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Replication Dynamics and Stochasticity in Single-Cell Poliovirus 
 

Infections 

 

Michael Schulte 
 
 
 
 

RNA viruses have extremely high mutation rates and therefore exist as a large 

population of mutants. However, their replication often occurs from infections, which initiate 

with only a single infectious particle. We took a systems-level view and quantitative 

approaches to describe how individual poliovirus infections are affected by stochastic 

effects and to infer the mode of replication used by the virus within single-cell infections. 

Temporal, quantitative measurements of positive-sense genomes, negative-sense 

templates, virions, and infectious particles were the major data source. Stochastic 

mathematical modeling was used to bridge a gap between wet lab science and 

computational biology. We find that poliovirus is sensitive to both kinetic stochastic effects 

and spatial resource variabilities in individual infections. We also infer that poliovirus 

replicates with a geometric growth mode, with progeny resulting from a single infection 

being on average 5 genomic replication cycles away from the infecting parent. This 

replication mode not only allows the opportunity for significant amounts of intracellular 

selection but also creates the potential for expansive population structures.
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Introduction

Poliovirus

Poliovirus (PV) is the prototypical picornavirus, a family named for its small RNA 

genomes. It is a non-enveloped RNA virus with a single, positive-sense genome of ~7.5 

kilobases. Due to its medical importance as the causative agent of poliomyelitis and its 

ease of genetic manipulation, it has become one of the most well characterized viruses 

and has long served as a model system for studying RNA virus biology, pathogenesis, 

and evolution (1).

Error Catastrophe

Muller proposed that when mutation rates are high in asexual organisms, 

deleterious mutations would accumulate by an irreversible ratchet-like mechanism (2). 

Mutational meltdown is a quasispecies theory concept by which a small population 

accumulates deleterious mutations, which leads to loss of fitness and decline of the 

population size, which may lead to further accumulation of deleterious mutations and 

eventually, extinction (3-4). During mutational meltdown, the number of inviable viruses 

produced is too large relative to overall population size so that exceeds the number of 

viable virus progeny. This phenomenon is known as error catastrophe. In Chapter 1, we 

investigate a low-fidelity variant of poliovirus to determine if the theoretical concept of 

error catastrophe is applicable to the behavior of this variant.
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Stochasticity

Viral infections often begin with a very small number of initiating particles. 

Accordingly, the outcome of an infection is likely to be affected by variability in the initial 

molecular interactions between virus and host. An important unanswered question is 

whether following viral entry into a host cell, a successful infectious cycle is a pre-

determined outcome. In Chapter 2, we investigate the range of outcomes upon infection 

of single cells with either single (low multiplicity of infection, MOI) or multiple (high MOI) 

infectious viral particles.

Replication Mode

Life history theory posits that the sequence and timing of events in an organism's 

lifespan have been fine-tuned by evolution to maximize the production of viable 

offspring. In a virus, the life history strategy is largely manifested in its replication mode, 

which can be characterized by two extreme ends of a spectrum. In the “stamping 

machine” mode, all progeny are produced from the infecting virus via a single genomic 

replication cycle. In the “geometric replication” mode, multiple replication cycles within a 

single cellular infection create a complex tree of virion ancestry. RNA viruses have 

extremely high mutation rates, orders of magnitude greater than those of most DNA-

based life forms, and these two modes of replication predict progeny populations with 

distinctly different frequencies and distributions of mutations. Importantly, the mutation 

distribution of a viral population has a significant impact on viral fitness, adaptability, and 

pathogenicity. In Chapter 3, we strive for a synthesis of life history theory with molecular 
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mechanisms and define the replication modalities shaping the structure and mutation 

distribution of a virus population in an intact single infected cell.

Thermodynamic Stability of Essential Proteins

According to the quasispecies theory, the limit on mutation rate is established by 

the relative fitness of sequence variants to that of the master (4). A critical point termed 

the “error threshold” exists where the mutation rate of a viral genome exceeds the 

replacement rate of the master sequence such that the production of the master 

sequence is outweighed by the production of an increasingly diverse mutant swarm. 

This “error catastrophe” scenario is often presented as the explanation for the limit on 

viral mutation rate. However, this divergent, evolutionary shift in sequence space can be 

distinct from a drop in absolute abundance as would occur during extinction. While high 

mutation rate is driving both processes, two very different outcomes occur based on 

environmental tolerance. By illuminating the mechanism by which mutations are 

tolerated, we can better understand how quasispecies diversity is shaped.  In Chapter 

4, we begin to examine a model stemming from the thermodynamic stability of essential 

proteins as a potential explanation of the mechanism for a limit on mutation rate.
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Chapter 1:

The Effect of Reduced Polymerase 

Fidelity on a Viral Population: 

Implications for Error Catastrophe 

and Pathogenicity 
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Introduction

Two opposing forces governing the dynamics of viral populations hinge on the 

fidelity of the viral polymerase.  On one hand, survival stems from viral polymerases 

accurately replicating the viral genome and thereby producing viable progeny.  On the 

other, adaptability stems from viral populations being made up of a heterogeneous 

mixture of genomes as a way of being prepared for different selective pressures.  This 

heterogeneous mixture of genomes is easily produced by a polymerase that allows a 

few mutations with each replication cycle.  In the past fifty years, our understanding of 

these forces has led to the conclusion that a delicate balance exists between too many 

and too few mutations.

Poliovirus is a well characterized model for RNA virus population dynamics and 

multiple polymerase mutants have been identified.  Two recently isolated mutants, a 

high-fidelity polymerase and a low-fidelity polymerase, have opened a novel opportunity 

to examine this balance.  G64S, the high-fidelity polymerase mutant, has been reported 

to introduce mutations at a rate of  ~18% of WT and leans heavily toward accurate 

genome replication producing a population of restricted genetic diversity relative to WT 

(1).  H273R, the low-fidelity polymerase mutant, has been observed to introduce 

mutations at a rate at least 2 times higher than WT, producing a more genetically 

diverse virus population (2).  Interestingly, both mutants have been seen to display an 

attenuated phenotype in a mouse model of infection.  While G64S can establish an 

infection and replicate in several tissues, its restricted diversity is thought to prevent or 
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hinder entry into the central nervous system (1).  Preliminary studies of H273R, 

however, suggest that it may to be unable to establish a productive infection in most 

tissues (2).  

Muller proposed that when mutation rates are high in asexual organisms, 

deleterious mutations would accumulate by an irreversible ratchet-like mechanism (3). 

Mutational meltdown is a quasispecies theory concept by which a small population 

accumulates deleterious mutations, which leads to loss of fitness and decline of the 

population size, which may lead to further accumulation of deleterious mutations and 

eventually, extinction (4-5). During mutational meltdown, the number of inviable viruses 

produced is too large relative to overall population size so that exceeds the number of 

viable virus progeny. One might thus expect that the high mutation rate of H273R is 

leading to error catastrophe, where mutations gradually accumulate in the population 

resulting in an overall reduction in fitness.  Yet when H273R is grown in human tissue 

culture cells no drop in viral titer is seen over a dozen serial passages at a multiplicity of 

infection (MOI) of 0.1 (1).  At this MOI, coinfection of a cell with multiple plaque-forming 

units (PFUs) is limited, reducing the possibility of complementation or recombination 

between two or more infectious genomes.  Even so, because of the high particle/PFU 

ratio of RNA viruses (~200 to 1000 particles/PFU for poliovirus), it is probable that 

coinfection of multiple non-infectious genomes even at MOI around 0.1.  In this case, 

either complementation or recombination between non-infectious genomes could be 

preventing the deleterious effect of the Muller's ratchet.

Here, we investigate the potential for the Muller's ratchet phenomenon to be 
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acting on H273R populations by passaging this variant at a very low MOI (0.001). We 

also further characterize the H237R variant population mutation frequency and 

determine this population's lethality and pathogenecity in a mouse model of poliovirus 

infection.
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Figure 1:

Graphical representation of 3 poliovirus populations. On the left, G64S, the high-fidelity 

polymerase variant displays a larger proportion of the population as the center black 

dot, representing the WT sequence. It contains fewer mutants in the concentric rings 

which represent mutational steps away from the WT sequence. In the center, a WT 

population. On the right, H273R, the low-fidelity polymerase variant displays a larger, 

more diverse spread of mutants, with a greater number of mutational steps away from 

the WT sequence and the least amount of WT sequence. Also represented is the 

lethality in a mouse model of infection. One million infectious particles of each 

population produce differing lethality, with each polymerase variant being less lethal 

than WT.
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Material and Methods

Cell Culture and Virus Generation

HeLa S3 cells were grown in tissue culture flask in DMEM/F12 50/50 medium 

supplemented with 1x penicillin/streptomycin/glutamine and 10% newborn calf serum. 

Cells were incubated at 37ºC and 5% CO2. Poliovirus Mahoney typeI genomic RNA was 

generated from in vitro transcription of prib(+)XpAlong. To generate virus, 20 µg of RNA 

was electroporated into 4 X 10^6 HeLaS3 cells in a 4mm cuvette with the following 

pulse: 300V, 24 Ω, 1000 µF. 

Poliovirus RNA Transfection

HeLa S3 cells were collected, washed three times with PBS without salt, and 

resuspended to a concentration of 5x106 cells/ml. 800µl of cells were electroporated 

with 20µg of RNA in a 0.4cm cuvette using an Electro Cell Manipulator 600 (BTX Inc.). 

Cells were recovered in 16ml of medium and incubated at 37ºC in a 5% CO2 incubator 

until cytopathic effect.  

Plaque assay

HeLa S3 cells were seeded in 6-well plates at a concentration of 1.5x106 cells/well and 

incubated overnight at 37ºC and 5% CO2. Virus supernatant was diluted in a 1:10 

dilution series in DMEM/F12 medium. Cells monolayers were washed once with PBS 

then 250µl of virus dilution was added per well. To allow virus attachment, cells were 
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incubated with the virus inoculum for 30 mins at 37ºC and 5% CO2. Each well was 

overlayed with 5ml of 1% agarose in 1X DMEM/F12 medium supplemented with 5% 

newborn calf serum. Plates were incubated for 2 days at 37ºC and 5% CO2. Agarose 

overlays were then removed and plates were stained crystal violet dye (0.1% crystal 

violet, 20% ethanol) to visualize the plaques which where then counted and a titer was 

calculated.

Passaging

HeLa S3 cells were seeded at a concentration of 5x105 cells/well of a 12-well plate and 

incubated overnight at 37ºC and 5% CO2. The next morning the cells were infected at 

the appropriate MOI. The viral inoculum was incubated with the cells for 30 mins at 

37ºC and 5% CO2 to allow virus attachment. Cells were then washed three times with 

PBS and 1ml of fresh media was added to the cells. Infections were incubated for 8 

hours then frozen at -70C. Lysates were freeze-thawed 3X before titering.

Clonal isolation

After titers were determined by plaque assay, endpoint dilution was performed by 

diluting virus to ~10 PFU per 10 ml serum-free media. 100 µl of this viral dilution was 

add to 100 µl of cells in 96 well plates (10,000 cells/well in 10% serum media). Daily, 

wells were checked for CPE. Lysate from wells at CPE were transferred to Epp tubes, 

numbered, and frozen. After 7 days, after all infected wells were harvested, an online 

random number generator was used to select 24 clones in a chronologically unbiased 
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(and therefore likely fitness/mutation unbiased) manner. Samples were freeze-thawed 

3X,  then populations were amplified by infecting confluent wells of 24-well plates until 

CPE.

RT-PCR and Sequencing

RNA was extracted from the infected cells using Trizol Reagent. Trizol was added to the 

viral suspension at a 1:1 ratio then vortexed for 15 secs. 0.2 volumes of choloform was 

added to the reaction, mixed by hand then incubated at room temperature for 3 mins. 

Following centrifugation, the supernantant was precipitated by adding 0.5 volumes of 

isopropanol. The RNA pellet was washed once with 70% ethanol then resuspended in 

20µl of RNase free H2O.

Thermoscript RT-PCR system for First Strand cDNA Synthesis (Invitrogen) was used to 

synthesize cDNA from extracted RNAs. 1 µg of resuspended RNA was combined with 

0.5mM dNTPs and 1µl dT primer and brought to a final volume of 13µl with ddH2O. The 

sample was incubated for 5 mins at 65ºC then placed on ice for 1 minute. 4µl of 5X RT 

reaction buffer, 1µl RNASE out, 5nM DTT and 1µl Thermoscript was added to the 

reaction and brought to a total volume of 20µl with ddH2O. The reaction was incubated 

at 50ºC for 1 hour. Then stored at -20ºC.

Using PV genome specific primers, the viral genome was amplified in a PCR reaction 

that contained 1x PCR buffer, 1.5mM MgCl2, 2µl cDNA, 0.4µM of each primer, 200µM of 
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dNTP, 2.5U Taq DNA polymerase and water to 50µl. DNA was amplified using the 

following program:

Denaturing 95ºC - 2 min

Denaturing 95ºC 30sec

Annealing 56ºC 30sec

 

34 cycles

Extension 72ºC -1 min/1kb       

Extension 72ºC 5 min

The amplified DNA fragments were purified using a PCR clean up column kit and 

sequenced by ELIM Biopharmaceuticals.

LD50 infections

6-7 week old cPVR mice were infected by IM route with 50µl diluted P3 stocks in each 

leg. Mice were monitored daily and paralysis and/or death was recorded.

Tissue tropism infections

4-5 week old cPVR mice were infected by IV route with 100µl diluted P3 stocks in the 

tail vein. 5 mice injected with each virus (WT or H273R) were harvested daily for 5 days. 

