
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Targeted Maximum Likelihood Estimation and Ensemble Learning for Community-Level Data
and Healthcare Claims Data

Permalink
https://escholarship.org/uc/item/1mt403bz

Author
Zhang, Chi

Publication Date
2019

Supplemental Material
https://escholarship.org/uc/item/1mt403bz#supplemental

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1mt403bz
https://escholarship.org/uc/item/1mt403bz#supplemental
https://escholarship.org
http://www.cdlib.org/

Targeted Maximum Likelihood Estimation and Ensemble Learning for Community-Level
Data and Healthcare Claims Data

by

Chi Zhang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Biostatistics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Mark J. van der Laan, Chair
Professor Alan E. Hubbard

Associate Professor Jennifer Ahern

Spring 2019

Targeted Maximum Likelihood Estimation and Ensemble Learning for Community-Level
Data and Healthcare Claims Data

Copyright 2019
by

Chi Zhang

1

Abstract

Targeted Maximum Likelihood Estimation and Ensemble Learning for Community-Level
Data and Healthcare Claims Data

by

Chi Zhang

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Mark J. van der Laan, Chair

This dissertation discusses the Targeted maximum Likelihood Estimation (TMLE) and
ensemble learning for community-level data and healthcare claims data, along with the con-
duct of simulation studies and practical examples for causal inference research in medical
data. Specifically, we resolve two common questions: how to estimate the community-based
causal effect of community-level stochastic interventions, and how to take advantage of data-
adaptive ensemble learning to problems of estimation in public health data.

Chapter 1 begins by reviewing the targeted maximum likelihood estimation (TMLE). We
also provide a more detailed summary to each of the rest of the chapters.

Chapter 2 studies the framework for target maximum likelihood estimation and statistical
inference for the causal effects of community-level treatments on individual-level outcomes
where the outcomes could be correlated because of the interactions among individuals from
the same communities and the shared community-level covariates. This chapter presents a
new solution that considers the case in which the treatment mechanism may cause stochasti-
cally assigned exposures and the corresponding causal parameter may require a more easily
achievable positivity assumption. Given two different structural equation models, we develop
two semi-parametric efficient TMLEs for the estimation of such a community-based causal
effect. The proposed TMLEs have several crucial advantages. First, both TMLEs can make
use of individual level data in the hierarchical setting, and potentially reduce finite sample
bias and improve estimator efficiency. Second, the stochastic intervention framework pro-
vides a natural way for defining and estimating casual effects where the exposure variables
are continuous or discrete with multiple levels, or even cannot be directly intervened on.
Also, the positivity assumption needed for our proposed causal parameters can be weaker
than the version of positivity required for other casual parameters.

Chapter 3 builds on the work described in Chapter 2 and presents an open-source software
tool for implementing TMLE of the average causal effect of community-level intervention(s)
at a single time point. This software supports a wide variety of TMLE implementations.
For example, the package supports univariate or multivariate arbitrary (i.e., static, dynamic

2

or stochastic) interventions with a binary or continuous outcome. It also allows users to use
either weighted intercept-based TMLE or unweighted covariate-based TMLE.

In Chapter 4, we propose a new ensemble approach to gain a better understanding of
the natural history of nonalcoholic steatohepatitis (NASH). Super Learner (SL) is an en-
semble method that uses V-folds cross-validation to build the optimal weighted combination
of the predicted values from a library of user-specified prediction algorithms. Because data-
adaptive methods are allowed in a SL library, SL can be used to avoid unrealistic paramet-
ric assumptions without overfitting the data in practice. This proposed AUC-maximizing
ensemble approach couples each prediction model with a comprehensive feature selection
algorithm, including Bayesian risk ratio method, column sparsity based regularization, and
L1 regularization.

i

To my beloved parents Mao and Daining,

my lovely cousin Liyuan, my wise grandmother Junhu,

my other family members and friends, for their love and support throughout my life

ii

Contents

Contents ii

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Targeted maximum likelihood estimation . 1
1.2 Chapters summaries . 4

2 Targeted maximum likelihood estimation of community-based causal ef-
fect of single time-point community-level stochastic interventions 6
2.1 Introduction . 6
2.2 Definition of statistical estimation problem 8
2.3 Estimation and inference under the general hierarchical causal model 14
2.4 Estimation and inference under the restricted hierarchical model with no co-

variate interference . 23

3 tmleCommunity R Package for target maximum likelihood estimation
for community-level data 28
3.1 Introduction . 28
3.2 Implementation in the tmleCommunity package 29
3.3 Simulation studies with community-level interventions 45
3.4 Discussion . 55
3.5 Answers to some frequently asked questions (FAQ) 56
3.6 Acknowledgments . 58

4 Prediction of diagnoses of nonalcoholic steatohepatitis in a large admin-
istrative claims database using ensemble learning 59
4.1 Introduction . 59
4.2 Methods . 61
4.3 Using the Bayesian RR prediction algorithms within the SL 68
4.4 Using the Bayesian RR screening algorithms within the SL 71

iii

4.5 Using the Bayesian RR screening algorithms outside the SL 74
4.6 Discussion . 80
4.7 Chapter Appendix . 81

Bibliography 95

iv

List of Figures

3.1 Box plots of the point estimates from three algorithms for sample sizes n = 1000
(left) and n = 5000 (right) in Simulation study 3. 54

4.1 AUC and running time for each Bayesian RR prediction algorithm with a unique
set of tuning parameters and any further screening step. (a) and (b) are results
based on the NASH_nogroup and NASH_pregroup datasets, respectively. 70

4.2 Number of claims codes selected by different screening methods. Number of codes
selected by the Bayesian RR method, column sparsity based regularization, and
L1-regularization for the NASH_nogroup (a) and NASH_pregroup (b) dataset. 71

4.3 Computation times for SL5 and SL6 with 9 different screening algorithms in the
Nash_nogroup and Nash_pregroup datasets. 73

4.4 AUC for SL5 and SL6 with 9 different screening algorithms in the Nash_nogroup
and Nash_pregroup datasets. 74

4.5 AUC for each of the individual algorithms, SL5 and SL6 with a 9 different screen-
ing algorithms in the Nash_nogroup and Nash_pregroup datasets. 75

4.6 AUC for SL7 and SL8 with 9 different screening algorithms in the Nash_nogroup,
Nash_pregroup and Nash_nogroup* datasets. 76

4.7 Number of covariates before and after SL8 screening step based on each of the
Bayesian RR screened datasets. 77

4.8 Negative log-likelihood for each Bayesian RR prediction algorithm with a unique
set of tuning paramters and any further screening step. (a) and (b) are results
based on the NASH_nogroup and NASH_pregroup datasets, respectively. 89

4.9 Negative log-likelihood for SL5 and SL6 with 9 different screening algorithms in
the Nash_nogroup and Nash_pregroup datasets. 90

4.10 Negative log-likelihood for each of the individual algorithms, SL5 and SL6 with a
9 different screening algorithms in the Nash_nogroup and Nash_pregroup datasets. 91

4.11 Negative log-likelihood for SL7 and SL8 with 9 differenet screening algorithms in
the Nash_nogroup, Nash_pregroup and Nash_nogroup* datasets. 92

v

List of Tables

3.1 Simulation study 1. Simulation-based performance of TMLE, IPTW, Gcomp
estimators with stochastic exposures over 200 repetitions of the simulation, when
the working model holds (ψ0 = 55.57%) and when the working model is not a
reasonable approximation (ψ0 = 55.78%). 51

3.2 Simulation study 2. Performance of TMLE, IPTW, Gcomp estimators with bi-
nary exposures over 200 repetitions of the simulation, when the working model
approximately holds (ψ0 = 4.16%) and when the working model does not hold
(ψ0 = 3.71%). All outcome and treatment mechanisms are correctly specified.
All reported bias, SE, rMSE and Coverage are multiplied by 100. 52

4.1 Details of the Super Learner libraries considered. 67
4.2 AUC and running time for SL1, SL2, SL3, SL4 and the best LASSO BRR model

based on the NASH_nogroup (a) and NASH_pregroup (b) datasets. 72
4.3 AUC and running time for larger SL libraries SL2, SL4, SL6 and SL8 based on

the NASH_nogroup, Nash_pregroup and Nash_nogroup* datasets. 78
4.4 Contribution of each algorithm to the final convex combination for SL2, SL4, SL6

and SL8 based on the NASH_pregroup dataset. 79
4.5 List of 19 prediction algorithms that have been used in NASH data analysis and

hyperparameter(s) used in the corresponding R package 82
4.6 Negative log-likelihood for SL1, SL2, SL3, SL4 and the best LASSO BRR model

based on the NASH_nogroup (a) and NASH_pregroup (b) datasets. 88
4.7 Table C2. Negative log-likelihood for larger SL libraries SL2, SL4, SL6 and SL8

based on the NASH_nogroup (a) and Nash_pregroup (b) datasets. N.A. indicates
those SL methods do not apply in such cases. 92

4.8 AUC and Running time for smaller SL libraries SL1, SL3, SL5 and SL7 based on
the NASH_nogroup and Nash_pregroup datasets. SL1 included ML algorithms
that utilized baseline covariates. SL3 expanded SL1 libraries with the 9 BRR
prediction algorithms that utilized claims codes. SL5 included ML algorithms
that were coupled with a three-step screening algorithm, whereas the screening
algorithm in SL7 were two-step since Bayesian RR step was performed outside
the SL. N.A. indicates those SL methods do not apply in such cases. 93

vi

4.9 Contribution of each algorithm to the final convex combination for SL1, SL3, SL5
and SL7 based on the NASH_pregroup datase. 94

vii

Acknowledgments

During my doctoral research, I have benefited from the advice, help, and support of
numerous people. I would like first to express my deepest gratitude and appreciation to my
research advisor Mark van der Laan for his help and support during my time at Berkeley.
Throughout my coursework and during the writing of my dissertation, Mark has patiently
and generously trained me as a scholar and equipped me with research skills. Thank you,
Mark, for giving me the opportunity to join your research group, and the insightful comments
and critiques that inspired this dissertation and pushed me to develop and refine my thinking.
I consider myself incredibly lucky to be one of your students and to work with many amazing
individuals in our group.

I am extremely grateful to my dissertation committee, which spent time reading my
prospectus and provided valuable insights. I want to thank Alan Hubbard for his support
and encouragement throughout my years at Berkeley. Without you, I would not have the
opportunity to work for Mark in the beginning and intern at Gilead Sciences. I also would
like to thank Jennifer Ahern who involved me in her research project and asked priceless
questions regarding my research. Jennifer not only spent time discussing about research
questions but also offered me emotional supports when I needed. I will always remember the
times when we sit together in your office to talk about family. I am also thankful to Maya
Peterson who served on my qualifying exam committee, for her thoughtful criticisms and for
her enthusiastic support.

Aside from my committee members, I would also like to thank other faculty I interacted
with during my time at Berkeley. I have learned so much from them in lectures, seminars, and
in personal discussions. My special thanks go to Ani Adhikari who made this opportunity
to do a biostatistics PhD possible in the first place by supporting me in transferring to the
program.

I am greatly indebted to the extraordinarily dedicated staff of the biostatistics, statistics
and economics department, especially La Shana Porlaris, Sharon Norris and Heather Iwata. I
would not have survived graduate school were it not for your administrative and professional
support.

Oleg A Sofrygin, Ivan Diaz, Laura B. Balzer, Anand Chokkalingam, Ellie Matthay, Dana
Goin, Laura Telep, and Robertino Mera have also played important roles in my research
on different projects. I am thankful to have had the opportunity to work with Jim Pitman,
Haiyan Huang, Hank Ibser, Helmut Pitters, Shobhana Stoyanov in many pleasing experience
I have had teaching both undergraduate and graduate statistics.

My Journey at Berkeley would not have been so happy without being surrounded by
my lovely fellow students and friends, including Yang Hu, Yujia Zhang, Su, Liu, Shengqin
Su, Yizhou Guo, Su Liu, Yuan He, Chaoran Guo, Yuting Ye, Fengshi Niu, Yanqiao Wang,
Lei Kang, Jin Rou New, Mary Combs, Ivana Malenica, Simon Walter, Jonathan Levy, and
many others. I will always treasure the time that we spent together and the memories that
we made.

viii

Berkeley offered me great opportunities to explore my interests beyond statistics and
academia. I have been so fortunate to have met many people along the way who are pas-
sionate about what they are doing and driven to make the world a better place. Words are
powerless to express my gratitude to everyone who has contributed to my professional and
personal development. I fondly acknowledge all those people who helped me at different
phases of my five years at Berkeley. I cannot imagine where I would be now without your
support and company. I really want to thank my landlord Xan Joi who offered me a great
place to stay in the last four years and taught me all the valuable life lessons.

Finally, I thank my family. All of you have given me so much unconditional love, patience
and support. Thank you for everything you have ever done for me and ever taught me. I
am truly blessed with the most amazing family in the world. I love you all.

1

Chapter 1

Introduction

1.1 Targeted maximum likelihood estimation
The objective of this section is to provide an intuitive explanation of certain elements of the
TMLE and a succinct summary of how it works. We are not going to present a comprehensive
or rigorous review. For more details we refer to [78] and [79].

van der Laan and Rubin [79] first proposed the theory of the targeted maximum likeli-
hood estimator (TMLE), which combines the favorable characteristics of estimating equation
methods with those of plugin substitution estimators. For example, plugin substitution esti-
mators, such as maximum-likelihood- based substitution estimators of the g-formula (MLE),
would respect the global constraints of the statistical model, while the estimating equation
methods, such as inverse probability of treatment-weighted estimators (IPTW), are regular
and asymptotically linear.

The TMLE is an asymptotically efficient substitution estimator of a target parameter
of interest Ψ(P0) of a true data distribution P0 ∈ M, where M is the statistical model
that contains possible probability distributions. We assume that Ψ is finite dimensional
pathwise differentiable at each P ∈ M with the canonical gradient D∗(P), also known as
the efficient influence curve (EIC). That is, for each of the parametric working submodels
Mε = {Pε : ε} ∈ M that coversM and satisfies Pε=0 = P0, and its score S = d

dε
logP (ε)|ε=0

at ε = 0, we have
d

dε
Ψ(Pε)|ε=0 = P0vS

where v is called a gradient of the pathwise derivative, and Pf =
∫
f((u)dP (u). D∗(P) is

the only gradient of the pathwise derivative that is an element of the tangent space T (P),
which is defined as the closure of the linear span of all scores of submodels through P in
the Hilbert space L2

0(P). Also, D∗(P) has a mean of zero, and its variance is a generalized
Cramer-Rao lower bound for the variance of locally unbiased estimator of Ψ(P0), which is,
at a minimum, the inverse of the Fisher information.

Without loss of generality, assume that there is no hierarchical structure in data, and so
the estimation is based on n observed independent and identically distributed copies of a

CHAPTER 1. INTRODUCTION 2

random variable O = (W,A, Y) ∼ P0. Then the true joint density p0 of O can be factorized
as

p0(O) = pW,0(W)pA|W,0(A|W)pY |A,W,0(Y |A,W) ≡ QW,0(W)g0(A|W)Q̄0(A,W)

This target parameter only depends on P0 through a relevant Q-factor, i.e., Ψ(P0) = Ψ(Q0),
where Q0 = Q(P0) ≡ (Q̄0, QW,0), and the remaining factor, g0 = g(P0) is a nuisance pa-
rameter. Recall that, an estimator Ψ̂(Pn) of Ψ(P0), that maps the empirical probability
distribution Pn of O1, . . . , On into a value for the parameter it targets, is asymptotically
linear with influence curve IC(O) if it satisfies

√
n(Ψ̂(Pn)−Ψ(P0)) =

1√
n

n∑
i=1

IC(Oi) + op(1)

and an estimator is asymptotically efficient if and only if its influence curve is equivalent to
the efficient influence curve, i.e., IC(O) = D∗(O).

In gerenral, a TMLE estimator can be constructed by the following five steps (assume
that the outcome is either binary or bounded continuous):

1. Estimating the outcome mechanism Q̄0.

As an initial estimator Q̄n of Q̄0, we can simply regress the outcome Y onto the exposure
and baseline covariates (A,W), using the negative log-likelihood loss function:

−L(Q̄)(O) = Y log Q̄(A,W) + (1− Y) log(1− Q̄(A,W))

so that Q̄0 = arg min
Q̄
E0L(Q̄)(O).

2. Estimating the treatment mechanism g0.

To derive an estimator gn of g0 that will be used in the targeting step, we can simply
regress the exposure A onto the covariates W . We could, for example, use the negative
log-likelihood loss function again if the exposure is binary.

3. Constructing a "clever covariate" Hn(A,W).

Here, the clever covariate is used to define a parametric working submodel that fluctu-
ates the initial estimator Q̄n to remove bias for Ψ(P0) in the targeting step. It’s called
the ”clever covariate” since it defines the fluctuation direction. For example, for the
average treatment effect (ATE) parameter, the clever covariate can be defined as

Hn(A,W) =
A

gn(1|W)
− 1− A
gn(0|W)

=
2A− 1

gn(A|W)

4. Updating the initial estimator Q̄n.

CHAPTER 1. INTRODUCTION 3

Fluctuate the initial estimator Q̄n(A,W) with a parametric submodel, indexed by the
univariate parameter ε:

logit(Q̄∗n(A,W)) = logit(Q̄n(A,W)) + εnHn(A,W)

where logit(x) = log(x
1−x), and logit(Q̄n(A,W)) is served as a fixed offset and εn is

the resulting coefficient in front of the clever covariate. The amount of fluctuation is
determnined by minimizing the empirical loss function:

εn = arg min
ε

1

n

n∑
i=1

L(Q̄n(ε))(Oi)

where L(Q̄n(ε)(Oi) could be user-specified, for example, a negative Bernoulli log-
likelihood loss function:

−L(Q̄n(ε))(Oi) = Yi log[Q̄n(ε)(Ai,Wi)] + (1− Yi) log[(1− Q̄n(ε)(Ai,Wi))]

5. Computing the TMLE estimator.

The plug-in TMLE estimator is computed by using the updated estimate Q̄∗n and the
empirical distribution of W . For example, the TMLE estimator of the ATE is

ψTMLE
n = Ψ(Q∗n) =

1

n

n∑
i=1

[
Q̄∗n(1,Wi)− Q̄∗n(0,Wi)

]
where Q∗n = (Q̄∗n, QW,n)

In step 1 and 2, we highly recommend that a minimum loss-based learning, such as Super
Learning, is used to obtain the estimators. It can avoid making misspecified paraemetric
assumptions. In step 4, the parametric working submodel {Q̄n(ε) : ε} and the loss function
L(Q̄n) are chosen so that a linear combination of the components of the derivative of L(Q̄n(ε))
at ε = 0 equals to the efficient influence curve D∗(Q̄n, gn):

d

dε
L(Q̄n(ε)(O)|ε=0 = D∗(Q̄n, gn)(O)

As mentioned in the beginning of this section, the EIC is an element of the tangent space

T (P), and therefore the TMLE solves the EIC estimating equation 0 =
n∑
i=1

D∗(Q∗n, gn)(Oi).

This is the key for establishing the asymptotic efficiency and double robustness of the TMLE
under regularity conditions. In addition, the statistical inference such as standard errors and
confidence intervals can be constructed based on the influence curve of the TMLE estimator.

CHAPTER 1. INTRODUCTION 4

1.2 Chapters summaries
The more detailed summaries of the three works which make up this dissertation are provided
below:

Chapter 2: This chapter describes the robust semi-parametric approach to estimate
the community-based causal effect of single time-point community-level stochastic interven-
tions. Unlike the commonly used parametric regression models such as mixed models, that
can easily violate the required statistical assumptions and result in invalid statistical in-
ference, target maximum likelihood estimation allows more realistic data-generative models
and provides double-robust, semi-parametric and efficient estimators. In addition, current
applications in causal inference, especially in the context of hierarchical data structures, have
focused on deterministic interventions in which each unit in population receives a fixed value.
However, positivity violations can easily occur in many cases when certain subgroups in a
sample have a (nearly) zero probability of receiving some interventions of interests. Target
maximum likelihood estimators (TMLEs) for the causal effect of a community-level static
exposure were previously proposed by Balzer et al [2]. In this chapter, we build on this work
and present identifiability results and develop two semi-parametric efficient TMLEs for the
estimation of the causal effect of the single time-point community-level stochastic interven-
tion whose assignment mechanism can depend on measured and unmeasured environmental
factors and its individual-level covariates. The first community-level TMLE is developed
under a general hierarchical non-parametric structural equation model, which can incorpo-
rate pooled individual-level regressions for estimating the outcome mechanism. The second
individual-level TMLE is developed under a restricted hierarchical model in which the addi-
tional assumption of "no covariate interference within communities" holds. Then, the target
quantity of interest is defined as the mean of counterfactual community-level outcomes if
all communities in the target population receive probabilistically assigned treatments based
on a known specified mechanism, which is also called a "stochastic intervention". Here the
community-level outcome is defined as the aggregate of the outcomes measured among indi-
viduals who are members from the same communities. The causal effect of interest may also
be a contrast of the mean of the exposure-specific outcomes under two different stochastic
interventions.

Chapter 3: This chapter describes the tmleCommunity package - an open-source soft-
ware tool for implementing targeted minimum loss-based estimation (TMLE) of the ef-
fect of multivariate arbitrary community-level intervention(s) at a single time point on an
individual-based outcome of interest, including the average causal effect. Implementations
of the inverse-probability-of-treatment-weighting (IPTW) and the G-computation formula
(GCOMP) are also available. The main function calculates the marginal treatment effect
among independent community units (or independent and identically distributed individ-
ual units if no hierarchical structure exists) using TMLE, IPTW and GCOMP. Besides, it
allows user-specified data-adaptive machine learning algorithms through SuperLearner, sl3
and h2oEnsemble packages. The usage of the tmleCommunity package, along with a few
examples, will be provided in this chapter.

CHAPTER 1. INTRODUCTION 5

Chapter 4: Approaches to high dimensional classification problems, particularly those
using large administrative claims databases, are rapidly evolving. Dimensionality reduction
and feature selection, along with data-driven machine learning algorithms, play crucial roles
in those cases. In this chapter, we use SL to predict diagnoses of nonalcoholic steatohepatitis
(NASH) in historical US administrative claims data. NASH is uniquely specified in the most
recent version of claims coding (ICD-10-CM, US adoption October 2015) but was grouped
with other conditions during the prior ICD-9-CM coding era. We first consider a SL library
of 19 base learners that contains both nonparametric and parametric models, and evaluated
its predictive performance via area under the curve (AUC) and computation time metrics.
Results show that SL outperformed any individual base learner included in the library and
additional claim codes in the claim database could be used to supplement researcher-specified
covariates to improve prediction of NASH diagnoses. In terms of computational complexity,
we also consider a SL library of 5 relatively fast algorithms, which showes comparable AUC
results with a large gain in computational time. Overall, constructing a Super Learner with
a rich library of diverse algorithms coupled with the comprehensive screening algorithm is
the most effective and robust prediction strategy with respect to AUC performance, and may
be promising for predictive modeling in high-dimensional administrative claims databases.

6

Chapter 2

Targeted maximum likelihood estimation
of community-based causal effect of
single time-point community-level
stochastic interventions

2.1 Introduction

Motivation

The literature in fields such as epidemiology, econometrics and social science on the causal
impact of community-level intervention, is rapidly evolving, both in observational studies
and randomized trials. In observation settings, there is a rich literature on assessment of
causal effects of families, schools and neighborhoods on child and adolescent development
[7, 62]. For instance, the problem addressed by [5] is to estimate the impact of community
violence exposure on anxiety among children of African American mothers with depression.
Similarly, randomized community trials have increased in recent years. As pointed out
by [53] and [69], scientifically speaking, community randomized controlled trials (CRCT)
would be a superior strategy estimate the effects of community-level exposures due to self-
selection and other difficulties. One example is the MTO study, which estimates the lower-
poverty neighborhood effects on crime for female and male youth [37]. Another CRCT
example is the ongoing SEARCH study, which estimates the community level interventions
for the elimination of HIV in rural communities in East Africa [73]. Despite recent statistical
advances, many of the current applications still rely on estimation techniques such as random
effect models (or mixed models) [45] and generalized estimating equations (GEE) approach
[50, 21]. However, those methods define the causal effect of interest as a coefficient in
a most likely misspecified regression model, often resulting in bias and invalid statistical
inference in observational settings, and loss of efficiency in randomized community trials. By

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 7

contrast, the targeted maximum likelihood estimators (TMLE) is constructed based on the
efficient influence curve D∗, and therefore inherits its double robustness and local efficiency
properties. Instead of using D∗ directly to construct an efficient estimating equation, TMLE
is obtained by constructing a locally least favorable submodel that its score (derivative of
the log-likelihood) spans D∗ [4, 44].

Deterministic interventions, in which each unit’s treatment is set to a fixed value or a
value defined by a deterministic function of the covariates, are the main strategy imple-
mented in the current literature for the estimation of causal effects from observational data.
One causal assumption needed for parameter identifiability is the positivity assumption. For
example, the strong positivity assumption requires that all individuals in the population have
a nonzero probability of receiving all levels of the treatment. As argued by [57], this strong
assumption could be quite unrealistic in many cases. For example, patients with certain
characteristics may never receive a particular treatment. On the other hand, a stochastic in-
tervention is one in which each subject receives a probabilistically assigned treatment based
on a known specified mechanism. Because the form of the positivity assumption needed for
identifiability is model and parameter-specific, stochastic intervention causal parameters are
natural candidates if requiring a weaker version of positivity compared to other causal pa-
rameters for continuous exposures. Furthermore, a policy intervention will lead to stochastic
rather than deterministic interventions if the exposure of interest can only be manipulated
indirectly, such as when studying the benefits of vigorous physical activity on a health out-
come of interest in the elderly [3]. Because it is unrealistic to enforce every elderly person to
have a certain level of physical activity depending on a deterministic rule. To deal with the
previous considerations, stochastic interventions could be a more flexible strategy of defining
a question of interest and being better supported by the data than deterministic interven-
tions. Thus, using stochastic intervention causal parameters is a good way of estimating
causal effects of realistic policies, which could also be naturally used to define and estimate
causal effects of continuous treatments or categorical multilevel treatments [33].

Organization of this chapter

The rest of this chapter is organized as follows. In this chapter, we apply the roadmap
for targeted learning of a causal effect [56]. In Section 2.2 we specify the causal model
through a non-parametric structural equation model (NPSEM), allowing us to define the
community-level causal effect of interest for arbitrary community-level stochastic interven-
tions as a parameter of the NPSEM, define the corresponding observed data structure, and
establish the identifiability of the causal parameter from the observed data generating dis-
tribution. We allow for general types of single time-point interventions, including static,
dynamic and stochastic interventions. In other words, there is no further restrictions on the
intervention distributions, which could be either degenerate (for deterministic interventions)
or non-degenerate (for stochastic interventions). Next, Section 2.3 and 2.4 introduce two dif-
ferent TMLEs of the counterfactual mean outcome across communities under a community
level intervention that are based on community-level and individual-level analysis, respec-

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 8

tively. Both TMLEs can make use of individual level data in the hierarchical setting. The
first community-level TMLE is developed under a general hierarchical causal model and can
incorporate some working models about the dependence structure in a community. In other
words, the Super Learner library of candidate estimators for the outcome regression can be
expanded to include pooled individual-level regressions based on the working model. The
first TMLE also includes the case of observing one individual per community unit as a special
case. The second individual-level TMLE is developed under a more restricted hierarchical
model in which the additional assumption of dependence holds.

2.2 Definition of statistical estimation problem

General hierarchical casual model

Throughout this chapter, we use the bold font capital letters to denote random vectors
and matrices. In studies of community-level interventions, we begin with a simple scenario
that involves randomly selecting J independent communities from some target population of
communities, sampling individuals from those chosen communities, and measuring baseline
covariates and outcomes on each sampled individual at a single time point. Also, the number
of chosen individuals within each community is not fixed, so communities are indexed with
j = 1, 2, ..., J and individual within the jth community are indexed with i = 1, ..., Nj.

After selection of the communities and individuals, pre-intervention covariates and a
post-intervention outcome are measured on each sampled unit. Because only some of the pre-
intervention covariates have clear individual-level counterpart, the pre-intervention covariates
separates into two sets: firstly, let denote Wj,i the (1 × p) vector of p such individual-level
baseline characteristics, and soWj = (Wj,i : i = 1, ..., Nj) is an (Nj×p) matrix of individual-
level characteristics; secondly let Ej represent the vector of community-level (environmental)
baseline characteristics that have no individual-level counterpart and are shared by all com-
munity members, including the number of individuals selected within the community (i.e.,
Nj ∈ Ej). Last, Aj is the exposure level assigned or naturally occurred in community j and
Yj = (Yj,i : i = 1, ..., Nj) is the vector of individual outcomes of interest.

In order to translate the scientific question of interest into a formal causal quantity,
we first specify a NPSEM with endogenous variables X = (E,W , A,Y) that encodes our
knowledge about the causal relationships among those variables and could be applied in both
observational setting and randomized trials [54, 55].

U = (UE, UW , UA, UY) ∼ PU

E = fE(UE) (2.1)
W = fW (E,UW)

A = fA(E,W , UA)

Y = fY (E,W , A, UY).

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 9

where the U components are exogenous error terms, which are unmeasured and random
with an unknown distribution PU . Given an input U , the function F = {fE, fW , fA, fY }
deterministically assigns a value to each of the endogenous variables. For example, model
(2.1) assumes that each individual’s outcome Y is affected by its baseline community-level
and individual-level covariates (E,W) together with its community-level intervention(s)
and unobserved factors (A,UY). First, while we might have specification of fA, the struc-
tural equations fE, fW , fY do not necessarily restrict the functional form of the causal rela-
tionships, which could be nonparametric (entirely unspecific), semiparametric or paramet-
ric that incorporates domain knowledge. Second, as summarized by [2], structural causal
model (2.1) covers a wide range of practical scenarios as it allows for the following types
of between-individual dependencies within a community: (i) the individual-level covariates
(and outcomes) among members of a community may be correlated as a consequence of
shared measured and unmeasured community-level covariates (E,UE), and of possible cor-
relations between unmeasured individual-level error terms (UW , UY), and (ii) an individual
i’s outcome Yj,i may influence another l’s outcome Yj,l within community j, and (iii) an indi-
vidual’s baseline covariates Wj,l may influence another outcome Yj,i. Actually, we can make
an assumption about the third type of between-individual dependence, and so the structural
equation fY will be specified under this assumption. More details will be discussed in section
(2.4). Third, an important ingredient of this model is to assume that distinct communities
are causally independent and identically distributed. The NPSEM defines a collection of
distributions (U,X), representing the full data model, where each distribution is determined
by F and PU (i.e., PU,X,0 is the true probability distribution of (U,X)). We denote the model
for PU,X,0 withMF .

Counterfactuals and stochastic interventions

MF allows us to define counterfactual random variables as functions of (U,X), corresponding
with arbitrary interventions. For example, with a static intervention on A, counterfactual Ya
can be defined as fY (E,W , a, UY), replacing the structural equation fA with the constant
a [80]. Thus, Yj,a = (Yj,i,a : i = 1, ..., Nj) represents the vector of individual-level outcomes
that would have been obtained in community j if all individuals in that community had
actually been treated according to the exposure level a. More generally, we can replace
data generating functions for A that correspond with degenerate choices of distributions
for drawing A, given U = u and (E,W), by user-specified conditional distributions of A∗.
Such non-degenerate choices of intervention distributions are often referred to as stochastic
interventions.

