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Abstract

Algebraic Geometry for Computer Vision

by

Joseph David Kileel

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Bernd Sturmfels, Chair

This thesis uses tools from algebraic geometry to solve problems about three-
dimensional scene reconstruction. 3D reconstruction is a fundamental task in multi-
view geometry, a field of computer vision. Given images of a world scene, taken by
cameras in unknown positions, how can we best build a 3D model for the scene? Novel
results are obtained for various challenging minimal problems, which are important
algorithmic routines in Random Sampling Consensus pipelines for reconstruction.
These routines reduce overfitting when outliers are present in image data.

Our approach throughout is to formulate inverse problems as structured systems
of polynomial equations, and then to exploit underlying geometry. We apply numer-
ical algebraic geometry, commutative algebra and tropical geometry, and we derive
new mathematical results in these fields. We present simulations on image data as
well as an implementation of general-purpose homotopy-continuation software for
implicitization in computational algebraic geometry.

Chapter 1 introduces some relevant computer vision. Chapters 2 and 3 are de-
voted to the recovery of camera positions from images. We resolve an open problem
concerning two calibrated cameras raised by Sameer Agarwal, a vision expert at
Google Research, by using the algebraic theory of Ulrich sheaves. This gives a ro-
bust test for identifying outliers in terms of spectral gaps. Next, we quantify the
algebraic complexity for notorious poorly understood cases for three calibrated cam-
eras. This is achieved by formulating in terms of structured linear sections of an
explicit moduli space and then computing via homotopy-continuation. In Chapter
4, a new framework for modeling image distortion is proposed, based on lifting al-
gebraic varieties in projective space to varieties in other toric varieties. We check
that our formulation leads to faster and more stable solvers than the state of the
art. Lastly, Chapter 5 concludes by studying possible pictures of simple objects, as
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varieties inside products of projective planes. In particular, this dissertation exhibits
that algebro-geometric methods can actually be useful in practical settings.
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Chapter 1

Motivation

As humans, we may take it for granted that three-dimensional structure can be in-
ferred from two-dimensional images. Our visual perception systems do this naturally.
While the neural processes behind this are fantastically complex, it is worth noting
that retinal motion makes the reconstruction possible in the first place [55]. To go
from 2D to 3D, our brains use multiple images provided by eye movement.

In computer vision, estimating a 3D scene from multiple 2D images has been
a fundamental task. Nowadays, Structure-from-Motion (SfM) algorithms support
autonomously-driving cars [40] and large-scale photo tourism [2].

Figure 1.1: 3D model with 819,242 points of the Colosseum from 2106 Flickr images.
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Such algorithms have diverse ingredients under the hood: band-pass filters, non-
linear least squares optimization, sparse linear algebra, text retrieval ideas, dis-
tributed computing, and . . . algebraic geometry! In fact, projective geometry is the
language used for formulating 3D reconstruction problems, as explained in the next
subsection. The subfield of vision that studies connections with projective geometry
is known as multiview geometry. The book [48] by Hartley and Zisserman is the
standard introduction to this field.

In addition, SfM repeatedly solves zero-dimensional systems of polynomial equa-
tions [64]. Polynomial solvers are subroutines in Random Sampling Consensus
(RANSAC) methods for robust estimation, i.e. regression in the presence of out-
liers. To deliver in real-time, minimal solvers are required to perform accurate,
super-fast calculation (µs or ms scale).

In this dissertation, novel vision results are obtained by means of applying tools
from algebraic geometry that are not traditionally used in multiview geometry or
the design of minimal solvers.

1.1 Setup

According to the pinhole camera model [48, Chapter 6], a camera is simply a surjec-
tive linear projection A : P3 99K P2, where P3 represents the world and P2 represents
the image plane. Thus, A is represented by a full rank real 3 × 4 matrix up to
nonzero scale, also denoted by A. On affine charts, note that the map A is fractional
affine-linear. The base locus ker(A) ∈ P3 is interpreted as the camera center or
focal point. For a camera A with center off the plane at infinity, RQ factorization
applied to the left 3× 3 submatrix of A induces a unique factorization A = K[R|t],
where K ∈ R3×3 is upper triangular, with entries K11 > 0, K22 > 0, K33 = 1, where
R ∈ SO(3) is orthogonal and where t ∈ R3. Following [48, Section 6.2.4], K stores
the internal parameters of A (focal lengths, principal point, skew) while [R|t] stores
the external parameters (center, orientation). In cases where K is known, left multi-
plication by K−1 normalizes A = [R|t]. In that case, the 3×4 matrix A is calibrated ;
calibration information is often available from image EXIF tags.

Standard Structure-from-Motion algorithms [85] perform detailed local recon-
structions first. Afterwards, these are stitched together and refined via global opti-
mization. Here, a local reconstruction accepts a small number of overlapping images
(typically, two or three). The aim is to estimate the configuration in P3 of the two or
three cameras that captured the images, as well as the coordinates of a large collec-
tion of 3D points visible in the images. In particular, the cameras’ relative positions
are deduced from the images, and this is an engine through all of SfM.
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Recovery of camera configurations starts by matching features across images (for
example, corner points and edges) according to neighborhood intensity patterns; see
[73] details. The image matches impose constraints on the possible relative position
of the cameras, e.g. [46]. At this point, an appropriately chosen loss function could
be defined (see [48, Section 4.2] for so-called algebraic or geometric loss functions).
Given the image matches, the camera configuration with least loss could be sought.
However, in practice, this delivers poor results, because a non-neglible fraction of the
putative image correspondences are wrongly matched. Thus, SfM must cope with
outliers (mismatches) among image data.

To that end, Random Sampling Consensus is a method for parameter estima-
tion in the presence of outliers. Invented in 1981 originally for vision applications
[37], RANSAC randomly samples a minimal amount of data. Minimal means that
the sample exactly determines only a finite (positive) number of possible parameter
values. Those parameters are computed, and then treated as competing hypotheses.
Each is tested against the rest of the data set. A hypothesis is accepted if it is ap-
proximately consistent with a sufficiently high fraction of the full data set (and more
than any other hypothesis). Otherwise, a new minimal sample is drawn. RANSAC
outputs a parameter estimate uninfluenced by outliers. Remarkably, it can process
data sets with as high as 50% outliers. See Figure 1.2 for an illustration.

Thus, to recover camera configurations from image correspondences (contain-
ing some mismatches), SfM employs a RANSAC scheme. See [48, Section 4.7] for
implementation details, including how thresholds are set adaptively. As an up-
shot, computing the finitely many parameters consistent with a minimal sample
is a vital workhorse in SfM – repeated thousands of times in large-scale reconstruc-
tions. These calculations are called minimal problems. There is an industry in
computer vision dedicated to building efficient solvers for minimal problems, e.g.
[17, 38, 57, 64, 65, 94].

Like the matrix camera model above, minimal problems are algebraic. They are
expressible as systems of multivariate polynomial equations with coefficients depend-
ing polynomially on image data. Moreover, a geometric formulation is often available.
Frequently, a (fixed) algebraic variety X ⊂ Pn may be defined whose points are in
bijection with camera configurations. Here X is an explicit moduli space, embedded
in convenient coordinates. Image data defines (varying) linear subspaces L ⊂ Pn.
Then, minimal problems amount to computing the intersection L ∩X. As a noted
example, Nistér’s minimal problem solver [82] for recovering the relative position of
two calibrated cameras from five image point pair matches fits into this framework;
by now, the Gröbner basis script is hardcoded into most smartphones [66]

The relation of projective geometry and polynomial equations to 3D reconstruc-
tion is this dissertation’s point de départ. Mixing classical algebraic geometry with
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Figure 1.2: Fitted line from RANSAC. Outliers do not degrade the estimate.

modern computational tools, we answer concrete questions about computer vision
and derive new math.

1.2 Main contributions

The main contributions of this dissertation are the following:

• We obtain a matrix formula characterizing which six image point pairs are
exactly consistent with two calibrated cameras (Theorem 2.1). This resolves
a question raised in [1] by Sameer Agarwal, a vision expert apart of Google
Research. Numerical experiments indicate the formula is robust to noise (Em-
pirical Fact 2.27), thus it might be used for screening wrongly matched point
pairs. Mathematically, the work is an instantiation of the theory of Ulrich
sheaves, introduced in algebraic geometry by Eisenbud and Schreyer in [34]. A
new determinantal description of the essential variety (Proposition 2.7) affords
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a group action making Eisenbud-Schreyer’s theory effective in this case, by help
from the representation theory of GL(4).

• We quantify the algebraic complexity for the recovery of three calibrated cam-
eras, given various sorts of image correspondences (Theorem 3.6). This helps
clarify decades of partial progress on the three camera case (e.g. see [83] for
nice complementary work). We build on the theory of trifocal tensors [46], and
rely on powerful computational techniques from numerical algebraic geometry
[11].

• We contribute general-purpose homotopy-continuation software for impliciti-
zation in computational algebraic geometry (Section 3.7). This allows for the
computation of invariants of an algebraic variety from a parametrization, when
defining equations are inaccessible.

• We develop a new framework for modeling image distortion (Chapter 4), uni-
fying existing models. The theory is based on lifting algebraic varieties in
projective space to other ambient toric varieties, and it is of independent math-
ematical interest. We determine degrees in terms of the Chow polytope as well
as defining equations (Theorems 4.8 and 4.16). Tropical geometry [74] offers a
perspective on higher-dimensional distortions (Theorem 4.22).

• We verify that our algebro-geometric theory of distortion leads to minimal
solvers in vision that are competitive with, or superior to, the state of the art,
as tested on synthetic data sets (Section 4.5).

• We explore the space of possible pictures of simple objects, such as edges.
The formulation is in terms of combinatorial commutative algebra, and we
find equations cutting the space out (Theorem 5.6). This works extends the
influential [5] to new settings of practical interest. It could form the basis for
a polynomial/semidefinite optimization [69] triangulation scheme, as in [3].
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Chapter 2

Two Cameras

This chapter studies the recovery of the relative position of two calibrated cameras
from image data. In particular, we are interested in the over-determined case. We
characterize which super-minimal samples of image data are exactly consistent with
a camera configuration. This connects to the classical theory of resultants [43]. To
obtain an explicit result, we need the technology developed in [34]. This is joint work
with Gunnar Fløystad and Giorgio Ottaviani [39] and it is to be published in the
Journal of Symbolic Computation.

2.1 Introduction

The essential variety E is the variety of 3× 3 real matrices with two equal singular
values, and the third one equal to zero (σ1 = σ2, σ3 = 0). It was introduced in
the setting of computer vision; see [48, Section 9.6]. Its elements, the so-called
essential matrices, have the form TR, where T is real skew-symmetric and R is real
orthogonal. The essential variety is a cone of codimension 3 and degree 10 in the
space of 3 × 3-matrices, defined by homogeneous cubic equations, that we recall in
(2.2). The complex solutions of these cubic equations define the complexification EC
of the essential variety. This lives in the 8-dimensional complex projective space P8

C.
While the real essential variety is smooth, its complexification has a singular locus
that we describe precisely in Section 2.2.

The Chow form of a codimension c projective variety X ⊂ Pn is the equation
Ch(X) of the divisor in the Grassmannian Gr(Pc−1,Pn) given by those linear sub-
spaces of dimension c− 1 which meet X. It is a basic and classical tool that allows
one to recover much geometric information about X; for its main properties we refer
to [43, Section 4]. In [1, Section 4], the problem of computing the Chow form of the
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essential variety was posed, while the analogous problem for the fundamental variety
was solved, another important variety in computer vision.

The main goal of this chapter is to explicitly find the Chow form of the essential
variety. This provides an important tool for the problem of detecting if a set of image
point correspondences {(x(i), y(i)) ∈ R2 × R2 | i = 1, . . . ,m} comes from m world
points in R3 and two calibrated cameras. It furnishes an exact solution for m = 6
and it behaves well given noisy input, as we will see in Section 2.4. Mathematically,
we can consider the system of equations:{

AX̃(i) ≡ x̃(i)

BX̃(i) ≡ ỹ(i).
(2.1)

Here x̃(i) = (x
(i)
1 : x

(i)
2 : 1)T ∈ P2 and ỹ(i) = (y

(i)
1 : y

(i)
2 : 1)T ∈ P2 are the given image

points. The unknowns are two 3 × 4 matrices A,B with rotations in their left

3 × 3 blocks and m = 6 points X̃(i) ∈ P3. These represent calibrated cameras and
world points, respectively. A calibrated camera has normalized image coordinates,
as explained in [48, Section 8.5]. Here ≡ denotes equality up to nonzero scale. From
our calculation of Ch(EC), we deduce:

Theorem 2.1. There exists an explicit 20 × 20 skew-symmetric matrix M(x, y) of
degree ≤ (6, 6) polynomials over Z in the coordinates of (x(i), y(i)) with the following
properties. If (2.1) admits a complex solution then M(x(i), y(i)) is rank-deficient.
Conversely, the variety of point correspondences (x(i), y(i)) such that M(x(i), y(i)) is
rank-deficient contains a dense open subset for which (2.1) admits a complex solution.

In fact, we will produce two such matrices. Both of them, along with related for-
mulas we derive, are available in ancillary files accompanying the arXiv version
of this work, and we have posted them at http://math.berkeley.edu/~jkileel/

ChowFormulas.html.
Our construction of the Chow form uses the technique of Ulrich sheaves intro-

duced in [34]. We construct rank 2 Ulrich sheaves on the essential variety EC. For
an analogous construction of the Chow form of K3 surfaces, see [7].

From the point of view of computer vision, this chapter contributes a complete
characterization for an ‘almost-minimal’ problem. Here the motivation is 3D recon-
struction. Given multiple images of a world scene, taken by cameras in an unknown
configuration, we want to estimate the camera configuration and a 3D model of the
world scene. Algorithms for this are complex, and successful. See [2] for a recon-
struction from 150,000 images.

By contrast, the system (2.1) encodes a tiny reconstruction problem. Suppose we
are given six point correspondences in two calibrated pictures (the right-hand sides

http://math.berkeley.edu/~jkileel/ChowFormulas.html
http://math.berkeley.edu/~jkileel/ChowFormulas.html
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in (2.1)). We wish to reconstruct both the two cameras and the six world points
(the left-hand sides in (2.1)). If an exact solution exists then it is typically unique,
modulo the natural symmetries. However, an exact solution does not always exist.
In order for this to happen, a giant polynomial of degree 120 in the 24 variables on
the right-hand sides has to vanish. Theorem 2.1 gives an explicit matrix formula for
that polynomial.

As explained in Chapter 1, the link between minimal or almost-minimal recon-
structions and large-scale reconstructions is surprisingly strong. Algorithms for the
latter use the former reconstructions repeatedly as core subroutines. In particular,
solving the system (2.1) given m = 5 point pairs, instead of m = 6, is a subroutine in
[2]. This solver is optimized in [82]. It is used to generate hypotheses inside Random
Sampling Consensus (RANSAC) [37] schemes for robust reconstruction from pairs
of calibrated images. See [48] for more vision background.

The rest of this chapter is organized as follows. In Section 2.2, we prove that
EC is a hyperplane section of the variety PXs

4,2 of 4× 4 symmetric matrices of rank
≤ 2. This implies a determinantal description of EC; see Proposition 2.7. A side
result of the construction is that EC is the secant variety of its singular locus, which
corresponds to pairs of isotropic vectors in C3.

In Section 2.3, we construct two Ulrich sheaves on the variety of 4× 4 symmetric
matrices of rank ≤ 2. One of the constructions we propose is new, according to
the best of our knowledge. Both sheaves are GL(4)-equivariant, and they admit
“Pieri resolutions” in the sense of [92]. We carefully analyze the resolutions using
representation theory, and in particular show that their middle differentials may be
represented by symmetric matrices; see Propositions 2.16 and 2.19.

In Section 2.4, we combine the results of the previous sections and we construct
the Chow form of the essential variety. The construction from [34] starts with our
rank 2 Ulrich sheaves and allows to define two 20 × 20 matrices in the Plücker
coordinates of Gr(P2,P8) each of which drops rank exactly when the corresponding
subspace P2 meets the essential variety EC. It requires some technical effort to put
these matrices in skew-symmetric form, and here our analysis from Section 2.3 pays
off. We conclude this work with numerical experiments demonstrating the robustness
to noise that our matrix formulas in Theorem 2.1 enjoy.
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2.2 The essential variety is determinantal

Intrinsic description

Let E ⊂ R3×3 be the essential variety, which is defined by the following conditions
on the three singular values of a 3× 3 matrix:

E := {M ∈ R3×3 |σ1(M) = σ2(M), σ3(M) = 0}.

The polynomial equations of E are (see [35, Section 4]) as follows:

E = {M ∈ R3×3 | det(M) = 0, 2(MMT )M − tr
(
MMT

)
M = 0}. (2.2)

These 10 cubics minimally generate the real radical ideal [13, p. 85] of the essential
variety E , and that ideal is prime. Indeed, the real radical property follows from our
Proposition 2.2(i) and [75, Theorem 12.6.1]. We denote by EC the projective variety in
P8
C given by the complex solutions of (2.2). The essential variety EC has codimension

3 and degree 10 (see [77, Theorem 5.16]). In this section, we will prove that it is
isomorphic to a hyperplane section of the variety PXs

4,2 of complex symmetric 4× 4
matrices of rank ≤ 2. The first step towards this is Proposition 2.2 below, and that
relies on the group symmetries of EC, which we now explain.

Consider R3 with the standard inner product Q, and the corresponding action of
SO(3,R) on R3. Complexify R3 and consider C3 with the action of SO(3,C), which
has universal cover SL(2,C). It is technically simpler to work with the action of
SL(2,C). Denoting by U the irreducible 2-dimensional representation of SL(2,C), we
have the equivariant isomorphism C3 ∼= S2U . Writing Q also for the complexification
of the Euclidean product, the projective space P(S2U) divides into two SL(2,C)-
orbits, namely the isotropic quadric with equation Q(u) = 0 and its complement.
Let V be another complex vector space of dimension 2. The essential variety EC
is embedded into the projective space of 3 × 3-matrices P(S2U ⊗ S2V ). Since the
singular value conditions defining E are SO(3,R)×SO(3,R)-invariant, it follows that
EC is SL(U)× SL(V )-invariant using [29, Theorem 2.2].

The following is a new geometric description of the essential variety. From the
computer vision application, we start with the set of real points E . However, below
we see that the surface Sing(EC) inside EC, which has no real points, ‘determines’ the
algebraic geometry. Part (i) of Proposition 2.2 is proved also in [77, Proposition 5.9].

Proposition 2.2. (i) The singular locus of EC is the projective surface given by:

Sing(EC) =
{
abT ∈ P(C3×3) |Q(a) = Q(b) = 0

}
.

(ii) The second secant variety of Sing(EC) equals EC.
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Proof. Denote by S the variety
{
abT ∈ P(C3×3) |Q(a) = Q(b) = 0

}
, and let Ŝ be the

affine cone over it. The line secant variety σ2(Ŝ) consists of elements of the form
M = a1b

T
1 + a2b

T
2 ∈ C3×3 such that Q(ai) = aTi ai = Q(bi) = bTi bi = 0 for i = 1, 2.

We compute that MMT = a1b
T
1 b2a

T
2 +a2b

T
2 b1a

T
1 so that tr(MMT ) = 2(bT1 b2)(aT1 a2).

Moreover MMTM = a1b
T
1 b2a

T
2 a1b

T
1 + a2b

T
2 b1a

T
1 a2b

T
2 = (bT1 b2)(aT1 a2)M . Hence the

equations (2.2) of EC are satisfied by M . This proves that σ2(S) ⊂ EC. S is a surface
and σ2(S) has dimension 5 (see [22, Theorem 1.3]). Since σ2(S) and EC are both
of codimension 3 and EC is irreducible, the equality σ2(S) = EC follows. It remains
to prove (i). Denote by [ai] the line generated by ai. Every element a1b

T
1 + a2b

T
2

with [a1] 6= [a2], [b1] 6= [b2] and Q(ai) = Q(bi) = 0 for i = 1, 2 can be taken by
SL(U) × SL(V ) to a scalar multiple of any other element of the same form. This is
the open orbit of the action of SL(U)× SL(V ) on EC. The remaining orbits are the
following:

1. the surface S, with set-theoretic equations MMT = MTM = 0.

2. T1\S, where T1 =
{
abT ∈ P(C3×3) |Q(a) = 0

}
is a threefold, with set-theoretic

equations MTM = 0.

3. T2 \S, where T2 =
{
abT ∈ P(C3×3) |Q(b) = 0

}
is a threefold, with set-theoretic

equations MMT = 0.

4. Tan(S)\(T1∪T2), where the tangential variety Tan(S) is the fourfold union of all
tangent spaces to S, with set-theoretic equations tr(MMT ) = 0,MMTM = 0.

It is easy to check they are orbits, in a similar way than in [43, Example 14.4.5].

One can compute explicitly that the Jacobian matrix of EC at

 1 0 0√
−1 0 0
0 0 0

 ∈ T1\S

has rank 3. The following code in Macaulay2 ([44]) does that computation:

R = QQ[m_(1,1)..m_(3,3)]

M = transpose(genericMatrix(R,3,3))

I = ideal(det(M))+minors(1,2*M*transpose(M)*M - trace(M*transpose(M))*M)

Jac = transpose jacobian I

S = QQ[q]/(1+q^2)

specializedJac = (map(S,R,{1,0,0,q,0,0,0,0,0}))(Jac)

minors(3,specializedJac)

Hence the points in T1 \S are smooth points of EC. By symmetry, also the points
in T2 \S are smooth. By semicontinuity, the points in Tan(S)\ (T1∪T2) are smooth.
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Since points in S are singular for the secant variety σ2(S), this finishes the proof of
(i).

Remark 2.3. From Proposition 2.2, the essential variety is isomorphic to the variety
of 2 × 2 × 2 × 2 tensors of rank ≤ 2 invariant under the permutations S2 × S2 ⊂
S4. Hence, by the study of tensor decomposition, the parametric description in
Proposition 2.2 is identifiable, meaning that, from the matrix a1b

T
1 + a2b

T
2 , all ai, bi

are determined up to scalar multiple. That shows that real essential matrices have
the form aT b+ aT b with a, b ∈ C3 and Q(a) = Q(b) = 0. This may be written in the
alternative form (u2)Tv2 + (u2)Tv2 ∈ S2(U) ⊗ S2(V ) with u ∈ U , v ∈ V . This may
help in computing real essential matrices. Note that the four non-open orbits listed
in the proof of Proposition 2.2 are contained in the isotropic quadric tr(MMT ) = 0,
hence they have no real points.

Remark 2.4. The surface Sing(EC) is more familiar with the embedding by O(1, 1),
when it is the smooth quadric surface, doubly ruled by lines. In the embedding by
O(2, 2), the two rulings are given by conics. These observations suggest expressing
EC as a determinantal variety, as we do next in Proposition 2.5. Indeed, note that
the smooth quadric surface embedded by O(2, 2) is isomorphic to a linear section
of the second Veronese embedding of P3, which is the variety of 4 × 4 symmetric
matrices of rank 1.

In the following note that S2(U ⊗V ) is 10-dimensional and identifies as the space
of symmetric 4× 4-matrices.

Proposition 2.5. The essential variety EC is isomorphic to a hyperplane section of
the variety of rank ≤ 2 elements in P(S2(U ⊗ V )). Concretely, this latter variety
identifies as the projective variety of 4× 4 symmetric matrices of rank ≤ 2 (see also
Subsection 2.3), and the section consists of traceless 4 × 4 symmetric matrices of
rank ≤ 2.

Proof. The embedding of P(U) × P(V ) in P(S2(U) ⊗ S2(V )) is given by (u, v) 7→
u2 ⊗ v2. Recall that Cauchy’s formula states S2(U ⊗ V ) = (S2(U)⊗ S2(V )) ⊕(
∧2U ⊗ ∧2V

)
, where dim(U ⊗ V ) = 4. Hence, P(S2(U) ⊗ S2(V )) is equivariantly

embedded as a codimension one subspace in P(S2(U ⊗ V )). The image is the sub-
space of traceless elements (since that is dimension 8 and invariant), and this map
sends u2 ⊗ v2 7→ (u⊗ v)2. By Proposition 2.2, we have shown that Sing(EC) embeds
into a hyperplane section of the variety of rank 1 elements in P(S2(U ⊗ V )). So,
EC = σ2(Sing(EC)) embeds into that hyperplane section of the variety of rank ≤ 2
elements. This last variety has degree 10 by Segre formula [47, Proposition 12 (b)].
Comparing dimensions and degrees, the result follows.
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Remark 2.6. In light of the description in Proposition 2.5, it follows by Example
3.2 and Corollary 6.4 of [28] that the Euclidean distance degree is EDdegree(EC) =
6. This result has been proved also in [30], where the computation of EDdegree
was performed in the more general setting of orthogonally invariant varieties. This
quantity measures the algebraic complexity of finding the nearest point on E to a
given noisy data point in R3×3.

Coordinate description

We now make the determinantal description of EC in Proposition 2.5 explicit in
coordinates. For this, denote a = (a1, a2, a3)T ∈ C3. We have Q(a) = a2

1 + a2
2 + a2

3.

The SL(2,C)-orbit Q(a) = 0 is parametrized by
(
u2

1 − u2
2, 2u1u2,

√
−1(u2

1 + u2
2)
)T

where (u1, u2)T ∈ C2. Let:

M =

m11 m12 m13

m21 m22 m23

m31 m32 m33

 ∈ C3×3,

and define the 4× 4 traceless symmetric matrix s(M) (depending linearly on M):

s(M) :=
1

2


m11 −m22 −m33 m13 +m31 m12 +m21 m23 −m32

m13 +m31 −m11 −m22 +m33 m23 +m32 m12 −m21

m12 +m21 m23 +m32 −m11 +m22 −m33 −m13 +m31

m23 −m32 m12 −m21 −m13 +m31 m11 +m22 +m33

 .

(2.3)

This construction furnishes a new view on the essential variety E , as described in
Proposition 2.7.

Proposition 2.7. The linear map s in (2.3) is a real isometry from the space of
3 × 3 real matrices to the the space of traceless symmetric 4 × 4 real matrices. We
have that:

M ∈ E ⇐⇒ rk(s(M)) ≤ 2.

The complexification of s, denoted again by s, satisfies for any M ∈ C3×3:

M ∈ Sing(EC) ⇐⇒ rk(s(M)) ≤ 1,

M ∈ EC ⇐⇒ rk(s(M)) ≤ 2.
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Proof. We construct the correspondence over C at the level of Sing(EC) and then we
extend it by linearity. Choose coordinates (u1, u2) in U and coordinates (v1, v2) in
V . Consider the following parametrization of matrices M ∈ Sing(EC):

M =

 u2
1 − u2

2

2u1u2√
−1(u2

1 + u2
2)

 · (v2
1 − v2

2, 2v1v2,
√
−1(v2

1 + v2
2)
)
. (2.4)

Consider also the following parametrization of the Euclidean quadric in U ⊗ V :

k =
(
u2v2 − u1v1, −

√
−1(u1v1 + u2v2), −(u1v2 + u2v1),

√
−1(u1v2 − u2v1)

)
.

The variety of rank 1 traceless 4× 4 symmetric matrices is accordingly parametrized
by kTk. Substituting (2.4) into the right-hand side below, a computation verifies
that:

kTk = s(M).

This proves the second equivalence in the statement above and explains the defini-
tion of s(M), namely that it is the equivariant embedding from Proposition 2.5 in
coordinates. The third equivalence follows because EC = σ2(Sing(EC)), by Proposi-
tion 2.2(ii). For the first equivalence, we note that s is defined over R and now a
direct computation verifies that tr

(
s(M)s(M)T

)
= tr

(
MMT

)
for M ∈ R3×3.

Note that the ideal of 3-minors of s(M) is indeed generated by the ten cubics in
(2.2).

Remark 2.8. The critical points of the distance function from any data point M ∈
R3×3 to E can be computed by means of the SVD of s(M), as in [28, Example 2.3].

2.3 Ulrich sheaves on the variety of symmetric

4× 4 matrices of rank ≤ 2

Our goal is to construct the Chow form of the essential variety. By the theory of
[34], this can be done provided one has an Ulrich sheaf on this variety. The notions
of Ulrich sheaf, Chow forms and the construction of [34] will be explained below.

As shown in Section 2.2, the essential variety EC is a linear section of the projective
variety of symmetric 4 × 4 matrices of rank ≤ 2, which we denote as PXs

4,2. If we
construct an Ulrich sheaf on PXs

4,2, then a quotient of this sheaf by a linear form
is an Ulrich sheaf on EC provided that linear form is regular for the Ulrich sheaf on
PXs

4,2. We will achieve this twice, in Section 2.3 and Section 2.3.
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Definition of Ulrich modules and sheaves

Definition 2.9. A graded module M over a polynomial ring A = C[x0, . . . , xn] is an
Ulrich module provided:

1. It is generated in degree 0 and has a linear minimal free resolution:

0←−M ← Aβ0 ←− A(−1)β1 ←− A(−2)β2
d2←− · · · ←− A(−c)βc ←− 0. (2.5)

2. The length of the resolution c equals the codimension of the support of the
module M .

2’. The Betti numbers are βi =

(
c

i

)
β0 for i = 0, . . . , c.

One can use either (1) and (2), or equivalently, (1) and (2)’ as the definition.

A sheaf F on a projective space Pn with support of dimension ≥ 1 is an Ulrich
sheaf provided it is the sheafification of an Ulrich module. Equivalently, the mod-

ule of twisted global sections M =
⊕
d∈Z

H0(Pn,F(d)) is an Ulrich module over the

polynomial ring A.

Fact 2.10. If the support of an Ulrich sheaf F is a variety X of degree d, then β0 is
a multiple of d, say rd. This corresponds to F being a sheaf of rank r on X.

Since there is a one-to-one correspondence between Ulrich modules over A and
Ulrich sheaves on Pn, we interchangably speak of both. But in our constructions we
focus on Ulrich modules. A prominent conjecture of [34, p.543] states that on any
variety X in a projective space, there is an Ulrich sheaf whose support is X.

The variety of symmetric 4× 4 matrices

We fix notation. Let Xs
4 be the space of symmetric 4 × 4 matrices over the field

C. This identifies as C10. Let xij = xji be the coordinate functions on Xs
4 where

1 ≤ i ≤ j ≤ 4, so the coordinate ring of Xs
4 is:

A = C[xij]1≤i≤j≤4.

For 0 ≤ r ≤ 4, denote by Xs
4,r the affine subvariety of Xs

4 consisting of matrices
of rank ≤ r. The ideal of Xs

4,r is generated by the (r + 1) × (r + 1)-minors of the
generic 4× 4 symmetric matrix (xij). This is in fact a prime ideal, by [104, Theorem
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6.3.1]. The rank subvarieties have the following degrees and codimensions by [47,
Proposition 12 (b)]:

variety degree codimension
Xs

4,4 1 0

Xs
4,3 4 1

Xs
4,2 10 3

Xs
4,1 8 6

Xs
4,0 1 10

Since the varieties Xs
4,r are defined by homogeneous ideals, they give rise to projective

varieties PXs
4,r in the projective space P9. However, in Section 2.3 and Section 2.3

it will be convenient to work with affine varieties, and general (instead of special)
linear group actions.

The group GL(4,C) acts on Xs
4 . If M ∈ GL(4,C) and X ∈ Xs

4 , the action is as
follows:

M·X = M ·X ·MT .

Since any complex symmetric matrix can be diagonalized by a coordinate change,
there are five orbits of the action of GL(4,C) on Xs

4 , one per rank of the symmetric
matrix. Let:

E = C4

be a four-dimensional complex vector space. The coordinate ring of Xs
4 identifies as

A ∼= Sym(S2(E)). The space of symmetric matrices Xs
4 may then be identified with

the dual space S2(E)∗, so again we see that GL(E) = GL(4,C) acts on S2(E)∗.

Representations and Pieri’s rule

We shall recall some basic representation theory of the general linear group GL(W ),
where W is a n-dimensional complex vector space. The irreducible representations
of GL(W ) are given by Schur modules Sλ(W ) where λ is a generalized partition:
a sequence of integers λ1 ≥ λ2 ≥ · · · ≥ λn. When λ = d, 0, . . . , 0, then Sλ(W )
is the dth symmetric power Sd(W ). When λ = 1, . . . , 1, 0, . . . , 0, with d 1’s, then
Sλ(W ) is the exterior wedge ∧dW . For all partitions λ there are isomorphisms of
GL(W )-representations:

Sλ(W )∗ ∼= S−λn,...,−λ1(W ) and Sλ(W )⊗ (∧nW )⊗r ∼= Sλ+r·1(W )

where 1 = 1, 1, . . . , 1. Here ∧nW is the one-dimensional representation C of GL(W )
where a linear map φ acts by its determinant.
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Denote by |λ| := λ1 + · · · + λn. Assume λn, µn ≥ 0. The tensor product of
two Schur modules Sλ(W )⊗ Sµ(W ) splits into irreducibles as a direct sum of Schur
modules: ⊕

ν

u(λ, µ; ν)Sν(W )

where the sum is over partitions with |ν| = |µ|+ |λ|. The multiplicities u(λ, µ; ν) ∈
Z≥0 are determined by the Littlewood-Richardson rule [41, Appendix A]. In one
case, that will be important to us below, there is a particularly nice form of this rule.
Given two partitions λ′ and λ, we say that λ′/λ is a horizontal strip if λ′i ≥ λi ≥ λ′i+1.

Fact 2.11 (Pieri’s rule). As GL(W )-representations, we have the rule:

Sλ(W )⊗ Sd(W ) ∼=
⊕

|λ′|= |λ|+d
λ′/λ is a horizontal strip

Sλ′(W ).

The first Ulrich sheaf

We are now ready to describe our first Ulrich sheaf on the projective variety PXs
4,2.

We construct it as an Ulrich module supported on the variety Xs
4,2. We use notation

from Section 2.3, so E is 4-dimensional. Consider S3(E) ⊗ S2(E). By Pieri’s rule
this decomposes as:

S5(E)⊕ S4,1(E)⊕ S3,2(E).

We therefore get a GL(E)-inclusion S3,2(E) → S3(E) ⊗ S2(E) unique up to
nonzero scale. Since A1 = S2(E) from Section 2.3, this extends uniquely to an
A-module map:

S3(E)⊗ A α←− S3,2(E)⊗ A(−1).

