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ABSTRACT OF THE THESIS 
 

Horizontal Coherence Function for Ambient Noise and Helicopter Sound in Water 
 

 

by 

 

Hong Jie Kok 

 

Master of Science in Electrical Engineering (Applied Ocean Sciences) 

University of California San Diego, 2022 

Professor Michael J. Buckingham, Chair 
Professor William S. Hodgkiss, Co-Chair 

 

The radiated sound from an airborne source result in a head wave when it is incident 

on the sea bottom at the critical angle. The head wave travels along the sea bottom and exits at 

the same critical angle, and the pressure from the head wave can only be detected within a 

narrow range window due to geometrical spreading. Computing the horizontal coherence 

function from the data allows for the inference of the speed of sound in the sediment. The 

theoretical expression that was derived previously was validated in a new experiment that used 
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a line array with a wider aperture of 15 m as compared to a 3 m separation used in an earlier 

experiment. The least mean squares method was proposed for better estimation of the sediment 

sound speed instead of extracting the zero crossings when the data is noisy. Multiple ocean 

noise models were used for comparison with the coherence function computed for the ambient 

noise. The best fit for the ambient noise data consists of a convex combination of noise fields 

in order to account for the zero crossing locations and the amplitude of the coherence function 

at higher frequencies.  
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INTRODUCTION   
 

The propagation of sound from an airborne source into an underwater medium has a major 

effect on the composition of the underwater sound field. One of the earliest studies was conducted 

by Urick, who evaluated the noise signature that was emitted by an overhead aircraft and recorded 

by an underwater hydrophone [1]. Medwin verified the predicted effect of the roughness of the 

air-water interface on the frequency components of the transmitted sound , where the resultant 

sound field depends on the relative positions of the source and the receiver in their respective 

mediums [2]. The entire setup can be modelled as a three-layer waveguide with a sea bottom 

sediment half-space representing the bottom most layer. Buckingham developed an analytical 

model that provided the solutions for both 2-D and a 3-D acoustic fields in each of the layers [3]. 

This opened up the possibility of exploiting the airborne source for various underwater  acoustic 

applications, such as geo-acoustic inversion or determining the speed of a moving airborne source 

based on the changing Doppler frequencies as it passes through the closest point of approach  [4]. 

Depending on the location of the receiver, the sound speed of the entire water column or the sound 

speed and attenuation characteristics of the sea sediment could be measured remotely. This may 

be more advantageous than deploying a temperature profiler in the case of the water column, or 

having to use a physical grabbing device to extract sediment samples for further analysis in a 

laboratory.   

This thesis is primarily based on the publication “Estimating the sound speed of a shallow-

water marine sediment from the head wave excited by a low-flying helicopter, 2017”, and it 

involves geo-acoustic inversion using the head wave that is generated by an airborne source [5].    
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CHAPTER 1 
 

Estimating the Sound Speed from the Head Wave 

The publication [5] explores the use of a helicopter as a low-frequency sound source for 

underwater acoustics in shallow water regions. This chapter contains a summary of that work, 

which includes the problem definition, the theoretical background for the acoustic field solution, 

and the reported experimental results. 

 

1.1 Problem Definition 

As the helicopter hovers above the sea surface, the radiated sound is partially refracted 

into the ocean where some of the acoustic rays will interact with the sea bottom. Assuming that 

the speed of sound in the sediment is faster than the speed of sound in water, the head wave will 

be generated along the boundary between the underwater waveguide and the sea bottom as implied 

by Snell’s law if the sound rays are incident at the critical angle. 

The head wave propagates along the sea bottom at the speed of sound of the sediment and 

exits the sediment at the same critical angle. The pressure of the head wave is attenuated with 

range according to the inverse square law, which means that while the head wave may exit from 

more than one point along the sea bottom, there is a narrow range window where the majority of 

the measured pressure is contributed by the head wave. For a source that is far away, the pressure 

from the head wave decays proportionally to with the square of range and would have dissipated 

by the time it reaches the hydrophones. From the ray geometry, a source that is too near would 

result in most of the radiated energy not being incident on the sea bottom at the critical angle, and 

the head wave will exit the sea bottom at a range that is not detected by the array.   
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A hydrophone array that is positioned near the sea bottom within this range window is 

able to measure the outgoing head wave. The coherence function can be computed between a pair 

of hydrophones and compared with the theoretical expression that is derived for the head wave. It 

was observed that head wave was the major contributor to the acoustic field measured by the 

hydrophones when the helicopter is situated at the appropriate range and this allows for the 

inversion of the sediment sound speed. 

 

 

Figure 1: Illustration of the generation of the head wave from an airborne source at the critical 
angle.  

 

1.2 Modelling the Three Layer Waveguide 

The atmosphere, ocean channel and the sea bottom can be modelled together as a three- 

layer waveguide where each layer is treated as a homogenous fluid with a sound speed of 𝑐𝑗 and a 

density of 𝜌𝑗  where the subscript 𝑗 refers to the respective layers. The velocity potential 𝑔𝑗 for 

each layer can be represented as wave equations using the cylindrical coordinate system: 
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1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑔1
𝜕𝑟
)+

𝜕2𝑔1
𝜕𝑧2

−
1

𝑐1
2

𝜕2𝑔1
𝜕𝑡2

=
𝑆

𝜋𝑟
𝛿(𝑟)𝛿(𝑧 − 𝑧′)𝛿(𝑡), 𝑧 < 0 

(1) 

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑔2
𝜕𝑟

)+
𝜕2𝑔2
𝜕𝑧2

−
1

𝑐2
2

𝜕2𝑔2
𝜕𝑡2

= 0, 0 ≤ 𝑧 ≤ ℎ 

(2) 

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑔3
𝜕𝑟
) +

𝜕2𝑔3
𝜕𝑧2

−
1

𝑐3
2

𝜕2𝑔3
𝜕𝑡2

= 0, 𝑧 > ℎ 

(3) 

where the z-axis is vertical and 𝑧 is positive downwards from the origin, the source is represented 

by an impulse with an amplitude 𝑆, the depth of the water column is ℎ and the airborne source is 

located at 𝑟 = 𝑟′ = 0 and 𝑧 = 𝑧′ < 0 above the sea surface as shown in Figure 2. The Helmholtz 

equations can be obtained by applying the Fourier transform to the previous three equations with 

respect to time to obtain 𝐺𝑗, which is the velocity potential in the frequency domain to obtain: 

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝐺1
𝜕𝑟
) +

𝜕2𝐺1
𝜕𝑧2

+ 𝑘1
2𝐺1 =

𝑆

𝜋𝑟
𝛿(𝑟)𝛿(𝑧 − 𝑧′), 𝑧 < 0 

(4)  