First, let g∗ denote our selection of a stochastic intervention identified by a set of
multivariate conditional distributions of A∗, given the baseline covariates (E,W). For
convenience, we represent the stochastic intervention with a structural equation, where
A∗ = fA∗(E,Y , UA∗) in terms of random errors UA∗ , and so define Yg∗ = fY (E,W , A∗, UY).
Then Yj,g∗ = (Yj,i,g∗ : i = 1, ..., Nj) denotes the corresponding vector of individual-level
counterfactual outcome for community j. Second, let Y c denote a scalar representing a

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 10

community-level outcome that is defined as a aggregate of the outcomes measured among in-
dividuals who are members within a community, and so Y c

g∗ is the corresponding community-
level counterfactual of interest. One typical choice of Y c

j,g∗ is the weighted average response
among the Nj individuals sampled from community j, i.e. Y c

j,g∗ ≡
∑Nj

i=1 αj,iYj,i,g∗ , for some
user-specified set of weights α for which

∑Nj
i=1 αj,i = 1. If the underlying community size Nj

differs, a natural choice of αj,i is the reciprocal of the community size (i.e., αj,i = 1/Nj).

Target parameter on the NPSEM

We focus on community-level causal effects where all communities in the target population
receive the intervention g∗, then our causal parameter of interest is given by

ΨF (PU,X,0) = EU,X [Y c
g∗] = EU,X

{ N∑
i=1

αiYi,g∗
}

To simply expression, we use αi = 1/N in the remainder of article. We also assume (without
loss of generality) that the community-level outcome Y c is bounded in [0, 1]. If instead
Y c ∈ [a, b], the the original outcome will be automatically transformed into Y c′ = Y c−a

b−a ,
and our target parameter is corresponding to Y c′ . Statistical inference such as the point
estimate, limiting distribution and confidence interval for the latter target parameter can be
immediately mapped into statistical inference for the original target parameter based on Y c,
by simply multiplying by (b− a) [23].

One type of stochastic interventions could be a shifted version of the current treatment
mechanism g0, i.e., Pg∗(A = a|E,W) = g0(a− ν(E,W)|E,W) given a known shift function
ν(E,W). A simple example is a constant shift of ν(E,W) = 0.5. Another more complex
type could be stochastic dynamic interventions, in which the interventions can be viewed as
random assignments among dynamic rules. A simple example corresponding to the previous
shift function is Pg∗(A = a|E,W) = g0(max{a− 0.5,min(a)}|E,W), indicating that shifted
exposure A∗ is always bounded by the minimum of the observed exposure A.

One might also be interested in the contrasts of the expectation of community-level
outcome across the target population of communities under different interventions, i.e.,

ΨF (PU,X,0) = EU,X(Y c
g∗1

)− EU,X(Y c
g∗2

) = EU,X
{ 1

N

N∑
i=1

Yi,g∗1

}
− EU,X

{ 1

N

N∑
i=1

Yi,g∗2

}
where g∗1 and g∗2 are two different stochastic interventions.

Finally, additive treatment effect is a special case of average causal effect with two static
interventions g∗1(1|e,w) = 1 and g∗2(0|e,w) = 1 for any e ∈ E,W ∈W , i.e.,

EU,X(Y c(1))− EU,X(Y c(0)) = EU,X [Y c
g∗1(1|e,w)=1]− EU,X [Y c

g∗2(0|e,W)=1]

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 11

Link to observed data

Consider the study design presented above where for a randomly selected community, the
observed data consist of the measured pre-intervention covariates, the intervention assign-
ment, the vector of individual-level outcomes. Formally, one observation on community j, is
coded as

Oj,i = (Ej,Wj,i, Aj, Yj,i)

which follows the typical time ordering for the variables measured on the ith individuals
within the jth community.

Assume the observed data consists of J independent and identically distributed copies
of Oj = (Ej,Wj, Aj,Yj) ∼ P0, where P0 is an unknown underlying probability distribution
in a model space MI . Here MI = {P (PU,X) : PU,X ∈ MF} denotes the statistical model
that is the set of possible distributions for the observed data O and only involves modeling
g0 (i.e., specification of fA). The true observed data distribution is thus P0 = P (PU,X,0).

Identifiability

By defining the causal quantity of interest in terms of stochastic interventions (and target
causal parameter as a parameter of the distribution PU,X,0) on the NPSEM and providing an
explicit link between this model and the observed data, we lay the groundwork for addressing
the identifiability through P0.

In order to express ΨF (PU,X,0) as a parameter of the distribution P0 of the observed data
O, we now need to address the identifiability of EU,X [Y c

g∗] by adding two key assumptions
on the NPSEM: the randomization assumption so called "no unmeasured confounders" as-
sumption (Assumption 1) and the positivity assumption (Assumption 2). The identifiability
assumptions will be briefly reviewed here, for details on identifiability, we refer to see [64,
76, 75, 33].

Assumption 1.
A |= Ya|E,W

where the counterfactual random variable Ya represents a collection of outcomes measured
on the individuals from a community if its intervention is set to A = a in causal model (2.1),
replacing the structural equation fA with the constant a.

Assumption 2.

sup
a∈A

g∗(a|E,W)

g(a|E,W)
<∞, almost everywhere

where g∗(a|E,W) = Pg∗(A = a|E,W), and assume inf
a∈A

g(a|E,W) > ε for some small ε.
Informally, Assumption 1 restricts the allowed distribution for PU to ensure that A

and Y shares no common causes beyond any measured variables in X = (E,W , A,Y). For
example, assumption 1 holds if UA is independent of UY , given E,W . Then, this random-
ization assumption implies A∗ |= Ya|E,W . In addition, as Pg∗(A = a|E,W) is specified by

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 12

users in Assumption 2, a good selection of g∗ can be used to estimate the causal param-
eter of interest, but yet does not generate unstable weighting that causes violations of the
positivity assumption. Therefore, this posivitiy assumption is easier to achieve compared to
other positivity assumptions that other causal parameters used for continuous interventions.

UnderAssumption 1 and 2, jointly with the consistency assumption (i.e., A = a implies
Ya = Y),

P (Yg∗ = y|A∗ = a,E = e,W = w) = P (Ya = y|A∗ = a,E = e,W = w)

= P (Ya = y|E = e,W = w) = P (Y = y|A = a,E = e,W = w)

So our counterfactual distribution P (Yg∗ = y) can be written as:

P (Yg∗ = y) =

∫
e,w

∫
a

P (Yg∗ = y|A∗ = a,E = e,w = w)g∗(a|e,w)dµ(a)dPE,W (e,w)

by the law of iterated conditional expectation

=

∫
e,w

∫
a

P (Ya = y|E = e,W = w)g∗(a|e,w)dµa(a)dPE,W (e,w)

by assumption 1 and A∗ |= Ya|E,W

=

∫
e,w

∫
a

P (Y = y|A = a,E = e,W = w)g∗(a|e,w)dµa(a)dPE,W (e,w)

by consistency assumption

with respect to some dominating measure µa(a).
Then, EU,X [Yg∗] is identified by the G-computational formula [64]:

EU,X [Yg∗] = EE,W [Eg∗ [Y |A∗ = a,E,W]]

=

∫
e,w

∫
a

Eg∗(Y |a, e,w)g∗(a|e,w)dµa(a)dPE,W (e,w)

This provides us with a general identifiability result for EU,X [Y c
g∗], the causal effect of the

community-level stochastic intervention on any community-level outcome Y c that is some
real valued function of the individual-level outcome Y :

EU,X [Y c
g∗] = EU,X [

N∑
i=1

αiYg∗,i] =
N∑
i=1

αiEE,W [Eg∗ [Yi|A∗, E,W]] ≡ ΨI(P0) = ψI0

The statistical parameter and model for observed data

If we only assume the randomization assumption in the previous section, then the statistical
modelMI is nonparametric. Based on the result of identifiability, we note that ΨI :MI → R
represents a mapping from a probability distribution of O into a real number, and ΨI(P0)
denotes the target estimand corresponding to the target causal quantity EU,X [Yg∗].

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 13

Before defining the statistical parameter, we introduce some additional notation. First,
we denote the marginal distribution of the baseline covariates (E,W) by QE,W , with a
well-defined density qE,W , with respect to some dominating measure µy(y). There is no ad-
ditional assumption of independence for QE,W . Second, let G denote the observed exposure
conditional distribution for A that has a conditional density g(A|E,W). Third, we assume
that all Y within a community are sampled from the distribution QY with density given by
qY (Y |A,E,W), conditional on the exposure and the baseline covariates A,E,W . Now we
introduce the notation P = PQ̃,G for Q̃ = (QY , QE,W), and the statistical model becomes
MI = {PQ̃,G : Q̃ ∈ Q̃, G ∈ G}, where Q̃ and G denote the parameter space for Q̃ and G,
respectively, and Q̃ here is nonparametric.

Next, we define G∗ as the user-supplied intervention with a new density g∗, which will
replace the observed conditional distribution G. So G∗ is a conditional distribution that
describes how each intervened treatment is produced conditional on the baseline covariate
(E,W). Given Q̃ and G∗, we use O∗ = (O∗j,i = (Ej,Wj,i, A

∗
j , Y

∗
j,i) : i = 1, ..., Nj, j =

1, , , ., J) to denote a random variable generated under the post-intervention distribution
PQ̃,G∗ . Namely, PQ̃,G∗ is the G-computation formula for the post-intervention distribution of
observed data O under stochastic intervention G∗ [64], and the likelihood for PQ̃,G∗ can be
factorized as:

pQ̃,G∗(O
∗) = [

J∏
j=1

qY (Y ∗j |A∗j ,Wj, Ej)][
J∏
j=1

g∗(A∗j |Ej,Wj)]qE,W (E,W) (2.2)

Thus our target statistical quantity is now defined as ψI0 = ΨI(P0) = Eq̃0,g∗ [Y c
g∗], where

ΨI(P0) is the target estimand of the true distribution of the observed data P0 ∈ MI

(i.e., a mapping from the statistical model MI to R). We then define Q̄(Aj, Ej,Wj) =∫
y
yqY (y|Aj,Wj, Ej)dµy(y) as the conditional mean evaluated under common-in-j distribu-

tion QY , and so Q̄c(A,E,W) ≡ E(Y c|A,E,W) as the conditional mean of the community-
level outcome. Now we can refer to Q0 = (Q̄c

0, QE,W ,0) as the part of the observed data
distribution that our target parameter is a function of (i.e., with a slight abuse of notation
ΨI(P0) = ΨI(Q0)), the parameter ψI0 can be written as:

ψI0 =

∫
e∈E,w∈W

∫
a∈A

Q̄c
0(a, e,w)g∗(a|e,w)dµa(a)qE,W ,0(e,w)dµe,w(e,w) (2.3)

with respect to some dominating measures µa(a) and µe,w(e,w), where (A, E ,W) is the
common support of (A,E,W).

Sometimes researchers might be interested in target quantities defined as the difference
or ratio of two stochastic interventions. For example, one might define two target estimands
Eq̃0,g∗1 [Y c

g∗1
] and Eq̃0,g∗2 [Y c

g∗2
] evaluated under two different interventions g∗1 and g∗2, then defining

the target quantity as Eq̃0,g∗2 [Y c
g∗2

]− Eq̃0,g∗1 [Y c
g∗1

]. Actually a generalization of target quantities
can be expressed as Euclidean-value functions of a collection {Eq̃0,g∗ [Y c

g∗] : g∗ ∈ g}, where g
denotes a finite set of possible stochastic interventions.

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 14

2.3 Estimation and inference under the general
hierarchical causal model

In the previous section, we have defined a statistical model MI for the distribution of O,
and a statistical target parameter mapping ΨI) for which ΨI(PQ0,G∗) only depends on Q0

through a relevant part Q0 = Q(P0) of P0. Now we want to estimate ΨI(Q0) via a target
maximum likelihood estimator (TMLE) and construct an asymptotically valid confidence
interval through the efficient influence curve (EIC). Furthermore, we present a novel method
for the estimation of the outcome regression in which incorporates additional knowledge
about the data generating mechanism that might be known by design.

As a two-stage procedure, TMLE needs to estimate both the outcome regressions Q̄0 and
treatment mechanism g0. Since TMLE solves the EIC estimating equation, its estimator
inherits the double robustness property of this EIC and is guaranteed to be consistent (i.e.,
asymptotically unbiased) if either Q̄0 or g0 is consistently estimated. For example, in a com-
munity randomized controlled trial g0 is known to be 0.5 and can be consistently estimated,
thus its TMLE will always be consistent. Besides, TMLE is efficient when both are con-
sistently estimated. In other words, when g0 is consistent, a choice of the initial estimator
for Q̄0 that is better able to approximate the true value Q̄0 may improve the asymptotic
efficiency along with finite sample bias and variance of the TMLE [79].

The efficient influence curve D∗

Before constructing a community-level TMLE of ΨI(P0), we must understand its efficient
influence curve. The EIC, evaluated at the true distribution P0 ∈M, is given by:

DI(P0)(O) =
g∗

g0

(A|E,W)(Y c − Q̄c
0(A,E,W))

+ Eg∗ [Q̄c
0(A,E,W)|E,W]−ΨI(PQ,g∗)

where

Eg∗ [Q̄c
0(A,E,W)|E,W] =

∫
a

Q̄c∗
0 (a,E,W)g∗(a|E,W)dµa(a)

DI
Y (P0)(O) =

g∗

g0

(A|E,W)(Y c − Q̄c
0(A,E,W))

DI
E,W (P0)(O) = Eg∗ [Q̄c

0(A,E,W)|E,W]−ΨI(PQ,g∗)

Here DI
Y (P) and DI

E,W (P) are defined as the projection of the EIC D∗(P) onto the tangent
space of PY |A,E,W at P ∈ MI and PE,W at P ∈ MI , given P = PE,WPA|E,WPY |A,E,W ,
respectively. Note that the projection of the EIC onto the tangent space of PA|E,W (i.e., the
exposure mechanism) is zero.

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 15

The community-level TMLE

The community-level TMLE first obtains an initial estimate ˆ̄Qc(A,E,W) for the condi-
tional mean of the community-level outcome Q̄c

0(A,E,W), and also an estimate ĝ(A|E,W)
of the community-level density of the conditional treatment distribution g(A|E,W). The
second targeting step is to create a targeted estimator ˆ̄Qc∗ of Q̄c

0 by updating the initial fit
ˆ̄Qc(A,E,W) through a parametric fluctuation that exploits the information in the estimated
density for the conditional treatment distribution ĝ(A|E,W). The plug-in community-level
TMLE is then computed by the updated estimate ˆ̄Qc∗(A,E,W) and the empirical distribu-
tion of (E,W). In this subsection, we describe the community-level TMLE algorithm for
estimating the community-based effect under community-level stochastic interventions. For
further discussion, please see [33, 68, 2].

Estimation of exposure mechanisms g0 and g∗0

A data-adaptive estimator of a conditional density that can be used to estimate the exposure
mechanism is proposed by Dáaz and van der Laan [34]. Here, we build on this work and
present how to use the histogram-like estimator to estimate the community-level multivariate
exposure mechanism g0(A|E,W). First let’s define g0(a|E,W) ≡ P0(A = a|E,W), where
the exposures and baseline covariates (A,E,W) = ((Aj, Ej,Wj) : j = 1, . . . , J) denote
the random variables drawn jointly from the distribution S0(A,E,W) with the density
s0(a, e,w) ≡ g0(a|e,w)qE,W ,0(e,w). Here qE,W ,0(e,w) denotes the marginal density of the
baseline covariates (E,W), and communities are indexed with j = 1, . . . , J . Then, let’s
denote g∗0(a∗|E,W) ≡ Pg∗0 (A = a|E,W). The fitting algorithm for the non-parametric
estimator g∗0(A∗|E,W) is equivalent, except that now the exposures and baseline covariates
(A∗, E,W) = ((A∗j , Ej,Wj) : j = 1, .., J) are randomly drawn from S∗0(A,E,W) with the
density s∗0(a, e,w) defined as g∗0(a|e,w)qE,W ,0(e,w), where A∗ is determined by the user-
supplied (stochastic) intervention.

Note that A can be multivariate (i.e., A = (A(m) : m = 1, . . . ,M)) where M rep-
resents the number of treatment variables, and any of its components A(m) can be ei-
ther binary, categorical or continuous. The joint probability model for P (A|E,W) ≡
P (A(1), . . . , A(M)|E,W) can be factorized as a sequence:

P (A(1)|E,W)×P (A(2)|A(1), E,W)× . . .×P (A(M)|A(1), . . . , A(M − 1), E,W)

where each of these conditional probability models P (A(m)|A(1), . . . , A(m−1), E,W) is
fitted separately, depending on the type of the m-specific outcome variable A(m). For binary
A(m), the conditional probability P (A(m)|A(1), . . . , A(m− 1), E,W) will be esimtated by
a user-specific library of candidate algorithms, including both parametric estimators and
data-adaptive estimators. For continuous (or categorical) A(m), consider a sequence of
values δ1, δ2, . . . , δK+1 that span the range of A(m) and define K bins and the corresponding
K bin indicators, in which case each bin indicator Bk ≡ [δk, δk+1) is used as an binary

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 16

outcome in a seperate user-specific library of candidate algorithms, with predictors given by
(A(1), . . . , A(m− 1), E,W). That is how the joint probability P (A|E,W) is factorized into
such an entire tree of binary regression models.

For simplicity (and without loss of generality), we now suppose A is univariate (i.e.,
M = 1) and continuous and a general template of an fitting algorithm for P (A|E,W) is
summarized below:

1. Initialization. Consider the usual setting in which we observe J independently and
identically distributed copies oj = (ej,wj, aj,yj : j = 1, . . . , J) of the random variable
O = (E,W , A,Y), where the observed exposure (aj : j = 1, . . . , J) are continuous.

2. Estimation of P (A = a|E = e,W = w).

a) As described above, consider a sequence of K + 1 values that span the support
of A values into K bin intervals ∆ = (δ1, ..., δK , δK+1) for a continuous variable
A. Then any observed data point ai belongs to one of the K intervals, in other
words, for each possible value a ∈ A (even if this a is not in the observed (aj :
j = 1, . . . , J), there always exists a k ∈ 1, ..., K such that a ∈ [δk, δk+1)), and the
length (bandwidth) of the interval can be defined as bwk = δk+1 − δk.

b) Then let the mapping S(a) ∈ {1, 2, . . . , K} denote a unique index of the indicator
in λ that a falls in, where S(a) = k if a ∈ [δk, δk+1), namely δS(a) ≤ a < δS(a)+1.
Moreover, we use bk to denote a binary indicator of whether the observed a belongs
to bin k (i.e., bk ≡ I(S(a) = k) for all k ≤ S(a)).

• This is similar to methods for censored longitudinal data, which treats expo-
sures as censored or missing once the indicator bk jumps from 0 to 1.

• Since a is a realization of the random variable A for one community, the
corresponding random binary indicator of whether A belongs to bin k can be
denoted as:

Bk =

{
I(S(A) = k), ∀k ≤ S(A)

NA, ∀k > S(A)

c) Then for each k = 1, . . . , K, a binary nonparametric regression is used to estimate
the conditional probability P (Bk = 1|Bk−1 = 0, E,W), which corresponds to the
probability of Bk jumping from 0 to 1, given Bk−1 = 0 and the baseline covariates
(E,W). Here for each k, the corresponding nonparametric regression model is
fitted only among observations that are uncensored (i.e., still at risk of getting
Bk = 1 with Bk−1 = 0). Note the above conditional probability

P (Bk = 1|Bk−1 = 0, E,W) ≡ P (A ∈ [δk, δk+1)|A ≥ δk, E,W)

which is the probability of A belongs to the interval [δk, δk+1), conditional on A
does not belong to any intervals before [δk, δk+1), and (E,W).

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 17

d) Then the discrete conditional hazard function for each k is defined as a normal-
ization of the conditional probability using the corresponding interval bandwidth
bwk(≡ δk+1 − δk):

λk(A,E,W) =
P (Bk = 1|Bk−1 = 0, E,W)

bwk
=
P (A ∈ [δk, δk+1)|A ≥ δk, E,W)

bwk

e) Finally, for any given observation (a, e,w), we first find out the interval index k
to which a belongs (i.e., k = S(a) ∈ 1, . . . , K). Then the discretized conditional
density of P (A = a|E = e,W = w) can be factorized by:

λk(A,E,W)×
{ k−1∏
t=1

(1− λt(A,E,W))
}

which corresponds to the conditional probability of a belongs to the interval
[δk, δk+1) and does not belong to any intervals before, given (E,W).

3. The conditional density estimators of g(A|E,W) is now proportional to:

J∏
j=1

P (Aj ∈ [δk, δk+1)|E,W)

=
J∏
j=1

[
P (Aj ∈ [δk, δk+1)|Aj ≥ δk, Ej,Wj)×

k−1∏
t=1

(1− P (Aj ∈ [δt, δt+1)|Aj ≥ δt, Ej,Wj)
]

where P (A ∈ [δk, δk+1)|A ≥ δk, E,W) can be estimated by either parametric or data-
adaptive algorithms, or the combination of them (i.e., Super Learner). For example,
using a main-term only logistic regression:

logit{P (A ∈ [δk, δk+1)|A ≥ δk, E,W)}

=
k∑
t=1

αtI(A ∈ [δt−1,∞)) +
S∑
s=1

βsEs +

p∑
l=1

γlWl

where we assume that the dimension of E is S and the dimension of W is p, and
I(A ∈ [δt−1,∞)) indicates if A falls within the interval [δt−1,∞). Alternatively, we can
use Super Learner to build a convex combination of the candidate algorithms in the
SL library to minimize the cross-validated risk, given a user-specified loss function.

Note that we need a clever way to determine the bin (interval) cutoffs for a continuous
exposure. As proposed by Denby and Mallows [11], we can use a histogram-based method
that is a compromise between the equal-bin-width histogram and equal-area histogram meth-
ods, and the corresponding parameters can be selected by cross validation. For detailed on
constructing a histogram-like cross-validated density estimator, we refer to [34].

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 18

Loss function and initial (non-targeted) estimator of Q̄c
0

As an initial estimator of Q̄c
0, we can simply regress the community-level outcome Y c onto

the exposure and baseline covariates (A,E,W). The estimation of ˆ̄Qc could be processed
by either the usual parametric MLE or loss-based machine learning algorithms based on
cross validation, such as loss-based super learning. Given that Y c

j is bounded continuous or
discrete for some known range Y c

j ∈ [a, b], ∀j = 1, . . . , J , the estimation of ˆ̄Qc can be based
on the following negative Bernoulli log-likelihood loss function:

−Lc(Q̄c)(O) =
J∑
j=1

[
Y c
j log[Q̄c(Aj, Ej,Wj)] + (1− Y c

j) log[1− Q̄c(Aj, Ej,Wj)]
]
,

or the squared error loss

Lc(Q̄c)(O) =
J∑
j=1

[Y c
j − Q̄c(Aj, Ej,Wj)]

2

For example, for continuous Y c
j , the fitted parameter in a least squares regression can be

defined as:

β̂cLS = arg min
β

J∑
j=1

[Y c
j − Q̄c

β(Aj, Ej,Wj)]
2

Loss function and the least favorable fluctuation submodel that spans the
efficient influence curve

Recall that the targeting step in the TMLE algorithm needs to define a fluctuation parametric
submodel for ˆ̄Qc and a corresponding user-specified loss function. Given the initial estimator
of outcome mechanism ˆ̄Qc(Aj, Ej,Wj), and the initial estimator of treatment mechanisms
ĝ(Aj = a|Ej,Wj) and ĝ∗(Aj = a|Ej,Wj) for each community j = 1, ..., J , the TMLE
algorithm updates the initial estimator ˆ̄Qc into ˆ̄Qc∗ by

1. define a submodel ˆ̄Qc(ε) with parameter ε as

logit(ˆ̄Qc(ε)(a,Ej,Wj)) = logit(ˆ̄Qc(a,Ej,Wj) + εĤj(a,Ej,Wj)),∀j = 1, ..., J

where logit(x) = log(x
1−x), and Ĥj(a,Ej,Wj) =

ĝ∗(Aj=a|Ej ,Wj)

ĝ(Aj=a|Ej ,Wj)
displays the community-

level clever covariate, and the fluctuation parameter ε is obtained by a logistic regression
of Y c on Ĥ with offset logit(ˆ̄Qc). Note that ˆ̄Qc(ε = 0) = ˆ̄Qc at zero fluctuation.

2. define a community-level loss function such as binary log-likelihood loss function:

−L(ˆ̄Qc(ε))(O) = Y c log[ˆ̄Qc(ε)(A,E,W)] + (1− Y c) log[(1− ˆ̄Qc(ε)(A,E,W))],

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 19

and the derivative of the loss function at zero fluctuation has:
d

dε
L(ˆ̄Qc(ε)(O))|ε=0 = Ĥ(A,E,W)(Y c − ˆ̄Qc(A,E,W))

=
ĝ∗

ĝ
(A|E,W)(Y c − ˆ̄Qc(A,E,W))

= DI
Y (Q̂, ĝ)(O)

where DI
Y (Q̂, ĝ) is a component of the EIC DI of ΨI at (Q̂, ĝ).

3. the updated fit ˆ̄Qc∗ is defined as ˆ̄Qc(ε̂) = logit−1(logit(ˆ̄Qc) + ε̂Ĥ), where ε̂ minimizes
the empirical loss function above:

ε̂ = arg min
ε

J∑
j=1

L(ˆ̄Qc(ε))(Oj)

Another way to achieve the targeting step is to use weighted regression intercept-based
TMLE, where ε is obtained by a intercept-only weighted logistic regression of Y c with offset
logit(ˆ̄Qc)(Aj, Ej,Wj), predicted weights Ĥj(Aj, Ej,Wj) and no covariates. In summary, this
alternative targeting can be implemented by

1. define a submodel ˆ̄Qc(ε) with parameter ε as

logit(ˆ̄Qc(ε)(a,Ej,Wj)) = logit(ˆ̄Qc(a,Ej,Wj) + ε,∀j = 1, ..., J

.2. define a weighted (binary log-likelihood) loss function:

−L(ˆ̄Qc(ε))(O) =
{

log[ˆ̄Qc(ε)(A,E,W)Y
c

(1− ˆ̄Qc(ε)(A,E,W))1−Y c]
}
Ĥj(a,Ej,Wj)

3. the updated fit ˆ̄Qc∗ = ˆ̄Qc(ε̂) = logit−1(logit(ˆ̄Qc) + ε̂), where ε̂ minimizes the above loss
function.

It is worth mentioning that both of the fluctuation methods solves the same empirical
EIC estimating equation and thus generate TMLEs with equivalent asymptotic efficiency.
However, the latter one, the intercept-based weighted TMLE, is less sensitive to practical
positivity violations in finite samples, while obtaining the similar bias reduction in the target
parameter [67].

A similar targeting algorithm can be applied to the marginal distribution of (E,W). We
select a loss function of QE,W and a parametric working submodel Q̂E,W (ε), so that the
derivative of the loss function of Q̂E,W (ε) at zero fluctuation has:

d

dε
L(Q̂E,W (ε))|ε=0 = Eg∗ [ˆ̄Qc(A,E,W)|E,W]−ΨI(PQ̂,ĝ∗)

= DI
E,W (Q̂, ĝ)(O)

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 20

However, this targeting step doesn’t generate any update because the empirical distribution
QE,W is non-parametric MLE estimator and has no contribution to the bias for our target
parameter [80].

The community-level TMLE estimator

Thus our targeted substitution estimator is computed as the weighted mean of the targeted
predictions across the J communities, given the updated estimate ˆ̄Qc∗, the estimate of the
user-specified stochastic intervention, and the empirical distribution of (E,W). One natural
choice is the empirical mean defined as follows:

Ψ̂I(PQ̂∗,ĝ∗) =
1

J

J∑
j=1

∫
ej ,wj

∫
a

ˆ̄Qc∗(a, ej,wj)ĝ
∗(a|ej,wj)dµa(a)qE,W (ej,wj)dµe,w(ej,wj)

Statistical inference for the community-level TMLE

By construction, the community-level TMLE estimator Q̂∗ will solve the EIC equation:

0 =
J∑
j=1

DI(Q̂∗, ĝ∗)(Oj)

which results in its doubly robust locally efficient property.
In practice, community-level TMLE variance is asymptotically estimated as Var(Ψ̂I(Q̂∗))

≈ (σ̂IJ)2

J
, where (σ̂IJ)2 is the sample variance of the estimated influence curve obtained by

(σ̂IJ)2 =
1

J

J∑
j=1

{DI(Q̂∗, ĝ)(Oj)}2

where DI(Q̂∗, ĝ) is the plug-in estimator of the efficient influence curve of ΨI at P0.
This quantity (σ̂IJ)2 can be used to calculate p values and 95% confidence intervals for

different parameters, e.g., Ψ̂I(PQ̂∗,ĝ∗)± 1.96
σ̂IJ√
J
for the target parameter.

Incorporating hierarchical structure for estimating the outcome
mechanism

Based on the previously defined community-level TMLE for the mean of the exposure-specific
counterfactual community level outcome, we can still incorporate individual level data rather
than simply community wide aggregates of that data. As discussed in section (2.2), one typ-
ical choice of the community-level counterfactuals of interest is the weighed average response
among all individuals sampled from that community, i.e., Y c

j,g∗ =
∑Nj

i=1 αj,iYj,i,g∗ . Hence, the
conditional mean of the community-level outcome can be rewritten as a weighted average of

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 21

the individual-level outcomes, Q̄c
0(A,E,W) = E(Y c|A,E,W) =

∑N
i=1 αiE(Yi|A,E,W) ≡∑N

i=1 αiE(Yi|A,E,W , N) where the community-specific sample size N is a random variable
that is included in the community-level baseline covariates E.

Without changing the underlying structural causal model (1), estimand and efficient in-
fluence curve, we may use an individual-level working model to incorporate pooled individual-
level outcome regressions as candidates in the Super Learner library for initial estimation of
the expected community-level outcome Q̄c

0(A,E,W) given community and individual level
covariates, along with community-level exposures. Specially, we propose a working model
that assumes that

E0(Yi|A,E,W) = E0(Yi|A,E,Wi) = Q̄0(A,E,Wi) (2.4)

for a common function Q̄0. In practice, this working model suggests that each individual’s
outcome is drawn from a common distribution that may depend on the individual’s baseline
covariates, together with the intervention and community-level baseline covariates presented
in his or her community, but is not directly influenced by the covariates of others in the same
community.

