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Infection of the oral cavity with
SARS-CoV-2 variants: Scope of
salivary diagnostics
Parvati Iyer1, Takahiro Chino2 and David M. Ojcius2*
1Department of Diagnostic Sciences, University of the Pacific, Arthur Dugoni School of Dentistry,
San Francisco, CA, United States, 2Department of Biomedical Sciences, University of the Pacific Arthur
A. Dugoni School of Dentistry, San Francisco, CA, United States

Coronaviruses, including SARS-CoV-2, have caused pandemics in the past two
decades. The most prevalent SARS-CoV-2 variants of concern can re-infect
individuals who have been previously infected with other variants or had
protection from vaccines targeting the original SARS-CoV-2 variant. Given
the high risk of transmission of coronavirus via aerosols produced during
dental procedures, it is important to understand the future risk of
coronavirus infection for oral health professionals and to diagnose quickly
early stages of outbreaks. Testing of saliva for coronavirus may be the least
invasive and most convenient method for following the outbreak at the
individual and community level. This review will describe strategies for
diagnosis of coronavirus in saliva.
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Introduction

The Coronavirus disease 19 (COVID-19) pandemic, caused by infection with the

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has killed more

than 6 million individuals globally as of July 2022 (1). The symptoms of infection

range from asymptomatic; to coughs, fever, and fatigue in moderate disease; to severe

pulmonary pathology requiring hospitalization and ventilators. Persons with

underlying co-morbidities are at a higher risk for severe disease. Though the patients

with mild to moderate disease recover quickly, some report post-COVID-19

symptoms months to years after infection, even in individuals who experienced mild

symptoms. For those who suffered a severe infection, it is possible for lung and

cardiac function to be impaired permanently leading, to an increased risk for other

complications in the future (2).

The first modern coronavirus pandemic occurred in 2002 in China and the disease

was named the Severe Acute Respiratory Syndrome (SARS). In 2012, a pandemic caused

by another coronavirus emerged in the middle east and was named the Middle East

Respiratory Syndrome (MERS-CoV).

SARS-CoV-2 is the fifth recent coronavirus to infect humans on a wide scale, and as

the mutations continue to evolve rapidly, it is crucial to understand the mechanics of

prevention, genomics, and pathogenesis of the new mutations (3). The virus

responsible for this pandemic has a higher rate of transmissibility and infectivity

compared to the previous pandemic coronaviruses, SARS-CoV and MERS-CoV (4).
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SARS-CoV-2 mechanism of infection

SARS-CoV-2 is a single-strand positive-sense RNA virus.

The SARS-CoV-2 spike (S) protein, the essential antigenic

determinant of the virus (5), binds to its receptor angiotensin-

converting enzyme 2 (ACE2), initiating viral entry to the host

cell (6–8). The S protein consists of 1,273 amino acids and

contains a signal peptide (amino acids 1–13), the S1 subunit

(14–685) and the S2 subunit (686–1,273). The receptor-

binding domain (RBD) in the S1 subunit recognizes ACE2,

while S2 subunits play a role in membrane fusion (9). ACE2

is expressed by a variety of tissues, including pulmonary and

extrapulmonary tissues (10). This accounts at least partially

for extrapulmonary manifestations associated with COVID-19

(11). It has been proposed that the nasal cavity (12, 13) and

oral cavity (14–17) are potential initial targets among the

upper respiratory system.

SARS-CoV-2 utilizes a dual entry mechanism, cell surface

and endosomal pathways, for its internalization (18–20). In

the cell surface pathway, S protein can be proteolytically

cleaved by host cell-derived transmembrane serine proteases

(TMPRSSs). This results in the exposure of the fusion domain

in the S2 subunit, which subsequently mediates viral—host

cell membrane fusion (18). The clathrin-mediated endosomal

pathway is carried out when the availability of TMPRSSs is

limited (19). In this pathway, cathepsins play a major role in

cleaving the S protein (20).

