem (5
instantiatable units).

This approach applies six synthesis/execution wimsn initially determining the
component speedup and size increments, requiringtan hour, which dominates the
approach’s runtime. The inputs to the dynamic pogning algorithm -n (number of
soft core parameters) aWd (number of available LUTS) — can each accommoldatze
increases before the 0-1 knapsack algorithm rustiaggroach a non-negligible time
(versus synthesis) of tens of minutes. Even thenhave found that we can “quantize”
the knapsacks weights by dividing all weights byt@Oyield a 10x algorithm speedup

with almost no degradation in quality of results.
3.2.2  Synthesis-in-the-loop approach: impact-ordereddree

Casting the soft-core configuration problem to @ffapsack yields an approach with

Figure 12: Speedup increment, size increment, and their faticgach MB component for ttafir benchmark.
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desired tool runtime and near-optimal results. Heewe the approach makes an
assumption that speedup and size increments argvadavhich is inaccurate for some
pairs of components. As demonstrated in the exmgarisnsection later, those inaccuracies
can result in sub-optimal solutions. We thus sougldevelop an approach that did not
rely on the additive speedup increment assumpbanrather used synthesis/execution
during exploration (synthesis-in-the-loop) while illstexecuting just a few

synthesis/execution runs.

We developed a greedy search method based on amaappproven effective in
other parameterized architecture configuration aede The greedy method pre-
determines the impact each parameter has on deséyrics, and then searches the
parameters in sequence, ordered from highest impatiwest. For example, Zhang
[Zhang 2004] used the greedy method for customianbighly configurable cache,
where evaluating each configuration which took mamynutes due to lengthy
simulations, and found near optimal results. Thasmwestigated such an impact-ordered
approach.

The first phase of the approach determines thedhgfaeach component. We can
define impact simply as the speedup. Through emperiation, we found that a better
definition takes the ratio of speedup/size, jusinathe knapsack problem. Thus, the first
phase of the approach computes speedup increngrgsjncrements, and their ratio;
requiring six synthesis and execution runs andltiagun the same data as in Figure 6.
This method used is callesingle factor analysisThe second phase considers the
components in order of their impact. For the cursemimponent, the approach instantiates

the component, then synthesizes and executesamdees the application’s runtime and
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Figure 13: Impact-ordered tree approach: (a) Application-dpethpact-ordered tree for thagfir benchmark, (b)
Fixed impact-ordered tree. Note timatither approach actually generates the entire trd#th make a single descent
to a leaf node. The thick red line shows a singleedt through the tree.

single decent, N
Barrel Shifter|
Mu|t|p||er

= s’as’u’n’as’as’a s’aa’aﬁs’as’n’ai’n’aa’a

size. If instantiating the component improves mmatiand meets size constraints, the

component is added; otherwise, it is not. The agpgrothen moves on to the next
component.

We refer to the above approach asagplication-specific impact-ordered tree
approach Essentially, if we envision the entire solutiggase as a tree, as in Figure 13.
The approach orders the levels of the tree, and descends into only one sub-tree at
each level, until reaching a single leaf node. fiils¢ phase orders the tree’s levels, while
the second phase makes a single descent. Theréudine shown is an example of how
the algorithm descends the tree. This approachresgsix synthesis/executions for phase
one, and five synthesis/executions for phase twesulting in 11 total
synthesis/executions.

We also investigated a variation of the above agghrawith the goal of reducing
the number of synthesis/execution runs, by prerdeteng average component impacts
on a suite of typical benchmarks, rather than dateng impacts on a per-application
basis. The approach essentially moves phase otigeaibove approach from the tool
user to the tool developer, thus cutting out sixhe eleven synthesis/execution runs,

leaving just five such runs. We refer to this apgivas a fixed-order impact-ordered tree
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approach, because the impact ordering is fixedirEid4 shows the data averaged for all
our benchmarks, with the speedup/size data reguitirthe impact ordering shown in
Figure 13(b).

Each of our algorithms assumes the problem use®bgective function to
determine the best soft-core processor configuragieen a limited size constraint. Some
design scenarios impose no size constraint on B@®AFsoft-core processor, instead
seeking only the minimum application runtime. Ie thAbsence of a size constraint, one
might assume minimal application runtimes couldabkieved by simply instantiating a
full MB. However, this assumption is false, as vilsstrated in Figure 10. Figure 10
presented the performance speedup for differentddigurations: a base MB, a full
MB, and an MB configured for optimal applicationntume (determine by exhaustive

search) for the corresponding application compévetie base MB configuration. Notice

Figure 14: Speedup increment, size increment, and their raticgach MB component averaged across all 12

benchmarks.
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for some applications the full MB is actually slowtan the optimal. The reason is
because as more components are instantiated, thelddk period may be lengthened,
due in part to longer delays necessary for theess®d wire routing within the larger
MB. The point labeled FPU in Figure 9 clearly iliades the impact of longer delay
caused by adding an underutilized FPU component.

To handle the no size constraint situations, inezithe 0-1 knapsack approach or
the impact-ordered tree approaches, we simply usieeaconstraint that is equal to or

larger than the size of a full MB.
3.3 Experiments

We implemented the knapsack, application-speaifipact-ordered tree, and fixed-order
impact-ordered tree approaches as scripts execuwtilg Xilinx Platform Studio
synthesis tools, coupled with a Xilinx Virtex-1l ®FPGA development board (ML310),
for all 12 embedded benchmark applications. To @mpghe approaches with optimal
results, we implemented an exhaustive search apprdhdat simply performed

synthesis/execution for all 32 possible soft-carefigurations.

Figure 15(a) presents the average speedups andutdohes for each approach
for the scenario of unconstrained size. Exhaustearch requires over 700 minutes (11
hours) and finds average speedups of 2.3. The kokpapproach finds near-optimal
solutions with a speedup of 2.2. Both impact-orderee approaches find the optimal
solution. The fixed impact-ordered tree approach tha fastest runtime of 108 minutes.
The knapsack approach should actually have roughéy same runtime, as both
approaches synthesize about the same number ofigematfons. One particular

configuration examined by the knapsack approacimehaa base MB with a barrel
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Figure 15: Average speedups obtained by the various exploragproaches, for: (a) no size constraint, (bxedfi
size constraint set at 80% of the size of a full, N a per-application-tailored size constrain80%o of the size of the
optimal MB for that application (as determineda) ), all on a Virtex-1l Pro device.
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shifter alone, happened to have an unusually longhssis time. Such anomalous
synthesis runtimes are an artifact of the natur&RGA physical design heuristics. In
general, one should assume that the knapsack ajpaoa the fixed impact-ordered tree
approach will have equally fast tool runtimes.

One might wonder whethamy ordering of the tree levels in the fixed impact-
ordered tree approach would in fact yield the ogtinconfiguration. Thus, we
implemented another heuristic using a random anderbarrel shifter, cache, FPU,
divider, multiplier. Figure 15(a) shows that thendom impact-ordered tree approach
performs worse; though for the unconstrained simblpm this approach is actually
somewhat competitive.

Figure 15(b) presents the average speedups andutdohes for each approach
for a fixed size constraint, chosen to be 80% efgize of a full MB. We also obtained
data for a 50% constraint, with similar resultst(sleown). The plot again shows that the

impact-ordered tree approaches find optimal spee@R), the knapsack approach finds
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Figure 16: Average speedups for the approaches on a SparRBA F
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near-optimal solutions (2.0), and the random imjoadered tree approach is no longer
competitive.

We sought to see how each approach would perforansicenario where the size
constraint was tight enough to prohibit use of Hest performing MB for a given
application. We created a unique size constraimntefach application. Figure 15(c)
presents the average speedups and tool runtimesaébr approach with a tailored size
constraint being 80% of the best performing MB &ach particular application (as
determined through exhaustive search with no sizetcaint, and choosing the smallest
among equally performing configurations). We al&tamed data for a 50% constraint,
with similar results (not shown). While the fixeddaapplication-specific impact-ordered
tree approaches found the optimal, the knapsackdtieuperformed very poorly for this
size constraint. We found that the reason for thapkack’'s poor results is due to the
inaccuracy of the additive speedup increment assampwhich caused sub-optimal
selection of components.

To further evaluate the effectiveness of the apgres, we re-implemented the

entire set of experiments for a Xilinx Spartan2 PP&igure 16 presents the average
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Figure 17: Estimated tool run times for increasing numberaffigurable soft-core processor options.
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speedups and tool runtimes for each approach &cdlse of unconstrained size. Again,
the impact-ordered tree approaches were the be$bripéng approaches, but the
approaches chose configurations that were slighdiow optimal on average. The
application-specific approach found the optimalfgumration in 11 of 12 cases, with a
20% worsening in performance for only one applaratiThe fixed approach also resulted
in a 20% worsening of performance for that samelieggmn, along with a 10%
worsening for another application, but overall fduhe optimal configuration in 10 of 12
cases.

From this data, the fixed-order impact-ordered &pproach seems preferable. Of
course, one must consider that our fixed-order @etermined from the very same 12
benchmarks that we then used to compare the apgm@®ato examine this issue, we used
six randomly selected benchmarks to define thedfigedering, and then applied the
approaches on the other six benchmarks only. Ttesl fimpact-ordered tree approach
again found the optimal for the constraint situasion Figure 15(a), (b), and (c), and even
found the optimal for the situation in Figure 16plying a particular fixed order on a

radically different benchmark may yield worse résulVendors might address that
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situation by having different fixed orderings foifferent application domains (e.qg.,
control, signal processing, etc.), allowing theruseselect a domain.

The application-specific impact-ordered tree apghogs more robust in the
presence of new benchmarks, but at the expendsoat &wice the tool runtime.