Spleen, kidney, muscle, spinal cord, and brain were collected, placed in 14 mL culture 

tubes on dry ice, then frozen at -70C. After thawing, tissues were homogenized in 2 mL 
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PBS. Homogenate was spun at 2,500 rpm for 10 min. Supernatant was then spun at 

10,000 rpm for 2-3 min before resulting supernatant was titered.
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Results

Low Multiplicity of Infection Passaging

In order to determine whether Muller's ratchet is operating on H273R populations 

in tissue culture, passaging of this population was done alongside WT and G64S at a 

MOIs of 0.1 and 0.001. Passages were titered by plaque assay between every passage, 

which is a more accurate but also more cumbersome approach than the more often 

used estimation of titer. After 15 serial passages of each population in duplicate at both 

MOIs, with titering between passages to keep multiplicity of infection consistent, no drop 

in titer was seen (Figure 2). “Blind” passaging, or passaging based on estimates of titer, 

of H273R populations was performed for 7 passages to investigate if artifacts of 

increased or decreased titer can arise from this less precise method. Indeed, after 6 

blind passages, an increase of over a log was observed in 4 out of 4 replicates of 

H273R.
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Figure 2:

Titering of well-controlled passages demonstrates no drop in titer of WT, G64S, and 

H273R after 15 passages.
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Determination of H273R population mutation frequency

Previous results from the lab indicated a mutation frequency of nearly 2-fold 

higher than WT mutation frequency in an H273R population. As is standard when a viral 

stock is generated in the lab, it was characterized. In addition to the standard titering 

characterization, it was necessary to determine the mutation frequency of our H273R 

population. Concerns have been raised about biases in the determination of a stock's 

mutation frequency. In plaque-purifying to determine mutation frequency, it is possible 

and depending on the timing of plaque isolation, likely, that an experimentalist may 

accidentally bias his or her results. Plaques created by more-fit infectious particles are 

likely to form and grow faster. Therefore, the earliest visible plaques likely contain the 

most fit (presumably WT) founding genotypes. By picking plaques early and sequencing 

the population that comes form that plaque, an experimentalist can bias his or her 

results towards a more WT population. By picking plaques late and sequencing the 

population that comes form that plaque, an experimentalist can bias his or her results 

away from WT.

In order to alleviate this bias and create an unbiased approach at population 

mutation frequency analysis, I used an endpoint dilution approach to acquire samples 

expanded from single PFUs. By diluting stock virus to a very dilute solution and plating 

over cells in a 96-well plate, one can acquire plaque-like founding populations for 

mutation frequency analysis without the burden of precision in plaque picking or the bias 

of the timing of plaque picking. Wells that have come to cytopathic effect (CPE) are 

harvested and numbered, then frozen. After all infected wells reach CPE, samples are 

17



randomized and a contingent is sequenced.

After sequencing the typical 24 amplified clones over the capsid region, 

sequencing analysis showed that both high-fidelity and low-fidelity mutants appear more 

WT-like than previously seen. Sequencing of over 50,000 bases revealed 10 mutations 

for WT, 5 mutations for G64S, and 13 mutations for H273R (Table 1). If the mutation 

frequency of this region is extrapolated over the entire genome, this equates to a 

mutation frequency of 1.3 mutations/genome for WT, 0.66 mutations/genome for G64S, 

and 1.75 mutations/genome for H273R (Table 1).
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Population Bases sequenced Mutations Mutations/genome*

WT 59095 10 1.3

G64S 56359 5 0.66

H273R 55412 13 1.75

Table 1:

Population mutation frequency analysis from 24 clones. Sequencing shows both the 

low-fidelity polymerase mutant population (G64S) and the high-fidelity polymerase 

mutant population (H273R) as more WT-like in mutation frequency than previously 

described. *Mutation frequency in the capsid region has been extrapolated to the entire 

genome.

19



Examination of H273R tissue tropism and lethality

Lethality and tissue tropism experiments were carried out in a mouse model of 

poliovirus infection with the above-described WT and H273R populations. Lethal dose, 

50% (LD50) studies of WT and H273R indicate that H273R is less lethal than WT in the 

mouse model of infection. It is, however, more lethal than previously described in the 

lab- nearly 10-fold more lethal (Figure 3). At non-lethal concentrations, H273R causes 

paralysis in both hind legs but the infection appears to be cleared and the mice regain 

the use of the previously-paralyzed limbs. Tissue tropism experiments indicate that my 

H273R population does appear to establish infection in several tissues, and is able to 

cross the blood-brain barrier and infect the brain (Figure 4). 
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Figure 3:

Survival curve, or LD50, of my (MS) H273R population alongside WT population and a 

previously made H273R population (MV H273R). The LD50 of MS H273R population 

was 6.25 X 107 while the LD50 of the MV H273R was >4.0 X 108.
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Figure 4:

Tissue tropism of H273R population. Infection was established in muscle and was 

present in the brain of 4 of 5 animals at 5 days post infection. This H273R population is 

clearly able to establish infection in a mouse model of infection and cross the blood-

brain barrier to cause lethality. Note- only brain was titered on day 2. Also, samples 

from day 4 were not titered.
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Discussion 
 
 
 
 

In this work our objective was to describe the characteristics of a low-fidelity 

polymerase mutant population and investigate whether Muller's ratchet and 

subsequent mutational meltdown occurs in tissue culture and animal systems. Our 

experiments used sequencing, passaging, and infection in a mouse model to elucidate 

the nature of low-fidelity replication in population dynamics of poliovirus. Unfortunately, 

previous results were not reproducible and our H273R population appeared less low-

fidelity and more WT-like than previously observed. 

 
 

Error Catastrophe 

 

Our tissue culture passaging experiments illustrated that tightly controlled 

passaging of H273R populations at either low or high MOI does not result in Muller's 

ratchet-like behavior or subsequent mutational meltdown. Previous results were likely 

artifactual as less well-controlled passaging (blind passaging) demonstrated the 

ability of small, accidental differences in multiplicity of infection to be compounded 

through subsequent passages creating the illusion of extinction. 

However, recent results from the Cameron lab suggest that the H273R variant 

may exhibit error catastrophe when passaging occurs with a very small population. 

Clearly, the exact conditions under which populations are generated and passaged 

appear to yield different results. 
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Pathogenicity 

 
Upon infection in an animal model, our H273R population also exhibited the ability 

to establish infection and spread to multiple tissues. It also displayed considerably more 

lethality than previously observed, with the ability to cross the blood-brain barrier to high 

titers by 5 days post infection. While these studies reinforce the conclusion that viral 

population diversity and disease pathogenesis are tightly linked, they fall short of 

producing a useful viral population for further study, as our H273R population 

displays more WT-like attributes than previously described. 
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Chapter 2:

 

Single-Cell Analysis Uncovers 

Extensive Biological Noise in 

Poliovirus Replication
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Introduction

When a virus infects a cell, it sets in motion a complex set of reactions. Some 

reactions, programmed by the viral genome, lead to virus replication and progeny 

production, while others, inherent to the host, act to restrict or limit viral replication. It is 

unclear how these contrasting forces shape the outcome of an infection. In principle, an 

infection is a seemingly deterministic series of processes – uncoating, translation, 

replication, encapsidation. However, infections often begin with so few molecules that 

the progress of any given infection may occur in a more stochastic manner than is often 

appreciated (1). Indeed, individual cells in a population infected with the same virus at 

the same multiplicity of infection have been observed to produce varied levels of viral 

progeny. The first rigorous observation of this variation during infection was made using 

single bacteriophage infections, where the large distribution in burst size (progeny per 

infected cell) could not be explained simply by the distribution in bacterial size (2). More 

recently, the effect of cell size on virus yield was also examined in a mammalian RNA 

virus (3). This study confirmed that while host cell size is a contributing factor to virus 

yield, it is insufficient to explain the variation in burst sizes. The source of variation 

remains unknown. We hypothesized that by removing cell-size-dependent variation, we 

should be able to uncover the extent of stochasticity in viral infection and define the 

contribution of other factors to the overall productivity of single-cell infections. 

Understanding this question may illuminate the dynamics of infection and pathogenesis 

and has implications to design therapeutic and preventive strategies.
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Here we examined if non-deterministic, stochastic processes play a role in the 

outcome of viral infections. We determined the contribution of noise to RNA synthesis 

and infectious particle production in single-cell infections from cell-size selected 

populations. From each infected cell we accurately measured the generation of positive-

strand RNA genomes; of negative-strand RNA templates, which are used as templates 

of replication for the positive-strand genome; and of infectious particles. Our 

measurements defined the variation in genome and viral progeny production across a 

cell population and allowed us to determine the correlation between the synthesis of 

viral RNA and infectious virus particle production in individual cells. Surprisingly, we do 

not observe tight correlations between the distributions of genomes and viral progeny, 

suggesting that stochastic effects have a significant impact on the outcome of infection. 

Furthermore, by comparing variation and stochasticity in cells infected at low and high 

multiplicity of infection, we observe that the sources of biological noise are different 

when cells are infected with multiple viral particles. While at low multiplicity of infection 

the kinetics of the early replication events is a significant source of variation, at high 

multiplicity of infection, access to cellular resources becomes a determining factor in the 

outcome of infection. Our findings have important implications for the evolution of viral 

strategies of transmission and pathogenesis and raise the question of how viruses 

balance the distinct dynamics in singly- and multiply-infected cells.
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Materials and Methods

Cells and viruses

HeLaS3 cells (ATCC CCL-2.2) provided by R. Geller and J. Frydmann (Stanford 

University) were maintained in 50% DMEM/50% F-12 medium supplemented with 10% 

newborn calf serum, 100U/ml penicillin, 100U/ml streptomycin, and 2mM glutamine 

(Invitrogen). Poliovirus Mahoney typeI genomic RNA was generated from in vitro 

transcription of prib(+)XpAlong. To generate virus, 20 µg of RNA was electroporated 

into 4 X 10^6 HeLaS3 cells in a 4mm cuvette with the following pulse: 300V, 24 Ω, 1000 

µF. The resulting virus was passaged at high multiplicity of infection (MOI ~1-10) three 

times then subjected to ultracentrifugation through a 30% sucrose cushion.

Infections

HeLasS3 cells in 12-well plates were rinsed 2X with PBS to remove unattached cells 

then infected in 100µL at an MOI of 10 or 0.1 for 20 minutes at 37ºC.  The inoculum was 

removed and cells were washed 2X with PBS to remove any unattached virus. Cells 

were given 2% serum media for 7 hours, then frozen at -70C. All lysates were thawed 

once on ice, then refrozen. Lysates were homogenized at a final concentration of 0.06% 

NP-40, incubated on ice for 20 min, then vortexed and aliquoted.

For serum starvation experiments, cells were plated in serum media overnight, rinsed 

2X with PBS, then given serum-free media for 48 hours. After infection with virus-

containing PBS, cells were given serum-free media for 7 hours, then frozen at -70C.
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For PIK93 experiments, after infection, cells were given 2% serum media containing 1.5 

uM PIK93 in DMSO or DMSO (mock treated) for 7 hours, then frozen at -70C.

Isolation of individual infected cells

HeLaS3 cells in a 6-well plate (1.335 million cells per well) were rinsed 2X with PBS to 

remove unattached cells then infected in 100µL at an MOI of 10 or 0.1 for 20 minutes at 

37ºC.  The inoculum was removed and cells were washed 2X with PBS to remove any 

unattached virus. The cells were detached with 200 µL 0.05% trypsin with EDTA for 3 

min at 37ºC. Trypsin was inactivated with 3 mL 10% serum media and cells were 

pelleted at 300Xg for 3 min at 4ºC. Cells were resuspended in cold 2% serum media 

and placed on ice. Cells were sorted via light scattering to 1 cell per well of a 96-well 

plate containing 200 µL 2% serum media per well using a FACSAriaIII flow cytometer 

(BD Biosciences) under BSL2 conditions. Tight gating of both forward and side scatter 

was performed to restrict the size heterogeneity of the population as well as eliminate 

cell debris and cell aggregates. Gating removed greater than 60% of the cell population, 

resulting in forward scatter pulse width variance (seen to correlate well with cell volume, 

4) with a coefficient of variation of 0.06. The same gating settings were used to isolate 

cells from both infections. Previous results indicate that this trimming of the cell 

population enriches for cells in G1 and S phase, which not only represent the most 

common cell cycle states (85% of a mixed state population, 5), but also have been 

shown to produce viral titers close to the average of a mixed state population (3). 

Isolated individual cells in 96-well plates were incubated for 7 hours at 37ºC, then frozen 
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at -70ºC. Plates were thawed once on ice, then refrozen. Lysates were homogenized by 

adding 20 µL of 0.66% NP-40 per well. Plates were sealed with adhesive plate seals 

(Thermo Scientific) and vortexed on high for 20 seconds. Plates were incubated on ice 

for 30 minutes, vortexed again, then samples were aliquoted into fourths.

“Infection find” assay

After homogenization, 30 µL of cell lysate from MOI of 0.1 infected cells was added to 

30,000 cells in 1.8 mL 5% serum media in a deep-well 96-well plate and incubated for 5 

days at 37ºC. According to Poisson statistics, 30 µL lysate ensures a 99% chance of 

transferring at least 1 PFU to the fresh cells as long as the original lysate contained at 

least 34 PFU. Growth of HeLaS3 cells in wells which received lysate from uninfected 

cells acidified the media allowing for colorimetric distinction of lysates which did and did 

not contain infectious virus.

Determination of PFU

For single cell measurements: 50 µL of lysate was used in the first dilution of a TCID50 

assay, resulting in a final concentration of 0.001% NP-40, which we found did not inhibit 

growth of HeLaS3 cells. For population measurements: 166 µL of lysate was used in the 

first dilution of a TCID50 assay. Calculations were based on the Reed-Muench method. 

PFU was determined to be 3.3 times the TCID50. Measurements above the limit of 

detection but below the limit of quantification were included in distribution histograms 

(Fig. 2Aiii, 2Bii) but excluded from other calculations and figures.
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RNA extraction, Reverse Transcription (RT), and qPCR

RNA was extracted via the PureLink RNA Micro Kit (Life Technologies) according to the 

manufacturers instructions. cDNA was synthesized from total RNA using SuperScript III 

Reverse Transcriptase (Life Technologies) and 125 nM strand-specific RT primer 

(+strand_RT: 5’-GGCCGTCATGGTGGCGAATAATGTGATGGATCCGGGGGTAGCG-

3’; -strand_RT: 5’-GGCCGTCATGGTGGCGAATAACATGGCAGCCCCGGAACAGG-3’) 

in a 5 µL reaction. Separate RT reactions for positive and negative-strand RNAs were 

performed for each sample. RT products were treated with 0.5 units of Exonuclease I 

(Fermentas) to remove excess RT primer prior to qPCR. Strand-specific qPCR was 

based on a published protocol (5).  cDNAs were analyzed by qPCR using 2× SYBR 

FAST Master Mix (Kapa Biosystems), 200 nM strand-specific qPCR primer 

(+strand_For: 5’-CATGGCAGCCCCGGAACAGG-3’; -strand_Rev: 5’-

TGTGATGGATCCGGGGGTAGCG-3’), and 200 nM Tag primer (5’-

GGCCGTCATGGTGGCGAATAA-3’) in a 10 µL reaction. A 10× dilution series of in vitro 

transcribed positive- and negative-strand RNA standards was run alongside 

experimental samples and used to construct a standard curve.