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝐺2
𝜕𝑟

)+
𝜕2𝐺2
𝜕𝑧2

+𝑘1
2𝐺2 = 0, 0 ≤ 𝑧 ≤ ℎ 

(5) 

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝐺3
𝜕𝑟

)+
𝜕2𝐺3
𝜕𝑧2

+ 𝑘1
2𝐺3 = 0, 𝑧 > ℎ 

(6) 

where 𝑘𝑗 =
𝜔

𝑐𝑗
 is the acoustic wavenumber and 𝜔 is the angular frequency. The Hankel transform 

can be applied to the Helmholtz equations with respect to range: 
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𝐺𝑗𝑝 = ∫ 𝑟𝐺𝑗𝐽0(𝑝𝑟)𝑑𝑟
∞

0
 

(7) 

where 𝐽0(. ) is the Bessel function of the first kind of order zero and 𝐺𝑗𝑝 is the velocity potential 

after the Hankel transform for the frequency domain velocity potential. The variable 𝑝 simply 

denotes that the field is transformed. The inverse Hankel transform is given by: 

  𝐺𝑗 = ∫ 𝑝𝐺𝑗𝑝𝐽0(𝑝𝑟)𝑑𝑝
∞

0
 

(8) 

 

Figure 2: Depiction of the three-layer waveguide with the cylindrical coordinate system. The 

transmitter is positioned at a negative z coordinate. 

 

Using the Hankel transform defined above, the Helmholtz equations are transformed into: 

𝜕2𝐺1𝑝

𝜕𝑧2
+ (𝑘1

2 − 𝑝2)𝐺1𝑝 =
𝑆

𝜋
𝛿(𝑧 − 𝑧′), 𝑧 < 0 

(9)  
𝜕2𝐺2𝑝

𝜕𝑧2
+ (𝑘2

2 −𝑝2)𝐺2𝑝 = 0, 0 ≤ 𝑧 ≤ ℎ 

(10) 
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𝜕2𝐺3𝑝

𝜕𝑧2
+ (𝑘3

2 − 𝑝2)𝐺3𝑝 = 0, 𝑧 > ℎ 

(11) 

These equations are subjected to the boundary conditions of the continuity of pressure and the 

continuity of the normal component of particle velocity at both interfaces. By using the boundary 

conditions to solve for the unknown constants of the pressure field at each boundary, the 

transformed field for the ocean channel (the second layer) can be expressed as: 

𝐺2𝑝(𝑧) =
𝑆

𝜋
𝑒−𝑖𝜂1|𝑧

′| {
𝜂1𝑐𝑜𝑠[𝜂1(ℎ − 𝑧)] + 𝑖𝜂1𝑏23𝑠𝑖𝑛[𝜂2(ℎ− 𝑧)]

(𝜂2
2+ 𝜂1𝜂3𝑏23𝑏21)𝑠𝑖𝑛(𝜂2ℎ) − 𝑖𝜂2(𝑏23𝜂3 +𝑏21𝜂1)𝑐𝑜𝑠(𝜂2ℎ)

} 

(12) 

where 𝑏𝑗𝑖 =
𝜌𝑗

𝜌𝑖
 and 𝜂𝑗 = √𝑘𝑗

2 − 𝑝2, 𝐼𝑚(𝜂𝑗) < 0. By applying the inverse of the Hankel transform, 

the solution for the second layer becomes: 

𝐺2(𝑟, 𝑧;𝜔)

=
𝑆

𝜋
∫ 𝑝𝐽0(𝑝𝑟)𝑑𝑟𝑒

−𝑖𝜂1|𝑧
′| {

𝜂1𝑐𝑜𝑠[𝜂1(ℎ − 𝑧)] + 𝑖𝜂1𝑏23𝑠𝑖𝑛[𝜂2(ℎ− 𝑧)]

(𝜂2
2+𝜂1𝜂3𝑏23𝑏21)𝑠𝑖𝑛(𝜂2ℎ) − 𝑖𝜂2(𝑏23𝜂3+ 𝑏21𝜂1)𝑐𝑜𝑠(𝜂2ℎ)

}
∞

0
𝑑𝑝 

(13) 

This integral can be evaluated by expressing the Bessel function as a sum of Hankel functions of 

the first and second kind, and using contour integration in the complex 𝑝-plane to obtain a solution 

that consists of a sum of normal modes and three branch line integrals, where one of them 

corresponds to the head wave along the bottom boundary. This particular branch line integral can 

be written as: 

𝐼 = ∮ 𝑝𝐻0
(2)(𝑝𝑟)𝐹(𝜂1 , 𝜂2, 𝜂3)

𝐸𝐽𝑃
𝑑𝑝 

(14) 

where 𝐻0
(2)

 is the Hankel function of the second kind and zeroth order and 
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𝐹(𝜂1 , 𝜂2, 𝜂3) = 𝑒
−𝑖𝜂1|𝑧

′| {
𝜂1𝑐𝑜𝑠[𝜂1(ℎ − 𝑧)] + 𝑖𝜂1𝑏23𝑠𝑖𝑛[𝜂2(ℎ− 𝑧)]

(𝜂2
2+ 𝜂1𝜂3𝑏23𝑏21)𝑠𝑖𝑛(𝜂2ℎ) − 𝑖𝜂2(𝑏23𝜂3 +𝑏21𝜂1)𝑐𝑜𝑠(𝜂2ℎ)

} 

(15) 

The integration variable can be changed from 𝑝 to 𝜂3 as follows: 

𝐼 = −∫ 𝜂3

∞

−∞
𝐻0
(2)(√𝑘3

2 −𝜂3
2𝑟)𝐹(𝜂1, 𝜂2, 𝜂3) 𝑑𝜂3 

(16) 

This integral can be evaluated using the method of modified stationary phase, and together with 

the assumption that horizontal range is far greater than the height of the water column ℎ or the 

hydrophone depth, the head wave pressure expression can be simplified to: 

𝐼 ≈
𝑏23𝑘3
𝑟2

𝑒−[𝑘3𝑟+𝑘1|𝑧
′|𝑠𝑖𝑛(𝛽𝑐)]{𝑓+𝑒

𝑖[𝑘2𝑟𝑠𝑖𝑛(𝛽𝑐)]+𝑓−𝑒
−𝑖[𝑘2𝑟𝑠𝑖𝑛(𝛽𝑐)]} 

(17) 

where  

𝑓± =
𝑘2𝑠𝑖𝑛(𝛽𝑐)

𝐿2
[𝑘2𝑠𝑖𝑛(𝛼𝑐)± 𝑏21𝑘1𝑠𝑖𝑛(𝛽𝑐)] 