Our formulation considered five components. One egrect the number of soft-
core parameters to increase beyond five. Figurghbws estimated tool runtimes for five
to twelve two-valued parameters. While the appreachre significantly faster than
exhaustive methods, the application-specific imymedered tree approach’s runtime does
increase to nearly 10 hours for twelve parametarcontrast, the fixed-order impact-
ordered tree scales well, requiring just less Bdmours for twelve parameters. Note that

the figure only shows runtime and not quality cfuks.
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Chapter 4
Pareto point generation using

Interdependency graphs

In the previous chapter, we discussed how a tumethodology can benefit from an
application specific approach. In this chapter, wi# go into more depth about the
strengths and weaknesses of both single factoysiaand design of experiments. We
will then discuss an alternative to the applicatspecific impact-ordered tree. The
interdependency graph like the application-spediinpact-ordered is built from data
generated from the system, but is better able tolleainteractions between the various

parameters.
4.1 SingleFactor Analysis (SFA)

Single Factor Analysis [Peterson 1986] is a comnapproach in design space
exploration. SFA requires the designer to selecbase configuration. The base
configuration uses a default value for every patamia the system. SFA changes each
parameter, or factor, one at a time. The first petar is changed to every possible value
(or some subset therefore), while all other paramsedre held in the default value. After

examining all the values for the first parametbe parameter is set back to the default
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value, and the same process is repeated for eawini@g parameter. The results from
the SFA runs can be used to create a regressioelmidte model is then used to predict
the best configuration for given design goals.

We can extend SFA into an algorithm that gener&asto points. The new
algorithm would first determine the significance @dch parameter, using an Impact
Ordered Tree (IOT). The significance, or impactiéermined by the maximum change
seen for a given parameter. The change is norndalz@ value between 0 and 1, using
the largest value seen for the metric as 1. Nomatiin is done for each metric for each
parameter. The maximum of the normalized metriceich parameter is the impact of
that parameter. The impact of each parameter isubed to sort the parameters. Starting
with the sorted list of parameters, the algoritlaies the two highest-impact parameters
and generates all combinations of those two paemsieAssuming every parameter has
three possible values, the algorithm generates pmiets for this step. All other
parameters are held at their default value. Byrgathe results from previous runs, this
step actually only requires four additional runkeTresults are then pruned of all non-
Pareto points. The resulting set of (intermedi&&)eto points is then used with the third
most significant parameter to generate the nexpsekhaustive data. The new data is
also pruned, leaving only the Pareto points. Thig@ss repeats until all parameters have

been combined.
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Figure 18 shows an example of the results of th& &pproach, showing a
simplified design space with only 3 parameters:heasize, cache associativity, and
supply voltage. Cache size and cache associatargy interdependent, while supply
voltage is independent. Each of the three symbolBigure 18 represents a different
supply voltage. Both the cache size and assodiatinve two possible values for a total
of four configurations. When combining cache paremseand supply voltage, the four
configurations move as a group when the supplyageltis varied. In (a), the base
configuration is [cache size = 0, cache assoctgtivil, supply voltage =1] which finds
all but one Pareto point. Using the same envirorirheghchanging the base configuration
to [0,0,2], three Pareto points are overlooked. Stk only see the effect of the
parameters in relation to the base configuratiorsexere deficiency of this approach for
Pareto point generation.

Figure 19 shows an example when all 3 of the pamhare interdependent. In

Figure 18: lllustration of results of SFA extended for Parpbints, showing dependency on the base configuratio
selection: (a) A 3-parameter system where 2 paemnare interdependent and the third is independéstfilled
points are the points examined by SFA. The cirpleidts are Pareto points found. (b) A differentebesnfiguration
yields different Pareto points.

base
configuration

@\ Pareto Points

(@ (b)
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Figure 19: SFA with three dependent parametdfrall three parameters are interdependent, theglesifactor analysis
breaks down further.

am, Pareto
./ Points

this case, SFA misses three Pareto points, fob#se configuration shown. The SFA
approach can only see points near the base coafigay but interdependencies require
more complex explorations. With additional parametand more interdependencies, the
SFA approach fails to find a thorough set of Papetioits.

As shown in the previous examples, SFA is not § vebust approach to finding
the Pareto points in a system. One problem isaHhzdse configuration must be chosen.
The base configuration is the basis for all otheasurements, so by choosing a bad base
configuration results in exploration of an inapprafe design space region. Also, SFA
performs a very limited search around the baseigaration. This means that only the
local effect of a parameter will be seen.

The other major problem with SFA is that the inggréndencies between the
parameters are not taken into account. SFA asstimésach parameter affects only
itself. In most systems this is rarely the caser Ewample, in a cache, the best
associativity for the cache can change as the csizhencreases. However, changing the
supply voltage of the system will not effect whiabsociativity is best for a given cache

size.
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4.2 Parameter interdependency graph

Givargis [Givargis 2002] developed a more thorougtthod for determining the Pareto
points of a system by introducing the idea of aapeater interdependency graph. The
parameter interdependency graph shows the depeeddretween the parameters in the
system. Figure 20 shows the graph that was dewldyeGivargis for the Platune
architecture consisting of a processor, two cacleses, and memory, with each
component having numerous parameters. There arey ngaoups of connected
parameters, but most of the groups consist of anfgw parameters. Platune searches
each group exhaustively, finds Pareto points fahegroup, and combines all points to
find the global Pareto points. This approach thusids exhaustive search of all
parameters, instead only exhaustively searchirgydependent parameters, thus greatly
reducing the search space while still searchingrtbst important regions of the space.

Figure 20 shows the parameter interdependency gfaphthe cache size,

Figure 20: Platune’s parameter interdependency graph. Thevarraicate dependencies between the differenofact
[Givargis 2002]

Node Core Parameler Node Core Parameter
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* Mote that we have used double-amowed lines in place of two single amowed-lines for clarity.
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associativity and supply voltage example. Each shiapghe graph represents a different
supply voltage. The supply voltage is independémh® other two variables, so the curve
for each shape is the same. The parameter intexdepey graph shows that the cache
parameters and the supply voltage can be searciuegandently of each other. The
Pareto points for each group can then be combioegknerate the Pareto points of the
entire system.

Givargis was able to greatly increase the accurdcthe Pareto points versus
SFA, while also decreasing the time to generatd’treto points (searching less than 1%
of all configurations. However, the parameter idégendency graph was created
manually, requiring that the designer have knowsed possible interactions between
the components’ parameters in the system. We obdetlvat the interdependencies
between parameters may change depending on whititsnare considered (as will be
shown in the experiments section). The interdeperygraph should be changed when a
metric that was not considered when generatinggtiag@h is now being considered.
Conversely, if the graph was generated for manyriosetand the designer only is
considering a small number of those metrics, thanynof the edges may not be valid for
the given metrics. Generating this graph can bfcdif due to the complexity of the
system and take an expert a significant amount tewen for only a few cores.
Integrating multiple parameterized cores, as is momly done today, compounds the
problem. Erring on the side of listing interdepemecles slows the search; erring on the

side of independence may cause Pareto pointsnudsed.

43



Furthermore, Platune’s parameter interdependenaghgtreats all dependencies
as equal. Some dependencies are stronger thans.othaglecting the weaker

dependencies can speed search with negligible imegatpact on results.
4.3 Pareto point generation using design of experiments (DoE)

We propose a new algorithm in order to find theeRapoints. The algorithm combines
aspects of the random approaches and the paranméedependency graph. The
algorithm eliminates the need for expert user keolge, while automatically finding and
using the interdependencies between the varioasngers in the system.

Design of Experiments (DoE), sometimes called Expental Design, is a formal
systematic method for investigating a process’ irfpators and their relationship to the
process’ output. DoE’s development began in thed43% statistician Sir Ronald Fisher
[Peterson 1986] for the purpose of improving fammpcoutput and has since evolved for
use in nearly any form of production (chemical,-tg@ohnical, pharmaceutical) and is
even used in company management techniques. Theas®ymption in DoOE is that
experiments are costly and thus must be minimikedoE, a factor is input process
variable that can be controlled by the developgthsas whether a particular chemical is
added to a process.

One key aspect of DoE relevant to our purpose etign a set of experiments
that yield provably maximum information about a gss’ input factors for a given
number of experiments. For example, consider agz®avith three input factors A, B,
and C; each with two possible levels (high or lomrmally represented as +1 and —1 in
DoE, often abbreviated as just + and -). The igemhber of experiments in this case

would be 8 (or even more if the process includesloen effects) and is known agwl
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factorial design --- (A off, B off, C off), --+, -+-, -++, +--, +, ++- and +++. As a

trivially-simple illustration of DoE, assume instethat cost constraints allow only four
experiments. A poor experimental design would be-—+, ++-, and +++, while a better
design would be --+, +--, -+-, and +++. The reassrnthat experiments should be
orthogonal to each other in order to provide theximam amount of information for

subsequent analysis.

An experimental design ierthogonal if the effects of any factor sum to zero
across the effects of the other factors. The passigh had C on (+1) for three
experiments and off (-1) for only one experimentd+{1+1-1=2), whereas the better
design had each factor on for exactly two experisw@md off for two (+1+1-1-1=0).
Orthogonality provides for improved subsequent ysial It provides for a clear
understanding of the limitations of the experimeRigr example, the better design was
created by enumerating all possible combinations @ind B (--, -+, +-, ++), and then
appending C with a value being the product of A Bn@o —1*-1=+1, which is why the
first experiment was --+). Because C’s settingsaneated in this manner, C’'s impact is
confoundedwith the interaction of A and B. While unavoidabkhen doing fewer
experiments than full factorial, such confoundiragp be clearly listed in what is known
as an aliasing table to inform the experimenteliritations (and perhaps to enable the
experimenter to reorder the factors to avoid conétrg factors more likely to interact).
Orthogonality is just one of many aspects of theigie of good experiments in the DoE
framework. Others include randomization, replicatiand blocking, which are beyond

our scope of discussion.
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DoE becomes increasingly challenging, and increggirbeneficial, as the
number of allowed experiments differs from the nemaf possible factor combinations.
For example, a process with 8 two-level factors 268 possible experiments. If only 8
experiments could be run, a naive approach would lsenply run each experiment with
exactly one factor high (------- +, - +-, ---— ---—-+---, ..). However, such
experiments tell nothing about the interaction agnhtactors or perhaps factors A and B
each has little impact alone, but have a huge imphen combined. A good DoE design
would have run experiments run with multiple fastat their high level in each
experiment, carefully done to maximize orthogowalit

The other aspect of DoE relevant to this discussoto analyze a given set of
experiments such as to obtain the maximum infolwnagibout the impact of each factor
on the process output and about the interactionngntiwe factors from the given data.
Such analysis can be applied to data from any fsekmeriments but will be of higher
confidence if the experiments are well designed.(arthogonal). The key techniques
are referred to as ANOVA (analysis of variance)johihis used to analyze the effect that
each factor has on the final result. Multiple esmion methods are also used to
determine which factors are statistically signifitaDozens of analysis techniques exist,
focusing on different factor models and types dhoted information.

