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Comprehensive assessment of 11 de novo HiFi
assemblers on complex eukaryotic genomes
and metagenomes

Wenjuan Yu,1,6 Haohui Luo,1,6 Jinbao Yang,1,5,6 Shengchen Zhang,1,5,6 Heling Jiang,1,6

Xianjia Zhao,1,4 Xingqi Hui,1,4 Da Sun,1 Liang Li,2 Xiu-qing Wei,2 Stefano Lonardi,3

and Weihua Pan1
1Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of
Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen
518120, China; 2Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350002, China; 3Department of
Computer Science and Engineering, University of California, Riverside, California 92521, USA; 4School of Agricultural Sciences,
Zhengzhou University, Zhengzhou, Henan 450001, China; 5College of Informatics, Huazhong Agricultural University, Wuhan
430070, China

Pacific Biosciences (PacBio) HiFi sequencing technology generates long reads (>10 kbp) with very high accuracy (<0.01%

sequencing error). Although several de novo assembly tools are available for HiFi reads, there are no comprehensive studies

on the evaluation of these assemblers. We evaluated the performance of 11 de novo HiFi assemblers on (1) real data for three

eukaryotic genomes; (2) 34 synthetic data sets with different ploidy, sequencing coverage levels, heterozygosity rates, and

sequencing error rates; (3) one real metagenomic data set; and (4) five synthetic metagenomic data sets with different com-

position abundance and heterozygosity rates. The 11 assemblers were evaluated using quality assessment tool (QUAST) and

benchmarking universal single-copy ortholog (BUSCO). We also used several additional criteria, namely, completion rate,

single-copy completion rate, duplicated completion rate, average proportion of largest category, average distance differ-

ence, quality value, run-time, and memory utilization. Results show that hifiasm and hifiasm-meta should be the first choice

for assembling eukaryotic genomes and metagenomes with HiFi data. We performed a comprehensive benchmarking study

of commonly used assemblers on complex eukaryotic genomes and metagenomes. Our study will help the research com-

munity to choose the most appropriate assembler for their data and identify possible improvements in assembly algorithms.

[Supplemental material is available for this article.]

Advances in sequencing technology have been a driving force in
molecular biology and genomics, in particular for de novo genome
assembly (Alhakami et al. 2017; Sohn and Nam 2018; Sun et al.
2022b). Single-molecule sequencing (SMS) technologies currently
on the market can generate long reads that can span most repeti-
tive regions in eukaryotic genomes and thus have simplified the
de novo assembly problem. A notable example of SMS is
Pacific Biosciences (PacBio) HiFi technology that can provide reads
>10 kbp with very high accuracy (<0.01% sequencing error).
Oxford Nanopore Technologies (ONT) can generate even longer
reads (up to a few mega base pairs), but the sequencing error rate
can be as high as 3%. PacBio HiFi reads have enabled significant
improvements in the assembly of the human genome (Wenger
et al. 2019; Vollger et al. 2020), as well several other eukaryotic ge-
nomes (Jain et al. 2021; Song et al. 2021; Xue et al. 2021; Ríos-
Touma et al. 2022; Sun et al. 2022a; Wang et al. 2022).

The problem of de novo assembly can be computationally
challenging because of the high repetitive content of genomes, se-
quencing errors, nonuniform, or insufficient sequencing coverage

and chimeric reads. In the literature, the problem is solved either
using the overlap graph (Li et al. 2012), the de Bruijin graph
(Miller et al. 2010; Li et al. 2012), or the string graph (Ben-Bassat
and Chor 2014), depending on the nature and the number of
the input reads. These methods also play an essential role in SMS
assembly (Jain et al. 2021).

Assemblers for long SMS reads also use the overlap graph, the
de Bruijin graph, and the string graph (or any combination there-
of). For instance, Canu (Koren et al. 2017) integrates hybrid error
correction PBcR (Koren et al. 2012), MinHash Alignment Process
(MHAP), and some modules from the Celera Assembler (Berlin
et al. 2015). miniasm (Li 2016) implements the overlap and layout
steps in the overlap-layout-consensus assembly paradigm. The ab-
sence of the consensus step makes miniasm particularly fast, but
its application is limited to relatively small genomes that are not
very repetitive (Li 2016). HiCanu (Nurk et al. 2020) is a special ver-
sion of Canu that leverages the high-quality of HiFi reads. FALCON
(Chin et al. 2016) builds primary contigs via a string graph and
then generates the haplotype-resolved assembly using phased
reads. Shasta was designed for the assembly of human genome
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with Oxford Nanopore reads, but the developers have recently
added a HiFi-mode (Shafin et al. 2020). Peregrine (Mills et al.
2020) takes advantage of the high accuracy of HiFi reads and
uses sparse hierarchical minimizers to index reads, thereby reduc-
ing the high computational cost of all-against-all alignment step in
the overlap-layout-consensus pipeline. hifiasmwas specifically de-
signed for HiFi reads: It uses a phased assembly graph to recon-
struct the haplotype of diploid genomes (Cheng et al. 2021).
hifiasm-meta represents a variant of hifiasm devised to perform
the assembly of multiple genomes present within a metagenomic
sample. This tool incorporates a novel read selection step and in-
troduces innovative criteria aimed at safeguarding reads that orig-
inate from genomes with limited coverage (Feng et al. 2022).
ABruijn (Lin et al. 2016), Flye (Kolmogorov et al. 2019), HiFlye,
and metaFlye (Kolmogorov et al. 2020) are based on the de Bruijn
graph. ABruijn combines de Bruijin and the overlap-layout-con-
sensus approaches. Flye uses the repeat graph, which extends the
de Bruijn graph so that it can deal with the errors in long reads.
wtdbg2 also uses a combination of overlap graph and de Bruijin
graph (Ruan and Li 2020): It uses a data structure called fuzzy-
Bruijn graph to enable an efficient all-versus-all read alignment.
MECAT andNECAT are assemblers for PacBio reads andONT reads,
respectively, that use a fast-scoring method to filter out spurious
alignments (Xiao et al. 2017; Chen et al. 2021). Verkko is an im-
proved Canu assembler that can assemble HiFi reads and ONT
reads simultaneously and was used for the telomere-to-telomere
assembly of the human genome (Rautiainen et al. 2023).

At the timeofwriting, users can choose fromat least 25 assem-
blers for SMS reads (see Supplemental Table 1), depending on the
type of reads they have (Chin et al. 2016; Li 2016; Lin et al. 2016;
Kamath et al. 2017; Koren et al. 2017; Wick et al. 2017; Xiao et al.
2017; Nowoshilow et al. 2018; Du and Liang 2019; Kolmogorov
et al. 2019, 2020; Mills et al. 2020; Nurk et al. 2020; Ruan and
Li 2020; Shafin et al. 2020; Chen et al. 2021; Cheng et al. 2021;
Luo et al. 2021; Feng et al. 2022; Rautiainen et al. 2023). However,
choosing the “best assembler” for their data is a daunting pro-
position, because the performance of an assembler depends on
organism ploidy, genome repetitive content, genome size, hetero-
zygosity, andmany other factors. Even if we focus only on HiFi as-
semblers, there is no comprehensive study that could guide users
on the expected performance of these assemblers on large eukary-
otic genomes. The only studies we could find were those of (1)
Zhang et al. (2022a), who tested Flye, HiCanu, hifiasm, NECAT,
and NextDenovo on HiFi and ONT reads, but only on brewer’s
yeast; and (2) Gavrielatos et al. (2021), who tested Canu, hifiasm,
WENGAN (Di Genova et al. 2021), and HiCanu on Hifi and ONT
reads, but only on the fruit fly and human haploid genome and
in the context of hybrid assembly.