Bootstrapping for confidence intervals

Confidence intervals were acquired in R (R Core Team, Vienna, Austria, [http://www.R-

project.org/]) using the bootstrapping package “boot” (R package version 1.3-9, Canty 

A, Ripley B). 1000 bootstrap replicates were performed for each statistic.
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Sucrose gradients

HeLaS3 cells were infected for 2, 4, or 6 hours at an MOI of 10 in 15 cm dishes and 

simultaneously treated with 100ug/ml cycloheximide (CHX) for 2 minutes at 37ºC. Cells 

were washed with PBS+CHX and lysed with 0.5% NP-40 lysis buffer containing CHX on 

ice for 20 minutes. Cell debris was pelleted in a table-top centrifuge at 2000 rpm for 10 

minutes at 4ºC, then nuclei were pelleted at 9000 rpm for 10 minutes at 4ºC. Cell 

lysates were loaded on a 10%-50% sucrose gradient containing CHX and 

ultracentrifuged at 35000 rpm for 3 hr. Gradients were analyzed using a Biocomp 

Gradient Station with a BioRad Econo UV Monitor.
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Results

Estimating experimental noise

To determine the variance within infection of individual cells, we infected HeLaS3 

cells with poliovirus Mahoney type 1 at two multiplicities of infection (MOI): 10 and 0.1. 

Individual cells from each infection were isolated using a cell sorter with tight forward 

and side scatter gatings to restrict cell size (4). Cell lysates were obtained and divided, 

allowing multiple measurements to be taken from each cell (Fig. 1A). We measured 

positive-strand viral RNA, negative-strand viral RNA, and plaque-forming units (PFUs) 

produced by each individual cell.
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Figure 1:

Measurement error. (A) Schematic of single-cell isolation, division, and measurement. 

(B) Chromosomal copy number analysis shows enrichment of G1/S phase cells. (C) 

qRT-PCR measurements of positive-strand viral RNA and negative-strand viral RNA 

from 8 quartered control cells had average CVs of 0.21 and 0.23, respectively. (D) PFU 

measurements from 7 quartered control cells had an average CV of 0.31. Error bars 

indicate standard deviation.

35



To estimate experimental error of our measurements, we divided single cells into 

four fractions, and we measured either viral RNA concentration or virus production in 

each of the four fractions separately. We utilized the coefficient of variation (CV), or 

relative standard deviation, for each set of measurements to normalize measurements 

with distinct mean values. Measurements of positive-strand RNA genomes and 

negative-strand RNA templates by qPCR from 8 control cells had average CVs of 0.21 

and 0.23, respectively (Fig. 1B). Measurements of plaque-forming units (PFUs) from 7 

control cells had a slightly higher average CV of 0.31 (Fig. 1C). The standard deviation 

measured in this experiment must result from experimental noise derived from either 

cellular lysate fractionation into quarters, extraction, and/or all downstream analysis 

steps. Based on these measurements, we assumed that variance significantly greater 

than this experimental error represents the biological noise characteristic of the dynamic 

biological processes under study.

Fluctuations in virus replication revealed by measurements in single infected 

cells

We first carried out an experiment in which cells were infected with a high 

multiplicity of infection. We isolated 106 cells infected at an MOI of 10. These cells had 

positive-strand RNA genome measurements ranging from 13,907 copies to 720,360 

copies/cell (Fig. 2Ai). The mean positive-strand RNA genomes/cell was 230,620 copies 

with a CV of 0.62 (Fig. 2C). Measurements of negative-strand RNA templates ranged 

from 2,157 copies to 45,990 copies/cell (Fig. 2Aii). The mean negative-strand RNA 
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templates/cell was 16,865 copies with a CV of 0.61 (Fig. 2C). Thus, the distribution of 

RNA accumulation from individual infected cells is highly disperse, with some cells 

producing few copies of viral RNA and others extremely high concentrations. PFU 

measurements from these same cells ranged from below our limit of detection of 269 to 

4225 PFU/cell (Fig. 2Aiii). Within the range we can detect PFU, the mean PFU per cell 

was 976 with a CV of 0.66 (Fig. 2C).

37



38



Figure 2:

Distributions of products from single-cell infections. (A) RNA and infectious virus 

distributions from cells infected at an MOI of 10; n=106, (i) positive-strand RNA, (ii) 

negative-strand RNA, (iii) Infectious virus, (iv) positive-strand to negative-strand ratio. 

(B) RNA and infectious virus distributions from cells infected at an MOI of 0.1; n=56, (i) 

positive-strand RNA, (ii) Infectious virus. (C) Table summarizing means and variances 

from single-cell distributions. *variance expressed as CV. Positive-strand RNA from MOI 

of 10 infections had a CV of 0.62 (95% confidence interval: 0.54-0.72). positive-strand 

RNA from MOI of 0.1 infections had a CV of 0.82 (95% confidence interval: 0.67-1.01).
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We report the first true average positive to negative strand ratio for a positive-

strand virus in infected cells, with a ratio of 20 at 7 hours post infection. Previous studies 

have reported the ratio of average population measurements, which is statistically 

distinct, and arguably less informative, than the ratio measured within single-cells 

described here. Cells displayed a wide range of positive to negative strand ratios 

ranging from 2 to almost 200 resulting in a CV of 1.3.  While we argue that the average 

ratio of 20 measured from within single-cells is a more accurate description of true 

strand ratio, we use the same data to compute a ratio of averages of 14 to compare to 

previous methods. Previously reported ratios of averages of 36 (7) and 30 (8) at 6 hours 

post infection along with observed decreases in the ratio between 4 - 6 hours post 

infection (7) suggest that our ratio of averages of 14 at 7 hours post infection is in line 

with previous studies using different methodologies. 

We next determined whether initiating infection at a low multiplicity (MOI of 0.1) 

further increased the biological noise in virus replication. Given that the majority of cells 

are expected to be uninfected at an MOI of 0.1 (9), it was necessary to identify infected 

cells from the population of cells before measuring RNA and infectious virus production. 

Accordingly, a small portion of isolated cell lysate was removed and used to infect fresh 

uninfected cells to determine the presence of infectious virus (Methods). A total of 56 

infected cells were then analyzed for RNA and virus production. These infected cell 

extracts contained between 1,580 and 91,897 copies/cell of the positive-strand RNA 

genome (Fig. 2Bi). This represents a mean positive-strand RNA genomes/cell of 22,870 

copies with a CV of 0.82 (Fig. 2C). While negative-strand RNA templates were 
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detectable in these cells, the amount of copies accumulated was too low for confident 

quantification. PFU measurements from these cells ranged from below our limit of 

quantification to 2713 PFU/cell (Fig. 2Bii). The mean PFU/cell was 860 with a CV of 

0.66 (Fig. 2C).

Biological noise is greater in infections initiated at low MOI

To determine the contribution of the number of viruses initiating infection to the 

fluctuations observed in RNA and virus yield, we compared RNA and virus production 

distributions from an MOI of 0.1, where infections likely began with only a single 

infectious particle, with distributions from an MOI of 10, where infections began with a 

Poisson distribution around 10 infectious particles. We find that infections that began at 

an MOI of 10 produce, on average, 10 times more genomes than those initiated at an 

MOI of 0.1 (i.e. infections initiated by a single genome, Fig. 2C). This is consistent with 

the idea that RNA replication is independently initiated by individual genomes, so more 

initiating genomes should in principle produce proportionally more viral RNA. 

Interestingly, we observed a significant difference in the fluctuations of genome 

productivity between the two infections, with a CV of 0.62 for an MOI of 10, and a 

significantly larger CV of 0.82 for an MOI of 0.1 (Fig. 2C). We argue that this difference 

in variance is likely to originate from the kinetic stochasticity of the early reactions that 

lead to productive infection. Infections beginning with multiple viral genomes (MOI of 10) 

average the effect on individual RNA replication reactions, are overall less susceptible 

to stochastic kinetics, and therefore produce a number of genomes closer to the mean 
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than infections beginning with a single genome (MOI of 0.1).

The single infectious particles that initiate low MOI infections are clearly more 

sensitive to effects on RNA replication. Low MOI infections performed with sub-

inhibitory concentrations of the RNA replication inhibitor PIK93 (10), produced 

significantly less genomes and PFU than high MOI infections performed under the same 

conditions (Fig. 3). Low MOI infections produced less than 75% as many genomes and 

less than 40% as many PFUs as high MOI infections relative to mock-treated cultures. 

Low MOI poliovirus infections have previously been reported to produce less genomes 

than high MOI infections in the presence of this inhibitor (10). We believe longer delays 

in the initiation of the initial reactions, or increased kinetic stochasticity, caused by RNA 

replication inhibition dampens the productivity capacity of low MOI infections.
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Figure 3:

Low MOI infections are more sensitive to RNA replication inhibition. In the presence of 

1.5 uM PIK93, MOI of 0.1 infections produce less than 75% as many genomes and less 

than 40% as many PFUs as MOI of 10 infections compared to mock-treated cultures; 

n=6. ***Student's t-test p<0.05. Error bars indicate standard deviation.
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Infectious particle production is independent of MOI and RNA production

Surprisingly, the effects of MOI and stochastic noise did not determine infectious 

particle production. The mean and variance of the distributions of plaque forming units 

between the two infections were nearly equivalent (Fig. 2C). This observation suggests 

that infectious virus production is modulated by a limiting step in the infection that is not 

largely affected by the MOI-dependent stochastic noise. Furthermore, these 

observations were also confirmed at the population-level where, genome production is 

proportional to MOI, but infectious virus production appeared to be independent of MOI 

and restricted by factors that do not depend on the initial kinetics of infection (Fig. 4A, 

4B). We speculate that infectious virus production is limited by a global cellular resource 

required for virus particle formation. Consistent with this hypothesis, we observed a 

slightly higher mean PFU/cell in cell populations which had not been size-restricted 

(population PFU measurements, Fig. 4B). This global cellular resource limitation does 

not appear to be affected by serum starvation (Fig. 4C). Polysomes profiling analysis on 

sucrose gradients indicates that free 40S and 60S ribosomal subunits are available 

throughout an infection, suggesting that ribosomal subunits are not limiting for virus 

production (Fig. 4D).
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Figure 4:

Genome production scales with MOI, but PFU production does not. Comparison of 

single-cell measurements and population measurements: (A) Single-cell 

measurements, MOI=10: RNA n=106, PFU n=86; MOI=1: RNA n=56, PFU n=45. (B) 

Population measurements, n=6. (C) Serum starvation has no significant effect on RNA 

or PFU production of MOI of 10 infections; n=6. **Student's t-test P<0.001. 

***Kolmogorov-Smirnov test P<0.001. ns, not significant. Error bars indicate standard 

deviation. (D) Ultraviolet absorbance at 260 nm of sucrose-gradient fractionated lysates 

from a time course of poliovirus infections show free 40S and 60S ribosomal subunits 

throughout infection.
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Correlations between RNA and virus production at single-cell level

Next, we took advantage of our ability to take multiple measurements per 

individual cell to determine correlations between RNA synthesis and virus production. 

By comparing the quantity of multiple viral products from each cell, we were able to 

determine how biological noise affects early (RNA production) and late (particle 

production) steps in virus replication. At a low multiplicity of infection (MOI of 0.1), we 

observed a relatively good correlation between genomes and infectious particles 

produced per cell (nearly 30%, Fig. 5A). This suggests that although the initial reactions 

of low MOI infections are highly susceptible to the effects of kinetic stochastic noise, 

once these reactions have initiated, the infection progresses in a fairly deterministic 

manner. The variation in the initial steps of translation and RNA synthesis contribute 

significantly to the overall trajectory of the infection. This is in line with data from Fig. 3, 

which suggests that dampening the kinetics of these initial reactions lowers the average 

productive trajectory.

Given that infections starting with a higher MOI are less susceptible to this initial 

kinetic noise (Fig. 2C), we expected a better correlation between the distributions of 

viral RNA and infectious particle production for the infection starting at an MOI of 10. 

Surprisingly, we observed very little correlation between the distributions of RNA and 

infectious virus from the MOI of 10 infection- 4% between genomes and PFU, and 8% 

between genomes and negative-strand RNA templates (Fig. 5B, 5C). Because these 

correlations were obtained from measurements of individual infections, we can exclude 

the Poisson distribution of initial infecting genomes as a contributing factor to this 
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relationship. This lack of correlation reveals stochastic influences in multiply-infected 

cells beyond the kinetic noise of the initial reactions and may be the result of local 

fluctuations within individual cells of critical factors involved in virus replication. 
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Figure 5:

Correlations between products of single-cell infections and effects of serum starvation 

on low MOI infections. (A) Correlation between positive-strand RNA and PFU from an 

MOI of 0.1 infection shows a significant portion of the noise in one product can be 

explained by the noise in the other (R2=0.29, 95% confidence interval: 0.05-0.76); n=45. 

(B) Correlation between positive-strand RNA and PFU from an MOI of 10 infection 

shows a poor correlation (R2=0.04, 95% confidence interval: 0.00-0.19); n=86. (D) 

Serum-starved MOI of 0.1 infections produce less than 40% as many genomes and less 

than 35% as many PFUs as serum-fed MOI of 0.1 infections; n=6 **Student's t-test 

p<0.005. Error bars indicate standard deviation.
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Low MOI infections provide critical insights into this local resource stochasticity. 

When low MOI infections initiate in serum-starved cells, significantly less genomes and 

PFU are produced. Low MOI infections of serum-starved cells produced less than 40% 

as many genomes and less than 35% as many PFUs as serum-fed cultures (Fig. 5D). 

