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ABSTRACT OF THE DISSERTATION

Applications of Iterative and Deep-Learning Algorithms

in 2-D and 3-D Coherent Electron Microscopy

by
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Doctor of Philosophy in Physics

University of California, Los Angeles, 2023

Professor Jianwei Miao, Chair

Significant improvements have been made in pipelines for the acquisition and storage

of data from scanning electron imaging experiments. Within these data contain valuable

information such as structure, defects and compositions of samples that must first be in-

verted via an expensive numerical process. A typical scanning CDI imaging setup records

measurements in 4-dimensions – 2 from scanning and 2 from scattering dimensions, and

with countless microscopy experiments and continuous infrastructure upgrades, the compu-

tational demand for facilitating the inversion process and analyzing the results grow at an

exponential pace.

A numerical study of the advantages of incorporating ptychographic phase projections in

atomic electron tomography is presented. Reconstructed phase images are linear projections

of the Coulomb potential and thus are able to image low-Z atoms at a lower electron dose.

Advantages of ptychographic AET are presented with numerical simulations of the method-

ology on a 5-nm zinc-oxide nanoparticle and WS2/WSe2 van der Waals heterostructure.

In the field of machine learning, specifically in the field of deep learning, computer sci-

entists were able to effectively leverage Graphics Processing Units to train mathematical
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structures that act as universal function approximators. These neural networks shocked the

world in their power and versatility: complex image classification, creative text generation,

and calculation of heuristics for games previously thought by mankind as impossible.

This thesis facilitates the merging of Fourier microscopy and machine learning via the

introduction of a novel deep-learning based algorithm that processes diffraction patterns into

meaningful phase image reconstructions. After a systematic explanation of the algorithm,

experimental results from scanning electron CDI experiments imaging monolayer graphene,

twisted bilayer hexagonal boron nitride, and a gold nanoparticle are presented along with

comparisons via traditional methods.
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Chapter 1

Introduction

1.1 Atomic Electron Tomography

Atomic Electron Tomography (AET) determines 3D coordinates of individual atoms in mate-

rials without assuming crystallinity by combining high resolution tomographic tilt series from

scanning transmission electron microscopes (STEM) with powerful iterative tomographic al-

gorithms [3]. Since its inception, AET has successfully imaged grain boundaries, dislocations,

point defects, bond distortion, strain tensors, chemical order/disorder and nucleation dynam-

ics with unprecedented 3D detail [4–10]. This section will briefly discuss each step of the

methodology and discuss its application in material science at the single-atom level.

1.1.1 Tilt-series Data Acquisition

In order to perform tomography, 2-dimensional projections of a 3-dimensional object must

be collected at various projection angles to acquire a tilt-series. For atomic resolution pro-

jections, electron microscopes are required due to their small wavelength (finer than the

characteristic size of an atom), and other forms of imaging such as scanning probe mi-

croscopy can image surface features but fail in structural determination through the sample.

As a result, all experimental realizations of AET relied on scanning transmission electron

1



Figure 1.1: Taken from ref [11]. Simplified model (not to scale) of a Scanning Transmission
Electron Microscope (STEM). Different detectors are BF = bright field, ADF = annular
dark field, ABF = annular bright field. Reproduced with permission from Springer Nature.

microscopy (STEM) whereby an aberration-corrected probe is scanned across a sample and

a detector measures the resulting electrons at certain collection angles.

Figure 1.1 shows a simplified model of a STEM, specifically focusing on the detectors.

While any of the ADF, ABF or BF detectors can be used to 2D image the specimen, AET

employs ADF or sometimes HAADF (High angle annular dark field) detectors. The reason

for using dark field detectors is that we would like the atomic features to be recorded as

positive semidefinite values on the image, with strongly scattering atoms being recoreded as

high signal values. In the presence of scattering features on the specimen, bright field signals

tend to attenuate, which render it difficult to use as projections for tomography.

Another reason for employing ADF detectors is due to extensive study on the relationship

between atomic number and ADF signals. When imaging single atoms (no atomic columns),

2



previous studies report a power relation (roughly proportional to Z1.8, where Z is atomic

number) in ADF contrast [12–14], which is satisfactory for tomographic purposes and im-

portant for distinguishing between atom types in AET. Individual atoms with higher atomic

numbers could in theory be identified in 3-dimensions by fitting the 3D intensity profile with

a Gaussian function and measuring the peak of the curve.

An exact mathematical expression for ADF STEM contrast can be described by the

following [11]. In STEM, an aberrated electron probe function ψp(x,xp) strikes the specimen

at position xp:

ψp(x,xp) = Ap

∫ kmax

0

exp[−iχ(k)− 2πik · (x− xp)d
2k] (1.1)

where λkmax = αmax is the maximum angle in the objective aperture andAp is a normalization

constant chosen to yield ∫
|ψp(x,xp)|2d2x = 1 (1.2)

If the specimen can be approximated as a weak phase, weak amplitube object, the trans-

mitted wave function is given as

ψt(x,xp) = t(x)ψp(x,xp) (1.3)

where t(x) is the specimen object function. When this wave function diffracts into the

Fraunhofer regime, the function on the detector plane is

Ψt(k,xp) =

∫
exp(2πik · x)ψt(x,xp)d

2x (1.4)

The annular dark field detector incoherently measures this wave function by integrating

between the inner and outer angles, λkDmin
and λkDmax respectively, and the result is the

3



Figure 1.2: Taken from ref [7]. The projection images of an FePt nanoparticle measured
using an ADF-STEM. Reproduced with permission from Springer Nature.

final STEM image signal g(xp) for one probe position xp.

g(xp) =

∫
|Ψt(k,xp)|2D(k)d2k (1.5)

where D(k) is the detector function.

D(k) = 1, kDmin
≤ k ≤ kDmax (1.6)

= 0, otherwise (1.7)

After scanning across 2-dimensions of probe positions and 1 dimension of tilt angles, one

can generate a tilt-series of projections for tomography like one shown in Figure 1.2.
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1.1.2 Tomography Algorithm

The tilt-series data can be compiled together to reconstruct a singular 3-dimensional object

via tomographic algorithms. A common tomographic algorithm commonly used in medical

imaging is called filtered back-projection (FPB), a back-projection method combined with a

convolution filter to remove blurring [15, 16]. The method works well in cases where there

are a high number projections with perfect data, but in the presence of noise and sparsity

in projections, reconstruction results from FBP suffer from artifacts. To overcome these

limitations, various iterative techniques such as the algebraic reconstruction technique (ART)

[17] and simultaneous iterative reconstruction technique (SIRT) [18] have been developed,

but they do not fully leverage mutual information shared between projections.

Fourier based algorithms such as equal slope tomography (EST) [19] and generalized

Fourier iterative reconstruction algorithm (GENFIRE) [20] reconstruct the volume glob-

ally every iteration taking the projection information into consideration simultaneously. As

GENFIRE is a generalization of EST for any arbitrary tilt angles, GENFIRE has been used

successfully to reconstruct 3-dimensional volumes for AET for the past decade. Figure 1.3

shows the schematic of the GENFIRE algorithm.

The mathematical principle behind GENFIRE is the Fourier slice theorem which states

that the 2D Fourier transform of a volumetric projection is equivalent to the slice of the 3D

Fourier transform of the volume at that same angle through the origin [16]. This means that

if you take the Fourier transform of the tilt-series projections, those values can be enforced

in the 3D Fourier transform of the reconstruction volume at voxels along slices through the

origin. After the Fourier voxels are replaced with the measured values, one performs the

inverse Fourier transform to convert to real space, where one can enforce constraints such

as positivity (volume must be filled with positive semidefinite values) and support (volume

outside a predetermined region must be 0). After the real space constraint is applied, a 3D
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Figure 1.3: Taken from ref [20]. The GENFIRE algorithm. GENFIRE first computes
oversampled Fourier slices from a tilt series of 2D projections. The oversampled Fourier
slices are used to accurately calculate a small fraction of points on a 3D Cartesian grid based
on gridding interpolation. The algorithm then iterates between real and reciprocal space.
The support and positivity constraints are enforced in real space, while the small fraction
of grid points corresponding to the measured data are enforced in reciprocal space. Error
metrics are used to monitor the convergence of the iterative process. After several hundred
iterations, the algorithm converges to a 3D structure that is concurrently consistent with
the measured data in reciprocal space and the physical constraints in real space. Figure
distributed under Creative Commons BY license.
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Fourier transform is applied again to conclude one iteration of the algorithm.

The i’th iteration of GENFIRE consists of the following five steps.

1. Apply the inverse FFT to Fi(k) to objtain the i’th real space volume, ρi(r).

2. Modify the image by applying the following constraints

ρ′i(r) =


0 (r /∈ S) ∪ (ρi(r) < 0)

ρi(r) otherwise

(1.8)

where S represents a support. This step enforces the support and positivity constraints

described above.

3. Apply the FFT to ρ′i(r) to obtain F ′
i (k).

4. Compute Fi+1(k) by enforcing the Fourier space constraint,

Fi+1(k) =


Fobs(k) Known voxels

F ′
i (k) Unknown voxels

(1.9)

Fi+1(k) is used for the (i+ 1)’th iteration.

5. Calculate two R-factors, Rk and Rfree

Rk =

∑
kknown

|Fobs(k)− Fi(k)|∑
kknown

|Fobs(k)|
(1.10)

Rfree =

∑
kwithheld

|Fobs(k)− Fi(k)|∑
kwithheld

|Fobs(k)|
(1.11)

where kknown represents the known voxels and kwithheld is a small number of randomly

selected known voxels that are not used in the reconstruction. These error metrics can

be used to monitor the convergence and progress of the algorithm.

One important aspect in tomography is keeping the ”missing wedge” artifact as low as
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possible. Missing wedge artifacts occur due to the fact that tilt stages typically have an

angle limit (such as -70 to +70 degrees) resulting in a wedge of missing Fourier data in the

reconstruction. This artifact presents as a smear or spread along the direction of missing

projections, and is intensified if the projections come with inherent systemic errors or noise.

At the end of a successful execution of AET, from the tilt-series data collection to proper

projection alignments and tomography, the practitioner will obtain impressive 3D recon-

structions of nanomaterials at atomic resolutions high enough to be able to trace each atom

in 3D to picometer precision. For example in 2017, Yang et. al. was able to determine the 3D

coordinates of 6,569 iron and 16,627 platinum atoms in an iron-platinum nanoparticle, and

correlate chemical order/disorder and crystal defects with material properties at the single-

atom level [7]. Since AET does not assume crytallinity at all during reconstruction, the final

volume contains enough information to not only pinpoint 3D structure of defects and grains,

but also identify the atom species in the FePt nanoparticle allowing determination of various

chemical phases within the material [Figure 1.4].

Furthermore, the boundaries of AET reached a new horizon when Zhou et. al. in 2019

was able to use AET to study early-stage nucleation in four dimensions (that is, including

time) at atomic resolution [6]. To probe nucleation dynamics, Zhou tracked the same nuclei in

each particle at different annealing times (termed common nuclei), and showed five growing,

fluctuating and dissolving nuclei shown in Figure 1.5.

1.2 Coherent Diffractive Imaging

Coherent Diffractive Imaging (CDI) is a lensless form of microcopy where the object image

is reconstructed from measuring the scattered wavefunction without first being collected by

a lens [21]. A typical CDI experiment entails a coherent beam source, henceforth called the

probe, striking the object in question, scattering into the far-field regime and then being col-
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Figure 1.4: Taken from ref [7]. 3D determination of atomic coordinates, chemical species
and grain structure of an FePt nanoparticle. a, Overview of the 3D positions of individual
atomic species with Fe atoms in red and Pt atoms in blue. b, The nanoparticle consists of
two large L12 grains, three small L12 grains, three small L10 grains and a Pt-rich A1 grain.
c, Multislice images obtained from the experimental 3D atomic model along the [100], [010]
and [001] directions, where several ‘L10 grains’ (magenta) appearing in the 2D images are
deceptive structural information. Colour bars indicate the degree of ordering, from pure
L12/L10 to chemically disordered fcc. Scale bar, 2 nm. Reproduced with permission from
Springer Nature.
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Figure 1.5: Taken from ref [6]. Experimental observation of the same nuclei undergoing
growth, fluctuation, dissolution, merging and/or division at 4D atomic resolution. a–c, A
representative growing nucleus with an accumulated annealing time of 9 min, 16 min and
26 min, respectively. The atomic models show Fe (red) and Pt (blue) atoms with an order
parameter ¡= 0.3, and the 3D contour maps show the distribution of an order parameter
of 0.7 (red), 0.5 (purple) and 0.3 (light blue). d–l, Three representative fluctuating nuclei
at three annealing times, including merging and dividing nuclei. m–o, A representative
dissolving nucleus at three annealing times, which dissolved at 26 min (o). Reproduced with
permission from Springer Nature.
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lected by a pixel array detector. This form of imaging lends itself to some advantages. First,

while lenses are readily available for visible light microscopy, precise optical manipulation

for other types of probes such as X-rays is costly and difficult [22]. Second, the resolution

obtained by CDI is not limited by careful control of the optics but rather by the largest

scattering angle at which information is recorded.

First experimental demonstration of soft X-ray CDI for a non-crystalline sample was

performed by Miao et. al. in 1999 [23]. A plane X-ray wave interfered with the sample

and the resulting diffraction pattern was measured by a detector. The measurement at the

detector can be mathematically represented as the magnitude of the Fourier transform of

the object.

Ψ(k) = |F(O(r))| (1.12)

where the phase information in momentum space is lost during measurement. A naive

approach of simply performing an inverse Fourier transform to recover the object will not

work – a problem commonly known as the phase problem.

O(r) ̸= F−1 (|F(O(r))|) (1.13)

To successfully recover the image, the diffraction pattern must be oversampled at a fre-

quency finer than the Nyquist interval and then passed through an algorithm that iteratively

applies Fourier constraints from experimental measurements [24]. This algorithm, also called

the hybrid input-output (HIO) algorithm, is described in detail below [25]:

At the j’th iteration,

1. Fourier transform an trial input object fj(r) to get a Fourier pattern Fk(k) in reciprocal

space.

2. Generate a new Fourier pattern F ′
j(k) by using the measured diffraction pattern as the

magnitude and the phase of F ′
j(k) as its phase.
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Figure 1.6: Taken from ref [23]. Gold dot X-ray CDI results. (a) Measured diffraction
pattern. (b) Phase image of gold dots reconstructed from (a). (c) Optical microscope image
of (b). Reproduced with permission from Springer Nature.

3. Inverse Fourier transform F ′
j(k) to get a new real space object, f ′

j(r).

4. Generate the (j + 1)’th object by

fj+1(r) =


f ′
j(r) r, f ′

j(r) ∈ S

fj(r)− βf ′
j(r) r, f ′

j(r) /∈ S

(1.14)

where β represents a constant between 0.5 and 1.0, and S represents pixels inside a

finite real space support and the imaginary parts are positive.

