
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Security Challenges and Defense Opportunities of Connected and Autonomous Vehicle
Systems in the Physical World

Permalink
https://escholarship.org/uc/item/1m70f36z

Author
Shen, Junjie

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1m70f36z
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Security Challenges and Defense Opportunities of Connected and Autonomous Vehicle
Systems in the Physical World

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Junjie Shen

Dissertation Committee:
Assistant Professor Alfred Chen, Chair

Professor Gene Tsudik
Associate Professor Marco Levorato
Assistant Professor Joshua Garcia

Associate Professor Mohammad Al Faruque

2022

© 2022 Junjie Shen

DEDICATION

To my family.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES viii

LIST OF TABLES xi

LIST OF ALGORITHMS xiii

ACKNOWLEDGMENTS xiv

VITA xv

ABSTRACT OF THE DISSERTATION xvii

1 Introduction 1
1.1 Contributions . 3

1.1.1 Overview . 3
1.1.2 Security Challenge in Multi-Sensor Fusion based Localization in High-

Level AD Systems . 4
1.1.3 Security Challenge in Traffic Light Detection in High-Level AD Systems 5
1.1.4 Security Challenge in Deep Learning based Automated Lane Centering

in Low-Level AD Systems . 5
1.1.5 Defense Opportunity for Lateral-Direction Localization Attacks on

High-Level AD Systems . 6
1.1.6 Defense Opportunity for Data Spoofing Attacks on CV-based Intelli-

gent Traffic Signal Control Systems 7
1.1.7 SoK of Semantic AI Security in Autonomous Driving 8

1.2 Dissertation Organization . 9

2 Background and Related Work 10
2.1 Background . 10

2.1.1 AD Systems and AI Components . 10
2.1.2 AD AI related Security Backgrounds 19
2.1.3 CV-based Traffic Signal Control and Traffic Modeling Basics 20
2.1.4 Congestion Attacks against CV-based Traffic Signal Control 24

2.2 Related Work . 24

iii

3 Security Challenge in AD Localization 30
3.1 Introduction . 30
3.2 Attack Model and Problem Formulation . 35

3.2.1 Attack Goal and Incentives . 35
3.2.2 Threat Model . 36
3.2.3 Attack Formulation . 37

3.3 Security Analysis of MSF Algorithm . 38
3.3.1 Upper-Bound Attack Effectiveness 38
3.3.2 Cause Analysis . 42

3.4 Attack Design: FusionRipper . 51
3.5 Attack Evaluation . 52

3.5.1 Evaluation Methodology . 52
3.5.2 Attack Effectiveness . 57
3.5.3 Comparison with Naive Attack Method 60
3.5.4 Generality of FusionRipper . 60

3.6 Practical Attack Considerations . 62
3.6.1 Robustness Against Spoofing Inaccuracies 62
3.6.2 End-to-End Attack Impact Evaluation 64

3.7 Offline Attack Parameter Profiling . 66
3.7.1 Problem Settings and Design . 67
3.7.2 Experiments and Evaluation . 69

3.8 Limitation and Defense Discussions . 72
3.8.1 Limitations of Our Study . 72
3.8.2 Defense Discussions . 73

3.9 Summary . 76

4 Security Challenges in AD Perception 77
4.1 Region-of-Interest Attack on Traffic Light Detection 77

4.1.1 Introduction . 77
4.1.2 Threat Model and Attack Goal . 79
4.1.3 Attack Insight and Design . 79
4.1.4 Evaluation . 81
4.1.5 Limitations and Future Work . 84
4.1.6 Summary . 85

4.2 Dirty Road Patch Attack on Automated Lane Centering 86
4.2.1 Introduction . 86
4.2.2 Attack Formulation and Challenge 89
4.2.3 Dirty Road Patch Attack Design . 93
4.2.4 Attack Methodology Evaluation . 102
4.2.5 Software-in-the-Loop Simulation . 108
4.2.6 Defense Discussion . 111
4.2.7 Summary . 112

iv

5 Defense Opportunity against AD Localization Attacks 113
5.1 Introduction . 113
5.2 Threat Model . 118
5.3 Lane Detection for High-Level AD Localization Defense 119
5.4 Novel LD-based Defense Design: LD3 . 123

5.4.1 Design Challenges . 123
5.4.2 Design Overview . 124
5.4.3 Attack Detection Design . 127
5.4.4 Attack Response Design . 128

5.5 Defense Effectiveness Evaluation . 131
5.5.1 Evaluation Methodology . 131
5.5.2 Attack Detection Effectiveness . 134
5.5.3 Attack Response Effectiveness . 137
5.5.4 Evaluation under Limited Visibility 138

5.6 End-to-End Evaluations . 140
5.6.1 Evaluation in AD Simulator . 140
5.6.2 Evaluation on AD Development Chassis 143

5.7 Evaluation against Adaptive Attacks . 145
5.7.1 Stealthy Attack Evaluation . 146
5.7.2 LD-side Adaptive Attack Evaluation 147

5.8 Limitations Discussion . 148
5.9 Summary . 150

6 Defense Opportunity against CV Data Spoofing Attacks 151
6.1 Introduction . 151
6.2 Threat Model . 155
6.3 Defense Challenges . 155
6.4 Defense Design . 157

6.4.1 Design Overview . 158
6.4.2 Trust Assignment . 159
6.4.3 Remove and Rerun . 163

6.5 Defense Effectiveness Evaluation . 164
6.5.1 Evaluation Methodology . 164
6.5.2 Results . 167

6.6 Robustness to Infrastructure-Side Sensor Noises 171
6.7 Online Detection Exploration . 172

6.7.1 Evaluation Methodology . 174
6.7.2 Online Detection Effectiveness . 175

6.8 Discussions . 177
6.8.1 Defense Generality Discussion . 177
6.8.2 Alternative Defense Designs . 178
6.8.3 Handling Lane-Changing Vehicles . 179
6.8.4 Spoofer Handling . 179

6.9 Summary . 180

v

7 Systematization of Knowledge in Semantic AD AI Security 182
7.1 Introduction . 182
7.2 Systematization Scope . 186
7.3 Systematization of Knowledge . 187

7.3.1 (Attack/Defense) Targeted AI Components 187
7.3.2 Systematization of Semantic AD AI Attacks 188
7.3.3 Systematization of AD AI Defenses 196
7.3.4 Systematization of Evaluation Methodology 201

7.4 Scientific Gaps and Future Directions . 202
7.4.1 Evaluation: General Lack of System-Level Evaluation 202
7.4.2 Research Goal: General Lack of Defense Solutions 204
7.4.3 Attack Vector: Cyber-Layer Attack Vectors Under-Explored 206
7.4.4 Attack Target: Downstream AI Component Under-Explored 207
7.4.5 Attack Goal: Goals Other Than Integrity Under-Explored 209
7.4.6 Community: Substantial Lack of Open Sourcing 210

7.5 PASS : System-Driven Evaluation Platform for AD AI Security 211
7.5.1 Design Goals and Choices . 212
7.5.2 PASS Design . 214
7.5.3 Case Study: System-Level Evaluation on Stop Sign Attacks 217
7.5.4 Simulation Fidelity Evaluation . 221
7.5.5 Educational Usage of PASS . 222

7.6 Summary . 222

8 Conclusion and Future Work 224
8.1 Conclusion . 224
8.2 Future Work . 225

8.2.1 Simultaneous Attacks on Physical-Layer Information 225
8.2.2 Security Analyses on Downstream AD AI Components 226
8.2.3 Defense Generality Improvements . 227
8.2.4 System-Driven Evaluation Platform for AD AI Security 228

Bibliography 230

Appendix A Success Criteria of FusionRipper Attack 261

Appendix B Calculation of Lateral Position and Heading Rate Changes 263

Appendix C Success Criteria of DRP Attack 264

Appendix D Detailed DRP Attack Design 267

Appendix E Detailed LD3 Design and Implementation Choices 269

Appendix F Independence between LiDAR Localization and Lane Line Mark-
ings 271

vi

Appendix G SAVIOR Evaluation Details 274

Appendix H AI Components Studied in Semantic AD AI Security Research277

Appendix I STOP Sign Attack Reproduction 280

Appendix J Example AD and Plant Model Setups in PASS 282

vii

LIST OF FIGURES

Page

2.1 Overview of AD system designs and the roles of AD AI components. 12
2.2 MSF-based localization and its use in high-level AD systems. 13
2.3 Overview of the typical ALC system design. 17
2.4 Projection from world coordinates to image coordinates. 19
2.5 Illustration of the ROI in TL detection. 19
2.6 Illustration of a common major arterial intersection. 21
2.7 A typical signal timing plan for 8-phase intersections. The circled numbers

with solid background denote the phase IDs. 22
2.8 Illustration of the Newell’s car-following model [287]. Left: the speed-spacing

relationship for a single vehicle. Right: the leader-follower trajectory relation-
ships. 23

2.9 Number and trends of semantic AD AI security papers (collected with a focus
on top-tier venues). 28

3.1 Illustration of the 2-stage attack design and consequences of FusionRipper. . 34
3.2 (a) CDF of the maximum deviations for attack windows in real-world and

synthetic traces. Attack goals are marked in red dotted lines. (b) Maximum
deviations and best fitted exponential bases of attack windows in the two traces. 40

3.3 The deviations and best fitted exponential bases of two example attack win-
dows in the real-world trace. Left is with take-over effect; Right is without
take-over effect. 41

3.4 The deviation growth and the best fitted exponential base for BA-MSF with
only the spoofed GPS input in KF updates (or a single-source KF-based MSF)
in the synthetic trace under exhaustive search. 42

3.5 A simplified but general MSF operation pipeline under GPS spoofing attack
for theoretical analysis. 43

3.6 Modeling of each factor in the synthetic trace. We modify different parts of
the sensor data in order to observe how the factors affect the 2nd deviation
dev2. 47

3.7 Relationship between the contributing factors and the spoofing deviation in
the synthetic trace. 48

3.8 Average attack success rates of (a) off-road attack and (b) wrong-way attack
under different minimum attack duration. 55

viii

3.9 Average success rate under different required attack deviations when the min-
imum attack duration is 2 minutes. 56

3.10 Average success time for reaching required deviations in off-road and wrong-
way attacks under different minimum attack duration. 56

3.11 Attack success rate for different amounts of spoofing errors. Experiment of
each error amount is repeated 100 times. 64

3.12 Snapshots of our end-to-end attack demos [44]. MSF View: input sensor po-
sitions and MSF outputs; Physical World View: victim AD vehicle’s physical
world position. 67

3.13 Profiling results when using different (a) minimum profiling success rates, and
(b) safe profiling thresholds. 71

3.14 Average profiling effectiveness (bar graph) and costs (line graph) under differ-
ent numbers of attack trials in each profiling round. Each profiling is repeated
for 100 times. 72

4.1 Illustration of the ROI attack for TL detection. 80
4.2 Attack success rates under different attack range thresholds (left) and spoofing

distances (right). 83
4.3 Snapshot of attacking the red light detection. The green TL at the next

intersection is falsely detected by the AD vehicle due to the incorrect ROI. . 84
4.4 Snapshot of attacking the green light detection. The TL detector failed to

detect any light in the ROI, causing the victim to stop at the stop line despite
the light is green. 84

4.5 Illustration of our novel and domain-specific attack vector: Dirty Road Patch
(DRP). 94

4.6 Overview of our DRP (Dirty Road Patch) attack method. ROI: Region of
Interest; BEV: Bird’s Eye View. 96

4.7 Motion model based input generation from original camera input. 98
4.8 Iterative optimization process design for our optimization-based DRP gener-

ation. 98
4.9 Lane bending effect of our objective function. 98
4.10 Driver’s view at 2.5 sec (average driver reaction time to road hazards [12])

before our attack succeeds under different stealthiness levels in local road
scenarios. Inset figures are the zoomed-in views of the malicious road patches. 103

4.11 Real-world dirty road patterns. 103
4.12 Stop sign hiding and appearing attacks [420]. 103
4.13 Miniature-scale experiment setup. Road texture/patch are printed on ledger-

size papers. 108
4.14 Lane detection and steering angle decisions in benign and attacked scenarios

in the miniature-scale experiment. 108
4.15 Software-in-the-loop simulation scenarios and driver’s view 2.5 sec before at-

tack succeeds. 109

ix

4.16 Victim driving trajectories in the software-in-the-loop evaluation from 18 dif-
ferent starting positions for highway and local road scenarios. Lateral offset
values are percentages of the maximum in-lane lateral shifting from lane cen-
ter; negative and positive signs mean left and right shifting. 110

5.1 Physical-world end-to-end demonstrations of LD3 using a Level-4 AD devel-
opment chassis of real vehicle size and with full closed-loop control. (Top)
Vehicle driving trajectories in bird’s eye view. (Bottom) Final stopping posi-
tions under the three experimental settings. The driving direction and vehicle
heading are annotated with blue arrows. 116

5.2 Overview of LD3 design integrated in a typical high-level AD system. New
components are highlighted in yellow. 125

5.3 Illustration of safety-driven fusion in the attack response. 130
5.4 (Top) Attack detection ROC curves; (Bottom) Detection and Attack Response

(AR) deviations in the LD3 evaluation. 136
5.5 Benign and attacked MSF/LD lateral deviations and CUSUM statistics. . . . 136
5.6 MSF/LD and physical world deviations and Kalman gains during AR period. 136
5.7 Route of the night-time sensor trace collected using EON [130]. 139
5.8 Detection and AR deviations on the night-time trace. 140
5.9 Simulation snapshots of the vehicle stopping locations under the 3 defense

settings in SF-Straight. 143
5.10 Side-by-side views of the AD development chassis and a Toyota Camry. . . . 143
5.11 Maximum and stopping deviations during the AR period under the LD attack.147

6.1 Infrastructure-side sensor range limitation. The CV communication range is
often much larger than the infrastructure-side sensor range. 156

6.2 Defense design overview. 157
6.3 A Vissim snapshot of the traffic congestions caused by our reproduced attacks. 166
6.4 Total delay reductions difference between removing an attack and a benign CV.169
6.5 Attack detection ROC curves of our detector with and without the RnR-5. . 170
6.6 Attack detection ROC curves (zoom-in view) under different levels of camera

detection noises (σ = {σpos, σvel}). 173
6.7 Attack detection ROC curves (zoom-in view) of the offline and online detection

setups. 176

7.1 Distribution of (attack/defense) targeted AI components in semantic AD AI
security papers. 188

7.2 Design of our system-driven evaluation platform PASS for the semantic AD
AI security community. 215

7.3 AD vehicles for the system-driven evaluation platform: (a) A real-vehicle sized
chassis with L4 AD sensors and closed-loop control; (b) An L4 AD vehicle
built upon Lincoln MKZ. Both are equipped with L4 AD-grade sensors such
as LiDARs, cameras, RADARs, GPS, and IMU. 216

7.4 Reproduced semantic AD AI attacks on STOP sign hiding: (a) RP2 [157] in
simulator, (b) SS [120] in simulator, and (c) SS [120] in physical world. . . . 218

x

LIST OF TABLES

Page

2.1 Survey of MSF-based localization designs in papers published in top-tier
robotics conferences (IROS, ICRA, and RSS) [99] in the years of 2018 and
2019. 14

3.1 Required deviations for the two attack goals considered in this work. The
values are calculated based on common AD vehicle, lane, and road shoulder
widths (detailed in Appendix A). 34

3.2 Notations in KF and contributing factor derivation. 43
3.3 Correlations between the contributing factors and the take-over vulnerability.

Results with statistically strong correlation are highlighted in bold. 50
3.4 Average MSF co-variance, i.e., uncertainty, of the KAIST local and highway

traces. We ranked the traces based on their MSF state co-variance (the lower
the more confident), and pick the most confident ones (in bold) in our eval-
uation. 54

3.5 Real-world sensor traces used in our evaluation. 55
3.6 Ablation study results on ba-local trace. 56
3.7 Top 3 attack parameters with the highest attack success rates when minimum

attack duration is 2 min. 59
3.8 Attack success rates of FusionRipper and random attack on 3 MSF implemen-

tations. The attacks are evaluated on ba-local with 2-minute minimum attack
duration. 62

4.1 Required deviations and success time for successful attacks on ALC systems
on highway and local roads. Detailed calculations and explanations are in
Appendix C. 90

4.2 Attack success rate and time under different stealthiness levels. Larger λ
means stealthier. Average success time is calculated only among the successful
cases. Pixel L1, L2, and Linf are the average pixel value changes from the
original road surface in the RGB space and normalized to [0, 1]. 105

5.1 Semantic map APIs required for LD3. 127
5.2 Details of the 562 total attack traces used in our evaluation and the Fusion-

Ripper attack effectiveness. 133

xi

5.3 Maximum deviations to lane center and attack consequences under different
defense settings in the 4 simulation scenarios in §5.6.1. Each setting was run
for 10 times with randomized attack starting times. Benign driving with LD3

is also presented and was run for 10 times. The maximum deviations are
represented as (mean, std) in meters. 142

5.4 The detection, maximum, and stopping deviations in the three settings at
two different driving speeds. We repeat the experiments of w/ LD3 w/ attack
3 times and report (mean, std) deviations. We do not repeat the other two
settings as they are quite stable. 144

5.5 Maximum physical deviations can be achieved without being detected under
various LD fluctuation assumptions. Percentages indicate the probabilities of
such fluctuations. 145

6.1 Configurations of the real-world intersection (Fig. 2.6) used in this work and
in the congestion attacks [119]. 165

6.2 Attack performance reported in the congestion attacks [119] and of our repro-
duced attacks. PR is short for penetration rate. Avg total delay inc is the
average total delay increment caused by the attacks. 165

6.3 Suspicious score rankings of the attack CVs in Trust Assignment. The num-
bers in the parentheses are the CV snapshots that we rank the attack CV in
Top-K and the total number of CV snapshots in the simulation, respectively. 168

6.4 Attack detection performance of our detector (TA & RnR-5) and the US-
DOT MDT [378]. PR: Penetration Rate, TPR: true positive rate, FPR: false
positive rate. 169

6.5 Timing overhead of the design components. Results are summarized from 100
measurements. 175

7.2 Summary of existing semantic AD AI attacks. 190
7.3 Summary of existing semantic AD AI defenses. 197
7.4 System-level evaluation methods used in existing works. Such complemen-

tariness motivates us to choose a simulation-centric hybrid design for our
evaluation platform. 213

7.5 Component- and system-level evaluation results of 3 STOP sign attacks. Re-
sults are averaged over 10 runs for each configuration. 220

xii

LIST OF ALGORITHMS

Page
1 Offline Attack Parameter Profiling . 69
2 Attack detection by checking the consistency between MSF and LD 127
3 Safety-driven fusion for attack response . 129
4 Cumulative lateral deviations based uncertainties calculation 131
5 Calculation of LD deviation to lane centerline 270

xiii

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere appreciation to my advisor Prof. Alfred
Chen. Alfred has not only provided me guidance, continous support, and encouragement
over my Ph.D. journey, but also set me a perfect example of an independent, diligent, and
respectable researcher. I remember the first time when I chatted with him, I was facinated
by his visionary plan in Autonomous Driving security research, and that was the moment
that I decided to change research direction and join his lab. Fast forward four years today,
I am still extremely grateful for his willingness to accept a Ph.D. student without much
security background like me. Such an open-mindedness inspired me not just in my research
but also in my life as well. I am very fortunate to have him being my advisor.

Next, I want to thank the other members of my dissertation committee, Prof. Gene Tsudik,
Prof. Marco Levorato, Prof. Joshua Garcia, and Prof. Mohammad Al Faruque for their
valuable feedback and suggestions. Also, special thanks to my intern mentors Dr. Zhisheng
Hu, Dr. Shengjian Guo, and Prof. Kang Li at Baidu Security for their valuable guidance.

During my Ph.D., I worked closely with my labmates Takami Sato, Ningfei Wang, Ziwen
Wan, Yunpeng Luo, Jun Yeon Won, and Jongho Lee. We shared cherishable memories in
research, life, food, hobbies, etc. I am also thankful to Dr. Yunhan Jack Jia, Dr. Yan-
tao Lu, Prof. Zhou Li, Prof. Zhe Zhou, Qifan Zhang, Mingtian Tan, Dr. Hengyi Liang,
Ruochen Jiao, Prof. Qi Zhu, Zeyuan Chen, Kanglan Tang, Shinan Liu, Prof. Ziming Zhao,
Prof. Chunming Qiao, Zhen Yang, Prof. Yiheng Feng, Prof. Z. Morley Mao, Prof. Yang
Feng, Sumaya Almanee, Dr. Rosario Cammarota, Dr. Nahid Farhady Ghalaty, Prof. Alex
Veidenbaum, Prof. Alex Nicolau, Vikram Narayanan, and Prof. Anton Burtsev for valuable
discussions, technical help, and collaborations. Special thanks to Dr. Gongjin Sun and Dr.
Zhi Chen for their generous help and suggestions.

I also would like to thank my friends at UCI for enriching my life in the past six years. My
thnanks go to Dr. Fan Yin, Dr. Zhe Wang, Shiyao Zhang, Zhanhang Liang, Jiyang Yan,
Huan Chen, Dr. Aniket Shivam, Biswadip Maity, Dr. Sajjad Taheri, Jeffrey Chen, Dr. Yu
Guo, Sicong Liu, Yingtong Liu, Dr. Liangjian Chen, Deying Kong, Junze Liu, along with
many others.

My Ph.D. research was supported in part by NSF under grants CNS-1850533, CNS-1929771,
CNS-1932351, CNS-1932464, CNS-2145493, CNS-1823262, CMMI-2054710, USDOT under
grant 69A3552047138 for CARMEN UTC, and Donald Bren School of Information and
Computer Sciences at UCI. Thanks to all of them for their kind support.

Finally, I want to thank my family for all their support, sacrifices and blessings. I am
eternally indebted to my parents who taught me diligence and perseverance. Last but not
the least, I am forever grateful to Mengya Shi, my wife and my best friend, who has been
a pillar of support during the ups and downs in this journey. Her love and endless support
helped me to get through difficult times and encouraged me to push forward to complete the
Ph.D. degree.

xiv

VITA

Junjie Shen

EDUCATION

Doctor of Philosophy in Computer Science 2022
University of California, Irvine Irvine, CA

Master of Science in Computer Engineering 2015
North Carolina State University Raleigh, NC

Bachelor of Engineering in Communication Engineering 2013
Hangzhou Dianzi University Hangzhou, China

EXPERIENCE

Baidu USA, Research Intern Mar. 2021–Dec. 2021
Security Research Lab Sunnyvale, CA

Qualcomm, Performance Modeling Intern Jun. 2017–Sept. 2017
ARM Server CPU Team Raleigh, NC

AMD, Research Intern May 2015–Aug. 2015
AMD Research Beijing, China

HONORS & AWARDS

Graduate Student Entrepreneur Award in Computer Science 2021
The Beall Family Foundation

Graduate Dean’s Dissertation Fellowship 2021
UCI Graduate Division

Best Short Paper Award 2021
Workshop on Automotive and Autonomous Vehicle Security (AutoSec)

Champion 2020
Baidu Security AutoDriving CTF

Best Technical Poster Award 2020
Network and Distributed System Security Symposium (NDSS)

Distinguished Poster Presentation Award 2019
Network and Distributed System Security Symposium (NDSS)

xv

PUBLICATIONS

Too Afraid to Drive: Systematic Discovery of Semantic DoS Vul-
nerability in Autonomous Driving Planning under Physical-World
Attacks

2022

Network and Distributed System Security Symposium (NDSS)

Dirty Road Can Attack: Security of Deep Learning based Auto-
mated Lane Centering under Physical-World Attack

2021

USENIX Security Symposium (USENIX Security)

End-to-end Uncertainty-based Mitigation of Adversarial Attacks to
Automated Lane Centering

2021

IEEE Intelligent Vehicles Symposium (IV)

Fooling Perception via Location: A Case of Region-of-Interest At-
tacks on Traffic Light Detection in Autonomous Driving

2021

Workshop on Automotive and Autonomous Vehicle Security (AutoSec)

Drift with Devil: Security of Multi-Sensor Fusion based Localization
in High-Level Autonomous Driving under GPS Spoofing

2020

USENIX Security Symposium (USENIX Security)

A Comprehensive Study of Autonomous Vehicle Bugs 2020
ACM/IEEE International Conference on Software Engineering (ICSE)

Fooling Detection Alone is Not Enough: Adversarial Attack against
Multiple Object Tracking

2020

International Conference on Learning Representations (ICLR)

LXDs: Towards Isolation of Kernel Subsystems 2019
USENIX Annual Technical Conference (USENIX ATC)

Combining Prefetch Control and Cache Partitioning to Improve
Multicore Performance

2019

IEEE International Parallel & Distributed Processing Symposium (IPDPS)

New Opportunities for Compilers in Computer Security 2018
Languages and Compilers for Parallel Computing (LCPC)

A Study on Deep Belief Net for Branch Prediction 2018
IEEE Access

CAMFAS: A Compiler Approach to Mitigate Fault Attacks Via En-
hanced SIMDization

2017

Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC)

xvi

ABSTRACT OF THE DISSERTATION

Security Challenges and Defense Opportunities of Connected and Autonomous Vehicle
Systems in the Physical World

By

Junjie Shen

Doctor of Philosophy in Computer Science

University of California, Irvine, 2022

Assistant Professor Alfred Chen, Chair

Recently, the technologies underneath the transportation system are under rapid revolution.

At the individual vehicle level, Autonomous Driving (AD) technologies are now a reality,

where a wide variety of commercial and private AD vehicles are already driving on the

road. At the vehicle communication level, Connected Vehicle (CV) technologies enable

Vehicle-to-Everything communications and can help the vehicles and infrastructure make

more informed driving/control decisions. To facilitate driving automation and traffic control,

these Connected and Autonomous Vehicle (CAV) technologies are highly security-critical as

errors in them can cause various road hazards and even fatal consequences. Despite being

security-critical, the security research in this domain is still largely insufficient in that (1)

they mostly focus on individual AI component-level without considering the impact on the

CAV systems, and (2) defensive studies, which are practically more important to advance

the CAV technologies, are largely under-explored.

My dissertation aims to address these two limitations in three general directions. First,

I conduct security analyses with the consideration of security challenges at the CAV sys-

tem level. My research focuses specifically on the security challenges imposed by CAV’s

reliance on physical world information, e.g., sensor attacks and physical world attacks, and

xvii

systematically study their impact on the operation of the whole CAV system. Second, I

design practical defenses against existing attacks leveraging the rich physical world infor-

mation available in the CAV systems. Based on the offensive and defensive studies, my

dissertation demonstrates that the reliance on the physical-layer information (e.g., sensor

data, road information) inevitably introduce new security challenges (e.g., localization and

perception errors) for CAVs, yet, it can also provide practical defense opportunities against

existing attacks. Finally, I systematize the existing research efforts in AD security in the

past 5 years and identify the important scientific gaps in prior works and propose potential

solution directions.

xviii

Chapter 1

Introduction

With the increasing demand for safety, mobility, and environmental protection, revolutions

are already underway in the transportation industry. At the individual vehicle level, Au-

tonomous Driving (AD) technologies are now a reality in our daily life, where a wide variety of

commercial and private AD vehicles are already driving on the road. For example, commer-

cial AD services, such as self-driving taxis [87, 47], buses [11, 200], trucks [43, 204], delivery

vehicles [24] are already publicly available, not to mention the millions of Tesla cars [36]

that are equipped with Autopilot [33]. At the vehicle communication level, Connected Ve-

hicle (CV) technologies enable Vehicle-to-Infrastructure and Vehicle-to-Vehicle communi-

cations and can help the vehicles and infrastructure make more informed driving/control

decisions. Recently, government agencies across the globe are competing to push for CV

deployments [381, 325, 153]. Particularly, the US is one of a few early adopters that has

been testing the CV applications in US cities since 2016 [381, 380, 382, 291].

To facilitate driving automation and traffic control, these technologies, i.e., the “brains” of

the Connected and Autonomous Vehicle (CAV) systems, are highly security-critical as errors

in them can cause various road hazards and even fatal consequences [45, 42]. Even more

1

severe if such errors can be deliberately triggered by malicious parties. The CAV systems

are designed to take physical world information, e.g., sensor data and road information, into

consideration when making safety-critical control decisions. Unfortunately, many of such

information are known controllable by attackers via sensor or physical world attack vectors.

Specifically, almost all CAV sensors have been shown vulnerable to sensor attacks, including

GPS [364, 198, 216, 101], camera [302, 409, 283], LiDAR [302, 336, 111], IMU [372, 368],

RADAR [409], and ultrasonic sensors [409]. In addition, researchers demonstrate that AI

algorithms (e.g., Deep Neural Networks or DNNs) are vulnerable to the physical world, e.g.,

road sign patches/posters [157, 120, 420], malicious billboard [283, 226], light projection [283,

253], etc.

Despite being security-critical, the security research in this emerging domain is still largely

insufficient. First, existing works [120, 157, 420] generally focus on the security of individual

AI algorithms without concretely addressing the semantic security challenges in the AD

context. Specifically, since these AI algorithms are only components of the entire AD system,

it is widely recognized that such generic AI component-level vulnerabilities do not necessarily

lead to system-level vulnerabilities [332, 304, 149, 209] mainly due to the large semantic gaps :

(i) system-to-AI semantic gap, which needs to overcome fundamental design challenges to

map successful attacks at the AI component input space (e.g., image pixel changes [352, 175])

back to the problem space or the AD system input space (e.g., adversarial stickers [157],

laser shooting [111]); and (ii) AI-to-system semantic gap, i.e., from AI component-level

attack impacts (e.g., misdetected road objects) to those at the system level (e.g., vehicle

collisions). Second, the current research focuses heavily on the offensive side, leaving the

defensive studies, which are practically more important to advance the CAV technologies,

largely under-explored.

2

1.1 Contributions

1.1.1 Overview

In this dissertation, my research aims to address the aforementioned two limitations from

three general directions.

1) Security analyses with the consideration of semantic security challenges in the AD systems.

My research focuses specifically on the security challenges imposed by AD system’s reliance

on physical world information, e.g., sensor attacks and physical world attacks, and system-

atically study their impact on the operation of the whole AD system. In my dissertation,

we analyze the security of the two essential functional modules in AD systems–localization

and perception, which localize the ego-vehicle’s global position on the map and perceive sur-

rounding obstacles and driving environment, respectively. These modules interface with the

external world via sensors and thus can be most directly affected by attacks that perturb the

physical world information. From the security analyses, we discover three security challenges

in representative localization and perception designs that rely on such attacker-controllable

physical world information.

2) Exploring practical defenses against existing attacks leveraging the rich physical world

information available in the CAV systems. Despite exposing vulnerabilities when used for

functional purposes, many physical world information readily-available in CAV systems can

actually be repurposed for defense purposes with high practicality. In particular, we discover

that lane or vehicle detection from the camera data presents as useful defense opportunities

against existing attacks against high-level AD localization and CV-based intelligent traffic

signal control systems.

3) Systematization of Knowledge (SoK) in AD security to guide future research. The AD

security research domain is fast growing. In recent years, increasing numbers of research

3

works attempted to tackle the aforementioned semantic AI security challenges in AD context.

However, so far there is no comprehensive systematization of this emerging research space. In

my dissertation, we perform the first SoK of the semantic AD AI security research space by

taxonomizing existing research papers and identifying scientific gaps and potential solution

directions to guide future security research in this emerging domain.

In essence, my dissertation demonstrates: The reliance on the physical-layer information

(e.g., sensor data, road information) inevitably introduce new security challenges (e.g., lo-

calization and perception errors) for CAVs. Yet, such physical-layer information can also

provide practical defense opportunities against existing attacks.

1.1.2 Security Challenge in Multi-Sensor Fusion based Localiza-

tion in High-Level AD Systems

For high-level AD, localization is highly security and safety critical. One direct threat to it

is GPS spoofing, but fortunately, AD systems today predominantly use Multi-Sensor Fusion

(MSF) algorithms that are generally believed to have the potential to practically defeat GPS

spoofing. However, no prior work has studied whether today’s MSF algorithms are indeed

sufficiently secure under GPS spoofing, especially in AD settings. Therefore, we perform the

first study to fill this critical gap. As the first study, we focus on a production-grade MSF

with both design and implementation level representativeness, and identify two AD-specific

attack goals, off-road and wrong-way attacks.

To systematically understand the security property, we first analyze the upper-bound attack

effectiveness, and discover a take-over effect that can fundamentally defeat the MSF design

principle. We perform a cause analysis and find that such vulnerability only appears dynam-

ically and non-deterministically. Leveraging this insight, we design FusionRipper, a novel

and general attack that opportunistically captures and exploits take-over vulnerabilities. We

4

evaluate it on 6 real-world sensor traces, and find that FusionRipper can achieve at least

97% and 91.3% success rates in all traces for off-road and wrong-way attacks respectively.

We also find that it is highly robust to practical factors such as spoofing inaccuracies. To

improve the practicality, we further design an offline method that can effectively identify

attack parameters with over 80% average success rates for both attack goals, with the cost

of at most half a day.

1.1.3 Security Challenge in Traffic Light Detection in High-Level

AD Systems

The perception module is the key to the security of Autonomous Driving systems. It perceives

the environment through sensors to help make safe and correct driving decisions on the road.

The localization module is usually considered to be independent of the perception module.

However, we discover that the correctness of perception output highly depends on localization

due to the widely used Region-of-Interest (ROI) design adopted in perception. Leveraging

this insight, we propose an ROI attack and perform a case study in the traffic light detection

in AD systems. We evaluate the ROI attack on a production-grade AD system, Baidu

Apollo, under end-to-end simulation environments. We found our attack is able to make the

victim a red light runner or cause denial-of-service with a 100% success rate.

1.1.4 Security Challenge in Deep Learning based Automated Lane

Centering in Low-Level AD Systems

ALC systems are convenient and widely deployed today, but also highly security and safety

critical. In this work, we are the first to systematically study the security of state-of-the-art

deep learning based ALC systems in their designed operational domains under physical-

5

world adversarial attacks. We formulate the problem with a safety-critical attack goal, and

a novel and domain-specific attack vector: dirty road patches. To systematically generate

the attack, we adopt an optimization-based approach and overcome domain-specific design

challenges such as camera frame inter-dependencies due to attack-influenced vehicle control,

and the lack of objective function design for lane detection models.

We evaluate our attack on a production ALC using 80 scenarios from real-world driving

traces. The results show that our attack is highly effective with over 97.5% success rates and

less than 0.903 sec average success time, which is substantially lower than the average driver

reaction time. To understand the safety impacts, we conduct experiments using software-

in-the-loop simulation and attack trace injection in a real vehicle. The results show that

our attack can cause a 100% collision rate in different scenarios, including when tested with

common safety features such as automatic emergency braking.

1.1.5 Defense Opportunity for Lateral-Direction Localization At-

tacks on High-Level AD Systems

As shown in the FusionRipper work [335], state-of-the-art MSF algorithms are vulnerable

to GPS spoofing alone due to practical factors, which can cause various road hazards such

as driving off road or onto the wrong way. In this work, we perform the first systematic

exploration of the novel usage of lane detection (LD) to defend against such attacks. We

first systematically analyze the potentials of such a domain-specific defense opportunity, and

then design a novel LD-based defense approach, LD3, that aims at not only detecting such

attacks effectively in the real time, but also safely stopping the victim in the ego lane upon

detection considering the absence of onboard human drivers.

We evaluate LD3 on real-world sensor traces and find that it can achieve effective and timely

detection against existing attack with 100% true positive rates and 0% false positive rates.

6

Results also show that LD3 is robust to diverse environmental conditions and is effective

at steering the AD vehicle to safely stop within the current traffic lane. We implement

LD3 on two open-source high-level AD systems, Baidu Apollo and Autoware, and validate

its defense capability in both simulation and the physical world in end-to-end driving. We

further conduct adaptive attack evaluations and find that LD3 is effective at bounding the

deviations from reaching the attack goals in stealthy attacks and is robust to latest LD-side

attack.

1.1.6 Defense Opportunity for Data Spoofing Attacks on CV-

based Intelligent Traffic Signal Control Systems

CV technologies are under rapid deployment across the globe and will soon reshape our trans-

portation systems, bringing benefits to the mobility, safety, environment, etc. Meanwhile,

such technologies also attract attention from cyberattacks. Recent work [119] has shown that

CV-based Intelligent Traffic Signal Control systems are vulnerable to data spoofing attacks,

which can cause severe congestion effects in the intersections. To defeat such data spoofing

attacks, we explore a general detection strategy for infrastructure-side CV applications by

extracting the physical-layer CV states from the readily-available infrastructure-side sensors

and assigning trust scores to CVs based on the distance between physical-layer and cyber-

layer CV states. However, such an approach suffers from the fundamental limitation in the

sensor range. To address that, we adopt the well-established traffic models from transporta-

tion domain as traffic invariants to estimate the vehicle states out of sensor range. We then

selectively remove the most suspicious CVs and re-execute the CV application to confirm

their impact on the attack objective.

We implement our detector for the CV-based traffic signal control and evaluate it against

two representative congestion attacks. Our evaluation in industrial-grade traffic simulator

7

shows that the detector is quite effective at assigning trust scores and can detect attacks

with at least 95% true positive rates while keeping false positive rate below 7%. To consider

the effect of sensor noises, we evaluate the detector performance under various sensor noise

levels and find that it is robust even under 3× normal noise level. We also systematically

explore the timeliness requirements for online detection and measure the timing overhead

on an embedded device. Our results show that the online detection only increases the false

positive rate by 5% in the worst case while still maintaining a high true positive rate at

98.1%.

1.1.7 SoK of Semantic AI Security in Autonomous Driving

AD systems rely on AI components to make safety and correct driving decisions. Unfortu-

nately, today’s AI algorithms are known to be generally vulnerable to adversarial attacks.

However, for such AI component-level vulnerabilities to be semantically impactful at the

system level, it needs to address non-trivial semantic gaps both (1) from the system-level

attack input spaces to those at AI component level, and (2) from AI component-level at-

tack impacts to those at the system level. In this work, we define such research space as

semantic AI security as opposed to generic AI security. Over the past 5 years, increasingly

more research works are performed to tackle such semantic AI security challenges in AD

context, which has started to show an exponential growth trend. However, to the best of

our knowledge, so far there is no comprehensive systematization of this emerging research

space.

In this work, we thus perform the first systematization of knowledge of such growing se-

mantic AD AI security research space. In total, we collect and analyze 53 such papers, and

systematically taxonomize them based on research aspects critical for the security field such

as the attack/defense targeted AI component, attack/defense goal, attack vector, attack

8

knowledge, defense deployability, defense robustness, and evaluation methodologies. We

summarize 6 most substantial scientific gaps observed based on quantitative comparisons

both vertically among existing AD AI security works and horizontally with security works

from closely-related domains. With these, we are able to provide insights and potential fu-

ture directions not only at the design level, but also at the research goal, methodology, and

community levels. To address the most critical scientific methodology-level gap, we take the

initiative to develop an open-source, uniform, and extensible system-driven evaluation plat-

form, named PASS, for the semantic AD AI security research community. We also use our

implemented platform prototype to showcase the capabilities and benefits of such a platform

using representative semantic AD AI attacks.

1.2 Dissertation Organization

This dissertation is structured as follows. Chapter 2 describes background and related work

for CAV security studied in my dissertation research. In Chapter 3, we analyze the security of

high-level AD localization and our FusionRipper attack design and evaluation. In Chapter 4,

we design DRP and ROI attacks to break the lane and traffic light detection components

in AD perception, respectively. Chapter 5 then presents the LD3 defense that can provide

practical defense for state-of-the-art lateral-direction localization attacks on high-level AD

systems. In Chapter 6, we leverage infrastructure-side sensors to bootstrap the trust as-

signment of CVs and defend against CV data spoofing attacks on intelligent traffic signal

control. In Chapter 7, we systematize the existing AD security research works in the past

5 years and identify the scientific gaps. Chapter 8 concludes this dissertation and discusses

potential future directions.

9

Chapter 2

Background and Related Work

In this chapter, we describe the background and related work for the Connected and Au-

tonomous Vehicle (CAV) security focused on in my dissertation.

2.1 Background

2.1.1 AD Systems and AI Components

AD Levels and Deployment Status

The Society of Automotive Engineers (SAE) defines 6 AD levels – Level 0 (L0) to 5 (L5) [326],

whereas the level increasing, the driving is more automated. In particular, L0 refers to no

automation. However, the vehicle may provide warning features such as Forward Collision

Warning and Lane Departure Warning. L1 refers to driver assistance and is the mini-

mum level of AD. In L1 vehicles, the AD system is in charge of either steering or throt-

tling/braking. Examples of L1 features are Automated Lane Centering and Adaptive Cruise

10

Control. L2 means partial automation, where the AD system controls both steering and

throttling/braking. Although L1 and L2 can at least partially drive the vehicle, the driver

must actively monitor and be ready to take over at any circumstances. When the auton-

omy level goes beyond L3, the driver does not need to be attentive when the AD system

is operating in its Operational Design Domains (ODDs). However, in L3, the driver is re-

quired to take over when the AD system requests to do so. None of L4 and L5 vehicles

require a driver seat. The difference is that L4 AD systems can only operate in limited

ODDs whereas L5 can handle all possible driving scenarios. Currently, L2 AD is already

widely available and targets consumer vehicles (e.g., Tesla Autopilot [33], Cadillac Super

Cruise [350], OpenPilot [294]). L4 AD is under rapid deployment targeting transportation

services such as self-driving taxis [87, 47], buses [11, 200], trucks [43, 204], and delivery

robots [24], with some of them already entered the commercial operation stage that charges

customers [10, 49].

Overview of AD AI Components

The AD systems generally have multiple AI components, including perception, localization,

prediction, and planning as the major categories, as shown in Fig. 2.1. Perception refers

to perceiving the surrounding environments and extracting the semantic information for

driving, such as road object (e.g. pedestrian, vehicles, obstacles) detection, object tracking,

segmentation, lane/traffic light detection. Perception module usually takes diverse sensor

data as the inputs, including camera, LiDAR, RADAR, etc. Localization refers to finding

the position of the AD vehicle relative to a reference frame in an environment [229]. Pre-

diction aims to estimate the future status (position, heading, velocity, acceleration, etc.) of

surrounding objects. Planning aims to make trajectory-level driving decisions (e.g., cruising,

stopping, lane changing, etc.) that are safe and correct (e.g., conforming to traffic rules). Be-

sides such modular design, people also explored end-to-end DNN models for AD. Currently,

11

SensorsPhysical world

Camera

Radar

LiDAR

GPS IMU

Control

Perception
(e.g., object detection)

Localization
(e.g., LiDAR locator)

Prediction
(e.g., object traj.)

Planning
(e.g., traj. plan)

AI Components in Autonomous Driving System

End-to-end DNN Model

Modular Design End-to-End Design

Closed-loop
control

Figure 2.1: Overview of AD system designs and the roles of AD AI components.

since the modular design is easier to debug, interpret, and hard-code safety rules/measures,

it is predominately adopted in industry-grade AD systems, while the end-to-end designs

are only for demonstration purposes [413]. For more details, we refer the readers to recent

surveys [295, 413, 229, 353].

AD Localization and Multi-Sensor Fusion

In real-world high-level (e.g., Level 4 [326]) AD system design, localization is a critical

module that needs to compute global vehicle positions on the map in the real time based

on positioning sensor inputs [28, 29, 31, 7, 213]. As shown in Fig. 2.2, its output is used by

various other modules in the AD system, e.g., the perception module for detecting obstacles,

the planning module for driving decision-making, and the control module for executing these

decisions. Such direct impact on various critical decision-making steps in driving thus makes

localization outputs highly security and safety critical.

To ensure safe and correct driving, AD localization needs to not only have centimeter-level

accuracy to localize the AD vehicle at traffic lane level [319, 155, 236], but also have high

robustness under various road and weather conditions [155]. Thus, Multi-Sensor Fusion

(MSF) based design has become the mainstream in both academia and industry since it can

fuse results from multiple independent positioning sensors, typically GPS, IMU, and LiDAR,

12

Estimated
Position

Perception

Planning

Control

MSF-based AD Localization

Outlier

GPS position

LiDAR locator position
KF Prediction based on IMU
KF Update based on GPS/LiDAR

Figure 2.2: MSF-based localization and its use in high-level AD systems.

and thus produce results with overall higher accuracy and robustness [28, 29, 31, 386, 170,

346, 357, 331, 140, 340, 233, 214]. For example, modern AD-grade GPS receivers can achieve

centimeter-level positioning accuracy with the error correction from ground stations [290].

However, GPS signal quality can be easily degraded due to natural phenomena such as

atmosphere delays and multi-path effect [188]. LiDAR-based localization algorithms, or

LiDAR locators [237, 170, 189, 102], match laser scans to pre-generated ones in a High

Definition Map (HD Map) [20] in order to provide highly accurate positioning. However, the

performance of such matching is susceptible to poor weather conditions such as rain or fog

and the outdatedness of the HD Map. Thus, the goal of MSF is to leverage the strengths of

these different sources while compensating their weaknesses.

Kalman Filter (KF) based MSF and its representativeness. Among MSF-based

localization algorithms for AD systems, KF-based MSF is adopted most extensively in both

academia and industry [386, 170, 357, 331, 340, 233, 214], and shown to have the state-of-the-

art performance [386]. To concretely show its representativeness, we survey the MSF-based

localization papers from top-tier robotics conferences [99] in the years of 2018 and 2019. As

shown in Table 2.1, 14 (77.8%) of the total 18 papers adopt KF-based MSF, showing a clear

predominance in today’s MSF designs. Such representativeness can also be shown by the

13

Table 2.1: Survey of MSF-based localization designs in papers published in top-tier robotics
conferences (IROS, ICRA, and RSS) [99] in the years of 2018 and 2019.

MSF Design
Papers Percentage

Category Name

KF-based
Linear KF [305, 429, 430, 271, 152, 86, 386] 7/18 (38.9%)

14/18 (77.8%)Extended KF [80, 105, 176, 418] 4/18 (22.2%)
Unscented KF [106, 306, 88] 3/18 (16.7%)

Others
Particle Filter [415] 1/18 (5.6%)

4/18 (22.2%)Graph Optimization [266, 172] 2/18 (11.1%)
Neural Network [115] 1/18 (5.6%)

fact that it is taught in all Self-Driving Car courses from Udacity [28, 29] and Coursera [31].

KF is a Bayesian filter that calculates an optimal state distribution with the lowest uncer-

tainty from the sensor measurement distributions. In the context of AD localization, the

state is composed of the vehicle’s position, velocity, and attitude (PVA) and their uncer-

tainties (or co-variance or variance matrices). Specifically, KF iteratively applies two steps:

prediction (Eq. 2.1) and update (Eq. 2.2). In the k-th iteration, the inputs are the previous

iteration’s KF state x̂k−1 and its state co-variance matrix P̂k−1, which describes the state

uncertainty. In the prediction, the acceleration and angular velocity from IMU are integrated

in Fk to generate xk and Pk, which are an intermediate KF state and its co-variance. Next,

the update step takes the measurement zk and its uncertainty Rk from GPS or LiDAR loca-

tor, and first use Rk to calculate Kalman gain Kk. Kk is then used as a weight to determine

how much of the difference between zk and xk is updated to the new state x̂k, and how much

of Pk is updated to the new state co-variance P̂k. In the equations, Q and H are typically

constant matrices, with the former used for tuning the system and the latter for mapping

the state space to the measurement space.

xk = Fkx̂k−1

Pk = FkP̂k−1F
T
k +Q

(2.1)

14

x̂k = xk +Kk(zk −Hxk)

P̂k = Pk −KkHPk

Kk = PkH
T (HPkH

T +Rk)
−1

(2.2)

Fig. 2.2 shows an example of the KF operations. In the prediction step, the acceleration and

angular velocity from IMU are integrated in the KF to generate an intermediate state (black

arrows in Fig. 2.2). In the update step, KF takes the position measurements from GPS or

LiDAR locator, and updates a fraction of it to the KF state based on the uncertainties of

the KF state and the measurement. A larger KF state uncertainty or a smaller measurement

uncertainty will cause more updates to the KF state.

Outlier detection. To prevent KF state from being easily disrupted by occasional mea-

surements that are too noisy in the real world, the KF update is usually bounded by an

outlier detector. Fig. 2.2 shows an example where a GPS measurement is discarded since its

position deviates too much from the KF state. Chi-squared test (Eq. 2.3) is one of the most

widely used outlier detectors for KF [331, 214, 303], which considers a measurement zk as

an outlier if the Chi-squared test value χ2
k is larger than a statistical significance threshold

(usually 3.841 [135]). An outlier measurement can be either discarded or partially updated.

χ2
k = (zk −Hxk)

TS−1
k (zk −Hxk)

Sk = HPkH
T +Rk

(2.3)

Targeted MSF implementations and representativeness. In our work, the main target

is an MSF design and implementation from the Baidu Apollo team, which we call BA-MSF.

It is published in ICRA 2018 [386], a top-tier robotics conference [99], and follows the KF-

based MSF design using high-end GPS, LiDAR, and IMU, with the Chi-squared test as the

15

outlier detector conforming to the common practice [331, 214, 303]. As described earlier,

such design is the most representative in today’s MSF-based AD localization (Table 2.1).

Besides its design, the implementation of BA-MSF is also highly representative in today’s

MSF-based AD localization: it has been tested using a large AD vehicle fleet in various

challenging scenarios such as urban downtown, highways, and tunnels [386], and shown the

highest localization accuracy (0.054 m) among all MSF-based localization papers (including

both KF-based and non KF-based) in the top-tier robotics conferences [99] in the years of

2018 and 2019. Today, it is already adopted in Baidu Apollo [7], a production-grade AD

system currently providing self-driving taxi services in China [9].

Besides BA-MSF, we also consider two other publicly-available KF-based MSFs for generality

evaluations. We follow the common parameter tuning process [177] but can only reach at

most 1–2 meter accuracy, which is far from the centimeter-level accuracy required by AD

systems [236, 319]. Thus, in the majority of our experiments, we target BA-MSF as it is

much more representative for AD systems.

DNN-based Automated Lane Centering

Fig. 2.3 shows an overview of a typical ALC system design [66, 234, 131], which operates in

3 steps:

Lane Detection (LD). Lane detection (LD) is the most critical step in an ALC system,

since the driving decisions later are mainly made based on its output. Today, production

ALC systems predominately use front cameras for this step [32, 33, 2, 40]. On the camera

frames, an LD model is used to detect lane lines. Recently, DNN-based LD models achieve

the state-of-the-art accuracy [391, 297, 223] and thus are adopted in the most performant

production ALC systems today such as Tesla Autopilot [33]. Since lane line shapes do

not change much across consecutive frames, recurrent DNN structure (e.g., RNN) is widely

16

Lane DetectionCamera
Frame Curve

Fitting

Lane Line
Curves

Lateral
Control

Vehicle
Actuation

Steering Angle
Decision

PID
MPC…

DNN
Vehicle State

Figure 2.3: Overview of the typical ALC system design.

adopted in LD models to achieve more stable prediction [239, 428, 131]. LD models typically

first predict the lane line points, and then post-process them to lane line curves using curve

fitting algorithms [391, 338, 297, 168].

Before the LD model is applied, a Region of Interest (ROI) filtering is usually performed

to the raw camera frame to crop the most important area out of it (i.e., the road surface

with lane lines) as the model input. Such ROI area is typically around the center and much

smaller than the original frame, to improve the model performance and accuracy [411].

Lateral control. This step calculates steering angle decisions to keep the vehicle driving

at the center of the detected lane. It first computes a desired driving path, typically at the

center of the detected left and right lane lines [97]. Next, a control loop mechanism, e.g.,

Proportional-Integral-Derivative (PID) [145] or Model Predictive Control (MPC) [322], is

applied to calculate the optimal steering angle decisions that can follow the desired driving

path as much as possible considering the vehicle state and physical constraints.

Vehicle actuation. This step interprets the steering angle decision into actuation com-

mands in the form of steering angle changes. Here, such actuated changes are limited by a

maximum value due to the physical constraints of the mechanical control units and also for

driving stability and safety [97]. For example, in our experiments with a production ALC

with 100 Hz control frequency, such limit is 0.25◦ per control step (every 10 ms) for vehicle

models [39]. As detailed later in §4.2.2, such a steering limit prevents ALC systems from

being affected too much from successful attack in one single LD frame, which introduces a

unique challenge to our design.

17

Traffic Light Detection and Region-of-Interest

Traffic Light (TL) detection is an essential feature for Level-4 AD vehicles. If an AD vehicle

cannot detect and recognize TLs, it may violate traffic rules resulting in some catastrophic

consequences, such as running red lights and causing car accidents. Recently, as Level-2 AD

companies aiming to achieve higher level driving autonomy, companies such as Tesla starts to

add TL detection into their AD systems [35]. TL detection leverages Deep Neural Networks

(DNNs) to detect and classify TLs in the camera images [7, 213]. For example, Baidu Apollo

applies two DNNs for TL detection; one for the object detection to recognize the TL object

in the image, and the other for the classification to recognize the light color [7].

Since the camera image may contain multiple TLs, it is thus necessary to identify the correct

TL for the current intersection. To address this, AD systems commonly adopt a Region-

of-Interest (ROI) design [7, 213], which projects the current TL in the world coordinates

obtained from the High-Definition (HD) map to image coordinates based on the localization

outputs (Fig. 2.4). To compensate for any localization or HD map inaccuracies, an ROI

area with an empirically determined radius or height/width centered at the projected image

coordinates is selected for TL detection. Such an ROI design not only helps prevent am-

biguous TL detection but also reduces the computation overhead. Fig. 2.5 show an example

of the ROI in Baidu Apollo. As shown, the ROI anchor box is the projected position of the

TL. However, due to inaccuracies in localization and HD map, the projected position is not

perfectly aligned with the actual TL. Thus, Baidu Apollo defines a larger rectangle as the

ROI for TL detection (2○ in Fig. 2.5). After that, it crops the ROI area from the image and

applies DNNs to recognize all TL bounding boxes and their colors in the ROI. Finally, the

TL bounding box (3○ in Fig. 2.5), which is the closest to the ROI anchor box, is selected as

the TL detection result.

18

Figure 2.4: Projection from world coordinates to
image coordinates.

①ROI anchor box

②ROI

③TL bounding box

Figure 2.5: Illustration of the ROI in
TL detection.

2.1.2 AD AI related Security Backgrounds

Adversarial AI Attacks and Defenses

Recent works find that AI models (e.g., DNNs) are generally vulnerable to adversarial ex-

amples, or adversarial attacks [352, 112]. Some works further explored such attacks in the

physical world [120, 157, 111, 110]. With that, some defenses [407, 232] are proposed re-

cently to defend against such attacks. Such AI attacks/defenses are directly related to AD

systems due to the high reliance on AI components (§2.1.1). However, generic AI component-

level vulnerabilities do not necessarily lead to system-level vulnerabilities due to the general

system-to-AI and AI-to-system semantic gaps. In our SoK (Chapter 7), we thus focus on

the works that address semantic AI security in the AD context.

GPS Spoofing and its Practicality

GPS spoofing has been a fundamental problem for civilian GPS systems due to the lack of

signal authentication in the infrastructure. In GPS spoofing, the attacker transmits fabri-

cated GPS signals with stronger power than the authentic ones, and thus causes the victim

receiver to lock onto the attacker’s signals and resolve positions controlled by the attacker.

GPS spoofing has been proven feasible theoretically [364] and empirically [198]. So far, it has

19

been demonstrated on various end systems such as smartphones [414, 280], drones [164, 216],

yachts [101], and recently also low-level AD vehicles such as Tesla cars [37]. Recently, a year-

long investigation identified 9,883 spoofing events that affected 1,311 civilian vessel systems

in Russia since 2016 [109]. Although GPS spoofers are illegal to be sold in the U.S., they can

be made cheaply from commercial off-the-shelf components. For example, a low-end spoofer

is as cheap as $223 [414], and higher-end ones that can simultaneously track 10+ satellites

and transmit 10+ fake GPS signals only cost similar to a laptop [288, 198]. Considering such

high realism, in this work, we consider it as a practical attack vector to AD localization.

2.1.3 CV-based Traffic Signal Control and Traffic Modeling Basics

CV-based Traffic Signal Control

The traffic signal control is one of the important applications of CV technologies designed

to improve the transportation mobility by reducing vehicle delays in the intersection. It

determines the signal timing plan based on the real-time vehicle states (including vehicle

ID, location, speed, heading, etc.) periodically broadcast from the CVs in the intersec-

tion. Specifically, the CVs send their vehicle states in a standard Basic Safety Message

(BSM) format, which is transmitted over the CV communication network, i.e., Dedicated

Short-Range Communication (DSRC) [215] or Cellular Vehicle-to-Everything (C-V2X) [299].

Among the open efforts in CV deployment in the US [381], the Intelligent Traffic Signal Sys-

tem (I-SIG) [185] is the only traffic signal system designed for the mobility of general urban

intersections [16]. It has been tested in real intersections in US cities and shown high effec-

tiveness at reducing the vehicle delays [75]. Therefore, we demonstrate the effectiveness of

our detector on the I-SIG system in this work.

We now illustrate some basic concepts in CV-based traffic signal control. Fig. 2.6 shows the

configuration of a common major arterial intersection. As shown in the figure, the traffic

20

①

①

②

③

④

⑨

⑩

⑪

⑫

⑤⑥⑦ ⑧

⑰ ⑬ ⑭ ⑮ ⑯

A
pp

ro
ac

h
1:

 E
as

tb
ou

nd

Approach 4: Northbound

A
pproach 3: W

estbound

Approach 2: Southbound

➌➑

➊

➏

➐ ➍

➎

➋

N
Phase ID
Lane ID

➊

Figure 2.6: Illustration of a common major arterial intersection.

lanes are grouped by different phases, each with a dedicated traffic signal. As a major arterial

intersection, it has two concurrent phase sequences (or rings) that do not interfere with each

other and can be planned simultaneously. However, the phases in the same ring need to

be planned sequentially due to the confliction. The 8 phases are separated into two stages,

which are also conflicting with each other. The CV-based traffic signal controller is invoked

at the end of each stage to calculate an allocation of green lights to the phases, which is

called a signal timing plan. Fig. 2.7 shows a typical timing plan for 8-phase intersections.

The green blocks indicate the allocated green light durations. The yellow and red blocks

are two predefined durations for the yellow light and red clearance light (to accommodate

for potential red light runners). The inputs to the signal controller are the latest CV states

received at the end of each stage, which we call them as a CV or traffic snapshot in this

work.

21

Stage 1 Stage 2

Ring 1

Ring 2

time

➋ ➊

➎ ➏

➍

➑

➌

➐

Figure 2.7: A typical signal timing plan for 8-phase intersections. The circled numbers with
solid background denote the phase IDs.

Traffic Modeling

Traffic modeling is a well-established topic in transportation engineering, where people aim

to precisely describe the relationships between vehicles and infrastructure with mathematical

equations [268]. Traffic models can be categorized into 3 major types based on the modeling

granularity. (1) Microscopic models, which describe the behavior of individual objects, e.g.,

how does an individual vehicle reacts to the actions of other vehicles. (2)Macroscopic models,

which describe the behaviors of the aggregated traffic flow dynamics, e.g., the changes of

traffic flow and density dynamically w.r.t. the road conditions. (3) Mesoscopic models,

which stand in between microscopic and macroscopic models and are able to describe the

traffic flow over time. Since traffic models are designed to model the real-world traffic or

vehicle behaviors, they are widely used in the transportation domain to help design road

networks, estimate the impact of transportation policies, etc.

Traffic models as the traffic invariants. Due to the attractive property of describing

normal traffic behaviors, we take these traffic models as the traffic invariants for security

purposes, e.g., benign vehicles will generally behave according to the traffic models. Although

traffic flow statistics from the macroscopic and mesoscopic models may also be useful, the

individual vehicle behaviors derived from the microscopic models are mostly relevant in the

context of data spoofing detection.

Newell’s car-following model. Car-following models [324, 287, 173] are the most typical

22

sp
ac

in
g,

 s

velocity, v

d

vf

slope τ

di
st

an
ce

, x

time, t

d

τ

xi-1(t)

xi(t)Si'

Si

Figure 2.8: Illustration of the Newell’s car-following model [287]. Left: the speed-spacing
relationship for a single vehicle. Right: the leader-follower trajectory relationships.

microscopic model type that describe how should a vehicle follow its leading vehicle. The

Newell’s car-following model [287] is a simple but effective model, which is built upon the as-

sumption that the follower vehicle’s trajectory looks similar to its leading vehicle’s trajectory,

except with a time delay and a space translation. Fig. 2.8 illustrates the properties specified

by the Newell’s model. More formally, the model describes the following relationships:

s = v · τ + d

xfollow(t+ τ) = xlead(t)− d,

(2.4)

where s is the spacing that the following vehicle keeps to the leading vehicle; xfollow and xlead

are the longitudinal position offsets of the following and leading vehicles; τ and d are two

empirically determined parameters describing the reaction time and stopping distance of a

normal driver, which are usually set between 1.0–1.7 and 6.0–9.6, respectively [76, 398]; vf

is the free-flow speed, which is the speed limit of the road.

The intuitions behind the Newell’s model are quite straightforward. The left figure in Fig. 2.8

shows that an individual vehicle will naturally try to maintain a larger spacing with the front

vehicle if the speed increases. And in the right figure, the vehicle i was originally following the

vehicle i− 1 with a spacing Si. When the leading vehicle speeds up, the follower also speeds

up after a reaction time delay τ . Since now the speed is higher, the spacing maintained by

23

the follower also increases.

2.1.4 Congestion Attacks against CV-based Traffic Signal Control

Recent work [119] discovered two vulnerabilities in the I-SIG system that can be exploited

using data spoofing attacks. The first one is in queue length estimation, where the I-SIG

system estimates the number of vehicles stopping in a queue based on the farthest stopped

CV in the transition periods, i.e., when the Penetration Rate (PR) is <95%. They find that

such a design can be exploited by the attacker to inject a fake long queue in the estimation,

which we term queue length attack. The second vulnerability targets the arrival time

estimation, where I-SIG estimates when will a vehicle arrive at the stop line or stop behind

a queue. An attacker can exploit this by setting the CV with a slow speed to cause a late

arrival time estimation, which we term arrival time attack. In both attacks, the I-SIG

system will allocate an unnecessary long green time for traffic lanes that are not busy and

thus starve the other lanes that actually need prioritization. The attacks are evaluated

in an industrial-grade traffic simulator named PTV Vissim [311]. Results show that the

two attacks can effectively cause severe congestion effects in full deployment and transition

periods of CVs, respectively.

2.2 Related Work

GPS spoofing on navigation systems. Recently, Zeng et al. [414] find that GPS spoofing

can be used to stealthily deviate a victim car to an attacker-controlled destination. Later

Narain et al. [280] further find that such attack also exists for a GPS/INS (Inertial Navigation

System) navigation system. Compared to our work on MSF-based localization (Chapter 3),

these prior works target single-source localization systems without fusion from other position

24

sources, such as a LiDAR locator.

Theoretical works on KF security. Existing theoretical works [345, 249, 274, 273] from

the control systems domain have studied the security of KF under sensor spoofing. Compared

to our work, they only study single-source KFs without any sensor fusion. Also, they focus on

the theoretical aspect of the KF and assume the attacker has full access to the KF internals,

e.g., KF state and uncertainties. In comparison, our work (Chapter 3) does not make such

assumptions and hence is much more realistic.

Sensor attacks and defenses. Various previous works studied security problems on tra-

ditional vehicle systems [116, 95, 171], but not AD systems. Prior works discovered various

sensor attack vectors on sensors related to AD systems, such as camera [302, 409, 283],

LiDAR [302, 336, 111], IMU [372, 368], RADAR [409], and ultrasonic sensors [409]. How-

ever, none of them considers how to leverage these attack vectors to attack AD localization.

On the defense side, researchers recently propose physical-invariant based defenses, CI [126]

and SAVIOR [313], to detect sensor attacks such as GPS spoofing by cross-checking sensor

measurements with system state estimations based on the physical invariants, i.e., the re-

lationships between system states and control inputs. However, as will be shown in §5.5.2,

the direct adaptation of existing physical-invariant based approach is largely limited because

of the complexity of physical dynamics and much smaller attack deviation goals in the AD

context. In addition, none of them has proposed attack response designs, which is especially

important for AD systems. Nevertheless, such physical-invariant based attack detection

methods are complimentary to our work (Chapter 5) and can be incorporated into our de-

fense design for attack detection if the accuracy of state-estimation model can be further

improved.

Attack response/recovery methods. According to a survey on the broader Cyber-

Physical Systems security, existing defenses mostly focus on attack detection and very few

works studied attack responses [174]. Particularly, Choi et al. [125] and Zhang et al. [416]

25

recently propose attack recovery methods, which apply similar state estimations as above

to replace attacked sensors in the attack recovery period. Thus, they suffer from the same

model accuracy limitations in the AD context. Moreover, they intend to maintain normal

operations of the system for a short duration until the system is taken-over by the human

driver, which does not exist on high-level AD vehicles when deployed commercially [87, 222].

Additionally, attack responses in high-level AD systems require more careful design on AR

trajectories to safely navigate the vehicle.

AD perception security. Prior works have studied the security of AD perception related

AI components, such as object detection [157, 120, 420, 111, 67], tracking [208], and end-

to-end AD models [301, 362, 124, 422]. One of our works (§4.2) studies autonomy software

security in production ALC. The only prior effort is from Tencent [59], but it neither at-

tacks the designed operational domain for ALC (i.e., roads with lane lines), nor generates

perturbations systematically by addressing the design challenges in §4.2.2.