Furthermore, the strength of the working assumptions could be weakened by encoding the
knowledge of the dependence relationship among individuals within communities, namely,
defining E to progressively contain a larger subset of any individual-level covariates included
in W [2]. For weak covariate interference, the baseline individual-level covariates of other
individuals who are connected with individual i could be included into Wi. Let Fi denote
the subset of individuals whose baseline individual-level covariates affect that individual’s
outcome Yi, where i ∈ Fi. Now we have a less restricted and more general version of (2.4)
as working model:

E0(Yi|A,E,W) = Q̄0(A,E, (Wl : l ∈ Fi)) (2.5)

for a common function Q̄0.
We note that this TMLE never claims that the individual-level working model holds,

instead, it uses the working model as a means to generate an initial estimator of Q̄c
0. The

implementation of the community-level TMLE incorporating hierarchical data is similar to
the previous community-level TMLE, except that the estimation of the community-level
outcome could also be based on a single pooled individual level regression Yj,i on (Ej, Aj,
Wj,i) when assuming the aforementioned working model (2.4). As a consequence, the loss
functions for the initial estimation of Q̄c

0, can be specified at the individual-level (instead
of at the community-level in the previous subsection). For example, we could use a binary
log-likelihood loss function:

−L(Q̄c)(O) =
J∑
j=1

Nj∑
i=1

αj,i

[
Yj,i log[Q̄c(Aj, Ej,Wj)] + (1− Yj,i) log[1− Q̄c(Aj, Ej,Wj)]

]
,

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 22

or a squared error loss:

L(Q̄c)(O) =
J∑
j=1

Nj∑
i=1

αj,i[Yj,i − Q̄c(Aj, Ej,Wj)]
2

whereα = (αj,i : j = 1, . . . , J, i = 1, . . . , Nj) is a vector of weights for which
∑Nj

i=1 αj,i = 1,∀j.
A common choice of αj,i is 1/Nj. If the outcome is continuous and we choose the latter loss
function, then the fitted parameter β̂LS would minimize the above squared error by solving
the following first order condition:

d

dβ
L(Q̄c

β)(O) =
J∑
j=1

Nj∑
i=1

αj,i
d

dβ
[Yj,i − Q̄c

β(Aj, Ej,Wj)]
2

= −2
J∑
j=1

Nj∑
i=1

αj,i[Yj,i − Q̄c
β(Aj, Ej,Wj)]

d

dβ
Q̄c
β(Aj, Ej,Wj)

= −2
J∑
j=1

d

dβ
Q̄c
β(Aj, Ej,Wj)

(Nj∑
i=1

αj,i[Yj,i − Q̄c
β(Aj, Ej,Wj)]

)
= 0

which can easily show that this fitted parameter is identical to the parameter estimated at
the community-level (i.e., β̂cLS).

Special case where one observation per community

We will now consider a special case where each community has only one individual (i.e.,
N = 1), and so all individual-level baseline covariates can be treated as environmental
factors (i.e., (E,W) = E).

Nonparametric structural equation model

Consider a NPSEM with structural equations for endogenous variables X = (E,A, Y),

E = fE(UE) (2.6)
A = fA(E,UA)

Y = fY (E,A, UY).

with endogenous unmeasured sources of random variation U = (UE, UA, UY).

Counterfactuals

Let Ya = fY (E, a, UY) denote the counterfactual corresponding with setting the treatment
A = a, thus the community-level counterfactual outcome is the same as the only observation’s
outcome in community j (i.e., Y c

j,a ≡ Yj,a).

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 23

Observed data

Now the observed data become O = (E,A, Y). We observe J i.i.d observations on O.

Target parameter on NPSEM

Consider the following parameter of the distribution of (U,X):

ΨF (PU,X,0) = EU,X [Y c
g∗] = EU,X [Yg∗]

Identifiability Result

ΨF (PU,X,0) = EU,X [Y c
g∗] = EE[Eg∗ [Y |A∗, E]] ≡ ΨI(P0)

Statistical parameter and efficient influence curve

ΨI(P0) =

∫
e∈E

∫
a∈A

Q̄c
0(a, e)g∗(a|e)dµa(a)qE,0(e)dµe(e)

with respect to µa(a) and µe(e), where (A, E) is the common support of (A,E).
The efficient influence curve of the paramter above is:

DI(P0)(O) =
g∗

g0

(A|E)(Y c − Q̄c
0(A,E)) + Eg∗ [Q̄c

0(A,E)|E]−ΨI(PQ,g∗)

Estimation and inference

The TMLE estimator has the same procedure as the previously presented TMLE does, except
that here (E,W) = E.

2.4 Estimation and inference under the restricted
hierarchical model with no covariate interference

Restricted hierarchical casual model

What if the third type of dependence in model (2.1) mentioned in section 2.3 is weak or
even doesn’t exist? This is so called "no covariate interference" [60, 2], which describes that
each individual’s outcome Yi is sampled from one distribution only depending on the same
individual’s own baseline covariate Wi, the baseline community-level covariates E, together
with the community-level intervention and that individual’s unobserved factors (A,UYI).
Under this working assumption, we have E0(Yi|A,E,W) = Q̄0(A,E,Wi). Therefore, when
background knowledge about Q0 is sufficient to ensure an assumption that working model

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 24

(2.4) holds, this background changes both the underlying hierarchical causal model and the
identifiability results, and so the statistical model, estimand, efficient influence curve, etc.
The estimation based on this pooled individual-level regression analysis can leverage the
hierarchical data structure and pair the i-specific individual-level outcomes and covariates,
which may lead to asymptotically more efficient results than a community-level regression
analysis.

In this section, we assume such additional knowledge is available and so consider a new
hierarchical causal sub-model which restricts the dependence of individuals in a community.
The NPSEM that represents the causal relationships among those endogenous variables is
now given by:

E = fE(UE)

W = fW (E,UW) (2.7)
A = fA(E,W , UA)

Yi = fY (E,Wi, A, UYi).

UYi |= UA|E,Wi

Here we assume that the conditional distribution of (Wi, Yi), given (A,E) are common in i.

Target parameter and the statistical parameter

Let assume that there is a common conditional distribution of A given (E,Wi) across all
individuals, i.e., P (A|E,Wi) ≡ gI(A|E,W), where gI(A|E,W) denotes the individual-level
stochastic intervention. Recall that we may be interested in Y c

j,g∗I
≡
∑Nj

i=1 αj,iYj,i,g∗I , with
respect to some individual-level stochastic intervention g∗I . We assume that the number of
individuals is constant in each community (i.e., Nj = N, ∀j). Then our causal parameter of
interest is defined by

ΨF (PU,X,0) = EU,X(Y c
g∗I

) = EU,X(
N∑
i=1

αiYi,g∗I)

Note that all of the identifiability results in section (2.2) can be naturally applied here.
Thus, by identifiability,

ΨF (PU,X,0) =
N∑
i=1

αiEU,X(Yi,g∗I)

=
N∑
i=1

αiEE,W ,0

{
Eg∗I [Q̄0(A,E,Wi)]

∣∣E,Wi

}
≡ ΨII(PQ,g∗I)

where ΨII : MII → R is the target statistical quantity under the key assumptions of
identifiability and working assumption (2.4), andMII is a sub-model ofMI .

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 25

The efficient influence curve D∗

Now, the EIC of ΨII at P0 ∈MII is given by:

DII(P0)(O) =
N∑
i=1

αi[
g∗I
gI,0

(A|E,Wi)(Yi − Q̄0(A,E,Wi))

+ Eg∗I [Q̄0(A,E,Wi)|E,Wi]−ΨII(PQ,g∗I)]

where

DII
Y (P0)(Oi) =

g∗I
gI,0

(A|E,Wi)(Yi − Q̄0(A,E,Wi))

DII
E,W (P0)(Oi) = Eg∗I [Q̄0(A,E,Wi)|E,Wi]−ΨII(PQ,g∗I)

Note that now the EIC is a weighted average of the individual-level EICs.

The individual-level TMLE

Estimation of exposure mechanisms gI,0 and g∗I,0

Here, the individual-level density of the conditional treatment distribution, adjusting for E
and the individual specific covariate Wi, is defined as

gI(a|e, wi) = EW [gI(a|e,W)|Wi = wi] = EW [gI(a|e,W−i,Wi)|Wi = wi]

=

∫
w−i

gI(a|e,w−i, wi)P (W−i = w−i|Wi = wi)dµ(w−i)

=

∫
w−i

gI(a|e,w−i, wi)P (W−i = w−i)dµ(w−i)

with respect to some dominating measure µ(w−i), and W−i represents an ((N − 1) × p)
matrix of individual-level covariates, which includes all individuals in the community except
that individual i.

Therefore, the estimate of the individual-level stochastic intervention is given by

ĝI(a|e, wi) =
1

J

J∑
j=1

∫
wj,−i

ĝI(a|ej,wj,−i, wj,i)Pn(Wj,−i = wj,−i)dµ(wj,−i)

where ĝI(a|ej,wj,−i, wj,i) can be obtained by the data adaptive methods based histogram-
like estimation presented in section (2.3). Besides, the fitting algorithm for g∗I,0(A∗|E,Wi)
is equivalent except that A∗ is determined by the user-specific stochastic intervention.

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 26

Loss function and initial (non-targeted) estimator of Q̄0

First we assume that the community-level outcome regression is a weighted average of
common-in-i individual-level outcome regressions, i,e., Q̄c

0 =
∑N

i=1 αiQ̄0, where Q̄0(A,E,Wi) =
E0(Yi|A,E,Wi). Therefore, to gain an initial estimator of Q̄0, we can simply regress the
individual-level outcome Yi onto the exposure, the community-level covariates, and the i-
specific individual-level covariates (A,E,Wi). Without loss of generality, we also assume
that Yi is either bounded continuous or discrete for some known range. Then the estimation
can be based on, for example, a squared error loss function:

L(Q̄β)(O) =
J∑
j=1

Nj∑
i=1

αj,i[Yj,i − Q̄β(Aj, Ej,Wj,i)]
2

Here, the fitted parameter β̂LS can be solved by minimizing the above squared error function.

Loss function and the least favorable fluctuation submodel that spans the
efficient influence curve

Here, the targeting step again needs to define a fluctuation parametric submodel for ˆ̄Q, the
initial estimator of the individual-level outcome regression, and a corresponding pre-specified
loss function. Given the initial estimators ˆ̄Q(Aj, Ej,Wj,i), ĝI(Aj = a|Ej,Wj,i) and ĝ∗I (Aj =

a|Ej,Wj,i), the targeting step will update the individual-level regression estimator ˆ̄Q into
ˆ̄Q∗, and so the community-level regression estimator ˆ̄Qc =

∑N
i=1 αi

ˆ̄Q into ˆ̄Qc∗ =
∑N

i=1 αi
ˆ̄Q∗,

by

1. define a submodel ˆ̄Q(ε) with parameter ε as

logit(ˆ̄Q(ε)(a,Ej,Wj,i) = logit(ˆ̄Q(a,Ej,Wj,i) + εĤj,i(a,Ej,Wj,i)),∀j = 1, ..., J

where Ĥj(a,Ej,Wj,i) =
ĝ∗(Aj=a|Ej ,Wj,i)

ĝ(Aj=a|Ej ,Wj,i)
displays the individual-level clever covariate,

and the fluctuation parameter ε is obtained by a pooled logistic regression of the
individual-level outcome Yi on the individual-level covariate Ĥi with offset logit(ˆ̄Q).
Note that ˆ̄Q(ε = 0) = ˆ̄Q at zero fluctuation.

2. define a loss function for the i-specific individual-level outcome regression, such as
negative log-likelihood loss function:

−L(ˆ̄Q(ε))(O) = Yi log[ˆ̄Q(ε)(A,E,Wi)] + (1− Yi) log[(1− ˆ̄Q(ε)(A,E,Wi))],

Then, we use the average of the individual-level loss functions as the loss function for
the community-level outcome regression:

LII(ˆ̄Qc(ε))(O) =
N∑
i=1

αiL(ˆ̄Q(ε))(O)

CHAPTER 2. TMLE OF COMMUNITY-BASED CAUSAL EFFECT OF
COMMUNITY-LEVEL STOCHASTIC INTERVENTIONS 27

and the derivative of the loss function at zero fluctuation has:

d

dε
LII(ˆ̄Qc(ε)(O))|ε=0 =

N∑
i=1

αi

[ĝ∗I
ĝI

(A|E,Wi)(Yi − ˆ̄Q(A,E,Wi))
]

= DII
Y (Q̂, ĝI)(O)

where DII
Y (Q̂, ĝ) is a component of the EIC DII of ΨII at (Q̂, ĝI).

3. the updated fit ˆ̄Q∗ is defined as ˆ̄Q(ε̂) = logit−1(logit(ˆ̄Q) + ε̂Ĥ), where ε̂ minimizes the
empirical loss function above:

ε̂ = arg min
ε

J∑
j=1

Nj∑
i=1

αj,iL(ˆ̄Q(ε))(Oj)

4. the updated community-level regression estimator is ˆ̄Qc∗ =
∑N

i=1 αi
ˆ̄Q∗.

The weighted regression intercept-based TMLE can be implemented in a similar way as in
section (2.3), except that the targeting step is now based on the individual-level regressions.

Again, applying a similar targeting step to the marginal distribution of (E,W) can easily
show that the score of ε in the fluctuation model spans the second part of the EIC DII :

d

dε
L(Q̂E,W (ε))|ε=0 =

N∑
i=1

αi

[
Eg∗ [ˆ̄Q(A,E,Wi)|E,Wi]−ΨI(PQ̂,ĝ∗I)

]
= DII

E,W (Q̂, ĝI)(O)

The individual-level TMLE estimator

The substitution estimator of ΨII(PQ,g∗I) is defined as follows:

ΨII(PQ̂∗,ĝ∗I
) =

1

J

J∑
j=1

Nj∑
i=1

αj,i

∫
ej ,wj,i

∫
aj

ˆ̄Q∗(a, ej, wj,i)ĝ
∗
I (a|ej, wj,i)dµa(a)qE,W (ej,wj)dµe,w(ej,wj)

Statistical inference for the individual-level TMLE

Since the individual-level TMLE estimator solves the EIC equation 0 =
∑J

j=1 D
II(Q̂∗, ĝ∗I)(Oj),

the individual-level TMLE variance can be asymptotically estimated as

V ar(ΨII(Q̂∗)) ≈ (σ̂IIJ)2

J
, where (σ̂IIJ)2 =

1

J

J∑
j=1

DII(Q̂∗, ĝ∗I)(Oj)
2

Then the 95% confidence interval for ΨII(P0) is Ψ̂II ± σ̂IIJ√
J
.

28

Chapter 3

tmleCommunity R Package for target
maximum likelihood estimation for
community-level data

3.1 Introduction

Motivation

Over the past years, many applications aim to assess the causal effect of treatments assigned
at the community level, while data are still collected at the individual level among individuals
of the community. In many cases, one wants to evaluate the effect of a stochastic intervention
on the community, where all communities in the target population receive probabilistically
assigned treatments based on a known specified mechanism (e.g., implementing a community-
level intervention policy that target stochastic changes in the behavior of a target population
of communities). The development of the tmleCommunity package for R was motivated by
the increasing demand of a user-friendly tool to estimate the impact of community-level
arbitrary exposures in community-independent data structures with a semi-parametric effi-
cient estimator. The tmleCommunity package also extends some of the capabilities of tm-
lenet by optionally allowing fexible data-adaptive estimations through SuperLearner, sl3 and
h2oEnsemble packages, or even user-supplied machine learning algorithms. Besides, it allows
for panel data transformation, such as with random effects and fixed effects. tmleCommunity
is available on github at https://github.com/chizhangucb/tmleCommunity.

As a double-robust and asymptotically efficient substitution estimator that respects
global constraints of the statistical model, targeted maximum likelihood (or minimum loss-
based) estimation (TMLE) provides asymptotically valid statistical inference, with potential
reduction in bias and gain in efficiency [79, 80]. In fact, there are two R [61] packages
that have been instructive for the development of our package: The tmle [24] package per-
forms parameter estimations for a single time point binary intervention for independent and
identically distributed (IID) data, including the average treatment effect (ATE), controlled

https://github.com/chizhangucb/tmleCommunity

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 29

direct effects (CDE), and the parameters of a marginal structural model (MSM). Besides,
[68] developed another R package called tmlenet, which provides three estimators for average
causal effects (and ATE) for single time point arbitrary interventions (univariate or multi-
variate; static, dynamic or stochastic) in the context of network-dependent (non-IID) data,
including TMLE, the inverse-probability-of-treatment-weighting (IPTW) and the parametric
G-computation formula (GCOMP). This package performs logistic regression through glm
and speedglm.

Organization of this chapter

The chapter focuses on the practical usage of the tmleCommunity through multiple examples,
therefore we omit many of the technical details. For a description of the TMLE framework
for independent community data with static community-level interventions, we refer to [2].
For a description of the TMLE of the mean outcome under a stochastic shift intervention
for i.i.d data, we refer to [33].

The rest of this chapter is organized as follows. Section 3.2 shows how the tmleCommu-
nity package is used to estimate those parameters proposed in the prior section through a
few examples, and summarizes the common features of the functions that may be useful to
tmleCommunity users. Then section 3.3 uses three simulation studies to demonstrate imple-
mentation in different observational settings. Section 3.4 discusses the possible extensions
to the methodology and the package in the future. In section 3.5 we answer some frequently
asked questions regarding the package.

3.2 Implementation in the tmleCommunity package
Estimation of average causal effects for single time point arbitrary interventions in hi-
erarchical data with the tmleCommunity package is performed with the main function
tmleCommunity(), along with the auxiliary function, tmleCom_Options() setting additional
options that control the estimation algorithms in the package. Note that tmleCom_Options()
needs to be specified before calling the main function tmleCommunity(), otherwise the de-
fault settings of all arguments to the tmleCom_Options() function will be used in the esti-
mation procedure.

Specification of observed data

The observed data set is passed to tmleCommunity through the data argument as a data
frame, with the outcome column, the exposure column(s), the baseline covariates columns
and possibly the community identifier column (usually numeric values, but no factor values
are supported in the package). The data arguments include Ynode, Anodes, WEnodes,
communityID and YnodeDet, which are all column names or indices in the data frame data
that represent the outcome variable, exposure variable(s), community and individual level

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 30

baseline covariates, community identifier variable, and indicators of deterministic values of
outcome Ynode, respectively. Only Anodes and WEnodes must be specified. If Ynode is left
unspecified, the left-side of the regression formula in argument Qform will be treated as Ynode.
If YnodeDet is not NULL (its corresponding column should be logical or binary), observations
received TRUE or 1 as their YnodeDet values are assumed to have constant values for their
Ynode, thus not being used in the final estimation step. If communityID is not NULL (its
corresponding column could be integer, numeric or character), it supports three options
in argument community.step, including "community_level", "individual_level" and
"PerCommunity". Otherwise, it assumes that the data set has no hierarchical structure
(thus automatically choose the option "NoCommunity"). More details will be discussed in
section 3.2.

The other optional arguments related to the data set - obs.wts, community.wts, and
fluctuation - are the sampling weights for each observation, the sampling weights for
each community, the choice of the fluctuation working model, respectively. Besides, if
fluctuation is specified as "logistic" (the default), continuous outcomes Y ∈ [a, b] will be
bounded into the linear transformed outcome prior to estimating the outcome mechanism.

Specification of estimation method for hierarchical data

communityID, community.step and pooled.Q are the main arguments to determine the
estimation methods for hierarchical data. First, in order to preserve the hierarchical data
structure, the data should contain a column with one unique identifier per community and
the user must provide the communityID argument as a column name or index in data. Failing
to provide communityID will force the community.step argument to be automatically set to
"NoCommunity" (the default) and to pool data across all communities and treat the data as
non-hierarchical.

Second, If community.step is specified as "community_level", the observed data will
be aggregated to the community-level and the estimation of the corresponding statistical
parameter will be analogous to non-hierarchical data structures. Note that pooled.Q is in
regard to incorporate the pairing of individual-level covariates and outcomes (also known
as the working model of "no covariate inference") in community-level TMLE although the
working model is not assumed to hold. In other words, when community.step is set to
"community_level", if pooled.Q = TRUE, the pooled individual-level regressions will be
added as candidates in the Super Learner library for initial estimation of the outcome mech-
anism; If pooled.Q = FALSE, both outcome and treatment mechanisms are estimated on
the community-level and use no individual-level information. Moreover, community.step
could be specified as "individual_level" under the assumption that the working model of
"no covariate inference" holds. Third, the stratified TMLE that fits separate outcome and
exposure mechanisms for each community can be implemented by setting community.step
to "perCommunity". Examples with more details will be provided in section 3.3.

Last but not least, the community.wts argument can be used to provide the community-
level observation weights. If setting to "size.community" (the default), each community

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 31

is weighted by its (standard deviation scaled) number of individuals and this specification
inflates the weight for communities who are underrepresented due to a large degree of missing
data. If setting to "equal.community", all communities will be weighted as the same. The
user-specified community.wts may be passed as a matrix with 2 columns, where the first and
second columns contain the identifiers of communities and the corresponding non-negative
weights, respectively.

Specification of interventions

The user-supplied interventions are specified by the f_g0, f_gstar1 and f_gstar2 argu-
ments. First, an intervention regimen that encodes model knowledge about values of Anodes
is specified with the f_g0 argument, which is either a function or a vector (or a matrix / data
frame if exposures are multivariate) that provides true treatment mechanism under observed
Anodes. If f_g0 is specified as a function, a large vector (or a data frame if multivariate) of
Anodes will be sampled from the f_g0 function. Second, an intervention regimen of interest
is defined by replacing the conditional density g0 with a new user-supplied density g∗, and
is specified by the f_gstar1 argument, which takes a function of counterfactual exposures.
The function must include "data" as one of its argument names, and return a vector or a
data frame of counterfactual exposures evaluated based on Anodes, WEnodes (and possibly
communityID) passed as a named argument "data". In addition, the interventions defined
by f_gstar1 can be static, dynamic or stochastic. For example, for a data set with a binary
treatment, a stochastic regime will randomly assign treatment to 30% of the observations,
and another deterministically static regime will assign treatment for every observation. The
corresponding f_gstar1 function can be coded as

define_f.gstar <- function(prob.val) {
f.gstar <- function(data, ...) {

rbinom(n = NROW(data), size = 1, prob = prob.val)
}
return(f.gstar)

}
f.gstar_stoch.0.3 <- define_f.gstar(prob.val = 0.3)
f.gstar_determ.1 <- define_f.gstar(prob.val = 1)

Alternatively, a deterministic regime can be specified by passing a vector (or a matrix /
data frame) to the f_gstar1 argument with one element per observation (and one column
per treatment variable if multivariate). Moreover, f_gstar1 can be set to a numeric value
if that constant exposure will be assigned to all observations. Thus, the other two ways to
code f.gstar_determ.1 in the example above would be

f.gstar_vector.1 <- rep(1L, NROW(data))
f.gstar_const.1 <- 1L

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 32

Specification of estimation algorithms for outcome regressions

As discussed in the previous chapter, the first-stage of the TMLE procedure is to esti-
mate the conditional mean outcome Q̄0. A good initial fit of Q̄0 could reduce reliance on
bias reduction from the subsequent targeting step and provide a target parameter estimate
with smaller variance. The following optional arguments to the tmleCom_Options() and
tmleCommunity() functions give users control over the initial estimation of Q̄0:

Relevant arguments in tmleCom_Options():

1. Qestimator A string specifying the default estimator for fitting Q̄0, including both
parametric estimations ("speedglm__glm" and "glm__glm") and data-adaptive esti-
mations ("h2o__ensemble" and "SuperLearner").

2. h2ometalearner A string to pass to h2o.ensemble, specifying the prediction algorithm
used to learn the optimal combination of the base learners.

3. h2olearner A vector of prediction algorithms for training the ensemble’s base models.

4. SL.library A vector of prediction algorithms to pass to SuperLearner.

5. CVfolds Optional number of splits in the V-fold cross-validation step for data-adaptive
estimation.

Relevant arguments in tmleCommunity():

1. Qform Regression formula for Q̄0, with the form of Ynode ~ Anodes + WEnodes.

2. Qbounds A vector of 2 truncated levels on continuous Y and the initial estimate Q̄n.

3. alpha A value keeping Q̄n bounded away from (0,1) for logistic fluctuation.

Note that a negative Bernoulli log likelihood could be used as a valid loss function for Q̄0

when setting fluctuation = "logistic", even if Y is not binary. Compared to a regular
linear fluctuation, a logistic fluctuation assures that all predicted means are in (0, 1) and
the corresponding estimates for Q̄ respect the global constraints of the observed data model,
which reduces bias and variance in small samples [23]. Before performing the estimation
procedure, outcomes Y will be bounded by Qbounds, and then will be automatically trans-
formed into Y ∗, continuous outcomes bounded in (0, 1) where Y ∗ = Y−a

b−a ∈ [0, 1]. If Qbounds
is unspecified, the default choice of the range of Y , widened by 10% of its minimum and
maximum values, will be used. Besides, if outcomes Y were originally transformed into Y ∗,
fitting values of the targeted estimates will be automatically mapped back to the original
scale. Once Qbounds finish bounding the observed outcomes, it will be set to (1 - alpha,
alpha) and used to bound the predicted values for the initial outcome mechanism.

The default estimation algorithm for Q̄0 is set to "speedglm__glm", which relies on the
speedglm package [14] and uses its function speedglm.wfit to fit parametric generalized
linear models (GLM) to medium-large data sets. We note that a direct call to speedglm.wfit

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 33

that requires a model matrix as input is faster than the standard call to speedglm. Another
regular parametric GLM fitting functoin glm.fit (the workhorse of glm) is also available for
estimating Q̄0 by setting the Qestimator argument to "glm__glm". When speedglm.wfit
or glm.fit is called, logistic regression will be used for the initial estimation of Q̄0.

However, in a nonparametric model, the probability distribution of the data is typically
unknown and thus parametric models with assumptions that do not use realistic background
knowledge and not respect the global constraints of the statistcal model are easily incorrectly
specified. The recommended solution for it is to use more flexible machine-learning estima-
tors that adapt the regression function to the data without overfitting the data. tmleCom-
munity relies on the SuperLearner and h2oEnsemble packages to perform data-adaptive
estimation. Based on the oracle properties of V-fold cross validation that minimizes the
estimated expected squared error loss function [77], the super learning chooses the best
weighted convex combination of candidate estimators in the user-specified library, possibly
including both machine learning algorithms and parametric models. One of its most impor-
tant advantages is that its "free lunch" principle - Including a large variety of prediction
algorithms in the super learning library could increase the chance of being consistently es-
timated, especially when the functional form of the conditional density is unknown. Note
that h2oEnsemble is another package that provides Super learning method and is based on
the h2o package (usually used to build models on large datasets).

Qform can be used to specify a regression formula that includes Anodes and WEnodes
for Q̄0. The functional form of the formula is only important to parametric estimation
algorithms speedglm.wfit and glm.fit. When using data-adaptive estimation algorithms
provided by SuperLearner and h2oEnsemble, all variables on the right hand side of Qform
will be treated as predictor variables passed to the candidate estimators, ignoring the original
regression formula. If Qform is somehow left unspecified, all variables in Anodes and WEnodes
will be treated as predictor covariates. Besides, the library of the candidate estimators can
specify different functions of the passed predictor variables, such as SL.glm.interaction for
second order interaction terms in SuperLearner. For more details on creating new wrapper
functions for prediction algorithms in h2oEnsemble and SuperLearner, please see [46] and
[59], respectively.

Finally, we realize that sometimes the use of SuperLearner and h2oEnsemble may fail due
to various reasons such as constant responses, so does the use of speedglm. Therefore, the
tmleCommunity() function provides an insurance mechanism for guaranteeing the estimation
procedure functions normally even if the chosen algorithm fails: If "h2o__ensemble" fails, it
falls back on "SuperLearner"; If "SuperLearner" fails, it falls back on "speedglm__glm";
If "speedglm__glm" fails, it falls back on "glm__glm". However, tmleCommunity() will
terminate with an error if the last solution glm.fit also fails.

We demonstrate a simple application of the tmleCommunity function using user-specified
parametric models and super learning library to estimate Q̄ in the code chunk below. In
this example, we have a simulated data of 1,000 i.i.d. observations with four baseline co-
variates (W1, W2, W3 and W4), one binary exposure(A) and continuous outcome (Y). Its true
ATE value is 2.80. Code to generate the example dataset is attached in the supplementary

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 34

material.
We begin with correctly specified models for Q̄. Note that tmleCommunity will provide

results of three estimators for ATE. In this section, we only care about the non-targeted
substitution estimate that uses only an estimate of Q̄, thus we can use "gcomp" to extract
the corresponding results of the MLE estimator.

tmleCom_Options(Qestimator = "speedglm__glm")
tmleCom_Qc_ATE <-

tmleCommunity(data = indSample.bA.cY, Ynode = "Y", Anodes = "A",
WEnodes = c("W1", "W2", "W3", "W4"), f_gstar1 = 1,
f_gstar2 = 0, Qform = "Y ~ W1 + W2 + W3 + W4 + A",
alpha = 0.995)

c(tmleCom_Qc_ATEATEestimates["gcomp",],
tmleCom_Qc_ATEATEvars["gcomp",])

[1] 2.816628029 0.004813391

What if our assumption of the parametric model for Q̄ is incorrect? The result of the
misspecified outcome regression is shown next.

tmleCom_Options(Qestimator = "speedglm__glm")
tmleCom_Qm_ATE <-

tmleCommunity(data = indSample.bA.cY, Ynode = "Y", Anodes = "A",
WEnodes = c("W1", "W2", "W3", "W4"), f_gstar1 = 1,
f_gstar2 = 0, Qform = "Y ~ W1 + A", alpha = 0.995)

c(tmleCom_Qm_ATEATEestimates["gcomp",],
tmleCom_Qm_ATEATEvars["gcomp",])

[1] 3.45848993 0.01460869

Next, suppose we do not know its parametric model and need to use the super learning
algorithm to estimate Q̄. Instead of using the default library, we specify one that contains
three prediction algorithms: SL.glm, SL.bayesglm and SL.gam (Note that SL.gam calls the
gam function in the suggested gam package that uses generalized additive models [28]).

require("SuperLearner")
tmleCom_Options(Qestimator = "SuperLearner", CVfolds = 5,

SL.library = c("SL.glm", "SL.bayesglm", "SL.gam"))
tmleCom_QSL_ATE <-

tmleCommunity(data = indSample.bA.cY, Ynode = "Y", Anodes = "A",
WEnodes = c("W1", "W2", "W3", "W4"), f_gstar1 = 1,
f_gstar2 = 0, rndseed = 12345)

c(tmleCom_QSL_ATEATEestimates["gcomp",],

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 35

tmleCom_QSL_ATEATEvars["gcomp",])

[1] 2.809818 0.004797

Specification of estimation algorithms for treatment mechanisms

After finishing the initial fit for Q̄ in the first stage of TMLE, the next step is to modify
the initial estimator by using the estimation of nuisance parameter g0, in order to make an
optimal bias-variance trade off. Recall that the estimate gn will be used in a clever covariate
that defines a parametric fluctuation model to update the initial estimate of Q̄. The following
arguments to the tmleCom_Options() and tmleCommunity() functions provide flexibility in
how to choose the estimator for g0:

Relevant arguments in tmleCom_Options():

• gestimator A string specifying the default estimator for fitting g0,similar to Qstimator
(except that gestimator also supports "sl3_pipelines", another data-adaptive esti-
mation method).

• bin.method Specify the method for choosing bins when discretizing the conditional
continuous exposure variable, including "equal.mass", "equal.len" and "dhist".

• nbins Number of bins when discretizing a continuous variable.

• maxncats The maximum number of unique categories a categorical variable can have.

• maxNperBin The maximum number of observations in each bin.

• poolContinVar Logical, when fitting a model for binarized continuous variable, if
pooling bin indicators across all bins and fit one pooled regression or not

• savetime.fit.hbars Logical, if skipping estimation and prediction of exposure mech-
anism or not, when f.gstar1 = NULL and TMLE.targetStep = "tmle.intercept".

Relevant arguments in tmleCommunity():

• hform.g0 Regression formula for g0, with the form of Anode ~WEnodes.

• hform.gstar Regression formula for the user-supplied intervention g∗, with the form
of Anode ~WEnodes.

• lbound One value for bounds on the ratio of the estimate of g∗ to the estimate of g0.

• h.g0_GenericModel An object of GenericModel R6 class containing the previously
fitted models for P (A|W,E) under observed treatment mechanism g0.

• h.gstar_GenericModel An object of GenericModel R6 class containing the previously
fitted models for P (A∗|W,E) under observed treatment mechanism g∗.

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 36

• TMLE.targetStep TMLE targeting step method, either "tmle.intercept" (Default)
or "tmle.covariate".