COVID-19 is primarily a disease of pulmonary tissues.

However, many patients with COVID-19 also develop

gastrointestinal (GI) symptoms. Given the high expression of

ACE2 and the visualization of viral nucleocapsid in the GI tract

(21), SARS-CoV-2 potentially enters GI cells via ACE2 and

directly causes damage to the GI tract. In such a case, the oral

cavity, in particular saliva (22), may be a potential reservoir of

SARS-CoV-2 since the oral cavity and GI system are linked by

constant flow of saliva. An inflammatory cytokine storm (23) and

alteration of the GI microflora in response to viral infection (24,

25)havebeenconsideredas indirect factors thatdamage theGI tract.

SARS-CoV-2, like other respiratory viruses, can be

transmitted via direct (physical) contact with infected

individuals, indirect contact with fomites, and droplets and

aerosols produced by coughing (26). In addition, the fecal-oral

route has been suggested as a potential transmission route.

This is based on the observation in the nonhuman primate

model that intranasal or intragastric inoculation with SARS-

CoV-2 resulted in both pulmonary and GI infections (27).
Emergence of SARS-CoV-2 variants

SARS-CoV-2 continuously evolves by genetic mutations in

the S gene. A number of SARS-CoV-2 lineages have been
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identified, such as Alpha (B.1.1.7), Beta (B.1.351), Delta

(B.1.617.2), and Omicron (B.1.1.529) (27–30). The most

prevalent SARS-CoV-2 variants of concern are currently the

BA.4 and BA.5 subvariants of the Omicron variant, which can

re-infect individuals who have been previously infected with

other variants or had protection from vaccines targeting the

original SARS-CoV-2 variant (31, 32).

Host immunity against SARS-CoV-2 is activated once the

virus gains access into the host cells. Type I interferons

(IFNs) play a pivotal role in both innate (33) and adaptive

(34) antiviral immunity. SARS-CoV-2 can evade host

immune responses by inhibition of type I IFNs, and

interfering with downstream signaling molecules of Toll-like

receptors (TLRs) and the JAK-STAT pathway (35–39). It

has been reported that the risk of death from COVID-19 is

much greater in patients with type I IFN autoantibodies

(40–42).

The S protein associated with the B.1.1.7 lineage reveals

several amino acid mutations. However, among them, N501Y

in the RBD region accounts for at least part of the enhanced

binding affinity for ACE2, enhanced virulence, and increased

transmissibility (30). The B.1.351 variant expresses amino acid

mutations K417N, E484K, and N501Y in RBD. This variant is

reported to enter host cells more easily due to its enhanced

binding affinity for ACE2 (28). It is also known to reduce the

efficacy of neutralizing antibodies and the original mRNA

vaccines.

The B.1.617.2 variant, first identified in India, is one of three

sublineages of B.1617 and became the most predominant

variant globally in late 2020 by outcompeting pre-existing

lineages, such as B.1.1.7 and B.1.617.1 (43). This lineage is

characterized by higher transmissibility than the wild-type

Wuhan-1 D614G-bearing lineages. It is also associated with a

sixfold decrease in sensitivity to convalescent antibodies and

eightfold decrease in sensitivity to vaccine-elicited antibodies

than the ancestral strain (44). This is partially due to the

mutations L452R and T478K in RBD that play a role in

increased receptor-binding affinity, infectivity, and reduced

sensitivity to vaccine-elicited antibodies. The E484Q mutation

in RBD is reported to augment the receptor binding affinity

and reduce sensitivity to antibody (45). In addition, the

P681R mutation between the S1/S2 cleavage site contributes

to enhanced transmissibility (29).

The B.1.1.529 lineage (Omicron) was originally detected in

South Africa in November 2021 (46). This lineage is reported to

express several mutations observed in other lineages. They

include N501Y, E484K, T478K, and P681R, suggesting that

this lineage is potentially highly infectious and transmissible

and has the ability to evade detection by the host immune

system. At the same time, while being highly transmissible,

the B.1.1.529 lineage has a decreased ability to infiltrate the

lungs, thus the observed reduced pathogenicity (47).