Physical-world adversarial attacks. Multiple prior works have explored image-space

adversarial attacks in the physical world [227, 333, 90, 108, 120, 157, 421, 420, 240]. In

particular, various techniques have been designed to improve the physical-world robustness,

e.g., non-printability score [333, 120, 157, 421], low-saturation colors [420], and EoT [90, 108,

120, 157, 420]. In comparison, prior efforts concentrate on image classification and object

detection, while our work (§4.2) is the first to systematically design physical-world adversarial

attacks on ALC, which require addressing various new and unique design challenges (§4.2.2).

Specifically for TL detection, the TLs are not as accessible as other road objects (e.g., STOP

signs) since they are usually installed at a high place, and thus it is unclear how the attacker

can put the stickers without alerting other drivers and law enforcement. Another line of

research explored physical sensor attacks to blind the camera by shooting strong lights to

it [302]. However, such attacks cannot cause the victim to be a red light runner and can only

lead to denial-of-service. In our work (§4.1), the ROI attack does not require any physical

26

perturbations to the TLs and can achieve both attack goals.

Security analyses of CV applications. Previous works [193, 397, 231, 230] have studied

the security threats on the CV communication networks, such as DoS, spamming, mas-

querading, black hole, replay attack, which greatly damage the availability, authenticity,

and confidentiality of the network. On the other side, domain-specific attacks have been

demonstrated in different CV application scenarios. Chen et al. [119] show that CV-based

Intelligent Traffic Signal System is highly vulnerable to congestion attacks if the attacker can

compromise the OBU device. Amoozadeh et al. [81] demonstrate that message falsification

attack cause significant instability in the Cooperative Adaptive Cruise Control (CACC) ve-

hicle stream. Abdo et al. [71] perform a detailed analysis on CACC and present 4 different

attack scenarios. Furthermore, Huang et al. [197] analyze the impact of falsified CV data

and propose a black-box attack to the CV-based traffic signal control system.

Defenses against data spoofing in the CV context. Sun et al. [348] propose a verifi-

cation scheme approach which utilizes the angle-of-arrival and frequency-of-arrival to detect

spoofing attacks. Such a defense requires extra hardware and the presence of enough number

of reflectors in the driving environment. Guo et al. [180] propose a collaborative intrusion

detection system, which leverages the sensor data from onboard sensors of neighboring CVs.

Liu et al. [250] propose a blockchain-based framework to build trust and defeat spoofing

attacks in CV applications. Both works assume specific hardware or software updates in the

CVs, which may require enormous efforts due to the large number of CVs. In comparison,

our detector does not impose such requirements on the CVs. Instead, we reuse the readily-

available infrastructure-side sensors to establish the physical root-of-trust for the detection.

Hu et al. [192] build a system named CVShield based on hardware-assisted security feature

(e.g., ARM Trust Zone) to prevent compromised CVs from sending falsified data, which

requires vehicle-side software update and is orthogonal to our method. In our work (Chap-

ter 6), we approach the problem from a novel angle by constructing and propagating trust

27

2017 2018 2019 2020 2021
Year

0

10

20

30

of

 p
ap

er
s

1 3 4

19

26Attack
Defense
Attack+Defense

Figure 2.9: Number and trends of semantic AD AI security papers (collected with a focus
on top-tier venues).

based on infrastructure-side sensors and traffic invariants, which can also be complementary

to existing defenses.

Systematization of Knowledge on AD security. Before our work (Chapter 7), a few

AD security-related surveys have been published [142, 312, 218, 320], but none of them focus

on the emerging semantic AD AI research space. For example, Kim et al. [218] and Ren

et al. [320] focus on AD-related sensor/hardware security and in-vehicle network security,

instead of AD AI components. Qayyum et al. [312] and Deng et al. [142] touched upon

the security of AI components in AD, but did not focus on the works that addressed the

semantic AI security challenges (e.g., most of the included works are on generic AI and

sensor security without studying impacts on AD AI behaviors). In fact, Deng et al. [142]

considers the semantic AD AI security as a future direction. This is mainly because both of

them focus on works published in 2019 and before. However, the majority (85%) and the

exponential growth of semantic AD AI security works are after 2019 (Fig. 2.9). This leads

to much more complete, diverse, and quantifiable observations of the current status, trends,

and scientific gaps of this emerging research space, not to mention that we also take the

initiative to address one of the most critical gaps (§7.5).

In the general CPS (Cyber-Physical System) area, there are also Systematization of Knowl-

edge (SoK) papers on the security of technologies related to AD AI, for example on drones [282]

that share similar controller designs, on Automatic Speech Recognition and Speaker Iden-

28

tification (ASR/SI) [73] that are also AI-enabled CPS, and on sensor technology [408] that

provide the main inputs to AD AI. In comparison, the SoKs on drone and ASR/SI security

focused on domain-specific attack vectors (e.g., ground control station channel and voice

signals), which thus lead to vastly different set of systematized knowledge due to the CPS

domain differences. The SoK on sensor security is complementary to ours as it does not

directly consider AI component security but sensor attack is one major attack vector to AD

AI.

29

Chapter 3

Security Challenge in AD Localization

3.1 Introduction

Today, various companies are developing high-level self-driving cars [3] such as Level-4 Au-

tonomous Driving (AD) vehicles [326], and some of them are already providing services on

public roads such as self-driving taxi from Google’s Waymo One [47] and self-driving trucks

from TuSimple [43]. To enable such high-level driving automation, the AD system needs

to not only perform the perception of surrounding obstacles, but also centimeter-level lo-

calization of its own global positions on the map [236, 319]. Such localization function is

highly security and safety critical in the AD context, since positioning errors can directly

cause an AD vehicle to drive off road or onto a wrong way. Since in high-level AD systems

the perception module is only designed for obstacle detection and the localization module

is in full charge of identifying road deviations [28, 29, 31, 7, 213], even when the perception

module is functioning perfectly, it cannot prevent a variety of road hazards specific to lo-

calization errors such as driving off road to hit road curbs, falling down the highway cliff,

or being hit by other vehicles that fail to yield, especially when the AD vehicle is on the

30

wrong way. However, recent security research in AD systems concentrates on AD perception,

e.g., malicious stickers on traffic signs [158, 157, 420, 111], which leaves the security of AD

localization an open problem.

For outdoor localization in general, GPS is the de facto location source, and thus a direct

threat to it is GPS spoofing, a long-existing but still unsolved security problem with prac-

ticality proven on a wide range of end systems [364, 198, 414, 280, 164, 216, 37, 101, 289],

including low-autonomy AD vehicles such as Tesla cars [37]. Fortunately, to achieve ro-

bust localization, real-world high-level AD systems today predominantly use Multi-Sensor

Fusion (MSF) algorithms that combine GPS input with position inputs from other sen-

sors, typically IMU (Inertial Measurement Unit) and LiDAR (Light Detection and Rang-

ing) [28, 386, 170, 346, 357, 331, 140, 340, 233, 214]. Since in such design GPS input alone

can not dictate the localization output, it is generally believed to have the potential to prac-

tically defeat GPS spoofing [101, 414, 235, 139, 79, 201]. However, state-of-the-art MSF

algorithms are mainly designed for improving accuracy and robustness, instead of security.

This thus makes it largely unclear how secure they can be under GPS spoofing. Given its

widespread use in AD vehicles and high importance to road safety, it is thus imperative to

systematically understand this as early as possible.

To fill this critical research gap, in this work we perform the first study on the security

property of MSF-based localization in AD settings. As the very first study in this direction,

we focus on GPS spoofing as the attack vector since it is one of the most mature attack

vectors to the MSF input sources. We focus on a production-grade MSF implementation,

Baidu Apollo MSF (BA-MSF), due to its high representativeness in both design (KF-based

MSF) and implementation (centimeter-level accuracy evaluated by real-world AD vehicle

fleet). We consider the attack goal as using GPS spoofing to cause large lateral deviations in

the MSF output, i.e., deviating to the left or right. This can cause the AD vehicle to drive off

road or onto a wrong way, which we call off-road attack and wrong-way attack respectively.

31

To systematically understand the security property, we first analyze the upper-bound attack

effectiveness via a dynamic blackbox analysis since BA-MSF is released in the binary form.

We find that in the real-world trace, the majority (71%) of even such upper-bound attack

results can only cause less than 50 cm deviation, which is far from causing either off-road

or wrong-way attacks (need over 90 cm and 2.4 m respectively). This shows that MSF can

indeed generally enhance the security against GPS spoofing. Interestingly, we also observe

that there still exist a few upper-bound attack results that can cause over 2 meters deviations.

For all of them, we find that GPS spoofing is able to cause exponential growths of deviations.

This allows the spoofed GPS to become the dominating input source in the fusion process

and eventually cause the MSF to reject other input sources, which thus fundamentally defeats

the design principle of MSF. In this work, we call it a take-over effect. We then perform

a cause analysis and find that this only appears when the MSF is in relatively unconfident

periods due to a combination of dynamic and non-deterministic real-world factors such as

sensor noises and algorithm inaccuracies.

Such take-over vulnerabilities are highly attractive for attackers since they can exploit the

exponential deviation growths to achieve arbitrary deviation goals. However, as discovered

earlier, the vulnerable periods are created dynamically and non-deterministically. Thus,

we design FusionRipper, a novel and general attack that opportunistically captures and

exploits take-over vulnerabilities with 2 stages: (1) vulnerability profiling, which measures

when vulnerable periods appear, and (2) aggressive spoofing, which performs exponential

spoofing to exploit the take-over opportunity.

We implement FusionRipper and evaluate it on 6 real-world sensor traces from Apollo and

the KAIST Complex Urban dataset. Our results show that when the attack can last 2

minutes, there always exists a set of attack parameters for FusionRipper to achieve at least

97% and 91.3% success rates in all traces for the off-road and wrong-way attacks respectively,

with less than 35 seconds success time on average. To understand the attack practicality,

32

we evaluate it with practical factors such as (1) spoofing inaccuracies, and (2) AD control

taking effect, and find that for both cases the attack success rates are affected by less than

4%. Attack demos showing the end-to-end attack impact are available at https://sites.

google.com/view/cav-sec/fusionripper.

In addition, we observe that the attack effectiveness is sensitive to the selection of the

attack parameters. Thus, to improve the practicality, we further design an offline attack

parameter profiling method that can collect effective parameters without causing obvious

safety problems during such profiling to stay stealthy. Our results on real-world traces show

that our method can effectively identify attack parameters with 84.2% and 80.7% success

rates for off-road and wrong-way attacks respectively, with the profiling cost of at most half

a day.

Considering the critical role of localization for safe and correct driving, the discovered attack

against the state-of-the-art MSF algorithm requires immediate attention and defense discus-

sion. To facilitate this, we also discuss both long-term and short-term defense directions.

In summary, this work makes the following contributions:

• We perform the first security study on MSF-based localization in high-level AD settings

under GPS spoofing. We focus on a production-grade MSF with both design and

implementation level representativeness, and identify two attack goals specific to the

AD settings.

• We analyze the upper-bound attack effectiveness, and discover a take-over effect that

can fundamentally defeat the MSF design principle. We further perform a cause analy-

sis and find that such vulnerability only appears dynamically and non-deterministically.

• We design FusionRipper, a novel and general attack that opportunistically captures

and exploits the take-over vulnerability we discover. We evaluate it on 6 real-world

33

https://sites.google.com/view/cav-sec/fusionripper
https://sites.google.com/view/cav-sec/fusionripper

. . .

d×f1d

Stage 1:
Vulnerability Profiling

Stage 2:
Aggressive Spoofing

MSF output

Physical position

Spoofing points

Off-Road Attack Wrong-Way Attack
Road barrier

Another car

d×f2

Figure 3.1: Illustration of the 2-stage attack design and consequences of FusionRipper.

Table 3.1: Required deviations for the two attack goals considered in this work. The values
are calculated based on common AD vehicle, lane, and road shoulder widths (detailed in
Appendix A).

Attack Goal
Required Deviation (m)

Local Highway

Off-Road Attack 0.895 1.945
Wrong-Way Attack 2.405 2.855

sensor traces, and find that it can achieve high effectiveness (over 97% and 91.3%

success rates) for both off-road and wrong-way attacks. We also find that such high

effectiveness is robust to various practical factors.

• To improve the attack practicality, we further design an offline attack parameter pro-

filing method that can effectively identify attack parameters with 84.2% and 80.7%

success rates for off-road and wrong-way attacks respectively, with the profiling cost

of at most half a day. We also discuss promising defenses directions.

34

3.2 Attack Model and Problem Formulation

3.2.1 Attack Goal and Incentives

Attack goals. In this work, we target an attack scenario where an attack vehicle tailgates

a victim AD vehicle while launching a GPS spoofing attack, which is both practical and

effective as evaluated by previous work using real cars [414]. In such a scenario, we consider

an attack goal of introducing large lateral deviations to the localization output of the victim

AD vehicle, i.e., deviating to the left or right. Since all vehicles need to drive within their

designated road lanes for safety protections, such lateral deviations can pose a direct threat

to road safety.

In particular, we consider two concrete attack goals specific to the AD context: off-road

attacks and wrong-way attack. As illustrated in Fig. 3.1, the former aims at deviating to

either left or right until the victim drives off the road pavement, while the latter aims at

deviating to the left until the victim drives on the opposite traffic lane. Table 3.1 lists the

required deviations to achieve these two goals, which will be used in our subsequent security

analysis.

In the AD context, these two attack goals can cause various safety hazards specific to localiza-

tion errors such as driving off road to hit road curbs or falling down the highway cliff. Since

in high-level AD systems the perception module is only designed for obstacle detection and

the localization module is in full charge of identifying road deviations [28, 29, 31, 7, 213],

these hazards cannot be prevented even when the perception module is functioning per-

fectly. Moreover, such hazards cannot be prevented even if high-level AD systems directly

use perception sensors, e.g., cameras and ultrasonic sensors, for collision avoidance. These

two attack goals can also cause vehicle collisions, e.g., with vehicles in adjacent or opposite

traffic lanes. Even when the AD vehicle can perform automatic emergency brake, it cannot

35

avoid being hit by other vehicles that fail to yield on time, especially those human driving

ones with over 2 sec average driver reaction time [12].

Attack incentives. No matter whether road accidents are caused, the victim AD vehicles

under the two attack goals are already violating the traffic rules [14, 13] and exhibiting

unsafe driving behaviors. These can already damage the reputation of the corresponding

AD company. Thus, a likely attack incentive is business competition, which can allow one

AD company to deliberately damage the reputation of its rival AD companies and thus

unfairly gain competitive advantages. This is especially realistic today considering that

there are over 40 companies competing in the AD market [3]. Meanwhile, considering the

direct safety impact, we also cannot rule out the possible incentives for terrorist attacks or

targeted murders, e.g., against civilians, or controversial politicians or celebrities.

3.2.2 Threat Model

Attacker’s capability. We assume that the attacker can launch GPS spoofing (§2.1.2) to

control the positioning measurements of the victim’s GPS receiver, with a similar level of

measurement uncertainty as the natural GPS signals. We also assume that the attacker can

track the physical positions of the victim AD vehicle in the real time during the tailgating.

This can be achieved by computing the attack vehicle’s own position and offsetting it with

the relative position between the attack vehicle and the victim. One concrete scenario is that

the attack vehicle is also an AD vehicle with a similar set of sensors and run state-of-the-art

AD localization algorithms for its own position and AD perception algorithms for the relative

position. Under this scenario, the attacker can thus accurately track the victim positions

since for AD vehicles precisely tracking the positions of surrounding obstacles in the real

time is one of the most basic tasks for ensuring correct and safe driving. Such a scenario is

especially realistic when the attack is from rival AD companies (incentive discussed in §3.2.1).

36

AD control assumption. We assume that AD systems are designed to drive on the center

of traffic lanes, and constantly tries to correct any deviation to the center. State-of-the-art

AD systems from both the academia [295] and industry [7, 213] follow such design and use

lateral controllers to enforce it at a high frequency in the control module (e.g., 100 Hz in

Apollo [7]). This means that when the attacker introduces a deviation to the MSF output

(e.g., to the right in Fig. 3.1), the victim AD vehicle will actively correct it and thus cause its

physical-world position to have the same amount of deviation but to the opposite direction

(e.g., to the left in Fig. 3.1).

3.2.3 Attack Formulation

Based on the attack model above, the attack in our study can be formulated as the following

optimization problem:

max
{δak |k=1,...,n}

D(xan, {xk|k = 1, ..., n})

where xak =M(xak−1, rk + δak , z
lidar
k , imuk), x

a
0 = x0,

(3.1)

where δak is the GPS spoofing distance to the victim’s physical-world position rk on the road

plane, xk is the MSF output without the attack, xa
k is the MSF output with the attack, zlidark is

the LiDAR locator output, imuk is the IMU measurement, D(·) denotes the lateral deviation

between a position and a trajectory, and M(·) denotes an iteration in the KF-based MSF

algorithm (introduced in §2.1.1), and k is the iteration index. As shown, mathematically our

attack on MSF is to find a sequence of spoofing distances {δak |k = 1, ..., n} that can maximize

the deviation of the n-th attacked MSF output to the original trajectory {xk|k = 1, ..., n}.

37

3.3 Security Analysis of MSF Algorithm

To systematically understand the security property of MSF-based AD localization, we start

with the necessary first step: understanding the upper-bound attack effectiveness, i.e., the

maximum possible deviation, under the attack formulation.

3.3.1 Upper-Bound Attack Effectiveness

Analysis methodology. To analyze the upper-bound attack effectiveness, we perform

exhaustive search of possible attack inputs {δak |k = 1, ..., n} to the representative MSF im-

plementation, BA-MSF, to find the one that can maximize Eq. 3.1. We did not choose to

use an optimizer since the BA-MSF implementation is released in the binary form and thus

we cannot directly get its analytical formula. For a given sensor input trace in our analysis,

there are multiple possible attack windows, i.e., from one GPS input to another later. For

each attack window, we iteratively search for the δak that can deviate the most from xk,

which is a method also used in previous theoretical work on the security of single-source

KF [345, 249, 274, 273]. In accordance with our threat model, we set the measurement

uncertainty of GPS spoofing inputs as the median value in real-world sensor input traces of

BA-MSF.

We perform the analysis above on two types of sensor input traces: (1) real-world trace,

and (2) synthetic noise-free trace. The former is obtained by directly recording the run-time

MSF input while the AD vehicle is driving in the real world. Analysis results from this

type of traces have the highest realism, but the types of analysis we can perform are limited

since we cannot easily modify the sensor data without violating the consistency among

different sensor inputs, and the analysis insights can be less clean due to real-world sensor

noises. Thus, we complement it with the latter, which synthesizes MSF inputs following

38

a given driving trajectory, with all the LiDAR locator and non-spoofed GPS inputs set to

the ground truth positions, their measurement uncertainty set to the medium value in the

real-world trace, and the IMU measurements calculated according to the driving trajectory.

Experimental setup. We obtain the official BA-MSF implementation from the Apollo AD

system code base [7]. For the real-world trace, we use the BA-MSF input trace released by

Apollo, which is recorded in Sunnyvale, CA and 4-min long [4]. In this work, we denote it as

ba-local. For the synthetic trace, we generate one for a common driving trajectory: driving

on a straight road with a constant velocity of 45 mph. In our analysis, we use an attack

window of 10 attack inputs, which is 10 seconds since the GPS input is 1 Hz in Apollo. In the

exhaustive search, we enumerate δak from 0 to 10 meters with step size of 0.04 meters on both

left and right sides, since we find that in our experiments GPS input deviations larger than

that are identified as outliers by the Chi-squared test in BA-MSF. The medium measurement

uncertainty values for GPS and LiDAR locator are calculated from trace ba-local.

Results. Fig. 3.2 (a) shows the distribution of the upper-bound deviations achieved in the

10-point attack windows for each trace. As shown, in both real-world and synthetic traces,

even such maximum possible attack effectiveness is very limited: majority (76.0%) of the

attack windows in the real-world trace and all of those in the synthetic trace cannot reach

even the lowest required deviations (0.895 m) in Table 3.1. The main reason behind such poor

attack performances is as follows. First, due to outlier detection, the maximum deviation

achievable by the first attack input is very small, e.g., at most 0.06 meters. Next, such tiny

deviation can be quickly corrected by LiDAR locator inputs since in between two GPS attack

inputs there are 5 LiDAR locator inputs (5 Hz in Apollo). This makes it highly difficult for

subsequent attack inputs to build upon the deviations achieved by previous attack input.

Thus, production-grade KF-based MSF algorithms today can indeed generally enhance the

security against GPS spoofing.

At the same time, we also observe that the results between the real-world trace and the

39

0 1 2 3 4 5
Maximum Deviation (m)

(a)

0

25

50

75

100

Pe
rc

en
ta

ge
 (%

)

0.9 1.0 1.1 1.2 1.3
Best Fitted Exponential Base

(b)

0

2

4

M
ax

im
um

 D
ev

ia
tio

n
(m

)

Real-world trace
Synthetic trace
Real-world trace windows
Synthetic trace windows

0.0740 0.0745 0.0750

50

100

Figure 3.2: (a) CDF of the maximum deviations for attack windows in real-world and syn-
thetic traces. Attack goals are marked in red dotted lines. (b) Maximum deviations and
best fitted exponential bases of attack windows in the two traces.

synthetic trace have very sharp differences: in the synthetic trace, the upper-bound devia-

tions for all attack windows are at most 0.076 meters, while those in the real-world trace

are generally larger, with 90.3% of them larger than 0.076 meters. This suggests that sensor

noises in the real world can generally degrade the security of MSF. As shown later, such real-

world factors can actually enable highly effective attacks that fundamentally break MSF in

practice.

Observation: take-over effect. While our results show a general lack of attack capability

to achieve even the easiest attack goal in Table 3.1, we also observe that for the real-world

trace there still exist 14% attack windows that can actually achieve over 2 meters deviations,

which are large enough for some of our attack goals. For all of these windows, we find that

GPS spoofing is able to cause an exponential growth of deviations, and one such example is

shown on the left of Fig. 3.3. As shown, its deviation trend is very different from those in

majority of other attack windows as shown on the right of Fig. 3.3, which is almost flat.

To more quantitatively measure such observation, for each window, we fit an exponential

function f(x) = ax + b to the deviations, where x is the x-th attack point and f(x) is

the deviations. For each 10-point window, we use the exponential base a in the best fitted

function (based on the mean squared error) to measure the exponential growth trend. As

40

0 2 4 6 8
Spoofing Points in Window

From 171-th Second in ba-local

0

1

2

3

4

De
vi

at
io

n
(m

)

Best fitted exponential base = 1.3

0 2 4 6 8
Spoofing Points in Window

From 111-th Second in ba-local

0

1

2

3

4
Best fitted exponential base = 1.0

Fitted exponential function
Deviations of spoofing points

Figure 3.3: The deviations and best fitted exponential bases of two example attack windows
in the real-world trace. Left is with take-over effect; Right is without take-over effect.

shown in Fig. 3.2 (b), such exponential growth trends have strict positive correlation with

the upper-bound deviations in the attack windows, and all windows that can have very large

deviations, e.g., over 3 meters for achieving all attack goals in Table 3.1, have very clear

exponential growth trend, e.g., with a being at least 1.3 (the trend on the left of Fig. 3.3).

Such exponential growth trend is very similar to the situation when the spoofed GPS is the

only positioning source in KF updates, which is confirmed by re-running the upper-bound

attack analysis in the synthetic trace without LiDAR locator inputs as shown in Fig. 3.4.

This means that for these windows with exponential deviation growths, GPS inputs somehow

become the dominating KF update source (we will analyze the cause later). In fact, according

to the Chi-squared test values in the analysis logs, we find that LiDAR locator inputs actually

become outliers in the latter parts of these windows and then can not provide corrections

anymore. This thus fundamentally defeats the design principle of MSF, i.e., the fusion of

multiple input sources for more robustness and accuracy. In this work, we call it take-over

effect.

For an attacker, such take-over effect is the most desired attack outcome, since it can ef-

ficiently cause arbitrary deviations and thus lead to both off-road and wrong-way attacks,

and even larger ones if desired. Thus, in the next section we perform a cause analysis to

understand why such take-over effect appears in the real-world trace.

41

0 2 4 6 8
Spoofing Points in Window

0

5

10

15

De
vi

at
io

n
(m

)

Best fitted exponential base = 1.4
Fitted exponential function
Deviations of spoofing points

Figure 3.4: The deviation growth and the best fitted exponential base for BA-MSF with only
the spoofed GPS input in KF updates (or a single-source KF-based MSF) in the synthetic
trace under exhaustive search.

3.3.2 Cause Analysis

Since take-over effect does not appear in all attack windows, there must be some factors

other than the attack input δak that contribute to the take-over opportunity. To analyze the

causes for take-over effect, we first identify possible contributing factors using theoretical

analysis and experimental validation, and then use correlation analysis to identify the most

important factors for the observed take-over effect in our analysis.

Derivation of contributing factors. To identify the possible contributing factors to the

deviations in MSF, we first perform theoretical analysis based on the general KF-based MSF

design (§2.1.1). For the ease of the theoretical analysis without loss of generality, we target

the smallest unit in the attack, the MSF operation pipeline between two consecutive GPS

spoofing inputs, and simplify it to only have one IMU input and one LiDAR locator input.

Fig. 3.5 shows such simplified pipeline, and the notations we use in the analysis, where dev1,

devimu, devlidar, and dev2 denote the MSF output deviations after the first GPS spoofing

input, the IMU input, the LiDAR locator input, and the second GPS spoofing inputs.

Here we derive the deviations after each step in the simplified but general KF-based MSF

operation pipeline for theoretical contributing factor analysis. The math notations used in

the derivation are listed in Table 3.2.

42

KF
Update

x0

P0

1st spoof:
r1 + δ

1
a, R1

KF
Predict

x1+
dev

1

P1

IMU measure
imu

1

LiDAR measure:
z1

lidar, R1
lidar

x1
imu +

dev
imu

P1
imu

KF
Update

2nd spoof:
r2 + δ

2
a, R2

x1
lidar +

dev
lidar

P1
lidar

x2+
dev

2

P2

KF
Update

p◌̂

p◌̂

p◌̂

p◌̂

p◌̂

p◌̂

p̂

p̂

p̂

p̂

p̂

p̂

Figure 3.5: A simplified but general MSF operation pipeline under GPS spoofing attack for
theoretical analysis.

Table 3.2: Notations in KF and contributing factor derivation.

Notation Description
x KF state, e.g., PVA
P KF state co-variance, i.e., state uncertainty
K Kalman gain of the measurement

F
State transition model;
it describes the kinematics functions used in KF prediction

H
Observation model; it is an identity matrix
if the measurement and state have the same scale

Q
Process noise co-variance;
usually a fixed pre-tuned matrix

z Sensor measurement
R Measurement variance, i.e., measurement uncertainty
r Victim’s physical position
δ Spoofing distance to victim’s physical position
∆ LiDAR position distance to the original MSF position
dev The deviation after each KF operation under spoofing

43

First, after spoofing the 1st GPS point with a spoofing distance δa1 , the KF state equations

become:

x̂a
1 = x0 +K1(r1 + δa1 −Hx0)

= x̂1 +K1δ
a
1

P̂1 = P0 −K1HP0

K1 = P0H
T (HP0H

T +R1)
−1

Thus, the deviation after spoofing the first point is:

dev1 = K1δ
a
1

Second, we perform an IMU prediction. IMU values are used in the kinematics function

described by the matrix F1:

ximu,a
1 = F1x̂

a
1

= F1(x̂1 +K1δ
a
1)

= ximu
1 + F1K1δ

a
1

Pimu
1 = F1P̂1F

T
1 +Q

After the IMU prediction, the deviation becomes:

devimu = F1dev1

Third, a LiDAR locator update is applied. ∆lidar = ximu
1 − zlidar1 describes the distance

between the LiDAR position and the original non-spoofed KF state. This is because sensor

noises or LiDAR locator inaccuracies will cause LiDAR locator outputs to be misaligned

44

with the MSF output.

x̂lidar,a
1 = ximu,a

1 +Klidar
1 (zlidar1 −Hximu,a

1)

= ximu
1 + devimu

+Klidar
1 (zlidar1 −H(ximu

1 + devimu))

= x̂lidar
1 + devimu −Klidar

1 (∆lidar + devimu)

P̂lidar
1 = Pimu

1 −Klidar
1 HPimu

1

Klidar
1 = Pimu

1 HT (HPimu
1 HT +Rlidar

1)−1

LiDAR locator output provides correction on the deviation. After the KF update, the

deviation then becomes:

devlidar = devimu −Klidar
1 (∆lidar + devimu)

Finally, we spoof the second GPS point with the spoofing distance δa2 :

x̂a
2 = x̂lidar,a

1 +K2(r2 + δa2 −Hx̂lidar,a
1)

= x̂lidar
1 + devlidar

+K2(r2 + δa2 −H(x̂lidar
1 + devlidar))

= x̂2 + devlidar +K2(δ
a
2 − devlidar)

P̂2 = P̂lidar
1 −K2HP̂lidar

1

K2 = P̂lidar
1 HT (HP̂lidar

1 HT +R2)
−1

And the deviation after the second spoofing point will be:

dev2 = devlidar +K2(δ
a
2 − devlidar)

45

Based on the derivation, there are 4 theoretical contributing factors to dev2 besides the

attack input δak :

• Initial MSF state uncertainty (P0): The larger P0 is, the less confident the MSF

algorithm has on its positioning output, and thus more updates are taken from attack

inputs δak , leading to larger dev2.

• LiDAR measurement uncertainty (Rlidar
1): The larger Rlidar

1 is, the less confident the

LiDAR locator is on its positioning output zlidar1 , and thus the larger the remaining

deviation after LiDAR locator’s correction devlidar, leading to larger dev2.

• Difference between LiDAR position and the original MSF output without attack (∆lidar):

The impact of ∆lidar on dev2 has two phases. First, as ∆lidar increases, the correction

from the LiDAR update increases, which causes devlidar being smaller and decreases

dev2. Second, after ∆lidar becomes too big that makes zlidar1 an outlier, no correction

can be applied any more and thus dev2 becomes larger than before. Thus, there is a

non-linear relationship between ∆lidar and dev2.

• IMU measurement (imu1): imu1 affects on dev2 in two ways. First, imu1 is used in

F1 (the IMU-based integration function in Eq. 2.1), which directly affects devimu and

further affects dev2. Second, F1 affects Pimu and then the Kalman gain at LiDAR

update Klidar and at the second spoofing K2 (Eq. 2.2). Note that larger Klidar means

larger correction and thus smaller dev2, while larger K2 means larger dev2. Thus, the

relationship between imu1 and dev2 depends on the design of F1 and the competition

of the impact of larger Klidar and larger K2 on dev2.

Experimental validation of derived contributing factors. To validate whether these

4 factors indeed affect the actual BA-MSF implementation, we take a segment from the

synthetic sensor trace as shown in Fig. 3.6, and modify different parts of sensor data to

46

t0 t1

Spoofing point LiDAR measure IMU measure

➋ Rlidar
 & ➌ Δlidar

➊ Rlidar → P0 ➍ IMUs

··· ···

···

dev2

Figure 3.6: Modeling of each factor in the synthetic trace. We modify different parts of the
sensor data in order to observe how the factors affect the 2nd deviation dev2.

model the change of the four contributing factors. As shown, the segment consists of two

GPS spoofing points. Since no spoofing has been applied prior to time t0, the deviation

prior to t0 is zero. Unlike the simplified MSF operation pipeline considered in the theoretical

derivation, we apply the original KF prediction and update sequences as real-world sensor

traces for BA-MSF, i.e., 1 Hz for GPS, 5 Hz for LiDAR locator, and 200 Hz for IMU [7].

For each contributing factor, we measure the deviation after the 2nd spoofing point to

understand the relationship with the deviation. To eliminate the influence from the GPS

spoofing distance, we exhaustively search for different distances for two GPS spoofing points

and use the best one in our results. We use the median value of the GPS uncertainty in

ba-local as the uncertainty values for the GPS spoofing points, which is the same as in §3.2.2.

Validation results. The experiment results are shown in Fig. 3.7 and described below:

• For P0, there is no direct way to modify it since it is not part of sensor data. Here

we vary Rlidar before t0 to indirectly generate different values of P0. Since the LiDAR

locator outputs are aligned with the MSF state (i.e., ∆lidar = 0) before t0, the change

of Rlidar will only affect P0. As shown in the top-left subfigure in Fig. 3.7, the results

validate that a larger P0 will cause a larger deviation dev2.

• We modify Rlidar between time t0 and t1 to observe how it affects the correction capa-

47

0.0270 0.0280
P0

0.030

0.032

De
vi

at
io

n
0.01 0.02
R lidar

0.000

0.025

0.050

0.0 0.2 0.4
lidar

0.000

0.025

De
vi

at
io

n

0.0 0.5 1.0
imu

0.0285

0.0286

Figure 3.7: Relationship between the contributing factors and the spoofing deviation in the
synthetic trace.

bility of LiDAR locator outputs on the deviation. As shown in the top-right subfigure

in Fig. 3.7, our results validate that Rlidar has a positive effect on the deviation, but

reaches a plateau when it is overly large.

• The modeling of ∆lidar is straightforward: We directly set the LiDAR locator outputs to

have different distances to the MSF state. The bottom-left subfigure in Fig. 3.7 shows

our results. As shown, aligned with our theoretical analysis, a small ∆lidar can correct

the deviation introduced by the first GPS spoofing. However, when ∆lidar increases, at

a certain point it causes the MSF output to deviate to the opposite direction. This is

because ∆lidar provides a large update to the velocity component in the MSF state such

that the deviation is over-corrected as time accumulates. When ∆lidar becomes even

larger, the deviation starts to increase since LiDAR locator outputs become outliers,

which also conforms to our theoretical analysis.

• For imu, we modify the acceleration component in the IMU measurements between

time t0 and t1. In addition, we align the LiDAR locator positions to the non-spoofed

MSF outputs during this period to ensure that ∆lidar = 0. As shown in the bottom-

right subfigure in Fig. 3.7, our results show that imu has a positive influence on the

48

deviation overall, which shows that the impact of K2 is much larger than the impact

of Klidar to dev2.

Factor importance analysis. With the 4 contributing factors identified, we then use

popular causality analysis methods to understand the importance of these factors on causing

the take-over effect observed in §3.3.1. Specifically, we perform the exponentiation function

fitting as described in §3.3.1, and label the windows with exponential base a over 1.1 as

windows with take-over effect. As shown in Fig. 3.2 (b), for windows without any take-over

effect, e.g., the ones for the synthetic trace, the exponential base a is way below 1.1. With the

exponential fitting results, we identify the first point of the exponential growth to obtain P0.

For Rlidar, ∆lidar, and imu, we use the average values from the first point of the exponential

growth to the end of the window. We use 2 statistical testing methods commonly used for

causality analysis [269, 296, 107]: Pearson’s Correlation and Fisher’s Exact Test.

Analysis results. Table 3.3 shows the experiment results. For the two statistical testing

methods, p < 0.05 is considered statistically significant, and r > 0.5 and or > 9 are consid-

ered strongly correlated for Pearson’s Correlation and Fisher’s Exact Test respectively [128].

As shown, only the p values for P0 and Rlidar are statistically significant for both methods,

with their r values very close to showing strong correlations, and their or values showing

strong correlations. In contrast, neither of the r or or values for ∆lidar and imu show strong

correlations, and for imu, the results are not even statistically significant. This suggests

that the take-over effect we observe in our upper-bound analysis is most likely caused by

relatively large P0 and Rlidar in the corresponding attack windows.

For these two most important contributing factors, Rlidar reflects the lack of confidence in

the LiDAR-based localization algorithm during the attack window, and P0 reflects the lack

of confidence in the KF states at the beginning of the attack window. This means that

take-over opportunities, or vulnerabilities, appear when the MSF is in relatively unconfident

49

Table 3.3: Correlations between the contributing factors and the take-over vulnerability.
Results with statistically strong correlation are highlighted in bold.

Correlation
Method

Factor Importance

P0 Rlidar ∆lidar imu

Pearson’s
Correlation

0.42 (2.0e-10) 0.44 (3.5e-11) 0.12 (8.4e-2) 0.01 (8.6e-1)

Fisher’s
Exact Test

21.09 (8.6e-6) 11.78 (5.2e-8) 5.91 (3.2e-4) 1.95 (1.1e-1)

Pearson’s correlation: r (p-value), where r is the correlation coefficient
Fisher’s exact test: or (p-value), where or is the odds ratio

periods. Because of this, the MSF algorithm needs to take more updates from the GPS

inputs, the relatively most confident input source in that period, which thus allows GPS

inputs to dominate KF updates and trigger the take-over effect.

Since Rlidar is the uncertainty reported by LiDAR locator, a large Rlidar is caused by the

inaccuracies of such locator algorithm in practice. From the KF equations (§2.1.1), a large

P0 is mainly caused by larger uncertainties from the LiDAR locator and GPS updates before

the attack window, which is thus due to algorithm inaccuracies in LiDAR locator and noises

in GPS signals. Thus, unconfident periods in MSF are mainly created by practical factors

such as algorithm inaccuracies and sensor noises. This also explains why we cannot observe

any take-over effect in synthetic noise-free trace. These practical factors are fundamentally

difficult to avoid in practice, which is exactly why MSF is designed to compensate such

inaccuracies and noises from individual sources [28, 386, 170, 346, 357, 331, 140, 340, 233,

214]. However, as shown in our analysis, even for the high-end sensors used in AD vehicles

today, these inaccuracies and noises are unfortunately large and frequent enough for GPS

spoofing to exploit and fundamentally break MSF in practice.

50

3.4 Attack Design: FusionRipper

Although our analysis in §3.3 reveals that there do exist take-over vulnerabilities for MSF in

the real world, such vulnerabilities only appear in the unconfident periods created by dynamic

and non-deterministic practical factors such as algorithm inaccuracies and sensor noises,

which is not observable by the attacker in a tailgating attack vehicle (§3.2.2) and are highly

difficult, if not impossible, to directly control. Thus, the attacker has to opportunistically

capture and exploit such vulnerable periods in the actual attack time.

Leveraging this idea, we propose a novel attack design against MSF-based AD localization,

called FusionRipper, which consists of 2 stages as depicted in Fig. 3.1:

Stage 1: Vulnerability profiling. In this stage, the attacker performs GPS spoofing and

measures the feedback from the victim AD vehicle to profile when vulnerable periods appear.

In our design, we aim for as fewer attack parameters as possible to maximize the ease of

implementation and robustness, and thus choose to use constant spoofing for this stage, i.e.,

always setting δak to a constant d as shown in Fig. 3.1. Although such profiling method

is simple, our evaluation results later in §3.5 show that it is able to achieve a high attack

success rate that is very close to the theoretical upper bound.

While performing constant spoofing, the attacker tracks victim’s physical positions in real

time and measures their deviations to the center of traffic lane (described in §3.2.2). If such

deviation is as large as causing the AD vehicle to exhibit unsafe driving behaviors, e.g., about

to have unnecessary lane straddling, the victim AD vehicle is considered as in the vulnerable

period. Our design uses the deviation that can touch the left or right lane line on local roads

(0.295 meters, detailed in Appendix A) as the threshold to determine vulnerable periods.

The intuition is that a properly designed and tested AD system should very rarely have

large position deviations that can cause unsafe driving behaviors under normal fluctuations

of sensor inputs. For example, the errors of BA-MSF evaluated by Baidu Apollo AD vehicles

51

on real roads are within 0.054 meters [386], which is far less than 0.295 meters. Thus, when

such rare deviation appears, it is very likely caused by the constant spoofing, and the MSF

algorithm is very likely in an unconfident period since it takes larger update from the spoofed

GPS inputs.

Stage 2: Aggressive spoofing. After the vulnerable period is identified, the attacker can

then perform aggressive spoofing to trigger the take-over effect and thus quickly induce large

deviations. As shown in our security analysis in §3.3.1, the deviations grow exponentially

during the take-over effect, and thus we choose exponential spoofing in the aggressive spoofing

stage. As shown in Fig. 3.1, as soon as the attacker identifies a vulnerable period, she switches

to use spoofing distance d × f i, where an exponential base f is cumulatively multiplied to

previous spoofing distance at each of the spoofing points, and i is the index of the aggressive

spoofing inputs.

Generality. Since FusionRipper is designed to exploit the take-over vulnerability that is

general to any KF-based MSF as discussed in our cause analysis based on the general form of

KF-based MSF (§3.3.2), its design is generally applicable to any KF-based MSF algorithms.

As shown in our generality evaluation later (§3.5.4), FusionRipper is highly effective on

different KF-based MSF designs and implementations.

3.5 Attack Evaluation

3.5.1 Evaluation Methodology

Experimental setup. Following the common practice among AD companies [167, 169], we

evaluate FusionRipper on real-world sensor traces. Specifically, we use the real-world trace

ba-local used in our security analysis earlier (§3.3), and also traces from KAIST Complex

52

Urban [203], a dataset for evaluating AD systems. Since ba-local is collected by the Apollo

team and is designed specifically for evaluating MSF-based localization algorithms for Apollo,

it is by default compatible with BA-MSF with a complete positioning sensor set as well as

the HD Map for running the LiDAR locator1.

Similar to ba-local, the traces in the KAIST dataset are also collected by high-end AD-

grade positioning sensors [203]. But unfortunately, they do not provide the HD Map for

running the LiDAR locator in BA-MSF. To address this, we assume an ideal LiDAR locator

which always outputs the ground truth positions provided in the KAIST dataset, with their

measurement uncertainty set to the median value of that in ba-local. Considering that one

of the likely causes for the take-over effect is the LiDAR locator inaccuracies, especially the

measurement uncertainty values (§3.3.2), this assumption only makes the attack harder and

thus the results will provide the worst-case attack effectiveness on the KAIST traces.

Trace selection in KAIST dataset. The KAIST dataset includes 18 local traces and

2 highway traces that are compatible with BA-MSF, and we select 3 local ones and both

the 2 highway ones. We truncate them to the first 5 minutes to keep the evaluation time

manageable. In the selection of local traces, we select the ones with the smallest average MSF

state uncertainty (i.e., most confident). Table 3.4 shows the average MSF state co-variance

value, i.e., uncertainty, when running BA-MSF on the 20 traces in the KAIST dataset that

(1) have the complete sensor data needed by BA-MSF, e.g., some KAIST traces do not

have complete IMU data, and (2) from a stationary position to provide a complete motion

history, which is required for BA-MSF to have stable outputs. Among the 18 local traces

and 2 highway traces, we choose both the eligible highway traces, and select the top 3 from

the local traces with the lowest MSF state uncertainties. Considering that state uncertainty

is one of the two most important contributing factors to the take-over effect (§3.3.1), the

evaluation results on these traces will provide the worst-case attack effectiveness for the

1Apollo released 8 sensor traces recorded with localization, but only ba-local has both the complete sensor
set and compatible format with BA-MSF.

53

Table 3.4: Average MSF co-variance, i.e., uncertainty, of the KAIST local and highway
traces. We ranked the traces based on their MSF state co-variance (the lower the more
confident), and pick the most confident ones (in bold) in our evaluation.

Local
Trace

Avg. MSF
Co-variance

Rank
Local
Trace

Avg. MSF
Co-variance

Rank

ka-local08 0.0032 1 ka-local39 0.1143 10
ka-local31 0.0080 2 ka-local16 0.2254 11
ka-local07 0.0111 3 ka-local29 0.3237 12
ka-local37 0.0131 4 ka-local09 0.4070 13
ka-local35 0.0146 5 ka-local14 0.4468 14
ka-local33 0.0219 6 ka-local38 0.8904 15
ka-local36 0.0312 7 ka-local26 1.4719 16
ka-local28 0.1026 8 ka-local27 6.4191 17
ka-local30 0.1029 9 ka-local32 33.3712 18

Highway Trace Avg. MSF Co-variance Rank

ka-highway17 0.0027 1
ka-highway06 0.0028 2

KAIST traces.

Evaluation metrics. To evaluate the attack effectiveness, we apply attack parameters d

and f from all possible attack starting points, i.e., when the GPS input comes, in each trace,

since the attacker can discover the victim at any moment in the trace and start performing

the attack. As described earlier in §3.4, the attacker switches to aggressive spoofing when

the lateral deviation between the spoofed MSF output and the non-spoofed MSF output is

over 0.295 meters, which is just about to have lane straddling on local roads.

We consider the attack as successful when the lateral deviation of the MSF output is over

the required deviations for the off-road and wrong-way attacks according to Table 3.1. This

follows our AD control assumption (§3.2.2), which can directly considers the amount of devi-

ation at the MSF output level as the amount of physical position deviations in the opposite

direction to the center line. Later in §3.6.2, we will concretely evaluate this assumption using

an end-to-end evaluation with the AD control taking effect. The success rate is calculated

as the fraction of the successful attack starting points out of all starting points. For each

attack starting point, we enumerate the combinations of d from 0.3 to 2.0 meters, with step

54

Table 3.5: Real-world sensor traces used in our evaluation.

Source Trace Label Road Type Duration HD Map

Apollo ba-local Local 257s Yes

KAIST
Complex
Urban

ka-local08 Local 289s

No
ka-local31 Local 1014s
ka-local07 Local 553s

ka-highway17 Highway 1186s
ka-highway06 Highway 1937s

25 50 75 100 125 150 175
Minimum Attack Duration (s)

50

60

70

80

90

100

Su
cc

es
s R

at
e

(%
)

(a) Off-Road Attack

ba-local
ka-local08
ka-local31
ka-local07
ka-highway17
ka-highway06
Average

25 50 75 100 125 150 175
Minimum Attack Duration (s)

50

60

70

80

90

100
(b) Wrong-Way Attack

Figure 3.8: Average attack success rates of (a) off-road attack and (b) wrong-way attack
under different minimum attack duration.

size 0.1 meters, and f from 1.1 to 2.0, with step size 0.1. We choose these ranges because

we do not find the values out of these ranges can improve the attack effectiveness in our

experiments. Each d and f combination is then applied to both the left and right side of the

driving direction, since both sides are valid for achieving off-road attack (detailed in §3.2.1).

Since it takes time to (1) capture a take-over vulnerability, which is created dynamically and

non-deterministically, and (2) reach the required deviations even during take-over effects

(§3.3.1), we also consider minimum attack duration when calculating success rate, i.e., how

much time the attack can last when tailgating the victim AD vehicle. Intuitively, the longer

such duration is, the higher chance she can have to hit a vulnerable period.

55

Table 3.6: Ablation study results on ba-local trace.

Attack Configuration
Off-Road Wrong-Way

Succ. Rate Succ. Time Succ. Rate Succ. Time

FusionRipper 98.0% 29s 97.0% 33s
Vulnerability Profiling Stage Only 14.1% 26s 7.0% 29s
Aggressive Spoofing Stage Only 10.1% 8s 5.0% 13s

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Required Attack Deviation (m)

90.0

92.5

95.0

97.5

100.0

Av
g.

 S
uc

c.
 R

at
e

(%
)

Figure 3.9: Average success rate under different required attack deviations when the mini-
mum attack duration is 2 minutes.

25 50 75 100 125 150 175
Minimum Attack Duration (s)

0

20

40

60

Su
cc

. T
im

e
(s

) Off-Road Wrong-Way

Figure 3.10: Average success time for reaching required deviations in off-road and wrong-way
attacks under different minimum attack duration.

56

3.5.2 Attack Effectiveness

Attack success rates. Fig. 3.8 shows the best success rates of FusionRipper among all the

combinations of d and f for the two attack goals. It shows both the results for individual

traces and the average result among all traces (the thick pink line). As shown, for all traces,

the average success rate is always over 75% for both attack goals even when the minimum

attack duration is as low as 30 seconds. When the minimum attack duration increases, the

success rates for all traces increase accordingly, which is expected since the attacker has

higher chance to capture a vulnerable period. In particular, when the attack can last 2

minutes, there exists at least one combination of d and f that can achieve over 97% success

rate (98.6% on average) for the off-road attack and over 91% success rate (95.9% on average)

for the wrong-way attack, for all traces in our evaluation. Note that this is in fact the worst-

case results for KAIST traces as discussed in §3.5.1. Since a normal taxi or truck trip is

usually at least 10 minutes, it is highly likely that an attacker can find such a 2-minute

tailgating opportunity in practice to launch the FusionRipper attack.

Among all the traces, ka-local08 and ka-highway17 shows the lowest success rate in general,

especially when the required deviation is large. As shown in Table 3.4, both traces have the

smallest average MSF state uncertainty in their categories (i.e., local and highway). This

means that their MSF outputs have the highest confidence and thus are the most difficult

to attack as we expect in §3.5.1. This also confirms that we are evaluating the worst-case

attack effectiveness on KAIST traces.

Between the two attack goals, the success rates only slightly drop for wrong-way attack since

it has a larger required deviation. This means that the majority of the captured vulnerable

periods have a successful take-over effect that can be exploited to cause different required

deviations. To confirm this, we further evaluate the success rates of FusionRipper for even

larger required deviations, and find that when the minimum attack duration is 2 minutes,

57

FusionRipper is able to maintain an average success rate over 91.3% even when the required

deviation is 10 meters as shown in Fig. 3.9.

Sensitivity to attack parameters. Table 3.7 lists the top 3 combinations for each trace.

As shown, the attack effectiveness of FusionRipper is sensitive to the combinations of d and f .

For example, the best d and f combinations are all different for the 6 traces. This motivates

us to design an offline method to identify effective d and f combinations to increase the

attack practicality, which is detailed later in §3.7.

Ablation study. The high attack effectiveness is a result of the combination of the two

attack stages. To concretely understand this, we conduct an ablation study on ba-local,

where we remove one of the two stages in the experiments. For Vulnerability Profiling Stage

Only, we apply the constant spoofing distance d from each starting point. For Aggressive

Spoofing Stage Only, we directly scale the spoofing distance using different combinations of

d and f from each starting point. For both configurations, we obtain the highest success

rates by enumerating d or f in the range specified in §3.5.1.

Table 3.6 shows the experiment results for ba-local when the minimum attack duration

is 2 minutes. As shown, both configurations can only achieve at most 14% and 7% for

the two attack goals, which is far less than 98% and 97% by FusionRipper. This means

that there are still some very unconfident periods that even stage 1 or stage 2 alone can

succeed, but as shown, without the help of each other, the success rate is very limited. This

concretely demonstrates the necessity of the current 2-stage design of FusionRipper. Note

that FusionRipper has longer attack success time than Aggressive Spoofing Stage Only due to

the time spent on the vulnerability profiling stage. However, since the current ∼30 seconds

attack time on average is already quite affordable for a tailgating attacker in practice, such

advantage is much less important than the much higher success rates by FusionRipper.

Attack success time. For the attack success time, overall the average success time and

58

T
ab

le
3.
7:

T
op

3
at
ta
ck

p
ar
am

et
er
s
w
it
h
th
e
h
ig
h
es
t
at
ta
ck

su
cc
es
s
ra
te
s
w
h
en

m
in
im

u
m

at
ta
ck

d
u
ra
ti
on

is
2
m
in
.

A
tt
ac
k

R
an

k
ba
-l
oc
a
l

ka
-l
oc
a
l0
8

ka
-l
oc
a
l3
1

ka
-l
oc
a
l0
7

ka
-h
ig
h
w
a
y1
7

ka
-h
ig
h
w
a
y0
6

d
f

S
u
cc
.

R
at
e

d
f

S
u
cc
.

R
a
te

d
f

S
u
cc
.

R
a
te

d
f

S
u
cc
.

R
a
te

d
f

S
u
cc
.

R
a
te

d
f

S
u
cc
.

R
a
te

O
ff
-R

oa
d

T
op

1
0.
6

1.
5

98
.0
%

0
.7

1
.1

1
0
0
%

0
.5

1
.2

9
9
.4
%

0
.3

1
.1

9
8
.9
%

0
.3

1
.2

9
7
.0
%

1
.1

1
.5

9
8
.2
%

T
op

2
0.
6

1.
6

98
.0
%

0
.7

1
.2

1
0
0
%

1
.0

1
.3

9
9
.4
%

0
.3

1
.2

9
8
.3
%

0
.3

1
.3

9
7
.0
%

1
.1

1
.3

9
8
.2
%

T
op

3
0.
6

1.
7

98
.0
%

0
.7

1
.3

1
0
0
%

1
.0

1
.4

9
9
.4
%

0
.4

1
.2

9
8
.3
%

0
.3

1
.4

9
4
.0
%

1
.3

1
.3

9
8
.2
%

W
ro
n
g-
W
ay

T
op

1
0.
6

1.
5

97
.0
%

0.
3

1
.2

9
3
.8
%

1
.0

1
.3

9
8
.3
%

0
.3

1
.4

9
1
.1
%

0
.3

1
.2

9
7
.0
%

1
.2

1
.3

9
8
.2
%

T
op

2
0.
6

1.
3

95
.0
%

0.
3

1
.3

9
3
.8
%

1
.0

1
.2

9
7
.8
%

0
.3

1
.5

9
0
.6
%

0
.3

1
.3

9
7
.0
%

1
.3

1
.3

9
8
.2
%

T
op

3
0.
6

1.
4

95
.0
%

0.
5

1
.3

9
2
.1
%

1
.1

1
.2

9
7
.8
%

0
.3

1
.3

8
8
.3
%

0
.3

1
.4

9
4
.0
%

1
.1

1
.3

9
7
.6
%

59

the standard deviations are very similar under different minimum attack duration as shown

in Fig. 3.10. When the minimum attack duration is 2 minutes, the average success time

is less than 30 seconds with a standard deviation of around 25 seconds for both off-road

and wrong-way attacks. This shows that FusionRipper can generally succeed very fast, e.g.,

within a minute, even when the attacker plans to attack for over 2 minutes.

3.5.3 Comparison with Naive Attack Method

In this section, we compare FusionRipper with a more naive attack method: random attack,

which randomly spoofs a deviation within a distance range for each GPS spoofing point.

Experimental setup. We perform experiments by applying FusionRipper and random

attack on ba-local. In the random attack, we uniformly sample the position deviation between

0 to 10 meters for each spoofing point. The experiments are repeated for 30 trials. In each

trial, the spoofing is performed for each attack starting point and on both the left and right.

The higher success rate between that of the left and that of the right is taken as the final

success rate for each trial.

Results. The first row in Table 3.8 shows the experiment results when the minimum attack

duration is 2 minutes. We find that the random attack can barely reach any large deviation,

and as shown, its success rates are as low as 3.7% and 0.2% on average for the two attack

goals respectively, which are much lower than those from FusionRipper (98.0% and 97%).

3.5.4 Generality of FusionRipper

In this section, we aim at understanding the generality of FusionRipper by evaluating it

on more KF-based MSF implementations. Ideally we hope to find other production-grade

implementations for AD systems similar to BA-MSF, but to best of our knowledge, BA-MSF

60

is the only publicly-available one so far. Nevertheless, we still try our best to implement/port

and evaluate on two other popular KF-based MSF designs, denoted as JS-MSF and ETH-

MSF, which are both designed for general robotics localization instead of for AD vehicles.

Experimental setup. BA-MSF adopts a Linear KF, the most popular KF design for

MSF-based localization (Table 2.1). Thus, we follow a popular Linear KF based MSF design

published by Joan Solà [339] and implement JS-MSF. ETH-MSF [154] is an open-source

project developed by researchers from ETH Zürich for drones [261], which implements an

Extended KF based MSF, the second popular KF design for MSF-based localization (Ta-

ble 2.1). It has received over 500 stars on GitHub, which is the highest among the repositories

under the search keyword “kalman filter sensor fusion”. Both implementations use a Chi-

squared test based outlier detector and directly reject outlier measurements. We follow a

common parameter tuning process [177] and reach at most 1.91 and 1.17 meters localization

accuracies on ba-local for JS-MSF and ETH-MSF respectively. Although such accuracies are

far from the centimeter-level accuracy required by AD systems, they are common for general

robotics localization [430, 429, 106].

Results. Table 3.8 shows the attack success rates of FusionRipper and random attack on

ba-local for all 3 KF-based MSF implementations. As shown, FusionRipper can generally

achieve high success rates on all three MSFs, which are 100% on both JS-MSF and ETH-

MSF for both attack goals. However, we also notice that even random attack can also

achieve over 95% success rates for the off-road attack, and over 70% for the wrong-way

attack. This suggests that JS-MSF and ETH-MSF are both very unstable, which can also

be seen by the fact that their natural localization errors are already 1.17 and 1.91 meters. In

contrast, BA-MSF can achieve 0.054 meters accuracy, which is likely due to additional design

features such as zero-velocity update [386], and better parameter tuning by professional AD

engineers. Thus, while our results show that FusionRipper is general for all 3 KF-based MSF

implementations, we believe that the results on BA-MSF can more representatively indicate

61

Table 3.8: Attack success rates of FusionRipper and random attack on 3 MSF implementa-
tions. The attacks are evaluated on ba-local with 2-minute minimum attack duration.

Attacked
MSF

FusionRipper Random Attack (avg. of 30 trials)

Off-Road Wrong-Way Off-Road Wrong-Way

BA-MSF 98.0% 97.0% 3.7% 0.2%
JS-MSF 100% 100% 97.4% 92.4%

ETH-MSF 100% 100%† 95.9% 72.5%

†Achieves 100% success rate when using a smaller f (1.02).

the security status of production-grade MSF-based AD localization today.

3.6 Practical Attack Considerations

Although FusionRipper already shows very high effectiveness in §3.5, we haven’t considered

two factors that may affect the attack effectiveness in practice: (1) the variations in the

spoofed positions and their measurement uncertainty at the victim’s GPS receiver, and (2)

sensor input changes due to AD control during the attack. In this section, we evaluate

the robustness of FusionRipper under these two practical factors. The experiments in this

section are mainly performed on the ba-local trace since it has the complete set of real-world

sensor inputs for BA-MSF and thus has the highest realism.

3.6.1 Robustness Against Spoofing Inaccuracies

In §3.5, we directly set spoofed GPS inputs rk+δak based on d and f , and set their uncertainty

Rk as the medium value in real-world traces. However, in practice both can have variations

due to sensor noises. In this section, we denote the variances to rk + δak as σpos, and those to

Rk as σvar.

Inaccuracy sources and modeling. As specified in our threat model (§3.2), we assume

62

that the attacker can estimate the victim AD vehicle’s real-time positions based on her own

position and the distance to the victim. Thus, there are three possible error sources for

σpos: 1) localization error σ1 in attacker’s self-localization process, 2) distance measurement

error σ2 in the measured distance between the attack vehicle and the victim AD vehicle, and

3) GPS receiver error σ3, i.e., the difference between the position the attacker intended to

set and the actual received position at the victim side. Assuming the attacker is equipped

with the same sensor set used in an AD system and can run an MSF algorithm of similar

quality, σ1 will be similar to the inaccuracies of BA-MSF algorithm, which is reported as

0.054 meters in [386]. Since LiDAR can be used to measure the distance to the victim,

σ2 is thus the distance measurement error in the LiDAR sensor, which is 0.02 meters as

specified in the datasheet according to the LiDAR model used in Apollo [383]. For σ3,

we directly use the positioning error, 0.01 meters, as specified in the datasheet of the GPS

model used in Apollo [290]. Assuming that these errors are normally distributed with a zero-

mean (common practice in robotics [361]), the combined distribution for σpos is conforming

to N (0, σ2
1 + σ2

2 + σ2
3) = N (0, 0.0582). For the measurement uncertainty error σvar during

spoofing, we measure the distribution of GPS measurement uncertainty in the ba-local trace,

and take the standard deviation σvar = 0.008.

Experimental setup. We apply these error distributions to the FusionRipper attack in

ba-local using the best attack parameter in ba-local with 2-minute minimum attack duration.

For each GPS spoofing input, we randomly sample a position error from N (0, σ2
pos) and the

error direction from a uniform distribution between 0 to 360 degrees, and apply them to the

spoofed input. Similarly, we randomly sample an error value from N (0, σ2
var) and apply it

to the measurement uncertainty of each spoofing input. To further explore the impact of

these errors, we also apply 2× and 3× amounts of the normal error (σpos and σvar), in our

evaluation. We repeat the experiment 100 times for each error amount.

Results. Fig. 3.11 shows the attack success rates under each error amount. As shown,

63

no error 1 × 2 × 3 ×
Applied Error Amount (= { pos, var})

60

80

100

Su
cc

es
s R

at
e

(%
) 98.0 97.8

93.4

84.3

97.0 96.2

87.4

74.2Off-Road Attack
Wrong-Way Attack

Figure 3.11: Attack success rate for different amounts of spoofing errors. Experiment of each
error amount is repeated 100 times.

under normal error amount (1 × {σpos, σvar}), the success rate is only reduced by 0.2% for

the off-road attack, and by 0.8% for the wrong-way attack. Even when the error amount is

3× than normal, meaning that the error can be as large as 0.174 meters, the success rate

is still 84.3% and 74.2% on average for off-road and wrong-way attacks respectively. This

shows that FusionRipper is highly robust to spoofing inaccuracies in practice.

3.6.2 End-to-End Attack Impact Evaluation

In §3.5, we assume the amount of deviation in MSF outputs is the same as the amount

of physical position deviations to the center line. In this section, we concretely evaluate

this assumption by performing an end-to-end attack impact evaluation with the AD control

taking effect.

Evaluation methodology. In this evaluation, we adopt two evaluation methods popularly

used in AD industry [167, 96]: trace based and simulation based. In the trace-based eval-

uation, we still use the original real-world sensor trace ba-local, and synthesize the sensor

input changes corresponding to the output of the control module in Apollo. Specifically, the

lateral controller in Apollo runs a linear-quadratic regulator algorithm [166] on the lateral

deviation in the MSF output, which calculates the amount of steering that will be applied to

correct the deviation. We thus mathematically translate such steering into physical position

64

and heading rate changes (detailed in Appendix B), and add them to the original LiDAR

locator position and IMU values to get the changed ones due to AD control. The benefit

of this method is that it contains real-world sensor noises, which is the key contributor to

the take-over vulnerability (§3.3). However, it does not model more complicated sensing and

vehicle motion factors such as raw LiDAR point cloud changes and tire-road frictions, which

thus may have limited synthesizing accuracy.

In the simulation-based evaluation, we directly use an AD simulator to dynamically generate

raw sensor inputs to Apollo according to its control decisions in the real time, which has

more advanced sensor and vehicle motion modelling. However, a common limitation for

AD simulators today [146, 238] is that they do not consider generating sensor data with

real-world noises. To address this, we model the LiDAR noises as position errors following a

normal distribution with a zero mean for each point of the raw LiDAR point cloud generated

from the simulator according to the LiDAR datasheet [383].

Experimental setup. In the trace-based evaluation, we run Apollo version 2.5 (the latest

version directly compatible with ba-local) with the control module enabled on a GPU server,

and feed trace ba-local. We write a standalone ROS node that feeds the spoofed GPS

inputs and also performs the LiDAR locator and IMU input changes described above. For

FusionRipper, we use the best attack parameter in ba-local with 2-minute minimum attack

duration. We do not run the perception module since in Apollo the perception module only

outputs detected road obstacles and the system solely relies on the localization module to

identify deviations on the road. This is the most popular design modularization for high-level

AD systems today [28, 29, 31, 7, 213], which lets the localization module to take charge of

all aspects related to vehicle positioning.

In the simulation-based evaluation, we use LGSVL, a production-grade AD simulator that

can interface with Apollo version 5.0 [238]. Since Apollo version 5.0 replaces the ROS

runtime with Cyber [7], we implement the attack logic and noise modeling in a Cyber node

65

instead. Different from the trace-based evaluation, we run the simulation on the complete

Baidu Apollo AD system with all functional modules enabled, i.e., localization, transform,

perception, prediction, planning, routing, and control [7]. We simulate two attack scenarios

with one attacking to the left of the road and another to the right, where both have concrete

safety consequences such as hitting the road barrier or traffic sign.

Trace-based evaluation results. Our results show that FusionRipper achieves 97.0% and

93.9% success rates for off-road and wrong-way attacks respectively, which is only slightly

lower than those in the MSF algorithm-only analysis (98.0% and 97.0%). Such slightly

effectiveness drop may be due to run-time randomness when running the end-to-end Apollo

system since it uses multi-threading when feeding the sensor inputs to BA-MSF.

Simulation-based evaluation results and attack demos. Our simulation results show

that FusionRipper can successfully deviate the victim AD vehicle to hit the road barrier

or traffic sign even with the complete end-to-end Baidu Apollo AD system operating. We

record attack demo videos for these two simulation scenarios, available at our project website

https://sites.google.com/view/cav-sec/fusionripper. Fig. 3.12 shows a snapshot of

the demos. As shown, to correct the MSF output deviation to the right/left of the planned

trajectory (i.e., lane center), the AD vehicle in the physical world deviates to the left/right

and eventually hit the road barrier or the stop sign.

3.7 Offline Attack Parameter Profiling

Our results so far show that for each trace there always exist an attack parameter combina-

tion, i.e., d and f , that can achieve high success rates (§3.5) with high robustness to practical

factors (§3.6). However, in §3.5.2 we also observe that such high effectiveness is sensitive to

the selection of attack parameters. Thus, it is highly desired if there exists an offline method

66

https://sites.google.com/view/cav-sec/fusionripper

MSF View

Physical World View

Attack to the Left Attack to the Right

Hit Road Barrier Hit Stop Sign

Blue: GPS position

Red: LiDAR locator position

Green: MSF output

Figure 3.12: Snapshots of our end-to-end attack demos [44]. MSF View: input sensor posi-
tions and MSF outputs; Physical World View: victim AD vehicle’s physical world position.

that can efficiently identify highly effective attack parameters before the actual attack. In

this section, we thus explore the possibility of designing such a method to further improve

the practicality of FusionRipper.

