
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Group III-V Nanowire Growth and Characterization

Permalink
https://escholarship.org/uc/item/1jx2h6q9

Author
Wang, Mingjin

Publication Date
2016
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1jx2h6q9
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 

Santa Barbara 

 

 

Group III-V Nanowire Growth and Characterization 

 

A thesis submitted in partial satisfaction of the 

requirements for the degree Master of Science 

in Electrical and Computer Engineering 

 

by 

 

Mingjin Wang 

 

Committee in charge: 

Professor John Bowers, Chair 

Professor James S. Speck 

Professor Jon Schuller 

 

March 2016



The thesis of Mingjin Wang is approved. 

 

  ____________________________________________  
 James S. Speck 

 

  ____________________________________________  
 Jon Schuller 

 

  ____________________________________________  
 John Bowers, Committee Chair 

 

 

March 2016

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group III-V Nanowire Growth and Characterization 

 

Copyright © 2016 

by 

Mingjin Wang 

 

 

 iii 



 

ACKNOWLEDGEMENTS 

 

This thesis would never have seen the light of day if there were not advisor’s 

encouragement and advice and, above all, his infinite patience and precious time. I am 

deeply grateful for my advisor, Professor John Bowers, for all his guidance, supervising my 

master thesis, and revising the script.  

 

I am thankful to my supervisory committee members, Professor James S. Speck and 

Professor Jon Schuller. I thank them for their precious time and the enthusiasm with which 

they have approached this commitment. I especially like to thank Professor James S. Speck 

for teaching me the analysis for crystallography. UC Santa Barbara provides a broad support 

base for semiconductor material study and research, and a dense intellectual atmosphere 

stimulates me to pursue a further scientific career.  

 

Here I would like to thank all the people who supported me. A special thank goes to my 

parents, who have always given me their encouragement and support for my interest no 

matter how impractical.  

 

 iv 



 

  
ABSTRACT 

 

Group III-V Nanowire Growth and Characterization 

 

by 

 

Mingjin Wang 

 

Electronic and optical devices typically use bulk or quantum wells today, but nanowires 

(NW) are promising building blocks for future devices, due to their structural 

characterizations of larger aspect ratio and smaller volume. In situ growth of semiconductor 

devices is extremely attractive, as it doesn’t require expensive lithography treatment. Over 

the past ten years, a great deal of work has been done to explore NW, incorporation of group 

III-V materials and band engineering for the electronic and optoelectronic devices. Because 

pseudo one-dimensional (1D) heterostructures may be grown without involving lattice 

mismatch defects, NWs may give rise to superior electronic, photonic, and magnetic 

performances as compared to conventional bulk or planar structures. 
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I. Introduction 

In 1959, R. P. Feynman gave a notable talk entitled “There’s plenty of room at the 

bottom” at Caltech [1].  In the talk, he introduced a new field about manipulating and 

controlling things on the atomic scale. He imagined that humans can rearrange the atoms to 

realize  miniaturization in the future. Inspired by this bold and brash revolutionary idea, 

nanotechnology’s contribution to human beings can stand shoulder to shoulder with the 

household Feynman Lectures on Physics and quantum electrodynamics from the 

perspectives of present and future. 

Modern semiconductor devices and condensed matter physics have advanced since the 

important theoretical considerations were proposed by H. Kroemer [2,3], and the double 

heterostructure laser was formulated independently by H. Kroemer [4], and Zh. I. Alferov 

with R. F. Kazarinov [5]. Since then, the development of micro- and optoelectronics towards 

miniaturization to the nanoscale has been proved by Moore’s law. Over the past decades, the 

scalability of semiconductor devices has been reduced to the nanometer range. For further 

meeting the industrial demands, the trend of novel structure towards lower dimension has to 

be provided. During the last half century, incalculable techniques have been applied for the 

realization of miniaturization. Only those technologies that can be integrated and scaled up 

for large hierarchical systems will survive and have impact [6]. 

In 1969, superlattice in monocrystalline semiconductors was initiated with a proposal 

for 1D periodic variation of dopants or of alloy composition by L. Esaki and R. Tsu [7,8]. 

The advantages of heterostructure originate essentially from modification of the density of 

states produced by the confinement of charge carriers. Thus this has been widely used to 
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improve the electrical, optical, and magnetic properties of semiconductor devices. However, 

the quality of heterostructure is deteriorated by the presence of lattice mismatched defects. 

The first NW, called whisker, can be traced back to 1964. Whiskers are grown with Au-

assisted in Vapor-Liquid-Solid (VLS) mechanism by R. S. Wagner et al. [9]. Till now, an 

enormous amount of work has been carried out to explore and analyze NW in experiments 

and simulations. One of its most attractive properties is accommodating huge lattice 

mismatch between different materials, allowing very flexible design for bandgap 

engineering. In 1995, W. E. Buhro et al. developed Solution-Liquid-Solid (SLS) growth 

mechanism analogous to VLS growth [10]. The unique properties of SLS originate from 

transformation in a cocktail of surface ligands, which systematic control of NW growth, 

surface passivation, solubility, and large scale production. Likewise, some similar routes 

involving different growth mechanisms are used to improve the deposition process. The 

controlling of atomically sharp interface makes human being realize rearranging atoms 

today. In 2002, the synthesis of radial and axial heterostructure NWs was explored by C. M. 

Lieber et al. [11,12]. The formation of low defect density heterostructure with huge lattice 

mismatch materials promises a better building block for semiconductor devices. With the 

semiconductor industry developing, the size of future frontier can be reduced to the 

magnitude of the carrier coherence length.  

Heterostructure NW combines with the semiconductor spintronics [13-16] will be a 

promising mean to develop quantum bits in quantum computing. The optoelectronic 

transitions dependence on size will be beneficial to low dimensional optoelectronics devices.  

In summary, the research on NW is a relative young and growing field. However, the 

applicability of past theories has not been always guaranteed. Fortunately, some mechanics, 

theories and techniques of NW can still inherit from the existings in planar and bulk 
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structures. There is still a tremendous amount of work to do for a better understanding and a 

complete control of NW. 
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II. Thermodynamics (Statistical Mechanics) and Kinetics of Nanowire 

Growth 

The technology of NW growth depends on the thermodynamics and kinetics, with 

controlled phase transformation from evaporated material or solution to a crystalline solid 

and reaction proceeded to equilibrium by reaction paths at the corresponding kinetic rates. 

In statistical thermodynamics, the phenomena are explained as the resulting from the 

mechanics of all the atoms present in NW model. Equations of state can be derived directly 

from the statistical mechanics to describe of phase equilibrium. First principles calculations, 

quantum and non-quantum mechanical Monte Carlo, and molecular-dynamics atomistic 

calculations can be used to compute thermodynamic properties. Thermodynamics and 

kinetics are compatible and interrelated in the processes of NW growth. 

 

II. A. Free Energy 

The theoretical prediction of NW structures based on first-principles total energy 

calculation is very useful for exploring, analyzing and exploiting the properties of NW. For 

the local equilibrium structure, where the system exchanges materials and entropy with its 

environment, the free energy of system is the key to understand the phase transformation. As 

a NW grows, with a composition determined by the incorporation fluxes, the top and surface 

of NW will adjust its composition by exchanging atoms with the new layer to minimize the 

total free energy. The thermodynamic properties undergoing the transition are determined by 

the equations of state. 
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Consider the growth system at constant temperature and constant pressure, and assume 

the natural variables of the characteristic potential are entropy and volume without being 

controlled experimentally. The Legendre transforms generate the Gibbs free energy, 

( ) ( ) ( )
( ) ( ) ( )

, , , , , ,

, , , , , ,
a a a

a a a

G P T N H P T N TS P T N

U P T N TS P T N PV P T N

a a a

a a a

= −

= − +                  (1) 

where Hα is the enthalpy of phase α, T is the absolute temperature, Sα is the entropy, U is the 

characteristic potential (the internal energy), P is the pressure, Vα is the volume, and Na is 

the number of moles of a single component a. 

In the case of group III-V alloy growth, compositions of materials should be taken into 

consideration. The Gibbs free energy of the component AxB1-x is given by the sum of each 

composition, 

( )0 0 0 01m A A B B A BG x G x G xG x G= + = + −                                         (2) 

where Gm is the molar free energy of the component AB, and G0 is the molar free energy for 

pure element. For α phase, the molar Gibbs free energy is derived [17], 

( ) ( ), , ,
, , A B

m
A B

G P T N N
G P T x

N N

ααα 
αα

αα =
+

                                         (3) 

And the chemical potentials of A and B components in the phase α can therefore be written 

as, 

( ) ( ) ( ) ( ), , , , ,
, , , ,

B

A B m
A m

A
N

G P T N N G P T x
P T x G P T x x

N x
α

ααααα   
ααααα   

αα m
 ∂ ∂
 = = −

∂ ∂  
         (4) 

( ) ( ) ( ) ( ) ( ), , , , ,
, , , , 1

A

A B m
B m

B
N

G P T N N G P T x
P T x G P T x x

N x
α

ααααα   
ααααα   

αα m
 ∂ ∂
 = = − −

∂ ∂  
      (5) 

where x is the atomic fraction. 
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In the theoretical NW growth mechanism, at least two phases with two and more 

components are mentioned. Thus, the total Gibbs free energy becomes the equilibrium 

condition, which is the sum of all Gibbs free energy of different phases. In the situation of 

two phases, the equilibrium compositions x0 of phase α and β can be derived in below 

functions from the molar Gibbs free energy for two phases, and fraction of the system can be 

obtained based on the lever rule. 

( ) ( ) ( )
0

0 0

0 0

, , , , , ,m m m

x

G P T x G P T x G P T x
x x x

α

αα  β β αα

α β α

 ∂ −
  =

∂ −  
                           (6) 

   
( ) ( ) ( )

0

0 0

0 0

, , , , , ,m m m

x

G P T x G P T x G P T x
x x x

β

β β β β αα

β β α

 ∂ −
  =

∂ −  
                           (7) 

The impact of different composition influences on the Gibbs free energy of various 

phases, which can be analyzed based on first-principles density-functional calculations. 

Some concrete semi-empirical models are summarized [17-19] to deduce the chemical 

potentials of different components in various situations. The real situation may be much 

more complicated than the models, because more detailed quantities should be taken into 

consideration.  

In group III-V NW growth, the cluster variation method (CVM) built by statistical 

mechanics may be used to introduce the macroscopic systems, such as enthalpies and 

entropies, from the microscopical constituents [20-23]. The statistical mechanical models 

are used to describe and evaluate thermodynamics [23-26]. The CVM provides an 

approximate technique for the treatment of cooperative phenomena in the periodic systems 

and the numerical minimization of free energy. The CVM can provide a relatively precise 

value for free energy, but the minimization of many variable functions is required near 

stoichiometric phases. The Monte Carlo (MC) simulation agrees within the description of an 

 6 



 

exact numerical procedure for solving lattice problems. The first-principles calculations 

mapped onto the Ising model are used in connection with either the CVM or the MC to treat 

the statistical mechanics.  

The initial Ising model which is a model of a magnet has been widely used in the CVM 

and MC simulations to compute thermodynamic properties of alloys and lattice properties 

[27-32]. The analysis on the group III-V semiconductors or transition metal-group III-V 

semiconductor phase transitions depends on their phase diagrams, which is computed by 

mapping the alloy problems onto the lattice models. The detailed phase boundaries and 

reactions between them can be determined through the frequent free energy evaluations of 

the lattice Hamiltonian. In the group III-V NW model, gas beam, catalyst droplet, substrate, 

and NW act as traditional 3D phases, meanwhile, the interfaces of gas-catalyst, droplet-NW, 

and NW facets-gas are treated as the 2D phases. The significance of these 2D phases has 

played up due to high aspect ratio in NW. For the magnetic materials or magnetically doped 

semiconductors [33], the Ising model gives expression to the collective contribution of 

dipole moments of atomic spins where the Hamiltonian ℋ is proportional to the spin si [29], 

i j i
ij i

J s s B s≈ − −∑ ∑�                                                   (8) 

and the general form for the partition function which contains all of the essential information 

in the system, 

{ }

B

i

k T

s
Z e

−

=∑
=

                                                           (9) 

where J is the interactions of nearest neighbours and B is external magnetic field. In the 

extended Ising model, the truncated Hamiltonian ℋ consists of the nearest neighbor spin 

interactions through coupling constants [30], 
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, ...
i

i j l

Jα
α α

σ
⊃

≈∑ ∏�                                                    (10) 

where Jα is the effective interaction for cluster α. The actual interactions and clusters depend 

on the lattice type. The ground state energy for cluster α can be obtained by the generalized 

Ising Hamiltonian, 

Jαα
α

ε σ=∑                                                        (11) 

In the self-consistent mean field (Bragg-Williams) equations, the energy is expressed in 

terms of the concentrations, which instead of the magnetisation [34], 

tanh ln
1

cJ J
c
a

a a a
a a a

ε σ
  

= =   −  
∑ ∑                                     (12) 

and 

( ) ( ) ( )
,

2 ln 1 ln 1nm n m B n n n n
n m n

G c J c c k T c c c c
αα ⊂ ⊂

= + + − −  ∑ ∑                    (13) 

A similar compressible Ising model can be applied to group III-V semiconductors. For 

compound AB, one can assume S=+1for A atom, S=-1 for B atom, and S=0 for vacancy. 

The corresponding Hamiltonian ℋ can be written as [31], 

( ) ( ) ( ) ( ) ( ) ( ), 1 , 1

2 2
2 2

, , , , , , ,
3

i i i j i j i j i j k i j k j

ext chem bond angle

A S B S ij ij kjS S S S S S S S S S S S S
i i i j i j i j k

e r R A r r R Rm d m d e
+ −

− − − −

= + + +

   = − − + + − + +      ∑ ∑ ∑ ∑ ∑

=====   

(14) 

where the subscript ext stands for the affection of nuclei, ε(Si,Sj) is the chemical binding 

energies of nearest neighbor covalent bonds, R(Si,Sj) is the nearest neighbor bond 

lengths~3a2/16, e(Si,Sj) bond stiffness for nearest bonds, and A(Si,Sj) is the angular stiffness for 

nearest neighbor bonds. The free energy of the system in the periodic boundary Λx,y,z can be 

obtained with statistics, 
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{ }

3 3
1ln ... exp

i

B x y z N
BS

F k T d d d d r d r k T
   −= − Λ Λ Λ      
∑∫ ∫ ∫ ∫ ∫ =                  (15) 

In the CVM simulations, a number of 2D and 3D Ising lattices with pairs and many-

body interactions are applied in the model. The simulation attempts to reflect the correct 

topology in crystal. The approximate expressions for the number of configurations Ω (F=E-

kBTlnΩ) having definite distribution of a set of cluster variables and the numerical 

minimization of free energy are calculated via the Ising lattices with points, pairs, and 

multibody interactions. In the simplified approximation for counting ensemble 

configurations, only the number of clusters per unit cell should be taken into considerations 

[35,36]. The number of configuration is given by [23], 

( ) ( ){ }( )

( ) ( ){ }( )

,

, 0

,

, 0

!x ,

!x ,

i

i

r t
iN r t N i

r t
iN r t N i

N r t

N r t

α

α

− >

− <

  
Ω =

  

∏ ∏
∏ ∏

                                   (16) 

where N is the total number of lattice points and xi(r,t) is the concentration of the (r,t) cluster 

in the i configuration, N(r,t) is the total number of (r,t) clusters in the system, and αi is the 

geometrical constants. In principal, one can choose arbitrarily large clusters. The larger a 

cluster of N sites, the more important the intracluster interactions are relative to that of 

intercluster interactions. However, there is a tradeoff between the accuracy of simulation 

and the time consuming, because the computational cost increases with the size of cluster 

exponentially. Different cluster approximate expressions for FCC, BCC, and HCP were 

investigated in [23,37-40]. 

In the simplest 1D linear lattice for point approximation, point itself is the cluster. For 

the ensemble composed of A atoms (i.e. group-III) with fraction x1 and B atoms (i.e. group-

V) with fraction x2 (=1-x1), the number of distinguishable configuration is 

 9 



 

( )1 int
!

!D po
ii

N
x N−Ω =

∏
                                                  (17) 

For pair approximation, in which pair is the cluster, the configurations will transform 

into A-A pair with fraction y1, A-B pair with fraction y2 (=x1-y1), B-A pair with fraction y2, 

and B-B pair with fraction y3 (=x2-y2). The number of distinguishable configuration with 

pair cluster can be written, 

( )
( )

1

!

! i

ii
D pair

ii

x N

y N
β−Ω =

  

∏
∏

                                                (18) 

where βi are the degeneracies for configurations A-A (βi=1), A-B/B-A (βi=2), and B-B 

(βi=1). For triangular lattice with triangle cluster, the ensemble of triangles composed of A3 

with fraction z1, A2B with fraction z2 (=y1-z1), AB2 with fraction z3 (=y2-z2), and B3 with 

fraction z4 (=y3-z3). So the number of configuration with triangle cluster is given, 

( ){ }
( ) ( ){ }

3

2

!

! !

i

i

ii
triangle

i ii i

y N

x N z N

β

g

  
Ω =

  

∏

∏ ∏
                                     (19) 

where γi are the degeneracies for configurations A3 (γi=1), A2B (γi=3), AB2 (γi=3), and B3 

(γi=1). For the common ZB lattice in group III-V semiconductors, consists of cation FCC 

sublattice and allocated anion one. For the triangular cluster, the configuration is different 

with that in triangular lattice, 

( ){ } ( ){ }
( ) ( ){ }

32

32

! !

! !

i

i

i ii iZB
triangle

ii

x N y N

N z N

β

g

  
Ω =

  

∏ ∏

∏
                                  (20) 

For the tetrahedral cluster in ZB lattice, the ensemble of tetrahedra composed of A4 with 

fraction w1, A3B with fraction w2 (=z1-w1), A2B2 with fraction w3 (=z2-w2), AB3 with 
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fraction w4 (=z3-w3), and B4 with fraction w5 (=z4-w4). So the number of configuration with 

tetrahedra cluster can be derived, 

( ){ }
( ) ( )

3

2

!

! ! i

iiZB
tetrahedra

ii

x N

N w N
dΩ =

  

∏
∏

                                       (21) 

where δi are the degeneracies for configurations A4 (δi=1), A3B (δi=4), A2B2 (δi=6), AB3 

(δi=4), and B4 (δi=1). Likewise in the ZB structure, the WZ structure can also be represented 

as a set of tetrahedrons with cations (anions) in their corners, half of such tetrahedrons have 

anions (cations) in their centers, and the others of the tetrahedrons are empty. 

The general configuration entropy in the CVM can be written by, 

( )
( )

( ) ( ) ( )
,

,
ln , , ln ,B B i i i

r t i

N r t
S k Nk g r t x r t x r t

N
−

= Ω = ∑ ∑                      (22) 

or 

( ) ( ) ( )
( )

( ) ( ) ( )
max, ' r

, ',
, ' , , ln ,B i i i

r t r r i

N r t N r t
S Nk M r r g r t x r t x r t

N N≤ ≤

 −
= + 

 
∑ ∑ ∑       (23) 

where gi is the general degeneracy constants, indicating the number of configurations of 

type i generated by the symmetry operations of clusters. If r stands for the largest cluster, the 

entropy is the first equation. If r clusters is contained in r’ cluster, the entropy is written as 

the bottom one. An intuitively ideal tetrahedron configurational entropy in terms of five 

constituents can be written as [41], 

( )2 3 4

3 3 3 3 3 32 2 2 4 2 4 4 4
1 1 5 5

3 32 4 2 4
1 1

2 ln 2 ln 4 ln 6 ln 4

6 ln 2 ln ln
2 6 2 6 4 3 4 4 3 4 6 2 6 2

3 35 ln
4 2 4 4 2 4

tetra B i i B
i

B

B

S k w w k w w w

w w w w w ww w w w w w w wk w w w w

w ww w w wk w w

= − − + +

            + + + + + + + + + + + + + + +                        

  − + + + + + + 
 

∑

3 32 4 2 4
5 5

3 3ln
4 2 4 4 2 4

w ww w w ww w     + + + + + + +            

 (24) 
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From the above statistical explanation of entropy, the CVM method expresses the exact 

variational principle of the equilibrium statistical mechanics. Under the CVM calculations, 

the Gibbs free energy can be expressed as the polynomial expansions in the regular solution 

model [40], 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1 2 2 1 2 1 2
0

, ln ln
n

i i
i

G x T x G T x G T RT x x x x x x P x x A T
=

= + + + + −∑    (25) 

In the MC simulations, a smaller number of representative configurations are selected. 

The equilibrium is based upon the partition function containing all of the essential 

information about the system. Thermodynamic quantities and characteristics of an ensemble 

can be calculated from their partition functions. The MC simulations provide a direct 

evaluation of the ensemble average. The ensemble is a set of the same macroscopic systems 

being in all possible states under the given conditions. When the temperature is held fixed, 

the most common canonical ensemble is a set of the closed macroscopic systems which have 

thermal contact with their surroundings. In this situation for semiconductor alloys, the 

changes of the volume and the numbers of particles are prohibited, and the alloys are treated 

as a closed system for a given temperature. The general partition function of the canonical 

ensemble (fixed composition) is, 

( ) ( ) ( ), , , expi j i i B
j

Z T V N g V N U k T= −∑                             (26) 

where gj is the degeneracy factor, which equals to the number of states. Then the 

configurational partition function for binary AB compound can be written as, 

( )
2

exp
, , exp

exp
n

ab

n
i
a j

iab ab
a b abN n

B i
a j

j i

E
NZ g N N N

k T
E

µ

µ

   −   Ω   = − =      −  
  

∑
∑

∑ ∑
                 (27) 
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where Ω is the interaction parameter, and the term in bracket is the relative energy. In the 

MC simulation, the density matrix with a specific possible configuration α is written 

( ) ( )1 1exp exp N
B BZ E k T Z U r k Tαα r − −  = − = −                           (28) 

The corresponding partition function Z for system in the canonical ensemble is, 

( )N

B B

U r
E k T k T N

canonical ensembleZ e e dra

a

−
−

− = =∑ ∫
                                (29) 

where the pseudopotential approximation was described in the pseudopotential code Siesta 

simulation [42], kB is Boltzmann’s constant, Eα is the energy of state α, and rN is N-

dimensional configuration vectors. The canonical ensemble is very appropriate to describe 

the alloys for the regular solution model. The free energy of the crystalline solid associated 

with the canonical ensemble is represented, 

int intlnZ ln exp exp exp
AA AB BB

A B

N N N

N N AA AB BB
B B A B

B B B

u u uF U TS k T k T Z Z
k T k T k T− −

            = − = − = − − − −           
            

 (30) 

where the subscript int stands for the contributions of the internal degrees of freedom. In 

group III-V semiconductor system, the more realistical Gibbs free energy (G) and the 

Helmoltz free energy (F) are similar because of the contribution of volume term being 

negligible. The free energy of the entire system is expressed in terms of the distribution 

variables. The free energy is minimized with respect to the variational parameters (the upper 

bounds for free energy).  

The overall canonical-ensemble partition function is the sum over the several degrees 

of freedom of the system, including the electronic, vibrational and configurational 

contributions [43-48], 
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( ) ( ) ( ) ( )exp exp expconfiguration relaxation vibration electronic
canon

B B Bvibration electronic

E E E EZ k T k T k T
u eσ σ σ

σ σ σ σ
− −

− −  − −   = × ×     
    

∑ ∑ ∑  (31) 

where the configuration variables σ are appropriate for the Ising model. The corresponding 

density function or matrix can be written by, 

( )

( ) ( ) ( ) ( )exp configuration relaxation vibration electronic

B

canon

E E E E
k T

Z

σ σ σ σ

r σ

− − − − 
 
 =         (32) 

and the expectation value of the total energy, 

( )
{ }

( ) ( ) ( ) ( )configuration relaxation vibration electronicU E E E E E
σ

r σ σ σ σ σ = = + + + ∑        (33) 

One can extend the canonical ensemble to the isobaric-isothermal or the variation of 

the number of atoms situations. The ensemble is a set of the closed macroscopic systems 

having mechanical and thermal contacts with the surroundings. In the open systems of group 

III-V materials growth (MBE or MOCVD), the systems have fixed volume, but can freely 

exchange energy and matters with their environment. When the number of particles is 

allowed to fluctuate, the relevant thermodynamic potential can be written by the work 

function U-TS-∑μN=-kBTlnΞ. The ensemble is changed to the grand-canonical ensemble, 

where T, V, μi are the independent variables and are represented as a set of open 

macroscopic systems, with fixed walls permeable for heat and particles. The partition 

function for the general grand-canonical ensemble, 

( ) ( ), ,
, ,

, , exp
i

i

j i i
i j i N

j i N B

U N
T V g V

k T
µ

µ
− 

Ξ = − 
 

∑                           (34) 

In the MC simulations, the corresponding partition functions (isothermal-isobaric ensemble 

and grand-canonical ensemble) are obtained separately, 

( ) ( )exp exp N N
iso e B BZ PV k T U r k T dr dV = − − ∫ ∫                           (35) 
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and 

( )

( )
( )

3
0 ! 2

N
BB

N
U r k TN k T N

grand N
N

B

VZ e e dr
N h mk T

m

π

∞
−

=

= ∑ ∫
                          (36) 

where Pe is the external pressure, h is the Planck constant, and m is atom mass. The 

corresponding grand potential for species i in configuration {σ} is [28], 

{ }

( ) ( )ln exp iB
grand

B

E Nk T
N k Tσ

σ µ σ +  Φ = − −  
   
∑                               (37) 

The free energy depends on the number of component bonds and the bond energies between 

adjacent atoms. Thus the degrees of ordering or clustering have an influence on the free 

energy. Using the MC simulation in the CVM approximation [49,50], the grand potential 

can be written in terms of probabilities,  

( ) ( ) ( ) ( )2 1 ln lnp 1grand co ij ij B co i i i co ij ij ij co i i
ij i ij i

N E p k T x x x p p N xω ω ω ω µ
 

Φ = − − − − − + − − 
 

∑ ∑ ∑ ∑ ∑  (38) 

where ωco is one half the coordination number, N is the total number of lattice points, and pij 

is the probability of configuration with energy Eij. 

For microcanonical ensemble the partition function Z(U,V,Ni) equals to the degeneracy 

factor g (U,V,Ni), where the degeneracy factor is the number of arrangements of atoms over 

the lattice sites. And then the entropy is just the configurational entropy. The entropy 

dependence on the microcanonical partition function for Nd-dimensional integrals over the 

components of coordinates and momenta of the particles, 

( )1 , ,ln
!B micro canon dN i iS k Z E dxdp

h N
x p V−= = Θ −  ∫ ∫ =                       (39) 

where Θ is the Heaviside’s step function.  
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         Algorithms enable the automated calculation of thermodynamic quantities in the MC 

simulations. The MC schemes rely on the Markov processes [29]. Define a set of N 

variables via an array which can take the values ±1. The simulation processes start with all 

spins up (Fully ordered as the initial state for convenient. In semiconductors, assume A 

atoms with si=+1 for spin up, and si=-1 for B atoms). → Ensure all spins have the same 

number of neighbours and local geometry. → Select the temperature to perform the 

simulation (The easiest initial temperature is zero, and the Ising model stays at its ground 

state) and choose a spin si at random (Random points in that region are chosen via a random 

number generator) at a slightly altered position (r→r’) and flip this spin. → Compute the 

energy change ∆ℋ 

i j i j
ij ij

E E J s s J s sυυµµ  
υµ = − = − +∆ ∑ ∑=�                                       (40) 

(where the energy difference origins from the new ν state to the old μ state) resulting from 

the configurational change, exp(-∆ /T) (If exp(-∆ /T)/[1+ exp(-∆ /T)]>r, where r∈[0,1] 

is a random number, then accept the new state and the transition is performed, otherwise, 

keep the old state for the averaging).  In a MC simulation with Ising model, the average spin 

having all possible configurations has the form, 

( )
( )

exp
exp

ii
Tr s T

M
Tr T

−
=

−
∑ =

=
                                             (41) 

where si is the spin of the corresponding state, and the trace over all states of systems is an 

integral over phase space or a cumulant in classical systems, 

1
! dN

dpdxTr
N hα

≡ ∏ ∫     or    
1

...
N

Tr
σ σ

≡∑ ∑                                  (42) 
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The integrated function is the fraction of the points that fall below the curve multiplied by 

the area of the sample region. → Advance MC time from t to t+∆t. Run the simulation for a 

long period of time until the system has come to equilibrium at the temperature. In the 

grand-canonical ensemble, the transition α→α’ is taken to be the flip si→-si of a randomly 

chosen spin. In the canonical ensemble, a nearest neighbor AB pair is chosen at random and 

interchanged. The probability can be obtained by iterating the initial probability p(0) [29], 

( ) ( )0t t t
i i i i i

i i
p t p p p a v a vλ= = =∑ ∑                                   (43) 

where λi is the eigenvalue of the Markov matrix p corresponding to the eigenvector vi, and 

the quantities ai are coefficients. When the system at equilibrium, the probability of a 

configuration α is  

( ) ( )
( )

exp
exp

B
eq

B

k T
p

k T
α

α
α

α
−  =
−  ∑
=

=
                                     (44) 

where the Hamiltonian consists of the chemical potential term and the multibody interaction 

terms [51], 

( ) int
1
2 A B i multi eractions

i
sm m −= − − +∑==                                      (45) 

For the metropolis algorithm of the Ising model, the MC simulation processes work by 

repeatedly choosing a new state and then accepting or rejecting it at random with an 

acceptance probability. The simulations start from the configuration i having energy Ei at 

random. Likewise the process above, a trial is made to change the spin (If si=1 then change 

it to -1 and vice versa, find new energy Ei+1). Find a new configuration i+1 having a new 

energy Ei+1. The judgement of whether to add the new configuration to the trajectory is 

based upon the ratio of the probabilities ρi+1/ρi=exp[(Ei+1-Ei)/kBT (If the ratio is larger than a 

random number∈(0,1), the new state is accepted; if the ratio is smaller than the ratio, the 
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new state is rejected, and the site i has the old spin and energy Ei. And then accumulate 

averages). For the Ising model phase diagram in the MC simulations, the equilibrium 

concentrations are obtained by sweeping through the chemical potential μA-μB at fixed 

temperature. Sweeping starts from pure A phase and decreases the chemical difference 

down to the pure B phase.  

For the simulations of the high temperature phase boundaries in a semi-grand-canonical 

ensemble, the thermodynamic potential is given by [52], 

{ }

( ) ( )ln expB

B

E xk T F x
N k Tσ

σ µ σ
φ µ

 +  = − − = −  
   
∑                           (46) 

When the initial state is defined as the low temperature state, the dependence of the potential 

on the ground energy is written [52], 

( ) , ,exp i ground i groundB
ground ground ground

i B

k Tx x
N k T

eµ  η
φ eµ

∆ − ∆ 
= − − − 

 
∑              (47) 

where εground is the ground state energy with the composition xground, ∆εi,ground is the variation 

in the total energy associated with changing the identity of the atom sitting at site i in ground 

state, and ∆ηi,ground is the variation in (Nx) associated with the same change. For potential 

variation for the disordered phase at high temperature, 

( ) ( ) ( )1 1

0 0

,1 1 0 0

,
1 0

, ,
, ,

T

T
B B B

T T xE x d T
k T k T k T

µ

µ

φ µ φ µ
µµ

 
= + − − 

 
∫                           (48) 

For the high temperature expansion, the potential is written in terms of high order terms, 

( ) ( ) ( ) ( ) ( ) 3
21, ln 2

2B N
B B

E x
T Nk T E x o

k T k Tσ

σ µ σ
φ µ σ µ σ

 − 
 = − − − +        

∑      (49) 

where the cluster expansion is 
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( )
,

i j
i j

E Vσ σ σ=∑                                                     (50) 

The entire phase boundary of (α-β first order transition) can be determined by the 

equilibrium of the derivations of the potentials, 

( )
( )

( ) ( )
( )

( )
1 1

1 1
1/ 1/

B B

B BB B

B B B Bk T k T

k T k Tk T k T
d d d d

k T k T k T k T
β βαα

µ µ

φ φφ φ
µµ

µµ

∂ ∂∂ ∂   
+ = +   ∂ ∂ ∂ ∂   

 (51) 

The equilibrium can be simplified as  

( ) ( )1 1B BB

E Ed
d k T k Tx x k T

β α

β α

µµ −
= −

−
                                      (52) 

Run the algorithm for both phases at the chemical potential μ. The above equation with 

energies and compositions for each phase is integrated. In simulation, the perturbation 

caused by noise is  

( )
( )
( )

ln
1 1B B

d x xd
d k T d k T

β αµ µ
−∆

= −∆                                           (53) 

The calculated Gibbs free energy can be recognized as the sum of the thermodynamic 

potential and the corresponding chemical potential, 

( ) ( ) ( ), , ,G T x T T x xφ µµ = +                                           (54) 

The spinodal decomposition is commonly in semiconductor growth, nucleation, and 

annealing, which involves cluster, order-disorder, and phase separation. The assumption of 

free energy or chemical potential depends only on local concentration, which is valid as long 

as concentration gradient is not too large. Ignore the attractive interactions between atoms, 

and the simplified statistical sum can be obtained 

1 exp
N

B

xVZ
k T

µ  +
= +  

                                               (55) 
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where the sublattice concentration x=kBT(∂lnZ/∂μ)/N, and V is the corresponding volume. 

Differentiation of the above equation with respect to x can derive to the maximum and 

minimum concentrations, which are the boundaries of spinodal decomposition region. Inside 

the spinodal region, the higher order derivation of free energy should be taken into 

consideration due to the large gradient in concentration with uphill diffusion. For the uphill 

diffusion, the amplitude of fluctuation induced by small density oscillations will further 

increase with time. The detailed equilibrium of multicomponent system can be derived in 

Cahn & Hilliard method [53-55]. To solve the local equilibrium incorrect, the total free 

energy is written with higher order derivation with respect to coordinate, 

( )
2

1 1 2

, , ,
V

x x drG g x r
r r r Vλ λ λ Ω

 ∂ ∂
= ⋅⋅⋅ ∂ ∂ ∂ 
∫

                                      (56) 

where g(x) stands for the molar free energy, the subscript λi indicates coordinate and there 

are six independent in three-dimension, and VΩ is volume. If the crystal has inversion 

symmetry, apply the Taylor expansion. Then 

( ) ( ) ( )

( ) ( )

1 2 1 2

1 2 1 21 2

1 2

1 2 1 2

2

, ,
1 2

,

1 1
2 2

1
2

V

V

x x x drG g x m x n x
r r V

x x drg x x
r r V

λ λ λ λ
λ λ λ λλ λ

λ λ
λ λ λ λ

λ λ

κ

Ω

Ω

 ∂ ∂ ∂ = + + ∂ ∂ ∂ ∂  
 ∂ ∂ = + ∂ ∂  

∑∑ ∑∑∫

∑∑∫
         (57) 

where the gradient energy coefficient κ is written 

( ) ( ) ( )
1 2 1 2 1 2, , ,x m x n xλ λ λ λ λ λκ = −                                            (58) 

The equilibrium chemical potential μequ can be obtained through variational minimize G. 

So the equilibrium chemical potential can be obtained from order parameter (η difference of 

sublattice concentrations) gradients arise and the additional energy associated with gradient 
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energy term. The chemical potential can be written as sum of the interstitial diffusion and 

extra energy term, 

( ) ( )
2

22
iequ

g x xx
x rλµ κ

∂ ∂
= −

∂ ∂                                               (59) 

In the Ising model, the variable η can represent the coarse grained field of spins or 

magnetization. Based on the known experiments, the free energy and pressure can be written 

in terms of the Taylor expansion in η. The Ising model theory of Landau raised the order 

parameter into a conventional form [31,51], 

tanh
2 r

B
T
hh

 
= + 

 
                                                   (60) 

where B is the external magnetic field, and Tr = T/Tc. Tc is the critical point derived from the 

van der Waals equation based on the mean field theory. 

 

II. B. Phase Transformation 

The materials in the systems of NW growth try to reach their equilibrium state, which is 

equivalent to a minimization of the energy of system in a closed system or a minimization of 

one of free energies. In the irreversible transformation of an open system, entropy increases 

with the Gibbs free energy. The relationship between the change of the irreversible entropy 

and the variation of the Gibbs free energy can be written [17] 

( ) ( ) ( )
sys sys sys

sys sys sys sys sys
irr irr rev rev

dU PdV dGdS dS dS d dS
T T

 −
= + − = − = − 

              (61) 

where the subscript irr indicates irreversible part and rev means reversible part of the 

entropy change. Therefore, the equilibrium transformation occurs when dGsys is 

approximately zero. Thus this induces that the change of irreversible entropy is also 
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approximately zero and entropy is conserved. In the case of group III-V NW growth, the 

equilibrium is described by minimizing the Gibbs free energy under given pressure, 

temperature and composition. 

Traditional thermodynamics gives a clear definition of entropy, but the physical nature 

of entropy should be gained from statistical thermodynamics discussed in the previous 

section. The entropy of system can be derived from the variation principle [56], 

( )
{ }

( )lnBS k
σ

ρ σ ρ σ= − ∑                                                      (62) 

The corresponding free energy can be derived from the first-principles calculations. The 

detailed probability distributions and graphical models in some common structures, such as 

FCC, BCC, wurtzite (WZ), zincblende (ZB), and binary lattices, have been summarized 

[17,20-26,57,58]. Considering the cluster interactions, the free energy becomes [44,23] 

( ) ( )

( ) ( )

' ' '
' 1

' ' 1 2
' 1

ln

... ln

i

i

i i i B i i i
i i

i i p p pn B i i i
i i

F U TS m E k T

m E k T

σ

σ

ξ αρ  σ ρ σ

σ σ σ αρ  σ ρ σ

=

=

= − = −

= −

∑ ∑ ∑

∑ ∑ ∑
                          (63) 

This cluster expansion provides a method of treating configurational disorder on lattices.  

       In group III-V NW growth system, ideal solid solution behavior might occur rarely in 

semiconductor NW alloys, but might in the metal segments, where the components do not 

interact chemically with each other and distribute randomly in the condensed phase. For the 

solid solution with more than one component, its free energy (F=U-TS) is determined by the 

internal energy and the configurational entropy that arises from the many different ways in 

which atoms are arranged over the lattice sites. In the Bragg-Williams model, its internal 

energy of the random binary solid solution equals to the binding energy, 

( )2
2 A AA B BB A B AB AA BB

NzU x E x E x x E E E= + + − −                            (64) 
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where there are  2N possible arrangements (configurations or microstates) of atom A and  

atom B on a fixed lattice of N points. For the random binary solid solution, its 

configurational entropy of the mixture system is given via the Stirling’s approximation 

N!≈NNe-N√(2πN), 

( )

( )

!
ln

! !

ln ln ln 2 ln 2 ln 2

A B
conf B

A B

A A
B A B A B A B B A B B

A B A B

N N
S k

N N
N Nk N k N k N N k N k N

N N N N
π π π

+
=

= − − + + − −
+ +

       (65) 

For perfect group III-V semiconductors in NW system, the configurational entropy 

contribution vanishes in the ordered state. The energy of perfect crystal consists of the net 

binding energy at zero temperature, the vibrational energy (the motion of atoms), and the 

electronic energy (the thermal excitations of the electrons). Electronic entropy is evaluated 

in the independent electron approximation through the electron state occupation f(ε,T), 

( ) ( ) ( ) ( ) ( ){ }, ln , 1 , ln 1 ,ele B
k

S T k f T f T f T f Teeee   = − + − −      ∑            (66) 

The vibrational entropy is the integral of the vibrational density of states, g(ω), 

( ) 1 ln ...B
vib B

k TS k g dω ωω
  = + +    ∫ 

                                    (67) 

However, the actual semiconductors are not in perfect structures. The configurational 

entropy of the semiconductors with defects, such as vacancy, has to be taken into 

consideration. Likewise in the solid solution, the entropy of formation of vacancies is 

primarily determined by the configurational entropy. The disordered configurational entropy 

for a small number (Nv≪N) of vacancies, 

( ) ( ) ( )!ln ln ln ln ln
! !conf B B B v v v v

v v

NS k k k N N N N N N N N
N N N

 
= Ω = ≈ − − − −    − 

 (68) 

 23 



 

Besides the configurational contributions, the lattice vibrations in substitutional alloys 

have also a significant influence on the entropy. The vibrational entropy is caused by the 

thermal oscillations of atoms. The vibrational entropy change can be attributed to the 

changes in bond stiffness associated with the changes in bond-length [43]. The effect of 

ordered alloy on its vibrational entropy has been attributed to the fact that bonds between 

different chemical species have a different stiffness than the bonds between identical species. 

The disordered state reduces the number of bonds between unlike atoms and thus has larger 

vibrational entropy. In NW system, the vibrational contributions play a more important role 

due to the enhanced degeneracies caused by a high aspect ratio.  

At low temperature, chemical species segregate apart or ordered compounds are formed 

due to the existence of finite interactions between atom A and B [56]. In the ordered state, 

all bonds are A-B bond, and then the configurational entropy contribution is negligible. So 

the free energy becomes F≈U=4NEAB. At high temperature, ordered or phase-separated 

species transform into a homogeneous disordered structure, and then the configurational 

entropy dominates. For the disordered state, the internal energy becomes 

U=2NEAB+N(EAA+EBB), the configurational entropy increases to Sconf=NkBln2, and the 

temperature dependence of vibrational entropy becomes large. So the free energy becomes 

F≈2NEAB+N(EAA+EBB)-NkBTln2-TSvib. Most group III-V semiconductor alloys exhibit 

spontaneous long-range order in the epitaxy growth [59,60], while short-range order is 

present in liquid phases.  

For the liquid alloys with random distribution of atoms (liquid mixtures in a catalyst or 

liquid semiconductors), their entropies are the sum of the entropies of the constituents and 

configurational entropy, 
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[ ]ln lni i conf A A B B conf A A B B A A B B
i

S x S S x S x S S x S x S R x x x x= + = + + = + + +∑      (69) 

The phase diagrams of binary, ternary, and quaternary group III-V systems were 

calculated from the thermodynamic data using the quasi-equilibrium approach [61-64]. 

There are three kinds of bonds connecting the nearest neighbouring atoms. The interaction 

parameter ΩAB is written [65] 

( ) 2AB nearest AB AA BBN E E EΩ = − +                                          (70) 

where Eij represents the interaction energy of the nearest neighbor pair, and Nnearest is the 

number of the nearest neighbors. The detailed ΩAB and Nnearest depend on the materials. The 

bond energy between two unlike atoms may be either more negative than the bond energy 

between equal atoms (for compound formation or ordering) or more positive (for a 

miscibility gap). For the first nearest neighbors, the negative resultant of Eq.70 indicates that 

the phase is stable. For the second nearest neighbors, the right hand side of the equation 

equals zero, and thus indicates the ordered phase is composed of two simple cubic 

sublattices (B2). When the right hand side is negative, new ordered phase DO3 are formed, in 

which the lattice is decomposed into four FCC sublattices.  

The general chemical potential μ of component a  , and the general Gibbs free energy 

(for gas, liquid or solid) in a binary compound a b−  system consisting of two constituent 

species a   and b can be written 

( ) ( )0
0 0lna a a a a molarG S T T RT x P P Vm n= − − + + −                             (71) 

( )0

01
ln ln

n
V SER

i i ij j i
i j

PG x G h H RT x RT P
=

   = − + +      
∑ ∑                              (72) 

( )

0

ln lnx

L
a a b b mix ex

a a b b ab a b a a b b non conf

G x G x G G G
x G x G x x RT x x x T S −

= + + ∆ +

= + +Ω + + − ∆
                  (73) 
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( ) ( )

( )
( )

0

1 1

ln lnx

2
ln

2

S
a a b b mix ex

ii
a a b b a a b b non conf a b ab a b

n n ij ii jj
i i i i i j

i i i j i

G x G x G G G

x G x G RT x x x T S x x L x x

z E E E
x G RT x x x x

−

= = >

= + + ∆ +

= + + + − ∆ + −

 − + ≈ + +

∑

∑ ∑ ∑∑

   (74) 

where νi are the activity coefficients for different atoms and P0 is the standard pressure 

(~105Pa). The superscripts V, L, and S represent vapor, liquid, and solid phase separately. 