The majority of DoE techniques use two-level fastoather than multi-level
factors, due to the powerful statistical methodst tfvo-level factors enable. A factor
with a relatively small number of levels exceeding-level can be mapped to multiple
two-level factors in order to benefit from DoE madls, though some methods do directly

allow three or more levels for some factors. Thestnpmpular DoE approach is known as
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fractional factorial designinvolving experiments representing a fraction (IV2, 1/8,
etc.) of the full factorial design. Numerous fractal factorial design approaches exist.

Minimal run experiments refer to the situation ofning only a small number of
experiments relative to the number of possiblediacombinations. Numerous techniques
have evolved specifically for this purpose, withpptar techniques being the Plackett-
Burman and the Taguchi techniques [Mishra 2001{Ren 1986][Scott 1989]. These
technigues are used to gather the necessary iniormahile only running a few more
runs then there are factors being examined.

In addition to design experiments and analyzingegated data, some DoE
techniques predict the best settings of the fadtreptimize the output of the given
process. Such prediction involves another set df-developed techniques based on
models (mostly linear and continuous) of the infjaators.

DoE is a vast statistical discipline comprising aiety of thoroughly studied
techniques. This section just lightly touched omsaubjects. A thorough understanding
requires a textbook of information. While a goodlerstanding is helpful, a key idea of
applying DoE to architecture tuning is twt have to thoroughly understanding DoE
techniques, but rather to apply existing DoE teghes as embodied in well-established
commercial DoE toolsets, thus obtaining the bemeditthe established discipline. We
examined numerous DoE tools and selected DoePRODQE XL 2006] due to its

sufficient coverage of experiments of interest asdhtegration with Excel spreadsheets.
4.4  Pareto point generation

We developed the DoE-based Pareto-point Generéd®¢) algorithm that combines

two new techniques. The first technique automadlicajenerates a parameter
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interdependency graph, which is a weighted grapbseredges show the dependencies
between the parameters. The second technique ¢em@&areto points from the weighted
parameter interdependency graph.

Figure 21 shows an overview of the DPG algorithrne Tirst step in the DPG
algorithm is to evaluate the initial DoOE set of exments. We used the DOE Pro XL
[DOE Pro XL 2006] tool to assist in the generateomd analysis of the DOE experiments.
Each parameter in the system is mapped to eithgo ar three level DOE parameter. In
cases where the parameter has more than threesyd@Wr& chooses the largest and
smallest and a midpoint as the three parametens.tieobest results, the two level
parameters should be used only for parameterhévat exactly 2 levels.

After mapping of the parameters, the DoE tools #sed to generate a set of

Figure 21: DoE-based Pareto-point Generator (DPG)
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experiments. DPG uses a Plackett-Burman (PB) [fatel986] set of experiments.
Using a PB set of experiments provides the accunaegled while only growing linearly

as the parameter count grows. The number of expatsmeeded for a PB experiment
grows linearly with the number of factors. The RBttwill gives DPG the average value
of each of the parameters in the system, as wélleasnpact of each parameter.

DPG begins by estimating the values for the unknoamfiguration for each pair
of parameters and for each metric. The system mluated for each estimated
configuration to determine the accuracy of theneste. The difference between the
actual and estimated values is then used to contpeteedge error for each pair of
parameters. An edge error of zero means the essmagre accurate. The edge error
grows as the two parameters are more dependenaan ather. The edge error is the
weighted parameter in the interdependency grapfur€i22 shows the primary edges
from the parameter interdependency graph found B¢ Dverlaid on Platune’s original
graph. In Platune’s original parameter interdepangegraph, the buses that connect the
processor to the caches and then to memory aceraidered to be independent of each
other.

DPG found that the bus network and the cache pdesse@re sometimes
interdependent. The interaction between the cached buses varies over the
benchmarks, as shown in Figure 22. In Figure 2Z Band D represent the instruction
cache. The data cache’s parameters are E, F, aRdr@neters |, K, and Q represent the
coding method for each of the three buses in teeesy. In the jpeg application, only the
instruction cache is interdependent with the busebjle the buses have some

interdependencies between each other. For bl_hestoghe caches and bus network are
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Figure 22: Parameter interdependencies found by DPG. The rimag@dependencies have been overlaid over the
original Platune parameter interdependency gragbiicker lines indicate larger dependencies. Pammseiot in our
simulations have been crossed out.

(b) (c)
all highly interconnected. In g3fax, the supplytagk is interdependent with the cache

and bus network. For g3fax, the bus network hastrang interdependencies between
the buses.

DPG is able to creatpplication specific parameter interdependency tsfor
each metric, using both the application and thefqria, which will generate a more
accurate interdependency graph. The interdependgraphs for each metric are then
normalized and combined to create a single errluevior each pair of parameters. This
normalization step allows DPG to handle an arbytrarmber of metrics. To continue to
the ultimate goal of generating the Pareto poihis,edges are sorted based on the error
between the actual and estimated values.

DPG starts with the pair of parameters that hasitieest edge value. The subset
of parameter values that was chosen earlier is tised to generate exhaustive data for
that pair of configurations, a maximum of nine géguafations. The set of points is then
pruned to contain only the local Pareto points. &tige is then removed from the graph

and the two nodes are merged into one. The gedeRdeeto points now become the
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valid values for the combined node. This procegmats until all nodes have been
merged into a single node. Edges are only used wherifferent nodes are connected
by that edge. For example, in Figure 22(a), parametand | will merge first into one
node. Then D and K will merge, but this new nodeststs of D, | and K. When the edge
that connects | and K is visited, the two nodesadready part of the same node, so the
edge is ignored.

If the system has parameters with more that thedeeg, a partial Pareto graph
will be generated. This partial Pareto graph wilbw the extremes of the system and
give the designer the general shape of the Patete.cThe designer then can see what
part of the Pareto curve is the most interesting) facus on that subsection only. We
extended DPG to fill in the missing region, by @sthe points on either end of the region
of interest. DPG fills in the region by seeing whijgarameters vary between the points
on either edge of the region. DPG then determint@siwparameters are held constant on
either side of the region and locks those parameifédre remaining parameters are then
varied based on the ranges seen at the edges okgimn. By using the parameter
interdependence graph, a local search of the ragidone. This search can either add
some of the intermediate values or run a complesach, depending on time and
resources available. This step allows DPG to searafiuch larger design space while

focusing initially on a much smaller and manageablace.
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Figure 23: Platune’s configurable architecture.

i% d5 rr-i%
size linegize assoc size linesize assoc [width code addr width addr code
256 16 1 12 = 1 32 Bi 32 Bi
2048 2 2048 16 2 Gr Gr
a9 a 8192 32 4 In In
m-d% $-m
width code  |addr width addr code |width  code | addr width addr code | Supply Voltage
32 Bi 32 Bi 32 Bi 32 Bi 1
Gr 248
In 4.1
MIPS | [ g MEM
«—>| D$

45 Experiments

To test the DPG algorithm, we used three diffeptatforms, the Platune SoC simulator,
Noxim Network on Chip simulator, and the Microblgdatform. Platune SoC simulator
will be examined first. Figure 23 shows three valuesed in our tuning for each
parameter and the constants used for the remapangmeters, along with the basic
block diagram of the system. Platune has 19 pams¢hat the developer can modify,
ranging from the properties of caches, memory huaed voltage scaling. These 19
parameters can be combined to form approximatelyp'8xconfigurations. For this work,
we used a subset of the parameters that limiteddisgn space to 1.3 million
configurations.

We randomly chose six benchmarks from the EEMBCNMBE 2006] and
Powerstone benchmark suites. We compared to SFAf@nthoroughness, we also

considered another DoE approach, in which SFA rathan DoE (using Plackett-
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Burman experiments) was used to find the impactawth parameter, followed by the
Pareto point generation approach for SFA — we tefénis approach as DoE IOT. Figure
24 shows the results for the JPEG benchmark. SFAabke to find similar points as was
our DPG algorithm for the reduced three level $etomfigurations having a total of 729
configurations.

The DoE 10T approach also achieved similar resuitaverage, but on JPEG was
unable to find any point near the top of the regstiown in Figure 24. However, as
previously shown, SFA can perform badly dependinglee base configuration. Three
different base configurations were used and sicpguifi variation was found in the results.

As the design space of the system increases, tine effects of SFA will increase.

Figure 24: Pareto curves for JPEG. SFA was able to find ttie eadpoints in this example. DoE IOT only found
one of the needed endpoints. DPG was initially &bknd good points on either side of the mairt pathe Pareto
curve, and DPG'’s fill-in process finds the remagnpoints.
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Figure 25: Runtime comparison for JPEG with different algamith
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DoE IOT achieved similar results to SFA, but irsléisne, as shown in Figure 25.

The DPG algorithm was always able to find pointst thvere at least as good as
SFA. Figure 24 shows the filled-in portion of tharéo curve, as well as two end points
used to fill in the region. We compared the randmaialgorithms [Ascia 2005] and our
work from chapter 3 since both used Platune forlamaesign spaces, and both used
JPEG as a benchmark. Our DPG techniques evaluage tto four times fewer
configurations. The randomized approached used aBA®000 runs respectively, while
DPG required 576 runs to complete. Such reductiotuitively makes sense —
randomized approaches intentionally search largabeus of configurations and then
narrows in on good configurations, while DPG callgfupre-specifies which
configurations to consider such that the designcespia thoroughly searched in a
statistically rigorous manner. Platune’s paramdtéerdependence graph approach
required over 10,000 runs. In our experiments, liiug relatively small benchmarks,

DPG executed for about one hour while the randosnéggroaches would have executed
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for four to six hours (based on the number of agunfations examined as reported in
previous papers).