Accumulating evidence has elucidated that the enhanced
frontiersin.org
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binding of the B.1.1.529 variant to host ACE2 accounts for the

enhanced transmissibility of this lineage compared with other

lineages. Nonetheless, B.1.1.529 entry into lung cells is

compromised since the S protein of this lineage is not

cleaved efficiently by TMPRSS2. This implies that the

B.1.1.529 virus relies heavily on the endosomal pathway for

internalization into the host cell. Collectively, B.1.1.529 has a

decreased capacity to enter the host lung cells (i.e., it is less

infectious), resulting in lower replication potential than other

lineages.
Variants of concern and the oral
cavity

The Centers for Disease Control (CDC) in the US has

classified the variants into 3 main categories: Variant of

Concern (VOC), Variant of Interest (VOI), and Variant Being

Monitored (VBM). Thus, in November 2021, the Omicron

variant was classified as a VOC (48, 49).

The variants have piqued the interest of researchers

because of different molecular features that they exhibit in

different infected populations, which in turn, has led to

further studies on factors influencing the mutations of the
FIGURE 1

Reservoirs of SARS-CoV-2 in the head and neck regions, especially parts
submandibular glands, sublingual glands, nasal cavity; nasopharynx, orophar
could be derived from nasopharyngeal swabs or saliva.
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virus. The findings might be valuable with respect to

predicting vaccine efficacy against infection with future

variants (50–54). One study retrospectively analyzed the

emergence of the Omicron variant and determined that the

epidemiology of Omicron infection was an accurate

predictor of mutations in the virus, and the global trajectory

was a better predictor than epidemiology at a country level.

This type of understanding could help us to prepare for

future pandemics (55).

Research done during earlier stages of this pandemic

showed the virus’s predilection for certain sites in the body,

including the oral cavity, due to the presence of the ACE2

receptors in the epithelium of oral tissues. In fact, the oral

cavity might be the initial site of entry for the coronavirus.

The tongue, floor of the mouth, gingival sulcus, and gingival

epithelium of the buccal and lingual surfaces of teeth all

express ACE2 receptors (56) (Figure 1). Oral symptoms like

loss of taste often precede other symptoms of the infection.

Dry mouth, inflammation of gingival tissues and ulcerations

have also been reported. Since a variety of viruses and other

pathogens are usually present in the gingival sulcus, this site

might act as a reservoir for SARS-CoV-2. The oral viral load

has also been correlated with the severity of SARS-CoV-2

infection. Therefore, by reducing the viral load in the oral
of the oral cavity: tongue, gingival sulci, hard palate, parotid glands,
ynx, hypopharynx, esophagus, and trachea. Specimens for diagnostics
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cavity, it may be possible to reduce the risk of transmission (14,

57, 58).

IgA appears to be the first antibody detected in response to

SARS-CoV-2 infection (59) and IgA dominates SARS-CoV-2-

specific antibody responses over IgG and IgM during the early

stages of infection (60). Virus-specific salivary IgA and IgG

have been detected in saliva up to 73 days and 9 months,

respectively (60, 61). Specific serum IgA decreases 1 month

after the disease onset while serum IgG is detectable up to 9

months (60, 61). Taken together, the observations suggest that

SARS-CoV-2 specific salivary IgA may be a potential

biomarker during the initial stage of infection. Salivary IgG

response may be useful to monitor the systemic immunity to

SARS-CoV-2.

An accurate and early diagnosis of the oral manifestations of

the infection (62) may also contribute to minimizing

progression of infection to severe disease and prevent

transmission to other individuals. By analyzing risk factors for

SARS-CoV-2 infection, researchers have attempted to

understand and predict the progression of this infection in

patients with underlying medical conditions such as diabetes

or cardiovascular disease.
Salivary diagnostics for COVID-19

Saliva has proven to be a very convenient, non-invasive

source of biomarkers for many cellular and systemic reactions

occurring in the body during various disease states (63–67),

including COVID-19. Since SARS-CoV-2 infection is also

initiated in the oral and nasal cavity, detection of the

coronavirus in saliva is likely to reflect early stages of infection.