3.7.1 Problem Settings and Design

Problem Settings. To find the effective attack parameters offline, we assume that the

attacker can perform trials of FusionRipper attacks with different combinations of d and

f on AD vehicles of the same model as that of the victim AD vehicle, i.e., having the

same sensor set, AD system, and vehicle model. This is a realistic assumption since any

AD vehicle models developed for commercial purpose need to be mass produced for the

ease of management and reducing the development cost for the self-driving taxi or truck

services today [48, 41, 23, 9]. For example, Waymo’s 20,000 self-driving taxis in Phoenix are

deployed with the same sensor suite on the same car model [50], and the same applies to

Hyundai’s self-driving taxis [21]. In this process, the attack trials can be performed actively,

by requesting the self-driving taxi or truck services that use the targeted AD vehicle model,

67

or directly purchasing an AD vehicle of the same model.

In such profiling process, it is necessary to prevent causing obvious safety problems both

for the attacker’s own safety and for remaining stealthy. Thus, in such offline profiling we

choose a safe profiling design, which still performs the FusionRipper attack but stops the

attack right after the physical-world deviation of the AD vehicle is over a safe profiling

threshold. This will thus let the non-spoofed GPS and other positioning sources to drag the

MSF output deviations back.

Offline profiling algorithm design. Under the problem settings above, our profiling

method is designed following a simple strategy: performing attack trials using different

combinations of d and f until we find a combination with a sufficiently high success rate.

More specifically, the trials are performed for a number of profiling rounds. In each round,

the attacker picks one combination of d and f and tries it for multiple times. When picking

the combinations, the attacker follows the order from the smallest one to the largest one in

the parameter space, since larger ones can more easily make the spoofed inputs outliers and

thus directly cause attack failure.

Due to the safety requirement, the attacker follows the safe profiling design above, and con-

siders a d and f combination as successful once it reaches the safe profiling threshold. After

each profiling round, the attacker can thus obtain a success rate for a d and f combination.

Once the success rate of a combination in a round is over a minimum profiling success rate,

the profiling terminates and such combination is selected for the actual attack. If the attack

parameters space is exhausted, the combination with the highest success rate in profiling is

selected. The pseudocode of this method is in Algorithm 1.

68

Algorithm 1 Offline Attack Parameter Profiling
Notations:
AttackTrials(d, f, n, t): Profile n attack trials with parameters d, f , returns the number of trials that
have deviations larger than t
N : Number of attack trials in each profiling round
S: Minimum profiling success rate
T : Safe profiling threshold
Output: d, f , cost
Initialize d, dbest ← dmin; f, fbest ← fmin; SuccRatebest, cost← 0

1: for each f ← fmin to fmax do
2: for each d← dmin to dmax do
3: SuccCount ← AttackTrials(d, f,N, T)
4: cost ← cost +N
5: SuccRate ← SuccCount/N
6: if SuccRate ≥ S then
7: return d, f , cost
8: else
9: if SuccRate > SuccRatebest then
10: dbest ← d, fbest ← f
11: SuccRatebest ← SuccRate
12: end if
13: end if
14: end for
15: end for
16: return dbest, fbest, cost

3.7.2 Experiments and Evaluation

Experimental setup. In this section, we use the 5 KAIST traces used in §3.5.2 since

this represents the case with attacking the same AD vehicle model (the KAIST traces are

collected using the same vehicle on different roads [203]). We split the 5 traces into two sets,

with 4 as the profiling traces, i.e., representing the attack trials in the offline profiling, and

1 as the evaluation trace for evaluating the selected d and f from profiling, i.e., representing

the actual attack on the victim AD vehicle. We evaluate all the 5 possible splittings, and

then use their average success rate to measure the offline profiling effectiveness. We use the

same parameter space as that in §3.5.

Algorithm parameter choices. In the profiling algorithm, there are two configurable

parameters: minimum profiling success rate, and safe profiling threshold. Thus, we first

perform experiments to understand how to best configure them. In these experiments, for

69

each d and f combination we consider all attack starting points in the profiling traces as its

corresponding set of attack trials in the profiling algorithm in order to understand general

properties of different parameter values.

We first perform experiments by running the profiling algorithm for different minimum pro-

filing success rates without considering safe profiling design. Our results in Fig. 3.13 (a) show

that the average success rate of the selected d and f does not change significantly overall.

Particularly, it peaks when the minimum profiling success rate is 50% for both attack goals

and drops after that, maybe due to the overfitting to the profiling traces.

Next, with 50% as the minimum profiling success rate, we vary the safe profiling threshold,

and find that reducing the safe profiling thresholds only slightly changes the average success

rate of the selected d and f as shown in Fig. 3.13 (b): the success rate differences between

profiling threshold 0.3 and 0.9 meters are less than 4% for both attack goals. In particular,

using 0.45 meters as the safe profiling threshold has the overall highest average success rate

for both attack goals, which are 90.3% and 84.4% respectively. Such 0.45 meters deviation

does not cause the AD vehicle to drive off road on both local roads and highway (Table 3.1).

On local roads, it will only cause very slightly lane straddling, and on the highway, it is

far from even touching the left or right lane line (both visualized in Fig. A.2 in Appendix).

Thus, the attacker can choose to perform such safe profiling on the highway, or on the local

roads with light traffic.

Evaluation results. With the algorithm parameter values decided, we then evaluate the

algorithm effectiveness and the profiling cost with limited number of attack trials for each

combination of d and f in the profiling round. We define profiling cost as the total number

of attack trials spent in the profiling algorithm, since in our problem setting each trial

corresponds to a self-driving trip the attacker needs to take, e.g., from a targeted self-driving

taxi service. For each attack trial, we limit its maximum duration to 90 seconds, which

generally covers over 95% of the successful cases according to our earlier evaluation on

70

0 20 40 60 80
(a) Minimum Profiling Success Rate (%)

80

82

84

86

88

90

Ev
al

ua
tio

n
Su

cc
es

s R
at

e
(%

)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
(b) Safe Profiling Threshold (m)

80

82

84

86

88

90

Off-Road Attack
Wrong-Way Attack

Figure 3.13: Profiling results when using different (a) minimum profiling success rates, and
(b) safe profiling thresholds.

attack success time (§3.5.2).

Fig. 3.14 shows the average success rates of the d and f output by the profiling algorithm

and the average numbers of 90-sec profiling trips under different numbers of attack trials

in each profiling round. In each profiling round, we randomly sample the corresponding

number of attack trials from all attack starting points in the profiling traces. As shown,

the average success rate increases as the attacker spends more trials in each profiling round

since with more trials, the profiled success rate of a d and f combination in a profiling round

is statistically closer to the ground truth. Particularly, when the number of trials in each

profiling round is 40, our profiling algorithm can find a d and f combination with over 80%

average success rate for both off-road and wrong-way attacks (84.2% and 80.7% respectively).

In this case, the profiling cost is only 42 1.5-minute trips on average, which in total is only

slightly over 1 hour. Since the attackers can actively perform such trials, e.g., by requesting

self-driving taxi services themselves, finishing this should take at most half a day.

71

10 20 30 40 50 60
of Trials in Each Profiling Round

60

70

80

90

Ev
al

ua
tio

n
Su

cc
es

s R
at

e
(%

)

Off-Road Attack Wrong-Way Attack

0

50

100

of

 9
0-

Se
c

Pr
of

ilin
g

Tr
ip

s

Figure 3.14: Average profiling effectiveness (bar graph) and costs (line graph) under different
numbers of attack trials in each profiling round. Each profiling is repeated for 100 times.

3.8 Limitation and Defense Discussions

3.8.1 Limitations of Our Study

Study representativeness. As the first work to study the security of MSF-based AD

localization, we choose to focus on the most representative design, KF-based MSF, and

the most representative implementation we can find, BA-MSF (representativeness discussed

in §2.1.1). However, it is still unclear whether other less common MSF designs (e.g., particle

filter based [415]) and outlier detection designs (e.g., expectation-maximization based [363])

can be more secure, which can be potential future work directions.

Attack generality. Although our results have shown the generality of FusionRipper by

showing high success rates on 3 different KF-based MSFs (§3.5.4), only one (BA-MSF) of

them is production-grade implementation for AD systems. Ideally it is better to evaluate

on other production-grade ones, but very unfortunately BA-MSF is the only one that is

publicly available so far and it is unlikely for other AD companies to publicly release their

implementations in the near future. Thus, due to the lack of information, it is unclear

whether other leading AD companies, e.g., Waymo and GM, are vulnerable to our attack.

Nevertheless, since BA-MSF is representative both at the design and implementation levels

72

(§2.1.1) and our attack is general to KF-based MSF by design (§3.3.2), if other AD companies

also adopt such a representative design, at least at design level they are also susceptible to the

discovered take-over vulnerability. Thus, as the first study, we believe our current discovery

and evaluation results can already most generally benefit the understanding of the security

property of MSF-based AD localization today.

Attack practicality. We evaluate FusionRipper on real-world traces and under various

practical factors such as spoofing inaccuracies and AD control taking effect (§3.6). To further

improve the attack practicality, we design an offline attack parameter profiling method that

can achieve 84.2% and 80.7% success rates for off-road and wrong-way attacks, with the

profiling cost of at most half a day. Nevertheless, due to the cost and legal regulation for

GPS spoofing, we did not conduct attack experiments on real-world AD vehicles, which thus

can be a valuable future work. Note that GPS spoofing has been proven practical on various

end systems [364, 198, 414, 280, 164, 216, 37, 101], including cars such as Tesla cars [37]

(§2.1.2). Moreover, in this work, we model GPS spoofing based on attack capabilities shown

in prior work [414, 280, 101] to minimize any unrealistic assumptions.

As mentioned in §3.2.2, we assume the attacker owns an AD vehicle and can leverage AD per-

ception algorithms to track the physical position of the victim. Although accurate position-

tracking of surrounding obstacles is a basic task for AD, we did not conduct physical-world

experiments to confirm this, which is thus left as a valuable future work.

3.8.2 Defense Discussions

In this section, we discuss the potential defense directions against FusionRipper.

Defend against GPS spoofing. Our attack depends on GPS spoofing, so one direct

defense direction is to leverage existing GPS spoofing detection or prevention techniques.

73

Unfortunately, neither GPS spoofing detection nor prevention are fully-solve problems today.

On the detection side, numerous techniques have been proposed leveraging signal power

monitoring [78, 310, 316], multi-antenna based signal arrival angle detection [263, 310], or

crowdsourcing based cross-validation [202]. However, they either can be circumvented by

more advanced spoofers [216, 310] or are only applicable to limited domains such as airborne

GPS receivers [202]. On the prevention side, cryptographic authentication based civilian GPS

infrastructure can fundamentally prevent direct fabrications of GPS signals [310]. However,

it requires significant modifications to the existing satellite infrastructure and GPS receivers,

and is still vulnerable to replay attacks [298]. Thus, one interesting future work direction is

to more concretely understand how effective the latest GPS spoofing defense techniques can

be against the current or adapted versions of FusionRipper.

Improve confidence of MSF state and LiDAR locator. Another fundamental defense

direction is to improve the positioning confidence of MSF state and LiDAR locator, the two

most important factors to the take-over vulnerability in real-world trace (§3.3). Fundamen-

tally, such lacks of confidence in practice result from algorithm inaccuracies and sensor noises

(§3.3), and as shown in our analysis, even for the high-end sensors and production-grade Li-

DAR locator used in AD vehicles today, these inaccuracies and noises are unfortunately large

and frequent enough for FusionRipper to exploit. To improve on this, substantial technology

breakthrough in sensing and LiDAR-based localization needs to take place. Unfortunately,

it is unclear when such breakthrough can take place.

Leverage independent positioning sources (e.g., camera-based lane detection) as

fail-safe features for high-level AD localization. Since fundamental defense directions

above are not immediately deployable, it is highly desired to discuss the possibility of short-

term mitigation solutions. One promising direction is to leverage independent positioning

sources to cross-check the localization results and thus serve as fail-safe features for AD

localization. For example, since both off-road and wrong-way attacks will cause the victim

74

AD vehicle to deviate from the current lane, they should be detectable by camera-based lane

detection [186], a mature technology available in many vehicle models today [19]. However,

we find that in the high-level AD system design today, such a technology has not been

generally considered for fail-safe purposes. For example, the latest release of Baidu Apollo

(version 5.5) uses it only for camera calibration [8], while Autoware does not use it at all [6].

This might be because the lane detection output is local positioning within the current

lane boundaries, and thus cannot be directly used for comparison against global positioning

from MSF. However, the vulnerability discovered in this work strongly motivates the need

for considering adding such kind of fail-safe features in future AD localization, at least for

anomaly detection. Note that more investigations are needed to understand how effective

and robust such kind of fail-safe features can be in the defense. For example, when camera-

based lane detection is applied for anomaly detection, the precision/recall rates need to be

further explored since it needs to carefully consider (1) AD vehicles legitimately deviating

from current lane due to routing requirements, and (2) lane line scratches or incompleteness.

Moreover, camera-based lane detection itself is vulnerable to physical-world attacks [59, 327].

Note that even if such fail-safe features can perform perfect attack detection, our attack

still causes denial-of-service of the victim’s global localization function, which can render the

victim in unsafe scenarios, e.g., stopping in the middle of highway lanes, since the victim can

neither correctly reach the destination nor safely locate the road shoulder to pull over. Thus,

a more useful defense direction is to correct the attacked localization results. However, so

far the global positioning accuracy of cameras is unsatisfying for high-level AD localization,

especially along the longitudinal direction (forward/backward) since only the stop lines can

be used as features [127, 233]. This is why LiDAR locator is used more predominantly in high-

level AD localization (§2.1.1). Moreover, such correction is yet another multi-sensor fusion

problem and thus is still fundamentally vulnerable to the take-over vulnerability discovered

in this work (§3.3). Thus, how to leverage other independent positioning sources to effectively

perform such correction under our attack is still an open research challenge, which can be a

75

valuable future work direction.

3.9 Summary

In this chapter, we perform the first security study on MSF-based localization in high-level

AD settings under GPS spoofing. We discover a take-over vulnerability that can fundamen-

tally defeat the MSF design principle, and design FusionRipper, a novel and general attack

that opportunistically captures and exploits it. Our evaluation on real-world traces shows

that FusionRipper can achieve over 97% and 91.3% success rates in all traces for off-road

and wrong-way attacks. Such high effectiveness is also found highly robust to various prac-

tical factors. We also design an offline method that can identify effective attack parameters

within at most half a day. We also discuss both long-term and short-term defenses directions,

and identify that a promising mitigation is to use camera-based lane detection as a fail-safe

feature, which has not been generally considered for such purpose today. As the first study

on AD localization security, we hope that our findings and insights can bring immediate

attention and inspire the development of effective defenses considering the critical role of

localization for safe and correct driving.

76

Chapter 4

Security Challenges in AD Perception

4.1 Region-of-Interest Attack on Traffic Light Detec-

tion

4.1.1 Introduction

In the automotive industry, a revolution is taking place: the rise of Autonomous Driving

(AD) Vehicles. AD vehicles have been demonstrated to lower transportation costs and

energy consumption, improve travel convenience and comfort, and reduce traffic accidents

and congestion [91]. However, the AD system, which serves as the “brain” of an AD vehicle

to make driving decisions, may have vulnerabilities that could lead to severe security threats

to road safety. For example, vulnerabilities in the localization module, whose outputs are

critical for route planning and navigation, can be exploited by attackers to manipulate the

routes of AD vehicles [258]. In fact, attacks on the localization will not only affect AD

vehicles’ route planning and navigation but also have direct effects in other modules such as

the perception module to cause false detection.

77

The perception module processes sensor inputs to perceive the surrounding obstacles and

traffic lights, which are necessary for planning a safe driving path and making the correct

driving decision. Typically, the perception sensors (i.e., camera, LiDAR, radar, ultrasonic

sensor) in the AD system [7, 213] have wide ranges of views. For example, AD vehicles

are usually equipped with high-resolution cameras that are capable of detecting obstacles

as far as 100 meters or more [7]. However, in this work, we discover an interesting design

consideration, which is common in AD systems, that enables an attacker to blind or misguide

the perception without tampering the perception sensor inputs themselves.

The root cause for such a vulnerability is the design of Region-of-Interests (ROIs). ROI is a

strategy commonly employed in AD perception that utilizes information from the localization

to narrow the detection scope in the sensor inputs [7, 213]. It can effectively reduce the

computation overhead by running detection algorithms on smaller input dimensions and filter

detection noises by preventing ambiguous detection, e.g., when multiple traffic lights exist

in the camera view. Despite the benefits in improving the detection efficiency and accuracy,

the accuracy of ROI mainly depends on the localization results–a wrong localization would

result into a wrong ROI, which in turn causes the perception module to look at a wrong area

in the sensor input.

For AD systems, cameras are especially critical for traffic light (TL) detection since they are

the only sensors that are able to accurately detect TL colors. Thus, as the first study, we

start from the TL detection and leverage the existing GPS spoofing attacks [216, 335] on

localization to demonstrate attack consequences of such ROI attacks in an end-to-end AD

system. Attack demos showing the end-to-end attack consequences are at https://sites.

google.com/view/roiattack.

Considering the severity of the attack, we hope this work can bring immediate attention to

the AD system developers for more robust ROI designs. In summary, this work makes the

following contributions:

78

https://sites.google.com/view/roiattack
https://sites.google.com/view/roiattack

• We perform the first security analysis on the ROI design in the perception module in

AD systems and identify a design-level vulnerability that allows the attacker to fool

AD perception using GPS spoofing.

• We design a concrete ROI attack targeting the TL detection in AD perception. Results

show that our attack is able to achieve a 100% success rate in causing the victim AD

vehicle to run red lights or denial-of-service.

4.1.2 Threat Model and Attack Goal

Threat model. Similar to the threat model used in prior works [335, 414], we assume a car-

following model where the attacker launches GPS spoofing attack while tailgating the victim

AD vehicle. We assume the attacker can arbitrarily manipulate the victim’s localization

outputs under GPS spoofing, which is valid for AD vehicles using only GPS for localization,

such as Baidu Apollo in GPS mode and Tesla. We also assume the attacker can track the

physical position of the victim AD vehicle, which is feasible if the attacker’s vehicle is also

an AD vehicle [335].

Attack goal. The goal of our attack is to influence the position of ROI in the perception

module via GPS spoofing, and thus cause the victim AD vehicle to detect a wrong TL to

run the red light or fail to detect any TLs to stop at the green light (i.e., denial-of-service

or DoS).

4.1.3 Attack Insight and Design

Attack insight. Although from high-level design, the localization and perception modules

appear to be independent of each other, the perception module in fact heavily relies on

the localization, especially for the ROI logic in TL detection as mentioned in §2.1. Since

79

ROI Attack

Attack
Range
Threshold

Spoofing
Distance

Attack Range Threshold

Spoofing
Distance

Attack Range Threshold

Spoofing
Distance

Reconnaissance

OR

Set attack range threshold & spoofing distance

Attack Range Threshold

Spoofing
Distance

OR

2. Apply spoofing distance when victim enters attack range

TL Status

Red light runner

DoS

1. Reconnaissance

Figure 4.1: Illustration of the ROI attack for TL detection.

the localization output directly determines the ROI that the TL detection pipeline will be

performed on, any errors in the localization would result in a wrong ROI and may cause

incorrect TL detection.

Attack design. To perform the ROI attack on TL detection, the attacker launches GPS

spoofing when the victim AD vehicle is in front of an intersection. When the victim AD

vehicle drives towards the intersection, a longitudinal error in the localization would naturally

have a smaller effect on the ROI position compared to a lateral deviation. Thus, to maximize

the effect on the ROI, we design the attack as spoofing a lateral distance away from the

physical position of the victim AD vehicle, e.g., the spoofing distance shown on the Fig. 4.1.

Fig. 4.1 illustrates the ROI attack for TL detection, which is composed of a reconnaissance

stage and a spoofing stage. In the reconnaissance stage, the attacker examines the current

TL status and determines the best attack parameters to be applied. Depending on the TL

status, the attacker will use different spoofing distances to achieve the desired attack goals.

For example, when the TL is red, the attacker needs to spoof a distance such that the ROI

includes another green TL in the camera view to cause false detection. Alternatively, if

the TL is green, the attacker can simply spoof a distance large enough such that the ROI

contains no TLs, which would trigger a safe stop in the planning since the AD vehicle knows

from the HD map that there is a TL in the front but fails to detect one. In addition,

80

we set an attack range threshold for determining the timing to launch the spoofing. If the

attacker starts spoofing when the victim is too far or too close to the intersection, the victim

might have already been deviated out of the road boundary that prevented it from reaching

the intersection or have already detected the correct TL color and committed the correct

driving decision. After that, the attacker closely monitors the victim’s position and spoofs

the corresponding lateral distance when the victim enters the attack range.

4.1.4 Evaluation

Experimental setup. Due to the high cost of evaluating self-driving algorithms on real

AD vehicles, we follow the common practice for AD vehicle testing and perform a simulation-

based evaluation, in which we run Baidu Apollo in an industry-grade AD simulator, LGSVL [238].

To facilitate AD simulation, LGSVL provides photo-realistic simulation environments with

diverse road structures and a wide range of vehicle models. In our evaluation, we use the

Shalun map and Lincoln MKZ vehicle. The Shalun map models a common two-lane road

with multiple intersections along the road. We use Lincoln MKZ since it contains the com-

patible sensor configurations for Baidu Apollo. We simulate our attack on Baidu Apollo

version 5.0, which is the latest version fully supported by LGSVL.

To simulate the attack consequences, we create two concrete attack scenarios: red light

detection and green light detection. Specifically, for red light detection, we set the front TL

in the first intersection to red and the back TL in the second intersection to green; for green

light detection, we set the front TL to green and the back TL to red. We have confirmed that

in benign driving, the AD vehicle will always correctly detect the front TLs, and make the

correct driving decisions, i.e., stop before the intersection or drive through the intersection.

Evaluation metric. In our evaluation, we explore the attack effectiveness of the ROI attack

under different attack range thresholds and spoofing distances, aiming to find the parameters

81

that can achieve the highest attack effectiveness. We define a successful attack case as the

victim AD vehicle mis-detects the front TL and commits the wrong driving decisions, i.e.,

running the red light or stopping in front of the green light. Since both Baidu Apollo and

LGSVL involve random factors such as messaging delays, we calculate a success rate by

repeating the simulation for 5 times for each attack parameter.

Attack construction. For the ease of evaluation, we implement the attack logic as an

independent module in Baidu Apollo to receive original GPS inputs from LGSVL. If the

victim AD vehicle is within the attack range threshold, we apply the spoofing distance to

the original GPS positions. After that, we publish the spoofed GPS inputs to the localization

module.

Results. As mentioned in §4.1.3, the red light detection scenario has a more restricted

spoofing distance requirement since the attacker needs to spoof the GPS such that the ROI

covers the back green TL but not the front red TL. Thus, we start by exploring the attack

parameters for this scenario. The left figure in Fig. 4.2 shows the attack success rates when

using different attack range thresholds, i.e., the distance from the AD vehicle to the TL that

triggers the attack. During the experiments, a spoofing distance of 3 meters is applied to

the victim’s GPS inputs. As shown, the best attack range threshold falls between 24 and 28

meters. When using a small attack range threshold (e.g., 22 meters), the attack fails because

the victim is too close to the intersection, and it already executed the stop decision based

on the TL detection prior to the attack. On the other hand, if the attack range threshold is

too large (e.g., over 28 meters), the victim might already be deviated out of road boundary

since the AD system is constantly correcting any deviation between the localization and the

planned trajectory [335].

The right figure in Fig. 4.2 shows the attack success rates when using different spoofing

distances. Based on the previous experiments on the attack range threshold, we launch the

attack when the victim AD vehicle is 26 meters away from the TL. As shown in Fig. 4.2, a

82

22 23 24 25 26 27 28 29 30
Attack Range Threshold (m)

0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Spoofing Distance (m)

0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

Figure 4.2: Attack success rates under different attack range thresholds (left) and spoofing
distances (right).

spoofing distance of smaller than or equal to 2 meters is too small to move the red TL out of

the ROI, so the victim can still detect it. On the other hand, when the spoofing distance is

larger than 4.5 meters, both front and back TLs are moved out of the ROI, causing the victim

to fail to detect any TL and simply stop in front of the intersection. When the spoofing

distance is 3–4.5 meters, the attack success rate is at least 80%, where the front red TL is

moved out of the ROI, but the back green TL is still in and thus detected by the victim AD

vehicle, causing it to continue driving forward to run the red light. In particular, a 100%

attack success rate is achieved when using a spoofing distance of 3 meters.

In the green light detection scenario, instead of controlling the ROI to be at a particular

position, the attacker can simply spoof the ROI to the area without any TLs. In such a

case, the TL detector will report “unknown” as no TLs exist in the ROI. Consequently, the

planning module in the AD system issues a stop decision conservatively. This results in a

DoS attack since the victim stops at the green TL. Similarly, we evaluate this scenario and

found that our ROI attack can achieve a 100% success rate when using a spoofing distance

of 5 meters.

Attack demos. We create two attack demos to illustrate the severe consequences of the

ROI attack. Fig. 4.3 and Fig. 4.4 show the snapshots when attacking the red and green

light detections, respectively. The left sub-figures show the camera images with the ROI

annotations, and the right sub-figures show the corresponding driving decisions in Baidu

Apollo. As shown, our attack can successfully fool the victim AD vehicle to detect a wrong

83

Figure 4.3: Snapshot of attacking the red light detection. The green TL at the next inter-
section is falsely detected by the AD vehicle due to the incorrect ROI.

Figure 4.4: Snapshot of attacking the green light detection. The TL detector failed to detect
any light in the ROI, causing the victim to stop at the stop line despite the light is green.

TL or fail to detect any TLs due to the ROI position shifts caused by GPS spoofing. Such

an attack poses great dangers to road safety since it can cause the AD vehicle to violate

traffic rules and may even lead to car crashing consequences, e.g., when another vehicle fails

to yield in time when the victim AD vehicle is running the red light. Demo videos with and

without attacks are available at https://sites.google.com/view/roiattack.

4.1.5 Limitations and Future Work

As the first study of ROI attacks in AD perception using GPS spoofing, we start by attacking

AD system with a GPS-based localization, where GPS is the only positioning resource.

Indeed, for GPS-based localization, it is possible to simply spoof the GPS to a road without

any TLs, such that the victim is not in a state where it realizes that it should sense a TL,

resulting in red light running. However, this is not the case for MSF-based localization,

which is predominantly adopted in today’s Level-4 AD vehicles, since GPS alone can no

84

https://sites.google.com/view/roiattack

longer dictate the localization output. Although MSF is considered to be more robust against

GPS spoofing, prior work has demonstrated that MSF-based localization can be deviated by

as large as 10 meters using GPS spoofing [335]. In the future, we plan to incorporate the

MSF attack to improve the practicality of the ROI attack. Another limitation is that we

only evaluate the attack on one AD system, i.e., Baidu Apollo [7]. Although Baidu Apollo

implements a representative TL ROI design and is already in production, it is necessary to

also evaluate on other TL ROI implementations (e.g., Autoware [213]) to show the generality

of our attack. We leave this as a future work. Besides, since the attack parameters are highly

dependent on factors such as victim’s speed and road shape, more diverse driving scenarios

are needed to evaluate the applicability of our attack. In addition, currently the best attack

parameters are found via exhaustive search. In the next step, we plan to use the victim AD

vehicle/TL positions and camera configurations to calculate the best spoofing distances to

be applied in different scenarios.

4.1.6 Summary

In this work, we perform the first security analysis on perception ROI design and take the

TL detection as a case study. We discover that using GPS spoofing can cause the AD vehicle

to recognize a wrong TL or fail to detect any TLs. Our study shows that strategic GPS

spoofing can achieve a 100% success rate to fool TL detection in the AD vehicle, leading to

red-light running or denial-of-service consequences, which can be detrimental to road safety.

The future of AD vehicles is bright, but more security investigations are still needed in the

AD systems. We hope our research can bring more attention to the security threats to AD

vehicles, improving AD systems for safer AD vehicles for the public.

85

4.2 Dirty Road Patch Attack on Automated Lane Cen-

tering

4.2.1 Introduction

Automated Lane Centering (ALC) is a Level-2 driving automation technology that automat-

ically steers a vehicle to keep it centered in the traffic lane [326]. Due to its high convenience

for human drivers, today it is widely available on various vehicle models such as Tesla, GM

Cadillac, Honda Accord, Toyota RAV4, Volvo XC90, etc. While convenient, such a system

is highly security and safety critical: When the ALC system starts to make wrong steering

decisions, the human driver may not have enough reaction time to prevent safety hazards

such as driving off road or colliding into vehicles in adjacent lanes. Thus, it is imperative

and urgent to understand the security property of ALC systems.

In an ALC system, the most critical step is lane detection, which is generally performed

using a front camera. So far, Deep Neural Network (DNN) based lane detection achieves the

highest accuracy [54] and is adopted in the most performant production ALC systems today

such as Tesla Autopilot [33]. Recent works show that DNNs are vulnerable to physical-

world adversarial attacks such as malicious stickers on traffic signs [158, 157, 120, 420].

However, these methods cannot be directly applied to attack ALC systems due to two main

design challenges. First, in ALC systems, the physical-world attack generation needs to

handle inter-dependencies among camera frames due to attack-influenced vehicle actuation.

For example, if the attack deviates the detected lane to the right in a frame, the ALC

system will steer the vehicle to the right accordingly. This causes the following frames

to capture road areas more to the right, and thus directly affect their attack generation.

Second, the optimization objective function designs in prior works are mainly for image

classification or object detection models and thus aim at changing class or bounding box

86

probabilities [158, 420]. However, attacking lane detection requires changing the shape of

the detected traffic lane, making it difficult to directly apply prior designs.

To fill this critical research gap, in this work we are the first to systematically study the

security of DNN-based ALC systems in their designed operational domains (i.e., roads with

lane lines) under physical-world adversarial attacks. Since ALC systems assume a fully-

attentive human driver prepared to take over at any time [34, 326], we identify the attack

goal as not only causing the victim to drive out of the current lane boundaries, but also

achieving it shorter than the average driver reaction time to road hazard. This thus directly

breaks the design goal of ALC systems and can cause various types of safety hazards such

as driving off road and vehicle collisions.

Targeting this attack goal, we design a novel physical-world adversarial attack method on

ALC systems, called DRP (Dirty Road Patch) attack, which is the first to systematically

address the design challenges above. First, we identify dirty road patches as a novel and

domain-specific attack vector for physical-world adversarial attacks on ALC systems. This

design has 2 unique advantages: (1) Road patches can appear to be legitimately deployed

on traffic lanes in the physical world, e.g., for fixing road cracks; and (2) Since it is common

for real-world roads to have dirt or white stains, using similar dirty patterns as the input

permutations can allow the malicious road patch to appear more normal and thus stealthier.

With this attack vector, we then design systematic malicious road patch generation follow-

ing an optimization-based approach. To efficiently and effectively address the first design

challenge without heavyweight road testing or simulations, we design a novel method that

combines vehicle motion model and perspective transformation to dynamically synthesize

camera frame updates according to attack-influenced vehicle control. Next, to address the

second design challenge, one direct solution is to design the objective function to directly

change the steering angle decisions. However, we find that the lateral control step in ALC

that calculates steering angle decisions are generally not differentiable, which makes it dif-

87

ficult to effectively optimize. To address this, we design a novel lane-bending objective

function as a differentiable surrogate function. We also have domain-specific designs for

attack robustness, stealthiness, and physical-world realizability.

We evaluate our attack method on a production ALC system in OpenPilot [131], which is

reported to have close performance to Tesla Autopilot and GM Super Cruise [64, 69, 56].

We perform experiments on 80 attack scenarios from real-world driving traces, and find that

our attack is highly effective with over 97.5% success rates for all scenarios, and less than

0.903 sec average success time, which is substantially lower than 2.5 sec, the average driver

reaction time (§4.2.2). This means that even for a fully-attentive driver who can take over

as soon as the attack starts to take effect, the average reaction time is still not enough to

prevent the damage.

To understand the potential safety impacts, we further conduct experiments using software-

in-the-loop simulation in a production-grade simulator. Results show that our attack can

successfully cause a victim running a production ALC to hit the highway concrete barrier

or a truck in the opposite direction with 100% success rates.

In summary, this work makes the following contributions:

• We are the first to systematically study the security of DNN-based ALC in the de-

signed operational domains under physical-world adversarial attacks. We formulate

the problem with a safety-critical attack goal, and a novel and domain-specific attack

vector, dirty road patches.

• To systematically generate attack patches, we adopt an optimization-based approach

with 2 major novel and domain specific designs: motion model based input generation,

and lane-bending objective function.

• We perform evaluation on a production ALC using real-world driving traces. The

88

results show that our attack is highly effective with ≥97.5% success rates and ≤0.903

sec average success time, which is substantially lower than the average driver reaction

time.

• To understand the safety impacts, we conduct experiments using (1) software-in-the-

loop simulation, and (2) attack trace injection in a real vehicle. The results show that

our attack can cause a 100% collision rate in different scenarios, including when tested

with safety features such as AEB.

Code and data release. Our code and data for the attack and evaluations are available

at our project website [17].

4.2.2 Attack Formulation and Challenge

Attack Goal and Incentives

In this work, we consider an attack goal that directly breaks the design goal of ALC sys-

tems: causing the victim vehicle a lateral deviation (i.e., deviating to the left or right) large

enough to drive out of the current lane boundaries. Meanwhile, since ALC systems assume

a fully-attentive human driver who is prepared to take over at any moment [34, 326], such

deviation needs to be achieved fast enough so that the human driver cannot react in time

to take over and steer back. Table 4.1 shows concrete values of these two requirements for

successful attacks on highway and local roads respectively. In the table, the required devi-

ations are calculated based on representative vehicle and lane widths in the U.S., and the

required success time is determined using commonly-used average driver reaction time to

road hazards, which is detailed in Appendix C.

Targeted scenario: Free-flow driving. Our study targets the most common driving scenario

for using ALC systems: free-flow driving scenarios [419], in which a vehicle has at least

89

Table 4.1: Required deviations and success time for successful attacks on ALC systems on
highway and local roads. Detailed calculations and explanations are in Appendix C.

Road Type Required Lateral Deviation Required Success Time

Highway 0.735 m
<2.5 sec (average driver reaction time to road hazard)

Local road 0.285 m

5–9 seconds clear headway [104] and thus can drive freely without considering the front

vehicle [419].

Safety implications. The attack goal above can directly cause various safety hazards in the

real world: (1) Driving off road, which is a direct violation of traffic rules [14] and can

cause various safety hazards such as hitting road curbs or falling down the highway cliff.

(2) Vehicle collisions, e.g., with vehicles parked on the roadside, or driving in adjacent or

opposite traffic lanes on a local road or a two-lane undivided highway. Even with obstacle or

collision avoidance, these collisions are still possible for two reasons. First, today’s obstacle

and collision avoidance systems are not perfect. For example, a recent study shows that the

AEB (Automatic Emergency Braking) systems in popular vehicle models today fail to avoid

crashes 60% of the time [18]. Second, even if they can successfully perform emergency stop,

they cannot prevent the victim from being hit by other vehicles that fail to yield on time.

Threat Model

We assume that the attacker can obtain the same ALC system as the one used by the

victim to get a full knowledge of its implementation details. This can be done through

purchasing or renting the victim vehicle model and reverse engineering it, which has already

been demonstrated possible on Tesla Autopilot [59]. Moreover, there exist production ALC

systems that are open sourced [131]. We also assume that the attacker can obtain a motion

model [315] of the victim vehicle, which will be used in our attack generation process (§4.2.3).

This is a realistic assumption since the most widely-used motion model (used by us in §4.2.3)

90

only needs vehicle parameters such as steering ratio and wheelbase as input [315], which can

be directly found from vehicle model specifications. We assume the victim drives at the

speed limit of the target road, which is the most common case for free-flow driving. In

the attack preparation time, we assume that the attacker can collect the ALC inputs (e.g.,

camera frames) of the target road by driving the victim vehicle model there with the ALC

system on.

Design Challenges

Compared to prior works on physical-world adversarial attacks on DNNs, we face 3 unique

design challenges:

C1. Lack of legitimately-deployable attack vector in the physical world. To affect the camera

input of an ALC system, it is ideal if the malicious perturbations can appear legitimately

around traffic lane regions in the physical world. To achieve high legitimacy, such pertur-

bations also must not change the original human-perceived lane information. Prior works

use small stickers or graffiti in physical-world adversarial attacks [158, 420, 59]. However,

directly performing such activities to traffic lanes in public is illegal [53]. In our problem

setting, the attacker needs to operate in the middle of the road when deploying the attack

on traffic lanes. Thus, if the attack vector cannot be disguised as legitimate activities, it

becomes highly difficult to deploy the attack in practice.

C2. Camera frame inter-dependency due to attack-influenced vehicle actuation. In real-

world ALC systems, a successful attack on one single frame can barely cause any meaningful

lateral deviations due to the steering angle change limit at the vehicle actuation step (§2.1.1).

For example, for the vehicle models with 0.25◦ angle change limit per control loop, even if a

successful attack on a single frame causes a very large steering angle decision at MPC output

(e.g., 90◦), it can only cause at most 1.25◦ actuated steering angle changes before the next

91

frame comes, which can only cause up to 0.3-millimeter lateral deviations at 45 mph (∼72

km/h).

Thus, to achieve our attack goal in §4.2.2, the attack must be continuously effective on

sequential camera frames to increasingly reach larger actuated steering angles and thus larger

lateral deviations per frame. In this process, due to the dynamic vehicle actuation applied

by the ALC system, the attack effectiveness for later frames are directly dependent on that

for earlier frames. For example, if the attack successfully deviates the detected lane to the

right in a frame, the ALC system will steer the vehicle to the right accordingly. This causes

the following frames to capture road areas more to the right, and thus directly affect their

attack generation. There are prior works considering attack robustness across sequential

frames, e.g., using EoT [90, 108] and universal perturbation [241], but none of them consider

frame inter-dependencies due to attack-influenced vehicle actuation in our problem setting.

C3. Lack of differentiable objective function design for LD models. To systematically gen-

erate adversarial inputs, prior works predominately adopt optimization-based approaches,

which have shown both high efficiency and effectiveness [352, 158, 113, 151]. However, the

objective function designs in these prior works are mainly for image classification [158, 108]

or object detection [120, 157, 420] models, which thus aim at decreasing class or bounding

box probabilities. However, as introduced in §2.1.1, LD models output detected lane line

curves, and thus to achieve our attack goal the objective function needs to aim at changing

the shape of such curves. This is substantially different from decreasing probability values,

and thus none of these existing designs can directly apply.

Closer to our problem, prior works that attack end-to-end autonomous driving models [301,

362, 124, 422] directly design their objective function to change the final steering angle

decisions. However, as described in §2.1.1, state-of-the-art LD models do not directly output

steering angle decisions. Instead, they output lane line curves and rely on the lateral control

step to compute the final steering angle decisions. However, many steps in the lateral control

92

module, e.g., the desired driving patch calculation and the MPC framework, are generally

not differentiable to the LD model input (i.e., camera frames), which makes it difficult to

effectively optimize.

4.2.3 Dirty Road Patch Attack Design

In this work, we are the first to systematically address the design challenges above by design-

ing a novel physical-world attack method on ALC, called Dirty Road Patch (DRP) attack.

Design Overview

To address the 3 design challenges in §4.2.2, our DRP attack method has the following novel

design components:

Dirty road patch: Domain-specific & stealthy physical-world attack vector. To address chal-

lenge C1, we are the first to identify dirty road patch as an attack vector in physical-world

adversarial attacks. This design has 2 unique advantages. First, road patches can appear to

be legitimately deployed on traffic lanes in the physical world, e.g., for fixing road cracks.

Today, deploying them is made easy with adhesive designs [58] as shown in Fig. 4.5. The

attacker can thus take time to prepare the attack in house by carefully printing the mali-

cious input perturbations on top of such adhesive road patches, and then pretend to be road

workers like those in Fig. 4.5 to quickly deploy it when the target road is the most vacant,

e.g., in late night, to avoid drawing too much attention.

Second, since it is common for real-world roads to have dirt or white stains such as those

in Fig. 4.5, using similar dirty patterns as the input perturbations can allow the malicious

road patch to appear more normal and thus stealthier. To mimic the normal dirty patterns,

our design only allows color perturbations on the gray scale, i.e., black-and-white. To avoid

93

Real-World
Road Patch

Attacker can pretend to be road workers to
deploy the attack using adhesive road patch [51].

Dirty Patterns

Figure 4.5: Illustration of our novel and domain-specific attack vector: Dirty Road Patch
(DRP).

changing the lane information as discussed in §4.2.2, in our design we (1) require the original

lane lines to appear exactly the same way on the malicious patch, if covered by the patch,

and (2) restrict the brightness of the perturbations to be strictly lower than that of the

original lane lines. To further improve stealthiness, we also design parameters to adjust the

perturbation size and pattern, which are detailed in §4.2.3.

So far, none of the popular production ALC systems today such as Tesla, GM, etc. [34, 60,

2, 40, 68, 65, 62, 61, 63] identify roads with such dirty road patches as driving scenarios that

they do not handle, which can thus further benefit the attack stealthiness.

Motion model based input generation. To address the strong inter-dependencies among the

camera frames (C2), we need to dynamically update the content of later camera frames

according to the vehicle actuation decisions applied at earlier ones in the attack generation

process. Since adversarial attack generation typically takes thousands of optimization iter-

ations [112, 262], it is practically highly difficult, if not impossible, to drive real vehicles on

the target road to obtain such dynamic frame update in every optimization iteration. An-

other idea is to use vehicle simulators [238, 147], but it requires the attacker to first create

a high-definition 3D scene of the target road in the real world, which requires a significant

amount of hardware resource and engineering efforts. Also, launching a vehicle simulator in

94

each optimization iteration can greatly harm the attack generation speed.

To efficiently and effectively address this challenge, we combine vehicle motion model [315]

and perspective transformation [183, 354] to dynamically synthesize camera frame updates

according to a driving trajectory simulated in a lightweight way. This method is inspired by

Google Street View [83] that synthesizes 360◦ views from a limited number of photos utilizing

perspective transformation. Our method only requires one trace of the ALC system inputs

(i.e., camera frames) from the target road without attack, which can be easily obtained by

the attacker (§4.2.2).

Optimization-based DRP generation. To systematically generate effective malicious patches,

we adopt an optimization-based approach similar to prior works [352, 158]. To address

challenge C3, we design a novel lane-bending objective function as a differentiable surrogate

that aims at changing the derivatives of the desired driving path before the lateral control

module, which is equivalent to change the steering angle decisions at the lateral control design

level. Besides this, we also have other domain-specific designs in the optimization problem

formulation, e.g., for a differentiable construction of the curve fitting process, malicious road

patch robustness, stealthiness, and physical-world realizability.

Fig. 4.6 shows an overview of the malicious road patch generation process, which is detailed

in the following sections.

Motion Model based Input Generation

In Fig. 4.6, step 1○– 7○ belong to the motion model based input generation component. As

described earlier in §4.2.3, the input to this component is a trace of ALC system inputs

such as camera frames from driving on the target road without attack. In 1○, we apply

perspective transformation, a widely-used computer vision technique that can project an

image view from a 3D coordinate system to a 2D plane [183, 354]. Specifically, we apply it

95

⑦ Feed to
ALC

Motion Model

Camera
Frames (𝐼!)

BEV Images
+ Patch (𝑉!#)

Transformed
Camera Frames

Model
Input (𝑋!")

Automated
Lane

Centering

① Transform camera
images to BEV images

② Place
patch

⑤ Transform back to
camera view ⑥ ROI filtering

③ Simulate
vehicle motion

⑧ Calculate gradients & update patch

④ Apply
trajectory
change

(𝐼%!")
𝑉"!"

𝜏!#$

Motion Model Based Input Generation (4.2)

Patch
Image (𝑃)

Optimization-Based DRP Generation (4.3)§

§

Figure 4.6: Overview of our DRP (Dirty Road Patch) attack method. ROI: Region of
Interest; BEV: Bird’s Eye View.

to the original camera frames from the driver’s view to obtain their Bird’s Eye View (BEV)

images. This transformation is highly beneficial since it makes our later patch placement

and attack-influenced camera frame updates much more natural and thus convenient. We

denote this as Vt := BEV(It), where It and Vt are the original camera input and its BEV view

respectively at frame t. This process is invertible, i.e., we can also obtain It with BEV−1(Vt).

Next, in 2○, we obtain the generated malicious road patch image P from the optimization-

based DRP generation step (§4.2.3) and place it on Vt to obtain the BEV image with the

patch, denoted as V̂t := Λ(Vt, P). To achieve consistent patch placements in the world

coordinate across frames, we calculate the pixel-meter relationship, i.e., the number of pixels

per meter, in BEV images based on the driving trace of the target road. With this, we

can place the patch in each frame precisely based on the driving trajectory changes across

frames.

Next, we compute the vehicle moving trajectory changes caused by the placed malicious

96

road patch, and reflect such changes in the camera frames. We represent the vehicle moving

trajectory as a sequence of vehicle states St := [xt, yt, βt, vt], (t = 1, ..., T), where xt, yt, βt, vt

are the vehicle’s 2D position, heading angle, and speed at frame t, and T is the total number

of frames in the driving trace. Thus, the trajectory change at frame t is δt := Sa
t −So

t , where

Sa
t and So

t are vehicle states with and without attack respectively.

To calculate δt caused by the attack effect at the frame t − 1, we need to know the attack-

influenced vehicle state Sa
t . To achieve that, we use a vehicle motion model to simulate the

vehicle state Sa
t by feeding the steering angle decision τt−1 from the lateral control step in

the ALC system (§2.1.1) given the attacked frame at t − 1 and the previous vehicle state

Sa
t−1, denoted as Sa

t := MM(Sa
t−1, τt−1). A vehicle motion model is a set of parameterized

mathematical equations representing the vehicle dynamics and can be used to simulate its

driving trajectory given the speed and actuation commands. In this process, we set the

vehicle speed as the speed limit of the target road as described in our threat model (§4.2.2).

In our design, we adopt the kinematic bicycle model [225], which is the most widely-used

motion model for vehicles [22, 225, 392].

With δt, in 4○ we then apply affine transformations on the BEV image V̂t to obtain the attack-

influenced one V̂ a
t , denoted as V̂ a

t := T (V̂t, δt). Fig. 4.7 shows an example of the shifting

and rotation T (·) in the BEV, which synthesizes a camera frame with the vehicle position

shifted by 1 meter and rotated by 10◦ to the right. Although it causes some distortion and

missing areas on the edge, the ROI area (red rectangle), i.e., the LD model input, is still

complete and thus sufficient for our purpose. Since the ROI area is typically focused on the

center and much smaller than the raw camera frame (§2.1.1), our method can successfully

synthesize multiple complete LD model inputs from only 1 ALC system input trace.

Next, in 5○, we obtain the attack-influenced camera frame at the driver’s view Îat , i.e., the

direct input to ALC, by projecting V̂ a
t back using Îat := BEV−1(V̂ a

t). Next, in 6○, the

ROI filtering is used to extract the model input Xa
t := ROI(Îat). Xa

t and vehicle state

97

(a) Original Camera input (𝑰𝒕) (b) Original BEV (𝑉𝑡)

(c) Shifted 1 m to Right

(d) Rot. 10° to Right (𝑉𝑡#)

(e) Trans. Camera Input (𝐼𝑡%)

ROI (LD Model Input) Area

Figure 4.7: Motion model based input generation from original camera input.

Lane-
Bending
Obj Func
(4.3.2)

(i) Obtain
gradients of 𝑓(⋅) by

patch area
(ii) Transform

to BEV
(iii) Average
gradients

(iv) Update patch

+

t=1

t=T

(v) Project to Stealthy Dirty Pattern Space (§4.3.3)
• Grayscale Perturbation

• Preserve Lane Line

• Brightness Limit

• Perturbable Area

𝑓(𝑋!" , … , 𝑋#")

Robustness
Improvement
•Motion Noise
•Image Blurring

§

…

(vi) Deployability
Improve. (optional)

Motion Model
Based Input

Generation (§4.2)

Figure 4.8: Iterative optimization process design for our
optimization-based DRP generation.

Desired
Driving
Path ρ(d)

∇ρ(1)

d=0 d=1 d=2

∇ρ(2)

Desired
Driving
Path ρ’(d)

d=0 d=1 d=2

∇ρ’(1)

∇ρ’(2)

Detected
 Lane Line

Bent to Left

Benign

Figure 4.9: Lane bending effect
of our objective function.

98

Sa
t are then fed to ALC system in 7○ to obtain the steering angle decision τt, denoted as

τt := ALC(Xa
t , S

a
t). Step 3○– 7○ are then iteratively applied to obtain Îat+1, Î

a
t+2, ... one after

one until all the original frames are updated to reflect the moving trajectory changes caused

by P . These updated attack-influenced inputs are then fed to the optimization-based DRP

generation component, which is detailed next.

Optimization-Based DRP Generation

In Fig. 4.6, step 8○ belongs to the optimization-based road path generation component. In

this step, we design a domain-specific optimization process on the target ALC system to

systematically generate the malicious dirty road patch P .

DRP attack optimization problem formulation. We formulate the attack as the following

optimization problem:

min L (4.1)

s.t. Xa
t = ROI(BEV−1(T (Λ(Vt, P), Sa

t − So
t))) (t = 1, ..., T) (4.2)

τat = ALC(Xa
t , S

a
t) (t = 1, ..., T) (4.3)

Sa
t+1 = MM(Sa

t , τ
a
t) + ϵt (t = 1, ..., T − 1) (4.4)

Sa
1 = So

1 (4.5)

P = BLUR(FILL(B) + ∆) (4.6)

∆ ∈P (4.7)

where the L in Eq. 4.1 is an objective function that aims at deviating the victim out of

the current lane boundaries as fast as possible (detailed in §4.2.3). Eq. 4.2–4.5 have been

described in §4.2.3. In Eq. 4.6, the patch image P ∈ RH×W×C consists of a base color B ∈ RC

and the perturbation ∆ ∈ RH×W×C , where W,H, and C are the patch image width, height,

and the number of color channels respectively. We select an asphalt-like color as the base

99

color B since the image is designed to mimic a road patch. Function FILL: RC → RH×W×C

fills B to the entire patch image. Since we aim at generating perturbations that mimic the

normal dirty patterns on roads, we restrict ∆ to be within a stealthy road pattern space

P, which is detailed in §4.2.3. We also include a noise term ϵt in Eq. 4.4 and an image

blurring function BLUR(·) in Eq. 4.6 to improve the patch robustness to vehicle motion

model inaccuracies and camera image blurring.

Optimization process overview. Fig. 4.8 shows an overview of our iterative optimization

process design. Given an initial patch image P , we obtain the model input Xa
1 , ..., X

a
T from

the motion model based input generation process. In step (i), we calculate the gradients of

the objective function with respect to Xa
1 , ..., X

a
T , and only keep the gradients corresponding

to the patch areas. In step (ii), these gradients are projected into the BEV space. In step (iii),

we calculate the average BEV-space gradients weighted by their corresponding patch area

sizes in the model inputs. This step involves an approximation of the gradient of BEV−1(·),

which are detailed in Appendix D. Next, in step (iv), we update the current patch with

Adam [221] using the averaged gradient as the gradient of the patch image. In step (v), we

then project the updated patch into the stealthy road pattern space P. This updated patch

image is then fed back to the motion model based input generation module, where we also

add robustness improvement such as motion noises and image blurring. We terminate this

process when the attack-introduced lateral deviations obtained from the motion model are

large enough.

Lane-bending objective function design. As discussed in §4.2.3, directly using steering

angle decisions as L makes the objective function non-differentiable to Xa
1 , ..., X

a
T . To ad-

dress this, we design a novel lane-bending objective function f(·) as a differentiable surrogate

function. In this design, our key insight is that at the design level, the lateral control step

aims at making steering angle decisions that follow a desired driving path in the middle of the

detected left and right lane line curves from the lane detection step (§2.1.1). Thus, changing

100

the steering angle decisions is equivalent to changing the derivatives of (or “bending”) such

desired driving path curve. This allows us to design f(·) as:

f(Xa
1 , ..., X

a
T) =

T∑
t=1

∑
d∈Dt

∇ρt(d; {Xa
j |j ≤ t}, θ) + λ||Ωt(X

a
t)||p (4.8)

where ρt(d) is a parametric curve whose parameters are decided by (1) both the current and

previous model inputs {Xa
j |j ≤ t} due to frame inter-dependencies (§4.2.2), and (2) the LD

DNN parameters θ. Dt is a set of curve point index d = 0, 1, 2, ... for the desired driving path

curve at frame t. λ is the weight of the p-norm regularization term, designed for stealthiness

(§4.2.3). We then can define L in Eq. 4.1 as f(·) and −f(·) when attacking to the left and

right. Fig. 4.9 illustrates this surrogate function when attacking to the left. As shown, by

maximizing ∇ρt(d) at each curve point in Eq. 4.8, we can achieve a “lane bending” effect to

the desired driving path curve. Since the direct LD output is lane line points (§2.1.1) but

ρt(·) require lane line curves, we further perform a differentiable construction of curve fitting

process (Appendix D).

Designs for dirty patch stealthiness. To mimic real-world dirty patterns like in Fig. 4.5,

we have 4 stealthiness designs in stealthy road pattern space P in Eq. 4.7:

Grayscale perturbation. Real-world dirty patterns on the road are usually created by dust

or white stains (Fig. 4.5), and thus most commonly just appear white. Thus, we cannot

allow perturbations with arbitrary colors like prior works [420]. Thus, our design restricts

our perturbation ∆ in the grayscale (i.e., black-and-white) by only allowing increase the Y

channel in the YCbCr color space [182], denoted as ∆Y ≥ 0.

Preserving original lane line information. We preserve the original lane line information

by drawing the same lane lines as the original ones on the patch (if covered by the patch).

Note that without this our attack can be easier to succeed, but as discussed in §4.2.2, it is

101

much more preferred to preserve such information so that the attack deployment can more

easily appear as legitimate road work activities and the deployed patch is less likely to be

legitimately removed.

Brightness limits. While the dirty patterns are restricted to grayscale, they are still the

darker, the stealthier. Also, to best preserve the original lane information, the brightness

of the dirty patterns should not be more than the original lane lines. Thus, we (1) add

the p-norm regularization term in Eq. 4.8 to suppress the amount of ∆Y , and (2) restrict

BY + ∆Y < LaneLineY , where BY and LaneLineY are Y channel values for the base color

and original lane line color respectively.

Perturbation area restriction. Besides brightness, also the fewer patch areas are perturbed,

the stealthier. Thus, we define Perturbable Area Ratio (PAR) as the percentage of pixels on

P that can be perturbed. Thus, when PAR=30%, 70% pixels on P will only have the base

color B.

4.2.4 Attack Methodology Evaluation

Targeted ALC system. In our evaluation, we perform experiments on the production

ALC system in OpenPilot [131], which follows the state-of-the-art DNN-based ALC system

design (§2.1.1). OpenPilot is an open-source production Level-2 driving automation system

that can be easily installed in over 80 popular vehicle models (e.g., Toyota, Cadillac, etc.)

by mounting a dashcam. We select OpenPilot due to its (1) representativeness, since it

is reported to have close performance to Tesla Autopilot and GM Super Cruise and better

than many others [64, 69, 56], (2) practicality, from the large quantity and diversity of vehicle

models it can support [131], and (3) ease to experiment with, since it is the only production

ALC system that is open sourced. In this work, we mainly evaluate on the lane detection

model in OpenPilot v0.7.0, which is released in Dec. 2019.

102

λ=10-4 λ=10-3 λ=10-2

Figure 4.10: Driver’s view at 2.5 sec (average driver reaction time to road hazards [12])
before our attack succeeds under different stealthiness levels in local road scenarios. Inset
figures are the zoomed-in views of the malicious road patches.

Figure 4.11: Real-world dirty road patterns.
Figure 4.12: Stop sign hiding
and appearing attacks [420].

Evaluation dataset. We perform experiments using the comma2k19 dataset [329], which

contains over 33 hours driving traces between California’s San Jose and San Francisco in a

Toyota RAV4 2017 driven by human drivers. These traces are collected using the official

OpenPilot dashcam device, called EON. From this dataset, we manually look for short free-

flow driving periods to make road patch placement convenient. In total, we obtain 40 eligible

short driving clips, 10 seconds each, with half of them on the highway, and half on local roads.

For each driving clip, we consider two attack scenarios: attack to the left, and to the right.

Thus, in total we evaluate 80 different attack scenarios.

Attack Effectiveness

Evaluation methodology and metrics. We evaluate the attack effectiveness using the

evaluation dataset described above. For each attack scenario, we generate an attack road

patch, and use the motion model based input generation method in §4.2.3 to simulate the

103

vehicle driving trajectory influenced by the malicious road patch. To judge the attack success,

we use the attack goal defined in §4.2.2 and concrete metrics listed in Table 4.1, i.e., achieving

over 0.735 m and 0.285 m lateral deviations on highway and local road scenarios respectively

within the average driver reaction, 2.5 sec. We measure the achieved deviation by calculating

the lateral distances at each time point between the vehicle trajectories with and without

the attack, and use the earliest time point to reach the required deviation to calculate the

success time.

Since ALC systems assume a human driver who is prepared to take over, it is better if the

malicious road patch can also look stealthy enough at 2.5 sec (driver reaction time) before

the attack succeeds so that the driver won’t be alerted by its looking and decide to take

over. Thus, in this section, we also study the stealthiness of the generated road patches.

Specifically, we quantify their perturbation degrees using the average pixel value changes

from the original road surface in L1,L2 and Linf distances [247, 89].

Experimental setup. For each scenario in the evaluation dataset, we manually mark the

road patch placement area in the BEV view of each camera frame based on the lane width

and shape. To achieve consistent road patch placements in the world coordinate across a

sequence of frames, we calculate the number of pixels per meter in the BEV images and

adjust the patch position in each frame precisely based on the driving trajectory changes

across consecutive frames. The road patch sizes we use are 5.4 m wide, and 24–36 m long

to ensure at least a few seconds of visible time at high speed. The patches are placed 7

m far from the victim at the starting frame. For stealthiness levels, we evaluate the L2

regularization coefficient λ = 10−2, 10−3, and 10−4, with PAR set to 50%. According to

Eq. 4.8, a larger λ value means more suppression of the perturbation, and thus should lead

to a higher stealthiness level. For the motion model, we directly use the vehicle parameters

(e.g., wheelbase) of Toyota RAV4 2017, the vehicle model that collects the traces in our

dataset.

104

Table 4.2: Attack success rate and time under different stealthiness levels. Larger λ means
stealthier. Average success time is calculated only among the successful cases. Pixel L1, L2,
and Linf are the average pixel value changes from the original road surface in the RGB space
and normalized to [0, 1].

Stealth. Level λ Succ. Rate Succ. Time (s) Pixel L1 Pixel L2 Pixel Linf

10−2 97.5% 0.903 0.018 0.045 0.201
10−3 100% 0.887 0.033 0.066 0.200
10−4 100% 0.886 0.071 0.109 0.200

Results. As shown in Table 4.2, our attack has high effectiveness (≥97.5%) under all

the 3 stealthiness levels. Fig. 4.10 shows the malicious road patch appearances at different

stealthiness levels from the driver’s view at 2.5 seconds before our attack succeeds. As shown,

even for the lowest stealthiness level (λ = 10−4) in our experiment, the perturbations are still

smaller than some real-world dirty patterns such as the left one in Fig. 4.11. In addition, the

perturbations for all these 3 stealthiness levels are a lot less intrusive than those in previous

physical-world adversarial attacks in the image space [420], e.g., in Fig. 4.12. Among the

successful cases, the average success time is all under 0.91 sec, which is substantially lower

than 2.5 sec, the required success time. This means that even for a fully attentive human

driver who is always able to take over as soon as the attack starts to take effect, the average

reaction time is still far from enough to prevent the damage.

Robustness to run-time driving trajectory and angle deviations. The run-time

victim driving trajectories and angles will be different from the motion model predicted ones

in attack generation time due to run-time driving dynamics. To evaluate attack robustness

against such deviations, we use (1) 4 levels of vehicle position shifting at each vehicle control

step in attack evaluation time, and (2) 27 vehicle starting positions to create a wide range

of approaching angles and distances to the patch, e.g., from (almost) the leftmost to the

rightmost position in the lane. Our attack is shown to maintain a high effectiveness (≥ 95%

success rate) even when the vehicle positions at the attack evaluation time has 1m shifting

on average from those at the attack generation time at each control step.

105

Physical-World Realizability Evaluation

In physical world, there are 3 main practical factors that can affect the attack effectiveness:

(1) the lighting condition, (2) printer color accuracy, and (3) camera sensing capability. Thus,

in this section we perform experiments to understand the physical-world attack realizability

against these 3 main practical factors.

Evaluation methodology: miniature-scale experiments. To perform the DRP attack,

a real-world attacker can pretend to be road workers and place the malicious road patch on

public roads. However, due to the access limit to private testing facilities, we cannot do so

ethically and legally on public roads with a real vehicle. Thus, we try our best to perform such

evaluation by designing a miniature-scale experiment, where the road and the malicious road

patch are first physically printed out on papers and placed according to the physical-world

attack settings but in miniature scale. Then the real ALC system camera device is used to

get camera inputs from such a miniature-scale physical-world setting. Such miniature-scale

evaluation methodology can capture all the 3 main practical factors in the physical-world

attack setting, and thus can sufficiently serve for the purpose of this evaluation.

Experimental setup. As shown in Fig. 4.13, we create a miniature-scale road by printing

a real-world high-resolution BEV road texture on multiple ledger-size papers and concate-

nating them together to form a long straight road. In the attack evaluation, we create the

miniature-scale malicious road patch using the same method, and place it on top of the

miniature-scale road following our DRP attack design. We mount EON, the official Open-

Pilot dashcam device, on a tripod and face it to the miniature-scale road. The road size, road

patch size, and the EON mounting position are carefully calculated to represent OpenPilot

installed on a Toyota RAV4 driving on a standard 3.6 m wide highway road at 1:12 scale.

We also create different lighting conditions with two studio lights. The patch size is set to

represent a 4.8 m wide and 12 m long one in the real world scale.

106

Evaluation metric. Since the camera is mounted in a static position, we evaluate the attack

effectiveness directly using the steering angle decision at the frame level instead of the lateral

deviation used in previous sections. This is equivalent from the attack effectiveness point of

view since the large lateral deviation is essentially created by a sequence of large steering

angle decisions at the frame level. Specifically, we first find the camera frame that has the

same relative position between the camera and the patch as that in the miniature-scale

experimental setup. Then we compare its designed steering angle at the attack generation

time and its observed steering angle that the ALC system in OpenPilot intends to apply

to the vehicle in the miniature-scale experiment. Thus, the more similar these two steering

angles are, the higher realizability our attack has in the physical world.

Results. Fig. 4.14 shows a visualization of the lane detection results of the benign and

attacked scenarios in the miniature-scale experiment using the OpenPilot’s official visualiza-

tion tool. As shown, in the benign scenario, both detected lane lines align accurately with

the actual lane lines, and the desired driving path is straight as expected. However, when

the malicious road patch is placed, it bends the detected lane lines significantly to the left

and causes the desired driving path to be curving to the left, which is exactly the designed

attack effect of our lane-bending objective function (§4.2.3). In this case, the designed steer-

ing angle is 23.4◦ to the left at the digital attack generation time, and the observed one in

the physical miniature-scale experiment is 24.5◦ to the left, which only differs by 4.7%. In

contrast, in the benign scenario the observed steering angle for the same frame is 0.9◦ to the

right.

Robustness under different lighting conditions. We repeat this experiment under

12 lighting conditions ranging from 15 lux (corresponding to sunset/sunrise) to 1210 lux

(corresponding to midday of overcast days). The results show that the same attack patch

above is able to maintain a desired steering angle of 20-24◦ to the left under all 12 lighting

conditions, which are all significantly different from the benign scenario (0.9◦ to the right).

107

Studio
lights

Road
texture

Official OpenPilot
dashcam device

Figure 4.13: Miniature-scale experi-
ment setup. Road texture/patch are
printed on ledger-size papers.

driving path

24.5° to left

0.9° to right

Benign

Attack

Detected
lane lines

Desired
driving path

Figure 4.14: Lane detection and steering angle
decisions in benign and attacked scenarios in the
miniature-scale experiment.

Robustness to different viewing angles. We evaluate the attack robustness from 45

different viewing angles created by different distances to the patch and lateral offsets to

the lane center. Our results show that our attack always achieves over 23.4◦ to the left

from all viewing angles. We record videos in which we dynamically change viewing angles

in a wide range while showing real-time lane detection results under attack, available at

https://sites.google.com/view/cav-sec/drp-attack/.

4.2.5 Software-in-the-Loop Simulation

To understand the safety impact, we perform software-in-the-loop evaluation of our attack

on LGSVL, a production-grade autonomous driving simulator [238].

Evaluation scenarios and setup. We construct 2 attack scenarios for highway and local

road settings respectively, as shown in Fig. 4.15. For the former, we place a concrete barrier

on the left, and for the latter, we place a truck driving on an opposite direction lane. The

attack goals are to hit the concrete barrier or the truck. We perform evaluation on OpenPilot

v0.6.6 with the Toyota RAV4 parameters. We generate the adversarial patch as 5.4 m wide

and 70 m long, which is placed in the simulation environment by importing the patch image

108

https://sites.google.com/view/cav-sec/drp-attack/

Figure 4.15: Software-in-the-loop simulation scenarios and driver’s view 2.5 sec before attack
succeeds.