This map can easily be programmed using Macaulay2 and the package PieriMaps

[90]:

R=QQ[a..d]

needsPackage "PieriMaps"

f=pieri({3,2},{2,2},R)

S=QQ[a..d,y_0..y_9]

a2=symmetricPower(2,matrix{{a..d}})

alpha=sum(10,i->contract(a2_(0,i),sub(f,S))*y_i)

We can then compute the resolution of the cokernel of α in Macaulay2. It has the
form:

A20 α←− A(−1)60 ←− A(−2)60 ← A(−3)20.
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Thus the cokernel of α is an Ulrich module by (1) and (2)’ in Definition 2.9. An impor-
tant point is that the res command in Macaulay2 computes differential matrices in
unenlightening bases. We completely and intrinsically describe the GL(E)-resolution
below:

Proposition 2.12. The cokernel of α is an Ulrich module M of rank 2 supported
on the variety Xs

4,2. The resolution of M is GL(E)-equivariant and it is:

F• : S3(E)⊗ A α←− S3,2(E)⊗ A(−1)
φ←− S3,3,1(E)⊗ A(−2) (2.6)

β←− S3,3,3(E)⊗ A(−3)

with ranks 20, 60, 60, 20, and where all differential maps are induced by Pieri’s rule.
The dual complex of this resolution is also a resolution, and these two resolutions are
isomorphic up to twist. As in [92], we can visualize the resolution by:

0 ← M ←− ← ← ← ← 0.

Proof. Since M is the cokernel of a GL(E)-map, it is GL(E)-equivariant. So, the
support of M is a union of orbits. By Definition 2.9(2), M is supported in codimen-
sion 3. Since the only orbit of codimension 3 is Xs

4,2\Xs
4,3, the support of M is the

closure of this orbit, which is Xs
4,2. It can also easily be checked with Macaulay2, by

restricting α to diagonal matrices of rank r for r = 0, . . . , 4, that M is supported on
the strata Xs

4,r where r ≤ 2. Also, the statement that the rank of M equals 2 is now
immediate from Fact 2.10.

Now we prove that the GL(E)-equivariant minimal free resolution of M is F• as
above. By Pieri’s rule there is a GL(E)-map unique up to nonzero scalar:

S3,2(E)⊗ S2(E)←− S3,3,1(E)

and a GL(E)-map unique up to nonzero scalar:

S3,3,1(E)⊗ S2(E)←− S3,3,3(E).

These are the maps φ and β in F• respectively. The composition α◦φ maps S3,3,1(E)
to a submodule of S3(E)⊗ S2(S2(E)). By [104, Proposition 2.3.8] the latter double
symmetric power equals S4(E)⊕S2,2(E), and so this tensor product decomposes as:

S3(E)⊗ S4(E)
⊕

S3(E)⊗ S2,2(E).
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By Pieri’s rule, none of these summands contains S3,3,1(E). Hence α ◦ φ is zero by
Schur’s lemma. The same type of argument shows that φ ◦ β is zero. Thus F• is a
complex.

By our Macaulay2 computation of Betti numbers before the Proposition, ker(α)
is generated in degree 2 by 60 minimal generators. In F• these must be the image
of S3,3,1(E), since that is 60-dimensional by the hook content formula and it maps
injectively to F1. So F• is exact at F1. Now again by the Macaulay2 computation,
it follows that kerφ is generated in degree 3 by 20 generators. These must be the
image of S3,3,3(E) since that is 20-dimensional and maps injectively to F2. So F•
is exact at F2. Finally, the computation implies that β is injective, and F• is the
GL(E)-equivariant minimal free resolution of M .

For the statement about the dual, recall that since F• is a resolution of a Cohen-
Macaulay module, the dual complex, obtained by applying HomA(−, ωA) with ωA =
A(−10), is also a resolution. If we twist this dual resolution with (∧4E)⊗3 ⊗ A(7),
the terms will be as in the original resolution. Since the nonzero GL(E)-map α is
uniquely determined up to scale, it follows that F• and its dual are isomorphic up to
twist.

Remark 2.13. The GL(E)-representations in this resolution could also have been
computed using the Macaulay2 package HighestWeights [42].

Remark 2.14. The dual of this resolution is:

S3,3,3(E∗)⊗A← S3,3,1(E∗)⊗A(−1)← S3,2(E∗)⊗A(−2)← S3(E∗)⊗A(−3). (2.7)

A symmetric form q in S2(E∗) corresponds to a point in Spec(A) and a homomor-
phism A → C. The fiber of this complex over the point q is then an SO(E∗, q)-
complex:

S3,3,3(E∗)← S3,3,1(E∗)← S3,2(E∗)← S3(E∗). (2.8)

When q is a nondegenerate form, this is the Littlewood complex L3,3,3
• as defined in

[91, Section 4.2]. (The terms of L3,3,3 can be computed using the plethysm in Section
4.6 of loc.cit.) This partition λ = (3, 3, 3) is not admissible since 3 + 3 > 4, see [91,
Section 4.1]. The cohomology of (2.8) is then given by [91, Theorem 4.4] and it
vanishes (since here i4(λ) = ∞), as it should in agreement with Proposition 2.12.
The dual resolution (2.7) of the Ulrich sheaf can then be thought of as a “universal”
Littlewood complex for the parition λ = (3, 3, 3). In other cases when Littlewood
complexes are exact, it would be an interesting future research topic to investigate
the sheaf that is resolved by the “universal Littlewood complex”.
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To obtain nicer formulas for the Chow form of the essential variety EC in Section
2.4, we now prove that the middle map φ in the resolution (2.6) is symmetric, in
the following appropriate sense. In general, suppose that we are given a linear map
W ∗ µ−→ W ⊗ L∗ where L is a finite dimensional vector space. Dualizing, we get a

map W
µT←− W ∗ ⊗ L which in turn gives a map W ⊗ L∗

ν←− W ∗. By definition,
the map µ is symmetric if µ = ν and skew-symmetric if µ = −ν. If µ is symmetric
and µ is represented as a matrix with entries in L∗ with respect to dual bases of W
and W ∗, then that matrix is symmetric, and analogously when µ is skew-symmetric.
Note that the map µ also induces a map L

η−→ W ⊗W .

Fact 2.15. The map µ is symmetric if the image of η is in the subspace S2(W ) ⊆
W ⊗W and it is skew-symmetric if the image is in the subspace ∧2W ⊆ W ⊗W .

Proposition 2.16. The middle map φ in the resolution (2.6) is symmetric.

Proof. Consider the map φ in degree 3. It is:

S3,2(E)⊗ S2(E)←− S3,3,1(E) ∼= S3,2(E)∗ ⊗ (∧4E)⊗3

and it induces the map:

S3,2(E)⊗ S3,2(E)←− S2(E)∗ ⊗ (∧4E)⊗3 ∼= S3,3,3,1(E).

By the Littlewood-Richardson rule, the right representation above occurs with mul-
tiplicity 1 in the left side. Now one can check that S3,3,3,1(E) occurs in S2(S3,2(E)).
This follows by Corollary 5.5 in [19] or one can use the package SchurRings [95] in
Macaulay2:

needsPackage "SchurRings"

S = schurRing(s,4,GroupActing=>"GL")

plethysm(s_2,s_{3,2})

Due to Fact 2.15, we can conclude that the map φ is symmetric.

The second Ulrich sheaf

We construct another Ulrich sheaf on PXs
4,2 and analyze it similarly to as above. This

will lead to a second formula for Ch(EC) in Section 2.4. Consider S2,2,1(E)⊗ S2(E).
By Pieri’s rule:

S2,2,1(E)⊗ S2(E) ∼= S4,2,1(E)⊕ S3,2,2(E)⊕ S3,2,1,1(E)⊕ S2,2,2,1(E).
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Thus there is a GL(E)-map, with nonzero degree 1 components unique up to scale:

S2,2,1(E)⊗ A α←− (S3,2,2(E)⊕ S3,2,1,1(E)⊕ S2,2,2,1(E))⊗ A(−1).

This map can be programmed in Macaulay2 using PieriMaps as follows:

R=QQ[a..d]

needsPackage "PieriMaps"

f1= transpose pieri({3,2,2,0},{1,3},R)

f2=transpose pieri({3,2,1,1},{1,4},R)

f3=transpose pieri({2,2,2,1},{3,4},R)

f = transpose (f1||f2||f3)

S=QQ[a..d,y_0..y_9]

a2=symmetricPower(2,matrix{{a..d}})

alpha=sum(10,i->contract(a2_(0,i),sub(f,S))*y_i)

We can then compute the resolution of coker(α) in Macaulay2. It has the form:

A20 α←− A(−1)60 ←− A(−2)60 ←− A(−3)20.

Thus the cokernel of α is an Ulrich module, and moreover we have:

Proposition 2.17. The cokernel of α is an Ulrich module M of rank 2 supported
on the variety Xs

4,2. The resolution of M is GL(E)-equivariant and it is:

F• : S2,2,1(E)⊗ A α←− (S3,2,2(E)⊕ S3,2,1,1(E)⊕ S2,2,2,1(E))⊗ A(−1)

φ←− (S4,2,2,1(E)⊕ S3,3,2,1(E)⊕ S3,2,2,2(E))⊗ A(−2) (2.9)

β←− S4,3,2,2(E)⊗ A(−3)

with ranks 20, 60, 60, 20. The dual complex of this resolution is also a resolution and
these two resolutions are isomorphic up to twist. We can visualize the resolution by:

0 ← M ←− ← ⊕ ⊕ ← ⊕ ⊕ ← ← 0.

Proof. The argument concerning the support of M is exactly as in Proposition 2.12.
Now we prove that the minimal free resolution of M is of the form above, differ-

ently than in Proposition 2.12. To start, note that the module S4,2,2,1(E) occurs by
Pieri once in each of:

S3,2,2(E)⊗ S2(E), S3,2,1,1(E)⊗ S2(E), S2,2,2,1(E)⊗ S2(E).
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On the other hand, it occurs in:

S2,2,1(E)⊗ S2(S2(E)) ∼= S2,2,1(E)⊗ S4(E)⊕ S2,2,1(E)⊗ S2,2(E)

only twice, as seen using Pieri’s rule and the Littlewood-Richardson rule. Thus
S4,2,2,1(E) occurs at least once in the degree 2 part of ker(α). Similarly we see that
each of S3,3,2,1(E) and S3,2,2,2(E) occurs at least once in ker(α) in degree 2. But
by the Macaulay2 computation before this Proposition, we know that ker(α) is a
module with 60 generators in degree 2. And the sum of the dimensions of these
three representations is 60. Hence each of them occurs exactly once in ker(α) in
degree 2, and they generate ker(α).

Now let C be the 20-dimensional vector space generating ker(φ). Since the reso-
lution of M has length equal to codim(M), the module M is Cohen-Macaulay and
the dual of its resolution, obtained by applying HomA(−, ωA) where ωA ∼= A(−4), is
again a resolution of Ext3

A(M,ωA). Thus the map from C ⊗ A(−3) to each of:

S4,2,2,1(E)⊗ A(−2), S3,3,2,1(E)⊗ A(−2), S3,2,2,2(E)⊗ A(−2)

is nonzero. In particular C maps nontrivially to:

S3,2,2,2(E)⊗ S2(E) ∼= S5,2,2,2(E)⊕ S4,3,2,2(E).

Each of the right-hand side representations have dimension 20, so one of them equals
C. However only the last one occurs in S3,3,2,1(E) ⊗ S2(E), and so C ∼= S4,3,2,2(E).
We have proven that the GL(E)-equivariant minimal free resolution of M indeed has
the form F•.

For the statement about the dual, recall that each of the three components of α
in degree 1 are nonzero. Also, as the dual complex is a resolution, here obtained by
applying HomA(−, ωA) with ωA = A(−10), all three degree 1 components of β are
nonzero. If we twist this dual resolution with (∧4E)⊗4 ⊗ A(7), the terms will be as
in the original resolution. Because each of the three nonzero components of the map
α are uniquely determined up to scale, the resolution F• and its dual are isomorphic
up to twist.

Remark 2.18. Again the GL(E)-representations in this resolution could have been
computed using the Macaulay2 package HighestWeights.

Proposition 2.19. The middle map φ in the resolution (2.9) is symmetric.
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Proof. We first show that the three ‘diagonal’ components of φ in (2.9) are symmetric:

S3,2,2(E)⊗ S2(E)
φ1←− S4,2,2,1(E)

S3,2,1,1(E)⊗ S2(E)
φ2←− S3,3,2,1(E)

S2,2,2,1(E)⊗ S2(E)
φ3←− S3,2,2,2(E).

Twisting the third component φ3 with (∧4E∗)⊗2, it identifies as:

E∗ ⊗ S2(E)←− E

and so φ3 is obviously symmetric. Twisting the second map φ2 with ∧4E∗ it identifies
as:

S2,1(E)⊗ S2(E)←− S2,2,1(E) = (S2,1(E)∗)⊗ (∧4E)⊗2,

which induces the map:

S2,1(E)⊗ S2,1(E)←− S2(E)∗ ⊗ (∧4E)⊗2 = S2,2,2(E).

By the Littlewood-Richardson rule, the left tensor product contains S2,2,2(E) with
multiplicity 1. By Corollary 5.5 in [19] or SchurRings in Macaulay2, this is in
S2(S2,1(E)):

needsPackage "SchurRings"

S = schurRing(s,4,GroupActing=>"GL")

plethysm(s_2,s_{2,1})

So by Fact 2.15, the component φ2 is symmetric. The first map φ1 may be identified
as:

S3,2,2(E)⊗ S2(E)←− (S3,2,2(E))∗ ⊗ (∧4E)⊗4,

which induces the map:

S3,2,2(E)⊗ S3,2,2(E)←− S2(E)∗ ⊗ (∧4E)⊗4 = S4,4,4,2(E).

Again by Littlewood-Richardson, S4,4,4,2(E) is contained with multiplicity 1 in the
left side. By Corollary 5.5 in [19] or the package SchurRings in Macaulay2, this is
in S2(S3,2,2(E)):

needsPackage "SchurRings"

S = schurRing(s,4,GroupActing=>"GL")

plethysm(s_2,s_{3,2,2})
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It is now convenient to tensor the resolution (2.9) by (∧4E∗)⊗2, and to let:

T1 = S1,0,0,−2(E), T2 = S1,0,−1,−1(E), T3 = S0,0,0,−1(E).

We can then write the middle map as:

T1⊗A(−1)⊕T2⊗A(−1)⊕T3⊗A(−1)

φ1 µ2 ν2
µ1 φ2 0
ν1 0 φ3


←− T ∗1 ⊗A(−2)⊕T ∗2 ⊗A(−2)⊕T ∗3 ⊗A(−2)

(2.10)

Note indeed that the component:

S1,0,−1,−1(E)⊗ S2(E) = T2 ⊗ S2(E)←− T ∗3
∼= S1(E)

must be zero, since the left tensor product does not contain S1(E) by Pieri’s rule.
Similarly the map T3 ⊗ S2(E)←− T ∗2 is zero.

We know the maps φ1, φ2 and φ3 are symmetric. Consider:

T2 ⊗ A(−1)
µ1←− T ∗1 ⊗ A(−2), T1 ⊗ A(−1)

µ2←− T ∗2 ⊗ A(−2).

Since the resolution (2.9) is isomorphic to its dual, either both µ1 and µ2 are nonzero,
or they are both zero. Suppose both are nonzero. The dual of µ2 is (up to twist)

T2 ⊗ A(−1)
µT2←− T ∗1 ⊗ A(−2). But such a GL(E)-map is unique up to scalar, as is

easily seen by Pieri’s rule. Thus whatever the case we can say that µ1 = cµµ
T
2 for

some nonzero scalar cµ. Similarly we get ν1 = cνν
T
2 . Composing the map (2.10) with

the automorphism on its right given by the block matrix:1 0 0
0 cµ 0
0 0 cν

 ,

we get a middle map:

T1⊗A(−1)⊕T2⊗A(−1)⊕T3⊗A(−1)

φ1 µ′2 ν′2
µ1 φ′2 0
ν1 0 φ′3


←− T ∗1⊗A(−2)⊕T ∗2⊗A(−2)⊕T ∗3⊗A(−2)

where the diagonal maps are still symmetric, and µ1 = (µ′2)T and ν1 = (ν ′2)T . So we
get a symmetric map, and the result about φ follows.
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This second Ulrich module constructed above in Proposition 2.17 is a particular
instance of a general construction of Ulrich modules on the variety of symmetric
n× n matrices of rank ≤ r; see [104], Section 6.3 and Exercise 34 in Section 6. We
briefly recall the general construction. Let W = Cn and G be the Grassmannian
Gr(n − r,W ) of (n − r)-dimensional subspaces of W . There is a tautological exact
sequence of algebraic vector bundles on G:

0→ K → W ⊗OG → Q→ 0,

where r is the rank of Q. Let X = Xs
n be the affine space of symmetric n × n

matrices, and define Z to be the incidence subvariety of X ×G given by:

Z = {((W φ−→ W ), (Cn−r i
↪→ W )) ∈ X ×G |φ ◦ i = 0}.

The variety Z is the affine geometric bundle VG(S2(Q)) of the locally free sheaf
S2(Q) on the Grassmannian G. There is a commutative diagram:

Z −−−→ X ×Gy y
Xs
n,r −−−→ X

in which Z is a desingularization of Xs
n,r. For any locally free sheaf E , the Schur

functor Sλ applies to give a new locally free sheaf Sλ(E). Consider then the locally
free sheaf:

E(n, r) = S(n−r)r(Q)⊗ Sn−r−1,n−r−2,··· ,1,0(K)

on the Grassmannian Gr(n − r,W ). Note that S(n−r)r(Q) = (det(Q))n−r is a line

bundle and E(n, r) is a locally free sheaf of rank 2(n−r2 ). Let Z
p−→ G be the projection

map. By pullback we get the locally free sheaf p∗(E(n, r)) on Z. The pushforward
of this locally free sheaf down to Xs

n,r is an Ulrich sheaf on this variety. Since Xs
n,r

is affine this corresponds to the module of global sections H0(Z, p∗E). The Ulrich
module in Proposition 2.17 is that module when n = 4 and r = 2. For our com-
putational purposes realized in Section 2.4, we worked out the equivariant minimal
free resolution as above. Interestingly, we do not know yet whether the ‘simpler’
Ulrich sheaf presented in Section 2.3, which is new to our knowledge, generalizes to
a construction for other varieties.
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2.4 The Chow form of the essential variety

Grassmannians and Chow divisors

The Grassmannian variety Gr(c, n + 1) = Gr(Pc−1,Pn) parametrizes the linear sub-
spaces of dimension c− 1 in Pn, i.e the Pc−1’s in Pn. Such a linear subspace may be
given as the rowspace of a c× (n + 1) matrix. The tuple of maximal minors of this
matrix is uniquely determined by the linear subspace up to scale. The number of

such minors is

(
n+ 1

c

)
. Hence we get a well-defined point in the projective space

P(n+1
c )−1. This defines an embedding of the Grassmannian Gr(c, n + 1) into that

projective space, called the Plücker embedding. Somewhat more algebraically, let
W be a vector space of dimension n + 1 and let P(W ) be the space of lines in W
through the origin. Then a linear subspace V of dimension c in W defines a line ∧cV
in ∧cW , and so it defines a point in P(∧cW ) = P(n+1

c )−1. Thus the Grassmannian
Gr(c,W ) embeds into P(∧cW ).

IfX is a variety of codimension c in a projective space Pn, then a linear subspace of
dimension c−1 will typically not intersect X. The set of points in the Grassmannian
Gr(c, n+ 1) that do have nonempty intersection with X forms a divisor in Gr(c, n+
1), called the Chow divisor. This is seen by counting dimensions in the incidence
diagram:

X ←−−− X = {(x, L) ∈ X ×Gr(Pc−1,Pn)
∣∣x ∈ L} −−−→ Gr(Pc−1,Pn).

In detail, the fibers of the left projection are isomorphic to Gr(Pc−2,Pn−1), so they
have dimension (c− 1)(n− c+ 1). We conclude that

dim(X ) = (c− 1)(n− c+ 1) + (n− c) = c(n+ 1− c)− 1.

Since the right arrow is degree 1 onto its image, that image has dimension dim(X ),
which is 1 less than dim(Gr(c, n + 1)). Next recall that the divisor class group of
Gr(c, n + 1) is isomorphic to Z. Considering the Plücker embedding Gr(c, n + 1) ⊆
P(n+1

c )−1, any hyperplane in the latter projective space intersects the Grassmannian
in a divisor which generates the divisor class group of Gr(c, n+ 1). This follows from
an application of [49, Chapter II, Proposition 6.5(c)]. The homogeneous coordinate

ring of this projective space P(n+1
c )−1 = P(∧cW ) is Sym(∧cW ∗). Note that here ∧cW ∗

are the linear forms, i.e. the elements of degree 1. If X has degree d, then its Chow
divisor is cut out by a single form Ch(X) of degree d unique up to nonzero scale, called
the Chow form, in the coordinate ring of the Grassmannian Sym(∧cW ∗)/IGr(c,n+1).
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As the parameters n, c, d increase, Chow forms become unwieldy to even store on
a computer file. Arguably, the most efficient (and useful) representations of Chow
forms are as determinants or Pfaffians of a matrix with entries in ∧cW ∗. As we
explain next, Ulrich sheaves can give such formulas.

Construction of Chow forms

We now explain how to obtain the Chow form Ch(X) of a variety X from an Ul-
rich sheaf F whose support is X. The reference for this is [34, p. 552-553]. Let
M = ⊕d∈ZH0(Pn,F(d)) be the graded module of twisted global sections over the
polynomial ring A = C[x0, . . . , xn]. We write W ∗ for the vector space generated by
the variables x0, . . . , xn. Consider the minimal free resolution (2.5) of M . The map
di may be represented by a matrix Di of size βi × βi+1, with entries in the linear
space W ∗. Since (2.5) is a complex the product of two successive matrices Di−1Di

is the zero matrix. Note that when we multiply the entries of these matrices, we are
multiplying elements in the ring A = Sym(W ∗) = C[x0, . . . , xn].

Now comes the shift of view: Let B = ⊕ni=0 ∧iW ∗ be the exterior algebra on the
vector space W ∗. We now consider the entries in the Di (which are all degree one
forms in A1 = W ∗ = B1) to be in the ring B instead. We then multiply together all
the matrices Di corresponding to the maps di. The multiplications of the entries are
performed in the skew-commutative ring B. We then get a product:

D = D0 ·D1 · · ·Dc−1,

where c is the codimension of the variety X which supports F . If F has rank r and
the degree of X is d, the matrix D is a nonzero rd × rd matrix. The entries in the
product D now lie in ∧cW ∗. Now comes the second shift of view: We consider the
entries of D to be linear forms in the polynomial ring Sym(∧cW ∗). Then we take
the determinant of D, computed in this polynomial ring, and get a form of degree
rd in Sym(∧cW ∗). When considered in the coordinate ring of the Grassmannian
Sym(∧cW ∗)/IG, then det(D) equals the rth power of the Chow form of X. For more
information on the fascinating links between the symmetric and exterior algebras,
the reader can start with the Bernstein-Gel’fand-Gel’fand correspondence as treated
in [32].

Skew-symmetry of the matrices computing the Chow form
of PXs

4,2

In Section 2.3 we constructed two different Ulrich modules of rank 2 on the variety
PXs

4,2 of symmetric 4 × 4 matrices of rank ≤ 2. That variety has degree 10. The
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matrix D thus in both cases is 20×20, and its determinant is a square in Sym(∧cW ∗)
as we now show. In fact, and here our analysis of the equivariant resolutions pays off,
the matrix D in both cases is skew-symmetric when we use the bases distinguished
by representation theory for the differential matrices:

Lemma 2.20. Let A,B,C be matrices of linear forms in the exterior algebra. Their
products behave as follows under transposition:

1. (A ·B)T = −BT · AT

2. (A ·B · C)T = −CT ·BT · AT .

Proof. Part (1) is because uv = −vu when u and v are linear forms in the exterior
algebra. Part (2) is because uvw = −wvu for linear forms in the exterior algebra.

The resolutions (2.6) and (2.9) of our two Ulrich sheaves, have the form:

F
α←− G

φ←− G∗
β←− F ∗. (2.11)

Dualizing and twisting we get the resolution:

F
βT←− G

φT←− G∗
αT←− F ∗.

Since φ = φT , both β and αT map isomorphically onto the same image. We can
therefore replace the map β in (2.11) with αT , and get the GL(E)-equivariant reso-
lution:

F
α←− G

φ←− G∗
αT←− F ∗.

Let α, φ and αT be the maps in the resolution above, but now considered to live over
the exterior algebra. The Chow form associated to the two Ulrich sheaves is then
the Pfaffian of the matrix:

αφαT .

Proposition 2.21. The Chow form Ch(PXs
4,2) constructed from the Ulrich sheaf is,

in each case, the Pfaffian of a 20× 20 skew-symmetric matrix.

Proof. The Chow form squared is the determinant of αφαT and we have:(
αφαT

)T
= − (αT )T φT αT = −αφαT .
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Explicit matrices computing the Chow form of PXs
4,2

Even though our primary aim is to compute the Chow form of the essential variety,
we get explicit matrix formulas for the Chow form of PXs

4,2 as a by-product of our
method. We carried out the computation in Proposition 2.21 in Macaulay2 for both
Ulrich modules on PXs

4,2. We used the package PieriMaps to make matrices D1 and
D2 representing α and φ with respect to the built-in choice of bases parametrized
by semistandard tableaux. We had to multiply D2 on the right by a change of basis
matrix to get a matrix representative with respect to dual bases, i.e. symmetric.
For example in the case of the first Ulrich module (2.6) this change of basis matrix
computes the perfect pairing S3,2(E) ⊗ S3,3,1(E) → (∧4E)⊗3. Let us describe the
transposed inverse matrix that represents the dual pairing. Columns are labeled
by the semistandard Young tableaux S of shape (3, 2), and rows are labeled by the
semistandard Young tableaux T of shape (3, 3, 1). The (S, T )-entry in the matrix is
obtained by fitting together the tableau S and the tableau T rotated by 180◦ into a

tableau of shape (3, 3, 3, 3), straightening, and then taking the coefficient of
0 0 0
1 1 1
2 2 2
3 3 3

.

To finish for each Ulrich module, we took the product D1D2D
T
1 over the exterior

algebra.
The two resulting explicit 20×20 skew-symmetric matrices are available as arXiv

ancillary files or at this chapter’s webpage1. Their Pfaffians equal the Chow form
of PXs

4,2, which is an element in the homogeneous coordinate of the Gr(3, 10) =

Gr(P2,P9). To get a feel for the ‘size’ of this Chow form, note that this ring is a
quotient of the polynomial ring Sym(∧3Sym2(E)) in 120 Plücker variables, denoted
Q[p{11,12,13}, . . . , p{33,34,44}] on our website, by the ideal minimally generated by 2310
Plücker quadrics. We can compute that the degree 10 piece where Ch(PXs

4,2) lives
is a 108,284,013,552-dimensional vector space.

Both 20×20 matrices afford extremely compact formulas for this special element.
Their entries are linear forms in p{11,12,13}, . . . , p{33,34,44} with one- and two-digit rel-
atively prime integer coefficients. No more than 5 of the p-variables appear in any
entry. In the first matrix, 96 off-diagonal entries equal 0. The matrices give new
expressions for one of the two irreducible factors of a discriminant studied since 1879
by [89] and as recently as 2011 [87], as we see next in Remark 2.22.

Remark 2.22. From the subject of plane curves, it is classical that every ternary
quartic form f ∈ C[x, y, z]4 can be written as f = det(xA+ yB+ zC) for some 4× 4
symmetric matrices A,B,C. Geometrically, this expresses V(f) inside the net of

1http://math.berkeley.edu/~jkileel/ChowFormulas.html

http://math.berkeley.edu/~jkileel/ChowFormulas.html
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plane quadrics 〈A,B,C〉 as the locus of singular quadrics. By Theorem 7.5 of [87],
that plane quartic curve V(f) is singular if and only if the Vinnikov discriminant:

∆(A,B,C) = M(A,B,C)P(A,B,C)2

evaluates to 0. Here M is a degree (16, 16, 16) polynomial known as the tact invariant
and P is a degree (10, 10, 10) polynomial. The factor P equals the Chow form
Ch(PXs

4,2) after substituting Plücker coordinates for Stiefel coordinates:

p{i1j1,i2j2,i3j3} = det

ai1j1 ai2j2 ai3j3
bi1j1 bi2j2 bi3j3
ci1j1 ci2j2 ci3j3

 .

Explicit matrices computing the Chow form of EC
We now can put everything together and solve the problem raised by Agarwal, Lee,
Sturmfels and Thomas in [1] of computing the Chow form of the essential variety. In
Proposition 2.7, we constructed a linear embedding s : P8 ↪→ P9 that restricts to an
embedding EC ↪→ PXs

4,2. Both of our Ulrich sheaves supported on PXs
4,2 pull back

to Ulrich sheaves supported on EC, and their minimal free resolutions pull back to
minimal free resolutions:

s∗F
s∗α←−−− s∗G

s∗φ←−−− s∗G∗
s∗αt←−−−− s∗F ∗.

Here we verified in Macaulay2 that s∗ quotients by a linear form that is a nonzero
divisor for the two Ulrich modules. So, to get the Chow form Ch(EC) from Propo-
sitions 2.12 and 2.17, we took matrices D1 and D2 symmetrized from above, and
applied s∗. That amounts to substituting xij = s(M)ij, where s(M) is from Section
2.2. We then multiplied D1D2D

T
1 , which is a product of a 20× 60, a 60× 60 and a

60× 20 matrix, over the exterior algebra.
The two resulting explicit 20 × 20 skew-symmetric matrices are available at the

chapter’s webpage. Their Pfaffians equal the Chow form of EC, which is an element
in the homogeneous coordinate of Gr(P2,P8). We denote that ring as the polynomial
ring in 84 (dual) Plücker variables Q[q{11,12,13}, . . . , q{31,32,33}] modulo 1050 Plücker
quadrics. Here Ch(EC) lives in the 9,386,849,472-dimensional subspace of degree 10
elements.

Both matrices are excellent representations of Ch(EC). Their entries are linear
forms in q{11,12,13}, . . . , q{31,32,33} with relatively prime integer coefficients less than
216 in absolute value. In the first matrix, 96 off-diagonal entries vanish, and no
entries have full support.
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Bringing this back to computer vision, we can now prove our main result stated
in Section 2.1:

Proof of Theorem 2.1. We first constructM(x(i), y(i)), and then we prove that it has
the desired properties. For the construction, let Z denote the 6× 9 matrix:

y
(1)
1 x

(1)
1 y

(1)
1 x

(1)
2 y

(1)
1 y

(1)
2 x

(1)
1 y

(1)
2 x

(1)
2 y

(1)
2 x

(1)
1 x

(1)
2 1

y
(2)
1 x

(2)
1 y

(2)
1 x

(2)
2 y

(2)
1 y

(2)
2 x

(2)
1 y

(2)
2 x

(2)
2 y

(2)
2 x

(2)
1 x

(2)
2 1

y
(3)
1 x

(3)
1 y

(3)
1 x

(3)
2 y

(3)
1 y

(3)
2 x

(3)
1 y

(3)
2 x

(3)
2 y

(3)
2 x

(3)
1 x

(3)
2 1

y
(4)
1 x

(4)
1 y

(4)
1 x

(4)
2 y

(4)
1 y

(4)
2 x

(4)
1 y

(4)
2 x

(4)
2 y

(4)
2 x

(4)
1 x

(4)
2 1

y
(5)
1 x

(5)
1 y

(5)
1 x

(5)
2 y

(5)
1 y

(5)
2 x

(5)
1 y

(5)
2 x

(5)
2 y

(5)
2 x

(5)
1 x

(5)
2 1

y
(6)
1 x

(6)
1 y

(6)
1 x

(6)
2 y

(6)
1 y

(6)
2 x

(6)
1 y

(6)
2 x

(6)
2 y

(6)
2 x

(6)
1 x

(6)
2 1


where the columns of Z are labeled by 11, 12, . . . , 33 respectively. Now set qijk to
be the determinant of Z with columns i, j, k removed, and substitute into either of
20× 20 skew-symmetric matrices above that compute the Chow form Ch(EC). This
constructs M(x(i), y(i)).

Observe that M(x(i), y(i)) drops rank if and only if the subspace ker(Z) ⊆ P8

intersects EC. This follows by definition of the Chow form, since the Plücker coordi-
nates of ker(Z) equal the maximal minors of Z when Z is full-rank [43, p. 94]. Said
differently:

M(x(i), y(i)) drops rank ⇐⇒ ∃M ∈ EC such that ∀i = 1, . . . 6

(
y

(i)
1 y

(i)
2 1

)
M

x
(i)
1

x
(i)
2

1

 = 0. (2.12)

Indeed, (2.12) is a linear system for M ∈ EC, while Z is the coefficient matrix of that
system.

In the rest of the proof of Theorem 2.1, we relate solutions of (2.1) to solutions of
(2.12). As goes computer vision parlance, we will move between cameras and world
points to relative poses, and then back. In the first direction, given {(x(i), y(i))},
suppose that we have a solution A,B, X̃(1), . . . , X̃(6) to (2.1). Note that the group:

G := {g ∈ GL(4,C) | (gij)1≤i,j≤3 ∈ SO(3,C) and g41 = g42 = g43 = 0}
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equals the stabilizer of the set of calibrated camera matrices inside C3×4, with respect
to right multiplication. We now make two simplifying assumptions about our solu-
tion to (2.1).

• Without loss of generality, A = [ id3×3 | 0 ]. For otherwise, select g ∈ G so that

Ag = [ id3×3 | 0 ], and then Ag,Bg, g−1X̃(1), . . . , g−1X̃(6) is also a solution to
(2.1).

• Denoting B = [R | t ] for R ∈ SO(3,C) and t ∈ C3, then without loss of
generality, t 6= 0. For otherwise, we may zero out the last coordinate of each

X̃(i) and replace B by [R | t′ ] for any t′ ∈ C3, and then we still have a solution
to the system (2.1).

Denote [ t ]× :=

 0 t3 −t2
−t3 0 t1
t2 −t1 0

. Set M = [ t ]×R. Then M ∈ EC and M is a

solution to (2.12), as for each i = 1, . . . , 6 we have:(
y

(i)
1 y

(i)
2 1

)
M

x
(i)
1

x
(i)
2

1

 ≡ (BX̃(i))
T

M (AX̃(i))

= X̃(i)
T(

[R | t ]T [ t ]×R [ id3×3 | 0 ]
)
X̃(i)

= X̃(i)
T(

[R | 0 ]T [ t ]× [R | 0 ]
)
X̃(i)

= 0.

Here the second-to-last equality is because tT [ t ]× = 0, and the last equality is
because the matrix in parentheses is skew-symmetric. We have shown the second
sentence in Theorem 2.1.