(18) 

𝐿 = 𝑘2𝑠𝑖𝑛(𝛼𝑐){𝑘2𝑠𝑖𝑛(𝛼𝑐)𝑠𝑖𝑛[𝑘2ℎ𝑠𝑖𝑛(𝛼𝑐)] − 𝑖𝑏21𝑘1𝑠𝑖𝑛(𝛽𝑐)𝑐𝑜𝑠[𝑘2ℎ𝑠𝑖𝑛(𝛼𝑐)]} 

(19) 

𝛼𝑐 = 𝑐𝑜𝑠
−1 (

𝑐2
𝑐3
) , 𝛽𝑐 = 𝑐𝑜𝑠

−1 (
𝑐1
𝑐3
) 

(20) 

 

1.3 Coherence Function 

Let a pair of underwater receivers be horizontally aligned with an airborne source, and 

they are situated at horizontal distances of 𝑟1  and 𝑟2 away from the source. The coherence function 

can be computed as: 
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𝛤12 =
𝐼(𝑟1)𝐼

∗(𝑟2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

√|𝐼(𝑟1)̅̅ ̅̅ ̅̅ |
2
|𝐼(𝑟2)̅̅ ̅̅ ̅̅ |

2
 

(21) 

where 𝐼(𝑟𝑗) = 𝐼(𝑟𝑗, 𝑧, |𝑧
′|;𝜔) is the pressure due to the head wave measured by a hydrophone at 

range 𝑟𝑗, the overhead bar refers to the ensemble average and the asterisk represents the complex 

conjugate. When substituting Eq. (17) into Eq. (21), the horizontal coherence function can be 

simplified to: 

𝛤12 ≈ 𝑒𝑥𝑝[−𝑖𝑘3(𝑟1 − 𝑟2)] 

(22) 

It is implied in Eq. (22) that the real and imaginary components of the coherence function depend 

only on the separation between the two receivers and the speed of sound in the sediment. This 

presents the possibility of obtaining the sound speed of the sediment by computing the horizontal 

coherence function from the experimental data. 

 

1.4 Experimental Setup 

The authors of the publication conducted an experiment in 2016 to verify this theory. The 

site was located at a 16.5 m deep section near Scripps pier off the coast of Del Mar and a horizontal 

line array of hydrophones was mounted 0.5 m above the sea bottom. The array consists of eleven 

ITC 6050 hydrophones spaced out unevenly over a length of 12 m, however only two hydrophones 

with a separation of 2.97 m had sufficient signal to noise ratio to be used for analysis. Prior 

geological surveys by Scripps Institution of Oceanography indicate that the sediment at the site is 

mainly comprised of a 10 m thick layer of fine grain sand with an approximate sound speed of 

1682 m/s. A Robinson R44 helicopter was used in the experiment that generates both broadband 
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noise and harmonics from its main and tail rotors. The tail rotor has a rotation rate that is six times 

that of the main rotor, which produces harmonics with a fundamental frequency of 81.6 Hz 

compared to 13.6 Hz for the main rotor.  While the harmonics from the main rotor are visible only 

up to 100 Hz, the tail rotor harmonics can be observed up to 600 Hz. The higher frequencies are 

dominated by the broadband noise from the surface eddies that are generated by the rotors, until 

approximately 2.5 kHz where the radiated sound would have mostly dissipated. 

 

Figure 3: Power spectral density of the received signal on the hydrophone when the helicopter was 
at a range of 30 m. 

  

 

Figure 4: The trajectory of the helicopter. The helicopter hovered at various locations for 20 to 30 
seconds each as it approached the end-fire of the array. 
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The helicopter approached the array from its end-fire. Starting at a distance of 300 m from 

the array, it hovered above the surface at various ranges from the first hydrophone with the rotors 

at a height of 4 m for a duration of 30 seconds. The coherence function was computed from the 

experimental data using Eq.  (21) to estimate the value of 𝑐3, which is the speed of sound in the 

sediment. This was done by obtaining the zeros from the real and imaginary components of the 

theoretical coherence function in Eq. (22) as follows: 

𝑐3(𝑛) =
4𝑓(𝑛)𝑅

𝑛
 

(23) 

where 𝑅 = |𝑟1 − 𝑟2 | and 𝑓(𝑛) is the frequency at which the 𝑛-th zero appears in the sine and cosine 

functions when taking in an argument of  𝑛𝜋/2. The zeros are extracted by finding the minima of 

the magnitude of both the real and imaginary components of the coherence function that is 

computed from the data. 

 

Figure 5: The horizontal coherence function is computed during a period where the helicopter was 
40 m away from the first hydrophone. Computation was done with FFT length of one second with 

50% overlap over 20 seconds of data. 
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Figure 5 shows the real and imaginary components of the horizontal coherence function 

that is computed when the helicopter was at a range of 40 m. At this position, a large amount of 

energy coming in at the critical angle to the sea bottom results in a dominant head wave. This is 

observed from the alignment of the coherence function from the data with the theoretical 

expression from Eq. (22) when a value of 𝑐3 = 1682 m/s is used. The extracted zeros using the 

minima locating procedure are indicated in the figure, and the mean and the standard deviation of 

the values from  Table 1 gives 𝑐3 = 1688.4± 19.7 m/s. 

Table 1: Extracted zeros from the horizontal coherence function. 

 

 

 

Figure 6: The horizontal coherence function is computed during a period where the helicopter was 
a) 10 m and b) 80 m away from the first hydrophone.  
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 To support the argument that the head wave was observed only when the helicopter was at 

the right range, the authors also verified that the head wave was not present while the helicopter 

was either too near or too far from the array. Figure 6 shows the horizontal coherence plots for 

source ranges of 10 m and 80 m where the theoretical curves are poorly matched to the data. In the 

case of 80 m, the helicopter would have been too far away and the generated head wave would 

have dissipated before it reaches the array. The observed coherence function in this case is solely 

due to the ambient noise, which will be discussed in further detail in CHAPTER 3. When the 

helicopter is 10 m away from the array, most of the radiated sound will be incident on the array at 

an angle that is greater than the critical angle, resulting in most of the measured pressure to come 

from refracted waves that travel through the water column. As the sound speed of water is lower 

than that of the sediment, the resulting coherence function has zero crossings that are further out 

in frequency than the theoretical curve derived for the sediment. Hence the head wave is indeed 

observable only within a narrow source-range window. 
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CHAPTER 2 
 

Analysis of the 2019 Dataset 

In 2019, the authors of the publication [5] returned to the same location to conduct a 

second experiment, this time using a longer hydrophone array with four hydrophones. The 

hydrophone layout is shown in Figure 7 and it is noted that hydrophones 3 and 4 have almost the 

same separation as the pair of hydrophones that was used for analysis in the previous chapter. The 

array was mounted at the same depth as before and the composition of the sea sediment remains 

the same. This chapter contains the thesis author’s analysis of the horizontal coherence function 

that was computed for all six pairs of hydrophones.  