109

−0.5

0.0

0.5

0 20 40 60 80 100 120 140
Longitudinal Distance (m)

0.0

0.5

1.0 Longitudinal offset:
100m to patch 50m to patch

Highway

Local

Hitting
the barrier

Hitting
the truck

Lateral offset:
-95%
-75%
-50%

-25%
0%
25%

50%
75%
95%

La
te

ra
l D

is
ta

nc
e

(m
)

Figure 4.16: Victim driving trajectories in the software-in-the-loop evaluation from 18 dif-
ferent starting positions for highway and local road scenarios. Lateral offset values are
percentages of the maximum in-lane lateral shifting from lane center; negative and positive
signs mean left and right shifting.

into Unity. To evaluate the attack effectiveness from different victim approaching angles,

for each scenario we evaluate the same patch from 18 different starting positions, created

from the combinations of 2 longitudinal distances to the patch (50 and 100 m) and 9 lateral

offsets (from -95% to 95%) as shown in Fig. 4.16. The patch is visible at all these starting

positions. We repeat 10 times for each starting position in each scenario.

Results and video demos. Our attack achieves 100% success rates from all 18 starting

positions in both highway and local road scenarios. Fig. 4.16 shows the averaged vehicle

trajectories from each starting positions. As shown, the vehicle always first drives toward

the lane center since the ALC system tries to correct the initial lateral deviations. After

that, the patch starts to take effect, and causes the vehicle to deviate to the left significantly

and hit the barrier or truck. We record demo videos at https://sites.google.com/view/

cav-sec/drp-attack/. In the highway scenario, after the victim hits the concrete barrier,

it bounces away quickly due to the abrupt collision. For local road, the victim crashes to the

front of the truck, causing both the victim and truck to stop. This suggests that the safety

impacts of our attack can be severe.

110

https://sites.google.com/view/cav-sec/drp-attack/
https://sites.google.com/view/cav-sec/drp-attack/

4.2.6 Defense Discussion

Machine learning model level defenses. In the recent arms race between adversarial

machine learning attacks and defenses, numerous defense/mitigation techniques have been

proposed [245, 403, 406, 178, 262, 314, 232, 129]. However, so far none of them studied LD

models.

Sensor/Data fusion based defenses. Besides securing LD models, another direction is

to fuse camera-based lane detection with other independent sensor/data sources such as

LiDAR and High Definition (HD) map [20]. For example, LiDAR can capture the tiny laser

reflection differences for lane line markings, and thus is possible to perform lane detection [92].

However, while LiDARs are commonly used in high-level (e.g., Level-4) AD systems such as

Google Waymo [57] that provide self-driving taxi/truck, so far they are not generally used

in production low-level (e.g., Level-2) AD such as ALC, e.g., Tesla, GM Cadillac, Toyota

RAV4, etc. [33, 60, 2, 40]. This is mainly because LiDAR is quite costly for vehicle models

sold to individuals.

Another possible fusion source is lane information from a pre-built HD map of the targeted

road, which can be used to cross-check with the run-time detected lane lines to detect our

attack. However, this requires ALC providers to collect and maintain accurate lane line

information for each road, which can be time consuming, costly, and also hard to scale.

Even with such map, a follow-up research question is how to effectively detect the attack

without raising too many false alarms, since mismatched lane information can also occur in

benign cases due to (1) vehicle position and heading angle inaccuracies when localized on

the HD map, e.g., due to sensor noises in GPS and IMU [386, 236], and (2) normal-case LD

model inaccuracies.

111

4.2.7 Summary

In this work, we are the first to systematically study the security of DNN-based ALC in its

designed operational domains under physical-world adversarial attacks. With a novel attack

vector, dirty road patch, we perform optimization-based attack generation with novel input

generation and objective function designs. Evaluation on a production ALC using real-world

traces shows that our attack has over 95% success rates with success time substantially lower

than average driver reaction time, and also has high robustness, generality, physical-world

realizability, and stealthiness. We further conduct experiments using both simulation and a

real vehicle, and find that our attack can cause a 100% collision rate in different scenarios.

We also evaluate and discuss possible defenses. Considering the popularity of ALC and

the safety impacts shown in this work, we hope that our findings and insights can bring

community attention and inspire follow-up research.

112

Chapter 5

Defense Opportunity against AD

Localization Attacks

5.1 Introduction

Recently, high-level Autonomous Driving (AD) vehicles [326], e.g., Level-4 ones, are gradually

becoming part of the transportation system by providing commercial services such as self-

driving taxis [87, 47], buses [11, 200], and trucks [43, 204]. In particular, AD companies

such as Waymo and Baidu are already offering commercial RoboTaxi services without safety

drivers [87, 222], and more others are performing tests on public roads [220, 219]. To achieve

high driving automation, the high-level AD system (the “brain”) in such a vehicle needs to

localize itself with centimeter-level accuracy on the map [236, 319, 155] to ensure safe and

correct driving. Thus, today’s industry-grade high-level AD systems predominantly adopt a

Multi-Sensor Fusion (MSF) based localization design, which combines sensor inputs, typically

GPS, LiDAR, and IMU, for overall higher accuracy and robustness in practice [386, 170, 340,

29, 28, 31].

113

Due to the reliance on sensor inputs, AD localization is inherently vulnerable to sensor

spoofing attacks, in particular GPS spoofing [335, 37], a long-existing security problem that

is fundamentally difficult in both prevention and detection in practice [310, 335]. Although

the MSF-based design is generally more robust against such single-source sensor attacks,

recent work [335] find that state-of-the-art MSF algorithms are still vulnerable to strategic

GPS spoofing attacks due to non-deterministic and practical factors such as sensor noises and

algorithm inaccuracies. To leverage such non-deterministic vulnerabilities, the authors devise

a lateral-direction localization attack named FusionRipper to opportunistically inject lateral

deviations in the MSF localization outputs, which will be translated into lateral deviations in

the physical world by the AD control. Such lateral-direction localization attack is especially

safety-critical in the AD context due to the potential consequences of road departure [159].

So far, no software-based defenses have been proposed to defend against such latest lateral-

direction localization attack in high-level AD systems. The closed-related ones are the recent

physical-invariant based defenses for small robotic vehicles such as drones and rovers [313,

126]. Such defenses estimate system states (i.e., vehicle positions) based on control com-

mands and use them to validate GPS signals. While these works show high effectiveness

for small robotic vehicles, we find that they have limited effectiveness in the AD context

(evaluated as a baseline in §5.5.2), because (1) vehicle driving motions in the real-world are

more diverse and complex (e.g., commonly have high-speed or curvy-road driving), and thus

harder to model accurately, and (2) attack deviation goals can be much smaller while still

being safety-critical, e.g., even less than 0.5-meter lateral deviations can cause lane depar-

ture. Moreover, these works did not consider the attack response step after detection, which

is especially critical for high-level AD systems due to the complex driving environment and

the absence of onboard human drivers. A few recent works considered such attack response

designs, e.g., attack recovery upon attack detection [125, 416]. However, they rely on similar

state estimation models as above to replace the attacked sensors during the recovery period,

which thus suffer from the same motion model accuracy limitations in AD context, and also

114

counted on human operators to take over as soon as possible since such state estimations

cannot replace physical sensors for a prolonged duration due to drifting [125]. Last but not

least, they assume an effective attack detection in place, which does not yet exist in for

high-level AD localization.

Compared to small robotic vehicles, the AD context may also have its unique defense oppor-

tunity for lateral-direction localization attacks, for example Lane Detection (LD) [186, 297],

which is directly related to the attack goals since it can measure the vehicle’s physical lateral

deviation in the ego lane in the real time. Today, LD is already widely used in low-level

AD localization (e.g., for automated lane centering). However, due to its fundamental limit

in achieving effective global localization (§5.3), it is currently not used for high-level AD

localization purposes. While less suitable for accuracy purposes, so far no prior works have

explored its potential for defense purposes in high-level AD localization.

In this work, we thus perform the first concrete exploration of LD as a domain-specific

defense opportunity for lateral-direction localization attacks in high-level AD systems. We

start by systematically analyzing its high-level defense potential, and find that such an

LD-based defense strategy has various design-level benefits such as generality to lateral-

direction attacks, technology maturity, direct deployability, and independence to existing

attacks. One potential downside is the lack of defense capability when lane line markings

are not available (e.g., in intersections), but since the latest lateral-direction attack design

is fundamentally opportunistic, the attacker cannot deterministically control the triggering

of a desired deviation only at road regions without lane line markings. In fact, we find that

a defense coverage of the road regions with lane line marking can already provide protection

for 99.2% of such opportunistic attack attempts (§5.3).

Motivated by such multi-dimensional defense potentials, we design the first domain-specific

LD-based defense approach called LD3 (Lane Detection based Lateral-Direction Localization

attack Defense), which is capable of both real-time attack detection and response. To use LD

115

40 50 60 70 80
Easting (m)

2

4

6

8

N
or

th
in

g
(m

)

Attack launched
Attack detected

Safely stopped in lane

Manually stopped
(violated lane line)

Driving direction

w/ LD3, w/o attack
w/ LD3, w/ attack
w/o LD3, w/ attack

Reference trajectory
Lane lines

Kept deviating,
had to manually stop

w/o LD3, w/ attackw/ LD3, w/ attack

Detected attack,
safely stopped in lane

w/ LD3, w/o attack

Completed the route

Figure 5.1: Physical-world end-to-end demonstrations of LD3 using a Level-4 AD develop-
ment chassis of real vehicle size and with full closed-loop control. (Top) Vehicle driving
trajectories in bird’s eye view. (Bottom) Final stopping positions under the three experi-
mental settings. The driving direction and vehicle heading are annotated with blue arrows.

for attack detection, a tradeoff is that at which information level (i.e., GPS or MSF output)

should we perform the detection. Recognizing that GPS outputs naturally have large noises

and existing attack cannot deterministically predict when and where will large deviations

occur in MSF, we decide to detect at the MSF output level to take advantage of such attack

non-determinism. In the attack response (AR) stage, we choose to safely stop the vehicle

in the ego lane, since this can minimize the attackable duration after detection and thus

fundamentally bounds the attack-achievable deviation in the AR period. To account for

the inherent LD-side adaptive attack surface introduced by LD3, we further design a novel

safety-driven fusion between LD and MSF that systematically penalizes the source that is

more aggressive in causing lateral deviations, which can fundamentally reduce the attacker’s

capability in causing safety damages in AR period even in adaptive settings.

We evaluate our defense against the latest lateral-direction localization attack on a diverse

set of real-world sensor traces with various environmental conditions. Our results show

116

that LD3 is much more effective at detecting the attack compared to direct adaptation of

physical-invariant based detection for small robotic vehicles [313]. Specifically, LD3 can

achieve effective detection with 100% true positive rates and 0% false positive rates on the

sensor traces and the detections are timely when the lateral deviations are not yet large

enough to touch the lane boundaries. Moreover, LD3 is also effective at keeping the AD

vehicle within the lane during the attack response periods, where the vehicle’s final stopping

deviations are always smaller than the lane straddling deviation. We also collect a night-time

driving trace and find that LD3 also has high defense robustness in low visibility conditions.

To further evaluate the defense in end-to-end driving with closed-loop control, we implement

LD3 on two open-source high-level AD systems, Baidu Apollo [7] and Autoware [213], and

evaluate in an industrial-grade AD simulator [238] and the physical world with a real vehicle-

sized AD chassis. Our results show consistent results in end-to-end drivings as in the trace-

based evaluations. Fig. 5.1 shows the vehicle driving trajectories and stopping positions

in the physical world experiments. As shown, LD3 can promptly detect the attack and

safely stop the vehicle at the center of the lane, while without LD3, the vehicle drives

out of lane boundary, and we have to manually stop the vehicle to prevent the collision.

The demo videos of the simulation and physical world experiments are available at https:

//sites.google.com/view/ld3-defense.

Lastly, we explore two potential adaptive attacks against LD3: (1) an ideal stealthy attack

with the full knowledge of the defense aiming to evade the detection, and (2) the latest

LD-side attack [327] against production AD systems. Results show that LD3 can effectively

bound the deviations of the stealthy attack from reaching the attack goals and can safely

stop vehicle under the LD-side attack.

In summary, this work makes the following contributions:

• We perform the first systematic exploration of using LD to defend against lateral-

117

https://sites.google.com/view/ld3-defense
https://sites.google.com/view/ld3-defense

direction localization attacks on high-level AD systems. We quantitatively show that

LD can provide comprehensive defense coverage for existing attacks despite the reliance

on lane line markings, and is independent of the AD localization inputs.

• We design LD3, a real-time defense solution including both attack detection and re-

sponse stages. Evaluation on real-world sensor traces shows that LD3 can achieve

effective and timely attack detection, and can effectively stop the vehicle safely within

the current lane. We also validate the robustness of LD3 under low visibility conditions

on a night-time driving trace.

• We implement LD3 on two popular open-source AD systems, Baidu Apollo and Au-

toware, and evaluate the defense in end-to-end drivings in both simulation and the

physical world.

• We evaluate LD3 against two adaptive attacks and show that it is effective at bounding

the deviations in the stealthy attack from reaching the attack goals and is robust to

recent LD-side attack.

5.2 Threat Model

Attacker’s capability. In this work, we assume the attacker can launch practical lateral-

direction localization attacks through external means such as GPS spoofing, which can cause

lateral deviations in the localization outputs. Specifically, we focus on the lateral-direction

attacks since such attacks (1) can cause the AD vehicle to violate the traffic norm that a

vehicle should be driving within its designated lane boundaries and should not have unex-

pected lane straddling behaviors, and (2) pose a direct threat to the AD vehicle and road

safety, e.g., it can cause the AD vehicle to drive off highway cliff or onto the wrong way and

being hit by other vehicles that failed to yield in time.

118

In particular, we do not consider simultaneous attacks that target both AD localization and

lane detection at the same time, since such simultaneous attack neither already exists, nor

can be easily achieved today (detailed discussions in §5.8).

AD control assumption. Same as FusionRipper [335] and also as a common design in

academia [295] and industry [7, 213], we assume the AD systems are designed to drive at the

center of traffic lane and constantly correct the deviations to the center. Since AD controllers

constantly correct such deviations at a high frequency, e.g., 100 Hz [7], the lateral deviations

in the AD localization will thus be directly reflected as physical world deviations, but to the

opposite direction.

5.3 Lane Detection for High-Level AD Localization De-

fense

Motivation and novelty. Currently, no software-based defense solutions have been pro-

posed to address the latest GPS spoofing-based lateral-direction localization attack in high-

level AD systems. The closest ones are the recent physical-invariants based detectors pro-

posed for small robotic vehicles such as drones and rovers, e.g., SAVIOR [313] and CI [126],

which estimate the physical dynamics of drones and rovers to validate the GPS signal.

Although they show high effectiveness for such small robotic vehicles under large attack de-

viation goals, their effectiveness in AD vehicle context is fundamentally more limited since

(1) existing vehicle dynamics models have difficulties in modelling high-speed and curvy-

road settings [225, 307]; and (2) in the AD context, the attack deviation goals can be much

smaller (thus harder to detect) while still being safety-critical. As we concretely evaluate

later in §5.5.2, direct adaptation of such existing physical-invariant based approach to the

AD context suffers from very high false positives and is actually close to random guessing.

119

In comparison to small robotic vehicles, the AD context may also have its unique defense

opportunities for such lateral-direction localization attacks. Lane Detection (LD) [186, 297],

a technology commonly used in low-level AD systems for lane centering [131, 359], is such

an example that can be used to measure the vehicle’s lateral position within the current lane

in real time, which is directly related to the lateral-direction attack goal (lane departure).

Although effective in low-level AD systems (e.g., Level-2 ones such as Tesla Autopilot [359]

that still count on human drivers to take over anytime), LD is currently not used for high-

level AD localization purpose (e.g., Level-4 ones such as Waymo that do not assume onboard

human drivers). This is because what LD can provide is by nature only local positioning

(i.e., relative positioning within ego lane), while high-level AD requires global positioning

(i.e., in world coordinates on a map) for safe and correct driving decision-making without

human drivers. Although there exist camera-based global localization methods using lane

markings [212, 156], they are not generally adopted in state-of-the-art high-level AD local-

ization [386, 170, 340, 29, 28, 31] as they are far from reaching the required centimeter-level

accuracy [236, 319, 155].

While less suitable for global localization accuracy purposes in high-level AD, in this work

we propose to be the first to explore novel use of LD for defense purposes in high-level

AD localization. To concretely understand the potential of such a domain-specific defense

opportunity, we analyze LD’s defense properties in the following 5 general aspects.

1) General to lateral-direction localization attack. As mentioned above, LD can pro-

vide real-time information directly related to the attack goal of lateral-direction localization

attacks. Thus, LD by nature has the potential to provide general defense capabilities to not

only the existing attack designs such as FusionRipper [335], but also their potential adaptive

versions or other new attack designs in the future, as long as the attack goal is to cause

lateral deviations.

2) Technology maturity. Benefit from the growing prosperity of Deep Neural Networks

120

(DNNs), LD is already a mature technology that has been used for lane centering in low-level

AD systems and vehicles, e.g., OpenPilot [131], Tesla Autopilot [359], GM Cadillac, Honda

Accord, Toyota RAV4, Volvo XC90, etc. In fact, the existing camera-based LD solutions are

quite robust to the dynamic environmental conditions. For example, Tesla Autopilot can

effectively recognize lane lines even during a night storm [27]. Apart from DNN advancement,

the camera auto-exposure and vehicle headlights also improve the usability of LD. Later in

§5.5, we also evaluate our defense on datasets with various environmental conditions and

show that it is robust to low visibility conditions.

3) Defense deployability. Since today’s high-level AD vehicles are all equipped with

cameras for road object detection, using them for an LD-based defense solution is thus

readily deployable without the need to install any new hardware. Moreover, many state-of-

the-art LD models are publicly available [297, 286], including those used in industry-grade

lane centering systems [131]; some high-level AD systems are also using LD for camera

calibrations [7].

4) Defense coverage. For LD to be effective, the road at least needs to have lane line mark-

ings, which may not be available in local road segments such as intersections. Interestingly,

due to real-world sensor noises and algorithm inaccuracies, the attacks to MSF localization

are fundamentally opportunistic. For example, despite having a high overall attack success

rate, the latest lateral-direction localization attack cannot predict when and where a large

deviation can be injected to the MSF outputs [335]. Due to such opportunistic property, the

attacker cannot deterministically cause a desired lateral deviation to appear and only appear

in regions without lane line markings. Such an attack property is fundamental to the MSF

localization designs popularly used in high-level AD systems, since with such a design the

attack effectiveness is fundamentally dependent on sensor noises and algorithm inaccuracies

of other sources, which are neither observable nor controllable by a tailgating attacker [335].

Motivated by this insight, we analyze all attack traces evaluated in the FusionRipper pa-

121

per [335] and our own evaluation later (§5.5.1), and find that LD can indeed provide a

decent practical defense coverage: among all attack starting points in the traces, only 0.8%

(15/1813) achieved the attack goal in road regions without lane line markings. Thus, an

LD-based defense, if effective, can already provide protection for the 99.2% of the possi-

ble attack attempts. In addition, autonomous trucks, which are an important high-level

AD application, are generally not subject to such limitation since they mainly operate on

the “middle mile” (i.e., highways) [38, 46], where lane line markings are generally always

available.

5) Independence to existing localization attack. To defend against existing attacks, a

desired defense property is that the lane line markings perceived by LD are not already used

in MSF localization. This is because if such information is already used, existing attacks

might have already exploited their vulnerable periods (e.g., natural detection inaccuracies),

making the additional use of such information for defense less likely to be effective. In repre-

sentative MSF localization designs, the LiDAR locator is the only one among the MSF inputs

that is possible to utilize lane line markings as features. Thus, we perform an experimental

analysis to understand the dependency between state-of-the-art LiDAR locators [386, 213]

and lane line markings in Appendix F. Our results show that today’s LiDAR localization

algorithms have a statistically-strong independence of the lane line markings, very likely be-

cause lane markings are much less useful for global localization on a map compared to more

unique road features such as buildings, roadside layouts, and traffic signs. This thus suggests

that LD can indeed provide independent defense information to existing attacks. However,

such independence property will disappear in adaptive attack settings (i.e., consider attack-

ing LD after the defense is deployed). Thus, we require our defense design to be fully-aware

of such adaptive attack surface (§5.4.2), and also evaluate it later (§5.7).

122

5.4 Novel LD-based Defense Design: LD3

Considering the multi-dimensional defense opportunities above, in this work we are mo-

tivated to design the first domain-specific lane detection-based defense approach against

lateral-direction AD localization attack, named LD3 (Lane Detection based Lateral-Direction

Localization attack Defense). In this section, we first describe the associated design chal-

lenges and then present the design details.

5.4.1 Design Challenges

Although LD comes with various defense opportunities, systematically leveraging it for AD

localization defense purpose still needs to address the following main design challenges:

C1: Non-trivial design details for attack detection. Although at the high level LD

can provide information directly related to lateral-direction attacks (i.e., lateral deviation to

lane departure), at the detailed defense design level there are still many technical challenges

we need to address, for example (1) incompatibility of the coordinate systems, i.e., LD is by

default in local positioning coordinate system (i.e., within the ego lane), while the attack is

in global coordinate system (i.e., the world coordinates); (2) choice of the attack-influenced

information level for attack detection, e.g., directly at the spoofed GPS signal level or at the

attack-influenced MSF output level; and (3) sufficient robustness to natural LD inaccuracies

in practice, e.g., missing or incorrect detection, for minimizing possible false positives in

attack detection.

C2: Need for AD-specific attack response design. Since high-level AD vehicles are

travelling at high speed and by design cannot assume on-board human driver ready for take-

over at any time (already the case in some commercial AD services [222, 87]), it is necessary to

further design an attack response step that can (1) minimize the safety risks during response,

123

and (2) assume no dependence on human assistance. For small robotic vehicles such as

drones and rovers, prior works have considered using state estimation models to replace the

attacked physical sensor after attack detection [125, 416]. However, such methods still count

on human operators to take over as soon as possible since such state estimations cannot

replace physical sensors for a prolonged duration due to drifting [125], not to mention that

such models are suffering from much more severe motion model accuracy limitations when

applied to the AD context (§5.5.2). Thus, a new design is needed to achieve our AD-specific

response goal above.

C3: Adaptive attack from LD side. While LD is currently independent to existing

high-level AD localization attacks due to the lack of use (§5.3), our defense-purpose use of

it in LD3 is inherently introducing a new attack surface from the LD side. In fact, recent

works have already discovered concrete lateral-direction attacks against LD in production

AD context [327]. To systematically account for such inherent adaptive attack surface,

our defense design thus needs to consider the more challenging setup where both the attack

detection and response designs cannot simply assume the LD side is trustworthy (and use it as

the benign reference accordingly) when its outputs are inconsistent with the AD localization

side.

5.4.2 Design Overview

In this section, we explain each design component in LD3 and how they address the above

design challenges. Fig. 5.2 shows an overview of LD3 fitted in a typical high-level AD system.

Attack detection at MSF output level. As shown in Fig. 5.2, the attack detection step

is performed in the localization module to constantly check the consistency between the LD

outputs and original localization output and raise anomalies use popular anomaly detectors

such as CUmulative SUM (CUSUM). To address the incompatibility of their coordinate

124

(MSF)

MSF
Localization

LiDAR
Locator

Lane Detection (LD)

Perception
Attack Detection

vs

LD (local) MSF (global)

Localization-side AR:
Safety-Driven Fusion

=1/

=1/

M
U

X

N

Y

Localization

Planning-side AR:
AR Traj. Generation

v

t

Planning

Control

Lat. Ctrl. Lon. Ctrl.

M
U

X

N

Y

M
U

X

N

Y

No Attack
v

t

Steer Throttle

Camera

LiDAR

GPS

IMU

...

Figure 5.2: Overview of LD3 design integrated in a typical high-level AD system. New
components are highlighted in yellow.

systems mentioned in C1, we convert both into a unified lateral deviation representation

w.r.t. the lane centerline since that’s directly related to the lateral-direction attack goal.

Regarding the choice of the attack-influenced information level for attack detection, we

choose to detect at the MSF output level rather than at the GPS output level since (1) in

normal conditions, GPS positions can naturally have large noises while MSF outputs are at

centimeter-level accuracy [386]. Thus, performing the detection at the MSF level can better

reduce false positives; and (2) detecting at the MSF output level also allows LD3 taking

advantage of the opportunistic property of FusionRipper , for which the attacker cannot

predict where and when will MSF exhibit large deviations. This thus can make it much

more difficult for the attacker to easily bypass the detection by targeting locations without

lane line markings. We also have designs for addressing false positives from common lane

detection inaccuracies.

Attack response via safe in-lane stopping. As discussed in C2, we need a new AD-

specific design for the Attack Response (AR) step. There are several common choices in

human driving if the vehicle navigation is malfunctioning, for example maintaining driving in

the current lane waiting for the system to recover, or pulling over to the roadside. However,

these cannot apply to the context of AD localization attacks, since without knowing the

accurate real-time location, we cannot even know how to safely and correctly drive in the

125

current lane or to the roadside. We also cannot blindly count on the LD outputs to drive

due to the need to account for the adaptive attack surface on the LD side (C3). Thus,

we consider the safest AR choice is to try to safely stop in the current lane, which has the

minimal reliance on the attack-time localization accuracy for maximizing safety in the AR

period. More importantly, on the attack side, since this minimizes the attackable duration

after detection, it can fundamentally bound the attack-achievable deviation in AR period.

Safety-driven fusion for adaptive LD attack. Although the in-lane stopping AR strat-

egy can already bound the attack-achievable deviation, it is still highly desired if we can

minimize the attacker’s impact on the localization accuracy during the AR period, since to

safely stop, there is still a long stopping distance that the ego vehicle has to travel, especially

when the speed is high (e.g., over 50 meters at 60 mph [284]). To account for the adaptive

LD attack surface (C3), the key challenge is how to decide which side (LD or MSF) to trust

when they are conflicting with each other in AR. Motivated by the safety-first principle in

production AD design [85], we propose a novel safety-driven fusion design, which system-

atically decides the contributions from different fusion inputs based on their tendencies to

cause unsafe driving; the higher such tendency is, the smaller their contributions will be to

the final fusion output. In our problem context, such a tendency is judged by the deviation

aggressiveness to cause lane departure, which will thus by default penalize the attacked side

no matter it is from LD or MSF, leading to less attack-introduced deviation. To bypass this

penalty and more effectively influence the fused results, the attacked side has to be less ag-

gressive in lateral deviations. However, given the limit on the attackable duration imposed

by the in-lane stopping AR strategy, the attack-achievable deviation during AR will still

be reduced. Thus, under our AR design that bounds the attackable duration, such safety-

driven fusion design can further fundamentally reduce the attacker’s capability in causing

safety damages during AR even in adaptive settings.

126

Algorithm 2 Attack detection by checking the consistency between MSF and LD
Notations: MSF : MSF position output; LD: lane detection output; S, b, τ : CUSUM statistic, weight,
anomaly threshold; D: deviation to lane centerline; lwmap: lane width from semantic map
Initialize: S0 ← 0

1: for each new lane detection output LDi do ▷ e.g., runs at 20Hz
2: MSFi ← latest MSF position ▷ MSF is often more frequent than LD
3: DMSF

i ← MapLaneDev(MSFi) ▷ MSF dev. (Table 5.1)
4: lwmap ← MapLaneWidth(MSFi) ▷ lane width (Table 5.1)
5: DLD

i ← LdDev(LDi, lwmap) ▷ LD dev. to centerline (Alg. 5)
6: Si ← max(0, Si−1 + |DMSF

i −DLD
i | − b) ▷ calc. CUSUM statistic

7: if Si > τ then
8: attacked ← true ▷ report under attack if over threshold
9: break
10: end if
11: end for
12: ⇒ switch to attack response

Table 5.1: Semantic map APIs required for LD3.

Map API Description

MapLaneDev(pose) Query the deviation from pose to the closest lane centerline
MapLaneWidth(pose) Query the width of the closest lane to pose

MapLanePoint(pose) Query the closest point and lane heading on the closest lane centerline to pose

MapIsIntersection(pose) Query if pose is located in an intersection

5.4.3 Attack Detection Design

As described above, we choose to perform the attack detection at the MSF output level,

which is thus designed as a post-processing step in the localization module as shown in

Fig. 5.2. The detection algorithm is shown in Alg. 2. As mentioned in C1, the MSF and LD

outputs are in different coordinate systems. Therefore, we first need to convert them to a

unified coordinate system such that they are comparable. For MSF outputs, we obtain an

MSF-based lateral deviation to the lane centerline (DMSF
i in Alg. 2) by querying the MSF

position in the semantic map [260], which is a standard utility on high-level AD systems

storing the road geometry information of the area that the AD vehicle is allowed to drive.

For the LD outputs, we can calculate the lateral deviation to the centerline based on the

left and right lane line polynomial functions (detailed in Appendix E). However, real-world

lane markings can be complicated and confusion sometimes. For example, it is common to

127

find that one of the lane lines missing or incorrectly detected in regions with lane splitting

and merging. Therefore, we design two optimizations to calculate a more robust lateral

deviation from the LD outputs leveraging the lane width from the semantic map (detailed

in Appendix E), which is a problem-specific improvement opportunity since in the main LD

usage domain, low-level AD systems, such semantic maps are not generally available. Since

LD3 relies on the existence of lane line markings, we disable the attack detection prior to

entering these regions based on the information from the semantic map.

After obtaining the MSF- and LD-based lateral deviations, we can then use their devia-

tion consistency to determine if MSF localization is under attack. To do so, we apply the

widely-used CUSUM anomaly detector (line 6–10 in Alg. 2), which has shown high de-

tection effectiveness in prior works [377, 313]. The CUSUM detector calculates a statistic

Si = max(0, Si−1+ |ri|−b);S0 = 0, where ri = DMSF
i −DLD

i is the residual between the MSF

and LD lateral deviations, b is a weight to prevent the CUSUM statistic from monotoni-

cally increasing in the benign scenarios. We consider as under attack if Si is over a certain

threshold τ . Once an attack is detected, we then switch to the Attack Response stage.

5.4.4 Attack Response Design

As described in §5.2, we consider safe in-lane stopping as the safest AR choice. As shown in

Fig. 5.2, the AR is composed of two components to safely drive the vehicle before stop: (1)

AR trajectory generation on the planning side, and (2) safety-driven fusion of MSF and LD

on localization side.

Planning-side AR: AR trajectory generation. The planning module in the high-level

AD system periodically generates planned trajectories, for which the controllers take as

speed and lateral position reference to produce throttling and steering commands. Thus,

to enforce the AR goal, the planning module needs to generate an AR trajectory with a

128

Algorithm 3 Safety-driven fusion for attack response
Notations: D: deviation to lane centerline; P : uncertainty from MSF or LD outputs; MSF : MSF position
output; kf : 1-dimensional Kalman Filter; R: uncertainty for KF update

1: function FusedPose(DMSF, DLD, PMSF, PLD, MSF)
2: RMSF, RLD ← Uncertainty(DMSF, DLD, PMSF, PLD)
3: kf.update(DMSF, RMSF); d← kf.predict()
4: kf.update(DLD, RLD); d← kf.predict()
5: posecenter, headingcenter ← MapLanePoint(MSF) ▷ Table 5.1
6: posefusion ← AddDevToPoint(posecenter, headingcenter, d)
7: return posefusion
8: end function

stopping motion. Since our AR goal is to stop in the ego lane, we design the AR trajectory

to be aligned with the lane centerline. To reduce the speed, we then set a slowing-down speed

profile on the AR trajectory based on a safe deceleration value used in high-level AD systems

(Appendix E). Note that since the original planning algorithms are typically designed under

the assumption that the localization accuracy is high (i.e., cm-level [319]), we find directly

re-using such algorithms in AR will result in unstable control since the planned trajectories

are too sensitive to the larger localization errors and uncertainties after fusing the LD and

MSF sides when one side is under attack. Thus, we directly set the planned trajectory as

the centerline of the ego lane to achieve more stable control.

Localization-side AR: safety-driven fusion. As described in §5.4.2, we need to design

a safety-driven fusion algorithm on the localization side that can systematically fuse LD and

MSF outputs while taking less contributions from the side that is more aggressive in causing

lateral deviations. To achieve this, we leverage a classic fusion algorithm design, Kalman

Filter (KF) based fusion, which can systematically determine the contributions of each fusion

source using uncertainties [361, 166]. In the original design, the uncertainty score calculation

are based on the noise-level measurements reported by the sources themselves, which thus

are not suitable in attack settings since such measurements are also fundamentally under

the attacker’s control.

To systematically realize our safety-driven fusion design between LD and MSF, we thus

129

LD dev.

Uncertainty

Uncertainty

MSF dev.
More aggressive in
causing lat. deviation,
higher penalty in fusion!

Dev. history
window

Fused dev.
& uncertainty

& uncertainty

& uncertainty

Kalman
Filter

LD Side

MSF Side

Figure 5.3: Illustration of safety-driven fusion in the attack response.

still leverage such uncertainties-based fusion framework but design novel uncertainty score

calculation based on their tendencies to cause lane departure. Alg. 4 lists the pseudocode for

the uncertainty calculation. As shown (line 2–7), we store the historical lateral deviations

from MSF and LD in two fixed-size windows. To obtain the uncertainties, we first calculate

the cumulative deviations in these two windows, and then calculate their proportions to

the geometric mean of them (line 8–11). We choose geometric mean over arithmetic mean

since it can better penalize the source with a larger cumulative deviation. To increase the

design flexibility, we include both our cumulative lateral deviation based uncertainty and the

uncertainty from MSF/LD algorithms in the final uncertainty and use a weight λ to adjust

their fractions (line 12–13).

With the uncertainties, we apply standard KF update/predict operations to fuse the MSF

and LD lateral deviations (line 3–4 in Alg. 3). We then add the fused lateral deviation to the

closest centerline point along the lateral direction based on the lane heading to instantiate

a fused localization in the global coordinate system (line 5–6 in Alg. 3). Fig. 5.3 illustrates

an example of the safety-driven fusion process.

130

Algorithm 4 Cumulative lateral deviations based uncertainties calculation
Notations: D: deviation to lane centerline; P : uncertainty from MSF or LD outputs; DS: deviation
history; w: deviation history window size; λ: weight of the deviation history based uncertainty
Initialize: DSMSF ← {}; DSLD ← {}
1: function Uncertainty(DMSF, DLD, PMSF, PLD)
2: DSMSF ← DSMSF || |DMSF| ▷ append MSF dev. to the history
3: DSLD ← DSLD || |DLD| ▷ append LD dev. to the history
4: if size of DSMSF > w then ▷ remove first element if full
5: DSMSF ← DSMSF \DSMSF[0]
6: DSLD ← DSLD \DSLD[0]
7: end if
8: sMSF ←

∑w
n=1 DSMSF; sLD ←

∑w
n=1 DSLD ▷ dev. sums

9: sGeoMean ←
√
sMSF · sLD ▷ geometric mean of dev. sums

10: fMSF ← sMSF/sGeoMean ▷ dev. history based uncertainty for MSF
11: fLD ← sLD/sGeoMean ▷ dev. history based uncertainty for LD
12: RMSF ← λfMSF + (1− λ)PMSF ▷ MSF uncertainty
13: RLD ← λfLD + (1− λ)PLD ▷ LD uncertainty
14: return RMSF, RLD

15: end function

5.5 Defense Effectiveness Evaluation

In this section, we evaluate LD3 against the state-of-the-art lateral-direction attack targeting

high-level AD localization.

5.5.1 Evaluation Methodology

Targeted AD system and attack. Since LD3 is designed for high-level AD systems, we

choose the industry-grade full-stack Baidu Apollo AD system [7] as a representative pro-

totyping target. Specifically, Baidu Apollo adopts an MSF-based localization highly repre-

sentative in both design (KF-based MSF) and implementation (state-of-the-art localization

accuracy [386]). Note that although our evaluation here uses Baidu Apollo, the LD3 de-

sign itself is generalizable to other industry-grade high-level AD systems; for example, later

in §5.6.2 we also implemented it in Autoware for end-to-end physical evaluation. For targeted

attacks, we evaluate against the recent FusionRipper attack [335] since it is (1) the state-of-

the-art and only lateral-direction localization attack that can break MSF localization; and

131

(2) directly applicable to the above representative MSF implementation.

Real-world sensor traces and FusionRipper attack effectiveness. Since our eval-

uation target is the FusionRipper attack, we follow the same evaluation methodology as

in [335] and conduct our evaluation on real-world sensor traces from the KAIST complex

urban dataset [203]. Specifically, we look for traces with camera data as required by LD3,

select the ones that the Apollo MSF can stably operate without attack [335], and apply

FusionRipper from each consecutive timestamp as in [335]. In total, we obtain 562 attack

traces summarized in Table 5.2. These traces cover diverse driving scenarios, e.g., different

road types (344 on local roads and 218 on highways), driving speeds (9.5 to 26.3 m/s), time-

of-day (e.g., 36 in the morning, 182 around sunset time), and road conditions (e.g., 170 with

snow on road).

For each trace, we follow the same method to identify the most effective attack parameters

as in the FusionRipper paper. Note that in the table our attack goal deviation is larger than

the FusionRipper paper since they focus on the minimum urban lane width (i.e., 2.7 m)

while we set the attack goal in a more realistic setting by measuring the lane widths in the

dataset. This does not affect the attack effectiveness; as shown, the overall attack success

rate is over 98%, which is consistent with the FusionRipper paper. In our evaluation, we

exclude the scenarios without lane markings (e.g., when the vehicle is in an intersection)

since it is out of the applicable domain for LD3. As analyzed in §5.3, the lack of coverage of

such scenarios do not eliminate the defense value since only 0.8% of the attacks can possibly

succeed in such scenarios and such successes are out of the attacker’s control.

Lane detection and AD control effects under attack. Since LD3 does not assume

any specific requirement on the lane detector, we are free to use any state-of-the-art lane

detector or even an ensemble of lane detectors. In our evaluation, we opt to the LD model

used in OpenPilot [131], which is already used commercially for Automated Lane Centering.

The KAIST traces include time-synchronized left and right camera frames from a front-

132

Table 5.2: Details of the 562 total attack traces used in our evaluation and the FusionRipper
attack effectiveness.

Attack
Trace #

Road
Type

Avg.
Speed

FusionRipper Attack

Attack
Goal Dev

Best
d

Best
f

Success
Rate

ka-local31 174 Local 10.9m/s 1.3m 0.5 1.2 99.4%
ka-local33 170 Local 9.5m/s 1.3m 0.3 1.3 98.3%

ka-highway36 182 Highway 26.3m/s 1.9m 0.3 1.3 100%
ka-highway18 36 Highway 24.8m/s 1.9m 0.3 1.3 100%

facing stereo camera. In our evaluation, we regard the left and right cameras as independent

cameras and run the LD model and calculate lateral deviations (Alg. 5) separately on them.

We then aggregate their results to obtain an averaged lateral deviation on the LD side.

Since KAIST traces are collected under benign driving, we need to model the LD outputs

when the AD localization is under attack. Same as the FusionRipper paper [335], we assume

the lateral deviations in the MSF localization will be directly reflected as physical world

deviations to the opposite direction (§5.2). We then model the attack-influenced LD outputs

by adding the physical world deviations to the lateral deviations calculated from the benign

LD outputs. Later in §5.6, we evaluate LD3 in both end-to-end simulation and physical-world

environments without such an assumption.

Baseline: SAVIOR. As a baseline, we evaluate the attack detection effectiveness of the

closest alternative software-based method based on latest prior works for small robotics

vehicles such as drones and rovers: physical-invariant based defenses [313, 126]. Specifically,

we select SAVIOR [313] as a representative design since it adopts more principled state

estimation models and thus shows superior detection performance over prior designs such as

CI [126]. The detailed setup for SAVIOR evaluation can be found in Appendix G.

Evaluation metrics. As LD3 involves two defense stages with different defense goals, we

separate the evaluation into attack detection and response evaluations. For attack detection

evaluate, we plot the ROC curves to systematically show the TPRs and FPRs under dif-

133

ferent CUSUM parameters b and τ (§5.4.3). In addition to ROC curves, we also report the

maximum MSF lateral deviation before the attack is detected by LD3. This detection devia-

tion is a metric to indicate the detection timeliness, e.g., a detection deviation smaller than

the lane straddling deviation (i.e., deviation to touch the lane line) means that the attack

is detected early in time before it can cause any meaningful adversarial consequences. For

attack response evaluation, we focus on the lateral deviations since our AR goal is to steer

the vehicle to stop within the lane boundaries. In particular, we report two lateral deviation

metrics with one measuring the maximum deviation before the vehicle fully stops, and an-

other one measuring the final stopping deviation. In practice, the latter is more important

since it will be the permanent deviation after the vehicle stops.

5.5.2 Attack Detection Effectiveness

Attack detection rates. The top figures in Fig. 5.4 show the detection ROC curves of

LD3 against FusionRipper . As shown, LD3 can achieve effective detection with 100% TPRs

and 0% FPRs on all 4 traces. During the searching for best CUSUM parameters, we find

that in benign drivings, the differences between MSF and LD lateral deviations are always

bounded within certain range (<0.6 m). However, in attacked drivings, FusionRipper will

cause larger lateral deviations on the MSF side, which will also be reflected on the LD side

in the opposite direction. Such a difference between benign and attacked drivings makes the

attack easily detectable by LD3. Fig. 5.5 shows an example of the benign and attacked MSF

and LD lateral deviations and their CUSUM statistics. In the attacked case, FusionRipper

launches the vulnerability profiling stage from t=1544686730 and discovers a vulnerable

window at t=1544686765, where MSF starts to exhibit larger lateral deviations. Because of

the distinctive MSF/LD consistency levels between the benign and attack cases, it is thus

straightforward to set a CUSUM threshold to differentiate them.

134

Baseline comparison. As shown, SAVIOR’s detection performance is only slightly better

than random guessing and far from being an ideal detector. Such a poor detection per-

formance would render SAVIOR unpractical since it will introduce lots of false positives in

normal driving.

The reason behind the poor detection performance in the AD context is twofold. First,

compared to drones and rovers, the physical dynamics of the vehicle are much harder to model

due to the complex physical moving characteristics, e.g., tire-road frictions, aerodynamic

forces, road bank angles, etc. [315]. For example, prior study [307] finds that the error of

kinematic bicycle model increases very fast at high speeds (e.g., 25 m/s) or on curvy roads

(e.g., steering angle at 4◦). In comparison, the bicycle model used in SAVIOR is reported

having an average position error of 0.33 m within 0.8 sec under low-speed settings (e.g., 13.8

m/s) in [225] and its error keeps accumulating as time progresses; comparably, the same

bicycle model incurs an average error of 1.076 m on ka-local31 within 1 sec, where the trace

contains many turns and curvy roads.

Second, the attack deviation goals in the AD context can be much smaller but still being

safety-critical. While SAVIOR is effective at detecting attacks on small robotics vehicles

such as drones with large deviation goals (e.g., ∼50 m [313]), attacks targeting high-level

AD systems requires much smaller deviation and thus harder to detect. For example, even

lateral deviations <0.5 m are enough to cause lane departure on narrow urban roads (e.g.,

2.7 m wide [344]).

Attack detection deviations. To evaluate attack detection deviations, we choose a

CUSUM weight b = 0.6 and threshold τ = 0.1, which can achieve best attack detection

effectiveness on all traces. For example, the detection deviation in Fig. 5.5 is 0.36 m under

these CUSUM parameters. The bottom figures in Fig. 5.4 show the distributions of max-

imum deviations FusionRipper has reached before being detected by LD3 (box plots with

pink background). As shown, LD3 can promptly detect the attack before it can even cause

135

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e ka-local31

LD3

SAVIOR
Random guessing

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

ka-local33

LD3

SAVIOR
Random guessing

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

ka-highway36

LD3

SAVIOR
Random guessing

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

ka-highway18

LD3

SAVIOR
Random guessing

LD3
DetectDev

NaiveAR
StopDev

AR
MaxDev

AR
StopDev

0.0

0.5

1.0

1.5

2.0

2.5

D
ev

ia
tio

n
(m

)

Lane straddle

Attack goal

ka-local31

LD3
DetectDev

NaiveAR
StopDev

AR
MaxDev

AR
StopDev

Lane straddle

Attack goal

ka-local33

LD3
DetectDev

NaiveAR
StopDev

AR
MaxDev

AR
StopDev

Lane straddle

Attack goal

ka-highway36

LD3
DetectDev

NaiveAR
StopDev

AR
MaxDev

AR
StopDev

Lane straddle

Attack goal
ka-highway18

Figure 5.4: (Top) Attack detection ROC curves; (Bottom) Detection and Attack Response
(AR) deviations in the LD3 evaluation.

−0.5

0.0

0.5

D
ev

ia
tio

n
(m

) MSF lateral deviation
LD lateral deviation

30 35 40 45 50 55 60 65
Timestamp (s) +1.5446867000e9

−0.5

0.0

0.5

D
ev

ia
tio

n
(m

) Attack detection dev. = 0.36m
0

2

4

C
U

SU
M

 S
ta

tis
ticBenign CUSUM statistic

0

2

4

C
U

SU
M

 S
ta

tis
ticAttacked Detected attack!

Figure 5.5: Benign and attacked MSF/LD
lateral deviations and CUSUM statistics.

65 66 67 68 69 70 71
Timestamp (s) +1.5446867000e9

−1

0

1

2

3

D
ev

ia
tio

n
(m

)

MSF lateral deviation
LD lateral deviation
Physical world deviation

0.0

0.2

0.4

0.6

0.8

1.0

Ka
lm

an
 G

ai
n

MSF Kalman gain
LD Kalman gain

Figure 5.6: MSF/LD and physical world de-
viations and Kalman gains during AR period.

136

lane straddling, and the average detection deviations are all below 0.5 m. However, there

do exist two attack cases in ka-highway18 that the detection deviations are close to the

lane straddling deviation. This is because in these attack cases, the lateral deviation at the

MSF side raises very rapidly between detection intervals such that the deviation has already

reached a large number (e.g., 0.63 m) before LD3 has a chance to perform the detection.

Nevertheless, none of the attack cases are detected after FusionRipper starts to cause lane

straddling and all of them are far away from reaching the attack goal deviation.

5.5.3 Attack Response Effectiveness

The distributions of the maximum deviations and final stopping deviations are shown in the

bottom figures in Fig. 5.4 (box plots without background colors). During the AR periods,

none of the attack cases have a maximum or stopping deviation over the attack goal deviation

(1.3 m for local and 1.9 m for highway). Despite 4 attack cases on the highway traces have

maximum deviations exceed the lane straddling deviation (0.7 m), their stopping deviations

are all corrected back to be within the lane boundaries. This shows that our AR design

(§5.4.4) is effective at keeping the vehicle within the lane boundaries when it stops, which

can prevent the much more dangerous situation where it stops out of the ego lane.

Moreover, comparing between local and highway, the highway traces often have larger max-

imum deviations and smaller stopping deviations. This is because the driving speeds when

the attacks are detected on the highway traces (27.3 m/s on avg.) are much higher than that

on the local traces (3.8 m/s on avg.). This leads to a much longer AR period on highways

(∼7 sec on avg.) than that on local roads (<1 sec on avg.). As a result, FusionRipper can

keep causing larger lateral deviations after the attack is detected, but in the meanwhile, our

AR design can also correct more given the longer AR period.

Fig. 5.6 shows an example of the MSF/LD and physical world deviations during the AR

137

period on ka-highway36, where the maximum deviation and stopping deviation are 0.52 m

and 0.19 m, respectively. In this example, since FusionRipper keeps increasing the deviation

on the MSF side, the safety-driven fusion (§5.4.4) penalizes the lateral deviations on the

MSF side with higher uncertainties and thus results in smaller Kalman gains, which indicate

the weights of the inputs in KF update. Consequently, the fusion process prioritizes the

lateral deviations on the LD side, which are similar to the physical world deviations, and

the lateral controller thus can steer the vehicle towards the right direction.

Comparison with naive AR design. A naive AR design, named NaiveAR, applies the

maximum deceleration to stop but still keeps using the MSF outputs for steering. Such

design is similar to the in-lane stop planning scenario that Baidu Apollo adopts to handle

emergencies [93]. To evaluate this, we record the MSF lateral deviations at the end of AR

periods and regard them as the stopping deviations based on the control assumption (§5.2).

The stopping deviations of NaiveAR are shown in Fig. 5.4. Because of the longer AR periods

on the highway, the stopping deviations under NaiveAR are significantly higher than that

using our complete AR design, especially on the highway traces. In particular, since the

lateral deviations on ka-highway36 increase very quickly, over 75% of the attacked cases

still reaches a lateral deviation higher than the attack goal deviation, which consequently

leads to >75% attack success rate for FusionRipper on ka-highway36 despite the attacks are

correctly detected. On the other hand, with the complete AR design, none of the attack

cases can be even deviate out of the lane boundaries.

5.5.4 Evaluation under Limited Visibility

Trace collection and defense evaluation setup. We collect a night-time driving trace at

around 11 p.m. our local time using an Advanced Driver-Assistance System (ADAS) device

named EON [130], which is the official device to run OpenPilot [131]. Specifically, we record

138

Local road

Local road

Highway

Highway

Local road

Route length: ~25 km

Start

End

Figure 5.7: Route of the night-time sensor trace collected using EON [130].

the localization and LD outputs during the trace collection for the defense evaluation. The

trace is∼25 km in length with 3 local road and 2 highway segments as shown in Fig. 5.7. Since

EON does not provide LiDAR data, we are not able to run MSF and FusionRipper attack.

To model the attack effect, we apply the lateral deviations from the most aggressive attack

trace in ba-local trace used in the FusionRipper paper [335] to the localization outputs, which

only takes 10 sec from the start of attack to reaching a 2 m lateral deviation. This is similar

to the prior works where they directly apply the attack traces in the target systems for attack

detection evaluation [313, 126]. Specifically, we apply the attack trace consecutively to all

road segments excluding the intersections, which results in 98 attacked and 98 corresponding

benign segments in total.

Defense effectiveness. Similar to results on KAIST traces (§5.5.2), LD3 can achieve

effective attack detection with 100% TPR and 0% FPR on the night-time trace. The attack

detection and AR deviations are shown in Fig. 5.8. As shown, even under such low-light

condition, LD3 can still timely detect the attack with an average detection deviation of 0.29

m. Consistent with findings in §5.5.3, the stopping deviation on the real vehicle trace is

only 0.17 m on average, which means LD3 is effective at stopping the vehicle within the

lane boundaries. In comparison, NaiveAR has a stopping deviation much higher than LD3,

where one attack segment (maximum deviation is 1.33 m) exceeds the goal deviation for

local roads.

139

LD3
DetectDev

NaiveAR
StopDev

AR
MaxDev

AR
StopDev

0.0

0.5

1.0

1.5

D
ev

ia
tio

n
(m

)

Lane straddle

Attack goal (local)

Attack goal (highway)night-time

Figure 5.8: Detection and AR deviations on the night-time trace.

5.6 End-to-End Evaluations

In this section, we implement LD3 on 2 open-source full-stack AD systems, Baidu Apollo [7]

and Autoware [213], and evaluate LD3 under end-to-end drivings in both simulation and the

physical world. The demo videos are available on our project website at https://sites.

google.com/view/ld3-defense.

5.6.1 Evaluation in AD Simulator

Experimental setup. We implement LD3 in Baidu Apollo v5.0.0 [7] and evaluate under

4 driving scenarios with different driving speeds (local road and highway speeds) and road

geometries (straight and curvy roads) in the LGSVL simulator [238]. In our evaluation,

we include the LD3 variant with naive AR design (§5.5.3) and one without defense. We

repeat the simulation for 10 times with different attack starting times for each combination

of simulation scenarios and defense settings.

In our evaluation, we reuse the SCNN model [297] in Baidu Apollo for LD, which is currently

used only for camera calibration in Baidu Apollo. Specifically, we run the complete Baidu

Apollo AD system with all functional modules enabled in an industry-grade AD simulator,

LGSVL [238]. Since LGSVL does not provide LiDAR locator maps required for MSF, we

140

https://sites.google.com/view/ld3-defense
https://sites.google.com/view/ld3-defense

instead run Baidu Apollo localization in the Real-Time Kinematic mode, which directly

takes the ground truth positions from LGSVL. To simulate the FusionRipper attack effect,

we add the lateral deviations from the same attack trace used in §5.5.4 to the localization

outputs.

To evaluate LD3, we create 4 driving scenarios on two LGSVL maps: Single Lane Road

(SLR) and San Francisco (SF). Specifically, the SLR map is a long straight road, and we

create a low-speed (SLR-Low) and high-speed (SLR-High) driving scenario on it by adjusting

the maximum cruising speed in Apollo planning. The SF map is a 1:1 re-creation of a portion

of the San Francisco city, from which we select a straight (SF-Straight) and a curvy road

(SF-Curvy).

Results and demos. Our simulation results show that the attack detection rates for both

LD3 and LD3-NaiveAR are all 100% in the 10 runs, and none of the benign drivings are

falsely detected as under attack. Table 5.3 shows the maximum lateral deviation achieved

in the whole simulation (including both attack detection and response periods) in each

scenario/defense setting and the corresponding vehicle stopping location. As shown, with

LD3, the average maximum deviations are smaller than lane straddling deviation in all 4

scenarios and the vehicle can always safely stop in the lane. In comparison, due to the blind

trust of the localization outputs in the AR period, LD3-NaiveAR has much higher maximum

deviations than LD3 and the vehicle’s stopping locations are either lane straddling or already

crashing into the road curb/barrier. Nevertheless, the No Defense setting is even worse than

LD3-NaiveAR, where the vehicle is simply deviated to fall off the road in SLR-Low and

SLR-High. Snapshots of the vehicle stopping locations in SF-Straight are shown in Fig. 5.9.

The demos of the 4 simulation scenarios and 3 defense settings are available on our project

website.

141

T
ab

le
5.
3:

M
ax

im
u
m

d
ev
ia
ti
on

s
to

la
n
e
ce
n
te
r
an

d
at
ta
ck

co
n
se
q
u
en
ce
s
u
n
d
er

d
iff
er
en
t
d
ef
en
se

se
tt
in
gs

in
th
e
4
si
m
u
la
ti
on

sc
en
ar
io
s
in

§5
.6
.1
.
E
ac
h
se
tt
in
g
w
as

ru
n
fo
r
10

ti
m
es

w
it
h
ra
n
d
om

iz
ed

at
ta
ck

st
ar
ti
n
g
ti
m
es
.
B
en
ig
n
d
ri
v
in
g
w
it
h
L
D

3
is
al
so

p
re
se
n
te
d
an

d
w
as

ru
n
fo
r
10

ti
m
es
.
T
h
e
m
ax

im
u
m

d
ev
ia
ti
on

s
ar
e
re
p
re
se
n
te
d
as

(m
ea
n
,
st
d
)
in

m
et
er
s.

S
im

u
la
ti
on

sc
en
ar
io

L
an

e
st
ra
d
d
le

d
ev

A
tt
a
ck
ed

B
en
ig
n

L
D

3
L
D

3
-N

a
iv
eA

R
N
o
D
ef
en
se

L
D

3

M
ax

d
ev

C
on

se
q
u
en
ce

M
a
x
d
ev

C
o
n
se
q
u
en
ce

M
a
x
d
ev

C
o
n
se
q
u
en
ce

M
a
x
d
ev

C
o
n
se
q
u
en
ce

S
L
R
-L
ow

0.
83

0.
47
,
0.
08

S
to
p
in

la
n
e

1
.6
9
,
0
.0
6

S
to
p
w
/
la
n
e
st
ra
d
d
le

7
.9
4
,
0
.0
5

F
a
ll
o
ff
ro
a
d

0
.0
7
,
5
e-
5

R
ea
ch

d
es
ti
n
a
ti
o
n

S
L
R
-H

ig
h

0.
83

0.
69
,
0.
06

S
to
p
in

la
n
e

1
.6
4
,
0
.1
6

S
to
p
w
/
la
n
e
st
ra
d
d
le

7
.9
3
,
0
.0
4

F
a
ll
o
ff
ro
a
d

0
.0
7
,
5
e-
5

R
ea
ch

d
es
ti
n
a
ti
o
n

S
F
-S
tr
ai
gh

t
1.
00

0.
67
,
0.
23

S
to
p
in

la
n
e

1
.0
2
,
0
.0
1

H
it
cu
rb

1
.8
4
,
0
.1
6

H
it
tr
ee

o
r
b
a
rr
ie
r

0
.1
4
,
7
e-
4

R
ea
ch

d
es
ti
n
a
ti
o
n

S
F
-C

u
rv
y

0.
75

0.
43
,
0.
14

S
to
p
in

la
n
e

0
.9
0
,
0
.1
2

H
it
la
n
e
d
iv
id
er

0
.9
7
,
0
.1
4

H
it
la
n
e
d
iv
id
er

0
.3
1
,
0
.0
1

R
ea
ch

d
es
ti
n
a
ti
o
n

142

LD3 LD3-NaiveAR No Defense

Hit curb

Hit barrier

Figure 5.9: Simulation snapshots of the vehicle stopping locations under the 3 defense settings
in SF-Straight.

Figure 5.10: Side-by-side views of the AD development chassis and a Toyota Camry.

5.6.2 Evaluation on AD Development Chassis

Experimental setup. We experiment on an AD chassis as shown in Fig. 5.10, which is

specifically designed for Level-4 AD system prototyping and testing. The chassis is of a

real vehicle size, capable of closed-loop control, and fully equipped with Level-4 AD sensors

including LiDAR, GPS, IMU, cameras, RADARs, and ultrasonic sensors. Since AD vehicle

testing is not allowed to be on public roads by default, we reserve a parking lot in our

institute for the experiments. Specifically, we mark a straight traffic lane with 3.5 m width

(the most common lane width in KAIST dataset and our night-time driving trace) in the

parking lot and create the corresponding semantic map for Autoware.

143

Table 5.4: The detection, maximum, and stopping deviations in the three settings at two
different driving speeds. We repeat the experiments of w/ LD3 w/ attack 3 times and report
(mean, std) deviations. We do not repeat the other two settings as they are quite stable.

Speed
w/ attack w/o attack

w/ LD3 w/o LD3 w/ LD3

Det dev Max dev Stop dev Max/Stop dev Max dev Stop dev

4 m/s 0.07m, 0.01m 0.36m, 3e-3m 0.05m, 0.05m 2.59m 0.13m 8e-3m
2 m/s 0.02m, 2e-3m 0.27m, 0.04m 0.01m, 1e-3m 2.23m 0.11m 7e-3m

We ported LD3 to the Autoware AD system [213], which is currently supported by the AD

chassis. To facilitate the attack, we apply the same FusionRipper attack trace used in §5.5.4

and §5.6.1 to the localization outputs in Autoware. Unlike OpenPilot and Baidu Apollo,

the lane detector in Autoware can only detect lane lines in pixels rather than in the world

coordinates. Therefore, we directly obtain the ground truth lane line information from the

map using the unmodified localization outputs, since LD is already a mature technology

(§5.3) and has been shown to be quite accurate in §5.5 and §5.6.1. We enable the relevant

components in Autoware including localization, global/local plannings, and control. During

the experiments, the AD chassis is completely driven by Autoware unless taken over by us

from a remote controller in emergency situations. We evaluate three defense settings: (1) w/

LD3 w/ attack, (2) w/o LD3 w/ attack, and (3) w/ LD3 w/o attack. For each, we experiment

in driving speeds of 2 m/s (4.5 mph) and 4 m/s (9 mph) for safety concerns. We prolong

the AR stage by using deceleration <3 m/s2 in both cases to better showcase the driving

behaviors during AR. Specifically, we repeat the experiments for 3 times for w/ LD3 w/

attack. Since the other two are always quite stable, we thus do not record more iterations

for those experiments.

Results and demos. Table 5.4 shows the detection, maximum, and stopping deviations

under the three settings. As shown, LD3 on average can detect the attack when the vehicle’s

physical deviation is still small and start the AR stage. Within the AR period, the average

maximum deviations are 0.36 m and 0.27 m at speeds of 4 m/s and 2 m/s, respectively,

144

Table 5.5: Maximum physical deviations can be achieved without being detected under var-
ious LD fluctuation assumptions. Percentages indicate the probabilities of such fluctuations.

Trace
LD fluctuation

(µ, σ)
Max physical world deviation

0 (100%) µ (50%) µ+ 3σ (0.3%)

ka-local31 0.12m, 0.08m 0.7m 0.82m 1.06m
ka-local33 0.14m, 0.10m 0.7m 0.84m 1.14m

ka-highway36 0.29m, 0.10m 0.7m 0.99m 1.29m
ka-highway18 0.20m, 0.11m 0.7m 0.90m 1.23m

and the final stopping deviations are always within 0.1 m. In comparison, without LD3,

the vehicle keeps deviating, and we have to manually press the emergency button on the

remote to prevent it from crashing into the curb. Such distinctive driving behaviors with

and without LD3 are consistent with our trace-based (§5.5) and simulation results (§5.6.1).

Without the attack, the vehicle’s trajectories well align with the road centerline (i.e., the

reference trajectory Autoware plans to enforce) and eventually complete the route and stop

at the center of the lane. We also record demo videos of the vehicle driving behaviors under

the three settings (videos are available on our website). As an illustration, Fig. 5.1 visualizes

the driving trajectories in the bird’s eye view and shows the snapshots of final stopping

positions at driving speed of 4 m/s.

5.7 Evaluation against Adaptive Attacks

In this section, we take a step further to examine LD3’s capability under potential adaptive

attacks, including (1) an idealized stealthy attack that can evade the detection, and (2) the

latest LD-side attack, which is the inherent new attack surface introduced by LD3 approach

(§5.4.1).

145

5.7.1 Stealthy Attack Evaluation

In this evaluation, we analyze the maximum lateral deviations that a hypothetical stealthy

attack can achieve by assuming stronger and unrealistic attack capabilities.

Evaluation methodology. Based on the CUSUM anomaly detection formulation (§5.4.3),

the attack should satisfy Si−1 + |DMSF
i − DLD

i | − b < τ in order to prevent detection. As-

suming the last CUSUM statistic Si−1 = 0, the maximum MSF lateral deviation without

being detected is thus DMSF
i,max = DLD

i + τ + b, which is also the maximum physical world

deviation given the control assumption (§5.2). Since τ and b are fixed in the defense, the

attacker can carefully select a timing where the LD has a large lateral deviation fluctuation

to the actual vehicle location due to detection noises, and apply the MSF lateral deviation

to the same direction as the LD’s fluctuation direction to achieve a large physical world devi-

ation. Therefore, the attacker’s capability on capturing a particular LD fluctuation window

determines the maximum physical world deviations she can achieve without being detected.

Thus, we evaluate the maximum physical world deviations by assuming various levels of LD

fluctuations that the attacker can capture.

Assumptions on attack capabilities. In this evaluation, we assume the attacker has very

unrealistic attack capabilities in order to achieve such a stealthy attack. In particular, the

attacker should have a white-box knowledge on (1) where exactly on the road that the LD

will have a large fluctuation and how much it is, and (2) the attack detection method and

parameters used in the target AD system. Moreover, the attacker should also have precise

and instantaneous control over the lateral deviations in the MSF localization outputs in

order to execute such attack when large fluctuations appear.

Results. Table 5.5 shows the maximum physical world deviations that the stealthy at-

tack can achieve under different LD fluctuation assumptions. Specifically, we calculate LD

fluctuation distributions in each trace and assume that the attacker knows where a certain

146

AR
MaxDev

AR
StopDev

AR
MaxDev

AR
StopDev

AR
MaxDev

AR
StopDev

AR
MaxDev

AR
StopDev

0.0

0.5

D
ev

ia
tio

n
(m

) Lane straddle

ka-local31 ka-local33 ka-highway36 ka-highway18

Figure 5.11: Maximum and stopping deviations during the AR period under the LD attack.

level of fluctuation happens. Without any such assumptions, the attacker can at most inject

τ + b = 0.7 m lateral deviation, which is just about to touch the lane boundaries. On the

other hand, the attacker can at most cause 0.99 m and 1.29 m lateral deviations on the

4 traces if she can capture an average and a 3-σ LD fluctuation, respectively. Note that

the probabilities of such fluctuations to appear are 50% and 0.3% according to the normal

distribution. In conclusion, even under very unrealistic attack assumptions, the maximum

lateral deviations are still less than the local road attack goal (1.3 m) for FusionRipper ,

which shows that LD3 is quite effective at bounding the lateral deviations. Moreover, it also

highlights that LD is indeed a mature technology (§5.3) suitable for defense given its high

stability.

5.7.2 LD-side Adaptive Attack Evaluation

Evaluation methodology. We explore the defense capability of LD3 against the latest LD

attack in production low-level AD systems, named Dirty Road Patch (DRP) attack [327],

which is designed to affect the detected lane line shapes to mislead the automated lane

centering system to drive the vehicle out of the lane boundaries. In LD, the lane line shapes

are represented as polynomial functions, which are used in LD3 to calculate the vehicle’s

lateral deviations (Appendix E). From the 40 attack traces used in the DRP attack paper,

we extract the attacked lane line polynomials in each frame and calculate an averaged LD

147

deviation trace. In LD3 design, LD attacks cannot disrupt the driving behaviors before the

attack is detected since only MSF outputs are used for navigation at this moment. To cause

vehicle deviations, the LD attack has to trigger the detection in the first place and affect the

fused localization in the AR period (§5.4.4) in order to affect the vehicle control. Therefore,

we focus on the AR period in our evaluation. To model the DRP attack effect, we apply the

deviation trace (start from the detection deviation 0.7 m) to the LD side in the KAIST traces.

Since the MSF side is benign and should generally well-align with the physical positions of

the vehicle, we set the MSF outputs in the AR period with the same deviation as the fused

localization, but to the opposite direction based on the control assumption (§5.2).

Results. Fig. 5.11 shows the maximum and stopping deviations in KAIST traces. As

shown, none of them is able to even cause lane straddling. On average, the maximum and

stopping deviations in the AR period are only 0.08 m (δ = 0.08 m) and 0.02 m (δ = 0.03 m),

respectively. Such a result indicate that LD3 is quite robust to adaptive attack to the LD

side as well. This is because the safety-driven fusion (§5.4.4) in LD3 can effectively penalize

the more aggressive source in the driving context, which in this case is the attacked LD

outputs, and prevent the fused localization from being influenced by it.