By applying this algorithm to the X-ray diffraction pattern shown in Figure 1.6 (a), a

high resolution image of the gold dots can be recovered, as shown in Figure 1.6 (b). As a

comparison, an optical microscope image of the dots is shown in Figure 1.6 (c).

An important detail to note when performing CDI experiments is the requirement for

redundancies in measured data in order to perform the reconstruction. In the case of single

plane wave CDI experiments, a support window in real space is applied to enforce a small

field-of-view, and the diffraction pattern is oversampled. An intuitive explanation for this

requirement is that the number of independently measured points must be greater than the

number of unknown variables (both magnitude and phase of object in real space) in order
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Figure 1.7: Schematic of an X-ray ptychography experiment. Reprinted figure with permis-
sion from [29], copyright (2017) by the American Physical Society.

to be recovered by the iterative algorithm. [25, 26]

1.2.1 Ptychography

Ptychography is an implementation of CDI whereby a larger field-of-view of the object is

reconstructed by scanning the coherent illumination across the object and iteratively recon-

structing the object from numerous diffraction patterns. Although the concept of combining

overlapped diffraction patterns can be traced back to Hoppe in 1969 [27], the modern ver-

sion of ptychography which incorporates iterative algorithms was introduced by Rodenburg

in 2004 [28, 29].

Figure 1.7 details the schematic of an X-ray ptychography experimental setup consist-

ing of a probe function striking the sample which can shifted in a gridlike fashion. The

measurement in the Fraunhofer plane is mathematically shown as

Ψ(k) = |F(P (r)O(r −R))| (1.15)
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Figure 1.8: Diagram of ptychographic phase retrieval algorithm. Reprinted figure with
permission from [29], copyright (2017) by the American Physical Society.

whereR is the scan position of the probe on the sample, P is the illuminating probe function,

and O is the sample object function. The resulting diffraction data will be 4 dimensions in

total – 2 from the diffraction patterns and 2 from the scanning positions.

The diffraction data is then used as an input for an iterative ptychographic phase re-

trieval algorithm, similar to the HIO algorithm used in single shot experiments. Figure 1.8

demonstrates a high-level diagram of such an algorithm, where each diffraction pattern is

enforced for each probe position through repeated Fourier and inverse Fourier transforms.

Note the use of overlapped probe illuminations on the sample plane which serves as data

redundancies required to overcome the phase problem.

An important extension of ptychographic algorithms emerged from Maiden and Roden-

burg in 2009 that allowed simultaneous reconstruction of the object and probe functions

from experimental diffraction patterns [30]. Named ePIE (extended ptychographic iterative

engine), the algorithm performs complex conjugate gradient descent on both of the probe

and object functions for every iteration, and therefore does not require an accurate model
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of the probe function in order to obtain successful reconstruction.

The iterative algorithm describing the update from the j’th diffraction pattern, Ij(k), is

described below:

1. Generate the j’th exit wave guess by multiplying the probe function and the object

function at location Rj .

ψj(r) = P (r)O(r −Rj) (1.16)

2. Apply the measured diffraction by taking the Fourier transform of ψj and substituting

the magnitude.

Ψj(k) =
√
Ij(k)

F [ψj(r)]

|F [ψj(r)]|
(1.17)

3. Calculate the updated exit wave by taking the inverse Fourier transform.

ψ′
j(r) = F−1[Ψj(k)] (1.18)

4. Update the probe and object functions via conjugate gradient descent.

Onew(r −Rj) = O(r −Rj) + α
P ∗(r)

|P (r)|2max

(ψ′
j(r)− ψj(r)) (1.19)

Pnew(r) = P (r) + β
O∗(r −Rj)

|O(r −Rj)|2max

(ψ′
j(r)− ψj(r)) (1.20)

In the past few decades, ptychography has found wide applications with synchrotron

radiation, high harmonic generation, electron and optical microscopy [21, 31–46].

1.2.2 Electron Ptychography

By employing a coherent electron source, ptychography can be performed at sub-Ångstrom

resolution, resolving 2D images at the atomic scale [11, 47]. For electron waves, the probe

function interacts primarily with the Coulomb potential of the sample, where the specimen

transmission function given as

t(r) = exp(iσevz(r)) (1.21)
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Figure 1.9: Taken from ref [47]. Ptychographic reconstructions with different maximum
collection angles. Reproduced with permission from Springer Nature.

where vz is the 2D projected atomic Coulomb potential and σe is the interaction parameter

σe =
2π

λV

(
m0c

2 + eV

2m0c2 + eV

)
(1.22)

where m0 is the mass of electron and V is the accelerated voltage.

Since the full width at half maximum for isolated atomic potentials range in the order

of 0.1 Ångstrom [11], the resolution of electron ptychography experiments will be primarily

determined by the maximum collection angle of electrons, θmax.

resolution =
λ

sin(θmax)
(1.23)

Figure 1.9 shows the effect of cropping the maximum collection angles on ptychographic
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reconstructions [47].

1.3 Convolutional Neural Networks

Neural network based methods attempt to mimic highly-dimensional functions through lay-

ers of nonlinear activation functions, inspired by the behavior of neurons. While the first

computational model of neural networks emerged in the 1940s [48], the utility of artificial

neural networks as tools for non-linear regression and pattern recognition was fully fleshed

out in the 1980s with the incorporation of back-proagation algorithms for supervised train-

ing [49]. With the spread of graphics processing units (GPUs) designed for parallelization

of computational tasks in machine learning tasks, different forms of neural network architec-

tures find widespread use in natural language processing, image recognition, and computer

vision applications today [50].

Deep convolutional neural networks (CNNs) which are neural networks with numerous

layers of convolution as trainable weights are most apt for image recognition and processing

tasks, since information in images tend to relate in limited spatial ranges. One of the most

popular types of convolutional neural networks is called the U-net architecture which follows

the principle of encoding information into numerous small-size channels, and then decoding

the numerous channels into a final low-dimensional representation [51]. The generalizability

of CNNs is powerful enough so that CNNs self-trained to learn the evaluation and policy in

complex board games such as Go and chess are considerably stronger than the best human

players [52]. In this section, I will briefly discuss the fundamental mathematical concepts

behind convolutional neural networks.
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Figure 1.10: A neuron takes a vector of inputs x1...xk, modulates them with trained weights
w1 ... wk and acts an activation function on the sum of the values.

1.3.1 Neural Networks

In 1943, McCulloch and Pitts introduced the first mathematical model of a biological neu-

ron and hypothesized that a collection of these neurons, or perceptrons, can be networked

together to act as logic gates [48]. A diagram of a perceptron, which is the main building

block of a neural network, is shown in Figure 1.10.

A single neuron acts as a binary linear separator in the hyperspace defined by the span

of x1 to xk. Multiple neurons arranged in a layer together allows binary separation in

hyperplanes, with the dimension of the hyperplane equal to the number of neurons. The

motivation of such a mathematical framework was exciting during a period of technological

development in transistors, logic gates, and general computing languages.

One important aspect of a perceptron is in the activation function, fact, which must be

a non-linear function.

fact(x+ y) ̸= fact(x) + fact(y) (1.24)

The reason for non-linearity is due to the fact that when neurons are arranged vertically as
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a series, if the activation function was linear, the entire network would reduce to a series of

linear operators, which itself is a linear operator. All of the complexities that neural networks

are able to learn derives from the ability of neurons to encapsulate non-linear relations. If 100

layers of neurons arranged in series can be represented as 1 layer, the network simply cannot

learn higher-dimensional representations. Typical activation functions include sigmoid and

hyperbolic tangent functions that take in real values as input and output a value in the order

of unity.

The ”learning” of the neuron comes from the determination of the weights that modulate

the input vector. If one supervises the learning of the neuron, a series of input vectors Xi

are fed into the neuron, and the weights adjust in order to minimize the error between the

outputs and the true output values, yi. The complexity of the learning comes from the

number of parameters, or weights, that can be trained as well as the relative arrangement

of the neurons in the network.

1.3.2 Backpropagation Algorithm

The computational neural network experienced a boom during the 1980s when numerous

(and independent) scientists formulated a systematic way to train the neurons, called the

backpropagation algorithm [49, 53–55]. The algorithm defines an objective or error function

Err, and performs a gradient descent on it with respect to the neural network weights.

Suppose that we have the following neuron wp,q in the following network shown in Figure

1.11. The update value for that neuron is proportional to the derivative of an error function,

Err, with respect to that neuron.

∆wp,q = −η∂Err(wp,q)

∂wp,q

(1.25)
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Figure 1.11: A diagram of a neural network. The backpropagation algorithm will attempt
to update the weight, wp,q.

Taking the chain rule,

∂Err(wp,q)

∂wp,q

=
∂Err

∂netq
· ∂netq
∂wp,q

(1.26)

where netq is the sum of all inputs into neuron q from layer P . Simplifying the second term,

∂netq
∂wp,q

=
∂
∑

p∈P wp,qop

∂wp,q

= op (1.27)

where op is the output value from the p’th neuron from layer P . The first term from the

chain rule splits as follows (we will call this −δq):

−δq =
∂Err

∂netq
=
∂Err

∂oq
· ∂oq
∂netq

(1.28)

The second term is the derivative of the activation function

∂oq
∂netq

=
∂fact(netq)

∂netq
= f ′

act(netq) (1.29)
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And the first term is

∂Err

∂oq
=

∑
r∈R

∂Err

∂netr

∂netr
∂oq

=
∑
r∈R

∂Err

∂netr
wq,r (1.30)

The derivation comes to a recursive closed form when we see that

∂Err

∂netr
= −δr (1.31)

and we come to a final update value for the weight with

∆wp,q = ηopδq (1.32)

where

δq = f ′
act(neth) ·

∑
r∈R

(δrwq,r) (1.33)

Thus, to update weight w, we first need to calculate the weight updates in the immediate

next layer, and so forth. However, we need a final equation for when the network finally

outputs a value to be compared to the true value. If we perform the same chain rule procedure

with an L2-norm error function, we derive the final backpropagation formulas.

∆wp,q = ηopδq (1.34)

with

δq =


f ′
act(netq) · (tq − yq)(q outside)

f ′
act(netq) ·

∑
r∈R(δrwq,r)(q inside)

(1.35)

where tq is the true value to fit, and yq is the output value of the neuron.
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1.3.3 Convolutional Neural Networks

There are no limits to the number of neurons in each hidden layer nor the number of layers

themselves. As a result, one could design a neural network that could approximate any non-

linear and continuous function, as long as enough training data exist. However, it becomes

quickly evident that the number of neurons to train blows up significantly if every input

vector maps to every next layer of neurons and so forth. While such a neural network (also

called a dense neural network) could in theory approximate any function it can represent in

finite time [56], the training and predicting with such an architecture becomes practically

infeasible.

Neural network approaches to problems typically tend to have input images that are

translationally invariant. Meaning, a picture of a dog is a picture of a dog regardless of where

the dog is positioned in the image. Therefore, instead of fully connecting every input value to

the neural network, it might be prudent to instead train a series of filters that convolute the

image at every layer. One immediate advantage of such a network structure is that one could

develop a highly-dimensional multi-layer network without blowing up the neuron count that

could process an entire image. This architecture which relies on convolution filters instead

of direct connections is called a convolutional neural network (CNN).

An example use-case of CNN was demonstrated in 1989 by LeCun et al. [57] where

backpropagation algortihm was applied to a convolutional neural network that could classify

handwritten digits. The neural network takes an input of 256 units (16-by-16 image) and

propagates through three hidden layers, the first two being convolutional layers of kernels,

and the last being a fully connected layer. The two convolutional layers allow encoding of

the information into lower-dimensional representations which are then parsed by the dense

layers.

As the algorithm for updating the weights became highly parallelized, the incorporation
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of GPUs during training was developed to great success [58, 59] when a 7 layer CNN trained

with 15 million high-resolution images won first place in the ImageNet LSVRC-2010 contest.

The resulting neural network consisting of 60 million parameters and 650 thousand neurons

could be trained with reasonable time due to efficient GPU implementation.

1.3.4 Residual Layers

One final point that must be mentioned regarding training of CNNs is the vanishing gradient

problem that is solved with residual layers [60]. The vanishing gradient problem arises when

a neural network with large number of layers eventually fail to update the neural network

weights due to the derivative approaching 0 at the earlier layers. This phenomenon can

be seen in equation 1.35 where δq for inner layers rely on δr on the next layers, which is

multiplied by a f ′
act term. For most activation functions, the derivatives tend to be less

than 1, so it becomes easily evident that the δ terms quickly vanish to 0 the deeper we

backpropagate the errors.

The solution to this problem is by employing residual layers that provide direct connec-

tions bypassing the neural network layer, as shown in Figure 1.12. Bypassing a linear term at

each layer allows the backpropagation algorithm to ensure that a update value proportional

to f ′
act is applied at each iteration.
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Figure 1.12: Diagram of a residual layer. the input value x bypasses a neural network weight
layer f and is directly added to the output.
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Chapter 2

Atomic Electron Tomography of Amorphous Solids

2.1 Determining the 3D Atomic Structure of an Amorphous Solid

In this project, we deploy atomic electron tomography to experimentally determine the 3D

atomic positions of an amorphous solid. Using a multi-component glass-forming alloy as

proof of principle, we quantitatively characterize the short- and medium-range order of the

3D atomic arrangement. We observe that, although the 3D atomic packing of the short-range

order is geometrically disordered, some short-range-order structures connect with each other

to form crystal-like superclusters and give rise to medium-range order. We identify four

types of crystal-like medium-range order—face-centred cubic, hexagonal close-packed, body-

centred cubic and simple cubic—coexisting in the amorphous sample, showing translational

but not orientational order.

To begin, the samples were synthesized by a carbothermal shock technique with a high

cooling rate which was used to create high-entropy-alloy nanoparticles with multi-metal

components. Energy-dispersive X-ray (EDX) spectroscopy data show that the nanoparticles

are composed of eight elements: Co, Ni, Ru, Rh, Pd, Ag, Ir and Pt. Tomographic tilt series

were acquired from seven nanoparticles using an annular dark-field scanning transmission

electron microscope operated at 200 kV. To minimize sample drift, four sequential images
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per tilt angle were obtained with a dwell time of 3 µs. To monitor any potential damage

induced by the electron beam, we took 0° images before, during and after the acquisition

of each tilt series and ensured that no noticeable structural change was observed for the

seven nanoparticles. The total electron dose of each tilt series was estimated to be between

7 × 105 electrons/Å2 and 9 × 105 electrons/Å2.

In this study, we focus on the most disordered nanoparticle, from which a tilt series of

55 images was acquired. Although some crystalline features are present the two-dimensional

(2D) power spectra calculated from the images show the amorphous halo. After pre-

processing and image denoising, the tilt series was reconstructed and the 3D atomic positions

were traced and classified. Because the image contrast in the 3D reconstruction depends on

the atomic number [12–14], at present AET is only sensitive enough to classify the eight

elements into three different types: Co and Ni as type 1; Ru, Rh, Pd and Ag as type 2;

and Ir and Pt as type 3. After atom classification, we obtained the 3D atomic model of

the nanoparticle, consisting of 8,322, 6,896 and 3,138 atoms of type 1, 2 and 3, respectively.