To address this shortcoming, here we report on a comprehen-
sive assessment of the performance of 11 SMS assemblers for HiFi
reads (nine for genome assembly and two for metagenomes). Our
choice of these 11 assemblers was based on their (1) popularity
(based on their usage/citations), (2) user friendliness (e.g., how
easy it is to install and run them), (3) algorithmic novelty, and
(4) the fact that they are currently actively maintained. The 11
HiFi assemblers we selected are HiCanu, hifiasm, HiFlye, hifiasm-
meta, metaFlye, Peregrine, Shasta, Verkko, MECAT2, miniasm,
andNextDenovo.We studied the performance of these assemblers
under various conditions, including various sequencing coverage,
heterozygosity, and ploidy (see Supplemental Table 2). The 11 as-
semblers were evaluated using quality assessment tool (QUAST/
MetaQUAST) (Mikheenko et al. 2016, 2018) and benchmarking

universal single-copy ortholog (BUSCO) (Simão et al. 2015). We
also measured new quality metrics, namely, completion rate, sin-
gle-copy completion rate, duplicated completion rate, average pro-
portion of largest category, average distance difference, and quality
value. We also recorded run-time and memory utilization.

Results

A comprehensive set of experiments were conducted on the 11 ge-
nome assemblers using both real and simulated data for various
choices of ploidy. Four assemblers were selected for a deeper anal-
ysis on data sets produced for different choices of sequencing cov-
erage and heterozygosity. Finally, four metagenome assemblers
were tested using both real and simulated metagenomics samples
for several choices of the sample composition, in terms of both
species abundance and the similarity among the constitutive
genomes.

Experiments on complex eukaryotic genomes

Experimental results on real data with varying ploidy

All the assemblers were tested on real HiFi reads for rice (homozy-
gous diploid), potato (heterozygous diploid), and wax apple
(autotetraploid). Detailed statistics on these data sets and the cal-
culation methods of evaluation criteria are provided in the
Methods section.

First, the assembly contiguity was assessed by QUAST. Figure
1A shows the cumulative total size of contigs and the number of
contigs that have a size in the range encoded by the color in the
legend, for the rice data set (top), the potato data set (middle),
and the wax apple data set (bottom). Observe that on potato and
wax apple data, HiCanu, hifiasm, HiFlye, and Peregrine produced
longer, more contiguous assemblies. In particular, hifiasm pro-
duced a larger proportion of contigs >10 Mbp (blue area in Fig.
1A). Verkko produced a long assembly composed primarily of rel-
atively short contigs. MECAT2 instead produced the shortest as-
semblies. In Figure 1C, we ordered the assembled contigs by size
and computed the cumulative contig length for different thresh-
olds of the NG value. Observe that on all three data sets, hifiasm
achieved the best contiguity.

Second, the genome completeness was assessed by BUSCO.
The set of conserved genes in gramineae (4896 genes in total) was
used to assess the rice assemblies; the set of conserved genes in cru-
ciferae (5878 genes) was used to assess the potato assemblies; and
the set of eukaryotic conserved genes (5878 genes)wasused to assess
the wax apple. Figure 1B shows the BUSCO assessment results for
rice (top), potato (middle), and wax apple (bottom). Observe that
HiCanu, hifiasm, HiFlye, NextDenovo, Peregrine, and Verkko
achieved >98% completeness. According to this metric, miniasm
did not perform well on rice and potato.

Third, the assembly accuracywas assessed using theQV score.
TheQVscores forall theassemblerson the threedata sets are shown
in Figure 1D. Observe that HiCanu, hifiasm, NextDenovo, Shasta,
and Peregrine produced high QV across the three data sets. In con-
trast, MECAT2 andminiasm produced low accuracy assemblies on
all data sets. Shasta generated poor accuracy assemblies on the wax
apple, whereas its performance on rice and potatowas satisfactory.
It is noteworthy that Verkko had a worse QV score than did
HiCanu, despite the fact that it shares some of its codebase.

Fourth, CPU time and memory usage was collected. Figure 1,
E and F, shows the run time and the memory usage for all
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assemblers on the three data sets. Ob-
serve that Shasta and NextDenovo con-
sumed the lowest amount of resources.
Peregrine was the slowest on rice and
the wax apple data sets. MECAT2 was
also slow, especially on the potato and
the wax apple data set. NextDenovo
and HiCanu used the smallest amount
of memory. miniasm and MECAT2 used
a much higher amount of memory, and
the usage increased on higher-ploidy
data sets.

Overall, hifiasm, HiCanu, HiFlye,
and Peregrine showed a clear advantage
over the other assemblers in terms of
contiguity, completeness, and accuracy.
In this group, however, Peregrine re-
quired much higher computational re-
sources, in particular related to CPU
time. NextDenovo achieved good results
on the rice data sets but did not perform
equally well on the potato and wax apple
genome.

Experimental results on synthetic data sets
with varying ploidy

On the synthetic data set, a more com-
prehensive evaluation of contiguity,
completeness, and accuracy was per-
formed owing to the availability of the
“ground truth” genome (i.e., one to
four copies of the rice genome after intro-
ducing SNPs and structural variants; de-
tailed statistics on these synthetic data
sets are provided in the Methods). Figure
2 summarizes the experimental results of
the nine HiFi assemblers on synthetic
reads produced from the rice genome in
haploid form (one copy of each chromo-
some), synthetic diploid (two copies),
and synthetic tetraploid (four copies).

Figure 2A shows the cumulative to-
tal size of contigs and the number of con-
tigs that have a size in the color-coded
range, for the rice haploid data set (top),
the rice diploid data set (middle), and
the rice tetraploid data set (bottom). Ob-
serve that hifiasm, Peregrine, HiCanu,
Verkko, and Shasta produced highly con-
tiguous assemblies in all three data sets,
with a high fraction of contigs >10 Mbp
(Fig. 2A, left, blue subbars). HiFlye had
the worst performance on all three synthetic data sets. A deeper
analysis to explain HiFlye’s poor performance was conducted in
the subsection “HiFlye tested on synthetic data sets on varying se-
quencing error rates.”miniasm andMECAT2 had an adequate per-
formance only on the haploid data set, possibly because these
assemblerswere not designed to handle polyploid data sets. The re-
sults in Figure 2Awere consistent with the NG curves in Figure 2C.
In this latter figure, hifiasm, Peregrine, Verkko, and HiCanu pro-
duced a higher NG50 on all synthetic data sets. Supplemental Ta-

ble 3 reports QUAST’s evaluation of the assemblies, including the
number and length of misassembled contigs, the duplication ratio
(which measures redundant contigs), the fraction of the genome
covered by the assembly, and the number of mismatches/indels
in the assembly. Consistent with results above, hifiasm, Peregrine,
Verkko, and HiCanu achieved genome fraction >99%, with the
duplication ratio very close to 1.0 and a low number of mismatch-
es/indels and misassemblies. HiFlye, miniasm, and MECAT2 did
not perform as well.

A

C

D

E F

B

Figure 1. Summary of the performances of the selected genome assemblers on PacBio HiFi reads for
rice (haploid), potato (diploid), and wax apple (tetraploid). (A) Cumulative total size of contigs (left) and
number of contigs (right) that have a size in the range encoded by the color in the legend (top: rice;mid-
dle: potato; bottom: wax apple); the vertical dashed line indicates the expected genome size. (B) BUSCO
completeness scores (top: rice;middle: potato; bottom: wax apple). (C) Contig length distribution for var-
ious choices of the NGx fraction threshold. (D) Quality value scores. (E) Running time analysis. (F)
Memory usage analysis (legend on panel D also applies to panels E,F).