The mixing free energy ∆Gmix is the excess free energy associated with the formation of a 

solution (liquid or solid) from the pure elements. The excess mixing Gibbs free energy is 

affected by not only the purely configurational entropy but also the interaction term (the 

mixing enthalpy) as well as the non-configurational contributions, 

L conf conf L
mix mix mix non conf mix ab a b non confG H T S T S T S x x T S− −∆ = ∆ − ∆ − ∆ ≈ − ∆ +Ω − ∆           (75) 

where the entropy of mixing is the increase in the total entropy when several initially 

separate systems of different composition each in a thermodynamic state of internal 

equilibrium are mixed without chemical reactions. According to the discussion in the section 

of calculations of entropy, the random configurational entropy of the system is given via the 

Stirling’s approximation, 

( ) ( ){ }ln lnL conf L
mix mix ab a b non conf a a a b b b ab a b non confG T S x x T S RT x x x x x x x x T Sγγ − −∆ ≈ − ∆ +Ω − ∆ ≈ − + +Ω − ∆        (76) 

where γi(x) is the composition dependent activity coefficient, which is nearly unity for 

liquid and solid phase. For an ideal solution, the configuration entropy is zero. The solution 

enthalpy is the sum of all products of pairs by their binding energies. The non-

configurational entropy term consists of the vibrational and electronic contributions. In the 

liquid of binary system, the excess mixing Gibbs free energy can be obtained in terms of the 

composition terms,  
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( ) ( ) ( )1 ln 1 ln 1L L L L L L L L
mix bG RT x x x x G x x ∆ = − − + + ∆ −                      (77) 

Likewise, the excess mixing Gibbs free energy in the solid binary system can be written by, 

( ) ( ) ( ) ( ) ( ){ } ( )1 1 2 21 ln 1 ln 1 1 1 1S S S S S S S S L L
mix bG RT x x x x x L T T x L T T G x x∆ = − − + + − − + − + ∆ −        (78) 

where Li are the free energies of fusion apportioned between the two components. ∆Gb has a 

relationship with the lattice mismatch, and increases with the enhancement of the lattice 

mismatch. Thus it implies there is miscibility gap as the lattice mismatch is large [66]. For a 

ternary system, the sum of binary excess Gibbs energies in extrapolation and the ternary 

excess Gibbs energy in assessment are calculated as the total excess Gibbs energy. 

For a regular solution, the enthalpic term xaxbΩab dominates, while the non-

configurational entropy terms are negligible. The phase diagrams can be tuned through the 

progressive changes of the interaction coefficients of liquid or solid phases of 

semiconductor materials. The effects of strain and lattice mismatch also play an important 

role in group III-V NW, 

( ) ( )0 0 0 02L S L L S S L L S S
surf a a a a a b b b b bG V V x V V x

R
γγγγ   −  ∆ = − + −                          (79) 

where γ is the surface tension, and Vi
0 is molar volume for liquid and solid phases. 

The excess molar Gibbs free energy caused by the lattice elastic energy dominantly. 

The binary excess Gibbs energy can be derived in the Redlich-Kister equation, 

( )iS
ex a b ab a bG x x L x x= −∑                                                   (80) 

where Lab
S is the binary excess Gibbs free energy parameter. In Eq.80, the non-regular terms 

are taken into account. There are many extensions for the excess Gibbs energy model. The 

interaction coefficient Lij (~J/mol) in the above equation gives a single interaction parameter 

for the phase in the binary i-j system but it is not enough to describe the experiments. The 
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interaction parameter may be extended into the Redlich-Kister power series, which is 

reasonable as the excess enthalpy in a smooth function. 

( ) ( ) ( )
0 0

k km mm m m
ij i j ij i j ij ij

m m
L x x L x x H TS

= =

= − = − +∑ ∑                             (81) 

The excess Gibbs energy for a high order system also behaves as a composition-dependent, 

1 2 1

1 1 1 1 1
...

n n n n n

ext bin tern higher order ij i j ijk i j k
i j i i j i k j

G G G G L x x L x x x
− − −

−
= = + = = + = +

= + + = + +∑ ∑ ∑∑ ∑            (82) 

The enthalpy of mixing will be obtained by summing of the bond energies of adjacent atoms.  

( ) 2mix tot a b ab tot nearest a b ab aa bbH N zx x N N zx x E E E= Ω = − +                       (83) 

where Ntot is the number of atoms in solution. The heat of formation of a binary compound 

can be applied directly to the substitutional alloys: 

( ) ( )1 1 1x xA B C AC BC S
mixH H x H x H x xα−∆ = ∆ − ∆ − − ∆ = −                         (84) 

Hillert extended the ternary excess coefficient [67], 

( ) ( ) ( )1 2 1 2 1 2 1
3

i j k
ijk i j k ijk j i k ijk k i j ijkL x x x L x x x L x x x L = − − + + − − + + − − +          (85) 

Considering the influences of the magnetic term, the general molar Gibbs free energy 

for phase ϕ (=FCC or HCP) can be obtained [68], 

( )ln lnm A A B B A A B B ex mix mag mixG x G x G RT x x x x G Gφ φ φ φ φ φ φ φ φ φ φ
− −= + + + + +                (86) 

( ) ( )( ),
0 0

ln
z zi i

ex mix A B A B A B A B A B
i i

G x x L x x x x a b T c T T x xφ φ φ φ φ φ φ φ φ φ φ φ φ
−

= =

= − = + + −∑ ∑         (87) 

where a, b, and c are parameters to be determined during optimization.  

( ) ( ) ( ) ( ) ( ){ },ln 1 ln 1 1 1mag mix c c A B c A B ex B BG RT M g T T RT M g T T x T x xφ φ φ φ φ φ
− − − − = + = + − + −   (88) 

The excess Gibbs free energy of mixing can be written in the terms which are influenced by 

temperature [69,70], 
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( ) ( ) ( ) ( ), 1 1 1ex mix m ex mixG T P x x H S T T x x x x T
T T
αα αα − −

∂ ∂   ∆ = − = −∆ = − − − − −   ∂ ∂   
   (89) 

In vapor phase boundaries, ( )2ln 1V
V VRT xγα = − , where the vapor αV can be obtained from 

vapor pressure. The liquid αL can be obtained from liquidus data. For the liquidus 

interaction, α=a-bT+cT2. For a group III-V binary solution, the temperature coefficient can 

be changed into 

( ) ( )2 2 ln 4F F
f fa bT H H S S R Ta = − = ∆ + ∆ − ∆ + ∆ −                      (90) 

The Newton-Raphson method can be used for expressing the derivatives of the partial 

Gibbs energies [41], 

2 2

1 12 2
m mG Gdx dxx x S S

x dT x dT

α βα β
α β α β

α β

   ∂ ∂
− + = −   ∂ ∂   

                                (91) 

( ) ( )
2 2

2 22 21 1m mG Gdx dxx x S S
x dT x dT

α βα β
α β α β

α β

   ∂ ∂
− − − = −   ∂ ∂   

                         (92) 

The relationship of x-T can be obtained by solving this set of equations, 

( )( ) ( )
( )( )

1 1 2 2

2 2

1

m

S S x S S xdx
dT x x G x

α β β α β βα

α β αα

− − + −
=

− ∂ ∂
                                    (93) 

In the treatment of binary and ternary phase boundaries, the group III-V systems are 

dominated by the presence of a near stoichiometric, congruently melting solid phase with a 

high melting point. Through the input parameters α, ∆SF, and TF based on the liquidus data, 

the activity coefficient γ can be obtained in a binary system based upon the Henry’s law, 

2ln L
A AB BRT xγα =                                                      (94) 

2ln L
B AB ART xγα =                                                      (95) 
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In a dilute range, all phases have the property that the activity of the corresponding 

constituent varies inversely with the constituent. The input data α, ∆SF, and TF yield the 

binary solution equation in the computer program, 

( ) ( ) ( )
( )2

ln 4 1 ln

2 0.5

F F F F
A A AB AB p AB ABL

AB
A

RT x x S T T C T T T T T

x
α

 − + ∆ − −∆ − −    = −
−

        (96) 

The entropy of fusion can be expressed as a sum of the entropy of fusion of the solid phase, 

the entropy of dissociation that occurs when the semiconductor transforms to a metallic 

liquid, and the entropy of mixing of the liquid phase, as well as the entropy which increases 

between 0K and the melting point [70], 

ln 4F F
m disS S S R U T∆ = ∆ + ∆ + + ∂∆ ∂                                      (97) 

For ternary liquid or solid systems, Gex is the sum of all binary excess Gibbs free 

energies for all binary phases in the system. Simple solution can be extended to ternary 

systems in a similar expression, 

( )2 2ln L L L L L L
A AC C AB B AC AB BC B CRT x x x xγααααα     = + + + −                            (98) 

To analyze the interface equilibrium of NW and its drop in VLS mechanism, the T-x 

phase diagram should be calculated in the solid-liquid equilibrium [71] 

( ) ( ) ( )

S.L. S.L.

1

1 2ln ln 1
4 1

F F
A B

A x B x

S T
x x R T

n n
n n−

    ∆ + ≈ −    −     
                           (99) 

where ∆SF is the entropy of fusion, TF is the melt temperature, R is the gas constant, and νi 

are the activity coefficients of different atoms: 

( ) ( )( )
( ) ( )( )

2
1

2

1
2

1 4 1 exp 2 1 1 2

1 4 1 exp 2 1 1

nearestN

AB nearest
A

AB nearest

x x N RT x

x x x N RT
n

 
  + − Ω − − +  =  
   + − Ω − +     

                (100) 
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( ) ( )( )
( ) ( ) ( )( )

2
1

2

1
2

1 4 1 exp 2 1 1 2

1 1 4 1 exp 2 1 1

nearestN

AB nearest
B

AB nearest

x x N RT x

x x x N RT
n

 
  + − Ω − + −  =  

   − + − Ω − +     

              (101) 

The calculation of phase diagram is carried out numerically through Eq.38,71,73,80 and 

99, as well as the introduce of the interaction energies of different material structures. The 

equilibrium conditions for ternary and quaternary systems were described by G.B. 

Stringfellow [62-64]. Several numerical methods, such as Kohler model, Colinet model, 

Muggianu model, Hillert model, and Chou model, were summarized to simulate the Gibbs 

free energy of binary, ternary, and higher-order systems [72-75]. The detailed phase 

transformations in the NW growth processes can be analyzed in the phase diagram 

calculation software packages [76-82]. 

The liquidus and solidus curves can be calculated by the known fusion entropy and 

temperature. In binary AB compound, the equilibrium equation for the liquidus line on the 

T-x phase diagram is given by [61,62,69,70], 

( ) ( )
4 1 exp

F FL sto L sto
L LA B

L L
A B

S T T
x x

RT
γγ
γγ

− −  ∆ −
 = −
  

                           (102) 

This equation can be simplified into, 

( )1 exp
F F
A A

A A

S T T
x RTγ

 ∆ −
 =
  

                                       (103) 

In the binary system, the corresponding activity parameters γi can be written as 

( )
21 2

1

z

A
x

x
γ

 ϒ − +
=  ϒ + 

                                                    (104) 
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( )( )
21 2

1 1

z

B
x

x
γ

 ϒ + −
=  − ϒ + 

                                               (105) 

( )
1
2

2 21 4 1 exp 1
2

AB AA BB

B

E E Ex x
k T

   − − ϒ = − − −   
    

                          (106) 

The binary liquidus for group III-V can be plotted as,  

( ) ( ) ( )2ln 4 2 0.5F F L
A B AB AB AB ART x x H T S xα= − ∆ − ∆ − −                          (107) 

The equilibrium conditions for the solid solution A1-xBxC can be treated as species A 

and C in the ternary liquid and compound AC in the solid [69], 

( ) ( )41 exp
F FL L
AC ACS S L LA C

AC A CL sto L sto
B C

S T T
x x x

RT
γγ γ

γγ − −

 ∆ −
 − =
  

                     (108) 

This T-x equilibrium equation provides the liquidus curve xA
L(T) in the binary AC system. 

Meanwhile, a similar separate equilibrium condition describes species B and C in the liquid 

and compound BC in the solid, 

( )4 exp
F FL L
BC BCS S L LB C

BC B CL sto L sto
B C

S T T
x x x

RT
γγ γ

γγ − −

 ∆ −
 =
  

                          (109) 

where γ  is the activity coefficient of the compound, x is the mole fraction, the superscript 

sto stands for the stoichiometric liquid, and F stands for the fusion. The activity coefficients 

can be estimated through the interaction equation, 

1, 1 1
ln

n n n

i ij j jk j k
j i j j k j

RT J x J x xγ
= ≠ = = +

= −∑ ∑ ∑                                     (110) 

Through appropriate input parameters, the melting points TF and entropies of fusion of the 

end compounds ∆SF, approximate expressions for the activity coefficients γ based on fitting 

the binary data, and the interaction parameters J in regular solutions, which can be obtained 
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from the published thermodynamic data, the full liquidus-solidus phase diagram can be 

solved based upon the above three equations. The detailed activity coefficients in the regular 

solution model can be written [62], 

( )2 2ln A B AB C AC B C AB BC ACRT N J N J N N J J Jγ = + + − +                     (111) 

( )2 2ln B C BC A AB A C BC AC ABRT N J N J N N J J Jγ = + + − +                      (112) 

( )2 2ln C A AC B BC A B AC AB BCRT N J N J N N J J Jγ = + + − +                      (113) 

( ) ( )2
2 J

s s

CV V
J c c

N V N V V V
α βα β

αβ α β
αα  β β α β

c c
− −

 −
 = − −

+  
 

                     (114) 

where CJ is the constant, V is molar volume, χ is the electronegativity, and cs is the 

solubility. 

The binary excess parameter can also be used to estimate the solubility in 

semiconductor (such as, defect H in group III-V semiconductor materials) [83] 

, III V, , III V,

1 ln exp ln
L S L

III V H III V H III V H III V H III V H
H i iS

i iH H i i H III V H H i i

x x x
K RT

γγµµγ   
γγγγγγγ     

− − − − − − − − − −

− − − −

    −
= =           

∑ ∑  (115) 

where K is the equilibrium segregation constant, and γi is the composition dependent 

activity coefficient. The actual segregation constant can also be affected by the size of NW 

or the diffusion processes. When the defect concentration reaches the limit, the excess Gibbs 

free energy is under supersaturation. 

To enable the growth of NW, some inequilibrium is intentionally created and thus 

drives the system to produce the desired structure. To induce a transition from a stable phase 

to another, the pressure and temperature will be controlled to actuate the free energy of the 

target phase to be smaller than that of initial phase. Thus, the chemical potential of vapor 

phase has to be larger than the chemical potential of liquid phase of catalysts or solid phase 
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of adatoms on the substrate, otherwise the evaporation can occur. The chemical potential of 

adatoms has to be larger than that of a catalyst otherwise the adatoms will induce the 

substrate growth. Particles from the initial phase cross the boundary toward the target one to 

allow the system to approach the equilibrium via supercooling or supersaturation. The 

difference of the chemical potential induces the driving force for phase transformation 

dependence on the supersaturation ζ [84], 

   ( )ln 1 2L L
B III V III Vk Tµ ξ µµµ   −∆ = + = + −                                  (116) 

where μIII-V is the half chemical potential of group III-V semiconductor crystal nucleation. 

The relationship between the chemical potential of species and their pure chemical potential 

is, 

( )lnL L pure L
i i iRT aµµ  −= +                                            (117) 

where ia  is the activity. So the driving force for group III-V NW phase transform can be 

derived [85-87],  

( ) ( ) ( )ln ln 2L L L S pure L pure S pure S pure S pure
III V III III V V III V III VRT a a H H H Hµµµµ   − − − − −

−∆ = + + − + − − − −  (118) 

The second and third terms in Eq.118 are the differences between the chemical potential and 

enthalpy for the pure III/V droplet and the NW crystal separately. The first term is 

concerned with interactions in the alloy, which is denoted by the atomic concentration c, 

( ) ( )2 0 0
22

, 0 0 0 0

'
ln ln ln A BL B A B

A A A A B A Hs A Hs B
A A B B A B

Cc V VRT a RT c c RT c h h
c V c V V V

c c
ω − −

 −
 = + = + − −

+   
 (119) 

where Vi
0 is the molar volume in the liquid phase, χ is the Pauling electronegativity, C’ is 

the constant (~1.256×105 for GaAs if all quantities are in SI units [85]), the energy 

coefficients ω is  
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( ) ( )2
2 '1 A BA B

AB Hs A Hs B
A A A B B A B

CV V h h
N c V c V V V

c c
ω − −

 −
= − − 

+   
                  (120) 

and the Hildebrand solubility parameter hHs is  

( )Hsh Q RT V= ∆ −                                               (121) 

where ∆Q is the molar heat (in unit~kJ/mol). 

The driving force can be expanded into a Taylor series at equilibrium temperature or 

pressure. So the expanding function can be derived [88] 

( ) ( )21
2

platent
e

e e

CHT T T T T
N T T

µ
∆ ∆

∆ ∆ = − ≈ − ∆ − ∆ 
                          (122) 

or 

( ) ( )21 ln ln
2

e e e e a b
e e a b

a b ea eb

V V P PRTP P P V P P P P
N P P P P

bb  a aκ κ
µ

 −       
∆ ∆ = − ≈ ∆ ∆ − ∆ ≈ +        +        

(123) 

where subscript e indicates equilibrium, ∆Hlatent is the latent heat exchanged during phase 

transition, ∆Cp is the difference of specific heat, κ is the compressibility, Pa and Pb are the 

partial pressures of a and b atoms, respectively.  

For the equilibrium systems which contain defects (ions, or electrons) in group III-V 

semiconductors, the electrochemical potential equilibrium needs to be satisfied to reach the 

phase equilibrium,  

i ii ize ze
α βαα  β βµµ  ϕ µµ  ϕ= + = = +                                       (124) 

where φ is the internal potential of the phase, and ze is the valence charges of species i.  
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II. C. Kinetic Models 

The driving force has the sense of describing the phase transformation, not the 

transformation rates which depend on the kinetics of materials. We introduce kinetics to 

describe out of equilibrium of systems and lead to predict the morphology of NWs. The 

variation of supersaturation, which is determined by the deposition process, has an influence 

on the phase formation, the nucleation energy barrier, the critical nucleus radius, and some 

other characteristics [89]. So the NW formation depends on the growth kinetics. Kinetics 

exhibits dependence of the growth rate on the kinetic factors, chemical reaction, the balance 

between adsorption and desorption, diffusion processes, and nucleation. 

 

 

Figure 1. The NW model with interface energies and chemical potentials. 

 

In the case of NW growth, a catalyst is widely used to dictate the morphology of NW, 

such as composition, and geometry. Fig. 1 shows the NW model with different parts of 

interfacial boundaries that can be described by macroscopic chemical potentials and the 

interface energies: μ indicates the chemical potential of vapor (V), liquid (L), NW (N), 
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adatom (A), and substrate (S), and γi stands for the interfacial free energy. The surface 

energy depends on the dangling bonds of different chemical composition, and the 

crystallographic orientation of the corresponding planes. The interface equilibrium 

characterized by the existence of surface energy, is extremely important in the early stages 

of phase transformation of growth, separating the particle and the matrix. Relatively high 

catalyst surface energy is required for the stability of NW growth. The spherical surface 

equilibrium dependence on the thermodynamic quantities can be described by the Young-

Laplace equation,  

2P rγ∆ =                                                           (125) 

where ∆P is the internal pressure relative to the environment pressure. For a spherical cap on 

NW, ∆P transforms into 2γsinθ/r. The equilibrium pressure difference is inversely 

proportional to the radius, thus the internal pressure will be large in the case of low-

dimensional NW. The small particle in NW will be not stable due to a tremendous increase 

of pressure, and the corresponding elevation of its chemical potential. For no matter a 

relative internal pressure influence or the effects of surface tension and coarsening driven by 

capillarity, the limitations of these phenomena will be beneficial to the synthesis of 

nanostructures.  

The free energies of surfaces or interfaces are more important in group III-V NW, due 

to a larger aspect ratio in system. The interface free energy γ depends on the surface tension 

[90] because of the presence of separating two heterogeneous and coexisting phases at 

equilibrium. The particle free energy relative to the substrate pressure equals to the relative 

pressure on the molar volume, so the interface free energy γ can be written, 
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( )ln

2 2 2

i i B V partial saturated i i
i ir

molar molar molar

N S r Nk T P P S r
G r

V V V

m γγ
γ

−
   − ∆ + − +   ∆    = = =

∑ ∑

     (126) 

where r is the radius of interface. The relative free energy can be written in the format of 

chemical potential difference. In Fig. 1, the dependence of growth of NW on the equilibrium 

of interfacial free energies and surface tension forces can be described by 

cosVN LN VLγγγ   θ= +                                                    (127) 

The contact angle will therefore be given by 

cos VN LN

VL

γγ θ
γ
−

=
                                                     (128) 

When (γVL + γLN)/γVN is greater than unity, a catalyst cannot wet the NW because the drop is 

unstable, otherwise the catalyst will wet the NW as the Young’s equation cannot be satisfied. 

When a catalyst wets the substrate, the Volmer-Weber islands are energetically preferred to 

thin film growth. A smaller contact angle means a lower nucleation barrier. When three 

phase junction reaches the equilibrium at the junction-line in Fig. 1, the tension equilibrium 

can be written, 

0VL LN VNσ σ σ+ + =                                                (129) 

In a group III-V NW system, the liquid sorption current is sum of sorption from the 

triple line and the droplet surface [91],  

, ,

, ,exp exp
2

sorp AL i VL i

ERS
L ERS i L ERS iERS i i i

tri AL i i VL V VL IncidentERS ERS
i B i Bi B

I dl dS

x x Pl J A J A J
x k T x k Tm k T

m m
r r

p
− −

= ∆Γ + ∆Γ

  ∆ ∆   
= − + − +     

       

∫ ∫
 (130) 
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where ltri is the triple line length, S is surface area of droplet, and JAL is the single atom 

transition flux. The ERS chemical potential of group III/V equals to the liquid chemical 

potential when liquid and solid are in equilibrium, 

ERS L S S L
III III III V Vµµµµµ    −∞ −∞ −∞ −∞= = + −                                       (131) 

The dissolution of semiconductor atoms from vapor sources into a liquid catalyst is very 

fast and the liquid surface always maintains equilibrium with the vapor phase. In NW 

systems, the atoms in a droplet are so rapid that the liquid has a uniform composition. In 

general, the droplet is regarded as a pseudo-binary alloy with the metal being the solvent, 

while semiconductor as the solute materials. The fraction concentrations of different species 

in droplet and NW are given by [92], 

( )
2

0 0

1 exp
L

L NIII
III vapor vaporL L

III III

v r tnc I I
n n

p 
= = − + − Ω 

                           (132) 

( )
2

0 0

1 1 exp
L

L LV N
V III vaporL L

V III

n v r tc c I
n n

p  
= = − + − −  Ω  

                          (133) 

where nIII0=βLπrL
3nL/3, nL is the concentration of semiconductor in liquid and βL is size 

factor of droplet~2-4. In a liquid droplet, the percentage of group-III atoms in the droplet is 

of several tens of percent, while no significant amount of group-V atoms is ever detected in 

the droplet, especially for As and P elements. And the fraction concentrations in solid phase 

are,  

( )
2

3

31 expS N
III vapor vapor

L L L

vtrc I I
n rβ

 
= − + − 

 
                                (134) 

2

3

31 expS N
V vapor

L L L

vtrc I
n rβ

  
= − −  

  
                                       (135) 
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The NW formation is strongly affected by the Gibbs-Thomson effect. The driving force 

caused by a difference of chemical potential leads to out of equilibrium in the NW growth 

processes. The difference in chemical potential between the vapor and the substrate can be 

written,  

( )ln eq
VS V S B dep depk Tµµµ   n n∆ = − =                                   (136) 

where νdep is the deposition rate, and νdep
eq is the equilibrium deposition rate at which the 

deposition equalizes the desorption from the substrate [93]. The difference in chemical 

potential between the adatoms and the substrate can be written as 

( ) ( )02 ln lnAS A S VS B B eqk T k T n nµµµµll     ∞∆ = − = ∆ − ≈
                    (137) 

where λ is the effective diffusion length when the growth occurs, λ0 is the diffusion length of 

adatom at the equilibrium, n is the concentration of adatoms, and neq is the equilibrium 

concentration on the substrate and depends on the mean lifetime of atoms. At the high vapor 

saturation, ∆μAS is lower than ∆μVS, because the effective diffusion is limited by the surface 

nucleation. Otherwise, ∆μAS matches ∆μVS, because of the surface growth rate reducing to 

zero.  

The chemical potential in the drop is modified by the Gibbs-Thomson effect, which 

gives the dependence of the surface curvature of the droplet on its chemical potential. 

Therefore, 

2L L L VL LV rµµγ  ∞= +                                                  (138) 

Consider the diffusion growth occurs only at μA
∞ > μL. So the diffusion-induced growth has 

to satisfy the condition 

( )02 ln 2LS L S VS B L VL Lk T V rµµµµllγ      ∞ ∞∆ = − < ∆ − −                           (139) 
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The equilibrium conditions between the vapor phase and the condensed state (liquid or 

solid) in NW system can be reached, 

,0
0lnL V i

i i
i

PRT
P

µµ = +                                                  (140) 

and 

,0 '
' ' 0

'

lnNW V i
i i

i

PRT
P

µµ = +                                                (141) 

The driving force in the droplet with respect to the stoichiometric ZB solid is given by 

[86,94]  

0 0

1 cosln
4 2

L L S L SVB
III V III V III III V

V V

vk T dL
v v dt

θµµµµµµ     − −

 +
∆ = + − = + − − 

 
           (142) 

where νV=JVΩ and νV
0=Ω’PV/√(2πmkBT). The first term on the right side should be 

controlled primarily by the surface temperature T and the group-III atom concentration due 

to a low solubility of group-V atoms in the common catalytic metals. The driving force 

associated with the stoichiometric WZ structure can be realized when 

{ }intmax ,triple po centerm m m−∆ > ∆ ∆                                       (143) 

where the driving forces on the triple-line and the center are written separately,  

( ) ( )
( ) ( )

int 2
sin 1

1
sin 1

WZ ZB
triple po

N WZ LV SL

N ZB LV SL

G

x x
x x

µ
γγ  θ γ
γγ  θ γ

−
−

−

−

∆ =
 − + −

−  − + − 

                      (144) 

( ) ( ) 2
sin 1

1

WZ ZB
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N WZ LV SL

SL

G
x x

µ
γγ  θ γ

γ

−

−

∆ =
− + − 

−  
 

                         (145) 
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According to the calculations, ∆μcenter is very large at a high group-III concentration, so pure 

ZB can exhibit with a high group-III concentration. The exhibition of ∆μcenter<∆μtriple-point 

occurs at a low group-III concentration.  

The axial grow rate of NW depends on the lateral size of droplet, and there is proof of 

the existence of a certain minimum diameter of drop under which the whiskers would not 

grow [95]. The minimum radius of the catalyst and its dependence on the degree of 

supersaturation is given by [96] 

min
2

ln
VL molar

VL

Vr
RT
γ

γ
=

                                                       (146) 

However, some experimentally mismatch exhibits the dependence of diameter 

independent [97] or an opposite result [98] on the growth rate, due to the different growth 

mechanics. Meanwhile, it demonstrates the growth of NW is a non-monotonic dependence 

of the growth rate on the lateral size. Analyzing the thermodynamics equilibrium enables 

one to determine the morphology of NW during growth. The total free energy is the sum of 

one bulk part and another surface part 

( )
( ) ( )

2 3 2

2 2

2bulk surf N N L L adatom A N NS N VN

L VL L LN

G G G r L r f V r r L

r g r h

π m π θ m m π g π g

π θ g π θ g

= + = + + + +

+ +         (147) 

where f(θ), g(θ), and h(θ) are the functions of contact angle θ. When h(θ) is unity, the drop 

covers all the top of NW. If h(θ) is smaller than unity, the uncovered area has the interfacial 

free energy of γVN-top. Another situation is a NW incorporating a droplet, and the 

incorporating length l will affect the catalyst volume, the contact interface between catalyst 

and NW side-wall, and the catalyst surface. Taking the differential of contact angle θ, the 

surface energy will decrease for the wetting case and increase otherwise. Just considering 

the first ideal situation with the same periphery for catalyst bottom and NW top, the 
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equilibrium will be reached when the free energy is minimized. The NW systematic 

equilibrium with vapor phase for the interface of vapor and catalyst, 

( ) ( )3 2
L L L VLG P r f r gπ θ µ π θ g= −∆ +                                        (148) 

Taking the differential of both sides, the environment pressure can be obtained in the 

expression of the equilibrium pressure Pe for two phases separated by the interface, 

exp molar VL VL
environ e

B L

V dSP P
k TdV
γ 

=  
                                              (149) 

where SVL=πrL
2g(θ), and VL=πrL

3f(θ). In the NW system, the transformation pressure 

increases with the decrease in the size of the wire.  

There are no continuous kinetics pathways for the decomposition processes, because the 

supersaturated solid is a metastable state. There is an incubation period occurring before the 

quasi-steady state nucleation. Then a nucleation process depends on the number of the 

critical nuclei and the rate with atoms attached to the critical nucleus. A nucleation 

mechanism derived by S. A. Kukushkin et al. [99] is applied, the nucleation rate I caused by 

condensation from vapor, and the growth rate υ caused by the nucleation from the 

supersaturation can be obtained in the following two equations, 

( ) ( )
( )

2 22
0 0 0

0

exp
4 2 ln 1

c diff des LN B LN Bd

B L

n r l k T V h k T V hEI
k T r r

p n γpγp  
p V

 
= − − 

 + −             (150) 

where ζ = n/neq – 1 is the supersaturation of alloy, neq is the equilibrium concentration in the 

eutectic alloy and depends on the mean lifetime of atoms, rc is the linear boundary radius of 

a critical nucleus, r0 = 2ΩsγVN/kBT is the characteristic size, ldiff is the length of diffusion 

jumping of adatoms, νdes is the frequency of desorption, V0 is the particle volume, h0 is the 

height of monolayer, and Ed is the activation energy. The growth rate can be derived from 
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the combination of the Fick’s second law, the random variable related to the injection flow, 

and the nucleation rate. The growth rate is given by 

( ) ( ) ( )exp 2 1 2 1
eq

diff L d B L

n n

l r E k T k r S
n

τυpp 

−
=

+ +
                          (151) 

where τ is the time for desorption, k is the kinetic coefficient, S is the surface for 

incorporation of atoms. Several kinds of geometrical situations for the transformed areas 

were summarized by [100] 

( ) ( )

2

2 2

2

, r
2 sin 2 2 sin 2 , r r

, r

L L N

N L N L N

N L N

r r
S r r r

r r

π r
θ θ ϕ ϕ r r
π r

 ≤ −
= − + − − ≤ ≤ +
 ≥ +                    (152) 

The growth rate decreases after the diameter reaches the critical level, because of the 

supersaturation decreasing. The dependence of the growth rate on supersaturation can be 

written [101] 

0 02 n
free N

prob
B

V r
b

k T
µα

n
∆ − 

=  
                                             (153) 

where bprob is a proportional coefficient, ∆μ0 is the same difference of chemical potential at 

the boundary, and αfree is the specific free energy of NW surface. When the supersaturation 

in gas phase reduces to zero, the growth process will stop. Therefore the nucleus of critical 

radius of NW is derived 

0 02c freer V αµ = ∆                                                   (154) 

The material growth rate is influenced by the adsorption and desorption processes on 

the surface, directly impinged by the vapor phase or molecular beams. However, the growth 

of NW may be not only attributed to the differences of supersaturation between the gaseous 

phase, the liquid alloy, and the solid surface on the NW, but also influenced by the adatom 
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diffusion. Especially in the molecular beam epitaxy (MBE) growth, the diffusion length of 

adatom is approximately 1~10 μm, which is compared with the lengths of NW. V. G. 

Dubrovskii et al. introduced the diffusion flux of adatoms JL into the growth rate [93,102] 

2
2

0 0

2N s L
N L

L

r nldL r J
V dt V
π n n π

t
 −

= − + 
                                        (155) 

where νs is the growth rate of nonactivated surface, lL is the interatomic distance in the 

liquid phase, and τl is the mean lifetime of atoms in the liquid. So the NW growth induced 

by diffusion can be simplified 

0
0

2 2 1S
S N

N N

VdL D n V r
dt r r

λ 
≈ − ∇ ≈ + 

                                          (156) 

When adsorption, desorption, and diffusion processes are introduced into the growth, the 

NW growth rate is therefore written as [103,104] 

S L

V dep diffusion induced

dL dL
dH dH

ee
e

−

 −
= +   

                                          (157) 

where εi is the activity coefficient and proportional to exp(μi/kBT), and Hdep is the deposition 

thickness. The detailed dependence of diffusion dL/dH on the structure of NW was analyzed 

through the simulations and experiments in [104]. 

For the analysis of the diffusion and nucleation processes in NW system, kinetic factors 

are taken into consideration to control NW growth operating far from equilibrium. The 

kinetics of adsorption and thermal desorption play an important role in the dynamic 

equilibrium. The rate of adsorption is proportional to the pressure and the vacant adsorption 

sites [105] 

( )1ads avad dt k PNd d= −                                              (158) 
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where δ is the fractional coverage, kads is the adsorption rate constant, and Nava is the total 

number of available adsorption sites. The adsorption is made up of physisorption and 

chemisorption, and the adhesive energy is Ead = (1+cosθ)γVL. In the case of NW growth, the 

kinetics is controlled by the adsorption of group-V elements, and the growth rate is 

determined only by the group-III element flux. On the other hand, desorption consists of the 

dissociation from the compounds and incident atoms which are not chemisorbed. The 

desorption rate is given 

des avad dt k Nd d− =                                                  (159) 

The distribution of the impinging atoms with corresponding energies on the surface 

satisfies the Boltzmann distribution. In the case of NW growth, the thermal accommodation 

coefficient reflects the processes of absorption, desorption, and reevaporation appropriate to 

the temperatures, 

( ) ( )modaccom ation i e i sT T T Tγ = − −                                           (160) 

where Ti is the temperature of the incoming atoms, Te is the temperature of arrival atoms, 

and Ts is the temperature reflecting the evaporation energy of atoms from the substrate. The 

sticking coefficients in epitaxy can be defined as the proportion of the incident flux which 

reaches the special state. The sticking coefficient is affected by the temperature and incident 

fluxes. When there is no desorption, the sticking coefficient is unity. Actually, the growth 

rate is considerably slower than the real calculated rate. The growth and nucleation rates are 

limited by the convection and diffusion occurred in the system, meanwhile, the surface 

adsorption and desorption also affect the NW growth rate. 

 

 46 



 

II. D. Diffusion 

In the kinetic studies of NW growth, the crystal growth rate is measured as a function of 

driving forces, which are caused by not only the thermodynamic driving force, but also the 

kinetic mechanisms. These driving forces lead to phase transformations and NW growth. At 

the mention of kinetics of materials, phase equilibrium equalizes the uniformity of the 

diffusion potential. As mentioned above, phase transformation occurs when free energy is 

reduced by changing the quantities which have relationship with the phase of NW. The 

detailed diffusion growth can be separated into distinct steps: nucleation including 

incubation, precipitation and growth, and coarsening. The diffusion process in the NW is 

described as an empirical relation, the Fick’s first law. The relation expresses the 

dependence of the flux of chemical components Ji on its concentration gradient ∇ni, 

i iJ D n= − ∇


                                                         (161) 

where D is the diffusion coefficient. The diffusivity in droplet can be calculated in statistics,  

( ) ( )
2

1

1lim 0
6

N

L i it i
D r t r

Nt→∞
=

= −∑
 

                                         (162) 

The flux arises from the different sources of driving forces, and thus leads to an introduction 

of correct term into the diffusion equation [106]. The extra diffusion is induced by the 

driving forces, such as the gradient in electrostatic potential, a thermal gradient, the stress, 

and capillarity. If the added source is taken into consideration, the Fick’ second law gives 

the time and spatial dependence on the concentration. 

2n n J n D n
t

∂
= −∇⋅ = + ∇

∂


 

                                           (163) 

The equilibrium of concentration will not stop the diffusion process described in the 

Fick’s law, because the free energy is not equilibrium in practice. An alternative way to 
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describe the flux is to consider the drift velocity. Based on the difference of chemical 

potentials, flux of atoms is driven to the top of NW in the model. 

drJ v n D n L
rµ
µ µ∂

= = − = − ∇
∂

 

                                          (164) 

Comparison with Eq.161, 

( )
ln1

ln
i

i

dD D RT
d n nµ

n 
= +  

                                               (165) 

In the model provided by V. G. Dubrovskii [93,103,104,107], the formation of NW was 

attributed to the combination of the diffusions of substrate and side wall surface. In the 

steady state, the concentrations obey 

cos 0S S S SD n J nJ τD + − =


                                              (166) 

2

2 sin 0Nf
Nf Nf Nf

d nD J ndr J τ
 

+ − = 
 



                                     (167) 

where the subscript Nf indicates the NW surface, and ϑ is the angle between the flux to the 

substrate normal. Actually, the diffusivities in group III-V crystalline materials are 

extremely slow owing to the strongly directed bonds. The general solutions are given by 

( )
( )1 1 0 2 0cos cos
'

Nf S S
S S S

S Nf N S S S

D G r r rn J C J A J A K
D G r

λ λ
τ J τ J

λ λ λ λ
   

≈ + ≈ + +   
            (168) 

( ) ( )1 2sin sinh coshNf Nf z Nf z Nfn J C r C rτ J λ λ= + +
                           (169) 

where the effective diffusion length λ is defined as λ=√(Dτ), and G is the radius independent 

function. Jn and Kn denote the modified Bessel functions of the order of n, A1 and A2 are the 

Bessel function coefficients, and the coefficients C1 and C2 can be written 

( ) ( ) ( ) ( ) ( )1 0 1 01 2 1 2S S N S S N SG r K D I r I D K rλ λ λ λ λ= +
                  (170) 
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( ) ( ) ( ) ( ) ( )1 1 1 1' 1 2 1 2S S N S S N SG r K D I r I D K rλ λ λ λ λ= +
                 (171) 
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where Ki and Ii are the i order modified Bessel functions, DN is the density of nanowire, SL 

is the surface area of drop, ε is the transition coefficient corresponding to the difference of 

activation energies between the substrate and NW surface, and ε is proportional to exp(∆ES-

Nf/kBT). The quantity Γ=D/λki, where ki is the corresponding velocity of the adatom 

transition. The solution of non-steady state diffusion involving the error function, are 

summarized by R. W. Balluffi et al [106]. When one combines the results of Eq.155, 166, 

and 167, the NW growth rate is derived 
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    (174) 

This equation enables controlling NW growth rate from selected conditions. The NW 

growth rate is inversely proportional to the radius of NW, so the derived minimum radius 

equation is similar to Eq.146. 

0
min

2 sinVL L

AS LS

Vr γ θ
m m∞=

∆ −∆                                                      (175) 

In NW growth, continuous phase transformation begins with an infinitesimal variation 

initiating the transformation by reducing the free energy. Take into consideration the local 

diffusion potential for the phase transformation based on Eq.59 and 163, 

( )
2

3
2 2

iD D
gJ L x x L x

x λκ
∂

= − ⋅∇ + ∇
∂



                                        (176) 

Take Eq.176 into Eq.161 and 163, so the conserved order kinetic equation for the 

concentration can be obtained 

2 2 4

int int2 2 42
ier D er D

n g n nL L
t x r rλκ
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= Ω − Ω

∂ ∂ ∂ ∂                                   (177) 

This is equivalent to using the difference quantities compared with the average 

concentration in Cahn-Hilliard method. The variation of concentration in the continuous 

phase transformation is solved in the Fourier transformation method, 
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   (178) 

where q = 2π/λ, where λ is the wavelength which depends on the crystal structure and 

orientation. The superposition of cosine and sine terms each having different wavelengths in 

the parenthesis can be written in the exponential form, which is the position dependence. 

The exponential term is the time dependence on the decay or amplification factor. The 

typical decay or amplification factor dependence of the wavelength has a maximum at a 

fastest growing wavelength. As a wavelength is larger than the fastest growing wavelength, 

the factor decreases gradually, approaching zero as wavelength infinity. When a wavelength 

is smaller than the fastest growing wavelength, the factor decreases very rapidly, tending to 

infinity at wavelength near zero. In the solution of the above equation, coefficients A(q) and 

B(q) are written 

( ) ( )1 cos
2

A q c qr dr
π

∞

−∞
= ∆∫

                                           (179) 

( ) ( )1 sin
2

B q c qr dr
π

∞

−∞
= − ∆∫

                                           (180) 

This is a generic form for a linear perturbation analysis, but the analysis only predicts 

the short time. Time decay of long wavelength is slower than that of short wavelength, 

because of the longer diffusion distance redistributing atoms to phase separating. Periodicity 

arises from wavelengths, and the longest wavelength should dominate the morphology. The 

longer the wavelength, the faster the wave should develop. The periodic length increases 

because of the microstructural coarsening. The fluctuations can be generalized by 

introducing the wave vector q in a Fourier representation.  
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If the order parameter η (difference of sublattice concentrations) is not conserved, there 

is no equation expressed similar to Eq.161. For some structural transition, i.e., order-

disorder transition, second order phase transition occurs. Introduce the phenomelogical 

kinetic coefficient αη into the evolution function, 

2
0

2

12
i

N

g
t r r rη λ
η η ηα κ

η
  ∂∆∂ ∂ ∂

= − − −  ∂ ∂ ∂ ∂                                    (181) 

The above equation describes the behavior of highly metastable systems near the 

spinodal boundary. The diffusion potential kinetic equations derived from the variational 

principles enable one to draw some conclusions to analyze the microstructural phenomena in 

NW, and thus are capable to describe the stationary configuration of the critical nucleus. 

Equilibrium corresponds to the phase composition and fractions can be predicted by 

minimizing free energy.  

In the case of epitaxy with controllable pressure and temperature above the substrate, 

the nucleation rate is also controlled by the arrival rate onto the surface and the kinetics of 

adatoms diffusing on the surface to the nucleation sites. The impinging vapor flux depends 

on the pressure PV, and temperature TV, 

2Vi V B VI P mk Tπ=                                                  (182) 

Inversely, there are atoms desorbing from the surface, in which the process depends on the 

surface temperature. Under the equilibrium, the desorption rate is equal to the deposition 

rate. Based on the Henry’s law, the fraction coverage is proportional to the impinging vapor 

flux. The rates of adsorption and desorption are given in Eq.158 and 159 separately. The 

growth rate can be described by the difference of fluxes of atoms, which is equivalent to the 

difference between the gas pressure and the equilibrium pressure based on the earlier 
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equation. The desorption time relies on the thermal oscillation frequency of the crystal 

υthermal and the activation energy for desorption Edes, 

1 1 exp des
des

des thermal B

E
k T

t
υυ

 
= =  

                                           (183) 

The adatoms without reevaporation from the surface diffuse on the substrate, side-wall and 

catalyst surface. The surface diffusion process is affected by the surface diffusion frequency 

and the activation energy for surface diffusion, 

1 exp d
diff surface

diff B

E
k T

τ
u−

 
=  

                                              (184) 

The surface diffusion coefficient can be defined as 

2

2
diff

sur
co diff surface

l
D

ω τ −

=
                                                    (185) 

So the diffusion length of adatom λ0 can be obtained, 

( )2 exp
2
diff des B

sur des
thermal diff surface

l E k T
Dlt

ωu t −

= =
                                      (186) 

 

II. E. Nucleation 

Nucleation process at the NW top is determined by the growth kinetics, which acts as 

discontinuous phase transformation. The transformation of solidification of compositional 

alloys is thought to occur as a sequence of nucleation and its subsequent growth [108]. The 

solidification front velocity vsolid dependence on the temperature gradient can be written in 

the expression for the energy conservation, 
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                                           (187) 

where kN and kL are the thermal conductivities of solid and liquid separately. In a regular 

solution model, ∆Hm is the sum of bond energies of adjacent atoms, which reflects 

endothermic or exothermic processes in nucleation. Nucleation is accomplished by the 

thermodynamic driving force in the solidification of undercooled alloys. The nucleation rate 

therefore has an important influence on the NW growth rate. Heterogeneous and 

homogeneous nucleations are treated for different growth situations. In the case of 

nucleation, the formation of a certain critical nucleus is caused by thermal fluctuation 

afterwards the nucleus spreads out laterally to form a new layer on the top of NW. The 

dependence of nucleation on the free energy determines the critical size and the growth rate. 

In the NW system, interfacial properties are affected by structural and chemical 

contributions caused by misfit of crystal lattice and total interfacial bonding energies. It is 

energetically favorable to maintain coherent in NW, as the surface energy domains in the 

contribution of energy. This mechanism can reduce the dislocation density in NW structure.  

The homogenous nucleation can occur in uniform regions of a system with large 

supercoolings taking place, and need the supercooling to overcome the nucleation barrier. 

The energy change with supercooling ∆T inducing the formation of nucleus can be written 

by 

( ) ( )3 2
homo

fusion
L strain L LN

m

L T
G r f g r h

T
π θ π θ g

∆ 
∆ = − −∆ + 

                        (188) 

where Lfusion is the latent heat of fusion per unit volume, and the strain energy ∆gstrain needs 

to be overcome to nucleate. The critical size can be derived by differentiation of Eq.188, 
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The crystal that is smaller than the critical size will be unstable solid particles and 

disappear, otherwise the crystal will grow from the nucleus. From Eq.189, increasing the 

supercooling leads to the reduction of critical size and its energy change, and this 

phenomenon was verified in experiment [109]. In the process of particle growth, once the 

size of particles reach the critical size and pass the critical barrier of ∆G*, further growth 

will have a negative barrier for the solidification. Therefore limiting the NW radius or 

increasing the critical size is necessary in NW growth, to avoid the semiconductor growth in 

the favored tendency for formation of bulk phase. 