Serum starvation does not affect the global productive capacity of high MOI infections 

(Fig. 4C). Therefore, serum starvation must be creating local deficiencies in resources 

to which only low MOI infections are sensitive. We believe local variation in resources 

create hotspots and coldspots for initiating infection. In serum-starved cells, fewer 

hotspots exist, and single infectious particles have less of a chance of initiating at a 

hotspot and establishing a productive infection.
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Discussion

The determinants of a successful viral infection are not well understood. Here we 

examine whether the outcomes of infection are deterministic or governed by stochastic 

events. We find considerable variability in the outcomes of an infection. The sources of 

noise appear different for viral infections beginning with only one or many infectious 

particles. Infections initiated with only a single infectious particle have the highest 

degree of variability in viral replication, independent of cell size. In infections initiated by 

multiple infectious particles we observed less variance in the distribution of RNA 

accumulation, suggesting that the initial steps of infection are particularly susceptible to 

stochastic kinetics. However, in multiply-infected cells, the lack of correlation between 

RNA produced and number of infectious particles produced suggests that when viral 

RNA replication initiates in multiple locations, the infection suffers from access to host 

resources. Interestingly, particle production also demonstrates a high degree of 

fluctuation (Fig 2C), indicating additional sources of variation exist at later stages of the 

replication cycle.

Our data highlights the stochastic nature of the interaction between the infecting 

virus and the host cell and indicate that biological noise significantly impacts the 

distributions of viral RNA and particle production. The source of noise may be variations 

in the biochemical reactions that underlie virus replication which stem from resource 

limitations or simply variations in the kinetics of the initiation of an infection. Infections 

that begin quickly would be expected to transition to exponential growth more rapidly 

52



and be highly productive, while infections that falter or lag would, conversely, be less 

productive. In addition, cells have many mechanisms to block viral replication, whereas 

all viruses have mechanisms to evade them and hijack the cellular resources. 

Differences in the effectiveness of host innate immune responses at the earliest times of 

infection could have a significant impact on the initial kinetics of replication.

A major observation from this study was that despite the difference in production 

of genomes between singly-infected and multiply-infected cells, similar amounts of virus 

are produced. The observation of similar burst size distributions between singly-infected 

and multiply-infected cells was first made by Delbruck using phage (2). More recently, it 

was reported that virus yield of vesticular stomatitis virus, a mammalian RNA virus, 

does not correlate with multiplicity of infection (12), but it was unknown what limited 

virus production. Clearly, at least in the case of poliovirus, there are sufficient cellular 

resources for an order of magnitude increase in genome production with MOI but a 

global cellular resource limits virus particle production. This is likely due to differences in 

the nature of these processes. Viral genome replication is dependent on the 

polymerase, which is an enzyme and can be utilized repeatedly while virion production 

is dependent on capsid proteins, which are continuously consumed during virion 

synthesis. The synthetic requirements for viral capsid protein production exceed those 

for genome replication and the synthesis of other viral proteins for several additional 

reasons: 1) virions are comprised of a single genome and 60 copies of each of the viral 

capsid proteins- meaning that production of a virion requires only a single genome 

replication event but 60 translation events (12), 2) the rate of genome replication within 
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infected cells is estimated to be 5 times faster than the rate of translation (13), and 3) 

because of the functional compartmentalization of viral nonstructural proteins (14, 15), 

cytosolic concentrations of capsid proteins are likely much lower than the 

compartmentalized concentrations of the nonstructural proteins- meaning that 

replication occurs with higher, localized concentrations of viral nonstructural proteins 

while encapsidation occurs under more dilute, global concentrations of viral capsid 

proteins.

A surprising observation from this study was the importance of apparent local 

resource variability on the initiation of infection. Because infections initiated by multiple 

infectious particles are thought to proceed by generating multiple, compartmentalized 

replication foci that progress through the infection with limited crosstalk (14-16), local 

differences in the subcellular availability of resources for replication, such as ribosomes, 

energy, nucleotides, membranes, etc, likely create variation in the productive capacity of 

each focus. In multiply-infected cells, noise could arise from random fluctuations in the 

spatial organization of reactions as these foci are subject to more limited and variable 

access to cellular resources. As a result of this variability, asynchronies or inefficiencies 

could be introduced to the overall replication cycle that could skew the productivity of 

each infection thus generating “architectural” or spatial stochasticity. Similarly, local 

resource variation appears to create hotspots and coldspots of replication initiation, as 

evidenced by the differential effects of serum starvation on high and low MOI infections 

(Fig. 4C, 5D).

Similarities between the burst size distributions of singly-infected and multiply-
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infected cells were originally interpreted to stem from a self-interference phenomenon 

whereas bacteria which were “simultaneously infected with several virus particles of the 

same kind” would “react as if only one of the virus particles was effective” (17).  Our 

data suggests that, at least for poliovirus, self-interference at the level of genome 

synthesis does not occur. It is possible that a fundamental difference exists between 

bacteria and mammalian host cells, that, for example, restricts bacteriophages to only a 

single nucleation site for replication while allowing mammalian viruses many sites of 

replication. The observations that self-interference of genome synthesis does not occur 

and that the mammalian host cells restricts virion production creates an intriguing 

question: what advantage does the virus gain by allowing multiple infecting genomes to 

replicate? Is it simply a kinetic issue, with the benefit coming from the virus making the 

maximum number of virions before the cell mounts a response or apoptoses (18)? Or is 

there a more complex answer, with the benefit coming from multiple infecting genotypes 

creating a more diverse population of progeny to gain adaptive advantage (19)? Future 

studies should define the particular cellular resource limitation imposed on virus 

production and elucidate the evolutionary advantage of the mechanisms of replication 

within multiply-infected cells.

 Our observation of how random events play a perhaps larger than envisioned 

role in infection is relevant to the understanding of the dynamics of virus infection and its 

consequences for adaptation. For example, cells experiencing low-productivity infection 

may be more likely to evade host immune responses, which may in turn extend the 

overall infection cycle time and increase the chances for the virus to spread from host to 
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host (20). During infections, hosts are infected with a small number of viruses, which 

continuously face strong bottleneck events (21). In this scenario, variance in viral 

replication dynamics at the single-cell level can have a strong effect on the outcome of 

infection. Considerable attention has been given to the idea that organism survival and 

reproduction are subject to stochastic fluctuations and chance rather than fitness alone 

(22). Stochastic processes during replication lead to sampling errors over generations. 

These sampling errors, i.e. random genetic drift, can cause significant changes in the 

abundance of genetic variants. Such genetic drift can represent a significant hurdle for 

adaptation, and therefore can play a large role in determining the fate of an infection. 

Newly arising beneficial mutations may often be lost by chance and may need to occur 

many times before they succeed in reaching fixation (23), thus reducing the chance of 

effective adaptation to a new host or switch in the environment. Stochasticity manifested 

as genetic drift can also serve to isolate neutral mutations, opening new evolutionary 

avenues for virus adaptation (24). Future work will be necessary to extend these 

observations and elucidate the precise relationship between biological noise and virus 

adaptation.
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Chapter 3:

Experimentally Guided Mathematical 

Modeling Reveals RNA Virus 

Replication Principles Shaping the 

Mutation Distribution in Single 

Infected Cells
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Introduction

Replication modes

RNA viruses are excellent models for evolution. They replicate very quickly and 

have extremely high mutation rates (1). While this combination of traits creates the 

potential for rapid adaptation, it necessitates a life history strategy that balances the 

need for explosive, exponential growth with the requirement to maintain genomic 

integrity. The life history strategies of viruses are largely reflected in their intracellular 

mode of replication. Two classic replication modes have been described for single-

stranded RNA viruses: the “stamping machine” mode (2) and the “geometric replication” 

mode (3). In the stamping machine mode (SM), templates made from the original 

infecting genomes are used for the production of all progeny genomes. In the geometric 

replication mode (GR), newly made progeny genomes are used to create further 

templates for additional rounds of replication within a single cellular infection cycle 

(Figure1). Progeny produced from stamping machine replication are a single generation 

away from the parental strand whereas progeny generated from geometric growth 

represent a distribution of generations from the parental strand, often resulting in a 

fractional mean number of generations (see Figure1). The iterative nature of GR creates 

branched genealogies that allow for expansive exploration of sequence space and 

results in a mutation distribution that is distinct from that of the SM (3). Recent studies 

with population genetics models (4) and RNA enzyme populations (5) have 

demonstrated how differences in the distribution of mutants can significantly impact the 
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adaptability of a population. Recent studies with poliovirus (PV) have also demonstrated 

how mutational differences within a population can have dramatic effects on 

pathogenecity (6) as well as fitness, virulence, and robustness (7). 
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Figure 1:

Comparison of replication modes. Stamping machine (SM) progeny (left) are 1 

generation from the initial infecting genome. Geometric replication (GR) progeny (right) 

are a mean of 2.33 generations from the initial infecting genome. Red dots indicate 

positive-sense strands. Blue dots indicate negative-sense templates.
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Poliovirus intracellular dynamics

 Poliovirus' simple genomic architecture and medical importance have made it 

one of the most extensively studied viruses (8). However, despite decades of 

mechanistic studies and recent revelations of the importance of population structures, 

the replication mode and resulting mutation distribution have yet to be determined. PV 

therefore proves an excellent candidate for the rigorous construction of a computational 

model of virus replication to predict population structure and mutation distribution. A 

major feature of PV intracellular dynamics is that the genome participates in multiple 

reactions: translation, replication, and encapsidation. Its 7.5 kb genome contains a 

single open reading frame which encodes 7 nonstructural proteins and 4 capsid 

proteins. Translation produces a single polyprotein which is cleaved into individual viral 

proteins such that each viral protein is produced at equimolar concentrations. 

Replication of the positive-sense genome by the virus-encoded RNA-dependent RNA 

polymerase produces a negative-sense strand which is used as a template for further 

genome synthesis. Evidence exists that suggests that the initial, infecting positive-sense 

genomes must be translated before they can replicate (9). The switch from translation to 

replication appears to be dependent on the concentration of a viral protein product, 

3CD, which stimulates a transition from a linear, translating RNA to a circular RNA 

competent for replication (10-12). Encapsidation is thought to be a passive process 

resulting from protein-protein associations of capsid pentamers with the RNA replication 

machinery and protein-RNA association of capsid pentamers with viral RNA (13-15). 

Actively replicating genomes are preferentially encapsidated and packaging is biased to 
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exclude negative-sense strands, although the mechanism of this is not understood (14). 

Although multiple ribosomes can translate a genome at the same time and multiple viral 

polymerases can replicate a genome at the same time, the processes are mutually 

exclusive (10). Similarly, neither translation nor replication can occur after a genome is 

packaged into a virion. 

Several studies have demonstrated that PV genomes are often localized to the 

cytosolic surfaces of the endoplasmic reticulum, Golgi bodies, lysosomes, or vesicles 

derived from these (16-20). Replication complexes are thought to form on these 

membranes in cis, resulting in a close association of translation products and positive-

sense genomes (9, 21). Compartmentalization of replication complexes likely accounts 

for the observation that many functions of nonstructural proteins cannot be 

complemented in trans (9, 22). Only capsid proteins, 3CD, and 3D have been 

demonstrated to trans-complement (9, 14, 23). Taken together, these studies suggest 

that the essential transitions – from translation to replication, and from replication to 

encapsidation – are largely localized and influenced by the dynamics of the molecules 

in each compartment. 

Modeling replication

In recent years, modeling approaches have begun to examine the trade-offs that 

come with having a genome that is a template for both replication and translation (24-

28). These studies have raised mechanistic and evolutionary questions about the life 

cycle of single-stranded, positive-sense RNA viruses, but most have not produced 

models that can be directly compared to data. Several previous models are 
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deterministic in nature (24- 25, 28) and assume a well-mixed, spatially uniform cellular 

environment (24-28). Experimental evidence suggests that each of these assumptions 

is problematic and do not reflect the biological constraints and properties of viral 

replication.

The small number of the critical molecules that initiate an infection suggest that a 

stochastic model would more accurately describe early reactions and could make 

distinct predictions from previous deterministic approaches (29). Infections begin with 

relatively few virions, often only one, contacting a cell and continue with the translation 

of these few initial genomes. Random variation in the switch from translation to 

replication will be amplified by the subsequent exponential phase of the infection, and 

this amplification is likely to bias the mean dynamics of a set of infections. Indeed, 

recent single-cell studies demonstrated the significant impact of stochastic effects on 

poliovirus infections (30). Whether this random variation averages out, such that the 

mean dynamics of a population of infected cells can be well-approximated by a 

deterministic model, can only be determined by formulating and testing a stochastic 

model.

Here, we have developed a stochastic simulation model in which we 

compartmentalize reactions in an effort to accurately describe intracellular dynamics in 

both space and time. Additionally, rather than fixing each parameter on an estimated 

value, as most others have done, we use an Approximate Bayesian Computation 

approach to fit our parameters from temporal quantitative data. We find that by 

combining stochasticity and spatial structure, our model reflects and describes the 
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population dynamics and structure of the viral population during an infection cycle more 

accurately than previous models. 

Fitting our model to RNA abundances over time, we find that poliovirus follows 

the geometric replication mode: multiple iterative cycles of genomic replication produce 

progeny virus. Posterior parameter fits indicate that progeny of a single cellular infection 

are approximately 5 generations away from the initial, infecting genomes. This 

replication mode produces populations with expansive, branched genealogies, creating 

the dramatic potential for the exploration of sequence space, as well as creating the 

potential for intracellular selection among related mutant genomes.

Model

Stochastic Simulation – Model Outline

We developed a stochastic simulation model that tracks discrete abundances of 

poliovirus molecular species within a cell and simulates individual reactions. Similar to 

Hensel et al. (31), we have modified the basic Gillespie algorithm (32) to balance 

accuracy and speed. This allows us to generate stochastic realizations of replication, 

translation, and other reactions unfolding in a single infected cell, based on a system of 

equations that describes each essential reaction in the poliovirus life cycle. Figure 2 

depicts the events in poliovirus replications captured quantitatively by our model. 