Benchmark of 11 de novo HiFi assemblers
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In Figure 2B, we used the three-com-
pleteness metrics described in the Meth-
ods section, namely, CR, SCR, and DCR,
to evaluate the performance of the as-
semblers. HiCanu, Verkko, and hifiasm
had the best performance according to
these three metrics, achieving a com-
pleteness rate of ∼99.9%. NextDenovo
and MECAT2 performed well on haploid
butwere inadequate on diploid and tetra-
ploid. HiFlye had the worst performance
again.

Figure 2D shows the average propor-
tion of the largest category score (APLC),
whereas Figure 2E summarizes the aver-
age distance difference scores (ADF).
Both accuracy metrics are defined in the
Methods section. HiCanu, Peregrine,
Verkko, and hifiasm performed well ac-
cording to these criteria across varying
ploidy, with APLC close to 1.0 and low
values for ADF. On diploid and tetraploid
data sets, other assemblers also had a
small APLC. HiFlye and MECAT2 pro-
duced a high ADF, which is consistent
with the large number of misassembled
contigs detected by QUAST for these
tools (Supplemental Table 3).

As expected, timeandmemoryusag-
es on synthetic data were similar to the
usage on real data sets (Fig. 2F). Observe
that Shasta and NextDenovo were the
fastest on all synthetic data sets, whereas
HiFlye, MECAT2, and Peregrine were the
slowest. Also observe in Figure 2G that
NextDenovo used the smallest amount
of memory, whereas miniasm, Shasta,
and MECAT2 used the largest amounts.

In summary, hifiasm, Peregrine,
Verkko, HiCanu, and Shasta produced as-
semblies with higher contiguity, com-
pleteness, and accuracy than the other
assemblers on synthetic HiFi reads data
sets across varying ploidy. NextDenovo
had a good performance only in the hap-
loid data set. miniasm, NextDenovo, and
MECAT2 failed on the diploid and tetra-
ploid data sets. HiFlye failed on all data
sets; a deeper analysis will be performed
later.

Experimental results on a human data set

We also performed a performance eva-
luation of HiCanu, hifiasm, HiFlye,
Peregrine, Shasta, Verkko,MECAT2,mini-
asm, and NextDenovo on a human data set. On this large data set,
miniasm did not complete owing to memory overflow, and Pere-
grine did not yield results after running it for 2 wk on 80 threads.
We removedminiasm and Peregrine from the evaluation and added
two new assemblers, namely, LJA (Bankevich et al. 2022) and rust-
mdbg (Ekim et al. 2021). Given the size of the human genome,

when computing the CR, SCR, DCR, APLC, and ADF assembly
scores, we sampled 300,000 unique k-mers from the reference ge-
nome uniformly at random 10 times and recorded the average.

A summary of the performances of these nine assemblers is re-
ported in Figure 3. Observe in Figure 3B that HiCanu, hifiasm, LJA,
and Verkko achieved a completeness close to 100%, whereas the

A

C

D E

F G

B

Figure 2. Summary of the performances of the selected genome assemblers on synthetic HiFi reads for
rice in haploid form, synthetic diploid, and synthetic tetraploid. (A) Cumulative total size of contigs (left)
and the number of contigs (right) that have a size in the range encoded by the color in the legend (top:
haploid rice; middle: synthetic diploid rice; bottom: synthetic tetraploid rice); the vertical dashed line in-
dicates the expected genome size. (B) Single complete rate, duplicated complete rate, and missing rate
(top: haploid rice; middle: synthetic diploid rice; bottom: synthetic tetraploid rice). (C) Contig length dis-
tribution for various choices of the NGx fraction threshold. (D) Average proportion of largest category
(APLC); the horizontal dashed line is APLC=0.99. (E) Average distance difference (ADF). (F ) Running
time analysis. (G) Memory usage analysis (legend on panel E also applies to panels F,G).
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other assemblers only achieved 50% completeness. The 50% com-
pleteness is likely because some of these assemblers generate con-
sensus assemblies rather than haplotype-resolved assemblies. Also
observe that Verkko’s assembly contained a significant amount of
redundant contigs compared with HiCanu, hifiasm, and LJA.

Among the four assemblers with high completeness, HiCanu,
LJA, and Verkko achieved higher accuracy than did hifiasm (Fig.
3G,H). However, the contiguity (N50) of hifiasm (36.4 Mbp) was
significantly higher than that of HiCanu (4.5 Mbp), LJA (299.0
kbp), and Verkko (190.5 kbp) (Fig. 3A,C–F). Overall, hifiasm pro-
duced the best performance on this data set.

Experimental results on synthetic data sets with varying
sequencing coverage levels

An important quality of genome assembler is the ability to produce
good assemblies even when the sequencing coverage is less than
optimal. In this section, we tested HiCanu, Verkko, hifiasm, and

HiFlye using synthetic data sets from
the synthetic heterozygous diploid ge-
nome with sequencing depths of 10×,
20×, 30×, and 50×. Detailed statistics on
the synthetic data sets are provided in
the Methods section. Experimental re-
sults are summarized in Figure 4 and tab-
ulated in Supplemental Table 4.

Several observations are in order.
First, irrespective of the assemblers, there
was a significant improvement on the as-
sembly contiguity when the coverage
increased from 10× to 20× (Fig. 4C–F).
HiCanu’s N50 increased from 362,820 bp
to 30,836,250 bp; Verkko’s N50 increased
from 816,272 bp to 32,114,812 bp; and
hifiasm increased from 6,168,309 bp to
32,623,532 bp. At the same time, the ADF
of all assemblers decreasedwhen the cover-
age increased from 10× to 20×. Verkko’s
ADF continued to decrease when coverage
increased from 20× to 30×, but it was not
the case for HiCanu and hifiasm. When
the coverage increased from 10× to 20×,
NA50 and NGA50 improved about 80
times for HiCanu, 40 times for Verkko,
and five times for hifiasm. From 20× to
50×, the change of N50, NA50, and
NGA50 were less pronounced.

Supplemental Table 4 and Figure 4B
show that when the coverage increased
from 10× to 20×, the assembly complete-
ness for HiCanu and Verkko increased,
whereas when the coverage increased
from 20× to 50×, the assembly complete-
ness did not change significantly. Also
observe that the increase in coverage
did not affect hifiasm’s assembly com-
pleteness, whichwas stable over different
coverages. HiFlye had better complete-
ness with increasing coverage, but over-
all, HiFlye’s assemblies were much
worse than the other three assemblers.

The accuracy assessment was based
on APLC, ADF, mismatches per 100 kbp, and number/length of
misassembled contigs. The APLC for HiCanu increased with high-
er coverage. hifiasm was able to produce more contigs >50 Mbp
(purple color in Fig. 4A) with 20× and 30× coverage; however,
Supplemental Table 4 and the APLC indicate a misassembly on
those long contigs. With 50× coverage, hifiasm corrected this mis-
take (Fig. 4G; Supplemental Table 4). With increased coverage
Verkko produced an improvement in ADF (Fig. 4H).

In summary, HiCanu and Verkko’s assemblies were more sen-
sitive to the sequencing coverage, and they had an unsatisfactory
performance at 10×. Instead, hifiasm had a more predictable and
consistent performance across different choices of coverage, and
its assemblies improved with increasing coverage.