While DPG is able to achieve a 3-4x applicationesjpp over genetic and
simulated annealing approaches, DPG also prodbettdr results than randomized
approaches and for Platune’. DPG was able to genexabetter Pareto curve than
Platune’s parameter interdependency graph. Platonered only 75% of the Pareto
points found by DPG for the JPEG example. A Papaimt is considered covered if
Platune found a point within 5% from DPG’s Paretminp By comparing minimum
Euclidian distance between the two Pareto curveddyian average error of 12%.
Previous randomized approaches were reported tb fewer Pareto points than the
Platune approach (typically 90%-95% coverage),tand would have even less coverage

of DPG’s points.

Figure 26 compares Platune’s parameter interdepeydgaph with DPG for the

Figure 26: Pareto points from Platune versus DPG (with fi)lfior b1_histogram.
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Figure 27: Pareto points for Platune vs. DPG (with fill-iny fg3fax.
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b1l histogram benchmark. As seen in the figure, QBGerates better Pareto points over
the entire region. The average distance betweetwiheurves is 26%. DPG needed 270
runs compared to the 1800 needed by Platune, $peadup of over 6x in terms of tool
runtime.

Figure 27 examines the g3fax benchmark. Platunainexy3500 runs to generate
the Pareto curve, while DPG requires 750 runs. dlerage distance between the two
curves is 14%. DPG consistently finds more poimtstiee horizontal tail of the curve.
Platune’s parameter interdependency graph has ¢mge in this portion of the graph, as
seen in the three graphs. DPG is able in all ais t® generate points within this region.

DPG is able to quickly find the location of the &arcurve. The designer is then

able to use this location to determine what regvdhbest suit the designer’s needs. DPG

then can focus only on that region to completeRheeto curve. The designer finds the

Pareto points of interest without needing to fildPareto points.
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We also experimented with Noxim, a Network on Csiipulator. We evaluated
ten of Noxim’s parameters. The parameters weredédiinto two groups, those that
represent the hardware on the system and thoseefirasent the software running on the
platform. From the possible applications, we ranijoselected a series of benchmarks
with one, two, or seven applications in each beramkmWhen combining multiple
applications to create a new benchmark, equal we¥gk given to each application. We
then ran the DPG algorithm and SFA to determinePdueto points.

Figure 28 shows the final results from two of tlesen benchmarks that we ran
on Noxim. Part (a) shows a single algorithm, whasth SFA and DPG performed well.
All the other single application benchmarks that examined showed similar results.
Part (b) shows a two-application benchmark. In ringti-application benchmarks, the
metrics for each application were combined to fah@ new metrics. However, if both
applications need to be run, the designer may neezkamine not just the combined
performance but how each benchmark individuallyfqgrers on the platform. Part (b)
shows the individual performance of each applicatibhe graph has two clusters of
points. Application 1 is the larger curve, and Apgtion 2 is the small cluster of points
below Application 1. DPG was able to find a gootiadfePareto curves for the combined
benchmark as well as the individual applicationg.uBing synthesis which takes on the
order of tens of minutes during the explorationcess the key feature of our developed
The point SFA found is the Pareto point for botlplegations, however, a single point

does not allow the designer many design options.
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We also tested the DPG algorithm on the Microblaiagform. For these tests we
used Xilinx Platform Studio and the ML310 developindoard. We examined 64
configurations for 12 benchmarks from the EEMBC apowerstone benchmark
[EEBMC] suites. 64 configurations were examined pgarameters examined are the 6
datapath components that can be added to the Méambbarrel shifter, floating-point
unit, multiplier, divider, MSR, and PCMP instruatm Figure 29 shows the results of the
DPG algorithm for four of the benchmarks. DPG wiale &0 find almost all of the Pareto
Figure 28: NoC Pareto graphs, (a) shows a single applicaBoth DPG and SFA find the Pareto curve. (b) has two

applications and DPG found a shared set of Pa@tig SFA found only one configuration, which iected below.
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Figure 29: DPG results for Microblaze configuration. Four blemarks, aifir, BaseFP01, canrdr, and engine are
shown. These benchmarks are typical of the resaéia from the DPG algorithm. DPG finds the compdeteof Pareto
points in all but the BaseFP01 example, where $sa8 the point near 50,000,000. Many data poiatexremely
close in value, when this occurs we added versipating to additional points which creates theic@rbards seen in
the Exhaustive graphs.
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points, when compared to the exhaustive data $&& @as unable to find all the Pareto
points in the BaseFP0O1 benchmark. The point ard@thdillion equivalent LUTs was
not found. DPG examined on average 38 configurafidor the examples shown in
Figure 29.

The aifir, BaseFP01, canrdr, and engine benchmes§sired 38, 44, 38, 38
configurations respectively to generate the Papeiots. The average runtime was 10
hours to complete the exploration, while exhausto@k 16.5 hours to complete. DPG
requires some initial configurations for analysistime platform and application. This

analysis step consists of the Design of Experim&atg Runs and Compute Edge Error
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Figure 30: Percent of the design space that needs to be exjplothe analysis phase of DPG.

Number of Analysis Total design Percent of
parameters phase space design
space
6 34 64 53.13%
10 67 1,024 6.54%
15 136 32,768 0.42%
20 234 1,048,576 0.02%

stages as shown in Figure 21. As the number ofnpatexs increases, the total design
space will increase exponentially, while the analyphase increases linearly.

Figure 30 shows the growth of both the analysissphend the design space, as
the number of parameters increases. As the nunibmrameters increases, the percent
of the overall design space that needs to be sedrdbcreases quickly. We wanted to
show the exhaustive data as a point of comparisonye limited the total number of
parameters. With multiprocessor systems, the beoeDPG in the Pareto search will

become much more pronounced in reduced tool rustime
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Chapter 5
DoE exploration in the presence of invalid

data points

Many configurable systems with a high level confahility have some invalid
configurations. An invalid configuration is a capiration where the application is
unable to execute using the configuration. Desigrexperiments assumes that every
configuration is valid in the design space. In gesipaces where some configurations are
invalid modifications are needed in the DoE apphodw this chapter, we will present a
method to handle invalid configurations and to prethvalid configurations and avoid

the invalid configurations.

5.1 Challengeswith invalid data points

FPGAs are an example of a system that has invahéiguration with the design space.
FPGAs are used in a variety of cases from genergicIto application specific
acceleration. To explain the challenges we will EB&As as an example.

Off-the-shelf FPGAs support a wide variety of citapplications. Occasionally,
FPGAs are incorporated into an integrated cird@) @s a core, to implement a circuit

application likely to be revised after the IC ismaéactured, accommodating changes in
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published standards, bug fixes, or upgrades. The EBGA supports reprogrammability
while obtaining better performance than a micropssor. Incorporating the core FPGA
into the IC rather than using an off-the-shelf FP@#Ap can reduce parts, board size,
power, and cost. Major FPGA vendors offer core ivass of their architectures, though
not broadly advertising this feature.

For core FPGAs, tuning the FPGA architecture toapelication can reduce size
or improve performance compared to the generaitaatbre of off-the-shelf FPGAs. For
example, a low-complexity application may only nekthput LUTs (lookup tables),
while a more complex application might benefit fr@anput LUTs. Similarly involves
application-specific processors versus generalgagprocessors [CHUNHO et al. 2000;
CONG et al. 2004]. Application-specific FPGAs wer@roposed before
[HAMMERQUIST 2008][LYSECKY 2008] and are availabtemmercially.

A problem with some configurable systems is that &b applications can be
mapped onto all possible configurations of a platfofor example, dense connectivity in
a particular application may cause place-and-rontan FPGA to fail for a configuration
lacking sufficient routing resources. Such failuesults ininvalid pointsin the design
space. Such points can derail convergence of depigre exploration algorithms.

We mapped the core FPGA tuning problem to the DaEagigm to see what
effects the architecture and tool parameters havapplication performance and FPGA
size. The DoE tool flow for such tuning appear&igure 31. The DoE tool generates an
initial set of “screening” experiments based onwHble exploration time as specified by
the designer. The user runs the experiments anddesothe resulting performance/size

data back to the DoE tool. The tool analyzes tha flar parameter impacts. The DoE
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tool uses the information about each parametereternhine the overall impact of the
parameter on the design. Then, in this work, th@ pyedicts the best configuration
directly from the impact of the parmeters, orderipgrameters by positive impact
magnitude and greedily selecting the high or loW&avhich yielded the positive impact.

Alternatively, the prediction heuristic could invelrunning more experiments.
5.2 Handling invalid points

The non-continuous nature of the IC and FPGA domgields invalid points in the
design space. Two types of invalid points existe Tinst is a structural invalid point.
Structural invalid points are points where the aqunfation defines an invalid system. For
example, an FPGA with 48 inputs but containing amtge LUT of 4 inputs is invalid; a
single 4-input LUT cannot handle 48 FPGA inputse Becond type of invalid point is a
runtime invalid point. A runtime invalid point ocuwhen the configuration defined is
valid but the CAD tools cannot map the applicatoro the configuration. For example,
a configuration may have 20 routing channels, hobamay not be able to find a routing
using less than 30 channels. We assume that the tBolEdoes not know why a
configuration fails. Rather, the DoE tool merelyriformed that the point is invalid. The
tool then tries to determine if the invalid poifdow a recognizable pattern.

Figure 31 shows the process the tool uses to amdhe invalid points. The tool
first determines if the results are usable or retest is needed. If the number of valid
points is greater than the number of parameters phe, the tool proceeds to the next
stage. However, when the threshold is exceededptiieanalyzes the invalid points by
checking if a parameter’s values strongly correlaith the invalid points. To determine

if a parameter has a correlation to the invalicadatints the tool examines the ratio of
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Figure 31: DoE flow to handle invalid configurations.
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invalid to valid data points for each parametere Tatio is developed by counting the
number of invalid points for each level of the paeger. The ratios are computed for all
parameters. Parameters that have no correlatighetonvalid configurations typically
have a ratio of one to one, meaning that the nurobievalid points is equal for both the
high and low levels for the parameter. If the numiiieinvalid configurations is at least
20% more than the number of valid configuratioh®, tool assumes that the parameter
correlates with the invalid points. A correlatingrameter is assumed to be responsible
for the invalid points. The tool then generates meeyperiments where the parameter is set
to its “good” value which does not cause the invg@oints. When no single correlating
parameter is found, the tool looks for pairs ofgpaeters that correlate, using an n-
squared algorithm. The same method is used whétnipdor pairs of parameters as
when finding a single parameter which correlatethéoinvalid points.