5.8 Limitations Discussion

Defense coverage of lane detection. In this work, we are the first to explore the novel

usage of LD for defense. However, as a defense relying on LD, a potential limitation is

the lane line marking coverage. However, as we analyzed in §5.4.2, the non-deterministic

nature of attacks to MSF localization greatly alleviate such a limitation, where an LD-based

defense has the potential to defend against the majority (99.2%) of the attack attempts. In

addition, for important AD applications such as autonomous trucks, they are naturally not

subject to such limitation as they mostly operate on highways [38, 46]. At design level, since

148

high-level AD systems come with semantic maps with accurate road geometry information,

LD3 knows exactly where are the regions without lane line markings and can temporarily

disable the defense in such regions (§5.4.3). To address this limitation, a potential future

improvement is to also consider other road markings available in such regions, e.g., stop

lines [246] and crosswalk markings [94] in intersections, to help localize the vehicle and to

detect MSF deviations. Nevertheless, it is unclear how prevalent such road markings are

and how mature and robust the existing perception algorithms are to recognize such road

markings.

Simultaneous attacks to MSF and LD. Since LD3 leverages LD to detection lateral-

direction attack on MSF, attacks that simultaneously target MSF and LD can thus poten-

tially bypass our detection. In fact, such a vulnerability is a general limitation for CPS secu-

rity research that uses sensor cross-checking/fusion for defense purposes [162, 161, 74, 356,

217, 233]. However, in practice, the defense value of LD3 highly depends on whether such a si-

multaneous attack already exists or can be easily achieved. For MSF and LD, neither of them

holds today, since (1) although individual attacks on MSF or LD exist, no existing work shows

that they can be effectively coordinated and synchronized to achieve simultaneous attack

effect control, and (2) it is far from trivial to achieve this with existing individual attack vec-

tors. Specifically, among the attack vectors on camera [302, 409, 283, 328, 224, 327, 212, 210],

only three works [283, 327, 210] actually evaluated and shown attack effectiveness on LD

in realistic AD settings. All these three works consider adding malicious patterns to the

ground (e.g., via road patch or stickers) as the attack vector. However, considering the non-

deterministic nature of the existing high-level localization attacks (§5.3), it would be hard, if

not impossible, for the attacker to figure out where to place the attack pattern beforehand,

not to mention how to carefully synchronize the malicious pattern with the localization-side

attack to effectively bypass LD3. Therefore, we consider such simultaneous attack design

neither already exists nor can be easily achieved, and leave the systematic exploration of its

feasibility as a future research direction.

149

5.9 Summary

In this work, we perform the first systematic exploration of the novel usage of lane detection

(LD) to defend against lateral-direction attacks in high-level AD localization. We design

the first domain-specific LD-based defense approach, LD3, that is capable of both real-time

attack detection and response. Our evaluation on real-world AD sensor traces show that

LD3 is much more effective than directly-adapted physical-invariant based defenses at attack

detection with accurate and timely detection. We also show that LD3 can safely stop the

vehicle in the current lane upon detection. We implement LD3 on two open-source high-level

AD systems and evaluate its effectiveness under end-to-end driving with closed-loop control

in both simulation and the physical world. We also evaluate against two adaptive attacks

and find that LD3 is robust to an idealized stealthy attack that aims to evade detection and

the latest LD-side attack targeting the response stage.

150

Chapter 6

Defense Opportunity against CV

Data Spoofing Attacks

6.1 Introduction

The Connected Vehicle (CV) technologies enable Vehicle-to-Infrastructure (V2I) and Vehicle-

to-Vehicle (V2V) communications and can help the vehicles and infrastructure make more

informed driving/control decisions. CV technologies are attractive as they can benefit our

transportation system by improving mobility, reducing safety risks and greenhouse gas emis-

sions, etc. For example, prior studies show that CV technologies can cut vehicle congestion

delays by more than a third [52] and help reduce up to 80% of crashes on the road [51].

To enjoy such benefits, government agencies across the globe are competing to push for CV

deployments [381, 325, 153]. Particularly, the US is one of a few early adopters that has been

testing the CV applications in US cities since 2016 [381, 380, 382, 291]. In general, CV ap-

plications can be broadly categorized into vehicle-side and infrastructure-side applications.

The vehicle-side applications aim to maximize fuel efficiency, enable better perception, etc.

151

A popular example is vehicle platooning [98]. The infrastructure-side applications focus on

improving the scheduling or control decisions that will be executed in the infrastructure. The

most representative infrastructure-side application is CV-based traffic signal control, which

is designed to improve traffic mobility by assigning signal timing plans that prioritize traffic

lanes with longer queues in order to reduce the total vehicle delays. Due to the enormous

efforts required for CV deployment, the design of CV applications also needs to consider

an inevitable transition period where CVs and Regular Vehicles (RVs) coexist on the road.

Such a transition period is projected to take over 20 years to reach 95% market penetration

rate (i.e., over 95% of total vehicles are CVs) [385].

The widespread deployment of CV applications has a significant impact on the traffic safety

and operations, thus making them to be valuable targets of cyberattacks. In this work,

we focus on the attacks to infrastructure-side CV applications due to their scale of impact.

Among them, the most representative one is the recent work on real-world infrastructure-side

CV application [119], where they discover that real-world CV-based traffic signal control is

vulnerable to data spoofing attacks. The authors assume that the attacker can compromise

the On-Board Unit (OBU) on a CV to send malicious vehicle states to the signal controller

to cause traffic congestions in the intersection. To exploit the vulnerabilities, they design two

congestion attacks that target the full deployment and transition periods respectively. The

two attacks are demonstrated to be very effective on the USDOT Intelligent Traffic Signal

System (I-SIG) [185], a system already under testing in real-world intersections in US cities.

To defeat such data spoofing attacks on infrastructure-side CV applications, in this work,

we explore a general spoofing detection strategy that cross validates the cyber-layer vehicles

states using the physical-layer ones to identify the spoofers. In our design, we use the readily

available infrastructure-side sensors [137, 190, 367, 358, 138, 309, 211, 404] to obtain the

physical states of CVs. However, the infrastructure-side sensors suffer from a fundamental

limitation in the detection range compared to the CV communication range. This leads

152

to challenges in the defense when dealing with CVs and RVs out of the sensor range. To

address them, we leverage a well-established technique in transportation systems, called

traffic models, which are empirically tuned models from real-world driving data to describe

the vehicle driving behaviors in specific traffic conditions. We apply the traffic models as

the traffic invariants to estimate the physical states of the vehicles out of sensor range. In

addition, to find the traffic context of the RVs out of sensor range, we rely on the sensor

frames in a future time window to identify the surrounding vehicles of the RVs.

We propose a two-step detector with a Trust Assignment and a Remove-and-Rerun step

leveraging the infrastructure-side sensors and traffic invariants. In the Trust Assignment

step, we calculate a suspicious score for each CV based on the distance between the reported

states and the physical states. Next, we rank the CVs by their suspicious scores, and exclude

the most suspicious ones individually and re-execute the I-SIG to confirm their impact to

the system. We then apply a threshold-based anomaly detection design to identify the CVs

that have large negative impacts to the signal plan.

We evaluate the detector in an industrial-grade traffic simulator, PTV Vissim [311], the same

as in the congestion attacks [119]. To ensure the validity, we reproduce the two congestion

attacks and find that they have similar attack performance as reported in [119]. In our eval-

uation, we start by assuming an offline detection setup. First, we examine the effectiveness

of the Trust Assignment step and find that it is quite accurate at assigning the suspicious

scores, where it always ranks the attack CVs among the Top-5 most suspicious ones. Next,

we evaluate the performance of the complete detection pipeline. Our results show that our

detector can strike a good balance between the True Positive Rate (TPR) and False Positive

Rate (FPR)–it can achieve at least 95% TPRs under all penetration rates while maintaining

a low FPR of 7%. Specifically when CVs are fully deployed, our detector shows a perfect

detection with 100% TPR and 0% FPR. We also compare our performance with USDOT’s

official Misbehavior Detection Tool designed for CV applications. Moreover, we evaluate

153

the robustness of our detector to the infrastructure-side sensor detection noises. The results

indicate that our detector can tolerate even 3× normal sensor detection noises.

In our evaluation, we also systematically explore the online detection capability of our de-

tector. We first calculate the required detection timeliness for online detection. To do that,

we measure the detector’s timing overhead on an embedded device and then limit the future

time window to ensure that the whole detection process can finish within the timeliness

requirement. Results show that our detector is still effective in the online detection setting,

where in the worst case, the FPR is only increased by 5% when the TPR maintains at 98.1%

compared to offline detection.

In summary, this work makes the following contributions:

• We explore a general spoofing defense for infrastructure-side CV applications based

on the discrepancy between the cyber-layer and physical-layer vehicle states lever-

aging infrastructure-side sensors. We address the fundamental range limitation in

infrastructure-side sensors by applying traffic invariants to infer the CV and RV states.

• We implement the detector for CV-based intelligent traffic signal systems and evaluate

the detection effectiveness against two congestion attacks. Our evaluation shows that

the detector is quite effective, with at least 95% true positive rate when the false

positive rate is below 7%. We also find that our detector is robust to sensor noises.

• We measure the detection overhead on a small embedded device and systematically

explore the detection timeliness and effectiveness when it is deployed as an online

detector. Our results show that in the worst case, this detection only increases the

false positive rate by 5% while maintaining a high true positive rate.

154

6.2 Threat Model

In this work, we assume a similar threat model as the congestion attacks proposed by Chen et

al. [119], where the attacker is able to compromise the in-vehicle CV communication device,

i.e., the On-Board Unit (OBU), in their own vehicle to send malicious BSM messages. We

do not assume that the attacker can spoof the vehicle identifier in the BSM messages, which

are protected and enforced by the Security Credential Management System (SCMS) [379].

Therefore, the attacker needs to use the original certificate associated with the physical

vehicle in order to get the messages correctly authenticated.

6.3 Defense Challenges

Data spoofing attacks in CVs are essentially cyber-layer attacks, where attackers send dis-

honest information of their physical states over the communication channels. Thus, a natural

strategy to detect such attacks is to use physical-layer information to validate the cyber-layer

information. One readily available physical-layer information source is the infrastructure-side

sensors, e.g., cameras [137, 190, 367, 358] and LiDARs [138, 309, 211, 404], which perceive

the vehicle positions and speeds in the physical world and thus can serve as the physi-

cal root-of-trust for our detection. Currently, the infrastructure-side sensors are already

performing vehicle detection and tracking tasks for red-light enforcement [195] and traffic

monitoring [365]. Thus, in this work, we aim to reuse them as a cost-effective solution for

data spoofing detection.

Fundamental limitation of infrastructure-side sensors: detection range. Although

infrastructure-side sensors can provide accurate detection of the CVs to validate their re-

ported states, their detection ranges are often much more constrained than the CV commu-

nication ranges. For example, the effective detection ranges of traffic cameras are usually

155

Connected Vehicle (CV)

Regular Vehicle (RV)

Sensor range

Figure 6.1: Infrastructure-side sensor range limitation. The CV communication range is
often much larger than the infrastructure-side sensor range.

at ∼100 meters [190, 358, 254, 132], while CV communication channels (e.g., DSRC and

C-V2X) can cover much larger ranges (typically >300 meters [148]). This thus leaves op-

portunities for the attackers since they can simply spoof CV locations beyond the sensor

detection range to evade direct detection. For example, the spoofed CVs are usually located

at the end of each intersection approaches with a distance of ∼300 meters to the center of the

intersection in the congestion attacks [119]. In fact, this is more of a fundamental limitation

of sensors compared to cyber-layer communication–extending the sense range (e.g., installing

and synchronizing with additional sensors) is often much more costly and difficult than ex-

tending cyber-layer communication ranges (e.g., using signal relay devices or opting to longer

range communication protocols such as C-V2X). Because of this fundamental limitation, two

defense challenges need to be addressed in order to leverage the infrastructure-side sensors

for effective data spoofing detection in the CV context.

Challenge 1: How to systematically propagate the trust from the sensor range

to the CV communication range? With the help of infrastructure-side sensors, it is

straightforward to verify the reported states of the CVs within the sensor range and establish

trust for the ones that match the detection results. But for the CVs outside the sensor range,

156

Intelligent Traffic Signal
Controller

CV
snapshots

Spoofer
handling

(e.g., revoking
certificate)

Data Spoofing Detection Pipeline

Remove &
Rerun
(§4.3)

Sensor
detection

RV State Inference
(§4.2.1)

Traffic signal plan

Trust Assignment (§4.2)

Trust Propagation
(§4.2.2)

Figure 6.2: Defense design overview.

there is no direct way to measure their states. Despite that, the trusted CVs within the sensor

range can provide useful information to verify the positions of the farther CVs, and hence a

systematic solution is required to facilitate such trust propagation.

Challenge 2: How to infer the RV states outside the sensor range? Since it is

estimated that the deployment of CV technology needs more than 20 years to reach at least

95% market penetration rate [385], there will be an inevitable transition period where CVs

and RVs co-exist on the road. During such period, the RVs that are outside of sensor range

may disrupt the trust propagation and cause mis- or false detections since the detector is

not aware of these RVs. Thus, gaining the knowledge of these RV states are important for

accurate spoofing detection.

6.4 Defense Design

In this section, we detail the defense design that addresses the aforementioned challenges.

157

6.4.1 Design Overview

In our design, we define the trust of a CV based on its integrity, i.e., CVs that report a state

far away from its ground truth state will be assigned with lower trust (or higher suspicion).

Our detector measures the trust of each CV in a traffic snapshot (i.e., the received CV states

that a CV application used for decision-making) and pinpoint the ones that have the lowest

trust and the largest impact on the CV application performance. As shown in Fig. 6.2, the

detector takes the CV snapshot and the corresponding sensor detection results as input, and

outputs the suspicious CVs that are likely to be spoofers for further handling. The detection

process involves two major steps: Trust Assignment and Remove-and-Rerun.

Trust Assignment (TA). In this step, we start from our physical root-of-trust, i.e., sensor

detection results, to assign suspicious scores to the CVs in the sensor range by comparing

their reported states with the detection results. Next, we propagate the trust out to the CV

range in the order of CVs’ reported distances to the sensor range. Since there is no direct way

to measure the physical states of CVs out of the sensor range (Challenge 1), we estimate the

CV states based on our traffic invariants, i.e., the traffic models, which are empirically

derived mathematical equations describing the vehicle driving behaviors under various traffic

conditions (§2.1.3). For example, the car-following models can be used to estimate a vehicle’s

spacing and velocity based on its leading vehicle. We then use the estimated state as a proxy

to the CV’s ground truth state to calculate the suspicious score.

Since traffic model’s accuracy depends on the availability of surrounding vehicle information,

it is thus imperative to address Challenge 2 to infer their states in the current CV snapshot.

To achieve that, we look into the “future” sensor frames when an RV first enter the sensor

range to learn which vehicles are its neighbors. Based on the neighboring vehicles in a

future time window, we can thus apply traffic models to infer an RV’s state in the current

CV snapshot. When the detection process is deployed as an offline analysis, such “future”

158

sensor frames are always available. However, when deployed as an online detection, we have

to delay the detection for certain duration to wait for more sensor frames to come. In this

case, since the future time window is limited, the number of recoverable RVs will also be

reduced. However, in practice, even a relatively short future time window (e.g., 6 seconds as

will be shown in §6.7.2) is sufficient to cover the majority of the RVs. Although the detection

is delayed in the online analysis, this is not much a problem for traffic signal control since

the attack effect often takes time to build up, e.g., the I-SIG congestion attacks take ∼18

minutes to build up the congestion effects [119].

After the trust assignment, we then rank the CVs based on their suspicious scores. As

will be shown in §6.5.2, the spoofing CVs are always ranked with top suspicious scores. In

practice, we can aggregate the suspicious score rankings from multiple CV snapshots to more

accurately pinpoint the spoofing CVs. Nevertheless, in our design, we apply a Remove-and-

Rerun step to further improve the detection accuracy.

Remove-and-Rerun (RnR). In RnR, we re-execute the CV application with and without

a suspicious CV to confirm its impact on the attack objective. The intuition behind this is

that the attacker’s goal is to disrupt the CV application to cause adverse effects on some

CV application metrics, which can often be quantified in the application itself. For example,

the congestion attacks on I-SIG are designed to increase the total delay of the vehicles

in the intersection, which is exactly what I-SIG is optimized for. Such attack objective

driven approach can effectively distinguish attack CVs from the benign ones among the

most suspicious CVs.

6.4.2 Trust Assignment

The TA step essentially checks the cyber-layer CV states against their physical-layer states to

locate dishonest CVs. It calculates a suspicious score si for each CV in the current snapshot

159

as follows:

si =∥xc
i − xp

i ∥

xc
i ∈Xc, xp

i ∈ Xp, i ∈ {1, ..., n},
(6.1)

where xc
i and xp

i represent the reported and physical states of a CV (detailed later); n is the

total number of CVs in the current snapshot; ∥·∥ denotes the absolute difference between

two states, e.g., Euclidean distance. Based on the suspicious scores, we then rank the CVs

to obtain the top-K suspicious ones X ′:

X ′ = argmax
X′⊂Xc,|X′|=K

{si | i = 1, ..., n}. (6.2)

In our design, we define the vehicle state as a 5-tuple vector x = [t, l, r, v, h], where t is the

timestamp; l is the traffic lane ID (Fig. 2.6 shows an example of intersection annotated with

lane IDs); r is the distance to the intersection center; v is the vehicle speed; h is the vehicle

heading. Since traffic signal controllers need to know the intersection geometry in order to

plan for dynamic traffic situations, they often have a pre-built map that supports querying

these state elements from vehicle BSMs. For example, I-SIG by default will convert the

BSMs into such information before optimizing for the signal plan.

Among the cyber- and physical-layer states, xc
i is readily available since each CV will con-

tinuously broadcast its real-time location and velocity. For xp
i , we rely on the physical

root-of-trust (i.e., sensor detection) and trust invariants (i.e., traffic models) to obtain and

infer the physical states of CVs in and out of the sensor range. For the former, we do not

include concrete designs in this work since vehicle detection and tracking is a well-studied

topic in computer vision [254, 132] and already has many commercial products on the mar-

ket that can provide real-time detection [137, 367, 365, 358]. For the latter, it involves two

sub-steps: RV state inference and trust propagation, and we will detail them in §6.4.2 and

160

§6.4.2.

Car-following model as the traffic invariant. Since car-following models describe the

inter-vehicle spacing that a vehicle will maintain given the leading vehicle’s speed, we use

them as the traffic invariant to infer the ideal position that a vehicle will be located in the

current lane based on its leading vehicle. Specifically, we apply the widely-used Newell’s car-

following model (Eq. 2.4 in §2.1.3) in our design for its simplicity. Given a leading vehicle

state [t, l, r, v, h], we can estimate the following vehicle state at time t as follows:

M : [t, l, r, v, h]→ [t, l, r + (v · τ + d), v, h]. (6.3)

This conforms to the Newell’s model that (1) the follower drives at the same speed as the

leader, and (2) the follower’s spacing is adjusted based on the speed.

RV State Inference

For RVs that are out of sensor range, we infer their states based on their future leading

vehicles in the sensor range. More concretely, if an RV appears in the sensor detection in

any of the future frames between t0 and t0 + T , we can thus infer the RV’s physical state at

time t0 as follows:

xt0
j =

M(xt0

lead), if ∃ t ∈ {t0, ..., t0 + T}, ∥xt
j − C∥ < R

∅, otherwise

j ∈{1, ...,m},

(6.4)

where xj is the RV state at time; xlead is the leading vehicle in the sensor frame; m is

the total number of RVs; t0 is the time of the CV snapshot to check for spoofing activity;

M(·) denotes the state estimation function based on the car-following model; C and R are

161

the geographic center and radius of the sensor range, respectively. Depending on the time

window (or the delay) allowed in the detector, it is possible that an RV will not appear in

the sensor range. In such case, our detector will simply not be aware of this RV.

Identifying leading vehicle. To find the leading vehicle for a target vehicle, we iterate

over all available vehicle states at time t and looking for the one that (1) has the same lane

ID, (2) is in front of the target vehicle, and (3) is the closest to the target vehicle. In cases

when the distance to the closest leading vehicle is greater than vf · τ + d, we consider the

target vehicle is in free-flow traffic and thus exclude the leading vehicle since it should have

negligible impact on the target vehicle’s driving behavior.

Handling RVs without leading vehicles. When there is no leading vehicle or the leading

vehicle is too far away, we then estimate the RV state at t0 based on its kinematics, assuming

that the RV maintains the same speed between t0 and t.

Trust Propagation

With more RV states made available out of sensor range, we can now more accurately

estimate the physical state of the CVs and propagate the trust from our physical root-of-

trust. Similar to the RV state inference, we apply the traffic invariant, i.e., the Newell’s

car-following model, to estimate the physical state of the CV i based on its leading vehicle

as follows:

xp
i =

M(xlead), if ∃ xlead

[tci , l
c
i , d

c
i , vf , h

c
i], otherwise.

(6.5)

Different from RV state inference, even when there is no leading vehicle, we are still aware of

the existence of CV i. Thus, instead of ignoring it, we set its state the same as its reported

cyber-layer state except its speed as the free-flow speed of the lane since we know for sure

162

there is no leading vehicle and hence the CV should be driving at the free-flow speed in the

normal case.

Suspicious score calculation. After we obtain the physical states of the CVs from the

sensor detection or from state inference, we then calculate a suspicious score for each CV,

which is defined as the distance between the cyber- and physical-layer states (Eq. 6.1).

More concretely, the suspicious score calculation depends on the availability of physical

state elements as below:

si =

|dci − dpi |, if ∃ dpi

|(vci − vpi) · τ + d|, otherwise.

(6.6)

When the CV’s physical distance to the intersection is available, we calculate the suspicious

score directly based on the difference to the one in the cyber-layer state. When only the

speed element is available in the inferred physical speed, we plug the speed difference into

the Newell’s model to obtain a spacing penalty such that the suspicious score is a distance

measurement and hence comparable to the above case.

6.4.3 Remove and Rerun

We perform the RnR step on all top-K suspicious CVs (Eq. 6.2). Specifically, for each CV k

in X ′, we exclude it from the current CV snapshot and re-execute the I-SIG application to

obtain the new total delay. Since the attacker aims to increase the total delay and ultimately

cause congestion in the intersection, removing a spoofing CV from the snapshot would likely

to reduce the total delay. Formally, we perform the RnR as follows:

xc
k =

spoofer, if

F(Xc)−F(Xc\{xc
k})

F(Xc)
≥ ϵ

benign, otherwise,

(6.7)

163

where F(·) is the I-SIG application; xc
k is one of the top-K CVs; ϵ is an empirically determined

anomaly threshold for spoofing detection. Since total delay varies under different traffic

demands, we calculate a total delay reduction percentage based on the one with all CVs

rather than an absolute value.

6.5 Defense Effectiveness Evaluation

In this section, we explore the full potential of our detector against the two congestion

attacks [119] in an offline setting, where the detection is performed as a post-processing step

on the saved traffic snapshots and sensor frames. Since the detection is offline, we do not

enforce any future time window size limitations in the RV state inference (§6.4.2).

6.5.1 Evaluation Methodology

Real-world intersection configuration. In our evaluation, we use the PTV Vissim [311],

which is an industrial-grade traffic simulation software, to generate the traffic snapshots for

the I-SIG system and execute the produced signal plans. The Vissim software relies on

car-following and lane-changing models to generate CV/RV traffics. However, it is worth

noting that the car-following model used in Vissim is a much more sophisticated one, named

Wiedemann’s model [160], than the Newell’s model used in our detector design. Unlike

deterministic models such as the Newell’s, the Wiedemann’s model adds randomnesses in

each vehicle’s behavior [160] to generate realistic and diverse traffic situations. To faithfully

reproduce the simulation setup, we obtained the detailed Vissim configurations they used

when evaluating the attack. Specifically, we simulate a real-world intersection as shown in

Fig. 2.6 and Table 6.1. In addition, we also use the same traffic demand (i.e., vehicle arrival

rate) and turning ratio (i.e., vehicle lane changing probability) in each lane that the authors

164

Table 6.1: Configurations of the real-world intersection (Fig. 2.6) used in this work and in
the congestion attacks [119].

Approach ID Speed limit Approach length

Eastbound 1 35 mph 220 m
Southbound 2 30 mph 300 m
Westbound 3 45 mph 300 m
Northbound 4 40 mph 300 m

Table 6.2: Attack performance reported in the congestion attacks [119] and of our reproduced
attacks. PR is short for penetration rate. Avg total delay inc is the average total delay
increment caused by the attacks.

CV deploy status

Full deploy Transition Period

Arrival time attack Queue length attack

PR = 100% PR = 75% PR = 50% PR = 25%
[119] Ours [119] Ours [119] Ours [119] Ours

Avg total delay inc 66.7% 52.9% 181.6% 172.8% 193.3% 176.6% 133.2% 147.9%

collected from real-world intersection [119].

Infrastructure-side sensor detection assumption. We assume a typical traffic camera

configuration, where there is a camera for each approach similar to Fig. 6.1. In this section,

we assume perfect camera detections, i.e., the vehicle positions and speeds can be accurately

detected in the sensor range. We will relax this assumption later in §6.6 to evaluate the

robustness against sensor noises. We set the sensor range to 91 meters (300 ft) in the

evaluation since this is a common specification for traffic cameras [190, 358] and prior works

on traffic camera detection also report similar capabilities [254, 132].

Congestion attacks reproduction. We evaluate our detector against the two congestion

attacks on the I-SIG system [119]. Since we do not have the original attack traces, we

reproduce the congestion attacks and report the attack performance in our Vissim and I-SIG

setup to demonstrate the reproduction fidelity. Similar to [119], we also use three random

seeds in the Vissim to compensate the randomness. To demonstrate the defense capability,

we focus on the strongest attacks in each penetration rate setting. Table 6.2 shows the attack

165

Left-turn lanes spill over,
causing congestions in the

through lanes

Figure 6.3: A Vissim snapshot of the traffic congestions caused by our reproduced attacks.

performance reported in [119] and the ones reproduced by us. Specifically, the average total

delay increment is the extra total delay caused by the spoofing CV compared to the benign

scenario. As shown, the attack performance reproduced by us is on par with the ones

reported in [119]. We also verify in the Vissim view that the congestion builds up during the

simulations. Fig. 6.3 shows a snapshot of the traffic congestions caused by our reproduced

attacks.

Baseline detector: USDOT Misbehavior Detection Tool. The USDOT Misbehavior

Detection Tool (USDOT MDT) is an official tool developed by the USDOT to detect CV

BSM messages that are “inconsistent with the corresponding vehicle’s true status, position,

or behavior” [378]. Specifically, the USDOT MDT checks for infeasible CV position and

speed, incorrect BSM message format and transmission rate, etc. Since the tool has already

been passed onto companies such as GM and Ford [378] and may potentially be incorporated

in their CV products, we evaluate its spoofing detection effectiveness against the congestion

166

attacks and use it as a comparison baseline.

Evaluation metrics. To quantify the spoofing detection performance, we show the True

Positive Rates (TPRs) and False Positive Rates (FPRs) under the attacked and benign

CV snapshots, respectively. To generate such CV snapshots, we simulate each Vissim seed

twice–one under attack and another without any attack. Each simulation lasts for 4000

seconds, which consists of about 70–140 snapshots per seed depending on the congestion level.

Particularly in the attacked simulations, the attacker may choose not to spoof a snapshot if

she cannot find any spoofing location that can increase the total delay. In addition, we also

plot the Receiver Operating Characteristic (ROC) curves to systematically show the TPR

and FPR variations under different anomaly thresholds ϵ (§6.4.3). Particularly, to validate

the effectiveness of trust assignment, we also report the Top-K rate to show the percentage

of CV snapshots that rank the spoofing CV among the top-K most suspicious CVs.

6.5.2 Results

Detection accuracy of Trust Assignment. Before evaluating the complete detection

pipeline, we first look at how effective is the TA at assigning the suspicious scores. Table 6.3

shows the Top-K rates in the attacked snapshots. As shown, the TA step is quite effective at

finding the attack CVs, where it always ranks the attack CV among the top-5 most suspicious

CVs across all PR settings. Therefore, we set K = 5 in the following RnR step (thus denoted

as RnR-5) as this empirically ensures that the attack CV, if any, is always among the ones

that will be validated. Moreover, over 89% of the total CV snapshots rank the attack CVs

at Top-1. The reason that some attacked CVs are not ranked at the top is mainly that in

these snapshots some benign CVs exhibit driving behaviors that are not considered in the

car-following model (e.g., lane changing) such that the TA mistakenly assigns high suspicious

scores to these benign CVs. This indicates that a simpler detector that purely rely on TA

167

Table 6.3: Suspicious score rankings of the attack CVs in Trust Assignment. The numbers
in the parentheses are the CV snapshots that we rank the attack CV in Top-K and the total
number of CV snapshots in the simulation, respectively.

PR Attack Top-1 Rate Top 3 Rate Top-5 Rate

100% Arrival time attack 91.2% (93/102) 99.0% (101/102) 100.0% (102/102)

75%
Queue length attack

89.3% (200/224) 99.1% (222/224) 100.0% (224/224)
50% 90.7% (194/214) 99.5% (213/214) 100.0% (214/214)
25% 92.8% (180/194) 99.5% (193/194) 100.0% (194/194)

is unlikely to be very effective. Yet, the TA is a crucial part in the detection process as it

effectively narrows down the detection scope for RnR to accurately pinpoint the attack CVs.

Effectiveness of the complete detector pipeline. We now evaluate the performance

of our complete detection pipeline (TA and RnR). Since the benign CV snapshots are also

involved in the evaluation, we need to select the anomaly threshold in RnR (§6.4.3) such that

it would not incur many false positives while still maintaining a good detection accuracy.

Table 6.4 shows the TPRs and FPRs of our detector and the USDOT MDT under different

PRs. Specifically for our detector, we list the best TPRs that can be achieved under different

FPR levels by varying the anomaly threshold. Systematic analyses on the impact of anomaly

threshold will also be shown later. As shown in the table, our detector can achieve a perfect

detection with 100% TPR and 0% FPR when the CVs are fully deployed (i.e., PR = 100%).

Also, when the FPR is 7%, the detector can achieve at least 95% TPRs in all PR settings.

Benefitted from the RnR-5, the complete detector pipeline further improves the detection

accuracy on top of TA. This is because the RnR-5 directly leverages the attack objective to

distinguish attack and benign CVs. As shown in Fig. 6.4, removing an attack CV can reduce

the I-SIG total delay much more significantly than removing a benign one in most cases.

Nevertheless, the detection performance in the lower PR settings is generally worse, where

the TPR drops to 85.6% when FPR is 5%. The lower performance is mostly caused by the

congestion effects in the attacked snapshots, where a benign CV stops in the middle of an

empty lane waiting to cut into a queue in the adjacent lane. This makes the queue estimation

168

Table 6.4: Attack detection performance of our detector (TA & RnR-5) and the USDOT
MDT [378]. PR: Penetration Rate, TPR: true positive rate, FPR: false positive rate.

PR Attack
Ours USDOT MDT

TPR
(FPR=7%)

TPR
(FPR=5%)

TPR
(FPR=3%)

TPR
(FPR=1%)

TPR
(FPR=0%)

TPR FPR

100% Arrival time attack 100% 100% 100% 100% 100% 0% 0%

75%
Queue length attack

100% 99.1% 96.0% 70.1% 61.6% 0% 0%
50% 99.5% 99.1% 98.1% 78.5% 0.5% 0% 0%
25% 95.4% 85.6% 82.0% 69.6% 0% 0% 0%

Remove an attack CV Remove a benign CV
0

20

40

60

80

100

To
ta

l d
el

ay
 re

du
ct

io
n

(%
)

Figure 6.4: Total delay reductions difference between removing an attack and a benign CV.

(not used in full deployment) in I-SIG to mistakenly think that there are many RVs in the

empty lane and thus allocates an unnecessary long green time for it. In such cases, removing

this benign CV from the snapshot will actually reduce the total delay. In practice, such cases

might not be much of a concern since (1) excluding such benign CVs improves the I-SIG

performance, and (2) one can use attack detection from multiple snapshots to reduce the

false positives. More discussion on this is in §6.8.4.

Effectiveness of the USDOT MDT. As shown in Table 6.4, the USDOTMDT completely

fails to detect any attack CVs and thus leads to 0% TPRs. The reason is that the USDOT

MDT is designed to identify CVs that report unrealizable trajectories, such as the ones

reporting very high speed or very far location in the BSMs. However, in the congestion

attacks [119], all spoofed CV locations and speeds are physically feasible, e.g., a CV driving

169

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

PR = 100% (Arrival Time Attack)

Ours (w/ RnR-5)
Ours (w/o RnR-5)
Random detector

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

PR = 75% (Queue Length Attack)

Ours (w/ RnR-5)
Ours (w/o RnR-5)
Random detector

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

PR = 50% (Queue Length Attack)

Ours (w/ RnR-5)
Ours (w/o RnR-5)
Random detector

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

PR = 25% (Queue Length Attack)

Ours (w/ RnR-5)
Ours (w/o RnR-5)
Random detector

Figure 6.5: Attack detection ROC curves of our detector with and without the RnR-5.

170

at ∼300 meters away from the intersection with a speed ∼1 m/s.

Detection effectiveness under different anomaly thresholds. To systematically eval-

uate the detection performance, we plot the detection ROC curves by varying the anomaly

thresholds. To highlight the importance of RnR-5, we also plot the ROC curves of a simpler

detector design without RnR-5. Specifically, we use a threshold-based anomaly detection

design to classify CVs as attackers if their suspicious scores are above the threshold. Fig. 6.5

shows the ROC curves of the detector with and without the RnR-5. As shown, incorporat-

ing the RnR-5 greatly improves the detection performance in all PR settings. Moreover, the

ROC curves indicate that our detector can generally well-distinguish the attack and benign

CVs.

6.6 Robustness to Infrastructure-Side Sensor Noises

Although our detector shows high effectiveness in §6.5, we have not considered the impact of

practical factors such as sensor noises. In our design, we rely on vehicle detections from the

infrastructure-side sensors to build our physical root-of-trust. Thus, any sensor detection

noises may affect the later stages in our detector pipeline. Although high-precision sensors

such as LiDARs are available in intersections [138, 309, 211, 404], they often cost much

more than sensors such as cameras [137, 190, 367, 358, 254, 132]. Thus, in this section, we

evaluate the robustness of our detector against camera detection noises to demonstrate the

practicality.

Experimental setup. In our TA design (§6.4.2), since we compare the reported CV posi-

tions and velocities with the detected positions and velocities in the sensor range to assign

suspicious scores, sensor detection noises in the position and velocity will directly affect the

suspicious score calculation. A prior work [254] has quantified such errors for traffic cameras,

171

where they apply computer vision techniques to estimate the position and velocity of vehi-

cles within a certain range to the intersection. Specifically, they discover that the average

position errors are only 0.8 meters and 1.7 meters within 50-meter and 120-meter distances

from the camera, respectively. And the position errors are mostly longitudinal, i.e., in the di-

rection of the lane. For the velocity error, they find that the estimated speed has an average

error of 1.47 m/s to the ground truth vehicle speed. Thus, in our evaluation, we model the

camera detection noises based on their findings. More concretely, we inject random errors

sampled from Gaussian noise distributions epos ∼ N(0, σ2
pos) and evel ∼ N(0, σ2

vel) to the

detected position and velocity for all vehicles (CVs and RVs) in the sensor range. We select

σpos = 1.7 meters and σvel = 1.47 m/s in the evaluation. In addition, we also evaluate larger

noise levels by scaling the error amounts to 2× {σpos, σvel} and 3× {σpos, σvel}, respectively.

Results. Fig. 6.6 shows the detection ROC curves with and without camera detection noises.

As shown, the detection performance is barely affected when PR is 100% or 75%, and is only

slightly worse in the lower PR settings. This is mainly because the camera detection errors

are relatively much smaller than the distance between the spoofed CV location and the

location estimated from the traffic invariant. For example, even with 3× position errors,

the error standard deviation merely equals to a common vehicle length (4–5 meters). In

comparison, to induce large total delay increment, the spoofed CV location is usually >18

meters away from the TI-estimated location.

6.7 Online Detection Exploration

The evaluations above assume an offline detection setup, which is useful to understand

the upper bound detection performance. Meanwhile, it is quite attractive if our detector

can conduct online detection since we can then effectively prevent the attack CVs from

building up the congestion by temporarily excluding these CVs or permanently revoking

172

0.0 0.1 0.2 0.3 0.4
False Positive Rate

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

PR = 100% (Arrival Time Attack)

No noise
Noise = σ
Noise = 2σ
Noise = 3σ

0.0 0.1 0.2 0.3 0.4
False Positive Rate

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

PR = 75% (Queue Length Attack)

No noise
Noise = σ
Noise = 2σ
Noise = 3σ

0.0 0.1 0.2 0.3 0.4
False Positive Rate

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

PR = 50% (Queue Length Attack)

No noise
Noise = σ
Noise = 2σ
Noise = 3σ

0.0 0.1 0.2 0.3 0.4
False Positive Rate

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

PR = 25% (Queue Length Attack)

No noise
Noise = σ
Noise = 2σ
Noise = 3σ

Figure 6.6: Attack detection ROC curves (zoom-in view) under different levels of camera
detection noises (σ = {σpos, σvel}).

173

their certificates. Therefore, in this section, we relax the assumption on the future sensor

frames and systematically explore the trade-off between detection effectiveness and timeliness

in an online detection setup.

6.7.1 Evaluation Methodology

In our evaluation, we first measure the timing overhead of our design and identify the de-

tection timeliness requirements in the traffic signal context. Next, we evaluate the online

detection effectiveness under different timeliness requirements by limiting the size of future

time window in the detection pipeline.

Timing overhead. We envision that our detector will be running on the Road-Side Unit

(RSU) that runs the CV applications. Since the CV deployment requires installing numerous

RSUs to provide wide coverage, the device cost would be a large concern for the deployment.

Thus, to ensure that we do not assume any unreasonable computation capability, we measure

the timing overhead on a Raspberry Pi 3 Model B [317], which is a low-end embedded device

that costs only $35. This small computing device comes with an ARM CPU and 1 GB RAM

and runs a Debian-based OS. We measure the timing overhead of the two detector steps for

100 times, and their statistics are listed in Table 6.5. As shown, the TA and RnR-5 steps

take on average 4.83 sec and 4.48 seconds, respectively. Their timing overhead fluctuates

depending on the system load and the number of vehicles in the snapshot. At maximum,

they take 9.05 sec and 6.13 sec, respectively. Therefore, we estimate the maximum required

duration of the detection process as 15.58 sec. Note that here we did not count the future

time window (§6.4.2) that we should wait prior to the detection. For online detection, the

overall detection delay should be the sum of the detection timing overhead and the future

time window, which we specify based on the timeliness requirements in the next part.

Detection timeliness requirements. The I-SIG system runs at the end of each signal

174

Table 6.5: Timing overhead of the design components. Results are summarized from 100
measurements.

Components Mean Std Min Max

TA (§6.4.2) 4.83 s 2.09 s 0.38 s 9.05 s
RnR-5 (§6.4.3) 4.48 s 0.94 s 2.47 s 6.13 s

stage (§2.1.3) to plan for the next signal timing plan. Thus, the online attack detection needs

to be finished within one stage in order to keep up with the same pace as I-SIG executions.

Specifically, for a common major arterial intersection as we used in our evaluation, the min-

imum green light duration for each phase needs to be configured between 7–15 sec [376]. In

our evaluation, we set the minimum green light to 7 sec (which entails the tightest constraint

on the timeliness). Since each phase will also go through a yellow light period (typically 3

sec) and a short red clearance period (to accommodate for the potential red light runners,

typically 1 sec), the minimum duration for each phase is thus 11 sec. Hence, one signal stage

(i.e., two sequential phases) will occupy at least 22 sec. In other words, the overall detection

delay should be within 22 sec to achieve online detection. Excluding the detection timing

overhead, we thus have 6 sec for the future time window. Therefore, in our evaluation, we

set the future time window to 6 sec for online detection.

6.7.2 Online Detection Effectiveness

Fig. 6.7 shows the comparison of the offline and online detection ROC curves. Since the future

time window only affects the RV state inference (§6.4.2), online detection has no impact in

the full deployment period (PR = 100%) and has little impact when PR is 75% where the

number of RVs are limited. Interestingly, limiting the future time window has a larger impact

on PR = 50% compared to PR = 25%. This is because when PR = 25%, although the number

of RVs increases, the number of CVs decreases correspondingly. Therefore, the detector is

less affected due to the smaller number of CVs that need to be validated. Nevertheless, even

175

0.0 0.1 0.2 0.3 0.4
False Positive Rate

0.6

0.7

0.8

0.9

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

PR = 100% (Arrival Time Attack)

Offline detection
Online detection

0.0 0.1 0.2 0.3 0.4
False Positive Rate

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

PR = 75% (Queue Length Attack)

Offline detection
Online detection

0.0 0.1 0.2 0.3 0.4
False Positive Rate

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

PR = 50% (Queue Length Attack)

Offline detection
Online detection

0.0 0.1 0.2 0.3 0.4
False Positive Rate

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

PR = 25% (Queue Length Attack)

Offline detection
Online detection

Figure 6.7: Attack detection ROC curves (zoom-in view) of the offline and online detection
setups.

when PR = 50%, the FPR only increases by 5% if we aim to keep the same TPR at 98.1%.

Such a good online detection performance is likely because a future time window of 6 sec

can already cover many RVs to enter the sensor range.

176

6.8 Discussions

6.8.1 Defense Generality Discussion

In this work, we demonstrate the effectiveness of our detector against two representative

congestion attacks on the infrastructure-side CV application. However, since our defense is

based on a general principle that uses physical-layer information to cross validate the cyber-

layer information, it presents as a promising spoofing defense solution for other types of CV

applications and attacks objectives.

Generality to vehicle-side CV applications. There are a wide variety of CV applica-

tions proposed in the literature, where many also focus on vehicle-side applications, e.g.,

cooperative adaptive cruise control [337] and vehicle platooning [98]. For such CV applica-

tions, the coverage of infrastructure-side sensors would be a main concern, since the existing

infrastructure-side sensors are mostly installed in intersections due to their direct benefit to

signal control. However, given that the minimum required signal spacing for major arterial

roads is 1/2 miles (800 meters) [384, 272, 342], the intersection sensors can already provide a

good coverage to build the physical root-of-trust even for regular urban roads. In addition,

increasing efforts are put on installing more roadside sensors for autonomous and connected

vehicles recently [70].

Generality to other attack objectives. In our design, the RnR (§6.4.3) is designed as

an attack objective driven approach to find the attack CVs. In this work, we focus on the

attack goal from existing congestion attacks that target traffic signal control. However, it can

also be adapted to other attack objectives, e.g., safety damage, if it is possible to quantify

such attack objectives. Intuitively, unless the attacker applies a blind attack without any

guidance from the CV application or the vehicle status on the roads, we as the defender

can often obtain some indications to facilitate the RnR. Nevertheless, since the TA is quite

177

effective at narrowing the scope of attack CVs among the most suspicious ones (Table 6.3

in §6.5), we can also aggregate the suspicious score rankings from multiple CV snapshots to

accurately pinpoint the attack CVs without involving the RnR.

6.8.2 Alternative Defense Designs

Using CV sensors to extend the infrastructure-side sensor range. One possible

way to alleviate the sensor range limitation is to also incorporate the onboard sensors from

CVs. This is indeed a promising direction to overcome the limitation. However, in our

current design, we do not consider this due to two reasons. First, the CVs may not have any

perception sensors that can detect the surrounding vehicles, since the minimum requirement

on CVs are the installation of an On-Board Unit (OBU), in which only the GPS sensor is

available (e.g., [15]). Second, incorporating sensor detections (self-reported) from CVs opens

another door for attackers, which may complicate the detector design.

Using future sensor frames to check the existence of attack CVs that are out of

sensor range. In our design, for the CVs that are out of sensor range, we choose to not

detect attacks based on their existences in the future time frames (§6.4.2). This is because the

attacker is able to spoof the trajectory to a benign looking one without sudden termination

after the attack is taking effect (i.e., the spoofed CV location is taken into account in the

I-SIG). For example, the attacker can differentiate the CVs and RVs on the road since the

CVs will broadcast their real-time positions. Thus, the attacker can overlay the spoofed

trajectory onto an RV that is passing by to evade such detection. Moreover, even benign

CVs may also trigger such detection, since they may simply divert into a driveway on the

roadside without entering the sensor range.

178

6.8.3 Handling Lane-Changing Vehicles

The Vissim software used in our evaluation is designed to simulation realistic traffics. Aside

from car-following simulation, Vissim also simulates the lane-changing behaviors of the vehi-

cles when generating the traffic. Specifically, such lane changing behaviors will mostly affect

the car-following relationship of the RVs out of sensor range, since the CVs will continuously

broadcast their positions such that the detector is aware of the changes of their car-following

relationships. However, in our current design, for RVs that performed lane changing prior to

entering the sensor range, we do not attempt to recover their prior lane sequences. Instead,

we still use their car-following relationship observed in the sensor range to estimate their

states. Such errors may disrupt the suspicious score calculation of the following CVs and

hence affect the detection accuracy. One potential improvement is to apply lane-changing

models [275] to probabilistically model the RV states in different lanes. However, it is unclear

whether including such lane changing models will negatively affect the common case detec-

tion, and therefore we leave it as a future direction. Nevertheless, our evaluation results in

§6.5.2 show that the current detector design can already achieve a good detection accuracy.

6.8.4 Spoofer Handling

In this work, we do not propose concrete designs to handle the attack CVs since it is an

orthogonal problem. In practice, there are generally two ways to handle an attack CV. The

first is to temporarily exclude the CV from future CV application executions. This way, we

can ensure that the CV, if it is indeed an attacker, will not build up enough total delays

to cause congestion effects. However, the attacker will not be punished if such handling is

adopted. The second is a certificate revocation based handling. With such an approach, the

detector needs to achieve a very low FPR to not mistakenly revoke the certificate of a benign

CV. In our design, we show that in certain PR settings, it is difficult to further lower the

179

FPR without sacrificing the TPR (§6.5.2). However, we can aggregate the detection results

from multiple snapshots–if a CV is constantly being flagged as attacker, we then decide to

revoke its certificate. In fact, the attacker may choose to use the same CV to attack multiple

CV snapshots since the attacker (1) generally needs to spoof many CV snapshots to build

up the congestion effects [119], and (2) will likely be using the same CV due to the attack

cost (as CV certificates are associated with physical vehicles).

6.9 Summary

In this work, we explore a general defense solution against data spoofing attacks on infrastructure-

side CV applications. Building upon the general principle that using physical-layer informa-

tion to cross validate cyber-layer information, we leverage the readily-available infrastructure-

side sensors, such as traffic cameras, to estimate the physical-layer CV states. However, we

identify that such infrastructure-side sensors suffer from a fundamental limitation, where the

sensor range is generally much smaller than the CV communication range. To address this,

we borrow the well-established traffic models from the transportation domain and use them

as the traffic invariants to infer the vehicle states that are out of sensor range. We implement

and evaluate our detector against two representative data spoofing attacks that aims to cause

congestions in the intersections by exploiting the CV-based traffic signal control. Our results

show that the detector can effectively identify the spoofer with high detection accuracy and

is robust to sensor noises. We also demonstrate that an online detection setting only slightly

degrade the detection performance.

Future work. We envision that our defense solution can be generally applied to a wide-range

of CV applications and attack objectives, not limited to congestion attacks on infrastructure-

side CV applications. Therefore, in the future work, we plan to explore other data spoofing

attacks on diverse applications and systematically study the detection effectiveness against

180

such attacks.

181

Chapter 7

Systematization of Knowledge in

Semantic AD AI Security

7.1 Introduction

Autonomous Driving (AD) vehicles are now a reality in our daily life, where a wide variety of

commercial and private AD vehicles are already driving on the road. For example, commer-

cial AD services, such as self-driving taxis [87, 47], buses [11, 200], trucks [43, 204], delivery

vehicles [24] are already publicly available, not to mention the millions of Tesla cars [36]

that are equipped with Autopilot [33]. To achieve driving autonomy in complex and dy-

namic driving environments, AD systems are designed with a collection of AI components

to handle the core decision-making process such as perception, localization, prediction, and

planning, which essentially forms the “brain” of the AD vehicle. However, this makes these

AI components highly security-critical as errors in them can cause various road hazards and

even fatal consequences [45, 42].

Unfortunately, today’s AI algorithms, especially deep learning, are known to be generally

182

vulnerable to adversarial attacks [352, 175]. However, since these AI algorithms are only

components of the entire AD system, it is widely recognized that such generic AI component-

level vulnerabilities do not necessarily lead to system-level vulnerabilities [332, 304, 149, 209].

This is mainly due to the large semantic gaps: (1) from the system-level attack input spaces

(e.g., adding stickers [157], laser shooting [111]) to those at the AI component level (e.g.,

image pixel changes [352, 175]), or system-to-AI semantic gap, which needs to overcome

fundamental design challenges to map successful attacks at the AI input space back to the

problem space, generally called the inverse-feature mapping problem [304]; and (2) from AI

component-level attack impacts (e.g., misdetected road objects) to those at the system level

(e.g., vehicle collisions), or AI-to-system semantic gap, which is also quite non-trivial, e.g.,

when the misdetected object is at a far distance for automatic emergency braking [149, 332],

or the misdetection can be tolerated by subsequent AI modules like object tracking [209].

Thus, for an AI security work to be semantically meaningful at the system level, it must

explicitly or implicitly address these 2 general semantic gaps. In this work, we call such

research space semantic AI security (as opposed to generic AI security), following the

semantic adversarial deep learning concept by Seshia et al. [332].

Over the past 5 years, increasingly more research works are performed to tackle the aforemen-

tioned semantic AI security challenges in AD context, which started to show an exponential

growth trend since 2019 (Fig. 2.9). However, to the best of our knowledge, so far there

is no comprehensive systematization of this emerging research space. There are surveys

related to AD security, but they either did not focus on AD AI components (e.g., on sen-

sor/hardware [218], in-vehicle network [320]), or touched upon AD AI components but did

not focus on the works that addressed the semantic AI security challenges above [142, 312].

Since (1) the latter ones are much more semantically and thus practically meaningful for AD

systems, (2) now a substantial amount of them have appeared (over 50 as in Fig. 2.9), and

(3) such attacks in AD context have especially high safety-criticality since AD vehicles are

heavy, fast-moving, and operate in public spaces, we believe now is a good time to summarize

183

the current status, trends, as well as scientific gaps, insights, and future research directions.

In this work, we perform the first systematization of knowledge (SoK) of the growing semantic

AD AI security research space. In total, we collect and analyze 53 such papers, with a

focus on those published in (commonly-recognized) top-tier venues across security, computer

vision, machine learning, AI, and robotics areas in the past 5 years since the first one

appeared in 2017 (§7.2). Next, we taxonomize them based on research aspects critical

for the security field, including the targeted AI component, attack/defense goal, attack

vector, attack knowledge, defense deployability, defense robustness, as well as evaluation

methodologies (§7.3). For each research aspect, we emphasize the observed domain/problem-

specific design choices, and summarize their current status and trends.

Based on the systematization, we summarize 6 most substantial scientific gaps (§7.4) ob-

served based on quantitative comparisons both vertically among existing AD AI security

works and horizontally with security works from closely-related domains (e.g., drone [282]).

With these, we are able to provide insights and potential future directions not only at the

design level (e.g., under-explored attack goals and vectors), but also at the research goal

and methodology levels (e.g., the general lack of system-level evaluations), as well as at the

community level (e.g., the substantial lacking of open-sourcing specifically for the works in

the security community).

Among all these scientific gaps, the one on the general lack of system-level evaluation is

especially critical as it may lead to meaningless attack/defense progress at the system level

due to the AI-to-system semantic gap (§7.4.1). To effectively fill this gap, it is highly desired

to have a community-level effort to collectively build a common system-level evaluation

infrastructure, since (1) the engineering efforts for building such infrastructure share common

design/implementation patterns; and (2) in AD context, the system-level evaluation results

are only comparable (and thus scientifically-meaningful) if the same evaluation scenario and

metric calculation are used.

184

In this work, we thus take the initiative to address this critical scientific methodology-level

gap by developing a uniform and extensible system-driven evaluation platform, named PASS

(Platform for Autonomous driving Safety and Security), for the semantic AD AI security

research community (§7.5). We choose a simulation-centric hybrid design leveraging both

simulation and real vehicles to balance the trade-offs among fidelity, affordability, safety,

flexibility, efficiency, and reproducibility. The platform will be fully open-sourced (will be

available on our project website [25]) so that researchers can collectively develop new in-

terfaces to fit future needs, and also contribute attack/defense implementations to form a

semantic AD AI security benchmark, which can improve comparability, reproducibility, and

also encourage open-sourcing. We have implemented a prototype, and use it to showcase

an example usage that performs system-level evaluation of the most popular AD AI at-

tack category, camera-based STOP sign detection [157, 420], using 45 different combinations

of system-level scenario setups (i.e., speeds, weather, and lighting). We find that the AI

component-level and AD system-level results are quite different and often contradict each

other in common driving scenarios, which further demonstrates the necessity and benefits

of such system-level evaluation infrastructure building effort. Demos are available on our

project website https://sites.google.com/view/cav-sec/pass [25].

In summary, this work makes the following contributions:

• We perform the first SoK of the growing semantic AD AI security research space. In

total, we collect and analyze 53 such papers, and systematically taxonomize them based

on research aspects critical for the security field, including the targeted AI component,

attack/defense goal, attack vector, attack knowledge, defense deployability, defense

robustness, and evaluation methodologies.

• We summarize 6 most substantial scientific gaps observed based on quantitative com-

parisons both vertically among existing AD AI security works and horizontally with

security works from closely-related domains. With these, we are able to provide insights

185

https://sites.google.com/view/cav-sec/pass

and potential future directions not only at the design level, but also at the research

goal, methodology, and community levels.

• To address the most critical scientific methodology-level gap, we take the initiative

to develop an open-source, uniform, and extensible system-driven evaluation platform

PASS for the semantic AD AI security research community. We also use our imple-

mented prototype to showcase the capabilities and benefits of such a platform using

representative AD AI attacks.

7.2 Systematization Scope

In our systematization, we consider within-scope the attacks that aim to address the se-

mantic AI security challenges (defined in §7.1) and the defenses that are designed specif-

ically for addressing the AI component-level vulnerabilities revealed in such attack works.

Thus, we consider out-of-scope the works that assume digital space perturbations without

justifying the feasibility in the AD context (i.e., without addressing the system-to-AI se-

mantic gap) [301, 362, 179, 402] and the ones that focus only on AI algorithms that are

not used in representative AD system designs today (§2.1.1), e.g., general image classifica-

tion [228, 144, 118]. Curious readers can refer to general adversarial attack/defense SoK [300]

and surveys [77, 114].

When collecting the papers, we mainly focus on the ones published in commonly-recognized

top-tier venues [99] in closely-related fields to AD AI (i.e., security, Computer Vision (CV),

Machine Learning (ML), AI, and robotics), as well as a few well-known works published in

arXiv and other venues based on our best knowledge. Particularly, for the top-tier venues,

we exhaustively search over the paper lists from 2017 to 2021 to find the ones that fall into

our scope above.

186

7.3 Systematization of Knowledge

In this section, we taxonomize the semantic AD AI security works published in the past 5

years since the first one appeared in 2017. In total, 53 papers fall into our scope (§7.2) across

security, CV, ML, AI, and robotics research areas; 48 discovered new attacks (Table 7.2) and

8 developed effective new defense solutions (Table 7.3). Fig. 2.9 shows the number of papers

in each year. The earliest paper [255] dates back to 2017 when adversarial attacks (§2.1.2)

began to be applied to many real-world application scenarios including AD. Since then, AD

AI security has gained much attention as reflected in the exponential growth trend of paper

numbers over the years.

Similar to many other fields, AD AI security research also has gone through enlightening

periods where early beliefs are later overturned. For example, the 2017 paper [255] questions

the severity of adversarial attacks in AD vehicles and claims that “no need to worry about

adversarial examples in object detection in autonomous vehicles”. Soon after that, two

papers in 2018 propose successful attacks against camera object detection with physical-

world attack demonstrations. As the community exponentially grew after 2019 and now at

over 50 papers in this research space, we think now might be a good time to systematize the

existing research efforts.

7.3.1 (Attack/Defense) Targeted AI Components

Status and trends. The targeted AI components in the existing works are summarized in

Tables 7.2 and 7.3. As shown in the tables and Fig. 7.1, most (>86%) of the existing works

target perception, while localization, chassis, and end-to-end driving are all less or equal to

6.2%. Among the perception works, the two most popular ones are camera (60.0%) and

LiDAR (21.5%) perception. More detailed summary of their designs, applications in AD

187

Object detection

Object tracking

Semantic segmentation

Traffic light detection

Lane detection

MSF perception

Localization
End-to-End driving
Chassis

2%

62%
8%

6%

5%

3%
3%

6%
6%

Figure 7.1: Distribution of (attack/defense) targeted AI components in semantic AD AI
security papers.

systems, and vulnerabilities are in Appendix H. Currently, none of the existing works study

the downstream AI components such as prediction and planning, which will be discussed

more in §7.4.4.

7.3.2 Systematization of Semantic AD AI Attacks

Table 7.2 summarizes the semantic AD AI attacks. We taxonomize them based on 3 research

aspects critical for the security field: Attack goal, attack vector, and attacker’s knowledge.

188

A
tt
a
ck

g
o
a
l

A
tt
a
ck

ve
ct
o
r

E
va
l.

le
ve
l

P
h
y
si
ca
l-
la
y
er

C
y
b
er

la
ye
r

P
h
y
s.

w
o
rl
d

S
en
so
r
a
tt
a
ck

T
ar
ge
te
d
A
I
co
m
p
on

en
t

P
a
p
er

Year

Field

Integrity

Confidentiality

Availability

Objecttexture

Objectshape

Objectposition

GPSspoofing

LiDARspoofing

Radarspoofing

Laser/IRlight

Acousticsignal

Translucentpatch

MLbackdoor

Malware&s/wcomp.

Attacker’sknowledge

Component-level

System-level

Opensource

L
u
et

a
l.
[2
5
5
]

’1
7

V
✓

✓
✓

E
y
k
h
o
lt
et

a
l.
[1
5
7
]

’1
8

S
✓

✓
✓

C
h
en

et
a
l.
[1
2
0
]

’1
8

M
✓

✓
✓

✓

Z
h
a
o
et

a
l.
[4
2
0
]

’1
9

S
✓

✓
✓

X
ia
o
et

a
l.
[4
0
1
]

’1
9

V
✓

✓
✓

✓

Z
h
a
n
g
et

a
l.
[4
1
7
]

’1
9

M
✓

✓
✓

✓

N
a
ss
i
et

a
l.
[2
8
3
]

’2
0

S
✓

✓
✓

✓

M
a
n
et

a
l.
[2
6
4
]

’2
0

S
✓

✓
✓

✓

H
o
n
g
et

a
l.
[1
9
1
]

’2
0

S
✓

✓
✓

H
u
a
n
g
et

a
l.
[1
9
6
]

’2
0

V
✓

✓
✓

✓

W
u
et

a
l.
[3
9
9
]

’2
0

V
✓

✓
✓

O
b
je
ct

X
u
et

a
l.
[4
0
5
]

’2
0

V
✓

✓
✓

d
et
ec
ti
on

H
u
et

a
l.
[1
9
4
]

’2
0

V
✓

✓
✓

H
a
m
d
i
et

a
l.
[1
8
1
]

’2
0

M
✓

✓
✓

J
i
et

a
l.
[2
0
6
]

’2
1

S
✓

✓
✓

L
ov
is
o
tt
o
et

a
l.
[2
5
3
]

’2
1

S
✓

✓
✓

✓

W
a
n
g
et

a
l.
[3
8
9
]

’2
1

S
✓

✓
✓

C
am

er
a

K
ö
h
le
r
et

a
l.
[2
2
4
]

’2
1

S
✓

✓
✓

p
er
ce
p
ti
on

W
a
n
g
et

a
l.
[3
8
7
]

’2
1

S
✓

✓
✓

✓

Z
o
lfi

et
a
l.
[4
2
7
]

’2
1

V
✓

✓
✓

W
a
n
g
et

a
l.
[3
8
8
]

’2
1

V
✓

✓
✓

✓

Z
h
u
et

a
l.
[4
2
4
]

’2
1

M
✓

✓
✓

S
em

an
ti
c

N
a
k
ka

et
a
l.
[2
7
9
]

’2
0

V
✓

✓
✓

se
gm

en
ta
ti
on

N
es
ti
et

a
l.
[2
8
5
]

’2
2

V
✓

✓
✓

189

J
h
a
et

a
l.
[2
0
5
]

’2
0

S
✓

✓
✓

O
b
je
ct

J
ia

et
a
l.
[2
0
9
]

’2
0

M
✓

✓
✓

✓

tr
ac
k
in
g

D
in
g
et

a
l.
[1
4
3
]

’2
1

M
✓

✓
✓

C
h
en

et
a
l.
[1
2
1
]

’2
1

M
✓

✓
✓

L
an

e
S
a
to

et
a
l.
[3
2
7
]

’2
1

S
✓

✓
✓

✓
✓

d
et
ec
ti
on

J
in
g
et

a
l.
[2
1
0
]

’2
1

S
✓

✓
✓

✓

T
ra
ffi
c
li
gh

t
W
a
n
g
et

a
l.
[3
8
9
]

’2
1

S
✓

✓
✓

d
et
ec
ti
on

T
a
n
g
et

a
l.
[3
5
5
]

’2
1

S
✓

✓
✓

C
a
o
et

a
l.
[1
1
1
]

’1
9

S
✓

✓
✓

✓

S
u
n
et

a
l.
[3
4
7
]

’2
0

S
✓

✓
✓

H
o
n
g
et

a
l.
[1
9
1
]

’2
0

S
✓

✓
✓

T
u
et

a
l.
[3
7
1
]

’2
0

V
✓

✓
✓

O
b
je
ct

Z
h
u
et

a
l.
[4
2
6
]

’2
1

S
✓

✓
✓

L
iD

A
R

d
et
ec
ti
on

Y
a
n
g
et

a
l.
[4
1
0
]

’2
1

S
✓

✓
✓

✓

p
er
ce
p
ti
on

H
a
u
et

a
l.
[1
8
4
]

’2
1

S
✓

✓
✓

L
i
et

a
l.
[2
4
3
]

’2
1

V
✓

✓
✓

✓

Z
h
u
et

a
l.
[4
2
5
]

’2
1

O
✓

✓
✓

S
em

an
ti
c

T
sa
i
et

a
l.
[3
6
9
]

’2
0

M
✓

✓
✓

✓

se
gm

en
ta
ti
on

Z
h
u
et

a
l.
[4
2
5
]

’2
1

O
✓

✓
✓

R
A
D
A
R

p
er
ce
p
ti
on

O
b
j.

d
et
ec
ti
on

S
u
n
et

a
l.
[3
4
9
]

’2
1

S
✓

✓
✓

✓

M
S
F
p
er
ce
p
ti
on

C
a
o
et

a
l.
[1
1
0
]

’2
1

S
✓

✓
✓

✓
✓

T
u
et

a
l.
[3
7
0
]

’2
1

O
✓

✓
✓

L
iD

A
R

lo
ca
li
za
ti
on

L
u
o
et

a
l.
[2
5
7
]

’2
0

S
✓

✓
✓

M
S
F
lo
ca
li
za
ti
on

S
h
en

et
a
l.
[3
3
5
]

’2
0

S
✓

✓
✓

✓

C
am

er
a
lo
ca
li
za
ti
on

W
a
n
g
et

a
l.
[3
8
9
]

’2
1

S
✓

✓
✓

C
h
as
si
s

H
o
n
g
et

a
l.
[1
9
1
]

’2
0

S
✓

✓
✓

E
n
d
-t
o-
en
d
d
ri
v
in
g

L
iu

et
a
l.
[2
5
1
]

’1
8

S
✓

✓
✓

✓
✓

✓

K
o
n
g
et

a
l.
[2
2
6
]

’2
0

V
✓

✓
✓

✓

H
a
m
d
i
et

a
l.
[1
8
1
]

’2
0

M
✓

✓
✓

B
o
lo
o
r
et

a
l.
[1
0
3
]

’2
0

O
✓

✓
✓

✓
✓

F
ie
ld
:
S
=

S
ec
u
ri
ty
,
V

=
C
om

p
u
te
r
V
is
io
n
,
M

=
M
L
/
A
I,
O

=
O
th
er
s,

e.
g
.,
R
o
b
o
ti
cs
,
a
rX

iv
;
s/
w

=
so
ft
w
a
re
,
co
m
p
=

co
m
p
ro
m
is
e

A
tt
ac
k
er
’s

k
n
ow

le
d
g
e:

=
w
h
it
e-
b
ox
,

=
g
ra
y
-b
ox
,

=
b
la
ck
-b
ox

T
ab

le
7.
2:

S
u
m
m
ar
y
of

ex
is
ti
n
g
se
m
an

ti
c
A
D

A
I
at
ta
ck
s.