The equilibrium distribution of clusters for a stable solid nucleus formation is given by, 

*
homoexpneq

B

Gn n
k T

 ∆
= − 

                                                 (190) 

where ∆G*
homo is the energy change with the critical size. The rate of formation of stable 

nucleus can be accounted for the rate of added atoms which advance through cluster space 

[106].  
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   ∂ ∂∆ ∆ ∆
= − + ≈ −  ∂ ∂                (191) 

where Is is a constant describing the rate of single atom phase transformation, nc is the 

number of clusters having size c in the system, and ncrit is the number of clusters in the 

critical size. In general, the nucleation rate exhibits a similar expression with Eq.150. 

In practice, heterogeneous nucleation occurs more often in the interface between 

catalyst and NW. The nucleation barrier can be reduced through heterogeneous nucleation. 

The ratio between the homogenous nucleation barrier and the heterogeneous one is a 
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structural factor caused by the NW geometry in an ideal model. The equilibrium condition 

of the embryo wetting the NW is described in Eq.33 and 34. The energy change in the 

embryo is given by 

( )( ) ( ) ( )3 2 22hetero L L strain N VN L VL L LNG r f g r L r g r hπ θ µ π g π θ g π θ g∆ = − −∆ − + +        (192) 

The real nucleation barrier will be reduced further, and this is caused by the preexisting 

defects, or because of the nucleation occurring at grain edges and corners. The critical size 

can be derived by the differentiation of Eq.192, 
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+ +  = + −
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The rate of heterogeneous nucleation is proportional to the probability of stable solid 

nucleus formation, 

( )*exphetero hetero BI G k T∝ −∆
                                            (194) 

Although some theoretical models have been provided to describe the growth mechanics 

of NW, a tremendous amount of work devoted to the problem needs to be done. More 

accurate models are required to assist the analysis of experimental results. 

 

II. F. Summary 

This chapter makes contributions to the understanding of fundamental principles for 

group III-V NW growth mechanisms. A systematic introduction to thermodynamic and 

statistic functions based on the CVM or the MC method in the Ising model is presented. The 

calculations from first-principles data show correct trends and topology, meanwhile, can 

give theoretical predictions for phase transformations. However, the theoretical calculations 
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are often far from the accuracy needed by scientific and industrial applications. Phase 

equilibrium calculations are analyzed in the equilibrium systems, while kinetics of materials 

is explored out of the equilibrium of systems. The kinetics provides an appropriate tool for 

NW growth modeling. For NW growth, the model is not a monotonic dependence of any 

single growth parameter. The kinetic processes on the surfaces and interfaces as well as in 

the catalyst and NW bulk are relatively complex because of involving the control of 

diffusion, driving forces, reactions and supersaturation in the droplet leading to nucleation. 

The morphology of NW varies accompanied with any minor changes of experimental 

parameters, due to the changes of driving force caused by the difference of chemical 

potential and supersaturation.  
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III. Growth Technology of Nanowire 

In past thin film epitaxy scientists tried to propose different countermeasures to prevent 

whisker formation and growth. In contrast, NW formation requires the preferential growth 

of whisker, and the inhibition of substrate film. The existing growth mechanisms generally 

fall into two categories: top-down and bottom-up. 

 

III. A. Top-Down Lithography 

Lithography approach is easily applied to the top-down NW fabrication, where the 

dimensions of NW are limited to what is lithography achievable. The attainable minimum 

features depend on different lithography techniques, such as optical lithography, electron 

beam lithography (E-beam), extreme-ultraviolet (EUV), X-ray lithography, nanoimprint 

lithography, and directed self-assembly [110-112]. In lithography, the minimum feature size 

is restricted by the wavelength of the light, the refractive index of the lens, the lattice 

constant of the substrate, and some systematic parameters.  

In lithographic processes, the optical polarization and pupil shape of light are 

modulated through the mask (or reticle). For optical projection printers, the resolution of the 

projection system is referred to as and beyond the Rayleigh’s criterion [113], 

pho opt
res

k
W

NA
λ

=
                                                         (195) 

where kpho is a constant which is determined by the optical system and material. It ranges 

from 0.05 to 0.8 and depends on the ability of the photoresist to distinguish variations in 

intensity. λopt is the emission wavelength, and NA is the numerical aperture. For optical 

lithography, the corresponding depth of focus is given by [110], 
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where k’pho is also a constant depending on the specific photoresist material. The depth of 

focus is a parameter which can be used to measure the focusing efficiency. The decrease of 

the depth of focus is determined by the enhancement of NA number, and therefore the 

exposure becomes the more sensitive to the variation of vertical distances. Monochromatic 

light in the system is necessary to ensure the prevention of aberrations. The illumination 

wavelengths are varied in the range from long-wavelength UV 365 nm, to 248 or 193 nm, to 

short-wavelength EUV 13.5 nm. Through choosing an appropriate wavelength, the half of 

the resolution can be reduced to the same order of magnitude as the radii of NW. Taking 

into consideration of effects of the diffraction, the intensity of dose on the pattern is given 

by [114], 
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i W
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+ 
= +  +  

∑                              (197) 

where x is the position on the pattern. The average error of the image caused by the position 

error should be controlled under a low-frequency measurement errlow-freq, 

( )
2

2

1 e

e

t

low freq pt
e

err e t dt
t− −

= ∫                                              (198) 

where te is the exposure time, and ep(t) is the error caused by the position as a function of 

time.  

In Eq.195, the resolution scales linearly with the wavelength, so the improvement of 

resolution can be obtain via decreasing the wavelength to EUV [115-118] or X-ray [119-

123], reducing kpho [124], and increasing NA (such as enhancing the NA by an index of 

refraction of 1.44-water in the immersion lithography [125,126]). From Eq.195, reducing the 
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wavelength allows the minimum feature size down to sub-50 nm [127], sub-20 nm in 

manufacturing industry [128], even approaching- or sub-10 nm for non-vertical NW (By the 

size-reduction structure approach, the resolution of pattern is beyond the limitation of 

photolithography [129]). For regular scanned optical-beam, sub-10 nm is hard to be realized 

directly. From the view of engineering, the resolution enhancement can be realized through 

applying the phase-shift mask or off-axis illumination source [130]. For the future 

generation of lithography, such as E-beam [131-135], ion beam [136-138], nanoimprint 

[139,140], scanning probe [141-143] and self-assembly [144-146] techniques, acceptable 

approaching- or sub-10 nm image can be obtained fairly. All the future generation 

lithographic technologies are expected to have a better performance and lower costs 

meanwhile they have to face their own challenges. The pursuing of the most promising and 

commercial methods is the aims of industrial manufacturing and academic research. 

Although up to now commercially and experimentally available systems have not been 

applied to grow NW widely, a variety of systems still provide a lot of methods worth 

learning and applying for NW growth. Patterned line-space nanostructures (e.g. 1D 

photoresist film) can be used to make the non-vertical NW directly or dot arrays (e.g. 2D 

photoresist film). Patterned dot or hole arrays are efficient ways to prepare the substrates for 

vertical NW growth.  

EUV lithography has been the most promising candidate in the international technology 

roadmap for semiconductors [147]. The modern EUV lithography is application of 13.5 nm 

radiation and using X-ray optics to reduce the mask image. The extremely short wavelength 

reduces the resolution limit to approximately 3.5 nm and greatly improves the pattern 

distortions due to light diffraction caused by the surface roughness of the optical 

components. The NA for commercially available EUV has been increased from 0.25 to 0.33 
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and above [115,148]. The enhancement of NA makes contribution to the increased angles on 

the mask, accompanied by side effects of a lower reflection of the light and a reduced image 

contrast. The situation can be improved by the increase of the magnification. The challenges 

for EUV include the development of photoresists, the design of systems and masks, as well 

as the improvement of processes of exposuring, developing and etching in engineering. 

The photoresist of EUV is required to satisfy the rigour conditions of high resolution, 

high sensitivity, low outgassing and low line edge roughness. However, high absorbility of 

EUV for most materials is a huge problem. The normal properties of lens can reduce the 

image size of mask by a lens factor, but lens-based refractive optics cannot be used in EUV 

lithographic system due to the high absorbility. 

One of the most common organic photoresist for EUV is PMMA [149,150]. In EUV 

lithography, the photoresist polymer and ~100 eV photons interact and generate electrons 

and cations. The sensitivity of PMMA is related to the rate of chain scission on the 

interaction with the high energy photon. Another kind of organic photoresist is Poly(1-

butene sulfone) [151], which is a copolymer of sulfur dioxide and a vinyl monomer. The 

sensitivity of polysulfones is greater than that of PMMA. For organic photoresists, acid 

diffusion, blurring and latent image can deteriorate the resolution. There is a tradeoff for the 

decrease of the photoresist film between the improvement of the pattern collapse and the 

image degradation.  

In X-ray lithography, the resolution is less of an issue with printing, because of the 

wavelength of X-rays being much shorter than EUV. Unfortunately, X-ray (~1 nm) 

lithography has not fitted for the contemporary industrial requirements now, because the 

corresponding researches had not kept up with the times of EUV, and some problems have 

not been solved, such as photoelectron scattering in the materials, X-ray mask, the distortion 
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of the pattern, and the radiation damage. However, the current situation for X-ray 

lithography cannot the final outcome in the future. The soft X-ray (~several nanometers) 

lithography technology will emerge to improve the on-going resolution limitation reduction 

of EUV lithography. Meanwhile, X-ray has a better transparency for materials than that of 

EUV. Further, X-ray lithography can be considered for the specific purposes. No matter soft 

X-rays or hard X-rays offer a sufficient penetration depth in materials. Thus it is an 

appropriate lithographic technique with respect to the penetration depth in photoresists and 

high aspect ratios patterns. For hard X-rays (~0.1 nm), lithography might be the unique 

technique for nanodot or specific dopants controlling under the mature X-rays infrastructure 

in the future. Direct-write lithography via hard X-rays avoids the influences of masks and 

patterns [123].  

E-beam (or ion-beam) lithography is a sequential pattern producing technology, whose 

resolution can be reduced to several nanometers. Based upon the scanning of a focused 

electron beam, the high intensity, high uniformity, high stability, and high resolution 

patterns have abilities to achieve a 2 nm isolated feature size [135]. By scanning focused 

electron beams, layout patterns on the wafers are drawn directly with an extremely short 

wavelength and a large depth of focus under a maskless exposure [138]. At a time only one 

pixel can be written, so E-beam lithography is a time-cost technology. For NW arrays 

growth, the formation of patterning periodic arrays is a process of the construction of the 

written circles. In E-beam lithography, the resolution is limited by electron scattering, 

secondary-electron range, and photoresist. The fine controlling electron beam doses to the 

deposited film is necessary in lithography.  

Some organic photoresists for E-beam lithography, e.g. PMMA [132], 3,3’-dimethoxy-

4,4’-diazidobiphenyl (DMDA) [152], hexaacetate p-methnylcalix[6]arene (MC6AOAc) 
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[153], and 4-methyl-1-acetoxycalix[6]arene (MAC) [154], have been studied intensively. 

The non-chemically-amplified organic photoresists provide small resist surface roughness 

due to the avoidance of acid-catalyzed reactions. Different photoresist materials need 

different doses of exposure. One common inorganic hydrogen silsensquioxane (HSQ) 

material [134,135,155] is also used to act as photoresist. In the lithography process, HSQ 

has an interaction with high energy electrons and photons. HSQ molecules are monomers in 

a cage of (HSiO3/2)2n with different sizes. During the exposure for Si-H bonds, Si-H bonds 

are broken and form silanol groups. Then the silanol groups break the cage and form a linear 

network which is insoluble in alkaline solution. Another kind of resist ZrO2 as the mask was 

also used in group III-V compound semiconductors [156]. No matter organic or inorganic 

photoresists exploited, the resolutions of E-beam lithography have been reduced below 10 

nm. The resolution of E-beam is not limited by diffraction due to the short wavelength of 

electrons. But the short wavelength accompanied with high energy (~100 keV) beam could 

cause pattern distortions. To improve the resolution of E- or ion-beam for 1D structure 

growth, the beam size, focus, exposure dose, and developing factors need to be controlled 

and coordinated reasonably.  

Unlike the above mentioned lithographic techniques, there is no any energetic beams 

exploited in nanoimprint lithography. Nanoimprint lithography is not a traditional 

lithography technique, but rather a technique exploiting a resist relief pattern by deforming 

the resist mechanically. The technique is low cost and high throughput, because the mold is 

repeatable. The resolution for nanoimprint technique can be reduced below 10 nm where the 

resolution is not limited by effects of diffraction, scattering, and interference. Therefore 

nanoimprint can be a viable contender with EUV. 
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In nanoimprint lithography processes, a durable mold is pressed into the resist and the 

pattern with images of lines or dots is duplicated on the resist film. The polymer is fixed by 

UV radiation or crosslinking polymer via a thermal cure. Then the residual resist in the 

compressed region is removed via reactive ion etching and the pattern is left on the substrate. 

Mold release agents are used to reduce the resist adhesion to the mold, and the appropriate 

resist material is used to maintain the mechanical stability for pattern. When the mold is 

pressed into or removed from the resist, there is nanometer variation on the mold, which can 

be transferred into the side walls. Thermal expansion, defects, contamination and overlay 

can intimidate the features on the resist.  

The resolution of nanoimprint based on hard molds can be enhanced by a directed self-

assembly technique by the block copolymer composed of highly incompatible polymers. A 

controlled position and orientation patterns defined by lithography are exploited to produce 

NW. The material can achieve self-assembly because of applying a local chemical energy 

minimum of a system, in which patterns can form themselves. In the processes of self-

assembly lithography, block copolymer is coated on the mold and treated with organic vapor, 

e.g. acetone or toluene for self-assembly. The organic vapor swells the polymer chains to 

make them flexible enough to reorganize and form ordered nanostructures. The certain types 

of polymers can separate into different phases as annealling. The sizes of the different phase 

regions are determined by the size of the block copolymer. Then the self-assembled block 

copolymer is transferred onto the substrate. The self-assembled block copolymer is pressed 

and it adheres to the substrate when the mold is removed. After plasma oxidation and 

reactive ion etching treatment, planar NW arrays or dot arrays are formed on substrate. The 

common block copolymers, such as poly(styrene-b-dimethylsiloxane) (PS-PDMS) or 

poly(styrene)-block-poly(methylmethacrylate) (PS-b-PMMA), induce the formation of 
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ordered hexagonal, cylindrical or spherical arrays based on the volumetric composition of 

the individual component. Likewise in nanoimprint approach, self-assembly technique can 

reduce the lithography cost. Low cost processing and simple fabrication methods based on 

self-assembly for the fabrication of non-vertical NW arrays were studied [157-160]. With 

advances in lithography, the integration density of NW keeps on increasing.  

The advantage of top-down lithography originates from the compatible with the existing 

fabrication technology. Top-down lithography and anisotropic etching were exploited by D. 

L. Kwong et al. to fabricate gate-all-around transistor for pushing scaling beyond the 

semiconductor roadmap [161,162]. NW is more convenient to fabricate the gate-all-around 

structure than the planar structure, and thus leads to a better control over charge carriers and 

reducing short channel effects. However, top-down approaches exhibit more complicated, 

and have to suffer from even more hostages to the resolution of lithography and etching.  

 

III. B. Vapor-Liquid-Solid (VLS) 

Very fine whisker growth by vapor-solid deposition and diffusion control was analyzed 

by G. W. Sears et al. [163-165], J. M. Blakely et al. [166], and V. Ruth et al. [167]. However, 

the problem for early whisker is the existence of obvious imperfection. An axial screw 

dislocation appears in the whisker, because of the original nucleus containing a screw 

dislocation or an introduction of screw dislocation in the growth process. In whister growth, 

most of semiconductor materials have high melting temperatures and the actual growth 

circumstance where the vapour pressure of precursors has to be sufficiently low at rigour 

temperatures. In the case of vapor-solid whisker growth, the supersaturation is insufficient 

for 3D nucleation by the effects of dislocation. Thus whisker growth is caused by the low 
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supersaturation only enough for 2D nucleation (pseudo-1D NW growth) in each NW layer. 

A lower supersaturation of tip and a lower activation energy barrier are required to improve 

the whisker growth. A half century ago, R. G. Wagner et al. introduced a liquid phase by a 

so-called catalyst to reduce the barrier for reaction on the vapor-liquid interface, and to low 

the activation energy of nucleation at liquid-whisker interface at the same time [9]. Now the 

VLS mechanism has been the most commonly used to produce NW. In the VLS mechanism, 

the promotion of precursors depositing and dissolving on the catalyst, as well as the 

improvement of diffusion and nucleation processes are exhibited. Meanwhile, the 

supersaturation of the vapor is controlled at a low level to make sure the chemical potential 

difference between vapour and substrate is greater than the difference between the catalyst 

and substrate. Furthermore, the deposition of particles on the substrate is suppressed to 

reduce the thin film growth. 

The VLS mechanism relies on the atomic sources from vapor phase precursors and 

adatoms on the surface. These atoms impinge on liquid phase catalyst globule, and cause the 

droplet to become supersaturated relative to the NW materials. Then precipitation of the 

materials from the droplet leads to the nucleation on the top of NW. At last, the nucleus 

spreads out laterally to form a new layer and indicates the NW growth. Impingement, 

adsorption, diffusion controlled and reevaporation of atoms act as the general mechanisms 

for predictions of whisker growth. The incubation time and nucleation processes can 

seriously affect the overall growth rate. In general, the VLS mechanism as a representative 

of the bottom-up approaches is less complicated than top-down approaches and provides 

higher quality materials. 

The NW growth is the reconciliation of contributions from desorption, condensation 

and solidification. In the VLS mechanism, the condensation coefficient is much larger than 
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the coefficients in direct desorption growth. This means precursors stick preferentially to the 

surface of a liquid particle and decompose there. The probability of decomposition at the 

deposition location is high, thus it leads to a local increase in the amount of precursors 

around the droplet. Then the precursors dissolve into the eutectic mixture until the 

composition reaches the liquidus line. The adsorption driving force is caused by the free 

energy difference at vapor-liquid interface and the solidification of alloy at the liquid-

nanowire interface. The crystallization of eutectic alloy on the top of NW is possible only 

when the alloy is supersaturated. The supersaturation has a determination on the nucleation 

and the dimension of critical radius for NW growth given in Eq.154. The material 

concentration, orientation and surface tension all exhibit influences on the degree of 

supersaturation for phase transformation. When an appropriate supersaturation is achieved, 

nucleation occurs at the liquid-NW interface. The mechanism of nucleation based upon the 

critical size effects. The homogeneous and heterogeneous nucleations were discussed by D. 

Turnbull [108,168], and the nucleation rates have been discussed in accordance with Eq.191 

and 194. 

There are 2D thermodynamic interfaces dividing the separated phases, such as vapor-

droplet, vapor-NW, and droplet-NW. The phases located at both sides of the interfaces 

perturb the interface over a distance, the effective range of the atomic interactions. For the 

interfaces with condensed phases and high-vacuum, the surface bonds are distorted and the 

surface reconstruction is caused by the strain. For the interfaces with two condensed phases, 

the interfacial structures are affected by the crystal structures. The work function of the 

interface is  

i i
i

U TS N Aµ σΩ = − − =∑                                             (199) 
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For a droplet in the open system, the change in the radius of droplet induces the variation of 

the work function, 

2 24 L V
L L

L
d r P P drr

σπ  Ω = − − −  
                                       (200) 

For NW in the system, the third term in the bracket transforms into –σ/rNW. The equilibrium 

in the droplet is maintained by PL-PV≈2σ/rL. Very narrow radius in VLS growth leads to a 

high laplacian pressure with an enormous promotion of chemical potential. 

The great advantage of VLS synthetic method for generating NW is the combination of 

control over low-dimensional anisotropic structure, morphology and uniformity 

simultaneously. The low-dimensional anisotropic structure exhibits a high aspect ratio in 

NW system. The radius of NW is fundamentally determined by the size of nanoparticle 

catalyst and the detailed experimental conditions. Nanoparticles can be transformed through 

annealing the deposition catalyst thin film on the substrate, where the sizes of catalysts can 

be controlled by the thickness of deposition thin firm [169]. Templated assisted method was 

exploited to control the radius too, in which the diameter of NW was close to the pore size 

distribution of the templated material [170]. Furthermore, a size selected particle method 

was developed by L. Samuelson et al. [171,172]. In addition, a laser ablation method was 

used to define the size of NW by C. M. Lieber et al. [172-175].  

Laser ablation approach overcomes the limitation of equilibrium nanoparticle sizes in 

determining the minimum NW diameters [173]. The group III-V NW, whose diameters were 

lower than 10 nm, had been grown by exploiting monodisperse catalysts in experiments 

[174-176]. The diameters of NW are generally larger than the catalysts, because of the 

precursors dissolving into and reacting with the eutectic mixture. The monodispersity of 

NW is limited by the dispersity of the colloids. The formation of monodispersed colloidals 
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and their nucleation mechanism caused by the condensation from supersaturated solutions 

were studied in [108,177]. Some tools, such as scanning tunnelling microscope and atomic 

force microscope have also been studied. Besides of controlling catalytic nanoparticles, the 

wetting angle, pressure, temperature, and precursors are also modulated to determine the 

low dimensional growth. 

Another advantage of low dimensional growth is that 1D structure can reduce the 

effects of materials mismatch. The critical radius of NW can be simulated as the critical 

thickness of systems derived by J. H. van der Merwe [178,179] and J. W. Matthews et al. 

[180-184]. The critical radius depends on the stresses and energies of interfaces. The 

interface energy can be written as the sum over strain energy and misfit energy 
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where μin is the interfacial rigidity modulus, the reciprocal of the reference lattice constant 

aref is the sum of the reciprocals of the individual lattice constant located at both interfacial 

sides. The parameter M is given by 
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where ddis is the dislocation spacing, μ+ and υ+ are the rigidity modulus and Poisson’s ratios 

of crystal at the interface, respectively. The subscript “– “means the other side crystal at the 

interface. The minimum interface energy occurs at a homogeneous strain εmin, 
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where εhet is the heterogeneous strain, d is the thickness, and the parameter N is given by 
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The critical thickness occurs when the maximum force exerted by the misfit strain 

equals two times the force exerted by the dislocation line tension. The critical thickness can 

be written as [180] 
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where εmax is the maximum value of the misfit strain, θdis is the angle between dislocation 

line and its Burger’s vector b, θslip is the angle between the slip direction and the direction 

which is perpendicular to line of intersection of the slip plane and the interface, and Idis is 

the strength of dislocations.  

The critical radius of NW is roughly an order of magnitude larger than the critical 

thickness of thin film because of the lateral relaxation relieving the strain energy. The 

relationship between the critical radius of NW and the strain energy caused by dislocation is 

given by [185,186] 
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where EY is the Young’s modulus, λ is the decay length, and Π is the lower limit for the 

integration of the strain and dislocation. The Burger’s vector terms will be ignored in the 

coherent situation. The strain energy reflects the sum of the elastic energy, the misfit 

dislocation energy and the specific system itself. The influence of surface stress on the free 

energy will be analyzed in the later sections. The critical radius can be simplified to a simple 

form to determine the critical radius numerically [180,185-189] 
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where εmis is the misfit dislocation strain, and Ucore is the core energy factor. When the 

radius is smaller than the critical radius, there is no misfit dislocation, because the NW with 

small radius enables lateral relaxation to accommodate mismatches. 

For anisotropic structure, there is a thermodynamically allowed small radius in NW 

growth. The thermodynamic limit on the catalyst size is given in Eq.146. Below the limit of 

radius, nucleation will not occur in the catalyst. The similar thermodynamic and kinetic limit 

occurs in the NW growth, implying there is a smallest radius existing. The droplet whose 

radius is lower than the critical one will evaporate into gas, resulting from the elevation of 

chemical potential controlled by the curvature. The difference between the existing smallest 

radius and Eq.146 originates from the constant coefficient, which has an influence on the 

curvature. For coefficient one, equation stands for the cylindrical NW; for coefficient two, 

equation stands for the spherical droplet. The radius limit equation can transform into the 

dependence of radius on the supersaturation [190] 
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where Peq is the precursor material vapor pressure over the equilibrium liquid with a 

concentration of neq. εi is the activity coefficient and is proportional to exp(μi/kBT). In 

summary, the minimum size is determined by the catalyst composition and size. E. I. 

Givargizov et al. proposed a growth rate equation of NW whose radius is larger than the 

minimum value. The model shows an adsorption process induces the NW growth [191], 
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where kL is the crystallization coefficient for liquid, I is nucleation rate in Eq.150, and vlateral 

is the lateral velocity on the top of NW. In addition, a higher growth rate occurs at stepped 

inclined interfaces due to a decrease of the activation energy of nucleation. 

Another advantage of VLS synthetic method for generating NW is incorporating 

precursor materials (including doping materials) simultaneously to realize in situ growth. 

Adsorption precursors and diffusion adatoms could dictate a local enhancement in the 

concentration of adatoms around the catalyst. The precursors and adatoms dissolve into the 

catalyst, when the chemical potential of vapor is higher than that of the catalyst. Followed 

by the supersaturation occurring in the catalyst, the materials precipitate on the NW surface 

as the chemical potential of particles exceeds that of NW material [192]. The rate 

controlling factor in the growth of a new phase is determined by the diffusion rate and 

nucleation rate at the boundary, since the atoms transfer to the nucleus by diffusion. The 

predictions of growth conditions for binary, ternary and more complex catalyst-group III-V 

depend on the phase diagrams for the catalyst and compound semiconductors of interest. 

Numerous thermodynamic data and phase diagram evaluations have been published in 

the Bulletin of Alloy Phase Diagrams, the CALculation of PHAse Diagrams (CALPHAD), 

and ASM Alloy Phase Diagram Database [193,194]. Phase diagrams show a representation 

of the thermodynamic relationships between competing phases. In the CALPHAD method, 

the molar Gibbs energy can be considered as the sum of reference (temperature and 

composition dependence), ideal random mixing, the excess Gibbs energy, the magnetic 

contribution and the pressure term, which have been discussed in the above section. The 

CALPHAD provides a method that combines the first-principles calculations with 

experiments and applies the model with adjustable parameters to reach the required 

accuracy [41,195-201]. The CALPHAD has been widely used in the metallurgical field. For 
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group III-V semiconductor systems, the CALPHAD assessments ignore the small degree of 

nonstoichiometry and the carrier concentrations. In real semiconductors, deviations from 

stoichiometry create antisite defects, vacancies and defect clusters, which may be ionized in 

different ways [202].  

Early semiconductor whiskers were deposited from vapor precursors onto the metal film 

[203]. Initial VLS procedure was followed to grow the Au-catalyzed Si whisker [9,204]. 

Later the VLS mechanism was transplanted to group III-V nanowhisker growth, which was 

induced via an alloy droplet generated by the reactions between III-V materials and Au 

clusters [205]. With the introduction of a catalyst into group III-V NW growth, binary, 

ternary and quaternary phase diagrams about group III-V materials and transition metal-

group III-V compounds have to be taken into consideration to choose the appropriate growth 

conditions and phases [193,194,206-223]. Precise knowledge of the thermodynamic data 

and phase diagrams about group III-V compounds with catalyst materials of interest is very 

important for the monitoring of NW growth. The most common catalyst, for example, Au 

and group III-V have considerably complex ternary phase diagrams. The complicated 

intermediate phases formed by various invariant reactions and polymorphic transformations 

are so complicated for the analysis of stable phases in group III-V NW growth. The eutectic 

temperatures for Au-III-V are higher than the actual NW growth temperature therefore it is 

hard to form stable binary Au-V or ternary Au-III-V at low temperature. In the case of 

binary reactions, Au-III produces intermetallic compound which is a clear manifestation of 

pseudobinary cutting through the phase diagram, and Au-V produces new solid phase in the 

phase diagram [220,221]. In the NW growth, group-III precursors dissolve into the catalyst 

to form alloy because there is high solubility limit for group-III in Au. On the contrary, 

group-V materials have little observed in the alloy [224]. Group-V precursors may diffuse 
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through the eutectic alloy fast along the dislocations or grain boundaries, and adatoms may 

diffusion along the solid-liquid interface to reach the local reaction points. At the interface, 

supersaturated liquid alloys precipitate on the top of NW. Detailed ternary phase diagrams 

need to be investigated further.  

With the tougher request for compositionally abrupt and structurally perfect growth 

interface of NW [225], some circumstances under which the catalyst can be solid [224-243] 

and others in which the catalyst can be solution [10,244-251] are investigated for the NW 

growth. In the VLS mechanism, the precursive reactants are supplied in the vapour phase 

and the experimental temperature is above the eutectic melting point. However, some 

experimental results show that the temperatures of precursors dissolving into the catalyst 

were insufficient to form the liquid phase but formed atomic abruptness on the interface 

[225-227]. This mechanism was proposed as the Vapor-Solid-Solid (VSS) NW growth 

mechanism. In the VSS mechanism, growth is assisted by a solid phase particle and the 

growth rate approximately reduces to zero if the temperature exceeds the melting point of 

the eutectic alloy due to the preferential dissolution of the materials in the liquid catalyst. In 

addition, there may be a hysteresis corresponding to the supercooling of liquid catalyst 

metal, so the nucleation barrier at a temperature window prevents the formation of solid 

phase. The alloyed catalysts are affected by temperature fluctuations, pressure fluctuations 

and incubation time. Although the experimental temperatures exceeded the eutectic point 

sometimes, the NW growth was still catalyzed by solid particles [224]. On the contrary, the 

catalyst can be buried by substrate growth, if the temperature is lower than the lower 

temperature limit in the VSS mechanism. Experimental temperature, pressure, precursor 

molar fraction and V/III ratio, orientation relation, catalyst shape and some other parameters 

can affect the morphology of NW and growth rates in the VSS growth [233-236]. The 
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presence of solid phase catalyst can induce an unstable kinked growth because adatoms 

diffusion, deposition and nucleation processes are hindered [224,237-239]. On the other 

hand, lower temperature growth in VSS can reduce or eliminate the twinning defects and 

provide a better control of growth orientation. The advantageous in fabricating NW are not 

only low temperature growth, but also abrupt interfaces due to the lower solubility of 

precursors in the solid [224,239-244]. With the size of particle reducing, the solubility of 

precursors in catalyst is further reduced due to the Gibbs-Thompson effect [233,236,244]. 

Thus it also reduces the tapering phenomenon and the effects of imperfect growth in the 

situations of after precursor supply or at temperature cooling. Meanwhile, the particle 

ripening by diffusion could be mitigated under low temperature, and the incorporation of 

impurities caused by catalyst diffusion will be reduced due to the reduction in diffusivity. 

The SLS mechanism is also similar to the VLS growth process, except for using simple, 

low temperature, solution phase reactions [10]. In the SLS mechanism, the precursors are 

delivered and react in the solution rather than in the vapor. For the solution phase 

semiconductor synthesis, catalyst elimination occurs at the interface between the reaction 

solution and the group-III flux droplet. Then the production of amorphous semiconductor 

condenses on the top of whiskers and crystallizes to proceed with whisker growth. 

Elimination-condensation processes operate at lower temperature because the catalyst 

lowers the energy barriers for precursor decomposition and the interfacial nonmolecular 

growth. Because the droplet-whisker interface is the most active interface, the growing 

whisker acquires 1D structure until the precursor delivery is discontinued [245-249]. The 

shape of crystal depends on the relative specific surface energies, and growth kinetics 

associated with the facets of crystal [252]. 
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Numerous related mechanisms have been investigated in which one of the states is 

replaced by other phases. These mechanisms include Supercritical-Fluid-Liquid-Solid 

(SFLS) mechanism [249,253,254], Supercritical-Fluid-Solid-Solid (SFSS) mechanism [255-

258], Solid-Liquid-Solid mechanism [229, 259-261], and some other VLS-like mechanisms. 

 

III. C. The Catalysts in Nanowire 

The catalysts are involved in numerous NW growth mechanisms. Bottom-up 

mechanisms induced by catalysts avoid top-down etching processes that damage the 

crystalline structure. In catalytic synthesis of NW, processes commonly rely on metal 

clusters or colloids such as Au, Ag, Pt, Pd, Ru, Rh, Ir, Pb, Cu, Cr, Nb, Mo, Ta, W, Ni, Mn, 

Fe, Ti and Co, which act as preferential sites for the adsorption of their surrounding vapour 

reactants. With the requirements for low melting temperature and noncontamination 

catalysts introduced, some low melting metals such as Al, Ga, In, Bi and Sn are introduced 

to serve as the catalysts. Melting points, solvating abilities, reactivities, thermal stability, 

resistant to oxidation, work function, and diffusivity are all important criteria for judging 

candidate metals as catalysts to form alloys. The choice of an appropriate catalytic material 

has the benefits of controlling over the radius, orientation, structure, and growth rate of NW. 

The role of catalyst played in NW growth is not chemically inert with respect to 

semiconductors, but rather reducing the barriers for incorporation of material and catalytic 

decomposition of precursor molecules at the surface of alloy and decreasing the activation 

energy of nucleation at the growth interface. 

In much of research, Au has dominated on the catalytic hehavior of inducing 

semiconductor NW synthesis [9,19,106,204,225,227,228,231,262-272], because of the metal 
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particle acting as a good physical catalyst and forming a variety of intermetallic compounds. 

The first silicon whisker was grown by using liquid alloys above the eutectic point based 

upon the VLS mechanism, in which liquid Au served as a preferential site for the adsorption 

of precursors and the formation of a variety of Au-Si compounds [9]. In III-V systems, the 

group-III species have much higher solubilities in Au than the group-V solubilities and form 

numerous intermediate compounds across the entire composition range. The alloy maintains 

stable steady-state nonequilibrium, and its chemical potential gradient provides a driving 

force for the reaction. A chemical potential gradient or an easier measured concentration 

gradient would be maintained and steady state growth would occur when a constant supply 

of supplied phase materials are maintained.  

Generally the atomic diffusion mechanisms in a catalyst are roughly divided into 

substitutional diffusions and interstitial diffusions. The phase diagram of alloy can be 

simulated in the CALPHAD, and the calculation of diffusional phase transformations can be 

accurately simulated with a DICTRA that accounts for diffusivity variations. The diffusion 

model takes into consideration of thermal gradients and potential gradients in determining 

mass diffusion for the interstitial flux, 
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where the subscript i indicates interstitial atom, s indicates substitutional atom, and Q is the 

thermodynamic flux expression. L is the corresponding kinetic factor. 
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Furthermore, the analysis of substitutional diffusion is taken into consideration in 

binary alloy, because group-V species have low solubilities in catalyst. Ternary phase 

diagram is more complicated since a series of compounds with catalyst. Many stable 

compounds have melting points intermediate between the melting point of Au and the 

melting of the corresponding group-III materials but no stable Au and group-V phases exist, 

except of Sb. The substitutional fluxes are obtained with the assumption of the absence of 

thermal gradients. 

A AA A AB B AV VJ L L Lµµµ  = − ∇ − ∇ − ∇                                      (213) 

B BA A BB B BV VJ L L Lµµµ  = − ∇ − ∇ − ∇                                       (214) 

V VA A VB B VV VJ L L Lµµµ  = − ∇ − ∇ − ∇                                        (215) 

where the subscript A indicates catalyst atom, B indicates group-III or V atom, and V 

indicates vacancy. μV equals to zero at an equilibrium concentration. In the real cases of 

DB≫DA [273], the fluxes can be transformed into the concentration gradient,  
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V A A B BJ D c D c= ∇ + ∇                                                       (218) 

The microscopic physics of diffusion can be regarded as the result of a series of 

thermally activated discrete movements between the neighboring positions with local 

minimum energies [19,106,274-276]. The elementary atomic hop frequency can be 

approximated as, 
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where ∆EB is the activation energy needed to carry a defect from an initial equilibrium 

position to a saddle point, and νj is the characteristic frequencies of the three vibrational 

modes for each harmonic mode. N is the normal frequencies of the entire system at the 

starting point of the transition, and N-1 is the normal frequencies of the system constrained 

in the saddle point. The interstitial diffusion and substitutional diffusion can be obtained 

based on the jump distance α separately, 
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The jump frequency for atoms migrating along the defects is higher than that for diffusion 

on the surface, and the jump frequency on the surface is greater than that in the crystal, so 

dislocations in the catalyst and interfaces between catalyst and NW provide high 

conductivity path for the group-III/V species to reach the reaction positions. And adatoms 

which come from the incoming flux intercepted by the substrate and sidewalls also have a 

relatively high conductivity path for diffusing into the catalyst droplet. If the length of NW 

exceeds the diffusion length, adatoms will incorporate at the sidewalls to promote the radial 

growth. The diffusion length in the system is affected by the substrate and NW temperatures, 

as well as the V/III ratio in normal conditions [271]. Because the diffusion velocity of 

group-V atoms, such as As, is much slower than that of group-III atoms, such as Ga, the 

arriving group-V atoms impinge into the catalyst center or the vicinity of three phase 
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periphery. Therefore the arriving group-V will also play a role in determine the growth rate 

owing to the dependence of rate on the species with low diffusivities.  

In a substitutional solid, random walk analysis yields a probability distribution for the 

position of atom at a particular time. The probability of finding a random walker,  
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where Zhop is the number of pathways to hop, d is dimension, and ƒ is correlation factor 

accounting for the history effect. ƒ equals to 1 for interstitial diffusion, but is less than 1 for 

substitutional diffusion. 

The activation energy for diffusion can be expressed as a function of the degree of order. 

The diffusion behavior of ordered intermetallics is more complex and its diffusion 

coefficient is much larger than that of disordered phase [277]. The conserved order and non-

conserved order kinetic equations are given in Eq.177 and 181. The drift velocity 

superimposed on the random hopping motion is related to the activation energy QB for 

diffusion, 
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where the mobility MB of species involved in the interaction is divided into the frequency 

factor MB
0. Comparison with the Fick’s 1st law, the tracer diffusion coefficient DB can be 

obtained 
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The group-III and V species reach the reaction sites and induce the NW growth through 

diffusional transformations. Meanwhile, the species and catalyst atoms form several 

intermetallic compounds through diffusion couples. For low solubility and miscibility of 

group-V species in group III-catalyst alloy, diffusion path dominates alloy atom transport. 

And the multiphase diffusion arises when diffusion couples are employed in the solution and 

intermetallic compounds of catalytic alloy. Consider the multiphase binary system, the 

interdiffusion coefficient can be written 
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For atoms expelled through different phases, the relationship between interface velocity 

(diffusion) and the atom flux is given by 
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In the catalytic sphere, the Fick’s 1st and 2nd laws are solved by the scaling method. The 

dependence of supersaturation ξ on the boundary condition and initial condition parameter 

based on the scaling method with ηR =R(t)/(√4Dt) can be written as,  
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The diffusion growth rate depends on the scaling method coefficient ηR, hence the diffusion 

rate will be determined by the supersaturation. Meanwhile, the geometry and dimension of 

particle also make a contribution to the diffusion growth rate, 
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where S(θ) is the geometric coefficient of variation which is proportional to the available 

surface area. The equilibrium concentration can be solved in stationary diffusion equation 

with the corresponding boundary conditions. From the above equations, diffusion induced 

contribution will affect the overall NW growth rate directly. From Eq.229, growth rate will 

increase under a positive supersaturation, on the contrary vaporation occurs with a negative 

supersaturation. In the real NW growth, one attempts to control the NW to forward equally 

on the surface under an appropriate supersaturation. During the NW growth process, the 

supersaturation remains almost constant because of the semiconductor atoms refilling from 

vapor state continuously.  

In the NW growth, the nucleation process spends less time than the process of refilling 

the consumed atoms. Thus the nucleation rate depends on the limitation of diffusion atoms 

incident into the nucleation sites and the available surfaces for nucleation. The nucleation 

barrier tends to be large as the supersaturation tends to be zero. On the contrary, the 

nucleation barrier can be ignored as the supersaturation has a tendency to infinity. The 

maximum supersaturation can be derived from the balance between atoms incident and 

nucleation process. The time of established balance is the incubation time. M. A. Herman et 

al. summarized the dependence of epitaxial nucleation mechanisms on the supersaturation in 

the metastable phase [105]. 

Unlike the multiphase binary system with single phase product layers separated by 

parallel interfaces, the diffusion zone caused by reaction couple will be developed in ternary 

system. The complex stoichiometries and structures of multiphase compounds make the 

phase behavior and the synthetic processes more complicated. The diffusion path on the 

appropriate ternary isotherm provides a relationship between the kinetics and 

thermodynamics of alloy, and these develop in an effort to eliminate supersaturation in the 
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system [278,279]. Specific diffusion coefficients and phase diagrams corresponding to the 

group III-V and catalyst materials determined by diffusion multiples make contributions to 

develop the diffusion processes in catalysts [279-287]. 

For the nucleation at corresponding phase of NW, semiconductor atoms within a 

catalyst phase must first diffuse together to form a small volume with the NW composition, 

and then, the atoms rearrange into the NW crystal structure [19]. Not only the crystal 

structure of NW, but also the growth rate and abruptness are all governed by the nucleation 

processes. The overall processes are all influenced by the activation energy barriers given in 

Eq.188-191, and 194. 

Nucleation dependence of position in the catalyst-NW interface is divided into the 

nuclei emerging in the center and at one location of triple phase periphery [89,288]. In the 

second case, the surface energy variation is caused owing to nuclei contacting to vapor 

phase directly. The activation barrier for 2D nucleus formation is given, 
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where a1 and a2 are the 2D nucleus shape constants, VS is the layer volume per III-V atomic 

pair, ∆μIII-V is the chemical potential difference per two atoms of III and V atoms in the 

catalyst, ∆μWZ-ZB is the difference of volume energies between WZ and ZB structures (∆μWZ-

ZB ~ 0 for pure ZB cubic structure), and γsurf is the corresponding surface energy of ZB or 

WZ. ω is the “antagonization” angle between liquid phase and solid phase. 

Once the nuclei reach the critical size, it will spread out laterally on the whole interface, 

the process repeats to induce NW growth. A catalyst cannot be exactly spherical for no 

matter WZ or ZB. The cross section of NW behaves as a regular hexagon that has six 

equivalent lateral facets. The structure of NW is highly dependent on the parameters 
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affecting the catalyst properties [289]. The WZ nucleation is favored at the triple phase line, 

when the requirements for certain suitable surface energies and a sufficiently high 

supersaturation are satisfied. Eq.188, 189, 192 and 193 give critical homogeneous and 

heterogeneous nucleation barriers for NW growth. The nucleation probability for different 

phases is dominated by the driving force, nucleus effective energy, and the interface 

between a truncated sphere catalyst and a hexagonal NW [289], 
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where γtot is the total nuclei surface energy dependence on the nuclei structure. The 

interfacial energies for no matter top or side-wall of NW have a serious influence on γtot. 

The driving force dominated by the temperature and supersaturation is given in the 

foregoing paragraphs. The driving force difference between ZB and WZ depends on the 

atomistic coordinates related to the orbital radii in the local density formalism, 
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where r is the screened nonlocal pseudopotential or wavefunction orbital radii with a angular 

momentum s or p. μ0, c0 and c1 equal to 8.137 meV, -22.152, and -1.13 in the 

pseudopotential model, or 22.67 meV, -85.74, and 1.742 in the wavefunction model, 

respectively [290]. The critical chemical potentials, group-V influx, and the concentration of 

group-III elements in a catalyst all affect the percentage content of ZB or WZ phase in 

polytypism. For bulk structures, ZB structure is more stable than WZ structure, except for 

nitrides, otherwise the polytypism issue in NW is more complicated than the phenomena in 

bulk structures [289-312].  
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In most case, the growth orientation {111}/{1100} or {110}/{1120 } for group III-V 

NW is parallel to the [111] axis of ZB substrates, because of these directions inducing the 

lowest energy crystal structure in group III-V compounds. The crystal symmetry will change 

from cubic to hexagonal or rotational twin layers. High index side facets can be less 

probability occurred in NW, due to their roughness and possible higher dangling bond 

densities. Surface normal directions are parallel to high symmetry orientations in NW. The 

predictions for the corresponding energies with varying facet orientations and bondings can 

be implemented in the calculations based on density functional theory (DFT) based on the 

local density approximation and the repeated slab method [292]. A first-principles 

pseudopotential study for the III-V polytypism under a highly accurate local density 

approximation provides a reliable method to predict the structure of NW [290,301-303]. A 

wide variation in ionicity and bond length for III-V semiconductors should be taken into 

consideration. Detailed calculations were summarized and calculated in software [304-308].  