Experimental results on synthetic data sets with varying heterozygosity rates

Another important quality of a genome assembler is the ability to
deal with various levels of heterozygosity in diploid (or polyploid)

A
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D

G H

E F

B

Figure 3. Summary of the performances of the selected genome assemblers on a human genome data
set. (A) Cumulative total size of contigs (left) and the number of contigs (right) that have a size in the
range encoded by the color in the legend; the vertical dashed line indicates the expected genome
size. (B) Single-copy complete rate, duplicated complete rate, and missing rate. (C) Sorted contig length
(left: longest 150; middle: index 150–900; right: index 900–80,000). (D) Cumulative assembly size as a
function of the minimum contig length allowed in the assembly. (E) Nx length (the dashed line denotes
theN50). (F) NGx length (the dashed line denotes theNG50). (G) Average proportion of largest category
(APLC); the horizontal dashed line is APLC=0.99. (H) Average distance difference (ADF).
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genomes. In this section, we used the synthetic heterozygous dip-
loid genome and generated synthetic reads at 20× coverage by
varying the heterozygosity rates. Specifically, we used the
SimSID script to introduce heterozygosity rates of 0.5%, 1.0%,
1.5%, and 2.5% (see Methods). Detailed statistics for the synthetic
data sets are provided in theMethods section. Experimental results
for HiCanu, Verkko, hifiasm, and HiFlye on these data sets are
summarized in Figure 5 and tabulated in Supplemental Table 5.

Several observations are in order. In terms of contiguity,
Figure 5A shows that HiCanu’s assembly contiguity degraded
with higher levels of heterozygosity, whereas hifiasm’s had a stable
performance across all data sets. In fact, hifiasm had a better
performance on all metrics compared with the other assemblers

(Fig. 5C–F). HiFlye again produced incom-
plete, small assemblies on all synthetic
data sets. In terms of completeness (CR,
SCR, DCR), hifiasm, HiCanu, and Verkko
had consistently good performance with
varying heterozygosity rates (Fig. 5B).

With respect to assembly accuracy,
therewasno clear trend associatedwith in-
creasing levels of heterozygosity (Fig. 5G,
H). hifiasm’s number of mismatches per
100 kbp assessed by QUAST was less than
0.1 in all data sets (Supplemental Table
5). However, HiCanu’s APLC was better
than that of hifiasm. hifiasm’s lower
APLC was caused by a single misassembly
on a 70-Mbp contig (Supplemental Fig. 2).
hifiasm produced the highest accuracy
assemblies based on the ADF metric.

In summary, although HiCanu and
HiFlye’s performance degraded with
increasing heterozygosity, Verkko and
hifiasm had a consistently good perfor-
mance across data sets. hifiasm, Verkko,
and HiCanu performed well on low het-
erozygosity data sets. hifiasm performed
well also on high heterozygosity data sets.

HiFlye tested on synthetic data sets on varying
sequencing error rates

As reported previously, HiFlye produced
high-quality assemblies on the three
real data sets but unsatisfactory and in-
consistent results on synthetic data sets.
We hypothesized that HiFlye could be
very sensitive to the sequencing error
rate. To test this hypothesis, we started
from (1) a real homozygous diploid rice
genome, (2) a synthetic heterozygous
diploid genome, and (3) synthetic auto-
tetraploid genome (see Methods), and
generated synthetic data sets with differ-
ent error rates using PBsim associate with
the error models learned from on real
HiFi data sets. The list of data sets used
for learning the error models are shown
in the Methods section. HiFlye’s results
on these synthetic data sets are shown
in Supplemental Table 6.

As hypothesized, the assembly results of HiFlye decreased
with higher sequencing error rates. Lower sequencing error rates
led to improved completeness and contiguity in the assembly re-
sults. Specifically, at a read accuracy of 99.8474%, N50s and
NA50s were consistently <100 kbp for different ploidy. However,
at a significantly higher accuracy of 99.99%, HiFlye encountered
memory issues when handling diploid and tetraploid genomes.
However, the reason behind this memory limitation is unclear.

Experimental results on metagenomic samples

For the metagenome assembly evaluation, we compared the per-
formance of two metagenomic assemblers, namely, hifiasm-meta
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Figure 4. Summary of the performances of HiCanu, Verkko, hifiasm, and HiFlye on synthetic HiFi reads
with coverage at 10×, 20×, 30×, and 50×. (A) Cumulative total size of contigs (left) and the number of
contigs (right) that have a size in the range encoded by the color in the legend. (B) Single complete
rate, duplicated complete rate, and missing rate. (C ) Sorted contig length (left: longest 50;middle: index
50–1000; right: index 1000–5000). The horizontal lines represent the corresponding L50. (∗)
Overlapping data. (D) Cumulative assembly size as a function of the minimum contig length allowed
in the assembly. (E) Nx length (the dashed line denotes the N50). (F ) NGx length (the dashed line de-
notes the NG50). (G) Average proportion of largest category (APLC); the horizontal dashed line is
APLC=0.99. (H) Average distance difference (ADF).
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(Feng et al. 2022) and metaFlye (Kolmogorov et al. 2020), against
two general assemblers, namely, HiCanu (Nurk et al. 2020) and
NextDenovo.

On real metagenomic samples, the quality of assemblies was
evaluated in three steps. First, the completeness and contamination
of each assembled contig were assessed using CheckM (Parks et al.
2015), using marker genes that are specific to each species inferred
lineage within a reference genome tree. Second, CheckM and the
Genome Taxonomy Database Toolkit (GTDB-Tk) (Chaumeil et al.
2020, 2022) were used to identify and classify the assembled bacte-
rial contigs in a reference genome tree; assemblies were compared
using the numbers of identified contigs at different taxonomic lev-

els. Third, the numbers of conserved 16s
ribosomal RNA (rRNA) and 16s rRNA clus-
ters were used to evaluate the complete-
ness of the metagenomic assemblies;
bacterial and archaeal ribosomal RNA pre-
dictor (Barrnap) was used to detect the 16s
rRNA sequences, and VSEARCH (Rognes
et al. 2016) was used for clustering 16s
rRNAs (using a minimum of 97%
identity).

On synthetic data, the quality of as-
semblies was evaluatedwithMetaQUAST
(Mikheenko et al. 2016) by comparing
them against the “ground truth” micro-
bial genomes.

Experimental results of real
metagenomic data

As mentioned above, the sheep gut meta-
genome data set (Bickhart et al. 2022) was
used to test the four assemblers. A sum-
mary of the statistics of this data set is
provided in the Methods section. Experi-
mental results are illustrated in Figure 6
and tabulated in Supplemental Table 7.
Observe in Supplemental Table 7 that
hifiasm-meta produced the assembly
with the largest total size, the largest num-
ber of contigs, the largest number of con-
tigs >1 Mbp, and the largest number of
circular contigs >1 Mbp. In addition,
hifiasm-meta’s assembly contained twice
or more 16s rRNAs compared with the
other assemblies, and it identified the
largest number of rRNA clusters. Observe
in Figure 6A that hifiasm-meta produced
the highest number of high-quality con-
tigs, that is, contigs with a CheckM com-
pleteness rate >90% and a CheckM
contamination rate <10%. HiCanu pro-
duced the second highest number of con-
tigs with a completeness rate >90%.
metaFlye generated a large number of
contigs but with comparatively lower
quality. In terms of contamination, meta-
Flye worked best with an average contam-
ination rate <1% (Fig. 6B). Observe in
Figure 6C that the cumulative length of
hifiasm-meta assembly was about two

times larger than the second largest one. metaFlye, HiCanu, and
NextDenovo generated a similar count of long contigs (>1Mbp). Al-
though NextDenovo produced fewer short contigs, its N50 was sig-
nificantly higher than the other assemblers. To find out if the high
N50was solely owing to the small number of short contigs, we sort-
ed the contigs from the longest to shortest and drew the contig
length distribution in Figure 6D. Observe that the curve for NextDe-
novo is always below those of the other assemblers, which confirms
our hypothesis. hifiasm-meta’s curve is always above those of other
assemblers, whereas metaFlye is in “second place.”