190

Attack Goals

We categorize the attack goals in the existing works based on the general security properties

such as integrity, confidentiality, and availability [343]:

Integrity (of AI components). Integrity in AD context can be viewed as the integrity

of the AI component outputs (i.e., whether they are changed by the attacker), which can

directly impact the correctness of the AI driving behaviors. From this view, its violations

manifest as the following AD-specific attack goals considered in existing works:

• Safety hazards. Safety is the top priority in AD design [85], and it is not only for

the AD vehicle and its passengers, but also for other road users (e.g., other vehicles,

pedestrians). Many existing attacks aim for safety hazards. For example, attacks

on object detection and segmentation can cause safety hazards if a front vehicle is

undetected [417, 279, 388]; attacks on object tracking can potentially lead to collisions if

the front vehicle trajectory is incorrectly tracked [209, 205]; lane detection, localization,

and end-to-end driving model attacks [327, 210, 335, 251, 226] can cause lane departure

and thus potential collisions.

• Traffic rule violations. Since AD systems by design are required to follow traffic rules,

violations can lead to financial penalties for individuals and reputational losses for

AD companies. Existing attacks aim to hide the STOP sign to cause STOP sign

violations [120, 157, 420]. Traffic light detection attack can cause the AD system to

recognize a red light as green light, which may lead to red light violations [355]. In

addition, the attacks on lane detection, localization, and end-to-end driving models can

also cause vehicle lateral deviations, which can violate the lane line boundaries [327,

210, 335, 251, 226].

• Mobility degradation. A key benefit that AD technologies can bring is improved access

to mobility-as-a-service (MaaS) [100]. A few works aim to degrade the mobility of

191

AD vehicles by manipulating the AI component outputs. In those works, they fool

either the object detection to recognize a static blocking obstacle [111, 347, 410] or the

traffic light detection to recognize a permanent red light [355], which can cause the

AD vehicle to be stuck on the road for a prolonged time. This not only delays the AD

vehicle’s trip to destination, but also may block the traffic and cause congestion.

Confidentiality (Privacy). Confidentiality is related to the sensitive information from or

collected by the AD vehicle. This includes not only the vehicle identification information

(e.g., the VIN from Chassis [191]), but also the privacy-sensitive location data [257] as it can

reveal the passenger privacy.

Availability (of AI components). Availability in the general cybersecurity area means

the systems, services, and information under viewed are accessible to users when they need

them [343]. For an AD AI component, its “users” can be considered as all the downstream

AD components and vehicle subsystems that are counting on its timely and reliable outputs

to function correctly. Thus, the availability of an AD AI component can be defined as its

capability to provide timely and reliable outputs.

Following this definition, example attacks on AD AI availability can be attacks causing

delays or failures in the outputting function of a given AI component, e.g., by interrupting

its input/output messaging channels, causing software crashes/hangs in it, or by causing the

vehicle system to fall back to human operators (so stop the outputting function of the whole

AD AI stack).

Status and trends. Vast majority (96.3%) of existing works focus on integrity, while only

3.7% are on confidentiality and so far none of them are on availability. More discussion on

this are in §7.4.5.

192

Attack Vectors

Existing attacks on AD systems leverage a diverse set of attack vectors and we broadly

categorize them in two categories: physical-layer and cyber-layer. Physical-layer attack

vectors refer to those tampering the sensor inputs to the AI components via physical means.

We further decompose physical-layer attack vectors into physical-world attack and sensor

attack vectors, where the former modifies the physical-world driving environment and the

latter leverages unique sensor properties to inject erroneous measurements. Cyber-layer

attack vector refers to those that require internal access to the AD system, its computation

platform, or even the system development environment.

Physical-world attack vectors:

• Object texture refers to changing the surface texture (e.g., color) of 2D or 3D objects.

It is often used by adversarial attacks to embed the malicious sensing inputs. In

attack deployment, this is often fabricated as patches [327, 157, 420], posters [255,

120, 157], and camouflages [417, 196, 194], or displayed by projectors [253] and digital

billboards [283]. Existing attacks have applied this attack vector on various objects

such as STOP signs [255, 157, 120, 420], road surfaces [327, 210], vehicles [417, 196, 194,

388], clothes [399, 405], physical billboards [226]. To disguise as benign looking, a few

attacks also constrain the texture perturbations to improve the attack stealthiness [196,

327, 210].

• Object shape refers to perturbing the shape of 3D objects such as vehicles [401, 369],

traffic cones [110], rocks [110] or irregularly-shaped road objects [410, 371, 370]. Some

were demonstrated in physical world via 3D printing [410, 111].

• Object position refers to placing physical objects at specific locations in the environ-

ment. Prior work [426] applies this attack vector by controlling a drone to hold a board

at a particular location in the air to fool the LiDAR object detector to misdetect the

193

front vehicle.

Sensor attack vectors:

• LiDAR spoofing refers to injecting additional points in the LiDAR point cloud via laser

shooting. Prior works carefully craft the injected point locations to fool the LiDAR

object detection [111, 347, 184].

• RADAR spoofing refers to injecting malicious signals to RADAR inputs to cause it

to resolve fake objects at specific distances and angles. Prior work [349] demonstrates

RADAR spoofing capability in physical world and shows that it can cause AD system

to recognize fake obstacles.

• GPS spoofing refers to sending fake satellite signals to the GPS receiver, causing it

to resolve positions that are specified by the attacker. Prior works leverage GPS

spoofing to attack MSF localization [335], LiDAR object detection [243], and traffic

light detection [355].

• Laser/IR light refers to injecting/projecting laser or light directly to the sensor rather

than the environment. Prior works use such attack vector to project malicious light

spots in the camera image such that it can misguide the camera localization [389] or

object detection [389, 424]. Moreover, some prior works also use it to cause camera

effects such as lens flare [264] and rolling shutter effect [224] in order to fool the object

detection.

• Acoustic signal has been shown to disrupt or control the outputs of Inertial Measure-

ment Units (IMUs) [341, 368]. Prior work [206] used this attack vector to attack the

camera stabilization system, which has built-in IMUs, to manipulate the camera object

detection results.

• Translucent patch refer to sticking translucent films with color spots on camera lens.

194

It can cause misdetect road objects such as vehicles and STOP signs [427].

Cyber-layer attack vectors:

• ML backdoor is an attack that tampers the training data or training algorithm to

allow the model to produce desired outputs when specific triggers are present. Prior

work [251] leverages this to attack the end-to-end driving model by presenting the

trigger on a roadside billboard.

• Malware & software compromise is generic cyber-layer attack vectors assumed in prior

works to eavesdrop or modify sensor data [205], or execute malicious programs along-

side the AI components [257, 191]. Particularly, a domain-specific instance is the Robot

Operating System (ROS) node compromises [191], which can modify inter-component

messages within ROS-based AD systems, e.g., Apollo v3.0 and earlier [7] and Auto-

ware [213].

Status and trends. As shown in Table 7.2, existing works predominantly adopt physical-

layer attack vectors, with 63.0% and 27.8% using physical-world and sensor attack vectors,

respectively. Among the physical-world ones, object texture is the most popular (half of the

all attacks). This is likely because such attack vectors are direct physical-world adaptations

of the digital-space perturbations in general adversarial attacks. In contrast, only 6 (11.1%)

attacks leverage cyber-layer attack vectors. More discussions on this are in §7.4.3.

Attacker’s Knowledge

We follow the general definitions of attacker’s knowledge by Abdullah et al. [73]:

White-box. This setting assumes that the attacker has complete knowledge of the AD

system, including the design and implementation of the targeted AI components, corre-

sponding sensor parameters, etc. Among existing attacks, such white-box setting is the

195

most commonly-adopted (Table 7.2).

Gray-box. This setting assumes that part of the information required by white-box at-

tacks is unavailable. Prior gray-box attacks all assume the lack of knowledge of AI model

internals such as weights. However, some works still require confidence scores in the model

outputs [417, 194, 181, 206, 388, 210, 426, 410], and some require detailed sensor parame-

ters [389, 349, 206].

Black-box. This is the most restrictive setting where the attacker cannot access any of the

internals in the AD vehicle. Prior works that belong to this category are either transfer-

based attacks [253, 387], which generate attack inputs based on local white-box models, or

the ones that do not require any model-level knowledge in attack generation [347, 224].

Status and trends. As shown in Table 7.2, existing works commonly assume the white-box

settings in their attack designs (66.7%). However, in recent years, we start to see increasing

research efforts in the more challenging but also more practical attack settings, i.e., gray-

box (24.1%) and black-box (9.3%), mostly published in recent two years (except one). This

greatly benefited the practicality and realism of this research space, and also shows that the

community practices have evolved significantly from earlier years [142, 312].

7.3.3 Systematization of AD AI Defenses

Table 7.3 summarizes the defenses included in our SoK. We taxonomize them from 4 research

aspects critical for the security field: Defense methods, defense goals, defense deployability,

and robustness to adaptive attacks.

196

D
ep
lo
ya
b
il
it
y

E
va
l.

le
ve
l

T
ar
ge
t
A
I
C
om

p
on

en
t

P
ap

er
Year

Field

D
ef
en
se

m
et
h
o
d

Defensegoal

Neg.timingoverhead

Neg.resourceoverhead

Nomodeltraining

Noadditionaldataset

Noh/wmodification

Robusttoadaptiveattack

Component-level

System-level

Opensource

N
as
si

et
al
.
[2
8
3
]
’2
0

S
D
ri
v
in
g
co
n
te
x
t
&

p
h
y
si
cs

co
n
si
st
en
cy

ch
ec
k
in
g

D
✓

✓
✓

✓
✓

O
b
je
ct

L
i
et

al
.
[2
4
2
]
’2
0

V
D
ri
v
in
g
co
n
te
x
t
co
n
si
st
en
cy

ch
ec
k
in
g

D
?

✓
?

✓
✓

C
am

er
a

d
et
ec
ti
on

L
iu

et
al
.
[2
4
8
]
’2
1

S
S
en
so
r
fu
si
o
n
b
a
se
d
co
n
si
st
en
cy

ch
ec
k
in
g

D
✓

✓
p
er
ce
p
ti
on

C
h
en

et
al
.
[1
1
7
]
’2
1

V
A
d
ve
rs
a
ri
a
l
tr
a
in
in
g

M
✓

✓
✓

✓
?

✓
O
b
j.

tr
ac
k
in
g

J
ia

et
al
.
[2
0
7
]
’2
0

V
P
re
d
ic
t
&

re
m
ov
e
p
er
tu
rb
a
ti
o
n
fr
o
m

in
p
u
ts

M
?

✓
?

✓
✓

C
am

er
a
p
er
ce
p
.
&

lo
ca
li
za
ti
on

W
an

g
et

al
.
[3
8
9
]
’2
1

S
C
o
n
si
st
en
cy

ch
ec
k
in
g
o
n
re
fl
ec
te
d
li
g
h
ts

D
?

✓
?

✓

S
u
n
et

al
.
[3
4
7
]
’2
0

S
C
o
n
si
st
en
cy

ch
ec
k
in
g
o
n
p
o
in
t
cl
o
u
d
fr
ee

sp
a
ce

D
✓

✓
✓

✓
✓

✓
✓

L
iD

A
R

p
er
ce
p
.
O
b
j.

d
et
ec
ti
on

S
u
n
et

al
.
[3
4
7
]
’2
0

S
A
u
g
m
en
t
in
p
u
ts

w
it
h
o
b
j.

co
n
f.

fr
o
m

fr
o
n
t
v
ie
w

M
?

✓
✓

✓
✓

Y
ou

et
al
.
[4
1
2
]
’2
1

S
T
ra
je
ct
o
ry

co
n
si
st
en
cy

ch
ec
k
in
g

D
✓

✓
✓

✓
?

✓

F
ie
ld
:
S
=

S
ec
u
ri
ty
,
V

=
C
om

p
u
te
r
V
is
io
n
,
M

=
M
L
/
A
I,
O

=
O
th
er
s,

e.
g
.,
R
o
b
o
ti
cs
,
a
rX

iv
;
D
ef
en
se

g
o
a
l:

D
=

d
et
ec
ti
o
n
,
M

=
m
it
ig
a
ti
o
n
,

?
=

n
ot

av
ai
la
b
le

in
th
e
p
ap

er
a
n
d
w
e
ca
n
n
o
t
co
n
cl
u
d
e
fr
o
m

th
e
d
es
ig
n
,
co
n
f.

=
co
n
fi
d
en
ce
,
h
/
w

=
h
a
rd
w
a
re

T
ab

le
7.
3:

S
u
m
m
ar
y
of

ex
is
ti
n
g
se
m
an

ti
c
A
D

A
I
d
ef
en
se
s.

197

Defense Methods

In general, the defense methods in existing works can be categorized into two categories:

Consistency checking. Consistency checking is a general attack detection technique that

cross-checks the attacked information either with other (ideally independent) measurement

sources, or with invariant properties of itself. For example, prior works use the detected

objects from stereo cameras [248] and object trajectory from prediction models [412] to cross-

check LiDAR object detection results. Li et al. [242] and Nassi et al. [283] created detection

models to determine whether the current camera object detection results are consistent with

the driving context. Some works also leverage physical invariant properties of the sensor

source such as light reflection [283, 389] and LiDAR occlusion patterns [347] to detect AI

attacks.

Adversarial robustness improvement. Several defenses try to improve the robustness of

the AI component against attacks. For example, Chen et al. [117] applied adversarial train-

ing [175] to make the camera object detection model more robust. Jia et al. [207] improved

the model robustness by predicting and removing potential adversarial perturbations from

the model inputs. Sun et al. [347] augment the point cloud with point-wise confidence scores

from a front view segmentation model to improve the robustness of LiDAR object detection.

Status and trends. As shown in Table 7.3, existing defenses share common general defense

strategies, with 66.7% (6/9) based on consistency checking and 33.3% (3/9) based on adver-

sarial robustness improvement. We discuss a few possible new directions later in §7.4.2.

Defense Goals

The defense methodologies in the above section can be naturally mapped to two defense

goals: (1) Detection: All consistency checking based defenses are designed to detect the

198

attack attempts; and (2) Mitigation: Improving the adversarial robustness of models can

generally reduce the attack success rate and raise the bar of the attackers. However, it

is not designed to detect the attack, and also cannot fundamentally eliminate/prevent AI

vulnerabilities.

Status and trends. Among the existing defenses, attack detection and mitigation are the

main focus; so far, none of the works aims for other goals such as attack prevention. More

discussions on this are in §7.4.2.

Defense Deployability

In this section, we list the defense design properties that are highly desired for the deployment

in practical AD settings:

Negligible timing overhead. Timing overhead is one of the most important factors that

may limit the deployability of defense for real-time systems such as AD systems. Among

the existing defenses, 4 have negligible or no timing overhead by design or shown in eval-

uation [283, 117, 347, 412], 1 fails to catch up with the camera and LiDAR frame rate in

evaluation [248]. For the remaining ones, we cannot conclude their timeliness from their

papers (e.g., no timing overhead evaluation).

Negligible resource overhead. In practice, the hardware that runs the AD system may

have limited computation resources (e.g., limited GPUs) due to budget concerns. Among

the defenses, except the ones that do not require extra ML models [117, 347, 349], all others

will impose additional demand on the computation resources in order to execute the models.

This may prevent them from deploying onto vehicles that have already fully utilized the

hardware resources.

No model training. The requirement of model training imposes extra deployment burdens.

199

Among the defenses that require extra ML models, only one [412] uses public pre-trained

models without fine-tuning.

No additional dataset. Closely related to the previous property, some defenses not only

require model training, but also need additional datasets during training process. This will

limit the deployability due to the efforts in dataset preparation.

No hardware modification. This property means whether the defense requires changes

to the hardware on AD vehicle or adding new hardware (e.g., additional sensors). Among

the defenses, Liu et al. [248] require stereo cameras, which may not be available on some AD

vehicles.

Status and trends. As shown in Table 7.3, almost all existing defenses (7/8) have the aware-

ness for at least one of these deployability design aspects, especially for that regarding hard-

ware modification (7/8) and timing overhead (4/8). However, the awareness on the need

for no model training, negligible resource overhead, and no additional dataset are currently

lacking (2/8, 2/8, and 3/8 respectively).

Robustness to Adaptive Attacks

Adaptive attacks are designed to circumvent a particular defense. They often assume com-

plete knowledge of the defense internals, including the design and implementation, and are

designed to challenge the fundamental assumptions of the defense. Adaptive attack evalu-

ation has become strongly-advocated in recent adversarial AI defenses, and prior work has

also proposed guidelines on how to properly design adaptive attacks [366]. However, among

the AD AI defenses, we find that only 3 papers conduct some forms of adaptive attack eval-

uation [283, 248, 347]. Specifically, Nassi et al. [283] applied existing adversarial attacks on

their defense model and find that it is challenging to circumvent the attack detection; Liu et

al. [248] evaluated simultaneous attacks against their consistency checking design between

200

LiDAR and camera object detection, and find that the detection is still effective. Sun et

al. [347] designed adaptive attacks based on the defense assumptions (the LiDAR occlusion

patterns), and show that they fail to break the two defenses.

Status and trends. Despite being strongly-advocated in general adversarial AI defense re-

search [366], currently not many (3/8) of the existing defenses in AD AI security conduct

evaluation against adaptive attacks. However, with the increasing adoption of such practices

in the general adversarial AI domain, this situation on the semantic AD AI security domain

should also see improvements.

7.3.4 Systematization of Evaluation Methodology

At the evaluation methodology level, besides the expected differences due to problem for-

mulations (e.g., attack targets and goals), we notice an interesting general disparity in the

choices of the evaluation levels, which is relatively unique for semantic AI security as op-

posed to generic AI security. Specifically, since here the attack targets are AI components

but the ultimate goals are to achieve system-level attack effect (e.g., crashes), the evaluation

methodology can be designed at both AI component and AD system levels:

Component-level evaluation is to evaluate attack/defense impacts only at the targeted AI

component level (e.g., object detection) without involving (1) other necessary components in

the full-stack AD systems (e.g., object tracking, prediction, planning); and (2) the closed-loop

control [165]. The evaluation metrics are thus component-specific, e.g., detection rate [157,

420], location deviation [335], steering error [226], etc.

System-level evaluation refers to evaluating the attack/defense impacts at the vehicle

driving behavior level considering full-stack AD system pipelines and closed-loop control.

The evaluation setups used to achieve this can be generally classified into two categories: (1)

201

Real vehicle-based, where a real vehicle is under partial (e.g., steering only [210]) or full (i.e.,

steering, throttle, and braking [283, 349]) closed-loop control of the AD system to perform

certain driving maneuvers with the presence of attacks, which are typically deployed in the

physical world as well; and (2) Simulation-based, where the critical elements in the closed-

loop control (e.g., sensing/actuation hardware and the physical world) are fully or partially

simulated, using either existing simulation software [327, 355, 110, 335, 251] or custom-built

modeling [335].

Status and trends. As shown in Table 7.2 and 7.3, the majority (90.5%) of the surveyed

works performed component-level evaluation, likely due to the ease of experiment efforts (no

need to set up real vehicle or simulation), while only 25.4% (16/63) adopted some forms of

system-level evaluation. More discussions are in §7.4.1.

7.4 Scientific Gaps and Future Directions

Based on the systematization of existing works on AD AI security, we summarize a list

of scientific gaps that we observed and also discuss possible solution directions. To avoid

subjective opinions and bias, such observations are drawn from quantitative comparisons

vertically among the choices made in existing AD AI security works along with different

design angles in §7.3 and/or horizontally with security works in closely-related CPS (Cyber-

Physical Systems) domains such as drone and Automatic Speech Recognition and Speaker

Identification (ASR/SI) based on recent SoKs [282, 73].

7.4.1 Evaluation: General Lack of System-Level Evaluation

Scientific Gap 1: It is widely recognized that in AD system, AI component-level errors do

not necessarily lead to system-level effect (e.g., vehicle collisions). However, system-level

202

evaluation is generally lacking in existing works.

As identified in §7.3.4, currently it is not a common practice for AD AI security works to

perform system-level evaluation: overall only 25.4% of existing works perform that, and

such a number is especially low (7.4%) for the most extensively-studied AI component,

camera object detection. In fact, the vast majority (74.6%) of these works only performed

component-level evaluation without making any efforts to experimentally understand the

system-level impact of their attack/defense designs. Admittedly, for CPS systems such

system-level evaluation is generally more difficult due to the involvement of physical compo-

nents. However, we find that for existing security research on related CPS domains such as

drone and ASR/SI, actually almost all attack works perform system-level evaluations (100%

for drone, 94% for ASR/SI based on the SoKs [282, 73]). This shows that the current AD

AI security research community is particularly lagging behind in such common evaluation

practice in CPS security research.

In the CPS verification area, it is actually already widely-recognized that for CPS with AI

components, AI component-level errors do not necessarily lead to system-level effects [149,

332]. For AD systems, this is especially true due to the high end-to-end system-level complex-

ity and closed-loop control dynamics, which can explicitly or implicitly create fault-tolerant

effects for AI component-level errors. In fact, various such counterexamples have already

been discovered in AD system context, e.g., when the object detection model error is at a

far distance for automatic emergency braking systems [149, 332], or such errors can be effec-

tively tolerated by downstream AI modules such as object tracking [209]. This means that

even with high attack success rates shown at the AI component level, it is actually possible

that such an attack cannot cause any meaningful effect to the AD vehicle driving behavior.

For example, as concretely estimated by Jia et al. [209], for camera object detection-only

AI attacks, a component-level success rate of up to 98% can still be not enough to affect

object tracking results. Thus, we believe that for semantic AD AI security research, the

current general lack of system-level evaluation is a critical scientific methodology-level gap

203

that should be addressed as soon as possible.

Future directions. Specific to the AD problem domain, there are various technical chal-

lenges to effectively fill this gap at the research community level. Among the possible op-

tions (§7.3.4), real vehicle-based system-level evaluation is generally unaffordable for most

academic research groups (e.g., $250K per vehicle [133]), not to mention the need for easily-

accessible testing facilities, the high time and engineering efforts needed to set up the testing

environment, and also high safety risks (especially since most AD AI attacks aim at causing

safety damages). Simulation-based evaluation is much more affordable, accessible, and safe,

but researchers still need to spend substantial engineering efforts to instrument existing AD

simulation setup for the security-specific research needs, e.g., modifying the simulated phys-

ical environment rendering [327, 110] or sensing channels [335] for launching attacks. These

might explain why system-level evaluation is not commonly adopted for AD AI security

research today.

To address such impasse, it is highly desired if there can be a community-level effort to

collectively build a common system-level evaluation infrastructure, since (1) the engineering

efforts spent in instrumenting either a real AD vehicle or AD simulation for security research

evaluation share common design/implementation patterns (e.g., common attack entry points

as in §7.3.2); and (2) in AD context, the system-level attack effect can be highly influenced by

driving scenario setups (e.g., large braking distance differences in highway and local roads [55]

and thus the system-level evaluation results are only comparable (and thus scientifically-

meaningful) if the same evaluation scenario and metric calculation are used. Considering

the criticality of such a methodology-level scientific gap, later in §7.5 we take the initiative

to lay the groundwork to foster such a community-level effort.

7.4.2 Research Goal: General Lack of Defense Solutions

204

Scientific Gap 2: Compared to AD AI security attacks, their effective defense solutions

are substantially lacking today, especially those on attack prevention.

As shown in Tables 7.2 and 7.3, among existing semantic AD AI security works, the ratio

of discovered attacks (85.7%) is much higher than effective defense solutions (14.3%). Fur-

thermore, all existing defenses focus on attack detection and mitigation, and none studied

prevention, which is a more ideal form of defense. In comparison, such ratios are much

more balanced in the drone security field [282], where 51% are on attacks and 49% are on

defenses. Also, among the defenses, 33% are for prevention. While attack discovery is the

necessary first step for security research into an emerging area, it is imperative to follow up

with effective defense solutions, especially those on attack prevention, to close the loop of

the discovered attacks and actually benefit the society.

Future directions. As shown in Tables 7.2 and 7.3, many of the AD AI components with

discovered attacks actually do not have any effective defense solutions yet (e.g., lane de-

tection, MSF perception), which are thus concrete defense research directions. Note that

there indeed exist generic AI defenses that are directly applicable (e.g., input transforma-

tion [407]), but it is already found that such generic defenses are generally ineffective against

the CPS domain AI attacks, e.g., for both AD [327, 110] and ASR/SI [199].

Besides considering the currently-undefended AI components, there are also possibly-applicable

defense strategies that have not been explored yet, for example certified robustness [232].

While unexplored (§7.3.3), such a defense is actually highly desired in the AD AI security

domain since it can provide strong theoretical guarantees for AI security in such a safety-

critical application domain. The challenge is that today’s certified robustness designs only

focus on small 2D digital-space perturbations, and thus their extensions to today’s popular

AD AI attack vectors (e.g., physical-world or sensor attacks) are still open research problems.

This requires addressing at least the system-to-AI semantic gap, not to mention potential

deployability challenges as such methods generally have high overhead [400] and thus might

205

be hard to meet the strong real-time requirement in AD context (§7.3.3).

7.4.3 Attack Vector: Cyber-Layer Attack Vectors Under-Explored

Scientific Gap 3: Existing works predominately focus on physical-layer attack vectors,

which leaves the cyber-layer ones substantially under-explored.

As shown in Table 7.2, there are only 11.1% (6/54) AD AI attack works that leverage cyber-

layer attack vectors in their attack designs, assuming ML backdoors [251], malware [205],

remote exploitation [257], and compromised ROS nodes [191], respectively. Among these

four, only the last one is relatively domain-specific to AD. In related CPS domains such as

drones and ASR/SI, such ratio is much higher (>50%): 53.8% for drone attack works [282]

and 52.9% for ASR/SI ones [73]. One observation we have is that many of these works

in related CPS domains exploit domain-specific networking channels such as ground station

communication channel [256] and First-Person View (FPV) channel [323, 276, 141] in drones,

audio files, and telephone networks [72] in ASR/SI systems. However, no existing works in

AD AI security studied such aspects, which can thus be one direction to fill this research

gap.

Future directions. The general design goal of AD AI stack is indeed mostly towards

achieving autonomy only using on-board sensing; however, this does not mean that there are

no networking channels that can severely impact end-to-end driving. For example, at least

the following two are domain-specific, widely-adopted in real-world AD vehicles, and highly

security and safety critical:

High Definition (HD) Map update channel. For L4 vehicles, the accuracy of HD Map is crit-

ical for driving safety as it is the fundamental pillar for almost all AD modules such as

localization, prediction, routing, and planning. Real world dynamic factors (e.g., road con-

structions), make it imperative to keep the HD Map frequently updated, which is typically

over-the-air. For example, when a Waymo AD vehicle detects a road construction, it updates

206

the HD Map and shares the map update with the operations center and the rest of the fleet

in real time [393].

Remote AD operator control channel. Another channel that is also relevant to high-level AD

is the control channel for remote operators. Unlike lower-level AD vehicles, L4 and above

do not have safety drivers onboard. However, after an AD vehicle reaches a fail-safe state, a

remote operator usually take over the control (e.g., happened to a Waymo vehicle stuck on

the road [394]), which is directly safety-critical if hijacked.

7.4.4 Attack Target: Downstream AI Component Under-Explored

Scientific Gap 4: There is a substantial lack of works focusing on downstream AI

components (e.g., prediction, planning), which are equally (if not more) important compared

to upstream ones w.r.t system-level attack effect.

Among the vast majority (50/54) of attack works that target the more practical modular AD

system designs (§2.1.1), so far none of them targeted downstream AI components such as

prediction and planning; they predominately focus on the upstream ones such as perception

and localization. This is understandable since under the most popularly-considered physical-

layer attack model (§7.3.2), upstream ones can be much more directly influenced by attack

inputs (e.g., via physical-world or sensor attacks), while to affect the inputs of downstream

ones such as predication, one has to manipulate the upstream component outputs (e.g.,

object detection) first. However, these downstream ones are actually at least equally (if

not arguably more) important than the upstream ones. For example, errors in the obstacle

trajectory prediction or path planning will actually more directly affect driving decisions

and thus lead to system-level effects. Thus, it is highly desired for future AD AI security

research to fill this gap.

Future directions. To study downstream AI component security, a general challenge is how

to study their component-specific security properties with sufficient isolation with upstream

207

component vulnerabilities, so that we can isolate the causes and gain more security design

insights specific to the targeted downstream component. Here we discuss several possible

solution directions:

Physical-layer attacks by road object manipulation. The prediction component in AD sys-

tems predicts obstacle trajectory based on its detected physical properties (e.g., obstacle

type, dimension, position, orientation, speed). Therefore, assuming upstream components

such as AD perception is functioning correctly, the attacker can directly control a road

object in the physical world (e.g., an attack vehicle on the road), in order to control the

inputs of prediction without relying on vulnerabilities in upstream components. However,

this requires the attack design to ensure that the triggers of the prediction vulnerability are

semantically-realizable, e.g., the attacker-controlled obstacle needs to have a consistent type,

no breaks in the historical trajectory, moving at a reasonable speed, etc.

Physical-layer attacks by localization manipulation. The planning component takes the pre-

diction and localization outputs as inputs to calculate the optimal driving path in the near

future. Therefore, the change in the localization directly affects the decision-making in the

planning. To attack the planning, one can leverage localization-related attack vectors (e.g.,

GPS spoofing) to control planning inputs. However, this only works for AD systems that

purely rely on such input (e.g., GPS) for localization; if MSF-based localization is used, it

is still hard to isolate planning-specific vulnerabilities from MSF algorithm vulnerabilities

(e.g., [335]).

Cyber-layer attacks. Perhaps the most direct way to manipulate the inputs to the downstream

components is via cyber-layer attacks. For example, a compromised ROS node [191] in the

AD system can directly send malicious messages to prediction or planning. Unlike the road

object manipulation method, this does not require the inputs to be semantically-realizable.

This thus forms another motivation to explore more on cyber-layer attacks (§7.4.3).

208

7.4.5 Attack Goal: Goals Other Than Integrity Under-Explored

Scientific Gap 5: Existing attacks predominantly focus on safety/traffic rule violations

or mobility degradation (can be viewed as integrity in AD domain), while other important

security properties such as confidentiality/privacy, availability, and authenticity are under-

explored.

As shown in §7.3.2, almost all (96.3%) existing attacks target the AD-specific manifestation

of integrity (i.e., modify the driving correctness). However, the study of other important

security properties such as confidentiality and availability [343] is substantially lacking: only

2 (3.7%) touch upon confidentiality and none of them study availability. In comparison, the

attack goals in drone security are more balanced: 57.9% (11/19) on integrity/safety, 31.6%

(6/19) on privacy/confidentiality, and 88.9% (8/19) on availability. Although integrity is

highly important in AD context as vehicles are heavy and fast-moving, these other properties

are also equally important from the general security field perspective.

Future directions. To foster future research into these less-explored security properties,

here we discuss a few possible new research angles. For confidentiality/privacy, existing

efforts only consider AD system-internal information leakage (e.g., location), but one can also

consider potential private information extraction from AD system-external information such

as from sensor inputs. In the drone security area, one main privacy attack scenario is along

this direction, e.g., people-spying using the drone camera [390, 281]. For availability, since

it is closely related to the communication channels among AI components, more extensive

exploration on the cyber-layer attacks (§7.4.3) may make such attacks feasible. So far, no

existing works consider authenticity in AD context, but in today’s AD deployment and

commercialization, authenticity can manifest as the authentication of the safety drivers,

mutual authentication between the passenger and the AD vehicle for robotaxi, and mutual

authentication between the consumers and the delivery vehicle for AD goods delivery, which

are within the broader scope of AD AI stack.

209

7.4.6 Community: Substantial Lack of Open Sourcing

Scientific Gap 6: The open-sourcing status of AD AI security works from the security

community is much lacking compared to related communities/domains (e.g., CV, ML/AI,

ASR/SI), which harms the reproducibility and comparability for this emerging area in the

security community.

For each work in Table 7.2 and Table 7.3, we searched for their code or open implementation

in the paper and also on the Internet. Overall, there are less than 20.6% (7/34) papers from

security conferences that release source code. The situation is much worse if we narrow it

down to the sensor attack works, where only 1 (8.3%) out of 12 works released its attack

code. In comparison, the papers published in CV and ML/AI conferences have over 50%

open-source percentages. Interestingly, also in the CPS domain, 50% ASR/SI papers in the

security conferences release their code, which is roughly the same as in CV and ML/AI

conferences. This indicates that it is not that security researchers are not willing to share

code, but more likely related to the diversity of AD AI security papers in the security

conferences. In fact, security conference papers adopt a much more diverse set of attack

vectors than any other conferences as shown in Table 7.2. For example, among the 15

works that use sensor attack vectors, only 2 are from CV conferences and 1 is from ML/AI

conferences. For those papers, it is indeed more difficult to share the code or implementation

since hardware designs are usually involved. In comparison, the attack vectors in ASR/SI are

much more uniform; they predominantly leverage malicious sound waves, which is convenient

to modify, and can be evaluated digitally.

Future directions. There is no doubt that we should encourage more open-sourcing efforts

from the security community such that future works can benefit from it. However, the

challenge is in which form the hardware implementations should be shared such that such

sharing can be more directly useful for the community. Here we discuss two possible solution

directions based on our observations from prior works:

210

Open-source hardware implementation references. Since the reproduction cost and effort for

hardware implementations are generally higher than software-only ones, it is actually more

desired for researchers to release as many details about their hardware design as possible.

This often means the circuit diagram, printed circuit board layout, bill of materials, and de-

tailed experiment procedures. One example is the LiDAR spoofing work by Shin et al. [336],

where they clearly list such details on a website and thus other groups were able to reproduce

and build upon their designs [111].

Open-source attack modeling code. Another interesting trend in recent sensor attack works

is that they often model the attack capability in the digital space for large-scale evaluation.

For example, Man et al. [264] modeled the camera lens flare effect caused by attacker’s light

beams in digital images, Ji et al. [206] modeled the image blurry effect caused by adversarial

acoustic signals on the camera stabilization system; Cao et al. [111] models the LiDAR

spoofing capability as the number of points that can be injected to the point cloud; Shen

et al. [335] models GPS spoofing as arbitrary GPS position that can be controlled by the

attacker. Since these modelings are either validated in the physical-world experiments or

backed up by the literature, sharing such code will greatly ease the reproduction in future

works.

Our initiated community-level evaluation infrastructure development effort in §7.5 may also

help fill this gap by encouraging open-sourcing practices (§7.5.1).

7.5 PASS : System-Driven Evaluation Platform for AD

AI Security

Among all the identified scientific gaps, the one on the general lack of system-level evaluation

(§7.4.1) is especially critical as proper evaluation methodology is crucial for valid scientific

211

progress. In this section, we take the initiative to address this critical scientific methodology-

level gap by developing an open-source, uniform, and extensible system-driven evaluation

platform, named PASS (Platform for Autonomous driving Safety and Security).

7.5.1 Design Goals and Choices

As described in §7.4.1, to effectively fill this gap at the research community level, a common

system-level evaluation infrastructure is highly desired. To foster this, we take the initiative

to build a system-driven evaluation platform that unifies the common system-level instru-

mentations needed for AD AI security evaluation based on our SoK (§7.3), and abstracts

out the customized attack/defense implementation and experimentation needs as platform

APIs. Such a platform thus directly provides the aforementioned evaluation infrastructure

as it allows semantic AD AI security works to directly plug in their attack/defense designs to

obtain system-level evaluation results, such that (1) without the need to spend time and ef-

forts to build the lower-level evaluation infrastructure; and (2) generating results in the same

evaluation environment and thus directly comparable to prior works. Note that although

some existing works developed simulation-based system-level testing methods for AI-based

AD [149, 293, 373, 150], their designs are for safety not security (no threat models), and

thus cannot readily support the evaluation of different AD AI attack/defense methods.

This platform will be fully open-sourced so that researchers can collectively develop new

APIs to fit future attack/defense evaluation needs, and also contribute attack and defense

implementations to form a semantic AD AI security benchmark, which can improve compa-

rability, reproducibility, and also encourage open-sourcing (currently lacking in the security

community as in §7.4.6). We also plan to provide remote evaluation services for research

groups that do not have the hardware resources required to run this platform, which will be

maintained by the project team.

212

Method FD AF SF FX EF RP Papers

Real vehicle-based [283, 210, 349]
Simulation-based [205, 327, 355, 410, 110, 257, 335, 251]

FD = fidelity, AF = affordability, SF = safety, FX = flexibility,
EF = efficiency, RP = reproducibility; = low, = medium, = high

Table 7.4: System-level evaluation methods used in existing works. Such complementariness
motivates us to choose a simulation-centric hybrid design for our evaluation platform.

Simulation-centric hybrid design. To build such a community-level evaluation infras-

tructure, a fundamental design challenge is the trade-off between real vehicle-based and

simulation-based evaluation methodology, which is shown in Table 7.4. Real vehicle-based is

more fidel as it has the vehicle, sensors, and physical environment all in the evaluation loop,

but simulation is better in all other important research evaluation aspects, ranging from cost,

free of safety issues, high flexibility in scenario customization, convenience of attack deploy-

ment, much faster evaluation iterations, to high reproducibility. Considering their strengths

and weakness, we choose a simulation-centric hybrid design, in which we mainly design for

simulation-based evaluation infrastructure and only use real vehicles for simulation fidelity

improvement (e.g., digital twin [351] and sensor model calibration [351, 265, 278, 396, 123])

and exceptional cases where it is easy to set up the physical scenario and maintain safety.

We choose the design to be simulation-centric because we find that the fidelity drawback

of simulation-based approach is tolerable since (1) our results show that for today’s rep-

resentative AD AI attacks, the attack results and characteristics are highly correlated in

today’s industry-grade simulator and physical world, which indicates sufficient fidelity at

least for such AD AI security evaluation purpose (detailed in §7.5); and (2) the simula-

tion fidelity technology is still evolving as this is also the need for the entire AD indus-

try [136, 395], for example recently there are various new advances in both industry [351]

and academia [351, 265, 278, 396, 123]); and (3) after all the simulation environment can

be considered as a different environmental domain, and practical attacks/defenses should be

capable of such domain adaptations. Such a design is also more beneficial from the commu-

213

nity perspective as it makes the setup of such a platform more affordable for more research

groups.

7.5.2 PASS Design

Our system-driven evaluation platform PASS is guided by two general design rationales: (1)

uniform, aiming at unifying the common system-level evaluation needs at attack/defense im-

plementation, scenario setup, and evaluation metric levels observed in our SoK (§7.3); and (2)

extensible, aiming at making the platform capable of conveniently supporting new future at-

tacks/defenses, AD system designs, and evaluation setups. Specifically, for attacks/defenses

on a certain driving task, our platform defines a list of driving scenarios and metrics, which

help unify the experimental settings and effectiveness measurements. To enable extensibility

for future research, the platform provides a set of interfaces to simplify the deployment of

new attacks/defenses. Based on our SoK, we design the attack/defense interfaces to support

the common categories of attack vectors (§7.3.2) and defense strategies (§7.3.3). In addition,

the platform provides a modular AD system pipeline with pluggable AI components, which

makes the platform easily extensible to different AD system designs.

Fig. 7.2 shows the PASS design, consists of 6 main modules:

AD model. The AD model hosts the end-to-end AD system with the targeted AI compo-

nents under testing. Specifically, the platform provides two AD model choices: modular AD

pipeline and full-stack AD system (e.g., OpenPilot [294], Apollo [7], and Autoware [213]).

The modular AD pipeline is provided as a flexible option to enable AD systems with replace-

able AI components and different system structures. To configure the modular AD pipeline,

the user only needs to modify a human-readable configuration file to specify the desired AI

components to be included.

214

Cyber-layer attacks
(e.g., ML backdoor)

Sensor attacks
(e.g., GPS spoofing)

Full-stack AD systems
(e.g., OpenPilot, Apollo, Autoware)

AD Model Plant ModelB
ridge (e.g., P

ython A
P

I) AD vehicle +
testing facility

Modular AD pipelines
(i.e., AI components + control)

Object
detection ControlObject

tracking Fusion
Planning

AD simulator
(e.g., SVL)

Defense
Plugins

Cyber-layer defenses
(e.g., consistency checking)

Sensor defenses
(e.g., signal authentication)

Attack
Plugins

MetricsMetricsMetrics

ScenariosScenarios

Metric
Calculation
(e.g., collision)

Scenarios

Physical-world attacks
(e.g., stop sign attacks)

Figure 7.2: Design of our system-driven evaluation platform PASS for the semantic AD AI
security community.

Plant model. This is the testing vehicle and physical driving environment. As described

in §7.5.1, our platform is mainly built upon AD simulation (e.g., industry-grade ones such as

SVL [238]). To configure the simulation environment, we define a set of scenarios to describe

the AD vehicle initial position, equipped sensors, testing road, and road objects (e.g., vehicles

and pedestrians). The scenario descriptions are also provided as human-readable files for

easy modification. Benefited from the general AD model structure, the evaluation can also

be performed on a real AD vehicle (e.g., L4-capable vehicles as shown in Fig. 7.3) under the

driving scenarios provided by the testing facility.

Bridge. Bridge is the communication channel between the AD and plant models for sensor

data reading and AD vehicle actuation. For better extensibility, it supports function hooking

for modifying the communication data at runtime.

Attack/Defense plugins. These two host the available attacks and defenses, which are

built upon the attack/defense interfaces provided by the platform. To ease the deployment

of future attacks/defenses, these interfaces are designed to support common attack vectors

(§7.3.2) and defense strategies (§7.3.3). Specifically, 3 general types of interfaces are defined

215

a b

Figure 7.3: AD vehicles for the system-driven evaluation platform: (a) A real-vehicle sized
chassis with L4 AD sensors and closed-loop control; (b) An L4 AD vehicle built upon Lincoln
MKZ. Both are equipped with L4 AD-grade sensors such as LiDARs, cameras, RADARs,
GPS, and IMU.

based on the SoK:

• Physical-world attack interface enables dynamically loading 2D/3D objects to the sim-

ulation environment at arbitrary locations. It covers many physical-world attacks

leveraging object texture, shape, and position.

• Sensor attack/defense interface enables registering customized sensor data operations,

which model the sensor attack or defense behaviors, in the bridge.

• Cyber-layer attack/defense interfaces support adding/replacing components in the AD

system and serve as versatile interfaces to enable cyber-layer attacks/defenses. For

example, ML backdoor attacks can be implemented by replacing an existing ML model

with a trojan one. Consistency-checking based defense can be implemented by adding

component with consistency checking logic.

Metric calculation. This is in charge of collecting measurements from all other modules

in the platform and calculating the scenario-dependent evaluation metrics. Based on our

SoK of attack goals (§7.3.2), we include system-level metrics such as safety (e.g., collision

rate [205, 327]), traffic rule violation (e.g., lane departure rate [327, 335]), trip delay, etc. For

216

comprehensiveness we also include component-level metrics (e.g., frame-wise attack success

rate [420, 157, 120]).

Implementation. We have implemented several variations for each module in the plat-

form. The AD model supports modular AD pipelines for STOP sign attack evaluation

(Appendix J) and full-stack AD systems (Apollo [7] and Autoware [213]). Our plant model

includes an industry-grade AD simulator [238] and real L4-capable AD vehicles (Fig. 7.3).

For bridge, we reuse the ones (Python APIs, CyberRT, and ROS) provided by the AD

simulator. Specifically, we modified the AD simulator, bridge, and modular AD pipeline

to enable the 3 general attack/defense interfaces mentioned above. For metrics, we imple-

mented collision and STOP sign-related violation checkings. Note that we do not intend to

cover all existing attacks/defenses, and also believe we should not ; our goal (§7.5.1) is to

initiate a community-level effort to collaboratively build a common system-level evaluation

infrastructure, which is the only way to make such community-level infrastructure support

sustainable and up-to-date. We will fully open-source the platform (will be available on our

project website [25]) and welcome community contributions of new attack/defense interfaces

and implementations.

7.5.3 Case Study: System-Level Evaluation on Stop Sign Attacks

Evaluation methodology. In this section, we use PASS to perform system-level evalua-

tions for the existing STOP sign attacks to showcase the platform capabilities and benefits.

We choose STOP sign attacks because they are the most studied AD AI attack type in the

literature (§5) and none of them have conducted system-level evaluations (§7.3.4).

Evaluated attacks. We evaluate the most safety-critical STOP sign AI attack goal: STOP sign

hiding, which generally leverage malicious object textures to make a STOP sign undetected

(§7.3.2). We reproduced 3 representative designs: ShapeShifter (SS) [120], Robust Physical

217

a b c

Figure 7.4: Reproduced semantic AD AI attacks on STOP sign hiding: (a) RP2 [157] in
simulator, (b) SS [120] in simulator, and (c) SS [120] in physical world.

Perturbations (RP2) [157], and Seeing Isn’t Believing (SIB) [420]. Fig. 7.4 (a) and (b) show

the reproduced adversarial STOP signs. Details are in Appendix I.

AD model configurations. We configure the modular AD pipeline (§7.5.2) in the platform as a

general AD system that includes camera object detection, object tracking, fusion (optional),

planning, and control. Specifically, we configure 3 variations of the AD pipeline based on

the availability of map and fusion (detailed configurations are in Appendix J).

Driving scenarios. We select a straight urban road with a STOP sign at an intersection

shown in Fig. 7.4 (a) and (b). We evaluate under 5 common local-road driving speeds

(10–30 mph with 5-mph step), 3 lighting conditions (sunrise, noon, sunset), and 3 weather

conditions (sunny, cloudy, rainy). During evaluation, the malicious STOP sign images are

deployed in the simulator via physical-world attack interface (§7.5.2).

Evaluation metrics. To evaluate system-level attack effectiveness, we select traffic rule re-

lated metrics for STOP sign scenarios: stopping rate refers to the percentage of successfully

stopping (but may already violate the stop line), violation rate is the percentage of violating

the stop line, violation distance is the distance over the stop line if violated. For comparison,

we also calculate component-level metrics used in prior works [157, 420]: frame-wise attack

success rate, fsucc, is the percentage of frames that are misdetected in different STOP sign

distance ranges, the best attack success rate in n consecutive frames, f
max(n)
succ , is proposed by

Zhao et al. [420] as a better metric to measure whether enough success has been accumu-

218

lated. We use n = 50 (instead of 100 [420]) since most of our simulation scenarios complete

within 100 frames due to the low driving speeds (i.e., short braking distances).

Result highlights. Our evaluation results show that at the component level, all 3 attacks

have very high effectiveness: SS achieves fsucc > 90% in 10 m and f
max(50)
succ close to 100% in

all scenarios; RP2 and SIB both achieve f
max(50)
succ = 100% when the speed is 10 mph. Both the

aggregated attack results and those at specific distance/angle ranges are all very similar to the

reported component-level attack effectiveness in the original papers (Appendix I). However,

similar to prior security/robustness studies for other AD AI components [332, 209], we find

that such high attack success is far from achieving the system-level attack goals : RP2 and

SIB are not able to cause STOP sign violations at all across all driving scenario combinations;

SS can only succeed when the speed is very low (10 mph) while failing for all other speeds

(15-30 mph), which are more common speed ranges for STOP sign roads. Detailed results

are in Table 7.5.

Such low system-level attack effectiveness is mainly due to the tracking component in the

modular AD pipeline, which were set up using representative parameters recommended by

Zhu et al. [423]. Although the attacks are quite effective at close distances, the STOP sign

track created before is still alive, so that the AD system is always aware of the STOP sign and

keeps committing the stop decisions. For SS with low speed (10 mph), the attack can hide

the detection in more consecutive frames, and thus the STOP sign track can be eventually

deleted. This thus again validates the non-triviality of the AI-to-system semantic gap, which

further demonstrates the necessity of system-level evaluations for semantic AD AI security

(§7.4.1). Meanwhile, here we are able to experimentally quantify whether and how much the

system-level attack effectiveness for a given AD AI attack depends on the driving scenario

(i.e., driving speed), which is only made possible with our simulation-centric design that can

more flexibly support different driving scenarios, AD designs, and system-level metrics.

219

Component-level metrics System-level metrics
Speed fsucc

f
max(50)
succ

Stop Violation Violation
A
tt
a
ck

A
D

P
ip

(mph) Lighting Weather <10m <20m <30m rate rate distance

S
S
[1
2
0]

M
a
p

10 91.3% 78.8% 67.4% 100.0% 0.0% 100.0% ∞
15 99.8% 82.2% 60.4% 99.8% 100.0% 0.0% 0 m
20 Noon Sunny 100.0% 87.8% 68.6% 100.0% 100.0% 0.0% 0 m
25 100.0% 88.0% 69.2% 100.0% 100.0% 0.0% 0 m
30 100.0% 88.7% 71.2% 98.0% 100.0% 0.0% 0 m

25
Noon

Cloudy 100.0% 88.8% 69.8% 100.0% 100.0% 0.0% 0 m
Rainy 99.3% 86.7% 68.3% 99.0% 100.0% 0.0% 0 m

Sunrise
Sunny

100.0% 83.9% 66.0% 100.0% 100.0% 0.0% 0 m
Sunset 100.0% 88.0% 69.2% 100.0% 100.0% 0.0% 0 m

P
in
h
o
le

10 91.3% 78.8% 67.5% 100.0% 0.0% 100.0% ∞
15 100.0% 82.5% 60.6% 100.0% 100.0% 0.0% 0 m
20 Noon Sunny 100.0% 87.8% 68.6% 100.0% 100.0% 0.0% 0 m
25 100.0% 88.5% 69.5% 100.0% 100.0% 0.0% 0 m
30 100.0% 85.4% 68.6% 97.1% 100.0% 0.0% 0 m

F
u
si
on

10 100.0% 86.1% 73.8% 100.0% 100.0% 0.0% 0 m
15 100.0% 82.3% 60.4% 100.0% 100.0% 0.0% 0 m
20 Noon Sunny 100.0% 87.8% 68.6% 100.0% 100.0% 0.0% 0 m
25 100.0% 89.8% 70.6% 99.8% 100.0% 0.0% 0 m
30 100.0% 88.7% 71.2% 97.5% 100.0% 0.0% 0 m

R
P
2
[1
57
]

M
a
p

10 78.0% 51.8% 46.3% 100.0% 100.0% 0.0% 0 m
15 73.4% 46.9% 46.0% 84.5% 100.0% 0.0% 0 m
20 Noon Sunny 76.1% 54.8% 52.2% 88.0% 100.0% 0.0% 0 m
25 61.6% 42.1% 43.6% 54.5% 100.0% 0.0% 0 m
30 70.0% 49.8% 45.8% 59.6% 100.0% 0.0% 0 m

25
Noon

Cloudy 56.7% 38.6% 36.8% 50.0% 100.0% 0.0% 0 m
Rainy 66.6% 49.4% 54.2% 65.5% 100.0% 0.0% 0 m

Sunrise
Sunny

59.5% 44.5% 54.5% 71.6% 100.0% 0.0% 0 m
Sunset 63.8% 48.3% 54.6% 69.0% 100.0% 0.0% 0 m

P
in
h
ol
e

10 78.0% 51.8% 46.3% 100.0% 100.0% 0.0% 0 m
15 73.6% 47.0% 46.4% 85.1% 100.0% 0.0% 0 m
20 Noon Sunny 77.7% 56.8% 53.9% 91.4% 100.0% 0.0% 0 m
25 60.9% 42.4% 44.0% 54.9% 100.0% 0.0% 0 m
30 74.5% 53.8% 49.1% 64.3% 100.0% 0.0% 0 m

F
u
si
on

10 78.0% 51.8% 46.3% 100.0% 100.0% 0.0% 0 m
15 73.4% 46.9% 46.0% 84.5% 100.0% 0.0% 0 m
20 Noon Sunny 78.0% 56.1% 53.3% 90.2% 100.0% 0.0% 0 m
25 66.3% 46.2% 47.0% 59.8% 100.0% 0.0% 0 m
30 76.2% 55.1% 49.6% 65.9% 100.0% 0.0% 0 m

S
IB

[4
20
] M

ap

10 74.7% 57.4% 46.7% 100.0% 100.0% 0.0% 0 m
15 45.3% 28.9% 21.2% 47.1% 100.0% 0.0% 0 m
20 Noon Sunny 73.7% 59.8% 50.3% 100.0% 100.0% 0.0% 0 m
25 76.7% 66.2% 58.9% 100.0% 100.0% 0.0% 0 m
30 83.4% 74.1% 67.8% 100.0% 100.0% 0.0% 0 m

F
u
si
on

10 74.7% 57.4% 46.7% 100.0% 100.0% 0.0% 0 m
15 45.3% 28.9% 21.2% 47.1% 100.0% 0.0% 0 m
20 Noon Sunny 73.7% 59.8% 50.3% 100.0% 100.0% 0.0% 0 m
25 76.7% 66.2% 59.0% 100.0% 100.0% 0.0% 0 m
30 80.6% 70.4% 63.8% 97.5% 100.0% 0.0% 0 m

Table 7.5: Component- and system-level evaluation results of 3 STOP sign attacks. Results
are averaged over 10 runs for each configuration.

220

7.5.4 Simulation Fidelity Evaluation

Although the simulation fidelity drawback is tolerable since (1) the simulation fidelity is

evolving and can be improved by our real vehicle setup and (2) practical attacks/defenses

should be capable of domain adaptations (§7.5.1), we still hope that today’s simulation

fidelity is readily usable for AD AI security evaluation purposes. In this section, we thus

take the STOP sign attack as an example to concretely understand this.

Experimental setup. We use the SS attack, and calculate the similarity between the

STOP sign detection results in the physical world and the simulation environment in our

platform. In the physical-world experiments, we print the adversarial STOP sign and overlay

it on a portable STOP sign as shown in Fig. 7.4 (c). We have obtained the permit from our

institute’s transportation department to reserve a dead-end single-lane road for controlled

experiments. Correspondingly, we use a simulation environment with similar road geometry.

In both settings, the vehicle drives at 10 mph from 300 feet until passes the STOP sign.

In the physical-world setting, we use an iPhone 11 mounted on the vehicle windshield to

record the driving traces. We collect a total of 20 driving traces with different STOP sign

placements in the physical world. Since simulation results are generally quite stable, we only

collect one trace in the simulation. We then run object detection on each camera frame

to obtain the STOP sign detection confidences in the driving traces. To ensure the traces

are synchronized and comparable, we trim and interpolate confidences in the physical-world

traces based to a 20 Hz frequency same as in the simulation. We then calculate the Pearson’s

correlation between the simulation trace and each physical-world trace.

Results. Among 20 physical-world driving traces, we find that an average correlation coef-

ficient r of 0.75 (lowest: 0.62, highest: 0.80), and all correlations are statistically significant

(p < 0.05). For Pearson’s correlation, r > 0.5 is considered strongly correlated [128]. This

shows that at least for such representative AD AI attack type, today’s simulation fidelity is

221

sufficient at least for our AD AI security evaluation purpose.

7.5.5 Educational Usage of PASS

Beyond research usage, PASS can also be used for educational purposes. We recently orga-

nize a Capture The Flag (CTF) event focusing on AD AI security (AutoDriving CTF [5],

co-located with DEF CON 29). Specifically, we leverage an earlier version of PASS to create

simulation-based CTF challenges on GPS/LiDAR spoofing, lane detection attacks, etc. In

total, over 100 teams across the globe participated in the CTF. Since PASS was provided

as a resource for the teams, after the event, we asked the 5 winning teams for feedback on

the platform (IRB exempted). Particularly, all 5 teams consider the platform as helpful for

solving the challenges. However, due to relatively high resource requirement (e.g., GPUs),

2 teams suggested providing the platform as an online service. This is also the reason why

providing remote evaluation services is part of our design goals in §7.5.1.

7.6 Summary

In this work, we perform the first systematization of knowledge of the growing semantic

AD AI security research space. We collect and analyze 53 such papers, and systematically

taxonomize them based on research aspects critical for the security field. We summarize 6

most substantial scientific gaps based on both quantitative vertically and horizontal com-

parisons, and provide insights and potential future directions not only at design level, but

also at research goal, methodology, and community levels. To address the most critical sci-

entific methodology-level gap, we take the initiative to develop an open-source, uniform, and

extensible system-driven evaluation platform PASS for the community. We hope that the

systematization of knowledge, identified scientific gaps, insights, future direction, and our

222

community-level evaluation infrastructure building efforts can foster more extensive, realistic,

and democratized future research into this critical research space.

223

Chapter 8

Conclusion and Future Work

This chapter concludes the dissertation by highlighting the contributions in my research and

discusses the future directions.

8.1 Conclusion

In this dissertation, I systematically analyze the security of state-of-the-art production-grade

AD systems [7, 131] and design 3 highly safety-critical attacks (FusionRipper [335], ROI

attack [355], and DRP attack [327]) that can (1) introduce large lateral deviations in MSF-

based localization using GPS spoofing alone, which can be further leveraged to (2) fool the

traffic light detection in high-level AD systems, and (3) cause unexpected lane departures

with carefully crafted benign-looking road dirty patterns for DNN-based ALC in low-level

AD systems. On the defense side, I explore practical defense opportunities that are readily-

available in CAV systems to defend against existing lateral-direction localization attacks [335]

to high-level AD systems and CV data spoofing attacks [119] against intelligent traffic signal

control systems. Given the increasing number of research works in AD security, I also sys-

224

tematize the existing research efforts in recent years by performing the first SoK of semantic

AD AI security to help guide future research in this emerging domain. More generally, my

research is able to demonstrate that CAV systems’ reliance on the physical-layer informa-

tion inevitably introduces new security challenges that can be leveraged by attackers to cause

safety-critical consequences. On the other hand, such CAV systems also contain physical-

layer information that can be repurposed for practical defense purposes against existing

attacks.

8.2 Future Work

8.2.1 Simultaneous Attacks on Physical-Layer Information

Simultaneous attacks to make MSF attacks deterministic. As shown in the FusionRipper

work (§3.3), the take-over vulnerability in MSF is non-deterministic because of the real-

time dynamic factors such sensor noises and algorithm inaccuracies. In other words, the

attacker cannot accurately predict when and where the vulnerable period will occur during

the attack. This limits the applicability of the attack, e.g., ambush attacks at attacker-

specified locations. To overcome this, a potential direction is simultaneous attacks that aim

to increase the sensor noises and algorithm inaccuracies deterministically at certain location

while launching the GPS spoofing. Specifically, the LiDAR locator performance depends

on the road condition and LiDAR point cloud measurement, where both can potentially

be influenced by physical-layer attack vectors. For example, the attacker can change the

physical world environment by adding/removing road objects; LiDAR spoofing [336, 111]

can add new points or remove existing points to/from the point cloud. In such cases, it

might be possible to deterministically increase the LiDAR inaccuracy and noise. However, it

is still unclear to what extent such attack vectors can influence the point cloud matching in

225

the LiDAR locator and whether such influence is large enough to enable the take-over effect.

Simultaneous attacks to evade defenses that leverage physical-layer information. For defenses

that leverage physical-layer information to cross-validate other cyber- or physical-layer at-

tacks, attackers could launch simultaneous attacks on such physical-layer defense sources to

evade the detection. For example, LD3 and CV defense are vulnerable to simultaneous ma-

nipulation of the camera data when launching GPS and data spoofing attacks, respectively.

There are multiple possible attack vectors that can manipulate the camera data. In fact, for

LD3, our DRP attack (§4.2) and prior works [283, 210] have demonstrated that perturba-

tions to the road surface are able to control the camera-based lane detection outputs; for CV

defense, many physical world adversarial attacks [417, 279, 388] have been demonstrated to

be effective against camera-based vehicle detection. However, such simultaneous attacks re-

quire addressing the nontrivial challenge of attack synchronization. For example, the existing

FusionRipper attack to MSF localization is non-deterministic as mentioned above. To evade

LD3, the attack on the camera side needs to not only synchronize the deviation amount but

also the deviation timing with the FusionRipper attack. Similarly, to evade CV defense, the

attacker needs to adapt the malicious vehicle detection (i.e., vehicle position and velocity) in

the camera range with the dynamic out-of-range CVs and RVs such that the spoofing CVs

at the far position would be considered as benign CVs.

8.2.2 Security Analyses on Downstream AD AI Components

As shown in Chapter 7, currently there is a substantial lack of works focusing on down-

stream AI components (e.g., prediction, planning), which are equally (if not more) impor-

tant compared to upstream ones (e.g., perception, localization) w.r.t. system-level attack

effect. Therefore, a future direction is to study the security of those downstream compo-

nent behaviors leveraging attacker-controllable physical-layer information, e.g., road objects

226

and sensor data. As the downstream components are typically directly related to driving

decision-making, the vulnerabilities in them can often directly cause system-level attack

consequences, such as overly-aggressive (e.g., those lead to collisions) or overly-conservative

(e.g., those lead to commercial service degradation) driving behaviors.

Addressing the system-to-AI semantic gap. Since the downstream AI components are situ-

ated deeply in the AD pipeline, it is theoretically more difficult to address the system-to-AI

semantic gap (§7.1) than the attacks to the upstream ones. In addition, when applying

physical-layer attacks, it is possible that the triggered vulnerability is due to upstream com-

ponents instead of the downstream ones. Therefore, the security analyses, if done automat-

ically, should ideally be able to accurately attribute the root causes of the vulnerabilities

to reduce manual triage efforts. In AD systems, the upstream components are in charge

of interpreting the semantics of the driving environment (e.g., ego-vehicle location, obstacle

type/dimension/motion, road geometry), and the downstream components make driving de-

cisions based on such semantics. Therefore, a potential solution to address such system-to-AI

semantic gap is to directly create/model a driving environment with semantic perturbations,

e.g., changing ego-vehicle placement, adding/modifying a vehicle, etc. This can be done in

either the physical world or in simulation. However, due to the safety risks and high cost of

security testing in the physical world, it is thus more attractive to adopt simulation such as

the system-driven evaluation platform PASS (§7.5).

8.2.3 Defense Generality Improvements

Generality of LD3 to other available road markings. Although LD3 can already cover the

majority attack scenarios benefit from the non-deterministic nature of state-of-the-art lateral-

direction localization attack and is generally available for autonomous driving trucks, the

lane line coverage is still a challenge for LD3, especially in the intersections on urban roads.

227

To address this, a potential improvement is to include other available road markings, e.g.,

stop lines [246] and crosswalk markings [94], to localize the vehicle and to detect localization

deviations. However, it is still unclear how pervasive such road markings are and more

importantly, how to seamlessly switch between the usage of different road markings in LD3

to maintain consistent defense capability.

Generality of CV defense to vehicle-side CV applications. In Chapter 6, we demonstrate

the effectiveness of our CV defense against two representative congestion attacks on the

infrastructure-side CV application. However, since the defense is based on a general prin-

ciple that uses physical-layer information to cross validate the cyber-layer information, it

presents as a promising spoofing defense solution for vehicle-side CV applications, e.g., co-

operative adaptive cruise control [337], vehicle platooning [98]. However, for such applica-

tions, the coverage of infrastructure-side sensors would be a main concern, since the existing

infrastructure-side sensors are mostly installed in intersections due to their direct benefit to

signal control. Since the minimum required signal spacing for major arterial roads is 1/2

miles [384, 272, 342], the intersection sensors may already able to provide a good coverage

to build the physical root-of-trust. Therefore, a potential direction is to systematically ex-

plore the tradeoff between the defense effectiveness and infrastructure-side sensor coverage

to assist future CV infrastructure design.

8.2.4 System-Driven Evaluation Platform for AD AI Security

In Chapter 7, we also identify that existing semantic AD AI security research works exhibits

a general lack of system-level evaluation (§7.4.1), which is especially critical for measuring

meaningful scientific progress. To address this critical gap, we took the initiative to de-

velop an open-source, uniform, and extensible system-driven evaluation platform, named

PASS [334]. However, as a community-level effort, the current PASS design/implementation

228

is still incomplete. In the future, more research/engineering efforts are needed to extend the

security interface design/implementation, integrate more AD AI attacks/defenses, include

more diverse driving scenarios/metrics for evaluation. To foster community-level engage-

ment, we plan to continue organizing annual CTF events upon the platform for education

purposes and to encourage open-source contributions.

229

Bibliography

[1] 2019 MKZ. https://www.lincoln.com/services/assets/Brochure?make=

Lincoln&model=MKZ&year=2019.

[2] 2020 Accord Hybrid Owner’s Manual. http://techinfo.honda.com/rjanisis/

pubs/OM/AH/ATWA2020OM/enu/ATWA2020OM.PDF.

[3] 40+ Corporations Working On Autonomous Vehicles. https://www.cbinsights.com/
research/autonomous-driverless-vehicles-corporations-list.

[4] Apollo Data Open Platform. http://apollo.auto/index.html.

[5] AutoDriving CTF. https://autodrivingctf.org/.

[6] Autoware Wiki. https://gitlab.com/autowarefoundation/autoware.ai/

autoware/-/wikis/Overview.

[7] Baidu Apollo. https://github.com/ApolloAuto/apollo.

[8] Baidu Apollo Perception Module. https://github.com/ApolloAuto/apollo/tree/

master/modules/perception.

[9] Baidu Launches Apollo Go Robotaxis In Beijing, Cangzhou,
and Changsha. https://cleantechnica.com/2020/09/11/

baidu-launches-apollo-go-robotaxis-in-beijing-cangzhou-changsha/.

[10] Baidu rolls out China’s first paid, driverless taxi service. https://techwireasia.

com/2021/05/baidu-rolls-out-chinas-first-paid-driverless-taxi-service/.

[11] Baidu’s self-driving bus, Robobus, is on cusp of commercial operation. https://www.
globaltimes.cn/page/202104/1220826.shtml.

[12] California Commercial Driver Handbook: Section 2 – Driving Safely. https://www.

dmv.ca.gov/portal/dmv/detail/pubs/cdl_htm/sec2.

[13] California Vehicle Code 21460. https://leginfo.legislature.ca.gov/faces/

codes_displaySection.xhtml?lawCode=VEH§ionNum=21460.

[14] California Vehicle Code 21663. https://leginfo.legislature.ca.gov/faces/

codes_displaySection.xhtml?lawCode=VEH§ionNum=21663.