Cohesive energy of NW depends on its radius and its surface dangling bonds. The 

number of dangling bonds for ZB is larger than that of WZ structure. WZ is favored when 

surface energy gain is larger than the difference of volume cohesive energy between WZ 

and ZB structures [293,299]. Bond length of WZ is smaller than that of bulk. The smaller 

calculated diameter of NW is more favorable to WZ structure, due to the surface dangling 

bonds on facets. With the diameter increasing, bistability of ZB and WZ structure changes to 

rotational twin structures. For a larger diameter of NW, ZB is more favorable over WZ 

structure, and thus likes a cubic structure. ZB structure contains rotated 60º twin blocks with 

respect to each other, hence these blocks can transform into WZ segments. For a hexagon, 

the ratio between dangling bonds and the total number of atoms in each diameter is the 

lowest in this case. Strain energy caused by lattice constraints, and electrostatic energy 
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caused by bond charges and ionic charges make contribution to the system energy of 

polytypism based on an empirical interatomic potential calculation [309-311], 
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where Uij is the conventional empirical interatomic potential. Uelecstatic is the electrostatic 

energy affected by the distance between atoms, the effective coordination of atom and the 

ionicity of semiconductors. The surface energy model can be studied to calculate the 

equilibrium shapes by the software Surface Evolver [312], which combines of surface 

tension, gravitational energy, squared mean curvature or defined surface integrals. 

In real thermodynamic systems, heterogeneous nucleations are much easier than 

homogeneous nucleations [313-315]. Nucleation process will be dominated when nucleus 

has the minimum activation energy barrier. Followed by a supersaturation process, 

semiconductor atoms start to precipitate. Dependence of the constructed crystalline phase on 

NW radius, incubation time for nucleation and nucleation on a triple phase line or in the 

center of NW, remain under the polytypic influence of the concentration of group-III in 

droplet and group-V flux. R. M. Walser et al. developed an empirical rule explaining that 

the first phase formed was the congruently melting phase closest to the lowest eutectic point 

on the bulk equilibrium phase diagram [315]. The first phase nucleated is highly temperature 

dependent, and thus this induces a different interfacial behavior and a radically variable NW 

growth. In an non-barrier nucleation transformation, spinodal decomposition occurs when 

alloy composition locates in the coherent miscibility gaps [19,53-55,106]. The phase 

separation occurs spontaneously, but it requires an appropriate thermal activation to 

maintain the rate. The rate of spinodal transformation is controlled by the interdiffusion 

given in Eq.226. The decomposited phases depend on the nucleation processes under a 
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homogeneous or heterogeneous mechanism. The specific situations mentioned in NW 

growth need to be taken into consideration for the corresponding phase diagrams and the 

more detailed experimental conditions. However, the phase separation can induce the 

properties of semiconductor to vary dramatically. With a development for understanding and 

a further study on NW structures, controllable pure ZB, WZ, 4H polytypism, and artificial 

twinning or superlattices can be grown in NW as people wish. 

 

III. D. Nanowire Induced by Foreign Catalysts 

In some preceding reports, some binary catalytic compositions such as Al-Au [242], 

Ag-Au [316] were used to grow Si/Ge NW. These binary alloy catalysts can minimize the 

solubilities of growth species and reduce the reservoir effect to get atomically abrupt 

interface. Meanwhile, exploiting the VSS mechanism reduces atom interdiffusion during 

growth. Compositional catalysts in group III-V NW growth need to be further analyzed to 

improve the interface and create abrupt heterojunctions.  

Although Au catalysts can provide a moderate melting point, high resistance to 

oxidation and other parasitic reactions, and appropriate diffusion coefficients for inducing 

NW growth, the existence of substitutional impurities, interstitial impurities, intrinsic 

defects, complexes, and dislocations leads to extra electron states pinning in the bandgap. 

Because it is inevitable to introduce small amounts of foreign gold atoms into NW. Au 

introduces a range of energy levels into the bandgap and thus has detrimental effects on 

performance [262,317-325]. A gold catalyst is detrimental to internal quantum efficiency 

because of Au atoms and Au related complexes behaving as nonradiative recombination 
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centers. Therefore this presents a significant barrier to the integration of NW building blocks 

into the conventional semiconductor industry. 

For avoiding the drawbacks of introduction of gold, some other foreign metal seeds are 

exploited in NW growth. Common catalysts, such as other period IV, V and VI transition 

metals, have been widely applied in silicon and silicide NW growth. In general, common 

transition metals usually have a much higher ability to chemisorb active molecules 

compared to noble metals. Introduced foreign species can maintain themselves not being 

consumed in the process of NW growth, and thus have smaller influences on the changes in 

NW growth parameters. Meanwhile this provides a much greater freedom for controlling 

NW properties under a greater flexibility of tuning growth conditions. Ti, Co, Fe, and Ni 

exhibit their eutectic temperatures that greatly exceed the decomposition temperatures of 

organic solvents. So these transition metals have a potential for NW growth under solid 

phase and provide more alternative phases that cannot be achieved via a gold catalyst. 

A lot of non-gold foreign metals have been studied in Si NW growth and most of them 

have been explained based upon the Au-Si system. Ni is a common catalyst, which is 

compatible with silicon, as a good seed particle metal in Si NW growth [255,313,326-331]. 

In the NW synthesis, Ni catalyzes the decomposition of precursors and induces Si 

crystallization through the solid phase alloy of Si in Ni seeds [255]. During the synthesis 

process, Si-Si bonds are cracked to form NW, Ni-Si solid phase alloy are formed, and Ni is 

the dominant diffusion species in the phases of Ni-Si. Meanwhile, Nickel monosilicide 

behaves as an attractive Ohmic contact with p-type Si and the surface of original Si NW 

plays a significant role in determining the first silicide segment. In the reaction procedures 

of producing Ni on the top of Si NW, Ni atoms show a larger indiffusion than the 

outdiffusion of Si, the interdiffusion process takes place inhomogeneously in a catalyst, and 

 88 



 

the diffusion-induced high stress is caused by the generation of nonuniform interdiffusion 

and cracks in the couples [330]. All thermodynamically stable phases grow whose 

thicknesses are proportional to their relative interdiffusion coefficients, and theses 

coefficients become the highest values as the reaction temperatures are reduced to low levels. 

Ti and titanium disilicide with excellent conductivities are compatible with the 

integrated technology [332-336]. However, Ti also forms deep levels in silicon meanwhile 

its diffusion coefficient and solubility are relatively low in Si. Ti catalysts accelerate the 

decomposion of Si-related gases during NW growth procedure. Some other catalytic metals, 

such as Pd and Pt, behave many similar properties in Si NW growth. Pd and Pt are both 

noble metals, that are resistant to corrosion and oxidation. The solubility and diffusivity of 

Pd in Si are lower than that of Au in a silicon catalyst respectively. Pd as a catalytic material 

is continuously expelled from the growing NW during growth [239]. Pt-Si catalyst has a 

much higher eutectic temperature, and this property is similar to catalyst Ti in the NW 

growth. Pt plays roles in enhancing the decomposition of silane and aiding the adsorbed Si 

species to diffuse through or around the catalyst then precipitate at the top of NW [337-339]. 

The contact between Pt/PtSi forms a relatively low Schottky barrier height or an attractive 

Ohmic contact to p-type Si, and thus allows carriers tunnelling through [340,341]. Some 

different morphology occurred in Si NW via Pt and Pd catalysts were observed compared to 

via an Au catalyst. However, Pt also has detrimental effects on the electronic properties for 

Si [337], otherwise, Pd can provide more favorable electronic states in Si.  

Al, as a standard metal in silicon process line, is another kind of attractive catalytic 

metal in NW growth [244]. The real growth temperature can be lowered below 490ºC, 

because the VSS mechanism occurs in the Al-catalyzed NW growth. Meanwhile, the VSS 
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mechanism provides a sharp interface on the top of NW but there is a tendency of tapered 

NW occurring in NW growth under the catalysis of Al.  

Mn can change the properties of materials towards magnetic semiconductors and has 

potential applications in spintronics, photovoltaics, and thermoelectrics. Self-assembled Mn 

catalyst can mediate the growth of Si NW below 600ºC based on the VSS mechanism 

[243,339]. The growth rate is limited by the decomposition of silane at the tip of NW. The 

nucleation phase can be derived from the congruently melting phase closest to the lowest 

eutectic point [314]. Fe catalyst was first used in laser ablation cluster formation method for 

the synthesis of Si NW by C. M. Lieber et al. [173]. Fe can also behave as a kind of 

ferromagnetic material in NW. Actually, Fe, Mn or Co with silicon constituting 

compositional NW shows attractive electromagnetic properties. Some ferromagnetic 

Heusler alloy NW were fabricated through the diffusion driven crystal structure 

transformation method [343]. The origin FeSi and CoSi NW can be grown by vapor 

transport method [343-345], or by Co nanodots [313,346]. The metal rich Heusler alloy can 

be grown radically on the origin NW to form heterostructures. Si NW catalyzed by Co can 

be grown in hydrogen environment (Hydrogen is essential to Si NW growth) [347]. 

Likewise the detrimental properties occur in Au-catalyzed NW, mid gap electronic states 

formed in Si are inevitable. Another drawback for Fe is highly sensitive to oxidation. Co is 

not particularly reactive with oxygen, except for in high temperature environment. Besides 

of Fe nanodots as catalysts, some Fe-silicide [348] or Ni-silicide [349] thin films can be 

annealled in ambient containing Ta vapor to induce Ta2Si NW growth. In addition, Fe-Si 

powders were hot pressed then placed on the holey carbon grid to catalyze the NW growth 

[350].  
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Another catalyst Cu is very similar to Au in Si NW growth [351-354]. The dependence 

of the incubation time on the activation energy (0.98eV for Cu) is given by [351]. 

( )

2

exp
catalyst

incubation
ac B

h
D E k T

t ≈
−                                               (234) 

where hcatalyst is the catalyst height, and Eac is the activation energy that depends on different 

material catalyst. Cu catalysts induce the Si NW synthesis at a temperature window from 

600ºC to 650ºC based on the VSS mechanism. During growth, Si atoms diffuse into Cu 

droplet and form Cu3Si precipitation. The structure and morphology of silicon NW depend 

on the distinct crystalline structure of Cu3Si, the size of catalyst and the temperature of 

synthesis [352].  

Compared with 500ºC for an Au catalyzed synthesis temperature, the temperatures for 

the above mentioned transition metals are relatively high. Some low melting point metals, 

such as Ga, In, Sn, and Bi, can also be used as catalysts for Si NW synthesis [355-363]. Si 

NW can grow with a molten Ga catalyst under exposing to hydrogen plasma [356-358], or 

by the hydrogen radical assisted deposition method [359]. In the Ga mediated VLS growth 

of Si NW, Ga plays a role in decomposition of silane. The crystalline orientations of NW 

depend on the catalyst size and growth temperature. The preferential growth orientation was 

[111] at nearly 600ºC, and more NW with preferred <112> directions were observed at a 

lower temperature [358]. In the radical assisted deposition, the orientations of NW have a 

relationship with the diameter, owing to the surface energy becoming to be dominated with 

the enhancement of aspect ratio as a diameter decreasing [359]. Hydrogen is necessary for 

Ga catalyzed NW growth, because the hydrogen rich can reduce the gallium oxide of the 

droplet. Indium originating from heated In2O3 substrate [360] or In-Si eutectic liquid drop 

[361] can also catalyze silicon NW growth at low temperature. Moreover, Sn metal thin film 
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[362] and Bi catalyst atoms [363] have abilities to induce catalyzed Si NW growth at 

relatively low eutectic temperatures respectively. 

The influences of catalytic metals in Si NW have been widely studied for a long time, 

but still no satisfactory explanation for catalyzed growth in silicon NW has been given. 

Catalyzed phenomena in group III-V semiconductors are more complicated to study. 

Vertically growing group III-V NW on different low cost substrates under suitable reaction 

conditions is also an attractive and challenging issue with freshness and rigour. Non-gold 

foreign metals are widely used for catalytic growth of NW, especially for III-nitride NW. Au 

exhibits a poor solubility for N and thus provides insufficient N sources for nucleation 

interface [220]. For non III-nitride NW, Au still exhibits a superior catalytic ability. 

Different catalysts can induce different structures of NW, growth rate and densities of 

defects. 

Ni is one of the most common catalysts in group III-V NW growth, especially for GaN 

NW [364-384]. No matter in the VLS mechanism or in the VSS mechanism, a Ni-Ga alloy 

droplet will reach supersaturation, followed by the nucleation event further GaN NW growth 

then occurs. The nanoparticle consists of catalytic metal, gallium and nitrogen, meanwhile 

some impurities seems inevitable to be introduce, i.e., H, O, and C, whereas the NW can 

almost only be composed of gallium and nitrogen. Metal Ni powders, bi-metallic alloy, i.e., 

cobalt-nickel and gold-nickel, or metal complex nickel phthalocyanine can also be used as 

catalysts to produce GaN NW. Ga atoms have a higher concentration in Ni catalyst than that 

of Au, thus this results in a higher supersaturation of Ga in Ni. Compared with an Au droplet, 

Ga-Ni has lower surface energy than that of Ga-Au. These will lead to a higher nucleation 

rate, a higher growth rate, and probably higher stacking faults formation in the Ni catalyzed 

GaN NW growth procedure.  

 92 



 

Ni catalyzed GaN NW are typically grown by either chemical vapor deposition (CVD) 

or MBE. In CVD [364-369,371,373,374,377-383] synthesized process, trimethylgallium 

(TMGa) and ammonia source materials were used as Ga and N precursors carried by 

hydrogen or nitrogen, and molten Ga species and ammonia were injected into isothermal 

quartz tube CVD reactors. Ni catalyst provides energetically favorable site for forming NiGa 

transition alloy at 760ºC~1000ºC and prevents the formation of interfacial layer. Meanwhile, 

Ni should be catalytically active in the decomposition of ammonia gas. The reactions were 

studied in Ni and GaN [385-388], Ni-Ga alloy formation energies [388], and the Ni-Ga 

system phase diagrams [385,386]. First-principles calculations based on DFT and the MC 

simulation are always used to describe the order-disorder transformation in the 

multicomponent systems. In the procedure of species dissolving into the catalyst, disordered 

FCC nickel catalyst solid solution will transform into ordered intermetallic compounds. The 

order-disorder phase transition kinetics is given in Eq.181. The molar Gibbs energies of L12 

structure Ni3Ga, B2 structure NiGa, hexagonal structure Ni3Ga2, and NiGa4 can be expressed 

by Eq.71-74. When the order-disorder transition occurs followed by the structure of catalyst 

varying from cubic to hexagonal, extra Ga atoms will react with the decomposed ammonia 

species at the interface of catalyst. The detailed interaction parameters for different 

structures were discussed in [386]. Gold in Au/Ni bi-metallic catalyst plays a role in lower 

the catalyst formation temperature as well as the activation energy. Therefore the growth 

temperature can be reduced [380-382]. The NW density and the degree of alignment are 

sensitive to the size of Ni, due to the high activation energy for Ni diffusion [371].  

In MBE synthesized process [370,372,375,376,384], Gallium and nitride precursors 

were evaporated from Knudsen cells at 730ºC~825ºC. Ni as a catalytic droplet accumulates 

Ga atoms meanwhile N species reach the reaction sites through diffusion. The ratio between 
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the fluxes of group-V and group-III elements should be controlled precisely, because the 

impinging N flux not only behaves as a rate limitation for NW, but also controls the radial 

growth under Ga-rich environment [370]. Ga atoms are accumulated till the NW length 

reaches the diffusion length of Ga on the side facets. 

 

Table 1. The orientations of Ni-catalyzed GaN NW.  
Growth 
Tech. 

Substrate & 
Orientation 

Nanowire Direction Ref. 

CVD Si (100) Hexagonal [110] ( <1100 >) and [100] [364] 

CVD (0001) sapphire Triangular cross section [110] and [001] [368] 
CVD (100) LiAlO2 

(111) MgO Triangular cross section [110 ] (<1100 >) 
Texagonal cross section [001] (<0001>) 

[369] 

CVD (1102 ) sapphire <1120 > [371] 

MBE (0001) sapphire [0001] [372] 
CVD (0001) sapphire <1120 > [374] 

MBE (0001) sapphire 
Si (111) 
Si (100) 

 
[0001] 

 
[375] 

CVD (0001) sapphire [101] [377] 
CVD (0001) sapphire Triangular cross section [0001] [378] 
CVD (1102 ) sapphire <1100 > [379] 

CVD Si (100) [0001] [380] 
CVD (0001) sapphire Triangular cross section [0001] [381] 
CVD (1102 ) sapphire 

(100) LiAlO2 
Au-rich <1100 > 

Ni-rich <1120 > 

[382] 

MBE (1102 ) sapphire Pentagon cross section [1120 ] [384] 

--Au/Ni-bimetallic catalysts were used in [380-382]. 
--CVD stands for metal organic chemical vapor deposition. 
 

The role of Ni catalysts during GaN NW growth and their influences on the resultant 

structure of NW still remain unclear. Direction-controllable NWs are desirable to achieve 

for controlling the electronic, photonic, and magnetic properties of NW. The types of 

species, catalysts and substrates, the orientations of substrates, as well as the growth 

mechanisms all have important influences on the structures of NW. Table 1 gives the 

dependence of orientations of GaN NW on different substrates and growth mechanisms. 
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Actually, the orientations given in Table 1 are the directions of the majority of GaN NW in 

experiments. Other growth orientations are inevitable because it is hard to control the 

vertically alignment for III-V NW in real experiments. Stacking faults for ZB structure were 

observed in some above experiments. ZB configuration preferentially occurs at the 

interfaces because it enables a more favorable bond orientation between cubic Ga-Ni and Ga 

atoms in NW [375]. GaN can be also grown on a graphene film, but the morphology of NW 

were not controlled well [383]. 

Ni-catalyzed growth can be used to synthesize some non-GaN, group III-V NW. Ni 

catalyzed InAs NW were grown on amorphous silicon oxide substrates by a contact printing 

process at 475ºC-520ºC [389]. The NW density depends on the thickness of catalyst film 

and growth temperature. Ni catalyzed GaAs NW synthesis was realized on Si/SiO2 

substrates at 580ºC-620ºC [235,390]. The growth procedures are similar to Ni-catalyzed 

GaN, in which Ga precursors impinge or diffuse into the Ni droplets then Ga-Ni alloys are 

formed. Followed by supersaturated Ga atoms precipitates, Ga atoms will next react with As 

species. The morphologies of seeds will influence the corresponding phases of GaAs during 

NW growth, which is attributed to the interfacial lattice mismatch and diffusion mechanisms. 

Moreover, the substrate orientations, the source and substrate temperatures, and the V/III 

precursor ratio all influence the morphologies of NW. In addition, Ni-Au bi-metallic catalyst 

can be used to fabricate the axial or radical heterostructure GaN/InGaN NW [381]. More 

and more heterostructure group III-V NW will provide better performances for future 

electronic and optoelectronic devices.  

In catalyzed group III-V NW growth, Pd as a catalyst is usually used for synthesizing 

InAs NW [391-395]. Compared with a wide bandgap material GaN (~3.4 eV), InAs has a 

relatively narrow bandgap (~0.36 eV), high mobility, and low contact resistance. Moreover, 
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Pd behaves as an attractive catalyst, because it allows for the formation of good Ohmic 

contacts with semiconductors. The morphologies and growth rates of NW depend on the 

critical radius that is influenced by the growth temperature, the sizes of catalysts, and the 

compressive strain on interface. The synthesis of InAs NW oriented along the [111]A 

direction on the InAs (111)A surface (In bonding terminated) with zigzagged side-walls 

would occur when its radius was below a critical value, otherwise a smooth sidewall in NW 

would be formed, because a varied contact angle for the catalyst-NW interface inducing an 

alternating inward/outward force would construct a faceted side wall under a small tip-NW 

radius [391]. InAs NW grow along different directions on the different substrate with varied 

orientations. The majority of InAs NW grew along [111]A or [111]A, while others grew 

along [111]B or [111]B on a (100) wafer [392]. InAs NW grew along <110> direction on 

(111)B GaAs substrates [393-395]. Distinct from Au catalyzed InAs NW in general 

exhibiting WZ structures, Pd catalyzed InAs NW have a cubic ZB structure, resulting from 

the precursor catalyst, the corresponding substrate orientation, and growth directions. The 

sizes of catalysts that originate from annealing the uneven catalyst material film have an 

important influence on the morphologies of InAs NW. A larger catalyst constituted in a 

BCC single crystal with B2 structure exhibited a faceted geometry, while a smaller catalyst 

would become a liquid hemispherical geometry due to the enhancement of In concentration 

in the catalyst [220,396]. For small droplets, the diffusion ability of precursors will enhance 

when the aspect ratio of catalyst increases with the reduction of catalyst size. It is found that 

the phenomenon in the morphologies of InAs NW affected by the size of catalysts appeared 

to contradict remarks in [391,394,395], because the growth of NW was controlled by the 

synergetic effects that were composed of a lot of experimental factors and processes. These 

synergetic effects need to be studied and analyzed further. 
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Pd/Au alloys can be used to deposite on silicon substrates to catalyze GaN NW. The 

direct writing techniques using focused ion beams had been used to decomposite the 

precursors and deposite Pt to realize Ohmic contacts on n-type GaN NW [397,398]. In some 

other experiments, the contact exhibited a Schottky barrier but the barrier height was 

relatively low when the diameter of GaN NW was large, because the localized states pinned 

into Fermi level [399,400]. The large diameter of Pt contact GaN NW exhibited the behavior 

like the thin film Pt contact structure [401]. Through controlling an ammonia flow rate, 

Pd/Au catalyzed GaN NW exhibited a smooth side wall morphology along the direction 

perpendicular to <0001>, otherwise a corrugated side wall along the <0001> direction [397].  

Deposited Pt using the Focused ion beam technology [398] or annealing Pt film based 

on the VLS mechanism [377,402] are applied to grow GaN NW directly. There are no 

reports about Pt may have detrimental effects on the electronic properties of group III-V 

NW, so Pt has a potential to be an appropriate catalyst for group III-V material electronic 

devices. Meanwhile, Pt can form Ohmic contacts with GaN NW. However, Pt catalyzed 

GaN NW has a lower growth rate than Ni catalyzed NW growth, because the barrier of 

nucleation for Pt catalyzed GaN might be higher [402]. 

C. M. Lieber et al. predicted the laser-assisted Ag or Cu catalyzed group III-V NW 

growth [403-405]. The crystal structures and electronic structures of Ag and Cu are similar 

to that of Au, while Ag is chemically stable and Cu is easy to oxidize. There is no a high 

solubility for In species in Ag or Au, this thus can induce sharper interfaces than the 

interfaces catalyzed by Au. The growth of InAs quantum rods or NW with Ag catalyst were 

applied in a similar method exploited for the Au particle catalyzed approach [406,407]. High 

quality InAs NW may be grown on the Si (111) substrate seamlessly. Low density pure WZ 

structure in NW system can be achieved through the control for the diameter of NW, 
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because the strain can be released from the Ag film. Through improving the annealing 

procedure, i.e., Ag film size, annealing temperature and time, small and uniform diameters 

of NW can be obtained [407]. A special high annealing temperature being favorable to lead 

to a high NW density was observed. Initiative conditions have influences on not only the 

morphology of NW, but also the direction with respect to the substrate. The orientation of 

Ag catalyzed InP NW on Si (111) was controlled by the lattice mismatch and the precursor 

conditions [408]. The parasitic phenomenon for a homoepitaxial growth of Ag catalyzed 

InSb NW on a InSb substrate can be relieved through changing the material of substrate, 

resulting from improving the procedures of diffusion and desorption procedures for the 

precursor species [409]. Cu was used to catalyze InP NW growth on a InP (111)B substrate 

in a limited temperature range [410-412]. Compared with an Au catalyst, there are higher 

eutectic temperatures for group-III materials in a Cu catalyst, but the real growth 

temperature for Cu catalyzed NW can be lowered. The morphologies and growth rates of 

InP NW are very sensitive to the growth temperature and V/III ratio. A tendency for kinked 

in NW was observed when the V/III ratio and growth time were enhanced above the certain 

thresholds in Cu catalyzed InP NW growth [411]. A higher V/III ratio induces the structure 

of catalyst to be facetted, the dimensions of NW to be shorter, and the growth rate to be 

slower. The post growth compositional analysis shows the catalysts were composed of In 

shell and Cu rich part or only liquid In rich particle. These two states of catalysts can coexist 

in the procedures of InP NW growth. However, post growth analysis is not an approach that 

aids to analyze and understand a real time situation for NW growth. The post growth 

analysis cannot reflect a real situation because the atoms diffusion and distribution vary with 

the temperature change after growth. The role of Cu played in a catalyst can be the 

collection sites for the In diffusion atoms, and the seeds for facilitating to crack gaseous 

 98 



 

phosphine precursors. Cu catalyzed heterostructure InP/InAs NW were grown by controlling 

the corresponding V/III ratios via switching the precursor materials on/off reasonably [412]. 

A dynamic change process for the composition variation of particles affected the growth 

rates of NW, resulting from the time variation caused by the establishment of new steady 

states. A transient state (4H structure) between ZB and WZ can be performed in the 

heterostructure, because the corresponding supersaturation during growth is appropriate to 

construct the transient state. 

Mn particle can act as a catalysts and a dilute magnetic source to fabricate 

ferromagnetic semiconductor NW. Mn atoms and group-V atoms, i.e., As, can form a MnAs 

alloy droplet to catalyze GaAs or InAs NW growth. Meanwhile, diffusion Mn atoms can act 

as dopants behaving like 1D spintronics. GaAs NW were grown on SiO2 and GaAs(100) 

substrates in a narrow temperature window [413,414]. Below or above the temperature 

window, the characteristic performance of quasi-2D structure becomes more obvious. In a 

worse-case scenario, quasi-2D structures present both WZ and ZB polytype in NW. InAs 

NW were grown on SiO2, GaAs(100), and GaAs(111)B substrates at a relatively lower and 

narrower temperature range [415,416]. The specific catalyst-material may play a minor role 

in the determination of growth mechanism. Till now the Mn catalyzed GaAs or InAs NW on 

all substrates are randomly distributed. There is an amorphous region surrounding the Mn 

catalyzed NW, because Mn and NW outer layers have a tendency to be oxidized. In addition, 

GaAs and InAs NW show a hexagonal structure that is not affected by the kinds of catalysts, 

while some ZB structures formed in NW are characterized by defects, twins, or stacking 

faults. Diffusion Mn atoms can be applied as substitutional dopants, so ferromagnetic 

MnGaAs NW can be grown through self-assembled method via using MnAs catalysts [417-

419]. Fe or Co was exploited to induce GaN NW growth through the laser assisted catalytic 
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growth [420], CVD [364,368,421], or a pyrolysis route [422]. A variety of growth 

orientations for Fe catalyzed GaN NW occurred on no matter Si, a-plane sapphire, or c-

plane sapphire substrates because Fe droplets may change the predominant growth 

orientations in comparison with Au catalyzed GaN NW. Fe catalyzed GaN NW exhibit a 

hexagonal WZ structure, but its cross section can be transformed into a triangular cross 

section when its radius is smaller than a critical value. Otherwise, there are ZB defects or 

twins occurred when the radius of NW is above the critical radius. Fe particles can be also 

used to catalyze GaAs NW growth on a GaAs(111)B substrate [423]. Fe catalyzed GaAs 

NW with taper structures were grown at a narrow temperature range, and the orientations of 

NW are preferential growth along non-coincidence directions related to the normal of 

substrate, i.e., [100] and [110] as well as their equivalent directions. 

Indium, Gallium, Bismuth, and Tin are low-melting point group-III/V metals that can 

form low eutectic alloys with group-III metals. Bi is widely used for the SLS synthesis in 

group III-V NW. Bi catalyzed InAs, InP, and GaP NW exhibited cubic crystal structure with 

a good dispersion stability of Bi particles [424,425], and GaAs NW also exhibited the 

conventional ZB crystal structure [424,426]. The effective bandgaps can be modulated 

through controlling the diameters of NW. The SLS growth mechanism was applied via an In 

catalyst to induce GaAs NW growth, and thus constructed a smaller NW diameter. A linear 

relationship between the diameters of In catalysts and that of GaAs NW was established 

[249]. The solution method is one kind of non-steady state growth technology, so it is hard 

to control the morphology of NW. In catalyzed GaN NW growth were ascertained in 

[421,427,428]. There were no uniform radii or vertically aligned NW synthesized in the 

experiments. In catalysts provide a possible way to induce the GaN NW growth at a 

relatively low temperature. Tin is one kind of uncommon foreign catalyst that is used to 
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assist group III-V NW growth. Sn provides a potential area to develop GaAs NW growth 

because Sn can compatible with the conventional semiconductor processing [429]. 

Meanwhile, some phenomena caused by stacking defects were improved through 

substituting an Au catalyst for a Sn catalyst.  

Industrially incompatible Au has been a catalyst particle of choice to initiate the group 

III-V NW growth [89,192,205,227-233,254,262,267-272,298,325,369,380,381,404,408,430-

455], due to its chemical inertness, thermal stability, superior catalytic ability, the ability of 

forming relatively low temperature eutectic alloys, and the ability of producing NW system 

with controllable morphology and composition. An Au droplet provides a preferential site 

for decomposition of precursor materials and precipitation from the supersaturated alloys. 

One of the major advantages of gold in NW system is that it is easier to achieve high quality 

growth accompanied with a broad growth parameter window, resulting from the most of 

precursor materials being soluble in an Au catalyst to form proper alloys and having high 

diffusivities in an Au seed. Precisely controlling physical dimensions and chemical 

composition, especially in heterostructures, is of paramount importance for the growth of Au 

catalyzed group III-V NW. 

Compared with other transition element alloys, the phase diagrams of Au-group III or 

Au-group V binary systems and Au-group III-V ternary as well as even quaternary systems 

have been studied extensively, but enormous alloy compositional information in wider 

temperature ranges needs to be studied further for predicting the compounds in NW [216-

221]. For the pseudo-1D structure in NW, the extent of size dependent on a melting point 

reduction should be also taken into consideration [456-458]. Local eutectic points in 

catalysts have relationships with a series of compounds of binary or ternary systems, and 

thus lead to precipitate different compounds of NW. The special size effects in NW will 
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tremendously affect the properties of NW. The growth rate and chemical reaction rates can 

be increased by exploiting gold as catalyst, because of the catalysts reducing the activation 

energy and providing preferential deposition sites. In addition, the relevant surface energies 

and the nucleation sites in catalysts have influences on the morphologies of NW and the 

properties of semiconductor devices effectively. 

However, using foreign metals can inadvertently introduce some significant negative 

consequences. Although foreign seeds are preferred to control NW diameters and 

heterointerfaces, transition-metal incorporation strongly influences the morphology and 

phase of NW. Diffusion (i.e., Au diffuses easily on the surface of Si or in the bulk silicon) 

and impurities (i.e., transition elements) induce disorder structures in semiconductors, and 

thus complicate the structure of NW and affect the properties of devices [262,459-461]. 

Besides of Au can introduce deep levels that work as nonradiative recombination centers in 

the semiconductors, common catalysts of period IV, V and VI transition metals also present 

formidable contaminations and introduce a range of energy levels into the bandgap. 

Meanwhile, foreign catalysts assisted NW growth has to be limited in the corresponding 

system where their growth-parameter ranges have to be compatible with the extra catalyst 

materials, and the more complicated supersaturation conditions have to be controlled to 

satisfy the situations of material decomposition, dissolving, nucleation and precipitation. As 

well as the extra preparation for catalyst particles [436], i.e., particles made from thin films, 

particles produced by lithography technique, colloidal particles produced by a chemical 

reduction reaction, or aerosol particles suspended in a gas. These extra procedures require 

additional steps, and thus add the complexity for group III-V NW growth. 
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III. E. Self-Catalyst Group III-V Nanowire 

The growth of group III-V NW can be achieved by using group-III metallic species that 

have high boiling points and low melting points, as self-catalysts. Parts of self-catalyzed 

group III-V NW are listed in Table 2. In a self-catalyst system, the seed material is the 

constituent of NW, so the self-catalyzed process is a kind of comparatively clean growth. 

Self-catalyzed group III-V NW are synthesized through controlling the addition of group-V 

elements and the proper of group-III elements during vapor precursor transport and 

condensation deposition procedures. A so-called self-catalyst is not a real definition catalyst, 

because a real group-III droplet will act with group-V species in the chemical reactions. The 

group-III species of reactions will be offset by the impinging vapor atoms as well as the 

adatoms diffusing from the surface. Self-catalysts can provide simplicity and cleanliness for 

NW fabrication and avoid unintentional contamination with impurity level incorporation. 

Although the incorporation of a reasonable precursor ratio and the Ostwald ripening can 

conspire to control the sizes of NW in the situations of applying foreign metals, self-catalyst 

will be more complex in controlling the morphologies of NW, resulting from the group-III 

atoms in a droplet naturally being consumed as group-V species supply maintains too high. 

So maintaining the dynamic balance between consumption and accumulation of group-III 

species is very important for controlling the size of a droplet on the top of NW. Further work 

is needed to clarify that the nucleation of group III-V anywhere other than on the top of NW 

must be suppressed, through reducing the activation energy of nucleation at the top facet 

meanwhile tuning the curvature and the chemical potential of droplet based on the Gibbs-

Thomson effect.  

Indium particles as seeds can be employed to induce the In-group V NW growth, and 

thus remove the possibility of contamination from other foreign metals. Self-catalyzed 
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phenomenon caused by indium particles was first described in InN whisker growth, 

resulting from a similar growth mechanism observed to the traditional VLS growth [462]. 

Because there are no foreign metals reducing the nucleation barriers, the growth 

temperatures of self-catalyzed growth may not as low as using foreign metal catalysts. 

However, Al, In and Ga themselves are all low melting point metals, leading to their real 

growth temperatures not too high, resulting from no high melting point metals in self-

catalyst NW growth systems. For a relatively low growth temperature, only chunks were 

grown, otherwise for too low growth temperatures, even no chunks or islands were grown 

[463]. While for too high growth temperature, pillars or cones, even flat growth can be 

fabricated [464,465]. 

In-catalyzed single crystalline InN, InP, InAs, InSb, ternary phase, or heterostructure 

NW have been produced, and their grow mechanisms have been studied widely. The 

synthesis of compound NW can be achieved by using MOCVD (MOVPE) or MBE. The 

deposition materials of compounds are incorporated by using the pyrolysis of single 

molecule precursors [462], the atoms decomposed from substrates transported by a carrier 

flux [466-468], or metal organic precursor fluxes [469,470] as group III-V sources in 

MOCVD reactors. Metal organic species, i.e., trimethylindium (TMIn), 

tertiarybutylphosphine (TBP)/phosphine (PH3), tertiarybutylarsine (TBAs)/arsine (AsH3), 

trimethylantimonide (TMSb) and so other species, are injected into the chambers during 

MOVPE for In, P, As, Sb, or other elemental precursors, respectively. MBE technology 

allows group III-V NW growth at a lower temperature and lower impurity incorporation due 

to an ultrahigh vacuum environment and introduced pure elemental species. Group-III 

elemental fluxes are produced by thermal effusion cells, and group-V, such as As4, is 
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provided by a thermal valve cracker cell to initiate the group III-V NW on a preheated 

substrate in MBE system. 

The dimensions and phases of NW are very dependent on the growth parameters. The 

temperature, pressure, flux rate, supersaturation, and NW radius sensitively influence the 

growth morphology, composition and crystal structure. In general, the higher temperature is, 

the larger diameter of NW is, and the longer dimension of NW is. Moreover, the higher 

incident flux is, the higher elemental content is in NW, and the higher growth rate is. 

The diameter variation along the axial direction can be controlled by optimizing the 

V/III ratio [463-465,469,471-474], therefore tapering or uniform controlling can be realized 

through tuning the influx ratio. At a low V/III ratio, NW become reverse tapered, where 

their radius are larger on the top than at the base, because too much group-III precursors are 

supplied to droplets. Enough group-III elemental atoms will lead to the diameter of NW 

increase slowly. The enhancement of the V/III ratio will reverse the behavior, so the NW 

become tapered structures at a high V/III ratio, because group-V atoms are not easy to 

dissolve into droplets compared to group-III species. A uniform diameter can be obtained by 

controlling an optimal ratio. Further, the group-III droplets can be removed through 

modifying the V/III ratio for convenience of future integration [463]. 

The density of NW can be modulated by the growth temperatures [474-477], resulting 

from the diffusivity and migration length of atoms dependence on surface temperatures. In 

general, the density decreases with an increasing temperature, because the diffusion of 

atoms is higher at high temperature and atoms are much easier to reach the reaction sites at 

the top of NW. The migration length, diffusivity, and incorporation probability are 

significantly affected by the growth temperature and influx, resulting in a higher aspect ratio 

at a lower temperature, a larger flow rate, and a larger V/III ratio [464,465,469,471,475]. 
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But the optimal temperature and V/III ratio are relative narrow compared with the methods 

of using foreign catalysts. A too high temperature or a too large V/III ratio will cause radial 

overgrowth. Meanwhile, a too high temperature is easy to induce the thermal decomposition 

of materials [478]. 

The size of a droplet mainly depends on the deposition time and temperature. The 

curvature of a droplet has a relationship with its contact angle, supersaturation, and surface 

roughness. The high curvature means that the droplet has an ability to attract more reaction 

atoms. The diameter of NW, curvature of droplet, supersaturation, binding energy and the 

ionicity of materials will significantly influence the crystal structures and the orientations of 

NW [469,479-483]. Some vertical In catalyzed NW have been grown by controlling the 

growth parameters and choosing the appropriate substrates [463,464,477,478,481,484-487]. 

InP and InAs NW have been grown nearly one-hundred percent vertically on Si(111) 

substrates at 350-380ºC and 450-480ºC, respectively. Below 500ºC growth temperatures can 

be compatible with the typical CMOS growth condition. The evolution of In catalyzed NW 

morphologies is correlated with the local stoichiometry change, which varies from pure In to 

In rich to group-V rich in the VLS or VLS-like modes. The phase purity is still a challenge 

for self-catalyzed NW and a high density of rotational twins and stacking faults were 

observed in nearly all of them. 

 

Table 2. Self-catalyzed group III-V NW. 
Growth 
Tech. 

Substrate & 
Orientation 

Nanowire Material & Morphology Ref. 

CVD sapphire (0001) WZ InN <1100 > [462] 

CVD SiC,Si&sapphire Triangular cross section ZB InAs 
<100>&<110> 

[466] 

CVD SiO2 ZB InAs [111] [406] 
CVD InP GaInP <111> &<113> [467] 
CVD InP (111)B InP [111]B [471] 
VPE Si (111) WZ InP [1010 ]&[0001] [472] 
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VPE (111)B InP WZ InAs [ 0001] [475] 

 (001)InAs InAs [111]  
 Si (001) InAs <111>  

CVD Si,SiC&sapphire InAs,InN,InGaAs,InGaN,&InGaAsN [468] 
CVD Si,SiC&sapphire GaN,InAs,InN,InGaN,InGaAs&InGaAsN [488] 
CVD (111)B InAs InAs [469] 
CVD Si(100),SiC(001) InN,GaN&AlN [489] 
CVD Non WZ or ZB structures of InN,GaN&AlN [479] 
MBE GaAs (111)B InGaAs/GaAs [111] [490] 

VPE InP (111)A InP <111> [491] 
VPE InP (111)B InP [464] 
VPE Si(111),(100) ZB InP<111> [484] 
CVD Si(100) ZB InP [111] [470] 
MBE Si(111) ZB InAs [111] [478] 
CVD InP (111)B ZB&WZ InP1-xSbx [473] 
VPE InAs (111)B InSb [111]&[0001] [480] 

CVD InP (111)B ZB InP&polytypic InSb [481] 
VPE InP (111)B WZ InP/InAsP [0001] [492] 
VPE InP (111)B InP1-xSbx ZB <111>&WZ<0001> [465] 
VPE Si (111) InAs [493] 
VPE InP (111)B ZB InP <111> [463] 
VPE InP (111)B ZB InAs<111> [474] 
CVD Si (111) ZB InAs<111> [485] 
MBE Si (111) InAs <111>&<0001> [494] 
MBE GaAs (111)B InAs [482] 
MBE Si (111) InAs [486] 
VPE GaAs(100), 

(111)B 
InAs [111],[100] [483] 

VPE Si(111), 
InAs(111)B 

InAs [111] [476] 

MBE Si (111) InAs [0001]&[111] [477] 
MBE Si (111) InAs [111] [487] 
MBE Si (111) GaAs <111> [495] 
CVD Non WZ GaN [496] 
MBE Si(111), 

Sapphire(0001) 
WZ GaN [497] 

CBE Si(001),(111), 
(110)&(113) 

GaP [498] 

CVD Non GaN [266] 
MBE Si (100) GaN <0001> [499] 
CVD Sapphire(0001) GaN <0001> [500] 
VPE Sapphire(0001) Along or 30º away from GaN<0001> [501] 
MBE Si (111) GaN <0001> [502] 
MBE Si (111) GaN&AlGaN [503] 
VPE 

&PVT 
Non AlN [504] 

MBE Si (111) GaN [0001] [505] 
CVD Si (100) WZ AlGaN <0001> [506] 
MBE Si (111) GaN [0001]&AlGaN [507] 
MBE Si (111) GaN <0001> [508] 
CVD InP GaInP&GaP <111>&<311> [509] 
CVD Quartz& 

GaSb(111),(100) 
Rectangular&Hexagonal GaSb [110], 

Diamond cubic InSb [111] 
[510] 
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VPE GaAs 
(111)B,(001), 
(311)B&(110) 

GaAs [111]B [511] 

MBE Si (111) GaN [0001] [512] 
MBE Si (111) GaN [0001] [513] 
MBE GaAs (111)B 

/SiO2 
GaAs [514] 

MBE GaAs(001)& 
(111)B/SiO2 

GaAs perpendicular to (111)B 
or 35º away from (001) 

[515] 

MBE GaAs(001)& 
(111)B/SiO2 

GaAs perpendicular to (111)B 

or 35º away from (001), ZB [111] 

[516] 

MBE Si (100) GaAs ZB&WZ [517] 
MBE GaAs(001)& 

(111)B/SiO2 
GaAs ZB<111>&WZ<0001> [518] 

MBE GaAs(001),(111)
A,(111)B/SiO2 

GaAs 34º away from (001) 
or perpendicular to (111)B 

[519] 

MBE GaAs(111)B 
/SiO2 

GaAs [520] 

MBE GaAs (111)B GaAs ZB[111]&WZ[0001] [521] 

CVD Non ZB GaP <111> [522] 
MBE Si(111) GaAs,GaAs/AlGaAs [523] 
MBE Sapphire(0001), 

Si(111)/(001) 
GaN WZ[0001] [375] 

MBE Si (001) GaN/InGaN [0001] [524] 
MBE Si (111) WZ GaAs/ZB GaAsSb <111> [525] 
MBE Si (111) ZB/WZ/4H GaAs <111> [526] 
MBE Si(111)/(001) GaN [0001] [527] 
MBE GaAs (111)B 

/SiO2 
GaAs [528] 

MBE Si (111) ZB GaAs <111> [529] 
CVD Si (111) GaP <111>/GaInP [530] 
MBE Si (111) ZB GaAs [111] [531] 
CVD InP(111)B ZB InP [111] [532] 
VPE Sapphire(0001) WZ GaN [0001] [533] 
MBE GaAs (111) ZB[111]&WZ[0001] GaAs [534] 

MBE Si (111) GaAs [291] 
MBE Si (111) WZ GaN<0001> [535] 
MBE Si (111) GaAs [111] [536] 
MBE Si (111) GaAs/InGaAs [537] 
MBE Si (111) GaN [538] 
MBE Si (111) GaN [0001] [539] 
MBE GaAs (001)/Si ZB GaAs along <111>&34.5º away from 

substrate 
[540] 

MBE Si (111) ZB&WZ GaAs/WZ AlGaAs [325] 
MBE Si (111) ZB &WZ GaAs [541] 
MBE GaAs (111)B ZB GaAs [111]B [542] 
MBE Si (111) GaAs ZB[111]&WZ[0001] [543] 
MBE Si (111) Hexagonal GaAs WZ<0001>&ZB<111> 

Pentagonal GaAs WZ<0001>&ZB<111> 
[544] 

MBE Si (111) GaN [545] 
MBE Si (111) GaN [546] 
MBE Si (111) GaN [547] 
MBE Graphite/SiC ZB GaAs [111]/WZ [0001] [548] 
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MBE GaAs(111)B ZB&WZ GaAs [549] 
MBE Si (111) GaAs <111> [550] 
MBE GaAs (111)B ZB&WZ GaAs&InAs [551] 
MBE Si (111) ZB&WZ GaAs/GaAsSb [552] 
MBE GaAs (111)B GaAs/AlGaAs [001] [553] 
MBE Si (111) ZB GaAs/AlGaAs <111> [554] 
MBE Si (111) GaAs/AlGaAs [555] 
CBE Si (111) ZB GaAs <111> [556] 
MBE GaAs (111)B GaAs [557] 
MBE Si(111)/ 

Sapphire(11 2 0) 
&(0001) 

GaN [558] 

MBE SiO2/GaAs(100) ZB GaAs [559] 
MBE Si (111) GaAs [560] 
MBE Si (111) GaP&GaAsP <111>B [561] 
MBE Si (111) GaAs [562] 
MBE Si (111) GaAs [563] 

--Non in Substrate&Orientation column means that NW grew on boat, plate, or wall of 
reaction vessel. 