The options for selecting estimation algorithms for the treatment mechanism are similar
to those for estimating Q̄, and they share the same choices of h2ometalearner, h2olearner,
SL.library, and CVfolds. Beyond that, users can also the sl3 package to perform data-
adaptive estimation for g0. Note that sl3 is a modern implementation of the Super Learner
algorithm for ensemble learning and model stacking. For model details on creating new wrap-
per functions in sl3, please see [10]. In order to provide a similar insurance mechanism for the
estimation process of g0, even if the chosen algorithm fails, the tmlecommunity() function
will use the following rule: If "h2o__ensemble" fails, it falls back on "sl3_pipelines"; If
"sl3_pipelines" fails, it falls back on "SuperLearner"; The rest of the mechanism will be
the same as in the estimation process of Q̄0

Also, g0 can be either estimated by parametric models or data-adaptive algorithms, de-
pending on the choices of gestimator. Though the estimation algorithms for Q̄ and g0 could
be different as long as the choices of Qestimator and gestimator differ, the same library is
used for all factors of g. For example, the initial fit of Q̄ is estimated by h2oEnsemble with
"h2o.glm.wrapper" and "h2o.randomForest.wrapper"; A super learning library, includ-
ing SL.loess (with span = 0.8), SL.glmnet, SL.knn.20 (with neighborhood size k = 20)
and SL.step, will be used for each factor of g.

It is important to choose the number and position of the bins when discretizing a con-
tinuous exposure variable, as the choices affect the variance of the density estimation [66].
Fortunately, the type of each variable will be automatically detected (can be binary, categor-
ical, or continuous) based on the user-specified maxncats argument. Recall that maxncats
provides the maximum number of unique categories a categorical variable can have. So if one
variable has more unique categories, it is automatically considered as a continuous variable.

According to [11], a histogram can be used as a graphically descriptive tool where its
location of the bins is determined by cutting the empirical cumulative distribution function
(ecdf) by a set of parallel lines. First, the nbins argument is a tuning parameter that
determines the total number of bins of discretization. A cross-validation selector can be
applied to data-adaptively select the candidate number of bins, which minimizes variance
and maximizes precision. Note that we do not recommend too many bins due to easily
violating the positivity assumption.

Next, given a number of bins, we need to choose the most convenient locations (cutoffs)
for the bins. There are three alternative approaches that use a histogram to define the bin
cutoffs for a continuous variable: equal-mass, equal-length, and a combination of these two
methods. In tmleCommunity package, the choice of methods bin.method together with the
other arguments nbins and maxNperBin can be used to define the values of bin cutoffs. Note
that maxNperBin provides a user-specified maximum number of observations in each bin.

The default discretization method, equal mass (aka equal area) interval method, is set by
passing an argument bin.method="equal.mass" to tmleCom_Options() prior to calling the
main function tmleCommunity(). The interval are defined by spanning the support of A into

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 37

non-equal length of bins, each containing (approximately) the same number of observations.
It is data-adaptive since it tends to be wide where the population density is small, and
narrow where the density is large. If nbins is NA (or is smaller than n

maxNperBin), nbins will be
(re)set to the integer value of n

maxNperBin where n is the total number of observations, and the
default setting of maxNperBin is 500 observations per interval. This method could identify
spikes in the density, but oversmooths in the tails and so could not discover outliers.

Besides, equal length interval method is set by passing an argument bin.method =
"equal.len" to tmleCom_Options(). The intervals are defined by spanning the support
of a continuous variable into nbins number of equal length of bins. This method describes
the tails of the density and identifies outliers well, but oversmooths in regions of high density
and so is poor at identifying sharp peaks. Moreover, as an alternative to find a compromise
between equal mass and equal length approaches, the combination method is set by passing
an argument bin.method="dhist", where dhist is named for diagonally cut histogram. For
consistency, We choose the slope a = 5× IQR(A) as suggested by [11].

Similar to Qform, formulae that include WEnodes can be specified for estimating compo-
nents of g and g∗ using the hform.g0 and hform.gstar arguments. The functional form of
the formulae is unimportant when the data-adaptive estimation algorithms are used. Also,
if the hform.g0 and hform.gstar arguments are unspecified, the formulae will default to
main term regressions that includes all variables in WEnodes.

The lbound argument is a tuning parameter, conforming with the theoretical assumption
2 in section 2.2 that the ratio of g∗(a|E,W) to g(a|E,W) must be bounded away from +∞.
Since the function g∗(a|E,W) is user given, we can try to define it in a way so that it could be
used to answer the causal question of interest, and yet it does not produce unstable weights.
However, when there are unstable weights that cause extremely large value of g∗(a|E,W)

g(a|E,W)
,

this lack of identifiability will result in the estimates with high variance [79]. A common
approach to reduce the variance of the consequent estimates is bounding g∗(a|E,W)

g(a|E,W)
away from

the extremely large value, e.g., 0 ≤ g∗(a|E,W)
g(a|E,W)

≤ 1
lbound . However, truncation comes at a price

of bias since the consistency of the estimator of g(a|E,W) may be affected. Therefore, the
lbound argument should be chosen carefully (it defaults to 0.005).

TMLE.targetStep specifies how to use weights hg∗

hgN
in the TMLE targeting step. If it

is set to "tmle.intercept" (default), it performs the weighted intercept-based TMLE that
runs a intercept-only weighted logistic regression using offsets logit(Q∗) and weights hg∗

hgN
and so no covariate. If setting to "tmle.covariate", it performs the unweighted covariate-
based TMLE that run an unweighted logistic regression using offsets logit(Q∗) and a clever
covariate hg∗

hgN
.

The following example illustrates IPTW estimation of the average causal effect of individual-
based continuous intervention at a single time point. A sample of 5,000 is generated, with
each row i consisting of four baseline covariates (W1, W2, W3 and W4), one continuous expo-
sure (A) and continuous outcome (Y). The true value for the marginal treatment effect of the
intervention for the simulated data is ψ0 = 3.46601. For details on code to generated the

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 38

example dataset, please see the supplementary material.
Suppose we are interested in estimating the mean outcome ψ0 under a truncated stochas-

tic intervention g∗, which is defined by shifting the normal density of observed A until g
∗

g0
≥ 10

and then its truncated to be equal to g0. In this case, the tmleCommunity() function re-
ceives only one user-specified intervention, and we should utilize $EY_gstar1 to extract the
results of estimates under the intervention f_gstar1. Moreover, we use "iptw" to display
the results of the IPTW estimator since it relies only on the estimate of g. Let’s begin with
correctly specified models for g0 and g∗ with a shift of 2 on the observed A, using the equal
mass method that discretizes A into 5 bins (all default choices).

define_f.gstar <- function(shift.val, truncBD, rndseed = NULL) {
f.gstar <- function(data, ...) {

set.seed(rndseed)
A.mu <- 0.86 * data$W1 + 0.93 * data$W3 * data$W4 + 0.41 * data$W4
untrunc.A <- rnorm(n = nrow(data), mean = A.mu + shift.val, sd = 1)
r.new.A <- exp(0.5 * shift.val * (untrunc.A - A.mu - shift.val / 2))
trunc.A <- ifelse(r.new.A > truncBD, untrunc.A - shift.val, untrunc.A)
return(trunc.A)

}
return(f.gstar)

}
f.gstar <- define_f.gstar(shift.val = 2, truncBD = 10, rndseed = 1)

gform.C <- "A ~ W1 + W3 * W4" # correct gform
N <- NROW(indSample.cA.cY)
tmleCom_Options(gestimator = "speedglm__glm", bin.method = "equal.mass",

nbins = 5, maxNperBin = N)
tmleCom_gc_default <-

tmleCommunity(data = indSample.cA.cY, Ynode = "Y", Anodes = "A",
WEnodes = c("W1", "W2", "W3", "W4"), f_gstar1 = f.gstar,
rndseed = 1, hform.g0 = gform.C, hform.gstar = gform.C)

c(tmleCom_gc_defaultEY_gstar1estimates["iptw",],
tmleCom_gc_defaultEY_gstar1vars["iptw",])

[1] 3.4406569 0.0120417

Note that if the discretization method is equal mass (i.e., bin.method = "equal.mass"),
and each bin is allowed to contain no more than 250 observations (i.e., maxNperBin = 250),
the number of bins (or regressions) will be set to the larger value between the nearest
interger of n

250
and the value of nbins, where n is the total number of observations. Thus,

even if nbins defaults to 5, the real number of bins for a sample of 5000 will be 20. It
is worth mentioning that during the estimation, −∞ and +∞ are added as leftmost and

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 39

rightmost cutoff points to make sure all future data points end up in one of the intervals.
For example, if the real number of bins is 20, then the returned results will include 22 fitted
models. However, the selection of maxNperBin doesn’t have influence on the real number of
bins when using the equal length and combination methods.

tmleCom_Options(maxNperBin = 250, bin.method = "equal.mass")
tmleCom_gmain_eqmass <-

tmleCommunity(data = indSample.cA.cY, Ynode = "Y", Anodes = "A",
WEnodes = c("W1", "W2", "W3", "W4"), f_gstar1 = f.gstar)

h.g0_models_mass <- tmleCom_gmain_eqmassEY_gstar1h.g0_GenericModel
length(h.g0_models_mass$getPsAsW.models()$`P(A|W).1`$bin_nms)

[1] 22

tmleCom_Options(maxNperBin = 250, bin.method = "equal.len")
tmleCom_gmain_eqlen <-

tmleCommunity(data = indSample.cA.cY, Ynode = "Y", Anodes = "A",
WEnodes = c("W1", "W2", "W3", "W4"), f_gstar1 = f.gstar)

h.g0_models_len <- tmleCom_gmain_eqlenEY_gstar1h.g0_GenericModel
length(h.g0_models_len$getPsAsW.models()$`P(A|W).1`$bin_nms)

[1] 7

As mentioned previously, when f.gstar1 is inadvertently unspecified (i.e., f.gstar1 =
NULL) and TMLE.targetStep = "tmle.intercept", setting savetime.fit.hbars to TRUE
allows the TMLE process to skip the estimation and prediction of exposure mechanism
P (A|W,E) under g0 and g∗. It will directly set hg∗

hgN
to 1 for all observations.

tmleCom_nofgstar <-
tmleCommunity(data = indSample.cA.cY, Ynode = "Y", Anodes = "A",

WEnodes = c("W1", "W2", "W3", "W4"), f_gstar1 = NULL,
Qform = "Y ~ W1 + W2 + W3 + W4 + A")

c(tmleCom_nofgstarEY_gstar1h.g0_GenericModel,
tmleCom_nofgstarEY_gstar1h.gstar_GenericModel)

[1] NULL

If instead we would like to estimate the same parameter except using machine learning
algorithms. R code that uses SuperLearner to estimate ψ0 is shown next. It displays a sat-
isfactory result of estimation with a super learning library containing "SL.glm", "SL.gam"
and "SL.randomForest".

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 40

require("SuperLearner")
tmleCom_Options(gestimator = "SuperLearner", maxNperBin = N,

SL.library = c("SL.glm", "SL.gam"))
tmleCom_gSL_default <-

tmleCommunity(data = indSample.cA.cY, Ynode = "Y", Anodes = "A",
WEnodes = c("W1", "W2", "W3", "W4"), f_gstar1 = f.gstar,
Qform = "Y ~ W1 + W2 + W3 + W4 + A", rndseed = 1)

c(tmleCom_gSL_defaultEY_gstar1estimates["iptw",],
tmleCom_gSL_defaultEY_gstar1vars["iptw",])

[1] 3.4471211 0.0124127

Another choice for performing maching leraning algorithms, especially stacked ensemble
learning, is to use the sl3 package. Example R code for estimating ψ0 is shown next. Both
Lrnr_glm_fast and Lrnr_glmnet are used in the library.

require("sl3"); require("SuperLearner")
sl3Options("sl3.verbose", TRUE)
tmleCom_Options(gestimator = "sl3_pipelines", maxNperBin = N, CVfolds = 5,

sl3_learner = list(glm_fast = make_learner(Lrnr_glm_fast),
glmnet = make_learner(Lrnr_glmnet)),

sl3_metalearner = make_learner(
Lrnr_optim, loss_function = loss_squared_error,
learner_function = metalearner_logistic_binomial))

tmleCom_gsl3_default <-
tmleCommunity(data = indSample.cA.cY, Ynode = "Y", Anodes = "A",

WEnodes = c("W1", "W2", "W3", "W4"),
f_gstar1 = f.gstar, rndseed = 1)

c(tmleCom_gsl3_defaultEY_gstar1estimates["iptw",],
tmleCom_gsl3_defaultEY_gstar1vars["iptw",])

[1] 3.44918346 0.01457839

Recall that the h2oEnsemble package could also perform Super learning methods. In this
case, we apply generalized linear models with penalized maximum likelihood for both base
learners that are used to train the base models for the ensemble, and the metalearner that
is used to learn the optimal combination of the base learners. Specifically, the base learners
will include three regressions: Lasso (α = 1), Ridge (α = 0) and Elastic net models with
α = 0.5.

require("h2oEnsemble")
h2o.glm.1 <- function(..., alpha = 1, prior = NULL) {

h2o.glm.wrapper(..., alpha = alpha, , prior=prior)

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 41

}
h2o.glm.0.5 <- function(..., alpha = 0.5, prior = NULL) {

h2o.glm.wrapper(..., alpha = alpha, , prior=prior)
}
h2o.glm.0 <- function(..., alpha = 0, prior = NULL) {

h2o.glm.wrapper(..., alpha = alpha, , prior=prior)
}
tmleCom_Options(gestimator = "h2o__ensemble", maxNperBin = N,

h2ometalearner = "h2o.glm.wrapper",
h2olearner = c("h2o.glm.1", "h2o.glm.0.5", "h2o.glm.0"))

tmleCom_gh2o_default <-
tmleCommunity(data = indSample.cA.cY, Ynode = "Y", Anodes = "A",

WEnodes = c("W1", "W2", "W3", "W4"),
f_gstar1 = f.gstar, rndseed = 1)

c(tmleCom_gh2o_defaultEY_gstar1estimates["iptw",],
tmleCom_gh2o_defaultEY_gstar1vars["iptw",])

[1] 3.4321917 0.0118350

Summary of key arguments to the tmleCommunity function

For full details, see the documentation for the tmleCommuity package (cite ***).

• data Observed data, data.frame with named columns, containing WEnodes, Anode,
Ynode and possibly communityID, YnodeDet.

• Ynode Column name or index in data of outcome variable. Outcome can be either
binary or continuous (could be beyond 0 and 1). If Ynode undefined, the left-side of
the regression formula in argument Qform will be treated as Ynode.

• Anodes Column names or indices in data of exposure (treatment) variables.

• WEnodes Column names or indices in data of individual-level (and possibly community-
level) baseline covariates. Factors are not allowed.

• YnodeDet Optional column name or index in data of indicators of deterministic values
of outcome Ynode, coded as (TRUE / FALSE) or (1 / 0). If TRUE or 1, value of Ynode
is given deterministically / constant

• obs.wts Optional choice to provide/ construct a vector of individual-level observa-
tion (sampling) weights (of length nrow(data)). Currently supports a non-negative
numeric vector, "equal.within.pop" (Default) and "equal.within.community". If
"equal.within.pop", weigh individuals in the entire dataset equally (weigh to be

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 42

all 1); If "equal.within.community", weigh individuals within the same community
equally (i.e., 1 / (number of individuals in each community)).

• community.step Methods to deal with hierarchical data, user needs to specify one of
the four choices: "NoCommunity" (Default), "community_level", "individual_level",
"PerCommunity". If "NoCommunity", claim that no hierarchical structure in data; If
"community_level", use the community-level TMLE; If "individual_level", use
the individual-level TMLE cooperating with the assumption of no covariate interfer-
ence, Finally if "perCommunity", use stratified TMLE. If communityID = NULL, then
automatically pool over all communities (i.e., treated it as "NoCommunity").

• communityID Optional column name or index in data representing community iden-
tifier variable. If known, it can support the three options within community.step:
"community_level", "individual_level" and "PerCommunity".

• community.wts Optional choice to provide/ construct a matrix of community-level
observation weights (where dimension = J×2, where J = the number of communi-
ties). The first column contains the identifiers / names of communities (ie., data[
, communityID]) and the second column contains the corresponding non-negative
weights. Currently only support a numeric matrix with 2 columns, "size.community"
(Default) and "equal.community". If setting community.wts = "size.community",
treat the number of individuals within each community as its weight, respectively.
And if community.wts = "equal.community", assumed weights to be all 1.

• pooled.Q Logical for incorporating hierarchical data to estimate the outcome mech-
anism. If TRUE, use a pooled individual-level regression for initial estimation of the
mean outcome (i.e., outcome mechanism). Default to be FALSE.

• f_g0 Optional function used to specify model knowledge about value of Anodes. It
estimates P (A|W,E) under g0 by sampling a large vector/ data frame of Anode (of
length nrow(data)*n_MCsims or number of rows if a data frame) from f_g0 function.

• f_gstar1 Either a function or a vector or a matrix/ data frame of counterfactual
exposures, depending on the number of exposure variables. If a matrix/ data frame,
its number of rows must be either nrow(data) or 1 (constant exposure assigned to
all observations), and its number of columns must be length(Anodes). Note that the
column names should match with the names in Anodes. If a vector, it must be of length
nrow(data) or 1. If a function, it must return a vector or a data frame of counterfactual
exposures sampled based on Anodes, WEnodes (and possibly communityID) passed as a
named argument "data". Thus, the function must include "data" as one of its argument
names. The interventions defined by f_gstar1 can be static, dynamic or stochastic.

• f_gstar2 Either a function or a vector or a matrix/ data frame of counterfactual
exposures, depending on the number of exposure variables. It has the same components
and requirements as f_gstar1 has.

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 43

• Qform Character vector of regression formula for Ynode. If not specified (i.e., NULL),
the outcome variable is regressed on all covariates included in Anodes and WEnodes
(i.e., Ynode ~ Anodes + WEnodes).

• Qbounds Vector of upper and lower bounds on Y and predicted value for initial Q.
Default to the range of Y , widened by 10% of the min and max values.

• alpha Used to keep predicted values for initial Q bounded away from (0,1) for logistic
fluctuation (set Qbounds to (1 - alpha), alpha).

• fluctuation Default to "logistic", it could also be "linear" (for targeting step).

• hform.g0 Character vector of regression formula for estimating the conditional density
of P (A|W,E) under observed treatment mechanism g0. If not specified, its form will
be Anodes ~WEnodes. If there are more than one exposure, it fits a joint probability.

• hform.gstar Character vector of regression formula for estimating the conditional
density P (A|W,E) under user-supplied interventions f_gstar1 or f_gstar2. If not
specified, it use the same regression formula as used in hform.g0.

• lbound Value between (0,1) for truncation of predicted P (A|W,E). Default to 0.005.

• h.g0_GenericModel An object of GenericModel R6 class containing the previously
fitted models for P (A|W,E) under observed treatment mechanism g0, one of the returns
of tmleCommunity function. If known, predictions for P (A = a|W = w,E = e) under
g0 are based on the fitted models in h.g0_GenericModel.

• h.gstar_GenericModel An object of GenericModel R6 class containing the previ-
ously fitted models for P (A∗|W,E) under intervention gstar, one of the returns of
tmleCommunity function. If known, predictions for P (A = a|W = w,E = e) under
gstar are based on the fitted models in h.gstar_GenericModel.

• TMLE.targetStep TMLE targeting step method, either "tmle.intercept" (Default)
or "tmle.covariate".

• n_MCsims Number of simulations for Monte-Carlo analysis. Each simulation generates
new exposures under f_gstar1 or f_gstar2 (if specified) or f_g0 (if specified), with
a sample size of nrow(data). Then these generated exposures are used when fitting
the conditional densities P (A|W,E) and estimating for IPTW and GCOMP under
intervention f_gstar1 or f_gstar2 . Note that deterministic intervention only needs
one simulation and stochastic intervention could use more simulation times such as 10
(Default to 1).

• CI_alpha Significance level (alpha) used in constructing a confidence interval. Default
to 0.05.

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 44

• rndseed Random seed for controlling sampling A under f_gstar1 or f_gstar2 (for
reproducibility of Monte-Carlo simulations)

• verbose Flag. If TRUE, print status messages. Default to FALSE. It can be turned on
by setting options(tmleCommunity.verbose = TRUE).

Summary of key arguments to the tmleComOptions function

For full details, see the documentation for the tmleCommuity package (cite ***).

• Qestimator A string specifying default estimator for outcome mechanism model fit-
ting. The default estimator is "speedglm__glm", which estimates regressions with
speedglm.wfit; Estimator "glm__glm" uses glm.fit; Estimator "h2o__ensemble"
implements the super learner ensemble (stacking) algorithm using the H2O R interface;
Estimator "SuperLearner" implements the super learner prediction methods. Note
that if "h2o__ensemble" fails, it falls back on "SuperLearner". If "SuperLearner"
fails, it falls back on "speedglm__glm". If "speedglm__glm" fails, it falls back on
"glm__glm".

• gestimator A string specifying default estimator for exposure mechanism fitting. It
has the same options as Qestimator.

• bin.method Specify the method for choosing bins when discretizing the conditional
continuous exposure variable A. The default method is "equal.mass", which provides
a data-adaptive selection of the bins based on equal mass/ area, i.e., each bin will con-
tain approximately the same number of observations as others. Method "equal.len"
partitions the range of A into equal length nbins intervals. Method "dhist" uses a
combination of the above two approaches. Please see Denby and Mallows "Variations
on the Histogram" (2009) for more details.

• nbins When bin.method = "equal.len", set to the user-supplied number of bins
when discretizing a continuous variable. If not specified, then default to 5; If setting
to as NA, then set to the nearest integer of nobs/ maxNperBin, where nobs is the total
number of observations in the input data. When method is "equal.mass", nbins
will be set as the maximum of the default nbins and the nearest integer of nobs/
maxNperBin.

• maxncats Integer that specifies the maximum number of unique categories a categor-
ical variable A[j] can have. If A[j] has more unique categories, it is automatically
considered a continuous variable. Default to 10.

• maxNperBin Integer that specifies the maximum number of observations in each bin
when discretizing a continuous variable A[j] (applies directly when bin.method =
"equal.mass" and indirectly when bin.method = "equal.len", but nbins = NA).

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 45

• parfit Logical. If TRUE, perform parallel regression fits and predictions for dis-
cretized continuous variables by functions foreach and dopar in foreach package.
Default to FALSE. Note that it requires registering a parallel back-end prior to run-
ning tmleCommunity function, for example, using doParallel R package and running
registerDoParallel(cores = ncores) for ncores parallel jobs.

• poolContinVar Logical. If TRUE, when fitting a model for binarized continuous vari-
able, pool bin indicators across all bins and fit one pooled regression. Default to FALSE.

• savetime.fit.hbars Logical. If TRUE, skip estimation and prediction of exposure
mechanism P(A|W,E) under g0&g∗ when f.gstar1 = NULL and TMLE.targetStep =
"tmle.intercept", and then directly set h_gstar_h_gN = 1 for each observation.
Default to TRUE.

• h2ometalearner A string to pass to h2o.ensemble, specifying the prediction algorithm
used to learn the optimal combination of the base learners. Supports both h2o and
SuperLearner wrapper functions. Default to "h2o.glm.wrapper".

• h2olearner A string or character vector to pass to h2o.ensemble, naming the predic-
tion algorithm(s) used to train the base models for the ensemble. The functions must
have the same format as the h2o wrapper functions. Default to "h2o.glm.wrapper".

• CVfolds Set the number of splits for the V-fold cross-validation step to pass to both
SuperLearner and h2o.ensemble. Default to 5.

• SL.library A string or character vector of prediction algorithms to being set to
SuperLearner. Default to c("SL.glm", "SL.step", "SL.glm.interaction"). For
more available algorithms see SuperLearner::listWrappers().

3.3 Simulation studies with community-level
interventions

Simulation 1 - Stochastic interventions

We perform a simulation study evaluating the finite sample bias and variance of the TMLE
presented in the previous chapter, including both community-level and individual-level TMLE.
Besides, we compare the performance of TMLE estimator with that of Inverse-Probability-
of-Treatment-Weighted estimator (IPTW) and parametric G-computation formula estimator
(GCOMP). In order to estimate the average causal effect of community-level intervention(s)
at a single time point on an individual-based outcome, we simulate a data set consisting
of 1000 independent communities, each (community j) containing nj (non-fixed) number
of individuals where nj is drawn from a normal distribution with mean 50 and standard

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 46

deviation 10 and rounded to the nearest integer. First, we sample nj i.i.d. community-level
baseline covariates (E1, E2), distributed as

nj ∼ N(50, 10) E1,j ∼ Unif(0, 1) E2,j ∼ Unif{0.2, 0.4, 0.6, 0.8}

Then 3 dependent individual-level baseline covariates (W1,W2,W3) are drawn as a func-
tion of community-level baseline covariates, respectively.

W1,nj ∼ (Bern(expit(−0.4 + 1.2E1,j − 1.3E2,j)))i=1,...,nj(
W2,nj

W3,nj

)
∼ N(

1− 0.8E1,j − 0.4E2,j

0.5 + 0.2E1,j
,Σ =

[
1 0.6

0.6 1

]
)

And a community-level continuous treatment A is sampled conditionally on the values
of all baseline covariates.

Aj ∼ N(−1.2 + 0.8E1 + 0.21E2 + 3W c
1,nj
− 0.7W c

2,nj
+ 0.3W c

3,nj
, 1)

where W c
1,nj

=
1

nj

nj∑
i=1

W1,nj W c
2,nj

=
1

nj

nj∑
i=1

W2,nj W c
3,nj

=
1

nj

nj∑
i=1

W3,nj

Also a truncated stochastic intervention g∗ is defined by shifting the normal density of
observed A by some known constant shift > 0 until g∗

g0
exceeds a known constant bound,

and otherwise, the intervention keeps the observed exposure A unchanged. So the intervened
exposure A∗j is distributed as

A∗j =

{
Aj + shift exp{1.5 ∗ shift ∗ (Aj − µ(Ej,W

c
nj

))− shift
4
} > truncbd

Aj, o.w.

where µ(Ej,W
c
nj

) = −1.2 + 0.8E1 + 0.21E2 + 3W c
1,nj
− 0.7W c

2,nj
+ 0.3W c

3,nj

Last, the individual-level binary outcome Y that is a function of treatment and all base-
line covariates is simulated. Similarly, the post-intervened outcome Y ∗, under stochastic
intervention g∗, is defined as

• Case 1: Working model holds

Yj ∼ Bern(expit(−1.7 + 1.7Aj + 0.5E1,j − 1.2E2,j + 1.1W1,nj + 1.3W2,nj − 0.4W3,nj))

Y ∗j ∼ Bern(expit(−1.7 + 1.7A∗j + 0.5E1,j − 1.2E2,j + 1.1W1,nj + 1.3W2,nj − 0.4W3,nj))

• Case 2: Working model is not a reasonable approximation

Yj ∼ Bern(expit(−1.7 + 1.2Aj − 0.2E1,j + 1.1E2,j + 5.8W c
1,nj
− 3.1W c

2,nj
−W c

3,nj

+0.4W1,nj + 0.2W2,nj − 0.4W3,nj))

Y ∗j ∼ Bern(expit(−1.7 + 1.2A∗j − 0.2E1,j + 1.1E2,j + 5.8W c
1,nj
− 3.1W c

2,nj
−W c

3,nj
+

0.4W1,nj + 0.2W2,nj − 0.4W3,nj))

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 47

The next code chunk shows how to simulate a data set according to the previous data
generating distributions where the working model fails. The code also defines the stochastic
intervention g∗ that we are interested in. Assuming that we want to evaluate the effect of
a constant shift of 1, given a truncation bound of 5, the true parameter value under this
stochastic intervention is ψ0 = 0.558.

getY <- function(A, E1, E2, W1, W2, W3, bs, n.ind) {
prob.Y <- plogis(bs[1] + bs[2] * A + bs[3] * E1 + bs[4] * E2

+ bs[5] * mean(W1) + bs[6] * mean(W2) + bs[7] * mean(W3)
+ bs[8] * W1 + bs[9] * W2 + bs[10] * W3)

rbinom(n = n.ind, size = 1, prob = prob.Y)
}

get.cluster.Acont <- function(id, n.ind, truncBD = 5, shift = 1,
working.model = T) {

Construct community- & individual-level baseline covariates E, W
E1 <- runif(n = 1, min = 0, max = 1)
E2 <- sample(x = c(0.2, 0.4, 0.6, 0.8), size = 1)
prob.W1 <- plogis(- 0.4 + 1.2 * E1 - 1.3 * E2)
W1 <- rbinom(n = n.ind, size = 1, prob = prob.W1)
W2_mean <- 1 - 0.8 * E1 - 0.4 * E2
W3_mean <- 0.5 + 0.2 * E1
W2W3 <- MASS::mvrnorm(n = n.ind, mu = c(W2_mean, W3_mean),

Sigma = matrix(c(1, 0.6, 0.6, 1), ncol = 2))
W2 <- W2W3[, 1]
W3 <- W2W3[, 2]
A.mu <- - 1.2 + 0.8 * E1 + 0.21 * E2 + 3 * mean(W1) -

0.7 * mean(W2) + 0.3 * mean(W3)
A <- rnorm(n = 1, mean = A.mu, sd = 1)
untrunc.A.gstar <- A + shift
r.new.A <- exp(1.5 * shift * (untrunc.A.gstar - A.mu - shift / 4))
trunc.A.gstar <- ifelse(r.new.A > truncBD, A, untrunc.A.gstar)
if (working.model) { # when working.model holds

betas <- c(-1.7, 1.2, 0.5, -1.2, 0, 0, 0, 0.7, 1.3, -0.4)
betas <- c(-1.7, 1.7, 0.5, -1.2, 0, 0, 0, 1.1, 1.3, -0.4)

} else { # when working.model fails
betas <- c(-1.7, 1.2, -0.2, 1.1, 5.8, -3.1, -1, 0.4, 0.2, -0.4)

}
Y <- getY(A, E1, E2, W1, W2, W3, betas, n.ind)
Y.gstar <- getY(trunc.A.gstar, E1, E2, W1, W2, W3, betas, n.ind)
return(data.frame(cbind(id, E1, E2, W1, W2, W3, A, Y, Y.gstar)))

}

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 48

get.fullDat.Acont <- function(J, n.ind, truncBD = 5, shift = 1,
working.model = T, n.fix = F, only.Y = F) {

if (n.fix) {
n.ind <- rep(n.ind, J)

} else { # don't fix the number of obs in each community
n.ind <- round(rnorm(J, n.ind, 10))
n.ind[n.ind <= 0] <- n.ind

}
if (only.Y) {id <- Y <- Y.gstar <- NULL } else { full.dat <- NULL}
for(j in 1:J) {

cluster.data.j <- get.cluster.Acont(working.model = working.model,
id = j, n.ind = n.ind[j], truncBD = truncBD, shift = shift)

if (only.Y) {
id <- c(id, cluster.data.j[, "id"])
Y <- c(Y, cluster.data.j[, "Y"])
Y.gstar <- c(Y.gstar, cluster.data.j[, "Y.gstar"])

} else {
full.dat <- rbind(full.dat, cluster.data.j)

}
print(j)
if (!only.Y) { full.dat$id <- as.integer(full.dat$id) }

}
ifelse(only.Y,

return(data.frame(cbind(id, Y, Y.gstar))), return(full.dat))
}

PopDat.wmT <- get.fullDat.Acont(J = 3000, n.ind = 1000, truncBD = 5,
shift = 1, working.model = T, only.Y = T)