230

https://www.lincoln.com/services/assets/Brochure?make=Lincoln&model=MKZ&year=2019
https://www.lincoln.com/services/assets/Brochure?make=Lincoln&model=MKZ&year=2019
http://techinfo.honda.com/rjanisis/pubs/OM/AH/ATWA2020OM/enu/ATWA2020OM.PDF
http://techinfo.honda.com/rjanisis/pubs/OM/AH/ATWA2020OM/enu/ATWA2020OM.PDF
https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list
https://www.cbinsights.com/research/autonomous-driverless-vehicles-corporations-list
http://apollo.auto/index.html
https://autodrivingctf.org/
https://gitlab.com/autowarefoundation/autoware.ai/autoware/-/wikis/Overview
https://gitlab.com/autowarefoundation/autoware.ai/autoware/-/wikis/Overview
https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo/tree/master/modules/perception
https://github.com/ApolloAuto/apollo/tree/master/modules/perception
https://cleantechnica.com/2020/09/11/baidu-launches-apollo-go-robotaxis-in-beijing-cangzhou-changsha/
https://cleantechnica.com/2020/09/11/baidu-launches-apollo-go-robotaxis-in-beijing-cangzhou-changsha/
https://techwireasia.com/2021/05/baidu-rolls-out-chinas-first-paid-driverless-taxi-service/
https://techwireasia.com/2021/05/baidu-rolls-out-chinas-first-paid-driverless-taxi-service/
https://www.globaltimes.cn/page/202104/1220826.shtml
https://www.globaltimes.cn/page/202104/1220826.shtml
https://www.dmv.ca.gov/portal/dmv/detail/pubs/cdl_htm/sec2
https://www.dmv.ca.gov/portal/dmv/detail/pubs/cdl_htm/sec2
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=VEH§ionNum=21460
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=VEH§ionNum=21460
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=VEH§ionNum=21663
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=VEH§ionNum=21663

[15] Cohda Wireless OBU. https://www.cohdawireless.com/solutions/hardware/

mk5-obu/.

[16] Connected Vehicle Applications for Mobility. https://www.its.dot.gov/pilots/

pilots_mobility.htm.

[17] Dirty Road Patch Attack Project Website. https://sites.google.com/view/

cav-sec/drp-attack.

[18] Does your car have automated emergency braking? It’s a big fail for pedestrians.
https://zd.net/2MoUqpd.

[19] Guide to Lane Departure Warning & Lane Keeping As-
sist. https://www.consumerreports.org/car-safety/

lane-departure-warning-lane-keeping-assist-guide/.

[20] HD Maps: New Age Maps Powering Autonomous Vehicles. https://www.

geospatialworld.net/article/hd-maps-autonomous-vehicles/.

[21] Hyundai plans to launch a free robot taxi service in Cal-
ifornia. https://www.theverge.com/2019/10/25/20932237/

hyundai-self-driving-car-ride-hail-irvine-date.

[22] Introduction to Self-Driving Cars. https://www.coursera.org/learn/

intro-self-driving-cars.

[23] Lyft and Aptiv Have Completed 50,000 Self-Driving Car Rides in Las Vegas. https:
//www.cnet.com/roadshow/news/lyft-aptiv-self-driving-car-50k-rides/.

[24] Nuro can now operate and charge for autonomous delivery services in California.
https://tcrn.ch/3mL70PI.

[25] Project Website for the SoK of Semantic AD AI Security. https://sites.google.

com/view/cav-sec/pass.

[26] SAVIOR codebase. https://github.com/Cyphysecurity/SAVIOR.

[27] See What Tesla Autopilot Sees At Night In Rain: Video. https://insideevs.com/

news/348362/video-what-tesla-autopilot-sees-night-rain/.

[28] Self-Driving Car Engineer Nanodegree. https://www.udacity.com/course/

self-driving-car-engineer-nanodegree--nd013.

[29] Self-Driving Fundamentals: Featuring Apollo. https://www.udacity.com/course/

self-driving-car-fundamentals-featuring-apollo--ud0419.

[30] ShapeShifter. https://github.com/shangtse/robust-physical-attack.

[31] State Estimation and Localization for Self-Driving Cars. https://www.coursera.

org/learn/state-estimation-localization-self-driving-cars.

231

https://www.cohdawireless.com/solutions/hardware/mk5-obu/
https://www.cohdawireless.com/solutions/hardware/mk5-obu/
https://www.its.dot.gov/pilots/pilots_mobility.htm
https://www.its.dot.gov/pilots/pilots_mobility.htm
https://sites.google.com/view/cav-sec/drp-attack
https://sites.google.com/view/cav-sec/drp-attack
https://zd.net/2MoUqpd
https://www.consumerreports.org/car-safety/lane-departure-warning-lane-keeping-assist-guide/
https://www.consumerreports.org/car-safety/lane-departure-warning-lane-keeping-assist-guide/
https://www.geospatialworld.net/article/hd-maps-autonomous-vehicles/
https://www.geospatialworld.net/article/hd-maps-autonomous-vehicles/
https://www.theverge.com/2019/10/25/20932237/hyundai-self-driving-car-ride-hail-irvine-date
https://www.theverge.com/2019/10/25/20932237/hyundai-self-driving-car-ride-hail-irvine-date
https://www.coursera.org/learn/intro-self-driving-cars
https://www.coursera.org/learn/intro-self-driving-cars
https://www.cnet.com/roadshow/news/lyft-aptiv-self-driving-car-50k-rides/
https://www.cnet.com/roadshow/news/lyft-aptiv-self-driving-car-50k-rides/
https://tcrn.ch/3mL70PI
https://sites.google.com/view/cav-sec/pass
https://sites.google.com/view/cav-sec/pass
https://github.com/Cyphysecurity/SAVIOR
https://insideevs.com/news/348362/video-what-tesla-autopilot-sees-night-rain/
https://insideevs.com/news/348362/video-what-tesla-autopilot-sees-night-rain/
https://www.udacity.com/course/self-driving-car-engineer-nanodegree--nd013
https://www.udacity.com/course/self-driving-car-engineer-nanodegree--nd013
https://www.udacity.com/course/self-driving-car-fundamentals-featuring-apollo--ud0419
https://www.udacity.com/course/self-driving-car-fundamentals-featuring-apollo--ud0419
https://github.com/shangtse/robust-physical-attack
https://www.coursera.org/learn/state-estimation-localization-self-driving-cars
https://www.coursera.org/learn/state-estimation-localization-self-driving-cars

[32] Super Cruise - Hands Free Driving — Cadillac Ownership. https://www.cadillac.

com/world-of-cadillac/innovation/super-cruise.

[33] Tesla Autopilot. https://www.tesla.com/autopilot.

[34] Tesla Autopilot Support. https://www.tesla.com/support/autopilot.

[35] Tesla releases new, highly anticipated Traffic Light and Stop
Sign Control feature. https://electrek.co/2020/04/24/

tesla-autopilot-traffic-light-and-stop-sign-control-feature/.

[36] Tesla Sold 2 Million Electric Cars: First Automaker To Reach Milestone. insideevs.
com/news/542197/tesla-sold-2000000-electric-cars/.

[37] Tesla Vulnerable to GNSS Spoofing Attacks. https://www.gpsworld.com/

tesla-model-s-and-model-3-vulnerable-to-gnss-spoofing-attacks/.

[38] The Autonomous Truck Revolution Is Right Around The Cor-
ner. https://www.forbes.com/sites/stevebanker/2021/05/11/

the-autonomous-truck-revolution-is-right-around-the-corner/?sh=

3d0022222c96.

[39] Tinkla: Tinkering with Tesla. https://tinkla.us/.

[40] Toyota 2020 RAV4 Owner’s Manual. https://www.toyota.com/t3Portal/

document/om-s/OM0R024U/xhtml/OM0R024U.html.

[41] Uber is Bringing its Self-Driving Cars to Dallas. https://www.theverge.com/2019/
9/17/20870969/uber-self-driving-car-testing-dallas.

[42] Uber Self-Driving Car Crash: What Really Happened.
https://www.forbes.com/sites/meriameberboucha/2018/05/28/

uber-self-driving-car-crash-what-really-happened.

[43] UPS joins race for future of delivery services by invest-
ing in self-driving trucks. https://abcnews.go.com/Business/

ups-joins-race-future-delivery-services-investing-driving/story?id=

65014414.

[44] Video demo for the FusionRipper attack in the paper. https://sites.google.com/
view/cav-sec/fusionripper.

[45] Wall Street Journal: Tesla’s Driver-Assistance Autopi-
lot Draws Safety Scrutiny. https://www.wsj.com/articles/

teslas-driver-assistance-autopilot-draws-safety-scrutiny-11582672837?

mod=article_inline.

[46] Walmart First to Deliver Driverless Middle Mile. https://multichannelmerchant.

com/operations/walmart-first-to-deliver-driverless-middle-mile/.

232

https://www.cadillac.com/world-of-cadillac/innovation/super-cruise
https://www.cadillac.com/world-of-cadillac/innovation/super-cruise
https://www.tesla.com/autopilot
https://www.tesla.com/support/autopilot
https://electrek.co/2020/04/24/tesla-autopilot-traffic-light-and-stop-sign-control-feature/
https://electrek.co/2020/04/24/tesla-autopilot-traffic-light-and-stop-sign-control-feature/
insideevs.com/news/542197/tesla-sold-2000000-electric-cars/
insideevs.com/news/542197/tesla-sold-2000000-electric-cars/
https://www.gpsworld.com/tesla-model-s-and-model-3-vulnerable-to-gnss-spoofing-attacks/
https://www.gpsworld.com/tesla-model-s-and-model-3-vulnerable-to-gnss-spoofing-attacks/
https://www.forbes.com/sites/stevebanker/2021/05/11/the-autonomous-truck-revolution-is-right-around-the-corner/?sh=3d0022222c96
https://www.forbes.com/sites/stevebanker/2021/05/11/the-autonomous-truck-revolution-is-right-around-the-corner/?sh=3d0022222c96
https://www.forbes.com/sites/stevebanker/2021/05/11/the-autonomous-truck-revolution-is-right-around-the-corner/?sh=3d0022222c96
https://tinkla.us/
https://www.toyota.com/t3Portal/document/om-s/OM0R024U/xhtml/OM0R024U.html
https://www.toyota.com/t3Portal/document/om-s/OM0R024U/xhtml/OM0R024U.html
https://www.theverge.com/2019/9/17/20870969/uber-self-driving-car-testing-dallas
https://www.theverge.com/2019/9/17/20870969/uber-self-driving-car-testing-dallas
https://www.forbes.com/sites/meriameberboucha/2018/05/28/uber-self-driving-car-crash-what-really-happened
https://www.forbes.com/sites/meriameberboucha/2018/05/28/uber-self-driving-car-crash-what-really-happened
https://abcnews.go.com/Business/ups-joins-race-future-delivery-services-investing-driving/story?id=65014414
https://abcnews.go.com/Business/ups-joins-race-future-delivery-services-investing-driving/story?id=65014414
https://abcnews.go.com/Business/ups-joins-race-future-delivery-services-investing-driving/story?id=65014414
https://sites.google.com/view/cav-sec/fusionripper
https://sites.google.com/view/cav-sec/fusionripper
https://www.wsj.com/articles/teslas-driver-assistance-autopilot-draws-safety-scrutiny-11582672837?mod=article_inline
https://www.wsj.com/articles/teslas-driver-assistance-autopilot-draws-safety-scrutiny-11582672837?mod=article_inline
https://www.wsj.com/articles/teslas-driver-assistance-autopilot-draws-safety-scrutiny-11582672837?mod=article_inline
https://multichannelmerchant.com/operations/walmart-first-to-deliver-driverless-middle-mile/
https://multichannelmerchant.com/operations/walmart-first-to-deliver-driverless-middle-mile/

[47] Waymo has launched its commercial self-driving service in Phoenix -
and it’s called ‘Waymo One’. https://www.businessinsider.com/

waymo-one-driverless-car-service-launches-in-phoenix-arizona-2018-12.

[48] Waymo’s Self-Driving Cars Are Near: Meet the Teen Who Rides One
Every Day. https://www.bloomberg.com/news/features/2018-07-31/

inside-the-life-of-waymo-s-driverless-test-family.

[49] Waymo’s driverless taxi service can now be accessed
on Google Maps. https://techcrunch.com/2021/06/03/

waymos-driverless-taxi-service-can-now-be-accessed-on-google-maps/.

[50] Waymo’s next-generation self-driving system can ‘see’ a stop sign
500 meters away. https://www.theverge.com/2020/3/4/21165014/

waymo-fifth-generation-self-driving-radar-camera-lidar-jaguar-ipace.

[51] What Are Connected Vehicles and Why Do We Need Them? https://www.its.dot.

gov/cv_basics/cv_basics_what.htm.

[52] What Are the Benefits of Connected Vehicles? https://www.its.dot.gov/cv_

basics/cv_basics_benefits.htm.

[53] California Penal Code 594. https://leginfo.legislature.ca.gov/faces/codes_

displaySection.xhtml?lawCode=PEN§ionNum=594, 1872.

[54] TuSimple Lane Detection Challenge. https://github.com/TuSimple/

tusimple-benchmark/tree/master/doc/lane_detection, 2017.

[55] A Policy on Geometric Design of Highways and Streets, 7th Edition. AASHTO, 2018.

[56] Hands-on with Comma.ai’s Add-on Level 2 Au-
tonomous Tech. https://www.cnet.com/roadshow/news/

hands-on-with-comma-ais-add-on-level-2-autonomous-tech/, 2018.

[57] Waymo Has Launched its Commercial Self-Driving Service in Phoenix
— and it’s Called ’Waymo One’. https://www.businessinsider.com/

waymo-one-driverless-car-service-launches-in-phoenix-arizona-2018-12,
2018.

[58] Adhesive Patch can Seal Potholes and Cracks on the
Road. https://www.startupselfie.net/2019/05/07/

american-road-patch-seals-potholes-road-cracks/, 2019.

[59] Experimental Security Research of Tesla Autopilot. https://keenlab.tencent.com/
en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf,
2019.

[60] GM Cadillac CT6 Owner’s Manual. https://www.cadillac.com/content/dam/

cadillac/na/us/english/index/ownership/technology/supercruise/pdfs/

2020-cad-ct6-owners-manual.pdf, 2019.

233

https://www.businessinsider.com/waymo-one-driverless-car-service-launches-in-phoenix-arizona-2018-12
https://www.businessinsider.com/waymo-one-driverless-car-service-launches-in-phoenix-arizona-2018-12
https://www.bloomberg.com/news/features/2018-07-31/inside-the-life-of-waymo-s-driverless-test-family
https://www.bloomberg.com/news/features/2018-07-31/inside-the-life-of-waymo-s-driverless-test-family
https://techcrunch.com/2021/06/03/waymos-driverless-taxi-service-can-now-be-accessed-on-google-maps/
https://techcrunch.com/2021/06/03/waymos-driverless-taxi-service-can-now-be-accessed-on-google-maps/
https://www.theverge.com/2020/3/4/21165014/waymo-fifth-generation-self-driving-radar-camera-lidar-jaguar-ipace
https://www.theverge.com/2020/3/4/21165014/waymo-fifth-generation-self-driving-radar-camera-lidar-jaguar-ipace
https://www.its.dot.gov/cv_basics/cv_basics_what.htm
https://www.its.dot.gov/cv_basics/cv_basics_what.htm
https://www.its.dot.gov/cv_basics/cv_basics_benefits.htm
https://www.its.dot.gov/cv_basics/cv_basics_benefits.htm
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=PEN§ionNum=594
https://leginfo.legislature.ca.gov/faces/codes_displaySection.xhtml?lawCode=PEN§ionNum=594
https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
https://www.cnet.com/roadshow/news/hands-on-with-comma-ais-add-on-level-2-autonomous-tech/
https://www.cnet.com/roadshow/news/hands-on-with-comma-ais-add-on-level-2-autonomous-tech/
https://www.businessinsider.com/waymo-one-driverless-car-service-launches-in-phoenix-arizona-2018-12
https://www.businessinsider.com/waymo-one-driverless-car-service-launches-in-phoenix-arizona-2018-12
https://www.startupselfie.net/2019/05/07/american-road-patch-seals-potholes-road-cracks/
https://www.startupselfie.net/2019/05/07/american-road-patch-seals-potholes-road-cracks/
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
https://keenlab.tencent.com/en/whitepapers/Experimental_Security_Research_of_Tesla_Autopilot.pdf
https://www.cadillac.com/content/dam/cadillac/na/us/english/index/ownership/technology/supercruise/pdfs/2020-cad-ct6-owners-manual.pdf
https://www.cadillac.com/content/dam/cadillac/na/us/english/index/ownership/technology/supercruise/pdfs/2020-cad-ct6-owners-manual.pdf
https://www.cadillac.com/content/dam/cadillac/na/us/english/index/ownership/technology/supercruise/pdfs/2020-cad-ct6-owners-manual.pdf

[61] Nissan Rogue Sports Owner’s Manual. https://www.nissan-cdn.net/content/dam/
Nissan/pr/Owners-manuals/rogue-sport/2019-RogueSport-owner-manual.pdf,
2019.

[62] Ford Escape Owner’s Manual. https://www.ford.com/support/vehicle/escape/

2020/owner-manuals/, 2020.

[63] Hyundai Sonata Owner’s Manual. https://owners.hyundaiusa.com/us/en/

resources/manuals-warranties.html, 2020.

[64] Is a $1000 Aftermarket Add-On as Capable as Tesla’s Autopilot and Cadil-
lac’s Super Cruise? https://www.caranddriver.com/features/a30341053/

self-driving-technology-comparison/, 2020.

[65] KIA Seltos Owner’s Manual. https://www.kia.ca/content/ownership/

ownersmanual/21seltos.pdf, 2020.

[66] Lane Keeping Assist System Using Model Predic-
tive Control. https://www.mathworks.com/help/mpc/ug/

lane-keeping-assist-system-using-model-predictive-control.html, 2020.

[67] Model Hacking ADAS to Pave Safer Roads for Autonomous Ve-
hicles. https://www.mcafee.com/blogs/other-blogs/mcafee-labs/

model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/, 2020.

[68] Volvo XC90 Owner’s Manual. https://volvornt.harte-hanks.com/manuals/2020/
XC90_OwnersManual_MY20_en-US_TP29159[1].pdf, 2020.

[69] We Hit the Road with Comma.ai’s Assisted-Driving Tech at CES 2020. https://www.
cnet.com/roadshow/news/comma-ai-assisted-driving-george-hotz-ces-2020/,
2020.

[70] Car Crashes Get Predictable With Ford ‘RoadSafe’ Dash-
board Technology. https://fordauthority.com/2021/09/

car-crashes-get-predictable-with-ford-roadsafe-dashboard-technology/,
2021.

[71] A. Abdo, S. M. B. Malek, Z. Qian, Q. Zhu, M. Barth, and N. Abu-Ghazaleh. Applica-
tion Level Attacks on Connected Vehicle Protocols. In 22nd International Symposium
on Research in Attacks, Intrusions and Defenses ({RAID} 2019), pages 459–471, 2019.

[72] H. Abdullah, M. S. Rahman, W. Garcia, K. Warren, A. S. Yadav, T. Shrimpton, and
P. Traynor. Hear” No Evil”, See” Kenansville”*: Efficient and Transferable Black-Box
Attacks on Speech Recognition and Voice Identification systems. In IEEE S&P. IEEE,
2021.

[73] H. Abdullah, K. Warren, V. Bindschaedler, N. Papernot, and P. Traynor. SoK: The
Faults in our ASRs: An Overview of Attacks against Automatic Speech Recognition
and Speaker Identification Systems. In IEEE S&P, pages 730–747. IEEE, 2021.

234

https://www.nissan-cdn.net/content/dam/Nissan/pr/Owners-manuals/rogue-sport/2019-RogueSport-owner-manual.pdf
https://www.nissan-cdn.net/content/dam/Nissan/pr/Owners-manuals/rogue-sport/2019-RogueSport-owner-manual.pdf
https://www.ford.com/support/vehicle/escape/2020/owner-manuals/
https://www.ford.com/support/vehicle/escape/2020/owner-manuals/
https://owners.hyundaiusa.com/us/en/resources/manuals-warranties.html
https://owners.hyundaiusa.com/us/en/resources/manuals-warranties.html
https://www.caranddriver.com/features/a30341053/self-driving-technology-comparison/
https://www.caranddriver.com/features/a30341053/self-driving-technology-comparison/
https://www.kia.ca/content/ownership/ownersmanual/21seltos.pdf
https://www.kia.ca/content/ownership/ownersmanual/21seltos.pdf
https://www.mathworks.com/help/mpc/ug/lane-keeping-assist-system-using-model-predictive-control.html
https://www.mathworks.com/help/mpc/ug/lane-keeping-assist-system-using-model-predictive-control.html
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/model-hacking-adas-to-pave-safer-roads-for-autonomous-vehicles/
https://volvornt.harte-hanks.com/manuals/2020/XC90_OwnersManual_MY20_en-US_TP29159[1].pdf
https://volvornt.harte-hanks.com/manuals/2020/XC90_OwnersManual_MY20_en-US_TP29159[1].pdf
https://www.cnet.com/roadshow/news/comma-ai-assisted-driving-george-hotz-ces-2020/
https://www.cnet.com/roadshow/news/comma-ai-assisted-driving-george-hotz-ces-2020/
https://fordauthority.com/2021/09/car-crashes-get-predictable-with-ford-roadsafe-dashboard-technology/
https://fordauthority.com/2021/09/car-crashes-get-predictable-with-ford-roadsafe-dashboard-technology/

[74] W. G. Aguilar, V. S. Salcedo, D. S. Sandoval, and B. Cobeña. Developing of a Video-
Based Model for UAV Autonomous Navigation. In Latin American Workshop on
Computational Neuroscience, pages 94–105. Springer, 2017.

[75] K. Ahn, H. Rakha, and D. K. Hale. Multi-Modal Intelligent Traffic Signal Systems
(MMITSS) impacts assessment. Technical report, United States. Department of Trans-
portation, 2015.

[76] S. Ahn, M. J. Cassidy, and J. Laval. Verification of a Simplified Car-Following Theory.
Transportation Research Part B: Methodological, 38(5):431–440, 2004.

[77] N. Akhtar and A. Mian. Threat of Adversarial Attacks on Deep Learning in Computer
Vision: A Survey. IEEE Access, 2018.

[78] D. M. Akos. Who’s Afraid of the Spoofer? GPS/GNSS Spoofing Detection via Au-
tomatic Gain Control (AGC). NAVIGATION: Journal of the Institute of Navigation,
59(4):281–290, 2012.

[79] S. M. Albrektsen, T. H. Bryne, and T. A. Johansen. Robust and Secure UAV Navi-
gation Using GNSS, Phased-Array Radio System and Inertial Sensor Fusion. In 2018
IEEE Conference on Control Technology and Applications (CCTA), pages 1338–1345.
IEEE, 2018.

[80] E. Allak, R. Jung, and S. Weiss. Covariance Pre-Integration for Delayed Measurements
in Multi-Sensor Fusion. In IROS. IEEE, 2019.

[81] M. Amoozadeh, A. Raghuramu, C.-N. Chuah, D. Ghosal, H. M. Zhang, J. Rowe, and
K. Levitt. Security Vulnerabilities of Connected Vehicle Streams and Their Impact on
Cooperative Driving. IEEE Communications Magazine, 53(6):126–132, 2015.

[82] K. H. Ang, G. Chong, and Y. Li. PID Control System Analysis, Design, and Technol-
ogy. CST, 2005.

[83] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon, R. Lyon, A. Ogale, L. Vincent,
and J. Weaver. Google Street View: Capturing the World at Street Level. Computer,
43(6):32–38, 2010.

[84] Baidu Apollo Estimates Object Distances based on Pinhole Camera Model.
https://github.com/ApolloAuto/apollo/blob/v6.0.0/modules/perception/

camera/lib/obstacle/transformer/multicue/obj_mapper.cc#L64.

[85] Aptiv, Audi, Baidu, BMW, Continental, Daimler, Fiat Chrysler Auto-
mobiles, HERE, Infineon, Intel and Volkswagen. Safety First for Au-
tomated Driving. https://www.daimler.com/documents/innovation/other/

safety-first-for-automated-driving.pdf, 2019.

[86] G. D. Arana, M. Joerger, and M. Spenko. Efficient Integrity Monitoring for KF-based
Localization. In ICRA. IEEE, 2019.

235

https://github.com/ApolloAuto/apollo/blob/v6.0.0/modules/perception/camera/lib/obstacle/transformer/multicue/obj_mapper.cc#L64
https://github.com/ApolloAuto/apollo/blob/v6.0.0/modules/perception/camera/lib/obstacle/transformer/multicue/obj_mapper.cc#L64
https://www.daimler.com/documents/innovation/other/safety-first-for-automated-driving.pdf
https://www.daimler.com/documents/innovation/other/safety-first-for-automated-driving.pdf

[87] Armen Hareyan. Baidu To Operate 3,000 Driverless Apollo Go Rob-
otaxis in 30 Cities in 3 Years. https://www.torquenews.com/1/

baidu-operate-3000-driverless-apollo-go-robotaxies-30-cities-3-years.

[88] S. Arnold and L. Medagoda. Robust Model-Aided Inertial Localization for Autonomous
Underwater Vehicles. In ICRA. IEEE, 2018.

[89] A. Athalye, N. Carlini, and D. Wagner. Obfuscated Gradients Give a False Sense of Se-
curity: Circumventing Defenses to Adversarial Examples. In International Conference
on Machine Learning (ICML), 2018.

[90] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. Synthesizing Robust Adversarial
Examples. In ICML, 2018.

[91] S. A. Bagloee, M. Tavana, M. Asadi, and T. Oliver. Autonomous Vehicles: Challenges,
Opportunities, and Future Implications for Transportation Policies. Journal of modern
transportation, 2016.

[92] M. Bai, G. Mattyus, N. Homayounfar, S. Wang, S. K. Lakshmikanth, and R. Urta-
sun. Deep Multi-Sensor Lane Detection. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3102–3109, 2018.

[93] Baidu. Apollo Planning Module. https://github.com/ApolloAuto/apollo/tree/

master/modules/planning.

[94] O. Bailo, S. Lee, F. Rameau, J. S. Yoon, and I. S. Kweon. Robust Road Marking De-
tection and Recognition Using Density-Based Grouping and Machine Learning Tech-
niques. In 2017 IEEE winter conference on applications of computer vision (WACV),
pages 760–768. IEEE, 2017.

[95] R. Baker and I. Martinovic. Losing the Car Keys: Wireless PHY-Layer Insecurity in
EV Charging. In USENIX Security, 2019.

[96] M. Bansal, A. Krizhevsky, and A. Ogale. ChauffeurNet: Learning to Drive by Imitating
the Best and Synthesizing the Worst. arXiv preprint arXiv:1812.03079, 2018.

[97] C. Becker, L. J. Yount, S. Rozen-Levy, and J. D. Brewer. Functional Safety Assess-
ment of an Automated Lane Centering System. In National Highway Traffic Safety
Administration, 2018.

[98] C. Bergenhem, S. Shladover, E. Coelingh, C. Englund, and S. Tsugawa. Overview
of Platooning Systems. In Proceedings of the 19th ITS World Congress, Oct 22-26,
Vienna, Austria (2012), 2012.

[99] E. Berger. CSRankings. http://csrankings.org/.

[100] M. Bertoncello and D. Wee. Ten ways autonomous driving could redefine the automo-
tive world. McKinsey & Company, 6, 2015.

236

https://www.torquenews.com/1/baidu-operate-3000-driverless-apollo-go-robotaxies-30-cities-3-years
https://www.torquenews.com/1/baidu-operate-3000-driverless-apollo-go-robotaxies-30-cities-3-years
https://github.com/ApolloAuto/apollo/tree/master/modules/planning
https://github.com/ApolloAuto/apollo/tree/master/modules/planning
http://csrankings.org/

[101] J. Bhatti and T. E. Humphreys. Hostile Control of Ships via False GPS Signals:
Demonstration and Detection. NAVIGATION: Journal of the Institute of Navigation,
2017.

[102] P. Biber and W. Straßer. The Normal Distributions Transform: A New Approach to
Laser Scan Matching. In Proceedings 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2003), volume 3, pages 2743–2748. IEEE, 2003.

[103] A. Boloor, K. Garimella, X. He, C. Gill, Y. Vorobeychik, and X. Zhang. Attacking
Vision-based Perception in End-to-End Autonomous Driving Models. JSA, 2020.

[104] A. Boora, I. Ghosh, and S. Chandra. Identification of Free Flowing Vehicles on Two
Lane Intercity Highways under Heterogeneous Traffic condition. Transportation Re-
search Procedia, 21:130–140, 2017.

[105] M. Brossard and S. Bonnabel. Learning Wheel Odometry and IMU Errors for Local-
ization. In ICRA. IEEE, 2019.

[106] M. Brossard, S. Bonnabel, and A. Barrau. Unscented Kalman Filter on Lie Groups
for Visual Inertial Odometry. In IROS. IEEE, 2018.

[107] M. Brown, J. Crawford, S. Nordstrom, F. Scholl, and F. Mhlanga. Understanding the
Presence of Experiential Learning Opportunity Programs in the Information Security
Field. In Proceedings of the 2013 on InfoSecCD’13: Information Security Curriculum
Development Conference, page 53. ACM, 2013.

[108] T. Brown, D. Mane, A. Roy, M. Abadi, and J. Gilmer. Adversarial Patch.
arXiv:1712.09665, 2017.

[109] C4ADS. Above Us Only Stars - Exposing GPS Spoofing in Russia and Syria. https:
//www.c4reports.org/aboveusonlystars.

[110] Y. Cao, N. Wang, C. Xiao, D. Yang, J. Fang, R. Yang, Q. A. Chen, M. Liu, and
B. Li. Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion based
Perception in Autonomous Driving Under Physical-World Attacks. In IEEE S&P.
IEEE, 2021.

[111] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen, K. Fu, and
Z. M. Mao. Adversarial Sensor Attack on LiDAR-based Perception in Autonomous
Driving. In ACM CCS, 2019.

[112] N. Carlini and D. Wagner. Towards Evaluating the Robustness of Neural Networks.
In IEEE S&P, 2017.

[113] N. Carlini and D. Wagner. Audio Adversarial Examples: Targeted Attacks on Speech-
to-Text. In 2018 IEEE Security and Privacy Workshops (SPW), pages 1–7. IEEE,
2018.

237

https://www.c4reports.org/aboveusonlystars
https://www.c4reports.org/aboveusonlystars

[114] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay. Adver-
sarial Attacks and Defences: A Survey. arXiv preprint arXiv:1810.00069, 2018.

[115] H. F. Chame, M. M. Dos Santos, and S. S. da Costa Botelho. Reliable Fusion of
Black-box Estimates of Underwater Localization. In IROS, pages 1900–1905. IEEE,
2018.

[116] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher,
A. Czeskis, F. Roesner, T. Kohno, et al. Comprehensive Experimental Analyses of
Automotive Attack Surfaces. In USENIX Security, volume 4, pages 447–462. San
Francisco, 2011.

[117] P.-C. Chen, B.-H. Kung, and J.-C. Chen. Class-Aware Robust Adversarial Training
for Object Detection. In CVPR, 2021.

[118] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh. ZOO: Zeroth Order Opti-
mization Based Black-Box Attacks to Deep Neural Networks without Training Substi-
tute Models. In AISec, 2017.

[119] Q. A. Chen, Y. Yin, Y. Feng, Z. M. Mao, and H. X. Liu. Exposing Congestion Attack
on Emerging Connected Vehicle based Traffic Signal Control. In NDSS, 2018.

[120] S.-T. Chen, C. Cornelius, J. Martin, and D. H. P. Chau. ShapeShifter: Robust Physical
Adversarial Attack on Faster R-CNN Object Detector. In ECML PKDD, pages 52–68.
Springer, 2018.

[121] X. Chen, C. Fu, F. Zheng, Y. Zhao, H. Li, P. Luo, and G.-J. Qi. A Unified Multi-
Scenario Attacking Network for Visual Object Tracking. In AAAI, 2021.

[122] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-View 3D Object Detection Network
for Autonomous Driving. In CVPR, 2017.

[123] Y. Chen, F. Rong, S. Duggal, S. Wang, X. Yan, S. Manivasagam, S. Xue, E. Yumer, and
R. Urtasun. GeoSim: Realistic Video Simulation via Geometry-Aware Composition
for Self-Driving. In CVPR, pages 7230–7240, 2021.

[124] A. Chernikova, A. Oprea, C. Nita-Rotaru, and B. Kim. Are Self-Driving Cars Secure?
Evasion Attacks Against Deep Neural Networks for Steering Angle Prediction. In IEEE
Security and Privacy Workshops (SPW), pages 132–137, 2019.

[125] H. Choi, S. Kate, Y. Aafer, X. Zhang, and D. Xu. Software-based Realtime Recovery
from Sensor Attacks on Robotic Vehicles. In 23rd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2020), pages 349–364, 2020.

[126] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and X. Deng. Detecting
Attacks Against Robotic Vehicles: A Control Invariant Approach. In CCS, pages
801–816, 2018.

238

[127] Z. J. Chong, B. Qin, T. Bandyopadhyay, M. H. Ang, E. Frazzoli, and D. Rus. Synthetic
2D LIDAR for Precise Vehicle Localization in 3D Urban Environment. In 2013 IEEE
International Conference on Robotics and Automation, pages 1554–1559. IEEE, 2013.

[128] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Routledge, 2013.

[129] J. Cohen, E. Rosenfeld, and Z. Kolter. Certified Adversarial Robustness via Random-
ized Smoothing. In International Conference on Machine Learning (ICML), pages
1310–1320, 2019.

[130] comma.ai. Announcing the EON Dashcam DevKit. https://blog.comma.ai/

announcing-the-eon-dashcam-devkit/.

[131] comma.ai. openpilot. https://github.com/commaai/openpilot.

[132] K. Cordes, N. Nolte, N. Meine, and H. Broszio. Accuracy evaluation of camera-based
vehicle localization. In 2019 IEEE International Conference on Connected Vehicles
and Expo (ICCVE), pages 1–7. IEEE, 2019.

[133] What it really costs to turn a car into a self-driving vehicle. https://qz.com/924212/.

[134] N. S. Council. Reference Material for DDC Instructors, 5th Edition. 2005.

[135] C. Croarkin, P. Tobias, J. Filliben, B. Hembree, W. Guthrie, et al. NIST/SEMATECH
e-Handbook of Statistical Methods. NIST/SEMATECH, July. Available online:
http://www. itl. nist. gov/div898/handbook, 2006.

[136] GM Safety Report 2018. https://www.gm.com/content/dam/company/docs/us/en/
gmcom/gmsafetyreport.pdf.

[137] Cubic. GRIDSMART — Single Camera Solution for Traffic Management. https:

//gridsmart.com/products/gridsmart-solution/.

[138] Curtis Vickers. New roadside LiDAR sensors help build a safer trans-
portation infrastructure. https://www.unr.edu/nevada-today/news/2020/

hao-xu-roadside-lidar, 2020.

[139] D. Davidson, H. Wu, R. Jellinek, V. Singh, and T. Ristenpart. Controlling UAVs with
Sensor Input Spoofing Attacks. In WOOT, 2016.

[140] F. de Ponte Müller. Survey on Ranging Sensors and Cooperative Techniques for Rel-
ative Positioning of Vehicles. Sensors, 17(2):271, 2017.

[141] E. Deligne. ARDrone Corruption. Journal in Computer Virology, 8(1):15–27, 2012.

[142] Y. Deng, T. Zhang, G. Lou, X. Zheng, J. Jin, and Q.-L. Han. Deep Learning-Based
Autonomous Driving Systems: A Survey of Attacks and Defenses. IEEE Transactions
on Industrial Informatics, 2021.

239

https://blog.comma.ai/announcing-the-eon-dashcam-devkit/
https://blog.comma.ai/announcing-the-eon-dashcam-devkit/
https://github.com/commaai/openpilot
https://qz.com/924212/
https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf
https://www.gm.com/content/dam/company/docs/us/en/gmcom/gmsafetyreport.pdf
https://gridsmart.com/products/gridsmart-solution/
https://gridsmart.com/products/gridsmart-solution/
https://www.unr.edu/nevada-today/news/2020/hao-xu-roadside-lidar
https://www.unr.edu/nevada-today/news/2020/hao-xu-roadside-lidar

[143] L. Ding, Y. Wang, K. Yuan, M. Jiang, P. Wang, H. Huang, and Z. J. Wang. Towards
Universal Physical Attacks on Single Object Tracking. In AAAI, 2021.

[144] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li. Boosting Adversarial
Attacks With Momentum. In CVPR, pages 9185–9193, 2018.

[145] R. C. Dorf and R. H. Bishop. Modern Control Systems. Pearson, 2011.

[146] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An Open Ur-
ban Driving Simulator. In Proceedings of the 1st Annual Conference on Robot Learning,
pages 1–16, 2017.

[147] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An Open
Urban Driving Simulator. In Annual Conference on Robot Learning, 2017.

[148] Douglas Gettman. DSRC and C-V2X: Similarities, Differences, and
the Future of Connected Vehicles. https://www.kimley-horn.com/

dsrc-cv2x-comparison-future-connected-vehicles/, 2020.

[149] T. Dreossi, A. Donzé, and S. A. Seshia. Compositional Falsification of Cyber-Physical
Systems with Machine Learning Components. Journal of Automated Reasoning,
63(4):1031–1053, 2019.

[150] T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H. Ravanbakhsh, M. Vazquez-Chanlatte,
and S. A. Seshia. VerifAI: A Toolkit for the Formal Design and Analysis of Artificial
Intelligence-based Systems. In CAV, 2019.

[151] J. Ebrahimi, D. Lowd, and D. Dou. On Adversarial Examples for Character-Level Neu-
ral Machine Translation. In Proceedings of the 27th International Conference on Com-
putational Linguistics (COLING). Association for Computational Linguistics, 2018.

[152] K. Eckenhoff, P. Geneva, J. Bloecker, and G. Huang. Multi-Camera Visual-Inertial
Navigation with Online Intrinsic and Extrinsic Calibration. In ICRA, pages 3158–3164.
IEEE, 2019.

[153] ETAuto. Europe to add 69 million connected cars during 2020-25: Re-
port. https://auto.economictimes.indiatimes.com/news/auto-technology/

europe-to-add-69-million-connected-cars-during-2020-25-report/

79350675, 2020.

[154] ETH Zürich. Ethzasl MSF Framework. https://github.com/ethz-asl/ethzasl_

msf.

[155] European GNSS Agency. Report On Road User Needs And Requirements. Technical
report, European GNSS Agency, 2019.

[156] A. Evlampev, I. Shapovalov, and S. Gafurov. Map relative localization based on road
lane matching with Iterative Closest Point algorithm. In Proceedings of the 2020 3rd
International Conference on Artificial Intelligence and Pattern Recognition, pages 232–
236, 2020.

240

https://www.kimley-horn.com/dsrc-cv2x-comparison-future-connected-vehicles/
https://www.kimley-horn.com/dsrc-cv2x-comparison-future-connected-vehicles/
https://auto.economictimes.indiatimes.com/news/auto-technology/europe-to-add-69-million-connected-cars-during-2020-25-report/79350675
https://auto.economictimes.indiatimes.com/news/auto-technology/europe-to-add-69-million-connected-cars-during-2020-25-report/79350675
https://auto.economictimes.indiatimes.com/news/auto-technology/europe-to-add-69-million-connected-cars-during-2020-25-report/79350675
https://github.com/ethz-asl/ethzasl_msf
https://github.com/ethz-asl/ethzasl_msf

[157] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, F. Tramer, A. Prakash,
T. Kohno, and D. Song. Physical Adversarial Examples for Object Detectors. In
WOOT, 2018.

[158] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song. Robust Physical-World Attacks on Deep Learning Visual
Classification. In CVPR, 2018.

[159] Federal Highway Administration. Roadway Departure Safety. https://safety.fhwa.
dot.gov/roadway_dept/.

[160] M. Fellendorf and P. Vortisch. Microscopic traffic flow simulator VISSIM. In Funda-
mentals of traffic simulation, pages 63–93. Springer, 2010.

[161] Z. Feng, N. Guan, M. Lv, W. Liu, Q. Deng, X. Liu, and W. Yi. Efficient Drone
Hijacking Detection using Onboard Motion Sensors. In Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2017, pages 1414–1419. IEEE, 2017.

[162] Z. Feng, N. Guan, M. Lv, W. Liu, Q. Deng, X. Liu, and W. Yi. An Efficient UAV
Hijacking Detection Method Using Onboard Inertial Measurement Unit. ACM Trans-
actions on Embedded Computing Systems (TECS), 17(6):1–19, 2018.

[163] U. D. for Transport. The Official Highway Code Book. 2015.

[164] L. Franceschi-Bicchierai. Drone Hijacking? That’s Just the Start of GPS Troubles.
Retrieved April, 27:2013, 2012.

[165] G. F. Franklin, J. D. Powell, A. Emami-Naeini, and J. D. Powell. Feedback Control of
Dynamic Systems. 2002.

[166] B. Friedland. Control System Design: An Introduction to State-Space Methods. Courier
Corporation, 2012.

[167] D. Frossard and R. Urtasun. End-to-end Learning of Multi-sensor 3D Tracking by De-
tection. In 2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 635–642. IEEE, 2018.

[168] C. Gackstatter, P. Heinemann, S. Thomas, and G. Klinker. Stable Road Lane Model
Based on Clothoids. In Advanced Microsystems for Automotive Applications, pages
133–143. Springer, 2010.

[169] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid. VectorNet:
Encoding HD Maps and Agent Dynamics from Vectorized Representation. In CVPR,
2020.

[170] Y. Gao, S. Liu, M. Atia, and A. Noureldin. INS/GPS/LiDAR Integrated Navigation
System for Urban and Indoor Environments Using Hybrid Scan Matching Algorithm.
Sensors, 15(9):23286–23302, 2015.

241

https://safety.fhwa.dot.gov/roadway_dept/
https://safety.fhwa.dot.gov/roadway_dept/

[171] F. D. Garcia, D. Oswald, T. Kasper, and P. Pavlidès. Lock It and Still Lose It —on
the (In)Security of Automotive Remote Keyless Entry Systems. In USENIX Security,
2016.

[172] P. Geneva, K. Eckenhoff, and G. Huang. Asynchronous Multi-Sensor Fusion for 3D
Mapping and Localization. In ICRA. IEEE, 2018.

[173] P. G. Gipps. A behavioural car-following model for computer simulation. Transporta-
tion Research Part B: Methodological, 15(2):105–111, 1981.

[174] J. Giraldo, E. Sarkar, A. A. Cardenas, M. Maniatakos, and M. Kantarcioglu. Security
and Privacy in Cyber-Physical Systems: A Survey of Surveys. IEEE Design & Test,
34(4):7–17, 2017.

[175] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and Harnessing Adversarial
Examples. arXiv preprint arXiv:1412.6572, 2014.

[176] N. Gosala, A. Bühler, M. Prajapat, C. Ehmke, M. Gupta, R. Sivanesan, A. Gawel,
M. Pfeiffer, M. Bürki, I. Sa, et al. Redundant Perception and State Estimation for
Reliable Autonomous Racing. In ICRA, pages 6561–6567. IEEE, 2019.

[177] P. D. Groves. Principles of GNSS, Inertial, and Multisensor Integrated Navigation
Systems, [Book review]. IEEE Aerospace and Electronic Systems Magazine, 30(2):26–
27, 2015.

[178] C. Guo, M. Rana, M. Cisse, and L. Van Der Maaten. Countering Adversarial Images
using Input Transformations. In International Conference on Learning Representation
(ICLR), 2018.

[179] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun. DLFuzz: Differential Fuzzing Testing
of Deep Learning Systems. In ESEC/FSE, 2018.

[180] P. Guo, H. Kim, L. Guan, M. Zhu, and P. Liu. VCIDS: Collaborative intrusion detec-
tion of sensor and actuator attacks on connected vehicles. In International Conference
on Security and Privacy in Communication Systems, pages 377–396. Springer, 2017.

[181] A. Hamdi, M. Müller, and B. Ghanem. SADA: Semantic Adversarial Diagnostic At-
tacks for Autonomous Applications. In AAAI, 2020.

[182] E. Hamilton. JPEG File Interchange Format. 2004.

[183] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, 2 edition, 2003.

[184] Z. Hau, K. T. Co, S. Demetriou, and E. C. Lupu. Object Removal Attacks on LiDAR-
based 3D Object Detectors. 2021.

242

[185] L. Head. The Multi Modal Intelligent Traffic Signal System (MMITSS): A Con-
nected Vehicle Dynamic Mobility Application. In Mid Year Meeting, Traffic Sig-
nal Systems Committee, Transportation Research Board, MMITSS. I-95.06 (20).
https://tetcoalition. org/wp-content/uploads/2016/03/Head. MMITSS. I-95.06, vol-
ume 20, 2016.

[186] A. B. Hillel, R. Lerner, D. Levi, and G. Raz. Recent Progress in Road and Lane
Detection: A Survey. Machine vision and applications, 25(3):727–745, 2014.

[187] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun. Autonomous Au-
tomobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental
Validation and Racing. In 2007 American Control Conference, pages 2296–2301. IEEE,
2007.

[188] B. Hofmann-Wellenhof, H. Lichtenegger, and E. Wasle. GNSS–Global Navigation Satel-
lite Systems: GPS, GLONASS, Galileo, and More. Springer Science & Business Media,
2007.

[189] D. Holz, A. E. Ichim, F. Tombari, R. B. Rusu, and S. Behnke. Registration with the
Point Cloud Library: A Modular Framework for Aligning in 3-D. IEEE Robotics &
Automation Magazine, 22(4):110–124, 2015.

[190] Honda Technology. Honda Demonstrates New “Smart In-
tersection” Technology. https://csr.honda.com/2018/10/04/

honda-demonstrates-new-smart-intersection-technology/, 2018.

[191] D. K. Hong, J. Kloosterman, Y. Jin, Y. Cao, Q. A. Chen, S. Mahlke, and Z. M.
Mao. AVGuardian: Detecting and Mitigating Publish-Subscribe Overprivilege for Au-
tonomous Vehicle Systems. In EuroS&P, 2020.

[192] S. Hu, Q. A. Chen, J. Joung, C. Carlak, Y. Feng, Z. M. Mao, and H. X. Liu. CVShield:
Guarding Sensor Data in Connected Vehicle with Trusted Execution Environment. In
Proceedings of the Second ACM Workshop on Automotive and Aerial Vehicle Security,
pages 1–4, 2020.

[193] S. Hu, Q. A. Chen, J. Sun, Y. Feng, Z. M. Mao, and H. X. Liu. Automated Discovery
of Denial-of-Service Vulnerabilities in Connected Vehicle Protocols. In 30th {USENIX}
Security Symposium ({USENIX} Security 21), 2021.

[194] S. Hu, Y. Zhang, S. Laha, A. Sharma, and H. Foroosh. CCA: Exploring the Possibility
of Contextual Camouflage Attack on Object Detection. In ICPR. IEEE, 2021.

[195] W. Hu, A. T. McCartt, and E. R. Teoh. Effects of red light camera enforcement on
fatal crashes in large US cities. Journal of safety research, 42(4):277–282, 2011.

[196] L. Huang, C. Gao, Y. Zhou, C. Xie, A. L. Yuille, C. Zou, and N. Liu. Universal
Physical Camouflage Attacks on Object Detectors. In CVPR, 2020.

243

https://csr.honda.com/2018/10/04/honda-demonstrates-new-smart-intersection-technology/
https://csr.honda.com/2018/10/04/honda-demonstrates-new-smart-intersection-technology/

[197] S. E. Huang, Q. A. Chen, Y. Feng, Z. M. Mao, W. Wong, and H. X. Liu. Impact
Evaluation of Falsified Data Attacks on Connected Vehicle Based Traffic Signal Control
Systems. In Workshop on Automotive and Autonomous Vehicle Security (AutoSec),
volume 2021, page 25, 2021.

[198] T. E. Humphreys, B. M. Ledvina, M. L. Psiaki, B. W. O’Hanlon, and P. M. Kintner.
Assessing the Spoofing Threat: Development of a Portable GPS Civilian Spoofer. In
ION GNSS’08, 2008.

[199] S. Hussain, P. Neekhara, S. Dubnov, J. McAuley, and F. Koushanfar. WaveGuard:
Understanding and Mitigating Audio Adversarial Examples. In USENIX Security,
2021.

[200] Ioanna Lykiardopoulou. Britain’s first self-driving shuttle bus hits the
streets, but scares passengers away. https://thenextweb.com/news/

uk-first-self-driving-shuttle-bus-scares-passengers-away.

[201] A. Jafarnia-Jahromi, A. Broumandan, J. Nielsen, and G. Lachapelle. GPS Vulner-
ability to Spoofing Threats and a Review of Antispoofing Techniques. International
Journal of Navigation and Observation, 2012, 2012.

[202] K. Jansen, M. Schäfer, D. Moser, V. Lenders, C. Pöpper, and J. Schmitt. Crowd-GPS-
Sec: Leveraging Crowdsourcing to Detect and Localize GPS Spoofing Attacks. In 2018
IEEE Symposium on Security and Privacy (SP), pages 1018–1031. IEEE, 2018.

[203] J. Jeong, Y. Cho, Y.-S. Shin, H. Roh, and A. Kim. Complex Urban Dataset with Multi-
Level Sensors from Highly Diverse Urban Environments. The International Journal of
Robotics Research, 38(6):642–657, 2019.

[204] Jerry Hirsch. Aurora Expands Autonomous Trucking Tests in Texas. https://www.

ttnews.com/articles/aurora-expands-autonomous-trucking-tests-texas.

[205] S. Jha, S. Cui, S. Banerjee, J. Cyriac, T. Tsai, Z. Kalbarczyk, and R. K. Iyer. ML-
driven Malware that Targets AV Safety. In DSN. IEEE, 2020.

[206] X. Ji, Y. Cheng, Y. Zhang, K. Wang, C. Yan, W. Xu, and K. Fu. Poltergeist: Acoustic
Adversarial Machine Learning against Cameras and Computer Vision. In IEEE S&P,
2021.

[207] S. Jia, C. Ma, Y. Song, and X. Yang. Robust Tracking against Adversarial Attacks.
In ECCV, 2020.

[208] Y. Jia, Y. Lu, J. Shen, Q. A. Chen, H. Chen, Z. Zhong, and T. Wei. Fooling Detec-
tion Alone is Not Enough: Adversarial Attack Against Multiple Object Tracking. In
International Conference on Learning Representations (ICLR), 2019.

[209] Y. Jia, Y. Lu, J. Shen, Q. A. Chen, H. Chen, Z. Zhong, and T. Wei. Fooling Detection
Alone is Not Enough: Adversarial Attack against Multiple Object Tracking. In ICLR,
2020.

244

https://thenextweb.com/news/uk-first-self-driving-shuttle-bus-scares-passengers-away
https://thenextweb.com/news/uk-first-self-driving-shuttle-bus-scares-passengers-away
https://www.ttnews.com/articles/aurora-expands-autonomous-trucking-tests-texas
https://www.ttnews.com/articles/aurora-expands-autonomous-trucking-tests-texas

[210] P. Jing, Q. Tang, Y. Du, L. Xue, X. Luo, T. Wang, S. Nie, and S. Wu. Too Good to
Be Safe: Tricking Lane Detection in Autonomous Driving with Crafted Perturbations.
In USENIX Security, 2021.

[211] Jon Barad. Lidar Technology Making Smart Cities a Reality. https://

velodynelidar.com/blog/lidar-technology-making-smart-cities-a-reality/,
2019.

[212] J. M. Kang, T. S. Yoon, E. Kim, and J. B. Park. Lane-Level Map-Matching Method
for Vehicle Localization Using GPS and Camera on a High-Definition Map. Sensors,
20(8):2166, 2020.

[213] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kitsukawa,
A. Monrroy, T. Ando, Y. Fujii, and T. Azumi. Autoware On Board: Enabling Au-
tonomous Vehicles with Embedded Systems. In ICCPS’18, pages 287–296. IEEE Press,
2018.

[214] J. Kelly and G. S. Sukhatme. Visual-Inertial Sensor Fusion: Localization, Mapping
and Sensor-to-Sensor Self-Calibration. The International Journal of Robotics Research,
30(1):56–79, 2011.

[215] J. B. Kenney. Dedicated Short-Range Communications (DSRC) Standards in the
United States. Proceedings of the IEEE, 99(7):1162–1182, 2011.

[216] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys. Unmanned Aircraft
Capture and Control via GPS Spoofing. Journal of Field Robotics, 2014.

[217] S. Khanafseh, N. Roshan, S. Langel, F.-C. Chan, M. Joerger, and B. Pervan. GPS
Spoofing Detection using RAIM with INS Coupling. In 2014 IEEE/ION Position,
Location and Navigation Symposium-PLANS 2014, pages 1232–1239. IEEE, 2014.

[218] K. Kim, J. S. Kim, S. Jeong, J.-H. Park, and H. K. Kim. Cybersecurity for autonomous
vehicles: Review of attacks and defense. Computers & Security, page 102150, 2021.

[219] Kim Lyons. Chinese startup Pony.ai gets approval to test driverless ve-
hicles in California. https://www.theverge.com/2021/5/22/22449084/

chinese-startup-pony-ai-autonomous-vehicles-california.

[220] Kim Lyons. Cruise gets permit from California to provide passenger test
rides in driverless vehicles. https://www.theverge.com/2021/6/5/22520227/

cruise-permit-california-driverless-autonomous-vehicles.

[221] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In Interna-
tional Conference on Learning Representation (ICLR), 2015.

[222] Kirsten Korosec. Waymo’s driverless taxi service can now be ac-
cessed on Google Maps. https://techcrunch.com/2021/06/03/

waymos-driverless-taxi-service-can-now-be-accessed-on-google-maps/.

245

https://velodynelidar.com/blog/lidar-technology-making-smart-cities-a-reality/
https://velodynelidar.com/blog/lidar-technology-making-smart-cities-a-reality/
https://www.theverge.com/2021/5/22/22449084/chinese-startup-pony-ai-autonomous-vehicles-california
https://www.theverge.com/2021/5/22/22449084/chinese-startup-pony-ai-autonomous-vehicles-california
https://www.theverge.com/2021/6/5/22520227/cruise-permit-california-driverless-autonomous-vehicles
https://www.theverge.com/2021/6/5/22520227/cruise-permit-california-driverless-autonomous-vehicles
https://techcrunch.com/2021/06/03/waymos-driverless-taxi-service-can-now-be-accessed-on-google-maps/
https://techcrunch.com/2021/06/03/waymos-driverless-taxi-service-can-now-be-accessed-on-google-maps/

[223] Y. Ko, J. Jun, D. Ko, and M. Jeon. Key Points Estimation and Point Instance
Segmentation Approach for Lane Detection. arXiv:2002.06604, 2020.

[224] S. Köhler, G. Lovisotto, S. Birnbach, R. Baker, and I. Martinovic. They See Me
Rollin’: Inherent Vulnerability of the Rolling Shutter in CMOS Image Sensors. In
ACSAC, 2021.

[225] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli. Kinematic and Dynamic Vehicle
Models for Autonomous Driving Control Design. In 2015 IEEE Intelligent Vehicles
Symposium (IV), pages 1094–1099. IEEE, 2015.

[226] Z. Kong, J. Guo, A. Li, and C. Liu. PhysGAN: Generating Physical-World-Resilient
Adversarial Examples for Autonomous Driving. In CVPR, 2020.

[227] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial Examples in the Physical World.
arXiv:1607.02533, 2016.

[228] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial Machine Learning at Scale.
arXiv preprint arXiv:1611.01236, 2016.

[229] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and A. Mouzakitis.
A Survey of the State-of-the-Art Localization Techniques and Their Potentials for
Autonomous Vehicle Applications. IOT-J, 5(2):829–846, 2018.

[230] A. Laszka, B. Potteiger, Y. Vorobeychik, S. Amin, and X. Koutsoukos. Vulnerability
of Transportation Networks to Traffic-Signal Tampering. In 2016 ACM/IEEE 7th
International Conference on Cyber-Physical Systems (ICCPS), pages 1–10. IEEE, 2016.

[231] C. Laurendeau and M. Barbeau. Threats to Security in DSRC/WAVE. In International
Conference on Ad-Hoc Networks and Wireless, pages 266–279. Springer, 2006.

[232] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana. Certified robustness to
adversarial examples with differential privacy. In IEEE S&P, 2019.

[233] B.-H. Lee, J.-H. Song, J.-H. Im, S.-H. Im, M.-B. Heo, and G.-I. Jee. GPS/DR Error
Estimation for Autonomous Vehicle Localization. Sensors, 15(8):20779–20798, 2015.

[234] J.-W. Lee and B. Litkouhi. A Unified Framework of the Automated Lane Center-
ing/Changing Control for Motion Smoothness Adaptation. In International IEEE
Conference on Intelligent Transportation Systems, pages 282–287, 2012.

[235] S. Lee, Y. Cho, and B.-C. Min. Attack-Aware Multi-Sensor Integration Algorithm for
Autonomous Vehicle Navigation Systems. In 2017 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pages 3739–3744. IEEE, 2017.

[236] J. Levinson, M. Montemerlo, and S. Thrun. Map-Based Precision Vehicle Localization
in Urban Environments. In Robotics: science and systems, volume 4, page 1. Citeseer,
2007.

246

[237] J. Levinson and S. Thrun. Robust Vehicle Localization in Urban Environments Using
Probabilistic Maps. In 2010 IEEE International Conference on Robotics and Automa-
tion, pages 4372–4378. IEEE, 2010.

[238] LG. LGSVL Simulator: An Autonomous Vehicle Simulator. https://github.com/

lgsvl/simulator.

[239] J. Li, X. Mei, D. Prokhorov, and D. Tao. Deep Neural Network for Structural Predic-
tion and Lane Detection in Traffic Scene. IEEE Transactions on Neural Networks and
Learning Systems, 28(3):690–703, 2016.

[240] J. Li, F. Schmidt, and Z. Kolter. Adversarial Camera Stickers: A Physical Camera-
Based Attack on Deep Learning Systems. In International Conference on Machine
Learning, pages 3896–3904, 2019.

[241] S. Li, A. Neupane, S. Paul, C. Song, S. V. Krishnamurthy, A. K. Roy-Chowdhury, and
A. Swami. Stealthy Adversarial Perturbations Against Real-Time Video Classification
Systems. In Annual Network and Distributed System Security Symposium (NDSS),
2019.

[242] S. Li, S. Zhu, S. Paul, A. Roy-Chowdhury, C. Song, S. Krishnamurthy, A. Swami, and
K. S. Chan. Connecting the Dots: Detecting Adversarial Perturbations Using Context
Inconsistency. In ECCV, 2020.

[243] Y. Li, C. Wen, F. Juefei-Xu, and C. Feng. Fooling LiDAR Perception via Adversarial
Trajectory Perturbation. 2021.

[244] M. Liang, B. Yang, S. Wang, and R. Urtasun. Deep continuous fusion for multi-sensor
3d object detection. In ECCV, pages 641–656, 2018.

[245] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu. Defense Against Adversarial
Attacks Using High-Level Representation Guided Denoiser. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[246] G.-T. Lin, P. S. Santoso, C.-T. Lin, C.-C. Tsai, and J.-I. Guo. Stop Line Detection and
Distance Measurement for Road Intersection based on Deep Learning Neural Network.
In 2017 Asia-Pacific Signal and Information Processing Association Annual Summit
and Conference (APSIPA ASC), pages 692–695. IEEE, 2017.

[247] X. Ling, S. Ji, J. Zou, J. Wang, C. Wu, B. Li, and T. Wang. Deepsec: A Uniform
Platform for Security Analysis of Deep Learning Model. In IEEE Symposium on
Security and Privacy (SP), pages 673–690, 2019.

[248] J. Liu and J. Park. “Seeing is not Always Believing”: Detecting Perception Error
Attacks Against Autonomous Vehicles. TDSC, 2021.

[249] W. Liu, C. Kwon, I. Aljanabi, and I. Hwang. Cyber Security Analysis for State
Estimators in Air Traffic Control Systems. In AIAA Guidance, Navigation, and Control
Conference, page 4929, 2012.

247

https://github.com/lgsvl/simulator
https://github.com/lgsvl/simulator

[250] X. Liu, B. Luo, A. Abdo, N. Abu-Ghazaleh, and Q. Zhu. Securing Connected Vehicle
Applications with an Efficient Dual Cyber-Physical Blockchain Framework. arXiv
preprint arXiv:2102.07690, 2021.

[251] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang. Trojaning
Attack on Neural Networks. In NDSS, 2018.

[252] H. Loeb, A. Belwadi, J. Maheshwari, and S. Shaikh. Age and Gender Differences in
Emergency Takeover from Automated to Manual Driving on Simulator. Traffic injury
prevention, pages 1–3, 2019.

[253] G. Lovisotto, H. Turner, I. Sluganovic, M. Strohmeier, and I. Martinovic. SLAP:
Improving Physical Adversarial Examples with Short-Lived Adversarial Perturbations.
In USENIX Security, 2021.

[254] D. Lu, V. C. Jammula, S. Como, J. Wishart, Y. Chen, and Y. Yang. CAROM–
Vehicle Localization and Traffic Scene Reconstruction from Monocular Cameras on
Road Infrastructures. In 2021 International Conference on Robotics and Automation
(ICRA). IEEE, 2021.

[255] J. Lu, H. Sibai, E. Fabry, and D. Forsyth. No Need to Worry about Adversarial Ex-
amples in Object Detection in Autonomous Vehicles. In CVPR Workshop of Negative
Results in Computer Vision, 2017.

[256] A. Luo. Drones Hijacking. DEF CON, Paris, France, 2016.

[257] M. Luo, A. C. Myers, and G. E. Suh. Stealthy Tracking of Autonomous Vehicles with
Cache Side Channels. In USENIX Security, 2020.

[258] Q. Luo, Y. Cao, J. Liu, and A. Benslimane. Localization and Navigation in Au-
tonomous Driving: Threats and Countermeasures. IEEE Wireless Communications,
26(4):38–45, 2019.

[259] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, and T.-K. Kim. Multiple Object
Tracking: A Literature Review. AI, 2020.

[260] Lyft. Semantic Maps for Autonomous Vehicles. https://medium.com/

lyftself-driving/semantic-maps-for-autonomous-vehicles-470830ee28b6.

[261] S. Lynen, M. Achtelik, S. Weiss, M. Chli, and R. Siegwart. A Robust and Modular
Multi-Sensor Fusion Approach Applied to MAV Navigation. In IROS, 2013.

[262] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards Deep Learning
Models Resistant to Adversarial Attacks. In International Conference on Learning
Representation (ICLR), 2018.

[263] J. Magiera and R. Katulski. Detection and Mitigation of GPS Spoofing Based on
Antenna Array Processing. Journal of applied research and technology, 13(1):45–57,
2015.

248

https://medium.com/lyftself-driving/semantic-maps-for-autonomous-vehicles-470830ee28b6
https://medium.com/lyftself-driving/semantic-maps-for-autonomous-vehicles-470830ee28b6

[264] Y. Man, M. Li, and R. Gerdes. GhostImage: Remote Perception Attacks against
Camera-based Image Classification Systems. In RAID, 2020.

[265] S. Manivasagam, S. Wang, K. Wong, W. Zeng, M. Sazanovich, S. Tan, B. Yang, W.-C.
Ma, and R. Urtasun. LiDARsim: Realistic LiDAR Simulation by Leveraging the Real
World. In CVPR, 2020.

[266] R. Mascaro, L. Teixeira, T. Hinzmann, R. Siegwart, and M. Chli. GOMSF: Graph-
Optimization based Multi-Sensor Fusion for Robust UAV Pose Estimation. In ICRA,
pages 1421–1428. IEEE, 2018.

[267] MathWorks. System Identification Toolbox. https://www.mathworks.com/

products/sysid.html.

[268] A. D. May. Traffic Flow Fundamentals. Transportation Research Board, 1990.

[269] N. Medeiros, N. Ivaki, P. Costa, and M. Vieira. Software Metrics as Indicators of
Security Vulnerabilities. In 2017 IEEE 28th International Symposium on Software
Reliability Engineering (ISSRE), pages 216–227. IEEE, 2017.

[270] H. Merten. The Three-Dimensional Normal-Distributions Transform. threshold, 10:3,
2008.

[271] M. Miiller, F. Steidle, M. J. Schuster, P. Lutz, M. Maier, S. Stoneman, T. Tomic,
and W. Stürzl. Robust Visual-Inertial State Estimation with Multiple Odometries and
Efficient Mapping on an MAV with Ultra-Wide FOV Stereo Vision. In IROS, pages
3701–3708. IEEE, 2018.

[272] Missouri Department of Transportation. 940.6 Traffic Signal Spacing. https://epg.
modot.org/index.php/940.6_Traffic_Signal_Spacing.

[273] Y. Mo, E. Garone, A. Casavola, and B. Sinopoli. False Data Injection Attacks Against
State Estimation in Wireless Sensor Networks. In 49th IEEE Conference on Decision
and Control (CDC), pages 5967–5972. IEEE, 2010.

[274] Y. Mo and B. Sinopoli. False Data Injection Attacks in Control Systems. In Preprints
of the 1st workshop on Secure Control Systems, pages 1–6, 2010.

[275] S. Moridpour, M. Sarvi, and G. Rose. Lane Changing Models: A Critical Review.
Transportation letters, 2(3):157–173, 2010.

[276] T. Multerer, A. Ganis, U. Prechtel, E. Miralles, A. Meusling, J. Mietzner, M. Vossiek,
M. Loghi, and V. Ziegler. Low-Cost Jamming System Against Small Drones Using a
3D MIMO Radar based Tracking. In EURAD. IEEE, 2017.

[277] R. Mur-Artal and J. D. Tardós. ORB-SLAM2: an Open-Source SLAM System for
Monocular, Stereo and RGB-D Cameras. IEEE transactions on robotics, 33(5):1255–
1262, 2017.