--The references [406,462-494,532] are In-catalyzed NW synthesis (Ga/In alloy in 
[490,537]), the others are Ga catalyzed NW growth (Al powders or Al layers were used in 
[504,506,507]). 

--NW orientations are the preferential growth directions, and the structures of NW are 
the intermixing of ZB and WZ. The detailed phases depend on the growth conditions at most 
of time. The real NW cannot behave as pure crystal structures, especially for non-nitride 
semiconductor materials. 

--CVD stands for the metal organic CVD (except for [468,488]), and VPE stands for the 
metal organic VPE or hydride VPE. MOVPE belongs to one of chemical vapor depositions 
with using metalorganic compounds. Except for using metalorganic precursors, hydrides, 
oxides, or halides are widely used in the CVD technique. O and M in the acronyms are 
exchanged sometimes. 
 

In the past ten years, Ga self-catalyst NW has been widely studied, whose growth 

behavior is different from that of In catalyzed NW, and whose growth processes have be 

better controlled through much research done especially since MBE technology was 

introduced. In the 1960s, Ga catalyzed gallium-group V whiskers had been grown 

intentionally [564] or by chance [565]. However, no matter the intentional grown GaAs 

whiskers, or undesirable GaAs and GaP whiskers induced as imperfections, whose 

advantages of pseudo 1D structure had not been understood and studied till planar 

semiconductor manufacturing process hitting the bottleneck and the ever-increasing demand 
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of size shrinkage of semiconductor devices provided. Till now, much uncertainty remains on 

the mechanisms driving Ga catalyzed NW growth. 

In a Ga catalyzed NW growth procedure, Ga droplet acts as a solvent to gather group-V 

solutes. Although well-controlled vertical NW were seldom reported [507,508,536,563], 

good control over morphology, yield and position by tuning growth temperature, V/III ratio, 

influx rate, patterned oxide, and other growth parameters were studied exhaustively. 

Through changing the overall growth conditions, the nucleation and surface diffusion 

mechanisms can be altered, therefore the growth morphologies will be modulated.  

The morphologies of Ga catalyzed NW depends principally on the growth temperature 

and its gradient. The normal growth temperatures for GaN, GaP, GaAs, and GaSb are 700-

830ºC, 480-700ºC, 560-680ºC, and 1100ºC respectively. The detailed temperature windows 

for different material NW growth may vary with different growth technologies and 

substrates. For MOCVD, the growth temperatures affect the preferential decomposition of 

the metalorganic precursors on the semiconductor surfaces. While for MBE, the 

temperatures alter the sticking coefficients of the species on the semiconductor surfaces with 

respect to their oxide patterns. Meanwhile, the supersaturation of a Ga droplet is sensitive to 

the temperature dependent on the pyrolysis efficiencies. For a relative low temperature in 

MBE growth, the sticking coefficient of Ga adatoms on oxide is close to unity, meaning that 

Ga atoms will precipitate on the oxide patterns. Only when the growth temperature increases 

above the critical value, the sticking coefficient on oxide could be reduced, and Ga atoms 

would desorb from the oxide [519]. During the NW growth process, the sticking coefficient 

on the top surface maintaining a larger value relative to the coefficient on the sidewalls has 

to be well controlled and preserved, for example the sticking coefficient on the c-plane is 

required to be higher than that on the m-plane along [0001] growth direction. When the 
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growth temperature is increased above the growth temperature window, there is no tendency 

to induce NW growth due to decomposition, dissociation and reevaporation. The desorption 

of group-V atoms caused by a high temperature may reduce the number of bonds available 

for group-III atoms hence the growth rate will be suppressed. A low temperature can also 

suppress the growth and thus always be used as cooling down process to interrupt the 

growth at the end. In general, the length, radius, and growth rate of Ga catalyzed NW 

increase for higher growth temperatures, resulting from the enhancement of diffusion length 

at high temperatures. Different surface diffusions exhibit on the different surfaces, 

comprising the top and sides of NW. A relative high diffusion on the sidewalls and a relative 

low diffusion on the top facet are favored for NW growth. For too high growth temperatures, 

the absorption of species and their diffusion lengths will be suppressed, due to the reduction 

of the incorporation into reaction sites, too high reevaporation from the surfaces, and the 

decreases of the dissociation efficiencies for triethylgallium (TEGa), TBP, TBAs, TMSb 

[538,556]. When one half of interwire distance is larger than the diffusion length of adatoms, 

the adatoms far from the bottom of NW will be out of the capture area, and therefore 

adatoms will not make any contributions to NW growth directly. Based on the same 

diffusion mechanism, the saturation of growth rate and the maximum growth length should 

be also affected by the diffusion length. During the growth, the growth rate will reach a 

saturated bottleneck as the growth time going on. Besides of the diffusion length, the growth 

temperatures strongly affect the nucleation processes and the nucleated crystal structures 

[526,529]. The dependence of temperatures on the nucleation rate, growth rate, and 

incubation time are given in Eq.150, 151, and 234 respectively. In general, a low 

temperature will reduce the nucleation probability. The density and diameter of NW can be 

also influenced by the changes in temperatures [505,535,539]. In a similar manner as the 
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growth length, there is a maximum density in the intermediate temperature. Too high or too 

low temperatures will result in the reduction of densities, because the diffusion length and 

the desorption rate are affected by the temperature. A two-temperature growth strategy was 

studied to enhance the NW density [548]. The temperature seemed to have little influences 

on the phases of NW, but the effect of tapering was exacerbated with the temperature 

increasing [542]. The phenomena of crystal defects, the parasitic bulk growth, or the 

coalescence processes were suppressed by raising the growth temperatures [505,526,539]. A 

nonmonotonic relationship between the temperature and the fraction of vertical NW was 

studied in [529]. At an intermediate temperature in the temperature window, a lower fraction 

of vertical NW was observed because the majority of NW favored along other three 

nonpolar low energy <111> orientations. 

The different V/III ratio, magnitude of the influx rate, and partial pressure, will induce 

different stoichiometry, deposition rates and morphologies in the Ga catalyzed NW growth. 

However, the relationships between them are neither simple nor linear because all growth 

parameters are interrelated and interact on each other. The injected precursor quantity and 

the pressure in self-catalyst NW growth are much smaller than that of standard planar 

growth. The effective V/III ratio and the absolute flux quantity impinging on the facets of 

NW may be lower than the measurements. 

The V/III ratio has an important influence on the saturation and the size of Ga droplet, 

meanwhile induces the morphological and crystallographic variations in the NW formation. 

High supersaturation could easily induce the NW nucleation and improve the nucleation 

probability. Tuning the V/III ratio can alter the contact state between the droplet and NW, 

i.e., the contact angle, and the situation of wetting or nonwetting for a droplet atop a NW. 

The change of V/III ratio or the tuning the flux interruptions caused the droplet consumption 
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accompanied by variations of the contact angles, and thus changed the phases of NW 

[551,552]. When a contact angle is larger than 90º, the droplet will wet NW sidewalls. The 

fraction of nucleation on the triple phase line with respect to the nucleation at the center of a 

droplet will have a significant influence on the phase formation. Part of a droplet covering 

atop NW or the NW growth entering the domain of a droplet both may contribute to 

improving the stacking defects [556], furthmore the corresponding radial growth has to be 

taken into consideration. The enhancement of supersaturation by increasing V/III ratio can 

also improve the vertical fraction in NW growth [529]. 

The droplet formation and the equilibrium stoichiometry are unfavorable under a group-

V atom rich condition [507,511,519,524], meanwhile the grow rate relies on the group-V 

rate limitation. In general, the length, radius, growth rate, and density are non-monotonic 

dependence on the V/III ratio and the magnitude of influx rates. The high influx quantity can 

offset the desorption effect caused by the high temperature. However, a higher flux can 

induce the NW broaden and individual NW coalesced near the substrate segment. There is 

an optimal V/III ratio in the Ga catalyzed NW growth, because no matter too low or too high 

ratios will induce the diameter becoming large and parasitic growth increasing 

[523,529,533,550]. A reduction of Ga incorporation rate or the enhancement of V/III ratio 

will decrease the growth rate, because of the effective incorporation group-V atoms 

decreasing with a collection area shrinking. But the density of twins will be reduced with a 

lower Ga incoming rate [542]. A high Ga influx quantity or a low V/III ratio can lead to an 

inverse tapered [514,526,556,557,563], because the droplet is not fed with enough Ga atoms 

to compensate for the consumption in the Ga particle, and a similar phenomenon was 

exhibited in In catalyzed NW too. A reverse tapered behavior was exhibited in [542]. The 

dependence of a V/III ratio on the density was studied in [526,535,539,542,550,562], and 
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the density can saturate at a certain value caused by the diffusion effect. The pressure 

correlation with the incorporation material rate, chamber geometry, and temperature plays 

an important role in determining the growth behavior of self-catalyzed NW. The partial 

pressure PIII-V for the precursors is defined by [88] 

expIII V
III V

total const

I P nP m
I P T

−
−

 = ⋅ − 
                                         (235) 

where I is the flow introduced, and Pconst is a defined fixed pressure in the bubble. m and n 

are the vapor pressure parameters to account for the relationship between the temperature 

and materials respectively. The impinging vapor flux and the adsorption rate dependence on 

the pressure are given in Eq.182 and 158. A. F. i Morral et al. obtained a linear relationship 

between As4 pressure and the growth rate υ in the experiments [514], 

4 4 4GaAs As As AsPυ =Μ +Ν ⋅                                                (236) 

where MAs4 and NAs4 are the experimental data. They equal to -7.37×10-2 and 5.26×105 

respectively for Ga catalyzed GaAs NW on a GaAs (111)B substrate. The higher group-V 

partial pressure is, the faster coalescence and growth are for self-catalyzed NW growth 

[511,513,514]. The stable dimers or trimers on the surfaces can be formed at a high pressure, 

and the production of these polymers may retard the growth process. 

 

III. F. Template-Assisted & Selected-Area Nanowire Growth 

The drawbacks of pseudo 1D NW growth can be further magnified, resulting from 

having troubles in controlling the morphology and uniform arrays. Membrane templates or 

partially masked substrates, can be applied by controlling the nanopores to realizing the 

uniform diameter, vertical growth, and desired diffusion mechanisms. In these 
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circumstances, not only the advantages of well controlling of the morphology in a foreign-

metal catalyzed technology, but also the advantages of prevention of introducing the 

contaminations in a self-catalyzed technology, are expressed at the same time. In the 1990s, 

a template synthesis method was proposed by C. R. Martin et al. [566-568]. Now exploiting 

the pores of nanoporous membranes and patterned substrates with oxide assist have been the 

most common methods. 

Group II-VI semiconductors were synthesized in nanopores with monodisperse 

diameters [566], and the overall morphologies were improved by a template restriction for 

the growth dimensions. The density and distribution of pores in alumina performed much 

better than that of a polycarbonate template [567,568]. The synthesis of group III-V NW can 

be achieved in an anodic alumina membrane that has a packed array of hexagonal cells. 

Highly ordered porous alumina cells can be produced through anodization under appropriate 

conditions. A two-step molding process was proposed to fabricate the alumina membrane 

[569], whose hexagonal columnar array favored to induce hexagonal WZ GaN NW growth 

along the channel axis [570,571]. A similar method based on a mixed template comprised of 

carbon nanotube and porous alumina was developed for the GaN NW fabrication [572]. 

Although graphene lacked of dangling bonds for fabricating heterostructure growth, 

graphene layers still were developed for templates to induce InAs [573], GaAs [548] vertical 

NW growth, due to the lattice mismatch accommodation, and a larger grain size in the 

graphene. 

Oxides are commonly used to realize the physical confinement growth, and the growth 

methods can be separated into using chemical oxide composition assisted and using oxide or 

nitride pattern mask. The oxides assisted method was used to assist Si or Ge NW growth 

previously [574-576]. The mechanisms of oxides inducing NW growth with significant 
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distinction for above mentioned catalyst induced or self-catalyzed mechanisms are not 

entirely understood. The differences in the different mechanisms are expressed, mainly 

resulting from oxygen exhibiting the inhibiting effect in VLS growth [577]. In oxide assisted 

group III-V NW growth, precursors made by laser ablation decomposition or pyrolysis of 

group III-V semiconductor sources will react with suboxides. Precursors caused by the 

decomposition of group III-V semiconductors reacted with Ga2O3 [578,579] or In2O3 [580], 

then the volatile productions of reactions and group-V atoms fabricated group III-V NW 

surrounded by the thin passivating gallium oxide or indium oxide films. The volatile oxides 

induce the nucleation processes, and the amorphous suboxide shells retard the radial growth. 

The oxide assisted growth mechanisms can stem from the melting point depression at the tip 

of NW, where precursors are preferentially absorbed then deposite. Meanwhile, a high 

density of defects and dislocations provide plenty of channels to facilitate atoms diffusion. 

Strain energies, bonding energies, surface energies and the fraction of oxide in group III-V 

semiconductors and oxides need to be studied further to improve the randomly oriented and 

ununiformed diameters.  

Oxide or nitride patterned masks are always employed to assist the group III-V NW 

growth. A selective area growth combines both top-down mature fabrication and bottom-up 

atomically precise controllable epitaxial technologies. The synergy between these 

technologies can reduce the adverse effects caused by the dimension fluctuations of NW. 

However, there is a tradeoff between the compatibility with traditional lithographic 

techniques and etching technologies, and the faults and limitations caused by lithography 

and chemical etching. On the whole, the vertical array growth can be substantially improved 

and the morphologies can be modulated further through oxide or nitride masks. The pattern 

mask method can be categorized into exploiting the additive processes to introduce oxide or 
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nitride masks [475,476,482,511,514-516,518-520,528,559,581-591] or applying native 

oxide plates on silicon substrates [325,472,475,485,544,560,562,592-594, and the most of 

references in which silicon substrates used in Table 2]. 

Hexagonal or circular mask openings are etched on no matter sputtered films, native 

oxides, thermal oxides or spinning HSQ for preparing uniform arrays for hexagonal NW 

growth. Circular openings may be created unintentionally due to the lithographic resolution 

and wet chemical etching limitations. Hexagonal cross-section group III-V NW are grown 

from the nanoholes on substrates, therefore the lateral growth and the coarsening effect at 

the bottom of NW can be suppressed by the masked oxides. The radial sizes of NW are 

modulated by the lithographic dose and the shapes of nanoholey arrays. The length and the 

growth rate of NW depend on the fraction of openings on the whole substrate, because of 

the NW growth deriving from the diffusion of adatoms incorporated onto the NW facets and 

the masked substrate. In general, the length of NW decreases with the enhanced nanohole 

size or the reduced interwire distance. The dependence of morphologies of NW on the 

growth parameters has been discussed above. For NW growth on an oxide mask, the 

variations of growth parameters may affect the oxide mask, and therefore modulate the 

morphology and position as well as the density of NW array further. The temperature 

window has to be limited more stringently because a too high temperature may lead to the 

decomposition of oxides and impair the patterns on the mask. The position and density of 

NW are determined by the initial ensemble of droplets and the thickness of oxides. 

Nucleation preferentially occurs at the edges of nanoholes in a mask [592], meanwhile, the 

nucleation process and vertical fraction can be improved through modulating the 

microstructures of substrates [558]. The yield of NW nucleation covering the nanoholes 

depends on the sizes of the nanoholes and increases with the reduction of oxide thickness. 
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Small nanoholes with smaller capture areas may retard the adatom diffusion into the holes 

therefore the yield of NW will decrease in the situation of extremely small holes. Meanwhile, 

the higher diffusion length is, the lower density is, because of the adatoms near the 

nucleation sites assembling together. The nucleation and density of NW can be also affected 

by the surface roughness that is correlated to the interface between oxide and substrate. The 

dependence of the critical thicknesses, the qualities, and the interfacial roughness of oxides 

on different preparing methods is summarized and systematically compared by A. F. i 

Morral et al. [560]. The drawbacks of an oxide template are not only high-cost and complex 

lithographic processes, but also the uncontrollability of wet chemical etching processes. An 

improved droplet predeposition method was used [562], in which droplets were first grown 

on the oxide-free substrates, followed by the substrates were oxidized to assist the NW 

growth. This method can dumb down the complexity of fabrication process. Nanopatterned 

fabrication with an oxide template makes wet chemical etching hard to reach the required 

depth. Some other problems emerge in nanopatterned methods. The initiating NW growth 

on the oxides may cause the nonvertical directions, meanwhile unremoved-oxides or 

reoxidized openings will reduce the density of NW. The situation of growth occurred on 

oxides and the phenomenon of NW growth preferentially along nonpolar low energy <111> 

directions can exacerbate the nonvertical growth, but this case can be improved through 

suppressing the oxide thickness [514]. 

 

III. G. Summary 

This chapter presents the bottom-up compatible with the mature optical lithography. The 

developing E-beam, EUV, nano-imprint, and directed self-assembly methods provide 
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diversity, flexibility, and low-cost in the design of NW and allow more advanced 

functionalities for NW devices. These advanced sub-10 nm lithographic techniques take 

advantages of the precision and repeatability of the top-down fabrication to produce vertical 

and uniform NW arrays on pattern masks. For randomly aligned NW, they have to be 

assembled by some assembly techniques, such as Langmuir-Blodgett assembly [595,596], 

field driven assembly [446], microfluidic assembly [597], and some other chemically driven 

techniques. The bottom-up growth has been discussed in detail by reviewing the VLS and 

VLS-like growth mechanisms. In the VLS, reactants from vapor phase form supersaturated 

liquid alloys, and then crystallize at the droplet-NW interface. The processes make sure that 

the condensation assisted by catalysts is much faster than the growth on the substrate. For 

the VSS, a solid catalyst can induce the multigrain unintentionally, but the solid phase can 

reduce the atom interdiffusion. No matter extrinsic catalysts, or intrinsic group-III elements, 

can control the anisotropic growth, determine the phase of NW, and incorporate dopants 

accompanied with in situ growth simultaneously. Meanwhile, these catalysts can induce 

compositionally abrupt and structurally perfect under appropriate growth parameters. The 

complex phase diagrams for transition metal-group III-V need to be further studied to 

determine and analyze the phases of NW. Appropriate catalysts for group III-V NW growth 

should be chosen to meet many criteria about alloy melting point, extra electron states, 

resistance to parasitic reactions, high-efficient diffusion, and some key thermodynamic 

parameters.  
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IV. Controllable Physical, Chemical, Electronic, and Photonic 

Properties of Nanowire 

A more comprehensive description for group III-V NW growth will have to include the 

understanding for the detailed growth techniques. NW growth occurs far from the 

thermodynamic equilibria in the common techniques of growing group III-V 

semiconductors, i.e., MOCVD (MOVPE) as an advanced industrial growth technique, and 

MBE as a high-quality laboratorial growth technique. Many continuously improved models 

facilitate a better understanding for the physical and chemical procedures in NW growth and 

predict quantitatively experimental observations. The precursors of different growth 

processes stem from the volatile species containing the constituent elements and the 

compound or its constituent elements from amorphous sources or polycrystalline species. 

The growth processes are not only controlled by the mechanics of thermodynamics and 

kinetics, but also affected by the chemical reactions, mass transport, and hydrodynamics. 

Heat transfer, temperature distribution, and the species velocity field depend on the 

geometry of reactors or the growth techniques. Actually, the effect of each parameter that 

controls the group III-V NW growth has not been revealed clearly till now. Reduced 

computational cost and relatively simple models or empirical equations are provided to 

analyze the changing tendency in experiments. No matter exploiting chemical methods, or 

applying physical methodologies, would be expected to alter the overall growth morphology, 

and subsequently affect the properties and qualities of NW by changing the overall growth 

conditions.  
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IV. A. Physical and Chemical Processes 

In MOCVD (MOVPE) growth technique, metalorganic compounds in vapor phase are 

supplied as precursors to the substrate with an inert carrier gas, such as hydrogen, deuterium, 

helium, or nitrogen [88,105,598,599]. Meanwhile, the carrier gas is also used as a coolant in 

the reactors and outer tubes. The influxes saturated with the metalorganic precursors are 

injected into a reactor under well controlled fluxes. The component elements of crystal are 

transformed into volatile agents through thermal evaporation, sputtering, or laser ablation. 

Large temperature gradients and concentration gradients take place in the reactor, and the 

elimination reaction occurs under appropriate growth conditions. However the details of 

reactions are uncertain, there seem to be dozens of species and several hundred detailed 

reactions in real chemical deposition procedures [599,600]. The reactions mention the 

processes of decomposition, recombination, adsorption, desorption and surface reactions. 

Forward and reverse reactions make the proposed mechanisms involve complicated species 

participating in a large number of gas-phase or surface reactions. The fluxes of reactants are 

controlled by switches, and the chosen species are easy for decomposition but can still store 

for mass transport formation in a long period to promise the compounds growing on the 

required sites. The rate of chemical reaction k obeys the Arrhenius law related to the 

activated energies of precursors Epre,  

( )expArr prek C E RT= −
                                             (237) 

where CArr is the preexponential factor. The ratio between the concentration of initial state ni 

and that of final state nf is determined by the Gibbs free energy difference between the 

chemical reactions, and the ratio equals to the inverse ratio of the kinetics between the 

forward and reverse reactions [599],  
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The interreactions and pyrolytic decomposition of organometallic reactants are 

considerably complicated. The group-III organometallic compounds are planar with sp2 

bonding and their pyrolysis is studied in low temperatures. The transition states involved in 

the abstraction by different kinds of radicals, i.e., atomic H radical, and alkyl radicals, 

involve the breaking and formation of different kinds of bonds, such as H-C, H-metal, C-

metal, H-H, C-C, and metal-metal. The bond strength of C-C decreases as the enhancement 

of the number of C atoms bonding to the central carbon in the alkyl. In the homolytic fission 

processes for decomposition of group-III organometallic compounds, trimethyl-III 

decomposes into dimethyl-III and monomethyl-III through the loss of the methyl radicals, in 

which monomethyl-III can be a more stable product in the decomposition. The methyl 

radicals produced from the decomposition can subsequently react with group-V 

organometallic compounds or atomic hydrogen radicals. The hydrogen can react with 

trimethyl-III or dimethyl-III in the hydrogenolysis reactions, and dimethyl-III or 

monomethyl-III and methane are produced in the reactions. Hydrogen or radicals can also 

react with dimethyl-III or monomethyl-III, and these processes produce by-products. The 

corresponding by-products can recombine with atomic hydrogen or radicals to produce 

methylated-III products. In the situation of a high input cation alkyl concentration, the free 

radicals favor to recombinate with hydrogen and methyl radicals. The activated ethane is 

produced through the methyl radical recombination, and some reactions occurred with ethyl 

and propyl radicals are indispensable, thus alkenes are produced in the reactions. The 

detailed mechanisms of the reactions and decompositions occurring in group-V 

organometallic or hydridic species are still unclear. The common homolytic fission and 
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hydrogenolysis reactions are also the major reactions in the group-V organometallic and 

hydridic species. The pyrolysis of group-V organometallic species produces different 

reactions through different types of intramolecular coupling reactions. Methane is produced 

as methyl radicals recombines with the H radical from the group-V hydrides.  

The surface reactions in MOCVD are extremely complicated because of involving a 

large number of reactions and species absorbed on the different orientations of surfaces. At 

first, the adatoms bound to surfaces only by a weak physisorbed effect and subsequent form 

stable chemical bonds with the atoms at bottom layers. The surface and H radicals can 

catalyze the decomposition of trimethyl-III organometallic species. Controlling the growth 

parameters suppresses the processes of the atomic H or methyl radicals and carbene species 

adsorbed on the surface free sites. The fractional coverage dependence on the adsorption or 

desorption rates are given in Eq.158 and 159. Considering the sticking coefficients affected 

by the steric factor, the fraction coverage, and the activation barrier for adsorption of species, 

the adsorption rate can be written by [600,601] 

( )2 exp
2

i i i ads
ads i

Bi B

P Ek P m RT x s
k Tm k T

p
p

 ∆
= ∝ − 

 
                      (239) 

where mi, xi, si are the molecular mass, molar fraction, and sticking coefficient of the species 

i, respectively. The dependence of transition state on the distance from a layer to vapor 

phase is plotted in Fig. 2. When the growth temperature is controlled below the eutectic 

temperature of group-III and catalytic metals, the sticking coefficient will become near to 

unity. 
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Figure 2. The dependence of transition energy on the transition distance. 

 

In a MOCVD system, the growth occurs as the existence of a driving force between 

different phases. The driving force caused by a chemical potential difference stems from the 

supersaturation variation caused by a temperature difference in the tube. The supersaturation 

is defined as a difference in chemical potential between a supply phase and an accept phase. 

If a three phase system is referred, the driven force between vapor and liquid, vapor and 

substrate, vapor and NW side-wall, liquid and solid, liquid and NW top can be expressed in 

terms of the difference of the chemical potentials (Actually, the top facet and sidewall facet 

of NW have different supersaturations due to the varied surface structures.), 

exp 1 1 exp 1 exp 1 1VN des AN LN
V A L

eqB B Beq atom

Jd n
nk T dt k T k Tn S

m t m mdxxx 
p

     ∆ ∆ ∆
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When Satom is the surface area per atom in a monolayer, and the chemical potential of a 

droplet is below the upper bound ∆μVN, the droplet accommodates or collects precursors 

from ambient vapor. The supersaturation is defined in terms of the chemical potentials in 

Eq.240, as the thermodynamic driving force. And the system is maintained supersaturation 

when the difference of chemical potentials is positive in Eq.242. In general, the chemical 

potential difference between a vapor phase and a solid phase will decrease with the 

temperature. When the chemical potential differences in Eq.241 decreases to zero, the 

system will have a tendency towards the state of equilibrium, or the system keeps 

undersaturated with a negative chemical potential difference. 

NW growth occurs as the supersaturation of adatoms is lower than that of the 

impinging gas, thus the force between vapor or diffusion fluxes to a catalyst is positive and 

the catalyst can accommodate the impinging species. When the driving force decreases to 

zero, the system will maintain at equilibrium. The absorbed atoms can be reevaporation or 

desorption if the driving force is negative. Eq.242 compares to the driving forces at different 

sites, thus suggests that the supersaturation has to be controlled above a certain value to 

satisfy the growth requirement. The supersaturation of a catalyst is always maintained nearly 

constant as far as possible in the experiment through controlling nucleation processes and 

influxes. Meanwhile, a high supersatuarion preferably promotes an axial over radial growth 

in NW. 

In general, the chemical reactions are temperature activated. The heat generated or 

consumed of reactions is ignored because of the precursors being diluted in the carrier gas, 

and therefore the reactions will not induce a temperature disturbance in MOCVD. 

Meanwhile, the flow pattern and transport phenomena are also temperature sensitive, so the 

temperature and its distribution are very critical in group III-V NW growth. At a low 
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temperature, the decomposition of precursors is limited due to the thermally activated 

processes. As the temperature increasing, the available free adsorption sites are enhanced 

resulting from the degree of precursor precracking and the arrival of species improved by 

the growth temperature. If the growth temperature is raised too high, the growth rate 

decreases with a too large desorption rate. The higher the deposition rate is, and the larger 

temperature gradient normal to the substrate is. 

In the reactor of MOCVD, group-III precursors decompose to intermediate species, and 

transport to the surface via the convection and diffusion mechanisms. The transport of 

energy and mass by diffusion and convection mechanisms play an important role in 

determining the chemical reactions and the fluid behaviors in MOCVD. Near the substrate, 

the effect of convective flows is relatively small, so the surface diffusion will be dominant. 

The driven flux of adatoms is described in Eq.161, and 163-167. Far away from the 

substrate, the diffusion in gas phase is driven by convective flow, thermodiffusion, or 

concentration gradient. The flux of species i controlled by its partial pressure and 

temperature is given by 

1 i
i i i i i i

B

PJ Pu D P D T
k T T

α = − ∇ − ∇                                        (243) 

where αi is the thermal diffusivity in heat transfer, and u is the flow velocity. In the view of 

adsorption and desorption, the incidence of flux on the surface in Fig. 1 can be written, 

( )
2

i
i eq i

i
B i

s P P
J

k Tmπ
− −

=
                                                    (244) 

The partial pressure has an important influence on not only the change in the 

temperature field, but also the extent of decomposition of organometallic species. Actually, 

the influences caused by sticking coefficients and temperatures are relatively small, so the 
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incident flows in above equations are controlled mainly by the partial pressure in 

experiments. Low partial pressure induces the reduction of surface coverage, and promotes 

the trimethyl-III precursors decomposition. The axial velocity relative to the entrance 

velocity in the horizontal reactor depends on its local temperature [600], 

( )2 2

2
0

2 rea loc loc
axis axis in

rea

r r T
u u

T r

 −
 =
                                            (245) 

where the subscripts rea and loc indicate the reactor and the location in reactor respectively, 

and  the subscript in stands for the parameters in the entrance. 

The actual flow field in MOCVD reactors is 3D without a particular symmetry, due to 

the complex heat transfer, convection, buoyancy effects, and complicated reactor geometries. 

Therefore complicated nonlinear transport phenomena with multiple flows exist in the 

reactors. The heat transfer encompasses the radiation heat transfer between solid surfaces, 

conduction in the gas, walls and a susceptor, as well as the convection in the gas phase 

species. A destabilizing temperature gradient caused by a heat flow and different 

temperature walls will induce convection in the gas phases. The forced convection may be 

caused by the rotation of a susceptor. Natural convection produces flow recirculations in the 

reactors resulting from different temperature gradients and concentration gradients. 

Meanwhile, the flow is generated by buoyancy due to the existent of a large temperature 

gradient between the cold walls and a hot susceptor. A phenomenon that small particles in 

the reactor are driven away from a hot surface and towards a cold one is called 

thermophoresis. This mechanism dominates to induce mass transfer in the situation of 

existence of temperature gradient. The phenomenon of vortices can occur at a high density 

of species or a large temperature gradient.  
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For different geometrical reactors in MOCVD growth technique, the actual convection, 

diffusion, and flow recirculation are totally different. The geometries of reactors can be 

roughly divided into horizontal [602-614] and vertical [606,612,615-620] structures. Some 

chemical kinetic models and transport phenomena models are provided to simulate the fluid 

mechanisms, heat transfer and their influences on the growth. Actually, there is no 

appropriate or precise models provided for group III-V NW growth in MOCVD. Fortunately, 

fluid mechanics and heat transfer in film growth models can be applicable in NW growth. 

Even if the surface of substrate in the traditional film model is different with the substrate of 

NW growth, the fluid mechanics and heat transfer in the reactor are roughly similar. But the 

mechanisms of mass transfer are different for the zones near and on the substrate surface. So 

the diffusion mechanism dominates for mass transfer near and on the substrate. However, 

the unflatness of structure is indispensable to disturb flows in the reactors. 

In horizontal MOCVD reactors, the fluid flow models are described to simulate the 

fluid mechanics involving the momentum, energy, and species conservation. The 

conservation of linear momentum is described by the Cauchy momentum equation (The 

Cauchy momentum equation transforms into the Navier-Stokes equations under different 

fluid conditions) [621], 

( ) 21
dy k

u u u P g u
t

ν
ρ

∂
+ ⋅∇ − ∇ = + ∇

∂                                    (246) 

where dyadic Pdy is the component of stress, ρ is the density that consists of the product of 

the concentration of gas species and its mole fraction, g is the gravity, and vk is the 

kinematic viscosity that depends on temperature and pressure. The terms in Eq.246 stand for 

the local acceleration, the convective acceleration, the pressure acceleration, the gravity 

acceleration, or the viscous deceleration of the species, respectively. The 2D fluid flows in a 
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horizontal reactor can be written as the Cauchy momentum equation (Define the axial 

direction as z-direction, the vertical direction as y-direction, and the transverse direction as 

x-direction) [602-605,609], 

1 1 4 2 cos
3 3

y yz z z z
y z k

u uu u u uu Pu u v g
t y z z y y z z z y
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where ϕ is the orientation angle with respect to the horizontal position. The conservation of 

mass is described by a continuity equation [105,609,611,621], consisted of a local change 

and a convective change. 
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In an ideal gas model, the momentum conservation equations are coupled with the 

energy balance [105,604,605,609], 

1 1 0p p y z V V
T T T T TC C u u k k
t y z y y z zρρ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + − − =     ∂ ∂ ∂ ∂ ∂ ∂ ∂                    (250) 

where Cp is the heat capacity of vapor, and kV is the thermal conductivity of the carrier gas. 

The mass conservation equation is coupled with the energy balance [105,611], 
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where Di is the thermodiffusion coefficient. The thermodiffusion is very important due to a 

large temperature gradient in the growth process. The heat conduction for NW nucleation 

has been given in Eq.187, and the heat conduction in reactor is described by, 

2 0W Wk T∇ =                                                          (252) 
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where kW is the heat conductivity of reactor walls. The temperature of wall is determined via 

a combination of heat transfer by radiation, conduction, and convection. The speed of heat 

conduction process related to the convection velocity depends upon the flow rate. From 

Eq.250-252, energy transfer and momentum transfer gives rise to temperature gradients and 

velocity gradients.  

The flow pattern can be modulated not only by the geometries of sidewalls, but also the 

tilting susceptor with an angle diverging from the horizontal, as well as the introduction of 

baffles. a tilting susceptor can provide a more uniform temperature layer above the susceptor 

due to transverse temperature variations across the susceptor, and thus improve the 

uniformity of growth process [604,606,607]. The vorticity including eddies caused by 

turbulence can be written as the curl of velocity [621,622],   

2 angular uζ ω= = ∇×                                                  (253) 

where ωangular is the angular velocity. The vorticity transport can be derived from the curl of 

Eq.246, 
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dy ku u P g
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∂
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∂                         (254) 

The cold finger effect in the upper part of a reactor induces the asymmetry of 

temperature gradient, transverse rolls, as well as the disturbances of thermal-diffusion, 

convection, and chemical reactions [609,623], meanwhile the heat transfer and the heat 

radiation from a hot wall to cold flows are involved in the phenomenon. Therefore the cold 

finger phenomenon becomes more pronounced at gases with a lower thermal conductivity. 

The cold finger effect in MOCVD can be suppressed as conduction is maintained 

sufficiently faster than convection. 
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The boundary conditions are especially important for the above differential equations. 

For a incompressible flow, the tangential velocities of species should be zero near the 

outside boundary. For a slip flow, the viscosity of species may affect the fluid. The 

boundary conditions can be controlled by the geometry of the reactor, and the growth 

parameters in detailed experiments. The actual boundary conditions and the detailed growth 

parameters should be divided into several regions along the direction of flow in a horizontal 

reactor due to the different growth rate, pressure, and temperature in different regions, such 

as a susceptor is isotherm as a whole region, otherwise its front or back region is colder than 

itself as different regions. 

In vertical MOCVD reactors, reactants are incorporated with a carrier gas and impinge 

perpendicularly on the rotated substrate. A fluid flow model is described to transfer energies 

and species through an axisymmetric conduit structure. The momentum conservation of 

laminar pipe flow can be written as the Navier-Stokes equations in cylindrical coordinates 

(Define the axial direction as z-direction, the radial direction as r-direction, and the 

azimuthal direction as φ-direction) [615-617,621], 
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 ∂ ∂ ∂  ∂ ∂   ∂ ∂ ∂ ∂ ∂     + + − + = − + − +         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂         
(257) 

The actual mass conservation, the momentum and mass conservations coupled with the 

energy balance, as well as vorticity transport in a vertical reactor are also the Navier-Stokes 
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equations based on cylindrical coordinates in similar representations in a horizontal reactor. 

For a vertical reactor, jet penetrating should be prevented, because the jet phenomenon 

increases the mass transfer in the center and reduces the mass transfer near the edge due to 

upflows in the convection [616]. The enhanced of spinning speed or the increase of 

susceptor rotating can assist to improve the poor uniformity caused by jet.  

For no matter horizontal or vertical reactors, the simulation models are transformed into 

a set of nonlinear coupled partial differential and algebraic equations. The nonlinear 

equations can be discretized by the Petrov-Galerkin finite element method [624-628], and 

the computational domain is discretized into a mesh on which the solution field is 

approximated by piecewise continuous Lagrangian polynomials. Massively parallel 

computer codes, i.e., MPSalsa code [629], N3S-MUSCL industrial code [630], or SPIN code 

[631] can be used to simultaneously solve a set of coupled partial differential equations. The 

properties of gas-phase multicomponent, viscosities, diffusion coefficients, thermal 

conductivities, and thermal diffusion coefficients can be evaluated by a FORTRAN code 

[632] and a TRANSPORT code [633] in CHEMKIN library, as well as a FORTRAN code in 

TRANLIB library [634]. Coupled fluid flow, heat transfer, multicomponent species 

transport and chemical reactions governed by equations of continuity, momentum balance, 

energy balance, and mass transport, can be solved quantitatively. 

There is a tradeoff between lost accuracy in excessively oversimplified assumption and 

computational cost savings. However, Oversimplified models are unable to predict the 

group III-V semiconductor growth, and thus cannot produce the results in agreement with 

experimental data quantitatively, resulting from the complex geometry, wrong empirical 

coefficients and correlations, as well as the oversimplified properties of fluids such as mass 

diffusivity, kinematic viscosity, surface tension, and so on. Constructing a fully 3D flow 
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structural model for group III-V NW growth will contribute to predict the growth processes 

quantitatively and qualitatively. 

MBE technique operates via physical vapor depositions and chemical reactions of 

thermal atoms or molecules directly to form an ordered structure at an ultrahigh vacuum. 

The early collimated molecular beams were used to grow GaAs layers in the late 1960s 

[635-638]. Through exploiting molecular beams under a high vacuum, the production of 

pure epitaxy semiconductors and the controlling of the composition at the atomic level 

became feasible. NW growth in MBE under high nonequilibrium conditions is driven by the 

differences in surface energies, sticking coefficients, and diffusion coefficients on different 

crystal planes. In gas source MBE, group III-V materials deposite and condense on the 

substrate, whose growth mechanisms are similar with the mechanisms described in CVD 

section. The pyrolysis and cracking of group-III metalorganic species and group-V hydrides 

provide group-III and group-V elements separately meanwhile some by-products are 

produced in the reactions. In common solid source MBE, either group III-V compounds or 

high purity group III/V elements are used as the sources of molecular beams, which can be 

externally stored and renewed in Knudsen effusion cells.  

The MBE assembly consists of the generation region, the mixing region, and the 

condensed region [105]. The decomposition of compounds or the evaporation of condensed 

sources from a cracker tube or a Knudsen cell provides mixture of dimers and tetramers, as 

well as elemental molecular beams. The ratio of tetramers to dimeric molecules depends on 

the growth temperature in a chamber. The state of a effusion system can be modulated by its 

pressure and temperature. According to the Gibbs phase rule, only one degree of freedom in 

the system because of one component existing under the solid-vapor phase transformation, 

so pressure and temperature in cells are interrelated (If existing solid and liquid phases for a 
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component, the degree of freedom is two, hence temperature and pressure are independent). 

The pressure in the cell and the effect of pressure on the phase transformation can be 

estimated by the Clausius-Clapeyron equation,  

T V dPdT
H

α β α β
α β

α β

→ →
→

→

∆
=

∆
                                               (258) 

The change of temperature is linear with the change of the applied pressure. The exponential 

prefactor Ecell is affected by the material and the geometry of cell. 

expcell
B

HP E k T
 −∆=  
                                               (259) 

where ∆H is the latent heat or the enthalpy of vaporization. In Knudsen cells, the driving 

flux generation bases on the solid-vapor phase equilibrium. The equilibrium pressure is 

maintained when a solid source material in thermodynamic equilibrium with its vapor under 

the pressure Peq-V-E. Actually, the equilibrium pressure can be maintained in the whole cell, 

due to a very small orifice of cell. According to Eq.259, the equilibrium pressure inside a 

cell at different growth temperature can be derived, 

0 0

1 1ln eq V E

eq T B

P H
P k T T

− −

−

   ∆
= − −                                                    (260) 

where Peq-T0 is the equilibrium pressure at temperature T0. The outcoming flux from a orifice 

into the chamber has to be replenished by the equal quantity of material evaporated from the 

condensed phase to maintain the equilibrium pressure in the cell. The outcoming flux and 

the replenished quantity satisfy the mass conservation and the dynamic equilibrium. 

Followed by the generation processes, the constituent elements are transported from a 

effusion cell to substrate via molecular beams. There is a checks and balances between the 

phases and the equilibrium partial pressures for outcoming species. In a chamber,  extremely 
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low pressure reduces the collisions and the interactions between molecular beams and 

background gas-phase matters. The macroscopic equilibrium of interactions is governed by 

thermodynamics and kinetics, 

expi compound
i B

S HP
k T

e
 ∆ −∆

=  
 

∏
                                       (261) 

where εcompound is the activity coefficient of compound and it is proportional to exp(μi/kBT). 

Pi is the corresponding partial pressure of species i including the outcoming elements and 

the residue gas. Based on Eq.261, the detailed partial pressure of specie can be derived. The 

actual pressure of MBE system is much lower than that of MOCVD system, and the 

common order of magnitude of background pressure may be reduced to 10-9-10-10 Torr in 

the MBE chamber. In general, the partial pressure of group-V (~10-5-10-7 Torr) is 

considerably greater than that of group-III (~10-7 Torr) [477,534,552]. Group-V partial 

pressure is modulated to be larger than the partial pressure of group-III atom in an 

experiment, because group-V atoms will not stick to the surface in the absence of group-III 

atoms [172,635-637]. Therefore the actual growth rate is governed by the arrival rate of 

group-III atom. Based on the mechanism of group-III atoms providing adsorption sites, an 

extra group-III elemental pre-deposition step was introduced sometimes [536,562]. 

During mass transport, one or more molecular beams with different azimuth angles are 

injected toward the substrate and intersect each other. The fluxes of molecular beams are 

influenced by the geometry of assembly of Knudsen cells and substrates, the inside partial 

pressures and the inner temperatures. The effusion rate from the orifice of cell is the product 

of an outcoming flux and the surface of the orifice opening Seffusion, 

( ) ( ) lim

2 2
eq V C res effusion eq V E res sub ation

eff effusion
B B

P P S P P S
JS

k Tm k Tmπ π
− − − −− −

Γ = = =
               (262) 
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where Pres is the partial pressure of residual gas, which is commonly smaller than 10-10-10-11 

Torr. Peq-V-C is the equilibrium pressure in the chamber. Ssublimation is the sublimation area of a 

condensed source in the cell, and Seffusion is the area of orifice. The actual effusion rate may 

be much smaller than the ideal rate due to the reaction between atoms with the wall. In an 

ideal situation of ignoring the orifice wall thickness, the angular distribution of the 

evaporated molecular beam follows a cosine law, 

( ) coscell cell

angle

dJ J
d
J J

ω π
=

                                                 (263) 

where ϑcell is the inclined angle referred to the normal direction of cell opening, and ωangle is 

the incident angle corresponding to the incident flux direction. The angular distribution 

increases with the thickness of wall increasing. The angular distribution of flux can be 

simplified. The flux is inversely proportional to the square of the distance, 

( )
2 2

effusion eq V C res

OS B

S P P
J

l k Tmπ
− − −

∝
                                              (264) 

where lOS is the distance from the opening site. 

The heat transfer between the substrate and the mixed gas depends on the thermal 

accommodation coefficient given in Eq.160. The temperature difference ratio reflects the 

energy transferred between the intersecting gas and the arriving atoms on the substrate, 

modaccom ation i e i sE E E Eγ = − −                                       (265) 

where the subscripts are the same in Eq.160. The adsorption fluxes of species i controlled by 

their partial pressures and temperatures are given in Eq.243 and 244. In the adsorption 

process, the material with low pressure has a higher sticking coefficient. This phenomenon 

seems to be not applicable to the residual gas in MBE system. The partial pressure of 

residual gas is smaller than 10-10-10-11 Torr, while its sticking coefficient is much smaller 
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than unity. For the catalyzed NW growth, the sticking probability is considerably high on 

the particle and vanishingly small elsewhere. For the template-assisted NW growth, the 

sticking coefficient is near to unity, while the sticking coefficient on the mask is near to zero. 

Some group III-V NW growth rates with different growth parameters are listed in Table 3.  

 

Table 3. Growth parameters of group III-V NW via MBE technique. 
Material Temperature Group-III Rate 

& Partial 
Pressure 

Group-V 
Partial Pressure 

Nanowire 
Growth 

Rate 

Ref. 