A sample projection, the 2D power spectrum of the 55 projections, two slices of the 3D

reconstruction, and a 3D atomic model of the glass-forming nanoparticle is shown in Figure

2.1.

To quantitatively characterize the atomic structure, we employed the local bond orien-

tational order (BOO) parameters to distinguish between the disordered, face-centred cubic

(fcc), hexagonal close-packed (hcp) and body-centred cubic (bcc) structures [62]. BOO pa-

rameter analysis (shown in Figure 2.2) shows that the local BOO parameters of the majority

of atoms deviate markedly from the fcc, hcp and bcc crystal structures, indicating that the

atoms are arranged in an amorphous configuration.

Although medium-range order (MRO) in metallic glasses is broadly defined as the nanometre-

scale structural organization beyond the short-range order (SRO) [63, 64], in this work we

focused on the investigation of the MRO in the framework of the efficient cluster packing
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Figure 2.1: Taken from ref [61]. a, Representative experimental image, where some crystalline
features are visible. Scale bar, 2 nm. b, Average 2D power spectrum of 55 experimental
images (Extended Data Fig. 3), showing the amorphous halo. c, d, Two 2.4-Å-thick slices of
the 3D reconstruction in the x–y (c) and y–z (d) plane, where the majority of type-3 atoms
(bright dots) are distributed in the second coordination shell. e, Experimental 3D atomic
model of the glass-forming nanoparticle.
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Figure 2.2: Taken from ref [61]. Local BOO parameters of all the atoms in the nanoparticle.
According to the criterion of the normalized BOO parameter being ¡0.5 (dashed red curve),
84.54% of the total atoms are disordered.
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model [65, 66]. This model hypothesizes that solute atoms are surrounded by randomly

positioned solvent atoms to form solute-centre clusters that are densely packed to constitute

crystal-like MROs in metallic glasses.

To locate the MRO in the glass-forming nanoparticle, we implemented a breadth-first

search algorithm to look for the fcc-, hcp-, bcc-, simple cubic (sc-) and icosahedral-like

structures of the solute centres. First, the algorithm identified the solute centres from type-

3 atoms based on two criteria: (i) each solute centre must fall within a 0.75 Å radius

from an fcc, hcp, bcc or sc lattice point, and (ii) each solute centre must have at least

one neighbouring type-3 atom within the second-coordination-shell distance. Second, the

identified solute centres were sorted out to generate a queue of the fcc-, hcp-, bcc- or sc-

like MRO candidates. Third, starting from the largest MRO candidate (that is, with the

most solute centres), each candidate was classified as an MRO if it had at least five or more

solute centres and none of the solute centres was already occupied by another MRO. If any

solute centres were already occupied, they were removed from the MRO candidate, and the

candidate was refitted into the lattice vectors and added back into the queue. If two or

more MRO candidates had the same number of solute centres, the one with the smallest

error of fitting the solute centres into the lattice vectors was analysed first. This process was

repeated until all the MROs were identified, in which each solute centre could only belong

to no more than one MRO. Figure 2.3a shows a histogram of the four types of MRO as a

function of size, and the inset illustrates the fraction of the solute-centre atoms in the four

types of MRO. Figure 2.3b shows the 3D distribution of MROs having eight solute centres or

more. To better visualize these MROs, the solute centres are orientated along the fcc, hcp,

bcc and sc zone axes (Fig 2.4), showing that the 3D shapes of the MROs are anisotropic.

An attempt was also made to search for icosahedral-like MROs. The breadth-first search

algorithm was used to find the MROs that fall within a 0.75 Å radius from the 12 vertices of

an icosahedron. Because the icosahedron cannot be periodically packed in three dimensions,
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Figure 2.3: Taken from ref [61]. a) Histogram of the four types of MRO—fcc- (blue),
hcp(red), bcc- (green) and sc-like (purple)as a function of size (that is, the number of solute
centres). The total number of fcc-, hcp-, bcc- and sc-like MROs is 85, 71, 31 and 17,
respectively. The inset shows the fraction of solute-centre atoms in the four types of MRO.
b) Distribution of the four types of MRO with eight solute-centre atoms or more, where the
central region lacks large MROs.

only the nearest-neighbour vertices were searched, making the largest possible MRO have 13

solute centres (one central solute centre plus 12 nearest neighbours). After performing the

search, the resulting possible MROs had a mean value of 3.9, meaning that on average each

solute centre was connected to only three others when constrained to an icosahedron within

the second coordination shell. Furthermore, although the largest possible MRO had seven

solute centres, none of these solute centres formed five-fold symmetry. We also repeated this

analysis with a 1Åradius cut-off; the mean value of solute centres became 4.5, the largest

MRO had eight solute centres, and there were 19 five-fold symmetries.

We calculated the partial PDFs of all the fcc-, hcp-, bcc- and sc-like solute centres in the

glass-forming nanoparticle, and their corresponding maximum peak positions are at 4.62,

4.77, 4.82 and 3.88 Å, respectively (Fig 2.5). These peak positions represent the average

nearest-neighbour distances of the solute centres in the four crystal-like MROs, and the
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Figure 2.4: Taken from ref [61]. Representative fcc- (a), hcp- (c), bcc- (e) and sc-like
(g) MROs, consisting of 22, 14, 11 and 23 solute centres (large red spheres), respectively,
where the individual solute-centre clusters (dashed circles) are randomly oriented. To better
visualize the crystal-like MROs, the solvent atoms have been removed and the solute centres
are orientated along the fcc (b), hcp (d), bcc (f) and sc (h) zone axes, showing that the
MROs have anisotropic 3D shapes and strongly deviate from the crystal lattices.
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Figure 2.5: Taken from ref [61]. Partial PDFs of the fcc-, hcp-, bcc- and sc-like solute
centres in the glassforming nanoparticle, where the maximum peak positions are located at
4.62, 4.77, 4.82 and 3.88 Å, respectively.
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broadened peaks signify the severe deviation from the crystal lattices. Compared with the

other three partial PDFs, the partial PDF of the sc-like MROs has two peaks, and the ratio

of the second to the first peak position is about 2 (Fig 2.5, purple curve), which corresponds

to the ratio of the diagonal to the side length of a square. The shorter nearest-neighbour

distance of the sc-like MROs compared to the other three crystal-like MROs indicates that

the sc-like solute-centre clusters are more closely connected with their neighbours.

Our quantitative analysis of the SRO and MRO in a multi-component glass-forming

nanoparticle provides direct experimental evidence to support the general framework of the

efficient cluster-packing model [65, 66]; that is, solute-centre clusters are densely packed in

some parts of the sample to form crystal-like MROs. Through AET, we observed coexistence

of fcc-, hcp-, bcc- and sc-like MROs in the glass-forming nanoparticle. By quantifying their

length, volume and 3D structure, we found that the MRO not only has a large variation in

length and volume, but also severely deviates from the crystal lattices.

2.2 3D Atomic Packing in Amorphous Solids with Liquid-Like

Structure

In 1952, Frank hypothesized that icosahedral order is the prevalent atomic motif in monatomic

liquids [67]. A polytetrahedral packing model has been proposed to explain the three-

dimensional (3D) atomic structure of monatomic liquids and amorphous materials [68], how-

ever, no experimental method could directly determine the 3D atomic packing of liquids and

amorphous materials due to the lack of long-range order.

In this project we advance AET to reveal the 3D atomic structure of an amorphous

Ta thin film and two amorphous Pd nanoparticles that are not metallic glasses but have a

liquid-like structure. We observed that pentagonal bipyramids are the main atomic motifs

in the monatomic amorphous materials. Instead of assembling icosahedra, most pentagonal
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bipyramids closely connect with each other to form pentagonal bipyramid networks (PBNs)

that extend to the medium-range order.

The AET experiments were conducted with a scanning transmission electron microscope

(STEM) in annular dark-field (ADF) mode. Tomographic tilt series were acquired from

an amorphous Ta thin film and two Pd nanoparticles, which were synthesized by physical

vapour deposition and colloidal chemistry with ligand engineering, respectively.

Tomographic tilt series of the Ta thin film and Pd nanoparticles were acquired using

the TEAM I microscope at the National Center for Electron Microscopy. The microscope

was operated in ADF mode with an electron energy of 300 keV. A low-exposure acquisition

scheme was adopted for our data acquisition34. When measuring an image at a tilt angle, a

nearby nanoparticle or a feature in the Ta film was used to align and focus the image, thus

reducing the unnecessary electron dose to the sample under study. At each tilt angle, three

sequential images were taken with a dwell time of 3 µs to minimize the dose rate and drift

distortion in each image. To further mitigate the beam damage to the samples, the total

electron dose of each tilt series was optimized to be about 3.4–6.0 ×105 electrons/Å2.

After image preprocessing, each tilt series was reconstructed by tomography, and the 3D

coordinates of individual atoms were traced and refined to produce an experimental atomic

model. Figure 2.6a,b show the experimental 3D atomic model of the Ta thin film and two Pd

nanoparticles (named Pd1 and Pd2), respectively. To quantify the disorder, we calculated

the bond orientational order parameters for all the atoms [62]. We observed that 20.1%,

2.2% and 1.8% of the atoms form crystal nuclei on the surface of the Ta thin film and the

Pd1 and Pd2 nanoparticles, respectively (grey atoms in Fig 2.6a,b,)

After excluding these nuclei, we plot the PDFs of the disordered atoms (Fig 2.7), which

exhibit similar shapes despite the different chemical composition and synthesis methods of

the samples. As a comparison, the PDF of a Ta liquid obtained by the molecular dynamics

(MD) simulation is shown as a dotted curve in Fig 2.7, in which the peak and valley positions
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Figure 2.6: Taken from ref [69]. a,b, Experimental 3D atomic model of an amorphous Ta
film (a) and a Pd nanoparticle (Pd1; b) with surface crystal nuclei in grey. The two insets
show the average 2D power spectra of the experimental images for the Ta film and Pd1
nanoparticle, where the amorphous halo is visible. Scale bars, 2 nm.

agree with those of the Ta thin film and two Pd nanoparticles.

To quantitatively characterize the tetrahedra in the amorphous materials (Methods), we

used the distortion parameter, defined as δ = emax/eavg − 1, where emax and eavg are the

maximum and average edge lengths of each tetrahedron, respectively. With δ > 0.2, more

than 96.8% of the atoms in the samples form tetrahedra. By sharing faces, these tetrahedra

constitute four main motifs: triplets, quadrilateral, pentagonal and hexagonal bipyramids

(Figure 2.8). The four motifs are represented by three-, four-, five- and six-fold skeletons,

which are formed by connecting the centroids of the tetrahedra (coloured lines in Figure 2.8).

Analysis shows that of the population of the four motifs in the three samples, pentagonal

bipyramids are the most abundant atomic motif. This observation can be explained by the

fact that the atomic packing in pentagonal bipyramids requires less distortion than in the

other motifs [68].

Since a tetrahedron and a pentagonal bipyramid represent the densest packing of four

and seven atoms, respectively, we correlated polytetrahedral packing with the local mass
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Figure 2.7: Taken from ref [69]. PDFs of the Ta film (green), two Pd nanoparticles (Pd1 in
blue and Pd2 in red) and an MD-simulated Ta liquid at 5,200 K (dotted curve), where g(r)
is the PDF and r/R1 is the distance (r) normalized by the first peak position (R1).

Figure 2.8: Taken from ref [69]. The four most populated atomic motifs (triplets, quadrilat-
eral, pentagonal and hexagonal bipyramids) in the three samples, where the capping atoms
are in brown and the ring atoms are in blue, connected by the bonds (black lines). The four
motifs are represented by a three- (purple), four- (blue), five- (orange) and six-fold (yellow)
skeleton, which connects the centroid (black dot) of each tetrahedron.
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Figure 2.9: Taken from ref [69]. a, Mass density distribution in the regions of the amorphous
Ta film with (orange) and without (blue) polytetrahedral packing, where polytetrahedral
packing increases the average mass density by 3% (dashed lines). b, A slice through the Ta
film shows the local mass density heterogeneity (colour) overlaid with polytetrahedral pack-
ing (black). Scale bar, 2 nm. c, A 3D surface rendering of local mass density heterogeneity
magnified from the square region in b, which is overlaid with three- (purple), four- (blue),
five- (orange) and six-fold (yellow) skeletons.

density of the amorphous materials. Figure 2.9a shows the mass density distribution in the

regions of three samples with and without polytetrahedral packing, where the average mass

density increases with polytetrahedral packing. We also observed 3D local mass density

heterogeneity in the amorphous materials. A slice through each sample shows the local mass

density heterogeneity overlaid with polytetrahedral packing (Figure 2.9b). A magnified

region in each sample reveals that 3D local mass density heterogeneity is strongly correlated

to the atomic packing of the four motifs in the three samples (Figure 2.9c).

We observed that a number of pentagonal bipyramids link to each other by sharing four or

five atoms with their neighbours (Figure 2.10a,b), which we define as vertex or edge sharing

of the five-fold skeletons, respectively. We found that while 63.5% of pentagonal bipyramids

in the three samples do not share any vertex with their neighbours, the majority of them

(72.5%) have at least one edge-sharing neighbour.
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Figure 2.10: Taken from ref [69]. a,b, Vertex and edge sharing of the five-fold skeletons,
which share four and five atoms with their neighbours, respectively. The capping atoms are
in brown. c,d, Pentagonal bipyramid clusters with the most vertex- (c) and edge-sharing
neighbours (d) in the three amorphous materials.

Figure 2.10c,d shows two pentagonal bipyramid clusters with the most vertexand edge-

sharing neighbours, respectively, where the larger cluster is formed by edge sharing. These

results indicate that edge sharing of the five-fold skeletons is a more dominant feature in

the packing of pentagonal bipyramids. We then investigated if these pentagonal bipyramids

form icosahedra. An icosahedron requires the tight packing of 12 pentagonal bipyramids by

edge sharing. Due to geometric frustration [68], the five-fold skeletons in an icosahedron

form a regular dodecahedron with the dihedral angle of 116.57°. But we observed that the

dihedral angles between two edge-sharing pentagonal bipyramids peak at 120.7° in the three

amorphous samples, a value that is close to 120° in the absence of geometric frustration.

This observation further confirms that the pentagonal bipyramids assemble only partial

icosahedra.
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Figure 2.11: Taken from ref [69]. a, Five-fold skeleton of a representative PBN, containing
five partial icosahedra with n = 3, 5, 5, 3 and 8. The centre of each partial icosahedron
is labelled by an icosahedron (green). b, The largest PBN in the amorphous materials,
containing 135 pentagonal bipyramids formed by 165 Ta atoms (blue balls). The black lines
represent the bonds between the Ta atoms and the black dots and orange lines show the
PBN with five-fold skeletons. Scale bar, 4 Å.