Saliva can be collected using swabs, by coughing, or by

collecting it directly from the salivary glands (68, 69). One

study showed that the salivary glands are a reservoir for the

coronavirus (70) (Figure 1). By directly measuring the viral

load in the secretions of the glands, acute infection could be

assessed, and appropriate measures taken to inhibit and/or

prevent transmission.

Previous studies on COVID-19 have already shown that the

coronavirus could be observed in the saliva before it could be

isolated from the lungs. This reinforces the view that salivary

diagnostics could be used to detect and therefore to prevent

transmission, especially in asymptomatic individuals (71).

While some studies discovered that impairment of the

gustatory senses was an early symptom of asymptomatic

patients and patients with a mild degree of infection, they also

concluded that ageusia is an important and unique feature of

SARS-CoV-2 infection (72, 73). The various oral

manifestations of SARS-CoV-2 infection could also shed light

on the interplay between ACE2 receptors, angiotensin

enzyme, hyposalivation, zinc deficiency, cellular inflammation
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in the taste buds, and possible central nervous system

degradation by the virus (74).

Once saliva was deemed to be a good diagnostic tool to

diagnose early infection, researchers found that self-collected

specimens of saliva from the oral cavity and fluid from the

nasal swabs provided the best sensitivity and specificity

compared with specimens collected through invasive

methods, such as collections from the trachea and

bronchiolar lavage (75, 76). In one study, saliva was shown

to be positive even before nasopharyngeal swabs tested

positive for the infection (77). A recent study argued that

studies did not indicate clearly how their samples of saliva

were obtained and questioned the conclusions (78). Another

study suggested future research should consider cellular

proteases to understand why the virus was able to overcome

natural immune responses to the infection (79). The authors

of the study postulated that a modified device to collect

secretions from salivary glands directly would bypass the

concern that viruses were transported from elsewhere into

the saliva. The biggest challenge with salivary specimens was

the quality of the salivary specimens from hospitalized

patients that were thick and stringy, requiring additives

before processing (80).

Oral healthcare professionals can help to identify

individuals at risk by using salivary diagnostics. Though it has

shown that the viral load is high in nasopharyngeal swabs and

the saliva during the first week of infection, a higher viral

load and increase in the age of the patients correlated with

severity of disease; the accuracy of the detection of the virus

in the salivary samples thus requires more investigation (81).

Despite these limitations, Point of Care (POC) salivary

diagnostics is still promising with respect to early detection by

oral healthcare professionals. Since patients may have viral

presence in their saliva and be asymptomatic, oral healthcare

professionals need to take adequate precautions to prevent

transmission to themselves and others by using POC

diagnostics (82). This would be the best strategy to slow down

spread of the infection and prevent emergence of further

mutations.

The current diagnostic tests for SARS-CoV-2 infection are

based on molecular detection of viral RNA via (polymerase

chain reaction) PCR analysis, and rapid-antigen tests that

detect viral protein. In general, PCR tests are more accurate,

but the technique is slower than detection of viral antigen,

and PCR can detect nucleic acids when the individuals are no

longer infectious (83–89). However, newer molecular tests

based on CRISPR nucleases can measure viral nucleic acids

faster than traditional PCR tests (90).

In conclusion, regardless of the method used to detect the

coronavirus, future research should be directed to predicting

the trajectory of mutations in coronaviruses, the mechanisms

of pathogenesis due to infection with new variants, and

development of POC systems that are high in sensitivity and
frontiersin.org
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specificity. The hope is that early diagnosis will help to prevent

or dampen future waves of SARS-CoV-2 infections.
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