InAs 480ºC 0.24 Å/s 1.95×10-6 Torr 
3.90×10-6 Torr 
0.75×10-5 Torr 

1.51 Å/s 
3.02 Å/s 
6.04 Å/s 

[487] 

GaAs 630ºC 0.25 Å/s 1.50×10-6 Torr 2.94 Å/s [514] 
GaAs 630ºC 0.25 Å/s 2.03×10-6 Torr 15.00 Å/s [528] 
GaAs/ 

InGaAs 
560ºC 1.70×10-7 Torr 

(Ga) 
1.00×10-5 Torr 

(In) 

3.20×10-7 Torr 75 Å/s 
(GaAs) 
47 Å/s 

(InGaAs) 

[537] 

GaAs 590ºC 0.205 Å/s 8.00×10-7 Torr 4.64 Å/s [542] 
GaAs 640ºC 4.20×10-7 Torr 4.80×10-6 Torr 2.52 Å/s [552] 
GaN 700ºC 1.70×10-7 Torr 5.10×10-7 Torr 0.3367 Å/s [639] 
--Group-V Partial Pressure is the beam equivalent pressure.  
--For a gas phase reaction, concentrations are replaced by partial pressures sometimes. 
--The actual NW growth rate may be not a constant rate [546]. 
--The data derived from the different geometrical equipments has no practical 

significance to do a horizontal comparison. 
 

No matter the associative adsorption in a solid MBE chamber, or the dissociative 

adsorption in a MOCVD reactor, exhibit the processes of physisorption and chemisorption. 

A genuine physisorption holds the atoms together via van der Waals’ forces that are smaller 

than 20 kJ/mol at most of time. If the absorbed adatoms want to be compatible with the 

substrate, a stronger chemical bonding formation should be held. The strength of bonding is 

beyond 50 kJ/mol, which is enough high to localize the atom. The adsorption depends not 

only on the interaction between adatom and substrate, but also on the forces between 

adatoms. Sometimes, the adsorbate atoms are not on the surface, but rather locate at the 
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lower layers or the sites between the lower layers. The formation of adsorption process is 

reflected by the residence time. The adsorption residence time can be written, 

1 exp ads
thermal

ads B

E
k T

υ
t

 
= − 

                                             (266) 

where the vibration frequency υthermal is the same with Eq.183 caused by thermal, and the 

oscillation frequency is typically larger than the diffusion frequency in Eq.184. Eads is the 

adsorption energy, which is typically several times Edes. The adsorption energy can be 

obtained by measuring the change of work function via an adsorption microcalorimeter 

[640,641]. In the microcalorimeter method, the change of adsorption heat reflects the 

adsorption energy indirectly. The desorption process behaves reversely as the adsorption 

manner, but expresses in a similar manner. Desorption activation energy equals to the 

differential heat of adsorption [642]. Thermal desorption induces the decomposition of 

chemical binding, and aggravates at a high temperature. Therefore desorption at a high 

temperature or kinetics at a low temperature is the limitation of mass transport, and they 

reduce the group III-V growth rate both. The dependence of desorption time on the 

activation energy is given in Eq.183. The activation of desorption process can be measured 

by thermal desorption spectroscopy [642-644]. 

In general, the processes of arriving, adsorption, desorption, reevaporation, capture, 

diffusion, and nucleation maintain a dynamic balance and mass conservation. The 

dependence of mass transfer on the Fick’s law is described in Eq.166 and 167, and the 

lifetime can be obtained from the Matthiessen’s rule, 

1 1 1 1

des ads diffτ τ τ τ
= + +

                                               (267) 
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For the adatoms on the mask, the preferentially diffusion and desorption processes 

dominate in mass transfer. In the process, the diffusion flux to the reaction site is written 

[645,646], 

2expdiff thermal des d
D mask

sur B

E EJ
D k T

u u
−

 −
∝ − 

                                      (268) 

And the direct impinging flux into a catalyst can be described by, 

2

expthermal ads des
imping top

S B

E EJ
D k T
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−

 −
∝  

                                        (269) 

Eq.269 gives the dependence of the activation energies on the accommodation flux of atoms. 

The activation energy can be also macroscopically reflected from the slope of curve in the 

Arrhenius plot by measuring the relationship between the NW growth rate and growth 

temperature. In a similar manner with group III-V bulk (film) growth, the enhancement of 

the growth rate of NW is induced by the reduced activation energy for pseudo-1D structure. 

The net flux in MBE can be obtained from the sum of all fluxes. 

( ) ( ) surf
surf imping top D mask surf

des

ndN JS J S J S Sdt θ θ
t− −  = ≈ + − + 

                   (270) 

where the order of magnitude of diffusion length is much longer than the magnitude of NW. 

J is the incident flux impinging on the surface in MBE and it can be calculated in Eq.263 

and 264, and nsurf is the number of adatoms on the surface. The reaction rate depends on the 

activation barrier, and the high barrier will suppress the reaction rate. A common method for 

reducing the activation barrier is a technique of exploiting catalysts. The catalyst provides 

an easier reaction path. In section III.B, a catalyst reacting with group-III atoms to form a 

eutectic alloy has been explained [192,226,228]. Actually, the eutectic alloy may provide an 

intermediate state with a much lower activation energy barrier compared to the reactions 
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without catalysts. In the catalyzed process, the energy varies from an origin state jumping to 

an intermediate state with a relatively small barrier, instead of covering a very large barrier 

to a final state directly. Then the energy transfers from the intermediate state to a final state 

with a similarly small barrier. Therefore the catalyst exploits a barrier reduction to induce a 

highly anisotropic pseudo-1D manner.  

The catalysts are not only used to lower an activation energy barrier, but also applied to 

provide a high degree of precision regarding morphology, site location, and the orientation 

of NW. There are some direct methods based on the top-down lithography. Lithography 

techniques are exploited to decide the size of catalyzed seeds, such as E-beam lithography 

[647,648], and nanoimprint lithography [649,650]. E-beam lithography accompanied by the 

traditional metal evaporation, lift off and chemical etching, is used to define the pattern on a 

substrate. Meanwhile, E-beam lithography and dry etching can be also used to define a 

stamp for the nanoimprint. In nanoimprint lithography, mechanical contact replaces 

chemical etching to replicate the pattern into materials by a pattern transfer method. 

Therefore it prevents the drawbacks caused by chemical etching (except for the procedure of 

etching oxides), meanwhile, reduces cost and enhances throughput. After the lithography 

processes, samples are transferred to the chamber or the reactor immediately, then are 

deoxidized under a group-V pressure to form a catalyst-group-III eutectic alloy.  

Another indirect method for synthetic strategy is the fabrication of a colloidal solution 

droplet of monodisperse nanocrystalline on a suitable substrate. The droplets with diameters 

below 100 nm for no matter foreign metal catalyzed NW or self-catalyzed NW can be 

deemed as aerosols of solid particles or liquid droplets in gas. Accurate size control for 

droplets is important to tune the uniformity of NW. Many aerosol researches originate from 

the problems caused by the contaminants deposition onto product surfaces during 
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manufacturing process. The contaminations induce the loss of product yields and lead to a 

malfunctions of electronic circuits. Conventional methods for generating monodisperse 

nanoparticles include high temperature thermolysis [651], laser pyrolysis [652], milling, 

vaporization/deposition [171,653-655], sputtering/deposition, spark discharge [656], 

collision, and sol-gel technique, etc. In NW growth, some simple and continuous aerosol 

technologies are used to produce catalysts to induce NW growth, and monodisperse aerosols 

are selected by some filtering means. Actually, high purity monodisperse aerosols with 

desirable sites, size, morphology, and crystalline phase can provide not only controllable 

catalysts, but also possible applications for independent building blocks attached to NW in 

electronic, photonic and energy applications. In the aerosol synthesis, evaporation or 

condensation in a kinetic model involves a series of atom diffusion, nucleation, growth, 

preparative size fractionation and filtering processes. 

For suppressing the random size distribution of aerosols, the growth of nuclei should 

occur before its Ostwald ripening process where a large cluster increases with time and 

small particles dissolve into the large one. According to the Gibbs-Thompson effect 

described in Eq.138, larger particles with lower chemical potentials will grow at the expense 

of small particles with higher chemical potentials. The driving force inducing the asymptotic 

particle size distribution in a diffusion limited situation, can be expressed by the Gibbs-

Thompson effect [106,657,658], 

( ) 0
21 molarVn r n

rRT
γ = + 

                                                 (271) 

where n(r) and n0 are the solubilities of particles with radii r and bulk. γVmolar/RT is the 

capillary constant and it is of the order of several nanometers for solid-liquid interfaces 

typically. According to Eq.138 and 271, the aerosol growth and dissolution processes are 
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size dependent. Besides the aggregation effect, diffusion and sintering also have influences 

on nanoparticle size, density and distribution on the substrate. The aerosol growth rate can 

be written [657], 
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where nmono is the monomer concentration in bulk, Cactivation and Ctransfer are the activation 

energy parameter and transfer coefficient respectively, and rc is the critical radius given in 

Eq.154 where the growth and dissolution rates are equal. The nanoparticle distribution was 

discussed in [659-661], and the distribution can be derived according to the asymptotic 

distribution parameters and the activation energy parameter of the reaction. In the diffusion 

limited, the concentration of aerosols per unit surface area, depends on the size and time, 

meanwhile satisfies mass conservation for the absorption atoms, 

ae
ae

N rN
t r t

∂ ∂ ∂ = −  ∂ ∂ ∂                                                   (273) 

And mass conservation can be written by, 

( )3
3

2 3cos cos
3 ae abs desN r dr I I

π θ θ− +
= −∫                                (274) 

The aerosol growth rate can be derived from the Thomson-Freundlich equation [662], 

2
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A vis D
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dt N d r r r
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π ν r

 
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                                            (275) 

where S is the solubility of aerosol in a saturated solution, Mgram is the molecular weight, σ 

is the interfacial tension, NA is the Avogadro’s number, νvis is the viscosity, dD is the 

diameter of the diffusion atom, and ρ is the density of the molecular.  
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In the situation of source limited, the equilibrium of concentration may be not limited 

by diffusion processes. However absorption and desorption can determine the equilibrium. 

The average concentration is written by [106], 

( ) 0 2

2
1 molarV r

n r n
r RT

γ 
 = +
 
                                           (276) 

Actually, the processes of convection, diffusion, sedimentation, aggregation, sintering, 

electrical force caused by polarity, thermophoretic force, and turbulence, as well as high 

vacuum and high temperature growth condition, all may interfere with the spatial uniform 

aerosol formation. According to the distribution equation, the most frequent size of aerosol 

in the steady state distribution is in the range of 1.00<r> to 1.15<r>, and the number of 

aerosols whose sizes are above 1.5<r> tends to a very small number. 

An indirect method for separating aerosols was used according to their electric 

mobilities [171,653,655,663-666], because the mobility is inversely proportional to the 

aerosol size. Although the electrostatic classification reduces the concentration substantially, 

monodisperse aerosols can be produced effectively. When the size of an aerosol is larger 

than 20nm, the bipolar charge distribution of aerosols is in good agreement with the 

Gaussian distribution [667,668]. The charging efficiency and the fraction of charged 

aerosols may decrease with the reduction of aerosol size. When the size of aerosol is smaller 

than 10nm, the probability of uncharged aerosol exceeds 99% [171,653]. In a differential 

mobility analyzer, size selection can only be done for charged particles. So the generated 

aerosols should be charged by photoelectric charging after evaporated in the furnace. Then 

aerosols are classified according to their sizes, and the monodisperse aerosols can be 

obtained from the controllable voltage and temperature. In the apparatus, the stream function 

Jstream and the electric flux function ΦE in a analyzer apparatus can be used to define the 
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particle path, and they can be written in cylindrical coordinates (The coordinates are the 

same with Eq.255) [663], 

( )
,stream r zr z

J ru dz ru dr= −∫                                           (277) 

 
( )

,E r zr z
rE dz rE drΦ = −∫                                             (278) 

where u and E are the velocity and electric field in a analyzer apparatus respectively. 

After the charged aerosols remain airborne then pass the analyzer, the filtered and 

classified aerosols can be deposited on the substrate by means of electric field, laser, fluid 

dynamics or van der Waals interactions. Charged aerosols can be attracted onto a charged 

substrate by electrostatic precipitation, so a site-controllable aerosol deposition can be 

realized by controlling the electrostatic precipitator [664,669]. Sometimes, charged aerosols 

are neutralized by a radioactive source for avoiding unwanted electrostatic effects. The 

actual neutralized aerosol efficiency will be affected by the ion concentration and its 

mobility in the chamber [667]. Fluid dynamics has an important influence on the aerosol 

deposition too. The randomness of distribution caused by Brownian motion, gas phase 

mixing, and the complex coupling of different mechanisms is inevitable, but the uniformity 

can be improved via the control of the kinetics mechanisms and the thermal treatment 

processes. In general, a smaller quantity of fluid and a smoothing temperature gradient can 

give smaller geometric standard deviations.  

Capillary forces not only induce the aerosol coarsening according to the LSW theory 

[659,662], but also alter the morphologies of NW, as well as promote NW growth. Capillary 

is an important driven force for the motion of internal interfaces and free surfaces as 

illustrated in Fig. 3, especially when the size of aerosol approaching or being smaller than 

the critical radius rc [670].  The capillary effect has an important influence on the droplet. 
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The equilibrium of droplet is under the balance of gravity, hydrostatic pressure, and 

capillary pressure. The capillary effect rise when the contact angle θ is less than 90º, 

whereas the capillary phenomenon will be depressed. Capillary pressure and hydrostatic 

pressure may affect the characteristic length for a droplet. The capillary length is given by 

[671], 

  
VL

ca g
gλ ρ= ∆                                                        (279) 

where g is the acceleration of gravity, and ∆ρ is the density difference caused by the 

surfacial fluids. When a droplet is larger than the capillary length, the droplet tends to flatten, 

whereas the droplet will remain to wet the NW.  

 

 

Figure 3. The NW model with capillary forces. The subscripts S, I, and D stand for 
surface, interface, and dislocation, respectively. The lowercase letter s stands for the 
arc length along the NW surface. σ is the stress. λpert is the perturbation wavelength on 
NW surface. νn is the normal velocity. The other subscripts and signs are the same 
symbols in Figure 1. 
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In Fig. 3, local distortions of the droplet occur in the vicinity of the triple line. The 

displacement caused by distortion may be displaced either towards or away from the biphase 

interfaces. These distortions induce the variations of Gibbs free energy of interface between 

droplet and NW, the changes of truncated angles on the top of NW, meanwhile lead to the 

fluctuations of NW radius [91,298]. Atom diffusion caused by capillary is concerned with 

the diffusion potential that is influenced by the local interface curvature. The diffusion 

potential with the isotropic curvature (K~1/r) for a undistorted sphere can be given by,  

0diff molarV Km γΦ = +                                                 (280) 

Take into consideration of the surface stress hence the curvature is influenced by the stress 

[672],  

2

6 hK
EY h
σ+ +

− −

=                                                         (281) 

The potential in a convex region is higher than that of concave region, so the atoms will 

diffuse from convex to concave. Mean curvature can play a role in the basic physical driving 

force arising from the difference in curvature. For any curved isotropic surfaces [673,674], 

( ) ( )1 2n K Kξ γ∇ ⋅ = +                                                  (282) 

where ξ(n) is the capillarity vector for an isotropic or anisotropic interface and it can be 

expressed as the product of the scalar surface energy γ and the orientation n


. The term of 

K1+K2 is the mean curvature, which is also an isotropic weighted mean curvature [674-676]. 

For an isotropic interface, γ is independent on the orientation, while for an anisotropic 

interface, stress σ on different orientations having torque components. 
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Eq.167 gives that the surface flux arises from the difference of atom concentrations on 

the NW surface. The surface atom flux caused by a capillary force can be expressed as the 

surface gradient of curvature [106], 

Nf VN
NS

D KJ
RT s
γ ∂

= −
∂                                                   (283) 

Through a flux, atom diffusion from a large curvature surface to a low curvature surface. 

A local driven force is derived from the variation of local curvature. Flux JLS on a droplet 

has a similar expression as Eq.283. The geometric surface normal velocity is proportion to 

the accumulation of fluxes and it is a result of the divergence of flux caused by a capillary 

force,  

2

2nN ph NS caN
KV J C
s

n ∂
= − ∇⋅ =

∂                                         (284) 

where Vph is the volume phase change on the NW surface, and CcaN is the capillary 

parameter in the geometric motion velocity where the interface is capable of moving. For an 

anisotropic surface, the surface diffusivity is anisotropic. In this case, the surface derivatives 

can be obtained, 

( )an surfK nξ= ∇ ⋅                                                     (285) 

The anisotropic curvature can be simplified as γ∆rS/Vph on the NW surface. According to 

the geometric motion, the surface roughness ∆r can be derived based on the Fourier 

transformation method, 
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where the surface roughness has a relationship with a fourth-order spatial derivatives of the 

NW surface. According to the instability theory, there may be no normal velocity occurring 

on NW surface when the perturbation wavelength is less than the circumference of NW. 

The vapor transport on NW surface is affected by the ambient and equilibrium pressure. 

Mass transport occurs from large curvature region to low curvature region. The vapor 

transport normal velocity is given by [106], 

( )nV ph VS ph environ e caVV J V K P P C Kn = = − = −                                (287) 

where CacV is the capillary parameter in vapor transport. Actually, the normal velocity 

caused by vapor transport is a second-order spatial derivatives of the NW surface.  

 

IV. B. Surface Structure, Morphology, Crystallography, and Strain Effect of 

Nanowire 

Any attempts to systematically investigate the properties of NW, it is extremely 

important to analyze the surface structure including the static surface relaxation and 

reconstruction in different NW phases, orientations, or sizes. In bulk materials, the 

proportion of surface atoms can be negligible or have a relatively small effect. A high aspect 

ratio in NW structure makes the atomic structure of surface play a more significant role in 

semiconductor devices. The atomic structure of surface is different with that of bulk due to 

the absence of neighboring atoms on the outer side. Actually, the surfacial structure of NW 

may not coincide with that of bulk too. 

Comparing with metal materials, group III-V semiconductor materials have strongly 

directed covalent bonds with the direction of the tetrahedral coordination. For a group-III 

atom, trigonal molecule has three ligands separated by 120º, and three covalent bonds have a 
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hybridized sp2 bonding configuration. For a group-V atom, sp3 hybridization exhibits a 

tetragonal bonding configuration, and the ligands are separated by 109.5º. In the NW facets, 

the outermost atomic bonds will redistribute with the shifted atomic positions, and the 

surface energy distribution will change with the charge redistribution on the facets of NW. 

The surface energetically favors a facet with a low surface energy to reduce the whole free 

energy in the system however twins, stacking fault, polytypes, relaxation and reconstruction 

make the oversimplified model impossible to satisfy the experimental observation. 

 

 

                                          (a)                                           (b) 

Figure 4. The crystallographic directions of (a) WZ structure and (b) ZB structure. In 
(a), {1122 } and {1102} planes are semipolar. In (b), (111 ) surface can be denoted (111)B 
surface. B-surface is terminated by group-V atoms. 
 

For a cubic structure, group III-V materials favor to exhibit a ZB structure, except for 

nitrides. The actual phase and surface structure of NW are determined by the specific 

growth conditions, concrete growth parameters, the dimensions of NW and the growth 

kinetics. Many experiments exhibit some indistinct, but referential tendencies for the phase 

transformation of NW. Through the observation of the atom consumption in the VLS or 

VLS-like process, the ZB structure formation occurs at relatively low supersaturation 

described in Eq.240-242, while the WZ structure formation is preferred at high 
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supersaturation. The WZ structure is conducted when nucleation occurs at the triple line, 

while the nucleation formation at the center of catalyst-NW interface favors to induce the 

ZB structure [89]. For a small diameter of NW, the WZ structure is favorable, and the 

polytypes occur with the diameter increasing [89,677,678]. Growth parameters of NW seem 

to have no distinct rules to control the morphologies of NW. NW may be predominantly ZB 

at a low temperature [679,680], or a low temperature condition may induce the exhibition of 

ZB structure [681]. 

For solar cells or LED, NW ensembled with more or less random orientations and 

placements, or short range order may be not required to induce the vertical growth 

compulsively. But conducting vertical growth and precise controlling the surface structure 

of NW are necessary to improve the properties of NW. The most common WZ NW 

orientation along <0001> and the most common ZB NW orientation along <111> are 

schematized in Fig. 4. No matter WZ or ZB structure with hexagonal cross sections are 

restricted by the specific low-index facets, whose outermost atoms are stretched on the 

surfaces. 

Although the surface energy of {1100} is lower than that of (100) or (111)A/B in ZB 

structure, polytypes associated with ZB/WZ and ZB structure possibly appear as the whole 

crystal structure or only in small segments. WZ and ZB crystal structures exhibit repeating 

ABAB (2H) and ABCABC (3C) stacking sequences along NW axis directions. Polytypes 

exhibit different stacking sequences along the NW growth direction. The most common 

polytypes are 4H and 6H crystal structures, with ABCB and ABCACB stacking sequences 

in Fig. 5 respectively. Fig. 5 gives the atomic models of the crystal structures of 2H, 3C, 4H 

and 6H. Some possible polytypic stacking sequences, such as 3Ct, 2Hs, and M, as well as 

their formation possibilities in NW are summarized in [293,682].  
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                                                 (a)                                 (b) 

 

                                                  (c)                                (d) 

Figure 5. The models of (a)WZ (2H), (b) ZB (3C), (c) 4H (ABACABAC...), and (d) 6H 
(ABCACBABCACB...). The red (large) ball is the group-III atom, and the blue (small) 
ball is the group-V atom. At least 2, 3, 4, and 6 layer stacking sequences exhibit in 2H, 
3C, 4H, and 6H crystal structures respectively.  
 

The most of polytypism is rare, except for 4H and 6H, and randomly intermixes in the 

stacking sequences of NW. 4H is the most common intermediate segment between WZ and 

ZB, because of 4H dominating in the intermediate supersaturation [100,293,683,684]. Twins 

can also be formed with a gradual change in the supersaturation by tuning the influx 

quantity or changing the V/III ratio. The mirror plane is a twin plane and the segments 

above and below the mirror plane have different twin orientations. The driven force for 
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phase formation with respect to the supersaturation is given in Eq.240-242. Through 

reducing the chemical potential difference ∆μLN, the ZB phase crystal structure can be 

formed at a low supersaturation. When the chemical potential difference ∆μLN is increased 

above the critical ∆μC, 4H structure formation starts to occur. The hexagonal WZ structure 

growth has to be controlled at a high supersaturation environment. In a variation process of 

supersaturation, the proportion of hexagonal structures increases continuously with the 

enhanced supersaturation. The proportion of hexagonality (WZ) in crystallographic purified 

phase and polytypes varies from 0% for 3C, 25% for 3Ct, 33.3% for 6H, 50% for 4H, 75% 

for 2Hs, to 100% for 2H [91,682,685].  

In Fig. 4 (a), WZ (2H) <0001>-oriented NW is surrounded by six symmetry low energy 

{1100 } facets or by six higher energy {1120 } facets. In Fig. 4 (b), ZB (3C) <111>-

oriented NW is restricted by six equivalent low energy {110} planes or by six higher energy 

{112} planes. Fig. 6 schematizes that the {110} and {112} planes and their respective 

{1120 } and {1100 } counterparts differ by a 30º angular rotation.  

Because of the highly asymmetrical environment caused by missing atoms on the 

outside for the outmost layer, relaxation follows a bond rotation and a bond contraction, as 

well as reconstruction changes the atomic positions on NW surfaces. The existence of 

corners of edges, surface curvature, and the small adsorbates, such as H, C, N, and O, will 

deteriorate the surface structure and change the surface energy distribution further. The 

growth of group III-V NW on different substrates is still facing a variety of challenges, 

resulting from lattice mismatches, polar/nonpolar interfacial growth, the differences in 

thermal expansion coefficients, and the differences in strains or stresses for different 

materials, and different phases assigned to each layer as one individual segment. 
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Figure 6. The schematic view of relationships between the crystallographic directions 
of WZ [0001]-oriented NW and ZB [111]-oriented NW on the (0001) and (111) planes.  
 

Compared to the strained and unrelaxed interface with an identical lattice constant for 

its overlayer and bottomlayer, the relaxation strain in NW has atomic displacements. The 

strain relaxation in lattice mismatch NW can accommodate a greater elastic strain (5 to 10 

times) than the planar strain [686]. Therefore the atomic positions in NW will not be 

changed with respect to the inner atoms. In NW, an interfacial strain or a surfacial strain can 

be elastically accommodated. Eq.206 reflects that the strain energy equals to the sum of the 

elastic energy and the misfit energy. A general expression for the formation energy of NW is 

related to the change of the surface energy, the elastic stress relaxation, and the repulsive 

elastic interaction, 

form surf elas edgeE E E E∆ = ∆ + ∆ + ∆                                       (288) 

form surf elas edgeg g g g= + +                                                (289) 
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The surface energy is a function of the intrinsic surface properties (written in Eq.147 

and 148) and the relative surface deformation. In general, group III-V NW can automatically 

choose the facets and growth directions to minimize their total free energies. The surface 

energies of the equilibrium facets satisfy the rule, 

0012 2 2hkl
h k l

h k l
γγ + +

≤
+ +                                              (290) 

Actually, (111) is often the lowest surface energy facet, (001) is the second lowest 

energy facet, and the high index (211) and (311) facets will have higher surface energies. 

The equilibrium crystal shape of NW may be restricted by the Bibbs-Curie-Wulff rule and 

the Neumann Relationship [88,680], 
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= = =

                                                     (291) 
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                                                         (292) 
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θ θ θ

= =
                                               (293) 

where ri is the distance between the center of crystal to the facet, hi is the distance from the 

center of droplet to the ith facet, hr is the distance to the interface between a droplet and NW, 

and θi is the angle in Fig. 3. According to the Wulff’s theory, the lower the surface energy of 

equilibrium facet is, the simpler the indices of surface are, the larger the facet area is, and 

the shorter the distance to the center of crystal remains. 

Internal or surfacial strains and stresses are a consequence of the mismatch of lattice 

constants or the difference in the thermal expansion coefficients for the individual layer. The 

surface energy with respect to the strain is given by, 
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aβ aβ aβγses   = =∫ ∫ ∫                                 (294) 

where eαβ is the integration variable representing a surface strain, and σSαβ is the surface 

stress tensor. In general, the surface strain εSαβ and tensor σSαβ are different from the bulk 

Lagrange strain εij and the bulk transformation tensors σαi and σβj for the deformed surface. 

The relationship between the surface strain and the bulk strain is written, 

S i j ijαβ α βε σ σ ε=                                                       (295) 

In a bulk structure, the eigenvalues εi of the principal axis of strain can be written as, 
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and the tensor for an isotropic bulk material, 

1 1 2ij ij ij kk
EY νσ ε δ ε
νν
 = + + −                                             (297) 

For the NW surface follows the bond rotation and the bond contraction in Fig. 7, the 

surface strain caused by the group-III atom shifted can be derived from the transformation 

vectors, 

d y d x d w dx dx w= + = + ⋅∇
   

                                              (298) 

( ) ( )
S

p d x d x d x d x p w q d x d x d x d xq w

d x d xαβε
⋅ + ⋅ ⋅∇ ⋅ ⋅ + ⋅ ⋅∇

≈
⋅

             

 
           (299) 

A surface strain for the right part in Fig. 7 can be separated into the relaxation for a group-

III atom, the relaxation for a group-V atom, and the strain of bonding between these two 

atoms. 
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Figure 7. The bond rotation and the bond contraction exhibit on a relaxed {110} 
surface in group III-V NW. The left part is the unrelaxed schematic structure. The 
middle part or the right part exhibit a distortion of bulk structure due to the different 
relaxations. 
 

For the group III-V NW with lattice mismatched interfaces, such as axial or radial 

heterostructures and different material substrates, etc., the NW can relax the stress over a 

strained area near the interface. The lattice mismatch can be accommodated by an elastic 

strain of the interfacial layer. When materials can accommodate their natural lattice 

structures, the elastic energy in a coherent structure is given by,  

( ) ( )
( ) ( )( )
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− − − + + −    (300) 

where lattice mismatch a0, and mismatch strain ε0. EYN+ and EYN- are the Young’s modulus 

of the above and below heterostructure segments respectively. Subscript N- can be regarded 

as the substrate. h+/- is the thickness, and Celas is the elastic coefficient in NW. In group III-V 

NW, not only the interfacial tension but also the edge tension should be taken into 

consideration. Therefore the interfacial free energy can be written, 

2 2
int

3 36 2
2 Nerf facet edge LN N LNl l r z rg e σ π σ π σ= + ≈ ∆ +

                      (301) 
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where lfacet is the facet edge length, and ∆z is the interfacial thickness on the NW. When the 

stress induced by surface capillarity and the edge tension are taken into consideration, the 

elastic energy in one segment without the electrostatic and ions effects can be written, 

2

0

1 2
2

S

Nlmelas ijlm ij N LNS
E e de dS dV r z raβe

aβ aβ aβslee    π s π s= + + ∆ +∫ ∫ ∫               (302) 

where λ is the elastic modulus. The elastic constants of anisotropic or isotropic define the 

proportionality between stresses and strains when the atoms are subjected to external loads. 

Different crystals, phases, or orientations have different elastic constants and variable 

interfacial bonds [178,179]. In general, there are 21 anisotropic elastic constants in crystals. 

The effective elastic constant is related to the interfacial modulus of rigidity G [178], 

( ) ( )1 1 1effect G Gλ νν + + − −= − + −                                          (303) 

Actually, the elastic moduli on the surface are different from that in bulk, due to the effects 

caused by the stress and the surface bondings. 

       Thermal expansions in group III-V NW are also important, because both the changing 

thermal gradients and heat treatment processes cause extrinsic stresses due to unequal 

thermal expansions, especially in heterostructures [687]. Stress affects device bandgap and 

reliability, induces dislocation generation, and even leads to NW cracking [688]. When the 

material is isotropic, the thermal expansion of bulk coefficient is equal to three times that of 

linear coefficient [45,47,689],  

( ) ( )
21 13 V Gru

V L
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CGT T
V P T V B T

γ ra a
r

∂ ∂ = = = = −  ∂ ∂ ∂ 
                          (304) 

where Vato is atomic volume, B is bulk moduli, CV is the heat capacity, γGru is the average 

Gruneisen parameters. The Gruneisen parameter is a measure of the effect of the 

anharmonic interactions, 
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where vi is the corresponding vibration frequency. γGru is a weighted average of the γGru-i 

that is the measurement for each vibrational mode. In anisotropic situations, the thermal 

expansions on principal axes are expressed as the sum of the vibrations on the principal 

crystallographic axes, 
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For hexagonal and tetragonal crystal symmetries, λij(j=4,5,6)=0. During the heat treatment, 

the rate of vibrational entropy variation caused by the thermal expansion at zero pressure is 

given by [47], 
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At the both sides of a heterojunction where thermal expansion differences exist, the 

cooling process induces a tensile thermal strain in the material with a larger thermal 

expansion coefficient [672]. A tensile strain can be compensated by a compressive strain. In 

the heat process, the material with a larger thermal expansion coefficient behaves in 

compression. In NW, the thermal expansion mismatch can also be accommodated by the 

twist bonded. As the strain caused by a thermal expansion is increased above a critical value, 

dislocation and plastic deformation occurs. And external stresses might induce phonon 

frequency shifts and affect the performances of NW devices [690].  

      In general, the thermal expansion coefficients of Si and SiC substrates are much smaller 

than that of group III-V compound semiconductors [691-696]. The thermal expansion 

coefficient of Ge substrate is larger than that of group III-V compound semiconductors 
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[697], except for GaAs and GaSb. And the thermal expansion coefficient of a sapphire 

substrate is much larger than that of group III-V compound semiconductors [698], except for 

GaSb. For group III-V compounds themselves, the thermal expansion coefficients of indium 

compounds are smaller than that of gallium compounds in nitrides (c-/a-axis), arsenides, 

phosphides, and antimonides respectively. 

The formation of the NW facets without relaxation or reconstruction creates a great deal 

of dangling bonds that are energetically unfavorable. For different surfaces of NW, not only 

the surface energies, but also the surface kinetics, as well as the equilibrium crystal shapes 

are different. The situations and the magnitudes of the bond rotation and the bond 

contraction are obviously different too. In the procedures of NW growth, the electrons 

transfer from the half filled dangling bonds attached to group-III atoms to the half filled 

dangling bonds located at group-V surface atoms. Therefore this changes the atomic 

positions and electron distribution, meanwhile, reduces the total free energy of NW. Group 

III-V materials exhibit a relative large relaxation due to a large room for the bond angle 

variation. For an unreconstructed surface, there is a contraction of bonds for the atoms on 

the outmost layer due to the anisotropic environment forces. The contraction occurs mainly 

in the outmost layer and the second layer under the surface. The amplitudes of relaxation 

decay exponentially with the depth of a surface.  

Group III-V (001) is a polar surface plotted in Fig. 8, and the distances between the 

alternate cation and anion layers are equal along <111> stacking sequence. Anisotropic 

relaxation occurs along orthogonal [110] and [110 ] directions on (001) facet. Each surface 

atom has two dangling bonds at an idea (001) surface. Each dangling bond is occurred by 

3/4 or 5/4 electrons for cation or anion, hence the surface is unstable due to a high partial 

occupation. (001) facet is not the first choice for ZB structure NW because (111) facet has a 
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lower surface free energy. The most common (001) cross-section interface formation prefers 

to occur along <001> NW orientations on (001) substrate [699-704]. NW along [100] 

orientation on (100) industry standard substrate are prone to achieving the crystal structure 

without stacking faults. Growth on (100) surface usually exhibits at an angel of 54.7º to the 

perpendicular along four equivalent <111> directions distributed 90º apart azimuthally. 

{100} facets on NW sidewalls were observed in vertical NW [702-704], planar NW [705], 

or sawtooth microfacet [706] under different growth conditions. The outmost atoms on (100) 

surface will be contracted to the second surface atoms, and the bond angles may change 

from tetrahedral 109.5º to approximately 90º and 120º with the corresponding sites. 

 

 

Figure 8. The schematic structures of polar group III-V {001} surfaces and the {001} 
undulations with facets that are close to {113}. (a) and (b) are the {001} surfaces. For 
no matter group-III terminated or group-V terminated surface, each surfacial atom 
has two dangling bonds. (c) and (d) are {113}A and {113}B respectively. The dangling 
bonds are occupied on {113}A surface, while unoccupied dangling bonds can cause 
reactions on {113}B surface.  
 

Surface undulation occurs at (001) surface because of twinning and cracking [707]. 

Compared to a high twinning density in {001} facets, {113} facets can lower the density of 

twins. {113} facets consist of (100) terraces whose atoms have two corresponding dangling 
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bonds and (111) step-edge whose atoms have only one corresponding dangling bond, and 

thus reduces the surface energy to make the facets more stable.  

Uncommon {110} surfaces in thin film growth can be compatible in NW as facets 

because {110} facets grow fast under a rich group-V environment [703], desorption of 

anions is available to control the lateral growth on these facets [593], the surface energies of 

these faces are lower than that of {112} facets [680], and so forth. Nonpolar group III-V 

{110} surface consists of one cation and one anion in the unit cell shown in Fig. 7. The 

surface atoms are arranged in zigzag chains along [110 ] direction. Relaxation exhibits that 

the anions are protruded from the surface whereas the cations are moved inwards to the 

secondary surface layer with respect to the unrelaxed surface planes. On (110) facet of 

group III-V NW, group-III atom prefers an sp3 or a planar sp2-like bonding situation and it 

moves outwards into a pyramidal configuration (such as AsGa3 configuration with bond 

angles close to 90º of pure p states) with its three group-V neighbours, while group-V atom 

prefers an s2p3 or a p bonding with its three cation neighbors. Therefore, atoms on the 

surfaces are relaxed to the chemically favorable threefold rather than fourfold coordinated 

sites. Rehybridization of sp3 tetrahedral bonds associated with atoms in the surface layer can 

lower the surface energy by an amount that is one order of magnitude smaller than that of 

the unrelaxed. 

For GaAs (110) surface, As atoms are rotated out of the surface plane and Ga atoms 

displace inwards the secondary layer. The rotation angle of an outmost layer atom is in the 

range of 27º-35º [708-710]. As atoms displace upward 0.26 Å and Ga atoms displace from 

the corresponding Ga sublattice by 0.44 Å [711]. Actually, the detailed experimental and 

theoretical values vary slightly in different experiments or models. The discrepancy can be 

caused by the variations in the second layer relaxations, the bond lengths, and the phonon 
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modes. In a secondary GaAs surface layer, As atoms move inwards the NW while Ga atoms 

are pulled outwards the surface. In this layer, the magnitudes of downward or upward 

displacements for As or Ga atoms reduce to 0.06 Å or less [712]. 

The rotation angle is defined as 0º in an unrelaxed surface. Eq.299 gives the surface 

strain calculation, which is described by the combination of the rotation vector and the 

change in bond lengths. The variation of rotation angles in different structures is relatively 

large. In general, the smaller the rotation angle is, and the smaller the magnitude of 

contraction for outmost atoms is. Ga atom is contracted 0.6 Å when the rotation angle is 

34.8º, it is contracted 0.5 Å when the rotation angle becomes 27º, and it is contracted just 

0.3 Å when the rotation angle reduces to only 20º. In a similar manner with the phenomenon 

of displacement decreasing in the secondary layer, the rotation angle on the second surface 

layer is reduced to 5.3º [710]. The surface bond length is contracted approximately 2-5% in 

the relaxed layer. Ga back bond is contracted by 0.06 Å or 2.5%, while As back bond is 

contracted 0.09-0.13 Å or 3.6-5% [709,711]. 

In general, the rotation angles of arsenides, antimonides, and phosphides are in the 

range of 25º-35º, and the outmost atoms are contracted 0.5-0.75 Å on the relaxed {110} 

surfaces [713,714]. In addition, there are smaller surface rotations and relatively large bond 

contractions for nitrides [712,715]. The discrepancy can be formed because the electronic 

structure of N atom is different with As or P meanwhile nitrides have larger covalency and 

polarity for the bonds. The relationship between the magnitude of ionicity and the rotation 

angle is fairly controversial, although there is a tendency that the rotation angle decreases 

with the increasing ionicity. In nitrides, the rotation angles are about 6º-16º accompanied by 

the contractions in surface bonds of about 4.9-7%. For the GaN atoms in the secondary 
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surface layer, Ga atoms move outwards 0.027 Å, while N atoms transform inwards NW by 

0.052 Å. 

The atomic structures of polar {111} surface are one of the most common facets in 

group III-V ZB NW due to their lowest surface free energies, which are schematized in Fig. 

9. The surface atoms are bond to three corresponding atoms of the layer underneath, 

yielding one dangling bond to the surface and three hybrid orbitals bond to NW. There is a 

vertical compressed double layer that consists of group-III and group-V atomic layers on the 

(111) surface. In the outer compressed double layer of GaAs (111) facet, there is a shift 0.08 

Å for one fourth layer As atoms towards the NW, while a 0.04 Å displacement for three 

fourths layer As atoms towards the surface, meanwhile, Ga atoms on the first double layer 

move inwards NW 0.706 Å [716]. In the secondary layer of the double layer, As atoms are 

unrelaxed, while there is a shift 0.08 Å for one fourth layer Ga atoms inwards NW and a 

0.01 Å displacement for three fourths layer Ga atoms outwards NW.  

For group III-V ZB NW growth on (111)A substrate, there are three equivalent <111> 

directions 19.6º tiled from the substrate because of its nonpolar nature. For NW on (111)B 

substrate, vertical growth can occur dominantly. If group III-V NW growth on Si (111) 

substrate, group-V- Si3+ or group-III- Si1+ structure is equal to the so-called (111)B surface, 

and the other situations can be regarded as (111)A surface [717,718]. ZB NW vertical 

growth on (111)B surface has a relative large twinning density, and twin planes consist of 

repeated {111} lamellar twinning with two different zone axes [234,311,703,719-723]. 

These {111} facets are polar and they are neither parallel nor perpendicular to the growth 

direction. Twinning stacking sequences can be expressed as ABC‘A’CBA, and the 

sequences before in the mirror plane ‘A’ are mirrored to the sequences after in the mirror 

plane. The repeated {111} twinning planes conduct the structures of NW to be octahedral 
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shape whose facets are terminated by {111} facets [311,719,724]. Each truncated 

octahedron is restricted by six facets, and each is composed of two {111} microfacets on its 

top and bottom. The real cross section of NW varies along its axis length due to these 

nonparallel side facets. 

 

 

Figure 9. Atomic structures of group III-V {111} surface from the side views. (a) 
(111)B or (111) facet is terminated by group-V atoms. (b) (111)A facet is terminated by 
group-III atoms. Polar {112} oriented surfaces are flat in a dash dotted line. 
 

The Reduction of supersaturation can improve the twin plane density [719,722,723]. 

When the alternating microfacets {111}A and {111}B overgrow on the sidewalls of NW, 

the facets might transform to be flat macrofacets {112} [234,311,703,721,724-729] or {110} 

[234,721,728-730]. The overgrowth might start from the base and then propagate along its 

length. These transformations might occur when the twinning segment thickness is beyond 

the critical thickness. The flat facets {112} cost more energy than the formation energy of 

twinning planes. For {112} facets, two three-fold coordinated group-III atoms and one two-

fold coordinated group-V atom are in the surface unit cell. For {112 } facet, there are one 

two-fold coordinated group-III and two three-fold coordinated group-V atoms in the surface 

unit cell.  

Temperature and V/III ratio can affect the energy fluctuation of nucleation and have a 

significant influence on the choice of facets. In general, increasing temperature or 
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supersaturation can enhance the probability of random mixture of structures. In InAs NW, 

{112 } facets occur at a low temperature, {111} microfacets and periodic twin planes 

appear at an intermediate temperature, and {110 } facets grow at a high temperature [234]. 

In GaP/GaAs heterostructure NW, six fold symmetry {112} facets arise at an intermediate 

temperature, while only a threefold symmetry with three large and three small {112} facets 

are restricted the NW under a higher temperature and a high V/III ratio [727]. In GaAs NW, 

{112} facets appear at a relative low temperature, and facets are transformed to {110} with 

the temperature increasing [680,721,727]. The NW along <111>A direction favors three 

fold symmetry {112 } facets, while the facets of NW along <111>B are composed of six 

fold symmetry {112} [725].  

{112} facets consist of not only the alternating {111}A and {111}B, but also {113} 

[726] or {200} [727] microfacets. High-index facets are relative unstable because of their 

larger surface free energies, higher dangling bond densities, and roughness. The atomic 

structure of a sawtooth facet is plotted in Fig. 10. For two type compressed double layers, 

{111}A microfacets might have a larger and flatter area than {111}B microfacets. Most of 

the time, the lengths of microfacets and their angles to the parallel side-plane of NW are 

different. In Fig. 10, the free energy of the total sawtooth facets per unit area is the sum of 

all contributions from their constituent parts, 

( ) ( ) ( ) ( )
2 1
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1 2 1 2

sin sin
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θ θ θ θ− = +
+ +                         (308) 

 

 165 



 

 

Figure 10. Atomic structures of macrofacet {112} consist of microfacets (111)A and 
(111)B. The lamellar twinning plane is the group III-V polarity. Some other polarities, 
such as the group III-III or V-V polarities are unstable. 
 

A large number of group III-V NW exhibit WZ structure or WZ segment accompanied 

with ZB phase [91,544,552,678,706,725,726,731-735], partly due to the smaller density of 

surface dangling bonds and the smaller surface energies. The third nearest neighbour atom 

spacing of WZ is smaller than that of ZB hence this causes the energetic difference between 

two phases [678]. The most common WZ facets are the nonpolar {1010 } shown in Fig. 11 

and nonpolar {1120 } plotted in Fig. 12, as well as polar {0001} and semipolar {1122 } 

facets [733,734]. In general, a nonpolar surface is more stable compared to a polar surface or 

a semipolar surface, meanwhile, a polar surface suffers from deleterious polarization effects. 

Actually, the so-called nonpolar surface that is characterized by chains of equal numbers of 

cations and anions, might exhibit polar characteristics, as cations are shifted inwards NW to 

induce zigzag chains with uneven numbers of group III-V atoms on a surface or the normal 

of facet is not perpendicular to the growth direction. In a similar manner with the relaxation 

phenomenon occurred in ZB structure, the electron transfer is coupled with the relaxation of 
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WZ facet, accompanied with bond contraction and bond rotation [736,737]. The relaxation 

of configurations for group-III or group-V in WZ is similar to the atomic transformation in 

ZB configuration.  

 

 

Figure 11. A schematic stick and ball representation of group III-V {1010 } facets in 
WZ structure from the side view. The red (large) ball stands for the cation, and the 
blue (small) ball presents the anion. 
 

In {1010 } facets, the relaxation of the tetrahedrally coordinated atoms is mainly 

confined to the first surface layer in Fig. 11. On an unrelaxed nonpolar GaN (1100 ) facet 

comprised of Ga and N atoms, cations and anions exhibit one surface bond and two back 

bonds. In general, the rotation angle exhibits 5º-8º, accompanied with the bond contraction 

4-8% [737-740]. When relaxation occurs on the GaN (1100 ) facet, Ga atom relaxes inward 

and shifts toward a more planar three fold sp2 coordination with its neighboring N atoms, N 

atom rehybridizes outward into a pyramidal configuration with p3 coordination. The 

rehybridization changes the bond angles in tetrahedrally coordinated to 118º, 118º, and 113º 

for Ga atoms, and 105º, 105º, and 114º for N atoms. After the relaxation, the Ga-N bond is 

contracted 6-7% with a 7º rotational angle. On the first GaN (1100 ) surface layer, Ga atom 

move inwards 0.2Å and N atom shifts outwards 0.02 Å. On the second surface layer, both 

Ga and N atoms relax outsides 0.05 Å [738]. Besides the vertical relaxation, lateral 

relaxations cause the N and Ga atoms shift along [ 0001] and [1120 ] in the same order of 
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magnitude of the vertical displacements [737]. For WZ structures of phosphides or arsenides, 

the bond rotations might enhance to 15º-20º, while the contractions might be reduced, due to 

the interaction for different electron configurations. 