  

 

Figure 7: Hydrophone array spacings for the 2019 experiment. The array has a total length of 15 
m with the widest spacing at 7 m. 

 

 
 

Figure 8: Sound speed profile from the experiment site in 2019. The temperature profile was 
collected and a salinity of 33.5 psu (historical average) was used for the computation. 
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2.1 Coherence Function from the 2019 Dataset 
 

 

Figure 9: Coherence function plotted against frequency for all hydrophone pairs when helicopter 
is 30 m away from the first hydrophone. 

 
Figure 9 shows the coherence curves plotted against frequency with the estimated zeros. 

It is observed that the coherence function vanishes at higher frequencies with increasing spacing 

between the hydrophones, with a higher limit of 600 Hz for a separation of 15 m. This is due to 

the higher attenuation for higher frequencies where the amplitude of the coherence function decays 

much faster with geometric spreading. As the coherence function for the head wave is a function 

of sensor separation and sediment sound speed, it would be easier to verify the consistency of the 

coherence function by plotting against a normalized frequency axis of 𝜔𝑑/𝑐. 

Figure 10 and Figure 11 show the coherence function when plotted against normalized 

frequency for various hydrophone pairs when the helicopter is at a range of 10 m and 30 m away 

from the first phone. It is observed in both figures that the coherence function curves for all the 

hydrophone pairs are similar in shape for the respective time instances at which they were 

measured.  
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Figure 10: Coherence function plotted against normalized frequency for all hydrophone pairs when 
helicopter is 10 m away from the first hydrophone. 

 
 

Figure 11: Coherence function plotted against normalized frequency for all hydrophone pairs when 
helicopter is 30 m away from the first hydrophone. 

 
Figure 10 shows a clear mismatch between the theoretical coherence function and the data 

which is to be expected as the helicopter was not at the right range. Figure 11 shows a good 

agreement between the curves for all hydrophone pairs, which validates Eq. (22) by showing that 
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it works for various hydrophone spacings at least up to 15 m assuming that the helicopter lies 

within the right range window. The coherence function appears to vanish at a normalized 

frequency of 7𝜋 for a separation of 3 m and this takes place at approximately 1800 Hz, which is 

slightly lower than what was observed in the 2016 experiment.  

 

2.2 Estimating Sediment Sound Speed 
 

 

Figure 12: Box plot of the sound speeds that are obtained for each configuration. The mean and 
variance are computed using the zeros that reside between 150 to 500 Hz. 

 
Figure 12 shows the statistics for each configuration in a MATLAB box plot for the 

estimated sound speeds from the zeroes between 150 to 500 Hz where the coherence function was 

still observable for all spacings. The top and bottom of the blue box are the 75 th and 25th percentile 

of the zero crossings, the red dash in the blue box is the mean, while the top and bottom black 

edges extending from the boxes are the maximum and minimum for the zero crossings. The 

horizontal line marked by red asterisks refer to the ground truth sediment sound of 1682 m/s.  It is 
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expected that only the R=30 m and R=40 m configurations will be centered around the ground 

truth sediment speed of 1682 m/s. The data only shows good agreement for the hydrophone 

combinations 1-4 and 2-4 for R=40 m, with 1-2 and R=10 m being unusually close to the ground 

truth considering that the head wave should not be detected at that range. It is noted that the 

coherence function curves are generally noisier than the ones obtained in 2016. This may be caused 

by the shorter duration of time the helicopter spent hovering above each position, which in turn 

reduces the time period where the coherence function will remain stable. The noisier curves result 

in a poor estimation of the zeros and inaccurate sound speed computations with Eq. (23). 

An alternative way of estimating the sound speed is to apply least squares fitting of the 

coherence curves from the data to a set of theoretical coherence curves that are obtained by 

substituting a range of sediment sound speeds into Eq. (22). This provides an intuitive approach 

where the entire shape of the coherence curve is matched, rather than just obtaining the position 

of the zero crossings which can be heavily influenced by the noise. The theoretical coherence is 

computed for every hydrophone pair as such: 

𝛤𝑐 = 𝑒𝑥𝑝 [−𝑖
𝜔

𝑐
(𝑟1 − 𝑟2)] 

(24) 

The estimated sound speed is given by: 

𝑐∗ = min
𝑐
𝑚𝑒𝑎𝑛(𝑅𝑒(𝛤𝑐) − 𝑅𝑒(𝛤𝑑𝑎𝑡𝑎))

2
+𝑚𝑒𝑎𝑛(𝐼𝑚(𝛤𝑐)− 𝐼𝑚(𝛤𝑑𝑎𝑡𝑎))

2
 

(25) 

Where 𝛤𝑑𝑎𝑡𝑎 is the coherence function computed from the data. The estimated sound speed 𝑐∗ 

minimizes the mean difference between both the real and imaginary components of the coherence 

function from the data and the theoretical curve. Due to the attenuation at higher frequencies, the 

frequency range used for comparison is limited from 100 to 550 Hz, which is different from the 
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800 – 2000 Hz band that was used for extracting zeroes in the 2016 experiment. Figure 13 and 

Figure 14 show examples of the best fit curve from the least squares method lined up against the 

data and the theoretical curves when the helicopter is at a range of 30 m and the x-axis is frequency 

and normalized frequency respectively. The results are shown in Figure 15, where there is a distinct 

pattern of increasing accuracy for each hydrophone pair as the helicopter approached the range of 

30 m, with the only exception being hydrophone pair 3-4 that provided a higher sound speed. This 

can be rectified by adjusting the least square fit to a normalized frequency range of 0 to 6π radians 

and the results are shown in Figure 16. The trend becomes clearer for hydrophone pairs with a 

smaller separation such as 2-3 and 3-4 where the estimated sound speed matches the ground truth 

quite well. The least squares fit has shown to be a more suitable approach to estimating the 

sediment sound speed from the coherence function especially for hydrophone pairs with a higher 

separation.  

 

Figure 13: Best least square fit against frequency for the 2019 dataset when the helicopter is at a 
range of 30 m from the first hydrophone. 
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Figure 14: Best least square fit against normalized frequency for the 2019 dataset when the 
helicopter is at a range of 30 m from the first hydrophone. 