To further compare the assemblies, we used CheckM in con-
junction with GTDB-Tk to perform the taxonomic identification
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Figure 5. Summary of the performances of HiCanu, Verkko, hifiasm, and HiFlye on synthetic HiFi reads
with heterozygosity rates of 0.5%, 1.0%, 1.5%, and 2.5%. (A) Cumulative total size of contigs (left) and
the number of contigs (right) that have a size in the range encoded by the color in the legend. (B) Single
complete rate, duplicated complete rate, andmissing rate. (C) Sorted contig length (left: longest 50 con-
tigs; middle: index 50–1000; right: index 1000–5000). The horizontal lines represent the corresponding
N50. (∗) Overlapping data. (D) Cumulative assembly size as a function of the minimum contig length al-
lowed in the assembly. (E) Nx length (the dashed line denotes the N50). (F) NGx length (the dashed line
denotes the NG50). (G) Average proportion of largest category (APLC); the horizontal dashed line is
APLC=0.99. (H) Average distance difference (ADF).
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and classification for the assembled contigs >1Mbp. Although the
CheckM tends to classify contigs to higher taxonomic levels (most-
ly from order to kingdom) whereas GTDB-Tk tends to classify
to lower ones (mostly species to family), they both indicate
that hifiasm-meta is capable of assembling the largest number of
species (Fig. 6F,G). Details of this experiment are shown in
Supplemental Figure 3.

Observe in Figure 6A that the number of high-quality contigs
obtained by hifiasm-meta is significantly higher than other assem-
blers. To investigate whether other assemblers produced contigs
missed by hifiasm-meta on real metagenomic data, (1) we merged
all the contigs produced by all the assemblers, (2) we selected high-
quality contigs, namely, contigs with contamination≤10 and
completeness≥75 using CheckM, and (3) we removed duplicated
contigs using dRep v3.4.3 (Olm et al. 2017). Figure 6E shows that
there were a total of 1168 high-quality contigs across all assem-
blies, which reduced to 497 after deduplication. In contrast,
hifiasm-meta yielded 536 high-quality contigs, which reduced to

428 after deduplication. Although
hifiasm-meta missed ∼14% of the con-
tigs in the merged assembly, we still rec-
ommend the use of hifiasm-meta for
metagenomic assembly of HiFi data sets.

Experimental results of synthetic
metagenomic data

Next, we tested the four assemblers on the
synthetic data set described in the Meth-
ods section. Completeness, contiguity,
and accuracy of the assemblers were
evaluated using MetaQUAST and the
five additional criteria described in the
Methods section. Figure 7 illustrates the
experimental results. Observe in Figure
7B that all assemblers achieved a low sin-
gle-copy completeness rate (SCR) and du-
plicated completeness rate (DCR; <50%),
which may be because some unique k-
mers are missing in the synthetic reads
(Supplemental Fig. 4) and the nonuni-
formabundances of species in the sample.
hifiasm-meta produced themost contigu-
ous and complete assembly among all the
tools, followed by metaFlye and HiCanu.
HiCanu and hifiasmgenerated assemblies
with better accuracy than other two as-
semblers, including higher average pro-
portions of the largest category (APLC),
lower average distance differences (ADF),
lower misassembled rates, lower numbers
of mismatches per 100 kbp, and lower
numbers of indels per 100 kbp (Fig.
7A–J; Supplemental Table 8).

Comparisons on different taxonomic levels

To compare the performance of the two
metagenomic assemblers (hifiasm-meta
andmetaFlye), we tested them on several
synthetic data sets (described in the
Methods section) for various choices of
the sequence similarities.

Experimental results in Figure 8B and Supplemental Table 9
show that assemblies produced by hifiasm-meta had higher com-
pleteness (i.e., the genome fraction computed by MetaQUAST)
than that of metaFlye’s assemblies. Also observe that the complete-
ness of metaFlye’s assemblies declines faster than hifiasm-meta’s, as
the similarity of genomes increases. However, hifiasm-meta assem-
blieshad a genome fraction>100%,which indicatedmore redundant
sequences than thoseofmetaFlye. This redundancywas also reflected
in the completeness criteria based on unique k-mer (Fig. 8G).

Figure 8, A and C–F, shows that hifiasm-meta’s assemblies are
more accurate than those of metaFlye. As the sequence similarity
of genomes increases, the accuracies of hifiasm-meta and
metaFlye both decline sharply in terms of ADF, the number of
indels per 100 kbp, and the number of mismatches per 100 kbp.
However, for both hifiasm-meta and metaFlye, APLC does not
change significantly at different taxonomic levels. The low misas-
sembled ratio for hifiasm-meta is partially because hifiasm-meta
produced a much higher number of contigs compared with
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Figure 6. Summary of the performances of HiCanu, hifiasm-meta, metaFlye, and NextDenovo on the
sheep gut metagenome data set. (A) Number of assembled contigs (contamination < 10%) for different
levels of completeness; completeness was calculated by CheckM. (B) Average contamination rate calcu-
lated by CheckM. (C) Cumulative assembly size as a function of the minimum contig length allowed in
the assembly. (D) Sorted contig length (left: longest 1000; middle: index 2500–10,000; right: index
20,000–100,000). (E) Duplication analysis. The orange bars indicate the number of duplicate contigs re-
moved by the tool dRep; the blue bars represent the nonredundant contigs. (F) Taxonomic classification
of contigs >1 Mbp with GTDB-Tk; the size of each circle represents the number of contigs identified at
each taxonomic level. (G) Taxonomic classification of contigs >1 Mbp with CheckM; the size of each cir-
cle represents the number of contigs identified at each taxonomic level.
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metaFlye. In addition, those contigs were short, and short contigs
are more likely to be assembled correctly. The absolute number of
misassembled contigs andmisassembly count is shown in Figure 8,
H and I. Observe that the absolute numbers of misassembled con-
tigs and the misassembly counts are comparable at the phylum
and class levels, but they are significantly different on family level.
The total length of correct contigs are in Figure 8J.

Figure 9 shows the contiguity results at different taxonomic
levels for the two assemblers. Observe that at the phylum and class
levels, hifiasm-meta andmetaFlye showed comparable performance
in terms of contig length. However, because hifiasm-meta retained
more short-contigs, it achieved a higher total length compared
with metaFlye, resulting in higher completeness. At the family
and genus levels, hifiasm-meta produced assemblies with a signifi-
cantly better contiguity compared with metaFlye (Fig. 9A–M).

Discussion

As mentioned above, choosing the “best” assembler to assemble a
new genome is a daunting proposition, because the performance

of an assembler often depends on the ge-
nome ploidy, repetitive content, size,
and heterozygosity, as well as many oth-
er factors. To the best of our knowledge,
there are very few comprehensive studies
that can guide users on the choice of
the most appropriate assembler for their
data. Even if we focus only on HiFi data,
we are not aware of any comprehensive
study that compares the performance of
all modern HiFi assemblers on large eu-
karyotic genomes. As mentioned in the
introduction, studies (Gavrielatos et al.
2021; Zhang et al. 2022a) are exclusively
focused on the yeast, Drosophila, and hu-
man genomes.