Results from many replicate simulations are then averaged to predict the dynamics 

across a population of infected cells.
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Figure 2: 

The replication cycle of poliovirus as represented in our model. Numbered steps 

correspond to sections and equations in the Methods.
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(1) Binding

We assume that the number of virions that bind to, and subsequently infect, a 

cell is Poisson distributed with a mean equal to the multiplicity of infection (MOI). This 

formulation assumes that bound virions do not interfere with the binding of additional 

virions during the period of infection. We denote these coated positive-sense RNA 

genomes at RNA+
initial; their distribution is therefore:

RNAinitial
+ ~ Poisson(MOI ) Eq. 1

(2) Uncoating

A quantitative description of uncoating was derived from the data presented in 

Brandenberg et al. (33); based on these data, we choose the two-parameter gamma 

distribution to model stochasticity in this process. To account for differences in 

experimental protocols, we excluded the t=0 measurement from Brandenberg et al.'s 

data and, taking the t=8 minute measurement as the starting point, fit the gamma 

distribution to the average cumulative measurements. Using the optim() function in R, 

we obtained an estimate of 0.678 for the shape parameter, and 0.02 for the rate 

parameter (n = 28, R2 ≈ 0.92). Each of the RNA+
initial molecules transitions to a 

translationally competent, linear-form positive-sense RNA, RNA+
lin, after a waiting time, 

tuncoat, drawn from Eq. 2.

tuncoat ~ Gamma(0.02,0.678) Eq. 2

 (3) Translation

Translation is the first role of positive-sense genomes in a cell, and it continues 
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as the primary role throughout the infection. Because poliovirus translates a single 

polyprotein, we assume that all protein products are produced at equal rates based 

upon a single rate-constant of initiation. We also assume that poliovirus genomes, and 

not cellular factors, are rate-limiting, and neglect the delay between the initiation of 

translation, and the appearance of the protein products. With these assumptions, 

translation can be modeled as a first-order equation with a single parameter, c trans, 

yielding a rate of translation:

rtrans = c transRNAlin
+ Eq. 3

Here, and throughout the model, we consider these rates to describe Poisson 

processes, rather than changes in continuously valued quantities. We track three 

protein products of translation: the procapsid units, which we abbreviate CAP, and 

protein products 3A and 3CD. Based on evidence from complementation experiments, 

we assume that CAP units and 3A diffuse freely, while 3CD accumulates within 

complexes with translating genomes (9, 14, 22). Eq. 3 applies to translation of both 

complex-associated and free genomes. Global abundances of CAP and 3A are tracked, 

while abundances of 3CD are tracked individually for each replication complex. 3CD 

arising from the translation of free genomes is ignored.

(4) Replication Complex formation

We assume that two events must happen before a translating positive-sense 

sense strand can replicate: it must attach to a membrane, representing nucleation of a 

replication complex, and it must circularize through association with 3CD (10, 12). Once 
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a strand associates with a membrane, we consider that it has formed a complex, and 

assume that all subsequent translation events will add to the local concentration of 3CD. 

We model this first step by introducing a rate, rcompart, at which the RNA+
lin species forms 

complexes. We also assume that the viral protein product 3A facilitates this complex 

formation (34). Finally, we assume that complex formation is limited by the supply for 

suitable membrane, which limits the number of possible complexes in a cell to commax 

(35). We therefore introduce a first-order reaction scaled by the number of existing 

complexes, com, the maximum, commax, and the concentration of the protein 3A:

rcom = ccom 1-
com

commax

æ

è
ç

ö

ø
÷threeA Eq. 4

While other viral and cellular proteins are involved in complex formation, we 

assume that their influence is adequately represented by tracking the concentration of 

3A. We also represent the consumption of some number of 3A molecules in the 

formation of each complex by a parameter c3A. If insufficient 3A is available upon 

complex formation, newly translated proteins are consumed by the existing complex 

until c3A have been allocated. Therefore, we are assuming that 3A binding is 

cooperative, and that incomplete complexes have much higher affinity for 3A than does 

the reaction to form a new complex. 

(5) Circularization

We model circularization -- the transition of a positive-sense genome from a 

linear, translating molecule to a circularized molecule competent for replication -- as a 
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first-order reaction driven by the concentration of the viral protein 3CD in each complex 

(indexed by i).

rc irc
i = ccircthreeCDi Eq. 5

This formulation reflects experimental data supporting the direct role of 3CD in 

circularization (10, 12), and the low rate of rescue of 3CD-deficient strains by 

complementation in trans (9).

(6) Replication

We distinguish replication rates for positive and negative strand synthesis with 

separate rate constants crep+ and crep-. We ignore polymerase concentrations and instead 

assume that both types of replication are first-order reactions modified by a common 

cellular resource limit. This limitation is parameterized by repmax, the maximum number 

of replication events per cell permitted by some limited resource, and implemented with 

a running counter, rep, of synthesized RNAs. We also assume that per-capita 

replication does not differ between replication complexes, allowing us to write a mass-

action equation for both replication reactions.

rrep+ = crep+RNAcirc
+ 1-

rep

repmax

æ

è
ç

ö

ø
÷ Eq. 6a

rrep- = crep-RNA
- 1-

rep

repmax

æ

è
ç

ö

ø
÷ Eq. 6b

Note that rrep+ measures the rate at which replication is initiated on positive-sense 

templates, producing negative-sense strands, and similarly, rrep- measures the rate of 
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positive-strand production. 

We allowed newly synthesized positive-sense genomes one of three fates: 1) 

associate with capsid protomers and become encapsidated 2) diffuse into the cytoplasm 

where they can translate and potentially create new, independent compartments or 3) 

remain in the complex in which they were generated and act as templates for further 

RNA replication. We assume that positive-sense genomes that remain in the complex 

are immediately competent for replication. We were unable to fit the sharp transition to 

exponential growth seen in our strand measurement data without allowing for this third 

option. Allowing newly synthesized positive-sense genomes to remain in the complex 

and act immediately as replication templates is consistent with previous reports 

indicating a coupling between translation and replication as we still require initial, 

infecting genomes to be translated before transitioning to replication (9). Negative-

sense strands also stay in the complex in which they were produced and are 

immediately competent for replication.

We assume that only the positive-sense replication-competent form is packaged 

(22, but see 15), and that, following Nugent et al. (14), genomes can only be packaged 

as they are synthesized from a negative-sense strand. We therefore first determine 

whether the newly synthesized positive-sense strand is packaged; then, for unpackaged 

genomes, we calculate whether they remain in the replication complex.

(7) Packaging

We assume that the rate of initiation of packaging is proportional to the global 
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concentration of a virus-derived protein product, CAP, representing capsid protomers. 

These protomers form pentamers, of which twelve are required for each capsid; each 

packaging event therefore consumes sixty units of CAP. To account for the evidence 

that deficiencies in capsid proteins can be complemented in trans, we allowed capid 

proteins to diffuse freely throughout the cell. As with 3A molecules and complex 

formation, if a packaging event begins when the global abundance of CAP is less than 

sixty, then further packaging is halted until this deficit is filled. 

Using the approximation that each available CAP molecule independently 

contributes to the probability of packaging, we derive the probability that a newly 

synthesized positive-sense strand is packaged to be:

ppack =1- e
-c p ackCAP Eq. 7

(8) + Strand Dispersal

The probability of a newly synthesized positive-sense strand to remain within its 

replication complex, assuming it was not packaged, is given by the parameter cstay. The 

total probability is therefore:

p stay = (1- ppack )cstay Eq. 8

(9) Replication Phenotype

Our primary goal is to infer the number of replication cycles between the infecting 

and the progeny virions. Defining a complete replication cycle to include both copying to 

a negative-sense strand, then back to a positive-sense strand, we label the mean of this 

value μrc. The principal purpose of this mean is to link the mutation rate of replication to 
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the mean mutation frequency in the progeny population, so the appropriate measure is 

to average over virions, not infected cells. For k replicate simulations, let ni represent 

the number of progeny produced by each replicate i, and gij represent the number of 

replication cycles in the ancestry of each virion j in replicate i; then we calculate μrc as 

follows.

mrc =
gijj=1

n iå
i=1

kå
nii=1

kå
Eq. 9

Stochastic Simulation – Computational Approach

Gillespie (32) argued that discrete stochastic simulation is an accurate method 

for predicting the dynamics of chemical reactions, and is preferred when there are small 

numbers of some species of reactants. This approach requires exponentially distributed 

random numbers to quantify the periods between reactions. These random number 

draws contribute important stochasticity when rates are relatively low; however, when 

the overall reaction rate is very high, these draws are computationally expensive and 

contribute little variance. We therefore implemented a dual approach: when the rate is 

below a threshold, we draw exponential times; when it is above a threshold, we use the 

inverse of the rate – the expected time – as our interval between reactions. Figure 3 

shows that this approximation delivers accurate results for the best (lowest error) 

inferred parameter set.
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Figure 3: 

Distribution of virions in 10,000 replicates for simulations with (points) and without (line) 

a deterministic threshold for waiting times (see Methods). Parameter values are the 

‘best’ set given in Table 1. 
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Parameter inference

We used temporal, quantitative RT-PCR data of both positive-sense genomes 

and negative-sense strands to estimate the free parameters in our model. We chose to 

use measurements of positive- and negative-sense RNA at multiple time points for three 

multiplicities of infection (1, 10, and 100), as well as measurements of virion numbers at 

multiple times for MOI 10; this amounted to twenty-seven measured means. This 

relatively high number of data dimensions, combined with the computationally intensive 

and highly stochastic nature of our simulations, made a traditional maximum likelihood 

approach impractical. Instead, we turned to Approximate Bayesian Computation, using 

as our summary statistic the sum of the squared deviations of the average simulated 

RNA concentrations (and average fraction of virions for MOI 10) from their 

corresponding empirical means. After determining that the simplest rejection algorithm 

was impractically slow for our problem, we chose to implement a relatively new method 

called Sequential Monte Carlo (36-41). 

Sequential Monte Carlo (SMC) consists of several rounds of parameter selection 

which form successively better approximations of the posterior distribution. In each 

round x, a population of size nx parameters sets is generated iteratively by choosing a 

parameter set from the preceding round x-1, perturbing its values, then accepting or 

discarding the new parameter set based on the distance of its measured summary 

statistic from the summary statistic representing the data. Parameter sets with distances 

less than εx are accepted; a diminishing series of thresholds, ε1 > ε2 > ε3, etc., 

progressively focuses the search on those parameter values that best match the data. 
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In round 1, parameter sets are drawn from the prior distributions; this first round is 

therefore identical to the basic rejection algorithm, but with a fairly large ε1 to reduce 

computation time. 

 The advantage of searching for better parameter sets near previously identified 

good values is a much higher frequency of acceptance, and therefore much less 

computational time. However, the parameters accepted in later rounds are then biased 

toward common values in the previous rounds. The SMC algorithm removes this bias by 

weighting the selection of parameter sets against those that are most similar to their 

parent round, and toward those that resemble the prior distribution. Let Kσ(θa, θb) 

represent the probability of perturbing θa into θb with a Gaussian kernel of standard 

deviation σ, wxi represent the weight of parameter set i in round x, θxij represent the 

value of parameter j in set i of round x, and π(θ) represent the prior probability of θ. 

Then, for round two and later, we calculate these importance weights as in Eq. 10 

(adapted from 37).

wx,i =
p (q x,i, j )j=1

10å
wx-1,kk=1

nx-1å Ks x-1, j
(qx-1,k, j,q x,i, j )j=1

10å
Eq. 10

Beaumont (38) suggests that the Gaussian perturbations applied to each 

proposed parameter set should be scaled with regard to the variance in that parameter 

in the previous round. In practice, we identified a trade-off based on the scaling of these 

perturbations; smaller perturbations lead to increased acceptance rates but more 

positively skewed importance weights; because the weighting of each accepted 

parameter set is normalized relative to the highest observed importance weight, this 
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strong skew effectively dilutes the inferential power of the analysis. We found that using 

the standard deviation of each parameter as the standard deviation for the perturbation 

balanced this trade-off adequately for our model: the weights of the 1135 sampled 

parameter sets had an entropy of 10.01 bits, compared to a maximal value of 10.15 bits. 

This high entropy confirms that any remaining skew in the importance weights does not 

severely diminish the effective sample size.

Implementing this method requires several additional choices: the shapes of prior 

distributions, the number of rounds, the values of ε, and the number of replicates, n, to 

perform for each evaluation of the model. This last decision turned out to be crucial; 

inferring based on the mean of a larger number of replicates (n ≥ 1000) tended to select 

parameter sets with highly variable behavior. Reducing n led to a higher rate of 

parameter set rejection but more biologically plausible dynamics. We therefore chose to 

accept parameter sets that passed a given ε for multiple, sequential sets of n replicates. 

For round 1, one thousand parameters sets were accepted based on five sets of n=20 

replicates at MOI = 10 only with ε =  12. For round 2, 1135 parameters sets were 

accepted based on five sets of n=20 replicates at MOI = 1 with ε =  16, five sets of n=20 

replicates at MOI = 10 with ε =  12, and five sets of n=20 replicates at MOI = 100 with ε 

=  7. Thresholds for round 2 were calibrated to achieve an acceptance rate of about 1 in 

10,000.

To aid in visual exploration of the data, we chose five representative parameter 

sets as follows. From an initial batch of 513 parameter sets, we chose the fifty sets with 

the overall lowest error. From these, we sampled sets of five at random and calculated 
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the summed pairwise distance in parameter space of those five sets from each other. 

To adjust for the different scales and uncertainties in each parameter, the contribution of 

each parameter to the distance measure was divided by its standard deviation over the 

whole set of 513 values. These summed distances provided a metric of the parameter 

diversity captured in a choice of five parameter sets; we examined one thousand 

randomly drawn sets of five and chose the set with the highest summed distance. 