 

 
 
Figure 15: Best estimated sound speeds from least square fit against frequency for the 2019 dataset. 
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Figure 16: Best estimated sound speeds from least square fit against normalized frequency for the 
2019 dataset. 

 

2.3 SCOOTER Simulation 

SCOOTER is a Fast Field Program (FFP) that evaluates spectral integral directly with the 

range independent assumption, where FFP models compute the contour integration of an acoustic 

pressure representation and includes the near field contributions which might be neglected by 

normal mode computations [6].  SCOOTER was used to simulate the pressure fields that are 

observed at all hydrophones based on the experimental setup in 2019. Figure 17 to Figure 19 shows 

the SCOOTER simulated coherence curves with the experimental data when plotted against 

normalized frequency. The SCOOTER output appears to be mismatched to the data when the 

source was 10 m away in Figure 17, with the largest discrepancy being observed for hydrophones 

3 and 4 where the second to the fourth zero crossings are overestimated by SCOOTER. This means 

that the SCOOTER simulation generated more air to water refracted wave arrivals than the actual 

wave propagation during the data collection. 
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Figure 17: SCOOTER simulation compared with the theoretical curves and the experimental data 
against a normalized frequency axis with the source being 10 m away from the first phone. 

 

 

Figure 18: SCOOTER simulation compared with the theoretical curves and the experimental data 

against a normalized frequency axis with the source being 20 m away from the first phone. 
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Figure 19: SCOOTER simulation compared with the theoretical curves and the experimental data 

against a normalized frequency axis with the source being 30 m away from the first phone. 

 

The SCOOTER output aligns well with the data at least up to the first four zero crossings 

when the source was 20 m and 30 m away, at least for the lower normalized frequency range where 

the signal to noise ratio was sufficiently high. Figure 19 shows the coherence curves for when the 

helicopter is situated at the right range for generating the head wave, and the theoretical curves 

line up with both the SCOOTER output and the data for all hydrophone pairs which further 

validates Eq. (22).  

 

 

 

 

 

 

 



23 
 

CHAPTER 3 

Ambient Noise Analysis 

This chapter examines the coherence function when ambient noise is present. The work 

presented in this chapter consists of the expressions derived for various ocean  ambient noise 

models and they are compared to the coherence function formed from the hydrophone pairs  during 

a time period that was prior to the arrival of the helicopter. The aim is to determine the best model 

fit for the ambient noise observed during the experiment. While the wind speed was not measured 

during the experiment, it was noted from recorded videos that the conditions were relatively calm 

and the surface noise should not be significant. To simplify the modelling, the discussion will 

begin with basic models that assume that reflections off the sea floor are negligible despite the 

shallow water environment used for the experiment. 

 

3.1 Volume and Surface Noise Model 

Cron and Sherman presented a model for ocean noise as a combination of an isotropic 

noise field and a directional noise field on the surface [7]. The isotropic noise model or the volume 

noise model assumes that there are multiple noise sources that are uniformly distributed in a sphere 

of a certain radius. For a homogenous field, the pressure measured by the receivers can be given 

as: 

〈𝑒2〉2 = 2〈𝑒2〉1[1 + 𝜌(𝑿1, 𝑿2, 𝜏12)] 

(26) 

〈𝑒2〉1 and 〈𝑒2〉2 are the mean-square outputs of one receiver and both receivers respectively while 

𝜌(𝑿1 ,𝑿2, 𝜏12) is the normalized spatial correlation function for the pressure at positions 𝑿1  and 
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𝑿2 with 𝜏12 as the time delay. For a single receiver located at the center of a sphere of radius 𝑅𝑣 

that is filled with noise sources, the output from one frequency is given by: 

𝑒1 = (𝐴/𝑖𝑘𝑟)𝑒𝑖(𝑘𝑟−𝜔𝑡+𝛿) 

(27) 

where 𝑟 is the distance between the noise source and the sensor, 𝑘 is the wavenumber and 𝐴 and 

𝛿 are constants. The real part of this output can be squared and averaged over time, and by 

assuming random phase contributions from all sources within that sphere, the mean square output 

of one receiver can be obtained: 

〈𝑒2〉1 = 2𝜋〈𝐴
2〉𝑅𝑣/𝑘

2 

(28) 

where 〈𝐴2〉 is the time average of 𝐴2. By placing the midpoint of two sensors at the center of the 

sphere, the spatial correlation function now depends on the distance 𝑑 = 2𝑟0 between the two 

receivers where 𝑟0 is the distance from one phone to the midpoint. At the same time the sum of the 

outputs of the two receivers due to a single noise source can be given by: 

𝑒1 +𝑒2 =

{
 
 

 
 2𝐴𝑒−𝑖(𝜔𝑡−𝛿) ∑ (2𝑛 +1)ℎ𝑛

(1)(𝑘𝑟0)𝑗𝑛(𝑘𝑟)𝑃𝑛(𝑐𝑜𝑠𝜃)    (𝑟 ≤ 𝑟0)

𝑛 𝑒𝑣𝑒𝑛

2𝐴𝑒−𝑖(𝜔𝑡−𝛿) ∑ (2𝑛 +1)𝑗𝑛(𝑘𝑟0)ℎ𝑛
(1)(𝑘𝑟)𝑃𝑛(𝑐𝑜𝑠𝜃)    (𝑟 ≥ 𝑟0)

𝑛 𝑒𝑣𝑒𝑛

 

(29) 

Where ℎ𝑛
(1)

 is the spherical Hankel function of the first kind of the n-th order, 𝑃𝑛(𝑐𝑜𝑠𝜃) is the 

Legendre polynomial, and 𝑗𝑛 is the spherical Bessel function of the n-th order. 〈𝑒2〉2 can be 

obtained by taking the taking the square and the time average of the real part of Eq. (29), then 

integrating it over the volume of the same sphere. By setting 𝑅𝑣 → ∞ for the volume noise model, 

the spatial correlation function 𝜌(𝑑, 𝛾) for a pair of horizontally aligned sensors with 𝛾 = 0 being 

the angle between the line joining the receivers and the surface is given by: 
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𝜌(𝑑,0) → 2 ∑ (2𝑛 + 1)𝑗𝑛
2(𝑘𝑟0) − 1

𝑛 𝑒𝑣𝑒𝑛

=
sin 𝑘𝑑

𝑘𝑑
 

(30) 

which is an established result in literature for isotropic noise. The second component of the noise 

field, which is also known as the surface noise model, assumes that there are noise sources 

uniformly distributed over a circular radius 𝑅𝑠 on the surface. An additional assumption of having 

the distance between the receivers and the surface being much greater than the distance between 

the receivers is needed to perform the evaluation. By first evaluating the mean square outputs as 

done previously for the volume noise model, the spatial correlation function can be obtained as: 