 

 

Figure 12. The atomic structure of group III-V {1120 } facets in WZ structure from 
the side view.  
 

Compared with {1100 } facets, {1120 } facets might have larger surface energy [738] 

and smaller dangling densities [292]. On the unrelaxed nonpolar GaN ( 1120 ) facet 

comprised of Ga and N atoms, cations and anions exhibit two surface bonds and one back 

bond. The relaxed ( 1120 ) facet is schematized in Fig. 12. On the relaxed facet, the 

rehybridization changes the bond angles in tetrahedrally coordinated to 115º, 116º, and 119º 

for Ga atoms, and 101º, 106º, and 107º for N atoms with a bond contraction of 4-5%. On the 

first relaxed surface layer, Ga atoms move inwards 0.17 Å, while N atoms move outside 

0.05 Å. On the secondary layer, Ga and N atoms shift outwards 0.05 Å and 0.02 Å 

respectively. 

In fact, the above mentioned atomic structure parameters, such as the vertical shear ∆↕ 

accompanied with rotation angle ωbuckling and the contraction bond length is dcontraction on the 

outmost layer, might be not independent of each other. The relationship of these parameters 

can be given with a lattice constant a0,  
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According to Eq.309, the magnitude of contraction will decrease with the enhancement 

of rotation angle and bond length. Actually, the formations of bond contraction and rotation 

relaxation have involved not only the atomic vertical relaxation, but also the rearrangements 

and reconstructions of atoms on facets. On NW facets (especially on polar facets), the 

surface reconstruction not only conducts the atomic lateral displacement, but also reduces 

the periodicity and the symmetry of surface structure compared to the bulk structure. The 

displacement of atomic reconstruction (atomic scale or tenths of angstroms) is larger than 

that of relaxation, even if the symmetry exhibition on the facet is the same as that of bulk. In 

addition, vertical relaxation on the surface barely reduces the density of states around the 

chemical potentials of a material. The reconstruction is accompanied by opening of a surface 

bandgap near the Fermi energy hence a significant reduction of density of states performs in 

this energy range. Actually, the reconstruction of a semiconductor interface has been 

developed for more than fifty years. Principles for semiconductor surface reconstruction are 

proposed by C. B. Duke in the literature [741]. J. P. LaFemina discussed the calculation of 

surface energy and the simulation of semiconductor surface reconstructions [742]. The 

atomic surface structure and the kinetics of tetrahedrally coordinated semiconductor are 

reviewed by A. Kahn [743], J. Neugebauer [744], and Ph. Ebert [745].  

Dangling bonds or unfilled atoms on NW facets keep electronically labile and tend to 

rearrange to form stable species and neutral charge. The driving force for reconstruction 

tends to reduce the dangling bond density and the surface stress, and thus minimizes the 

surface free energy kinetically meanwhile causes the passivation of dangling bonds and the 

surface stoichiometry variation. For the facet reconstruction of a semiconductor, the facet 
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automatically attempts to minimize the dangling bond density by the rehybridization of 

dangling bonds with the enhanced energy stored in the surface field or by the formation of 

new bonds. And therefore the electronic states of dangling bonds will be filled for anions or 

be empty for cations. Meanwhile, the facet automatically attempts to maintain charge 

neutrality and compensate charges. This constraint limits the stoichiometries and geometries 

of compound semiconductor surfaces and retains no charge accumulation on the facets.  

Besides the relaxation and zigzag chain structures on facets preserve the surface free 

energy minimum, the dimerization and the passivation of dangling bonds can also have an 

influence on the determination of allowable composition and geometry. For a m-fold 

periodicity dimerization of 2×m reconstructions, dimers are the basic building block for the 

facet reconstructions. The relationship for the formation of dimers to minimize their 

electronic energies can be given by, 

32
1 2

m Dimer valence valence
Dimer

valence

N N NN
N
−= =

−                                   (310) 

where NDimer is the dimers per unit cell, Nm-Dimer is the missing dimers, and Nvalence is the 

number of valence electrons. On group III-V NW facet, Nvalence is the number of valence 

electrons for the group-III (equals to 3). So for common (2×4) reconstructions, NDimer will 

equal to 3, hence surface reconstructions are formed with three outmost dimers in the unit 

cell. Actually, many of constructed surface compositions and structures are metastable 

meanwhile the transitions of reconstructions between all regions might be reversible. The 

actual composition and geometry can be controlled by the growth kinetics and experimental 

growth parameters. 

For the surfaces of group III-V compounds, there are a wide variety of compositions 

and geometries on polar facets as functions of growth conditions and stoichiometries of 
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compounds. Meanwhile, the varieties of dimers and missing dimers on the polar facets vary 

with the growth parameters. The surfaces have been studied enormously by employing the 

plane wave pseudopotential methods, and ab initio tight binding calculations, as well as 

observed by scanning tunneling microscopy, reflectance difference spectroscopy, X-ray 

scattering and so on. The ideal {100}A or {100}B surfaces are composed of the single atom 

model in the (1×1) unit cell, each of which has two dangling bonds, while (1×1) structure is 

unstable and energetically highly unfavorable. The energetically favorable reconstructions 

and compositions are characterized by the completely occupied anions and empty cations on 

the outmost layer for polar facets. 

 

 

Figure 13. Group III-V (100)B-c(2×8) or (2×4). c denotes a centered unit mesh. 
Actually, (2×4) in this figure is β(2×4) with three group-V dimers and one missing 
dimer. Cation dangling bonds and ×4 missing row period preserve along [110], 
meanwhile anion dangling bonds and ×2 repetition period maintain along [110 ]. The 
bond lengths in the outmost layer are slightly contracted. When the group V/III ratio 
or the temperature is changed in experiments, other substructures designated by 
β2(2×4), α(2×4), α’(2×4), γ(2×4), etc., can be synthesized [741,746]. 
 

The transition of common reconstructions on {100} surfaces can be controlled by the 

growth temperature and the group V/III ratio [741,746]. In theory, group-V dimers favor on 

a group-V terminated surface, meanwhile, group-III dimers are the energetically most stable 

on a group-III terminated surface. There are a small number of second nearest neighbor 

atoms on β(2×4) or c(2×8) dimer structure, and these structures reduce the Coulomb 
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correlation energy to make themselves are relatively stable. (2×4), c(2×8) or the coexistence 

of these two reconstructions is the most common structure on group-V terminated (100)B 

surfaces for GaAs [636,637,741-743,746-756], InP [757-761], InAs [761-764], GaP 

[765,766] and even ternary InGaAs [767,768]. c(2×8) structure is a small perturbation of the 

(2×4) with the phase shift caused by an As vacancy, and it is slightly more stable than the 

(2×4) structure [Fig. 13]. The surface free energy of c(2×8) might be 1 meV/Å2 smaller in 

surface energy than that of (2×4). In Fig. 13, group-V dimer vacancies on GaAs (100)B or 

InAs (100)B cause a four-fold missing periodicity along the [110] direction to form an eight-

fold periodicity. 

For β(2×4), unit cells are composed of rows of three group-V dimers and one missing 

group-V dimer [748,753,755,762,766] or two neighboring group-V dimers and two missing 

group-V dimers [749-752]. D. J. Chadi proposed the unit cell energy of two dimers is 0.2 eV 

larger than that for three dimers on GaAs (100)B-(2×4) surface [769]. For β2(2×4) unit cell, 

there are two neighboring group-V dimers and two missing dimers, as well as one row of 

group-III on the secondary layer missing with one group-V dimer along [110] on the third 

layer exposed as the outmost layer in the unit cell [753,754,760]. The surface free energy of 

β2(2×4) on GaAs (001) is 2-3 meV/Å2 smaller than that of β(2×4) with three dimers, while 

β2(2×4) unit cell is 0.2eV higher than β(2×4) with two dimers in energy [750]. For α(2×4) 

reconstruction, there are two neighboring group-V and another two neighboring group-III 

dimers stacks perpendicular to V-V dimer bonds [754,755,760]. α’(2×4) phase is in a similar 

manner with β(2×4) reconstruction, while the middle group-V dimer is replaced by group 

III-V dimer [753]. And γ(2×4) reconstruction exhibits one extra group-V dimer stacking on 

the top of the group-V dimers of β(2×4) surface [741,760,762]. The phases of 

reconstructions can be changes through adjusting temperature and group V/III ratio. With 
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the temperature increasing, the transition of phases occur c(4×4) → γ(2×4) → β(2×4) → 

α(2×4) → (4×2) [746,762]. With the group V/III ratio decreasing, the phases of 

reconstructions change β(2×4) → β2(2×4) → α(2×4) [741]. Besides group V/III ratio and 

temperature, the atomic concentration in ternary alloy can also affect the phases of 

reconstruction, such as In0.27Ga0.73As/GaAs exhibiting α2(2×4) structure, while 

In0.81Ga0.19As/InP showing β2(2×4) structure [767]. 

Phosphides (001)-(2×4) with two dimers and two missing dimers might be stable in the 

view of electron counting, while P is hard to suffer high temperatures above 350ºC. Even in 

the conditions of low temperatures and a high P-supplied environment, group-V rich (4×2) 

reconstruction is unstable [757,758,765]. Besides the reason of unstable phosphides at high 

temperature, the larger radius differences of atoms for phosphides than that of arsenides can 

also induce that mixed-dimer or heterodimer on (2×4) structure can be energetically 

favorable. The mixed-dimer or heterodimer on In-rich (2×4) [760,761], Ga-rich (2×4) 

[765,766], or some ternary alloy (2×4) [767,768] is shown in Fig. 14. 

 

 

Figure. 14. The heterodimer or mixed-dimer on InP or GaP (001)A-(2×4) 
reconstruction. The surface is terminated by In or Ga atoms, each which possesses two 
dangling sp3 hybrids along [111] and [111] directions. Some other reconstructions can 
be formed when the middle III-V bond is replaced by a P dimer as σ(2×4) 
[761,762,766], a Ga dimer [766], or a three-fold symmetry group-V trimerlike unit 
[757].  
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The relationship between phases and growth parameters is plotted in [770], and the 

reversible phase transformations among various phases are proposed. Some (n×3) or (n×6) 

intermediate phases and their coexistence phases appear in the transition process between 

(2×4) and (4×2) [742,743,746-748,751,767,768,770-773], in the ternary reconstructions 

[767,768,774], or in antimodes [771,773,774]. The common (2×3) dimer consists of one 

group-V dimer along [110] direction each of whose atoms bonds to two group-III atoms on 

the second layer, and one adjacent group-V dimer along [110] each of whose atoms bonds to 

two group-V atoms on the second layer. More complicated (n×3) and (n×6) reconstructions 

have the similar surface structure with a (2×3) dimer.  

 

 

Figure. 15. A surface phase diagram of (100)A-c(8×2) or (4×2) is the counterpart of the 
corresponding group-V terminated (2×4) structure. 

 

In the situation of high temperature or low group V/III ratio, (4×2) or c(8×2) structure 

emerge on the (001)A surface for GaAs [636,637,741,742,746,748,751,754], InAs 

[761,763,764], InSb [771,775], and InGaAs [766]. Unlike (100)B-β(2×4) phase, there seems 

a contradiction about which one is more stable for surfaces containing three or two dimers 

on the outmost layer. The phase of (100)A-(4×2) surface made up of two dimers and two 

missing dimers is energetically favorable [754]. Fig. 15 shows the surface phase diagram for 

(4×2) or c(8×2) reconstruction. On the surface, each (4×2) unit cell consists of two 
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neighboring group-III dimers and two missing dimers on the outmost layer, which are 

adjacent to another group-III dimer at the third layer. The group-V atoms stack on the 

second layer. The whole (4×2) reconstruction exhibit a mirror image of the corresponding 

(100)B-(2×4) structure. 

On (100) surface, c(4×4) phase is formed with excessive amounts of group-V atoms 

[747,748,770] or at lower temperatures [746,752,758,759,762]. Adjusting high V/III ratio or 

quenching to low temperatures can grow c(4×4) reconstruction in GaAs [741-

743,746,748,752,754,776], InP [758,759,777], InAs [764], and InSb [771,774]. A group III-

V c(4×4) pattern is shown in Fig. 16. It is a possible model for c(4×4) that corresponds to 

sets of three group-V dimers along [110] adsorbed on a monolayer of group-V atoms. 

 

 

Figure. 16. Possible (100)B-c(4×4) reconstruction with extra group-V atoms replacing 
group-III vacancies to form the disordered structure. It involves the adsorption of 
excess group-V atoms. 
 

In the rectangular unit of top layer, group-V dimers trigonally bond to the group-V 

atoms on the second layer. The saturated three dimers phase should be more stable than one 

dimer or two dimers phase in c(4×4) reconstructions due to a smaller surface free energy for 

three dimers reconstruction. 
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For GaN (001) surface, (1×1) phase is unstable due to Peierls transition, but it can exist 

under a N-rich environment. In general, Ga-rich conditions make contributes to improve the 

surface stability. With the decreasing of group V/III ratio, the phase transition (1×1) → (2×2) 

→ c(2×2) will occur. Compared with (1×1) structure, (001)A-(2×2) and c(2×2) 

reconstructions are the relative stabilized surfaces with 50% and 100% Ga-terminated 

coverages respectively. (2×2) reconstruction exhibits one row of Ga dimers growing along 

[110] direction adjacent to one missing row of dimers on the outmost layer. The Ga atoms of 

dimer back bond to the Ga atoms below, which are adjacent to N atoms stacking on the 

second layer. In c(2×2) reconstruction, one row of Ga dimers shifted to half periodicity 

along [110] covers the Ga vacancies and enhances the polarity of surface [778,779]. Under 

N-rich or high temperature environments, the surface reconstruction might exhibit an 

intrinsic (1×4) phase, but the surface will degrade in the situation of extreme N-rich. The 

degration can be relieved through the enhancement of Ga concentration. (1×4) 

reconstructure is constructed by a row of three continuous Ga dimers and one missing dimer 

neighboring to the dimer row. Each outmost Ga dimer has two back bonds to the N atoms 

below. It might be slightly more stable than (2×2) and c(2×2) reconstructions on (100) 

surface. However, the introduction of As can significantly improve the stability of (2×2) and 

c(2×2) phases [780,781]. 

Ideal sawtooth {111} microfacets are illustrated in Fig. 10, while the real (111)A/B 

facets exhibit (2×2) or (√19×√19) R23.4º reconstruction [782]. Unlike Si(111) surface 

exhibits a (2×1) π-bonded structure at low temperature or room temperature, or else (5×5) 

and (7×7) structure at high temperature, most of group III-V {111} surfaces produce (2×2) 

vacancy-buckling reconstruction where the surfaces are saturated via surface dangling bonds 

by rehybridization or converting into nonbonding electronic states. 
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For the reconstruction on polar (111)A surface, a variety of group III-V materials are 

widely studied, such as GaAs [716,754,756,783-791], InAs [791], GaP [792,793], GaSb 

[793,794], InSb [794,795], and so on. The geometries of different materials are remarkably 

similar, but there is a larger magnitude of distortion in the reconstructions of antimodes 

[793-795]. In general, (111)A-(2×2) reconstructions might be energetically favorable 

because of their low surface free energy and their electrostatic neutrality where the dangling 

bonds of group-III atoms are the equivalent of that of group V atoms. The neutrality can be 

realized through either adding group-V atoms to, or removing group-III atom from, every 

unit cell. Therefore there are several substructures on the (111)A surface, including group-

III vacancy, group-V adatom and group-V timer replacing the vacancy. 

No matter under group-III rich or group-V rich, vacancy structure is the most stable 

reconstruction for (111)A-(2×2). Trimer reconstruction might be stable only in the extreme 

group-V rich environment. The formation of vacancy reconstruction is the result of the 

charge compensation. The top view of the (111)A composed of the (2×2) vacancy is plotted 

in Fig. 17(a). In the unit cell, the removal of one cation generates three group-V dangling 

bonds to accompany three corresponding group-III dangling bonds. In the process of 

rehybridization, the electrons of group-III atoms transfer to the dangling bonds of group-V 

atoms. Meanwhile, three planer sp2 cation dangling bonds and three p-type anion dangling 

bonds are formed. The rehybridized orbitals are slightly contracted together, and the 

tetrahedral bond angles are changed, i.e., 119.2º and 93.8º for Ga and As atoms respectively 

on GaAs surface [754]. 

The compounds and geometries of (111)B surface are more complicated than that of 

(111)A. Besides group-III adatom, group-III trimer, group-V vacancy, and group-V trimer 

in (2×2) phase [716,743,754,783-787,796], (√3×√3) [756], (3×3) [756], (√19×√19)-R23.4º 
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[743,754,797-801] and (√7×√7)-R19.1º [798,799] reconstructions can also be formed on 

(111)B surface. Under group-V rich environment, (2×2) phase with group-V trimer yields 

the lowest surface energy compared with other (2×2) reconstructions [754,796,797]. Fig. 17 

(b) plots that the threefold coordinated symmetry of group-V adatoms which is formed via 

slightly strained V-V bondings and 60º bond angles to the neighboring group-V adatoms. 

Each atom in a trimer unit back bonds to one group-V atom on the outmost layer. Compared 

with the bulk bondings, the intertrimer bondings become shorter and stronger. 

 

 

                                      (a)                                                    (b) 

Figure. 17. Top view of group III-V (111)A-(2×2) vacancy reconstruction (a) and 
(111)B-(2×2) reconstruction with the group-V trimer (b). (a) In (111)A-(2×2) unit cell, 
the fourth group-III atom is removed. Meanwhile, the fourth group-V atom 
tetrahedrally bonds to three group-III atoms on the surface and another one stacking 
below. (b) In (111)B-(2×2) unit cell, the trimer is formed to saturate three dangling 
bonds and leave a rest atom with one dangling bond. 
 

Under group-III rich or high temperature environment, a more complex and less strain 

(√19×√19)-R23.4º reconstruction exhibits the lowest surface free energy on (111)B surface. 

(√19×√19)-R23.4º phase was first studied by D. K. Biegelsen et al., while the proposed 

structure with an odd number of atoms per unit cell cannot be fully autocompensated [797]. 

H. H. Farrell et al., improved the (√19×√19)-R23.4º reconstruction and proposed the surface 

accompanying fraction electrostatic neutrality [800]. In Fig. 18, (√19×√19)-R23.4º unit cell 

is dominated by a bilayer hexagonal ring where Group-V atoms are in the top layer, 
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meanwhile the unit cell consists of four planar group-III atoms on the surface. The antisite 

of III/V atoms in the hexagonal ring might occur when the group V/III ratio varies.  

 

 

Figure. 18. (111)B (√19×√19) R23.4º reconstruction. The atoms are located in 
inequivalent domains of (√19×√19), which is created via a 23.4º rotation of the cell 
translation vector relative to the unreconstruction layer. 
 

Compared with a mass of studies on ZB polar surfaces, there are not a large number of 

papers discussing about surface reconstructions for arsenides or phosphides with WZ 

structures. The most of polar {0001} surface reconstructions proposed were applied for 

nitrides [802-845]. (1×1) is the most common reconstruction on the polar {0001} surface, 

while the so-called (1×1) {(5.08×2.54)-R20º [808]} is not the same with the bulk structure. 

This kind of pseudo-(1×1) reconstruction might not correlate with the periodic atom 

arrangements on the surface, on the contrary, it maintains an incommensurate reconstruction. 

Under a N-rich environment, the magnitude of reconstruction might be reduced. For GaN 

(0001)A surface, pseudo-(1×1) might be the most Ga-rich phase, which consists of a 

laterally contracted Ga terminated bilayer. The stronger Ga-Ga bonds and the lateral 

contracted overlayer can stabilize the (0001)-(1×1) phase [811]. For InN (0001)A surface, 

the In-terminated surface is composed of a 3/4 monolayer of In atoms under In-rich 
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conditions [813]. For AlN (0001)A surface, the reconstruction surface might exhibit a (2×6) 

phase under a low group V/III influx ratio [809]. 

The reversible phase transitions of WZ structures behave in a similar manner with ZB 

structures, which can be controlled by changing growth parameters. For GaN (0001) surface, 

phase transition occurs from pseudo (1×1) → (6×4) → (5×5) → (2×2) with V/III ratio or 

temperature increasing [802,808]. (6×4) reconstruction is an intermediate phase, which 

contains (1×1) and (5×5) phases, and (5×5) reconstruction is composed of a linear chain of 

unevenly displaced Ga adatoms [744,807,808]. Under a N-rich environment, (0001)-(2×2) 

might be energetically favorable. Several kinds of morphologies, such as group III/V 

adatoms, trimers, and vacancies, are similar with {111} surface reconstructions. Compared 

with other substructures of (2×2) phase, the favored morphology is most likely the N-

adatom or group-III vacancies under a N-rich environment, while a group-III adatom is 

preferred under a relatively small V/III ratio [744,804,808,811]. (2×2) phase can be 

modulated into (4×4) or the coexistence of (2×2) and (4×4) via increasing the temperature 

further or reducing the V/III ratio [807], or reducing the temperature with a mediate Ga 

concentration [812]. 

On (0001)B surface, nitrides with large bond energies provide a high resistance to 

relaxation or reconstruction. For a nitrogen-terminated surface, (1×1) is not the most group-

III rich phase anymore. Phase transformation occurs from (2×2) → (1×1) → (3×3) → (6×6) 

→ c(6×12) with reduced group V/III ratio [805,806,810]. High order reconstructions are 

formed by depositing excess group-III atoms. Likewise (111)B-(2×2) reconstruction, group-

V trimer is also a stable structure on (0001)B surface [814,815]. 

The nonpolar low-index facets on group III-V NW, such as {110}, { 1100 } and 

{ 1120 } are the most likely unreconstructed [816,817], but still exhibit rotational and 
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vertical relaxations [708-716,737-740,754,818-822]. The detailed bond contraction and the 

specific bond rotation of nonpolar surface have been analyzed in the above section. The 

original nonpolar facets have satisfied the energetically favorable requirements for the 

orbital rehybridization. The nearest group III/V neighboring atoms contain the equal 

numbers of the corresponding dangling bonds, and there are equal numbers of each type of 

hybrids per unit cell. Therefore the nearly charge neutral and complete relaxed (1×1) phase 

appears on the nonpolar surfaces [715,716,738,814,819]. (1×1) periodicity can correlate 

with or depend on the atomic arrangement of bulk termination, while the actual surfaces are 

relaxed because of reducing the surface free energy. Relaxation induces the actual nonpolar 

surfaces exhibiting dimer tilting or zigzag chain structures, as well as non-absolute charge 

neutrality. By the calculations of idea unreconstructed facets, the calculated surface free 

energy of (1100 )-(1×1) was smaller than that of (1120 )-(1×1), meanwhile (1120 )-(1×1) 

was a little more stable than (110)-(1×1), furthmore (1100 )-(1×1) was preferred compared 

with (112)-(1×1) [738,814]. The higher order reconstructions for nonpolar facets need to be 

studied further in the future.  

The whole cross section of group III-V NW is composed of hexagonal relaxed and 

reconstructed facets. The common crystallographic structures of ZB/WZ NW along 

[111]/[0001] are shown in Fig. 19. Actually, there might be some other crystallographic 

structures formed when NW grow, while those facets with high dangling bond densities are 

unstable. {110 } facets in Fig. 19(a) are composed of staircaselike atom chains caused by 

relaxation. Each atom on facets has one dangling bonds, whereas three cations and three 

anions have two dangling bonds at six corners. In actual NW facets, dangling bonds are easy 

to be passivated by hydrogen, and the free energies of passivated surfaces are obviously 

smaller than that of clean facets [292,678,823].  
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                               (a)    ZB-{110 }                           (b)    ZB-{112 }/{112 } 

 

                               (c)    WZ-{1100 }                        (d)    WZ-{1120 } 

Figure 19. Schematic representation of the cross sections of relaxation, unpassivated 
group III-V NW facets. Rotation relaxation and contraction of the bonds on the 
outmost layers are visible. 
 

For {112 }/{112 } facets in Fig. 19(b), cations and anions on different facets have 

different numbers of dangling bonds, and each atom at outmost layer possesses 3/2 dangling 

bonds in average. On { 112 } facets, one twofold coordinated group-III atom has two 

dangling bonds, whereas one threefold coordinated group-V atom has only one dangling 

bond. On {112 } facets, one twofold coordinated group-V atom has two dangling bonds, 

whereas one threefold coordinated group-III atom has only one dangling bond. No matter 
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{112 } or {112 } are unstable when the radii of NW are small. The {112 } composed of 

microfacets {111}A/B are plotted in Fig. 10. {1100 } facets in Fig. 19(c) consist of zigzag 

cation-anion chains. Each of the atoms in the outlayer of bilayer has one dangling bond. For 

{1120 } facets, cations and anions form zigzag chains along the growth direction, and each 

atom possesses only one dangling bond on the surface. 

 

IV. C. Defects, Dopants, and Bandgap Engineering of Nanowire 

Defects and dopants are ubiquitous companions of group III-V NW growth, whereas the 

identification or detection for them in NW is difficult and indirect. In general, they behave 

as perturbations, substitutional impurities, interstitial impurities, or undesirable 

imperfections in NW, meanwhile, have important influences on the electronic, 

optoelectronic, photonic, and magnetic properties of devices. The fundamental carrier 

densities, Fermi levels, as well as a large number of basic equations about electron, phonon, 

optical and thermal properties, for nondegenerate and degenerate bulk semiconductors have 

been summarized well by S. M. Sze [322]. A variety of fundamental electronic, vibrational, 

optical and thermal properties for dopants have also been summarized by M. D. McCluskey 

and E. E. Haller [323]. However, the dopants in pseudo-1D structure have not been studied 

in great detail. Moreover, most existing studies on doping of NW, still mainly focus on the 

mechanisms, morphologies and measurements, rather than applications. 

Defects and dopings can also be defined as unintentional impurities or intential dopands 

artificially. No matter via MBE or by MOCVD, amounts of hydrogen, oxygen, carbon 

present during growth. Abundant H and C are particularly troublesome contaminations, 

which are almost impossibly removed by heating and are always present on the surfaces of 
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NW because of a high aspect ratio exposed to any atmospheres. For a pseudo-1D structure, a 

larger number of surface atoms mean not only more relaxation and reconstruction, but also 

different chemical environment of oxide or hydrogen termination formation. In addition, the 

likelihood of catalyst metals, mask materials, and atoms from substrate, as well as carrier 

gases, annealing gases, and residual gases can behave as dopants during NW growth. 

Suppressing unintentional and background impurities can control the drawbacks on 

performance. In contrary, reasonable intentional dopings in NW can drastically improve the 

characters of materials and tuning the bandgap of semiconductors effectively. For group III-

V materials, defects and dopants might occur far from thermal equilibrium during growth 

and supply extra electron levels inside the bandgap. Impurities is an irreversible process in 

thermodynamics, and they induce a decrease in the Gibbs free energy by an increase in the 

whole configurational entropy, 

lnconf i i
i

S x x∆ =∑                                                     (311) 

The pinned levels in bandgap or near band edges act as the compensating centers, and thus 

deteriorate the conductivity and provide uncontrolled radiative or nonradiative 

recombination. For relatively small bandgap of semiconductors, dopings of shallow and 

deep impurities for both donors and acceptors are always achieved easily. For wide bandgap 

materials, dopings with either n-type or p-type with shallow and deep levels can be created, 

but not both [824].  

Dopants can change morphologies, surface reconstruction, surface recombination, and 

the growth rates of facets during NW growth [636,825-837]. Meanwhile, dopants can 

suppress the dislocation formation [838], as well as induce the impurity intermixing [839] 

and impurity segregation [840,841]. Dopants can also modulate the phases for WZ, ZB, or 

polytypes by changing the contact angle of a catalyst and the supersaturation of a catalyst 
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[827,828] or by reducing the ZB/WZ structural energy difference [842]. In addition, 

different dopants have opposite influences on the NW growth mechanisms for inducing 

bending [826] or improving verticality [843]. 

Dopants might exhibit different phenomena compared with their behaviors in bulk with 

the quantum confinement arising in the low dimensional NW structure. In a low dimensional 

structure, dopants might auto-ionize without thermal activation, because the carrier must 

occupy one of confined states, hence the carrier energy increases passively with the reduced 

dimension [844]. Meanwhile the limitation of dopant concentration is suppressed by the 

quantum confinement [845]. Quantum confinement arises as a result of the changes in the 

density of electronic states. For 0D, density of states behaves as the discrete energy 

eigenfunctions. In the situation of 1D (~radius of NW lower than 50 nm), density of states 

behaves the characterization of a unit-step function [322,844-847], 
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where Nm and Nn are the densities of states on the cross section of NW. As the radius 

increases above the critical value, the 3D model will be employed to calculate the density of 

states. The total energy of state kz in the NW can be written as, 

( ) ( ) ( )2 2 2 2 2 2 2
, / 2 sin 2m n z C V m n mn zk N N m kz mε ε π π∗ ∗= + + + 

                  (313) 

where m* is the effective mass. 

Dopant limitation is an intrinsic property determined by the location of the 

semiconductor band edges, valence band maximum (VBM) and conduction band minimum 

(CBM), with respect to the Fermi level stabilization energy EFs in the amphoteric defect 

model [845,848,849] or the phenomenological p-like pinning energy Epin-p and n-like 
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pinning energy Epin-n [850-853]. EFs is independent of the dopant level or the type. In the 

most of group III-V materials, the doping disparity is caused by the asymmetry of CBM and 

VBM with respect to EFs. A rough limitation rule [824,850,851] described the limits to 

doping of various n-type or p-type group III-V semiconductors in terms of their energy level 

alignment with the corresponding pinning energy. When Epin-n≪CBM, materials cannot be 

doped with n-type. When Epin-p≫VBM, materials cannot be doped with p-type. When Epin-

n≫CBM, materials can be doped with heavily n-type. When Epin-p≪VBM, materials can be 

doped with heavily p-type. For NW, low dimensional structures actually have little effects 

on EF or EFs due to a small spatial extension [854]. 

Take into consideration of these two models in n-type doping. In an amphoteric defect 

model, EF>EFs and acceptor-like defects are spontaneously formed resulting in pulling EF 

towards EFs till EF=EFs, and then doping reaches an n-type limitation. In a pinning Fermi 

level model, the intentional donors raise EF, and thus lower the formation energy of intrinsic 

acceptor defects. The spontaneously formed acceptors will make the lowest Epin-n pin EF to 

induce EF=Epin-n and compensate the intentional donors. Therefore, the energy level of 

predominantly formed acceptors determines the n-type limitation. The maximum 

concentration of doping is determined by [851], 
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                      (314) 

The pinning level can be obtained by inverting Eq.314, because the pinning level is the 

bottleneck of a maximum dopant. Various solubilitis of native defects in some common 

group III-V materials were studied in [855]. 

The equilibrium concentrations or the solubilities of defects can be determined by their 

formation energies and the growth temperatures. The formation energy depends on the 
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difference between the total energy and the energy of the host atoms, the chemical potential 

of species involved in the creation of the defect, the change of free energy required to create 

the defect, and the correction term. Under the thermal equilibrium, the defect concentration 

is defined as, 

exp expform tot def tot bulk def e F co
defect site site

B B

E E E N eE E
n N N

k T k T
m− −− − ∆ + +   

= − = −   
       (315) 

where Nsite equals to the ratio between the possible sites in a unit cell and the volume of the 

corresponding unit cell (for GaN ~4.4×1022cm-3). ∆μdef is the corresponding energy of 

vacancy atoms or substitutional impurity in a reservoir or the chemical potential of a 

vacancy, such as ∆μdef≈–μN for nitrogen vacancy, whereas ∆μdef≈μN for nitrogen interstitial, 

and ∆μdef≈μBe-μGa for substitution BeGa. Ne is composed of the charge number of the 

impurity and its sign, such as Ne=-3 for Ga vacancy on (111)A-(2×2) in Fig. 17(a), Ne=0 for 

a neutral defect, Ne=1 for one electron removed, and Ne=-1 for one electron added. The 

stable state will have the lowest formation energy via the calculation for Eq.315. Eco is a 

correction term accounts for k-point sampling, especially for a neutral defect. From Eq.315, 

one can get that the formation energy is raised up as the increasing of EF linearly. And the 

decrease in formation energy can enhance the solubility of a defect exponentially. 

In the situation of NW, the distribution of dopants might be changed compared with the 

distribution in bulk, owing to the defect formation energy of NW behaving different from 

that of bulk. The surface relaxation and reconstruction as well as electronic effects will have 

significant influences on the formation energy. The Fermi level respect to band edges can be 

shifted due to atomic asymmetry and dangling bonds on the facets of NW. As the radius of 

NW rNW decreases, especially lower than the critical radius, the surface potential barrier will 

be suppressed with the reduction of the radius [834], 
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where Φsb-c is the barrier as the radius is larger than the critical value, εs-NW is the dielectric 

constant, and NC is the effective density of states in the conduction band. The bent band will 

reduce the formation energy of dopants on the surface and thus enhance the solubility and 

diffusivity for defects [856-858]. The concentration of defects at inner NW might still 

maintain the bulk solubilities for defects due to the loss of surface effects. 

Actually, any one kind of defect has several charge states and thus can introduce the 

corresponding energy levels in the bandgap. Some of them are stable state, some of them are 

metastable, and others are unstable, such as Gai interstitials in GaN, only 3+ charge state is 

stable, 1+ and 2+ charge states are metastable, whereas others are unstable. The formation 

energies of a positive charged defect and a negative charged defect can be written as, 

( ) ( ) ( )0 0 / FE D E D Eε+ = − + +                                        (317) 

( ) ( ) ( )0 / 0 FE A E A Eε− = + − −
                                         (318) 

In an n-type doping situation, more energy is needed to form D+ or produce electron due 

to a large EF in Eq.317. Meanwhile, the formation energy of acceptor reduces resulting from 

EF moving up in bandgap, and this increases the spontaneous acceptor concentration in 

Eq.318, such as native acceptor, or cation vacancy VC. The opposite behaviors occur in p-

type doping NW. The thermodynamic transition level ε(q1/q2) is defined as the ratio of the 

Fermi-level position to the corresponding charge states. When Fermi level is defined as zero 

or VBM, the transition level is given by, 

( ) ( ) ( ) ( )1 2 1 2 2 1/ form formq q E q E q q qε  = − −                              (319) 
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When EF is below ε(q1/q2), charge state q1 is stable, whereas q2 will be stable, when ε(q1/q2) 

is above the transition level. When EF equals to ε(q1/q2), both charge states have the same 

formation energy. Defects, whose ε(+/-) locate within the bandgap, will behave the 

amphoteric characteristic. If ε(+/-) is positioned above CBM, donor has the lowest formation 

energy, while a defect acts as an acceptor for ε(+/-) below VBM. 

The position of a transition level compared to the thermal ionization energy (~kBT) 

determines the defects to be a shallow level or a deep level. In general, the defects with 

shallow states have only a small impact on the crystal lattice. The properties of shallow 

levels are primarily determined by the growth temperature, effective masses, and the 

dielectric constant. Their wavefunctions are delocalized and formed mostly out of the states 

close to CBM or VBM, owing to weak perturbations by central cells and small ionization 

energies. On the deep levels, electrons required to remove from the valence band or to add 

to conduction band need much more energy than the thermal ionization energy. The defects 

with deep levels cause significant local strains and their wavefunctions are localized in deep 

levels. These deep levels can trap carriers and reduce the mobilities.  

For an n-type doping, the statistical mechanics equation can be written with considering 

the degeneracy for the occupations of the donors, 
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                     (320) 

when Nm=0, εm=0, and gm=1 due to no electrons; when Nm=1, εm=ED, and gm=2 due to an 

occupation by an electron with either spin up or down. In Eq.320, the donor energy is 

ED=Eg-EDbinding, where the binding energy EDbinding, 
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where εr-d is the permittivity of semiconductor. Ry is the Rydberg constant. 

When n-type NW are doped by shallow donors, it can be described in analogy to a 

hydrogen atom. The concentration of occupied neutral donors Nd
0 can be derived from 

Eq.320. 
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where Nd is the shallow donor concentration, Ed is the donor ionization energy or donor 

binding energy. Ed (~EC–ED) is the energy difference between CBM and the donor level. For 

an n-type doping, the hole concentration can be neglected due to the charge neutrality. So 

the electron concentration with an n-type shallow doping can be written, 
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Obviously, the electron concentration and the Fermi level will be affected by the variation of 

growth temperature. The electron concentration and the corresponding Fermi level will 

transition from an intrinsic region at a high temperature, to a saturation region, at last to a 

freeze-out region with the result of temperature decreasing. 

When n-type NW are doped by deep donors, the equation that consists of the charge 

neutrality and statistical mechanics can be given by, 
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The electron concentration is similar with the shallow doping. In the freeze-out region, Ndeep 

is much larger than Nd at a low temperature. EF coincides with the deep level, hence 

kBT≪Ed≪Edeep. So the concentration can be calculated by, 
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 (325) 

As the temperature increases, the electron concentration reaches the saturation region, where 

Ed≪kBT≪Edeep. The electron concentration becomes Nd+Ndeep, with the temperature 

increasing further to an intrinsic regime, and carriers are excited across the bandgap. The 

electron concentration expression is the same with the result of shallow donor doping. 

For a p-type doping, the statistical mechanics equation can be written with considering 

the degeneracy for the occupation of the acceptors, 
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when Nm=0, εm=0, and gm=1 due to no electrons; when Nm=1, εm=EA, and gm=2 due to an 

occupation by light and heavy holes with spin up and down. 

When p-type NW are doped by shallow acceptors whose chemical valence are lower 

than that for the host atoms. The concentration of occupied neutral acceptor Na
0 can be 

derived from Eq.326. 
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where Ea is the acceptor ionization energy. Ea (~EA-EV) is the energy difference between 

VBM and the acceptor level. Take into consideration of the charge neutrality, and the 

electron concentration is neglected. The hole concentration can be written, 
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Take into consideration of the situation of deep donor (with charge 1+) dopings into p-

type NW. Deep donors will cause compensation and reduce the free carrier density. When 

the deep donor concentration Ndeep is larger than acceptor concentration Na, EF will be close 

to the deep donor level EV+Edeep, and the major donor will be neutral with a small number 

Ndeep
+≈Na≈Na

-. When Ndeep is smaller than the acceptor concentration Na, the material shows 

the p-type characteristic. The equilibrium equation consists of charge neutrality and the 

statistical mechanics, 
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At a low temperature freeze-out regime, the acceptor concentration can be calculated by, 
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    (330) 

In the saturation regime, the acceptor concentration becomes to Na-Ndeep. Besides the doping 

situations discussed above, the situation of p-type NW doped by acceptors is similar like the 

case of n-type NW doped by deep donors in Eq.323, and the situation of n-type NW doped 

by acceptors is similar like the case of p-type NW doped by deep donors in Eq.329. Some 
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n/p-type dopings in NW are given in Table 4. The mechanisms and behaviours of dopings in 

NW display the similar behaviors for dopants in bulk. 

 

Table 4. Nanowire with n/p-type dopants. 
n-type p-type 

NW Dopant Ref. NW Dopant Ref. 
GaAs SiGa [262,859] GaAs ZnGa [866] 
GaAs SnGa [860] GaAs CAs [867] 
GaAs TeAs [861] GaAs SiAs,BeGa [859] 

AlGaAs/GaAs SiGa [862] GaP N [868] 
GaN SiGa [843] GaN MgGa [500.547,826] 
GaN VN [366,863] GaN VGa-ON [869] 
GaP SP,Ga-O [864] InAs BeIn [870] 
InAs SiIn [837] InAs ZnIn [871] 
InAs SiIn,SAs,TeAs,CIn [836] InP ZnIn [827,828,830] 
InAs SiIn,SAs,SnIn,SeAs [833]    
InN HN,SiIn [865]    
InP SiIn [831]    
InP SnIn [830]    

 

For GaAs, native defects are abundant in Ga-rich or As-rich environments. In undoped 

GaAs, AsGa dominates as a deep double donor under As-rich growth condition, while the 

equilibrium concentration of VGa increases rapidly as EF moves towards CBM. In a Ga-rich 

environment, acceptor GaAs and shallow donor VAs will dominate, and VGa concentration 

increases with EF approaching CBM [872-875]. In an n-type case, VGa is a dominant center 

as a shallow acceptor, whereas AsGa becomes dominant as a deep donor in a p-type situation 

[873,874,876-878]. Interstitials as isolated impurities are thermodynamically much less 

likely under all conditions. But electrically nonactive Asi might become to dominate in the 

vicinity of melting point [855]. The equilibrium concentration of Gai might increase as EF 

reaching VBM in p-type GaAs, and Gai will decrease with As concentration increasing. In a 

high aspect ratio situation, a large number of As dangling bonds and Ga dangling bonds 

present on the surface, whose energy levels locate near VBM or CBM separately [874]. 
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Various extrinsic impurities are incorporated into GaAs as dopings during growth. In 

general, impurities form acceptors on group-III sites (shallow levels such as BeGa, MgGa, 

ZnGa, CdGa; deep level such as CuGa) [873,879-883] and on group-V sites (shallow levels 

such as CAs, GeAs; deep level such as SiAs) [636,873,880,884], or form donors on group-III 

sites (shallow levels such as CGa, SiGa, GeGa; deep levels such as NGa, SnGa) [884,885] and on 

group-V sites (shallow levels such as SAs, SeAs, TeAs, SbAs; deep levels such as OAs) 

[872,876,886,887]. In addition, some neutral deep defect, such as NAs or Oi complexes can 

also cause nonradiative recombination meanwhile reduce the minority carrier lifetime 

[853,876,883].  

Hydrogen and group-IV atoms can behave amphoteric nature in group III-V 

semiconductors. These amphoteric characteristics can be controlled by tuning the group 

V/III ratio during growth, 

ln lnGa As
IV GaAs

As Ga

IV J GC
IV J RT−

  ∆
= − 

                                       (331) 

where CIV-GaAs is the experimental parameters for group-IV defects in GaAs, and ∆G is the 

free energy difference between IVAs and IVGa. As the V/III ratio is low, IVAs will dominate 

and the nature of acceptors behaves preferentially in amphoteric dopants. While donors are 

favored as V/III ratio is high. Isolated H can occupy VA and it acts as a shallow donor, or 

locates at VC to act as a shallow acceptor. Amphoteric nature and a small size H can be used 

to passivate acceptors or donors to form neutral complexes, such as AsGa-H, CAs-H, SiGa-H, 

or Oi-H, VGa-H [883,888,889]. In addition, hydrogen passivation can remove the energy 

levels in bandgap associated with the dangling bonds. The solubility of hydrogen can be 

calculated in Eq.315, where the free energy of H can be obtained by, 
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where the third term on the right side of equation is the rotation term, and the forth term is 

the vibration term. mred is the half mass of hydrogen and λ is 4160 cm-1 for a hydrogen atom. 

The free energy can also be obtained from the JANAF Table in [890]. 

Various complexes involving combinations of two or more impurities or native defects 

present in GaAs and they affect the properties of NW. The most common complexes that are 

composed by native defects are VGa-Gai, VAs-Asi, AsGa-Asi, AsGa-VGa, and AsGa-VAs [885]. 

For the vacancy-interstitial pair, atom moves from a regular lattice site to an interstitial 

position and then several charge transfer energies are introduced within the bandgap. No 

matter interstitial, antisite, or substitutional impurities will induce the lattice relaxation. 

Another lattice relaxation is the formation of DX or AX centers. For a DX, the donor 

transports from the substitutional site to a relaxed site (lower symmetry C3v) along one of 

the <111> directions and thus form deep acceptors, such as GeGa-VGa, SiGa-VGa, SiGa-Oi 

[854,872,873,883,884,891,892]. A DX center is highly localized for their wavefunctions and 

converts an intentional shallow dopant to a deep level impurity. 

For GaN, native defects are also abundant. Under Ga-rich conditions, the equilibrium 

concentration of single shallow donor VN increases as EF moves away from CBM (p-type), 

while the equilibrium concentration of triple acceptor VGa is enhanced as EF moves towards 

CBM (n-type) [893]. Spontaneous VN donor dominates in “intrinsic” GaN and induces an n-

type autodoping. Antisites GaN and NGa, as well as interstitials Gai and Ni have higher 

formation energies than vacancies and therefore their concentrations are suppressed. 

Because Ni, GaN, and NGa have not only one stable charge state, they will behave amphoteric 
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nature. For Gai, 3+ is its only stable charge states, so Gai acts as a donor in GaN [894]. 