PopDat.wmT.agg <- aggregate(PopDat.wmT, by=list(PopDat.wmT$id), mean)
truth.wmT <- mean(PopDat.wmT.agg$Y.gstar)

PopDat.wmF <- get.fullDat.Acont(J = 4000, n.ind = 1000, truncBD = 5,
shift = 1, working.model = F, only.Y = T)

PopDat.wmF.agg <- aggregate(PopDat.wmF, by=list(PopDat.wmF$id), mean)
truth.wmF <- mean(PopDat.wmF.agg$Y.gstar)

comSample.wmF <- get.fullDat.Acont(
J = 1000, n.ind = 50, truncBD = 5, shift = 1, working.model = F)

comSample.wmF$Y.gstar <- NULL

define_f.gstar <- function(shift.val, truncBD, rndseed = NULL) {

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 49

f.gstar <- function(data, ...) {
set.seed(rndseed)
A.mu <- - 1.2 + 0.8 * data$E1 + 0.21 * data$E2 +

3 * mean(data$W1) - 0.7 * mean(data$W2) + 0.3 * mean(data$W3)
untrunc.A <- rnorm(n = nrow(data), mean = A.mu + shift.val, sd = 1)
r.new.A <- exp(1.5 * shift.val * (untrunc.A - A.mu - shift.val / 4))
trunc.A <- ifelse(r.new.A > truncBD, untrunc.A - shift.val, untrunc.A)
return(trunc.A)

}
return(f.gstar)

}
f.gstar <- define_f.gstar(shift.val = 1, truncBD = 5)

We first demonstrate how to use the two distinct approaches for leveraging a hierarchi-
cal data structure. Recall that the first approach treats community rather than individual
as the unit of analysis and performs estimation on the aggregated data. It can also incor-
porate hierarchical structure for estimating outcome mechanism by adding a single pooled
individual-level regression in the Super Learner library. The second approach, on the other
hand, runs pooled individual-level regressions on both outcome and treatment mechanisms,
because it utilizes the pairing of individual-level covariates and outcomes. Note that all
approaches use the equal-mass method for choosing bins (for the continuous exposure), and
speedglm as the estimators for both outcome and exposure mechanisms. Parameter esti-
mates are obtained from 200 repetitions of the simulation.

niterations <- 200 # Number of repetitions
J <- 1000
n <- 50
res.wmF.Ia <- res.wmF.Ib <- res.wmF.II <-

as.data.frame(matrix(NA, nrow = niterations, ncol = 9))
names(res.wmF.Ia) <- names(res.wmF.Ib) <- names(res.wmF.II) <-

c("TMLE.est", "IPTW.est", "Gcomp.est", "TMLE.var", "IPTW.var",
"Gcomp.var", "TMLE.cover", "IPTW.cover", "Gcomp.cover")

for (i in 1:niterations) {
Generate the full hierarchical data
data <- get.fullDat.Acont(J = J, n.ind = n, truncBD = 5,

shift = 1, working.model = F)
tmleCom_Options(maxNperBin = NROW(data), nbins = 5)

Check if the true value falls into the confidence interval
getCover <- function(CI, truth) {

return(as.integer(CI[, 1] <= truth & truth <= CI[, 2]))

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 50

}

Community-level analysis without a pooled regression on outcome
tmle_comQg <- tmleCommunity(

data = data, communityID = "id", Ynode = "Y", Anodes = "A",
WEnodes = c("E1", "E2", "W1", "W2", "W3"), f_gstar1 = f.gstar,
community.step = "community_level", pooled.Q = FALSE,
obs.wts = "equal.within.community", rndseed = 1)

res.wmF.Ia[i, 1:6]<-
unlist(sapply(tmle_comQg$EY_gstar1[1:2], as.vector))

res.wmF.Ia[i, 7:9] <- getCover(tmle_comQgEY_gstar1CIs, truth.wmF)

Community-level analysis with a pooled regression on outcome
tmle_cQ.pg <- tmleCommunity(

data = data, communityID = "id", Ynode = "Y", Anodes = "A",
WEnodes = c("E1", "E2", "W1", "W2", "W3"), f_gstar1 = f.gstar,
community.step = "community_level", pooled.Q = TRUE,
obs.wts = "equal.within.community", rndseed = 1)

res.wmF.Ib[i, 1:6] <-
unlist(sapply(tmle_cQ.pg$EY_gstar1[1:2], as.vector))

res.wmF.Ib[i, 7:9] <- getCover(tmle_cQ.pgEY_gstar1CIs, truth.wmF)

Individual-level analysis
tmle_poolQg <- tmleCommunity(

data = data, communityID = "id", Ynode = "Y", Anodes = "A",
WEnodes = c("E1", "E2", "W1", "W2", "W3"), f_gstar1 = f.gstar,
community.step = "individual_level", rndseed = 1)

res.wmF.II[i, 1:6] <-
unlist(sapply(tmle_poolQg$EY_gstar1[1:2], as.vector))

res.wmF.II[i, 7:9] <- getCover(tmle_poolQgEY_gstar1CIs, truth.wmF)
}

Results displayed in Table 3.1 shows the comparison of the performance of the two TMLEs
when the assumption of "no covariate interference" holds and the assumption fails badly.
As predicted by theory, the community-level targeted estimator (TMLE-Ia), which is always
based on the aggregated data, has a good performance in both situations with negligible
bias. However, the coverage rates of its influence-curve-based confidence intervals are lower
than nominal (89.5% and 86.5%) due to small variances. In this case, TMLE-Ib, which
uses a pooled individual-level outcome regression and then a community-level stochastic
intervention, performs slightly worse than TMLE-Ia. When the working model holds, we
observe that the coverage rate of TMLE-Ib (68.5%) has a notable decrease compared to that
of the other estimators because of a relatively large bias. As expected, the individual-level

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 51

Table 3.1: Simulation study 1. Simulation-based performance of TMLE, IPTW, Gcomp
estimators with stochastic exposures over 200 repetitions of the simulation, when the
working model holds (ψ0 = 55.57%) and when the working model is not a reasonable
approximation (ψ0 = 55.78%). TMLE-Ia indicates both the outcome regression and the
treatment mechanism are adjusted at the community-level. TMLE-Ib uses the
individual-level outcome regression and the community-level treatment mechanism.
TMLE-II indicates both are adjusted at the individual-level. IPTW-I and Gcomp-I
indicate the use of community-level treatment and community-level outcome, respectively.
IPTW-II and Gcomp-II indicate the use of individual-level treatment and individual-level
outcome, respectively. For each estimator, the columns denote ψ̂ as the average point
estimate, "Bias" as the absolute difference between the estimate ψ̂ and the truth ψ, σ̂ as
the average standard error estimate, rMSE as the root mean squared error, and "Cover" as
the proportion of times that the truth falls within the 95% CI. All outcome and treatment
mechanisms are correctly specified. All reported bias, SE, rMSE and Coverage are
multiplied by 100.

Working Model Holds Working Model Fails

Estimator ψ̂ Bias σ̂ rMSE Cover ψ̂ Bias σ̂ rMSE Cover

TMLE-Ia 55.75 0.18 0.60 0.62 89.5 56.47 0.69 1.36 1.52 86.5

TMLE-Ib 56.48 0.91 0.64 1.12 68.5 56.50 0.72 1.60 1.75 89.5

TMLE-II 55.71 0.13 0.39 0.41 84.0 57.59 1.81 1.48 2.34 69.0

IPTW-I 56.63 1.06 2.60 2.81 100 56.16 0.38 2.91 2.94 100

IPTW-II 55.67 0.10 3.44 3.44 100 57.23 1.45 4.23 4.47 100

Gcomp-I 55.83 0.26 0.60 0.65 90.5 56.44 0.67 1.36 1.51 85.5

Gcomp-II 55.75 0.18 0.39 0.43 87.5 57.57 1.79 1.48 2.33 71.0

targeted estimator (TMLE-II) is biased and its confidence interval coverage has an obvious
decrease when the working model fails. Even though the working model is not a reasonable
approximation, surprisingly, the IPTW using individual-level stochastic intervention (IPTW-
II) provides a reasonable estimate.

Simulation 2 - Static interventions

We now consider another common simulation study with binary community-level expo-
sure(s), which is commonly used in the study of HIV prevention and treatment. Similar
to the previous simulation, we generate 200 samples of size J = 100 communities, each con-

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 52

taining nj observation where nj ∼ N(50, 10). The data generating mechanism is as follows.

W1,nj ∼ (Bern(0.6))i=1,...,nj W2,nj ∼ (N(0, 1))i=1,...,nj

W c
1,nj

=
1

nj

nj∑
i=1

W1,nj W c
2,nj

=
1

nj

nj∑
i=1

W2,nj

Aj ∼ Bern(expit(W c
1,nj

+ 0.56W c
2,nj

))

However, the mechanism differs in the outcome distribution:

• Case 1: Working model is a reasonable approximation

Yj ∼ Bern(expit(0.15 + 0.3Aj + 0.1W c
1,nj

+ 2W1,nj + 0.9W2,nj))

• Case 2: Working model is not a reasonable approximation

Yj ∼ Bern(expit(0.15 + 0.3Aj + 3W c
1,nj
− 0.9W c

2,nj
− 0.3W1,nj +W2,nj))

Table 3.2: Simulation study 2. Performance of TMLE, IPTW, Gcomp estimators with
binary exposures over 200 repetitions of the simulation, when the working model
approximately holds (ψ0 = 4.16%) and when the working model does not hold
(ψ0 = 3.71%). All outcome and treatment mechanisms are correctly specified. All reported
bias, SE, rMSE and Coverage are multiplied by 100.

Working Model Holds Working Model Fails

Estimator Bias σ̂ rMSE Cover Bias σ̂ rMSE Cover

TMLE-Ia 0.03 1.15 1.16 95.0 0.03 1.07 1.08 92.5

TMLE-Ib 0.16 1.16 1.17 95.0 0.25 1.24 1.26 97.5

TMLE-II 0.01 1.14 1.14 95.00 0.04 1.22 1.22 96.0

IPTW-I 0.02 3.79 3.79 100 0.06 3.46 3.46 100

IPTW-II 0.04 15.99 15.99 100 0.02 17.56 17.56 100

Gcomp-I 0.03 1.15 1.16 95.5 0.03 1.07 1.08 91.5

Gcomp-II 0.01 1.14 1.14 95.0 0.04 1.22 1.22 96.0

As before, table 3.2 summarizes the performance of the estimators under different out-
come generating distributions. First, TMLE-Ia performs well in both situations with negligi-
ble biases and great confidence interval coverages. As expected, TMLE-Ib performs similarly

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 53

to TMLE-Ia when the working model holds, and worse than TMLE-Ia when it fails, in terms
of bias and variance. TMLE-II, on the other hand, performs very well when the working
model provides a reasonable approximation, but exhibits slight increases in bias and variance
(and so a more conservative confidence interval) when the working model fails. Theorati-
cally, TMLE-II uses lower dimensional objects with size N =

∑J
j=1Nj and so may improve

the finite sample efficiency if the working model holds. However, when the working model
does not hold, the misspecification of both the outcome and treatment regressions will cause
biased estimate and efficiency loss. Besides, both IPTW-I (with the community-level g) and
IPTW- II (with the individual-level g) have larger variances compared to other estimators,
and so provides 100% coverage rates. It could be explained that the IPTW estimator has
relatively large variability, despite the large sample size. In other words, the range of the
estimated values of IPTW can be wide and results in a large variance.

Simulation 3 - Stochastic interventions (N = 1)

In this simulation, we study the special case where each community has only one observation
(i.e., N = 1) and the intervention is stochastic. As described in section 2.3, it’s similar to data
with only community-level baseline covariates (i.e., treat (E,W) = E). The data-generating
distribution is described as follows:

E1 ∼ Bern(0.5) E2 ∼ Bern(0.3)

E3 ∼ N(0, 0.25) E4 ∼ Unif(0, 1)

A|E1, E2, E3, E4 ∼ N(0.86E1 + 0.41E2 − 0.34E3 + 0.93E4, 1)

Y |A,E1, E2, E3, E4 ∼ N(3.63 + 0.11A− 0.52E1 − 0.36E2 + 0.12E3 − 0.13E4, 1)

Given a shift value and a truncation bound, the intervened exposure A∗ is distributed as:

A∗j =

{
Aj + shift exp{0.5 ∗ shift ∗ (Aj − µ(E1, E2, E3, E4)− shift

2
} > truncbd

Aj, o.w.

where µ(E1, E2, E3, E4) = 0.86E1 + 0.41E2 − 0.34E3 + 0.93E4

Given a shift of 2 and a truncation bound of 10, the marginal treatment effect of the
individual-based intervention is ψ0 = 3.505. In the next step, we will explore the estimation
performance of the targeted estimators with different choices of binarization methods and
the number of bins. Also, we are interested in the performance of the estimators under
different model specifications, including correctly specified and misspecified models for the
outcome regression and the density of the conditional treatment distribution. Again, code
to generate the example dataset is attached in the supplementary material.

In figure 3.1, the outcome Q̄0(A,E) is estimated with the correctly specified main terms
regression model and a misspecified regression model, only adjusting for A and E3. Besides,
the stochastic exposure g∗(a|E) is estimated with a correctly specified model, as well as a
g(a|E) misspecified model, only adjusting for E3. The simulations results are consistent with

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 54

Figure 3.1: Box plots of the point estimates from three algorithms for sample sizes n = 1000
(left) and n = 5000 (right) in Simulation study 3. The x-axis denotes the combination of the
estimator and the model specification. CC indicates correctly specified outcome regression
and exposure mechanism. CM indicates the outcome regression is correctly specified, while
the exposure mechanism misspecified. MC indicates the exposure mechanism is correctly
specified, while the outcome regression misspecified. The dashed line indicates the true
value ψ0 = 3.505.

the theoretical predictions. TMLE performs quite well if either the outcome regression or the
exposure mechanism is correctly specified. IPTW exhibits low bias when g∗(a|E) is correctly
specified, but is biased otherwise. This bias decreases but does not disappear with an increase
in sample size. Besides, IPTW has much higher variance than other estimators even with a
correctly specified g∗(a|E), which may be explained by practical positivity violations such as
small g∗(a|E) causes large weights on few individuals. Weight truncation could be a possible
solution for this practical violation - We can implement more restrictive bounds on g∗ (in
the simulation analysis, a less restrictive set of bounds of [0.005, 1] is used). When the model
for Q̄0(A,E) is misspecified, MLE performs poorly in precision, but MLE is unbiased when
Q̄0(A,E) is correctly specified. Furthermore, sample size does help reduce variance. Last
but not least, it is worth mentioning that the all the estimation are not fully unbiased even
with correctly specified mechanisms. One possible explanation is that that ĝ∗

ĝ
is not bounded

well, which leads to the violation of positivity assumption. Therefore, what we can do is to

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 55

always restrict ĝ∗

ĝ
≤ 20.

3.4 Discussion
The tmleCommunity package was developed to offer a flexible, easily customizable imple-
mentation of the TMLE algorithm for hierarchical data structure, along with community-
level multivariate arbitrary interventions. The main class of causal parameters that is esti-
mated by the package is the treatment specific mean effect, which can be easily extended
to ATE. A neophyte only needs to supply the data and specify the data arguments Ynode,
Anodes, WEnodes and f_gstar1. On that basis, experienced users can control the estimation
procedure by providing the user-supplied regression models for Q̄0, g0 and g∗, and choos-
ing preferred methods allowed for arguments, such as the method dealing with hierarchical
data, whether including hierarchical structure to estimate Q̄0, either linear or logistic fluc-
tuation for targeting, and the TMLE targeting step method. Remarkably, obs.wts and
community.wts can be used to correct for case-control sampling (when the outcome is rare).
Besides, the tmleCommunity function can either internally estimate all factors of the like-
lihood, or use the values for gn and g∗n from the external estimation procedure through
h.g0_GenericModel and h.gstar_GenericModel. The choices of data-adaptive machine
learning techniques and other more advanced estimation methods can be specified in the
tmleCom_Options function.

Planned extensions to the package include several areas. First, we plan to include TMLE
estimation of casual effects of multiple time-point interventions, adjusting for time-dependent
covariates for hierarchical longitudinal data. Second, since considering only complete cases
in the data is inefficient and may cause bias when missingness is informative. The package
will then be extended to allow missingness on the outcome vector, so that the correspond-
ing covariate information can be utilized for reducing bias and increasing efficiency in esti-
mates. Third, as mentioned in section (2.3), when one individual’s outcome is affected by the
individual-level covariates of the subset of other individuals from the same community, the
strength of the "no covariate interference" assumption should be weakened by including this
knowledge of dependence. Another planned addition to this package will so allow estimation
of community-level TMLE under this setting.

Additionally, this package estimates variances and standard errors through estimated
influence curves. Double robustness makes these estimates asymptotically correct if both
the outcome and treatment mechanisms are estimated consistently at reasonable rates, and
conservative if only one of them is estimated consistently. However, variance estimation
is difficult when violations or near violations of positivity happen in finite samples due to
chance [57]. This is usually a problem in small samples or when the exposure is continu-
ous, since discretization of the support of the exposure could lead to lack of data in some
bins. This sparsity results in poor finite sample performance, particularly for estimations
of variances and confidence interval coverages, and even threatens valid inference. One al-
ternative method for variance estimation is the non-parametric bootstrap, especially when

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 56

central limit theorem may not apply due to sparsity. Thus, we plan to include the alternative
variance estimates in the future.

In this package, we use known stochastic interventions such as a shifted version of the
current exposure mechanism g0 given a known shift function. In practice, a stochastic in-
tervention g∗ could also be unknown (i.e., not a function of g0 anymore). If we consider the
estimation of an optimal treatment rule where the rule is defined to maximize the mean out-
come under the treatment, without cross validation, we will use the same information from
the observed data to estimate both the user-specified mechanism g∗ and the mean outcome
under the fitted mechanism, which may result in finite sample bias. According to [41] and
[51], the cross-validated TMLE (cv-TMLE) approach avoids empirical process conditions
and for each sample split, it estimates an empirical mean over a validation sample, under a
stochastic (or deterministic) intervention estimated based on the training sample. Therefore
it may reduce finite sample bias, and including cv-TMLE in the package can be one of our
future work.

3.5 Answers to some frequently asked questions (FAQ)
Can I call the tmleCommunity function a second time without having to re-do the estimation
of exposure mechanism?

Yes. Users can use command resultEY_gstar1h.g0_GenericModel to obtain an ob-
ject of GenericModel R6 class containing the previously fitted models for P (A|W,E) under
observed mechanism g0 (assuming the result of the first call to tmleCommunity is returned to
the variable named result, and only one intervention function f_gstar1 is user given). Sim-
ilarly, an object GenericModel class containing the previously fitted models for P (A|W,E)
under intervention f_gstar1 is returned as resultEY _gstar1h.gstar_GenericModel. The
two objects can be passed into the second call to tmleCommunity by specifying the values for
h.g0_GenericModel and h.gstar_GenericModel, respectively. Assuming we are using the
simulated data and the first estimation result in section 3.2, the next code chunk illustrates
how this is done.

tmleCom_gc_default2 <- tmleCommunity(
data = indSample.cA.cY, rndseed = 1, Ynode = "Y", Anodes = "A",
WEnodes = c("W1", "W2", "W3", "W4"), Qform = "Y ~ W1 + W2 + A",
h.g0_GenericModel = tmleCom_gc_defaultEY_gstar1h.g0_GenericModel,
h.gstar_GenericModel = tmleCom_gc_defaultEY_gstar1h.gstar_GenericModel)

cbind(tmleCom_gc_default2EY_gstar1estimates,
tmleCom_gc_default2EY_gstar1vars)

Can I define and fit the multivariate conditional density under the user-specified inter-
vention function directly without having to call the tmleCommunity function?

Yes, the package provides an individual function named fitGenericDensity to define
and fit regression models for the conditional density P(A = a|W = w) where a is generated

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 57

under a user-specified arbitrary (can be static, dynamic or stochastic) intervention function.
Its arguments are similar to those for estimating treatment mechanisms in tmleCommunity,
except hierarchical data structure is not supported in this function. Therefore, this function
is purely for estimating the multivariate conditional density.

With the same data set simulated in section 3.2, we may be interested in the mean
counterfactual outcome under a stochastic intervention g∗ where the observed A is shifted
to the left by the half of its mean.

define_f.gstar <- function(shift.rate, ...) {
eval(shift.rate)
f.gstar <- function(data, ...) {

print(paste0("rate of shift: ", shift.rate))
shifted.new.A <- data[, "A"] - mean(data[, "A"]) * shift.rate
return(shifted.new.A)

}
return(f.gstar)

}
f.gstar <- define_f.gstar(shift.rate = 0.5)

tmleCom_Options(maxNperBin = N, bin.method = "dhist", nbins = 8)

Under current treatment mechanism g0
fit_gN <- fitGenericDensity(data = indSample.cA.cY, Anodes = "A",

Wnodes = c("W1", "W2", "W3", "W4"),
f_gstar = NULL, gform = gform.C)

Under stochastic intervention gstar
fit_gstar <- fitGenericDensity(data = indSample.cA.cY, Anodes = "A",

Wnodes = c("W1", "W2", "W3", "W4"),
f_gstar = f.gstar, gform = gform.C)

Are there any sample data provided in the package so that users can play analysis on
them?

Yes, the package comes with four sample datasets. comSample.wmT.bA.bY_list is an ex-
ample of a hierarchical data containing a community-level binary exposure with a Individual-
Level binary outcome. And indSample.iid.cA.cY_list is an example of a non-hierarchical
data containing a continuous ex- posure with a continuous outcome. One non-hierarchical
sample dataset is indSample.iid.bA.bY.rareJ1_list, which contains a binary exposure
with a rare outcome (i.e., independent case-control scenario where J = 1). Beside, the
data structure of another dataset indSample.iid.bA.bY.rareJ2_list is identical to this of
indSample.iid.bA.bY.rareJ1_list, except that now the ratio of the number of controls
to the number of case J is 2.

CHAPTER 3. TMLECOMMUNITY R PACKAGE FOR TMLE FOR
COMMUNITY-LEVEL DATA 58

Can the tmleCommunity package handle panel data transformation before performing
TMLE analysis?

Yes. The panelData_Trans function provides a wide variety of ways of data transfor-
mation for panel datasets, such as fixed effect and pooling model. It also allows users to
only apply transformation on regressors of interests, instead of on the entire dataset. For
example, before running the tmleCommunity function on the data set simulated in section
3.3 when the working model fails, we want to apply fixed effect transformation where the
individual effect is introduced, then we can use

pData.FE <- panelData_Trans(
data = comSample.wmF, xvar = c("E1", "E2", "W1", "W2", "W3", "A"),
yvar = "Y", index = "id", effect = "individual",
model = "within", transY = TRUE)

Besides, we can keep the outcome variable fixed during the panel transformation by
setting transY = False. Additional details can be found in the package manual https:
//github.com/chizhangucb/tmleCommunity/blob/master/tmleCommunity.pdf.

3.6 Acknowledgments
This work was supported by National Institutes of Health Director’s New Innovator Award
Program DP2HD080350 (PI: Jennifer Ahern).

https://github.com/chizhangucb/tmleCommunity/blob/master/tmleCommunity.pdf
https://github.com/chizhangucb/tmleCommunity/blob/master/tmleCommunity.pdf

59

Chapter 4

Prediction of diagnoses of nonalcoholic
steatohepatitis in a large administrative
claims database using ensemble learning

4.1 Introduction

Motivation

In contemporary clinical and public health research, administrative claims databases have
been widely used due to their up-to-date, broad coverage of a large enrolled population,
low cost relative to primary data collection, and ability to capture longitudinal data. These
datasets capture medical diagnoses, dispensed prescriptions, and procedures submitted for
reimbursement using standardized sets of codes. On October 1, 2015, the US transitioned
to the most recent version of the International Classification of Diseases, version 10 Clin-
ical Modification (ICD-10-CM) for diagnostic claim coding. In ICD-10-CM, non-alcoholic
steatohepatitis (NASH) was assigned an explicit diagnostic code, however in the ICD-9-CM
coding era, it was grouped with other chronic non-alcoholic liver disease conditions. The
development of an algorithm to predict ICD-10-CM NASH from claims available in the ICD-
9-CM coding era, including not only diagnostic codes but also codes for medications, would
permit much longer longitudinal follow-up time for patients with NASH, thereby permitting
improve understanding of the long-term natural history of this condition.

Despite the existence of more advanced approaches, health-related research relies heavily
on parametric models like logistic regression. Because the functional form of the relationship
between predictors and outcome is commonly unknown, parametric models that impose
strong assumptions are likely misspecified in practice. In addition, the large number of unique
codes that could serve as potential predictors in an administrative claims database make it
impossible for researchers to correctly specify the parametric statistical model. On the
other hand, data-adaptive approaches such as random forest and kernel-based methods like
support vector machines offer flexible alternatives by making fewer structural assumptions

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 60

on the functional form, particularly when complicated interactions among predictors exist
[29]. Since no single algorithm will always be optimal in every data-generating scenario, an
alternative, with the goal of improving prediction performance, is to combine the predictions
of several learning algorithms, a process known as "stacking" [84]. Super Learner (SL) [42] is
a general loss-based ensemble learning method that creates the best weighted combination of
candidate algorithms from a user-specified library, with a goal of minimizing a V-fold cross-
validated empirical risk associated with a loss function specified by the user. Theoretical
properties [43, 13, 74], especially the oracle inequality for cross validation (CV) selectors,
guarantee that SL performs asymptotically at least as well as the best convex combination
of candidate algorithms in the library with respect to the loss-based dissmilarity, and SL
converges at the parametric rate of log(n)/n if one of the algorithms achieves the parametric
rate of convergence to the truth. Furthermore, depending on the goal of the analyses,
different loss functions can be used in SL. For example, if the goal is to maximize the Area
under the ROC curve (AUC) in a binary classification problem, then a SL with an AUC-
maximizing metalearner may have significant advantages with respect to AUC performance,
compared to those with other metalearners that do not target AUC [47].

An important task in all high-dimensional mathematical problems is feature selection.
According to Fan and Fan [15], classification using all features in high-dimensional feature
space can be as bad as random guessing because of noise accumulation in estimating popula-
tion centroids. Traditional variable selection methods including best subset regressions and
step-wise regression suffer from several drawbacks, one of the most severe of which is the very
expensive computational cost in high-dimensional data settings. Recently, a group of ma-
chine learning methods including least absolute shrinkage and selection operator (LASSO)
has shown good performance on estimation accuracy by effectively identifying the subset
of important features, and helping to reduce the computational burden significantly when
the solution is sufficiently sparse [16, 17]. In SL, screening can be either supervised or un-
supervised because it’s part of the algorithm and thus can be included when calculating
the cross-validated risk of an algorithm in a user-specified library [58]. Also, screening al-
gorithms can be paired with prediction models to create new candidate algorithms in the
library, such as two logistic regressions that regress the dependent variable on all features
and on the subset of only demographic variables [80]. Moreover, in many practical sett-
tings, there exists a tension between the richness of a search over the solution space and
the feasibility of such a search in massive, high-dimensional datasets. A complex prediction
algorithm can be computationally intractable when the dataset is too large. Additionally,
the process of V-fold CV in SL makes the computation problem more severe [48]. In order
to resolve this tension, Gruber et al [25] proposed using a concise SL library that can be
computationally-reasonable, and more importantly, using SL built on leave-one-group-out
CV (LOGOCV) instead of V-fold CV. In practice, SL built on LOGOCV significantly re-
duces the computation burden in large datasets without sacrificing prediction strength [25,
36].

The main goal of this chapter was to construct a SL model for the prediction of ICD-
10 NASH diagnoses in a high-dimensional administrative claims database. To that end, we

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 61

evaluated the performance of SL for predictive modeling using different individual prediction
algorithms and user-specified screening methods. We also explored the performance trade-
offs in SL by specifying a larger library that contained 19 diverse individual learners, and a
smaller library that contained 5 relatively fast individual learners.

Organization of this chapter

The rest of this chapter is organized as follows. In Section 4.2, we first describe how the
study cohort was created and what candidate predictors were included in the dataset. Next,
we formulate the AUC-maximizing Super Learner algorithm built on LOGOCV for a bi-
nary classification problem. Then, we provide details of the individual machine learning
algorithms that were included in the SL library, and propose Super Learner classifiers that
consider different sets of individual prediction algorithms mentioned previously. Finally, we
review the use of different performance measures in binary classification problems. In Section
4.3, 4.4 and 4.5 we apply the proposed Super Learner classifiers, along with the individual
machine learning algorithms to predict NASH diagnoses in the created datasets. The article
concludes with a discussion in Section 4.6.

4.2 Methods

Dataset, cohort definition and candidate predictors

We used the IQVIA/PharMetrics PlusTM data set, a fully adjudicated US administrative
claims database with medical and pharmacy claims for approximately 140 million patient
lives available from January 1, 2006 through December 30, 2017. This raw data was trans-
formed into tables of enrollment and demographic information, as well as tables for all
claimed conditions (using ICD-9-CM and ICD-10-CM codes), prescriptions (using generic
product identifiers; GPIs), and procedures (using current procedural terminology (CPT),
healthcare common procedure coding system (HCPCS), and ICD Procedure codes).

For this analysis, we identified a cohort of patients with any NASH claim (K75.81) in
the first year of ICD-10-CM coding (October 1, 2015 – October 1, 2016) and enrollment on
or before October 1, 2013 to capture the final two years of claims in the ICD-9-CM era. For
comparison, we identified patients enrolled through at least the first year of the ICD-10-CM
era with no NASH claims, and selected a random 1% sample of those enrolled on or before
October 1, 2013. After excluding patients under 18 years or with no recorded sex, 212,021
patients remained. Only the two years of claims from Oct 1st, 2013 to Sept 30th, 2015 were
considered for the NASH prediction algorithms. There were 13,215 unique claims codes
occuring during this time period (11,354 diagnostic codes and 1,861 medication dispensing
codes).

Through literature review and consultation with medical experts, we identified 11 co-
morbid conditions (10 medical conditions and smoking) associated with a NASH diagnosis.

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 62

For each of these 11 conditions (represented by 133 individual diagnostic and 78 medical
dispensing claim codes, in total 211), a 1/0 flag was created in the dataset. If a patient
had a claim for any of the 211 codes during the 2-year observation period, the associated
condition flag was coded as ‘1’, the absence of any representative claim codes for a particular
condition resulted in a ‘0’ for that flag. We referred to these 11 comorbidities as ”researcher-
specified claims variables” since they reflected expert knowledge on NASH diagnoses. After
excluding patients with no claims for any of the 11 researcher-specified conditions, 96,639
patients remained (16,966 NASH and 79,673 non-NASH patients). For all other diagnostic,
or medication dispensing claims occurring during the 2 year observation period that were
not already captured in the 211 codes associated with the researcher-specified conditions,
the earliest claim date was retained and converted to a 1/0 flag for each patient.

In order to have a better understanding of the role of the researcher-specified claims
variables, we constructed two datasets: one that considered all claims codes individually
with no grouped researcher-specified claims variables. and another considered the 11 grouped
researcher-specified variables and the remaining individual claims codes. In summary, the
two datasets had the following structure:

• NASH_nogroup: The dataset included patient ID, 2 demographic variables (age and
sex), and 1/0 flags for each of the 13,215 unique claims codes (11,354 diagnostic and
1,861 medication dispensing) occurring during the 2 year observation window.

• NASH_pregroup: The dataset included patient ID, 2 demographic variables (age and
sex), 1/0 flags for each of the 11 researcher-specified claims variables (NAFLD, in-
sulin resistance, obesity, hyperlipidemia, type-II diabetes, hypertension, hypertriglyc-
eridemia, stroke, myocardial infarction, coronary atherosclerosis and smoking), and
1/0 flags for each of the 13,004 remaining unique claims codes (11,221 diagnostic and
1,783 medication dispensing) occurring during the 2 year observation window.