𝜌(𝑑, 𝛾) =
∫ 𝑔2(𝛼) 𝑡𝑎𝑛𝛼 𝑐𝑜𝑠(𝑘𝑑 𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛼) 𝐽0(𝑘𝑑 𝑐𝑜𝑠𝛾 𝑠𝑖𝑛𝛼) 𝑑𝛼
𝜋
2
0

∫ 𝑔2(𝛼) 𝑡𝑎𝑛𝛼 𝑑𝛼
𝜋
2
0

 

(31) 

where 𝛼 is the grazing angle from the surface noise source to the receiver and  𝑔(𝛼) is the 

directionality function of each surface noise source. When each source is assumed to be omni-

directional with 𝑔(𝛼) = 1, the function is simplified as: 

𝜌(𝑑,𝛾) = 𝐽0(𝑘𝑑 𝑐𝑜𝑠𝛾) 

(32) 

Figure 20 and Figure 21 show the coherence function plots at different timings during the 

data collection with both the volume and surface noise models when the helicopter was absent. 

The amplitudes for the theoretical expressions decay noticeably with higher frequency especially 

for the volume noise model. The amplitude for the experimental data remains high at the higher 

frequencies which suggests that there are other sources of coherence.  
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Figure 20: Coherence function plots for the data at 09:45 PT. The green and blue curves correspond 
to the volume and surface noise models respectively. 

 
Figure 21: Coherence function plots for the data at 10:05 PT. The green and blue curves correspond 
to the volume and surface noise models respectively. 

 
In both cases, the zero crossings for the volume noise model appears to be slightly more 

aligned with the data at least for hydrophone separations of up to 8 m, which suggests that the 
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noise field is primarily isotropic at those spacings. This may be surprising considering that the 

depth of the receivers is only 16 m and hence it was assumed that the surface noise model would 

provide a better match. There is a mismatch between the data and the theoretical expressions 

beyond the third zero crossing for the last two hydrophone spacings of 12 m and 15 m. This is 

expected as the distance between the receivers are more than half the depth, and the assumptions 

needed for Eq. (31) will not hold. 

 

3.2 Numerical Modelling with OASES 

Given that neither the volume noise model nor the surface noise model can account for 

the higher coherence at higher frequencies, numerical modelling for ambient noise was performed 

with OASES, which models the acoustic propagation in horizontally stratified waveguides using 

wavenumber integration [8]. OASES requires the input of the water column depth, the position of 

the sensors and the sea floor properties to generate an ambient noise field that takes into account 

the noise reflections from the bottom. There is a sub-module within the program package that 

models the propagation of surface-generated ambient noise and provides the sensor response.  

 

Figure 22: Comparison of the volume noise model, the OASES output and the experimental data 

at 9:45 PT. 
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It is observed in Figure 22 that the volume noise model was still a better match to the data 

than the OASES output in terms of zero crossings at the higher frequencies. Given that OASES is 

producing more reflected wave arrivals from the bottom, the zero crossings are pushed further out 

than what is shown by the data. Based on the above results, the sea bottom might not be 

contributing significantly to the ambient noise field. 

All three models explored thus far were not able to adequately describe the coherence 

function for the ambient noise. This provides the motivation to use a generalized expression that 

accounts for multiple noise fields to fit the ambient noise that was observed during the experiment 

 

3.3 Generalized Spatial Correlation 

Cox developed expressions for the normalized cross spectral density between a pair of 

hydrophones when they are in a noise field with an arbitrary directional distribution of uncorrelated 

plane waves [9]. For a three-dimensional field, the normalized directional density function 

𝐹(𝜃,𝜙, 𝜔) is given by: 

1

4𝜋
∫ ∫ 𝐹(𝜃,𝜙,𝜔)𝑠𝑖𝑛𝜃𝑑𝜃

𝜋

0
𝑑𝜙

2𝜋

0
= 1 

(33) 

Where 𝜃 is the elevation and 𝜙 the azimuth. For the special case of azimuthally uniform fields, the 

normalized directional density function can be simplified by integrating over 𝜙 to give: 

1

2
∫ 𝐹(𝜃, 𝜔)𝑠𝑖𝑛𝜃𝑑𝜃
2𝜋

0
= 1 

(34) 
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The normalized cross spectral density is given by: 

𝜌(𝑑, 𝜔;𝛾, 𝜁) =
1

4𝜋
∫ ∫ 𝐹(𝜃,𝜙, 𝜔) 𝑠𝑖𝑛𝜃 exp{𝑖(𝜔𝑑/𝑐)[𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝛾𝑐𝑜𝑠(𝜙 − 𝜁)

𝜋

0

2𝜋

0

+ 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝛾]}𝑑𝜃 𝑑𝜙 

(35) 

Where 𝑑 is the sensor separation, 𝛾 is the angle between the line joining both sensors and the 

surface in terms of elevation and 𝜁 is the same angle for azimuth. Assuming an azimuthally 

uniform field allows for Eq. (35) to be rewritten as:  

𝜌(𝑑, 𝜔; 𝛾, 𝜁) =
1

2
∫ [

1

2𝜋
∫ exp {𝑖 (

𝜔𝑑

𝑐
) [𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝛾𝑐𝑜𝑠(𝜙− 𝜁)]} 𝑑𝜙

2𝜋

0

]
𝜋

0
  

 𝐹(𝜃, 𝜔) 𝑠𝑖𝑛𝜃 exp{𝑖(𝜔𝑑/𝑐)𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝛾}  𝑑𝜃  

(36) 

The inner integral can be evaluated as a Bessel function which gives: 

𝜌(𝑑, 𝜔;𝛾) =
1

2
∫ 𝐽0  [(

𝜔𝑑

𝑐
) 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝛾]  𝐹(𝜃, 𝜔) 𝑠𝑖𝑛𝜃 exp{𝑖(𝜔𝑑/𝑐)𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝛾}  𝑑𝜃

𝜋

0
  

(37) 

 

Figure 23: Illustration of the grazing angle α in relation to the angle θ that is used in the equations 
above. The line joining the receivers are parallel to the surface and ocean floor.  
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It is now possible to examine the contribution to the coherence function from the ambient 

noise that is coming from within a grazing angle of ±𝛽°. Let 𝐹(𝜃,𝜔) be rewritten using a change 

of variable from 𝜃 to 𝛼: 

𝐹(𝛼, 𝜔) = {𝐹0
0
    
𝛼 ≤ 𝛽,𝛼 ≥ −𝛽 

𝛼 > 𝛽,𝛼 < −𝛽 
 

(38) 