In this paper, we addressed this
shortcoming by performing an extensive
set of experiments to assess the perfor-
mance of the most popular genome as-
semblers for HiFi reads. Several real and
synthetic data sets for complex eukaryot-
ic genomes and metagenomes were used
to test the contiguity, completeness, and
accuracy of 11 assemblers. We hope that
our data sets (which include HiFi reads
for a newly sequenced tetraploid, the
wax apple) will become a benchmark
for future assembler development. Five
novel k-mer-based criteria were intro-
duced to help assess genome assemblies’
quality.

Our concluding remarks are in order.
Overall, hifiasm performed consistently
well across all experiments with varying
ploidy, coverage, and heterozygosity.
hifiasm was also the least sensitive to the
sequencing coverage, as long as it was
higher than 20×. It clearly ranked first in
the overall performance.

HiCanu also produced good assem-
blies, albeit not as good as hifiasm.

Overall, it ranked second among all the assemblers we tested. On
real data, HiCanu produced assemblies of a quality similar to
that of hifiasm. Although HiCanu’s accuracy was as high as
hifiasm, HiCanu’s contiguity was often lower than that of hifiasm.
Similar results were obtained on synthetic data sets.

The performance of Verkko was not as good as HiCanu de-
spite the fact that they share a similar codebase. Verkko produced
assemblies with lower N50, lower largest contig, and lower QV.We
speculate that the difference is owing to the different data structure
used by Verkko (de Bruijn graph) compared with HiCanu (overlap
graph).

Unfortunately, HiFlye failed on all simulated data sets. Our
experiments seem to indicate that HiFlye is very sensitive to the se-
quencing error rate of the input reads. This mediocre performance
seems to contradict the results of Zhang et al. (2022a), which show
that HiFlye outperformedHiCanu, hifiasm, NextDenovo, and Flye
on HiFi reads for baker’s yeast. Three factors could explain the dif-
ference between our experimental results and those of Zhang et al.
(2022a). First, HiFlye might work better on the yeast genome
because of its relatively small size and small amounts of repetitive
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Figure 7. Summary of the performances of HiCanu, hifiasm-meta, metaFlye, and NextDenovo on a
synthetic data set. (A) Sorted contig length (left: index 1–100; middle: index 1–500; right: index 1–
10,000); the dashed line represents the N50 contig length. (B) Single-copy completeness rate (SCR)
and duplicated completeness rate (DCR). (C ) Cumulative assembly size as a function of the minimum
contig length allowed in the assembly. (D) NGx length (the dashed line denotes the NG50). (E)
Average proportion of largest category (APLC). (F) Average distance difference (ADF). (G)
Misassembled contig rate computed by MetaQUAST. (H) Genome fraction computed by MetaQUAST.
(I) Number of mismatches per 100 kbp computed by MetaQUAST. (J) Number of indels per 100 kbp
computed by MetaQUAST.
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content. In our experiments, HiFlye worked better on the rice ge-
nome thanmore complex genomes such as the potato andwax ap-
ple. Second, the yeast HiFi data used by Zhang et al. (2022a) might
have had a lower sequencing error rate compared with ours. Our
experiments show that HiFlye is extremely sensitive to sequencing
errors. Third, Zhang et al. (2022a) used a reference yeast genome
that is not the same strain as the one sequenced with PacBio
HiFi, which could have led to evaluation inaccuracies.

Shasta and Peregrine had good performance across all ploidy
on real data sets. Their main limitation is the high resource con-
sumption both in time and memory occupation. NextDenovo
and MECAT2 only showed good performance in haploid data
sets. On real data sets, miniasm produced genome assemblies of
a size similar to that of hifiasm but had lower contiguity and lower
accuracy, mainly with respect to BUSCO and QV.

hifiasm-meta performed consistently well on real metage-
nomic data and synthetic metagenome data sets at different taxo-

nomic levels. NextDenovo had the
poorest performance in terms of genome
size, contiguity, and accuracy (e.g., high-
est contamination rate) on the real meta-
genomic data sets. Although HiCanu is
not specifically designed for metage-
nome assembly, it performed compara-
bly well to metaFlye, particularly in
synthetic data sets, achieving higher ac-
curacy and completeness. metaFlye out-
performed HiCanu and NextDenovo in
real metagenomic data and still showed
a significant disparity in terms of com-
pleteness and contiguity compared with
hifiasm-meta. Overall, none of the as-
sembled genomes achieved a satisfactory
NG50 on synthetic data sets.

In the past 20 yr, breakthrough algo-
rithmic advances in genome assembly
have enabled scientists to assemble larger
and more complex eukaryotic genomes.
Despite these advances, our experiments
show that there is still space for improv-
ing genome assemblers. For instance,
our experimental results show that
none of the assemblers were able to gen-
erate chromosome-level (or telomere-to-
telomere) assemblies solely from HiFi
reads.More efforts are needed to improve
the assemblies’ contiguity, as well as the
assembly quality in low-coverage and re-
petitive regions (e.g., centromere and ri-
bosomal DNA).

The problem of assembling ge-
nomes from metagenomic samples is
even more difficult. Our experiments
clearly highlighted the challenges of as-
sembling many genomes simultane-
ously. For instance, hifiasm-meta often
generated redundant assemblies, where-
as metaFlye produced assemblies with
low completeness. No metagenome as-
sembler performed well on microbial
metagenomic data sets with low cover-
age, leading to low completeness and un-

even abundances. New methods are needed for improving the
assembly quality of low-coverage genomes.

Finally, we believe that assembly evaluationmethods are cur-
rently insufficient. BUSCO is a great tool, but it falls short when
evaluating the completeness of eukaryotic assemblies when those
species contain few conserved genes. QUAST is very useful but can-
not be used to evaluate the assembly quality for repetitive regions
owing to unreliable sequence alignments. For metagenomic as-
sembly evaluations, CheckM can provide misleading outcomes.
For example, it can give a good score to an assembly that contains
a mix of sequences from closely related genomes. We believe that
new evaluation methods are needed for more accurately evaluat-
ing genome assemblies.

In this study, we performed a comprehensive benchmarking of
11 assemblers on eukaryotic genomes and metagenomes. On eu-
karyotic genomes wemeasured contiguity, completeness, and accu-
racy across varying ploidy, coverage levels, and heterozygosities. On
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Figure 8. Comparison of hifiasm (dark gray) andmetaFlye (light gray) on data set at the phylum, class,
family, and genus levels. (A) Misassembled contig rate from MetaQUAST. (B) Genome fraction from
MetaQUAST. (C) Average proportion of largest category (APLC). (D) Average distance difference
(ADF). (E) Number of indels per 100 kbp from MetaQUAST. (F) Number of mismatches per 100 kbp
from MetaQUAST. (G) Unique k-mer-based complete rates (including single complete rate, duplicated
complete rate, and missing rate). At the genus level, MetaQUAST was not able to generate evaluation
results for the hifiasm-meta, leading to the missing bars in the figures. (H) Misassembled contig count
in different taxonomic levels. (I) Misassembly (a concept defined by QUAST representing the breakpoint
in the alignment between assembly of reference) count in different taxonomic levels. (J) Total length of
correct contigs in different taxonomic levels. At the genus level, owing to the ultra-high computational
consumption, QUAST result of hifiasm-meta cannot be obtained within limited time and thus is repre-
sented as “N/A.”
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metagenomes, we measured contiguity, completeness, and
accuracy across different composition profiles and different taxo-
nomic levels. Our experiments clearly show that hifiasm and
hifiasm-meta should be the first choice for assembling eukaryotic
genomes and metagenomes with HiFi data.