Instead of assembling icosahedra, most pentagonal bipyramids with edge-sharing skele-

tons form PBNs in the amorphous samples. Figure 2.11a shows a representative PBN com-

prising five partial icosahedra, and the largest PBN was found in the Ta thin film, consisting

of 135 pentagonal bipyramids formed by 165 atoms with an end-to-end length of 2.83 nm

(Figure 2.11b).

Our experimental results provide fundamental insight into the 3D atomic packing of

monatomic amorphous materials and liquids. Although there are several crystal nuclei on

the surface of the Ta thin film and two Pd nanoparticles, we verified that the crystal nuclei

have a minimal impact on the structural disorder of the samples based on the following

observations. After removing the crystal nuclei, the peak and valley positions of the PDFs

of the amorphous materials are in good agreement with those of the MD-simulated Ta liquid

(Figure 2.7).

Our experimental and MD simulation results further reveal that pentagonal bipyramids

are the prevalent atomic motif and form nanometre-scale PBNs in monatomic amorphous
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materials and liquids. During the quench from a liquid to a metallic glass state, the PBNs

quickly grow in size and assemble more icosahedra, indicating the PBNs can trap the atoms in

a local minimum (a non-crystalline or glass state) instead of a global minimum (a crystalline

state). Looking forward, the ability to determine the 3D atomic structure of amorphous thin

films is expected to greatly expand the applicability of AET to a broad range of technologi-

cally relevant materials such as quasicrystals.
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Chapter 3

Incorporating Phase Projections in Atomic

Electron Tomography

In this chapter, we will demonstrate the combination of ptychography and atomic electron

tomography as an effective method for low dose imaging of individual low-Z atoms in three-

dimensions, and argue for the utility of incorporating coherent electron images in tomography

for imaging samples in the physical sciences.

3.1 Ptychographic Atomic Electron Tomography

All projection measurements in AET so far have been limited to incoherent electron scat-

tering methods such as (High Angle) Annular Dark Field (ADF/HAADF), whereas imaging

methods from coherent beam sources have made significant strides in recent decades – in-

cluding ptychography. Conventionally, ptychography is an imaging method in 2 dimensions,

but it has also been extended to recover 3D vertical information from a single projection by

modeling the object as multiple slices of phase objects [70]. However, the vertical resolution

of this method is limited by dz = λ/(2 sin2(θmax/2)) compared to the lateral resolution limi-

tation of dx = λ/ sin(θmax, where λ is the wavelength of the probe and θmax is the maximum

detector collection angle [71]. As an example, a STEM experiment with an 80 keV electron
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probe and 80 mrad maximum collection angle would yield a theoretical maximum vertical

resolution of 1.3 nm compared to its lateral counterpart of 0.39 Å. Since atomic resolution

typically requires near-̊angstrom resolution, single-projection multi-slice ptychography alone

would not be able to recover signals from individual atoms in 3D. Due to this limitation,

ptychographic data has to be measured at multiple tilt angles and combined tomographically

to achieve high vertical resolution in 3D phase images [36].

As powerful single-electron pixel-array detectors that can achieve deep sub-Ångstrom

resolution become commercially available, ptychographic AET (pAET) has evolved from a

hypothetical idea to an experimental possibility. We use numerical experiments to demon-

strate pAET as a feasible method for low-dose 3D imaging of individual light atoms by

performing multislice simulations on a zinc oxide nanoparticle and a vertical WS2/WSe2

van der Waals (vdW) heterostructure.

3.2 Simulation of pAET on ZnO Nanoparticle

An atomic model of a spherical Wurtzite ZnO nanoparticle with a diameter of 5 nm was

generated with 1% randomly dispersed oxygen vacancies. This model was used to generate

0.2-Å-thick projected potential slices for multislice simulation (probe sampling: 0.1 Å; sample

sampling: 0.1 Å; maximum detector angle: 104 mrad) [72, 73] using tabulated Hartree-Fock

approximations of atomic potentials [11, 74]. An aberration-corrected STEM probe was

simulated using the parameters of the TEAM 0.5 (electron energy: 80 keV; probe semi-

convergence angle: 30 mrad; C1: 0 nm; C3: 900 nm; C5: -622 µm; probe size: 0.88 Å;

probe step size: 0.4 Å). By tilting the ZnO nanoparticle from -70° to +70°, we calculated

29 data sets of diffraction patterns at 29 tilt angles. The reason that we chose a small tilt

range was to demonstrate that pAET can tolerate a large missing wedge. For each tilt angle,

eight frozen phonon configurations at room temperature were obtained and averaged for the
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data set. Unlike conventional AET tilt series where each tilt image is a 2D ADF or HAADF

image, a ptychographic tilt series consists of 4D data sets: 2 dimensions from scanning the

sample in real space, and 2 from the diffraction in momentum space. To represent real

experimental conditions, the 4D data sets were corrupted with simulated Poisson noise by

sampling independent electron events from the ideal diffraction patterns. The diffraction

patterns were sampled to represent an effective dose per projection of 3.0× 104e−/Å2, thus

simulating a total electron radiation dose of 8.7 × 105e−/Å2. Figure 3.5(a) shows a 2D

logarithmic heat map of the average diffraction pattern from one tilt series projection.

The overlap of adjacent probes (44%) gives enough redundancy to iteratively solve for

both object and probe functions using the extended ptychographic iterative engine (ePIE)

algorithm [30]. Due to high Poisson noise in individual diffraction patterns, we used a

small update parameter (0.01) for the object function to prevent overfitting the noise in

reconstructions. Figure 3.5(b) shows an example of a ptychographic phase reconstruction on

the left hand side, and the ADF image (detector inner angle: 30 mrad; outer angle: 90 mrad)

generated from the same diffraction data set on the right hand side. 3D reconstructions

of both ptychographic and ADF projections were performed using REal Space Iterative

Reconstruction (RESIRE) – a powerful tomographic algorithm that iteratively minimizes

the error between the measured and calculated projections using the gradient descent [61].

Isosurface rendering of the 3D reconstruction performed with ptychographic projections

are shown in Figure 3.5(c), with a magnified isosurface rendering of the volume’s core in

Figure 3.5(d). 3D rendering of individual oxygen atoms can be observed in the magnified

figure. Figure 3.5(e) shows 2.0-Å-thick central slice of the 3D volume reconstructed with

ptychographic phase projections on the left hand side, and with ADF-STEM projections on

the right hand side, with a magnified image shown in Fig. 3.5(f). The smaller blobs found

in the ePIE/RESIRE reconstruction correspond to individual oxygen atoms, which were

not resolved using ADF/RESIRE. Because RESIRE does not assume any periodicity while
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Figure 3.1: Taken from [1]. Numerical experiment on ptychography- and ADF-STEM-based
atomic electron tomography of a 5 nm ZnO nanoparticle. (a) 2D logarithmic heat map of
the average of 15625 diffraction patterns from a tilt series. The diffraction patterns simulate
a dose per projection of 3.0× 104e/Å2. (b) A representative ptychographic phase projection
(left) and an ADF-STEM projection (right). Both projections were reconstructed with
the same diffraction patterns seen in (a). (c) 3D isosurface rendering of the volume after
tomographic reconstruction of ptychographic phase projections. (d) Magnified isosurface
rendering of the core of the volume in (c). Individual oxygen atoms rendered as smaller
spheres are observed. Note that the zinc atoms look disproportionate large due to the
isosurface rendering effect. (e) A 2.0-Å-thick central slice of the volume in the [0001] direction
reconstructed with ptychographic phase projections (left) and with ADF-STEM projections
(right). (f) A magnified image of (e), indicating an oxygen defect with a red arrow. (g) A
2.0-Å-thick slice through the missing wedge direction of the reconstruction performed with
ptychographic projections (left) and with ADF projections (right). (h) A magnified image
of (g), demonstrating greater missing wedge artifacts in the reconstruction when performing
tomography with ADF-STEM projections. Scale bars in (b), (c), (e) and (g) indicate 5 Å,
scale bar in (e) indicates 1 Å, and scale bars in (f) and (h) indicate 2 Å.
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performing 3D reconstruction, individual oxygen atom defects placed in the original model

were also able to be resolved in the pAET reconstruction as indicated by the red arrow

in Fig. 3.5(f). Furthermore, the improved quality in pAET reconstructions is especially

evident when looking at a slice through the missing wedge direction, shown in Fig. 3.5(g),

and magnified in Fig. 3.5(h).

3.3 Z-Contrast in pAET

To better understand the nature of individual low-Z atom contrast with pAET, we performed

multislice simulations of individual atoms with varying atomic number to measure their rel-

ative contrast. Similar calculations have been performed analytically for phase contrast [75],

and numerically for ADF-STEM and bright field STEM contrast [11]. Multislice simula-

tions of individual atoms ranging from C (Z = 6) to Xe (Z = 54) were performed with an

aberration-corrected probe (semi-convergence angle: 24 mrad) of varying energies (60 keV,

120 keV, and 200 keV) and probe step size of 0.4 Å. Ptychographic phase projections were

reconstructed with ePIE and ADF-STEM projections were reconstructed by integrating the

diffraction patterns from 24 mrad to 120 mrad. Contrast per atom was defined as the height

of the fitted 2D Gaussian function and were normalized by setting the atomic contrast of Xe

to unity. Finally, projected atomic potentials were calculated and fitted as 2D Gaussians to

measure ideal relative atomic contrasts. The results of these calculations are shown in Fig.

3.2.

Note that the contrasts from the potentials are not strictly monotonic as a function of

atomic number, as variations in the filling of electron shells create fluctuations reflected by the

Hartree-Fock approximations. We found that the contrast from ADF-STEM was monotonic

as a function of the atomic number, supporting previous studies that report a power relation

(roughly proportional to Z1.8) [12–14]. Such a relation can be tolerated while conducting
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Figure 3.2: Taken from [1]. Quantitative comparison of normalized atomic contrast from C
to Xe between ptychography and ADF for three different electron beam energies (60 keV,
120 keV, and 240 keV). Normalized peak heights from Hartree-Fock potential estimations
are also plotted. Atoms where valence shells become fully filled (Ne, Ar, Zn, and Kr) are
indicated to explain fluctuations in the potential peaks.
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tomography in metallic samples, but this makes it more difficult to simultaneously image

individual low and high Z atoms, such as in metallic oxides, due to a large ratio of the

relative signal (SZn/SO = 7.75). In contrast, ptychography was not only able to recover

a higher relative signal for low-Z atoms compared to ADF-STEM (SZn/SO = 2.48), but

also was sensitive enough to recover the aforementioned fluctuations in atomic potentials

for all three beam energies. This advantage of using phase signals for tomography has also

been numerically demonstrated with multi-slice simulation of high-resolution transmission-

electron microscopy images as input projections [76].

3.4 Linearity in Projections

Successful tomography requires that the input projections need to be a sum of some mono-

tonic response to a physical property along the direction of projection – a requirement aptly

named as the projection requirement [13, 77]. Although perfect linearity is ideal, power

law atomic contrast in ADF/HAADF-STEM projections is sufficient to locate and identify

individual atoms in materials, but it requires a relatively high electron dose. In contrast,

ptychography reconstructs the phase induced in the transmitted beam by the Coulomb po-

tential, which acts as a linear response to atoms. Therefore, we should expect a higher degree

of linearity in AET projections reconstructed with ptychography.

Figure 3.3(a) shows the graphical representation of the multislice simulation used to test

linearity in ADF/HAADF-STEM images. N Si atoms separated by a distance d = 3 Å were

placed co-linearly in the path of the electron beam (energy: 80 keV; semi-convergence angle

α: 24 mrad), and was sampled with probe step size of 0.4 Å. Three different projections

of atomic columns were calculated using five different inner and outer ADF detector angle

combinations. After fitting each projection of atom columns to a 2D Gaussian, the contrast

per atom was measured as the height of the 2D Gaussian divided by the number of atoms.
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Figure 3.3: Taken from [1]. Contrast per atom when imaging along the zone-axis with
ADF/HAADF and ptychography. (a) An experimental schematic of multislice simulation of
an 80 keV electron beam probe and 24 mrad semi-convergence angle imaging a column of N
Si atoms separated by distance of 3 Å. Five different combinations of inner and outer angles
were simulated. (b) Contrast per atom in atomic columns when measured with various ADF
angles. The horizontal gray line plotted at 1 indicates the ideal linear projection. (c) Similar
experimental schematic as (a) except the substitution of ADF detectors with a pixel array
detector, allowing for ptychographic reconstruction. (d) Contrast per atom in columns when
reconstructed with ptychography.

48



The result of this calculation is shown in Fig. 3.3(b), along with a horizontal line at 1

indicating contrast per atom from ideal linear projections. We observed significant deviation

from the linear contrast when the collection angles were smaller than 6α as channeling effects

due to low electron beam energy distorted the images of columns.

Furthermore, the measured atomic contrast was highly sensitive to the collection angles in

this regime due to multiple scattering. Only when the measured inner angle was higher than

6α did we observe monotonicity in the contrast per atom. This might suggest HAADF-STEM

as a more suitable method than ADF-STEM when performing AET using low energy beams,

but the electron dose in real HAADF-STEM experiments required to sufficiently overcome

Poisson noise makes it a less reliable choice when imaging dose sensitive materials. For a

comparison, we performed a similar numerical experiment by replacing the ADF detector

with a pixel array detector for ptychography, shown in Fig. 3.3(c), and plotted results

from contrast calculations in Fig. 3.3(d). Ptychography was able to maintain a more linear

contrast per atom than ADF/HAADF-STEM.

3.5 pAET in 2D Materials

Lastly, the method of pAET can also be used to image individual low-Z atoms in geometries

other than nanoparticles such as thin films and vdW heterostructures. The vdW interaction

between the top and bottom layers mediates various types of coupling across the interface

in vdW heterostructures. It has been reported that the quantum properties of vdW het-

erostructures are highly tunable with vertical stacking through moiré potentials, and that

different stacking alignments can cause drastic changes in exciton excitation as well as other

quantum properties such as superconductivity and correlated insulator states [78–82]. The

capability to precisely determine the 3D coordinates and chemical species of individual atoms

combined with ab initio calculations is anticipated to reveal unprecedented details about the
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correlation between the atomic structure of vdW heterostructures and their exotic quantum

properties.

Using identical electron probe parameters as those used in Fig. , multislice simulation

was performed on an atomic model of vertical WS2/WSe2 van der Waals heterostructure,

with its two tungsten layers separated by 6.54 Å and tiled by 12.5°. Figure 3.4(a) shows

2.0-Å-thick slices of every atomic layer of the heterostructure when reconstructed with ePIE

and RESIRE. Despite severely corrupting the diffraction patterns by simulating a total

electron dose of 5.1×104e/Å2, every atomic layer including the two sulfur layers are resolved.