Where 𝐹0 is a constant. The normalized density function in Eq. (34) can be rewritten using 𝛼 =

𝜋

2
−𝜃 based on Figure 23 as shown below: 

1

2
∫ 𝐹0𝑐𝑜𝑠𝛼
𝛽

−𝛽
= 1 

(39) 

Solving Eq. (39) gives 𝐹0 =
1

𝑠𝑖𝑛𝛽
. By substituting 𝐹0 back into Eq. (37) and setting 𝛾 = 0, the 

coherence function for vertically aligned sensors can be written as:  

𝜌(𝑑, 𝜔; 0) =
1

2𝑠𝑖𝑛𝛽
∫  𝑐𝑜𝑠𝛼exp{𝑖(𝜔𝑑/𝑐)𝑠𝑖𝑛𝛼}𝑑𝛼
𝛽

−𝛽
 =

𝑠𝑖𝑛[(𝜔𝑑/𝑐)𝑠𝑖𝑛𝛽]

(𝜔𝑑/𝑐)𝑠𝑖𝑛𝛽
 

(40) 

Setting 𝛾 =
𝜋

2
 gives the result for horizontally aligned sensors: 

𝜌 (𝑑, 𝜔;
𝜋

2
) =

1

2𝑠𝑖𝑛𝛽
∫ 𝐽0 [(

𝜔𝑑

𝑐
)  𝑐𝑜𝑠𝛼] 𝑐𝑜𝑠𝛼 𝑑𝛼

𝛽

−𝛽
  

(41) 

There is no closed form solution to Eq. (41) hence the whole expression has to be evaluated in 

MATLAB for a given value of 𝛽.  
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Figure 24: Plots for the coherence function for a pair of horizontally and vertically aligned sensors 
for different angles of 𝛽. 

 

 

Figure 25: Comparison of the volume noise model, the generalized horizontal coherence function 
for 𝛽 = 27° and the experimental data at 09:45 PT. 

 

 
 

Figure 26: Comparison of the volume noise model, the generalized horizontal coherence function 
for 𝛽 = 27° and the experimental data at 10:05 PT. 
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Figure 24 shows the coherence functions for cases where the sensors are either 

horizontally or vertically aligned by setting 𝛽 to various angles. As a sanity check, it is noted that 

𝛽 = 90° for both alignments leads to the isotropic noise model which is expressed as 
sin𝑘𝑑

𝑘𝑑
. 

The critical angle was determined to be 27° based on the ground truth sediment speed of 

1682 m/s. Figure 25 and Figure 26 show the plots of the coherence function for the ambient noise 

measured on two different occasions by comparing the volume noise model with the generalized 

horizontal coherence function by assuming that the ambient noise is restricted to a sector of ±27° 

which is within the critical angle. The first zero crossing of the generalized coherence function 

appears to be more aligned with the data than the volume noise model, but both models match the 

data quite well at higher frequencies.  

To account for the higher amplitude for the coherence function, it is likely that there is an 

additional directional component in the noise field. Cox addressed the issue of overlapping noise 

fields in his paper by proposing that they can be represented by a convex combination of an 

isotropic and a directional component: 

𝑋(𝜙, 𝜔) = 𝑌(𝜔) + [1 − 𝑌(𝜔)]𝐷(𝜙,𝜔)  

(42) 

where 0 ≤ 𝑌(𝜔) ≤ 1 and 𝐷(𝜙, 𝜔) ≥ 0, and 𝐷(𝜙, 𝜔) is a normalized directional density function. 

Given that the hydrophone array was positioned near the shore, it is possible that there could be 

waves that contribute to the amplitude of the coherence function as an additional sinusoidal 

component. This noise component is modelled as a field that is incident on the array at only one 

elevation and one azimuth and it can be expressed as: 

𝐹2(𝛼,𝜙,𝜔) = {
𝐹2(𝛼, 𝜔)

0
    
𝜙 = 𝜙1  
𝜙 ≠ 𝜙1  

 

(43) 
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𝐹2(𝛼, 𝜔) = {
𝐺
0
    
𝛼 = 𝛼1  
𝛼 ≠ 𝛼1  

 

(44) 

where 𝜙1  and 𝛼1 are the azimuth and elevation angles from which the waves are coming from and 

𝐺 is a constant to be determined. Substituting the definition of 𝐹2(𝛼,𝜙,𝜔) into Eq. (33) and using 

the same change of variable as before gives 𝐺 =
4𝜋

𝑐𝑜𝑠𝛼1
. The normalized cross spectral density can 

be given as: 

𝐹2(𝛼, 𝜙, 𝜔) = 𝑒𝑥𝑝 [(𝑖
𝜔𝑑

𝑐
) 𝑐𝑜𝑠𝛼1𝑐𝑜𝑠𝜙1] 

(45) 

 

Figure 27: Comparison of the coherence functions from the directional component 𝐹2 and the 
experimental data at 09:45 PT with 𝛼1 = 0 and 𝜙1 = 15. 

 
 Figure 27 shows the coherence function for the directional component with 𝜙1 = 15 that 

appears to match the data quite well for almost all of the zero crossings except for the first one and 

the last few. The coherence function is also at unity for the peaks, which exceeds the amplitude of 

the coherence function from the data. It is hypothesized that the 15° is attributed to the azimuth 

and not the elevation, as 15° in elevation for a receiver near the sea bottom would imply that the 

source is at a great distance away. As such, a convex combination of the two fields is needed to 

produce the overall noise field: 
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𝐹(𝛼, 𝜙, 𝜔) = 𝜎𝐹1(𝛼,𝜔) + (1− 𝜎)𝐹2(𝛼, 𝜙, 𝜔) 

(46) 

where 0 ≤ 𝜎 ≤ 1 is the weighting factor for the convex combination of the two fields, and 

𝐹1(𝛼,𝜔) is the azimuthally independent field that was defined in Eq. (38). By substituting Eq. (46) 

into Eq. (35) and setting 𝛾 =
𝜋

2
, the cross spectral density is given by: 

𝜌 (𝑑,𝜔;
𝜋

2
) =

𝜎

2𝑠𝑖𝑛𝛽
∫ 𝐽0  [(

𝜔𝑑

𝑐
)  𝑐𝑜𝑠𝛼] 𝑐𝑜𝑠𝛼 𝑑𝛼

𝛽

−𝛽
+ (1 −𝜎)𝑒𝑥𝑝 [(𝑖

𝜔𝑑

𝑐
) 𝑐𝑜𝑠𝛼1𝑐𝑜𝑠𝜙1]  

(47) 

 

Figure 28: Comparison of the coherence functions from the combined noise field and the 
experimental data at 09:45 PT with 𝜎 = 0.5, 𝛼1 = 0 and 𝜙1 = 0. 