Conversely, given {(x(i), y(i))}, let us start with a solution M ∈ EC to system
(2.12). From this, we will produce a solution to (2.1) provided that M is sufficiently
nice. More precisely, assume:

1. M may be factored as a skew-symmetric matrix times a rotation matrix, i.e.
M = [ t ]×R where t ∈ C3 and R ∈ SO(3,C).

2. For i = 1, . . . , 6, we have
(
y

(i)
1 y

(i)
2 1

)
M 6= 0 and M

(
x

(i)
1 x

(i)
2 1

)T
6= 0.
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For readers of [48, Section 9.2.4], condition 2 means that {(x(i), y(i))} avoids the
epipoles of M . Supposing conditions 1 and 2 hold, we set A = [ id3×3 | 0 ] and

B = [R | t ]. Then there exists X̃(i) ∈ P3 such that AX̃(i) ≡ x̃(i) and BX̃(i) ≡ ỹ(i).

Indeed (dropping i for convenience), we take X̃ =
(
x1 x2 1 λ

)T
where λ ∈ C

satisfies Rx̃ + λt ≡ ỹ. To find such λ, we solve
(
Rx̃ t ỹ

)
3×3

 1
λ
−µ

 = 0 for

λ, µ ∈ C with µ 6= 0. These equations are soluble since:

• 0 = ỹTMx̃ = ỹT [ t ]×Rx̃ = det
(
Rx̃ t ỹ

)
by Laplace expansion along the

third column.

• 0 6= Mx̃ = t ×Rx̃ ⇒ columns t and Rx̃ are linearly independent. Likewise,
0 6= ỹTM = ỹT [ t ]×R ⇒ columns ỹ and t are linearly independent.

This produces cameras and world points A,B, X̃(1), . . . , X̃(6) satisfying (2.1),
given an essential matrix M satisfying the epipolar constraints (2.12) as well as the
two regularity conditions above. To complete the proof of Theorem 2.1, it is enough
to show that in the variety of point correspondences {(x(i), y(i))} where (2.12) is
soluble, there is a dense, open subset of point correspondences where all solutions
M ∈ EC satisfy conditions 1 and 2 above.

To this end, consider the diagram below, with projections π1 and π2 respectively:

(C2 × C2)6 ←−−− (C2 × C2)6 × EC −−−→ EC.

Inside (C2×C2)6 × EC with coordinates (x, y,M), we consider three incidence vari-
eties:

I0 :=

{(
x, y,M

) ∣∣∣ ỹ(i)
T
M x̃(i) = 0 for each i = 1, . . . , 6

}
I1 :=

{(
x, y,M

)
∈ I0

∣∣∣M does not factor as M = [ t ]×R for any t ∈ C3, R ∈ SO(3,C)

}
I2 :=

{(
x, y,M

)
∈ I0

∣∣∣ Mx̃(i) = 0 or ỹ(i)
T
M = 0 for some i = 1, . . . , 6

}
.

So, π1(I0) is the variety of point correspondences where (2.12) is soluble, i.e. the
hypersurface V

(
det(M(x(i), y(i)))

)
⊂ (C2 × C2)6, while π1(I0) \

(
π1(I1) ∪ π1(I2)

)
consists of those point correspondences where (2.12) is soluble and all solutions to
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(2.12) satisfy conditions 1 and 2 above. We will show that π1(I1) and π1(I2) are
closed subvarieties with dimension < 23.

For I1, note that π2(I1) ⊂ EC is a closed subvariety, the complement of the open
orbit from the proof of Proposition 2.2, i.e. the 4-dimensional Tan(S). Also each
fiber of π2|I1 is 18-dimensional. It follows that I1 is closed and 22-dimensional. So
π1(I1) is closed and has dimension ≤ 22.

Next for I2, note that π2|I2 surjects onto EC and has general fibers that are 17-
dimensional. So I2 is closed and 22-dimensional, implying that π1(I1) is closed and
has dimension ≤ 22.

At this point, we have shown the converse in Theorem 2.1, and this completes
the proof.

We illustrate the main theorem with two examples. Note that since the first
example is a ‘positive’, it is a strong (and reassuring) check of correctness for our
formulas.

Example 2.23. Consider the image data of 6 point correspondences {(x̃(i), ỹ(i)) ∈
P2 × P2 | i = 1, . . . ,m} given by the corresponding rows of the two matrices:

[ x̃(i) ] =



0 0 1
1 −1 1

0 −1

2
1

−3 0 1

3

2
−5

2
1

1
1

7
1


[ ỹ(i) ] =



8

11

16

11
1

7

22

5

22
1

8

29

34

29
1

17

20
−1 1

1

7

1

7
1

9

4

3

4
1



.

In this example, they do come from world points X̃(i) ∈ P3 and calibrated cameras
A,B:

[
X̃(i)

]
=



0 0 2 1
1 −1 1 1
0 −2 4 1
3 0 −1 1
3 −5 2 1
7 1 7 1

 , A =

1 0 0 0
0 1 0 0
0 0 1 0

 , B =



7

9

4

9

4

9
0

−4

9
−1

9

8

9
0

4

9
−8

9

1

9
1

 .
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To detect this, we form the 6× 9 matrix Z from the proof of Theorem 2.1:

Z =



0 0
8

11
0 0

16

11
0 0 1

7

22
− 7

22

7

22

5

22
− 5

22

5

22
1 −1 1

0 − 4

29

8

29
0 −17

29

34

29
0 −1

2
1

−51

20
0

17

20
3 0 −1 −3 0 1

3

14
− 5

14

1

7

3

14
− 5

14

1

7

3

2
−5

2
1

9

4

9

28

9

4

3

4

3

28

3

4
1

1

7
1



.

We substitute the maximal minors of Z into the matrices computing Ch(EC) in
Macaulay2. The determinant command then outputs 0. This computation recovers
the fact that the point correspondences are images of 6 world points under a pair of
calibrated cameras.

Example 2.24. Random data {(x(i), y(i)) ∈ R2 × R2 | i = 1, . . . , 6} is expected to
land outside the Chow divisor of EC. We made an instance using the random(QQ)

command in Macaulay2 for each coordinate of image point. The coordinates ranged

from
1

8
to 5 in absolute value. We carried out the substitution from Example 2.23,

and got two full-rank skew-symmetric matrices with Pfaffians ≈ 5.5 × 1025 and ≈
1.3 × 1022, respectively. These matrices certified that the system (2.1) admits no
solutions for that random input.

The following proposition is based on general properties of Chow forms, collec-
tively known as the U-resultant method to solve zero-dimensional polynomial sys-
tems. In our situation, it gives a connection with the ‘five-point algorithm’ for
computing essential matrices. The proposition is computationally inefficient as-is
for that purpose, but see [80] for a more efficient algorithm that would exploit our
matrix formulas for Ch(EC). Implementing the algorithms in [80] for our matrices is
one avenue for future work.

Proposition 2.25. Given a generic 5-tuple {(x(i), y(i)) ∈ R2 × R2 | i = 1, . . . , 5}, if
we make the substitution from the proof of Theorem 2.1, then the Chow form Ch(EC)
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specializes to a polynomial in R[x
(6)
1 , x

(6)
2 , y

(6)
1 , y

(6)
2 ]. Over C, this specialization com-

pletely splits as:

10∏
i=1

(
y

(6)
1 y

(6)
2 1

)
M (i)

x
(6)
1

x
(6)
2

1

 .

Here M (1), . . . ,M (10) ∈ EC are the essential matrices determined by the given five-
tuple.

Proof. By the proof of Theorem 2.1, any zero of the above product is a zero of the
specialization of Ch(EC). By Hilbert’s Nullstellensatz, this implies that the product
divides the specialization. But both polynomials are inhomogeneous of degree 20, so
they are ≡.

2.5 Numerical experiments with noisy point

correspondences

In this section, we step back from the algebraic derivation above, and evaluate the
output on noisy data. Commonly, a shortcoming in applications of algebra is that
exact formulae cannot handle inexact data. In the present case, correctly matched
point pairs come to the computer vision practitioner with noise, from the optical
process in the camera itself as well as from pixelation. See Chapter 4 for a treatment
of the related issue of image distortion.

Question 2.26. While in Theorem 2.1 the matrix M(x, y) drops rank when there is
an exact solution to (2.1), how can we tell if there is an approximate solution?

Since we have a matrix formula instead of a gigantic fully expanded polynomial
formula, there is a positive answer to Question 2.26. We calculate the Singular Value
Decomposition of the matrices M(x, y) from Theorem 2.1, when a noisy six-tuple
of image point correspondences is plugged in. An approximately rank-deficient SVD
is expected when there exists an approximate solution to (2.1), as Singular Value
Decomposition is numerically stable [26, Section 5.2]. In a slogan: given matrix
formulas, we look at spectral gaps in the presence of noise.

Here is experimental evidence this works. For experiments, we assumed uniform
noise from unif [−10−r, 10−r]; this arises in image processing from pixelation [14,
Section 4.5]. For each r = 1, 1.5, 2, . . . , 15, we executed 500 of the following trials:
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Figure 2.1: Both matrices from Theorem 2.1 detect approximately consistent point pairs.

• Pseudo-randomly generate an exact six-tuple of image point correspondences

{(x(i), y(i)) ∈ Q2 ×Q2 | i = 1, . . . , 6}

with coordinates of size O(1).

• Corrupt each image coordinate in the six-tuple by adding an independent and
identically distributed sample from unif [−10−r, 10−r].

• Compute the SVD’s of both 20 × 20 matrices M(x, y), derived from the first
and second Ulrich sheaf respectively, with the above noisy image coordinates
plugged in.

These experiments were performed in Macaulay2 using double precision for all
floating-point arithmetic. Since it is a little subtle, we elaborate on our algorithm to
pseudo-randomly generate exact correspondences in the first bullet. It breaks into
three steps:

1. Generate calibrated cameras A,B ∈ Q3×4. To do this, we sample twice from
the Haar measure on SO(3,R) and sample twice from the uniform measure on
the radius 2 ball centered at the origin in R3. Then we concatenate nearby
points in SO(3,Q) and Q3 to obtain A and B. To find the nearby rotations,
we pullback under R3 −→ S3\{N} −→ SO(3,R), we take nearby points in Q3,
and then we pushforward.
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2. Generate world points X(i) ∈ Q3 (i = 1, . . . , 6). To do this, we sample six
times from the uniform measure on the radius 6 ball centered at the origin in
R3 (a choice fitting with some real-world data) and then we replace those by
nearby points in Q3.

3. Set x̃(i) ≡ AX̃(i) and ỹ(i) ≡ BX̃(i).

The most striking takeaway of our experiments is stated in the following result
concerning the bottom spectral gaps we observed. Bear in mind that since M(x, y)
is skew-symmetric, its singular values occur with multiplicity two, so σ19(M(x, y)) =
σ20(M(x, y)).

Empirical Fact 2.27. In the experiments described above, we observed for both
matrices:

σ18(M(x, y))

σ20(M(x, y))
= O(10r).

Here M(x, y) has r-noisy image coordinates, and σi denotes the ith largest singular
value.

Figure 2.1 above plots Log10

(
σ18(M(x, y))

σ20(M(x, y))

)
averaged over the 500 trials against r.

In this chapter, we resolved an open problem raised by Sameer Agarwal, vi-
sion expert at Google Research, by characterizing consistent point pairs across two
calibrated views. Our output is an explicit matrix formula, robust to noisy measure-
ments, which could be used for screening out wrongly matched point pairs inside
RANSAC loops. Our derivation combined the algebraic theory of Ulrich sheaves
with a geometric study based on secant varieties. In particular, we constructed a
new low rank equivariant Ulrich sheaf supported on a determinantal variety.
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Chapter 3

Three Cameras

This chapter is mostly based on my single-authored paper [61] about the recovery of
3 calibrated cameras from image data, to be published in the SIAM Journal on Ap-
plied Algebra and Geometry. The last section presents a general-purpose homotopy-
continuation software for implicitization in computational algebraic geometry, joint
with Justin Chen [21], currently submitted for publication and publicly released.

3.1 Introduction

As described in Chapter 1, 3D reconstruction is a fundamental task in computer
vision, i.e. the recovery of three-dimensional scene geometry from two-dimensional
images. In 1981, Fischler and Bolles proposed a methodology for 3D reconstruction
that is robust to outliers in image data [37]. This is known as Random Sampling
Consensus (RANSAC) and it is a paradigm in vision today [2]. RANSAC consists
of three steps. Sketching the approach again, to compute a piece of the 3D scene:

• Points, lines and other features that are images of the same source are detected
in the photos. These matches are the image data.

• A minimal sample of image data is randomly selected. Minimal means that
only a positive finite number of 3D geometries are exactly consistent with the
sample. Those 3D geometries are computed.

• To each computed 3D geometry, the rest of the image data is compared. If one
is approximately consistent with enough of the image data, it is kept. Else, the
second step is repeated with a new sample.
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Computing the finitely many 3D geometries is called a minimal problem. Typi-
cally, it is done by solving a corresponding zero-dimensional polynomial system, with
coefficients that are functions of the sampled image data [64]. Since this step is car-
ried out thousands of times in a full reconstruction, it is necessary to design efficient,
specialized solvers. One of the most used minimal solvers in vision is Nistér’s [82],
based on Gröbner bases, to recover the relative position of two calibrated cameras.
In Chapter 2 we considered a closely related problem about two calibrated cameras.

The concern of this chapter is the recovery of the relative position of three cal-
ibrated cameras from image data. To our knowledge, no satisfactory solution to
this basic problem exists in the literature. Passing from two views to three views
introduces a zoo of problems. Now feature lines, in addition to feature points, may
be matched across images to recover camera positions. Our main result is the de-
termination of the algebraic degree of 66 minimal problems for the recovery of three
calibrated cameras; in other words, we find the generic number of complex solutions
(see Theorem 3.6). Solution sets for particular random instances are available at:

https://math.berkeley.edu/~jkileel/CalibratedMinimalProblems.html.

As a by-product, we can derive minimal solvers for each case. Our techniques
come from numerical algebraic geometry [92], and we rely on the homotopy contin-
uation software Bertini [10]. This implies that our results are correct only with
very high probability; in ideal arithmetic, with probability 1. Mathematically, the
main object in this chapter is a particular projective algebraic variety Tcal, which is
a convenient moduli space for the relative position of three calibrated cameras. This
variety is 11-dimensional, degree 4912 inside the projective space P26 of 3 × 3 × 3
tensors (see Theorem 3.26). We call it the calibrated trifocal variety. Theorem 3.28
formulates our minimal problems as slicing Tcal by special linear subspaces of P26.

The rest of this chapter is organized as follows. In Section 3.2, we make our min-
imal problems mathematically precise and we state Theorem 3.6. In Section 3.3, we
examine image correspondences using multiview varieties and then trifocal tensors
[48, Chapter 15]. In Section 3.4, we prove that trifocal tensors and camera configura-
tions are equivalent. In Section 3.5, we introduce the calibrated trifocal variety Tcal

and prove several useful facts. Finally, in Section 3.6, we present a computational
proof of the main result Theorem 3.6. In the last Section 3.7, we switch gears and
present our Macaulay2 software package for implicitization in computational alge-
braic geometry. NumericalImplicitization is based on homotopy continuation,
and my interest in writing general-purpose numerical algebraic geometry code grew
out my approach to the minimal problems in Theorem 3.6.

https://math.berkeley.edu/~jkileel/CalibratedMinimalProblems.html
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3.2 Statement of main result

We begin by giving several definitions. Throughout this chapter, we work with the
standard camera model of the projective camera [48, Section 6.2].

Definition 3.1. A (projective) camera is a full rank 3 × 4 matrix in C3×4 defined
up to multiplication by a nonzero scalar.

Thus, as noted in Section 1.1, a camera corresponds to a linear projection P3 99K
P2. The center of a camera A is the point ker(A) ∈ P3. A camera is real if A ∈ R3×4.

Definition 3.2. A calibrated camera is a 3 × 4 matrix in C3×4 whose left 3 × 3
submatrix is in the special orthogonal group SO(3,C).

Real calibrated cameras have the interpretation of cameras with known and nor-
malized internal parameters (e.g. focal length) [48, Subsection 6.2.4]. In practical
situations, this information can be available during 3D reconstruction. Note that cal-
ibration of a camera is preserved by right multiplication by elements of the following
subgroup of GL(4,C):

G := {g ∈ C4×4 | (gij)1≤i,j≤3 ∈ SO(3,C), g41 = g42 = g43 = 0 and g44 6= 0}.

Elements in G act on A3 ⊂ P3 as composites of rotations, translations and central
dilations. In the calibrated case of 3D reconstruction, one aims to recover camera po-
sitions (and afterwards the 3D scene) up to those motions, since recovery of absolute
positions is not possible from image data alone.

Definition 3.3. A configuration of three calibrated cameras is an orbit of the action
of the group G above on the set:

{(A,B,C) |A,B,C are calibrated cameras}

via simultaneous right multiplication.

By abuse of notation, we will call (A,B,C) a calibrated camera configuration,
instead of always denoting the orbit containing (A,B,C).

As mentioned in Section 3.1, the image data used in 3D reconstruction typically
are points and lines in the photos that match. This is made precise as follows. Call
elements of P2 image points, and elements of the dual projective plane (P2)∨ image
lines. An element of (P2t(P2)∨)×3 is a point/line image correspondence. For example,
an element of P2 × P2 × (P2)∨ is called a point-point-line image correspondence,
denoted PPL.



CHAPTER 3. THREE CAMERAS 41

Definition 3.4. A calibrated camera configuration (A,B,C) is consistent with a
given point/line image correspondence if there exist a point in P3 and a line in P3

containing it such that are such that (A,B,C) respectively map these to the given
points and lines in P2.

For example, explicitly, a configuration (A,B,C) is consistent with a given point-
point-line image correspondence (x, x′, `′′) ∈ P2 × P2 × (P2)∨ if there exist (X,L) ∈
P3×Gr(P1,P3) with X ∈ L such that AX = x,BX = x′, and CL = `′′. In particular,
this implies that X 6= ker(A), ker(B) and ker(C) /∈ L. We say that a configuration
(A,B,C) is consistent with a set of point/line correspondences if it is consistent with
each correspondence.

Example 3.5. Given the following set of real, random correspondences:1

PPP :

0.6132
0.8549
0.5979

 ,
0.4599

0.5713
0.1812

 ,
0.6863

0.4508
0.1834

 PPL :

0.6251
0.9248
0.9849

 ,
0.3232

0.5453
0.6941

 ,
0.3646

0.1497
0.1364


PPL :

0.4970
0.6532
0.8429

 ,
0.5405

0.8342
0.6734

 ,
0.2692

0.8861
0.1333

 PPL :

0.2896
0.6909
0.4914

 ,
0.6898

0.9855
0.6777

 ,
0.6519

0.8469
0.6855


PPL :

0.8933
0.3375
0.1054

 ,
0.7062

0.6669
0.7141

 ,
0.3328

0.8228
0.6781

 .
In the notation of Theorem 3.6, this is a generic instance of the minimal problem

‘1 PPP + 4 PPL’. Up to the action of G, there are only a positive finite number of
three calibrated cameras that are exactly consistent with this image data, namely 160
complex configurations. For this instance, it turns out that 18 of those configurations
are real. For example, one is:

A =

[
1 0 0 0
0 1 0 0
0 0 1 0

]
, B =

[
−0.22 0.95 −0.18 1
0.96 0.24 0.08 1.44
−0.12 0.15 0.97 0.97

]
, C =

[
0.17 0.94 −0.28 1.41
−0.95 0.22 0.18 −0.13
−0.24 −0.23 −0.94 −1.16

]
.

In a RANSAC run for 3D reconstruction, the image data above is identified by feature
detection software such as SIFT [73]. Also, only the real configurations are compared
for agreement with further image data.

In Example 3.5 above, 160 is the algebraic degree of the minimal problem ‘1 PPP +
4 PPL’. This means that for correspondences in a nonempty Zariski open (hence
measure 1) subset of (P2 × P2 × P2) × (P2 × P2 × (P2)∨)×4, there are 160 consis-
tent complex configurations. Given generic real correspondences, the number of real
configurations varies, but 160 is an upper bound.

1For ease of presentation, double precision floating point numbers are truncated here.
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Theorem 3.6. The rows of the following table display the algebraic degree for 66
minimal problems across three calibrated views. Given generic point/line image cor-
respondences in the amount specified by the entries in the first five columns, then
the number of calibrated camera configurations over C that are consistent with those
correspondences equals the entry in the sixth column.

#PPP #PPL #PLP #LLL #PLL #configurations

3 1 0 0 0 272
3 0 0 1 0 216
3 0 0 0 2 448
2 2 0 0 1 424
2 1 1 0 1 528
2 1 0 1 1 424
2 1 0 0 3 736
2 0 0 2 1 304
2 0 0 1 3 648
2 0 0 0 5 1072
1 4 0 0 0 160
1 3 1 0 0 520
1 3 0 1 0 360
1 3 0 0 2 520
1 2 2 0 0 672
1 2 1 1 0 552
1 2 1 0 2 912
1 2 0 2 0 408
1 2 0 1 2 704
1 2 0 0 4 1040
1 1 1 2 0 496
1 1 1 1 2 896
1 1 1 0 4 1344
1 1 0 3 0 368
1 1 0 2 2 736
1 1 0 1 4 1184
1 1 0 0 6 1672
1 0 0 4 0 360
1 0 0 3 2 696
1 0 0 2 4 1176
1 0 0 1 6 1680
1 0 0 0 8 2272
0 5 0 0 1 160
0 4 1 0 1 616
0 4 0 1 1 456
0 4 0 0 3 616
0 3 2 0 1 1152
0 3 1 1 1 880
0 3 1 0 3 1280
0 3 0 2 1 672
0 3 0 1 3 1008
0 3 0 0 5 1408
0 2 2 1 1 1168
0 2 2 0 3 1680
0 2 1 2 1 1032
0 2 1 1 3 1520
0 2 1 0 5 2072
0 2 0 3 1 800
0 2 0 2 3 1296
0 2 0 1 5 1848
0 2 0 0 7 2464
0 1 1 3 1 1016
0 1 1 2 3 1552
0 1 1 1 5 2144
0 1 1 0 7 2800
0 1 0 4 1 912
0 1 0 3 3 1456
0 1 0 2 5 2088
0 1 0 1 7 2808
0 1 0 0 9 3592
0 0 0 5 1 920
0 0 0 4 3 1464
0 0 0 3 5 2176
0 0 0 2 7 3024
0 0 0 1 9 3936
0 0 0 0 11 4912
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Remark 3.7. A calibrated camera configuration (A,B,C) has 11 degrees of freedom
(Theorem 3.26), and the first five columns in the table above represent conditions of
codimension 3, 2, 2, 2, 1, respectively (Theorem 3.28).

Remark 3.8. The algebraic degrees in Theorem 3.6 are intrinsic to the underlying
camera geometry. However, our method of proof uses a device from multiview ge-
ometry called trifocal tensors, which breaks symmetry between (A,B,C). There are
other minimal problems for three calibrated views involving image correspondences
of type LPP, LPL, LLP. These also possess intrinsic algebraic degrees; but they
are not covered by the non-symmetric proof technique used here.

3.3 Correspondences

In this section, we examine point/line image correspondences. In the first part,
we use multiview varieties to describe correspondences. This approach furnishes
exact polynomial systems for the minimal problems in Theorem 3.6. However, each
parametrized system has a different structure (in terms of number and degrees of
equations). This would force a direct analysis for Theorem 3.6 to proceed case-
by-case, and moreover, each system so obtained is computationally unwieldy. In
Subsection 3.3, we recall the construction of the trifocal tensor [48, Chapter 15]. This
is a point TA,B,C ∈ C3×3×3 associated to cameras (A,B,C). It encodes necessary
conditions for (A,B,C) to be consistent with different types of correspondences.
Tractable relaxations to the minimal problems in Theorem 3.6 are thus obtained,
each with similar structure. We emphasize that everything in Section 3.3 applies
equally to calibrated cameras (A,B,C) as well as to uncalibrated cameras.

multiview varieties

Let A,B,C ∈ C3×4 be three projective cameras, not necessarily calibrated. Denote
by α : P3 99K P2

A, β : P3 99K P2
B, γ : P3 99K P2

C the corresponding linear projections.
We make:

Definition 3.9. Fix projective cameras A,B,C as above. Denote by F`0,1 the inci-
dence variety

{
(X,L) ∈ P3 ×Gr(P1,P3)

∣∣ X ∈ L}. Then the:

• PLL multiview variety denoted XPLL
A,B,C is the closure of the image of

F`0,1 99K P2
A × (P2

B)∨ × (P2
C)∨, (X,L) 7→

(
α(X), β(L), γ(L)

)
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• LLL multiview variety denoted XLLL
A,B,C is the closure of the image of

Gr(P1,P3) 99K (P2
A)∨ × (P2

B)∨ × (P2
C)∨, L 7→

(
α(L), β(L), γ(L)

)
• PPL multiview variety denoted XPPL

A,B,C is the closure of the image of

F`0,1 99K P2
A × P2

B × (P2
C)∨, (X,L) 7→

(
α(X), β(X), γ(L)

)
• PLP multiview variety denoted XPLP

A,B,C is the closure of the image of

F`0,1 99K P2
A × (P2

B)∨ × P2
C , (X,L) 7→

(
α(X), β(L), γ(X)

)
• PPP multiview variety denoted XPPP

A,B,C is the closure of the image of

P3 99K P2
A × P2

B × P2
C , X 7→

(
α(X), β(X), γ(X)

)
.

Next, we give the dimension and equations for these multiview varieties; the
PPP case has appeared in [5]. In the following, we notate x ∈ P2

A, x′ ∈ P2
B, x′′ ∈ P2

C

for image points and ` ∈ (P2
A)∨, `′ ∈ (P2

B)∨, `′′ ∈ (P2
C)∨ for image lines. Also, we

postpone treatment of the PLL case to Subsection 3.3. In particular, the trilinear
form TA,B,C(x, `′, `′′) will be defined there.

Theorem 3.10. Fix A,B,C. The multiview varieties from Definition 3.9 are irre-
ducible. If A,B,C have linearly independent centers in P3, then the varieties have
the following dimensions and multi-homogeneous prime ideals.

• dim(XPLL
A,B,C) = 5 and I(XPLL

A,B,C) = 〈TA,B,C(x, `′, `′′)〉 ⊂ C[xi, `
′
j, `
′′
k]

• dim(XLLL
A,B,C) = 4 and I(XLLL

A,B,C) ⊂ C[`i, `
′
j, `
′′
k] is generated by the maximal

minors of the matrix
(
AT ` BT `′ CT `′′

)
4×3

• dim(XPPL
A,B,C) = 4 and I(XPPL

A,B,C) ⊂ C[xi, x
′
j, `
′′
k] is generated by the maximal

minors of the matrix

 A x 0
B 0 x′

`′′TC 0 0


7×6

• dim(XPLP
A,B,C) = 4 and I(XPLP

A,B,C) ⊂ C[xi, `
′
j, x
′′
k] is generated by the maximal

minors of the matrix

 A x 0
C 0 x′′

`′TB 0 0


7×6
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• dim(XPPP
A,B,C) = 3 and I(XPPP

A,B,C) ⊂ C[xi, x
′
j, x
′′
k] is generated by the maximal

minors of the matrix

A x 0 0
B 0 x′ 0
C 0 0 x′′


9×7

together with det

(
A x 0
B 0 x′

)
6×6

and

det

(
A x 0
C 0 x′′

)
6×6

and det

(
B x′ 0
C 0 x′′

)
6×6

Proof. Irreducibility is clear from Definition 3.9. For the dimension and prime ideal
statements, we may assume that:

A =

1 0 0 0
0 1 0 0
0 0 1 0

, B =

1 0 0 0
0 1 0 0
0 0 0 1

, C =

1 0 0 0
0 0 1 0
0 0 0 1

 .
This is without loss of generality in light of the following group symmetries. Let
g, g′, g′′ ∈ SL(3,C) and h ∈ SL(4,C). To illustrate, consider the third case above,
and let JPPL

A,B,C ⊂ C[xi, x
′
j, `
′′
k] be the ideal generated by the maximal minors mentioned

there. It is straightforward to check that:

I(XPPL
Ah,Bh,Ch) = I(XPPL

A,B,C) and JPPL
Ah,Bh,Ch = JPPL

A,B,C .

Also, we can check that:

I(XPPL
gA, g′B, g′′C) = (g, g′,∧2g′′) · I(XPPL

A,B,C)

and JPPL
gA, g′B, g′′C = (g, g′, (g′′T )−1) · JPPL

A,B,C .

Here the left, linear action of SL(3,C) × SL(3,C) × SL(3,C) on C[xi, x
′
j, `
′′
k] is via

(g, g′, g′′) · f(x, x′, `′′) = f(g−1x, g′−1x′, g′′−1`′′) for f ∈ C[xi, x
′
j, `
′′
k]. Also, ∧2g′′ =

(g′′T )−1 ∈ C3×3. So, for the PPL case, I and J transform in the same way when
(A,B,C) is replaced by (gAh, g′Bh, g′′Ch); in the other cases, this holds similarly.
Assuming that A,B,C have linearly independent centers, we may choose g, g′, g′′, h
to harmlessly move the cameras into the position above. Now using the computer
algebra system Macaulay2 [44], we verify the dimension and prime ideal statements
for this special position.

Remark 3.11. In Theorem 3.10, if A,B,C do not have linearly independent centers,
then the minors described still vanish on the multiview varieties, by continuity in
(A,B,C).
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Now, certainly a point/line correspondence that is consistent with (A,B,C) lies
in the appropriate multiview variety; consistency means that the correspondence is
a point in the set-theoretic image of the appropriate rational map in Definition 3.9.
Since the multiview varieties are the Zariski closures of those set-theoretic images,
care is needed to make a converse. We require:

Definition 3.12. Let A,B,C be three projective cameras with distinct centers. The
epipole denoted e1←2 is the point α(ker(B)) ∈ P2

A. That is, e1←2 is the image under
A of the center of B. Epipoles e1←3, e2←1, e2←3, e3←1, e3←2 are defined similarly.

Lemma 3.13. Let A,B,C be three projective cameras with distinct centers. Let
π ∈ (P2 t (P2)∨)×3. Assume this point/line correspondence avoids epipoles. For
example, if π = (x, x′, `′′) ∈ P2

A × P2
B × (P2

C)∨, avoidance of epipoles means that
x 6= e1←2, e1←3; x′ 6= e2←1, e2←3; and `′′ 63 e3←1, e3←2. Then π is consistent with
(A,B,C) if π is in the suitable multiview variety.

Proof. Assuming that π is in the multiview variety, then π satisfies the equations from
Theorem 3.10. This is equivalent to containment conditions on the back-projections
of π, without any hypothesis on the centers of A,B,C.

We spell this out for the PPL case, where π = (x, x′, `′′) ∈ P2
A×P2

B×(P2
C)∨. Here

the back-projections are the lines α−1(x), β−1(x′) ⊆ P3 and the plane γ−1(`′′) ⊆ P3.
The minors from Theorem 3.10 vanish if and only if there exists (X,L) ∈ F`0,1 such
that X ∈ α−1(x), X ∈ β−1(x′) and L ⊆ γ−1(`′′). To see this, note that the minors
vanish only if: A x 0

B 0 x′

`′′TC 0 0

 X
−λ
−λ′

 = 0 for some nonzero

 X
−λ
−λ′

 ∈ C6,

where X ∈ C4, λ ∈ C and λ′ ∈ C. Since x, x′ ∈ C3 are nonzero, it follows that X
is nonzero, and so defines a point X ∈ P3. From AX = λx, the line α−1(x) ⊆ P3

contains X ∈ P3. Similarly AX = λ′x implies X ∈ β−1(x′). Thirdly, `′′TCX = 0
says that X lies on the plane γ−1(`′′) ⊆ P3. Now taking any line L ⊆ P3 with
X ∈ L ⊆ γ−1(`′′) produces a satisfactory point (X,L) ∈ F`0,1, and reversing the
argument gives the converse.

Returning to the lemma, since π avoids epipoles, the back-projections of π avoid
the centers of A,B,C. In the PPL case, this implies that (X,L) avoids the centers
of A,B,C. Thus (X,L) witnesses consistency, because α(X) = x, β(X) = x′, γ(L) =
`′′. The other cases are finished similarly.
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The results of this subsection have provided tight equational formulations for a
camera configuration and a point/line image correspondence to be consistent. This
leads to a parametrized system of polynomial equations for each minimal problem
in Theorem 3.6. For instance, for the minimal problem ‘1 PPP + 4 PPL’, the
unknowns are the entries of A,B,C, up to the action of the group G. Due to

Theorem 3.10, there are

(
9

7

)
+3+4 ·

(
7

6

)
= 67 quartic equations. Their coefficients

are parametrized cubically and quadratically by the image data in (P2)11×
(
(P2)∨

)4
.

Since this parameter space is irreducible, to find the generic number of solutions
to the system, we may specialize to one random instance, such as in Example 3.5.
Nonetheless, solving a single instance of this system – ‘as is’ – is computationally
intractable, let alone solving systems for the other minimal problems present in
Theorem 3.6.

The way out is to nontrivially replace the above systems with other systems,
which enlarge the solution sets but amount to accessible computations. This key
maneuver is based on trifocal tensors from multiview geometry. Before doing so, we
justify calling the problems in Theorem 3.6 minimal.

Proposition 3.14. For each problem in Theorem 3.6, given generic correspondence
data, there is a finite number2 of solutions, i.e. calibrated camera configurations
(A,B,C). Moreover, solutions have linearly independent centers.

Proof. For calibrated A,B,C, we may act by G so A =
[
I3×3 0

]
, B =

[
R2 t2

]
and C =

[
R3 t3

]
where R2, R3 ∈ SO(3,C) and t2, t3 ∈ C3. Furthermore, t2 and t3

may be jointly scaled. Thus, if A,B,C have non-identical centers, we get a point in
SO(3,C)×2 × P5. This point is unique and configurations with non-identical centers
are in bijection with SO(3,C)×2 × P5.

Now consider one of the minimal problems from Theorem 3.6, ‘w1PPP+w2PPL+
w3PLP+w4LLL+w5PLL’. Notice that the problems in Theorem 3.6, are those for
which the weights (w1, w2, w3, w4, w5) ∈ Z≥0 satisfy 3w1 +2w2 +2w3 +2w4 +w5 = 11
and w2 ≥ w3. Image correspondence data is a point in the product Dw := (P2×P2×
P2)×w1 × . . .× (P2 × (P2)∨ × (P2)∨)×w5 .