However, when tomography was performed on ADF-STEM projections with an equivalent

electron dose, as shown in Fig. 3.4(b), the signals from the sulfur layers attenuate below a

level at which individual atoms are traceable.

3.6 Mn3O4 Nanowire pAET Experiment

An experiment demonstrating pAET was attempted on a ptychographic tilt-series dataset

of a Mn3O4 nanowire. The sample was loaded on a tomographic single-tilt holder (Fischione

Model 2000) and a tilt series from -70 to 70 degrees at 2 degree increments was collected.

The imaging was performed with electrons at 300 kV, with convergence angle at 11.5 mrad,

scan step size of 0.822 Angstroms (10Mx, 256x256 pixels, FOV of 210-by-210 Å2), and an

estimated defocus of -60 nanometers. The defocus was a nominal value from the microscope,

with the focal point of the probe lying between the sample and the detector. During the

tilt-series acquisition, the nanowire experienced mild damage which could result in errors

during the alignment process. The before-after image of the nanowire during the experiment

can be found in Figure 3.5.

Due to the large defocus of the probe, the illumination function could not be approxi-

mated as a single coherent source, but rather as a decoherent source modeled as 8 decompo-
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Figure 3.4: Taken from [1]. Numerical experiment on ptychography- and ADF-STEM-based
AET of a vertical WS2/WSe2 van der Waals heterostructure. (a) 2.0-Å-thick slices of each
atomic layer when simulated with a total electron dose of 5.1 × 104e/Å2 and reconstructed
with ePIE and RESIRE. Tilt angle of 12.5° between the two tungsten layers was recovered,
indicated by colored lines. (b) 2.0-Å-thick slices of the same experiment as (a) when recon-
structed with ADF and RESIRE. Scale bars, 2 Å.
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Figure 3.5: Before and after images of the Mn3O4 nanowire during the pAET experiment.
Mild damage along the sides of the nanowire can be observed after the tilt series.

sitions. Multiple-probe ptychography was therefore employed with alpha of 0.1 and beta of

0.1. Since we observed sample damage along the sides of the sample, the tip of the nanowire

was used to reconstruct ptychographic projections, as shown in Figure 3.6. Despite the probe

function having diameters in the order of nanometers, multiple-probe ptychography was able

to resolve fine atomic features within the projections.

To align the projections, the background behind the nanowire was first subtracted by

approximating the phase values at the boundary as a Laplace surface. Then, since the tilt

direction is near parallel to the direction of the nanowire, the projection of the nanowire along

the perpendicular direction (also called the common line) should be consistent throughout

the tilt-series. This was used to first align the nanowire along the parallel direction by

minimizing the error between the common lines. After this alignment, the location of the

axis of rotation was approximated by a process called center-of-mass alignment, where the

axis of rotation can be set at the center of mass of the object to maintain a self-consistent

axis between projections.
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Figure 3.6: Tilt-series ptychographic projections of the tip of the nanowire. Representative
projections at 4 different tilt angles are shown.

Figure 3.7: Projections of the reconstructed nanowire along crystallographic zone-axes.
Atomic columns of manganese are resolved, consistent with a predicted tetragonal crys-
tal structure.
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Figure 3.8: Projections of the 3D Fourier transform of the volumetric pAET reconstruction.

Once the projections were fully aligned, GENFIRE was used to reconstruct the 3D volume

of the nanowire, as shown in Figure 3.7. The reconstruction resolved individual atomic

columns of manganese consistent with the predicted crystal structure for Mn3O4, with clear

Bragg peaks in the 3D Fourier transform as shown in Figure 3.8. Even though the signals

from the manganese atoms were high, peaks where oxygen atoms should be were not resolved

from the reconstruction. A possible reason for this could be the large defocus of the probe

incident on the sample. Increasing the variables to solve by necessitating multiple probes

and increasing the field-of-view of the phase object per diffraction pattern could result in

the algorithm converging at local minima during ptychography.
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Chapter 4

Deep Learning CDI Algorithm

4.1 Summary and Motivation for Deep Learning CDI

The remarkable generalizability of CNNs naturally begs the question of their potential in

lensless phase imaging. The first foray into deep learning enabled lensless imaging was in

2017 by Sinha et al. that attempted to reconstruct a phase image from measurements made

with near-field diffraction [83].

Figure 4.1 shows the results (column V) of a fully trained convolutional neural network

that predicts the original phase object image (column II) from diffraction pattern (column

III). A spatial light modulator was used to generate 10000 diffraction patterns with which

the neural network was trained. The neural network represents an end-to-end solution to

inverse problems, even if the forward function is destructive (since only the magnitude of

diffraction patterns are measured). Furthermore, the inversion is performed without any

iterative methods since the computational load required to solve the inverse is performed

before instead of after the diffraction measurement.

However, a high degree of spatial correlation exists between a phase image and its diffrac-

tion measurement in the near-field. Yet, most diffractive experiments for X-rays and electrons

measure the scattering wave function in the far-field, where the spatial correlation between
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Figure 4.1: Deep neural network trained to reconstruct from near-field diffraction. Rows
(a) and (b) show results from networks trained with Faces-LFW and ImageNet datasets,
respectively. (i) Randomly selected image. (ii) Image converted to phase object. (iii) Near-
field diffraction measured on CMOS. (iv) Neural network output before training. (v) Neural
network output after training. Reprinted with permission from [83] ©The Optical Society.
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diffraction pattern and object is near non-existant. Is it possible for CNNs to generalize this

inverse process?

Cherukara et al. in 2020 demonstrated that an CNN based inversion to far-field diffraction

is possible via a X-ray diffraction experiment on etched tungsten test pattern [84], as shown

in Figure 4.2. Like the optical near-field experiment, a significant portion of experimental

diffraction data as well as the ground truth object image to reconstruct had to be generated

a priori to training. It seemed that even though the generalizability of CNNs was powerful

enough to pattern match diffraction patterns in the far field, any serious application of deep

learning based lensless imaging required huge training datasets. A neural network trained

to image tungsten by training with tungsten diffraction data could only predict images of

tungsten, severely limiting the general applicability of the method.

CDI and ptychography are powerful imaging methods that don’t require precise optics

and experimental parameters to obtain high resolution reconstructions algorithmically. The

paradigm of a coherent illumination source being measured in far-field regime after interact-

ing with a sample is general and thus finds itself in active use and development in various

fields. However, the algorithms required to iteratively solve for the object are computation-

ally expensive and depend on skilled microscopists to adjust for parameters and interpret

the data. Furthermore, ptychography datasets are measured and stored in 4 dimensions,

and the sheer volume of data manipulated before final reconstruction acts as a bottleneck in

the image recovery process.

Over the past decades, active development in deep learning methods have demonstrated

capability in non-iteratively solving complex and non-linear inverse problems, including lens-

less imaging. By front-loading the computation required prior to image reconstruction in-

stead of during, CNNs have demonstrated real time reconstruction of complex objects with

no further fine tuning of parameters. However, deep learning methods require a large train-

ing dataset, which currently can only be obtained via extensive experiments, rendering the
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Figure 4.2: Single shot neural network results trained with tungsten ptychography data. (a)
Input diffraction patterns for the CNN. (b,c) reconstructed amplitude by ePIE and CNN,
respectively. (d,e) reconstructed phase by ePIE and CNN, respectively. Reprinted from [84],
with the permission of AIP Publishing.
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intent of building a real-time reconstruction system pointless.

In this chapter, we report our process of deep learning CDI whereby neural networks

trained with only simulated diffraction data are powerful enough to reconstruct complex ob-

jects from 4D data directly. Once fully trained, our neural networks leverage their throughput

capabilities to enable real-time processing of diffraction data without significant loss in re-

construction quality when compared to conventional ptychographic methods. We believe this

advancement in leveraging deep-learning capabilities in lensless imaging embodies a pivotal

step in microscopy methodologies in the information age.

4.2 Algorithm Overview

The algorithm is primarily divided into three parts:

1. Generate augmented training dataset via simulating diffraction patterns using random

stock images.

2. Train a CNN to perform phase retrieval. The final CNN will predict phase patches

from individual diffraction patterns.

3. Stitch retrieved phase patches together to generate a final large field-of-view phase

image.

4.3 Augmented Training Data Generation

Deep learning CDI with augmented data begins with the forward propagation of a coherent

source. Figure 4.3(a) shows a diagram of a typical electron ptychography setup where a

focused coherent source illuminates an object. The resulting wave function is propagated

to the far field and only the square of the magnitude of the wave function is measured by
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a pixel array detector. Mathematically, this forward process relates the object function and

the measurement by

M(k) = |F(P (r)O(r))|

where M(k) is the magnitude of the Fourier transform (F), P (r) and O(r) are the

complex probe and object functions, respectively. Since the phase of the Fourier transform

is lost during measurement, the inverse of this forward process is nonlinear. Figure 4.3(b)

shows the process of converting a random stock image found on the internet into a pure phase

object, which is illuminated by a probe function to produce an exit wave. The magnitude

and phase of the probe function are estimated based on the defocus and aberration of the

electron optics.

Even though some probe parameters can be measured directly by the detector (such as

semi-convergence), most parameters that dictate the illumination function at the sample

plane is lost when only measuring the magnitude of the Fourier transform. For example, the

defocus of the probe in real space is a quadratic term in the phase of the Fourier transform,

which is irrecoverable unless there are redundancies in the data to recover iteratively. While

the phase modulation in Fourier space can be any arbitrary function, it’s advantageous to

approximate this function using multipole expansion in scattering angle. In this thesis, we

approximate all probe functions upto second order abberation:
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(4.1)

where αx and αy are scattering angles in x and y respectively, and λ is the wavelength of the

coherent source. The seven constant terms in the equation refer to actual physical variables

that can be calibrated directly from the electron microscope – C10 is the defocus, C12 is
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Figure 4.3: Taken from ref [2]. (a) The forward process in electron ptychography that
transforms a phase object to overlapped diffraction patterns. A CNN is trained to directly
invert this process. (b) Random stock images from the internet are used as phase objects
to calculate the diffraction patterns with the forward process illustrated in (a), where the
yellow circle indicates the illuminated function of one scanning position.

61



Figure 4.4: Taken from ref [2]. Procedure for generating real-space support and training
data. (a) The magnitude of a probe function. (b) Real-space support based on the probe
function. The phase object will only be predicted within this support, and any prediction
outside of the support will not be used for stitching. (c) Cropped image of (b), removing
non-trainable regions. Grids show individual pixels. (d) Oversampling (c) by a factor of
2. Cropping and oversampling in real space are optional steps to match the input/output
dimensions of the CNN. (e) An example phase object. (f) A phase patch in the support
predicted by the CNN. (g) Result of (f) after cropping non-trainable regions. (h) Result
of (g) after oversampling the sample by a factor of 2. Any of (f), (g), or (h) can be used
as training datasets for the CNN output given proper post-processing (padding and down-
sampling) in the experiment.

twofold astigmatism, C21 is coma, and C23 is threefold astigmatism [11].

Figure 4.4 shows the procedure for generating phase snapshots to train the CNN along

with visual explanations for the relationship between a probe and a real-space support.

Cropping non-trainable regions or oversampling the trainable regions in real space allows

the phase snapshots to match the input/output array sizes of the CNN, as shown in Fig.

4.4(f-h).
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Figure 4.5: Taken from ref [2]. The CNN is trained to directly map from the square root of
the diffraction patterns to the phase patches within the illuminated areas.

4.4 Training CNN for Phase Retrieval

The square root of the noisy diffraction intensity is used to train CNNs with an L1-norm

loss function to recover the phases in the illuminated area (named a phase patch) [Fig. 4.5].

As the diffraction intensity is corrupted with Poisson noise, a low learning rate of 1.010−4

and a high dropout rate of 0.2 are applied at every layer to prevent overfitting of noise while

training with stochastic gradient descent.

In our experience, using randomly generated stock photos from the internet provides a

rich source of entropy within the images to sufficiently train the CNNs without imposing

any regularizations [85]. Detailed examples of phase image generation, forward process and

CNN performance as validation data can be found in Figure 4.6.

4.4.1 CNN Architecture

The architecture of the CNN is an encoder-decoder architecture Figure 4.7, more commonly

known as U-net [51], with skip connections between corresponding tensor sizes to prevent

vanishing gradient issues. A schematic of the residual layers is shown in Figure 4.8, with skip

connections acting as concatenations that provide direct throughput within the architecture.

Regarding space complexity, one unique aspect of CNNs is their constant memory use
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Figure 4.6: Taken from ref [2]. Examples of augmented data generation and CNN perfor-
mance. (a) Random images from the internet used as pure phase objects to train a CNN.
(b) Diffraction patterns generated from the phase objects in (a). (c) Perfect phase patches
within the illuminated areas. (d) Corresponding phase patches independently retrieved from
the square root of the diffraction patterns by a trained CNN without any iteration.
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Figure 4.7: Taken from ref [2]. Detailed schematic of the CNN architecture.

as a function of input sizes. When training the CNNs for larger detector arrays, the total

number of trainable parameters remain constant in the GPU RAM, demonstrating efficient

scaling in memory. As a result, since the training data as well as diffraction patterns scale

linearly with array sizes, runtime and space complexities scale linearly for both training and

predictions.

4.4.2 Impact on Training Data Size

We performed a quantitative study of the effect of the training data size on CNN phase

retrieval, shown in Figure 4.9. We observed that the final L1 norm values as well as the

phase reconstructions didn’t significantly improve after around 250,000 training sample sizes.

While the required training data size depends on the complexity of the probe function

(such as defocus and aberration), we found that 250,000 was sufficient for accurate phase

reconstructions for all three electron ptychographic experiments.
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Figure 4.8: Taken from ref [2]. Schematic of residual layers used in the CNN architecture.
Different strides used in the convolution filters are shown in parentheses. All filters are size
3×3.
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Figure 4.9: Taken from ref [2]. Effect of training data size on CNN phase retrieval. (a)
L1 validation loss when trained with various training data sizes. (b-e) Stitched phase re-
constructions after 100 epochs of training with 3e2, 3e3, 3e4, and 3e5 training data sizes,
respectively.

4.4.3 Bypassing the Phase Problem

Note that only from the diffraction intensity, one cannot distinguish a function f(r) from

its twin, f ∗(−r) , which is known as the twin image problem [25]. CNNs solve this problem

by using the constraint of the probe function. When training CNNs, the function taken to

the far-field is modeled as f(r) = P (r)O(r), whereas its twin function is represented by

f ∗(−r) = P (r)
P ∗(−r)

P (r)
O∗(−r)

where P (r) is pre-determined in the current work. Since the inequality

P ∗(−r) ̸= P (r)
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usually holds due to the aberration and/or defocus of the probe, CNNs are trained to re-

cover O(r), but eliminate the non-physical solution of P ∗(−r)
P (r)

O∗(−r) as demonstrated in our

numerical simulations and experimental results.