In many cases, not all invalid points will be expéd with the above correlations.
When there are unexplained points left, the todlliwcrease the number of experiments.

If the number of unexplained points is less thalf dfathe total runs, then the tool will
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Figure 32: Plackett-Burman screening runs. The top table éabblormal is the beginning of the standard Plaekett
Burman set of runs for 11 parameters. The bottdne tshows the reverse table, which we use to teafgle invalid
points.

Normal P1 P2 P3 P4 P5 R6 P7

8 P9 P10 P11

=)
runl 1 1 -1 1 1 ] -1 -1 -1 1 -1
run 2 1 -1 1 1 1 -1 -1 -1 L -1 1
run 3 -1 1 1 1 -1 -1 -1 1 -1 il 1
run 4 1 1 1 -1 -1 -] ] -1 1 n -1
run 11 -1 1 1 -1 1 ] 1 -1 -1 1 1
run 12 -1 -1 -1 -1 -] -] -1 -1 -1 1 -1
Reverse Pl P2 P3 R4 PS5 P6 P7 P8 P9 P10 P11
runl -1 1 -1 -1 -1 ] ] 1 -1 L 1
run2 1 -1 -1 -1 1 1 ] -1 L n -1
run3 -1 -1 -1 1 1 1 - 1 L -L 1
run4 -1 -1 1 1 1 -] 1 -1 4 -1
run 11 1 -1 1 -1 -] -] 1 L il 1 1
run 12 -1 -1 -1 -1 -] -] -1 -1 -L 1 -1

double the number of runs. If the number of unexpl points is greater than half of the
total runs, the runs are quadrupled.

DPG uses two methods to increase the number ofriexpats. The first is to
reverse the array. Figure 32 shows an example wfthis is done. The top table is the
normal method for generating a Plackett-Burmanetalbb generate the reversed table,
the defining run is reversed, from which the renmjruns are generated via left shifts,
as before. The last run on the reversed tablesisd@ime as the last run in the original table
(all -1s), so can be omitted when the two tablescambined.

The second method to increase the number of expetims to invert the table.
The tool uses this method after the above revens#thod. The values for each parameter
are inverted, i.e., all 1s are changed to -1sands are changed to 1s.

When the two methods are combined, the number péraxents is quadrupled.
The increased number of experiments allows foreatgr number of failed experiments

while increasing the final quality of the resulisgure 33 illustrates a screening test for
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Figure 33: VPR - Table showing experiments and results for ¢ieuits. INV means that the configuration was

invalid

0 1 2 3 4 5 6 7 8 9| 10 dsip clma
1 1 1] -1 1 1 1 1 1] -1 1 -1 INV
2 1| -1 -1 1 1 1 1| -1 1| -1 1
3] 1] -1 1 1 1 1] -1 1| -1 1 -1
4| -1 1 1 1 1| -1 1| -1 1| -1 -1
5 1 1 1 1] -1 1] -1 1] 1] -1 -1 INV INV
6 1 1 1| -1 1| -1 1 -1 -1 -1 -1
7 1 1] -1 1] -1 1] -1} -1| -1| -1 1
8 1] 1 1] 1 1 -1 -1 -1 -1 1 1 INV INV
9| -1 1] -1 1] -1} -1| -1| -1 1 1 -1
10 1] 1 1] 1] -1 -1 -1 1 1] -1 1 INV
11 1] -1} -1 -1| -1 1 1] -1 1 1 INV INV

INV INV

'_\
N
1 ]
Rk
1
'_\
1
H
1
'_\
1
'_\
'_\
'_\
1
H
'_\
H
1
H

13 1) -1 1 1 1] 1 1 1] -1 -1 INV

14 -1 -1] -1 1 1] -1 1 1] -1 -1 1 INV
15| -1] -1 1 1, -1 1 1] -1 -1 1 1 INV
16| -1 1 1] -1 1 1] 1| -1 1 1 1 INV
17 1 1] -1 1 1] -1 1 1 1 1 1

18 1] -1 1 1] -1 -1 1 1 1 1 -1 INV
19| -1 1 1] -1 -1 1 1 1 1] -1 1 INV
200 -1 -1} -1} -1 -1 -1} -1 -1 -1] 1 -1 INV INV

two benchmark circuits, dsip and clma, on an FPGA Wl parameters (to be introduced
shortly). INV means the tool obtained an invaliguk for that benchmark with that
configuration of parameters.

The dsip circuit's 20 runs resulted in six invapdints; the 14 valid points are
greater than the minimum of 12 needed for basi¢yaisa The tool will recommend to
the user that, time permitting, a new set of 20eexpents be run, but the tool can
proceed with the given runs.

The clma circuit’s 20 runs resulted in 12 invalmirgs. The eight valid points are
insufficient for a meaningful analysis. The tookke a correlating parameter and finds
that parameter 4 has the strongest correlation—+tepxhthe ten experiments with

parameter 4 at -1 are invalid. The tool sets paramEto 1 and generates a new set of
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experiments. Since parameter 4 does not fully éxpddl invalid points, the tool will

double the total number of runs for the new sebqiferiments.

5.3 Parameterized systemswith invalid points
53.1 VPR

This section describes our experimental setup ppli@ation-specific FPGA tuning with
the Virtual Place and Route (VPR) framework usingEDmethods. Our objective is to
find the best FPGA configuration in terms of calipath or area for each application.
Invalid points present a challenge, as previousgussed.

We examined 11 parameters within the VPR frameveofflow. The eleven
parameters span the three parts of the framewd@ldiss known as T-VPack, VPR, and
the architecture file. Six of the parameters afftaet VPR tool and the remaining five
affect the FPGA architecture. T-VPack uses threth@farchitecture parameters to cluster
the logic into larger blocks. The VPR documentatists expected tradeoffs for many of
the parameters.

Figure 34 shows each parameter and which parteofithv uses the parameter,
and shows each parameter's possible values. A lblestription of the parameters
follows; for further information consult the VPR é&fsManual [BETZ 2000]. Below, P
means Parameter, and # means number:

P 0 — Fast place and route

P 1 - # of iterations per simulated annealing step
P 2 — # of routing channels available.

P 3 — Algorithm used to route the circuit

P 4 — Starting temperature of simulated annealing
P 5 — Algorithm used to place circuit.

P 6 — # of inputs per cluster within the FPGA

P 7 — # of LUTSs per cluster

P 8 — # of 1/0O ports per row and column of the FPGA
P 9 — Size of each LUT in the FPGA

P 10 — Type of switch matrix used in the FPGA
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Figure 34: VPR parameters and values used to generate thgnde3iwo parameters, fast and router_algorithm,
only have a low and high setting. Inputs-per-cluite special case since the value is dependettteovalues of
two other parameters, Cluster size (A) and LUT e

Settings

# | Parameter vpr vpack ardh Low Middle High
0 | Fast X disable enable
1 | Inner number X 1 1( 20
2 | Route channel width X 50 100 150
3 breadth

Router algorithm X first timing driven
4 | Initial temperature X 5( 100 150
5 _ bounding net tir_ning path tir_ning

Placement algorithmp X box driven driven
6 | Inputs per cluster X X A (A*B)/2 A*B
7 | Cluster size X X 4 6 8
8 | Pads X 4 6 8
9 | LUT size X X 4 5 6
10 | Switch type X subset wilton universal

53.2 ISE

We created an experimental setup for applicatia@eifip tuning of the Xilinx ISE
[XILINX 2011] synthesis process using DoE metho@ur objective is to find a
parameter configuration for each application legdmthe best critical path. A challenge
is that not all configurations are valid for eagiplcation being examined, as discussed
earlier. ISE has a great number of parametersctraiaffect the critical path of the final
circuit. In this study, we examined 81 of thoseapagters. The parameters were picked
as if the user had no understanding of the parame®art of our goal is to show that
even with “useless” parameters, the tool can dallermine the meaningful parameters
and ignore the useless parameters. For example;Gaererate Asynchronous Delay
Report” parameter will not have any effect on thmalf circuit since the parameter only

generates documentation for the designer. Howeesigners may not fully understand
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Figure 35: Parameters used in Xilinx ISE experiments

ID Parameter name Stage -1 1
1 Allow Logic Optimization Across Hierarchy Map FALSE TRUE
2 CLB Pack Factor Percentage Map 33 100
3 Combinatorial Logic Optimization Map FALSE TRUE
4 Extra Effort Map None CIr%?)th)nsiiebT:an
5 Generate Detailed MAP Report Map FALSE TRUE
6 Ignore User Timing Constraints Map FALSE TRUE
7 Map Effort Level Map Standard High
8 Map Slice Logic into Unused Block RAMs Map FALSE TRUE
9 Optimization Strategy (Cover Mode) Map Area Speed
10 Pack I/0O Registers/Latches into IOBs Map Off Forcl)rsjrggfjstsand
1 Perform Timing-Driven Packing and Map FALSE TRUE
Placement
12 Power Reduction Map FALSE TRUE
13 Power Reduction Map FALSE TRUE
14 Register Duplication Map Off On
15 Starting Placer Cost Table (1-100) Map 1 67
16 Trim Unconnected Signals Map FALSE TRUE
17 Use RLOC Constraints Map No Yes
18 Extra Effort (Highest PAR level only) Place & Route None Clrcr)]r;)t(l)r;l;eb%n
19 Generate Asynchronous Delay Report Place & Route FALSE TRUE
20 Generate Clock Region Report Place & Route FALSE TRUE
21 Generate Post-Place & Route Power Report Place & Route FALSE TRUE
22 Generate POSt-PIT\l/(I::diLIROUte Simulation Place & Route FALSE TRUE
23 Ignore User Timing Constraints Place & Route FALSE TRUE
24 Place & Route Effort Level (Overall) Place & Route Standard High
25 Placer Effort Level (Overrides Overall Level) Place & Route None High
26 Power Reduction Place & Route FALSE TRUE
27 Power Reduction Place & Route FALSE TRUE
28 Router Effort Level (Overrides Overall Level) Place & Route None High
29 Starting Placer Cost Table (1-100) Place & Route 1 67
30 Use Bonded 1/0Os Place & Route FALSE TRUE
31 Add /0 Buffers Synthesize - XST FALSE TRUE
32 Asynchronous To Synchronous Synthesize - XST FALSE TRUE
33 Automatic BRAM Packing Synthesize - XST FALSE TRUE
34 BRAM Utilization Ratio Synthesize - XST 33 100
35 Case Implementation Style Synthesize - XST None Full-Parallel
36 Case Synthesize - XST Maintain Upper
37 Cross Clock Analysis Synthesize - XST FALSE TRUE
38 Decoder Extraction Synthesize - XST FALSE TRUE
39 Equivalent Register Removal Synthesize - XST FALSE TRUE

the parameters that can be configured and thentogt be able to handle equally well
parameters that have a large impact and parantbtgrgave little to no effect.
The 81 parameters are divided into four generalggo translate, synthesize-