249

https://www.mathworks.com/products/sysid.html
https://www.mathworks.com/products/sysid.html
https://epg.modot.org/index.php/940.6_Traffic_Signal_Spacing
https://epg.modot.org/index.php/940.6_Traffic_Signal_Spacing

[278] K. Nakashima and R. Kurazume. Learning to Drop Points for LiDAR Scan Synthesis.
In IROS. IEEE, 2021.

[279] K. K. Nakka and M. Salzmann. Indirect Local Attacks for Context-Aware Semantic
Segmentation Networks. In ECCV, 2020.

[280] S. Narain, A. Ranganathan, and G. Noubir. Security of GPS/INS based On-Road
Location Tracking Systems. In IEEE Symposium on Security and Privacy (SP), 2019.

[281] B. Nassi, R. Ben-Netanel, A. Shamir, and Y. Elovici. Drones’ Cryptanalysis-Smashing
Cryptography with a Flicker. In IEEE S&P, 2019.

[282] B. Nassi, R. Bitton, R. Masuoka, A. Shabtai, and Y. Elovici. SoK: Security and Privacy
in the Age of Commercial Drones. In IEEE S&P, pages 73–90. IEEE, 2021.

[283] B. Nassi, Y. Mirsky, D. Nassi, R. Ben-Netanel, O. Drokin, and Y. Elovici. Phantom of
the ADAS: Securing Advanced Driver-Assistance Systems from Split-Second Phantom
Attacks. In ACM CCS, 2020.

[284] National Association of City Transportation Officials (NACTO). Vehicle Stopping
Distance and Time. https://nacto.org/docs/usdg/vehicle_stopping_distance_
and_time_upenn.pdf.

[285] F. Nesti, G. Rossolini, S. Nair, A. Biondi, and G. Buttazzo. Evaluating the Robustness
of Semantic Segmentation for Autonomous Driving against Real-World Adversarial
Patch Attacks. In WACV, 2022.

[286] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and L. Van Gool. Towards
End-to-End Lane Detection: an Instance Segmentation Approach. In 2018 IEEE
intelligent vehicles symposium (IV), pages 286–291. IEEE, 2018.

[287] G. F. Newell. A simplified car-following theory: a lower order model. Transportation
Research Part B: Methodological, 36(3):195–205, 2002.

[288] T. Nighswander, B. Ledvina, J. Diamond, R. Brumley, and D. Brumley. GPS Software
Attacks. In Proceedings of the 2012 ACM conference on Computer and Communica-
tions Security (CCS), 2012.

[289] J. Noh, Y. Kwon, Y. Son, H. Shin, D. Kim, J. Choi, and Y. Kim. Tractor Beam:
Safe-hijacking of Consumer Drones with Adaptive GPS Spoofing. ACM Transactions
on Privacy and Security (TOPS), 22(2):1–26, 2019.

[290] NovAtel. NovAtel SPAN on ProPak6 Datasheet. https://www.novatel.com.

[291] NYC Connected Vehicle Project. Connected Vehicle technology is coming to the streets
of New York City! This technology holds the potential to make our streets safer and
smarter. https://www.cvp.nyc/.

250

https://nacto.org/docs/usdg/vehicle_stopping_distance_and_time_upenn.pdf
https://nacto.org/docs/usdg/vehicle_stopping_distance_and_time_upenn.pdf
https://www.novatel.com
https://www.cvp.nyc/

[292] A. A. of State Highway and T. O. (AASHTO). Policy on Geometric Design of Highways
and Streets (7th Edition). American Association of State Highway and Transportation
Officials (AASHTO), 2018.

[293] M. O’Kelly, H. Abbas, and R. Mangharam. Computer-Aided Design for Safe Au-
tonomous Vehicles. In RWS, 2017.

[294] Comma AI openpilot. https://github.com/commaai/openpilot.

[295] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli. A Survey of Motion
Planning and Control Techniques for Self-Driving Urban Vehicles. IEEE Transactions
on intelligent vehicles, 1(1):33–55, 2016.

[296] H. H. Pajouh, R. Javidan, R. Khayami, D. Ali, and K.-K. R. Choo. A Two-Layer
Dimension Reduction and Two-Tier Classification Model for Anomaly-Based Intrusion
Detection in IoT Backbone Networks. IEEE Transactions on Emerging Topics in
Computing, 2016.

[297] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang. Spatial as deep: Spatial cnn for traffic
scene understanding. In Proceedings of the AAAI Conference on Artificial Intelligence,
2018.

[298] P. Papadimitratos and A. Jovanovic. GNSS-based Positioning: Attacks and Counter-
measures. In MILCOM 2008-2008 IEEE Military Communications Conference, pages
1–7. IEEE, 2008.

[299] A. Papathanassiou and A. Khoryaev. Cellular V2X as the Essential Enabler of Superior
Global Connected Transportation Services. IEEE 5G Tech Focus, 1(2):1–2, 2017.

[300] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman. Sok: Security and Privacy
in Machine Learning. In EuroS&P. IEEE, 2018.

[301] K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated Whitebox Testing of
Deep Learning Systems. In SOSP, pages 1–18, 2017.

[302] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl. Remote Attacks on Automated Vehicles
Sensors: Experiments on Camera and Lidar. Black Hat Europe, 11:2015, 2015.

[303] R. Piché. Online Tests of Kalman Filter Consistency. International Journal of Adaptive
Control and Signal Processing, 30(1):115–124, 2016.

[304] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro. Intriguing Properties of
Adversarial ML Attacks in the Problem Space. In IEEE S&P, pages 1332–1349. IEEE,
2020.

[305] S. Piperakis, D. Kanoulas, N. G. Tsagarakis, and P. Trahanias. Outlier-Robust State
Estimation for Humanoid Robots. In IROS. IEEE, 2019.

[306] F. Poggenhans, N. O. Salscheider, and C. Stiller. Precise Localization in High-definition
Road Maps for Urban Regions. In IROS, pages 2167–2174. IEEE, 2018.

251

https://github.com/commaai/openpilot

[307] P. Polack, F. Altché, B. d’Andréa Novel, and A. de La Fortelle. The Kinematic
Bicycle Model: a Consistent Model for Planning Feasible Trajectories for Autonomous
Vehicles? In IEEE intelligent vehicles symposium (IV). IEEE, 2017.

[308] Police Radar Information Center. Vehicle Acceleration and Braking Parameters.
https://copradar.com/chapts/references/acceleration.html.

[309] Praharsha Anand. UC Irvine selects Velodyne Lidar’s traffic-monitoring
solution. https://www.itpro.com/technology/smart-city/361047/

uc-irvine-selects-velodyne-lidars-traffic-monitoring-solution, 2021.

[310] M. L. Psiaki and T. E. Humphreys. GNSS Spoofing and Detection. Proceedings of the
IEEE, 104(6):1258–1270, 2016.

[311] PTV Group. PTV Vissim - Traffic Simulation Software. https://www.ptvgroup.

com/en/solutions/products/ptv-vissim/.

[312] A. Qayyum, M. Usama, J. Qadir, and A. Al-Fuqaha. Securing Connected & Au-
tonomous Vehicles: Challenges Posed by Adversarial Machine Learning and the Way
Forward. IEEE COMST, 2020.

[313] R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and Z. Lin. SAVIOR:
Securing Autonomous Vehicles with Robust Physical Invariants. In USENIX Security,
2020.

[314] A. Raghunathan, J. Steinhardt, and P. Liang. Certified Defenses Against Adversarial
Examples. 2018.

[315] R. Rajamani. Vehicle Dynamics and Control. Springer Science & Business Media,
2011.

[316] A. Ranganathan, H. Ólafsdóttir, and S. Capkun. SPREE: A Spoofing Resistant GPS
Receiver. In Proceedings of the 22nd Annual International Conference on Mobile Com-
puting and Networking, 2016.

[317] Raspberry Pi Foundation. Raspberry Pi 3 Model B. https://www.raspberrypi.org/
products/raspberry-pi-3-model-b/.

[318] J. Redmon and A. Farhadi. YOLO9000: Better, Faster, Stronger. In CVPR, pages
7263–7271, 2017.

[319] T. G. Reid, S. E. Houts, R. Cammarata, G. Mills, S. Agarwal, A. Vora, and G. Pandey.
Localization Requirements for Autonomous Vehicles. arXiv preprint arXiv:1906.01061,
2019.

[320] K. Ren, Q. Wang, C. Wang, Z. Qin, and X. Lin. The Security of Autonomous Driving:
Threats, Defenses, and Future Directions. IEEE, 2019.

252

https://copradar.com/chapts/references/acceleration.html
https://www.itpro.com/technology/smart-city/361047/uc-irvine-selects-velodyne-lidars-traffic-monitoring-solution
https://www.itpro.com/technology/smart-city/361047/uc-irvine-selects-velodyne-lidars-traffic-monitoring-solution
https://www.ptvgroup.com/en/solutions/products/ptv-vissim/
https://www.ptvgroup.com/en/solutions/products/ptv-vissim/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[321] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks. Advances in neural information processing
systems, 28:91–99, 2015.

[322] Richalet, J. and Rault, A. and Testud, J. L. and Papon, J. Model Predictive Heuristic
Control. Automatica, 14:413–428, 1978.

[323] N. Rodday. Hacking a Professional Drone. Black Hat Asia, 2016.

[324] R. W. Rothery. Car Following Models. Trac Flow Theory, 1992.

[325] Ryan Wu. C-V2X automotive tech brings enhanced safety and efficiency
to China’s roads. https://www.qualcomm.com/news/onq/2021/03/02/

c-v2x-brings-enhanced-safety-and-efficiency-chinas-roads, 2021.

[326] SAE On-Road Automated Vehicle Standards Committee and others. Taxonomy and
Definitions for Terms Related to Driving Automation Systems for On-Road Motor
Vehicles. SAE International: Warrendale, PA, USA, 2021.

[327] T. Sato, J. Shen, N. Wang, Y. Jia, X. Lin, and Q. A. Chen. Dirty Road Can Attack:
Security of Deep Learning based Automated Lane Centering under Physical-World
Attack. In USENIX Security, 2021.

[328] A. Sayles, A. Hooda, M. Gupta, R. Chatterjee, and E. Fernandes. Invisible Perturba-
tions: Physical Adversarial Examples Exploiting the Rolling Shutter Effect. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14666–14675, 2021.

[329] H. Schafer, E. Santana, A. Haden, and R. Biasini. A Commute in Data: The
comma2k19 Dataset. arXiv:1812.05752, 2018.

[330] R. Schnabel, R. Wahl, and R. Klein. Efficient RANSAC for Point-Cloud Shape Detec-
tion. In Computer graphics forum, volume 26, pages 214–226. Wiley Online Library,
2007.

[331] M. Schreiber, H. Königshof, A.-M. Hellmund, and C. Stiller. Vehicle Localization
with Tightly Coupled GNSS and Visual Odometry. In 2016 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2016.

[332] S. A. Seshia, S. Jha, and T. Dreossi. Semantic Adversarial Deep Learning. IEEE
Design & Test, 37(2):8–18, 2020.

[333] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter. Accessorize to a Crime: Real
and Stealthy Attacks on state-of-the-art Face Recognition. In ACM CCS, 2016.

[334] J. Shen, N. Wang, Z. Wan, Y. Luo, T. Sato, Z. Hu, X. Zhang, S. Guo, Z. Zhong, K. Li,
et al. SoK: On the Semantic AI Security in Autonomous Driving. arXiv preprint
arXiv:2203.05314, 2022.

253

https://www.qualcomm.com/news/onq/2021/03/02/c-v2x-brings-enhanced-safety-and-efficiency-chinas-roads
https://www.qualcomm.com/news/onq/2021/03/02/c-v2x-brings-enhanced-safety-and-efficiency-chinas-roads

[335] J. Shen, J. Y. Won, Z. Chen, and Q. A. Chen. Drift with Devil: Security of Multi-Sensor
Fusion based Localization in High-Level Autonomous Driving under GPS Spoofing. In
USENIX Security, 2020.

[336] H. Shin, D. Kim, Y. Kwon, and Y. Kim. Illusion and Dazzle: Adversarial Optical
Channel Exploits Against Lidars for Automotive Applications. In CHES, pages 445–
467. Springer, 2017.

[337] S. E. Shladover, C. Nowakowski, X.-Y. Lu, and R. Ferlis. Cooperative adaptive
cruise control: Definitions and operating concepts. Transportation Research Record,
2489(1):145–152, 2015.

[338] P. Smuda, R. Schweiger, H. Neumann, and W. Ritter. Multiple Cue Data Fusion With
Particle Filters for Road Course Detection in Vision Systems. In IEEE Intelligent
Vehicles Symposium (IV), 2006.

[339] J. Solà. Quaternion Kinematics for the Error-State Kalman Filter. arXiv preprint
arXiv:1711.02508, 2017.

[340] A. Soloviev. Tight Coupling of GPS, Laser Scanner, and Inertial Measurements for
Navigation in Urban Environments. In IEEE/ION Position, Location and Navigation
Symposium. IEEE, 2008.

[341] Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim. Rocking
Drones with Intentional Sound Noise on Gyroscopic Sensors. In USENIX Security,
pages 881–896, 2015.

[342] South Carolina Department of Transportation. Access and Roadside Man-
agement Standards (ARMS Manual). https://www.scdot.org/business/pdf/

permits-ARMS_2008.pdf.

[343] W. Stallings, L. Brown, M. D. Bauer, and M. Howard. Computer Security: Principles
and Practice, volume 2. Pearson Upper Saddle River, 2012.

[344] W. J. Stein and T. R. Neuman. Mitigation Strategies for Design Exceptions. Technical
report, United States. Federal Highway Administration. Office of Safety, 2007.

[345] J. Su, J. He, P. Cheng, and J. Chen. A Stealthy GPS Spoofing Strategy for Manipulat-
ing the Trajectory of an Unmanned Aerial Vehicle. IFAC-PapersOnLine, 49(22):291–
296, 2016.

[346] J. K. Suhr, J. Jang, D. Min, and H. G. Jung. Sensor Fusion-based Low-Cost Ve-
hicle Localization System for Complex Urban Environments. IEEE Transactions on
Intelligent Transportation Systems, 18(5):1078–1086, 2016.

[347] J. Sun, Y. Cao, Q. A. Chen, and Z. M. Mao. Towards Robust LiDAR-based Per-
ception in Autonomous Driving: General Black-box Adversarial Sensor Attack and
Countermeasures. In USENIX Security, 2020.

254

https://www.scdot.org/business/pdf/permits-ARMS_2008.pdf
https://www.scdot.org/business/pdf/permits-ARMS_2008.pdf

[348] M. Sun, Y. Man, M. Li, and R. Gerdes. SVM: Secure Vehicle Motion Verification with
a Single Wireless Receiver. In Proceedings of the 13th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, pages 65–76, 2020.

[349] Z. Sun, S. Balakrishnan, L. Su, A. Bhuyan, P. Wang, and C. Qiao. Who Is in Con-
trol? Practical Physical Layer Attack and Defense for mmWave-Based Sensing in
Autonomous Vehicles. IEEE Transactions on Information Forensics and Security,
2021.

[350] Cadillac Super Cruise. https://www.cadillac.com/world-of-cadillac/

innovation/super-cruise.

[351] SVL Digital Twin. https://www.svlsimulator.com/docs/digital-twin/

gomentum-dtl/.

[352] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fer-
gus. Intriguing Properties of Neural Networks. In ICLR, 2014.

[353] A. Tampuu, T. Matiisen, M. Semikin, D. Fishman, and N. Muhammad. A Survey of
End-to-End Driving: Architectures and Training Methods. TNNLS, 2020.

[354] S. Tanaka, K. Yamada, T. Ito, and T. Ohkawa. Vehicle Detection Based on Per-
spective Transformation Using Rear-View Camera. Hindawi Publishing Corporation
International Journal of Vehicular Technology, 9, 03 2011.

[355] K. Tang, J. S. Shen, and Q. A. Chen. Fooling Perception via Location: A Case of
Region-of-Interest Attacks on Traffic Light Detection in Autonomous Driving. In NDSS
Workshop AutoSec, 2021.

[356] Ç. Tanıl, S. Khanafseh, and B. Pervan. Detecting Global Navigation Satellite System
Spoofing Using Inertial Sensing of Aircraft Disturbance. Journal of Guidance, Control,
and Dynamics, 40(8):2006–2016, 2017.

[357] Z. Tao, P. Bonnifait, V. Fremont, and J. Ibanez-Guzman. Mapping and Localization
Using GPS, Lane Markings and Proprioceptive Sensors. In 2013 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 406–412. IEEE, 2013.

[358] Teledyne FLIR. Teledyne FLIR TrafiSense AI: AI-Powered Thermal Traffic Sensor.
https://www.flir.com/products/trafisense-ai/.

[359] Tesla. Autopilot. https://www.tesla.com/autopilot.

[360] Tesla Autopilot Traffic Light and Stop Sign Control. https://www.tesla.com/

ownersmanual/modely/en_eu/GUID-A701F7DC-875C-4491-BC84-605A77EA152C.

html.

[361] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT press, 2005.

[362] Y. Tian, K. Pei, S. Jana, and B. Ray. DeepTest: Automated Testing of Deep-Neural-
Network-Driven Autonomous Cars. In ICSE, 2018.

255

https://www.cadillac.com/world-of-cadillac/innovation/super-cruise
https://www.cadillac.com/world-of-cadillac/innovation/super-cruise
https://www.svlsimulator.com/docs/digital-twin/gomentum-dtl/
https://www.svlsimulator.com/docs/digital-twin/gomentum-dtl/
https://www.flir.com/products/trafisense-ai/
https://www.tesla.com/autopilot
https://www.tesla.com/ownersmanual/modely/en_eu/GUID-A701F7DC-875C-4491-BC84-605A77EA152C.html
https://www.tesla.com/ownersmanual/modely/en_eu/GUID-A701F7DC-875C-4491-BC84-605A77EA152C.html
https://www.tesla.com/ownersmanual/modely/en_eu/GUID-A701F7DC-875C-4491-BC84-605A77EA152C.html

[363] J.-A. Ting, E. Theodorou, and S. Schaal. A Kalman Filter for Robust Outlier Detec-
tion. In IROS. IEEE, 2007.

[364] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun. On the Require-
ments for Successful GPS Spoofing Attacks. In ACM conference on Computer and
Communications Security (CCS), 2011.

[365] TrafficVision. Traffic Intelligence from Video. http://www.trafficvision.com/.

[366] F. Tramer, N. Carlini, W. Brendel, and A. Madry. On Adaptive Attacks to Adversarial
Example Defenses. arXiv:2002.08347, 2020.

[367] Transoft. TrafxSAFE Connect - Real-time Road Safety Monitoring Platform. https:
//safety.transoftsolutions.com/trafxsafe-connect/.

[368] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu. WALNUT: Waging Doubt on
the Integrity of MEMS Accelerometers with Acoustic Injection Attacks. In EuroS&P,
pages 3–18. IEEE, 2017.

[369] T. Tsai, K. Yang, T.-Y. Ho, and Y. Jin. Robust Adversarial Objects against Deep
Learning Models. In AAAI, 2020.

[370] J. Tu, H. Li, X. Yan, M. Ren, Y. Chen, M. Liang, E. Bitar, E. Yumer, and R. Urtasun.
Exploring Adversarial Robustness of Multi-Sensor Perception Systems in Self Driving.
arXiv:2101.06784, 2021.

[371] J. Tu, M. Ren, S. Manivasagam, M. Liang, B. Yang, R. Du, F. Cheng, and R. Urtasun.
Physically Realizable Adversarial Examples for LiDAR Object Detection. In CVPR,
2020.

[372] Y. Tu, Z. Lin, I. Lee, and X. Hei. Injected and Delivered: Fabricating Implicit Control
over Actuation Systems by Spoofing Inertial Sensors. In USENIX Security, pages
1545–1562, 2018.

[373] C. E. Tuncali, G. Fainekos, H. Ito, and J. Kapinski. Simulation-based Adversarial
Test Generation for Autonomous Vehicles with Machine Learning Components. In IV,
2018.

[374] UK ACPO Road Policing Enforcement Technology Committee. ACPO Code of Prac-
tice for Operational Use of Enforcement Equipment. 2002.

[375] United States Department of Transportation - Federal Highway Administration. Man-
ual on Uniform Traffic Control Devices for Streets and Highways - Chapter 2B. Regu-
latory Signs. https://mutcd.fhwa.dot.gov/htm/2003r1/part2/part2b1.htm.

[376] T. Urbanik, A. Tanaka, B. Lozner, E. Lindstrom, K. Lee, S. Quayle, S. Beaird, S. Tsoi,
P. Ryus, D. Gettman, et al. Signal Timing Manual, volume 1. Transportation Research
Board Washington, DC, 2015.

256

http://www.trafficvision.com/
https://safety.transoftsolutions.com/trafxsafe-connect/
https://safety.transoftsolutions.com/trafxsafe-connect/
https://mutcd.fhwa.dot.gov/htm/2003r1/part2/part2b1.htm

[377] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer, J. Valente, M. Faisal,
J. Ruths, R. Candell, and H. Sandberg. Limiting the Impact of Stealthy Attacks on
Industrial Control Systems. In CCS, 2016.

[378] U.S. Department of Transportation (USDOT). Connected Vehicle Pilot Deployment
Program Shares Open Source Cybersecurity Advances with Automakers. https://

www.its.dot.gov/pilots/cybersecurity_automakers.htm.

[379] U.S. Department of Transportation (USDOT). Security Credential Management Sys-
tem (SCMS). https://www.its.dot.gov/resources/scms.htm.

[380] U.S. Department of Transportation (USDOT). Tampa (THEA) Connected Vehicle Pi-
lots Works with the Infrastructure Integrator to improve Vehicle to Infrastructure
(V2I) Connected Vehicle (CV) Applications. https://www.its.dot.gov/pilots/

thea_v2i_cv.htm.

[381] U.S. Department of Transportation (USDOT). USDOT Connected Vehicle Pilot De-
ployment Program. https://www.its.dot.gov/pilots/.

[382] U.S. Department of Transportation (USDOT). Wyoming (WY) DOT Pilot. https:

//www.its.dot.gov/pilots/pilots_wydot.htm.

[383] Velodyne. Velodyne HDL-32E Datasheet. https://velodynelidar.com.

[384] Virginia Department of Transportation. Spacing Standards for Commercial Entrances,
Signals, Intersections, and Crossovers. https://www.virginiadot.org/projects/

resources/access_management/12.27.11/Overview_of_Revised_Appendix_F_

Spacing_Standards_12.2011.pdf.

[385] J. Volpe. Vehicle-infrastructure integration (VII) initiative benefit-cost analysis Version
2.3. United States Department of Transportation. Tech. Rep, 2008.

[386] G. Wan, X. Yang, R. Cai, H. Li, Y. Zhou, H. Wang, and S. Song. Robust and Precise
Vehicle Localization based on Multi-Sensor Fusion in Diverse City Scenes. In ICRA,
pages 4670–4677. IEEE, 2018.

[387] D. Wang, C. Li, S. Wen, Q.-L. Han, S. Nepal, X. Zhang, and Y. Xiang. Daedalus:
Breaking Nonmaximum Suppression in Object Detection via Adversarial Examples.
IEEE Transactions on Cybernetics, 2021.

[388] J. Wang, A. Liu, Z. Yin, S. Liu, S. Tang, and X. Liu. Dual Attention Suppression
Attack: Generate Adversarial Camouflage in Physical World. In CVPR, 2021.

[389] W. Wang, Y. Yao, X. Liu, X. Li, P. Hao, and T. Zhu. I Can See the Light: Attacks
on Autonomous Vehicles Using Invisible Lights. In ACM CCS, 2021.

[390] Y. Wang, H. Xia, Y. Yao, and Y. Huang. Flying Eyes and Hidden Controllers: A
Qualitative Study of People’s Privacy Perceptions of Civilian Drones in The US. Proc.
Priv. Enhancing Technol., 2016.

257

https://www.its.dot.gov/pilots/cybersecurity_automakers.htm
https://www.its.dot.gov/pilots/cybersecurity_automakers.htm
https://www.its.dot.gov/resources/scms.htm
https://www.its.dot.gov/pilots/thea_v2i_cv.htm
https://www.its.dot.gov/pilots/thea_v2i_cv.htm
https://www.its.dot.gov/pilots/
https://www.its.dot.gov/pilots/pilots_wydot.htm
https://www.its.dot.gov/pilots/pilots_wydot.htm
https://velodynelidar.com
https://www.virginiadot.org/projects/resources/access_management/12.27.11/Overview_of_Revised_Appendix_F_Spacing_Standards_12.2011.pdf
https://www.virginiadot.org/projects/resources/access_management/12.27.11/Overview_of_Revised_Appendix_F_Spacing_Standards_12.2011.pdf
https://www.virginiadot.org/projects/resources/access_management/12.27.11/Overview_of_Revised_Appendix_F_Spacing_Standards_12.2011.pdf

[391] Z. Wang, W. Ren, and Q. Qiu. LaneNet: Real-Time Lane Detection Networks for
Autonomous Driving. arXiv:1807.01726, 2018.

[392] D. Watzenig and M. Horn. Automated Driving: Safer and More Efficient Future
Driving. Springer, 2016.

[393] The Waymo Driver Handbook: How our highly-detailed maps help unlock
new locations for autonomous driving. https://blog.waymo.com/2020/09/

the-waymo-driver-handbook-mapping.html.

[394] Waymo Self-Driving Car Gets Stuck by Cones, Drives Away
From Assistance. https://www.vice.com/en/article/y3dv55/

waymo-self-driving-car-gets-stuck-by-cones-drives-away-from-assistance.

[395] Waymo Safety Report 2021. https://storage.googleapis.com/waymo-uploads/

files/documents/safety/2021-08-waymo-safety-report.pdf.

[396] R. Weston, O. P. Jones, and I. Posner. There and Back Again: Learning to Simulate
Radar Data for Real-World Applications. In ICRA, pages 12809–12816. IEEE, 2021.

[397] W. Whyte, J. Petit, V. Kumar, J. Moring, and R. Roy. Threat and Countermea-
sures Analysis for WAVE Service Advertisement. In 2015 IEEE 18th International
Conference on Intelligent Transportation Systems, pages 1061–1068. IEEE, 2015.

[398] X. Wu, H. X. Liu, and N. Geroliminis. An Empirical Analysis on the Arterial Fun-
damental Diagram. Transportation Research Part B: Methodological, 45(1):255–266,
2011.

[399] Z. Wu, S.-N. Lim, L. S. Davis, and T. Goldstein. Making an Invisibility Cloak: Real
World Adversarial Attacks on Object Detectors. In ECCV, 2020.

[400] C. Xiang and P. Mittal. DetectorGuard: Provably Securing Object Detectors against
Localized Patch Hiding Attacks. In ACM CCS, 2021.

[401] C. Xiao, D. Yang, B. Li, J. Deng, and M. Liu. MeshAdv: Adversarial Meshes for
Visual Recognition. In CVPR, 2019.

[402] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille. Adversarial Examples for
Semantic Segmentation and Object Detection. In ICCV, 2017.

[403] C. Xie, Y. Wu, L. v. d. Maaten, A. L. Yuille, and K. He. Feature Denoising for
Improving Adversarial Robustness. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[404] H. Xu, Z. Tian, J. Wu, H. Liu, J. Zhao, et al. High-Resolution Micro Traffic Data from
Roadside LiDAR Sensors for Connected-Vehicles and New Traffic Applications. Tech-
nical report, University of Nevada, Reno. Solaris University Transportation Center,
2018.

258

https://blog.waymo.com/2020/09/the-waymo-driver-handbook-mapping.html
https://blog.waymo.com/2020/09/the-waymo-driver-handbook-mapping.html
https://www.vice.com/en/article/y3dv55/waymo-self-driving-car-gets-stuck-by-cones-drives-away-from-assistance
https://www.vice.com/en/article/y3dv55/waymo-self-driving-car-gets-stuck-by-cones-drives-away-from-assistance
https://storage.googleapis.com/waymo-uploads/files/documents/safety/2021-08-waymo-safety-report.pdf
https://storage.googleapis.com/waymo-uploads/files/documents/safety/2021-08-waymo-safety-report.pdf

[405] K. Xu, G. Zhang, S. Liu, Q. Fan, M. Sun, H. Chen, P.-Y. Chen, Y. Wang, and X. Lin.
Adversarial T-shirt! Evading Person Detectors in A Physical World. In ECCV, 2020.

[406] W. Xu, D. Evans, and Y. Qi. Feature Squeezing: Detecting Adversarial Examples in
Deep Neural Networks. arXiv:1704.01155, 2017.

[407] W. Xu, D. Evans, and Y. Qi. Feature Squeezing: Detecting Adversarial Examples in
Deep Neural Networks. In NDSS, 2018.

[408] C. Yan, H. Shin, C. Bolton, W. Xu, Y. Kim, and K. Fu. SoK: A Minimalist Approach
to Formalizing Analog Sensor Security. In IEEE S&P, 2020.

[409] C. Yan, W. Xu, and J. Liu. Can You Trust Autonomous Vehicles: Contactless Attacks
Against Sensors of Self-Driving Vehicle. DEF CON, 24, 2016.

[410] K. Yang, T. Tsai, H. Yu, M. Panoff, T.-Y. Ho, and Y. Jin. Robust Roadside Physical
Adversarial Attack Against Deep Learning in Lidar Perception Modules. In Asia CCS,
2021.

[411] S. Yenikaya, G. Yenikaya, and E. Düven. Keeping the Vehicle on the Road - A Survey
on On-Road Lane Detection Systems. ACM Computing Surveys (CSUR), 46(1):1–43,
2013.

[412] C. You, Z. Hau, and S. Demetriou. Temporal Consistency Checks to Detect LiDAR
Spoofing Attacks on Autonomous Vehicle Perception. In MAISP, 2021.

[413] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda. A Survey of Autonomous
Driving: Common Practices and Emerging Technologies. IEEE access, 8:58443–58469,
2020.

[414] K. C. Zeng, S. Liu, Y. Shu, D. Wang, H. Li, Y. Dou, G. Wang, and Y. Yang. All Your
GPS Are Belong To Us: Towards Stealthy Manipulation of Road Navigation Systems.
In 27th USENIX Security Symposium (USENIX Security 18), pages 1527–1544, 2018.

[415] D. Zhang, J. Gabaldon, L. Lauderdale, M. Johnson-Roberson, L. J. Miller, K. Barton,
and K. A. Shorter. Localization and Tracking of Uncontrollable Underwater Agents:
Particle Filter Based Fusion of On-Body IMUs and Stationary Cameras. In ICRA.
IEEE, 2019.

[416] L. Zhang, X. Chen, F. Kong, and A. A. Cardenas. Real-Time Attack-Recovery for
Cyber-Physical Systems Using Linear Approximations. In 2020 IEEE Real-Time Sys-
tems Symposium (RTSS), pages 205–217. IEEE, 2020.

[417] Y. Zhang, P. H. Foroosh, and B. Gong. CAMOU: Learning A Vehicle Camouflage For
Physical Adversarial Attack On Object Detections In The Wild. ICLR, 2019.

[418] Z. Zhang, S. Liu, G. Tsai, H. Hu, C.-C. Chu, and F. Zheng. Pirvs: An Advanced
Visual-Inertial SLAM System with Flexible Sensor Fusion and Hardware Co-design.
In ICRA, pages 1–7. IEEE, 2018.

259

[419] D. Zhao, Y. Guo, and Y. J. Jia. Trafficnet: An Open Naturalistic Driving Scenario
Library. In IEEE International Conference on Intelligent Transportation Systems,
pages 1–8, 2017.

[420] Y. Zhao, H. Zhu, R. Liang, Q. Shen, S. Zhang, and K. Chen. Seeing isn’t Believing:
Towards More Robust Adversarial Attack Against Real World Object Detectors. In
ACM CCS, 2019.

[421] Z. Zhong, W. Xu, Y. Jia, and T. Wei. Perception Deception: Physical Adversarial
Attack Challenges and Tactics for DNN-Based Object Detection. In Black Hat Europe,
2018.

[422] H. Zhou, W. Li, Y. Zhu, Y. Zhang, B. Yu, L. Zhang, and C. Liu. Deepbillboard:
Systematic Physical-World Testing of Autonomous Driving Systems. In International
Conference on Software Engineering, 2020.

[423] J. Zhu, H. Yang, N. Liu, M. Kim, W. Zhang, and M.-H. Yang. Online Multi-Object
Tracking with Dual Matching Attention Networks. In ECCV, pages 366–382, 2018.

[424] X. Zhu, X. Li, J. Li, Z. Wang, and X. Hu. Fooling thermal infrared pedestrian detectors
in real world using small bulbs. In AAAI, 2021.

[425] Y. Zhu, C. Miao, F. Hajiaghajani, M. Huai, L. Su, and C. Qiao. Adversarial Attacks
against LiDAR Semantic Segmentation in Autonomous Driving. In SenSys, 2021.

[426] Y. Zhu, C. Miao, T. Zheng, F. Hajiaghajani, L. Su, and C. Qiao. Can We Use Arbitrary
Objects to Attack LiDAR Perception in Autonomous Driving? In ACM CCS, 2021.

[427] A. Zolfi, M. Kravchik, Y. Elovici, and A. Shabtai. The Translucent Patch: A Physical
and Universal Attack on Object Detectors. In CVPR, 2021.

[428] Q. Zou, H. Jiang, Q. Dai, Y. Yue, L. Chen, and Q. Wang. Robust Lane Detection
From Continuous Driving Scenes Using Deep Neural Networks. IEEE Transactions on
Vehicular Technology, 2019.

[429] X. Zuo, P. Geneva, W. Lee, Y. Liu, and G. Huang. LIC-Fusion: LiDAR-Inertial-
Camera Odometry. arXiv preprint arXiv:1909.04102, 2019.

[430] X. Zuo, P. Geneva, Y. Yang, W. Ye, Y. Liu, and G. Huang. Visual-Inertial Local-
ization With Prior LiDAR Map Constraints. IEEE Robotics and Automation Letters,
4(4):3394–3401, 2019.

260

Appendix A

Success Criteria of FusionRipper

Attack

The required deviations under off-road and wrong-way attacks are calculated based on com-

mon widths of the AD vehicle, lane, and the road shoulder. These values differ in local and

highway settings. Fig. A.1 shows the width measurements we used in the calculation. For

the AD vehicle width, we use the width (including mirrors) of the Baidu Apollo’s reference

car, Lincoln MKZ [1]. For the lane widths and shoulder widths, we refer to the design

guidelines [344] published by the US Department of Transportation Federal Highway Ad-

ministration. For off-road attack, we use the deviation when the AD vehicle goes beyond

the road shoulder from the center of the lane as the required deviation, which is calculated

using L−C
2

+ S = 0.895m (local) and 1.945m (highway), where L is the lane width, C is

the car width, and S is the road shoulder width. For wrong-way attack, we define the re-

quired deviation as the AD completely invades the neighbor lane, and it is calculated with

L
2
+ C

2
= 2.405m (local) and 2.855m (highway). We calculate the deviation of touching the

lane line using L−C
2

, which is 0.295m on local roads and 0.745m on the highway.

261

C = 2.11m

S
id

ew
al

k

Local: L = 2.7m
Highway: L = 3.6m

S = 0.6m
S = 1.2m

R
oa

d
S

ho
ul

de
r

Figure A.1: Common AD vehicle, traffic
lane, and road shoulder widths.

Deviation: 0.45m

Local Lane Lines

Highway Lane Lines

Figure A.2: Visualization of the lateral devia-
tion 0.45 meters on local and highway roads.

262

Appendix B

Calculation of Lateral Position and

Heading Rate Changes

Fig. B.1 shows the mathematical conversion from the steering angle to physical world lateral

position change. The position change can be calculated as δpos = vt sin(θ
ϕ
), where v is the

velocity, t is the cycle time of the controller, θ is the steering angle, and ϕ is the steering

ratio, which is a constant describing the ratio of the turning angle of the steering wheel

to that of the vehicle wheel. The steering angle can be directly converted to heading rate

change using δω = θ/ϕt, where δω is the yaw (i.e., heading) rate change.

v*t

θ/ɸ (wheel angle)

Lateral
distance
v*t*sin(θ/ɸ)

AV heading w/o steering

AV heading w/ steering

Figure B.1: Conversion from the steering wheel angle to lateral position change.

263

Appendix C

Success Criteria of DRP Attack

Required deviations. The required deviations for the highway and local roads are cal-

culated based on Toyota RAV4 width (including mirrors) and standard lane widths in the

U.S. [292] as shown in Fig. C.1. We use Toyota RAV4 since it is the reference vehicle used

by the OpenPilot team when collecting the comma2k19 data set [329]. For the lane widths,

we refer to the design guidelines [292] published by the U.S. Department of Transportation

Federal Highway Administration. The required deviations to touch the lane line are calcu-

lated using L−C
2

= 0.735m (highway) and 0.285m (local), where L is the lane width and C

is the vehicle width.

Required success time. Since ALC systems assume a fully attentive human driver who

is prepared to take over at any moment [34, 326], the required deviation above needs to be

achieved fast enough so that the human driver cannot react in time to take over and steer

back. Thus, when we define the attack goal, we require not only the required deviation

above, but also an attack success time that is smaller than the average driver reaction time

to road hazards. We select the average driver reaction time based on different government-

issued transportation policy guidelines [12, 374, 163, 134]. In particular, in the California

264

Department of Motor Vehicles Commercial Driver Handbook Section 2.6.1 [12], it describes

(1) a 1.75 sec average perception time, i.e., the time from the time the driver’s eyes see

a hazard until the driver’s brain recognizes it, and (2) a 0.75 to 1 sec average reaction

time, i.e., the time from the driver’s brain recognizing the hazard to physically take actions.

Thus, in total it’s 2.5 to 2.75 sec from the driver’s eyes seeing a hazard to physically take

actions. The UK “Highway Code Book” and “Code of Practice for Operational Use of Road

Policing Enforcement Technology” use 3 sec for driver reaction time [374, 163]. National

Safety Council also adopts a 3-sec driver reaction time to calculate the minimum spacing

between vehicles [134]. Among them, we select the smallest one, i.e., 2.5 sec from the

California Department of Motor Vehicles [12], as the required success time in this paper to

avoid possible overestimation of the attack effectiveness in our evaluation.

Note that the driver reaction time above is commonly referring to the reaction time to apply

the brake, instead of steering. In our paper, we use such reaction time to apply the brake

as the reaction time to take over the steering wheel when the ALC systems are in control of

the steering wheel. This is because in traditional driving, the driver is actively steering the

vehicle but passively applying the brake. However, when the ALC system is controlling the

steering, the human driver is passively steering the vehicle, i.e., her hands are not actively

controlling the steering wheel. Thus, the reaction time to take over the steering wheel during

passive steering is analogous to that to apply the brake during passive braking.

In fact, the actual average driver reaction time when the ALC system is taking control is

likely to be much higher than the 2.5 sec measured in traditional driving, due to the reliance

of human drivers on such convenient driving automation technology today. A recent study

performed a simulation-based user study on Tesla Autopilot, and found that 40% drivers fail

to react in time to avoid a crash happening 6.2 sec after the Autopilot fails to operate [252].

Thus, the required success time of 2.5 sec used in this paper is a relatively conservative

estimation, and thus the attack effectiveness reported in our evaluations is likely only a

265

Vehicle width: C = 2.13 m

Local road lane width: L = 2.7 m

Highway lane width: L = 3.6 m

Figure C.1: Vehicle and lane widths used in this paper.

lower bound of the actual effectiveness of our attack in the real world.

266

Appendix D

Detailed DRP Attack Design

Differentiable construction of curve fitting (§4.2.3). Since the direct LD model output

is the detected left and right lane line points (§2.1.1), a curve fitting step is further required

to calculate ρt(d; {Xa
j |j ≤ t}) in Eq. 4.8 from the lane line points. This step also needs to

be differentiable to allow the entire f(·) differentiable with respect to {Xa
j |j ≤ t}. Thus, we

further perform a differentiable construction of the curve fitting process as follows. We use

Pl, Pr ∈ R|Dt| to represent the left and right lane line points respectively, where their indexes

represent x-axis (longitudinal coordinate) and their values represent the y-axis (lateral coor-

dinate). We first fit the lane line points into polynomial curves in a least-square manner with

ξl = (V TV)−1V TPl and ξr = (V TV)−1V TPr, where ξl, ξr ∈ Rn+1 are the coefficients of the

n-degree polynomial functions of the left and right lane lines respectively, and V ∈ R|Dt|×n+1

is a Vandermonde matrix. Then we calculate the desired driving path coefficients ξd by

averaging those for the left and right lane lines: ξd = 1
2
(ξl + ξr). As all operations above

are written in closed form, the desired driving path polynomial ρt(d) = [1, d, d2, ..., dn]ξd is

differentiable by each lane line point.

Gradient aggregation in BEV space (§4.2.3). In the gradient averaging step in Fig. 4.8

267

(step iii), we project the gradients w.r.t Xa
1 , ..., X

a
T into the BEV space, and then calculate

the average value of them weighted by their corresponding visible patch area sizes in the

model inputs. The weight is the number of pixels of the patch in the model input and

normalized over all frames, i.e., the sum of the weights equals 1. This weighted averaging

is designed to prevent the averaged gradient from being dominated by the earlier frames,

where the patch is far and small but the whole patch is visible.

Note that this procedure does not produce the true gradient on BEV−1(Xa
i). Instead, this is

approximation of this true gradient to avoid engineering efforts in deriving the differentiation

of BEV−1(·) code in OpenCV. This also allows us to control the aggregation weights more

flexibly. BEV(·) consists of matrix-vector multiplication and scaling. This approximation

works since in our case BEV(·) and BEV−1(·) are close to a linear transformation as the

scaling is not substantially different across consecutive frames.

268

Appendix E

Detailed LD3 Design and

Implementation Choices

Converting LD outputs to lateral deviations. The LD output consists of the detected

left and right lane lines, which are represented as polynomial functions in the bird’s eye

view [7, 131]. An example of the polynomial functions is shown in Fig. E.1. For these

polynomial functions, the absolute values at x = 0 represent the vehicle’s distances to the

lane lines, dleft and dright. Therefore, we can calculate the lateral deviation to the lane

centerline by

lw/2− dleft or dright − lw/2, (E.1)

where lw is the lane width. We calculate the lateral deviation as a signed number to differ-

entiate the deviations to the left (positive) and to the right (negative).

Although we can also obtain the lane width from the lane line polynomials (i.e., lwpoly =

dleft+dright), as mentioned in §5.4.3, it is not uncommon that one of the lane lines is missing or

incorrectly detected in real world driving, e.g., when the current lane splits into a through lane

269

0 5 10 15 20 25 30
X (m)

−2.5

0.0

2.5

Y
(m

)

y = −3.23e-06x3 + 0.00132x2 − 0.00301x + 1.5206

y = −2.29e-06x3 + 0.00114x2 + 0.00942x − 1.9915 Left lane line
Right lane line

Figure E.1: Example of left/right lane line polynomial functions.

Algorithm 5 Calculation of LD deviation to lane centerline
Notations: lwmap: lane width from map; poly(·): polynomial function fitted on detected lane line; d:
distance to lane line; D: deviation to lane centerline

1: function LdDev(LD, lwmap)
2: dleft ← |LD.polyleft(0)| if LD.polyleft else ∞ ▷ dist. to left line
3: dright ← |LD.polyright(0)| if LD.polyright else ∞ ▷ dist. to right line
4: if LD.polyleft and dleft < dright then ▷ left line is correct
5: D ← lwmap/2− dleft ▷ dev. to centerline; +: left, −: right
6: else if LD.polyright and dright < dleft then ▷ right line is correct
7: D ← dright − lwmap/2
8: else ▷ if none of the lane lines are correctly detected
9: D ← last calculated D ▷ re-use last dev. to centerline
10: end if
11: return D
12: end function

and a left or right turn lane. In such cases, directly using the distances from the polynomial

functions would result into a wrong lateral deviation. To address this, we include two

optimizations in the lateral deviation calculation: (1) instead of estimating the lane width

from the polynomial functions, we query the current lane width from the semantic map (line

4 in Alg. 2), and (2) prioritize the lane line with a smaller distance to the vehicle by using

it to calculate the lateral deviation in Eq. E.1 (line 4, 6 in Alg. 5). This is because for the

lane splitting scenario mentioned above, the incorrectly-detected lane line often has a much

larger distance compared to the correctly-detected one. A special handling is that when

both lane lines are incorrectly detected, which is very rare in SCNN [297] and never occur

in OpenPilot LD model [131], we will reuse the previously calculated lateral deviation.

Safe deceleration in attack response. Generally, a deceleration <4.6 m/s2 is considered

as safe for maintaining steady control [308]. Thus, to calculate the speed profile of the AR

trajectory (§5.4.4), we apply 4 m/s2 as the deceleration, which is also defined in Baidu Apollo

as the maximum allowed deceleration to ensure safety [7].

270

Appendix F

Independence between LiDAR

Localization and Lane Line Markings

Evaluation methodology. To evaluate the dependency of LiDAR localization on lane

line markings, we first create two traces of modified LiDAR data: one without lane line

markings (denote as no-marking) and another with incorrect lane line markings (denote as

wrong-marking). Next, we execute the LiDAR locators on the original LiDAR trace as well

as on the two modified traces. If a LiDAR locator does not rely on the lane line markings,

we should observe a high similarity between the original and the modified executions.

Specifically, LiDARs scan the surrounding environment and output Point Cloud Data (PCD),

which stores the 3D positions and intensities of the reflected laser points. Since the lane line

markings will exhibit distinctively higher intensities than the other road surface due to their

color differences, we create the no-marking PCDs by changing their intensities to the same

as other road surface area. To do that, we first apply the commonly-used RANSAC plane

segmentation [330] on the PCDs to find all points that belong to the ground plane, i.e., the

road surface, and then set the intensities of these ground points to their median value. This

271

thus effectively makes the lane line markings indistinguishable from the other road surface.

The creation of wrong-marking PCDs is slightly more complicated. After recognizing all

ground points, we identify the lane line marking points depending on whether their intensities

are above a certain threshold. For each lane line marking point, we search a corresponding

ground point that is laterally offset by half-lane-width and set their intensities the same

as the original lane line marking points. Finally, we clear the original lane line marking

points by setting their intensities to the median ground point intensities. Since the lane line

markings are moved by half-lane-width, the wrong-marking PCDs should have the largest

lateral LiDAR localization impact if the lane line markings have any effect on the LiDAR

locator. Fig. F.1 shows such an example of the original PCD and the one with no-marking

and wrong-marking.

Experimental setup. We evaluate on 2 LiDAR locators, one from Baidu Apollo (BA-

LiDAR locator) [386] and another from Autoware (AW-LiDAR locator) [213]. At design

level, BA-LiDAR locator considers point cloud intensities in its position calculation. Thus,

the modifications of lane line intensities do have the potential to affect the BA-LiDAR

locator performance. On the other hand, AW-LiDAR locator only uses the position data in

the PCD and completely ignores the intensities. This means that AW-LiDAR locator does

not consider lane line markings at the design level. Since AW-LiDAR locator implements

the Normal Distributions Transform (NDT) algorithm [102], which does not output position

uncertainty by default, thus we follow a common adaptation for NDT to use the point cloud

matching fitness score as the uncertainty [270].

Since MSF localization takes not only position measurements but also position uncertainties

from LiDAR locator as inputs, we calculate both the position accuracies and uncertainty cor-

relation with the original and no/wrong-marking PCDs to show the similarity. We evaluated

on the same 5 local road and highway traces in FusionRipper [335] from two datasets. For

each trace, we exclude intersections since they do not have lane line markings. Among them,

272

Original No-marking Wrong-marking

Figure F.1: PCDs with the original, removed, and incorrect lane line markings.

Table F.1: The uncertainty correlation coefficients (r) and position accuracies (RMSE) of
LiDAR locators using the original, no-marking, and wrong-marking. Results with statisti-
cally strong correlation are highlighted in bold (p-values are all statistically significant).

Uncertainty Correlation (r) Position Accuracy (RMSE)

Original vs
No-marking

Original vs
Wrong-marking

Original No-marking Wrong-marking

BA-LiDAR Locator 0.89 0.64 0.064 m 0.065 m 0.063 m
AW-LiDAR Locator 1.0 1.0 0.076 m 0.076 m 0.076 m

since ba-local does not provide ground truth positions, we calculate the position accuracy

based on the LiDAR locator with the original lane line markings.

Results. Table F.1 shows the experiment results. For the position accuracy, we report the

Root Mean Squared Error (RMSE) between LiDAR locator positions and ground truth posi-

tions or the ones with original lane line markings. For the correlation, we use the commonly-

used Pearson’s correlation, and a correlation coefficient >0.5 is considered strongly corre-

lated [128]. As shown, for both LiDAR locators, the uncertainty correlation coefficients

between the original and modified PCDs are all well above the threshold for strong cor-

relation, and their position accuracies are also all at centimeter-level. Particularly, since

AW-LiDAR locator does not use lane line markings at the design level, the traces conse-

quently show perfect correlations and identical position accuracies no matter how we modify

the lane line markings. Such a result suggests that the existing LiDAR locators used in high-

level AD systems are indeed largely ignore the lane line marking information when localizing

the vehicle on the map, which might because global localization focuses more on the unique

features on the road, such as buildings, roadside layouts, and traffic signs. As a result, this

indicates that lane line markings are largely independent of the ones that are already used

in high-level AD localization and thus pose a great potential for defense purposes.

273

Appendix G

SAVIOR Evaluation Details

SAVIOR Evaluation Setup

To evaluate SAVIOR, we follow the similar methodology as the ground rover evaluation in

the SAVIOR paper [313], i.e., using the kinematic bicycle model [225] and an Extended

Kalman Filter (EKF) to predict the system state (i.e., position in x, y coordinates) given

the vehicle control commands (i.e., steering and acceleration). Although the vanilla bicycle

model does not have tunable parameters, we follow a similar implementation as SAVIOR

by adding coefficients to the bicycle model equations [26]. Same as SAVIOR, we use the

nlgreyest system identification tool from Matlab [267] to find the coefficients that can best fit

the sensor and control trace. During the evaluation, we continuously calculate the residuals

between the GPS measurements and the predicted positions from the EKF, and feed the

residuals to a CUSUM anomaly detector for attack detection. An execution that triggers

the CUSUM detector will be considered as under attack.

Since the KAIST dataset [203] does not store the control commands when the traces were

collected, which are required for the SAVIOR evaluation, we replay the KAIST sensor traces

274

as inputs to Baidu Apollo v5.0.0 [7] to collect the control module outputs, i.e., steering and

throttle commands. In particular, the control module calculates such commands based on

the localization and a planned trajectory, which is a sequence of trajectory points that the

vehicle should follow. However, the planned trajectory is runtime information optimized

by the planning module during driving, which is not available in the dataset. Since the

ground truth positions in the KAIST traces represent the trajectory points followed by the

AD vehicle, we thus convert the ground truth positions into planned trajectories according

to the format in Baidu Apollo and use them as one of the control inputs. With the planned

trajectories, we then feed the benign localization and attacked localization outputs to obtain

the benign control commands and attack influenced control commands respectively.

In addition to the KAIST traces, we also evaluate SAVIOR on a dataset that contains the

original control commands to validate SAVIOR’s detection performance in an ideal setting.

However, similar performance is observed in that dataset to the ones on KAIST traces. More

details of this are in Appendix G.

Evaluating SAVIOR on Dataset with Control Commands

Since SAVIOR requires vehicle control commands, for which we collected by replaying the

KAIST traces in Baidu Apollo in our evaluation (Appendix G), one might argue that SAV-

IOR may perform much better if given the originally collected vehicle control commands.

Therefore, we evaluate SAVIOR on the comma2k19 dataset [329], which contains the origi-

nal vehicle control commands when the traces were collected. Since the comma2k19 dataset

does not provide LiDAR data, we thus cannot run the MSF attack. To evaluate SAVIOR,

we apply the most aggressive GPS spoofing parameters in the MSF attack (d = 2.0, f = 2.0)

to the GPS data and examine SAVIOR’s capability at detecting such obvious GPS spoofing

attempts. As shown in Fig. G.1, SAVIOR’s detection performance is close to the one on the

275

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

comma2k19

Perfect detector
SAVIOR
Random guessing

Figure G.1: Attack detection ROC curve of SAVIOR on comma2k19 [329].

ka-highway36 (Fig. 5.4) and is still far from a perfect detector.

276

Appendix H

AI Components Studied in Semantic

AD AI Security Research

Perception

Road object detection identifies obstacles (e.g., bounding box), lane lines, and traffic

lights from sensor data. The ones targeted by existing semantic AD AI security works

includes:

Object detection and segmentation are commonly used to detect vehicles, pedestrians, cy-

clists, traffic objects (e.g., traffic cones), etc., in AD systems. Existing attacks on these aim

to cause adversarial effects including hiding (i.e., making objects disappear), creation (i.e.,

detecting non-existing objects), and alteration (i.e., changing the types of objects).

Lane detection can detect lane line shapes and relative position in lane and is widely used in

L2 AD systems for Automated Lane Centering. Prior works [327, 210] show lane detection

models are vulnerable to physical perturbations on road, which can lead AD vehicle to drive

out of lane line.

277

Traffic light detection identifies the traffic light and detects the current signal color. Prior

works [355, 253, 389] leverages its dependency on localization or light projection to induce

wrong detection, no detection, or color change.

MSF perception is commonly used in L4 AD systems [7] to fuse detection results from

different perception sources (e.g., LiDAR and camera) for higher accuracy and robust-

ness [167, 244, 122]. Prior works found that MSF perception is vulnerable to adversarial

3D objects [110, 370]. Such attacks can hide the adversarial objects or cause other obstacles

being misdetected.

Object tracking builds the trajectories of one or more detected objects in a sensor frame

sequence to tolerant the occasional false positions and false negatives. However, prior

works [143, 121, 209] demonstrate successful adversarial attacks that can move a roadside

vehicle into the driving lane or move a front vehicle out of the road [209, 205].

Localization

LiDAR/Camera localizations are commonly used in AD systems for localizing the ve-

hicle. They operate by finding the best matched location of the live LiDAR point cloud or

camera image in a map [102, 277]. Prior works discover that such localization algorithms

may lead the sensitive location data [257] or can be disrupted by IR lights [389].

MSF localization is predominantly used in L4 AD systems to achieve robust and accurate

localization by fusing location sources such as GPS, LiDAR, and IMU [386]. Prior work [335]

finds that Kalman Filter based MSF design is vulnerable to strategic attacks leveraging a

single attack source, such as GPS spoofing, to inject large deviations in the localization

results.

278

Chassis

The Chassis component acts as the information hub of the vehicle, which periodically broad-

cast privacy-sensitive diagnosis information, including Vehicle Identification Number (VIN),

to other components. Prior work [191] demonstrates using a compromised Robot Operating

System (ROS) node to intercept the Chassis message to steal the VIN.

End-to-End Driving

End-to-End driving [353] is a distinctive AD system design paradigm from the more common

modular designs used in industry-grade AD systems [7, 213]. Due to DNN-based design,

end-to-end driving is vulnerable to adversarial attacks, which can cause the driving model

to predict incorrect control commands [226, 181]. Prior work [251] show that trojan attack

enables triggering specific driving behaviors (e.g., turn right) using road signs with specific

patterns.

279

Appendix I

STOP Sign Attack Reproduction

ShapeShifter (SS) [120] reproduction and results. We directly use the official open-

source code [30] to reproduce SS on Faster R-CNN [321]. With that, we can ensure that the

attack generated by the source code should have the same effect as the original work. We

validated in simulation using the same distance/angle settings as in the paper. Results show

that our reproduction can achieve 80% (12/15) attack success rate while the original paper

reports 73% (11/15). In addition, the successful attack distances/angles of the reproduced

attack align well with the paper with the only exception that our reproduction is successful

at 25 feet / 0◦ but the paper reports failure. Such results also indicate a sufficient simulation

fidelity, which is consistent with our fidelity evaluation in §7.5.4.

Robust Physical Perturbation (RP2) [157] reproduction and results. Same as the

paper, we select YOLOv2 [318] as the targeted object detection model. Specifically, we

implement the loss function including adversarial loss with Expectation over Transforma-

tion [90], total variation loss, lp loss, and non-printability score loss [333] as used in RP2

design [157]. We compare the attack effectiveness in simulation to the reported results in the

paper in the same distance settings (0–30 feet in outdoor environment). Our results show

280

that we can achieve an attack success rate of 66.4% in all camera frames, which is similar to

the 63.5% reported in the paper.

Seeing Isn’t Believing (SIB) [420] reproduction/modeling. Since SIB is not open-

sourced, we tried our best to reproduce it but were still unable to achieve the same attack

effectiveness shown in their paper [420]. Nevertheless, in our simulation platform evaluation

(§7.5.3), we apply SIB using a modeling-based approach, i.e., by sampling STOP sign detec-

tion failures using exactly the same frame-wise attack success rate at different STOP sign

distances/angles reported in the paper. Specifically, the attack success rates in the paper

are from 32–94% for distances from 5–25 m on YOLOv3 [420].

281

Appendix J

Example AD and Plant Model Setups

in PASS

AD model setup. We illustrate the detailed AD model setup for the STOP sign attack

evaluation (§7.5.3) as an example to demonstrate the usage of PASS. Specifically, we adopt

the typical modular AD pipeline design including object detection, object tracking, fusion,

planning, and control.

Object detection. We use the same models and detection thresholds as originally used in the

STOP sign attacks: SS on Faster R-CNN (threshold: 0.3) [120], RP2 on YOLOv2 (threshold:

0.4) [157], and SIB on YOLOv3 (threshold: 0.4) [420].

Object tracking. We adopt a general Kalman Filter based multi-object tracker [259] which

tracks the STOP sign locations and sizes. Next, we convert the detected STOP sign location

from 2D image coordinates to real-world coordinates. Here, we adopt 2 variants: (1) HD

Map based (denoted Map). Similar to the design in Tesla Autopilot [360], we use the GPS

position to query the HD Map for the distance to the front intersection and use it as an

approximation for the STOP sign distance. (2) Pinhole camera based (denoted Pinhole). We

282

apply the pinhole camera model to estimate the STOP sign distance based on the heuristics

on standard STOP sign sizes [375], which is a similar design to Apollo [84]. For track

management, a new STOP sign track is created when the STOP sign is detected for 0.2 ×

FPS = 4 (frames per second) frames, and an existing track will be deleted after misdetection

for 2 × FPS = 40 consecutive frames (parameters recommended by Zhu et al. [423]).

Fusion. The fusion component is optional and thus can be disabled in the pipeline. If

enabled, it can fuse object detection results from multiple data sources. In addition, if the

HD Map contains detailed static road objects (e.g., traffic signs) it can serve as a data source

to fuse with object detection model outputs. Since the output format of all fusion sources

are consistent (i.e., objects), we extend the object tracker to accept detections from multiple

sources to facilitate the fusion.

Planning. We adopt a lane following planner where the future trajectory locates at the

center of current driving lane [7]. The planner by default maintains a desired speed, but

reduces it if a STOP sign presents or there exists a front obstacle with a close distance or

slowing down. Taking the STOP sign as an example, we first calculate a braking distance

based on the current driving speed and the safe vehicle deceleration (−3.4m/s2 [308]). If a

STOP sign is currently tracked and its distance to the vehicle reaches the braking distance,

the planner starts to decelerate. If the STOP sign is no longer tracked and current speed is

smaller than the desired driving speed (i.e., the speed that the vehicle intends to maintain

if no STOP sign), the planner accelerates the vehicle.

Control. The control module will execute the planning decisions, and we use the classic Stan-

ley controller [187] for lateral control (i.e., steering) and a Proportional-Integral-Derivative

(PID) controller [82] for longitudinal control (i.e., throttling and braking). Consistent with

existing L2 AD systems such as OpenPilot [294], We set the frequency of detection, tracking,

fusion, and planning as 20 Hz, and control as 100 Hz.

283

In our evaluation (§7.5.3), We adopt 3 AD pipeline variants based on the availability of HD

Map and fusion: Map, Pinhole, and Fusion. Specifically, Map and Pinhole vary in the STOP

distance estimation, and Fusion refers to fusing STOP sign detection with the one from the

HD Map.

Plant model setups. PASS supports two options for the plant model. For simulation-

based evaluation, we adopt the SVL [238], which is an industry-grade AD simulator. For

real-world experiments, we can use the two L4-capable AD vehicles in our project team as

shown in Fig. 7.3, where they are equipped with AD-grade sensors including multiple short-

and long-range cameras, LiDARs (16-line, 32-line, and 64-line), mmWave RADAR, duel-

antennas GPS with RTK, high-precision IMU, etc. As described in §7.5.1, the platform is

simulation-centric; it is mainly for simulation-based evaluation and only use the real vehicles

for simulation fidelity improvements and physical world evaluation in exceptional cases.

284

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Contributions
	Overview
	Security Challenge in Multi-Sensor Fusion based Localization in High-Level AD Systems
	Security Challenge in Traffic Light Detection in High-Level AD Systems
	Security Challenge in Deep Learning based Automated Lane Centering in Low-Level AD Systems
	Defense Opportunity for Lateral-Direction Localization Attacks on High-Level AD Systems
	Defense Opportunity for Data Spoofing Attacks on CV-based Intelligent Traffic Signal Control Systems
	SoK of Semantic AI Security in Autonomous Driving

	Dissertation Organization

	Background and Related Work
	Background
	AD Systems and AI Components
	AD AI related Security Backgrounds
	CV-based Traffic Signal Control and Traffic Modeling Basics
	Congestion Attacks against CV-based Traffic Signal Control

	Related Work

	Security Challenge in AD Localization
	Introduction
	Attack Model and Problem Formulation
	Attack Goal and Incentives
	Threat Model
	Attack Formulation

	Security Analysis of MSF Algorithm
	Upper-Bound Attack Effectiveness
	Cause Analysis

	Attack Design: FusionRipper
	Attack Evaluation
	Evaluation Methodology
	Attack Effectiveness
	Comparison with Naive Attack Method
	Generality of FusionRipper

	Practical Attack Considerations
	Robustness Against Spoofing Inaccuracies
	End-to-End Attack Impact Evaluation

	Offline Attack Parameter Profiling
	Problem Settings and Design
	Experiments and Evaluation

	Limitation and Defense Discussions
	Limitations of Our Study
	Defense Discussions

	Summary

	Security Challenges in AD Perception
	Region-of-Interest Attack on Traffic Light Detection
	Introduction
	Threat Model and Attack Goal
	Attack Insight and Design
	Evaluation
	Limitations and Future Work
	Summary

	Dirty Road Patch Attack on Automated Lane Centering
	Introduction
	Attack Formulation and Challenge
	Dirty Road Patch Attack Design
	Attack Methodology Evaluation
	Software-in-the-Loop Simulation
	Defense Discussion
	Summary

	Defense Opportunity against AD Localization Attacks
	Introduction
	Threat Model
	Lane Detection for High-Level AD Localization Defense
	Novel LD-based Defense Design: LD3
	Design Challenges
	Design Overview
	Attack Detection Design
	Attack Response Design

	Defense Effectiveness Evaluation
	Evaluation Methodology
	Attack Detection Effectiveness
	Attack Response Effectiveness
	Evaluation under Limited Visibility

	End-to-End Evaluations
	Evaluation in AD Simulator
	Evaluation on AD Development Chassis

	Evaluation against Adaptive Attacks
	Stealthy Attack Evaluation
	LD-side Adaptive Attack Evaluation

	Limitations Discussion
	Summary

	Defense Opportunity against CV Data Spoofing Attacks
	Introduction
	Threat Model
	Defense Challenges
	Defense Design
	Design Overview
	Trust Assignment
	Remove and Rerun

	Defense Effectiveness Evaluation
	Evaluation Methodology
	Results

	Robustness to Infrastructure-Side Sensor Noises
	Online Detection Exploration
	Evaluation Methodology
	Online Detection Effectiveness

	Discussions
	Defense Generality Discussion
	Alternative Defense Designs
	Handling Lane-Changing Vehicles
	Spoofer Handling

	Summary

	Systematization of Knowledge in Semantic AD AI Security
	Introduction
	Systematization Scope
	Systematization of Knowledge
	(Attack/Defense) Targeted AI Components
	Systematization of Semantic AD AI Attacks
	Systematization of AD AI Defenses
	Systematization of Evaluation Methodology

	Scientific Gaps and Future Directions
	Evaluation: General Lack of System-Level Evaluation
	Research Goal: General Lack of Defense Solutions
	Attack Vector: Cyber-Layer Attack Vectors Under-Explored
	Attack Target: Downstream AI Component Under-Explored
	Attack Goal: Goals Other Than Integrity Under-Explored
	Community: Substantial Lack of Open Sourcing

	PASS: System-Driven Evaluation Platform for AD AI Security
	Design Goals and Choices
	PASS Design
	Case Study: System-Level Evaluation on Stop Sign Attacks
	Simulation Fidelity Evaluation
	Educational Usage of PASS

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work
	Simultaneous Attacks on Physical-Layer Information
	Security Analyses on Downstream AD AI Components
	Defense Generality Improvements
	System-Driven Evaluation Platform for AD AI Security

	Bibliography
	Appendix Success Criteria of FusionRipper Attack
	Appendix Calculation of Lateral Position and Heading Rate Changes
	Appendix Success Criteria of DRP Attack
	Appendix Detailed DRP Attack Design
	Appendix Detailed LD3 Design and Implementation Choices
	Appendix Independence between LiDAR Localization and Lane Line Markings
	Appendix SAVIOR Evaluation Details
	Appendix AI Components Studied in Semantic AD AI Security Research
	Appendix STOP Sign Attack Reproduction
	Appendix Example AD and Plant Model Setups in PASS