Consider the incidence diagram:

SO(3,C)×2 × P5 ←− Γ −→ Dw

where Γ := {
(
(A,B,C), d

)
∈
(
SO(3,C)×2 × P5

)
×Dw | (A,B,C) and d are consistent}

and where the arrows are projections. The left map is surjective and a general fiber
is a product of multiview varieties described by Theorem 3.10. In particular, the

2 This number is shown to be positive in the proof of Theorem 3.6.
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fiber has dimension 3w1 + 4w2 + 4w3 + 4w4 + 5w5. Therefore, by [31, Corollary 13.5],
Γ has dimension 11 + 3w1 + 4w2 + 4w3 + 4w4 + 5w5, as dim(SO(3,C)×2 × P5) = 11.
Now, the second arrow is a regular map between varieties of the same dimension,
because 11 + 3w1 + 4w2 + 4w3 + 4w4 + 5w5 = 6(w1 + w2 + w3 + w4 + w5). So, if
it is dominant, then again by [31, Corollary 13.5], a general fiber has dimension 0;
otherwise, a general fiber is empty. However, note that points in a general fiber of
the second map correspond to solutions of a generic instance of the problem indexed
by w from Theorem 3.6. This shows that those problems generically have finitely
many solutions.

We can see that generically there are no solutions with non-identical but collinear
centers, as follows. Let C ⊂ SO(3,C)×2 × P5 be the closed variety of configurations
(A,B,C) with non-identical but collinear centers. Consider:

C ←− Γ′ −→ Dw
where the definition of Γ′ is the definition of Γ with SO(3,C)×2 × P5 replaced by
C, and where the arrows are projections. Here dim(C) = 10. The left arrow is
surjective, and a general fiber is a product of multiview varieties, with the same
dimension as in the above case. This dimension statement is seen by calculating the
multiview varieties as in the proof of Theorem 3.10, when (A,B,C) have distinct,
collinear centers. It follows that dim(Γ′) = 10 + 3w1 + 4w2 + 4w3 + 4w4 + 5w5 <
11 + 3w1 + 4w2 + 4w3 + 4w4 + 5w5 = 6(w1 +w2 +w3 +w4 +w5) = dim(Dw) so that
the right arrow is not dominant.

Finally, to see that generically there is no solution (A,B,C) where the centers
of A,B,C are identical in P3, we may mimic the above argument with another
dimension count. Calibrated configurations with identical centers are in bijection
with SO(3,C)×2, because each G-orbit has a unique representative of the form A =[
I3×3 0

]
, B =

[
R2 0

]
, C =

[
R3 0

]
where R2, R3 ∈ SO(3,C). So, analogously to

before, we consider the diagram:

SO(3,C)×2 ←− Γ′′ −→ Dw
where the definition of Γ′′ is the definition of Γ with SO(3,C)×2 × P5 replaced
by SO(3,C)×2, and where the arrows are projections. Again, the left arrow is
surjective, and a general fiber is a product of multiview varieties. Here, when
A,B,C have identical centers, a calculation as in the proof of Theorem 3.10 ver-
ifies that the dimensions of the multiview varieties drop, as follows: dim(XPLL

A,B,C) =

3, dim(XLLL
A,B,C) = 2, dim(XPPL

A,B,C) = 3, dim(XPLP
A,B,C) = 3, dim(XPPP

A,B,C) = 2. So the
dimension of a general fiber of the left arrow is 2w1 + 3w2 + 3w3 + 2w4 + 5w3. So
dim(Γ′′) = 6 + 2w1 + 3w2 + 3w3 + 2w4 + 5w3 < 11 + 3w1 + 4w2 + 4w3 + 4w4 + 5w5 =
6(w1 +w2 +w3 +w4 +w5) = dim(Dw), whence the right arrow is not dominant. This
completes the proof.
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Trifocal tensors

In this subsection, we re-derive the trifocal tensor TA,B,C ∈ C3×3×3 associated to
cameras (A,B,C), following the projective geometry approach of Hartley [46]. This
explains the notation in the PLL bullet of Theorem 3.10, and justifies the assertion
made there. The trifocal tensor and its calibrated version are the analogs of the
fundamental matrix and essential matrix from two-view geometry (see Chapter 2).
We will review how TA,B,C encodes point/line correspondences besides PLL as well.

As in Subsection 3.3, let A,B,C ∈ C3×4 be three projective cameras, not neces-
sarily calibrated, and denote by α : P3 99K P2

A, β : P3 99K P2
B, γ : P3 99K P2

C the cor-
responding linear projections. Let the point and lines x ∈ P2

A, `
′ ∈ (P2

B)∨, `′′ ∈ (P2
C)∨

be given as column vectors. The pre-image α−1(x) is a line in P3, while β−1(`′) and
γ−1(`′′) are planes in P3. We can characterize when these three have non-empty
intersection as follows.

First, note that the plane β−1(`′) is given by the column vector BT `′ since X ∈ P3

satisfies X ∈ β−1(`′) if and only if 0 = `′TBX = (BT `′)TX. Similarly, the plane
γ−1(`′′) is given by CT `′′. For the line α−1(x), note:

α−1(x) =
⋂

`∈(P2
A)∨

`T x=0

α−1(`) ⊂ α−1〈x,
[
1 1 0

]T 〉 ∩ α−1〈x,
[
1 0 1

]T 〉.
Here 〈 〉 denotes span, and auxiliary points

[
1 1 0

]T
,
[
1 0 1

]T ∈ P2
A are simply

convenient choices for this calculation. Unless those two points and x are collinear,
the inclusion above is an equality, and the intersectands in the RHS are the planes

given by the column vectors AT [x]×
[
1 1 0

]T
and AT [x]×

[
1 0 1

]T
. The nota-

tion means [x]× =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

, and [x]×y gives 〈x, y〉 for x 6= y ∈ P2
A. So,

α−1(x) ∩ β−1(`′) ∩ γ−1(`′′) 6= ∅ only if:

det

AT [x]×

1
1
0

 ∣∣∣ AT [x]×

1
0
1

 ∣∣∣ BT `′
∣∣∣ BT `′′


4×4

= 0. (3.1)

This determinant is divisible by (x1 − x2 − x3), since that vanishes if and only if

x,
[
1 1 0

]T
,
[
1 0 1

]T
are collinear only if the first two columns above are linearly

dependent. Hence, factoring out, we obtain a constraint that is trilinear in x, `′, `′′,
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i.e., we get for some tensor T ∈ C3×3×3:∑
1≤i,j,k≤3

Tijk xi `
′
j `
′′
k = 0.

The tensor entry Tijk is computed by substituting into (3.1) the basis vectors x =
ei, `

′ = ej, `
′′ = ek. Breaking into cases according to i, this yields:

• T1ij = 1
(1−0−0)

det
(
a3

∣∣− a2

∣∣bj ∣∣ ck) = det
(
a2

∣∣ a3

∣∣bj ∣∣ ck)
• T2ij = 1

(0−1−0)
det
(
−a3

∣∣a1 − a3

∣∣bj ∣∣ ck) = −det
(
a1

∣∣ a3

∣∣bj ∣∣ ck)
• T3ij = 1

(0−0−1)
det
(
−a1 + a2

∣∣a2

∣∣bj ∣∣ ck) = det
(
a1

∣∣ a2

∣∣bj ∣∣ ck)
where ai denotes the transpose of the first row in A, and so on.

At this point, we have derived formula (17.12) from [48, p. 415]:

Definition 3.15. Let A,B,C be cameras. Their trifocal tensor TA,B,C ∈ C3×3×3 is
computed as follows. Form the 4× 9 matrix

(
AT
∣∣BT

∣∣CT
)
. Then for 1 ≤ i, j, k ≤ 3,

the entry (TA,B,C)ijk is (−1)i+1 times the determinant of the 4× 4 submatrix gotten
by omitting the ith column from AT , while keeping the jth and kth columns from BT

and CT , respectively. If A,B,C are calibrated, then TA,B,C is said to be a calibrated
trifocal tensor (first introduced by Weng et al. in [103] before [46]).

Remark 3.16. Since A,B,C ∈ C3×4 are each defined only up to multiplication by
a nonzero scalar, the same is true of TA,B,C ∈ C3×3×3.

Remark 3.17. By construction, TA,B,C(x, `′, `′′) :=
∑

1≤i,j,k≤3

Tijk xi `
′
j `
′′
k = 0 is equiv-

alent to α−1(x) ∩ β−1(`′) ∩ γ−1(`′′) 6= ∅. In particular, TA,B,C = 0 if and only if the
centers of A, B, C are all the same. Moreover, the PLL cases in Theorem 3.10 and
Lemma 3.13 postponed above are now immediate.

So far, we have constructed trifocal tensors so that they encode point-line-line
image correspondences. Conveniently, the same tensors encode other point/line cor-
respondences [46], up to extraneous components.

Proposition 3.18. Let A,B,C be projective cameras. Let x ∈ P2
A, x

′ ∈ P2
B, x

′′ ∈ P2
C

and ` ∈ (P2
A)∨, `′ ∈ (P2

B)∨, `′′ ∈ (P2
C)∨. Putting T = TA,B,C, then (A,B,C) is

consistent with:
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• (x, `′, `′′) only if T (x, `′, `′′) = 0 [PLL]

• (`, `′, `′′) only if [`]×T (−, `′, `′′) = 0 [LLL]

• (x, `′, x′′) only if [x′′]×T (x, `′,−) = 0 [PLP]

• (x, x′, `′′) only if [x′]×T (x,−, `′′) = 0 [PPL]

• (x, x′, x′′) only if [x′′]×T (x,−,−)[x′]× = 0. [PPP]

In the middle bullets, each contraction of T with two vectors gives a column vector

in C3. In the last bullet, T (x,−,−) =
3∑
i=1

xi(Tijk)1≤j,k≤3 ∈ C3×3.

Proof. This proposition matches Table 15.1 on [48, p. 372]. To be self-contained, we
recall the proof. The first bullet is by construction of T .

For the second bullet, assume that (`, `′, `′′) is consistent with (A,B,C), i.e. there
exists L ∈ Gr(P1,P3) such that α(L) = `, β(L) = `′, γ(L) = `′′. Now let y ∈ ` be
a point. So α−1(x) is a line in the plane α−1(`) and that plane contains the line L.
This implies α−1(x) ∩ L 6= ∅ ⇒ α−1(x) ∩ β−1(`′) ∩ γ−1(`′′) 6= ∅ ⇔ T (y, `′, `′′) = 0. It
follows that for y ∈ P2

A, we have yT ` = 0 ⇒ yTT (−, `′, `′′) = 0. This means that `
and T (−, `′, `′′) are linearly independent, i.e. [`]×T (−, `′, `′′) = 0.

The third, fourth and fifth bullets are similar. They come from reasoning that
the consistency implies, respectively:

• x′′ ∈ k′′ ⇒ T (x, `′, k′′) = 0

• x′ ∈ k′ ⇒ T (x, k′, `′′) = 0

•
(
x′ ∈ k′ and x′′ ∈ k′′

)
⇒ T (x, k′, k′′) = 0,

where k′ ∈ (P2
B)∨ and k′′ ∈ (P2

C)∨.

Remark 3.19. The constraints in Proposition 3.18 are linear in T . We will exploit
this in Section 3.6. Also, in fact, image correspondences of types LPL, LLP and
LPP do not give linear constraints on TA,B,C . This is the reason that these types
are not considered in Theorem 3.6. To get linear constraints nonetheless, one could
permute A,B,C before forming the trifocal tensor.
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In this subsection, we have presented a streamlined account of trifocal tensors,
and the point/line image correspondences that they encode. Now, we sketch the rela-
tionship between the tight conditions in Theorem 3.10 and the necessary conditions
in Proposition 3.18 for consistency.

Lemma 3.20. Fix projective cameras A,B,C with linearly independent centers.
Then the trilinearities in Proposition 3.18 cut out subschemes of three-factor prod-
ucts of P2 and (P2)∨. In all cases of Proposition 3.18, this subscheme is reduced and
contains the corresponding multiview variety as a top-dimensional component.

Proof. Without loss of generality, A,B,C are in the special position from the proof
of Theorem 3.10. Then using Macaulay2, we form the ideal generated by the trilin-
earities of Proposition 3.18 and saturate with respect to the irrelevant ideal. This
leaves a radical ideal; we compute its primary decomposition.

For example, in the case of PPP, the trilinearities from Proposition 3.18 generate
a radical ideal in C[xi, x

′
j, x
′′
k] that is the intersection of:

• the 3 irrelevant ideals for each factor of P2

• 2 linear ideals of codimension 4

• the multiview ideal I(XPPP
A,B,C).

This discrepancy between the trifocal and multiview conditions for PPP correspon-
dences was studied in [100]. To demonstrate our main result, in Section 3.6 we shall
relax the tight multiview equations in Theorem 3.10 to the merely necessary trilin-
earities in Proposition 3.18. The ‘top-dimensional’ clause in Lemma 3.20, as well as
Theorem 3.22 in Section 3.4 below, indicate that this gives ‘good’ approximations to
the minimal problems in Theorem 3.6.

3.4 Configurations

In this section, it is proven that trifocal tensors, in both the uncalibrated and cali-
brated case, are in bijection with camera triples up to the appropriate group action,
i.e. with camera configurations. Already, it is very well-known throughout the vi-
sion community that “trifocal tensors encode relative camera positions” (e.g. see
the appendix of [46] or [54] for a proof for general uncalibrated camera triples). We
contribute precise hypotheses under which the correspondence is valid, namely that
the three camera centers are linearly independent. We also verify that the corre-
spondence is one-to-one, instead of finite-to-one, for calibrated trifocal tensors and
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the subgroup of transformations G in Theorem 3.22 below. To our knowledge, this
fact is new; subtly, the analog for two calibrated cameras is false [48, Result 9.19].
In terms of Theorem 3.6, Theorem 3.22 enables us to compute consistent calibrated
trifocal tensors in exchange for consistent calibrated camera configurations.

Proposition 3.21. Let A,B,C be three projective cameras, with linearly indepen-
dent centers in P3 Let Ã, B̃, C̃ be another three projective cameras. Then TA,B,C =

TÃ, B̃, C̃ ∈ P(C3×3×3) if and only if there exists h ∈ SL(4,C) such that Ah = Ã, Bh =

B̃, Ch = C̃ ∈ P(C3×4).

Proof. As in the proof of Theorem 3.10, for g, g′, g′′ ∈ SL(3,C), h ∈ SL(4,C):

TgA, g′B, g′′C = (g,∧2g′,∧2g′′) · TA,B,C and TAh,Bh,Ch = TA,B,C . (3.2)

The second equality gives the ‘if’ direction. Conversely, for ‘only if’, for any g, g′, g′′ ∈
SL(3,C), h1, h2 ∈ SL(4,C), we are free to replace (A,B,C) by (gAh1, g

′Bh1, g
′′Ch1)

and to replace (Ã, B̃, C̃) by (gÃh2, g
′B̃h2, g

′′C̃h2), and then to exhibit an h as in the
proposition. Hence we may assume that:

A =

1 0 0 0
0 1 0 0
0 0 1 0

, B =

1 0 0 0
0 1 0 0
0 0 0 1

, C =

1 0 0 0
0 0 1 0
0 0 0 1



Ã =

1 0 0 0
0 1 0 0
0 0 1 0

, B̃ =

∗ ∗ ∗ ∗∗ ∗ ∗ ∗
0 0 0 1

, C̃ =

∗ ∗ ∗ ∗∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


where each ‘∗’ denotes an indeterminate. Now consider the nine equations:

(TA,B,C)i 3 k = (TÃ, B̃, C̃)i 3 k

where 1 ≤ i, k ≤ 3. Under the above assumptions, these are linear and in the nine
unknowns c̃lm for 1 ≤ l,m ≤ 3. Here we have fixed the nonzero scale on C̃ so that
these are indeed equalities, on the nose. It follows that:

C̃ =

1 0 0 ∗
0 0 1 ∗
0 0 0 ∗

 .
At this point, we have reduced to solving 18 equations in 11 unknowns:

(TA,B,C)i j k = (TÃ, B̃, C̃)i j k
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where 1 ≤ i, k ≤ 3 and 1 ≤ j ≤ 2. These equations are quadratic monomials and
binomials. The system is simple to solve by hand or with Macaulay2:

Ã =

1 0 0 0
0 1 0 0
0 0 1 0

, B̃ =

λ 0 0 0
0 λ 0 0
0 0 0 1

, C̃ =

1 0 0 0
0 0 1 0
0 0 0 λ−1


for λ ∈ C∗. Taking h = λ−3/4 diag(λ, λ, λ, 1) ∈ SL(4,C) givesAh = Ã, Bh = B̃, Ch =

C̃ ∈ P(C3×4), as desired. This completes the proof.

With a bit of work, we can promote Proposition 3.21 to the calibrated case. A
little explanation may be helpful here. Only a subgroup of projective transformations
acts on triples of calibrated cameras, namely G. The content of Theorem 3.22 is that
h can be taken to lie in G instead of just h ∈ SL(4,C). See [59] for related issues
regarding critical configurations.

Theorem 3.22. Let A,B,C be three calibrated cameras, with linearly independent
centers in P3. Let Ã, B̃, C̃ be another three calibrated cameras. Then TA,B,C =
TÃ, B̃, C̃ ∈ P(C3×3×3) if and only if there exists h ∈ G (where G is defined on page 2)

such that Ah = Ã,Bh = B̃, Ch = C̃ ∈ P(C3×4).

Proof. The ‘if’ direction is from Proposition 3.21. For ‘only if’, here for any g, g′, g′′ ∈
SO(3,C), h1, h2 ∈ G, we are free to replace (A,B,C) by (gAh1, g

′Bh1, g
′′Ch1) and to

replace (Ã, B̃, C̃) by (gÃh2, g
′B̃h2, g

′′C̃h2), and then to exhibit an h ∈ G as above.
In this way, we may assume that:

A =
[
I3×3 0

]
, B =

[
I3×3 s1

]
, C =

[
I3×3 s2

]
Ã =

[
I3×3 0

]
, B̃ =

[
R1 t1

]
, C̃ =

[
R2 t2

]
where R1, R2 ∈ SO(3,C) and s1, s2, t1, t2 ∈ C3. Now from Proposition 3.21, there

exists h′ ∈ SL(4,C) such that Ah′ = Ã, Bh′ = B̃, Ch′ = C̃ ∈ P(C3×3). From the

first equality, it follows that h′ =

[
I3×3 0

uT λ

]
∈ P(C4×4) for some u ∈ C3, λ ∈ C∗. It

suffices to show that u = 0, so h′ ∈ G. By way of contradiction, let us assume that
u 6= 0. Substituting into Bh′ = B̃ gives:

[
I3×3 s1

] [I3×3 0

uT λ

]
=
[
I3×3 + s1u

T λs1

]
=
[
R1 t1

]
∈ P(C3×4).
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In particular, there is µ1 ∈ C∗ so that µ1(I3×3+s1u
T ) = R1. In particular, R1−µ1I3×3

is rank at most 1. Equivalently, µ1 is an eigenvalue of the rotation R1 ∈ SO(3,C) of
geometric multiplicity at least 2. The only possibilities are µ1 = 1 or µ1 = −1. If
µ1 = 1, then R1 = I and s1u

T = 0. From u 6= 0, we get that s1 = 0; but then A = B,
contradicting linear independence of the centers of A,B,C. So in fact µ1 = −1.
Now R1 is a 180 degree rotation. From R1 + I3×3 = s1u

T ∈ C3×3, it follows that the

axis of rotation is the line through u, and s1 =
2u

uTu
. The exact same analysis holds

starting from Ch′ = C̃. So in particular, s2 =
2u

uTu
. But now B = C, contradicting

linear independence of the centers of A,B,C. We conclude that u = 0.

3.5 Varieties

So far in Subsection 3.3 and Section 3.4, we have worked with individual trifocal
tensors, uncalibrated or calibrated. This is possible once a camera configuration
(A,B,C) is given. To determine an unknown camera configuration from image data,
we need to work with the set of all trifocal tensors.

Definition 3.23. The trifocal variety, denoted T ⊂ P(C3×3×3), is defined to be the
Zariski closure of the image of the following rational map:

P(C3×4)× P(C3×4)× P(C3×4) 99K P(C3×3×3), (A,B,C) 7→ TA,B,C

where (TA,B,C)ijk := (−1)i+1det

∼ ai
bj
ck


4×4

for 1 ≤ i, j, k ≤ 3.

Here ∼ ai is gotten from A by omitting the ith row, and bj, ck are the jth, kth rows
of B,C respectively. So, T is the closure of the set of all trifocal tensors.

Definition 3.24. The calibrated trifocal variety, denoted Tcal ⊂ P(C3×3×3), is de-
fined to be the Zariski closure of the image of the following rational map:

(SO(3,C)× C3) × (SO(3,C)× C3) × (SO(3,C)× C3) 99K P(C3×3×3),(
(R1, t1), (R2, t2), (R3, t3)

)
7→ T[R1|t1], [R2|t2], [R3|t3]

where the formula for T is as in Definitions 3.15 and 3.23. So, Tcal is the closure of
the set of all calibrated trifocal tensors.

In the remainder of this chapter, the calibrated trifocal variety Tcal is the main
actor. It is the higher version of the essential variety E starring in Chapter 2 above.
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The calibrated trifocal variety has recently been studied independently by Martyu-
shev [75] and Matthews [76]. Both authors obtain implicit quartic equations for Tcal.
However, a full set of ideal generators for I(Tcal) ⊂ C[Tijk] is currently not known.
We summarize the state of knowledge on implicit equations for Tcal:

Proposition 3.25. The prime ideal of the calibrated trifocal variety I(Tcal) ⊂ C[Tijk]
contains the ideal of the trifocal variety I(T ), and I(T ) is minimally generated by
10 cubics, 81 quintics and 1980 sextics. Additionally, I(Tcal) contains 15 linearly
independent quartics that do not lie in I(T ).

The ideal containment follows from Tcal ⊂ T , and the statement about minimal
generators of I(T ) was proven by Aholt and Oeding [4]. For the additional quartics,
see [75, Theorems 8, 11] and [76, Corollary 51].

In the rest of this chapter, using numerical algebraic geometry, we always interact
with the calibrated trifocal variety Tcal directly via (a restriction of) its defining
parametrization. Therefore, we do not need the ideal of implicit equations I(Tcal),
nor do we use the known equations from Proposition 3.25.

At this point, we discuss properties of the rational map in Definition 3.24. First,
since the source (SO(3,C)×C3)×3 is irreducible, the closure of the image Tcal is irre-
ducible. Second, the base locus of the map consists of triples of calibrated cameras(
[R1|t1], [R2|t2], [R3|t3]

)
all with the same center in P3, by the remarks following Def-

inition 3.15. Third, the two equations in (3.2), the second line of the proof of Propo-
sition 3.21, mean that the rational map in Definition 3.24 satisfies group symmetries.
Namely, the parametrization of Tcal is equivariant with respect to SO(3,C)×3, and
each of its fibers carry a G action. In vision, these two group actions are interpreted
as changing image coordinates and changing world coordinates. Here, by the equiv-
ariance, it follows that Tcal is an SO(3,C)×3-variety. Also, we can use the G action
on fibers to pick out one point per fiber, and thus restrict the map in Definition 3.24
so that the restriction is generically injective and dominant onto Tcal. Explicitly, we

restrict to the domain where [R1 | t1] =
[
I3×3 0

]
, t2 =

[
∗ ∗ 1

]T
. This restriction

(SO(3,C)×C2) × (SO(3,C)×C3) 99K Tcal is generically injective by Theorem 3.22.
Generic injectivity makes the restricted map particularly amenable to numerical al-
gebraic geometry, where computations regarding a parametrized variety are pulled
back to the source of the parametrization. We now obtain the major theorem of this
section using that technique:

Theorem 3.26. The calibrated trifocal variety Tcal ⊂ P(C3×3×3) is irreducible, di-
mension 11 and degree 4912. It equals the SO(3,C)×3-orbit closure generated by the
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following projective plane, parametrized by
[
λ1 λ2 λ3

]T ∈ P2:

T1∗∗ =

 0 λ1 λ2
0 0 0
λ1 0 0

, T2∗∗ =

0 0 0
0 λ1 λ2
0 λ3 0

, T3∗∗ =

0 0 0
0 0 0
0 λ1 λ2 + λ3

.
Computational Proof. Dimension 11 follows from the generically injective parametriza-
tion given above. The SO(3,C)×3 statement follows from (3.2). In more detail, given
a calibrated camera configuration (A,B,C) with linearly independent centers, we
may act by G so that the centers of A,B,C are:[

0 0 0 1
]T
,
[
0 0 1 1

]T
,
[
0 ∗ ∗ 1

]T
,

respectively. Then we may act by SO(3,C)×3 so that the left submatrices of A,B,C
equal I3×3. The calibrated trifocal tensor TA,B,C now lands in the stated P2. Hence,
Tcal is that orbit closure due to transformation laws (3.2).

To compute the degree of Tcal, we use the open-source homotopy continuation
software Bertini. We fix a random linear subspace L ⊂ P(C3×3×3) of complementary
dimension to Tcal, i.e. dim(L) = 15. This is expressed in floating-point as the
vanishing of 11 random linear forms `m(Tijk) = 0 (3.3), where m = 1, . . . , 11. Our
goal is to compute #(Tcal ∩L). As homotopy continuation calculations are sensitive
to the formulation used, we carefully explain our own formulation to calculate Tcal∩L.
Our formulation starts with the parametrization of Tcal above, and with its two copies
of SO(3,C).

Recall that unit norm quaternions double-cover SO(3,R). Complexifying:

R2 =

a2 + b2 − c2 − d2 2(bc− ad) 2(bd+ ac)
2(bc+ ad) a2 + c2 − b2 − d2 2(cd− ab)
2(bd− ac) 2(cd+ ab) a2 + d2 − b2 − c2


where a, b, c, d ∈ C and a2 + b2 + c2 +d2 = 1 (3.4). Similarly for R3 with e, f, g, h ∈ C
subject to e2 + f 2 + g2 + h2 = 1 (3.5). For our purposes, it is computationally
advantageous to replace (3.4) by a random patch α1a + α2b + α3c + α4d = 1 (3.6),
where αi ∈ C are random floating-point numbers fixed once and for all. Similarly,
we replace (3.5) by a random patch β1e + β2f + β3g + β4h = 1 (3.7). The patches
(3.6) and (3.7) leave us with injective parameterizations of two subvarieties of C3×3,
that we denote by SO(3,C)α, SO(3,C)β. These two varieties have the same closed
affine cone as the closed affine cone of SO(3,C). This affine cone is:

̂SO(3,C) := {R ∈ C3×3 : ∃λ ∈ C s.t. RRT = RTR = λI3×3}

and it is parametrized by a, b, c, d as above, but with no restriction on a, b, c, d.

In the definition of the cone ̂SO(3,C), note λ = 0 is possible; it corresponds to
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a2 + b2 + c2 + d2 = 0, or to e2 + f 2 + g2 +h2 = 0. By the first remark after Definition
3.15, we are free to scale cameras B and C so that their left 3×3 submatrices satisfy
R2 ∈ SO(3,C)α and R3 ∈ SO(3,C)β, and for our formulation here we do so. Finally,

for C5 in the source of the parametrization of Tcal, write t2 =
[
t2,1 t2,2 1

]T
and

t3 =
[
t3,1 t3,2 t3,3

]T
.

At this point, we have replaced the dominant, generically injective map

SO(3,C)×2 × C5 99K Tcal

by the dominant, generically injective parametrization SO(3,C)α × SO(3,C)β ×
C5 99K Tcal. Also, we have injective, dominant maps V (α1a+α2b+α3c+α4d−1)→
SO(3,C)α and V (β1e + β2f + β3g + β4h − 1) → SO(3,C)β. Composing gives the
generically 1-to-1, dominant V (α1a + α2b + α3c + α4d − 1) × V (β1e + β2f + β3g +
β4h − 1) × C5 99K Tcal. With exactly this parametrization of Tcal, it will be most
convenient to perform numerical algebraic geometry calculations. Hence, here to
compute deg(Tcal) = #(Tcal ∩ L), we consider the square polynomial system:

• in 13 variables : a, b, c, d, e, f, g, h, t2,1, t2,2, t3,1, t3,2, t3,3 ∈ C;

• with 13 equations : the 11 cubics (3.3) and 2 linear equations (3.6), (3.7).

The solution set equals the preimage of Tcal ∩ L. This system is expected to have
deg(Tcal) many solutions. We can solve zero-dimensional square systems of this size
(in floating-point) using the UseRegeneration:1 setting in Bertini. That employs
the regeneration solving technique from [53]. For the present system, overall, Bertini
tracks 74,667 paths in 1.5 hours on a standard laptop computer to find 4912 solutions.
Numerical path-tracking in Bertini is based on a predictor-corrector approach. Pre-
diction by default is done by the Runge-Kutta 4th order method; correction is by
Newton steps. For more information, see [11, Section 2.2]. Here, this provides strong
numerical evidence for the conclusion that deg(Tcal) = 4912. Up to the numerical
accuracy of Bertini and the reliability of our random number generator used to
choose L, this computation is correct with probability 1. Practically speaking, 4912
is correct only with very high probability.

As a check for 4912, we apply the trace test from [50], [71] and [93]. A random
linear form `′ on P(C3×3×3) is fixed. For s ∈ C, we set Ls := V (`1 +s`′, . . . , `11 +s`′),
so L0 = L. Varying s ∈ C, the intersection Tcal ∩ Ls consists of deg(Tcal) many
complex paths. Let Ts ⊂ Tcal ∩ Ls be a subset of paths. Then the trace test implies
(for generic `′, `i) that Ts = Tcal ∩ Ls if and only if the centroid of Ts computed in a
consistent affine chart C26, i.e.
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cen(Ts) :=
1

#Ts

∑
ps∈Ts

ps,

is an affine linear function of s. Here, we set T0 to be the 4912 intersection points
found above. Then we calculate T1 with the UserHomotopy:1 setting in Bertini,
where the variables are a, . . . t3,3, and the start points are the preimages of T0. After
this homotopy in parameter space, T1 is obtained by evaluating the endpoints of the
track via TrackType:-4. Similarly, T−1 is computed. Then we calculate that the
following quantity in C26:(

cen(T1)− cen(T0)
)
−
(
cen(T0)− cen(T−1)

)
is indeed numerically 0. This trace test is a further verification of 4912.

Remark 3.27. In the proof of Theorem 3.26, when we select one point per fiber per
member of Tcal∩L, we obtain a pseudo-witness set W for Tcal. This is the fundamental
data structure in numerical algebraic geometry for computing with parameterized
varieties (see [52]). Precisely, here it is the quadruple:

• the parameter space P ⊂ C13, where C13 has coordinates a, . . . , t3,3 and P =
V (α1a+ α2b+ α3c+ α4d− 1, β1e+ β2f + β3g + β4h− 1)

• the dominant map Φ : P 99K Tcal in the proof of Theorem 3.26, e.g. Φ1,1,1 =
−2bct2,1 − 2adt2,1 + a2t2,2 + b2t2,2 − c2t2,2 − d2t2,2

• the generic complimentary linear space L = V (`1, . . . , `11) ⊂ P(C3×3×3)

• the finite set W ⊆ P ⊂ C13, mapping bijectively to Tcal ∩ L.

We heavily use this representation of Tcal for the computations in Section 3.6.

Now, we re-visit Proposition 3.18. When TA,B,C is unknown but the point/line
correspondence is known, the constraints there amount to special linear slices of
T and of the subvariety Tcal. The next theorem may help the reader appreciate
the specialness of these linear sections of Tcal; in general, the intersections are not
irreducible, equidimensional, nor dimensionally transverse.

Theorem 3.28. Fix generic points x, x′, x′′ ∈ P2 and generic lines `, `′, `′′ ∈ (P2)∨.
In the cases of Proposition 3.18, we have the following codimensions :

• [PLL]: L = {T ∈ P(C3×3×3) : T (x, `′, `′′) = 0} is a hyperplane and Tcal ∩ L
consists of one irreducible component of codimension 1 in Tcal
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• [LLL]: L = {T ∈ P(C3×3×3) : [`]×T (−, `′, `′′) = 0} is a codimension 2
subspace and Tcal∩L consists of two irreducible components both of codimension
2 in Tcal

• [PLP]: L = {T ∈ P(C3×3×3) : [x′′]×T (x, `′,−) = 0} is a codimension 2
subspace and Tcal∩L consists of two irreducible components both of codimension
2 in Tcal

• [PPL]: L = {T ∈ P(C3×3×3) : [x′]×T (x,−, `′′) = 0} is a codimension 2
subspace and Tcal∩L consists of two irreducible components both of codimension
2 in Tcal

• [PPP]: L = {T ∈ P(C3×3×3) : [x′′]×T (x,−,−)[x′]× = 0} is a codimension 4
subspace and Tcal∩L consists of five irreducible components, one of codimension
3 and four of codimension 4 in Tcal.

Computational Proof. The statements about the subspaces may shown symbolically.
In the case of LLL, e.g., work in the ring Q[`0, . . . , `

′′
2] with 8 variables, and write the

constraint on T ∈ P(C3×3×3) as the vanishing of a 3×27 matrix times a vectorization
of T . Now we check that all of the 3 × 3 minors of that long matrix are identically
0, but not so for 2× 2 minors.

For the statements about Tcal ∩ L, we offer a probability 1, numerical argument.
By [92, Theorem A.14.10] and the discussion on page 348 about generic irreducible
decompositions, we can fix random floating-point coordinates for x, x′, x′′, `, `′, `′′.
With the parametrization Φ of Tcal from the proof of Theorem 3.26, the TrackType:1
setting in Bertini is used to compute a numerical irreducible decomposition for the
preimage of Tcal ∩ L per each case. That outputs a witness set, i.e. general linear
section, per irreducible component. Bertini’s TrackType:1 is based on regenera-
tion, monodromy and the trace test; see [92, Chapter 15] or [11, Chapter 8] for a
description.

Here, the PPP case is most subtle since the subspace L ⊆ P(C3×3×3) is codimen-
sion 4, but the linear section Tcal∩L ⊆ Tcal includes a codimension 3 component. The
numerical irreducible decomposition above consists of five components of dimensions
8, 7, 7, 7, 7 in a, . . . , t3,3-parameter space. Thus, it suffices to verify that the map to
Tcal is generically injective restricted to the union of these components. For that, we
take one general point on each component from the witness sets, and test whether
that point satisfies a2 + b2 + c2 + d2 6≈ 0 and e2 + f 2 + g2 + h2 6≈ 0. This indeed
holds for all components. Then, we test using singular value decomposition (see [26,
Theorem 3.2]) whether the point maps to a camera triple with linearly independent
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centers. Linear independence indeed holds for all components. From Theorem 3.22,
the above parametrization is generically injective on this locus. Hence the image
Tcal ∩ L consists of distinct components with the same dimensions 8, 7, 7, 7, 7. This
finishes PPP. The other cases are similar.