XST, map, and place and route. The four groupsessmt the four major stages in the
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Figure 36 (cont.): Parameters used in Xilinx ISE experiments

ID Parameter name Stage -1 1
40 FSM Encoding Algorithm Synthesize - XST Auto One-Hot
41 FSM Style Synthesize - XST LUT BRAM
42 Generate RTL Schematic Synthesize - XST No Yes
43 Global Optimization Goal Synthesize - XST | All Clock Nets Mansz;m
44 Keep Hierarchy Synthesize - XST No Yes
45 Logical Shifter Extraction Synthesize - XST FALSE TRUE
46 Max Fanout Synthesize - XST 500 100000
47 Move First Flip-Flop Stage Synthesize - XST FALSE TRUE
48 Move Last Flip-Flop Stage Synthesize - XST FALSE TRUE
49 Multiplier Style Synthesize - XST Auto LUT
50 Mux Extraction Synthesize - XST Yes Force
51 Mux Style Synthesize - XST Auto MUXCY
52 Netlist Hierarchy Synthesize - XST As Optimized Rebuilt
53 Optimization Effort Synthesize - XST Normal High
54 Optimization Goal Synthesize - XST Area Speed
55 Optimize Instantiated Primitives Synthesize - XST FALSE TRUE
56 Pack 1/0 Registers into IOBs Synthesize - XST No Yes
57 Priority Encoder Extraction Synthesize - XST Yes Force
58 RAM Extraction Synthesize - XST FALSE TRUE
59 RAM Style Synthesize - XST Distributed Block
60 Read Cores Synthesize - XST FALSE TRUE
61 Register Balancing Synthesize - XST No Yes
62 Register Duplication Synthesize - XST FALSE TRUE
63 Resource Sharing Synthesize - XST FALSE TRUE
64 ROM Extraction Synthesize - XST FALSE TRUE
65 ROM Style Synthesize - XST Distributed Block
66 Safe Implementation Synthesize - XST No Yes
67 Shift Register Extraction Synthesize - XST FALSE TRUE
68 Slice Packing Synthesize - XST FALSE TRUE
69 Slice Utilization Ratio Synthesize - XST 33 100
70 Use Clock Enable Synthesize - XST No Yes
71 Use Synchronous Reset Synthesize - XST No Yes
72 Use Synchronous set Synthesize - XST No Yes
73 Use Synthesis Constraints File Synthesize - XST FALSE TRUE
74 Verilog 2001 Synthesize - XST FALSE TRUE
75 Write Timing Constraints Synthesize - XST FALSE TRUE
76 XOR Collapsing Synthesize - XST FALSE TRUE
77 Allow Unexpanded Blocks Translate FALSE TRUE
78 Allow Unmatched LOC Constraints Translate FALSE TRUE
79 Create I/O Pads from Ports Translate FALSE TRUE
80 Netlist Translation Type Translate Timestamp Off
81 Use LOC Constraints Translate FALSE TRUE

synthesis process. Translate has 5 parameterd)eSyre-XST has 46, Map has 17, and
Place and Route has 13. The full list of the patamas found in Figure 35. The table

shows the parameter ID, the parameter name, whage f the synthesis process the
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parameter affects, and the low (-1) and high (1jesused in the experiments, for all 81
parameters. For an explanation of each of the petaas) see the Xilinx documentation

[XILINX 2011].

54 Reaults

541 VPR

We used our DoE technique to perform parameteresarg on 19 benchmark circuits
distributed with VPR. VPR has a total of 20 benchabut one of the benchmarks
failed on all evaluations, so we have not includedVe also ran single-factor analysis
for comparison, using it to generate parameter atgpaand then using the same best-
configuration prediction heuristic as used in o@E>approach.

Figure 36 (a) shows the screening results of sifagior analysis for the critical
path of the dsip benchmark circuit. Single-factoalgisis requires 12 experiments, one
for the base configuration and one for each ofdle¥en parameters. The cluster size
parameter (circled) yields an invalid point so itspact can’'t be determined. The
parameter having the largest effect is init_t, ihé&ial temperature for simulated
annealing. The lower temperature setting appegpsouce a better critical path than the
higher setting. That finding is counterintuitiveomhally a higher temperature yields
better results at the cost of longer runtime. Sirfgttor analysis’ determination is likely
a fluke of the base configuration and not genecabss other configurations. Note that
single-factor analysis determines several otheapaters to have little or no effect.

Figure 36 (b) shows results of our DoOE screeninghe same dsip circuit. DoE
determines that all parameters have some effedt @eiermines inputs per cluster to

have the largest effect on the critical path. Tihdihg is intuitive. Increasing the number
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Figure 36: VPR experiment—Determined critical path impactssgieonds) from a screening test on the dsip circuit
for each parameter’s low and high settings, asaéted by: (a) single-factor analysis, (b) DoE. &ltite large
differences in the determined impacts betweenwloei¢chniques.
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of inputs per cluster allows for more logic to Baged within each cluster, thus reducing
critical path length. The parameter with the seclamgest effect is the cluster size. This
finding is also intuitive. A larger cluster sizdaals more logic to be placed within a
single cluster, reducing critical path length. lbntrast to single-factor analysis, DoE’s
determination of init_t's effect is intuitive, witthe higher setting yielding a shorter
critical path.

Using the data from the single factor and the Dofening tests, the tool predicts
the best configurations. The new configurationsenteen run to determine performance
and area. The single-factor approach yielded &aripath of 7.10e-8 seconds, while the

DoE approach yielded 2.56e-8—a 2.7x speedup, theemhiring 20% longer to run the

analysis.
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Figure 37: VPR experiment—Determined critical path impactsdsip as determined by single-factor analysis, this
time with a base configuration using low valuesdthparameters rather than high values. Note tamdtic difference
from Figure 36(a); single-factor analysis is veepsitive to the base configuration.
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Furthermore, DoE does not require selection ofse lganfiguration, in contrast to
single-factor analysis. The earlier single-factoalgsis base case had all parameters set
to their high values. Figure 37 shows determinetical path impacts by single-factor
analysis if instead the base case used the lovesdbr all parameters. The configuration
yielded by single-factor analysis yields a critipakh of 2.29e-8 seconds in 12 runs. That
path is shorter than obtained with the previoug lwamfiguration, though DoE still yields
a 13% shorter path. Note that the all-low base igardtion may not be best for a
different tool/platform. In fact, the best base foguration for single-factor analysis could
have some parameters high and others low. Findiagbest base configuration is an
exploration problem itself. Single-factor analys@é be improved by using multiple base
configurations with a wider variety of parameterttisgs; such improvements are
precisely the intent of DoE.

We ran the DoE approach on all 19 circuits. 10hef 19 circuits had sufficient
valid points for the analysis. Nine circuits reguairadditional experiments: apex2, clma,
elliptic, ex1010, frisc, pdc, s38417, seq, and .splar each, an additional set of 40

experiments was sufficient to provide the needdd.d?or none of those 9 benchmarks
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Figure 38: VPR experiment—Ciritical path delays of the tune@PHor the 19 circuits.
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was a single parameter responsible for all invpbehts. The DoE tool, therefore, could
not assume that a new set of 20 would be free@lioh points, so the tool doubled the
number of experiments from 20 to 40 for the seamuehd. The DoE tool thus required a
minimum of 20 experiments to determine the impdaarh parameter and a maximum
of 60, with an average of 38 experiments per bemackhm

Interestingly, the experiments showed that thresarpaters had the highest
likelihood of causing invalid points: the initisgrhperature for simulated annealing, the
placement algorithm, and the inner number, tenttingeld invalid points for their low
values.

Figure 38 shows the results from the tuning pro¢essll 19 circuits, for DoE,
single-factor, and two static configuration (aMloand all high) approaches. The results
shown for single factor analysis use an all-higeebaonfiguration. The DoE approach
yielded an average 1.3x improvement in the critipath speed versus single-factor
analysis, as much as 2.2x for bigkey. The all-ldatis configuration performed on

average almost as well as the DoE approach. Theessicof the all-low static
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configuration is by chance in this experimenthi designer modified the meaning of the
low and high parameters from Figure 34, the resutisld change. The DoE approach
does not rely on such extremes. The extremes ire dommmeworks are not necessarily
good or even valid choices.

We also experimented with optimizing area ratheanttcritical path. VPR
provides a slightly optimistic area number whenfénsf are used, which is what we used
here. Figure 39(a) shows determined impacts bylesifagtor using the all-high base
configuration. Figure 39(b) shows DoE-determine@awcts. For the b06 circuit when the
final configurations were created, the areas otwwecircuits were the same.

We ran area optimization on all 19 circuits. DoEtpeuformed single-factor
analysis (all-high base configuration) by 50%, véasr; single-factor analysis was better

by 40% for the all-low base configuration.

Figure 39: VPR experiment—Determined area impact (measuréerims of the feature size of the transistors) en th
dsip circuit for each parameter’s low and highisgt as determined by: (a) single factor analybisa DoE screening
test.
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Figure 40: VPR experiment—Tool runtimes for application-spiecifining of an FPGA platform for the 19 circuits.
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Figure 40 shows the tool runtimes to generate thsults. The static
configurations required only one run each. On ay&raur DoE method ran 30% longer
than single-factor analysis.