These five parameter sets are shown in Table 1.
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ctrans ccom ccirc crep+ crep- cpack commax repmax c3A cstay

Best -2.106 -6.676 -6.452 -4.164 0.804 -2.193 4.630 13.205 2.642 0.073
Set 1 -1.475 -6.304 -4.79 -6.397 1.047 -5.207 6.963 13.296 3.236 0.693
Set 2 -2.321 -5.111 -5.848 -5.603 1.92 -5.742 7.07 13.912 1.922 0.082
Set 3 -2.765 -6.157 -5.3 -3.6 1.112 -2.109 6.254 15.203 3.247 0.021
Set 4 -1.503 -5.716 -7.349 -5.369 1.91 -5.213 7.604 14.002 2.554 0.082
Set 5 -1.958 -5.857 -4.178 -6.062 0.79 -9.195 4.997 12.707 2.688 0.499
Low -2.027 -5.510 -6.636 -5.241 2.191 -5.71 7.233 14.963 2.222 0.033
High -2.163 -5.826 -4.639 -5.203 0.934 -9.257 7.042 14.864 3.765 0.188

Table 1: 

‘Best’ parameter set used in Figure 3, and representative parameter sets used in Figure 

4. 
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Methods and Materials

Cells and viruses

HeLaS3 cells (ATCC CCL-2.2) provided by R. Geller and J. Frydman (Stanford 

University) were maintained in 50% DMEM/50% F-12 medium supplemented with 10% 

newborn calf serum, 100U/ml penicillin, 100U/ml streptomycin, and 2mM glutamine 

(Invitrogen). Poliovirus Mahoney typeI genomic RNA was generated from in vitro 

transcription of prib(+)XpAlong. To generate virus, 20 µg of RNA was electroporated 

into 4 X 106 HeLaS3 cells in a 4mm cuvette with the following pulse: 300V, 24 Ω, 1000 

µF. The resulting virus was passaged at high multiplicity of infection (MOI ~1-10) three 

times then subjected to ultracentrifugation through a 30% sucrose cushion.

Infections

Four wells of HeLaS3 cells in 12-well plates were washed, trypsinized, and 

counted twice each on a hemocytometer then averaged to determine cell count. To 

synchronize infections, plates were placed on ice, cells were washed with cold serum-

free media and infected at MOIs 1, 10, and 100. Plates were incubated at 4ºC for 30 

minutes with rocking every 10 minutes to adhere virus. After removal of the inoculum, 

cells were washed 2X with warm serum-free media. Cells were then incubated at 37ºC 

in 2% serum media until harvest. To harvest, plates were frozen at -70ºC.
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RNA extraction, Reverse Transcription (RT), and qPCR

Plates were thawed on ice and refrozen at -70ºC 3X. RNA was extracted via the 

PureLink RNA Micro Kit (Life Technologies) according to the manufacturer's 

instructions. cDNA was synthesized from total RNA using SuperScript III Reverse 

Transcriptase (Life Technologies) and 125 nM strand-specific RT primer (+strand_RT: 

5’-GGCCGTCATGGTGGCGAATAATGTGATGGATCCGGGGGTAGCG-3’; -strand_RT: 

5’-GGCCGTCATGGTGGCGAATAACATGGCAGCCCCGGAACAGG-3’) in a 5 µL 

reaction. Separate RT reactions for positive and negative-strand RNAs were performed 

for each sample. RT products were treated with 0.5 units of Exonuclease I (Fermentas) 

to remove excess RT primer prior to qPCR. Strand-specific qPCR was based on a 

published protocol (42).  cDNAs were analyzed by qPCR using 2× SYBR FAST Master 

Mix (Kapa Biosystems), 200 nM strand-specific qPCR primer (+strand_For: 5’-

CATGGCAGCCCCGGAACAGG-3’; -strand_Rev: 5’-

TGTGATGGATCCGGGGGTAGCG-3’), and 200 nM Tag primer (5’-

GGCCGTCATGGTGGCGAATAA-3’) in a 10 µL reaction. A 10× dilution series of in vitro 

transcribed positive- and negative-strand RNA standards was run alongside 

experimental samples and used to construct a standard curve.

Virion immunoprecipitation

Lysates from MOI 10 infections were homogenized with a final concentration of 

0.06% NP-40. Immunoprecipitation was performed using Protein A-coated Dynabeads 

and anti-poliovirus antibody according to a published protocol (42).
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Sucrose gradients

HeLaS3 cells were infected for 1, 2, 3, 4, and 5 hours at an MOI of 10 in 15 cm 

dishes then simultaneously treated with 100ug/ml cycloheximide (CHX) for 2 minutes at 

37ºC. Cells were washed with PBS+CHX and lysed with 0.5% NP-40 lysis buffer 

containing CHX on ice for 20 minutes. Cell debris was pelleted in a table-top centrifuge 

at 2000 rpm for 10 minutes at 4ºC, then nuclei were pelleted at 9000 rpm for 10 minutes 

at 4ºC. Cell lysates were loaded on a 10%-50% sucrose gradient containing CHX and 

ultracentrifuged at 35000 rpm for 3 hr. Fractions were collected on a Biocomp Gradient 

Station with a BioRad Econo UV Monitor. Fractions were pooled based on the 

spectrophotographic trace into 2 fractions (ribonucleoprotein and monosome/polysome 

fractions), RNA was extracted and subjected to qRT-PCR.
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Results

Temporal quantitative data

To obtain estimates of our unknown parameters we fit our model to experimental 

measurements of poliovirus RNA during an infection. We infected HeLaS3 cells with 

poliovirus type I Mahoney at three multiplicities of infection: 1, 10, and 100. Samples 

were taken in biological triplicate every hour. Strand-specific qRT-PCR was performed 

to quantify positive-sense and negative-sense poliovirus RNA against in vitro 

transcribed standard RNAs of each sense (42). Along with cell counts, this allowed for 

temporal measurements of the average positive-sense and negative-sense poliovirus 

RNA copies per cell. Negative-sense RNA was not detectable until 2 hours post 

infection for MOIs 10 and 100, and 3 hours post infection for MOI 1. Positive-sense 

RNA was clearly quantifiable for all timepoints at the MOI 10 and 100 but did not rise 

above background levels until 3 hours post infection for MOI 1. Figure 4 illustrates this 

data alongside parameters from the second round of SMC.
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Figure 4:

Projected mean abundances of positive-sense RNA (solid lines vs filled circles), 

negative-sense RNA (dashed lines vs hollow circles) and virions (orange dotted lines vs 

stars). Each row represents a different example parameter set (see Results); each line 

is the mean of twenty individual-cell simulations, and the means of five sets of twenty 

replicates are plotted in each panel. Parameter values are given in Table 1. 
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To further refine our parameter estimates, we quantified the percentage of 

genomes encapsidated over a time course of infection at an MOI of 10. Using a newly 

developed virion immunoprecitipation assay (42), we observed de novo virion assembly 

between 2 hours and 3 hours post-infection. Along with total positive-sense RNA 

measurements from this time course, we obtained a percentage of genomes 

encapsidated in quadruplicate at 3 hours, 4 hours, and 5 hours post infection.

As an additional test of our best parameter set, we experimentally determined the 

percentage of genomes associated with translation machinery throughout a time course 

of infection. We fractionated infected cell lysates and quantified positive-sense RNAs in 

polysome fractions relative to total positive-sense RNA copies. This data renders a 

percentage of genomes associated with translation machinery and provides an 

additional set of data to evaluate the parameters sets produced by SMC. When 

measured at an MOI of 10 at 1, 2, 3, 4, and 5 hours post infection, the majority of 

positive-sense RNAs appeared to be associating with translation machinery, 

consistently averaging near 85%.

Inference of Replication Parameters

We performed inference of the ten free parameters in our model using a 

sequential Monte Carlo variant of Approximation Bayesian Computation. This algorithm 

produces progressively more accurate estimates of each parameter over several 

rounds; Figure 5 illustrates that, for most parameters, round one restricts the credible 

range of each parameter in comparison to the flat prior and round two leads to further 
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focusing. The data appear to be uninformative for at least one parameter, cpack; a 

second parameter, commax, appears to be poorly constrained by the comparison to MOI 

= 10 in round one, but somewhat constrained by the broader measurement against all 

three MOIs in round two. Round two also appears to significantly move the mode of two 

other parameters, ccom and c3A. 
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Figure 5: 

Prior and posterior distributions after each of two rounds of inference by Approximate 

Bayesian Computation. Empirical posteriors for rounds one and two are based on 1000 

and 1135 points, respectively, grouped into fifteen bins. 
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Figure 5 indicates that ABC inference informed the values of nine of our ten 

parameters, but these marginal parameter distributions alone do not capture 

correlations between parameter values. Figure 6 shows evidence of significant 

correlations, and Figure 7 shows that parameter sets drawn from the marginal 

distributions in Figure 5 (i.e., uncorrelated parameter values) do a poor job of matching 

the data. While not unexpected, these significant correlations require that we either 

attempt to fully characterize the multidimensional structure of these parameter 

distributions, or work directly with the sampled parameter sets arising from our inference 

process. Given our limited capacity to sample the posterior, we opted for the latter 

choice.
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Figure 6: 

Correlations between parameters in the round two posterior. Spearman rank 

correlations with magnitudes below 0.1 were ignored; those with magnitudes between 

0.1 and 0.25 are noted as “+” or “-“, those with magnitudes between 0.25 and 0.5 with 

“++” or “--“, and those with magnitudes above 0.5 with “+++” or “---“.
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Log of total error for inferred, weighted parameter sets in round two (solid) versus 1000 

sets assembled from parameter values drawn independently from the weighted 

posterior (dotted). 
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Each parameter in the posterior is supported over a significant range of 

possibilities. This remaining uncertainty reflects two factors: the data may be insufficient 

to determine each parameter, and the inference process may not have fully exploited 

the inferential power of the data. We took several approaches to quantify the sufficiency 

of the data versus the effectiveness of the inference process. First, we measured the 

mean error of parameter sets when compared to the data for each multiplicity of 

infection independently; we asked if performance at one MOI predicted performance at 

the other two. If so, the dimensionality of our data would be effectively lower than we 

had initially assumed. Surprisingly, pairwise correlations between mean error at one 

MOI and another were very weak: Spearman’s rho is 0.031 for MOIs 1 & 10, -0.092 for 

MOIs 1 & 100, and 0.129 for MOIs 10 & 100. 

Figure 4 shows that the inferred parameter sets generally capture the information 

in the RNA and virion data, although some parameter sets deviate consistently from the 

data for some values. Variability among replicate sets of twenty single-cell simulations 

are substantial, correlated across a time series, and greatest for the smallest MOI. 

Further inferential effort could improve either the accuracy of the mean predicted 

dynamics, or the precision of replicate simulation dynamics, though Figure 4 suggests 

that such improvements could only be modest.

To further investigate if the parameter values identified by ABC minimize the 

error in predicted RNA and virion dynamics, we explored the sensitivity of mean error to 

variation in each parameter for a single parameter set (‘Best’ in Table 1). These 

simulations again used sets of 20 single-cell replicates to calculate mean error, but did 
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so for 500 trials at each MOI to produce a high-resolution estimate of true deviation from 

the data. These results are plotted as 1/(1 + mean error) to show an intuitive goodness-

of-fit measure, where high values indicate similarity to the data. Figure 8 shows that the 

‘best’ parameter set is at or near a local maximum for goodness-of-fit for eight of ten 

parameters; the effects the remaining two parameters, cpack and commax, appear to be 

minimal for this parameter set. These results suggest that convergence of the posterior 

distributions is linked to the sensitivity of the model to each parameter, which supports 

the effectiveness of the ABC algorithm.
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Figure 8: 

Goodness-of-fit (1 / (1+ mean error)) of highly replicated simulations for MOI = 10 and 

the ‘best’ inferred parameter set. Each parameter value was varied independently for 

1000 sets of 20 single-cell replicates for each MOI. Orange lines represent the base 

value of each parameter.
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Predicted Replication Dynamics

Figure 9 shows the inferred posterior distribution of μrc, the mean number of 

replication cycles for a packaged virion based on two rounds of inference with 

measured RNA and virion abundances. This distribution is plotted for MOI=10; the 

predicted values at MOI = 1 and MOI = 100 are very similar and highly correlated 

(weighted means: MOI=1, 4.96; MOI=10, 5.06; MOI = 100, 4.85; Spearman’s rho 

(unweighted): MOI 1 & 10, 0.92; MOI 1 & 100, 0.85; MOI 10 & 100, 0.96). While this 

distribution does show substantial variance, it is strongly inconsistent with a “stamping 

machine” mode of replication, which would have a μrc near one. 
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Figure 9: 

Left: Posterior distribution of the mean number of generations of replications (μ rc). Right: 

Distribution reweighted by the fit of predicted fractions of translating positive-sense RNA 

to empirical measurements.  
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To explore the robustness of this inference, we compared the predicted 

dynamics of the model to an additional type of data: the fraction of positive-sense RNA 

molecules translating at each time point. Many of the inferred parameter sets are 

consistent with the measured values, but a substantial fraction is clearly inconsistent 

(Figure 10). The summed squared error of the translating fractions is also correlated 

with μrc (Figure 11). To estimate how these new data inform our prediction of μrc, we 

calculated a weighting factor based on the relative rank of the summed squared error of 

translating fractions, such that the parameter set with the best fit was assigned a weight 

of 1, the next a weight of 1134/1135, etc. Reweighting the distribution of μrc by this 

additional factor produced the distribution shown in Figure 9 right; the mean μrc shifts 

from 5.06 to 4.9. 
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Figure 10: 

Histograms of the projected fraction of positive-sense RNA undergoing translation for 

the mean simulated dynamics of each parameter set, compared to empirical 

measurements (orange dots). To better visualize the diversity of the predictions made 

from the inferred parameter sets, these histograms are not corrected by the importance 

weights. 
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Figure 11: 

Summed squared error (SSE) of fraction of translating positive-sense RNA for all 1135 

parameter sets, plotted against μrc at MOI = 10.
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Predicting the Distribution of Mutations

We simulated mutation and selection during infections to understand how 

replication dynamics shape the distribution of mutation frequencies among virions. To 

illustrate how mutant frequencies depended on μrc, we chose two parameter sets with 

values of μrc at the low and high end of the range supported by the posteriors in Figure 

5, and included the ‘best’ parameter set as a representative of the more common values 

of μrc. Mutation frequencies for these parameter sets (‘best,’ ‘low,’ and ‘high’ – see Table 

1) are plotted in Figure 12 for a range of replication deficits that produce a selective 

pressure. The per-capita probability that a mutant genome is chosen as a template for 

replication, relative to an unmutated genome, is given by one minus the deficit. 
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Figure 12: 

Mean mutation frequencies for three parameter sets (‘low,’ μrc = 3.94; ‘best,’ μrc = 4.65; 

‘high,’ μrc = 5.76). Mutation rate is 2 x 10-5 per replication event; ‘replication deficit’ 

reflects the reduced probability of a mutant template to replicate, relative to an 

unmutated strand. Grey lines indicate the expected mean for each parameter set with 

no selection (deficit of zero); the black line shows the mutation rate in one replication 

step, and therefore the expected frequency when mutants cannot replicate. Bars 

indicate 95% confidence intervals.
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Several distinct features of mutation in this model are evident from Figure 12. 