Mimicking the proof of Proposition 3.14, and using the ‘top-dimensional’ clause
in Lemma 3.20, we can establish the following finiteness result for Tcal:

Lemma 3.29. For each problem in Theorem 3.6, given generic image correspondence
data, there are only finitely many tensors T ∈ Tcal that satisfy all of the linear
conditions from Proposition 3.18.

We have arrived at a relaxation for each minimal problem in Theorem 3.6, as
promised. Namely, for a problem there we can fix a random instance of image data,
and we seek those calibrated trifocal tensors that satisfy the – merely necessary –
linear conditions in 3.18. Geometrically, this is equivalent intersect the special linear
sections of Tcal from Theorem 3.28. In Section 3.6, we will use the pseudo-witness
set representation (P ,Φ,L,W) of Tcal from Theorem 3.26 to compute these special
slices of Tcal in Bertini. Conveniently, Bertini outputs a calibrated camera triple
per calibrated trifocal tensor in the intersection; this is because all solving is done
in the parameter space P , or in other words, camera space. To solve the original
minimal problem, we then test these configurations against the tight conditions of
Theorem 3.10.

3.6 Proof of main result

In this section, we put all the pieces together and we determine the algebraic degrees
of the minimal problems in Theorem 3.6. Mathematically, these degrees represent
interesting enumerative geometry problems; in vision, related work for three uncal-
ibrated views appeared in [84]. The authors considered correspondences PPP and
LLL and they determined 3 degrees for projective (uncalibrated) views, using the
larger group actions present in that case. Here, all 66 degrees for calibrated views in
Theorem 3.6 are new.

Now, recall from Proposition 3.14 that solutions (A,B,C) to the problems in
Theorem 3.6 in particular must have non-identical centers. So, by the second remark
after Definition 3.15, they associate to nonzero tensors TA,B,C , and thus to well-
defined points in the projective variety Tcal. Conversely, however, there are special
subloci of Tcal that are not physical. Points in these subvarieties (introduced next)
are extraneous to Theorem 3.6, because they correspond to configurations with a
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3 × 4 matrix whose left 3 × 3 submatrix R is not a rotation, but instead satisfies
RRT = RTR = 0.

Definition/Proposition 3.30. Recall the parametrization of Tcal by a, . . . , t3,3 from
Theorem 3.26. Let T 0,1

cal ⊂ Tcal be the closure of the image of the rational map
restricted to the locus a2 + b2 + c2 + d2 = 0. Let T 1,0

cal ⊂ Tcal be the closure of
the image of the rational map restricted to the locus e2 + f 2 + g2 + h2 = 0. Let
T 0,0

cal ⊂ Tcal be the closure of the image of the rational map restricted to the locus
a2 +b2 +c2 +d2 = 0 and e2 +f 2 +g2 +h2 = 0. Then these subvarieties are irreducible
with: dim(T 0,0

cal ) = 9 and deg(T 0,0
cal ) = 1296; dim(T 0,1

cal ) = 10 and deg(T 0,1
cal ) = 2616;

dim(T 1,0
cal ) = 10 and deg(T 1,0

cal ) = 2616.

Computational Proof. The restricted parameter spaces:

P ∩ V (a2 + b2 + c2 + d2), P ∩ V (e2 + f 2 + g2 + h2),

P ∩ V (a2 + b2 + c2 + d2, e2 + f 2 + g2 + h2) ⊂ C13,

where P = V (α1a+α2b+α3c+α4d− 1, β1e+ β2f + β3g+ β4h− 1), are irreducible,
therefore their images T 0,1

cal , T
1,0

cal , T
0,0

cal ⊂ P(C3×3×3) are irreducible. The dimension
statements are verified by picking a random point in the restricted parameter spaces,
and then by computing the rank of the derivative of the restricted rational map Φ at
that point. This rank equals the dimension of the image with probability 1, by generic
smoothness over C [46, III.10.5] and the preceding [46, III.10.4]. For the degree
statements, the approach from Theorem 3.26 may be used. For T 0,1

cal we fix a random
linear subspace M ⊂ P(C3×3×3) of complementary dimension, i.e dim(M) = 16, so
deg(T 0,1

cal ) = #(T 0,1
cal ∩M). We pull back to P∩V (a2 +b2 +c2 +d2)∩Φ−1(M), and use

the UseRegeneration:1 setting in Bertini to solve for this. This run outputs 2616
floating-point tuples in a, . . . , t3,3 coordinates. Then, we apply the parametrization
Φ and check that the image of these are 2616 numerically distinct tensors, i.e. the
restriction Φ|P∩V (a2+b2+c2+d2) is generically injective. It follows that deg(T 0,1

cal ) = 2616,
up to numerical accuracy and random choices. To verify this degree further, we apply
the trace test as in Theorem 3.26, and this finishes the computation for deg(T 0,1

cal ).
Since T 0,1

cal and T 0,1
cal are linearly isomorphic under the permutation Tijk 7→ Tikj, this

implies deg(T 1,0
cal ) = 2616. The computation for deg(T 0,0

cal ) is similar.

Now, we come to the proof of Theorem 3.6, at last. The outline was given in the
last paragraph of Section 3.5: for computations, solving the polynomial systems of
multiview equations (see Theorem 3.10) is relaxed to taking a special linear section
of the calibrated trifocal variety Tcal (see Theorem 3.28). Then, to take this slice, we
use the numerical algebraic geometry technique of coefficient-parameter homotopy
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[92, Theorems 7.1.1, A.13.1], i.e. a general linear section is moved in a homotopy to
the special linear section.

Computational Proof of Theorem 3.6. Let weights (w1, w2, w3, w4, w5) ∈ Z5
≥0 satisfy

3w1 +2w2 +2w3 +2w4 +w5 = 11 and w2 ≥ w3. Now consider the problem ‘w1PPP +
w2PPL + w3PLP + w4LLL + w5PLL’ in Theorem 3.6. Fix one general instance
of this problem, by taking image data with random floating-point coordinates. Each
point/line image correspondence in this instance defines a special linear subspace
of P(C3×3×3), as in Theorem 3.28. The intersection of these is one subspace Lspecial

expressed in floating-point; using singular value decomposition, we verify that its
codimension in P(C3×3×3) is the expected 4w1 + 2w2 + 2w3 + 2w4 +w5 = 11 +w1. By
Proposition 3.18, Lspecial represents necessary conditions for consistency, so we seek
Tcal ∩Lspecial. If w1 > 0, then this intersection is not dimensionally transverse by the
PPP clause of Theorem 3.28. To deal with a square polynomial system, we fix a
general linear space L′special ⊇ Lspecial of codimension 11 in P(C3×3×3) and now seek
Tcal ∩ L′special. This step is known as randomization [92, Section 13.5] in numerical
algebraic geometry, and it is needed to apply the parameter homotopy result [92,
Theorem 7.1.1].

The linear section Tcal ∩ L′special is found numerically by a degeneration. In the
proof of Theorem 3.26, we computed a pseudo-witness set for Tcal. This includes
a general complimentary linear section Tcal ∩ L, and the preimage Φ−1(Tcal ∩ L) of
deg(Tcal) = 4912 points in a, . . . , t3,3 space. Writing L = V (`1, . . . , `11) and L′special =

V (`′1, . . . , `
′
11) for linear forms `i and `′i on P(C3×3×3), consider the following homotopy

function H : C13 × R→ C13:

H(a, . . . , t3,3, s) :=



s · `1

(
Φ(a, . . . , t3,3)

)
+ (1− s) · `′1

(
Φ(a, . . . , t3,3)

)
...

s · `11

(
Φ(a, . . . , t3,3)

)
+ (1− s) · `′11

(
Φ(a, . . . , t3,3)

)
α1a+ α2b+ α3c+ α4d− 1

β1e+ β2f + β3g + β4h− 1


.

Here s ∈ R is the path variable. As s moves from 1 to 0, H defines a family of square
polynomial systems in the 13 variables a, . . . , t3,3. The start system H(a, . . . , t3,3, 1) =
0 has solution set Φ−1(Tcal ∩ L) and the target system H(a, . . . , t3,3, 0) = 0 has
solution set Φ−1(Tcal ∩ L′special). With the UserHomotopy:1 setting in Bertini, we
track the 4912 solution paths from the start to target system. By genericity of L
in the start system, these solution paths are smooth [92, Theorem 7.1.1(4), Lemma
7.1.2]. The finite endpoints of this track consist of solutions to the target system. By
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the principle of coefficient-parameter homotopy [92, Theorem A.13.1], every isolated
point in Φ−1(Tcal ∩ L′special) is an endpoint, with probability 1. Note that in general,
coefficient-parameter homotopy – i.e., the tracking of solutions of a general instance
of a parametric system of equations to solutions of a special instance – may be used
to find all isolated solutions to square polynomial systems. Here, by Lemma 3.29,
Tcal∩Lspecial is a scheme with finitely many points. By Bertini’s theorem [92, Theorem
13.5.1(1)], Tcal∩L′special also consists of finitely many points, using genericity of L′special.
On the other hand, by Proposition 3.14, all solutions (A,B,C) to the instance of
the original minimal problem indexed by w ∈ Z5

≥0 have linearly independent centers
in P3. Moreover, a configuration (A,B,C) with linearly independent centers is an
isolated point in Φ−1(TA,B,C), thanks to Theorem 3.22. Therefore, it follows that
all solutions to the problem from Theorem 3.6 are among the isolated points in
Φ−1(Tcal ∩ L′special), and so the endpoints of the above homotopy.

For each minimal problem in Theorem 3.6, after the above homotopy, Bertini re-
turns 4912 finite endpoints in a, . . . , t3,3 space. We pick out which of these endpoints
are solutions to the original minimal problem by performing a sequence of checks,
as explained next. First of all, of these endpoints, let us keep only those that lie in
Φ−1(Tcal∩Lspecial), as opposed to those that lie just in the squared-up target solution
set Φ−1(Tcal ∩L′special). Second, we remove points that satisfy a2 + b2 + c2 + d2 ≈ 0 or

e2 +f 2 +g2 +h2 ≈ 0, because they are non-physical (see Definition/Proposition 3.30).
Third, we verify that, in fact, all remaining points correspond to camera configura-
tions (A,B,C) with linearly independent centers. This means that the equations in
Theorem 3.10 generate the multiview ideals (recall Definition 3.9). Fourth, we check
which remaining points satisfy those tight multiview equations. To test this robustly
in floating-point, note that the equations in Theorem 3.10 are equivalent to rank
drops of the concatenated matrices there, hence we test for those rank drops using
singular value decomposition. If the ratio of two consecutive singular values exceeds
105, then this is taken as an indication that all singular values below are numerically
0, thus the matrix drops rank. Fifth, and conversely, we verify that all remaining
configurations (A,B,C) avoid epipoles (recall Definition 3.12) for the fixed random
instance of image correspondence data, so the converse Lemma 3.13 applies to prove
consistency. Lastly, we verify that all solutions are numerically distinct. Ultimately,
the output of this procedure is a list of all calibrated camera configurations over
C that are solutions to the fixed random instances of the minimal problems, where
these solutions are expressed in floating-point and a, . . . , t3,3 coordinates. The num-
bers of solutions are the algebraic degrees from Theorem 3.6.

As a check for this numerical computation, we repeat the entire calculation for
other random instances of correspondence data. For each minimal problem, we
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obtain the same algebraic degree each time. One instance per problem solved to
high precision is provided on this chapter’s webpage.

Example 3.31. We illustrate the proof of Theorem 3.6 by returning to the instance
of ‘1 PPP + 4 PPL’ in Example 3.5. Here Lspecial ⊂ P(C3×3×3) formed by inter-
secting subspaces from Theorem 3.28 is codimension 12, hence L′special ! Lspecial.

Tracking deg(Tcal) many points in the pseudo-witness set Φ−1(Tcal ∩L) to the target
Φ−1(Tcal∩L′special), we get 4912 finite endpoints. Testing membership in Lspecial, we get

2552 points in Φ−1(Tcal∩Lspecial). Among these, 888 points satisfy a2+b2+c2+d2 ≈ 0,
so they are non-physical (corresponding to 3× 4 matrices with left submatrices that
are not rotations). The remaining 1664 points turn out to correspond to calibrated
camera configurations with linearly independent centers. Checking satisfaction of
the equations from Theorem 3.10, we end up with 160 solutions.

Remark 3.32. The proof of Theorem 3.6 is constructive. From the solved ran-
dom instances, one may build solvers for each minimal problem, using coefficient-
parameter homotopy. Here the start system is the solved instance of the minimal
problem and the target system is another given instance. Such a solver is optimal in
the sense that the number of paths tracked equals the true algebraic degree of the
problem. Implementation is left to future work.

Remark 3.33. All degrees in Theorem 3.6 are divisible by 8. We would like to
understand why. What are the Galois groups [51] for these minimal problems?

Remark 3.34. Practically speaking, given image correspondence data defined over
R, only real solutions (A,B,C) to the minimal problems in Theorem 3.6 are of
interest to RANSAC-style 3D reconstruction algorithms. Does there exist image
data such that all solutions are real? Also, for the image data observed in practice,
what is the distribution of the number of real solutions?

3.7 Numerical implicitization

In this section, we switch gears from calibrated three-view geometry, and describe a
stand-alone Macaulay2 software package [21] co-written with Justin Chen, for wide
use in computational algebra. Our software NumericalImplicitization permits
the user-friendly computation of invariants of the image of a polynomial map, such
as dimension, degree and Hilbert function values. Like the computations performed
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already in this chapter, NumericalImplicitization relies on methods from nu-
merical algebraic geometry, e.g. homotopy-continuation and monodromy. My own
interest in writing general-purpose numerical algebraic geometry code grew out of
my project on the calibrated trifocal variety.

Many varieties of interest in algebraic geometry and its applications are usefully
described as images of polynomial maps, i.e. via a parametrization. For vision
examples, see the third sentence of Section 2.1, Definition 3.23, Definition 3.24,
Equation 4.10 and Equation 5.5. Implicitization is the process of converting a para-
metric description of a variety into an intrinsic – or implicit – description. Classi-
cally, implicitization refers to the procedure of computing the defining equations of
a parametrized variety, and in theory this is accomplished by finding the kernel of
a ring homomorphism, via Gröbner bases. In practice however, symbolic Gröbner
basis computations are often time-consuming, even for medium-scale problems, and
do not scale well with respect to the size of the input.

Despite this, one would often like to know basic information about a parametrized
variety, even when symbolic methods are prohibitively expensive (in terms of com-
putation time). The best examples of such information are discrete invariants such
as the dimension, or degree and Hilbert function values if the variety is projective.
Other examples include Boolean tests, e.g. whether or not a particular point lies on
a parametrized variety. The goal of the present Macaulay2 [44] package is to provide
such information – in other words, to numerically implicitize a parametrized variety –
by using the methods of numerical algebraic geometry. NumericalImplicitization3

builds on top of existing numerical algebraic geometry software, e.g. NAG4M2 [70],
Bertini [10, 9] and PHCpack [102, 45]. Each of these can be used for path tracking
and point sampling; by default, the native engine NAG4M2 is used.

Notation. The following notation will be used throughout the remainder of this
section:

• X ⊆ An is a source variety, defined by an ideal I = 〈g1, . . . , gr〉 in the polyno-
mial ring C[x1, . . . , xn]

• F = {f1, . . . , fm}, where fi ∈ C[x1, . . . , xn], is a list of polynomials specifying
a map An → Am

• Y is the Zariski closure of the image F (X) = F (V (I)) ⊆ Am, the target variety
under consideration

3For up-to-date code and documentation, see https://github.com/Joe-Kileel/

Numerical-Implicitization

https://github.com/Joe-Kileel/Numerical-Implicitization
https://github.com/Joe-Kileel/Numerical-Implicitization
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• Ỹ ⊆ Pm is the projective closure of Y , with respect to the standard embedding
Am ⊆ Pm.

Currently, our code NumericalImplicitization is implemented for integral (i.e.
reduced and irreducible) varieties X. Equivalently, the ideal I is prime. Since numer-
ical methods are used, we always work over the complex numbers with floating-point
arithmetic. Moreover, Ỹ is internally represented by its affine cone. This is because
it is easier for computers to work with points in affine space; at the same time, this
suffices to find the invariants of Ỹ .

All the methods in this package rely crucially on the ability to sample general
points on X. To this end, two methods are provided, numericalSourceSample and
numericalImageSample, which allow the user to sample as many general points on
X and Y as desired. numericalSourceSample will compute a witness set of X,
unless X = An, by taking a numerical irreducible decomposition of X. This time-
consuming step cannot be avoided. Once a witness set is known, points on X can
be sampled in negligible time. numericalImageSample works by sampling points in
X via numericalSourceSample, and then applying the map F .

One way to view the difference in computation time between symbolic and nu-
merical methods is that the upfront cost of computing a Gröbner basis is replaced
with the upfront cost of computing a numerical irreducible decomposition, which
is used to sample general points. However, if X = An, then sampling is done by
generating random tuples, and is essentially immediate. Thus, in this unrestricted
parametrization case, the upfront cost of numerical methods becomes zero.

The most basic invariant of an algebraic variety is its dimension. To compute the
dimension of the image of a variety numerically, we use the following theorem:

Theorem 3.35. Let F : X → Y be a dominant morphism of irreducible varieties
over C. Then there is a Zariski open subset U ⊆ X such that for all x ∈ U , the
induced map on tangent spaces dFx : TxX → TF (x)Y is surjective.

Proof. This is an immediate corollary of generic smoothness [46, III.10.5] and the
preceding [49, III.10.4].

In the setting above, since the singular locus Sing Y is a proper closed subset of
Y , for general y = F (x) ∈ Y we have that dimY = dimTyY = dim dFx(TxX) =
dimTxX−dim ker dFx. Now TxX is the kernel of the Jacobian matrix of I evaluated
at x, given by Jac(I)(x) = ((∂gi/∂xj)(x))1≤i≤r, 1≤j≤n, and ker dFx is the kernel of the
Jacobian of F evaluated at x, intersected with TxX. Explicitly, ker dFx is the kernel
of the (r +m)× n matrix:
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[
Jac(I)(x)

Jac(F )(x)

]
=



∂g1

∂x1
(x) . . .

∂g1

∂xn
(x)

...
. . .

...

∂gr
∂x1

(x) . . .
∂gr
∂xn

(x)

∂F1

∂x1
(x) . . .

∂F1

∂xn
(x)

...
. . .

...

∂Fm
∂x1

(x) . . .
∂Fm
∂xn

(x)


We compute these kernel dimensions numerically, as explained prior to Chapter 3.38
below, to get dimY .

Example 3.36. Let Y ⊆ Sym4(C5) ∼= A70 be the variety of 5× 5× 5× 5 symmetric
tensors of border rank ≤ 14. Equivalently, Y is the affine cone over σ14(ν4(P4)), the
14th secant variety of the fourth Veronese embedding of P4. Naively, one expects
dim(Y ) = 14 · 4 + 13 + 1 = 70. In fact, dim(Y ) = 69 as verified by the following
code:

Macaulay2, version 1.9.2

i1 : needsPackage "NumericalImplicitization"

i2 : R = CC[s_(1,1)..s_(14,5)];

i3 : F = sum(1..14, i -> flatten entries basis(4, R, Variables =>

toList(s_(i,1)..s_(i,5))));

i4 : time numericalImageDim(F, ideal 0_R)

-- used 0.106554 seconds

o4 = 69

This example is the largest exceptional case from the celebrated work [6]. Note the
timing printed above.

We now turn to the problem of determining the Hilbert function of Ỹ . Recall that
if Ỹ ⊆ Pm is a projective variety, given by a homogeneous ideal J ⊆ C[y0, . . . , ym],

then the Hilbert function of Ỹ at an argument d ∈ N is by definition the vector
space dimension of the dth graded part of J , i.e. HỸ (d) := dim Jd. This counts the
maximum number of linearly independent degree d hypersurfaces in Pm containing
Ỹ .

To compute the Hilbert function of Ỹ numerically, we use multivariate polynomial
interpolation. For a fixed argument d ∈ N, let {p1, . . . , pN} be a set of N general
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points on Ỹ . For 1 ≤ i ≤ N , consider an i×
(
m+ d

d

)
interpolation matrix A(i) with

rows indexed by points {p1, . . . , pi} and columns indexed by degree d monomials in
C[y0, . . . , ym], whose entries are the values of the monomials at the points. A vector
in the kernel of A(i) corresponds to a choice of coefficients for a homogeneous degree
d polynomial that vanishes on p1, . . . , pi. If i is large, then one expects such a form
to vanish on the entire variety Ỹ . The following theorem makes this precise:

Theorem 3.37. Let {p1, . . . , ps+1} be a set of general points on Ỹ , and let A(i) be
the interpolation matrix above. If dim kerA(s) = dim kerA(s+1), then dim kerA(s) =
dim Jd.

Proof. Identifying a vector v ∈ kerA(i) with the form in C[y0, . . . , ym] of degree
d having v as its coefficients, it suffices to show that kerA(s) = Jd. If h ∈ Jd,
then h vanishes on all of Ỹ , in particular on {p1, . . . , ps}, so h ∈ kerA(s). For
the converse kerA(s) ⊆ Jd, we consider the universal interpolation matrices over
C[y0,1, y1,1, . . . , ym,i]

A(i) :=


yd0,1 yd−1

0,1 y1,1 . . . ydm,1
yd0,2 yd−1

0,2 y1,2 . . . ydm,2
...

...
. . .

...

yd0,i yd−1
0,i y1,i . . . ydm,i


Set ri := min {j ∈ ZZ≥0 | every (j+1)×(j+1) minor of A(i) lies in the ideal of Ỹ ×i ⊆
(Pm)×i}. Then any specialization of A(i) to i points in Ỹ is a matrix over C of rank
≤ ri; moreover if the points are general, then the specialization has rank exactly
ri, since Ỹ is irreducible. In particular rank(As) = rs and rank(As+1) = rs+1, so
dim kerA(s) = dim kerA(s+1) implies that rs = rs+1. It follows that specializing
A(s+1) to p1, p2, . . . , ps, q for any q ∈ Ỹ gives a rank rs matrix. Hence, every degree
d form in kerA(s) evaluates to 0 at every q ∈ Ỹ . Since Ỹ is reduced, we deduce that
kerA(s) ⊆ Jd.

It follows from Chapter 3.37 that the integers dim kerA(1), dim kerA(2), . . . de-
crease by exactly 1, until the first instance where they fail to decrease, at which
point they stabilize: dim kerA(i) = dim kerA(s) for i ≥ s. This stable value is the
value of the Hilbert function, dim kerA(s) = HỸ (d). In particular, it suffices to com-

pute dim kerA(N) for N =

(
m+ d

d

)
, i.e. one may assume the interpolation matrix

is square. Although this may seem wasteful (as stabilization may have occurred
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with fewer rows), this is indeed what numericalHilbertFunction does, due to the
algorithm used to compute kernel dimension numerically. To be precise, kernel di-
mension is found via a singular value decomposition (SVD) – namely, if a gap (=
ratio of consecutive singular values) greater than the option SVDGapThreshold (with
default value 200) is observed in the list of all singular values, then this is taken as
an indication that all singular values past the greatest gap are numerically zero. On
example problems, it was observed that taking only one more additional row than
was needed often did not reveal a satisfactory gap in singular values. In addition,
numerical stability is improved via preconditioning on the interpolation matrices –
namely, each row is normalized in the Euclidean norm before computing the SVD.

Example 3.38. Let X be a random canonical curve of genus 4 in P3, so X is
the complete intersection of a random quadric and cubic. Let F : P3 99K P2 be a

projection by 3 random cubics. Then Ỹ is a plane curve of degree 3dim(Ỹ ) ·deg(X) =

3 · 2 · 3 = 18, so the ideal of Ỹ contains a single form of degree 18. We verify this as
follows:

i5 : R = CC[w_0..w_3];

i6 : I = ideal(random(2,R), random(3,R));

i7 : F = toList(1..3)/(i -> random(3,R));

i8 : T = numericalHilbertFunction(F, I, 18)

Sampling image points ...

-- used 4.76401 seconds

Creating interpolation matrix ...

-- used 0.313925 seconds

Performing normalization preconditioning ...

-- used 0.214475 seconds

Computing numerical kernel ...

-- used 0.135864 seconds

Hilbert function value: 1

o8 = NumericalInterpolationTable

The output is a NumericalInterpolationTable, which is a HashTable storing
the results of the interpolation computation described above. From this, one can
obtain a floating-point approximation to a basis of Jd. This is done via the command
extractImageEquations:

i9 : extractImageEquations T

o9 : | -.0000712719y_0^18+(.000317507-.000100639i)y_0^17y_1-(.0000906039-
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---------------------------------------------------------------------

.000616564i)y_0^16y_1^2-(.00197404+.00177936i)y_0^15y_1^3+(.0046344+

---------------------------------------------------------------------

.00196825i)y_0^14y_1^4-(.00475536-.00157142i)y_0^13y_1^5+(.00550602-

---------------------------------------------------------------------

.0100492i)y_0^12y_1^6-(.012252-.0188461i)y_0^11y_1^7+ ... |

An experimental feature to find equations over Z may be called with the option
attemptExact => true.

After dimension, degree is the most basic invariant of a projective variety Ỹ ⊆ Pm.
Set k := dim(Ỹ ). For a general linear space L ∈ Gr(Pm−k,Pm) of complementary

dimension to Ỹ , the intersection L ∩ Ỹ is a finite set of reduced points. The degree
of Ỹ is by definition the cardinality of L ∩ Ỹ , which is independent of the general
linear space L. Thus one approach to find deg(Ỹ ) is to fix a random L0 and compute

the set of points L0 ∩ Ỹ .
NumericalImplicitization takes this tack, but the method used to find L0∩ Ỹ

is not the most obvious. First and foremost, we do not know the equations of Ỹ ,
so all solving must be done in X. Secondly, we do not compute F−1(L0) ∩X from
the equations of X and the equations of L0 pulled back under F , because that has
degree deg(F ) · deg(Ỹ ) – potentially much bigger than deg(Ỹ ). Instead, monodromy

is employed to find L0 ∩ Ỹ .
To state the technique, we consider the map:

Φ := {(L, y) ∈ Gr(Pm−k,Pm)×Ỹ | y ∈ L} ⊆ Gr(Pm−k,Pm)×Ỹ ρ1−−−−→ Gr(Pm−k,Pm)

where ρ1 is projection onto the first factor. There is a nonempty Zariski open subset
U ⊆ Gr(Pm−k,Pm) such that the restriction ρ−1

1 (U) → U is a deg(Ỹ )-to-1 covering
map, namely U equals the complement of the Hurwitz divisor from [99]. Now fix a
generic basepoint L0 ∈ U . Then the fundamental group π1(U,L0) acts on the fiber

ρ−1
1 (L0) = L0 ∩ Ỹ . This action is known as monodromy. It is a key fact that the

induced group homomorphism π1(U,L0) −→ Sym(L0 ∩ Ỹ ) ∼= Symdeg(Ỹ ) is surjective,

by irreducibility of Ỹ . More explicitly:

Theorem 3.39. Let Ỹ , U, L0 be as above. Write L0 = V (`0) for `0∈(C[y0, . . . , ym]1)k

a height k column vector of linear forms. Fix another generic point L1 = V (`1) ∈ U ,
where `1 ∈ (C[y0, . . . , ym]1)k. For any γ0, γ1 ∈ C, consider the following loop of linear
subspaces of Pm:
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t 7→


V
(

(1− 2t) · `0 + γ12t · `1

)
if 0 ≤ t ≤ 1

2

V
(

(2− 2t) · `1 + γ0(2t− 1) · `0

)
if

1

2
≤ t ≤ 1.

For a nonempty Zariski open subset of (γ0, γ1) ∈ C2, this loop is contained in U .
Moreover, the classes of these loops in π1(U,L0) generate the full symmetric group

Sym(L0 ∩ Ỹ ).

Proof. Let L be the pencil of linear subspaces of Pm generated by `0 and `1. Via
monodromy, π1(L∩U,L0) maps surjectively onto Sym(L0∩Ỹ ), by [93, Corollary 3.5].
Here the topological space L∩U is homeomorphic to the Riemann sphere CP1 minus
a finite set of points, so π1(L ∩ U,L0) is isomorphic to a free group on finitely many
letters. The explicit loops in the theorem statement miss the finite set L\(L∩U) for
general γ0, γ1; moreover γ0, γ1 may be chosen so that the loop above encloses exactly
one point in L\ (L∩U). Therefore, the classes of these loops generate π1(L∩U,L0).
To visualize these loops, the reader may consult the proof of [92, Lemma 7.1.3].

numericalImageDegree works by first sampling a general point x ∈ X, and
manufacturing a general linear slice L0 such that F (x) ∈ L0 ∩ Ỹ . Then, L0 is moved
around in a loop of the form described in Theorem 3.39. This loop pulls back to a
homotopy in X, where we use the equations of X to track x. The endpoint of the
track is a point x′ ∈ X such that F (x′) ∈ L0 ∩ Ỹ . If F (x) and F (x′) are numerically

distinct, then the loop has learned a new point in L0 ∩ Ỹ ; otherwise x′ is discarded.
We then repeat this process of tracking points in X over each known point in L0∩ Ỹ ,
according to loops in Theorem 3.39. Note that for random γ0, γ1 ∈ C, each loop has
a positive probability – bounded away from 0 – of learning new points in L0 ∩ Ỹ ,
up until all of L0 ∩ Ỹ is known. Thus by carrying out many loops from Theorem
3.39, the probability of finding all points in L0 ∩ Ỹ approaches 1. In practice, if
several consecutive loops4 do not learn new points in L0 ∩ Ỹ , then we suspect that
all of L0 ∩ Ỹ has been calculated. To verify this, we pass to the trace test (see
[93, Corollary 2.2], [50, §5] or [71, §1]), which provides a characterization for when

a subset of L0 ∩ Ỹ equals L0 ∩ Ỹ . If the trace test is failed, then L0 is replaced
by a new random L′0 and preimages in X of known points of L0 ∩ Ỹ are tracked

to those preimages of points of L′0 ∩ Ỹ . Afterwards, monodromy for L′0 ∩ Ỹ begins
anew. If the trace test is failed maxTraceTests (= 10 by default) times in total, then

numericalImageDegree exits with only a lower bound on deg(Ỹ ).

4This is specified by the option maxRepetitiveMonodromies (with default value 4).
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Example 3.40. Let Ỹ = σ2(P1 × P1 × P1 × P1 × P1) ⊆ P31. We find that deg(Ỹ ) =
3256, using the commands below:

i10 : R = CC[a_1..a_5, b_1..b_5, t_0, t_1];

i11 : F1 = terms product(apply(toList(1..5), i -> 1 + a_i));

i12 : F2 = terms product(apply(toList(1..5), i -> 1 + b_i));

i13 : F = apply(toList(0..<2^5), i -> t_0*F1#i + t_1*F2#i);

i14 : time numericalImageDegree(F, ideal 0_R, maxRepetitiveMonodromies=>2)

Sampling point in source ...

Tracking monodromy loops ...

Points found: 2

Points found: 4

Points found: 8

Points found: 16

Points found: 32

Points found: 62

Points found: 123

Points found: 239

Points found: 466

Points found: 860

Points found: 1492

Points found: 2314

Points found: 3007

Points found: 3229

Points found: 3256

Points found: 3256

Points found: 3256

Running trace test ...

Degree of image: 3256

-- used 388.989 seconds

o14 = PseudoWitnessSet

In [88, Theorem 4.1], it is proven via representation theory and combinatorics that

the prime ideal J of Ỹ is generated by the 3×3 minors of all flattenings of 2×5 tensors,
so we can confirm that deg(J) = 3256. However, the naive attempt to compute the

degree of Ỹ symbolically by taking the kernel of a ring map – from a polynomial ring
in 32 variables – has no hope of finishing in any reasonable amount of time.

The output o14 above is a PseudoWitnessSet, which is a Macaulay2 HashTable

that stores the computation of L0 ∩ Ỹ . This numerical representation of parameter-
ized varieties was introduced in [52].
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Classically, given a variety Y ⊆ Am and a point y ∈ Am, we determine whether
or not y ∈ Y by finding set-theoretic equations of Y (which generate the ideal of Y
up to radical), and then testing if y satisfies these equations. If a PseudoWitnessSet

for Y is available, then point membership in Y can instead be verified by param-
eter homotopy. More precisely, isOnImage determines if y lies in the constructible
set F (X) ⊆ Y , as follows. We fix a general affine linear subspace Ly ⊆ Am of
complementary dimension m − k passing through y. Then y ∈ F (X) if and only if
y ∈ Ly∩F (X), so it suffices to compute the set Ly∩F (X). Now, a PseudoWitnessSet

for Y provides a general section L∩F (X), and preimages in X. We move L to Ly as
in [92, Theorem 7.1.6]. This pulls back to a homotopy in X, where we use the equa-
tions of X to track those preimages. Applying F to the endpoints of the track gives
all isolated points in Ly ∩ F (X) by [92, Theorem 7.1.6]. Since Ly was general, the
proof of [31, Corollary 10.5] shows Ly ∩ F (X) is zero-dimensional, so this procedure
computes the entire set Ly ∩ F (X).

Example 3.41. Let Y ⊆ A18 be defined by the resultant of three quadratic equations
in three unknowns, i.e., Y consists of all (c1, . . . , c6, d1, . . . , d6, e1, . . . , e6) ∈ A18 such
that the system

0 = c1x
2 + c2xy + c3xz + c4y

2 + c5yz + c6z
2

0 = d1x
2 + d2xy + d3xz + d4y

2 + d5yz + d6z
2

0 = e1x
2 + e2xy + e3xz + e4y

2 + e5yz + e6z
2

admits a solution (x : y : z) ∈ P2. Here Y is a hypersurface, and a matrix formula
for its defining equation was derived in [34], using Ulrich sheaf and exterior alge-
bra methods, similarly to own approach in Chapter 2 above. Here, we can rapidly
determine point membership in Y numerically as follows.

i15 : R = CC[c_1..c_6, d_1..d_6, e_1..e_6, x, y, z];

i16 : I = ideal(c_1*x^2+c_2*x*y+c_3*x*z+c_4*y^2+c_5*y*z+c_6*z^2,

d_1*x^2+d_2*x*y+d_3*x*z+d_4*y^2+d_5*y*z+d_6*z^2,

e_1*x^2+e_2*x*y+e_3*x*z+e_4*y^2+e_5*y*z+e_6*z^2);

i17 : F = toList(c_1..c_6 | d_1..d_6 | e_1..e_6);

i18 : W = numericalImageDegree(F, I, verboseOutput => false); -- Y has degree 12

i19 : p1 = numericalImageSample(F, I); p2 = point random(CC^1, CC^#F);

i21 : time (isOnImage(W, p1), isOnImage(W, p2))

-- used 0.186637 seconds

o21 = (true, false)
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In this chapter, we determined algebraic degrees for minimal problems in the
recovery of three calibrated cameras. This recovery has resisted efforts from the
vision community; our results quantify the complexity. Numerical algebraic geometry
furnished a powerful toolkit. Additionally, we relaxed zero-dimensional polynomial
systems to systems with more geometric structure, hence easier to solve. In the last
section, a software package for numerical implicitization was presented.
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Chapter 4

Image Distortion

This chapter develops an algebro-geometric framework for dealing with image dis-
tortion. To that end, we introduce a general construction for lifting varieties in
projective space to other toric varieties. We prove exact formulas for degree and
defining equations, and we draw a connection with tropical geometry. These results
unify and extend an existing body of work in computer vision. Our formulations
lead to minimal solvers that competitive with or superior to the state of the art. The
chapter is mostly based on my work [62] joint with Zuzana Kukelova, Tomas Pajdla
and Bernd Sturmfels accepted for journal publication in Foundations of Computa-
tional Mathematics. In addition, the last section led to our subsequent paper [67],
accepted for presentation at the 2017 IEEE Conference on Computer Vision and
Pattern Recognition in Honolulu, Hawaii.