While this paper deals with application-specific G#&° tuning, the same
techniques can be used for domain-specific tuningRGAs. By running the tests on a
suite of applications and combining the resultsaf@iven metric, a designer can tune the
FPGA to the average case needed by the given domain

542 Xilinx ISE

We also applied our techniques to synthesize tloaits for a fixed commercial FPGA,
using Xilinx ISE. Xilinx ISE is a synthesis IDE (egrated development environment)
used to generate circuits for FPGAs. We used tl@&99 benchmarks [CORNO et al.
2000]. We selected only the first 11 benchmarkstdueme constraints. The benchmarks
included simple finite state machines, interruptndiars, and simple encryption
algorithms.

The DoE tool first runs a series of 84 experimeotsy to determine the effect of

each parameter. For the b06 benchmark, half ofitbeset of runs resulted in invalid
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Figure 41: Xilinx ISE experiment—The top 10 parameters fromrgarrupt handler, b06.
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points. Invalid points in the context of Xilinx ISEean that ISE did not produce a
working circuit. The tool found that one parameterrelated perfectly with the invalid
points— the “Add 1/O Buffers” parameter. When théfbrs are disabled, the benchmark
failed. After the tool set the value of the 1/0O Basf parameter to always include the
buffers, the second round of 84 tests was run.sHegend set of tests completed without
any invalid points. After the completion of the B4hs, the tool examined the results of
the 125 valid runs and determined the effect ohgaarameter on the circuit. All the
benchmarks behaved in the same manner. The “AddBUfPers” parameter must be
enabled for any of the benchmarks to route sucaigsf

Figure 41 shows the impact of the top 10 parameteds06, an interrupt handler.
The graph shows that the FSM encoding algorithithés most important parameter,
almost by a factor of 2x. After the first parametée impact of the parameters drops off,
producing a long tail of low impact parameters. Aiddally, the graph shows the critical

path of the Xilinx default configuration.
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Figure 42 shows the comparison between the bagex>ibnfiguration, our DoE
approach, single factor, and two static configorai (all low and all high). The base
Xilinx configuration needs to evaluate one confgjion, while the DoE approach
required 169 runs. The Single Factor approach witigh base case required 82 runs to
complete. Single Factor with a low base case ordglyced one valid run, when the /0O
buffers were enabled, which was not sufficient &dedmine a good configuration. The
DoE approach took 3-5 hours to complete for eaclcmark. The graph shows that the
DoE approach outperformed the other options itbatlone case. In one case, b06, single
factor was best. The DoE approach on average peodaiccuits 40% faster than the
Xilinx default. In the case of b08, DoE outperfodnihe Xilinx default by 85%. DoE
outperformed single factor on average by 22%.

After examining the impact of the parameters oVeth@ benchmarks, we found
the importance of the parameters varies greatly these benchmarks. For example, in
b06 the most important parameter was the FSM engaalgorithm. However, averaged
over all the benchmarks, the encoding algorithnkednin the bottom third in terms of

overall importance.
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Figure 42: Xilinx ISE experiment—Ciritical paths delays for tbiecuits.
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Four parameters on average were in the top 10 saatbthe benchmarks: router
effort level, place and route effort level, asymmious to synchronous, and use
synchronous reset. Router effort level and plack rante effort level are always in the
top 10 across all the benchmarks. The other twsangetimes part of the tail for a few
benchmarks. DPG previously predicted that the “GreAsynchronous Delay Report”

parameter should have no impact on the final systedithese results were confirmed.
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Chapter 6
DPG: Flexible design space exploration for

parameterized system

6.1 DPG (DoE Pareto-point Generator)

We mapped the design space exploration problerhadbE paradigm, which we call
the DoE Pareto-point Generator. The DPG flow fahstuning appears in Figure 43. We
developed a methodology that will guide the degigtitgough the search space
exploration process. We created a web frontendeddPG flow, which will allow others

to use the DPG flow. DPG works on the assumpti@t the designer does not always

Figure43: DoE tool flow for architecture tuning.
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understand the effect or interdependencies of dranpeters within the system. DPG
therefore asks the designer to input only basiormétion about the parameters in the
system. DPG asks the designer to specify what tatihe designer wishes to use to
evaluate the system, or the metrics of the sysB#® asks for the number of parameters
and the number of levels each parameter has. DR& the designer the number of
metrics and if there are any weights that the aesigvishes to apply. The information
DPG requests would be easily available to any desi¢rying to configure a system.
DPG also requests the estimated time for each emget and the amount of time the
designer has available to run the experiments. DBE&s the times to estimate the
maximum number of experiments that can be evaludd®G allows the designer to
specify the total time for exploration unlike masindomized techniques where the
overall runtime in unpredictable. DPG’s noveltysliem modifying the flow of the DoE-
based design space exploration. Previous methods treated a method to run the
design space exploration but commonly use eithedawm approaches or a fixed
methodology. DPG tailors the search to both théesysand the time restrictions of the
designer.

DPG uses the parameter, metric and time restrgtiordetermine the first step in
the tuning process. There are two primary souroewdriation in the execution of the
flow; the number of levels each parameter has aednumber of metrics. DPG can
handle systems that have two levels for all pararegbr a mixture of parameters with a
variety of levels.

DPG has two major phases. The first is a charaetgon phase, where DPG

looks at the parameters and tries to charactehieesystem under investigation. In the
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second stage, DPG navigates the design space. B&Gup to half the total number of
experiments in the analysis phase and the remaaipgriments are used to generate the
Pareto points.

The rest of this section describes the four differpaths that our DPG
methodology can take depending on the inputs amgutsiof the system. Each step of
the methodology takes into account the numbermgging experiments which modifies
the number of experiments DPG generates in thestept

6.1.1 2 level parameters — single metric system

A 2level design is a design where every parametdrarsystem has only two levels. The
two levels are defined as high and low in this wéitr unordered parameters, the choice
of high and low is up to the designer. As seeniguife 44, the first step is to determine if
an exhaustive or near exhaustive set of testsgsilple, given the number of experiments
that the designer has available. In many casegusxtive runs will not be possible. DPG
uses a set of Plackett-Burman experiments astasfgp to begin the characterization of
the system. The Plackett-Burman experiments arsadl set of experiments which grow
linearly with respect to the number of parametdrdike exhaustive search which grows
exponentially, the linear growth of the PlackettrBBan experiments, allow DPG to work
on systems with a high number of parameters.
DPG then uses the information gathered from thealnset of experiments to

determine the relative importance of the parametethe system. Figure 45 shows the
results of the initial screening tests, for thepdsenchmark using the Platune system. The

first parameter has a very small effect compareth¢éoother parameters. Parameters 7
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Figure44: DPG flow using design space exploration. A dadmedmarks decision points. The bold stages magk th
stages affected by the type of system.
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and 8 appear to be most important to the overatesy. Parameters 2, 4, 9, 10 and 11 are
important but less so than parameters 7 and 8.

DPG then uses the information about the relativyeoitance of the parameters to
determine how to proceed in finding the best camgon. DPG will use the most
important parameters first in the search for Panetints. After this first set of
experiments, DPG can generate a guess as to thedmdguration for the system. DPG

uses a simple approach to generate the best coatiigu The designer can then run that
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Figure45: Example of the initial screening analysis using®Plackett-Burman experiments.
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configuration and see if that configuration or gangviously seen configurations meet the
designer’s requirements.

In many cases, the first set of experiments witlproduce a design that meets the
designer's requirements. DPG will then determine thterdepdencies between the
parameters if there are experiments left in theradtarization phase. DPG will then
create a set of experiments that will build thesidependencies between the important
parameters, using the remaining experiments inctieacterization phase. Using the
above example DPG will look at the interdependenbitween parameters 7 and 8. DPG
will include the interdependency tests for as maithe parameters as possible given the
number of experiments. The interdependency infdonatells DPG which parameters
are interdependent. The interdependencies for éinenpeters are computed and ranked
from the most interdependent to the least. DPG coespthe slope for each parameter. If
the slopes are equal then the parameters are teotiépendent. When the lines are not
parallel then the angle that the lines meet detemithe degree of interdependence

within the system.
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After the characterization phase, DPG moves inkostticond phase where DPG
guides the designer through the search space.d¥ansim Figure 44, DPG builds the first
set of experiments by first adding the parametat llas the highest impact on the overall
system to the list of parameters that to be examiB&®G then adds any parameters that
have a high degree of interactions to any of tharpaters currently on the list. For this
phase, a high degree of interactions means ifitles lcross at an angle of 60 degrees or
more. If there are additional experiments left, DR@ then add the next highest
parameter that is not already on the list, alonip \@ny interdependent parameters. DPG
will repeat this process until either there arenmare experiments left. The designer can
stop the processes at any point if the designeatisfied with the current results. The
goal of the second phase is to find the pointhendesign space that are on the Pareto
frontier. The Pareto frontier is the optimal sePaifreto points [Peterson 1986].

6.1.2 2 level parameters — multi-metric system

When multiple metrics are used is very similar e single metric version. The main
difference occurs when DPG is deciding which camfagions are the best. In a multi-
metric system, DPG generates the Pareto-pointerratian a single point. In the
characterization phase, DPG will generate an iefmddency graph for the major
parameters for each of the metrics. The paramet#rsaffect the metrics in different
ways and have different interdependency graphsh Wi¢ interdependency graphs for
each metric, the graphs are merged together. Thgemkappens by taking the maximum
value from the graphs for each edge. By using thaximum value in the
interdependency graph, the graph shows the interdigmcies that may have the greatest

impact on the system.
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The second phase will guide the designer to fimdRAareto points for the system
rather than the maximum or minimum of the systemmiany multi-metric systems, an
objective function is used to find the best confegion. However, with an objective
function, the designer needs to know the exactioglship between the metrics in order
to create the correct objective function. If theigaer wants to use an objective function,
the single metric flow is available. Pareto poigenerated by DPG have the advantage
that the designer can see the range of each ohétecs and gain a better understanding
of how the metrics affect each other. DPG usestimebined interdependency graph to
generate the first set of experiments of the parars¢hat have the greatest effect on the
system.