4.5 Stitching Algorithm

The fully trained CNN is then used to directly map from the magnitudes of the Fourier

transform to phase patches without any iteration, which are combined to form a phase image

by a stitching algorithm [Fig. 4.10]. As the zero frequency of the phase is irrecoverable from

CNNs, two adjacent phase patches differ in the overlapping region by an overall phase shift.

The stitching algorithm is therefore executed by minimizing an error function E,

E =
∑
i,j ̸=i

[µ(ϕiSi,j)− µ(ϕjSj,i)]
2

where ϕi and ϕj are the i’th and j’th phase patch, respectively, and Si,j is the overlapping

region between the two phase patches, and µ returns the mean value. The error function is

minimized by gradient descent and a well-stitched phase image usually requires only a few

iterations.

This chapter shows experimenal DL-CDI results performed using scanning transmission

electron microscopes. Diffraction patterns of three vastly different samples collected on

different detectors and electron microscopes were successfully processed into phase image

reconstructions.

4.6 Twisted Hexagonal Boron Nitride Experiment

The first sample consists of two 5-nm-thick hexagonal boron nitride (hBN) flakes with a

twisted interface. The experiment was conducted on the TEAM I double-corrected S/TEM
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Figure 4.10: Taken from ref [2]. Four representative phase patches directly retrieved by the
CNN. Based on the overlapping regions, all the phase patches are stitched together to form
a phase image.

Parameter Value
Microscope TEAM I
Voltage (kV) 300
Convergence semi-angle (mrad) 17.1
Scanning step size (Å) 0.25
Number of probe positions 512×512
Dwell time per probe position (ms) 0.870
Pixelated detector Gatan K3
Number of detector pixels (before binning) 512×512
Dose (e−Å−2) 4.5× 106

Table 4.1: Experimental parameters of CDI datasets for hBN experiment.

instrument at the National Center for Electron Microscopy (NCEM). Additional experimen-

tal parameters can be found in Table 4.1.

The microscope was equipped with a Gatan K3 pixelated detector, which operated in

electron-counting mode and was binned (×2) and windowed (×2) to 512×512 pixels. The

diffraction patterns were further binned to 32×32 pixels in post-processing. Figure 4.11(a)

shows a representative diffraction pattern with the presence of heavy noise. Conventional

STEM imaging modes such as annular dark-field (ADF) imaging produce images with a poor

signal-to-noise ratio [Fig. 4.11(b)].
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Figure 4.11: Taken from ref [2]. (a) A representative diffraction pattern measured from
two 5-nm-thick hBN flakes with a twisted interface (displayed in a logarithmic scale). (b)
An ADF-STEM image of the hBN sample generated by integrating the diffraction intensity
outside the bright-field disk at each scanning position.

Parameter Value
# detector pixels (after cropping + binning) 32
Maximum collection angle after cropping
(mrad)

34.2

Angular pixel size (mrad/pixel) 1.07
Training sample size 250,000
Learning rate 1.e-4
# of trainable parameters 9,445,408
Epochs trained 100
Prediction time (s per 1000 phase patches) 0.519

Table 4.2: Computational parameters used in deep learning CDI for the hBN experiment.

To generate the training dataset, a probe function was analytically generated by param-

eterizing the aberration function using the aforementioned seven parameters. After training

with 250,000 simulated diffraction patterns, the CNN was used to retrieve the individual

phase patches from the experimental data in real time on standard commercial GPUs (0.5

s per 1000 phase patches on an NVIDIA GTX 1060 6gb). Computational parameters used

for deep learning CDI can be found in 4.2.The phase patches of the twisted hBN sample

were then stitched together to form a phase image [Fig. 2(c) and (d)]. As a comparison, the

phase reconstruction of the same experimental data by ePIE is shown in Fig. 2(e) and (f).
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Figure 4.12: Taken from ref [2]. (a) Phase image of the twisted hBN interface retrieved by
a trained CNN. (b) Magnified view of the dotted square in (a). (c) Phase reconstruction of
the twisted hBN sample reconstructed by ePIE. (d) Magnified view of the dotted square in
(c).
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Figure 4.13: Taken from ref [2]. Fourier ring correlation between Figure 4.12(a) and 4.12(c),
where the red and blue dashed lines indicate a resolution of 0.71 and 0.53 Å, based on the
cutoff criteria of FRC = 0.5 and 0.143, respectively.

Fourier ring correlation (FRC) between the CNN and ePIE reconstructions shows a good

agreement between the two methods [Fig. 4.13]. The slight difference at low spatial frequen-

cies of the FRC curve is likely because the stitching algorithm can combine the phase patches

together more uniformly than ePIE. Based on the cutoff criteria of FRC = 0.5 and 0.143

[86], the resolution of the CNN phase image was quantified to be 0.71 and 0.53 Å, respec-

tively [red and blue dashed lines in Fig. 4.13], demonstrating that both methods consistently

reconstructed the diffraction signal beyond the bright-field disk.

4.7 Monolayer Graphene Experiment and Data Sparsity in Scan-

ning Positions

Next, we used an experimental data set of monolayer graphene to investigate the tolerance of

the stitching algorithm to varying overlap of the diffraction patterns. The ptychographic data
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Parameter Value
Microscope JEOL

ARM200F
Voltage (kV) 80
Convergence semi-angle (mrad) 31.5
Scanning step size (Å) 0.13
Number of probe positions 512×512
Dwell time per probe position (ms) 0.250
Pixelated detector JEOL 4DCanvas
Number of detector pixels (before binning) 66 × 66
Dose (e−Å−2) 1.4× 106

Table 4.3: Experimental parameters of CDI datasets for the monolayer graphene experiment.

Parameter Value
# detector pixels (after cropping + binning) 32
Maximum collection angle after cropping
(mrad)

38.9

Angular pixel size (mrad/pixel) 1.21
Training sample size 250,000
Learning rate 1.e-4
# of trainable parameters 9,445,408
Epochs trained 100
Prediction time (s per 1000 phase patches) 0.523

Table 4.4: Computational parameters used in deep learning CDI for the monolayer graphene
experiment.

set was acquired using a JEOL 4DCanvas pixelated detector installed on a JEM-ARM200F

probe-corrected microscope, as reported elsewhere [87]. The probe function was analytically

generated with a second order aberration function as implemented in the hBN experiment,

and a CNN was trained by 250,000 simulated diffraction patterns. Additional experimental

and computational parameters can be found in Tables 4.3 and 4.4.

Phase patches independently retrieved by the CNN from the experimental diffraction

patterns were stitched together to form a phase image [Fig. 4.14(a)], which is in a good

agreement with the ePIE reconstruction of the same data set [Fig. 4.14(e)]. To study the

performance of the stitching algorithm with varying overlap of the diffraction patterns, every
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Figure 4.14: Taken from ref [2]. Deep learning phase retrieval of the experimental monolayer
graphene data with varying overlap of the diffraction patterns. (a-d) Stitched phase images
of the monolayer graphene retrieved by a trained CNN with a scanning step size of 0.132 Å,
0.264 Å, 0.396 Å, and 0.528 Å, respectively. (e-h) Phase images of the monolayer graphene
reconstructed by ePIE with the same scanning step sizes in (a-d). Scale bar, 4 Å.

other diffraction pattern in both x and y scanning directions was used to reconstruct the

phase image in Fig. 4.14(b), doubling the scanning step size from 0.132 Å to 0.264 Å and

quartering the effective electron dose. Additionally, the stitched phase images of the CNN

by taking every three (0.396 Å step size) and four (0.528 Å step size) diffraction patterns are

shown in Fig. 4.14(c) and (d), respectively. Note that the phase images in Fig. 4.14(a-d)

were recovered using the same trained CNN, as the forward process did not change when

taking data with varying scanning step sizes. As a comparison, the corresponding phase

images reconstructed by ePIE are shown in Fig. 4.14(e-h), demonstrating that deep learning

and ePIE provide similar reconstruction qualities with varying overlap of the diffraction

patterns.

74



Parameter Value
Microscope TEAM 0.5
Voltage (kV) 300
Convergence semi-angle (mrad) 17.1
Scanning step size (Å) 0.26
Number of probe positions 512×512
Dwell time per probe position (ms) 0.044
Pixelated detector 4D Camera
Number of detector pixels (before binning) 576 × 576
Dose (e−Å−2) 4.6 × 104

Table 4.5: Experimental parameters of CDI datasets for the 5nm Au nanoparticle experi-
ment.

Parameter Value
# detector pixels (after cropping + binning) 32
Maximum collection angle after cropping
(mrad)

53.4

Angular pixel size (mrad/pixel) 1.67
Training sample size 250,000
Learning rate 1.e-4
# of trainable parameters 9,445,408
Epochs trained 100
Prediction time (s per 1000 phase patches) 0.458

Table 4.6: Computational parameters used in deep learning CDI for the Au nanoparticle
experiment.

4.8 5nm Au Nanoparticle Experiment

Finally, a ptychographic experiment was conducted on a 5 nm gold nanoparticle to examine

the performance of CNNs with strongly scattering atoms. The data set was acquired using

the 4D Camera (576×576 pixels) installed on the TEAM 0.5 double-corrected S/TEM in-

strument at NCEM. Additional experimental and computational parameters can be found

in Tables 4.5 and 4.6.

Figure 4.15(a) shows a representative diffraction pattern after binning, where heavy noise

is evident. An ADF-STEM image was generated by integrating the intensity outside the
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Figure 4.15: Taken from ref [2]. (a) Representative diffraction pattern acquired from a 5-nm
gold nanoparticle (displayed in a logarithmic scale). (b) ADF-STEM image generated by
integrating the diffraction intensity outside the bright-field disk at each scanning position.
Scale bar, 1nm.

bright-field disk [Fig. 4.15(b)], corresponding to an incoherent image of the sample.

The probe function was analytically generated with a second order aberration function

as for the hBN and graphene cases, and a CNN was trained by 250,000 simulated diffraction

patterns. Figure 4.16(c) and (d) show the phase images retrieved by the CNN and ePIE,

respectively, exhibiting consistent atomic features along the zone axis. The FRC curve of

the two images indicates a resolution of 0.70 and 0.55 Å with the cutoff criteria of FRC =

0.5 and 0.143, respectively [Fig. 4.17]. The dip in the low spatial frequencies in the FRC

curve is consistent with the observation in the hBN result [Fig. 4.13].

4.9 Comparison vs Other Methods

4.9.1 Tolerance of Shot Noise vs ePIE

To investigate CNNs and the stitching algorithm under various shot noise conditions, we

simulated diffraction patterns with three different orders of the noise and observed that the

final stitched phase reconstructions using the CNNs are consistent with those obtained by
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Figure 4.16: Taken from ref [2]. (a) Phase image of the gold nanoparticle retrieved by a
trained CNN. (b) Phase image of the nanoparticle reconstructed by ePIE.

Figure 4.17: Taken from ref [2]. FRC curve between Figure 4.16(a) and (b), where the red
and blue dashed lines indicate a resolution of 0.70 and 0.55 Å, based on the cutoff criteria
of FRC = 0.5 and 0.143, respectively.
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Figure 4.18: Taken from ref [2]. Comparison between CNNs and ePIE under various shot
noise conditions. (a-c) Stitched CNN phase reconstructions from diffraction patterns with
3e2, 3e3, and 3e4 events per pattern, respectively. Insets show representative diffraction
patterns. (d-f) Phase reconstructions using ePIE from diffraction patterns with 3e2, 3e3,
and 3e4 events per pattern, respectively.

the extended ptychographic iterative engine (ePIE) [Fig. 4.18].

4.9.2 Comparison vs Non-Iterative Methods

CNNs and iterative ptychographic methods utilize the sampling in the detector plane to

reconstruct the phase, whereas SSB and WDD methods perform an integration in the de-

tector plane and utilize the sampling from the probe scanning plane. As a result, small scan

step sizes (typically < 0.5 Åin STEM) are required to sample at the Nyquist limit for SSB

and WDD methods. In contrast, CNNs and ePIE methods can be implemented with larger

scan step sizes to achieve larger fields of view, as long as there is sufficient overlap between

adjacent probe positions, which can be tuned by defocusing the probe.

To illustrate this point, we performed numerical simulations to compare CNNs with non-
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Figure 4.19: Taken from ref [2]. Comparison of phase reconstructions using CNNs and non-
iterative methods. Diffraction patterns were generated by a defocused probe of 6 pixels in
diameter and a scanning step size of 4 pixels to show the difference in reconstruction quality.
(a) Ground truth image simulated as a phase object. (b-d) Phase image reconstructions by
CNNs, Single Side Band ptychography, andWigner-Distribution Deconvolution, respectively.

iterative methods. We generated a set of diffraction patterns using a defocused probe of 6

pixels in diameter and a scanning step size of 4 pixels. Figure 4.19 shows the phase recon-

structions by CNNs, single side band ptychography, and Wigner-distribution deconvolution.

While CNNs faithfully reconstruct the phase image, the phase images by the non-iterative

methods are degraded due to the use of a defocused probe. Furthermore, CNNs and ePIE

can achieve higher spatial resolutions than the non-iterative methods as the resolution of the

former is only limited by the spatial frequency of the diffraction signal.
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4.10 Limitations of DL-CDI

While numerous experiments above demonstrate similar reconstruction qualities between

DL-CDI and ePIE, some characteristics about convolutional neural networks yield sub-par

reconstruction qualities for certain types of diffractive experiments. An example of one is

the electron ptychography experiment performed on MoS2 and collected on the electron

microscope pixel-array detector (EMPAD), as shown in Figure 4.20.

The EMPAD is capable of collecting electron signals with a dynamic range of 1000000:1,

and thus are able to collect upto 5 times the semi-convergance angle. The sample diffraction

patterns shown in Figures 4.20(b) and (c) are in logarithmic scale, and the final ptychography

resolution is ultimately dose-dependent as there aren’t enough electron events to overcome

significant Poisson noise in high angles. Fourier transform of signals tend to decay exponen-

tially as a function of frequency, explaining this phenomenon.