4.1 Introduction

This chapter introduces a construction in algebraic geometry that is motivated by
multiview geometry in computer vision. As we have seen in Chapters 2 and 3, in
that field, one thinks of a camera as a linear projection P3 99K P2, and a model is a
projective variety X ⊂ Pn that represents the relative positions of two or more such
cameras. The data are correspondences of image points in P2 (or, in the case of three
or more cameras, image lines in (P2)∨). These correspondences define a linear sub-
space L ⊂ Pn, and the task is to compute the real points in the intersection L∩X as
fast and accurately as possible. That kind of formulation already played prominently
in Chapters 2 and 3 above. See [48, Chapter 9] for a textbook introduction.

A model for cameras with image distortion allows for an additional unknown
parameter λ. Each coordinate of X gets multiplied by a polynomial in λ whose



CHAPTER 4. IMAGE DISTORTION 77

coefficients also depend on the data. We seek to estimate both λ and the point in
X, where the data now specify a subspace L′ in a larger projective space PN . The
distortion variety X ′ lives in that PN , it satisfies dim(X ′) = dim(X) + 1, and the
task is to compute L′ ∩X ′ in PN fast and accurately.

We illustrate the idea of distortion varieties for the basic scenario in two-view
geometry.

Example 4.1. The relative position of two uncalibrated cameras is expressed by
a 3×3-matrix x = (xij) of rank 2, known as the fundamental matrix. Let n = 8
and write F for the hypersurface in P8 defined by the 3 × 3-determinant. Seven
(generic) image correspondences in two views determine a line L in P8, and one
rapidly computes the three points in L ∩ F .

The 8-point radial distortion problem [64, Section 7.1.3] is modeled as follows in
our setting. We duplicate the coordinates in the last row and last column of x, and
we set

(x11 : x12 : x13 : y13 : x21 : x22 : x23 : y23 : x31 : y31 : x32 : y32 : x33 : y33 : z33) =(
x11 : x12 : x13 : x13λ : x21 : x22 : x23 : x23λ : x31 : x31λ : x32 : x32λ : x33 : x33λ : x33λ

2
)
.

(4.1)
Here N = 14. The distortion variety F ′ is the closure of the set of matrices (4.1)
where x ∈ F and λ ∈ C. The variety F ′ has dimension 8 and degree 16 in P14,
whereas F has dimension 7 and degree 3 in P8. To estimate both λ and the relative
camera positions, we now need eight image correspondences. These data specify a
linear space L′ of dimension 6 in P14. The task in the computer vision application is
to rapidly compute the 16 points in L′ ∩ F ′.

The prime ideal of the distortion variety F ′ is minimally generated by 18 poly-
nomials in the 15 variables. First, there are 15 quadratic binomials, namely the
2× 2-minors of matrix (

x13 x23 x31 x32 x33 y33

y13 y23 y31 y32 y33 z33

)
. (4.2)

Note that this matrix has rank 1 under the substitution (4.1). Second, there are
three cubics

x11x22x33 − x11x23x32 − x12x21x33 + x12x23x31 + x13x21x32 − x13x22x31,
x13x22y31 − x12x23y31 − x13x21y32 + x11x23y32 + x12x21y33 − x11x22y33,
x22y13y31 − x12y23y31 − x21y13y32 + x11y23y32 + x12x21z33 − x11x22z33.

(4.3)

These three 3×3-determinants replicate the equation that defines the original model
F . ♦



CHAPTER 4. IMAGE DISTORTION 78

This chapter is organized as follows. Section 4.2 gives the relevant concepts
and definitions from computer vision and algebraic geometry. We present camera
models with image distortion, with focus on distortions with respect to a single
parameter λ. The resulting distortion varieties X[u] live in the rational normal scroll
Su, where u = (u0, u1, . . . , un) is a vector of non-negative integers. This distortion
vector indicates that the coordinate xi on Pn is replicated ui times when passing to
PN . In Example 4.1 we have u = (0, 0, 1, 0, 0, 1, 1, 1, 2) and Su is the 9-dimensional
rational normal scroll defined by the 2× 2-minors of (4.2).

Our results on one-parameter distortions of arbitrary varieties are stated and
proved in Section 4.3. Theorem 4.8 expresses the degree of X[u] in terms of the Chow
polytope of X. Theorem 4.16 derives ideal generators for X[u] from a Gröbner basis
of X. These results explain what we observed in Example 4.1, namely the degree 16
and the equations in (4.2)-(4.3).

Section 4.4 deals with multi-parameter distortions. We first derive various camera
models that are useful for applications, and we then present the relevant algebraic
geometry.

Section 4.5 is concerned with a concrete application to solving minimal problems
in computer vision. We focus on the distortion variety f+E+λ of degree 23 derived
in Section 4.2.

4.2 One-parameter distortions

This section has three parts. First, we derive the relevant camera models from
computer vision. Second, we introduce the distortion varieties X[u] of an arbitrary
projective variety X. And, third, we study the distortion varieties for the camera
models from the first part.

Multiview geometry with image distortion

A perspective camera in computer vision [48, p. 158] is a linear projection P3 99K P2.
The 3×4-matrix that represents this map is written as K ·

(
R | t

)
where R ∈ SO(3),

t ∈ R3, and K is an upper-triangular 3× 3 matrix known as the calibration matrix.
This transforms a point X ∈ P3 from the world Cartesian coordinate system to
the camera Cartesian coordinate system. Here, we usually normalize homogeneous
coordinates on P3 and P2 so that the last coordinate equals 1. With this, points in
R3 map to R2 under the action of the camera.
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The following camera model was introduced in [78, Equation 3] to deal with image
distortions:

α
(
R | t

)
X =

(
h(‖AU + b‖) (AU + b)
g(‖AU + b‖)

)
for some α ∈ R\{0}. (4.4)

The two functions h : R→ R and g : R→ R represent the distortion. The invertible
matrix A ∈ R2×2 and the vector b ∈ R2 are used to transform the image point U ∈ R2

into the image Cartesian coordinate system. The perspective camera in the previous
paragraph is obtained by setting h = g = 1 and taking the calibration matrix K to

be the inverse of

(
A b
0 0 1

)
.

Micusik and Pajdla [78] studied applications to fish eye lenses as well as catadiop-
tric cameras. In this context they found that it often suffices to fix h = 1 and to take
a quadratic polynomial for g. For the following derivation we choose g(t) = 1 + µt2,
where µ is an unknown parameter. We also assume that the calibration matrix has
the diagonal form K = diag

[
f, f, 1

]
. If we set λ = µ/f 2 then the model (4.4)

simplifies to

α
(
R | t

)
X = K−1

(
U

1 + λ‖U‖2

)
for some α ∈ R\{0}. (4.5)

Let us now analyze two-view geometry for the model (4.5). The quantity λ =
µ/f 2 is our distortion parameter. Throughout the discussion in Section 4.2 there is
only one such parameter. Later, in Section 4.4, there will be two or more different
distortion parameters.

Following [48, Section 9.6] we represent two camera matrices
(
R1 | t1

)
and

(
R2 | t2

)
by their essential matrix E. This 3 × 3-matrix has rank 2 and satisfies the De-
mazure equations. The equations were first derived in [25]; they take the matrix
form 2E E>E − trace(E E>)E = 0. For a pair (U1, U2) of corresponding points in
two images, the epipolar constraint now reads

0 =

(
AU2

1 + µ‖AU2‖2
)>
E

(
AU1

1 + µ‖AU1‖2
)

=

(
U2

1 + λ‖U2‖2
)>
K−>EK−1

(
U1

1 + λ‖U1‖2
)
. (4.6)

In this way, the essential matrix E expresses a necessary condition for two points U1

and U2 in the image planes to be pictures of the same world point. The fundamental
matrix is obtained from the essential matrix and the calibration matrix:

F =

f11 f12 f13

f21 f22 f23

f31 f32 f33

 = K−>EK−1. (4.7)
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Using the coordinates of U1 = [u1, v1]> and U2 = [u2, v2]>, the epipolar constraint
(4.6) is

0 = u2u1f11 + u2v1f12 + u2f13 + u2‖U1‖2λf13 + v2u1f21 + v2v1f22 + v2f23 + v2‖U1‖2λf23 +

u1f31 + u1‖U2‖2λf31 + v1f32 + v1‖U2‖2λf32 + f33 + (‖U1‖2+‖U2‖2)λf33 + ‖U1‖2‖U2‖2λ2f33.

This is a sum of 15 terms. The corresponding monomials in the unknowns form the
vector

m> =
[
f11, f12, f13, f13λ, f21, f22, f23, f23λ, f31, f31λ, f32, f32λ, f33, f33λ, f33λ

2
]
. (4.8)

The 15 coefficients are real numbers given by the data. The coefficient vector c is
equal to[
u2u1, u2v1, u2, u2‖U1‖2, v2u1, v2v1, v2, v2‖U1‖2, u1, u1‖U2‖2, v1, v1‖U2‖2, 1, ‖U1‖2+‖U2‖2, ‖U1‖2‖U2‖2

]>
.

With this notation, the epipolar constraint given by one point correspondence is
simply

c>m = 0. (4.9)

At this stage we have derived the distortion variety in Example 4.1. Identi-
fying fij with the variables xij, the vector (4.8) is precisely the same as that in
(4.1). This is the parametrization of the rational normal scroll Su in P14 where
u = (0, 0, 1, 0, 0, 1, 1, 1, 2). The set of fundamental matrices is dense in the hypersur-
face X = {det(F ) = 0} in P8. Its distortion variety X[u] has dimension 8 and degree
16 in P14. Each point correspondence (U1, U2) determines a vector c and hence a
hyperplane in P14. The constraint (4.9) means intersecting X[u] with that hyper-
plane. Eight point correspondences determine a 6-dimensional linear space in P14.
Intersecting X[u] with that linear subspace is the same as solving the 8-point radial
distortion problem in [64, Section 7.1.3]. The expected number of complex solutions
is 16.

Scrolls and distortions

This subsection introduces the algebro-geometric objects studied in this chapter.
We fix a non-zero vector u = (u0, u1, . . . , un) ∈ Nn+1 of non-negative integers, we
abbreviate |u| = u0 + u1 + · · · + un, and we set N = |u| + n. The rational normal
scroll Su is a smooth projective variety of dimension n+ 1 and degree |u| in PN . It
has the parametric representation(
x0 : x0λ : x0λ

2 : · · · : x0λ
u0 : x1 : x1λ : x1λ

2 : · · · : x1λ
u1 : · · · : xn : xnλ : · · · : xnλun

)
.

(4.10)
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The coordinates are monomials, so the scroll Su is also a toric variety [23]. Since
degree(Su) = |u| equals codim(Su) + 1 = N −n+ 1, it is a variety of minimal degree
[46, Example 1.14].

Restriction to the coordinates (x0 : x1 : · · · : xn) defines a rational map Su 99K Pn.
This is a toric fibration [27]. Its fibers are curves parametrized by λ. The base locus
is a coordinate subspace Pn ⊂ PN . Its points have support on the last coordinate
in each of the n + 1 groups. For instance, in Example 4.2 the base locus is the P2

defined by 〈a0, b0, b1, c0, c1, c2〉 in P8.
The prime ideal of the scroll Su is generated by the 2 × 2-minors of a 2 × |u|-

matrix of unknowns that is obtained by concatenating Hankel matrices on the blocks
of unknowns; see [33, Lemma 2.1], [86], and Example 4.2 below. For a textbook
reference see [46, Theorem 19.9].

We now consider an arbitrary projective variety X of dimension d in Pn. This is
the underlying model in some application, such as computer vision. We define the
distortion variety of level u, denoted X[u], to be the closure of the preimage of X
under the map Su 99K Pn. The fibers of this map are curves. The distortion variety
X[u] lives in PN . It has dimension d+ 1. Points on X[u] represent points on X whose
coordinates have been distorted by an unknown parameter λ. The parametrization
above is the rule for the distortion. In other words, X[u] is the closure of the image
of the regular map X × C→ PN given by (4.10).

Each distortion variety represents a minimal problem [64] in polynomial systems
solving. Data points define linear constraints on PN , like (4.9). Our problem is to
solve d + 1 such linear equations on X[u]. The number of complex solutions is the
degree of X[u]. A simple bound for that degree is stated in Proposition 4.7, and
an exact formulas can be found in Theorem 4.8. Of course, in applications we are
primarily interested in the real solutions.

We already saw one example of a distortion variety in Example 4.1. In the
following example, we discuss some surfaces in PN that arise as distortion varieties
of plane curves.

Example 4.2. Let n = 2 and u = (1, 2, 3). The rational normal scroll is a 3-
dimensional smooth toric variety in P8. Its implicit equations are the 2 × 2-minors
of the 2× 6-matrix (

a0 b0 b1 c0 c1 c2

a1 b1 b2 c1 c2 c3

)
. (4.11)

This is the “concatenated Hankel matrix” mentioned above. Its pattern generalizes
to all u.

Let X be a general curve of degree d in P2. The distortion variety X[u] is a surface
of degree 5d in P8. Its prime ideal is generated by the 15 minors of (4.11) together
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with d + 1 polynomials of degree d. These are obtained from the ternary form that
defines X by the distortion process in Theorem 4.16. For special curves X, the degree
of X[u] may drop below 5d. For instance, given a line X = V (λa+µb+νc) in P2, the
distortion surface X[u] has degree 5 if λ 6= 0, it has degree 4 if λ = 0 but µ 6= 0, and
it has degree 3 if λ = µ = 0. For any curve X, the property deg(X[u]) = 5 · deg(X)
holds after a coordinate change in P2. If X = {p} is a single point in P2 then X[u] is
a curve in P8. It has degree 3 unless p ∈ V (c). ♦

Back to two-view geometry

In this subsection we describe several variants of Example 4.1. These highlight
the role of distortion varieties in two-view geometry. We fix n = 8, N = 14 and
u = (0, 0, 1, 0, 0, 1, 1, 1, 2) as above. The scroll Su is the image of the map (4.1) and
its ideal is generated by the 2× 2-minors of (4.2). Each of the following varieties live
in the space of 3× 3-matrices x = (xij).

Example 4.3 (Essential Matrices). We now write E for the essential variety (see
[25] or Chapter 2). It has dimension 5 and degree 10 in P8. Its points x are the
essential matrices in (4.6). The ideal of E is generated by ten cubics, namely det(x)
and the nine entries of the matrix 2xxTx− trace(xxT )x. The distortion variety E[u]

has dimension 6 and degree 52 in P14. Its ideal is generated by 15 quadrics and 18
cubics, derived from the ten Demazure cubics. ♦

Example 4.4 (Essential Matrices plus Two Equal Focal Lengths). Fix a diagonal
calibration matrix k = diag(f, f, 1), where f is a new unknown. We define G to be
the closure in P8 of the set of 3 × 3-matrices x such that kxk ∈ E for some f . To
compute the ideal of the variety G, we use the following lines of code in the computer
algebra system Macaulay2 [44]:

R=QQ[f,x11,x12,x13,x21,x22,x23,x31,x32,x33,y13,y23,y33,y31,y32,z33,t];

X=matrix {{x11,x12,x13},{x21,x22,x23},{x31,x32,x33}}

K=matrix {{f,0,0},{0,f,0},{0,0,1}};

P=K*X*K;

E=minors(1,2*P*transpose(P)*P-trace(P*transpose(P))*P)+ideal(det(P));

G=eliminate({f},saturate(E,ideal(f)))

codim G, degree G, betti mingens G

The output tells us that the variety G has dimension 6 and degree 15, and that G
is the complete intersection of two hypersurfaces in P8, namely the cubic det(x) and



CHAPTER 4. IMAGE DISTORTION 83

the quintic

x11x
3
13x31 + x2

13x21x23x31 + x11x13x
2
23x31 + x21x

3
23x31 − x11x13x

3
31 − x21x23x

3
31+

x12x
3
13x32 + x2

13x22x23x32 + x12x13x
2
23x32 + x22x

3
23x32 − x12x13x

2
31x32−x2

12x
2
13x33

−x11x13x31x
2
32 − x21x23x31x

2
32 − x12x13x

3
32−x22x23x

3
32−x2

11x
2
13x33−x22x23x

2
31x32

−2x11x13x21x23x33 − 2x12x13x22x23x33 − x2
21x

2
23x33 − x2

22x
2
23x33 + x2

11x
2
31x33

+x2
21x

2
31x33 + 2x11x12x31x32x33 + 2x21x22x31x32x33 + x2

12x
2
32x33 + x2

22x
2
32x33.

(4.12)
The distortion variety G[u] is now computed by the following lines in Macaulay2:

Gu = eliminate({t}, G +

ideal(y13-x13*t,y23-x23*t,y31-x31*t,y32-x32*t,y33-x33*t,z33-x33*t^2))

codim Gu, degree Gu, betti mingens Gu

We learn that G[u] has dimension 7 and degree 68 in P14. Modulo the 15 quadrics
for Su, its ideal is generated by three cubics, like those in (4.3), and five quintics,
derived from (4.12). ♦

Example 4.5 (Essential Matrices plus One Focal Length Unknown). Let G′ denote
the 6-dimensional subvariety of P8 defined by the four maximal minors of the 3×4-
matrix x11 x12 x13 x21x31 + x22x32 + x23x33

x21 x22 x23 −x11x31 − x12x32 − x13x33

x31 x32 x33 0

 . (4.13)

This variety has dimension 6 and degree 9 in P8. It is defined by one cubic and three
quartics. The variety G′ is similar to G in Example 4.4, but with the identity matrix
as the calibration matrix for one of the two cameras. We can compute G′ by running
the Macaulay2 code above but with the line P = K*X*K replaced with the line P =
X*K. This model was studied in [16].

The distortion variety G′[u] has dimension 7 and degree 42 in P14. Modulo the 15
quadrics that define Su, the ideal of G′[u] is minimally generated by three cubics and
11 quartics. ♦

Table 4.1 summarizes the four models we discussed in Examples 4.1, 4.3, 4.4 and
4.5. The first column points to a reference in computer vision where this model
has been studied. The last column shows the upper bound for deg(X[u]) given in
Proposition 4.7. That bound is not tight in any of our examples. In the second half
of the table we report the same data for the four models when only only one of the
two cameras undergoes radial distortion.
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u =
(
0, 0, 1, 0, 0, 1, 1, 1, 2

)
Ref dim(X) deg(X) dim(X[u]) deg(X[u]) Prop 4.7

F in Ex 4.1: λ+F+λ [64] 7 3 8 16 18

E in Ex 4.3: λ+E+λ [64] 5 10 6 52 60

G in Ex 4.4: λf+E+fλ [57] 6 15 7 68 90

G′ in Ex 4.5: λ+E+fλ 6 9 7 42 54

v =
(
0, 0, 1, 0, 0, 1, 0, 0, 1

)
Ref dim(X) deg(X) dim(X[v]) deg(X[v]) Prop 4.7

F in Ex 4.6: F+λ [63] 7 3 8 8 9

E in Ex 4.6: E+λ [63] 5 10 6 26 30

G in Ex 4.6: f+E+fλ 6 15 7 37 45

G′ in Ex 4.6: E+fλ [63] 6 9 7 19 27

G′′ in Ex 4.6: f+E+λ 6 9 7 23 27

Table 4.1: Dimensions and degrees of two-view models and their radial distortions.

Example 4.6. We revisit the four two-view models discussed above, but with distor-
tion vector v = (0, 0, 1, 0, 0, 1, 0, 0, 1). Now, N = 11 and only one camera is distorted.
The rational normal scroll Sv has codimension 2 and degree 3 in P11. Its parametric
representation is(

x11 : x12 : x13 : x13λ : x21 : x22 : x23 : x23λ : x31 : x32 : x33 : x33λ
)
.

The distortion varieties F[v], E[v], G[v] and G′[v] live in P11. Their degrees are shown
in the lower half of Table 4.1. For instance, consider the last two rows. The notation
E+fλ means that the right camera has unknown focal length and it is also distorted.

The fifth row refers to another variety G′′. This is the image of G′ under the
linear isomorphism that maps a 3 × 3-matrix to its transpose. Since v is not a
symmetric matrix, unlike u, the variety G′′[v] is actually different from G′[v]. The
descriptor f+E+λ of G′′[v] expresses that the left camera has unknown focal length
and the right camera is distorted. The variety G′′[v] has dimension 7 and degree 23

in P11. In addition to the three quadrics x3iy3j − x3jy3i that define Sv, the ideal
generators for G′′[v] are two cubics and five quartics. The minimal problem [63, 64]
for this distortion variety is studied in detail in Section 4.5. ♦

4.3 Equations and degrees

In this section we express the degree and equations of X[u] in terms of those of X.
Throughout we assume that X is an irreducible variety of codimension c in Pn and
the distortion vector u ∈ Nn+1 satisfies u0 ≤ u1 ≤ · · · ≤ un. We begin with a general
upper bound for the degree.
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Proposition 4.7. Suppose un ≥ 1. The degree of the distortion variety satisfies

deg(X[u]) ≤ deg(X) · (uc + uc+1 + · · ·+ un). (4.14)

This holds with equality if the coordinates are chosen so that X is in general position
in Pn.

The upper bound in Proposition 4.7 is shown for our models in the last column
of Table 4.1. This result will be strengthened in Theorem 4.8 below, where we give
an exact degree formula that works for all X. It is instructive to begin with the two
extreme cases. If c = 0 and X = Pn then we recover the fact that the scroll X[u] = Su
has degree N − n = u0 + · · ·+ un. If c = n and X is a general point in Pn then X[u]

is a rational normal curve of degree un.
The following proof, and the subsequent development in this section, assumes

familiarity with two tools from computational algebraic geometry: the construction
of initial ideals with respect to weight vectors, as in [97], and the Chow form of a
projective variety [24, 39, 43, 60].

Proof of Proposition 4.7. Fix dim(X[u]) = n − c + 1 general linear forms on PN ,
denoted `0, `1, . . . , `n−c. We write their coefficients as the rows of the (n − c + 1) ×
(N + 1) matrix 

α0,0 α0,1 α0,2 · · · α0,N

α1,0 α1,1 α1,2 · · · α1,N
...

...
...

. . .
...

αn−c,0 αn−c,1 αn−c,2 · · · αn−c,N

 . (4.15)

Here αi,j ∈ C. The degree of X[u] equals #
(
X[u] ∩ V (`0, . . . , `n−c)

)
. We shall do this

count. Recall that X[u] is the closure of the image of the injective map X ×C→ PN
given in (4.10). The image of this map is dense in X[u]. Its complement is the Pn
consisting of all points whose coordinates in each the n+1 groups are zero except for
the last one. Since the linear forms `i are generic, all points of X[u] ∩ V (`0, . . . , `n−c)
lie in this image. By injectivity of the map, deg(X[u]) is the number of pairs (x, λ) ∈
X × C which map into X[u] ∩ V (`0, . . . , `n−c).

We formulate this condition on (x, λ) as follows. Consider the (n−c+1)×(n+1)
matrix

α0,0 + α0,1λ+ · · ·+ α0,u0λ
u0 · · · · · · α0,u0+...+un−1+1 + · · ·+ α0,N−nλ

un

α1,0 + α1,1λ+ · · ·+ α1,u0λ
u0 · · · · · · α1,u0+...+un−1+1 + . . .+ α1,N−nλ

un

...
. . . . . .

...
αn−c,0 + αn−c,1λ+ · · ·+ αn−c,u0λ

u0 · · · · · · αn−c,u0+...+un−1+1 + · · ·+ αn−c,N−nλ
un

.
(4.16)
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We want to count pairs (x, λ) ∈ Pn × C such that x ∈ X and x lies in the kernel of
this matrix. By genericity of `i, this matrix has rank n− c+ 1 for all λ ∈ C. So for
each λ ∈ C, the kernel of the matrix (4.16) is a linear subspace of dimension c− 1 in
Pn.

We conclude that (4.16) defines a rational curve in the Grassmannian Gr(Pc−1,Pn).
Here the αi,j are fixed generic complex numbers and λ is an unknown that parametrizes
the curve. If we take the Grassmannian in its Plücker embedding then the degree of
our curve is uc + uc+1 + · · · + un, which is the largest degree in λ of any maximal
minor of (4.16).

At this point we use the Chow form ChX of the variety X. As in Chapter 2,
following [24, 43], this is the defining equation of an irreducible hypersurface in the
Grassmannian Gr(Pc−1,Pn). Its points are the subspaces that intersect X. The
degree of ChX in Plücker coordinates is deg(X).

We now consider the intersection of our curve with the hypersurface defined by
ChX . Equivalently, we substitute the maximal minors of (4.16) into ChX and we
examine the resulting polynomial in λ. Since the matrix entries αi,j in (4.15) are
generic, the curve intersects the hypersurface of the Chow form ChX outside its
singular locus. By Bézout’s Theorem, the number of intersection points is bounded
above by deg(X) · (uc + uc+1 + · · ·+ un).

Each intersection point is non-singular on V (ChX), and so the corresponding
linear space intersects the variety X in a unique point x. We conclude that the
number of desired pairs (x, λ) is at most deg(X) · (uc + uc+1 + · · · + un). This
establishes the upper bound.

For the second assertion, we apply a general linear change of coordinates to X
in Pn. Consider the lexicographically last Plücker coordinate, denoted pc,c+1,...,n.

The monomial p
deg(X)
c,c+1,...,n appears with non-zero coefficient in the Chow form ChX .

Substituting the maximal minors of (4.16) into ChX , we obtain a polynomial in λ
of degree deg(X) · (uc + uc+1 + · · · + un). By the genericity hypothesis on (4.15),
this polynomial has distinct roots in C. These represent distinct points in X[u] ∩
V (`0, . . . , `n−c), and we conclude that the upper bound is attained.

We will now refine the method in the proof above to derive an exact formula for
the degree of X[u] that works in all cases. The Chow form ChX is expressed in primal
Plücker coordinates pi0,i1,...,in−c on Gr(Pc−1,Pn). The weight of such a coordinate is
the vector ei0 + ei1 + · · · + ein−c , and the weight of a monomial is the sum of the
weights of its variables. The Chow polytope of X is the convex hull of the weights of
all Plücker monomials appearing in ChX ; see [60].
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Theorem 4.8. The degree of X[u] is the maximum value attained by the linear func-
tional w 7→ u · w on the Chow polytope of X. This positive integer can be computed
by the formula

degree(X[u]) =
n∑
j=0

uj · degree
(

in−u(X) : 〈xj〉∞
)
, (4.17)

where in−u(X) is the initial monomial ideal of X with respect to a term order that
refines −u.

Proof. Let M be a monomial ideal in x0, x1, . . . , xn whose variety is pure of codimen-
sion c. Each of its irreducible components is a subspace span(ei0 , ei1 , . . . , ein−c) of Pn.
We write µi0,i1,...,in−c for the multiplicity of M along that coordinate subspace. By
[60, Theorem 2.6], the Chow form of (the cycle given by) M is the Plücker monomial∏

p
µi0,i1,...,in−c
i0,i1,...,in−c

, and the Chow polytope of M is the point
∑

µi0,i1,...,in−c(ei0 + ei1 +

· · · + ein−c). The j-th coordinate of that point can be computed from M without
performing a monomial primary decomposition. Namely, the j-th coordinate of the
Chow point of M is the degree of the saturation M : 〈xj〉∞. This follows from [60,
Proposition 3.2] and the proof of [60, Theorem 3.3].

We now substitute each maximal minor of the matrix (4.16) for the corresponding
Plücker coordinate pi0,i1,...,in−c . This results in a general polynomial of degree ui0 +
ui1 + · · · + uin−c in the one unknown λ. When carrying out this substitution in the
Chow form ChX , the highest degree terms do not cancel, and we obtain a polynomial
in λ whose degree is the largest u-weight among all Plücker monomials in ChX .
Equivalently, this degree in λ is the maximum inner product of the vector u with
any vertex of the Chow polytope of X.

One vertex that attains this maximum is the Chow point of the monomial ideal
M = in−u(X) in the proof of Proposition 4.7. Note that we had chosen one particular
term order to refine the partial order given by −u. If we vary that term order then we
obtain all vertices on the face of the Chow polytope supported by u. The saturation
formula for the Chow point of the monomial ideal M in the first paragraph of the
proof completes our argument.

We are now able to characterize when the upper bound in Proposition 4.7 is
attained. Let c− and c+ be the smallest and largest index respectively such that
uc− = uc = uc+ . We define a set Lu of n− c + 1 linear forms as follows. Start with
the n−c+ variables xc++1, xc++2, . . ., xn and then take c+−c+1 generic linear forms
in the variables xc− , xc−+1, . . . , xc+ . In the case when u has distinct coordinates,
V (Lu) is simply the subspace spanned by e0, e1, . . . , en−c.
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Corollary 4.9. The degree of X[u] is the right hand side of (4.14) if and only if
V (Lu) ∩X = ∅.

Proof. The quantity deg(X) · (uc + uc+1 + · · ·+ un) is the maximal u-weight among
Plücker monomials of degree equal to deg(X). The monomials that attain this maxi-
mal u-weight are products of deg(X) many Plücker coordinates of weight uc+uc+1 +
· · · + un. These are precisely the Plücker coordinates pi0,i1...,ic+−c, uc++1,...,un , where
c− ≤ i0<i1< · · ·<ic+−c ≤ c+.

Such monomials are non-zero when evaluated at the subspace V (Lu). All other
monomials, namely those having smaller u-weight, evaluate to zero on V (Lu). Hence
the Chow form ChX has terms of degree deg(X) · (uc + uc+1 + · · ·+ un) if and only
if ChX evaluates to a non-zero constant on V (L) if and only if the intersection of X
with V (Lu) is empty.

We present two example to illustrate the exact degree formula in Theorem 4.8.

Example 4.10. Suppose X is a hypersurface in Pn, defined by a homogeneous
polynomial ψ(x0, . . . , xn) of degree d. Let Ψ be the tropicalization of ψ, with respect
to min-plus algebra, as in [74]. Equivalently, Ψ is the support function of the Newton
polytope of f . Then

deg(X[u]) = d · |u| − Ψ(u0, u1, . . . , un). (4.18)

For instance, let n = 8, d = 3 and ψ the determinant of a 3× 3-matrix. Hence X is
the variety of fundamental matrices, as in Example 4.1. The tropicalization of the
3× 3-determinant is

Ψ = min
(
u11+u22+u33, u11+u23+u32, u12+u21+u33, u12+u23+u31, u13+u21+u32, u13+u22+u31

)
.

The degree of the distortion variety X[u] equals 3 ·
∑

uij − Ψ. This explains the

degree 16 we had observed in Example 4.1 for the radial distortion of the fundamental
matrices. ♦

Example 4.11. Let X be the variety of essential matrices with the same distortion
vector u. In Example 4.3, we found that deg(X[u]) = 52. The following Macaulay2

code verifies this:

U = {0,0,1,0,0,1,1,1,2};

R = QQ[x11,x12,x13,x21,x22,x23,x31,x32,x33,Weights=>apply(U,i->10-i)];

P = matrix {{x11,x12,x13},{x21,x22,x23},{x31,x32,x33}}

X = minors(1,2*P*transpose(P)*P-trace(P*transpose(P))*P)+ideal(det(P));

M = ideal leadTerm X;

sum apply( 9, i -> U_i * degree(saturate(M,ideal((gens R)_i))) )
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Here, M is the monomial ideal in−u(X), and the last line is our saturation formula in
(4.17). ♦

We next derive the equations that define the distortion variety X[u] from those
that define the underlying variety X. Our point of departure is the ideal of the

rational normal scroll Su. It is generated by the

(
N − n

2

)
minors of the concate-

nated Hankel matrix. The following lemma is well-known and easy to verify using
Buchberger’s S-pair criterion; see also [86].

Lemma 4.12. The 2 × 2-minors that define the rational normal scroll Su form a
Gröbner basis with respect to the diagonal monomial order. The initial monomial
ideal is squarefree.

For instance, in Example 4.2, when n = 2 and u = (1, 2, 3), the initial monomial
ideal is

〈a0b1, a0b2, a0c1, a0c2, a0c3, b0b2, b0c1, b0c2, b0c3, b1c1, b1c2, b1c3, c0c2, c0c3, c1c3〉. (4.19)

A monomial m is standard if it does not lie in this initial ideal. The weight of a
monomial m is the sum of its indices. Equivalently, the weight of m is the degree in
λ of the monomial in N + 1 variables that arises from m when substituting in the
parametrization of Su.

Lemma 4.13. Consider any monomial xν = xν0
0 x

ν1
1 · · ·xνnn of degree |ν| in the coor-

dinates of Pn. For any nonnegative integer i ≤ ν · u there exists a unique monomial
m in the coordinates on PN such that m is standard and maps to xνλi under the
parametrization of the scroll Su.

Proof. The polyhedral cone corresponding to the toric variety Su consists of all pairs
(ν, i) ∈ Rn+2

≥0 with 0 ≤ i ≤ ν · u. Its lattice points correspond to monomials xνti

on Su. Since the initial ideal in Lemma 4.12 is square-free, the associated regular
triangulation of the polytope is unimodular, by [97, Corollary 8.9]. Each lattice
point (ν, i) has a unique representation as an N-linear combination of generators
that span a cone in the triangulation. Equivalently, xνti has a unique representation
as a standard monomial in the N + 1 coordinates on PN .