6.1.3  Multi-level parameters — single metric system

In designs that have parameters with more thanléwels require changes to how DPG
generates the experiments. The initial screeningaslified to include a value in the
middle of the two endpoints. The additional midpdielps DPG to understand the shape
of the curve for each parameter. DPG will then fotiie rest of the characterization
phase on looking at the interdependencies of thenpeters, as was done in systems with
only 2 level parameters. For designs that are abowation of multi-level and 2 level
parameters, DPG will not add in the midpoint fag thlevel parameters.

The initial experiment in the second phase is unghkd. After the first set of
Pareto points are generated, DPG will continueaiegate experiments, until DPG no
longer finds any improvements. Once the Paretotpdiave stabilized, then DPG will

use the remaining experiments and allow all thelkewf the parameters to be used.

6.1.4  Multi-level parameters — multi-metric system
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In systems that have both multiple levels and mpldtmetrics, combinations of the two
flows are used. The multiple metric flow only affethe analysis of the points generated,
while the multi-level flow only affects the geneoat of the experiments. These changes

do not interfere with each other so DPG will congbihem.
6.2 Reaults

We examined several different types of applicatimnsee how the DPG approach would
work in a variety of different system types. We rexaed three platforms that use the
various paths through the DPG flow.

For some systems, we were able to obtain exhaus@iaech results. Exhaustive
search usually take much longer than the desigigdres to spend tuning the system. We
obtained such results to evaluate how well DPG fivang the true Pareto points of the

design space. The exhaustive data for the systethssiwork took weeks to generate.
6.2.1  Network on chip (NoC)

We experimented with Noxim, a Network on Chip siatat [Fazzino 2008]. We

evaluated ten of Noxim’s parameters. We dividedghemeters into two groups, those
that represent the hardware on the NoC system lawgk tthat represent the software
running on the system. From the possible applinatiove randomly selected a series of
benchmarks with one, two, or seven applicationseach benchmark. We combined
multiple applications to create new benchmarks. @ ran the DPG algorithm and

Single Factor (SF) analysis to determine the Paretats.
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Figure 46: NoC results for a synthetic application 1.
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DPG using the multi-metric flow previously discudggenerated the Pareto points
for the design space. We ran these tests using tfifeerent design times. Figure 46
shows the results of DPG as well as the SF resiitis. graph shows the exhaustive
design space for the application. DPG was ableind the Pareto curve for the
application using only 50 experiments. The 50 expents required less than one hour to
execute. In this example, the SF method was ahpedduce almost the same results. We
also examined how DPG would perform given two haurd three hours to explore the
design space. In this example, DPG generated thme s&t of Pareto-points. For this
example, DPG was able to find all the Pareto-poitken we allowed DPG to run for
three hours, DPG had sufficient time to run a feadtorial design.

Another scenario we examined was a combined apiplicawhere two
applications are being run but the designer doékmmv which application will be run
more often in the field, so both must work equaligil. Since the designer needs both
applications to run equally well, both applicatiomsist be tuned together. Figure 47

shows the results when the design points are @plgo the designer can see the results
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Figure47: NoC results for a synthetic application 4.
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for each application. In this example, DPG was ragdile to find the same set of Pareto
points, in contrast to SF which finds only one poifhe point that SF found is on the
Pareto curve but a single point does not give tbsigther options. Again, the full
exhaustive data is shown for reference. In thig ctiee two applications are combined to
form a new benchmark, Application 4. The new beratkrcontains two applications,
Application 2 is the smaller cluster of points beldhe Application 1 space. For
Application 4, we gave DPG two hours and three sivamperform the exploration and in
each case, DPG found the same set of Pareto-pdimsthree hour test was able to use a
half factorial to determine the Pareto-points.

6.2.2 FPGA tuning

We examined VPR which is a routing tool for FPG& used eleven VPR parameters
to customize the FPGA architecture to the appbceti Some of the parameters used are
the size of each LUT, number of LUTs per clusthg type of switch matrix, and the

routing algorithm. We used DPG to minimize theicait path for the circuits. In this
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Figure 48: Results from VPR for a single metric design.
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example, we are using two levels for each paranatdrare optimizing the designs for
one metric.

We ran DPG three different times with different nmaxm runtimes for the
exploration. Figure 48 shows the results acrossnge of VPR benchmarks. The three
DPG bars show the final critical path generatedOBG for the given number of
experiments. Each bar shows the critical path efdincuit after the exploration. The
graph shows that DPG was able to perform well actbs entire range of benchmarks.
By adding in the extra experiments, the 60 exparimwersion was able to find a critical
path that was 7% better than the 15 experimentorerg/hile requiring an increase in the
total exploration time from 30 minutes to 6 hounsaverage. The single factor results are

presented for comparison in Figure 48.

6.2.3  System exploration

Givargis developed Platune [Givargis 2004] for tgna configurable system-on-a-chip

(SoC) platform. Platune allows the designer to tthree instruction and data caches as
well as the buses that connect the processor tondie memory. Due to the complex

interactions among the parameters, Givargis deeanéast equation-based estimation
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approach for evaluating a particular configuratiorbe too inaccurate. Platune instead
simulates an application running on a configuredC So evaluate a configuration.
Simulation of one configuration can take secondsmiautes. Due to the enormous
configuration space of 4.48 x1012 possible SoCigarditions, simulation of all possible
configurations for a given application could takecades. Platune thus heuristically
prunes the configuration space based on assumpifanslependence among parameter
groups, allowing the designer to explore less thal? of the configuration space,
reducing exploration times to hours in generalegidlPalesi 2002] reduced exploration
time further using genetic search heuristics, thostll requiring tens of minutes to
hours. Platune achieves 14x energy reductions myndgua SoC to a given application,
compared to running on a base configuration ofSh€.

All of the above times were for small applicatiolege applications may require
hours per configuration simulation, resulting ineke or months for exploration.

Platune has nineteen separate parameters thateceonbgured. Each parameter
has anywhere from three to twenty-four levels. pheameters range from cache sizes,
cache to memory bus widths, and even voltage leu@le to the large number of
parameters, we need to tune this system in stddgsed on the time required per
configuration evaluation and the time available taming, we decided to first design a
test with twenty-four experiments to determine wiaators have a significant impact on
the final energy consumption of the system. For fird stage, the parameters are
mapped to two level DOE by using the largest andllest value of each parameter.
Using a two level Plackett-Burman experiment, wsigrs the low level to be smallest

valid value for each factor and the high level éothe highest value for each factor. The
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Figure49: Results from the g3fax Platune example.
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twenty-four experiments yield a set of four to sev&ctors that have a significant impact
on the energy consumption of the entire systemceSime are using the largest and
smallest values, if the change between these issigpificant, we assume that the
parameter does not have a significant effect oretiezgy of the system.

To determine the best configuration, we need tth&urexamine the significant
factors. We therefore ran a second experiment anitia the parameters that are found to
be significant in the first experiment, with allhet factors set to the value that was
determined by the DoE tool to be the best for thae-significant values. The second
experiment uses a three level experiment using tyaggven experiments for all the
benchmarks. The three level experiments allow bet&rminations of how each factor
or group of factors affects the overall energyhaf system. The third level allows DPG to
see the design space for each parameter not as hut as a curve for better estimation
of the effect of the parameter.

DPG was used to examine the Platune System Coafigartool [Givargis 2004],

where we examined nine parameters each with tleredsl, and two metrics cycle count

92



Figure50: Results from the jpeg Platune example.
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plus the energy of the system. We show two reptatea benchmarks g3fax and jpeg,
in three different scenarios. The three scenarses2b, 150 and 300 experiments, which
represent a total design time of 10 minutes, 35utes) and 70 minutes. Figure 49 shows
the results from three different runs of DPG usdifferent runtimes for the g3fax
benchmark. In Figure 49 we see that the small aadium experiment produced the
same Pareto points. The large 300 run experimestalke to find a set of Pareto points
near the Pareto frontier. The full data set is ghawthe graph for reference. In this
example, the DPG did not find all the points on Bageto frontier. However, in the large
set DPG found a point that had the same cycle caodtwas within 0.001 J on the
energy axis.

Figure 50 shows the results from the jpeg exanipléiis case, we see the small
set did not perform well but the medium and largpegiments found the same point
DPG found only one point was needed for the Paratue, since the point was better

than all the other points in both dimensions. Athwvihe previous example, DPG did not
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find the optimal point but was within 0.02 Joulégle minimum energy and the same in

terms of the cycles needed.
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Chapter 7

Contributions

This work developed a flexible framework for thenig of parameterized systems,
which may include invalid configurations withoutetldesigner have any knowledge of
how the parameters affect the system and the framkewdapts to the designer’s
requirements as well as the time available forttiméng.

The DPG tool provides the designer guidance forgdespace exploration. The
designer tells the tool the parameters and metnaisare of interest and the tool designs
the experiments to determine which parametersmaperitant to the overall system, and
how the parameters relate to each of the metries.tdol takes the time constraints of the
designer when designing the needed experimentst &ie tool determines the properties
of the parameters, DPG begins to calculate thet®q@@nts for the system. Once the
Pareto frontier has been found, DPG will beginiltarf the missing points of the frontier
using the additional levels for the parameters witire than three levels.

DPG is able to provide results that are comparabtd application specific
methods with fewer configurations evaluated. Udimg Platune framework, DPG was

able to find the Pareto points in 1.5 hours whd@egic and Pareto simulated annealing
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took about 4 and 6 hours respectively. The Plataathod took 44 hours. The different
approaches produced similar results.

Some aspects of design space exploration still maptbvement. As the number
of parameters in a given system grow beyond onedeainthe Plackett-Burman runs can
not handle that large number of parameters. A neadibn will be required, probably
using a hierarchical approach to divide the sygtamameters initially to determine the
most important parameters. Another area wheredugtudy is needed is for parameters
that have many levels. The current method use® thoints for most of the analysis,
which is effective when the parameter is eithegdinor quadratic. Higher order functions

could cause a problem as the tool would not unaledsthe real shape of the curve.
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