 

 

Figure 29: Comparison of the coherence functions from the combined noise field and the 

experimental data at 09:45 PT with 𝜎 = 0.5, 𝛼1 = 0 and 𝜙1 = 15. 
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Figure 30: Comparison of the coherence functions from the combined noise field and the 

experimental data at 09:45 PT with 𝜎 = 0.5, 𝛼1 = 0 and 𝜙1 = 20. 

 
Figure 28, Figure 29 and Figure 30 show the coherence functions computed with by Eq. 

(47) for varying values of 𝜙1  while assuming that there is no elevation with 𝛼1 = 0 and that both 

noise field components are equally weighted. 𝜙1 = 0 would imply that the directional component 

is propagating in a direction that is parallel to the line joining the hydrophones. It can be observed 

that the best fit is obtained with 𝜙1 = 15, with the second and third zero crossings occurring at 

lower frequencies compared to same zeros in the data but otherwise matching the experimental 

data very well. It can be concluded that the additional source of coherence is coming from a 

direction that is almost parallel to the hydrophone array in azimuth and with no elevation. 



36 
 

 

Figure 31: Plot of the Steered Response Power Phase Transform for the hydrophone data from the 
beginning of the experiment to the arrival of the helicopter. 

 
To corroborate the existence of the additional source, the Steered Response Power Phase 

Transform (SRP-PHAT) [10] was used to compute the direction of arrival plot relative to the 

hydrophone array. For a given look direction, the SRP can be computed by applying the 

corresponding time shift to the generalized cross correlation (GCC) between all hydrophone pairs, 

and taking the Fourier transform to obtain the cross spectrum. To ensure that only the phase 

information is considered, the cross spectra for all hydrophone pairs are normalized by their 

magnitude. The resultant power for that specific look direction is obtained by summing the integral 

of all weighted cross spectra over all frequencies. This method was used in place of conventional 

beamforming as the wide hydrophone spacings would result in spatial aliasing when computing 

for the power at higher frequencies. Figure 31 shows the SRP-PHAT plot where 0° is pointing 

south towards the first hydrophone and 180° is pointing north towards the last hydrophone. There 
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are two periods of significant interference, where the first one occurred slightly after 9:35 am and 

the second one occurred after 9:55 am, both of which alters the coherence function plots 

significantly during those periods. The helicopter is also observable as it approached the first 

hydrophone from the south at 10:15 am, and a clear track could be seen as it reached the closest 

point of approach and head north. There was no noticeable source in the SRP-PHAT plot that was 

consistently present at 𝜙1 = 15.  

 

Figure 32: Map view obtained from Google Maps, with the blue pin indicating the position of the 

array and the green pin is located at a relative bearing of 165° from north at a distance of 3.6 km. 

 

 

Figure 33: Photo taken of the SPROUL, a Scripps Research Vessel which was in the vicinity on 
that day. The La Jolla coastline can be seen in the background, and it might have been moving 
during the experiment. 
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According to the trial logs, there were only two vessels nearby. The first is the support 

boat which has powered down shortly after deploying the hydrophones. The second is the 

SPROUL, which is a Scripps research vessel shown in Figure 33.  By drawing a line that is 15° 

from the south, the westward direction would lead further into the ocean, while the eastward 

direction would mark a location near the Ellen Browning Scripps Memorial Pier at a distance of 

3.6 km as shown in Figure 32. This implies that the pier is a plausible source of interference as it 

has active water pumps that feed seawater to the Birch Aquarium and nearby facilities. even though 

it was not picked up by the SRP-PHAT plot 

 

Figure 34: Spectrum plots for both the 2016 and 2019 experiment. There is a 400 Hz tonal lasting 
for approximately 15 minutes that is visible in both experiments. 

 
The SPROUL might have also been positioned along the 15° line during the experiment. Further 

inspection with the spectrum plots shown in Figure 34 indicates that there are no visible frequency 

features that persist throughout both data sets. While there appears to be a 400 Hz tonal line that 

is visible in both experiments for roughly 15 minutes, it is not sufficient to explain the ambient 

noise coherence plots. Given the available information, the identity of the source at 15° remains 

inconclusive. 
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CHAPTER 4 

Conclusion 

This thesis report is a continuation of the investigation of the horizontal coherence 

function between two underwater sensors in the presence of an airborne source  and is primarily 

based on the data collected during the 2019 experiment. The 2019 experiment was conducted with 

a hydrophone array with four hydrophones with a length of 15 m. The derived expression for the 

coherence function between two horizontally aligned sensors in Eq. (22) was a clear match for all 

six pairs of hydrophones when the helicopter was positioned to generate a dominant head wave 

that could be captured by the array, and the expression did not match well when the helicopter was 

not within the appropriate range window. The range window is defined by the critical angle on the 

sediment and the height of the helicopter, where a source that is far away would generate head 

waves that would have attenuated by the time it reaches the array, and a source that is too near 

would produce a head wave that is not detected by the array. The simulation performed with 

SCOOTER shows a mis-match with the experimental data when the source was only 10 m away, 

but otherwise agreed with the data when the source was further away and it valida ted the derived 

expression for all of the hydrophone pairs. 

The least mean squares method was proposed as an alternative to extracting the zero 

crossings when it comes to deriving the sound speed. The least mean squares exploited the entire 

shape of the coherence curve and not just the zero crossing locations, and it provided better 

sediment sound speed estimates especially when plotted against normalized frequency.  

Aside from measuring the coherence curves from the helicopter noise data, this thesis also 

investigated the coherence function for the ambient noise at the experiment site. The coherence 
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curves computed from the ambient noise data was compared with theoretical curves from various 

ocean noise models. For hydrophone spacings that are less than half  the depth of the array, the 

isotropic noise model is a close fit in terms of the zero crossings despite the lower amplitude of 

the coherence function at higher frequencies. An alternative model that consisted of a convex 

combination of noise fields proved to be the best fit, where the first noise field is represented by 

ambient noise being restricted a sector within the critical angle and the second contribution came 

from a wave that is propagating in a direction that is at 15° from the south. By drawing a line from 

the hydrophone array, it is concluded that the second contribution might come from the active 

water pumps at the Ellen Browning Memorial Scripps Pier.  

In summary, the thesis was successful in establishing the validity of the coherence 

function of the head wave for a separation of up to 15 m. The least squares fitting was also proposed 

as a better method for estimating the sediment sound speed, and the ambient noise for the 

experiment site was shown to be characterized by a convex combination of an azimuthally uniform 

noise field and a directional component. 
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