We refer to the standard monomial m in Lemma 4.13 as the ith distortion of the
given xν .
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Example 4.14. In Example 4.2 we have n = 2, N = 8, and Su corresponds to
the cone over a triangular prism. The lattice points in that cone are the monomials
xν0

0 x
ν1
1 x

ν2
2 t

i with 0 ≤ i ≤ ν0 + 2ν1 + 3ν2. Using the ambient coordinates on P8, each
such monomial is written uniquely as aν00

0 aν01
1 bν10

0 bν11
1 bν12

2 cν20
0 cν21

1 cν22
2 cν23

3 that is not
in (4.19) and satisfies ν00 + ν01 = ν0, ν10 + ν11 + ν12 = ν1, ν20 + ν21 + ν22 + ν23 =
ν2, ν01 + ν11 + 2ν12 + ν21 + 2ν22 + 3ν23 = i. For instance, if xν = x3

0x
2
1x

2
2 then its

various distortions, for 0 ≤ i ≤ 13, are the monomials

a3
0b

2
0c

2
0, a

3
0b

2
0c0c1, a

3
0b

2
0c0c2, a

3
0b

2
0c0c3, a

3
0b

2
0c1c3, a

3
0b

2
0c2c3, a

3
0b

2
0c

2
3,

a3
0b0b1c

2
3, a

3
0b0b2c

2
3, a

3
0b1b2c

2
3, a

3
0b

2
2c

2
3, a

2
0a1b

2
2c

2
3, a0a

2
1b

2
2c

2
3, a

3
1b

2
2c

2
3.

Given any homogeneous polynomial p in the unknowns x0, x1, . . . , xn, we write
p[i] for the polynomial on PN that is obtained by replacing each monomial in p by
its ith distortion.

Example 4.15. For the scroll in Example 4.2, the distortions of the sextic p =
a6+a2b2c2 are

p[0] = a6
0+a2

0b
2
0c

2
0, p[1] = a5

0a1+a0a1b
2
0c

2
0 , . . . , p[5] = a0a

5
1+a2

1b1b2c
2
0, p[6] = a6

1+a2
1b

2
2c

2
0, . . .

The following result shows how the equations of X[u] can be read off from those
of X.

Theorem 4.16. The ideal of the distortion variety X[u] is generated by the

(
N − n

2

)
quadrics that define Su together with the distortions p[i] of the elements p in the
reduced Gröbner basis of X for a term order that refines the weights −u. Hence, the
ideal is generated by polynomials whose degree is at most the maximal degree of any
monomial generator of M = in−u(X).

Proof. Since X[u] ⊂ Su, the binomial quadrics that define Su lie in the ideal I(X[u]).
Also, if p is a polynomial that vanishes on X then all of its distortions p[i] are in
I(X[u]) because

p[i]

(
x0, λx0, . . . , λ

u0x0, x1, . . . , λ
unxn

)
= λi · p(x) = 0 for λ ∈ C and x ∈ X.

Conversely, consider any homogeneous polynomial F in I(X[u]). It must be shown
that F is a polynomial linear combination of the specified quadrics and distortion
polynomials. Without loss of generality, we may assume that F is standard with
respect to the Gröbner basis in Lemma 4.12, and that each monomial in F has the
same weight i. This implies

F
(
x0, λx0, . . . , λ

u0x0, x1, . . . , λ
unxn

)
= λif(x)
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for some homogeneous f ∈ C[x0, . . . , xn]. Since F ∈ I(X[u]), we have f ∈ I(X). We
write

f = h1p1 + h2p2 + · · ·+ hkpk,

where p1, p2, . . . , pk are in the reduced Gröbner basis of I(X) with respect to a term
order refining −u, and the multipliers satisfy deg−u(f) ≥ deg−u(hjpj) = deg−u(hj) +
deg−u(pj) for j = 1, 2, . . . , k. Since F = f[i], we have −deg−u(f) ≥ i. Hence, for each
j there exist nonnegative integers aj and bj such that aj+bj = i and −deg−u(hj) ≥ aj
and −deg−u(pj) ≥ bj. The latter inequalities imply that the distortion polynomials
(hj)[aj ] and (pj)[bj ] exist.

Now consider the following polynomial in the coordinates on PN :

F̃ = (h1)[a1] · (p1)[b1] + · · · + (hk)[ak] · (pk)[bk].

By construction, F̃ and F both map to λif under the parameterization of the scroll
Su. Thus, F̃ − F ∈ I(Su). This shows that F is a polynomial linear combination
of generators of I(Su) and distortions of Gröbner basis elements p1, . . . , pk. This
completes the proof.

We illustrate this result with two examples.

Example 4.17. If X is a hypersurface of degree d ≥ 2 then the ideal I(X[u]) is gen-
erated by binomial quadrics and distortion polynomials of degree d. More generally,
if the generators of I(X) happen to be a Gröbner basis for −u then the degree of
the generators of I(X[u]) does not go up. This happens for all the varieties from
computer vision seen in Section 2. ♦

In general, however, the maximal degree among the generators of I(X[u]) can be
much larger than that same degree for I(X). This happens for complete intersection
curves in P3:

Example 4.18. Let X be the curve in P3 obtained as the intersection of two random
surfaces of degree 4. We fix u = (2, 3, 4, 4). The initial ideal M = in−u(X) has 51
monomial generators. The largest degree is 32. We now consider the distortion
surface X[u] in P12. The ideal of I(X[u]) is minimally generated by 133 polynomials.
The largest degree is 32. ♦

4.4 Multi-parameter distortions

In this section we study multi-parameter distortions of a given projective variety
X ⊂ Pn. Now, λ = (λ1, . . . , λr) is a vector of r parameters, and u = (u0, . . . , un)
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where ui = {ui,1, ui,2, . . . , ui,si} is an arbitrary finite subset of Nr. Each point ui,j

represents a monomial in the r parameters, denoted λui,j . We set |u| =
n∑
i=0

|ui| =

n∑
i=0

si and N = |u| − 1. The role of the scroll is played by a toric variety Cu of

dimension n+ r in PN that is usually not smooth. Generalizing (4.10), we define the
Cayley variety Cu in PN by the parametrization(
x0λ

u0,1 : x0λ
u0,2 : · · · : x0λ

u0,s0 : x1λ
u1,1 : · · · : x1λ

u1,s1 : · · · : xrλ
ur,1 : · · · : xrλur,sr

)
.

(4.20)
The name was chosen because Cu is the toric variety associated with the Cayley
configuration of the configuration u. Its convex hull is the Cayley polytope; see [27,
Section 3] and [74, Definition 4.6.1].

The distortion variety X[u] is defined as the closure of the set of all points (4.20)
in PN where x ∈ X and λ ∈ (C∗)r. Hence X[u] is a subvariety of the Cayley variety
Cu, typically of dimension d + r where d = dim(X). Note that, even in the single-
parameter setting (r = 1), we have generalized our construction, by permitting ui to
not be an initial segment of N.

Example 4.19. Let r = n = 2, u0 = {(0, 0), (0, 1)}, u1 = {(0, 0), (1, 0)}, u2 =
{(2, 2), (1, 1)}. The Cayley variety Cu is the singular hypersurface in P5 defined by
a0b0c0−a1b1c1. Let X be the conic in P2 given by x2

0 +x2
1−x2

2. The distortion variety
X[u] is a threefold of degree 10. Its ideal is 〈a0b0c0−a1b1c1, a

2
0c

2
0 +b2

0c
2
0−c4

1, a
2
0a1b1c0 +

a1b
2
0b1c0 − a0b0c

3
1, a

2
0a

2
1b

2
1 + a2

1b
2
0b

2
1 − a2

0b
2
0c

2
1〉. ♦

Two views with two or four distortion parameters

We now present some motivating examples from computer vision. Multi-dimensional
distortions arise when several cameras have different unknown radial distortions, or
when the distortion function g(t) = 1+µt2 in (4.4)–(4.5) is replaced by a polynomial
of higher degree.

We return to the setting of Section 4.2, and we introduce two distinct distortion
parameters λ1 and λ2, one for each of the two cameras. The role of the equation
(4.6) is played by

0 =

(
U2

1 + λ2‖U2‖2

)>x11 x12 x13

x21 x22 x23

x31 x32 x33

( U1

1 + λ1‖U1‖2

)
. (4.21)
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Just like in (4.9), this translates into one linear equation c>m = 0, where now m> =

[x11, x12, x13, λ1x13, x21, x22, x23, λ1x23, x31, x31λ2, x32, x32λ2, x33, x33λ2, x33λ1, x33λ1λ2] and c> =[
u2u1,u2v1,u2,u2‖U1‖2, v2u1,v2v1,v2, v2‖U1‖2, u1, u1‖U2‖2, v1, v1‖U2‖2, 1, ‖U1‖2, ‖U2‖2, ‖U1‖2‖U2‖2

]
.

Here c is a real vector of data, whereas λ = (λ1, λ2) and x = (xij) comprise 11
unknowns. The vector m is a monomial parametrization of the form (4.20). The
corresponding configuration u is given by u11 = u12 = u21 = u22 = {(0, 0)}, u13 =
u23 = {(0, 0), (1, 0)}, u31 = u32 = {(0, 0), (0, 1)}, u33 = {(0, 0), (1, 0), (0, 1), (1, 1)}.
The Cayley variety Cu lives in P15. It has dimension 10 and degree 10. Its toric ideal
is generated by 11 quadratic binomials.

Let X ⊂ P8 be one of the two-view models F , E, G, or G′ in Subsection 4.2.
The following table concerns the distortion varieties X[u] in P15. It is an extension
of Table 4.1.

dim(X), dim(X[u]) deg(X[u]) Prop 4.7 # ideal gens of

deg(X) iterated deg 2, 3, 4, 5

F in Ex 4.1: λ1+F+λ2 7, 3 9 24 36 11, 4, 0, 0

E in Ex 4.3: λ1+E+λ2 5, 10 7 76 120 11, 20, 0, 0

G in Ex 4.4: λ1f+E+fλ2 6, 15 8 104 180 11, 4, 0, 4

G′ in Ex 4.5: λ1+E+fλ2 6, 9 8 56 108 11, 4, 15, 0

Table 4.2: Dimensions, degrees, mingens of two-view models and their two-parameter
radial distortions.

On each X[u] we consider linear systems of equations c>m = 0 that arise from
point correspondences. For a minimal problem, the number of such epipolar con-
straints is dim(X[u]), and the expected number of its complex solutions is deg(X[u])
(though e.g. in three-view geometry, degree drops occur; see Theorem 3.6). The
last column summarizes the number of minimal generators of the ideal of X[u]. For
instance, the variety X[u] = E[u] for essential matrices is defined by 11 quadrics (from
Cu), 20 cubics, 0 quartics and 0 quintics. If we add 7 general linear equations to these
then we have a system with 76 solutions in P15. The penultimate column of Table
4.2 gives an upper bound on deg(X[u]) that is obtained by applying Proposition 4.7
twice, after decomposing u into two one-parameter distortions.

We next discuss four-parameter distortions for two cameras. These are based
on the following model for epipolar constraints, which is a higher-order version of
equation (4.21):

0 =

(
U2

1 + λ2‖U2‖2 + µ2‖U2‖4
)> x11 x12 x13

x21 x22 x23

x31 x32 x33

( U1

1 + λ1‖U1‖2 + µ1‖U1‖4
)
.(4.22)
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As before, the 3 × 3-matrix x = (xij) belongs to a two-view camera model E, F ,
G or G′. We rewrite (4.22) as the inner product c>m = 0 of two vectors, where c
records the data and m is a parametrization for the distortion variety. We now have
n = 9, r = 4 and |u| = 25. The configurations in N4 that furnish the degrees for this
four-parameter distortion are

u11 = u12 = u21 = u22 = {0},
u13 = u23 = {0, (1, 0, 0, 0), (0,0,1,0)}, u31 = u32 = {0, (0, 1, 0, 0), (0, 0, 0, 1)},

u33 = {0, (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1)}.

Each of the resulting distortion varieties X[u] lives in P24 and satisfies dim(X[u]) =
dim(X)+4. As before, we may compute the prime ideals for these distortion varieties
by elimination, for instance in Macaulay2. From this, we obtain the information
displayed in Table 4.3.

dim deg quadrics cubics quartics quintics

F in Ex 4.1: λ1µ1+F+λ2µ2 11 115 51 9

E in Ex 4.3: λ1µ1+E+λ2µ2 9 354 51 34

G in Ex 4.4: λ1µ1f+E+fλ2µ2 10 245 51 9 42

G′ in Ex 4.5: λ1µ1+E+fλ2µ2 10 475 51 9 9

Table 4.3: Dimension, degrees, number of minimal generators for four-parameter
radial distortions.

In each case, the 51 quadrics are binomials that define the ambient Cayley variety
Cu in P24. The minimal problems are now more challenging than those in Tables
4.1 and 4.2. For instance, to recover the essential matrix along with four distortion
parameters from 9 general point correspondences, we must solve a polynomial system
that has 354 complex solutions.

Iterated distortions and their tropicalization

In what follows we take a few steps towards a geometric theory of multi-parameter
distortions. We begin with the observation that multi-parameter distortions arising
in practice, including those in Subsection 4.4, will often have an inductive structure.
Such a structure allows us to decompose them as successive one-parameter distortions
where the degrees form an initial segment of the non-negative integers N. In that
case the results of Section 4.2 can be applied iteratively. The following proposition
characterizes when this is possible. For ui ⊂ Nr and k < r, we write ui|Nk ⊂ Nk for
the projection of the set ui onto the first k coordinates.
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Proposition 4.20. Let u = (u0, . . . , un) be a sequence of finite nonempty subsets
of Nr. The multi-parameter distortion with respect to u in λ1, . . . , λr is a succession
of one-parameter distortions by initial segments, in λ1, then λ2, and so on, if and
only if each fiber of the maps ui|Nk � ui|Nk−1 becomes an initial segment of N when
projected onto the kth coordinate. This condition holds when each ui is an order ideal
in the poset Nr, with coordinate-wise order.

Proof. We show this for r = 2. The general case is similar but notationally more
cumbersome. The two-parameter distortion given by a sequence u decomposes into
two one-parameter distortions if and only if there exist vectors v = (v0, . . . , vn) ∈
Nn+1 and w = (w0, . . . , wn) ∈ Nv0+1⊕ · · · ⊕Nvn+1 such that ui = {(s, t) : 0 ≤ s ≤ vi
and 0 ≤ t ≤ wis} for i = 0, 1, . . . , n. This means that both the Cayley variety and
any distortion subvariety decomposes as follows:

Cu = (Sv)[w] and X[u] = (X[v])[w]. (4.23)

The segment [0, vi] in N is the unique fiber of the map ui|N1 � ui|N0 = {0}. The
fiber of ui|N2 � ui|N1 = [0, vi] over an integer s is the segment [0, wis] in N. Thus the
stated condition on fibers is equivalent to the existence of the non-negative integers
vi and wis. For the second claim, we note that the set ui is an order ideal in N2

precisely when wi0 ≥ wi1 ≥ · · · ≥ wis.

Proposition 4.20 applies to all models seen in Subsection 4.4 since the ui are order
ideals.

Example 4.21. Consider the two-parameter radial distortion model for two cameras
derived in (4.21). The vectors in the above proof are v = (0, 0, 1, 0, 0, 1, 0, 0, 1) and
w =

(
0, 0, (0, 0), 0, 0, (0, 0), 1, 1, (1, 1)

)
. The decomposition (4.23) holds for all four

models X = E,F,G,G′. The penultimate column of Table 4.2 says that the degree
of (X[v])[w] is bounded above by 12 · deg(X). This follows directly from Proposition
4.7 because 12 = |v| · |w|. ♦

The exact degrees for X[u] shown in Tables 4.2 and 4.3 were found using Gröbner
bases. This computation starts from the ideal of X and incorporates the structure
in Proposition 4.20.

Tropical Geometry [74] furnishes tools for studying multi-parameter distortion
varieties. In what follows, we identify any variety X ⊂ Pn with its reembedding
into PN , where the i-th coordinate xi has been duplicated |ui| times. Consider the
distortion variety 1[u] of the point 1 = (1 : 1 : · · · : 1) in Pn. This is the toric variety
in PN given by the parametrization(
λu0,1 : λu0,2 : · · · : λu0,s0 : λu1,1 : · · · : λu1,s1 : · · · : λur,1 : · · · : λur,sr

)
for λ ∈ (C∗)r+1.
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Let ũ denote the (r+1)× (N+1)-matrix whose columns are vectors in the sets ui for
i = 0, 1, . . . , n, augmented by an extra all-one row vector (1, 1, . . . , 1). This matrix
represents the toric variety 1[u]. Recall that the Hadamard product ? of two vectors
in Cn+1 is their coordinate-wise product. This operation extends to points in Pn and
also to subvarieties.

Theorem 4.22. Fix a projective variety X ⊂ Pn and any distortion system u,
regarded as r × (N + 1)-matrix. The distortion variety is the Hadamard product of
X with a toric variety:

X[u] = X ? 1[u]

Its tropicalization is the Minkowski sum of the tropicalization of X with a linear
space:

trop(X[u]) = trop(X) + trop(1[u]) = trop(X) + rowspace(ũ). (4.24)

Proof. This follows from equation (4.20) and [74, Section 5]. The toric variety 1[u]

in PN is represented by the matrix ũ, in the sense of [97], so its tropicalization is the
row space of ũ. Tropicalization takes Hadamard products into Minkowski sums, by
[12, Proposition 5.1] or [74, Proposition 5.5.11].

Theorem 4.22 suggests the following method for computing degrees of multi-
parameter distortion varieties. Let L be the standard tropical linear space of codi-
mension r + dim(X) in RN+1/R1, as in [74, Corollary 3.6.16]. Fix a general point
ξ in RN+1/R1. Then deg(X[u]) is the number of points, counted with multiplicity,
in the intersection of the tropical variety (4.24) with the tropical linear space ξ + L.
In practice, X is fixed and we precompute trop(X). That fan then gets intersected
with ξ + L+ rowspace(ũ) for various configurations u.

Corollary 4.23. The degree of X[u] is a piecewise-linear function in the maximal
minors of ũ.

Proof. The maximal minors of ũ are the Plücker coodinates of the row space of ũ.
An argument as in [20, Section 4] leads to a polyhedral chamber decomposition of
the relevant Grassmannian, according to which pairs of cones in trop(X) and in
ξ + L + rowspace(ũ) actually intersect. Each such intersection is a point, and its
multiplicity is one of the maximal minors of ũ.

Using the software Gfan [56], we precomputed the tropical varieties trop(X) for
our four basic two-view models, namely X = E,F,G,G′. The results are summarized
in Table 4.4.
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Variety X dim lineality f-vector multiplicities

F in Example 4.1 7 4 (9, 18, 15) 115

E in Example 4.3 5 0 (591, 4506, 12588, 15102, 6498) 26426, 472

G in Example 4.4 6 1 (32, 213, 603, 780, 390) 1336, 254

G′ in Example 4.5 6 1 (100, 746, 2158, 2800, 1380) 1800, 2572, 48

Table 4.4: The tropical varieties in R9/R1 associated with the two-view models.

The lineality space corresponds to a torus action on X. Its dimension is given
in column 2. Modulo this space, trop(X) is a pointed fan. Column 3 records the
number of i-dimensional cones for i = 1, 2, 3, . . .. Each maximal cone comes with
an integer multiplicity [74, Section 3.4]. These multiplicities are 1, 2 or 4 for our
examples. Column 4 indicates their distribution.

4.5 Application to minimal problems

This section offers a case study for one minimal problem which has not yet been
treated in the computer vision literature. We build and test an efficient Gröbner
basis solver for it. Our approach follows [65, 64, 67] and applies in principle to any
zero-dimensional parameterized polynomial system. This illustrates how the theory
in Sections 4.2, 4.3, 4.4 ties in with practice.

We fix the distortion variety f+E+λ in Table 4.1. This is the variety G′′[v] which

lives in P11 and has dimension 7 and degree 23. We represent its defining equations
by the matrix x11 x12 x21x31 + x22x32 + x23x33 x13 y13

x21 x22 −x11x31 − x12x32 − x13x33 x23 y23

x31 x32 0 x33 y33

 . (4.25)

This matrix is derived by augmenting (4.13) with the y-column. The prime ideal of
G′′[v] is generated by all 3 × 3-minors of (4.25) and the 2 × 2-minors in the last two
columns. The real points on this projective variety represent the relative position of
two cameras, one with an unknown focal length f , and the other with an unknown
radial distortion parameter λ.

Each pair (U1, U2) of image points gives a constraint (4.6) which translates into
a linear equation (4.9) on G′′[v] ∩ L′ ⊂ P11. Here:

m> = [x11, x12, x13, y13, x21, x22, x23, y23, x31, x32, x33, y33]
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is the vector of unknowns. Using notation above, the coefficient vector of the equation
c>m = 0 is c> =

[
u2u1, u2v1, u2, u2‖U1‖2, v2u1, v2v1, v2, v2‖U1‖2, u1, v1, 1, ‖U1‖2

]
.

Seven pairs determine a linear system C m = 0 where the coefficient matrix C
has format 7× 12. For general data, the matrix C has full rank 7. The solution set
is a 5-dimensional linear subspace in R12, or, equivalently, a 4-dimensional subspace
L′ in P11. The intersection G′′[v] ∩ L′ consists of 23 points. Our aim is to compute
these fast and accurately. This is what is meant by the minimal problem associated
with the distortion variety G′′[v].

First build elimination template, then solve instances very
fast

We shall employ the method of automatic generation of Gröbner solvers. This has
already been applied with considerable success to a wide range of camera geometry
problems in computer vision; see e.g [65, 64]. We start by computing a suitable basis
{n1, n2, n3, n4, n5} for the null space of C in R12. We then introduce four unknowns
γ1, . . . , γ4, and we substitute

m = γ1n1 + γ2n2 + γ3n3 + γ4n4 + n5. (4.26)

Our rank constraints on (4.25) translate into ten equations in γ1, γ2, γ3, γ4. This
system has 23 solutions in C4. Our aim is to compute these within a few tens or
hundreds of microseconds.

Efficient and stable Gröbner solvers are often based on Stickelberger’s Theorem
[98, Theorem 2.6], which expresses the solutions as the joint eigenvalues of its com-
panion matrices. Let I ⊂ R[γ] be the ideal generated by our ten polynomials in
γ = (γ1, γ2, γ3, γ4). The quotient ring R[γ]/I is isomorphic to R23. An R-vector space
basis B is given by the standard monomials with respect to any Gröbner basis of I.
The multiplication map Mi : R[γ]/I → R[γ]/I, f 7→ fγi is R-linear. Using the basis
B, this becomes a 23× 23-matrix. The matrices M1,M2,M3,M4 commute pairwise.
These are the companion matrices. As an R-algebra, R[M1,M2,M3,M4] ' R[γ]/I.
Since I is radical, there are 23 linearly independent joint eigenvectors x, satisfying
Mix = λix. The vectors (λ1, λ2, λ3, λ4) ∈ C4 are the zeros of I.

In practice, it suffices to construct only one of the companion matrices Mi, since
we can recover the zeros of I from eigenvectors x of Mi. Thus, our primary task
is to compute either M1,M2,M3 or M4 from seven point correspondences (U1, U2)
in a manner that is both very fast and numerically stable. For this purpose, the
automatic generator of Gröbner solvers [65, 64] is used. We now explain this method
and illustrate it for the f+E+λ problem.



CHAPTER 4. IMAGE DISTORTION 99

To achieve speed in computation, we exploit that, for generic data, Buchberger’s
algorithm always rewrites the input polynomials in the same way. The resulting
Gröbner trace [101] is always the same. Therefore, we can construct a single trace
for all generic systems by tracing the construction of a Gröbner basis of a single
“generic” system. This is done only once in an off-line stage of solver generation. It
produces an elimination template, which is then reused again and again for efficient
on-line computations on generic data.

The off-line part of the solver generation is a variant of the Gröbner trace al-
gorithm in [101]. Based on the F4 algorithm [36] for a particular generic system,
it produces an elimination template for constructing a Gröbner basis of 〈F 〉. The
input polynomial system F = {f1, . . . , f10} is written in the form Am = 0, where A
is the matrix of coefficients and m is the vectors of monomials of the system. Every
Gröbner basis G of F can be constructed by Gauss-Jordan (G-J) elimination of a
coefficient matrix Ad derived from F by multiplying each polynomial fi ∈ F , by all
monomials up to degree max {0, d− di}, where di = deg(fi).

To find an appropriate d, our solver generator starts with d = min {di}, sets
md = m, and G-J eliminates the matrix Amin{di} = A. Then, it checks if a Gröbner
basis G has been generated. If not, it increases d by one, builds the next Ad and md,
and goes back to the check. This is repeated until a suitable d and a Gröbner basis G
has been found. Often, we can remove some rows (polynomials) from Ad at this stage
and form a smaller elimination template, denoted A′d. For this, another heuristic
optimization procedure is employed, aimed at removing unnecessary polynomials
and provide an efficient template leading from F to the reduced coefficient matrix
A′d. For a detailed description see [65] and [64, Section 4.4.3].

In order to guide this process, we first precompute the reduced Gröbner basis of I,
e.g. w.r.t. grevlex ordering in Macaulay2 [44], and the associated monomial basis B
of R[γ]/I. This has to be done in exact arithmetic over Q, which is computationally
very demanding, due to the coefficient growth [8]. We alleviate this problem by
using modular arithmetic [36] or by computing directly in a finite field modulo a
single “lucky prime number” [101]. For many practical problems [18, 82, 94], small
primes like 30011 or 30013 are sufficient.

The output of this off-line algorithm is the elimination template for constructing
A′d, i.e. the list of monomials multiplying each polynomial of F to produce A′d and
m′d. The template is encoded as manipulations of sparse coefficient matrices. After
removing unnecessary rows and columns, the matrix A′d has size s×(s+|B|) for some
s. The left s × s-block is invertible. Multiplying A′d by that inverse and extracting
appropriate rows, one obtains the |B|×|B| matrix M1 that represents the linear map
R[γ]/I → R[γ]/I, f 7→ fγ1 in the basis B.

We applied this off-line algorithm to the f+E+λ problem, with standard mono-
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mial basis

B = (1, γ1, γ1γ3, γ1γ3γ4, γ1γ4, γ1γ
2
4 , γ2, γ2γ3, γ2γ3γ4, γ2γ4, γ2γ

2
4 , γ2γ

3
4 , γ3, γ

2
3 , γ

3
3 ,

γ2
3γ4, γ3γ4, γ3γ

2
4 , γ3γ

3
4 , γ4, γ

2
4 , γ

3
4 , γ

4
4).

Note that |B| = 23. The matrix (4.25) gives the following ten ideal generators (with
d1=d2=d3=2, d4=d5=3, d6= · · ·=d10=4) for the variety G′′[u] encoding the f+E+λ
problem:

f1 = y23x33 − x23y33
f2 = y13x33 − x13y33
f3 = y13x23 − x13y23
f4 = y13x22x31 − x12y23x31 − y13x21x32 + x11y23x32 + x12x21y33 − x11x22y33
f5 = x13x22x31 − x12x23x31 − x13x21x32 + x11x23x32 + x12x21x33 − x11x22x33
f6 = x11y13x31x32 + x21y23x31x32 + x12y13x

2
32 + x22y23x

2
32 − x11x12x31y33 − x21x22x31y33

−x212x32y33 + x213x32y33 − x222x32y33 + x223x32y33 − x12x13x33y33 − x22x23x33y33
· · · · · · · · · · · · · · ·

f10 = x11x12x
2
31 + x21x22x

2
31 − x211x31x32 + x212x31x32 − x221x31x32 + x222x31x32

−x11x12x232 − x21x22x232 + x12x13x31x33 + x22x23x31x33 − x11x13x32x33 − x21x23x32x33

Using (4.26), these are inhomogeneous polynomials in γ1, γ2, γ3, γ4. In the off-line
algorithm, we multiply fi by all monomials up to degree 5−di in these four variables.
Each of f1, f2, f3 is multiplied by the 35 monomials of degree ≤ 3, each of f4, f5 is
multiplied by the 15 monomials of degree ≤ 2, and each of f6, . . . , f10 is multiplied by
the 5 monomials of degree ≤ 1. The resulting 160 = 10 + 105 + 30 + 25 polynomials
are written as a matrix A5 with 160 rows. Only 103 rows are needed to construct the
matrix M1. We conclude with an elimination template matrix A′5 of format 103×126.
For any data C, the on-line solver performs G-J elimination on that matrix, and it
computes the eigenvectors of a 23× 23 matrix M1.

To avoid coefficient growth in the on-line stage, exact computations over Q are
replaced by approximate computations with floating point numbers in R. In a naive
implementation, expected cancellations may fail to occur due to rounding errors,
thus leading to incorrect results. This is not a problem in our method because we
follow the precomputed elimination template: we use only matrix entries that were
non-zero in the off-line stage. Still, replacing the symbolic F4 algorithm with a
numerical computation may lead to very unstable behavior.

It has been observed [15] that different formulations, term orderings, pair selection
strategies, etc., can have a dramatic effect on the stability and speed of the final
solver. It is hence crucial to validate every solver experimentally, by simulations as
well as on real data.
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Computational results

A complete solution, in the engineering sense, to a minimal problem is a solution
that is: 1) fast and 2) numerically stable for most of the data that occur in practice.
Moreover, for applications it is important to study the distribution of real solutions
of the minimal solver.

Minimal solvers are often used inside RANSAC style loops [37]. They form
parts of much larger systems, such as structure-from-motion and 3D reconstruc-
tion pipelines or localization systems. Maximizing the efficiency of these solvers is
an essential task. Inside a RANSAC loop, all real zeros returned by the solver are
seen as possible solutions to the problem. The consistency w.r.t. all measurements
is tested for each of them. Since that test may be computationally expensive, the
study of the distribution of real solutions is important.

In this section we present graphs and statistics that display properties of the
complete solution we offer for the f+E+λ problem. We studied the performance
of our Gröbner solver on synthetically generated 3D scenes with known ground-
truth parameters. We generated 500,000 different scenes with 3D points randomly
distributed in a cube [−10, 10]3 and cameras with random feasible poses. Each 3D
point was projected by two cameras. The focal length f of the left camera was drawn
uniformly from the interval [0.5, 2.5] and the focal length of the right camera was set
to 1. The orientations and positions of the cameras were selected at random so as
to look at the scene from a random distance, varying from 20 to 40 from the center
of the scene. Next, the image projections in the right camera were corrupted by
random radial distortion, following the one-parameter division model in [38]. The
radial distortion λ was drawn uniformly from the interval [−0.7, 0]. The aim was to
investigate the behavior of the algorithms for large as well as small amounts of radial
distortion.

Computation and its speed. The proposed f+E+λ solver performs the following
steps:

1. Fill the 103×126 elimination template matrix A′5 with coefficients derived from
the input measurements.

2. Perform G-J elimination on the matrix A′5.

3. Extract the desired coefficients from the eliminated matrix.

4. Create the multiplication matrix from extracted coefficients.

5. Compute the eigenvectors of the multiplication matrix.

6. Extract 23 complex solutions (γ1, γ2, γ3, γ4) from the eigenvectors.
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7. For each real solution (γ1, γ2, γ3, γ4), recover the monomial vectorm as in (4.26),
the fundamental matrix F , the focal length f , and the radial distortion λ.

All seven steps were implemented efficiently. The final f+E+λ solver runs in less
than 1ms.
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Figure 4.1: Numerical stability. (a) Log10 of the relative error of the estimated radial
distortion. (b) Log10 of the relative error of the estimated focal length.

Numerical stability. We studied the behavior of our solver on noise-free data.
Figure 4.1(a) shows the experimental frequency of the base 10 logarithm of the
relative error of the radial distortion parameter λ estimated using the new f+E+λ
solver. These result were obtained by selecting the real roots closest to the ground
truth values. The results suggest that the solver delivers correct solutions and its
numerical stability is suitable for real word applications.

Figure 4.1(b) shows the distribution of Log10 of the relative error of the estimated
focal length f . Again these result were obtained by selecting the real roots closest to
the ground truth values. Note that the f+E+λ solver does not directly compute the
focal length f . Its output is the monomial vector in m (4.26), from which we extract
λ and the fundamental matrix F = (xij). To obtain the unknown focal length from
F , we use the following formula:

Lemma 4.24. Let X = (xij)1≤i,j≤3 be a generic point in the variety G′′ from Ex-
ample 4.6. Then there are exactly two pairs of essential matrix and focal length
(E, f) such that X = diag(f−1, f−1, 1)E. If one of them is (E, f) then the other is
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(diag(−1,−1, 1)E, −f). In particular, f is determined up to sign by X. A formula
to recover f from X is as follows:

f 2 =
x23x

2
31 + x23x

2
32 − 2x21x31x33 − 2x22x32x33 − x23x

2
33

2x11x13x21+2x12x13x22−x2
11x23−x2

12x23+x2
13x23+x2

21x23+x2
22x23+x3

23

. (4.27)

Proof. Consider the map E × C∗ → P8, (E, f) 7→ diag(f−1, f−1, 1)E. Let I ⊂
Q[eij, f, xij] be the ideal of the graph of this map. So, I is generated by the ten
Demazure cubics and the nine entries of X − diag(f−1, f−1, 1)E. We computed the
elimination ideal I ∩Q[f, xij] in Macaulay2. The polynomial gotten by clearing the
denominator and subtracting the RHS from the LHS in the formula (4.27) lies in
this elimination ideal. This proves the lemma.
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Figure 4.2: Number of real solutions for floating point computation with noise-free
image data.

Counting real solutions. In the next experiment we studied the distribution of
the number of real solutions (λ, F ) and the number of real solutions for the focal
length f .

Figure 4.2 (a) shows the histogram of the number of real solutions on the distor-
tion variety G′′[v]. All odd integers between 1 and 23 were observed. Most of the time
we got an odd number of real solutions between 7 and 15. The empirical probabilities
are in Table 4.5.

Figure 4.2 (b) shows the histogram of the number of solutions for the focal length
f , computed from the distortion variety G′′[v] using the formula (4.27). Of the 46
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real roots
in G′′[v] 1 3 5 7 9 11 13 15 17 19 21 23

% 0.003 0.276 2.47 9.50 21.0 28.0 22.8 11.5 3.60 0.681 0.078 0.003

Table 4.5: Percentage of the number of real solutions in the distortion variety G′′[v].

complex solutions, at most 23 could be real and positive. The largest number of pos-
itive real solutions f observed in in 500,000 runs was 16. The empirical probabilities
from this experiment are in Table 4.6.

real f 0 1 2 3 4 5 6 7 8 9 10 11
% 0.003 0.397 3.16 7.93 14.5 18.8 19.9 15.5 10.5 5.54 2.52 0.894

real f 12 13 14 15 16
% 0.295 0.075 0.023 0.005 0.001

Table 4.6: Percentage of the number of positive real roots for the focal length f .