Mutation frequency does not decrease linearly as intracellular selection approaches its 

maximal value; the curve results from the fact that mutant genomes that are 

immediately packaged are not subject to selection, while the contribution of rare, early 

mutants to average mutation frequency may be reduced by multiple rounds of 

intracellular selection. Knowing μrc and the mutation rate allows us to predict the fate of 

neutral or very unfit mutations, but the frequency of mutations of intermediate fitness 

may require simulation of the model to predict. A third feature is the sizable confidence 

intervals relative to the number of infections sampled (ten million for each point). This 

high variability reflects the large contribution of very rare mutations that arise early in an 

infection and can contribute thousands of mutant virions, especially when selection is 

weak.

The effect of minor alleles in the overall mutant distribution can be seen as a 

departure from a Poisson process. To remove a potential confounding variation in burst 

size, we compare the distribution of mutations from infections within 10% of the median 

burst size, and calculate a Poisson expectation for a median-sized burst with the same 

expected frequency. For the ‘best’ parameter set, median infections produced many 

more bursts with no copies of a given mutation (79.4% vs. 22.5% for the Poisson), but 

also many more bursts with five or more copies of the mutant (8% vs. 1.82% for the 

Poisson (n = 51,365). 

The distribution of the number of generations between progeny virions and initial 

infecting genomes is displayed for three parameter sets (‘best,’ ‘low,’ and ‘high’ – see 
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Table 1) in Figure 13. Only a very small percentage of progeny are produced via a 

single genomic replication cycle. Although all three parameter sets have means close to 

5 generations, the distributions show a portion of the progeny virions representing up to 

10 genomic replication cycles between parent and progeny within a single cellular 

infection. The breadth of these distributions suggests that μrc alone is not adequate to 

completely predict the mutation structure of viral progeny.
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Figure 13: 

Distributions of μrc of progeny from single cell infections for three parameter sets (‘low,’ 

μrc = 3.94; ‘best,’ μrc = 4.65; ‘high,’ μrc = 5.76).
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Discussion

Virus infections are normally depicted as deterministic processes that follow a 

stereotypical path from infection to progeny production and death of the infected cell. 

However, experimental data show that some infected cells produce few progeny while 

others produce large populations of progeny (30). These observations suggest the 

common assumption that stochasticity is an important factor shaping the outcome of 

infection. By combining accurate experimental measurements and a stochastic model of 

viral replication, we have obtained a realistic model of how the molecular events driving 

the life cycle of the virus govern the outcome of infection in each cell. The intracellular 

replication mode of a virus strongly influences the frequency and distribution of 

mutations among progeny, which contributes significantly to the behavior of a 

population (6-7). Due to the complex nature of intracellular dynamics, assessing the 

mode of replication of viruses has long been a difficult task (but see 43). Here, we build 

on decades of mechanistic studies and recent modeling efforts to construct an 

stochastic computational model coupled with new Bayesian inference methods. This is 

combined with accurate temporal and quantitative data to produce a detailed picture of 

viral infection. We find positive- and negative-sense RNA measurements over multiple 

MOIs along with quantitative data on virion packaging to be sufficiently informative to 

infer that poliovirus replication features several layers of intermediate replication, in 

contrast to the oft-assumed ‘stamping machine’ model. The implications of this 

replication mode are as follows: 1) per-replication error rates in vivo are considerably 
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lower than measured rates from full-replication-cycle in vivo studies, 2) with the potential 

accumulation of different mutations, many steps through sequence space are possible 

in a single cellular infection, and 3) there exists a significant potential for intracellular 

selection and competition among related virions, even in infections initiated by only a 

single genome.

Accurate estimates of viral mutation rates are essential for studying viral 

evolution and have crucial practical applications in drug and vaccine design. While 

estimates of mutation rates exist for nearly two dozen viruses, estimates of replication 

modes exist for only a few (44). Calculating per-replication event mutation rates from 

observed mutant frequencies is not possible without knowledge of replication mode. 

Thus, estimates of poliovirus per-replication event mutation rates can range over 10-fold 

depending on the assumed replication mode (1, 44). Our replication mode inference 

allows us to link estimates of per-replication event mutation rates to published mutant 

frequencies. The most extensive poliovirus mutant frequency data set estimated an 

average mutant frequency of 2X10-4 (45). Using our inferred value of approximately 5 

complete replication cycles (defined by a cycle of 2 copy events: positive to negative to 

positive), we calculate a per-replication event mutation rate of 2X10-4 / 5 * 2 =  2X10-5, 

which is in agreement with the average estimates of poliovirus in vivo mutation rates 

calculated from lethal mutation frequencies (45). Our finding of 5 complete intracellular 

replication cycles is also in line with previous inferences of replication mode using the 

Luria-Delbruck fluctuation test null-class method (44). However, our results highlight 

some limitations for inferring mutation rates from frequencies: intracellular selection may 
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strongly affect mutation frequencies, and the strong stochastic nature of virus replication 

appears to deeply modulate minor alleles distribution, which in turn will result in 

imprecise estimates of the expected frequency. In particular, assuming that mutation 

frequency can be modeled as a Poisson process will lead to inappropriate confidence in 

measured frequencies. As a consequence, multiple empirical mutation frequencies 

measurements will be required to obtain a more precise determination of true mutation 

frequencies.

The branched genealogy inferred in our study implies the potential for significant 

amounts of intracellular complementation, selection, and competition between mutant 

genomes, even in infections initiated by a single genome (6, 9, 46). Figure 4(a) 

demonstrates the extent to which the frequency of a mutation can be skewed by 

negative selection during the course of an infection. On the other hand, a mutational 

event that occurred early in replication and conveyed an intracellular replication 

advantage could potentially give rise to hundreds or thousands of descendant virions in 

a single generation. If the mutation distribution data in Figure 4(b) were displayed as a 

tree (as in Figure 1), it would contain over 7000 terminal nodes, too many to resolve in a 

figure. Hence, the apparent potential for mutant interactions is vast. These results 

suggest that the evolutionary fate of mutations may depend strongly on their 

intracellular competitive ability, even when multiplicities of infection are low. Additionally, 

studies that rely on bottlenecks to reduce selection in viral mutation studies (e.g., 47) 

may be allowing more selection than they expect. Future population dynamics studies 

should consider the implications of the intracellular expansion of mutant phenotypes.
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An significant benefit of computational modeling is that the information learned in 

the empirical process of the development of a model can yield important insights in the 

biologic process study. For example, our initial attempts to fit temporal strand 

measurement data were unable to match the sharp transition to exponential growth 

seen in the data. Only after removing the requirement for positive-sense genomes to be 

translated before becoming replication-competent was our model flexible enough to 

rapidly create templates for exponential replication. While Novak and Kirkegaard (9) 

demonstrate a requirement of the initial, infecting genomes to be translated before 

replication can occur, their data does not implicate that all genomes produced at any 

time during infection must be translated before replicating. Our study suggests that 

newly synthesized positive-sense genomes may or may not disperse to nucleate new 

replication complexes within a single cellular infection allows us to model intracellular 

dynamics in a novel way, permitting a portion of newly made positive-sense strands to 

immediately act as templates for replication without the requirement of translation. Of 

note, this observation also complicates efforts to use lethal mutant frequencies as a 

proxy for per-replication event error rates because potentially lethally-mutated genomes 

have the possibility to act as templates of replication without the proofreading step of 

translation.

Our model succeeds in describing many experimentally observed features of 

viral replication and is an excellent staging point for future and more accurate models of 

viral replication and evolution. With the realistic benefits of stochasticity, 

compartmentalized reactions, and parameters inferred from quantitative, temporal data, 
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it acts as a baseline intracellular viral replication algorithm. More quantitative data, 

including data on the formation and number of replication compartments, would further 

inform the model. Potential additions of intracellular selection, complementation, and 

recombination parameters would allow population evolution studies to explore 

intracellular dynamics with more precision than previous approaches. The ultimate goal 

is to generate a comprehensive model incorporating mechanistic replication dynamics 

learned from virology with selection and complementation dynamics learned from 

population genetics. This tool could be very powerful for informing future therapeutic 

and preventative strategies.
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Chapter 4:

Investigating the Fundamental Basis 

for a Limit to Mutation Rate: Is the 

Thermodynamic Stability of Essential 

Proteins the Speed Limit to 

Evolution? 
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Introduction

According to the quasispecies theory, the limit on mutation rate is established by 

the relative fitness of sequence variants to that of the master. A critical point termed the 

“error threshold” exists where the mutation rate of a viral genome exceeds the 

replacement rate of the master sequence such that the production of the master 

sequence is outweighed by the production of an increasingly diverse mutant swarm. 

This “error catastrophe” scenario is often presented as the explanation for the limit on 

viral mutation rate. However, this divergent, evolutionary shift in sequence space can be 

distinct from a drop in absolute abundance as would occur during extinction. While high 

mutation rate is driving both processes, two very different outcomes occur based on 

environmental tolerance. By illuminating the mechanism by which mutations are 

tolerated, we can better understand how quasispecies diversity is shaped.  Here, we 

begin to examine a model stemming from the thermodynamic stability of essential 

proteins as a potential explanation of the mechanism for a limit on mutation rate.  

Zeldovich et al (1), put forth an evolutionary model in which the fitness of an 

organism can be directly inferred from its genomic sequence with a strict physiological 

assumption of the genotype-phenotype relationship.  Essentially, the model states that 

mutations can be tolerated in an essential gene such that they do not disrupt the 

thermodynamic stability of its protein to the degree that renders it unstable and 

therefore nonfunctional.  Using a distribution of protein stabilities, the model establishes 

a speed limit of molecular evolution of 6 mutations per essential portion of a genome 
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per replication (1).  This number is interestingly close to the mutation frequency of 5.3 

mutations per genome observed for wildtype poliovirus in tissue culture (2).

Here, we first take a simple, descriptive approach to observe whether this theory 

can hold water in our system by attempting to illustrate the differing sensitivities to both 

reduced and elevated temperatures of poliovirus populations with differing mutation 

frequencies. We then begin a larger, more systematic examination of the sensitivities of 

poliovirus populations to targeted mutagenesis of poliovirus proteins. Based on 

thermodynamic predictions from a novel prediction algorithm incorporating 

crystallography data of poliovirus proteins, this targeted mutagenesis is expected to 

disrupt protein stability to varying, well-delineated degrees. Deep sequencing of these 

populations is expected to reveal the fitnesses of each targeted mutation, allowing an 

inference of how specific, targeted disruptions affect stability and to what degree.
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Materials and Methods

Cell Culture and Virus Generation

HeLa S3 cells were grown in tissue culture flask in DMEM/F12 50/50 medium 

supplemented with 1x penicillin/streptomycin/glutamine and 10% newborn calf serum. 

Cells were incubated at 37ºC and 5% CO2. Poliovirus Mahoney typeI genomic RNA was 

generated from in vitro transcription of prib(+)XpAlong. To generate virus, 20 µg of RNA 

was electroporated into 4 X 10^6 HeLaS3 cells in a 4mm cuvette with the following 

pulse: 300V, 24 Ω, 1000 µF. 

Poliovirus RNA Transfection

HeLa S3 cells were collected, washed three times with PBS without salt, and 

resuspended to a concentration of 5x106 cells/ml. 800µl of cells were electroporated 

with 20µg of RNA in a 0.4cm cuvette using an Electro Cell Manipulator 600 (BTX Inc.). 

Cells were recovered in 16ml of medium and incubated at 37ºC in a 5% CO2 incubator 

until cytopathic effect.  

Plaque assay

HeLa S3 cells were seeded in 6-well plates at a concentration of 1.5x106 cells/well and 

incubated overnight at 37ºC and 5% CO2. Virus supernatant was diluted in a 1:10 

dilution series in DMEM/F12 medium. Cells monolayers were washed once with PBS 

then 250µl of virus dilution was added per well. To allow virus attachment, cells were 
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incubated with the virus inoculum for 30 mins at 32ºC, 37ºC, or 39.5ºC and 5% CO2. 

Each well was overlayed with 5ml of 1% agarose in 1X DMEM/F12 medium 

supplemented with 5% newborn calf serum. Plates were incubated with 5% CO2 for 2 

days at 37ºC and 39.5ºC, and 3 or 4 days at 32ºC. Agarose overlays were then 

removed and plates were stained crystal violet dye (0.1% crystal violet, 20% ethanol) to 

visualize the plaques which where then counted and a titer was calculated.

Passaging

HeLa S3 cells were seeded at a concentration of 5x105 cells/well of a 12-well plate and 

incubated overnight at 37ºC and 5% CO2. The next morning the cells were infected at 

the appropriate MOI. The viral inoculum was incubated with the cells for 30 mins at 

37ºC and 5% CO2 to allow virus attachment. Cells were then washed three times with 

PBS and 1ml of fresh media was added to the cells. Infections were incubated for 8 

hours then frozen at -70C. Lysates were freeze-thawed 3X before titering.

Cloning

19 oligos for each of 24 positions were ordered in 500 pmole quantity. Oligos had a melt 

temp of 62ºC-64ºC. Oligos were 29 bases in length, with the mutant codon flanked by 9 

WT bases on each side. Overlap cloning using touch-down PCR was used to introduce 

oligos in the pXpAlongrib+WT plasmid. Agarose gel purification was performed after 

both the first and second rounds of overlap PCR. Round 2 “inserts” were digested with 

SfoI and EcoRI and cleaned over simple PCR columns. pXpAlongrib+WT was digested 

123



with SfoI and EcoRI, run on a 1.5% low-melt agarose gel in the cold room for 3-4 hours 

at 100 volts. Ligations were performed with 28 ng vector, 14 ng insert, 1 ul of T4 DNA 

ligase and 1 ul 10X ligation buffer at 16ºC overnight. Ligations were transformed in 

SURE2 cells via their protocol. All colonies were scraped together into 8 mLs of 

LB+carbampicillin and grown for an additional 4 hours before mini-prepped.
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Results

Cursory, descriptive examination of the stability of poliovirus populations with 

varying degrees of mutations

To fully experimentally test this model would require analyzing the protein 

stabilities of an organism with a modular mutation rate over a range of temperatures.  