Methods

Data sets

Real data sets with varying ploidy

We tested the performances of the assemblers on the real HiFi reads
from three eukaryotic genomes: (1) the homozygous diploid
rice (Oryza sativa) genome ZS97 (Song et al. 2021), (2) the heterozy-
gous diploid potato (Solanum tuberosum) genome (NCBI BioProject
[https://www.ncbi.nlm.nih.gov/bioproject/] accession numbers
PRJNA686812 and PRJNA573826) (Zhou et al. 2020), and (3) the au-
totetraploid wax apple (Syzygium samarangense) genome. The HiFi
reads for rice and potatowere downloaded fromNCBI, whereas those

for the wax apple were generated as part of
this study (see Data access). The “Tub” va-
rietyofwaxapplewas selected for sequenc-
ing: Young leaves were collected from an
individual tree planted in the field of
Fujian Academy of Agricultural Sciences
(Fujian Province, China) under the vouch-
er number GPLWFJGSS0058. Genomic
DNA was isolated using the Qiagen plant
genomic DNA kit according to the stan-
dard PacBio operating procedure. Then,
the genomic DNA was sheared by g-TUBE
(Covaris), resulting in 6- to 20-kbp frag-
ments, and sequenced using a PacBio
sequel II instrument using the HiFi proto-
col, generating 39× coverage. Two of the
authors of this paper have previously
generated PacBio CLR, ONT, and Hi-C
data for the wax apple for another se-
quencing project (Wei et al. 2023). With
the addition of the HiFi reads, the wax ap-
ple data set is now the most comprehen-
sive data set for polyploid genomes. The
statistics of these data sets and their acces-
sion numbers are shown in Supplemental
Table 10.

Synthetic data sets with varying ploidy

To perform a comprehensive evaluation of
the performance of the HiFi assemblers, a
gap-free assembly of the homozygous dip-
loid rice genome ZS97was used to produce
(1) a synthetic heterozygous diploid ge-
nome and (2) a synthetic autotetraploid
genome. First, we generated two sets of
synthetic chromosomes (four in the case
of the autotetraploid) by adding SNPs
and structural variations (insertions and
deletions) to the ZS97 genomes (Song
et al. 2021) using a custom script (https
://github.com/sc-zhang/ALLHiC_Evaluate
_Data_Generators/blob/main/sim_snp_in
del.py). To generate realistic synthetic
genomes, we tuned the parameters of

sim_snp_indel.py until the reads generated by wigsim (https
://github.com/lh3/wgsim) from the synthetic genomes produced a
GenomeScope2 k-mer distribution that matched the k-mer distribu-
tion of the heterozygous diploid big berry manzanita (Huang et al.
2022) and the autotetraploid potato (Bao et al. 2022), respectively
(Supplemental Fig. 1; Bao et al. 2022; Huang et al. 2022). Following
this procedure, the synthetic heterozygous diploid genomewas gen-
erated using a heterozygosity rate of 2.6%, whereas the autotetra-
ploid genome was generated using a heterozygosity rate of 1.0%.
The proportion of SNPs, insertions, and deletions were 1:1:1.
PBsim v1.0.4 (Ono et al. 2013) was used to generate synthetic HiFi
reads for (1) the ZS97 genome (homozygous diploid), (2) the synthet-
ic heterozygous diploid genome, and (3) the synthetic autotetraploid
genome. Detailed statistics for these data sets are shown in
Supplemental Table 11.

Synthetic diploid human data set

Asyntheticdiploidhumangenomewasproducedbymerging thedata
from two real haploid human genomes as follows. First, HiFi reads
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Figure 9. Comparison of hifiasm-meta and metaFlye’s contiguity at different taxonomic levels. (A–C )
Phylum level, (D–F) class level, (G–I) family level, and (J–L) genus level. (A,D,G,J) The x-axis is the contig
length (sorted in decreasing order), and the y-axis is the cumulative contig lengths. (B,E,H,K) The x-axis
represents the contig index (sorted in decreasing order), and the y-axis is the cumulative contig length.
(C,F,I,L) Values for NGx; the dashed vertical line indicates the NG50.
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from CHM1 (Vollger et al. 2023) and CHM13 (Jarvis et al. 2022) were
sampled at the same sequencing depth (32×). Second, the two sets of
HiFi reads were merged to obtain a synthetic diploid human data set.
The telomere-to-telomere level assembly of CHM13 and the contigs
(>1 Mbp) of CHM1 were used as the “ground-truth” genome.

Synthetic data sets with varying heterozygosity rates, coverage levels, and
sequencing error rates

To generate synthetic data sets with varying heterozygosity rates,
we generate four diploid genomes with the heterozygosity rates
0.5%, 1.0%, 1.5%, and 2.5%. The proportion of SNPs, insertions,
and deletions was 2:1:1 (parameter is recommended by Zhang
et al. 2019). HiFi reads were simulated by PBsim v1.0.4. Detailed
statistics for these data sets are shown in Supplemental Table 12.

To generate the synthetic data sets with varying read
coverages, we used PBsim v1.0.4 on the synthetic heterozygous
diploid genome with different coverages by changing the
parameter “‐‐depth”. Detailed statistics for these data sets are
shown in Supplemental Table 13.

To generate the synthetic data sets with varying sequencing
error rates, we used PBsim v1.0.4 to simulate HiFi reads for the
ZS97 genome and the two synthetic genomes in with coverage
at 20× and the sequencing error models trained on the real HiFi
data sets shown in Supplemental Table 14. Detailed statistics of
these synthetic data sets are shown in Supplemental Table 15.

Real and synthetic metagenome data sets

To evaluate the performance ofmetagenome assemblers, we used a
real sheep gut data set (NCBI BioProject accession number
PRJNA595610) (Bickhart et al. 2022) and created five synthetic
data sets. Detailed statistics of the sheep gut data set are shown
in Supplemental Table 16.

To build the first synthetic data sets, we selected 382 bacterial
genomes from the GTDB database covering 90 genera of
Bacteroidetes, Actinobacteria, Firmicutes, Proteobacteria, and
Fusobacteria phyla and merged them
into a metagenome by assigning differ-
ent abundances to them. The abundance
profile was obtained by sampling cover-
age values from a real chicken gut meta-
genome assembly (Zhang et al. 2022b).
PBsim v1.0.4 was used to simulate the
HiFi reads with the error model learned
on the real sheep gut data set. Detailed
statistics for this synthetic data set are
shown in Supplemental Table 17.

The other four synthetic data sets
were built for different taxonomic levels
such as phylum, class, family, and genus.
For example, to build the phylum data
set, 200 genomes from the same phylum
were selected, and abundances and the
simulated HiFi reads were generated in
the same way as the first synthetic data
sets. The synthetic data sets of class, fam-
ily, and genus were also generated in the
same way as phylum. Detailed statistics
for these synthetic data sets and referenc-
es information are shown in Supplemen-
tal Table 18 (Mash distance of
references), Supplemental Table 19, and
Supplemental_Metagenome_Reference.
xlsx (references list).

Assembler performance evaluation

Our comprehensive assessment of the assemblers was performed
by evaluating the completeness, contiguity, and accuracy of the as-
sembled genomes for real and synthetic data sets.

Contiguity

QUAST v5.0.2 was used to assess the contiguity of the assemblies.
We recorded N50, L50, and the length of the longest contig. We
recall that the N50 is defined as the length for which the set of
all contigs of that length or longer covers at least half of the assem-
bled genome. L50 is defined as the count of the smallest number of
contigs whose total length makes up half of the assembled ge-
nome. NG50 is defined as the length for which the set of all
contigs of that length or longer covers at least 50% of the length
of the actual genome. LG50 is defined as the count of the smallest
number of contigs whose total length makes up half of the actual
genome.