Note that both researcher-specified claims variables and demographic variables were con-
sidered as baseline variables.

Formulation of AUC-maximizing Super Learner built on LOGOCV

Consider the observed data structure O = (Y,W) ∼ P0 ∈M, whereM is a model space that
includes all possible probability distributions for O and P0 is the true unknown distribution
in M. Here, Y ∈ {0, 1} is a binary class of interest with 1 as the positive class and 0 as
the negative class, and W is a p-dimensional set of covariates. Let Ψ : M → R denote a
mapping from any distribution P ∈ M to a score function ψ = Ψ(P) that maps W into
(0, 1). Then the true target parameter ψ0 = Ψ(P0) is given by the mapping appied to the
true P0, and the objective is to estimate the conditional expectation ψ0(W) = E(Y |W).

Recall that the Area Under the ROC curve (AUC) can be defined as AUC(P0, ψ) =∫ 1

0
P0(ψ(W) > µ|Y = 1)P0(ψ(W) = µ|Y = 0)dµ = P0(ψ(W1) > ψ(W2)|Y1 = 1, Y2 =

0), where both (Y1,W1) and (Y2,W2) are sampled from P0 [48]. Suppose there were n

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 63

independent and identically distributed (i.i.d.) copies of Oi = (Yi,Wi) sampled from P0, with
n1 positive cases and n0 negative cases. We used Pn to denote the empirical distribution
of the n i.i.d. observation, P Tn the empirical distribution of the training set (T), and P Vn
the empirical distribution of the validation set (V). Therefore the AUC of the empirical
distribution can be calculated as [27]:

AUC(Pn, ψ) =
1

n1n0

n1∑
i=1

n0∑
j=1

1ψ(Wi)>ψ(Wj)1Yi=1,Yj=0

=
1

n1n0

n1∑
i=1

n0∑
j=1

1ψ(Wi)>ψ(Wj) (4.1)

Let L = {Ψ1, ...,ΨJ} denote a SL library of J alogrithms, where each alogrithm can be
either a pre-specified parametric model or a non-parametric machine learning approach, with
a corresponding function ψ(W) = Ψ(P)(W). The core part of the AUC-maximizing Super
Learner algorithm built on LOGOCV is outlined in the following steps:

(1) Split the sample of n observations with n1 positive and n0 negative cases into a training
set with np observations, and a validation set with n(1 − p) observations, where p ∈
(0, 1) is a user-specified split ratio (e.g., a common choice of p is 0.8).

(2) Fit each algorithm in L on the training set and obtain the predictions on the validation
set. Stack the predictions from each algorithm to yield a n(1− p)× J level-one design
matrix:

Z =

Ψ̂1(P Tn)(W V

1) Ψ̂2(P Tn)(W V
1) . . . Ψ̂J(P Tn)(W V

1)

Ψ̂1(P Tn)(W V
2) Ψ̂2(P Tn)(W V

2) . . . Ψ̂J(P Tn)(W V
2)

...
...

Ψ̂1(P Tn)(W V
n(1−p)) Ψ̂2(P Tn)(W V

n(1−p)) . . . Ψ̂J(P Tn)(W V
n(1−p))

n(1−p)×J

(3) Propose a family of weighted combinations of J algorithms indexed by a weight vector
α:

Ψ̂α(P Tn)(W V) = ψ̂α(W V) =
J∑
j=1

αjΨ̂(P Tn)(W V) s.t.
J∑
j=1

αj = 1 and αj ≥ 0,∀j,

where Ψα is an ensemble algorithm that combines the J algorithms through a linear
combination given by α.

(4) Determine the α that minimizes the cross validated risk associated with some bounded
loss function of interest, which is rank loss here (i.e., 1 - AUC), over all allowed α-

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 64

combinations. Based on the empirical AUC function (4.1), calculate α̂ as

α̂ = arg min
α

(
1− 1

n1(1− p)× n0(1− p)

n1(1−p)∑
i=1

n0(1−p)∑
j=1

1ψ̂α(WVi)>ψ̂α(WVj)

)
,

where subject i is from the positive class and subject j is from the negative class.

(5) Obtain the predictions for all n observations by re-fitting each algorithm that has a
non-zero weight from the above step. Stack the predictions to yield a n×K matrix:

Z ′ =

Ψ̂1(Pn)(W1) Ψ̂2(Pn)(W1) . . . Ψ̂K(Pn)(W1)

Ψ̂1(Pn)(W2) Ψ̂2(Pn)(W2) . . . Ψ̂K(Pn)(W2)
...

...
Ψ̂1(Pn)(Wn) Ψ̂2(Pn)(Wn) . . . Ψ̂K(Pn)(Wn)

n×K

,

where K =
J∑
j=1

1α̂j>0 represents the number of algorithms with non-zero coefficients.

(6) Combine α̂ with Z ′ to generate the Super Learner:

Ψ̂α̂(Pn) =
K∑
k=1

α̂kz
′
k,

where k ∈ {j : α̂j > 0} and z′k represents the kth column of the final prediction matrix
Z ′.

R code for implementing a AUC-maximizing Super Learner build on LOGOCV is pro-
vided in Appendix C.

Machine learning prediction algorithms

Due to computational constraints on large datasets, we considered a diverse set of 19 ma-
chine learning prediction algorithms that was computationally less intensive in our analyses,
such as main term logistic regression, elastic-net regularized logistic regression [85], boosted
classification and regression trees (CARTs)[6], and generalized boosted model[19]. Each of
the prediction algorithms, also known as base learners, can be implemented by the caret
package [40, 38] in R v.3.4.4 [61]. One common aspect of machine learning methods, es-
pecially those aimed at high-dimensional covariates, is he need to perform hyper-parameter
optimization (i.e., tuning parameter selection). It can be very time- and memory-intensive
to find an optimal hyper-parameter setting due to the complexity of the model and the large
volume of data available for tuning parameters. Among the 19 base learners, 15 of them had
at least one hyper-parameter that needed to be tuned. Considering the trade-off between

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 65

hyper-parameter optimization and time consumption, we used a grid search procedure with
5-fold cross validation, allowing 3 different values to test for each tuning parameter, to de-
termine the optimal hyper-parameter setting for each of the 15 need-to-be-tuned learners.
Table A1, which provides details for each of the 19 prediction algorithms, including the cor-
responding R package with its tuning parameter(s), can be found in Appendix A. R code
for generating the base learners is also available in Appendix A.

Bayesian risk ratio algorithm

One well-known feature of health care claims databases is high-dimensionality given the
massive number of diagnostic, medication dispensing, and procedure codes (in this study
p = 13, 215). Therefore, dimension reduction and variable selection are a necessity before
running any prediction algorithms. Moreover, claims databases are typically sparse at the
level of individual claim codes, limited to a handful of diagnoses, dispensing, and procedure
codes for each patient. To address these issues, we proposed a novel variable selection
method, namely Bayesian risk ratio (RR) selection, to select important claims codes based
on the univariate association between individual code and the outcome. The Bayesian risk
ratio can be understood as the weighed average of the raw proportion of events among the
exposed with the prior mean of any event among the same group, divided by the same
weighted average among the non-exposed.

As a key statistic for most case-control studies, the RR evaluates whether the risk of a
certain event happening in one group is the same as of the same event happening in another
group. In this study, the RR measures the risk that an outcome will occur given a particular
claims code, compared to the risk of the outcome occurring in the absence of that code claim
[71]. We outlined its core analytical part in the following steps:

(1) Specify data sources based on coding system, such as ICD-9 diagnoses and Generic
Product Identifier Codes. It can be further specified if other sources can be identified.
Note that steps (2) - (3) will be repeated for each of the data sources.

(2) For each code i, computes its number of instances of an event, being this a diagnosis,
medication or procedure between the case and control groups, respectively, denoted by
mca,i and mco,i. Compute the sum and the average of number of claims for all codes

that appear within the case group, denoted by Tca and X̄ca, where Tca =
nca∑
i=1

mca and

X̄ca = 1
nca

nca∑
i=1

mca, with nca = #{i : mca,i > 0}. Similary, compute the sum and the

average of number of claims for all codes that appear within the control group, denoted

by Tco and X̄co, where Tco =
nco∑
i=1

mco and X̄co = 1
nco

nco∑
i=1

mco, with nco = #{i : mco,i > 0}.

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 66

Then, calculate its Bayesian risk ratio (BRR) as

BRRi =
(mca,i + X̄ca)/(Tca + 0.5)

(mco,i + X̄co)/(Tco + 0.5)
,

where BRRi is unknown if either mca,i or mco,i is 0.

(3) Identify candidate codes by choosing three OR cutoff points {a, b, c} (considered as
tuning parameters, usually b = 1

a
) and selecting code i with (BRRi < a or BRRi > b)

and mca,i > c and mco,i > c. (e.g., keep all codes with (BRR < 0.5 or BRR > 2) and
mca > 25 and mco > 25).

R code for running the Bayesian risk ratio algorithm is provided in Appendix B.

Super Learner

Recall that the Super Learner prediction is the optimal combination of the predicted values
from a user-specified library, where "optimal" is defined in terms of minimizing the V-
fold cross-validated risk associated with a user-specified bounded loss function, usually the
negative log-likelihood loss or the squared-error loss [80]. Thus, the selection of a diverse
library and a loss function is crucial for SL prediction performance. Because our main
performance metrics were AUC and computation time, a rank loss (i.e., 1 - AUC) function,
along with the 19 computationally less intensive base learners described in Section 4.2 were
used in the SL. Although SL built on V-fold CV is preferred to SL built on LOGOCV for
small datasets, the LOGOCV approach performs asymptotically well in large datasets [25].
Considering the large amount of the data in this study, we chose SL built on LOGOCV. This
version of SL can be performed in R by the function SampleSplitSuperLearner() using the
SuperLearner package [59]. Table 4.1 shows the eight libraries that were made available
to SL for our analyses.

Note that in SL analyses, the Bayesian RR method can be used as either a prediction
algorithm or a screening algorithm: When considered as prediction algorithms, Bayesian
RR prediction algorithms are actually the logistic regression models that utilize different
subsets of the claims codes screened by Bayesian RR selection using different sets of tuning
parameters; When considering as screening algorithms, any prediction algorithm in the SL
library can be augmented with various Bayesian RR screening algorithms with user-specified
cutoff points. In SL3 and SL4, nine Bayesian RR prediction algorithms with different sets of
tuning parameters, including a = {0.22, 0.33, 0.45, 0.50, 0.53, 0.56, 0.59, 0.65, 0.68}, b = 1

a
and

c = 25, were contained in the libraries. making each library 28 prediction algorithms in total.
In SL5 and SL6, the Bayesian RR method was considered as a screening algorithm, and nine
fixed pairs of Bayesian RR tuning parameters were used to generate different subsets of
claims codes that the 19 base learners would utilize. SL7 and SL8 were identical to SL5 and
SL6, respectively, except that the Bayesian RR screening step was performed outside the SL
(in this study, performed in a relational database software named Teradata).

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 67

Table 4.1: Details of the Super Learner libraries considered. Five fast learners includes
GLM, Bayesian GLM, naive bayes, shrinkage discriminant analysis, penalized discriminant
analysis.

(a) Smaller Super Learner Libraries

Library Covariates
SL1 5 fast ML base learners Only baseline covariates

SL3 5 fast ML base learners, and
9 BRR prediction algorithms*

Baseline covariates and claims codes:
only base learners utilize baseline covariates,
and only BRR algorithms utilize claims codes.

SL5 5 fast ML base learners*
Baseline covariates, and
claims codes screened by the BRR algorithm
within the SL

SL7 5 fast ML base learners*
Baseline covariates, and
claims codes screened by the BRR algorithm
outside the SL

(b) Larger Super Learner Libraries

Library Covariates
SL2 All 19 ML base learners Only baseline covariates

SL4 All 19 ML base learners, and
9 BRR prediction algorithms*

Baseline covariates and claims codes:
only base learners utilize baseline covariates,
and only BRR algorithms utilize claims codes.

SL6 All 19 ML base learners*
Baseline covariates, and
claims codes screened by the BRR algorithm
within the SL

SL8 All 19 ML base learners*
Baseline covariates, and
claims codes screened by the BRR algorithm
outside the SL

Note: * indicates that those prediction algorithms consist of screening-algorithm pairs.
In SL3 and SL4, BRR prediction algorithms were paired with a screening process that
only kept codes claimed by at least 300 patients and with non-zero coefficients within a
LASSO regression. In SL5 and SL6, each prediction algorithm was paired with a screen-
ing algorithm that used all baseline variables, and only codes screened by the BRR al-
gorithm, claimed by at least 300 patients and with non-zero LASSO coefficients. In SL7
and SL8, since claims codes were screened by the BRR algorithm outside the SL first,
each prediction algorithm was then coupled with a screenig algorithm that used all base-
line variables, and only codes claimed by at least 300 patients and with non-zero LASSO
coefficients. Note that baseline covariates include both 2 demographic variables and 11
researcher-specified claims variables.

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 68

Performance measures for prediction models

The two main metrics that we used to assess the predictive performance of each prediction
individual and SL algorithm were AUC and computation time. An ROC (receiver operat-
ing characteristic) curve is a graph capturing the performance of a binary classifier at all
classification thresholds, and AUC, measuring the area under the entire ROC curve, repre-
sents the probability that the classifier ranks a random point from the positive case higher
than a random point from the negative case. Unlike accuracy-based performance metrics,
AUC will not be affected by the prior class distribution and thus more suitable for prob-
lems with imbalance binary outcomes [26] (in this study, 17.56% of positive cases). Also,
when the operational misclassification costs are unknown or unequal, the AUC is a better
indicator of classifier performance than the overall accuracy. In general, models with higher
AUCs are preferred over those with lower AUCs. As discussed in Section 4.1, computational
burden can be a big concern while implementing SL in large, high-dimensional datasets,
especially when complex models are involved. Therefore, a smaller computation time in-
dicates a more computationally efficient model. By the same token, it is computationally
intractable to use bootstrap methods for variance estimation. LeDell et al [48] proposed a
more computationally efficient influence curve (IC) - based approach to estimate the variance
for cross-validated AUC. In this study, standard error estimates were calculated based on
this IC-based method, using the cvAUC package [49]. Negative log-likelihood of each of
the individual and SL algorithms is also provided in Appendix D. Note that the negative
log-likelihood here means log loss (i.e., cross-entropy loss), measuring the uncertainty of the
probabilities of the classifier by comparing them to the true outcome labels. The smaller log
loss indicates a better model with smaller uncertainty.

For binary classification problems, other performance metrics of interest could be F1-score
(when having a very small positive class) [18], H-measure (overcoming the fundamentally
incoherent manner in terms of misclassification costs for AUC comparison) [26], partial
AUC (focusing on regions that are frequency relevant to practical applications) [35, 82], and
Kappa statistic (comparing an observed accuracy with an expected accuracy) [9]. LeDell
et al. showed how to construct a Super Learner involving a metalearner that targets a
user-specified metric in R [47].

4.3 Using the Bayesian risk ratio prediction algorithms
within the SL

Figure 4.1 shows the AUC and computation time for each of the Bayesian RR prediction
algorithms based on the individual claims codes in the NASH_nogroup and NASH_pregroup
datasets, respectively. Among the unregularized Bayesian RR models that implement logistic
regressions on the set of claims codes selected by BRR criteria only, BRR RR147068 that
included claims codes with BRR > 1.47 or BRR < 0.68 generally performed best in terms
of maximizing the AUC with the AUC approximately 88.3% (95% CI 87.29%, 89.35%) for

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 69

the NASH_nogroup data, and 81.60% (95% CI 80.32%, 82.88%) for the NASH_pregroup
data. As more claims codes were added into the Bayesian RR prediction models, the AUC
tended to decrease. Similar patterns were observed among the L1-regularized (LASSO) BRR
models and the column sparsity regularized BRR models that only used codes claimed by
at least 300 patients. The AUC was generally higher in the regularized BRR models than
in the unregularized models, especially after BRR RR190053, indicating regularization can
slightly increase the AUC performance. In this study, the relatively large sample size may
make the benefits of regularization less obvious. It is interesting that regularization based
on column sparsity had an effect similar to L1 regularization in terms of AUC maximization,
which reveals that controlling the sparseness of claims codes can sometimes be very effective
in reducing the risk of overfitting. Figure 4.1 also shows that the computation times were
similar for all models with a smaller number of claims codes. As the number of selected
codes increased, the computation time for unregularized BRR models increased substantially
relative to the regularized models. With a goal of maximizing the AUC with a reasonable
computation time, we chose the BRR model with BRR > 1.47 or BRR < 0.68 in the rest
of the study. The number of claims codes selected by different screening methods is shown
in Figure 4.2, which further indicates the importance of feature selection and dimension
reduction in the claims database.

In Table 4.2, we compared the AUC and computation time performance of SL1, SL2, SL3,
SL4 and the best L1-regularized BRRmodel for both theNASH_nogroup andNASH_pregroup
dataset. The SL2 and SL4 were not applicable for the NASH_nogroup data since it didn’t
have the 11 researcher-specified claims variables and thus only two baseline covariates (age
and sex) could be used by individual ML algorithms. Some of the 19 algorithms needed more
than 2 predictors for model training. Even though the 5 algorithms in SL1 could estimate the
conditional probability of the outcome given just 2 baseline covariates, it would not reveal
much information and we chose to skip this case. It’s not surprising that SL2 and SL4 always
achieved higher AUC values than SL1 and SL3, respectively, because we used all 19 diverse
ML base learners in SL2 and SL4 but only 5 relatively fast ML base learners in SL1 and SL3.
With the help of the L1-regularized BRR prediction models that used the remaining claims
codes, the SL3 and SL4 resulted in an obvious increase in AUC when compared to SL1 and
SL2 based on the NASH_pregroup dataset, respectively. The four SLs performed at least as
well as, if not better than, each of the individual algorithms in their libraries including the
BRR prediction models (not shown). Table 4.2 further shows that the best L1-regularized
BRR model based on the NASH_nogroup dataset had a better AUC performance compared
to the NASH_pregroup dataset, whereas the SL3 had the opposite AUC results. Computa-
tion time reported in Table 4.2 is installation-specific but clearly shows that SL1 and SL3
outperformed SL2 and SL4, respectively. Recall that the computation time for a SL built on
LOGOCV is approximately twice the sum of the computation time for each base learner in
the library, plus a small processing time for calculating the contribution of each algorithm
to the final prediction. because SL usually fits each individual algorithm twice unless the
algorithm provides a zero contribution to its convex optimization (i.e., α̂ = 0 in step (4)
from Section 4.2).

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 70

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

T
im

e
(S

ec
on

ds
)

A
U

C

RR45
00

22
RR30

00
33

RR22
00

45
RR20

00
50

RR19
00

53
RR18

00
56

RR17
00

59
RR15

40
65

RR14
70

68
RR14

30
70

RR14
00

71
RR13

60
74

RR13
20

76

0.
82

0.
84

0.
86

0.
88

0.
90 0

20
0

40
0

60
0

S
et

 o
f t

un
in

g
pa

ra
m

et
er

s
in

 B
R

R

●
●

●
L1

−R
eg

ul
ar

iz
ed

 (
gt

30
0)

U
nr

eg
ul

ar
iz

ed
 (

gt
30

0)
U

nr
eg

ul
ar

iz
ed

A
U

C
 a

nd
 c

om
pu

ta
tio

n
tim

e
fo

r
B

ay
es

ia
n

R
R

 p
re

di
ct

io
n

al
go

rit
hm

s

●

●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

T
im

e
(S

ec
on

ds
)

A
U

C

RR45
00

22
RR30

00
33

RR22
00

45
RR20

00
50

RR19
00

53
RR18

00
56

RR17
00

59
RR15

40
65

RR14
70

68
RR14

30
70

RR14
00

71
RR13

60
74

RR13
20

76

0.
75

0.
80 0

20
0

40
0

S
et

 o
f t

un
in

g
pa

ra
m

et
er

s
in

 B
R

R

●
●

●
L1

−R
eg

ul
ar

iz
ed

 (
gt

30
0)

U
nr

eg
ul

ar
iz

ed
 (

gt
30

0)
U

nr
eg

ul
ar

iz
ed

A
U

C
 a

nd
 c

om
pu

ta
tio

n
tim

e
fo

r
B

ay
es

ia
n

R
R

 p
re

di
ct

io
n

al
go

rit
hm

s

F
ig
ur
e
4.
1:

A
U
C

an
d
ru
nn

in
g
ti
m
e
fo
r
ea
ch

B
ay
es
ia
n
R
R

pr
ed
ic
ti
on

al
go
ri
th
m

w
it
h
a
un

iq
ue

se
t
of

tu
ni
ng

pa
ra
m
et
er
s
an

d
an

y
fu
rt
he
r
sc
re
en
in
g
st
ep
.
(a
)
an

d
(b
)
ar
e
re
su
lt
s
ba

se
d
on

th
e

N
A

SH
_

no
gr

ou
p
an

d
N

A
SH

_
pr

eg
ro

up
da

ta
se
ts
,r
es
pe

ct
iv
el
y.

R
R
45
00
22

is
a
lo
gi
st
ic

m
od

el
re
gr
es
si
ng

on
cl
ai
m
s
co
de
s
w
ho

se
B
ay
es
ia
n
R
R

ar
e
gr
ea
te
r
th
an

4.
5
or

sm
al
le
r
th
an

0
.2
2
,w

he
re
as

R
R
14
70
68

is
a

lo
gi
st
ic

m
od

el
re
gr
es
si
ng

on
cl
ai
m
s
co
de
s
w
ho

se
B
ay
es
ia
n
R
R

ar
e
gr
ea
te
r
th
an

1.
4
7
or

sm
al
le
r
th
an

0.
6
8
.
U
nr
eg
ul
ar
iz
ed

B
R
R

(g
re
en

lin
e)

us
es

cl
ai
m
s
co
de

s
sa
ti
sf
yi
ng

th
e
B
R
R

se
le
ct
io
n
cr
it
er
ia
;
U
nr
eg
ul
ar
iz
ed

B
R
R

(g
t3
00
)
(b
lu
e
lin

e)
us
es

cl
ai
m
s
co
de
s
sa
ti
sf
yi
ng

th
e
B
R
R

se
le
ct
io
n
cr
it
er
ia

an
d
be

in
g
cl
ai
m
ed

by
at

le
as
t
30
0
pa

it
en
ts
;L

1
re
gu

la
ri
ze
d
B
R
R

(g
t3
00
)
us
es

cl
ai
m
s
co
de
s
sa
ti
sf
yi
ng

th
e

B
R
R

se
le
ct
io
n
cr
it
er
ia
,
be

in
g
cl
ai
m
ed

by
at

le
as
t
30
0
pa

it
en
ts
,
an

d
ha

vi
ng

no
n-
co
ffi
ci
en
ts

in
th
e
LA

SS
O

re
gr
es
si
on

.
T
he

ve
rt
ic
al

lin
es

re
pr
es
en
t
95
%

co
nfi

de
nc
e
in
te
rv
al
s
fo
r
ea
ch

of
th
e
po

in
t
es
ti
m
at
es
.

Compared to SL4, SL3 only needed half of the running time with a small decrease in its

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 71

AUC performance, indicating it could a good alternative to SL4 if computation time is a big
concern.

RR132076

RR136074

RR140071

RR143070

RR147068

RR154065

RR170059

RR180056

RR190053

RR200050

RR220045

RR300033

RR450022

RR132076

RR136074

RR140071

RR143070

RR147068

RR154065

RR170059

RR180056

RR190053

RR200050

RR220045

RR300033

RR450022

1047

852

684

590

478

365

233

183

147
128

98

46
22

435

372

316

291

242

190

133

107
84
73
56
32
19

240
230

196189
165

132
114
95
7769
54
31
18

Unregularized Unregularized (gt300) L1−Regularized (gt300)

Number of claims codes used in BRR prediction algorithms

(a) NASH_nogroup

RR132076

RR136074

RR140071

RR143070

RR147068

RR154065

RR170059

RR180056

RR190053

RR200050

RR220045

RR300033

RR450022

RR132076

RR136074

RR140071

RR143070

RR147068

RR154065

RR170059

RR180056

RR190053

RR200050

RR220045

RR300033

RR450022

975

789

631

541

442

338

214

167

137
122

95

45

21

395

335

283

258

215

167

116
93
7567
53
31
18

260

231

202
183
167

132

101
86
7163
49
29
14

Unregularized Unregularized (gt300) L1−Regularized (gt300)

Number of claims codes used in BRR prediction algorithms

(b) NASH_pregroup

Figure 4.2: Number of claims codes selected by different screening methods. Number of codes
selected by the Bayesian RR method (the left column, named unregularized BRR), column
sparsity based regularization (the middle column, named unregularized BRR (gt300)), and
L1-regularization (the right column, named L1-regularized BRR) for the NASH_nogroup
(a) and NASH_pregroup (b) dataset. Column sparity based regularization selects codes
claimed by at least 300 patients (i.e., gt300). From left to right, each screening method uses
the dataset screened by the previous screening method(s). For top to bottom, the set of
OR cutoffs becomes tighter and less number of codes will be included. RR132076 indicates
selecting codes with BRR > 1.32 or BRR < 0.76, and RR450022 selecting codes with
BRR > 4.5 or BRR < 0.22.

4.4 Using the Bayesian risk ratio screening algorithms
within the SL

In the previous section, individual machine learning algorithms were restricted to only base-
line covariates, whereas the Bayesian RR prediction algorithms could utilize the remaining
individual claims codes. The results clearly illustrates that including the additional BRR
prediction algorithms in the SL library improved the prediction performance in terms of AUC
(and negative log-likelihood, according to Table B1 in Appendix D). To further understand
the effect of the individual claims codes on the prediction of NASH diagnoses, we utilized

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 72

the Bayesian RR method as a part of the screening process before passing the claims codes
to the machine learning algorithms. Recall that in this section, each base learner in the
SL was coupled with a comprehensive screening algorithm that included the Bayesian RR
method, column sparsity-based regularization and L1-regularization. We used 9 fixed pairs
of tuning parameters for the BRR method, where each pair would select a subset of claims
codes that was further screened by the rest of the screening algorithm and combined with
the baseline covariates. Then each of the individual ML learners in the SL library was fitted
on the screened dataset.

Table 4.2: AUC and running time for SL1, SL2, SL3, SL4 and the best LASSO BRR
model based on the NASH_nogroup (a) and NASH_pregroup (b) datasets. The best
L1-regularized BRR model is RR147068 for both datasets. N.A. indicates those SL
methods do not apply to such cases.

(a) NASH_nogroup

Performance Metric SL1* SL2 SL3* SL4 Best LASSO BRR

AUC
(95% CI) N.A. N.A.

0.885
(0.874,
0.895)

N.A.
0.885
(0.874,
0.895)

Running Time (secs) N.A. N.A. 1104.21 N.A. 118.25

(b) NASH_pregroup

Performance Metric SL1* SL2 SL3* SL4 Best LASSO BRR

AUC
(95% CI)

0.843
(0.831,
0.855)

0.850
(0.838,
0.861)

0.888
(0.878,
0.898)

0.889
(0.879,
0.899)

0.825
(0.812„
0.837)

Running Time (secs) 51.07 702.57 1081.08 2194.36 99.90

Note: * indicates smaller SL libraries.

Figure 4.3 depicts the computation time for SL5 and SL6 across different screening algo-
rithms based on the 9 fixed pairs of Bayesian RR tuning parameters. Because of the larger
number of covariates, both SL5 and SL6 had a substantial increase in the computation time
even though the time in SL5 was approximately one-tenth of that in SL6. From Figure
4.4, we see that increasing the number of screened variables in the dataset for individual
ML learners improved the AUC performance, especially for the NASH_nogroup dataset.
In the NASH_pregroup dataset, there were significant increases in AUC from the baseline
results to the RR450022 results in both SL5 and SL6, but the subsequent growth in AUC
became less pronounced as the number of covariates increased. The results suggest that the
remaining claims codes could help improve prediction performance of the machine learning
algorithms, and the most useful claims codes are already captured by the most restricted
pair of BRR parameters RR450022. In the NASH_nogroup dataset, the RR450022 results

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 73

in both SL5 and SL6 were not better than the baseline results, indicating the importance of
the 11 researcher-specified claims variables.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

SL5 SL6

RR450022

RR300033

RR220045

RR200050

RR190053

RR180056

RR170059

RR154065

RR147068

RR450022

RR300033

RR220045

RR200050

RR190053

RR180056

RR170059

RR154065

RR147068

2000

4000

6000

8000

250

500

750

Tim
e (S

eco
nds

) Benchmark

Baseline

Data

● Nash_nogroup

Nash_pregroup

BRR screening performed within SL

Computation time for both SL libraries

Figure 4.3: Computation times for SL5 and SL6 with 9 different screening algorithms in
the Nash_nogroup and Nash_pregroup datasets. SL5 is a smaller SL library containing 5
relatively fast prediction algorithms, whereas SL6 is a larger SL library containing all 19
pre-specified prediction algorithms. RR450022 represents the criteria for the Bayesian RR
screening part of the entire screening process.

Figure 4.4 further shows that the AUC performance based on the NASH_nogroup and
NASH_pregroup datasets became closer as the pair of BRR tuning parameters was less tight.
In Figure 4.5, we compared the performance of AUC for SL5, SL6 and each of the 19 machine
learning algorithms for the NASH_nogroup and NASH_pregroup datasets, where each of the
9 panels represents the AUC results based on the specific pair of BRR tuning parameters.
The SL6 outperformed SL5 and all the other individual machine learning algorithms in
terms of maximizing the AUC, however, the SL5 that included the five fast ML learners
was outperformed by some individual algorithms in some cases such as gradient boosting in
RR450022 and penalized multinomial regression in RR220045. Overall, gradient boosting
was the best individual algorithm in terms of maximizing the AUC.

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 74

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

● ●

SL6

SL5

RR450022

RR300033

RR220045

RR200050

RR190053

RR180056

RR170059

RR154065

RR147068

0.845

0.860

0.875

0.890

0.905

0.845

0.860

0.875

0.890

0.905

AU
C

Data

● rronly

rrpregrp

Data

●

●

Nash_pregroup

Nash_nogroup

Benchmark

Baseline

BRR screening performed within the SL

AUC for SL5 and SL6

Figure 4.4: AUC for SL5 and SL6 with 9 different screening algorithms in the Nash_nogroup
and Nash_pregroup datasets. SL5 is a smaller SL library containing 5 relatively fast predic-
tion algorithms, whereas SL6 is a larger SL library containing all 19 pre-specified prediction
algorithms. The horizontal axis represents the criteria for the Bayesian RR screening part
of the entire screening process. For example, RR450022 indicates codes with BRR > 4.5 or
BRR < 0.22 will be kept. The vertical lines represent 95% confidence intervals for each of
the point estimates.

4.5 Using the Bayesian risk ratio screening algorithms
outside the SL

In the previous section, the Bayesian RR screening algorithm was part of the cross-validation
step that was performed within the SL, indicating the screening results were honest. However,
the computational cost associated with a high-dimensional data set can be prohibitive when
there are too many observations. In addition, administrative claims data contains a vast
number of unique codes which could act as potential predictors, and neither R nor Python
could handle such a wide dataset directly. A solution would be to generated a subset of claims
codes via the Bayesian RR screening algorithm outside the SL (in this study, performed
using an analytical platform from Teradata), and to keep everything else identical to the
procedure in Section 4.4. In this section, we again used the 9 fixed pairs of Bayesian RR
tuning parameters to generate 9 subsets of claims codes.