We performed the same experiment with image measurements corrupted by Gaus-
sian noise with the standard deviation set to 2 pixels. The distribution of the real
roots in the distortion variety G′′[v] was very similar to the distribution for noise-free
data. The main difference between these result and those for noise-free data was in
the number of real values for the focal length f . For a fundamental matrix corrupted
by noise, the formula (4.27) results in no real solutions more often. See Tables 4.7
and 4.8 for the empirical probabilities.

real roots 1 3 5 7 9 11 13 15 17 19 21 23
% 0.021 0.509 3.23 11.2 22.4 27.7 21.1 10.1 3.07 0.566 0.062 0.004

Table 4.7: Percentage of the number of real solutions in the distortion variety G′′[v]

for image measurements corrupted with Gaussian noise with σ = 2 pixels.

real f 0 1 2 3 4 5 6 7 8 9 10 11
% 0.243 1.30 4.92 10.2 16.1 19.0 18.5 13.7 8.79 4.33 1.96 0.689

real f 12 13 14 15 16
% 0.217 0.048 0.015 0.002 0.001

Table 4.8: Percentage of the number of real roots for the focal length f with data as
in Table 4.7.

Finally, we performed the same experiments for a special camera motion. It is
known [81, 96] that the focal length cannot be determined by the formula (4.27)
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from the fundamental matrix if the optical axes are parallel to each other, e.g. for
a sideways motion of cameras. Therefore, we generated cameras undergoing “close-
to-sideways motion”. To model this scenario, 100 points were again placed in a 3D
cube [−10, 10]3. Then 500,000 different camera pairs were generated such that both
cameras were first pointed in the same direction (optical axes were intersecting at
infinity) and then translated laterally. Next, a small amount of rotational noise of
0.01 degrees was introduced into the camera poses by right-multiplying the projection
matrices by respective rotation matrices. This multiplication slightly rotated the
optical axes of cameras (as not to intersect at infinity) as well as simultaneously
displaced the camera centers.

The results for noise-free data are displayed in Tables 4.9 and 4.10. For this
special close-to-sideways motion, the formula (4.27) provides up to 20 real solutions
for the focal length f .

real roots 1 3 5 7 9 11 13 15 17 19 21 23
% 0.007 0.544 5.14 16.83 26.2 24.9 16.2 7.37 2.30 0.475 0.061 0.006

Table 4.9: Real solutions in the distortion variety G′′[v] for the close-to-sideways mo-
tion scenario.

real f 0 1 2 3 4 5 6 7 8 9 10
% 0.006 0.755 3.08 10.2 12.9 20.9 16.2 16.0 8.73 6.17 2.61

real f 11 12 13 14 15 16 17 18 19 20
% 1.58 0.556 0.253 0.086 0.033 0.011 0.0044 0.0016 0.0012 0.0002

Table 4.10: Real solutions for the focal length f in the close-to-sideways motion
scenario.

Example 4.25. In [67], Kukelova, Pajdla, Sturmfels and I apply a similar elim-
ination strategy inspired by distortion varieties to derive new minimal solvers for
problems with solvers already, for purposes of comparison. In particular, see [67,
Section 3.3] for a new solver for the case E+fλ from Table 4.1, corresponding to the
distortion variety G′ in P11 with dimension 7 and degree 19. It is shown that our
solver compares favorably to the state of the art (SOTA) solver due to Kuang et al.
[63]. Our solver’s elimination template has size 51 × 70, while SOTA’s elimination
template is 200× 231. The smaller solver is faster and moreover it has competitive
numerical stability properties. See [67, Figure 3] for details.

In this chapter, we presented a mathematical theory for describing distortion in
images. It is based on lifting varieties in projective space to other toric varieties. The
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framework unifies existing models in vision, and leads to fast minimal solvers for cases
with distortion. Our theorems about degree, defining equations and tropicalization
are of independent interest in combinatorial algebraic geometry.
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Chapter 5

Modeling Spaces of Pictures

In this chapter, we model spaces of pictures of simple objects, such as edges. Here
cameras are fixed, a world object varies in position and we are interested in its space
of possible simultaneous pictures. Our understanding could enhance triangulation
algorithms. Our approach is to use combinatorial commutative algebra; in the sim-
plest case, we consider subvarieties of products of the projective plane. This chapter
is based on my publication [58] in the International Journal of Algebra and Compu-
tation 26 (2016) joint with Michael Joswig, Bernd Sturmfels and André Wagner.

5.1 Introduction

The emerging field of Algebraic Vision is concerned with interactions between com-
puter vision and algebraic geometry. A central role in this endeavor is played by
projective varieties that arise in multiview geometry [48].

The set-up is as follows: A camera is a linear map from the three-dimensional
projective space P3 to the projective plane P2, both over R. We represent n cameras
by matrices A1, A2, . . . , An ∈ R3×4 of rank 3. The kernel of Aj is the focal point
fj ∈ P3. Each image point uj ∈ P2 of camera Aj has a line through fj as its fiber in
P3. This is the back-projected line.

We assume throughout that the focal points of the n cameras are in general
position, i.e. all distinct, no three on a line, and no four on a plane. Let βjk denote
the line in P3 spanned by the focal points fj and fk. This is the baseline of the
camera pair Aj, Ak. The image of the focal point fj in the image plane P2 of the
camera Ak is the epipole ek←j. Note that the baseline βjk is the back-projected line
of ek←j with respect to Aj and also the back-projected line of ej←k with respect to
Ak. See Figure 5.1 for a sketch.
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u2

f2f1

u1

X

e2←1e1←2

Figure 5.1: Two-view geometry (cf. Chapter 2).

Fix a point X in P3 which is not on the baseline βjk, and let uj and uk be the
images of X under Aj and Ak. Since X is not on the baseline, neither image point
is the epipole for the other camera. The two back-projected lines of uj and uk meet
in a unique point, which is X. This process of reconstructing X from two images uj
and uk is called triangulation [48, §9.1].

The triangulation procedure amounts to solving the linear equations

Bjk

 X
−λj
−λk

 = 0 where Bjk =

[
Aj uj 0
Ak 0 uk

]
∈ R6×6. (5.1)

For general data we have rank(Bjk) = rank(Bjk
1 ) = · · ·= rank(Bjk

6 ) = 5, where Bjk
i

is obtained from Bjk by deleting the ith row. Cramer’s Rule can be used to recover
X. Let ∧5B

jk
i ∈ R6 be the column vector formed by the signed maximal minors of

Bjk
i . Write ∧̃5B

jk
i ∈ R4 for the first four coordinates of ∧5B

jk
i . These are bilinear

functions of uj and uk. They yield

X = ∧̃5B
jk
1 = ∧̃5B

jk
2 = · · · = ∧̃5B

jk
6 . (5.2)

We note that, in most practical applications, the data u1, . . . , un will be noisy, in
which case triangulation requires techniques from optimization [3].

The multiview variety VA of the camera configuration A = (A1, . . . , An) was
defined in [5] as the closure of the image of the rational map

φA : P3 99K P2 × P2 × · · · × P2,
X 7→ (A1X,A2X, . . . , AnX).

(5.3)
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The points (u1, u2, . . . , un) ∈ VA are the consistent views in n cameras. The prime

ideal IA of VA was determined in [5, Corollary 2.7]. It is generated by the

(
n

2

)
bilinear polynomials det(Bjk) plus

(
n

3

)
further trilinear polynomials. See [72] for

the natural generalization of this variety to higher dimensions.
The analysis in [5] was restricted to a single world point X ∈ P3 (cf. Definition

3.9). In this chapter we study the case of two world points X, Y ∈ P3 that are linked
by a distance constraint. Consider the hypersurface V (Q) in P3 × P3 defined by

Q = (X0Y3 − Y0X3)2 + (X1Y3 − Y1X3)2 + (X2Y3 − Y2X3)2 −X2
3Y

2
3 . (5.4)

The affine variety VR(Q) ∩ {X3=Y3=1} in R3 × R3 consists of pairs of points whose
Euclidean distance is 1. The rigid multiview map is the rational map

ψA : V (Q) ↪→ P3 × P3 99K (P2)n × (P2)n,
(X, Y ) 7→

(
(A1X, . . . AnX), (A1Y, . . . AnY )

)
.

(5.5)

The rigid multiview variety is the image of this map. This is a 5-dimensional sub-
variety of (P2)2n. Its multihomogeneous prime ideal JA lives in the polynomial ring
R[u, v] = R[ui0, ui1, ui2, vi0, vi1, vi2 : i = 1, . . . , n], where (ui0:ui1:ui2) and (vi0:vi1:vi2)
are coordinates for the ith factor P2 on the left respectively right in (P2)n × (P2)n.
Our aim is to determine the ideal JA. Knowing generators of JA has the potential of
being useful for designing optimization tools as in [3] for triangulation in the presence
of distance constraints.

The choice of world and image coordinates for the camera configuration A =
(A1, . . . , An) gives our problem the following group symmetries. Let N be an ele-
ment of the Euclidean group of motions SE(3,R), which is generated by rotations
and translations. We may multiply the camera configuration on the right by N
to obtain AN = (A1N, . . . , AnN). Then JA = JAN since V (Q) is invariant under
SE(3,R). For M1, . . . ,Mn ∈ GL(3,R), we may multiply A on the left to obtain
A′ = (M1A, . . . ,MnA). Then JA′ = (M1 ⊗ . . .⊗Mn)JA.

This chapter is organized as follows. In Section 5.2 we present the explicit com-
putation of the rigid multiview ideal for n = 2, 3, 4. Our main result, to be stated
and proved in Section 5.3, is a system of equations that cuts out the rigid multi-
view variety V (JA) for any n. Section 5.4 is devoted to generalizations. The general
idea is to replace V (Q) by arbitrary subvarieties of (P3)m that represent polynomial
constraints on m ≥ 2 world points. We focus on scenarios that are of interest in
applications to computer vision.

Our results in Propositions 5.1, 5.2, 5.3 and Corollary 5.1 are proved by compu-
tations with Macaulay2 [44]. Following standard practice in computational algebraic
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geometry, we carry out the computation on many samples in a Zariski dense set of
parameters, and then conclude that it holds generically.

5.2 Two, three and four pictures

In this section we offer a detailed case study of the rigid multiview variety when the
number n of cameras is small. We begin with the case n = 2. The prime ideal JA lives
in the polynomial ring R[u, v] in 12 variables. This is the homogeneous coordinate
ring of (P2)4, so it is naturally Z4-graded. The variables u10, u11, u12 have degree
(1, 0, 0, 0), the variables u20, u21, u22 have degree (0, 1, 0, 0), the variables v10, v11, v12

have degree (0, 0, 1, 0), and the variables v20, v21, v22 have degree (0, 0, 0, 1). Our ideal
JA is Z4-homogeneous.

Throughout this section we shall assume that the camera configuration A is
generic in the sense of algebraic geometry. This means that A lies in the com-
plement of a certain (unknown) proper algebraic subvariety in the affine space of all
n-tuples of 3× 4-matrices. All our results in Section 5.2 were obtained by symbolic
computations with several random choices of A. Such choices of camera matrices are
generic. They will be attained with with probability 1.

Proposition 5.1. For n = 2, the rigid multiview ideal JA is minimally generated
by eleven Z4-homogeneous polynomials in twelve variables, one of degree (1, 1, 0, 0),
one of degree (0, 0, 1, 1), and nine of degree (2, 2, 2, 2).

Let us look at the result in more detail. The first two bilinear generators are the
familiar 6× 6-determinants

det

[
A1 u1 0
A2 0 u2

]
and det

[
A1 v1 0
A2 0 v2

]
. (5.6)

These cut out two copies of the multiview threefold VA ⊂ (P2)2, in separate variables,
for X 7→ u = (u1, u2) and Y 7→ v = (v1, v2). If we write the two bilinear forms in
(5.6) as u>1 Fu2 and v>1 Fv2 then F is a real 3 × 3-matrix of rank 2, known as the
fundamental matrix [48, Chapter 9] of the camera pair (A1, A2).

The rigid multiview variety V (JA) is a divisor in VA × VA ⊂ (P2)2 × (P2)2. The
nine octics that cut out this divisor can be understood as follows. We write B and C
for the 6× 6-matrices in (5.6), and Bi and Ci for the matrices obtained by deleting
their ith rows. The kernels of these 5 × 6-matrices are represented, via Cramer’s
Rule, by ∧5Bi and ∧5Ci. We write ∧̃5Bi and ∧̃5Ci for the vectors given by their
first four entries. As in (5.2), these represent the two world points X and Y in P3.
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Their coordinates are bilinear forms in (u1, u2) or (v1, v2), where each coefficient is

a 3 × 3-minor of

[
A1

A2

]
. For instance, writing ajki for the (j, k) entry of Ai, the first

coordinate of ∧̃5B1 is

−(a32
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Recall that the two world points in P3 are linked by a distance constraint (5.4),
expressed as a biquadratic polynomial Q. We set Q(X, Y ) = T (X,X, Y, Y ), where
T (•, •, •, •) is a quadrilinear form. We regard T as a tensor of order 4. It lives in the
subspace Sym2(R4) ⊗ Sym2(R4) ' R100 of (R4)⊗4 ' R256. Here Symk( · ) denotes
the space of symmetric tensors of order k.

We now substitute our Cramer’s Rule formulas for X and Y into the quadrilinear
form T . For any choice of indices 1≤i≤j≤6 and 1≤k≤l≤6,

T
(
∧̃5Bi , ∧̃5Bj , ∧̃5Ck , ∧̃5Cl

)
(5.7)

is a multihomogeneous polynomial in (u1, u2, v1, v2) of degree (2, 2, 2, 2). This poly-
nomial lies in JA but not in the ideal IA(u) + IA(v) of VA×VA, so it can serve as one
of the nine minimal generators described in Proposition 5.1.

The number of distinct polynomials appearing in (5.7) equals

(
7

2

)2

= 441. A

computation verifies that these polynomials span a real vector space of dimension
126. The image of that vector space modulo the degree (2, 2, 2, 2) component of the
ideal IA(u) + IA(v) has dimension 9.

We record three more features of the rigid multiview with n = 2 cameras. The
first is the multidegree [79, Section 8.5], or, equivalently, the cohomology class of
V (JA) in H∗

(
(P2)4,Z

)
= Z[u1, u2, v1, v2]/〈u3

1, u
3
2, v

3
1, v

3
2〉. It equals

2u2
1v1 + 2u1u2v1 + 2u2

2v1 + 2u2
1v2 + 2u1u2v2 + 2u2

2v2

+2u1v
2
1 + 2u1v1v2 + 2u1v

2
2 + 2u2v

2
1 + 2u2v1v2 + 2u2v

2
2.

This is found with the built-in command multidegree in Macaulay2.
The second is the table of the Betti numbers of the minimal free resolution of JA

in the format of Macaulay2 [44]. In that format, the columns correspond to the
syzygy modules, while rows denote the degrees. For n = 2 we obtain
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0 1 2 3 4 5 6 7 8 9 10 11

total: 1 177 1432 5128 10584 13951 12315 7410 3018 801 126 9

0: 1 . . . . . . . . . . .

1: . 6 . . . . . . . . . .

2: . 2 21 6 . . . . . . . .

3: . . 6 36 18 . . . . . . .

4: . . 1 12 42 36 9 . . . . .

5: . 1 . . . . . . . . . .

6: . 24 108 166 120 42 6 . . . . .

7: . 144 1296 4908 10404 13873 12300 7410 3018 801 126 9

Table 5.1: Betti numbers for the rigid multiview ideal with n = 3.

0 1 2 3 4 5

total: 1 11 25 22 8 1

0: 1 . . . . .

1: . 2 . . . .

2: . . 1 . . .

7: . 9 24 22 8 1

The column labeled 1 lists the minimal generators from Proposition 5.1. Since the
codimension of V (JA) is 3, the table shows that JA is not Cohen-Macaulay. The
unique 5th syzygy has degree (3, 3, 3, 3) in the Z4-grading.

The third point is an explicit choice for the nine generators of degree (2, 2, 2, 2)
in Proposition 5.1. Namely, we take i = j ≤ 3 and k = l ≤ 3 in (5.7). The following
corollary is also found by computation:

Corollary 5.1. The rigid multiview ideal JA for n = 2 is generated by IA(u)+IA(v)
together with the nine polynomials Q

(
∧̃5Bi, ∧̃5Ck

)
for 1 ≤ i, k ≤ 3.

We next come to the case of three cameras:

Proposition 5.2. For n = 3, the rigid multiview ideal JA is minimally generated by
177 polynomials in 18 variables. Its Betti table is given in Table 5.1.

Proposition 5.2 is proved by computation. The 177 generators occur in eight
symmetry classes of multidegrees. Their numbers in these classes are

(110000) : 1 (220111) : 3 (220220) : 9 (211211) : 1
(111000) : 1 (211111) : 1 (220211) : 3 (111111) : 1
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For instance, there are nine generators in degree (2, 2, 0, 2, 2, 0), arising from Proposi-
tion 5.1 for the first two cameras. Using various pairs among the three cameras when
forming the matrices Bi, Bj, Ck and Cl in (5.7), we can construct the generators of
degree classes (2, 2, 0, 2, 1, 1) and (2, 1, 1, 2, 1, 1).

Table 5.1 shows the Betti table for JA in Macaulay2 format. The first two entries
(6 and 2) in the 1-column refer to the eight minimal generators of IA(u) + IA(v).
These are six bilinear forms, representing the three fundamental matrices, and two
trilinear forms, representing the trifocal tensor of the three cameras (cf. Chapter 3,
[4], [48, Chapter 15]). The entry 1 in row 5 of column 1 marks the unique sextic
generator of JA, which has Z6-degree (1, 1, 1, 1, 1, 1).

For the case of four cameras we obtain the following result.

Proposition 5.3. For n = 4, the rigid multiview ideal JA is minimally generated
by 1176 polynomials in 24 variables. All of them are induced from n = 3. Up to
symmetry, the degrees of the generators in the Z8-grading are

(11000000) : 1 (22001110) : 3 (22002200) : 9 (21102110) : 1
(11100000) : 1 (21101110) : 1 (22002110) : 3 (11101110) : 1

We next give a brief explanation of how the rigid multiview ideals JA were com-
puted with Macaulay2 [44]. For the purpose of efficiency, we introduce projective
coordinates for the image points and affine coordinates for the world points. We
work in the corresponding polynomial ring

Q[u, v][X0, X1, X2, Y0, Y1, Y2].

The rigid multiview map ψA is thus restricted to R3 × R3. The prime ideal of its
graph is generated by the following two classes of polynomials:

1. the 2× 2 minors of the 3× 2 matrices[
Ai · (X0, X1, X2, 1)> ui

]
,
[
Ai · (Y0, Y1, Y2, 1)> vi

]
,

2. the dehomogenized distance constraint

Q
(
(X0, X1, X2, 1)>, (Y0, Y1, Y2, 1)>

)
.

From this ideal we eliminate the six world coordinates {X0, X1, X2, Y0, Y1, Y2}.
For a speed up, we exploit the group actions described in Section 5.1. We

replace A = (A1, ..., An) and Q = Q(X, Y ) by A′ = (M1A1N, ...,MnAnN) and
Q′ = Q(N−1X,N−1Y ). Here Mi ∈ GL3(R) and N ∈ GL4(R) are chosen so that A′
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is sparse. The modification to Q is needed since we generally use N /∈ SE(3,R). The
elimination above now computes the ideal (M1⊗. . .⊗Mn)JA, and it terminates much
faster. For example, for n = 4, the computation took two minutes for sparse A′ and
more than one hour for non-sparse A. For n = 5, Macaulay2 ran out of memory after
18 hours of CPU time for non-sparse A. The complete code used in this chapter can
be accessed via http://www3.math.tu-berlin.de/combi/dmg/data/rigidMulti/.

One last question is whether the Gröbner basis property in [5, Section 2] extends
to the rigid case. This does not seem to be the case in general. Only in Proposition 5.1
can we choose minimal generators that form a Gröbner basis.

Remark 5.4. Let n = 2. The reduced Gröbner basis of JA in the reverse lexico-
graphic term order is a minimal generating set. For a generic choice of cameras the
initial ideal equals

in(JA) = 〈u10u20, v10v20, u
2
10u

2
21v

2
10v

2
21, u

2
10u

2
21v

2
11v20v21, u

2
10u

2
21v

2
11v

2
20,

u2
11u

2
20v

2
10v

2
21, u

2
11u20u21v

2
10v

2
21, u

2
11u

2
20v

2
11v20v21,

u2
11u

2
20v

2
11v

2
20, u

2
11u20u21v

2
11v20v21, u

2
11u20u21v

2
11v

2
20 〉.

For special cameras the exact form of the initial ideal may change. However, up to
symmetry the degrees of the generators in the Z4-grading stay the same. In general,
a universal Gröbner basis for the rigid multiview ideal JA consists of octics of degree
(2, 2, 2, 2) plus the two quadrics (5.6). This was verified using the Gfan [56] package
in Macaulay2. Analogous statements do not hold for n ≥ 3.

5.3 Equations for the rigid multiview variety

The computations presented in Section 2 suggest the following conjecture.

Conjecture 5.5. The rigid multiview ideal JA is minimally generated by
4

9
n6 −

2

3
n5 +

1

36
n4 +

1

2
n3 +

1

36
n2 − 1

3
n polynomials. These polynomials come from two

triples of cameras, and their number per class of degrees is

(110..000..) : 1 · 2
(
n

2

)
(220..111..) : 3 · 2

(
n

2

)(
n

3

)
(220..220..) : 9 ·

(
n

2

)2

(211..211..) : 1 · n2

(
n− 1

2

)2

(111..000..) : 1 · 2
(
n

3

)
(211..111..) : 1·2n

(
n− 1

2

)(
n

3

)
(220..211..) : 3·2n

(
n

2

)(
n− 1

2

)
(111..111..) : 1 ·

(
n

3

)2

http://www3.math.tu-berlin.de/combi/dmg/data/rigidMulti/
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n\degree 2 3 6 7 8 total timing (s)

2 2 9 1 < 1
3 6 2 1 24 144 177 14
4 12 8 16 240 900 1176 130
5 20 20 100 1200 3600 4940 24064

Table 5.2: The known minimal generators of the rigid multiview ideals, listed by
total degree, for up to five cameras. There are no minimal generators of degrees 4
or 5. Average timings (in seconds), using the speed up described above, are in the
last column.

At the moment we have a computational proof only up to n = 5. Table 5.2 offers
a summary of the corresponding numbers of generators.

Conjecture 5.5 implies that V (JA) is set-theoretically defined by the equations
coming from triples of cameras. It turns out that, for the set-theoretic description,
pairs of cameras suffice. The following is our main result:

Theorem 5.6. Suppose that the n focal points of A are in general position in P3.

The rigid multiview variety V (JA) is cut out as a subset of VA × VA by the 9

(
n

2

)2

octic generators of degree class (220..220..). In other words, equations coming from
any two pairs of cameras suffice set-theoretically.

With notation as in the introduction, the relevant octic polynomials are

T
(
∧̃5B

j1k1

i1
, ∧̃5B

j1k1

i2
, ∧̃5C

j2k2

i3
, ∧̃5C

j2k2

i4

)
,

for all possible choices of indices. Let HA denote the ideal generated by these polyno-
mials in R[u, v], the polynomial ring in 6n variables. As before, we write IA(u)+IA(v)
for the prime ideal that defines the 6-dimensional variety VA × VA in (P2)n × (P2)n.

It is generated by 2

(
n

2

)
bilinear forms and 2

(
n

3

)
trilinear forms, corresponding to

fundamental matrices and trifocal tensors. In light of Hilbert’s Nullstellensatz, The-
orem 5.6 states that the radical of HA + IA(u) + IA(v) is equal to JA. To prove this,
we need a lemma.

A point u in the multiview variety VA ⊂ (P2)n is triangulable if there exists a
pair of indices (j, k) such that the matrix Bjk has rank 5. Equivalently, there exists
a pair of cameras for which the unique world point X can be found by triangulation.
Algebraically, this means X = ∧̃5B

jk
i for some i.
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Lemma 5.7. All points in VA are triangulable except for the pair of epipoles, denoted
(e1←2, e2←1), in the case where n = 2. Here, the rigid multiview variety V (JA)
contains the threefolds VA(u)× (e1←2, e2←1) and (e1←2, e2←1)× VA(v).

Proof. Let us first consider the case of n = 2 cameras. The first claim holds because
the back-projected lines of the two camera images u1 and u2 always span a plane in
P3 except when u1 = e1←2 and u2 = e2←1. In that case both back-projected lines
agree with the common baseline β12. Alternatively, we can check algebraically that
the variety defined by the 5 × 5-minors of the matrix B consists of the single point
(e1←2, e2←1).

For the second claim, fix a generic point X in P3 and consider the surface

XQ =
{
Y ∈ P3 : Q(X, Y ) = 0

}
. (5.8)

Working over C, the baseline β12 is either tangent to XQ, or it meets that quadric
in exactly two points. Our assumption on the genericity of X implies that no point
in the intersection β12 ∩XQ is a focal point. This gives

(A1X,A2X,A1YX , A2YX) = (A1X,A2X, e1←2, e2←1). (5.9)

The point (A1X,A2X) lies in the multiview variety VA(u). Each generic point in
VA(u) has this form for some X. Hence (5.9) proves the desired inclusion VA(u) ×
(e1←2, e2←1) ⊂ V (JA). The other inclusion (e1←2, e2←1)× VA(v) ⊂ V (JA) follows by
switching the roles of u and v.

If there are more than two cameras then for each world point X, due to general
position of the cameras, there is a pair of cameras such that X avoids the pair’s
baseline. This shows that each point is triangulable if n ≥ 3.

Proof of Theorem 5.6. It follows immediately from the definition of the ideals in
question that the following inclusion of varieties holds in (P2)n × (P2)n:

V (JA) ⊆ V
(
IA(u) + IA(v) +HA

)
.

We prove the reverse inclusion. Let (u, v) be a point in the right hand side.
Suppose that u and v are both triangulable. Then u has a unique preimage

X in P3, determined by a single camera pair {Aj1 , Ak1}. Likewise, v has a unique
preimage Y in P3, also determined by a single camera pair {Aj2 , Ak2}. There exist
indices i1, i2 ∈ {1, 2, 3, 4, 5, 6} such that

X = ∧̃5B
j1k1

i1
and Y = ∧̃5C

j2k2

i2
.
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Suppose that (u, v) is not in V (JA). Then Q(X, Y ) 6= 0. This implies

Q(X, Y ) = T (X,X, Y, Y ) = T
(
∧̃5B

j1k1

i1
, ∧̃5B

j1k1

i1
, ∧̃5C

j2k2

i2
, ∧̃5C

j2k2

i2

)
6= 0,

and hence (u, v) 6∈ V (HA). This is a contradiction to our choice of (u, v).
It remains to consider the case where v is not triangulable. By Lemma 5.7, we

have n = 2, as well as v = (e1←2, e2←1) and (u, v) ∈ V (JA). The case where u is not
triangulable is symmetric, and this proves the theorem.

The equations in Theorem 5.6 are fairly robust, in the sense that they work as
well for many special position scenarios. However, when the cameras A1, A2, . . . , An

are generic then the number 9

(
n

2

)2

of octics that cut out the divisor V (JA) inside

VA × VA can be reduced dramatically, namely to 16.

Corollary 5.8. As a subset of the 6-dimensional ambient space VA × VA, the 5-
dimensional rigid multiview variety V (JA) is cut out by 16 polynomials of degree
class (220..220..). One choice of such polynomials is given by

Q
(
∧̃5B

12
i , ∧̃5C

12
k

)
, Q

(
∧̃5B

12
i , ∧̃5C

13
k

)
Q
(
∧̃5B

13
i , ∧̃5C

12
k

)
, Q

(
∧̃5B

13
i , ∧̃5C

13
k

) for all 1 ≤ i, k ≤ 2.

Proof. First we claim that for each triangulable point u at least one of the matrices
B12 or B13 has rank 5, and the same for v with C12 or C13. We prove this by contra-
diction. By symmetry between u and v, we can assume that rk(B12) = rk(B13) = 4.
Then u3 = e3←1, u2 = e2←1, and u1 = e1←2 = e1←3. However, this last equality of the
two epipoles is a contradiction to the hypothesis that the focal points of the cameras
A1, A2, A3 are not collinear.

Next we claim that if B12 has rank 5 then at least one of the submatrices B12
1

or B12
2 has rank 5, and the same for B13, C12 and C13. Note that the bottom 4×6

submatrix of B12 has rank 4, since the first four columns are linearly independent,
by genericity of A1 and A2. The claim follows.

5.4 Other constraints, more points, and no labels

In this section we discuss several extensions of our results. A first observation is
that there was nothing special about the constraint Q in (5.4). For instance, fix
positive integers d and e, and let Q(X, Y ) be any irreducible polynomial that is
bihomogeneous of degree (d, e). Its variety V (Q) is a hypersurface of degree (d, e) in
P3 × P3. The following analogue to Theorem 5.6 holds, if we define the map ψA as
in (5.5).
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Theorem 5.9. The closure of the image of the map ψA is cut out in VA × VA

by 9

(
n

2

)2

polynomials of degree class (d, d, 0, . . . , e, e, 0, . . .). In other words, the

equations coming from any two pairs of cameras suffice set-theoretically.

Proof. The tensor T that represents Q now lives in Symd(R4) ⊗ Syme(R4). The
polynomial (5.7) vanishes on the image of ψA and has degree (d, d, e, e). The proof
of Theorem 5.6 remains valid. The surface XQ in (5.8) is irreducible of degree e in
P3. These polynomials cut out that image inside VA × VA.

Remark 5.10. In the generic case, we can replace 9

(
n

2

)2

by 16, as in Corollary 5.8.

Another natural generalization is to consider m world points X1, . . . , Xm that are
linked by one or several constraints in (P3)m. Taking images with n cameras, we ob-
tain a variety V (JA) which lives in (P2)mn. For instance, if m = 4 and X1, X2, X3, X4

are constrained to lie on a plane in P3, then Q = det(X1, X2, X3, X4) and V (JA) is
a variety of dimension 11 in (P2)4n. Taking 6×6-matrices B,C,D,E as in (5.1) for
the four points, we then form

det
(
∧̃5Bi, ∧̃5Cj, ∧̃5Dk, ∧̃5El

)
for all 1 ≤ i, j, k, l ≤ 6. (5.10)

For n = 2 we verified with Macaulay2 that the prime ideal JA is generated by 16 of
these determinants, along with the four bilinear forms for VA

4.

Proposition 5.11. The variety V (JA) is cut out in VA
4 by the 16

(
n

2

)4

polynomials

from (5.10). In other words, the equations coming from any two pairs of cameras
suffice set-theoretically.

Proof. Each polynomial (5.10) is in JA. The proof of Theorem 5.6 remains valid.
The planes (Xi, Xj, Xk)

Q intersect the baseline β12 in one point each.

To continue the theme of rigidity, we may impose distance constraints on pairs
of points. Fixing a nonzero distance dij between points i and j gives

Qij = (Xi0Xj3 −Xj0Xi3)2 + (Xi1Xj3 −Xj1Xi3)2 + (Xi2Xj3 −Xj2Xi3)2 − d2
ijX

2
i3X

2
j3.

We are interested in the image of the variety V = V (Qij : 1 ≤ i < j ≤ m) under the
multiview map ψA that takes (P3)m to (P2)mn. For instance, for m = 3, we consider
the variety V = V (Q12, Q13, Q23) in (P3)3, and we seek the equations for its image
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under the multiview map ψA into (P2)3n. Note that V has dimension 6, unless we
are in the collinear case. Algebraically,

(d12 + d13 + d23)(d12 + d13 − d23)(d12 − d13 + d23)(−d12 + d13 + d23) = 0. (5.11)

If this holds then dim(V) = 5. The same argument as in Theorem 5.6 yields:

Corollary 5.12. The rigid multiview variety ψA(V) has dimension six, unless (5.11)
holds, in which case the dimension is five. It has real points if and only if d12, d13, d23

satisfy the triangle inequality. It is cut out in VA
3 by 27

(
n

2

)2

biquadratic equations,

coming from the 9

(
n

2

)2

equations for any two of the three points.

In many computer vision applications, the m world points and their images in P2

will be unlabeled. To study such questions, we propose to work with the unlabeled
rigid multiview variety. This is the image of the rigid multiview variety under the
quotient map

(
(P2)m

)n → (
Symm(P2)

)n
.

Indeed, while labeled configurations in the plane are points in (P2)m, unlabeled
configurations are points in the Chow variety Symm(P2). This is the variety of ternary
forms that are products of m linear forms (cf. [68, §8.6]). It is embedded in the space

P(m+2
2 )−1 of all ternary forms of degree m.

Example 5.13. Let m = n = 2. The Chow variety Sym2(P2) is the hypersurface in
P5 defined by the determinant of a symmetric 3× 3-matrix (aij). The quotient map
(P2)2 → Sym2(P2) ⊂ P5 is given by the formulas

a00 = 2u10v10, a11 = 2u11v11, a22 = 2u12v12,
a01 = u11v10 + u10v11, a02 = u12v10 + u10v12, a12 = u12v11 + u11v12.

Similarly, for the two unlabeled images under the second camera we use

b00 = 2u20v20, b11 = 2u21v21, b22 = 2u22v22,
b01 = u21v20 + u20v21, b02 = u22v20 + u20v22, b12 = u22v21 + u21v22.

The unlabeled rigid multiview variety is the image of V (JA) ⊂ VA × VA under the
quotient map that takes two copies of (P2)2 to two copies of Sym2(P)2 ⊂ P5. This
quotient map is given by (u1, v1) 7→ a, (u2, v2) 7→ b.

We first compute the image of VA × VA in P5 × P5, denoted Sym2(VA). Its
ideal has seven minimal generators, three of degree (1, 1), and one each in degrees
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(3, 0), (2, 1), (1, 2), (0, 3). The generators in degrees (3, 0) and (0, 3) are det(aij) and
det(bij). The five others depend on the cameras A1, A2.

Now, to get equations for the unlabeled rigid multiview variety, we intersect the
ideal JA with the subring R[a, b] of bisymmetric homogeneous polynomials in R[u, v].
This results in nine new generators which represent the distance constraint. One of
them is a quartic of degree (2, 2) in (a, b). The other eight are quintics, four of degree
(2, 3) and four of degree (3, 2).

Independently of the specific constraints considered in this chapter, it is of interest
to characterize the pictures of m unlabeled points using n cameras. This gives rise

to the unlabeled multiview variety Symm(VA) in
(
P(m+2

2 )−1
)n

. It would be desirable
to know the prime ideal of Symm(VA) for any n and m.

In this chapter, we modeled spaces of pictures of simple objects, using subvarieties
of products of the projective plane. We determined defining equations that cut these
subvarieties out, and we proposed various scenarios of practical interest. Our results
might be helpful in polynomial optimization schemes for triangulation, following [3].
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