Under a N-rich environment, the formation energy of VN becomes large, and the 

concentration of VN will be reduced compared with the situation in a Ga-rich condition. 

Various intentional impurities are studied as the dopants in GaN. The most common n-

type dopings are SiGa, GeGa, CGa, Bei as shallow levels, as well as ON as deep and shallow 

levels [834,880,895-905]. Moreover, BeGa [898,900], MgGa [834,880,896,899,900,906-910], 

ZnGa [906,907], CaGa [908,909], CN [880,904,905,908,909,911], and SiN [900] are widely 

studied as acceptors in p-type GaN. The biggest problem for acceptors is their too large 

ionization energies. Amphoteric hydrogen plays a significant role in GaN. It not only 

suppresses the native defects, but also forms complexes with other impurites. In a p-type 

doping, acceptor H+ has a very low formation energy (smaller than VN) and locates at the N-

antibonding site. In an n-type doping, H- resides at the center of hexagonal channel along c-

axis. The enhancement in H- induces EF to increase, and thus increases the formation energy 

of donor VN and suppresses the native defect in process. Hydrogen behaves as negative-U 

formation energy in GaN, because H0 is thermodynamically unfavorable under all 

conditions [912]. Likewise hydrogen in GaAs, H can passive native defects and form 

complexes, such as double donor VN-H, double acceptor VGa-H, single acceptor VGa-H2, 

neutral complex VGa-H3, and single donor VGa-H4. Although hydrogen can form the 

corresponding complexes with p-type impurities, H atom has no bonds with impurities 

directly. Actually, H atom resides at the N-antibonding site. Native defects might form some 

more stable complexes with extrinsic impurities compared with those unfavorable isolated 

native defects themselves, such as double acceptors VGa-ON and VGa-SiGa, shallow acceptor 

VN-MgGa, and deep acceptor VGa-CN [869,897,900,911,913,914]. Similarly, the complexes 
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composed by two dopants, such as MgGa-ON [900], or CN-ON [915] have lower formation 

energies than their isolated constituents in GaN.  

In general, dopants in arsenides [833,836,837,870-872,874,879,916,917] and in 

phosphides [827,876,918,919] behave the similar doping mechanisms with dopants in GaAs. 

And dopants in nitrides [880,897,902,903,905,910,920-922] behave the similar doping 

mechanisms with dopants in GaN. However, the magnitude of detailed relaxation and the 

properties caused by relaxation are different. 

In the above segment of the foreign-metal catalysts in NW, various transition metals are 

used to catalyze NW growth. During growth, transition-metallic atoms are incorporated into 

NW inevitably. However, the solubilities of the transition metal impurities in group III-V 

materials are rather low. Some concentrations of defects might be too low to be detected. 

Mn is the only exception, whose solubility limit is much higher than other transition metals. 

In catalyzed growth, these inevitable impurites introduce a range of energy levels into the 

bandgap [322,323,923-925]. The wavefunctions of metal electrons are localized in deep 

levels, meanwhile, they also tunnel into the semiconductors and decay exponentially. 

Transition-metallic atoms substitute group-III atoms and form bonds with group-V 

atoms. These bonds behave partly ionic character and give rise to intrinsic electric dipoles, 

meanwhile, the bond lengths are reduced slightly due to the partial ionic character. In 

general, substitution impurities act as deep donors, acceptors, or neutral substitutions in 

semiconductors. For transition metallic impurities, the neutral states behave as 3+(3d3) 

charge state, acceptors show 1+(3d5) or 2+(3d4) states, and donors act as 4+(3d2) charge 

state, via the transitions of tetragonally Jahn-Teller distorted. 

Titanium [923,926], vanadium [923], and chromium [923,927-930] in group III-V 

fabricate not only deep donors, but also construct double acceptors as hole traps. For iron 
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[923,926-929], manganese [923,926,929], and nickel [923,928], the most common charge 

states are the neutral 3+ and acceptor 2+. The semi-insulating materials are obtained as 

dopants are with 3+ charge state. Dopings with cobalt [923,928] and copper [928,931] will 

lead to double acceptors in n-type materials. These deep levels are taken into account as the 

compensation centers of charges. 

A series of point defects can segregate and absorb excess vacancies or interstitials. 

Therefore this induces the formation of dislocations in NW during growth. The elastic strain 

energy of an edge dislocation with a distance ddis in NW can be obtained [183] 

( )

2

ln 1
4 1

edge dis NW dis
edge dis

C r Gb dE
v bπ

−
−

 = + −                                      (333) 

where b is Burger’s vector, G is the shear modulus, Cedge-dis is the dislocation constant in 

NW. The most common dislocation in group III-V NW is the 60º dislocation, where the 

Burgers vector lies in a {111} plane. The 60º dislocation often splits into two partial 

dislocations with 30º and 90º. The density of threading dislocations for GaN film on a 

sapphire substrate is 108-1011cm-2. Assuming the order of magnitude of threading dislocation 

in NW is similar with that in bulk. So the number of threading dislocations in a NW with 50 

nm radius is 10-1. 

In general, the band structures of NW can be determined by the wavefunctions and the 

relative positions of the composed atoms in NW. The strain caused by relaxation and 

reconstruction, as well as the electric fields caused by piezoelectric polarization and 

spontaneous polarization will have significant influences on the energy bands. 

The dependence of strain on band leads to band splitting with strain, due to the reduced 

symmetry. In the simplified model provided by C. G. Van de Walle [932], the influence of 

the hydrostatic strain component on the offsets of the conduction band and the valence band 
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is described. Shear strain reduces the symmetry and causes the valence band degeneracy 

lifting and the splitting of indirect conduction band. For compressive strain, the bandgap is 

widened and the splitting between HH and LH is increased; for tensile strain, the bandgap is 

shrunk and the splitting will be reduced [88,846,933]. Strain also affects the interaction 

between electron and phonon. Compression or dilation will induce the band up or down, 

whose magnitude is proportional to the strain accompanied with the deformation coupling to 

longitudinal acoustic phonons and the polar coupling to longitudinal optic phonons. 

The lower symmetry of materials will cause a piezoelectric polarization. However, a 

reduced strain distribution might lead to a weaker piezoelectric polarization field in NW. 

The spontaneous polarization and the piezoelectric polarization arised from stained and 

polarized atoms will influence the shape of band edges and the carrier distribution 

[736,934,935]. An electrostatic field can be modulated by the piezoelectric polarization that 

can be written by, 
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where e31 and e33 are the piezoelectric coefficients. Assume zz is the NW growth direction. 

The cross section strains are εxx = ∂u/∂x and εyy=∂u/∂y (where u2=uxx
2+uyy

2) as well as the 

axial strain is εzz=(-2C13/C33)εxx along the growth direction. C13 and C33 are the elastic 

stiffness. The potential induced by the piezoelectric polarization is, 

( ) ( ) 3
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'1 '
4 '

polar
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P r r
V r d r

r rpe
⋅ −
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−∫ ∫ ∫

                                    (335) 

The electronic structure can be calculated by first-principle calculations based on 

density functional theory (DFT) in the local-density approximation (LDA) [936,937] or the 
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generalized gradient approximation (GGA) [938,939] with the modified pseudopotentials 

[940]. DFT provided by W. Kohn et al. [941,942] describes the many-body electronic 

ground state in terms of single particle equations and an effective potential with minimal use 

of approximations to calculate band structure and density of states. The electronic structure 

calculations can be described by the plane wave basis [943] or the localized Gaussian type 

orbitals. The advantages of using the plane wave basis are easy to change from a real-space 

via a Fast Fourier Transformation to momentum-space where the kinetic energy is diagonal 

and is easy to realize convergence of total energy. For systems containing 3d or 4f electrons, 

Gaussian basis is a more appropriate choice [944].  

The approximation treatment for core electrons can exploit the fully pseudopotential 

method [945], the Gaussian pseudopotential method [946], or the projector augmented wave 

(PAW) method [947]. A more accurate and higher cost method via quasiparticle calculations 

can also be employed in [948]. The introduced pseudopotentials avoid the need for an 

explicit treatment of the chemically inert core electrons, meanwhile ignore the nonlinearity 

of the exchange between valence and core electrons.  

The perfect crystal can be described by the Hamiltonian with the average potential V(r). 

The one electron Schrodinger equation with pseudowave ψk is given by 

( ) ( ) ( )
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2 k k k
p V r r r
m

ψ ε ψ
 

+ = 
                                         (336) 

where the pseudopotentials in group III-V (A-B) materials is given by, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1exp exp exp expGA GA GB GB A A B B
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V r V S V S iG r V r iG r V r iG r iG r dr
V

= + ⋅ = − ⋅ + − ⋅ − ⋅  ∑ ∫
  (337) 

where G is the reciprocal vector, SGA and SGB are the structure factor, and Vcell is the volume 

of a primitive cell.  
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The empirical pseudopotential method exploits the assumption in which the valence 

electrons oscillate and the core electrons are frozen to calculate the electronic structure of 

group III-V materials [949-951]. The symmetric and antisymmetric structure factors are 

given by, 

( ) ( )1 expsym j
j

S G iG r
V

= − ⋅∑
                                            (338) 

( ) ( )expasy j j
j

iS G P iG r
V
−

= − ⋅∑
                                           (339) 

The symmetric and antisymmetric structure form factors Vsym(G) and Vasy(G) can be 

obtained from the difference and sum of the spherically symmetric cation and anion, 

( ) ( )
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a G aV G
a a G
−

=
+ +                                             (340) 

( ) ( ) ( )2
5 6 7 8expasyV G a a a a G= + +

                                      (341) 

where ai (i~1-8) is the material parameters. The V(r) can be calculated by Eq.338-341, 

( ) ( ) ( ) ( ) ( )' ' ' ' 'sym sym asy asyG V r G V G G S G G iV G G S G G= − − + − −
        (342) 

When V(r) is taken into the Schrodinger equation and the wavefunction ψk and the 

energy ε(k) can be obtained. → Then calculate the density of states etc., and compare the 

calculated values with the experimental values. → Then alter V(r) gradually till the 

calculated values in good agreement with the experimental results. 

In the LDA method [26,952-955], a self-interaction correction with exchange and 

correlation term has to be taken into consideration. Meanwhile, only the local density is 

used to define the exchange-correlation approximation. The LDA provides a method to 

completely define the Kohn-Sham (KS) equations. In the Kohn’s model, the matrix {ℋ} 
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elements include the electronic kinetic energy, electron-nuclear attraction, electron-electron 

repulsive and exchange-correlation potential terms. So the KS equations have the form [956-

958], 

( ) ( ) ( ) ( ) ( ) ( )
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 
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For applying the KS equation to find the minimum energy, a set of equations in which each 

equation only involves a single electron have to be solved. The KS simplifies the 

complicated Hamiltonian. Take the initial V(r) into the Schrodinger equation and get 

wavefunction ψk and energy ε(k), 

( ) ( )j
j HF exchange correlation

j

Z
V r r R V V

r −= − + +∑
                            (344) 

where Z and R stand for the nuclear charge and the position of the nucleus separately. The 

first term on the right side is devoted to the potential energy of electrons interacting with the 

nuclei. The second term is the Hartree electron-electron repulsion potential. And the 

exchange-correlation term is given by, 
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e
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The exchange-correlation potential contains the exchange-correlation energy εXC and its 

local change with density. Derivative is discontinuous when the state changes 

discontinuously with a function of density. In the LDA, the exchange-correlation potential is 

deemed to be a homogeneous electron gas approximation. So EXC[n(r)] can be written as a 

function of the local spin density, 

( ) ( ) ( ) ( )hom 3, nLDA o
XC XC s sE n r n r r n r d rε ↑ ↓=      ∫                              (346) 
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In the Hartree-Fock approximation, the electron-electron Coulomb interaction is 

included. After calculating the charge density ρ=ψ∗ψ, one can solve the computationally 

expensive Hartree-Fock approximation, 

( ) ( )2 2 3
0

'
'HF HF

r
V or V r e d r

r r
r

r e∇ = =
−∫ ∫ ∫

                          (347) 
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where f is the occupation weights, and Ck(G) is the structure factor. Through comparison 

and modulation, the converged result can be obtained. The Hohenberg-Kohn theorem 

ensures that the converged solution corresponds to the charge density in the ground state. 

The total ground state energy of the system is given by, 

( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3'1 '
2 'tot s ext II exchange correlation

n r n r
E n T n V r n r d r d rd r E E n

r r −= + + +
−∫ ∫ ∫  (350) 

The first term is the kinetic energy, and the second term shows the direct interaction called 

Hartree energy. The third term expresses the nuclei effect and the last term is devoted to the 

many-body effects.  

An extra Coulomb interaction U can be added to remedy the underestimated bandgap 

and correct the positions of the derived narrow bands [959-961]. In the calculations, the 

electron self-interaction is corrected by the introduction of U, especially for transition metals. 

The corresponding one electron energy is changed by adding a correlation interaction U(0.5-

nα,α), where nα,α is an occupation matrix involving the orbit α (x, y, z). DFT can apply for 

nor-integer particle number [962,963]. At the moment, the derivatives of the exchange-
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correlation potential δVexchange-correlation/δn (~-1/r) must change discontinuously by an additive 

constant, and thus leads to a discontinuous jump in the exchange correlation term.  

        To define the Hartree potential, the electron density has to be used to study in an 

iterative way. Define an initial electron density n(r) and calculate the effective potentials → 

Solve the Kohn-Sham equations with defined the initial electron density to find the single-

particle wavefunction ψi(r) → Calculate the electron density nKS(r)=2∑iψi∗(r) ψi(r) → 

Compare nKS(r) and n(r) → If the two densities are the same, then this is the ground state 

electron density and the density can be used to compute the total energy; If not, change the 

initial density n(r). This self-consistent loop is repeated until the new electron density or the 

new total energy does not differ much from the old one. 

In the GGA method [938,964-966], gradient expansions provide systematic corrections 

for electron densities that vary slowly over space, and stipulate that the exchange-correlation 

energy density depends additionally on the gradient of the electron density. The GGA 

provides more physical information hence it is more accurate. The exchange-correlation 

energy is improved by  the introduction of gradient terms, 

( ) ( ) ( )3 3, , , , , ,exchange correlation s ss s s sV f n n n n d r n r H r t d re ζ ζ− ↑ ↓ ↑ ↓= ∇ ∇ = +  ∫ ∫ ∫ ∫ ∫ ∫    (351) 

where rs is the Fermi radius, ζ is the relative spin polarization (n↑-n↓)/(n↑+n↓), and t is the 

reduced gradient given by 
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where ks is the local screening length vector. Different correlation coefficients and 

expectations are discussed for exchange under various approximate conditions 
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[938,939,955]. Some hybrid density functions are proposed and induce the GGA results to 

be improved further [874,876,967-974]. 

      The N-electron wave function without spin-orbit interaction is described by a Slater 

determinant to satisfy the antisymmetry principle [958,975]. For the simplest two-electron 

case, the Slater determinant with the vector of coordinates ri [958],  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 2

1 2 1 1 1 2 2 2 1 2 2 2 1 1
2 1 1 2 2 2

,s ,s1 1, r det ,s ,s ,s ,s
,s ,s2! 2

r r
r r r r r

r r
φ φ

ψ φ φ φ φ
φ φ
 

= = −    
 

 (353) 

where the spin orbitals can be expressed as a product, 
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where αi,k are the expansion coefficients, and φi,k are the basis set for the calculation. In the 

HF method, the expectation of the Hamiltonian ℋ is, 
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The expression is easy to be expanded into N-electron system in the same manner.  

A semiempirical multiband k∙p method based on the Kane’s model [976] can be used to 

study for bandstructures and optical properties in NW [977]. In an 8-band model, bands 

consist of electrons, heavy holes, light holes, and split-off, each of which has two spin 

orientations [978,979]. Additional bands can be further introduced to provide a better 

description, especially for indirect bandgap cases. A 40-band model has been described to 

analyze group III-V materials [980]. For a nondegenerate ZB or WZ structure, the 

wavefunction with a small perturbation can be derived, 
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 205 



 

And its corresponding energy level and the effective mass can be given by, 
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In Eq.357, the influence of spin orbit coupling on the Hamiltonian is ignored. The coupling-

ignored Hamiltonian is easily diagonalized, but it cannot be used to describe the energy 

dispersions precisely. The Hamiltonian with spin orbit coupling term can be written by, 
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where σ is the Pauli spin matrices. So the energy ε(k) with spin orbit coupling can be written 

by, 
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where the coordinate symbols α, β=x, y, z. 

For a degenerate band calculation, valence band wavefunctions are p-like at the zone 

center and they have Γ4 symmetry. The actual valence band curve in NW might have larger 

slopes for energy bands than the theoretical calculations. Smaller dimensions for NW might 

induce a stronger confinement in NW [425,426,844]. For ZB structure, the split-off band Γ7 

is described by, 
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where l and s are the angular momentum and the spin operator separately. In this case, P and 

Q can be expressed by, 

2 22 2
1 4 4 4C V C VP k p and Q k pψ ψ ψ ψ   = − ⋅ = − ⋅                    (362) 

Take into consideration of dispersion band Γ8 for heavy holes and light holes, 
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The anisotropic effective masses of HH, LH and SO can be expressed in terms of the related 

Luttinger parameters γi [981,982]. 
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where j stands for states in HH, LH and split off, i stands for other states. The Luttinger 

parameters can be used for yielding along the different crystallographic directions for the 

effective masses. The effective masses (1/m∗) for HH, LH and split off in ZB structure are 

given in Table 5. 
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Table 5. The effective masses in ZB structure. 
 [100] [110] [111] 

HH γ1-2γ2 (2γ1-γ2-3γ3)/2 γ1-2γ3 
LH γ1+2γ2 (2γ1+γ2+3γ3)/2 γ1+2γ3 
SO γ1-EP∆so/3Eg(EP+∆so) 

-- EP is the momentum matrix elements between conduction and valence bands, and ∆so 
is the spin orbit splitting. 
 

For WZ structure, a different crystal symmetry results in a different band structure 

compared with ZB. ZB has the highest order of fourfold-degeneracy due to its high 

symmetry. The order of triply-degeneracy of WZ is smaller than that of ZB resulting from 

the lower symmetry in WZ. When the spin orbit coupling is ignored, the energy dispersions 

are given as follows [983-986]: 
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where ∆1 denotes the energy splitting induced by the structure symmetry in WZ. The 

dependence of the splitting on the band edge energies for ℋWZ is given by (assuming the 

valence bands belong to Γ6V and Γ1V), 
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The band structure coefficients Wi (i~1-6) in Eq.368-370 can be derived from the 

coefficients of that in ZB structure. They satisfy the following relations, 
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Actually, there is an interaction between LH band and SO band, which will determine 

the coefficient W7. The interaction will affect band structures and the effective masses in 

WZ structure. The spin orbit splitting will induce the transformations of Eq.368-370 by 

introducing the spin orbit splitting terms ∆2 and ∆3 into the equations. The splitting terms are 

parameterized by ℋWZ (adding a spin orbit coupling term into Eq.358). 
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The band structure coefficients Wi (i~1-6) in Eq.372-376 are similar with the ZB Luttinger 

parameters γi in Eq.365-367. Therefore, the effective mass (1/m∗) for HH, LH and split off 

described by Wi in WZ structure are summarized in Table 6. 
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Table 6. The effective masses in WZ structure. 
 [0001] [1120 ] [1100 ] 

HH -W1-W3 -W2-W4-W5 -W2-W4-W5 
LH -W1-W3 -W2-W4+W5 -W2-W4+W5 
SO -W1 -W2 -W2 

--The spin orbit splitting is ignored.  
--The data from [983] 

 

Different effective matrix {ℋ} are studied in various models. The effective matrix {ℋ} 

elements were constructed in 6×6 [983,985,987,988], 8×8 [987], or 16×16 [989,990] for WZ 

structures, and in 6×6 [991,992], or 8×8 [978,979,993] for ZB structures. The matrix can be 

diagonalized with some approximations, such as the spherical band or the band dispersion 

parabolic. When the slowly varying field caused by defects is taken into consideration, the 

Hamiltonian can be changed via an addition of the defect term. 
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For defects, a supercell model can be constructed by an artificial unit cell composed of 

several primitive unit cells and one impurity [898]. In the supercell approach, the total 

energy is the sum over the special k-points. The dispersion can be estimated [994], 
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                                  (379) 

where ℋiso is the Hamiltonian operator with the change caused by a defect, ψd is the 

normalized isolated states, and ψdr is the state with a superlattice vector r. 

Band offset in heterostructure is one of the most important characteristics that determine 

the transport, quality of contact or barrier, and quantum confinement. Not only quantum 

confinement, but also tunneling, correlation and interference phenomena will affect the 

quantum transport in NW. The hetero- and reduced structures play an important role in 
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electron-phonon coupling, impurity scattering, phonon interaction and some other physical 

phenomena. Quantum confinement can change the bandgap by over 1 eV, thus has an 

important influence on the bandgap engineering.  

The basic rule for heterojunction band lineups is the electron affinity rule, where the 

Fermi levels of compounds tend to be aligned by transferring electrons. However, exploiting 

the reference potential in practice might be neither reliable nor precise. So the valence band 

offsets rather than the conduction band offsets are the more fundamental parameters. First-

principles calculations are also widely used for theoretical studies of valence band offsets in 

heterostructures [995-998]. There is no doubt that group III-V NW can bring the 

heterostructural superiorities into full play. In an ideal, straddling GaAs/AlAs, GaSb/AlSb, 

GaAs/GaP, GaN/AlGaN, InGaN/GaN, GaAs/AlGaAs, InGaAs/InAlAs, InGaAs/InP, 

GaN/AlN, GaAs/GaSb, InN/GaN, InN/AlN, and staggered GaAs/InP, GaAs/InAs, 

InGaAs/GaSbAs, InP/AlInAs; InP/InAlAs, InAs/AlSb, GaAs/AlGaAs, as well as broken-

gap (misaligned) InAs/GaSb, all of these heterostructures, might be realized in a pseudo-1D 

configuration. Even for homomaterials, heterostructures can be realized in NW by tuning 

WZ/ZB segments [730,989,999,1000]. In the ZB/WZ interface, the lowest electron state is 

confined in ZB layers, because HH states always behave double degenerate in WZ. 

Therefore this presents a staggered structure for direct bandgap semiconductors. This 

phenomenon has been proved in GaAs NW [534,541,543,735,816,1001], InP NW 

[1002,1003], and InAs [730,1004,1005]. Appropriate p/n-dopings can improve the carrier 

tailoring further.  

However, some phenomena in heterostructures may interfere with the properties of NW, 

such as, group III-V heterostructures always suffer from persistent interface compositional 

grading; the valence electrons locating on the high-valence-band side may induce deep 
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states within the bandgap for low-valence-band materials; excess potentials can be generated 

by dipoles due to heterostructures [1006,1007], piezoelectric polarization due to strain, and 

polarization originating from the atomic arrangement along polar directions; the temperature 

dependence on bandgap may have different effects due to different components [1008,1009]. 

For optoelectronic devices, the heterojunction interface might induce the loss of carriers due 

to non-radiative recombination at centers origining from lattice mismatch.  The reduction of 

dimension in NW also interferes with the properties of NW strongly due to high 

inhomogeneities in NW system [1010-1014]. The interfacial correlation effects altering 

electrical characteristics need to be calculated based upon the many-body GW 

approximation [1015,1016]. The method improves the Coulomb interaction in HF 

approximation for group III-V semiconductors. The bare Coulomb interaction is replaced by 

a dynamically screened Coulomb interaction. The interaction between the electron and its 

image charge caused by the inhomogeneity can be predicted based on a long-range 

correlation effect in the quasiparticle energy theory. The quasiparticle model provides a 

good description for charge transport in group III-V NW. In the quasiparticle energy 

calculations, the exchange-correlation potential is expressed as a non-local electron self-

energy operator [1015,1017], 
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where ∑ is a Hermitian that is the Fourier transform of GW function [1018]. In general, the 

GW approximation improves the quasiparticle energies relative to the LDA eigenvalues. 

The excited state spectrum can be described in the Green functions based upon the 

wavefunctions in the quasiparticle equation. In the simplified GW schemes, the exchange-
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correlation potentials for conduction and valence states in the static Coulomb-hole and 

screened-exchange (COHSEX) approximation are given by [1015,1018], 
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where ρ(r) is the local electronic density, ℏωp is the plasmon energy and the exchange 

interaction Cex is, 

( ) ( ) ( ) ( ) ( ) 3 3
' '' ' ' 'ex C V C VC r T r T r r r T r T d rd rυυυυ   φ φ υ φ φ

∗∗ ∗
− − − −   = − − − − −   ∫    (383) 

In the exchange energy Cex, υ stands for the bare Coulomb interaction, ϕ is the Wannier 

function localized in bond υ-C and υ-V, respectively. And T is defined as a crystal 

translation vector. The GW approximation gives a prediction about bandgap change between 

WZ and ZB under strains [1019]. The corresponding strain deformation potentials are 

introduced into the band structures, and play an important role on the transport and optical 

properties in group III-V NW.  

 

IV. D. Summary 

This chapter is devoted to growth techniques and their corresponding mechanisms, 

including convection, diffusion, and capillary forces in NW system. Surface relaxation and 

reconstructruction for different phases in NW are summarized. Not only quantum 

confinement, but also dopants have a strong influence on the bandgap and energy states in 

group III-V semiconductors. Effective dopings can be introduced by the incorporation from 
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a liquid catalyst or vapor species from sidewalls based on in situ dopings. Some ex situ 

doping approaches, such as ion-beam implantation, dopants diffusion and deposition, or 

annealing NW in the dopant ambient, can also be applied. Heterojunctions provide diversity 

and flexibility in the design of bandgap and allow more complex and advanced 

functionalities for applications. Heterostructures in NW are promising in the applications of 

tunnelling transistor, high electron mobility transistor, photodetector, laser, sensor, and solar 

cell. The treatment of the bandgap engineering in heterostructure NW bases upon the 

analysis of band structures. First-principles calculations based on DFT is a phenomenally 

successful approach to describe the quantum behaviors. The core of DFT is the calculations 

of the ground-state energy for electrons associated with a set of defined-position nuclei. The 

result of the iterative procedures converges toward a self-consistent solution of the equations 

only until a designed convergence is satisfied. A variety of calculations based on different 

approximations and experimental measurements are exploited to study the band structures. 

The calculation results are used to compare with the experimental measurements from 

optical measurements or photoemission and inverse photoemission experiments, meanwhile, 

the calculation approximations and methods can be remedied continually through the 

introduction of correction data. The dependence of exchange-correlation potentials on the 

bandgap in group III-V NW is still an open question. Neither methods nor approximations 

are panaceas up to now. The comprehensive introduction of some approximations in first-

principles calculations are described in this chapter. The large surface dimension in NW due 

to a high aspect ratio plays a more important role in correlations and ionized impurites to 

alter electrical, optical, and magnetic characteristics. Some challenges, i.e., lattice mismatch, 

thermal expansion coefficient mismatch, polar/nonpolar surface nature, as well as other 

dopant and defect problems, need to be studied further.  

 214 



 

V. Conclusion and Outlook 

Nanowires have gained wide attention during the last decade. Today, advances in the 

science of NW show no signs of abating. On the contrary, people spend more on this 

versatile building block for developing group III-V semiconductor devices with excellent 

performances. A large number fundamental researches and current efforts already under way 

clear a path for future avenues of study. In this thesis, group III-V NW growth and 

characterization are systematically elucidated. In the first part of this thesis, thermodynamics 

and kinetics, as well as concerned phase equilibrium or transformation were described. The 

CVM and the MC simulation were presented to explain the dependence of free energy on 

entropy and lattice properties by analyzing topology, electronic distribution and vibrational 

states. The corresponding supersaturation caused by chemical potential and the Gibbs-

Thomson effect are the driving force for nucleation during NW growth. The kinetic model 

was provided to give a summary of the dependence of rates on the adsorption, desorption, 

diffusion and nucleation. The model summarized the kinetic equations on every interface in 

the NW system, then the kinetic equations provided the growth rate and the critical 

dimension. Although the results are qualitative rather than quantitative, the model gave a 

good prediction for the characterization of NW. Then, top-down and bottom-up growth 

mechanisms were described systematically. Modern sub-10 nm resolution lithography can 

take advantage of the techniques developed by the existing semiconductor industry and 

control uniform NW arrays growth. Under the particular growth conditions, the VLS and 

VLS-like mechanisms were given to fabricate compositionally abrupt and structurally 

perfect NW. Foreign catalysts not only provide preferential sites but also reduce nucleation 

barriers. Choosing appropriate metals accompanied with moderate melting points, solvating 

abilities, thermal stability and other suitable chemical properties is key in the VLS 
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mechanism. However, the detrimental influences of transition metals during NW synthesis 

impact the electronic or optoelectronic performance due to the non-radiative recombination 

at deep levels. Group-III species via self-catalyzed processes were introduced to present a 

more comprehensive analysis of growth mechanism accompanied with preventing the 

drawbacks of introduction of transition metals. Moreover, the dependence of dimensions, 

phases, and density of group III-V on the growth parameters was given to consummate the 

NW growth model. Phases of the resultant NW depend on the details of temperature, 

pressure, influx rate and V/III ratio. Furthermore, the mechanisms of MOCVD and MBE for 

NW growth were analyzed, and the mechanisms provided strong evidence for the roles of 

the kinetics model and phase equilibriums. In addition, a generalized morphology analysis 

in the presence of surface relaxation and reconstruction were systematically investigated, 

meanwhile, the influences of dopants and defects were elucidated. The dependence of 

bandgap and states on the doping, strain, as well as low-dimension was described based 

upon the first-principles calculations. Doping affecting the electron density, strain having an 

impact on the effective masses of carriers, and quantum confinement modulating the 

material anisotropy were discussed in detail. The precise state analysis is attributed to 

advanced experimental measurements and a variety of code packages. According to the 

bandgap engineering in heterostructures, the capability of band offset combined with 

unrestricted lattice-mismatch in NW is opening up possibilities beyond devices by the 

international technology roadmap for semiconductors.  

      In recent days, the argument that Moore’s law is nearing its end has become increasingly 

prevalent [1020], but it does not mean that the last hour of semiconductor has come. On the 

contrary, there is a lot of development worth pursuing for scientists. The cores of 

development for transistor are not only going smaller, but also going faster and consuming 
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less. Group III-V tunneling field-effect transistor (TFET) based on NW structure is a 

promising candidate to meet the above requirements. It overcomes the thermodynamic 

barrier and breaks the limitation of subthreshold swing (SS) of MOSFET, 60 mV/dec, at 

room temperature. The steeper SS provides lower power consumption and faster speed 

switching in group III-V TFET NW. TFET NW consume less power under a lower supply 

voltage, because the power is proportional to the square of the supply voltage. Tunneling 

mechanism can be realized when carriers tunnel through a potential barrier if the barrier is 

sufficiently thin [322]. Band to band tunneling is based on the breakdown mechanism, 

where the Zener tunneling occurring controlled by a breakdown voltage.  

 

 

Figure 20. Principles of operation of an n-type TFET. The TFET operates like a gated 
p-i-n diode, and behaves like an energy band pass filter so only the carriers in the 
states in ∆𝚽𝚽 can be allowed to tunnel through the barrier. The number of available 
states is determined by the transmission factor and Fermi levels in the source and the 
drain, respectively.  
 

In Fig. 20, the electrons in the source tunnel through the bandgap barrier into the 

channel, when a positive gate voltage VG moves the energy band in the conduction band 

down, resulting in overlapping with the states in the valence band of the source. In opposite, 

the unoccupied bands in the channel are pulled up with a negative gate voltage. Meanwhile, 
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hole tunneling behavior shows a opposite process where holes tunnel from the channel into 

the source. Because carriers can only move to empty states in the overlap band regime, those 

nonoverlapping states in the channel are cut off. In conclusion, only the states in the 

bandgap window ∆Φ contribute to a tunneling current, as shown in Fig. 20. In the off state, 

the overlapping states in the window are negative, so the off-current is suppressed to a 

considerably low level.  

       The basic principle of TFET is based upon tunneling phenomenon, so the current of 

TFET is controlled by a tunneling probability. The tunneling probability of TFET depends 

on the material bandgap and the bandgap window in Fig. 20 [1021-1023]. Group III-V 

heterostructure NW reduce the influence of lattice-mismatch, meanwhile provide a large 

band to band current under a forward bias [1024,1025]. There is a tradeoff in 

heterostructures between the suppression for the off-current leakage due to a band 

discontinuity and the extra tunneling channels caused by defects on the interface 

[1026,1027]. Type-II or type-III heterostructures can improve the on-current and the Ion/Ioff 

ratio effectively by using appropriate bandgap and small effective masses materials in NW 

[1028-1031]. Another advantage for TFET NW is easy to realize tight gate control wrapped 

by gate to suppress parasitic leakage currents. However, no TFETs can behave perfect 

performances on all parameters till now, meanwhile, fabricating tunneling transistors 

requires a complete redesign the structure to accommodate the asymmetric property and the 

fabrication processes in engineering.  

        Recently, an electronic-photonic chip including a large number of photonic 

components was integrated to overcome the bandwidth and power density limitations of 

traditional microprocessors with pure electrical components [1032]. This opens up future 

optical communication in a semiconductor integrated circuit. Group III-V type-I 
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heterostructure NW is much more appropriate than Si to serve as a laser source, an electro-

optic/electro-absorption modulator, an illuminated photodetector, and an optical amplifier in 

an electronic-photonic integrated circuit [1033]. Group III-V semiconductors can provide 

direct bandgap and large refractive index materials for laser gain media. In the range of 

group III-V compounds laser emission, short distance and minimum attenuation data 

communication bands are ~850 nm (AlGaAs/GaAs NW, AlAs, InN) [1034,1035] and ~1.31 

μm (GaAs/AlGaAs, InP/InGaAsP [1034], InGaAs QD [1036], GaAsSb QW [1037]), as well 

as long distance optic communication window is ~1.55 μm (InP/InGaAsP) [1034]. Some 

other wavelength windows, such as ~980 nm (InGaAs/AlGaAs, InGaAs/GaAs) [1034], 

~533 nm (InGaN/GaN [1038]), ~380 nm UV (GaN NW [561,1039], GaN/AlGaN [1040]), 

and shorter wavelengths UV (AlGaN NW [1041], InGaN/GaN NW [1042]),  have been 

demonstrated widely.  

 

 

Figure 21. Illustration of a simplified axial InP/InGaAsP (~1.55 𝛍𝛍m) NW laser. The 
cavity between the distributed Bragg reflectors (DBRs) consists of InGaAsP (Eg~0.8 eV 
@300K) QWs, separated by InP (Eg~1.351 eV @300K) barriers, and clad on each side 
by another InP barrier. The DBRs consists of AlAsSb/AlGaAsSb, where AlAsSb 
matches to the outside barrier InP lattice. The corresponding energy diagram, the 
refractive index profile, and the electric field/the photon density profile along axis are 
schematized.  
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        A simplified axial heterostructure NW laser is plotted in Fig. 21. The NW itself serves 

as the waveguide, and two parallel mirrors construct a Fabry-Perot (F-P) cavity. Radial QW 

structures can also be grown by fabrication of radial heterostructure NW laser shown in Fig. 

22. 

 

 

Figure 22. Illustration of a simplified radial GaAs/InGaAs (~980 nm) NW laser. The 
cavity consists of InGaAs (Eg~1.215 eV @300K) QWs, separated by GaAs (Eg~1.424 eV 
@300K) barriers, and clad on each side by another GaAs barrier.  
 

        The fabrication of both the gain medium and a laser resonant F-P cavity are easy to be 

constructed in a NW system. Moreover, 2D confinement can tightly constrain photonic 

modes guiding along NW axis with a low scattering loss, meanwhile the emission light is 

convenient to be coupled into fibers or optics nanostructures. NW can provide 

compositionally abrupt and structurally perfect heterostructures and optical mirrors to filter 

modes for a single mode laser. NW therefore expand the range of options for materials 

because of the less defects caused by lattice mismatch. In general, the material having the 

characteristics of a lower bandgap and a higher index of refraction is available to serve as 

the action region of a laser. Meanwhile the material possessing the characteristics of a larger 

bandgap and a smaller refraction index acts as the barrier. Nonradiative mechanisms caused 

by nonradiative recombination centers where energy is dissipated as heat and by Auger 

recombination in which the e-h recombination transfers energy should be suppressed in the 

 220 



 

NW laser system. The NW laser in Fig. 21 is designed as a vertical cavity surface emitting 

laser and the wave propagates along NW axis. The outside low index air provides a lateral 

confinement efficiently meanwhile the surface passivation improves the radiative efficiency 

or the quantum efficiency [1043]. The NW laser in Fig. 22 is the edge emission laser with a 

strong lateral confinement, and its output optical waveguide is provided from the edge of 

NW. The radial index change induces to guiding photons along NW axis, and the outside 

barrier can limit optical losses. The output wavelength or mode can be modulated by 

designing the well width and barrier height [1034], changing the NW length, or tuning the 

refractive index of the cladding [1044]. The precise mode calculation for NW is more 

complicated than that of fibers, but the hexagonal cross section calculations in NW can be 

approximated by the circular cross section calculations based upon the Maxwell’s equations 

[1044]. Besides of lasers, photodetectors, electro-optic/electroabsorption modulators, and 

optical amplifiers can be fabricated based upon NW structures. The capability of dense 

integration with NW components into an integrated circuit needs to study further. 

        No matter whether the future roadmap departs the route of Moore’s law or not, 

quantum computing that focuses on building and running algorithms promises exponential 

speedup for calculations [1045-1054]. The quantum algorithms originate from initializing 

qubits, applying evolution operators, controlling reasonable decoherence time, measuring 

qubits, and implementing appropriate quantum gates. NW represent a platform to investigate 

the dependence of physical realizations on the quantum calculations, because its extremely 

low dimension makes large electrostatic charging energies easier to achieve, complicated 

heterostructures are simpler to construct, and the phenomena of decoherence and imperfect 

quantum gates are more likely to be improved. Until now, the most promising physical 

implementations for quantum computers are single photon source, artificial quantum dot 
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(QD)/trapped nanostructure, and superconductor, which have to satisfy the requirements of 

logic criterion and correctability. In encoded quantum information, the state of system is 

represented by a vector in a 2D Hilbert space, where the vector can be written as a linear 

combination of the eigenstates. The state of a single qubit is shown in Fig. 23. A qubit can 

be used to describe the polarization of a photon from a polarized photon, or the spin of 

electrons, protons, and neutrons in a QD. The evolution operator causes the manipulation of 

quantities that depend on the state of a system. Some general criteria for qubits are 

summarized by D. P. DiVincenzo [1055].  

 

 

Figure 23. Illustration of a general qubit as a Bloch sphere, where the poles represent 
the eigenstates (or classical bits). Quantum mechanics allows a qubit to be in a linear 
superposition of the basis states, 0 1a bψ = +  , where |a|2+|b|2=1. 
 

        In quantum information processing, a high-efficiency single photon source based on a 

single QD or a trapped ‘atom’ can be well applied for computation, storage and 

communication, because photons are free of decoherence and are able to carry quantum 

information over a long distance [1056-1059]. The qubit state can be encoded in the 

polarization of a single photon on the basis of location and timing. The excitation pulse 

generates a single-photon pulse by controlling only QD ground-excition recombination 

implemented [1056], or adjusting the phase of laser illuminating the trapped rubidium atom 
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[1057]. NW with embedded QDs can provide a promising technique for application in 

quantum photonics [1060,1061]. A QD and its corresponding Bragg mirrors cladding the 

QD can be grown in NW system to fabricate a cavity directly [1058,1062-1068]. The 

insertion of QD and the morphology of QD in NW can be controlled during NW growth.  

        For group III-V semiconductors, artificial atoms/QDs have ability to confine electrons 

or holes and their spin states can provide a logical qubit.  Electron spins in QD [1069,1070] 

or nuclear spins can be used to encode quantum information. Quantum logic can be operated 

by changing an electrostatic gate voltage or a magnetic field. Coupled QDs can serve as a 

basic building block for a quantum computer [1071]. NW provide an alternative choice for 

fabricating double QDs and confining electrons in a low dimension. In real, nonuniform 

QDs, imperfect quantum gates, and the low quality of contact interface all induce the 

detrimental performances of quantum information processing. The electron spins in a QD 

can also be changed through the spin-orbit interaction in group III-V materials with a strong 

spin-orbit coupling [1072]. The qubit in this system consists of spin states and the orbital 

degrees of freedom, where spin states have some orbital characteristics. The perturbation of 

orbit caused by an electric field can induce the change of spin states. Group III-V NW with 

embedded QDs are expected to provide a platform to control spins in a fast qubit operation 

[1072,1073]. The coupling of QD spin qubits in a long distance can be realized by 

introduction of a superconducting microwave cavity into the NW system [1074]. The 

coupling microwave cavity in semiconductor superconductor NW generating hybrid qubits 

through the Josephson junction provides another approach for electrical control in future 

quantum implementation [1075]. These qubits can be controlled by not only microwaves, 

but also a magnetic field, voltages and currents. Other recent advances for the manipulation 

of quantum information also attempt to construct physical realizations on an ideal NW 
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platform. Moore’s law is not a physical law in the manner of Newton’s laws or Maxwell’s 

equations, and it may be coming to a natural end one day. The thoroughly research on 

quantum calculations and quantum computers might pave the way for another new Moore’s 

law.  

        Last but not least, the research of photovoltaic NW solar cell targets a compromise 

between higher conversion efficiency and a lower cost. Throughout the history of 

development of humans, every advancement of human civilization is accompanied by the 

improvements in utilizing solar energy, from producing and maintaining crops in the 

agricultural society, to exploiting coal, petroleum and natural gas in the industrial society. 

As worldwide energy demand increases, accompanied with a global tendency to lower fuel 

consumption and the emission of greenhouse gases, continued development of clean energy 

emerges as an important aspect of harnessing nature. In the future, the ability of direct solar 

energy conversion from incident light into electricity will determine the level of human 

development directly. Although the price of group III-V materials are much higher than Si, 

CdTe, and copper indium gallium selenide (CIGS), group III-V solar cells based on NW 

structure provide various advantages over most existing thin film or planar wafer based solar 

cells on the market.  

        Most of the sun’s power distributes in the range of 400 nm to 2 μm, and the maximum 

solar cell efficiency lies in the range 1.4-1.6 eV. Group III-V materials provide appropriate 

bandgaps that are larger than 1.4 eV. Besides of GaAs, GaN, InGaN, InAs, GaAsP, GaInP, 

GaAs/AlGaAs, and InGaP/InGaAs have the optimal bandgap energies for applications. NW 

circumvent the lattice-mismatch, and are used to fabricate radial cells in which the radial 

structure ensures a sufficient optical absorption length while reducing the carrier extraction 

distance [1076,1077]. The needs for no matter extremely high efficiency at aerospace or 
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higher efficiency at a lower cost at terrain can be met through absorbing sunlight over a 

broad range of wavelengths and incident angles. NW radial multi-junction heterostructure 

will solve the problem by applying multiple group III-V materials, in which each material p-

n junction will absorb the corresponding wavelength of light and produce electric currents. 

In Fig. 24, a homojunction p-n radial NW solar cell is plotted. The photon energy absorption 

induces exciton creation and separation to free carriers, and then carriers are collected by the 

electrodes, such as Al, Fe, or conductive glass. The type-II heterojunction offset or QD 

attached on NW [1078] provides alternative choices for solar cells based on NW systems. A 

tunnel junction needs to be added at the interface of heterojunctions for multi-junction NW. 

In a photovoltaic system, a photocurrent increases with the decreasing of bandgap 

exponentially, and an open circuit voltage can be enhanced with the enhancement of 

bandgap logarithmically. So to obtain a maximum output power, there exists an optimum 

value for the bandgap of group III-V semiconductor [322].  

 

 

Figure 24. Schematic structure of an n+-p-p+ radial GaAsP NW solar cell. Solar cell 
operates on the principle of photovoltaic effect, in which sunlight creates electron-hole 
pairs that are collected in an external circuit. The forward current can be dominated 
by the recombination current in the depletion region.  
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        Annual results about photovoltaic cell efficiencies and module techniques were 

summarized in published tables [1079]. Expectations of group III-V material quality should 

be concomitantly raised to satisfy the requirements of high conductivity and low 

recombination rate. NW systems can improve the efficiencies through reducing reflections, 

providing extreme light trapping, improving bandgap modulations, and increasing strain and 

defect tolerance [1080]. Antireflection coatings can address reflection loss, arising from a 

difference in refractive indices between two media to eliminate the reflection at both 

interfaces. Cladding NW or a surface passivated process improves the efficiency via the 

reduction of surface recombination [1076,1081]. Changing radial layer thickness can control 

the light trapping to improve absorption meanwhile ordered NW arrays provide excellent 

light trapping and enhanced absorption [1082,1083]. In a NW system, carrier propagation is 

driven by wavefunctions as well as the possible resonance and interference caused by 

external fields. The coupling effects within NW or between NW need to be studied further.  
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