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 75

●●●●●

●

●●●●●
●

●

●

●

●●
●

●

●●●●●

●

●

●●●
●●

●

●

●

●

●

●

●

●●●
●
●

●

●

●
●●
●●

●

●

●

●

●

●

●

●●●●●

●

●

●
●●
●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●●

●

●

●

●●

●

●

●

●
●●●●●

●●

●
●●

●
●

●

●

●

●

●

●

●

●●●●●

●

●

●●●●

●

●

●

●

●●
●

●

●●●●●

●

●

●●●
●●

●

●

●

●

●

●

●

●●●
●
●

●

●

●●●●

●

●

●●

●

●

●

● ●●●●●

●

●

●
●●
●●

●

●

●

●

●

●

●

●●●
●
●

●

●

●
●●

●●

●

●●

●

●

●

● ●●●
●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●●
●
●

●

●

●●
●
●●

●

●

●

●

●

●

●

●●●●●

●

●

●●●
●●

●

●

●

●

●

●

●

●●●
●
●

●

●

●
●●

●

●

●

●●

●●
●

●
●●●●●

●

●

●
●●
●●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●●

●
●

●

●●

●

●

●

● ●●●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

RR170059 RR154065 RR147068

RR200050 RR190053 RR180056

RR450022 RR300033 RR220045

Nash_nogroup Nash_pregroup Nash_nogroup Nash_pregroup Nash_nogroup Nash_pregroup

Nash_nogroup Nash_pregroup Nash_nogroup Nash_pregroup Nash_nogroup Nash_pregroup

Nash_nogroup Nash_pregroup Nash_nogroup Nash_pregroup Nash_nogroup Nash_pregroup

0.81

0.84

0.87

0.81

0.84

0.87

0.81

0.84

0.87

AU
C

● Base Learner SL5 SL6

BRR screening performed within the SL

AUC for SL5, SL6, and 19 base learners

Figure 4.5: AUC for each of the individual algorithms, SL5 and SL6 with a 9 different
screening algorithms in the Nash_nogroup and Nash_pregroup datasets. SL5 is a smaller
SL library containing 5 relatively fast prediction algorithms, whereas SL6 is a larger SL
library containing all 19 pre-specified prediction algorithms. The horizontal axis represents
the criteria for the Bayesian RR screening part of the entire screening process. For example,
RR450022 indicates codes with BRR > 4.5 or BRR < 0.22 will be kept.

Then each of the subsets was combined with the baseline covariates to generate an aug-
mented dataset that would be utilized by SL7 and SL8. In order to further understand
how the 211 claims codes associated with the 11 researcher-specified conditions would af-
fect the performances of SL7 and SL8, we constructed a third dataset in which all 211

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 76

●

●

● ●
●

● ●

●

●

●

●

● ●

●

● ●

●

●

SL8

SL7

RR450022

RR300033

RR220045

RR200050

RR190053

RR180056

RR170059

RR154065

RR147068

0.845

0.860

0.875

0.890

0.905

0.845

0.860

0.875

0.890

0.905

AU
C

Data

● Nash_nogroup

Nash_pregroup

Nash_nogroup*

Benchmark

Baseline

BRR screening performed outside the SL

AUC for SL7 and SL8

Figure 4.6: AUC for SL7 and SL8 with 9 differenet screening algorithms in the
Nash_nogroup, Nash_pregroup and Nash_nogroup* datasets. SL7 is a smaller SL library
containing 5 relatively fast prediction algorithms, whereas SL8 is a larger SL library con-
taining all 19 pre-specified prediction algorithms. The horizontal axis represents the criteria
for the Bayesian RR screening part of the entire screening process. For example, RR450022
indicates codes with BRR > 4.5 or BRR < 0.22 will be kept.

codes were forced to stay in the screened subset after the Bayesian RR screening step re-
gardless of whether they had been selected by the BRR method. For simplicty, we used
NASH_nogroup* to denote the third dataset. In Figure 4.6, we compared the AUC perfor-
mance of SL7 and SL8 across 9 different external Bayesian screening algorithms based on the
NASH_nogroup, NASH_pregroup, and NASH_nogroup* datasets. The AUC pattern for the
NASH_pregroup dataset was similar when the BRR screening step was performed within the
SL, except that it reached the top early at the criterion of RR200050 (i.e., selected claims
codes whose Bayesian RR were greater than 2.00 or smaller than 0.50). A similar pattern
was found for the NASH_nogroup* dataset, suggesting the cross-validated screening step
that includes column sparsity regularization and LASSO regularization would automatically
select the most relevant predictors and help SLs maintain a good AUC performance even if
the individual codes were not grouped into the 11 researcher-specified variables. Unlike in
Figure 4.4, the AUC for the NASH_nogroup dataset increased substantially from RR450022

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 77

to RR220045, but then decreased slightly to a relatively stable value.

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

3

21

39

56

67

96

120

234

304

7

16

40

53

67

83

111

206

282

156

168

189

208

218

243

271

384

459

DIFF

21

27

54

68

81

84

108

143

174

27

42

61

77

84

94

106

153

169

78

90

112

122

133

134

146

175

192

24

48

93

124

148

180

228

377

478

34

58

101

130

151

177

217

359

451

234

258

301

330

351

377

417

559

651

RR450022_nogroup

RR300033_nogroup

RR220045_nogroup

RR200050_nogroup

RR190053_nogroup

RR180056_nogroup

RR170059_nogroup

RR154065_nogroup

RR147068_nogroup

RR450022_pregroup

RR300033_pregroup

RR220045_pregroup

RR200050_pregroup

RR190053_pregroup

RR180056_pregroup

RR170059_pregroup

RR154065_pregroup

RR147068_pregroup

RR450022_nogroup*

RR300033_nogroup*

RR220045_nogroup*

RR200050_nogroup*

RR190053_nogroup*

RR180056_nogroup*

RR170059_nogroup*

RR154065_nogroup*

RR147068_nogroup*

0 200 400 600

Number of covariates

BRR screening performed outside the SL
Left Point: After SL Screening; Right Point: Before SL Screening

Number of covariates before and after SL8 screening

Figure 4.7: Number of covariates before and after SL8 screening step based on each of the
Bayesian RR screened datasets. RR147068_only* indicates the SL8 is fitted on both baseline
covariates and claims codes selected by Bayesian RR147068 screening step outside the SL
based on the NASH_nogroup dataset.RR450022_ pregroup indicates the SL8 is fitted on
both baseline covariates and claims codes selected by Bayesian RR450022 screening step
outside the SL based on the NASH_pregroup dataset. The right endpoint of a line segment
represents the number of covariates in the original BRR screened data. whereas the left
endpoint represents the number of covariates passing the SL screening algorithm. The bold
number next to each line segment represents the difference between the two endpoints.

Figure 4.7 depicts the number of covariates before and after the SL8 screening step
when fitting SL8 on each of the Bayesian RR screened dataset. Even when all 211 codes
were included in the NASH_nogroup* dataset prior to the SL process, the two-step screen-
ing algorithm did a good job selecting the important features for training the model. It
further provides evidence for the AUC pattern similarities for the NASH_pregroup, and
NASH_nogroup* datasets (Figure 4.6). Table 4.3 shows that in theNASH_pregroup dataset,
the AUC performances improved from SL2 to SL4 and SL4 to SL6. Apparently, the increase

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 78

Table 4.3: AUC and running time for larger SL libraries SL2, SL4, SL6 and SL8 based on
the NASH_nogroup, Nash_pregroup and Nash_nogroup* datasets. SL2 included ML
algorithms that utilized baseline covariates. SL4 expanded SL2 libraries with the 9 BRR
prediction algorithms that utilized claims codes. SL6 included ML algorithms that were
coupled with a three-step screening algorithm (See Table 4.1), whereas the screening
algorithm in SL8 was two-step since the Bayesian RR step was performed outside the SL.
N.A. indicates those SL methods do not apply in such cases.

(a) NASH_nogroup

Performance Metric SL2 SL4 SL6* SL8*
AUC
(95% CI) N.A. N.A. 0.887

(0.877, 0.897)
0.907
(0.895, 0.920)

Running Time (secs) N.A. N.A. 7073.21 3544.80

(b) NASH_pregroup

Performance Metric SL2 SL4 SL6* SL8*
AUC
(95% CI)

0.850
(0.838, 0.861)

0.889
(0.879, 0.899)

0.894
(0.886, 0.903)

0.900
(0.893, 0.907)

Running Time (secs) 702.57 2194.36 8144.24 5246.27

* indicates the results are based on the BRR RR147068 screening method.

in AUC from SL2 to SL4 was large but the increase from SL4 to SL6 was small. It indicates
that the Bayesian RR prediction models performed well in the datasets we constructed. Fit-
ting more complicated machine learning algorithms on the individual claims codes doesn’t
yield a significant gain in AUC. Also, the AUC difference between SL6 and SL8 based on the
NASH_pregroup dataset was quite small, and the running time for SL8 was about half that
of SL6. This suggests that performing the Bayesian RR screening method outside the SL is
a good choice when the original dataset includes more predictors than can be managed by
R or Python. Similar patterns were found for smaller SL libraries SL1, SL3, SL5, and SL8
(See Table B2 in Appendix B).

Table 4.4 depicts the relative contributions to the SL2, SL4, SL6 and SL8 predictions
from each of the 19 algorithms whose contribution is greater than 0.01. Overall, the gradient
boosting algorithm (gbm) made the largest contribution to the prediction. Multivariate
adaptive regression splines (gcvEarth) contributed a great deal in SL2, SL4 and SL6 but
much less in SL8. When the Bayesian RR prediction models were included in the SL, some
of the BRR models were major contributors such as RR450022 and RR147068.

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 79

Table 4.4: Contribution of each algorithm to the final convex combination for SL2,
SL4, SL6 and SL8 based on the NASH_pregroup dataset. Only algorithms whose
contributions are greater than 0.02 are presented here. SL6 shows the algorithm
contributions based on the BRR RR147068 screening process, and SL8 shows the
contributions based on the baseline covariates dataset augmented by the RR200050
screened covariates.

SL2 SL4
Base Learner Weights Base Learner Weights
gcvEarth_All 0.168 gbm_screen.baselines 0.188
earth_All 0.168 BRR.450022_Codes 0.140
gbm_All 0.112 BRR.147068_Codes 0.140
sda_All 0.060 gcvEarth_screen.baselines 0.109
pda_All 0.060 fda_screen.baselines 0.046
fda_All 0.057 rpart_screen.baselines 0.046
rpart_All 0.057 earth_screen.baselines 0.046
C5.0Rules_All 0.057 C5.0Rules_screen.baselines 0.046
C5.0Tree_All 0.057 C5.0Tree_screen.baselines 0.046
ctree2_All 0.057 ctree2_screen.baselines 0.046
LogitBoost_All 0.053 BRR.154065_Codes 0.045
glmboost_All 0.039 BRR.300033_Codes 0.022

naivebayes_screen.baselines 0.022

SL6 SL8
Base Learner Weights Base Learner Weights
sda_screen.gt300.lasso 0.200 LogitBoost_screen.gt300.lasso 0.136
gbm_screen.gt300.lasso 0.194 gbm_screen.gt300.lasso 0.135
gcvEarth_screen.gt300.lasso 0.101 pam_screen.gt300.lasso 0.095
pam_screen.gt300.lasso 0.083 C5.0Tree_screen.gt300.lasso 0.082
pda_screen.gt300.lasso 0.081 sda_screen.gt300.lasso 0.069
C5.0Tree_screen.gt300.lasso 0.070 C5.0Rules_screen.gt300.lasso 0.060
rpart_screen.gt300.lasso 0.061 rpart_screen.gt300.lasso 0.058
naivebayes_screen.gt300.lasso 0.060 glmboost_screen.gt300.lasso 0.057
LogitBoost_screen.gt300.lasso 0.040 gcvEarth_screen.gt300.lasso 0.055
fda_screen.gt300.lasso 0.034 pda2_screen.gt300.lasso 0.043
glm_screen.gt300.lasso 0.020 fda_screen.gt300.lasso 0.041

ctree2_screen.gt300.lasso 0.039
bayesglm_screen.gt300.lasso 0.030
multinom_screen.gt300.lasso 0.029
glm_screen.gt300.lasso 0.028
pda_screen.gt300.lasso 0.021

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 80

4.6 Discussion
In this study, we have shown that stacked ensemble learning such as Super Learner for pre-
dictive modeling in high-dimensional administrative claims databases can be advantageous.
We considered SL libraries that treated the Bayesian risk ratio algorithms as individual base
learners, and libraries that coupled each prediction algorithm with a comprehensive screening
algorithm where the Bayesian risk ratio method was part of the screening process.

Let’s focus on the results based on the Nash_pregroup dataset which compressed 211
individual claims codes into 11 researcher-specified claims variables. We found that the
AUC performance was improved by incorporating the Bayesian RR prediction algorithms
that utilized individual codes as base learners within the SL (from 85% in SL2 to 88.9% in
SL4), indicating that the screening selected claims codes can be used to complement domain
knowledge for variable selection and may improve the performance of predictive modeling.
We also found that the effects of column sparsity-based regularization and L1 regularization
on dimension reduction were similar, indicating the column sparsity is a very good indicator
for its predictive importance in high-dimensional datasets. Another advantage of selecting
codes based on its sparsity prior to some penalized regression is to reduce computation
time. Recall that the SL focuses on selecting a combination of the individual learners that
are optimal in terms of reducing a cross-validated loss function (e.g., rank loss here) for
final predictions. In this data setting, gradient boosting and the Bayesian RR prediction
algorithm had the largest contributions to the final prediction within the SL4.

When fitting SL6, we allowed all prediction algorithms to utilized BRR-screened indi-
vidual claims codes rather than just logistic regressions, which improved the SL’s flexibility
in model training. However, the small increase in AUC from SL4 to SL6 suggests there is
not much hidden information within the claims codes that can be exploited by using more
flexible models than main-term logistic regressions, at least in this study. The purpose of
SL8 was to check the severity of model overfitting if performing the Bayesian RR screening
outside the SL. In this case, the SL was fitted on the dataset that combined the baseline
covariates with the subset of claims codes screened by the BRR. The results show that the
AUC values and trends were quite similar between SL6 and SL8 although SL8 reached the
top earlier at the criteria of RR200050, which indicates there is a small degree of overfitting.
SL8 ran in half the time that it took to run SL6. Therefore, SL8 could be an alternative to
SL6 if there are concerns about computation time and data storage space (e.g., a data set
with over 100,000 columns that is hard to handle in R or Python).

It is interesting that the AUC performance achieved with the Nash_nogroup dataset
was quite similar that with the Nash_pregroup dataset. Recall that all claims codes were in-
cluded in the Nash_nogroup as individual predictors. Combined with the results in SL2, this
suggests two things: First, the feature engineering step is effective since those 11 researcher-
specified covariates are quite informative for the predictive modeling. Second, the cross-
validated screening step within SL can effectively capture important codes even without the
expert knowledge. We also noticed that the AUC trend in SL8 based on Nash_nogroup was
more aggressive than the trend in SL6, indicating a larger degree of overfitting than the re-

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 81

sults based on Nash_pregroup. Furthermore, we compared the AUC performance of SL using
smaller libraries (SL1, SL3, SL5, and SL7) to SL using larger libraries (SL2, SL4, SL6, and
SL8). The data analysis illustrates that a smaller library could reduce computation cost with-
out sacrificing much performance. Therefore, future research can explore the performance of
SL by only including the individual algorithms with large contributions if computation time
is a big concern. It is worth mentioning that there are other popular strategies for variable
selection in high-dimensional claims datasets such as the high-dimensional propensity score
(hdPS) [65] that can be combined with SL [36]. Further analysis can explore which variable
selection method does better in different data settings.

Overall, we conclude that constructing a Super Learner with a rich library of diverse
prediction algorithms coupled with a comprehensive screening algorithm is promising for
predictive modeling in high-dimensional administrative claims databases.

4.7 Chapter Appendix

Base learners description and demo R code for generating them

Recall that If a prediction model had at least one hyperparameter, we would use a grid search
procedure with 5-fold cross validation, allowing 3 different values to test for each tuning
parameter, to select the optimal hyperparameter setting, otherwise, no cross validation would
be necessary.

The following R code shows how to create such base learners for a Super Learner library,
using the caret package[40].

--
SL wrappers: generating base learners for SL prediction
--
stochastic gradient boosting
SL.caret.gbm <- function(..., method = "gbm", tuneLength = 3,

trControl = trainControl(method="cv", number=5,
verboseIter=TRUE)) {

SL.caret(..., method = method,
tuneLength = tuneLength, trControl = trControl)

}
classification and regression trees
SL.caret.rpart <- function(..., method = "rpart", tuneLength = 3,

trControl = trainControl(method="cv", number=5,
verboseIter=TRUE)) {

SL.caret(..., method = method,
tuneLength = tuneLength, trControl = trControl)

}
Note, for learners without hyper-parameter, no need to use cross CV

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 82

Table 4.5: List of 19 prediction algorithms that have been used in NASH data analysis
and hyperparameter(s) used in the corresponding R package

Algorithm Description R package(s) Hyperparameter(s)
glm generalized linear model stats [61] None
bayesglm Bayesian generalized linear model arm [22] None

glmnet elastic-net regularized
generalized linear model glmnet [20] Mixing parameter

Regularization Parameter

glmboost boosted generalized linear model plyr [83]
mboost [8]

Number of Boosting Iterations
AIC Prune?

multinom penalized multinomial regression nnet [81] Weight Decay
LogitBoost boosted logistic regression caTools [72] Number of Boosting Iterations

naivebayes naive Bayes naivebayes [52]
Laplace Correction
Distribution Type
Bandwidth Adjustment

pam nearest shrunken centroids pamr [31] Shrinkage Threshold

sda shrinkage discriminant analysis sda [1] Diagonalize
shrinkage

pda penalized discriminant analysis mda [30] Shrinkage Penalty Coefficient
pda2 penalized discriminant analysis mda [30] Degrees of Freedom

fda flexible discriminant analysis earth [12]
mda [30]

Product Degree
Number of Terms

Rpart
classification and regression
trees (CART) rpart [70] Complexity Parameter

gcvEarth multivariate adaptive
regression splines earth [12] Product Degree

Earth multivariate adaptive
regression splines earth [12] Number of Terms

Product Degree
C5.0Rules single C5.0 rule-based models C50 [39] None
C5.0Tree single C5.0 decision tree models C50 [39] None

ctree2 conditional inference tree party [32] Max Tree Depth
1 - P-Value Threshold

gbm stochastic gradient boosting gbm [63]
plyr [83]

Number of Boosting Iterations
Max Tree Depth
Shrinkage
Min. Terminal Node Size

generalized linear model
SL.caret.glm <- function(..., method = "glm", tuneLength = 3,

trControl = trainControl(method="none",
verboseIter=TRUE)) {

SL.caret(..., method = method,
tuneLength = tuneLength, trControl = trControl)

}

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 83

Demo R code for a comprehensive screening method

The following R code shows how to implement the Bayesian Risk Ratio variable selection
method, and then how to incorporate with column sparsity based regularization and L1
regularization screening methods.

myspread <- function(df, key, value) {
quote key
keyq <- rlang::enquo(key)
break value vector into quotes
valueq <- rlang::enquo(value)
s <- rlang::quos(!!valueq)
df %>% gather(variable, value, !!!s) %>%

unite(temp, !!keyq, variable) %>%
spread(temp, value)

}

--
RR_method: function to apply Bayesian Risk Ratio for variable selection.
claims_df: data frame structured with "patid" (patient ID) in col 1,
"code" (code name) in col 2, and "nash" (outcome) in col 3.
It includes all code claims from one data source.
X: data frame with "patid", outcome , baseline covariates, and all claim
codes that are avaible for the list of patients.
RR_upp: upper cutoff for BRR (i.e., keep any code with RR above it).
RR_low: lower cutoff for BRR (i.e., keep any code with RR below it).
num_cutoff: Remove code with number of claims smaller than it
(Default to 0)
--
RR_method <- function(claims_df, X, RR_upp, RR_low, num_cutoff = 0) {

Step 2.1 Select codes satisfying RR conditions
sub_claims_df <- claims_df[which(claims_df$patid %in% X$patid),]
sub_codes_ct <- sub_claims_df %>%

Compute # of claims for each code among NASH & non-NASH group, resp
group_by_(.dots=c("code", "nash")) %>% dplyr::summarise(num = n()) %>%
Compute total and mean of # of claims, among NASH & non-NASH group
group_by(nash) %>% dplyr::mutate(sumN = sum(num),

avgN = mean((num))) %>%
Spread a key-value pair across multiple columns
myspread(key = nash, value = c(num, sumN, avgN)) %>%
Rename column names (magrittr::set_names)
set_names(c("code", "avgN_0", "num_0", "sumN_0",

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 84

"avgN_1", "num_1", "sumN_1")) %>%
Drop any row with NA (either in NASH or non-NASH group)
tidyr::drop_na() %>%
Compute Bayesian RR
dplyr::mutate(ratio = ((num_1 + avgN_1)/(sumN_1 + 0.5)) /

((num_0 + avgN_0)/(sumN_0 + 0.5))) %>%
Condition arguments:
number of claims per code cutoff (among NASH & non-NASH group)
dplyr::filter((ratio > RR_upp | ratio < RR_low) &

num_0 > num_cutoff & num_1 > num_cutoff)
code_ind_RRkeep <- which(names(X) %in% tolower(sub_codes_ct$code))
return(code_ind_RRkeep)

}

--
screen.RR.gt300.lasso: function to implement a
comprehensive screening algorithm.
1. Apply the Bayesian risk ratio screening method;
2. Select codes claimed by at least a certain amount of patients;
3. Select codes with non-zero coefs in a L1-regularized regression.
alpha: Elastic net parameter, range [0, 1]. 0 = RIDGE and 1 = LASSO.
minscreen: Minimal number of covariates allowed after screening.
nlambda: Number of lambda values to check, recommended to be >= 100.
nfolds: Number of folds for internal CV to optimize lambda.
obs_cutoff: Minimal number of non-zero values per column.
RR_upp, RR_low, code_cutoff, X, claims_df: see the function above.
...: Additional arguments passed to the screen.glmnet function.
--
screen.RR.gt.lasso <- function(

alpha = 1, minscreen = 5, nlambda = 100, nfolds = 5, obs_cutoff = 300,
RR_upp = 2.0, RR_low = 0.5, code_cutoff = 25, X, claims_df, ...) {

Step 0. identify indices for dx, rx, group, demographic variables
dxrx_ind <- grep("^i[a-zA-Z]?[a-zA-Z]?[0-9]|^m[0-9]",

names(X), value = FALSE)
grp_ind <- grep("^is_", names(X), value = FALSE)
patid_ind <- grep("patid", names(X), value = FALSE)
demogra_ind <- which(names(X) %in% c("age", "isFemale"))
useless_ind <- setdiff(1:NCOL(X),

c(dxrx_ind, patid_ind, grp_ind, demogra_ind))

if (length(dxrx_ind) == 0) {

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 85

Step 1. If no RR applied, keep all variables
whichVariable <- rep(TRUE, ncol(X))
whichVariable[c(patid_ind, useless_ind)] <- FALSE # patid removed
return(whichVariable)

} else {
Step 2. Variable selection
whichVariable <- rep(FALSE, ncol(X))

Step 2.1 Always keeped demographic and grouped covariates
whichVariable[c(grp_ind, demogra_ind)] <- TRUE

Step 2.2 Select dx and rx codes satisfying RR conditions
dx_ind_RRkeep <- RR_method(

claims_df = condit_dx, X = X, RR_upp = RR_upp,
RR_low = RR_low, code_cutoff = code_cutoff

)
rx_ind_RRkeep <- RR_method(condit_rx, X, RR_upp, RR_low, code_cutoff)
dx_ind_RRkeep <- dx_ind_RRkeep$code_ind_RRkeep
rx_ind_RRkeep <- rx_ind_RRkeep$code_ind_RRkeep
dxrx_ind_RRkeep <- c(dx_ind_RRkeep, rx_ind_RRkeep)
message(paste0("By setting RR > ", RR_upp, " or RR < ", RR_low,

", its selects ", length(dx_ind_RRkeep), " dx and ",
length(rx_ind_RRkeep), " rx codes, in total ",
length(dxrx_ind_RRkeep), " codes."))

Step 2.4 Select columns with more than some number non-zero values
dxrx_RRkeep_col_sum <- as.integer(colSums(X[, dxrx_ind_RRkeep]))
dxrx_ind_RRkeep <- dxrx_ind_RRkeep[dxrx_RRkeep_col_sum >= obs_cutoff]
message(paste0("By choosing to codes claimed by more than ",

obs_cutoff, " patients, ", length(dxrx_ind_RRkeep),
" codes are kept."))

Step 2.5 Use LASSO to do the last screening step
dxrx_lasso <-

screen.glmnet(alpha=alpha, minscreen=minscreen, nfolds=nfolds,
nlambda=nlambda, X=X[, dxrx_ind_RRkeep], ...)

whichVariable[dxrx_ind_RRkeep] <- dxrx_lasso
message(paste0("By applying LASSO, ", sum(dxrx_lasso),

" codes are kept."))
return(whichVariable)

}
}

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 86

Demo R code for performing a AUC-maximizing Super Learner
build on LOGOCV

The following R code gives an example that shows how to implement a AUC-maximizing
Super Learner build on LOGOCV, where each prediction algorithm is coupled with a 3-step
screening process described above.

--
LOGOCV.SL.traintest: function to implement SL build on LOGOCV
Y: outcome vector.
X: predictor data frame.
SL.lib: either a character vector of prediction algorithms or
a list containing character vectors.
meta_method: how to estimate the weights of the individual algorithms
in SL. Default to "method.AUC" (i.e., AUC-maximizing).
train_frac: training test sets split ratio.
rndseed: random seed to ensure model reproducibility.
alpha: significance level. Default to 0.05.
--
LOGOCV.SL.traintest <- function(Y, X, SL.lib, meta_method = "method.AUC",

train_frac = 0.9, rndseed = 1,
alpha = 0.05) {

Yfamily <- ifelse(length(unique(Y)) > 2, gaussian(), binomial())
set.seed(rndseed)
train_ind <-

sample(1:NROW(X), size = round(NROW(data) * train_frac), replace = F)
trainX <- X[train_ind,]; trainY <- Y[train_ind]
testX <- X[-train_ind,]; testY <- Y[-train_ind]

Create vectors to store results
SL_pred <- rep(NA, length(testY))
SL_res <-rep(NA, 10)
names(SL_res) <-

c("Screening", "AUC", "NLogLik", "Time", "Allvar",
"UsedVar", "cvAUC", "se", "lowCI_cvAUC", "uppCI_cvAUC")

SL_res["Allvar"] <- NCOL(trainX)
SL_weights <- c()

set.seed(rndseed)
require(SuperLearner)

start.time <- Sys.time()

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 87

model.SL <- SuperLearner::SampleSplitSuperLearner(
Y = trainY, X = trainX, family = Yfamily, SL.library = SL.lib,
split = 0.9, method = meta_method, verbose = TRUE)

end.time <- Sys.time()
time.taken <- difftime(end.time, start.time, units = "secs")

pred_SL <- predict(model.SL, newdata = testX, onlySL = TRUE)
require(Metrics)
auc_SL <- Metrics::auc(testY, pred_SL$pred)
logloss_SL <- Metrics::logLoss(testY, pred_SL$pred)
require(cvAUC)
cvAUC_SL <- ci.cvAUC(pred_SL$pred, testY, confidence = 1 - alpha)[1:3]

SL_pred <- pred_SL$pred
SL_res["AUC"] <- round(auc_SL, digits = 5)
SL_res["NLogLik"] <- round(logloss_SL, digits = 5)
SL_res["Time"] <- round(as.numeric(time.taken), digits = 2)
SL_res["UsedVar"] <- sum(model.SL$whichScreen[1,])
SL_res[7:10] <- round(unlist(cvAUC_SL), digits = 5)
SL_weights <- as.vector(model.SL$coef)
return(list(pred = SL_pred, res = SL_res, weight = SL_weights))

}

Tuning grids for RR cutoff hypers
Grid_RR <- data.frame(RR_upp = c(4.50, 1.47), RR_low = c(0.22, 0.68),

obs_cutoff = 300, code_cutoff = 25)
Grid_names <- paste0(as.character(Grid_RR[, 1] * 100),

paste0("0", as.character(Grid_RR[, 2] * 100)))

Generate screening algorithms in SL based on cutoffs for Bayesian Risk Ratio
for (hyper in seq(length(Grid_names))) {

eval(parse(file = "", text = paste(
"screen.RR.gt300.lasso", Grid_names[hyper], " <- function (

RR_upp = ", Grid_RR[hyper, 1], ", RR_low = ", Grid_RR[hyper, 2],
", obs_cutoff = ", Grid_RR[hyper, 3],
", code_cutoff = ", Grid_RR[hyper, 4], ", ...) {
screen.RR.gt300.lasso(RR_upp = RR_upp, RR_low = RR_low,

obs_cutoff = obs_cutoff,
code_cutoff = code_cutoff, ...) }",

sep = "")))}

Create Superlearner libraries

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 88

SL_MLonly <- c("SL.caret.glm", "SL.caret.glmnet", "SL.caret.rpart",
"SL.caret.gbm","SL.caret.naivebayes", "SL.caret.pam")

SL_screen_Lib_lists <- lapply(RR_tunes, function(RR) {
lapply(SL_MLonly, function(x) { c(x, RR)})

})

SL_results <- LOGOCV.SL.traintest(Y, X, SL.lib = SL_screen_Lib_lists[[1]],
meta_method = "method.AUC",
train_frac = 0.9, alpha = 0.05)

print(SL_results$res)

Negative log-likelihood results from NASH data analysis

Using the Bayesian risk ratio prediction algorithms within the SL

Figure 4.8 shows the negative log-likelihood for each of the Bayesian RR prediction algo-
rithms based on the individual claims codes in the NASH_nogroup and NASH_pregroup
datasets, respectively. General patterns were similar to AUC performance shown in Figure
1 with the negative log-likelihood tended to decrease as the number of covariates increased,
but the effects became much less obvious once the RR criteria were less restricted than the
BRR RR147068 model. Among the unregularized Bayesian RR models, the larger number
of covariates in the last 4 models even resulted in higher negative log-likelihoods, which is
likely a consequence of severe overfitting. Thus, the L1-regularized BRR RR147068 model is
considered as the best model in terms of reducing negative log-likelihood with a reasonable
computation time.

Table 4.6: Negative log-likelihood for SL1, SL2, SL3, SL4 and the best LASSO BRR
model based on the NASH_nogroup (a) and NASH_pregroup (b) datasets. The best
LASSO (L1-regularized) BRR model is RR147068 for both datasets. N.A. indicates those
SL methods do not apply to such cases.

(a) NASH_nogroup

Performance Metric SL1* SL2 SL3* SL4 Best LASSO BRR
Negative log-likelihood N.A. N.A. 0.285 N.A. 0.276

(b) NASH_pregroup

Performance Metric SL1* SL2 SL3* SL4 Best LASSO BRR
Negative log-likelihood 0.328 0.310 0.281 0.286 0.331

Note: * indicates smaller SL libraries.