Completeness

BUSCO was used to assess genome completeness on all assemblies
produced on real data. BUSCOmeasures the fraction of highly con-
served genes that are present in the assembly (full length or
fragmented).

On simulated data, three additional criteria were used tomea-
sure completeness, namely, completeness rate (CR), single-copy com-
pleteness rate (SCR), and duplicated completeness rate (DCR). CR, SCR,
and DCR are based on k-mer analysis and are explained next with
the help of Figure 10. In all our experiments, we used k=21, which
is the value typically used for eukaryotic genomes (Rhie et al.
2020).We call the set of k-mers that are unique in the reference ge-
nome SRefG unikmers and the set of all k-mers in the genome assembly
SCtgG kmers (see Fig. 10). Only nonoverlapping unique k-mers on ref-
erence were used in the calculation of these completeness criteria
and other metrics. If the assembly is complete, then all these

Ref d1 Ref d2 Ref d3 Ref d4 Ref d5 Ref d6

Ctg d1 Ctg d2 Ctg d3
Ctg d4

Ctg d5 Ctg d6

RefG Chr1

Chr1 Chr2 Chr3 Chr t

CtgG Contig i

RefG CtgG

RefG_k-mers CtgG_k-mers

RefG_uni-k-mers ∩ CtgG_k-mers
(for each contig)

max category

Step1 : CR, SCR and DCR

Step2 : APLC

Step3 : ADF

RefG_uni-k-mers CtgG_k-mersRefG_uni-k-mers ∩ CtgG_k-mersRefG_k-mers

Figure 10. Completeness and accuracy of assembled genomes on synthetic data are evaluated based
on a k-mer analysis.
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unique k-mers in the reference are expected to appear in the assem-
bly. In general, however, SRefG unikmers is a subset of SCtgG kmers. Thus,
we define the completeness rate (CR) as follows:

CR = |SCtgG kmers > SRefG unikmers|
|SRefG unikmers| .

CR ranges between zero and one, where one indicates a complete
assembly.

Observe that the set SCtgG kmers > SRefG unikmers contains single-
copy k-mers and duplicated k-mers in the assembly. Thus, we
can define the single-copy completeness rate (SCR) as follows:

SCR = |SCtgG SC kmers > SRefG unikmers|
|SRefG unikmers| ,

where SCtgG SC kmers is the set of single copy k-mers in the assembly.
Similarly, the duplicated completeness rate (DCR) is defined as

DCR = |SCtgG DC kmers > SRef G unikmers |
|SRefG unikmers| ,

where SCtgG DC kmers is the set of duplicated k-mers in the assembly.
Obviously, CR= SCR+DCR.

Observe that the completeness rate (CR) is similar to one of the
quality measure in Quast-lg. Both criteria evaluate the complete-
ness using the proportion of unique k-mers in the reference that
also appear in the assembly. However, in our method, we use
one k-mer as the representative in a set of overlapping unique k-
mers, whereas Quast-lg uses all of them. Our method avoids over-
estimating or underestimating the effect of assembly errors if they
are related to a number of overlapped unique k-mers far from the
average.

Accuracy

To evaluate the assembly accuracy, we use the consensus quality
value (QV), the N-rate, the APLC, and the average distance differ-
ence (ADF).

The consensus quality value (QV) was defined by Rhie et al.
(2020), and itmeasures the frequency of consensus errors in the as-
sembly. QV is defined as follows:

QV = −10 log10 1− Kshared

Ktotal

( )1
k

⎛
⎜⎝

⎞
⎟⎠,

where theKtotal is the total number of k-mers found in an assembly,
and Kshared is the number of shared k-mers between the assembly

and the reads. Observe that P = Kshared

Ktotal

( )1
k represents the probabil-

ity that a base in the assembly is correct, and −10 log10(1−P)
can be interpreted as a Phred quality score (Ewing et al.
1998). For instance, QV>60 indicates an excellent assembly
at the base level (e.g., QV=60 translates to an accuracy of
99.9999%).

The N-rate is the proportion of ambiguous bases (N’s) in the
assembly, as reported byQUAST. The lower is the N-rate, the better
the assembly.

Nowobserve that a contigmisassembly can be detected if that
contig contains unique k-mers from two or more chromosomes.
We proposed a measure called the average proportion of the largest
category (APLC), which captures the misassembly rate for each as-
sembled contigs. First, we define PChra,c, which is the proportion
of unique k-mers for Chromosome a that appear in contig c,

as follows:

PChra,c =
|(SCtg i kmers > SRefG unikmers) > SRefG chr a unikmer |

|SCtg c kmers > SRefG unikmers| ,

where a in [1, t], t is the number of chromosomes, SRefG chr a unikmer is
the set of unique k-mers in Chromosome a, and SCtg c kmers is the set
of k-mers in contig c. Next, we define PChrc as the largest value of
PChra,c over all the t chromosomes for contig c, as follows:

PChrc = maxa[[1,t]PChra,c.

Finally, we can define the average proportion of the largest category
(APLC) as the average value PLCc over all the contigs, defined as fol-
lows:

APLC =
∑n
i=1

PLCc/n,

where n is the number of the contigs in the assembly.
The final measure of accuracy is based on the distance be-

tween pairs of unique adjacent k-mer, which is expected to be
the same in the reference genome and the assembled contigs.
First, unique k-mers are sorted by their position in the reference ge-
nome, and then the distance of those k-mers in the assembly is cal-
culated. The difference DFc for a contig c, is defined as follows:

DFc =
∑m−1

i=1

|(posRef kmeri+1 −posRef kmeri )− (posCtgc kmeri+1 −posCtgc kmeri )|,

where m is the number of unique k-mer, posRef kmeri is the position
of the ith k-mer in the reference genome, and posCtgc kmeri is the po-
sition of the ith k-mer in assembled contig c. Finally, we can define
the average distance difference (ADF) as follows:

ADF=
∑n
j=1

DFj/n,

where n is the number of the contigs in the assembly. The smaller
the value of ADF, the more accurate the assembly is.

In Step 1, the CR, SCR, and DCR are computed from the
shared k-mers that are unique in the reference and the k-mers in
the assembled contigs (represented in purple). In Step 2, the
APLC is computed from the k-mers in common between the
unique k-mers in the reference genome and k-mers in specific con-
tigs. In Step 3, the ADF is computed from pairs of adjacent unique
k-mers.

Runtime and memory usage

Time and memory usage were recorded for all experiments in this
study. All assemblers were run on an Inspur Cluster Engine Linux
cluster at Agricultural Genomics Institute at Shenzhen, Chinese
Academy of Agricultural Sciences. The cluster has six main nodes,
each of which has 80 CPUs and 3 TB of memory. The memory us-
age of every assembler was looking up “maximum resident set size
(kbytes)” using the command “/usr/bin/time –v.”

Data access

The wax apple sequencing data generated in this study have been
submitted to the NCBI BioProject database (https://www.ncbi.nlm
.nih.gov/bioproject/) under accession number PRJNA928838. All
generated simulated sequencing data sets in this study are avail-
able in http://ftp.agis.org.cn:8888/~panweihua/benchmark/, and
these data sets are listed in Supplemental Table 20. The scripts
that implement the five quality criteria and evaluate the genome
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assemblies in this study can be obtained from GitHub (https
://github.com/rookieluohh/benchmark) and from the
Supplemental Material (Supplemental Custom Scripts and
Supplemental Five Criteria, respectively). The versions and run-
ning commands of the assemblers are listed in Supplemental
Table 21.
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