Luckily, several poliovirus variants exist which contain fidelity-altering mutations in the 

viral polymerase (3). In addition, because all of the PV proteins are essential, instability 

of any protein will result in a non-productive infection. By passaging the high-fidelity 

polymerase mutant and low-fidelity polymerase mutant alongside WT PV at different 

temperatures, one can get a comparative readout of fitness between the populations 

generated with different mutation rates by looking at overall production of plaque-

forming-units (PFUs) at each temperature. Because of the limited range of temperatures 

(~32ºC-39.5ºC) that permit growth of tissue culture cells, one could use mutagenic 

nucleotides, such as ribavirin or 5-fluorouracil, to further exacerbate viral mutation rate 

(4).

As a cursory illustration of potential differing sensitivities to temperature (as a 

proxy for thermodynamic stability) of poliovirus populations generated with RNA-

dependent RNA polymerase mutants with varying mutation rates (therefore having 

varying mutation frequencies), we simply titered viral stocks at various temperatures. 

Specifically, a WT poliovirus stock population, along with a G64S (the high-fidelity 

variant) stock population and a H273R (the low fidelity variant) stock population were 
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diluted to roughly 150 PFU/mL, then plaque assays were performed and incubated at  

32ºC, 37ºC, or 39.5ºC. If this experimental setup was sensitive enough to provide 

insights into the model, one would expect to see an increase in viral titers at lower 

temperatures as mutant genomes, which would be inviable at higher temperatures are 

now viable due to stability of their mutated proteins.  Likewise, one would expect that 

the low fidelity variant, which at 37ºC consistently displays a slightly lower titer than WT, 

would produce an even lower titer at higher temperatures.  If an increase in titer was 

seen at lower temperatures due to a presumed switch in the viability of mutated 

genomes, one could determine the diversity of viable virions produced at each 

temperature via sequencing. If the model is correct, one would expect to see an 

increase in mutation frequency of PFUs with a decrease in temperature, or in other 

words, a more diverse population of PFUs at lower temperatures.

We observe that all populations are less viable at non-optimal temperatures 

(32ºC, 39.5ºC). Interestingly, we observe that the H273R population, which has a higher 

mutation frequency (see Chapter 1) shows a lower-than-WT proportion of its virions as 

viable PFUs when the temperature is elevated (Figure 1). The H273R population also 

shows a higher-than-WT proportion of its virions as viable PFUs when the temperature 

is lowered (Figure 1). While this data appears to support the idea that the H273R 

population harbors a larger portion of mutants which are sensitive to elevated 

temperature and also harbors a larger portion of inviable mutants that can be 

resuscitated by lowering temperature (which may be a proxy for increasing stability), the 

G64S (the high-fidelity variant) population shows a similar trend. In the most simplistic 
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view, the model predicts that a high-fidelity variant population (which is known to have a 

lower mutation frequency, see Chapter 1) should display a larger-than-WT portion of its 

virions as viable PFUs at elevated temperatures, because it contains fewer mutants that 

are close to the stability threshold, and a smaller-than-WT portion of its virions as viable 

PFUs at reduced temperatures, because it contains fewer inviable mutants that can be 

resuscitated by the presumed increased stability of reduced temperature.

127



Figure 1:

Temperature sensitivities of poliovirus RNA-dependent RNA polymerase mutant 

populations. All populations shows reduced viability at non-optimal temperatures. 

Compared to WT, both G64S (the high-fidelity variant) and H273R (the low-fidelity 

variant) show reduced viability at elevated temperature and a higher level of viability at 

lowered temperature.
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This experiment was repeated with the same viral stocks with the only change 

being allowing the 32ºC incubation to occur for 4 days rather than 3 days. While this 

extended incubation appeared to allow smaller plaque to develop and become visible, it 

did not affect the trends discovered in the first experiment (Figure 2). Both RNA-

dependent RNA polymerase variant populations show fewer viable virions than WT at 

elevated temperatures and a higher portion of viable virions than WT at reduced 

temperatures.
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Figure 2:

Temperature sensitivities of poliovirus RNA-dependent RNA polymerase mutant 

populations (repeated). All populations shows reduced viability at non-optimal 

temperatures. Compared to WT, both G64S (the high-fidelity variant) and H273R (the 

low-fidelity variant) show reduced viability at elevated temperature and a higher level of 

viability at lowered temperature. While a longer incubation of 32ºC plaque assays 

allowed more plaque to develop and become visible, the trends displayed in Figure 1 

are recapitulated.
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Directed, experimental approach to perturb protein stabilities of polioviral 

populations

Next, we took a more directed, targeted approach at manipulating the 

thermodynamic stability of essential poliovirus proteins. Using thermodynamic 

predictions, specific resides of poliovirus proteins were targeted for mutagenesis. For 

selected residues, the WT amino acid was replaced with every non-WT amino acid to 

create a library of mutants representing every possible amino acid at a given position. 

These mutant populations were passaged several times and their relative proportions in 

the population were examined. Deep sequencing of these passaged populations is 

expected to give a fitness readout for each individual amino acid. This fitness readout 

will be used as a proxy for the stability of each mutant residue, although further in vitro 

measurements should be used to more concretely determine the nature of such fitness 

differences.

First, 24 residues of the poliovirus 3D protein were selected based on the 

expected severity and range of effects of mutations to each of the 19 non-WT amino 

acids at that position. Residues were chosen to in an attempt to balance all possibilities: 

residues where many mutants are expected to debilitate stability, residues where 

roughly half of the mutants are expected to debilitate stability, and residues where very 

few mutants are expected to debilitate stability. Also, residues in catalytic sites, those 

known to be part of an interaction interface, and those nearest to the surface were 

excluded, as lowered fitness of mutating these residues will likely have alternative, 

confounding effects and are therefore less likely to report directly on protein stability. 
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Thermodynamic predictions were made by Tzachi Hagai. Table 1 describes the 24 

chosen residues. Figure 3 shows the physical location of each of the 24 selected 

residues in the poliovirus 3D protein structure.
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Table 1:

Table noting each of the 24 selected residues, their shorthand library number, genomic 

position, and WT codon and residue.
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library# PV genomic position WT codon WT residue
1 6062 GAA Gly
2 6212 GAG Glu
3 6290 TAT Tyr
4 6305 CTA Leu
5 6413 AAA Lys
6 6512 ATT Ile
7 6584 AAA Lys
8 6635 TTT Phe
9 6701 GCA Ala
10 6731 CTA Leu
11 6749 AAA Lys
12 6767 AGA Arg
13 6788 CTA Leu
14 6806 CTG Leu
15 6818 AAA Lys
16 6881 ATG Met
17 6926 AAG Lys
18 6953 ATG Met
19 7046 ATG Met
20 7148 ATT Ile
21 7157 GTA Val
22 7211 AAC Asn
23 7280 TTC Phe
24 7295 AGG Arg



Figure 3:

Four views of the poliovirus 3D protein structure with the 24 selected residues 

highlighted in red. Residues were selected in an attempt to directly perturb stability 

without affecting binding of other proteins or disrupting catalytic reactions.
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Second, specific oligos introducing each of the 19 non-WT amino acids to each 

of the 24 positions were designed and ordered. Codons were chosen to increase the 

distance in sequence space between WT and mutant by mutating as many of the three 

bases in the mutant residue as possible. These 19 non-WT oligos were mixed in 

equimolar ratios and cloned into the standard WT poliovirus plasmid backbone as a 

library using an overlap cloning method. To determine the purity of the mutant 

population and to ensure sufficient removal of the WT starting material, individual clones 

were sequenced. WT carry-over from the cloning procedure was determined to be 

roughly 5%, which was deemed sufficiently low to more forward with. Once linearized, 

these plasmid libraries were used to construct a population of in vitro transcribed RNA, 

varying 20 ways over a single codon (19 mutants plus WT background).

Third, library in vitro transcribed RNA was transfected into HeLaS3 cells to 

produce a viral population containing all (or likely all) viable mutants representing all 19 

non-WT amino acids at a particular residue in the 3D protein. Ideally, a low MOI would 

be used to generate the initial viral population. However, transfection does not provide 

the opportunity to control MOI. It is likely that much of the initial viral population 

produced from the transfection occurred in infections which were initiated by several 

mutants, allowing for some complementation to occur.  Figure 4 illustrates the titers of 

each library population produced from the P0 transfection, shown relative to a WT 

transfection. If all mutants were as stable as WT, titers would be expected to be 100% 

of WT. If all mutants were instable to the point of being dead, titers would be expected 

to be produced only by background levels of WT.
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Figure 4:

Passage 0 titers of the 24 selected residue library populations transfections relative to 

WT transfection. If all mutants were as stable as WT, titers would be expected to be 

100% of WT. If all mutants were instable to the point of being dead, titers would be 

expected to be produced only by background levels of WT (roughly 5%).
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Populations were furthered passaged at low MOI (0.1) and titered. Figure 5 

shows the overall increase in titer over passages 0-3. Most of the populations appear to 

drop or increase only mildly in titer between passage 0-1, suggesting that many of the 

mutants in these populations are unproductive and likely being selected against. 
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Figure 5:

Titers of the 24 selected residue library populations over 3 passages, alongside WT. 

Most titers first appear to drop or increase mildly, suggesting a significant portion of the 

population is being selected against in the first passage. Titers increase as expected 

with the following passages.
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Discussion

Despite their simplicity, the initial descriptive experiments in this chapter do well 

to suggest that the model of protein stability being a speed limit to molecular evolution 

can hold some weight. More-heavily mutated viral populations saw less of a drop in titer 

from a non-optimal lowered temperature, presumably from a resuscitation of mutants 

that, for thermodynamic stability reasons, would not have been viable under normal 

growth conditions (Figures 2, 3).

Further work is need to complete the directed protein perturbation experiments 

initiated in this project. The initial glimpses of information seem promising. P0 titers 

span a wide range of titers relative to WT, suggesting some residues are very 

insensitive to mutation while other are very sensitive to perturbation (Figure 4). Also, 

serial passaging of many of the mutant library populations showed a decrease or only a 

modest increase in titer in the first low MOI passage, suggesting that a considerable 

portion of the population may have been selected against (Figure 5). However, as an 

important point, all mutations have only been inferred to affect stability. Deep 

sequencing of these populations will be necessary to shed further light on the relative 

increase or decrease of each mutant in each population. Only the collection of 

correlations between fitness inferences drawn from deep sequencing data and the 

thermodynamic stability predictions of each particular mutant at each residue can act as 

a substantial test to the model of the limit to mutation rate.
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Conclusion

Error Catastrophe

In Chapter 1, our objective was to describe the characteristics of a low-fidelity 

polymerase mutant population and investigate whether Muller's ratchet and subsequent 

mutational meltdown occurs in tissue culture and animal systems. Our experiments 

used sequencing, passaging, and infection in a mouse model to elucidate the nature of 

low-fidelity replication in population dynamics of poliovirus. Unfortunately, previous 

results were not reproducible and our H273R population appeared less low-fidelity and 

more WT-like than previously observed.

Our tissue culture passaging experiments illustrated that tightly controlled 

passaging of H273R populations at either low or hight MOI does not result in Muller's 

ratchet-like behavior or subsequent mutational meltdown. Previous results were likely 

artifactual as less well-controlled passaging (blind passaging) demonstrated the ability 

of small, accidental differences in multiplicity of infection to be compounded through 

subsequent passages creating the illusion of extinction.

Stochasticity

In Chapter 2, we sought to uncover the sources of variation in single cell viral 

infections. We followed isolated individual cells infected with poliovirus at low or high 

MOI and measured viral genomic replication and infectious viral progeny in each cell. 

We report the first true positive to negative strand ratio of a positive-strand virus in 
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infected cells, with a ratio of 20 at 7 hours post infection. We find that while virus 

genome production is higher in cells infected at a high multiplicity, the production of 

infectious particles is largely independent of the number of viruses infecting each cell. 

Strikingly, by correlating RNA and particle production within individual infections, we find 

a significant contribution of stochastic noise to the outcome of infection.  At low MOI, 

stochastic influences appear as kinetic effects which are most critical at the initial steps 

in infection. At high MOI, stochastic influences appear to dictate the viruses ability to 

harness cellular resources. We conclude that biological noise is a critical determinant of 

the overall productivity of viral infections. The distinct nature of stochasticity in the 

outcome of infection by low and high numbers of viral particles may have important 

implications for our understanding of the determinants of successful viral infections. 

Replication Mode

In Chapter 3, we sought to combine years of knowledge of the molecular 

mechanism of poliovirus replication with new computational methods to infer the 

replication mode of the virus. We measured RNA dynamics through the poliovirus 

infection cycle, and applied these data to infer the parameters of a stochastic 

mathematical model. We find that poliovirus differs significantly from the stamping 

machine model. Our results suggests that for each infection cycle in a human cell, the 

average progeny virus is approximately 5 genomic replication cycles away from the 

infecting virus, providing the potential for an expansive mutant population to be 

generated from a single cellular infection event. Multiple genomic replication cycles 
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within a single cellular infection cycle create the potential for significant intracellular 

selection, especially in infections initiated by multiple genomes.

Thermodynamic Stability of Essential Proteins

Despite their simplicity, the initial descriptive experiments in Chapter 4 do well to 

suggest that the model of protein stability being a speed limit to molecular evolution can 

hold some weight. However, further work is need to complete the directed protein 

perturbation experiments initiated in this project. While the initial glimpses of information 

seem promising, all mutations have only been inferred to affect stability. Deep 

sequencing of these populations will be necessary to shed further light on the relative 

increase or decrease of each mutant in each population. Only the collection of 

correlations between fitness inferences drawn from deep sequencing data and the 

thermodynamic stability predictions of each particular mutant at each residue can act as 

a substantial test to the model of the limit to mutation rate.
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