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 89

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

RR45
00

22
RR30

00
33

RR22
00

45
RR20

00
50

RR19
00

53
RR18

00
56

RR17
00

59
RR15

40
65

RR14
70

68
RR14

30
70

RR14
00

71
RR13

60
74

RR13
20

76

0.
27

5

0.
28

0

0.
28

5

0.
29

0

S
et

 o
f t

un
in

g
pa

ra
m

et
er

s
in

 B
R

R

●
●

●
L1

−R
eg

ul
ar

iz
ed

 (
gt

30
0)

U
nr

eg
ul

ar
iz

ed
 (

gt
30

0)
U

nr
eg

ul
ar

iz
ed

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

fo
r

B
ay

es
ia

n
R

R
 p

re
di

ct
io

n
al

go
rit

hm
s

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

RR45
00

22
RR30

00
33

RR22
00

45
RR20

00
50

RR19
00

53
RR18

00
56

RR17
00

59
RR15

40
65

RR14
70

68
RR14

30
70

RR14
00

71
RR13

60
74

RR13
20

76

0.
33

0

0.
33

5

0.
34

0

0.
34

5

0.
35

0

0.
35

5

S
et

 o
f t

un
in

g
pa

ra
m

et
er

s
in

 B
R

R

●
●

●
L1

−R
eg

ul
ar

iz
ed

 (
gt

30
0)

U
nr

eg
ul

ar
iz

ed
 (

gt
30

0)
U

nr
eg

ul
ar

iz
ed

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

fo
r

B
ay

es
ia

n
R

R
 p

re
di

ct
io

n
al

go
rit

hm
s

F
ig
ur
e
4.
8:

N
eg
at
iv
e
lo
g-
lik

el
ih
oo

d
fo
r
ea
ch

B
ay
es
ia
n
R
R
pr
ed
ic
ti
on

al
go
ri
th
m

w
it
h
a
un

iq
ue

se
t
of

tu
ni
ng

pa
ra
m
te
rs

an
d
an

y
fu
rt
he
r

sc
re
en
in
g
st
ep
.
(a
)
an

d
(b
)
ar
e
re
su
lt
s
ba

se
d
on

th
e

N
A

SH
_

no
gr

ou
p
an

d
N

A
SH

_
pr

eg
ro

up
da

ta
se
ts
,
re
sp
ec
ti
ve
ly
.
O
R
4
5
0
0
2
2
is

a
lo
gi
st
ic

m
od

el
re
gr
es
si
ng

on
cl
ai
m
s
co
de
s
w
ho

se
B
ay
es
ia
n
R
R

ar
e
gr
ea
te
r
th
an

4
.5

or
sm

al
le
r
th
an

0.
2
2,

w
he
re
as

R
R
1
4
7
0
6
8
is

a
lo
gi
st
ic

m
od

el
re
gr
es
si
ng

on
cl
ai
m
s
co
de
s
w
ho

se
B
ay
es
ia
n
R
R

ar
e
gr
ea
te
r
th
an

1.
4
7
or

sm
al
le
r
th
an

0.
6
8
.
U
nr
eg
ul
ar
iz
ed

B
R
R

(g
re
en

lin
e)

us
es

cl
ai
m
s
co
de
s
sa
ti
sf
yi
ng

th
e
B
O
R

se
le
ct
io
n
cr
it
er
ia
;
U
nr
eg
ul
ar
iz
ed

B
R
R

(g
t3
00
)
(b
lu
e
lin

e)
us
es

cl
ai
m
s
co
de
s
sa
ti
sf
yi
ng

th
e
B
R
R

se
le
ct
io
n
cr
it
er
ia

an
d
be

in
g
cl
ai
m
ed

by
at

le
as
t
30
0
pa

it
en
ts
;L

1
re
gu

la
ri
ze
d
B
R
R

(g
t3
00
)
us
es

cl
ai
m
s
co
de
s
sa
ti
sf
yi
ng

th
e

B
R
R

se
le
ct
io
n
cr
it
er
ia
,b

ei
ng

cl
ai
m
ed

by
at

le
as
t
30
0
pa

it
en
ts
,a

nd
ha

vi
ng

no
n-
co
ffi
ci
en
ts

in
th
e
LA

SS
O

re
gr
es
si
on

.

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 90

Although the goal of Super Learner in this study was to minimize the rank loss function
(i.e., maximizing the AUC) for predicting NASH diagnoses, SL1 to SL4 showed good perfor-
mance in terms of minimizing the negative log-likelihood (Table B1). In the NASH_nogroup
dataset, the best L1-regularized BRR method achieved a lower negative log-likelihood than
SL3, which may be a result of AUC-maximizing metalearning methods.

Using the Bayesian risk ratio screening algorithms within the SL

Figure 4.9 shows the negative log-likelihood performance for SL5 and SL6 with 9 differenet
screening algorithms in the Nash_nogroup and Nash_pregroup datasets. The pattern for
SL6 was similar to AUC performance shown in Figure 4. However, unlike in Figure 4 that
AUC gradually increased for SL5 when the number of screened variables in the dataset
for individual ML learners became larger, the negative log-likelihoods at RR180056 and
RR147068 based on the Nash_pregroup dataset were much larger than the rest of the results.
One of the reasons could be a large standard deviation in the predicted outcomes, which
requires a further investigation here.

●

●

●

●

●
● ●

●
●

●
●

●
●

● ●
●

●
●

SL6

SL5

RR450022

RR300033

RR220045

RR200050

RR190053

RR180056

RR170059

RR154065

RR147068

0.275

0.300

0.325

0.350

0.275

0.300

0.325

0.350

AU
C

Benchmark

Baseline

Data

● Nash_nogroup

Nash_pregroup

BRR screening performed within SL

Negative log−likelihood for SL5 and SL6

Figure 4.9: Negative log-likelihood for SL5 and SL6 with 9 differenet screening algorithms
in the Nash_nogroup and Nash_pregroup datasets. SL5 is a smaller SL library containing 5
relatively fast prediction algorithms, whereas SL6 is a larger SL library containing all 19 pre-
specified prediction algorithms. The horizontal axis represents the criteria for the Bayesian
RR screening part of the entire screening process. For example, RR450022 indicates codes
with BRR > 4.5 or BRR < 0.22 will be kept.

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 91

●●●●●

●●

●

●

●

●

●

●●

●
●

●
●●●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●●●
●
●

●

●

●

●

●

●

●

●
●

●●

● ●●●
●
●

●
●

●

●

●

●

●

●
●●

●

●

●●●
●
●

●

●

●

●

●

●

●

●●
●

●

● ●●●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●●●●●

●
●

●

●

●

●

●

●
●

●
●

●
●●●
●
●

●

●

●

●

●

●

●

●
●
●
●

●

●●●
●
●

●

●

●

●

●

●

●

●●

●●

●
●●●
●
●

●
●

●

●

●

●

●

●
●
●

●

●

●●●
●
●

●

●

●

●

●

●

●

●●
●

●

●
●●●
●
●

●

●

●

●
●

●

●

●
●●

●

●

●●●
●
●

●

●

●

●

●

●

●

●●

●●

● ●●●
●
●

●●

●

●

●

●

●

●
●●

●

●

●●●
●
●

●

●

●

●

●

●

●

●●

●
●

●
●●●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●●●
●
●

●

●

●

●●

●

●

●●
●

●

●
●●●
●
●

●

●

●

●
●●

●

●
●●

●

●

RR170059 RR154065 RR147068

RR200050 RR190053 RR180056

RR450022 RR300033 RR220045

Nash_nogroupNash_pregroup Nash_nogroupNash_pregroup Nash_nogroupNash_pregroup

Nash_nogroupNash_pregroup Nash_nogroupNash_pregroup Nash_nogroupNash_pregroup

Nash_nogroupNash_pregroup Nash_nogroupNash_pregroup Nash_nogroupNash_pregroup

0.30

0.35

0.40

0.30

0.34

0.38

0.42

0.30

0.35

0.40

0.30

0.35

0.40

0.30

0.34

0.38

0.42

0.30

0.34

0.38

0.30

0.35

0.40

0.30

0.35

0.40

0.30

0.34

0.38

0.42

AU
C

● Base Learner SL5 SL6

BRR screening performed within the SL

Negative log−likelihood for SL5, SL6, and 19 base learners

Figure 4.10: Negative log-likelihood for each of the individual algorithms, SL5 and SL6 with
a 9 different screening algorithms in the Nash_nogroup and Nash_pregroup datasets. SL5
is a smaller SL library containing 5 relatively fast prediction algorithms, whereas SL6 is a
larger SL library containing all 19 pre-specified prediction algorithms. The horizontal axis
represents the criteria for the Bayesian RR screening part of the entire screening process.
For example, RR450022 indicates codes with BRR > 4.5 or BRR < 0.22 will be kept.

Figure 4.10 depicts the performance of negative log-likelihood for SL5, SL6 and each of
the 19 machine learning algorithms for the NASH_nogroup and NASH_pregroup datasets.
We can see there were always some individual algorithms that outperformed both SL5 and
SL6. Again, it may be a result of AUC-maximizing metalearning methods (instead of log-

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 92

likelihood maximizing).

Using the Bayesian risk ratio screening algorithms outside the SL

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

SL8

SL7

RR450022

RR300033

RR220045

RR200050

RR190053

RR180056

RR170059

RR154065

RR147068

0.3

0.4

0.5

0.3

0.4

0.5Ne
gat

ive
 log

−lik
elih

ood

Data

● Nash_nogroup

Nash_pregroup

Nash_nogroup*

Benchmark

Baseline

BRR screening performed outside the SL

Negative log−likelihood for SL7 and SL8

Figure 4.11: Negative log-likelihood for SL7 and SL8 with 9 differenet screening algorithms
in the Nash_nogroup, Nash_pregroup and Nash_nogroup* datasets. SL7 is a smaller SL
library containing 5 relatively fast prediction algorithms, whereas SL8 is a larger SL library
containing all 19 pre-specified prediction algorithms.

Table 4.7: Table C2. Negative log-likelihood for larger SL libraries SL2, SL4, SL6 and
SL8 based on the NASH_nogroup (a) and Nash_pregroup (b) datasets. N.A. indicates
those SL methods do not apply in such cases.

(a) NASH_nogroup

Performance Metric SL2 SL4 SL6* SL8**
Negative log-likelihood N.A. N.A. 0.281 0.340

(b) NASH_pregroup

Performance Metric SL2 SL4 SL6* SL8**
Negative log-likelihood 0.310 0.286 0.283 0.282

* indicates the results are based on the RR147068 screening method.
** indicates the results are based on the RR200050 screening method.

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 93

For the NASH_nogroup, Nash_pregroup and Nash_nogroup* datasets, general patterns in
the negative log-likelihood (Figure 4.11) were similar to AUC in Figure 4.6. The fluctuation
between RR180056 and RR147068 may be explained by a large standard deviation.

More AUC results from NASH data analysis

Table 4.8: AUC and Running time for smaller SL libraries SL1, SL3, SL5 and SL7 based
on the NASH_nogroup and Nash_pregroup datasets. SL1 included ML algorithms that
utilized baseline covariates. SL3 expanded SL1 libraries with the 9 BRR prediction
algorithms that utilized claims codes. SL5 included ML algorithms that were coupled with
a three-step screening algorithm, whereas the screening algorithm in SL7 were two-step
since Bayesian RR step was performed outside the SL. N.A. indicates those SL methods do
not apply in such cases.

(a) NASH_nogroup

Performance Metric SL1 SL3 SL5* SL7**
AUC
(95% CI) N.A. 0.885

(0.874, 0.895)
0.887
(0.877, 0.897)

0.901
(0.887, 0.915)

Running Time (secs) N.A. N.A. 7073.21 3544.80

(b) NASH_pregroup

Performance Metric SL1 SL3 SL5* SL7**
AUC
(95% CI)

0.843
(0.831, 0.855)

0.888
(0.878, 0.898)

0.893
(0.882, 0.902)

0.892
(0.876, 0.908)

Running Time (secs) 702.57 2194.36 8144.24 5246.27

* indicates the results are based on the RR147068 screening method.
*** indicates the results are based on the RR200050 screening method.

CHAPTER 4. ENSEMBLE LEARNING PREDICTION IN CLAIMS DATABASE 94

Table 4.9: Contribution of each algorithm to the final convex combination
for SL1, SL3, SL5 and SL7 based on the NASH_pregroup dataset. Only
algorithms with weights larger than 0.02 are presented. SL5 shows the
algorithm contributions based on the BRR RR147068 screening process, and
SL7 shows the contributions based on the baseline covariates dataset
augmented by the RR200050 screened covariates.

SL1 SL3
Base Learner Weights Base Learner Weights
sda_All 0.201 BRR.147068_Codes 0.193
pda_All 0.201 glm_screen.baselines 0.175
glm_All 0.200 bayesglm_screen.baselines 0.175
bayesglm_All 0.200 sda_screen.baselines 0.117

pda_screen.baselines 0.046
glm_screen.RR450022 0.117
earth_screen.baselines 0.092
BRR.154065_Codes 0.070
BRR.300033_Codes 0.038
naivebayes_screen.baselines 0.022

SL5 SL7
Base Learner Weights Base Learner Weights
sda_screen.RR147068 0.563 sda_screen.gt300.lasso 0.252
pda_screen.RR147068 0.276 pda_screen.gt300.lasso 0.247

glm_screen.gt300.lasso 0.244
bayesglm_screen.gt300.lasso 0.241

95

Bibliography

[1] Miika Ahdesmaki et al. sda: Shrinkage Discriminant Analysis and CAT Score Variable
Selection. R package version 1.3.7. 2015. url: https : / / CRAN . R - project . org /
package=sda.

[2] Laura B. Balzer et al. “A New Approach to Hierarchical Data Analysis: Targeted Max-
imum Likelihood Estimation of Cluster-Based Effects Under Interference.” In: ArXiv
e-print arXiv:1706.02675 (2017).

[3] Oliver Bembom and Mark J. van der Laan. “A Practical Illustration of the Importance
of Realistic Individualized Treatment Rules in Causal Inference”. In: Electronic Journal
of Statistics 1 (2007), pp. 574–596.

[4] Peter J Bickel. Efficient and adaptive estimation for semiparametric models. Springer,
1998.

[5] Rhonda C. Boyd et al. “The Impact of Community Violence Exposure on Anxiety in
Children of Mothers with Depression”. In: Journal of Child & Adolescent Trauma 5.4
(2008), pp. 287–300.

[6] Leo Breiman et al. Classification and Regression Trees, The Wadsworth Statistics/Probability
Series. Wadsworth International Group: Chapman and Hall, New York, 1984.

[7] Jeanne Brooks-Gunn, J. Lawrence Aber, and Greg J Duncan. Neighborhood Poverty.
Context and Consequences for Children. Volume I. Russell Sage Foundation, 1997.

[8] Peter Bühlmann and Torsten Hothorn. “Boosting Algorithms: Regularization, Predic-
tion and Model Fitting”. In: Statistical Science 22.4 (2007), pp. 477–505.

[9] Jacob Cohen. “A Coefficient of Agreement for Nominal Scales”. In: Educational and
Psychological Measurement 20.1 (1960), pp. 37–46.

[10] Jeremy R Coyle et al. sl3: Modern Pipelines for Machine Learning and SuperLearning.
R package version 1.1.0. 2018. url: https://doi.org/10.5281/zenodo.1342294.

[11] Lorraine Denby and Colin Mallows. “Variations on the Histogram”. In: Journal of
Computational and Graphical Statistics 1 (2009), pp. 21–31.

[12] Stephen Milborrow. Derived et al. earth: Multivariate Adaptive Regression Splines. R
package version 4.6.3. 2018. url: https://CRAN.R-project.org/package=earth.

https://CRAN.R-project.org/package=sda
https://CRAN.R-project.org/package=sda
https://doi.org/10.5281/zenodo.1342294
https://CRAN.R-project.org/package=earth

BIBLIOGRAPHY 96

[13] Sandrine Dudoit and Mark J. van der Laan. “Asymptotics of cross-validated risk esti-
mation in estimator selection and performance assessment”. In: Statistical Methodology
2.2 (2005), pp. 131–154.

[14] Marco Enea. speedglm: Fitting Linear and Generalized Linear Models to Large Data
Sets. R package version 0.3-2. 2017. url: https://CRAN.R-project.org/package=
speedglm.

[15] Jianqing Fan and Yingying Fan. “High-dimensional classification using features an-
nealed independence rules”. In: The Annals of Statistics 36.6 (2008), pp. 2605–2637.

[16] Jianqing Fan and Runze Li. “Variable Selection via Nonconcave Penalized Likelihood
and its Oracle Properties”. In: Journal of the American Statistical Association 96.456
(2001), pp. 1348–1360.

[17] Jianqing Fan and Jinchi Lv. “A selective overview of variable selection in high dimen-
sional feature space”. In: Statistica Sinica 20.1 (2010), pp. 101–148.

[18] C. Ferri, J. Hernández-Orallo, and R. Modroiu. “An experimental comparison of perfor-
mance measures for classification”. In: Pattern Recognition Letters 30.1 (2009), pp. 27–
38.

[19] Jerome H. Friedman. “Greedy Function Approximation: A Gradient Boosting Ma-
chine”. In: Annals of Statistics 29.5 (2001), pp. 1189–1232.

[20] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. “Regularization Paths for
Generalized Linear Models via Coordinate Descent”. In: Journal of Statistical Software
33.1 (2010).

[21] Joseph C. Gardiner, Zhehui Luo, and Lee Anne Roman. “Fixed effects, random effects
and GEE: What are the differences?” In: Statistics in Medicine 28.2 (2009), pp. 221–
239.

[22] Andrew Gelman and Yu-Sung Su. arm: Data Analysis Using Regression and Multi-
level/Hierarchical Models. R package version 1.10-1. 2018. url: https://CRAN.R-
project.org/package=arm.

[23] Susan Gruber and Mark J. van der Laan. “A Targeted Maximum Likelihood Estimator
of a Causal Effect on a Bounded Continuous Outcome”. In: The International Journal
of Biostatistics 6.1 (2010).

[24] Susan Gruber and Mark J. van der Laan. “tmle: An R Package for Targeted Maximum
Likelihood Estimation”. In: Journal of Statistical Software 51.13 (2012).

[25] Susan Gruber et al. “Ensemble learning of inverse probability weights for marginal
structural modeling in large observational datasets”. In: Statistics in Medicine 34.1
(2014), pp. 106–117.

[26] David J. Hand. “Measuring classifier performance: a coherent alternative to the area
under the ROC curve”. In: Machine Learning 77.1 (2009), pp. 103–123.

https://CRAN.R-project.org/package=speedglm
https://CRAN.R-project.org/package=speedglm
https://CRAN.R-project.org/package=arm
https://CRAN.R-project.org/package=arm

BIBLIOGRAPHY 97

[27] J A Hanley and B J McNeil. “The meaning and use of the area under a receiver
operating characteristic (ROC) curve.” In: Radiology 143.1 (1982), pp. 29–36.

[28] Trevor Hastie. gam: Generalized Additive Models. R package version 1.14.4. 2017. url:
https:%20//CRAN.R-project.org/package=gam.

[29] Trevor Hastie, Robert Tibshirani, and J. H Friedman. The elements of statistical learn-
ing. Springer, 2001.

[30] Trevor Hastie et al. mda: Mixture and Flexible Discriminant Analysis. R package ver-
sion 0.4-10. 2017. url: https://CRAN.R-project.org/package=mda.

[31] T. Hastie et al. pamr: Pam: prediction analysis for microarrays. R package version
1.55. 2014. url: https://CRAN.R-project.org/package=pamr.

[32] Torsten Hothorn, Kurt Hornik, and Achim Zeileis. “Unbiased Recursive Partitioning: A
Conditional Inference Framework”. In: Journal of Computational and Graphical Statis-
tics 15.3 (2006), pp. 651–674.

[33] Dáaz Muñoz Iván and Mark J. van der Laan. “Population Intervention Causal Effects
Based on Stochastic Interventions”. In: Biometrics 68.2 (2011), pp. 541–549.

[34] Dáaz Muñoz Iván and Mark J. van der Laan. “Super Learner Based Conditional Density
Estimation with Application to Marginal Structural Models”. In: The International
Journal of Biostatistics 7.1 (2011), pp. 1–20.

[35] Y Jiang, C E Metz, and R M Nishikawa. “A receiver operating characteristic partial
area index for highly sensitive diagnostic tests.” In: Radiology 201.3 (1996), pp. 745–
750.

[36] Cheng Ju et al. “Propensity score prediction for electronic healthcare databases using
Super Learner and High-dimensional Propensity Score Methods”. In: U.C. Berkeley
Division of Biostatistics Working Paper Series (2016), Working Paper 351.

[37] Jeffrey R. Kling, Jens Ludwig, and Lawrence F. Katz. “Neighborhood Effects on Crime
for Female and Male Youth: Evidence From a Randomized Housing Voucher Experi-
ment”. In: Quarterly Journal of Economics 120.1 (2005), pp. 87–130.

[38] Max Kuhn. “Building Predictive Models in R Using the caret Package”. In: Journal of
Statistical Software, Articles 28.5 (2008), pp. 1–26.

[39] Max Kuhn and Ross Quinlan. C50: C5.0 Decision Trees and Rule-Based Models. R
package version 0.1.2. 2018. url: https://CRAN.R-project.org/package=C50.

[40] Max Kuhn et al. caret: Classification and Regression Training. R package version 6.0-
80. 2018. url: https://CRAN.R-project.org/package=caret.

[41] Mark J. van der Laan and Alexander R. Luedtke. “Targeted Learning of the Mean
Outcome under an Optimal Dynamic Treatment Rule”. In: Journal of Causal Inference
3.1 (2015).

https:%20//CRAN.R-project.org/package=gam
https://CRAN.R-project.org/package=mda
https://CRAN.R-project.org/package=pamr
https://CRAN.R-project.org/package=C50
https://CRAN.R-project.org/package=caret

BIBLIOGRAPHY 98

[42] Mark J. van der Laan, Eric C Polley, and Alan E. Hubbard. “Super Learner”. In:
Statistical Applications in Genetics and Molecular Biology 6.1 (2007).

[43] Mark J. van der Laan and Dudoit Sandrine. “Unified Cross-Validation Methodology
For Selection Among Estimators and a General Cross-Validated Adaptive Epsilon-
Net Estimator: Finite Sample Oracle Inequalities and Examples”. In: U.C. Berkeley
Division of Biostatistics Working Paper Series (2003), Working Paper 130.

[44] Mark van der Laan and Susan Gruber. “One-Step Targeted Minimum Loss-based Es-
timation Based on Universal Least Favorable One-Dimensional Submodels”. In: The
International Journal of Biostatistics 12.1 (2016), pp. 351–378.

[45] Nan M. Laird and James H. Ware. “Random-Effects Models for Longitudinal Data”.
In: Biometrics 38.4 (1982), p. 963.

[46] Erin LeDell. h2oEnsemble: H2O Ensemble Learning. R package version 0.1.8. 2016.
url: https : / / github . com / h2oai / h2o - 3 / tree / master / h2o - r / ensemble /
h2oEnsemble-package.

[47] Erin LeDell, Mark J. van der Laan, and Maya Petersen. “AUC-Maximizing Ensem-
bles through Metalearning”. In: The International Journal of Biostatistics 12.1 (2016),
pp. 203–218.

[48] Erin LeDell, Maya Petersen, and Mark van der Laan. “Computationally efficient confi-
dence intervals for cross-validated area under the ROC curve estimates”. In: Electronic
Journal of Statistics 9.1 (2015), pp. 1583–1607.

[49] Erin LeDell, Maya Petersen, and Mark van der Laan. cvAUC: Cross-Validated Area Un-
der the ROC Curve Confidence Intervals. R package version 1.1.0. 2014. url: https:
//CRAN.R-project.org/package=cvAUC.

[50] Kung-Yee Liang and Scott L. Zeger. “Longitudinal Data Analysis Using Generalized
Linear Models”. In: Biometrika 73.1 (1986), p. 13.

[51] Alexander R. Luedtke and Mark J. van der Laan. “Super-Learning of an Optimal
Dynamic Treatment Rule”. In: The International Journal of Biostatistics 12.1 (2016).

[52] Michal Majka. naivebayes: High Performance Implementation of the Naive Bayes Algo-
rithm. R package version 0.9.2. 2018. url: https://CRAN.R-project.org/package=
naivebayes.

[53] J.Michael Oakes. “The (Mis)estimation of Neighborhood Effects: Causal Inference
for a Practicable Social Epidemiology”. In: Social Science & Medicine 58.10 (2004),
pp. 1929–1952.

[54] Judea Pearl. “Causal Diagrams for Empirical Research”. In: Biometrika 82.4 (1995),
pp. 702–710.

[55] Judea Pearl. “Causal inference in statistics: An overview”. In: Statistics Surveys 3
(2009), pp. 96–146.

https://github.com/h2oai/h2o-3/tree/master/h2o-r/ensemble/h2oEnsemble-package
https://github.com/h2oai/h2o-3/tree/master/h2o-r/ensemble/h2oEnsemble-package
https://CRAN.R-project.org/package=cvAUC
https://CRAN.R-project.org/package=cvAUC
https://CRAN.R-project.org/package=naivebayes
https://CRAN.R-project.org/package=naivebayes

BIBLIOGRAPHY 99

[56] Maya L. Petersen and Mark J. van der Laan. “Causal Models and Learning from Data”.
In: Epidemiology 25.3 (2014), pp. 418–426.

[57] Maya L Petersen et al. “Diagnosing and Responding to Violations in the Positivity
Assumption”. In: Statistical Methods in Medical Research 21.1 (2010), pp. 31–54.

[58] Eric C. Polley and Mark J. van der Laan. “Super Learner In Prediction”. In: U.C.
Berkeley Division of Biostatistics Working Paper Series (2010), Working Paper 266.

[59] Eric C Polley et al. SuperLearner: uper Learner Prediction. R package version 2.0-22.
2017. url: https://CRAN.R-project.org/package=SuperLearner.

[60] Melanie Prague et al. “Accounting for interactions and complex inter-subject depen-
dency in estimating treatment effect in cluster-randomized trials with missing out-
comes”. In: Biometrics 72.4 (2016), pp. 1066–1077.

[61] R Core Team. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing. Vienna, Austria, 2017. url: https://www.R-project.
org/.

[62] Stephen W. Raudenbush and JDouglas Willms. “The Estimation of School Effects”.
In: Journal of Educational and Behavioral Statistics 20.4 (1995), pp. 307–335.

[63] Greg Ridgeway. gbm: Generalized Boosted Regression Models. R package version 2.1.3.
2017. url: https://CRAN.R-project.org/package=gbm.

[64] James Robins. “A New Approach to Causal Inference in Mortality Studies with a
Sustained Exposure Period - Application to Control of the Healthy Worker Survivor
Effect”. In: Mathematical Modelling 7.9-12 (1986), pp. 1393–1512.

[65] Sebastian Schneeweiss et al. “High-dimensional Propensity Score Adjustment in Studies
of Treatment Effects Using Health Care Claims Data”. In: Epidemiology 20.4 (2009),
pp. 512–522.

[66] David W Scott. Multivariate Density Estimation. Wiley, 1992.

[67] Oleg Sofrygin and Mark J. van der Laan. “Semi-Parametric Estimation and Inference
for the Mean Outcome of the Single Time-Point Intervention in a Causally Connected
Population”. In: Journal of Causal Inference 5.1 (2016).

[68] Oleg Sofrygin and Mark J. van der Laan. tmlenet: Targeted Maximum Likelihood Es-
timation for Network Data. R package version 0.1.0. 2015. url: https://CRAN.R-
project.org/package=tmlenet.

[69] Jennifer L. Steele. “Race and General Strain Theory: Examining the Impact of Racial
Discrimination and Fear on Adolescent Marijuana and Alcohol Use”. In: Substance Use
& Misuse 51.12 (2016), pp. 1637–1648.

[70] Terry Therneau and Beth Atkinson. rpart: Recursive Partitioning and Regression Trees.
R package version 4.1-13. 2018. url: https://CRAN.R-project.org/package=rpart.

https://CRAN.R-project.org/package=SuperLearner
https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=gbm
https://CRAN.R-project.org/package=tmlenet
https://CRAN.R-project.org/package=tmlenet
https://CRAN.R-project.org/package=rpart

BIBLIOGRAPHY 100

[71] G. Tripepi et al. “Measures of effect: Relative risks, odds ratios, risk difference, and
’number needed to treat’”. In: Kidney International 72.7 (2007), pp. 789–791.

[72] Jarek Tuszynski. caTools: Tools: moving window statistics, GIF, Base64, ROC AUC,
etc. R package version 1.17.1.1. 2018. url: https://CRAN.R-project.org/package=
caTools.

[73] University of California San Francisco. “Sustainable East Africa Research in Commu-
nity Health (SEARCH)”. In: (2013). url: https://clinicaltrials.gov/ct2/show/
study/NCT01864603.

[74] AW. van der Vaart, Sandrine Dudoit, and Mark J. van der Laan. “Oracle inequalities
for multi-fold cross validation”. In: Statistics & Decisions 24 (2006).

[75] Mark J. van der Laan. “Causal Inference for a Population of Causally Connected Units”.
In: Journal of Causal Inference 2.1 (2014).

[76] Mark J. van der Laan. “Estimation of Causal Effects of Community Based Interven-
tions”. In: U.C. Berkeley Division of Biostatistics Working Paper Series (2010), Work-
ing Paper 268.

[77] Mark J. van der Laan, Eric C Polley, and Alan E. Hubbard. “Super Learner”. In:
Statistical Applications in Genetics and Molecular Biology 6.1 (2007).

[78] Mark J. van der Laan, Sherri Rose, and Susan Gruber. “Readings in Targeted Maxi-
mum Likelihood Estimation”. In: U.C. Berkeley Division of Biostatistics Working Pa-
per Series (2009), Working Paper 254.

[79] Mark J. van der Laan and Daniel Rubin. “Targeted Maximum Likelihood Learning”.
In: The International Journal of Biostatistics 2.1 (2006).

[80] Mark J. van der Laan and Rose Sherri. Targeted Learning: Causal Inference for Ob-
servational and Experimental Data. Springer New York, 2011.

[81] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Fourth. ISBN
0-387-95457-0. New York: Springer, 2002.

[82] S. D. Walter. “The partial area under the summary ROC curve”. In: Statistics in
Medicine 24.13 (2005), pp. 2025–2040.

[83] Hadley Wickham. “The Split-Apply-Combine Strategy for Data Analysis”. In: Journal
of Statistical Software 40.1 (2011), pp. 1–29.

[84] David H. Wolpert. “Stacked generalization”. In: Neural Networks 5.2 (1992), pp. 241–
259.

[85] Hui Zou and Trevor Hastie. “Regularization and variable selection via the elastic net”.
In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67.2
(2005), pp. 301–320.

https://CRAN.R-project.org/package=caTools
https://CRAN.R-project.org/package=caTools
https://clinicaltrials.gov/ct2/show/study/NCT01864603
https://clinicaltrials.gov/ct2/show/study/NCT01864603

	Contents
	List of Figures
	List of Tables
	Introduction
	Targeted maximum likelihood estimation
	Chapters summaries

	Targeted maximum likelihood estimation of community-based causal effect of single time-point community-level stochastic interventions
	Introduction
	Definition of statistical estimation problem
	Estimation and inference under the general hierarchical causal model
	Estimation and inference under the restricted hierarchical model with no covariate interference

	tmleCommunity R Package for target maximum likelihood estimation for community-level data
	Introduction
	Implementation in the tmleCommunity package
	Simulation studies with community-level interventions
	Discussion
	Answers to some frequently asked questions (FAQ)
	Acknowledgments

	Prediction of diagnoses of nonalcoholic steatohepatitis in a large administrative claims database using ensemble learning
	Introduction
	Methods
	Using the Bayesian RR prediction algorithms within the SL
	Using the Bayesian RR screening algorithms within the SL
	Using the Bayesian RR screening algorithms outside the SL
	Discussion
	Chapter Appendix

	Bibliography