A convolutional neural network based algorithm employs a series of linear convolutions

and deconvolutions to encode and decode in the latent space, but how do those capabilities

scale when the input data varies exponentially? Figure 4.21(a) show the DL-CDI phase

reconstruction of MoS2 from the ptychographic experiment shown in Figure 4.20. Compared

to the ePIE reconstruction from the same data shown in Figure 4.21(b), DL-CDI fails to

interpret the high resolution information measured at high scattering angles. The resolution

that DL-CDI is able to resolve at involves interpreting measurements around the bright field

disk and proximal dark field scattering and the relationship between. Thus, for dose-limited

and high scattering angle CDI experiments, traditional iterative methods should be employed

for high resolution reconstructions.
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Figure 4.20: Taken from ref [47]. (a) At each scan position, the incident probe (ψ0(k)) is
focused on the sample and the entire diffraction pattern of the exit wave (|ψe(k)|2) is recorded
by the EMPAD. The blue and yellow atoms represent molybdenum and sulfur atoms in the
object plane. ψ0 and ψe refer to the incident and exit wavefunctions respectively; r is the
(x, y) positional coordinate in the real-space plane; and k is the (kx, ky) wavenumber
coordinate in the conjugate momentum-space plane. (b, c) Averaged diffraction pattern
intensity (on a logarithmic scale) from the electron beam at the marked scan positions near
a molybdenum column. Insets show the intensity (on a linear scale) of the bright-field disks.
The substantial intensity differences at large scattering angles provide contrast information
for ADF imaging and are essential for resolution enhancement in ptychography. Reproduced
with permission from Springer Nature.
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Figure 4.21: Ptychographic imaging of MoS2. (a) DL-CDI phase reconstruction of MoS2.
(b) ePIE phase reconstruction from the same data.

4.11 Implementation of DL-CDI on Tensorflow

This section will briefly explain the programming methods used in implementing DL-CDI

using Tensorflow in Python. The complete source code along with a sample dataset can be

found in https://github.com/dillanchang/deep-phase-imaging.

The main method for the code used in training the neural network begins as such:

1 import numpy as np
2 import tensorflow as tf
3 from tensorflow.keras import layers, models, callbacks,
4 optimizers
5 from tensorflow.keras import backend as K
6
7 SAVE_PATH = ’./data/1_train/weights’
8 NUM_VALIDATION = 16384
9 SHUFFLE_BUFFER_LEN = 65536
10 NUM_EPOCHS = 100
11 LEARNING_RATE = 0.0001
12 DR_RATE = 0.05
13 BATCH_SIZE = 32
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14
15 def main():
16 x = np.load(’./data/0_gen-train-data/x.npy’)
17 y = np.load(’./data/0_gen-train-data/y.npy’)
18 y = y[..., np.newaxis]
19 train_set = tf.data.Dataset.from_tensor_slices((
20 x[NUM_VALIDATION:x.shape[0],:,:,:],
21 y[NUM_VALIDATION:y.shape[0],:,:,:] ))
22 train_set = train_set.shuffle(SHUFFLE_BUFFER_LEN)
23 .batch(BATCH_SIZE)
24 test_set = tf.data.Dataset.from_tensor_slices((
25 x[0:NUM_VALIDATION,:,:,:],
26 y[0:NUM_VALIDATION,:,:,:] ))
27 test_set = test_set.batch(BATCH_SIZE)
28
29 model = create_model()
30
31 opt = optimizers.SGD(learning_rate=LEARNING_RATE)
32 model.compile(optimizer=opt,loss=nts_in_mask)
33 model.summary()
34
35 checkpoints = callbacks.ModelCheckpoint(’%s/{epoch:03d}.hdf5’
36 %SAVE_PATH, save_weights_only=False, verbose=1,
37 save_freq="epoch")
38
39 history = model.fit(train_set,epochs=NUM_EPOCHS,verbose=1,
40 callbacks=[checkpoints], validation_data=test_set)

The program loads the simulated dataset as x and y, separates them into training and

validation datasets, and begins training at line 36. The call towards generating the archi-

tecture of the neural network is done in line 29. The create model() function is shown

below.

1 def create_model():
2 input_layer = layers.Input((32,32,4))
3 data_layer = input_layer[:,:,:,0:3]
4 mask_layer = input_layer[:,:,:,3]
5 mask_layer = mask_layer[..., np.newaxis]
6
7 cnn = data_layer
8
9 cnn_a = add_residual_block(16,cnn)
10 conn1 = layers.Dropout(rate=DR_RATE)(cnn_a)
11 cnn = layers.Dropout(rate=DR_RATE)(cnn_a)
12
13 # ... more down-residual layers
14
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15 cnn = add_down_residual_layer(256,cnn)
16 cnn = layers.Dropout(rate=DR_RATE)(cnn)
17
18 # ... more up-residual layers
19
20 cnn = add_up_residual_layer(32,cnn)
21 cnn = layers.Dropout(rate=DR_RATE)(cnn)
22 cnn = layers.Concatenate(axis=3)([cnn,conn1])
23
24 cnn = add_residual_block(32,cnn)
25 cnn = add_residual_block(1,cnn)
26
27 cnn = layers.Concatenate(axis=3)([cnn,mask_layer])
28
29 model = models.Model(input_layer,cnn)
30 return model

Every three lines of the code define a layer within the convolutional network and inserts a

dropout layer for the downpath and the skip connections. The dimensions of the tensors can

easily be changed here to modify the number of trainable parameters. The implementation

of the down-residual layer, for example, is straight forward.

1 def add_down_residual_layer(output_dim,input_layer):
2 layer = add_residual_downsampling_block(output_dim,input_layer)
3 layer = add_residual_block(output_dim,layer)
4 return layer
5
6 def add_residual_block(output_dim,input_layer):
7 layer = input_layer
8 layer = layers.BatchNormalization()(layer)
9 layer = layers.ReLU()(layer)
10 layer = layers.Conv2D(output_dim, (3,3), padding=’same’)(layer)
11 layer = layers.BatchNormalization()(layer)
12 layer = layers.ReLU()(layer)
13 layer = layers.Conv2D(output_dim, (3,3), padding=’same’)(layer)
14 residual_layer = layers.Conv2D(output_dim, (3,3),
15 padding=’same’)(input_layer)
16 layer = layers.Add()([layer,residual_layer])
17 return layer
18
19 def add_residual_downsampling_block(output_dim,input_layer):
20 layer = input_layer
21 layer = layers.BatchNormalization()(layer)
22 layer = layers.ReLU()(layer)
23 layer = layers.Conv2D(output_dim, (3,3), strides=(2,2),
24 padding=’same’)(layer)
25 layer = layers.BatchNormalization()(layer)
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26 layer = layers.ReLU()(layer)
27 layer = layers.Conv2D(output_dim, (3,3), padding=’same’)(layer)
28 residual_layer = layers.Conv2D(output_dim, (3,3), strides=(2,2),
29 padding=’same’)(input_layer)
30 layer = layers.Add()([layer,residual_layer])
31 return layer

Once the training is complete, the final neural network is saved on the local device, which

can be used to predict phase snapshots from experimental diffraction patterns by loading

the model and running the model.predict() function.
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Chapter 5

Extending DL-CDI

5.1 Probe Function Recovery

CNN based methods for phase recovery relied on an a priori knowledge of the probe function

before training, yet iterative methods such as ePIE fully incorporates probe function retrieval

during the reconstruction process. In this section, I will discuss the potential of leveraging

the generality of neural networks in order to recover the defocus and aberration parameters

for electron probe functions. We do this by training a single CNN with a sufficiently large

database of randomly generated stock images and probe functions with the goal of recovering

the probe function directly from experimental diffraction patterns.

To begin, we first need to redo the training portion by simulating not only the diffrac-

tion pattern, but also varying the probe function along some parameters to encompass a

wide range of possible variables that experimentalists might encounter during experimenta-

tion. The range of defocus and aberration parameters with which the probe functions were

generated can be found in Table 5.1.

To compensate for both weakly and strongly scattering samples, a modified loss function
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Parameter Value
Binned detector dimensions (pixels) 32 × 32
Probe semi-convergence angle (pixels) [3.2,12.8)
C10α

2
max/λ (probe defocus) [-10.0,10)

C12aα
2
max/λ (probe twofold astigmatism) [-10.0,10)

C12bα
2
max/λ (probe twofold astigmatism) [-10.0,10)

C21aα
3
max/λ (probe coma) [-10.0,10)

C21bα
3
max/λ (probe coma) [-10.0,10)

C23aα
3
max/λ (probe threefold astigmatism) [-10.0,10)

C23bα
3
max/λ (probe threefold astigmatism) [-10.0,10)

RMSE of phase in mask [0.,0.75)
Events per diffraction pattern [3000,10000)
CNN input dimensions 32 × 32 × 3
Training sample size 1,500,000
Learning rate 1.e-4
Dropout rate 0.05
Epochs trained 100
Batch size 32
# of trainable parameters 9,445,988

Table 5.1: Experimental parameters of data sets used for deep learning CDI.

was used to normalize the L1 loss with the overall variance of the phase within the mask.

loss =

∑
|ypred − ytrue|∑
|ytrue|+ δ

(5.1)

where ypred is the CNN phase patch prediction within the region, and ypred is the ground

truth of the phase within the region, and δ was set at 0.01.

Of course, the definition of the mask must be standardized for different probe functions.

The loss function above is summed over the region through which 90% of the power from the

probe interacts with the sample. Test data generation and prediction by this universal CNN

can be found in Figure 5.1. The utility of this neural network becomes apparent immediately,

since one fully trained neural network can be used for a wide range of electron experiments,

without ever training again. For all experimental results in this section, only one neural

network was used to reconstruct all phase images.
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Figure 5.1: Examples of augmented data generation and CNN performance. (a) Random im-
ages from the internet used as pure phase objects to train a CNN. b) Real-space amplitudes
of randomly generated probe functions parametrized by seven parameters. c) Real-space
support based on the probe function. The phase object will only be predicted within this
support, and any prediction outside of the support will not be used for stitching. d) Diffrac-
tion patterns generated from the phase objects in (a) and probe functions in (b). (e) Perfect
phase patches within the illuminated areas. (f) Corresponding phase patches independently
retrieved from the square root of the diffraction patterns by a trained CNN without any
iteration.
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One major advantage of the CNN taking the probe function as an input variable is that

the feed-forward capabilities of neural networks can be directly leveraged to perform recovery

of the probe function from experimental diffraction patterns. Since the CNN was trained

with a range of probe functions parametrized by 7 defocus and aberration parameters, a trial

probe function can be input along with pairs of adjacent diffraction patterns to evaluate the

probe function by measuring agreements in the overlapped regions, as shown in Figure 5.2(a).

This error signal is a useful metric to systematically update the probe parameters through

either gradient descent or stochastic optimization methods. Since the CNN can achieve

high throughput in phase snapshot evaluations, and measuring the error within overlapped

regions can be parallelized, the probe function can be quickly recovered by explicitly using

the overlap conditions. For all electron experiments, 100 pairs of diffraction patterns were

used with a random optimization algorithm of 30 trial probe functions per iteration, and

a well-defined probe function was recovered within 10 iterations. Figures 5.2(b) and 5.2(c)

show the probe function before and after probe recovery for the experimental hBN sample,

and Figure 5.2(d) shows the probe function recovered independently from ePIE.

To see the effects of the probe retrieval, Figures 5.3(a) and 5.3(c) show samples of the

object function recovered from the CNN using probe functions from 5.2(b) and 5.2(c), re-

spectively, with closeups in Figures 5.3(b) and 5.3(d), respectively.

With the universal CNN, we can reperform phase reconstructions of experimental diffrac-

tion patterns from previous chapters. After performing probe retrieval using the CNN, we

can input the solved probe function as an input, retrieve the phase snapshots and perform

the same stitching algorithm to obtain results in Figure 5.4. The same process was also per-

formed on the Au nanoparticle sample with similar results (Figure 5.5), showing consistent

ability to perform probe retrieval in various sample conditions.

However, the reconstruction process using the universal CNN ran into issues due to

the out-of-time events associated with data acquisition from the detector initially used,
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Figure 5.2: Taken from ref [2]. Diagram and results of probe recovery procedure with results
for the experimental hBN data. a) The CNN makes predictions from pairs of adjacent diffrac-
tion patterns with a trial probe function. The cumulative L1 error within the overlapped
regions is used as the fitness function to optimize the defocus and aberration parameters for
the next iteration of the probe function. b) Initial guess of the probe function for the hBN
sample. c) Resulting probe function after CNN probe retrieval process. d) Probe reconstruc-
tion from ePIE.

90



Figure 5.3: Taken from ref [2]. (a) Phase image of the twisted hBN interface retrieved by
the CNN with the initial probe function. (b) Magnified view of the dotted square in (a). (c)
Phase image of the twisted hBN interface retrieved by the CNN with the probe function in
Figure 5.2(c). (d) Magnified view of the dotted square in (c).
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Figure 5.4: Diagram and results of probe recovery procedure with results for the experimental
hBN data. a) The CNN makes predictions from pairs of adjacent diffraction patterns with
a trial probe function. The cumulative L1 error within the overlapped regions is used as the
fitness function to optimize the defocus and aberration parameters for the next iteration of
the probe function. b) Initial guess of the probe function for the hBN sample. c) Resulting
probe function after CNN probe retrieval process. d) Probe reconstruction from ePIE e)
Stitched CNN reconstruction of hBN sample using the probe function in (b). f) Stitched
CNN reconstruction of hBN sample using the probe in (c). g) ePIE reconstruction of hBN
sample. Scale bars, 1 Å (b); and 2 Å (e).
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Figure 5.5: Deep learning phase retrieval of the experimental gold nanoparticle data. (a)
Representative diffraction pattern acquired from a 5-nm gold nanoparticle (displayed in a
logarithmic scale). (b) ADF-STEM image generated by integrating the diffraction intensity
outside the bright-field disk at each scanning position. (c) Phase image of the gold nanopar-
ticle retrieved by a trained CNN. (d) Phase image of the nanoparticle reconstructed by ePIE.
(e) FRC curve between (c) and (d), where the red and blue dashed lines indicate a resolution
of 0.81 and 0.58 Å, based on the cutoff criteria of FRC = 0.5 and 0.143, respectively. Scale
bar, 1 nm.
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Parameter Value
Microscope Nion Ultra-

STEMTM 100
Voltage (kV) 70
Convergence semi-angle (mrad) 32
Scanning step size (Å) 0.3125
Maximum collection angle after cropping
(mrad)

46.5

Angular pixel size (mrad/pixel) 1.45
# probe positions 128× 128
Dwell time per probe position (ms) 1.
Pixelated detector Hamamatsu

ORCA SCMOS
# detector pixels (before binning) 256× 256
Dose (e- Å-2) 3.2× 106

Table 5.2: Experimental parameters of data sets used for bilayer graphene experiment.

resulting in a strip of background counts. Although this did not affect reconstruction of

the object when training a unique CNN for the experiment, the new method that utilizes

one universal neural network for all experiments was sensitive to these background counts.

Upon changing to a detector whose data does exhibit out-of-time events, the probe recovery

step was successful. On the new detector, we performed reconstruction using a bilayer

graphene sample, which still satisfies the thin sample (i.e. weak-phase-object) requirement.

Reconstruction with various step sizes in bilayer graphene ptychographic data can be found

in Figure 5.6, along with corresponding experimental variables in Table 5.2.
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Figure 5.6: Deep learning phase retrieval of the experimental twisted bilayer graphene data
with varying overlap of the diffraction patterns. (a-c) Stitched phase images of the twisted
bilayer graphene retrieved by a trained CNN with a scanning step size of 0.313 Å, 0.625 Å,
and 0.938 Å, respectively. (d-f) Phase images of the twisted bilayer graphene reconstructed
by ePIE with the same scanning step sizes in (a-c). Scale bar, 5 Å.
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5.2 Complex Object Recovery

So far, DL-CDI assumed a pure phase object with negligible absorption from the sample. As a

result, the training dataset consisted of diffraction patterns scattered by pure phase objects

only and significantly reduced the domain space which the neural network predicts from.

However under real experimental conditions, wave functions interact with the sample by both

refraction and absorption, so a generalized algorithm that can reconstruct both the phase

and magnitude is important, especially for X-ray and optical ptychography experiments.

While previous studies have demonstrated complex object CDI reconstructions via CNNs,

these methods are only able to predict within a limited range of object functions by either

limiting the geometries of the sample [88, 89], or by capitalizing on an inherent correlation

between the magnitude and phase of the object function [84].

In this section, we present an extension of DL-CDI that enables reconstruction of com-

plex object functions from ptychographic data without assuming any relation between the

phase and magnitude of the sample. Complex object reconstructions from atomic-resolution

experimental STEM ptychography data will be presented to demonstrate the efficacy of the

method. Furthermore, results from numerical experiments and analyses of the neural net-

works will be shown to better understand the method’s performance in non-ideal conditions.

The method of complex DL-CDI first requires the training of a CNN that maps a diffrac-

tion pattern to its corresponding object functions. The training dataset for the CNN can be

generated by forward simulating with a probe and a numerical object function. An extensive

collection of experimental data from a specific CDI setup is not required to properly train

the inverse process. The first experimental realization of DL-CDI reconstructed pure phase

objects where the magnitude signal was approximated as negligible, and the training proce-

dure for such a CNN was straightforward due to the diffraction pattern being a direct result

from phase fluctuations only. However, extending the methodology to encompass both the
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phase and the magnitude becomes a harder problem to solve since the neural network needs

to predict the correct phase function given any possible magnitude function, and vice versa.

Figure 5.7(a) shows the architecture of the neural network used for complex object re-

construction, along with detailed schematics of the layers in Figure 5.7(b). Previous studies

of complex object reconstruction via CNN incorporated architectures that share the encod-

ing layers before branching out to two decoding arms that reconstruct the phase and the

magnitude separately [84, 88]. However, we observed superior reconstruction quality from

CNN architectures that completely separate the encoding and decoding for the phase and

the magnitude reconstructions.

An important advantage of this architecture can be seen from the loss function used

during training.

Loss = |ϕtrue − ϕpred|+ |log(µtrue)− log(µpred)| (5.2)

where ϕtrue and µtrue are the ground truth phase and magnitudes, respectively, and ϕpred

and µpred are the CNN predictions of the phase and magnitudes, respectively. The CNN is

trained to retrieve the logarithm of the magnitude signal due to the fact that magnitude

functions must be positive definite. Usually, additive terms in the loss function need to be

modulated by an incorporation of some constant factor controlling the impact of one term

over the other. However, since the two branches of our architecture are completely separable,

the back-propagation of error from one side does not update any parameters in the other.

In short, the independence of each branch ensures that the user is not forced to subjectively

trade off accuracy between the two image outputs.

Once the CNN is fully trained, it is able to return snapshots of the phase and magnitude

images within a support defined by the probe illumination function. A separate stitching

method must be performed on these overlapping snapshots to reconstruct a large field-of-view

image from a matrix of diffraction patterns. The stitching algorithm for the phase image is
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Figure 5.7: (a) Convolutional neural network architecture for complex object reconstruction
in DL-CDI. Two entirely separable networks are trained from diffraction patterns simulated
with a complex object and no encoded layers are shared between the two branches. The CNN
is trained to return the logarithm of the magnitude function to ensure that the magnitude
is positive definite. (b) Schematic of residual layers used in the CNN architecture. Different
strides used in the convolution filters are shown in parentheses. All filters are size 3×3.
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described in a previous section [2], where an iterative algorithm is necessary to merge adjacent

phase images with differing overall phase constants. However, if the flux of the illumination

function is known a priori, the attenuation of the probe from the sample is measurable at

the detector and therefore an iterative procedure is not required to stitch the magnitude

snapshots. Instead, calculating the mean of the logarithms (therefore the geometric mean)

of the magnitude predictions from all pertaining snapshots at a given position is sufficient

in stitching the magnitude function.

To examine the performance of the CNN in complex object reconstructions from ex-

perimental data, we performed a ptychographic experiment on the 5 nm gold nanoparticle

ptychographic data presented in previous sections. Like before, a probe function was ana-

lytically generated with a second order aberration function, and a CNN was trained from

1,500,000 simulated diffraction patterns from 1,500,000 pairs of uncorrelated stock images

for the phase and magnitude. Figures 5.8(a) and 5.8(b) show the phase and the magnitude

reconstructions from the CNN, respectively, and comparison reconstructions of the phase

and the magnitude from ePIE are shown in Figures 5.8(c) and 5.8(d), respectively. The

CNN was able to independently reconstruct the fluctuations in magnitudes along the zone

axis, and the minimum magnitude values at the atomic columns were consistent between

CNN and ePIE at around 0.7 to 0.8. A slight difference in the reconstruction of the back-

ground was observed in the phase images, with ePIE demonstrating a lower sensitivity to

the amorphous carbon background.

Next, we performed experimental complex object reconstructions on the hBN experimen-

tal ptychographic data presented in previous sections. Like the gold nanoparticle sample,

a probe function was analytically generated up to second order aberration to train a CNN

with 1,500,000 pairs of uncorrelated images their corresponding diffraction patterns. Figures

5.9(a) and 5.9(b) show the reconstructed phase images from CNN and ePIE, respectively,

and figures 5.9(c) and 5.9(d) show the reconstructed magnitude images from CNN and ePIE,
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Figure 5.8: Deep learning complex object phase retrieval of the experimental data of a gold
nanoparticle. (a) Stitched phase and (b) stitched magnitude reconstructions by a trained
CNN. (c) Phase and (d) magnitude reconstructions by ePIE.
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Figure 5.9: Deep learning complex object phase retrieval of the experimental data of a twisted
hBN interface. (a), (b) Reconstructed phase images from CNN and ePIE, respectively. (c),
(d) Reconstructed magnitude images from CNN and ePIE, respectively. (e), (f) 2D Fourier
transform of the magnitude reconstructions in (c) and (d), respectively.

respectively. The magnitude reconstructions differed at high spatial frequencies, but from

the plots of the 2D Fourier transform of the magnitude reconstructions as shown in figures

5.9(e) and 5.9(f), we were able to observe a high degree of similarity in the Fourier peaks.

A numerical study on the effect of shot noise on DL-CDI complex reconstructions was

performed by simulating a ptychographic experiment on a complex object comprised of two

images. Three sets of diffraction patterns were generated with varying degrees of shot noise:

one with infinite dose, one with 1e4 events per pattern, and one with 1e3 events per pattern.

A CNN was trained with 1,500,000 infinite dose diffraction patterns simulated from a probe

function known a priori, with dropout layers of frequency at 0.2 and a learning rate of 1e-4

for 100 iterations. After fully training, the CNN was used to generate phase and magnitude

snapshots which were stitched together to reconstruct images shown in Figures 5.10(a),
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Figure 5.10: (a), (b), (c) Phase (left) and magnitude (right) DL-CDI reconstructions from a
simulated ptychographic dataset with doses of infinite, 1e4 and 1e3 events per pattern, re-
spectively. Insets show a representative diffraction pattern. (d), (e), (f) ePIE reconstructions
from the same simulated ptychographic dataset with doses of infinite, 1e4 and 1e3 events
per pattern, respectively.

5.10(b), and 5.10(c) at different shot noise levels. Representative diffraction patterns for

each ptychographic dataset are shown in the insets. We observed robustness in the CNN

in reconstructing both the phase and magnitude images from highly corrupted diffraction

patterns, even at a low dose of 1000 patterns per diffraction pattern. As a comparison, ePIE

reconstructions from the same datasets are shown in Figures 5.10(d), 5.10(e) and 5.10(f).

One important note from this numerical study was the use of just a singular CNN trained

with infinite dose diffraction patterns to predict phase and magnitude snapshots for a range

of shot noise levels in diffraction patterns. An attempt was made in simulating and training

with diffraction patterns corrupted by shot noise (assuming that the electron dose is known

a priori), but observed poorer quality of reconstructions than from a CNN trained with

infinite dose simulated patterns with high-rate (0.2) dropout layers. This may suggest that

best method for compensating for stochastic processes encountered during experimentation

is applying conventional techniques used to suppress over-fitting such as batch normalization,

dropout layers, and regularization [90, 91].

To better understand the internal mechanisms of CNN-based ptychographic methods,
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we analyzed neural networks by visualizing maximally activated patterns (MAPs). MAPs

are input patterns that maximize activation in a specific layer within the network and are

computed by performing gradient descent on the layer outputs with respect to the input

pattern [92–94]. To formalize mathematically, let θ represent our neural network weights,

and let hij(θ,x) be the activation of a given unit i from a given layer j with x as an input

vector. Calculating the MAP for a given input would be finding x* such that

x* = arg max
xs.t.||x||=ρ

hij(θ,x) (5.3)

where ρ enforces a bounded norm.

The patterns that emerge from this maximization process enable qualitative visualization

of how a neural network selects important features. The first half of the CNN architecture

shown in Figure 5.7 is a series of convolutional layers followed by downsampling layers to

encode an input image into 256, 2-by-2 feature representations. For our analysis, MAPs

were calculated at this output layer from two CNNs trained with different probe functions

to explore the effect of physical experimental conditions in network performance.

Figure 5.11(a) shows a sample focused probe function used to train a CNN for DL-CDI.

MAPs at the 2-by-2 feature representation layer for this CNN is shown in Figure 5.11(b). We

observed a lack of fine features in the patterns, indicating that the phase retrieval process

does not heavily rely on local operations. Instead, smooth patterns with a low number

of peaks were present which were consistent with typical focused probe STEM diffraction

patterns consisting of diffraction discs and lack of fine features.

Next, another CNN was trained with a de-focused probe function, shown in Figure

5.11(c), which would increase the field-of-view per diffraction pattern. Figure 5.11(d) shows

25 MAPs at the 2-by-2 feature representation layer for this CNN. Usually, de-focusing a

probe function results in stripes and finer features in the diffraction patterns, therefore if the
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CNN was able to encapsulate these features, the MAPs would comprise of patterns with finer

features than those from a focused probe. Instead we observed that the CNN was unable

to encode these features and some filters at the 2-by-2 feature layer were turned off entirely,

evident from completely dark MAPs. This suggests that increasing the number of trainable

parameters to compensate for the increased complexity is not a productive response and

that the archetypal CNN structure might be a sub-optimal choice for encoding and decoding

measurements in the Fourier domain.

In conclusion, we extended the generality of deep-learning based CDI by modifying the

architecture to compensate for both the phase and magnitude of the object function. Train-

ing a CNN with two completely independent branches allows for a loss function that does not

trade-off quality between the phase and the magnitude while not assuming any correlation.

The method was applied on experimental ptychographic data on twisted hexagonal boron

nitride (hBN) flakes and a gold nanoparticle and demonstrated consistent complex object

reconstructions when compared to conventional iterative ptychographic methods. A numer-

ical experiment on the method’s tolerance of shot noise demonstrated that computational

methods to reduce over-fitting could be sufficient in compensating for stochastic processes

present in experimental conditions.

Finally, an analysis was performed on the CNN by calculating maximally activated pat-

terns for filters within the network. Visualizing MAPs of comparable neural networks showed

under-fitting of features for a CNN tasked with learning a more complex inverse function.

While deep convolutional neural networks represent the state-of-the-art for computer vision

tasks, encoding and decoding measurements of CDI experiments in Fourier space might be

non-ideal for a network architecture primarily designed for understanding real-space relations

within images.
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Figure 5.11: Maximally activated patterns (MAPs) from CNNs trained with varying defocus.
(a) A focused probe function used to train a CNN for DL-CDI. (b) 25 representative MAPs
from CNN trained with probe function in (a). (c) A de-focused probe function. (d) 25
representative MAPs from CNN trained with probe function in (c).
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Chapter 6

Summary

We demonstrated deep learning CDI at sub-Angström resolution using CNNs trained only

with stock images from the internet. The CNNs were then coupled with a stitching algo-

rithm to directly retrieve the phase images of twisted hBN, monolayer graphene, and a gold

nanoparticle from experimental electron diffraction patterns. Quantitative analysis using

FRC curves indicates that the phase images recovered by deep learning CDI have compara-

ble quality to those reconstructed by ePIE. The spatial resolution of these phase images was

quantified by the FRC to be in the range of 0.71-0.53 Å.

Compared with iterative algorithms such as ePIE that use overlapping regions to recon-

struct the phase information, deep learning CDI independently recovers phase patches at

different scanning positions by CNNs and then stitches them together to form a phase im-

age, which can be implemented in real-time with a computational time orders of magnitude

faster than iterative algorithms. In contrast to non-iterative ptychographic methods that

require small scan step sizes (typically ¡0.5 Å) to sample at the Nyquist limit, deep learning

CDI can be implemented with larger scan step sizes to achieve larger fields of view, which

can be tuned by defocusing the probe. Additionally, it can reach higher spatial resolutions

than the non-iterative methods as the resolution of deep learning CDI is only limited by the

spatial frequency of the diffraction signal.
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We further expanded the method of DL-CDI to allow probe function recovery directly

from diffraction patterns and to compensate for varying absorption in the sample. To recover

the probe function, we were able to train a CNN that takes the probe function as an input

variable. This CNN can then be used to iteratively solve for the experimental probe function

by searching across 7 defocus and aberration parameters. Redoing the electron DL-CDI

experiments with this approach showed promising results of a universal neural network that

only needed to be trained once to make predictions for a variety of experiments.

Furthermore, by employing multiple channels in the CNN, this thesis laid out the foun-

dation for complex objection function recovery. Complex objects that contain information

about both the phase induced but also the intensity attenuation require two independent

channels that invert information encoded in the diffraction pattern. Simulation and exper-

imental results indicate the feasibility of this method and is expected to play a pivotal role

in coherent diffractive imaging for a wide range of modalities.

With further development, we expect that deep learning CDI could become an important

tool for real-time, atomic-scale imaging of a wide range of samples across different disciplines.

One potential application of incorporating phase imaging in scanning transmission electron

microscopy is leveraging improved signal from low-Z atoms and linearity in atomic projec-

tions. Ptychographic reconstructions from 4D-STEM data, which can be accelerated via

deep learning, can offer significant advantages when performing electron tomography at the

atomic scale. As high quality pixel array electron detectors become more commercially

viable and data storage and management become more streamlined, we envision these com-

putational methods as powerful tools for studying the 3D atomic structures of low-Z and

radiation sensitive materials such as transition metal oxides, functional 2D heterostructures

and glasses.
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