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Closure duration and VOT of word-initial voiceless plosives in 

English in spontaneous connected speech 

Yao Yao 

Abstract 

This is a corpus study on closure duration and VOT in English voiceless stops in 

word-initial position.  19 speakers’ (10 female, 9 male) data from the Buckeye 

Speech corpus are used in the study.  The first half of the paper introduces a novel 

approach of automatically finding the point of stop release in large speech database, 

using Mel spectral templates and similarity scores.  The performance and robustness 

of the algorithm is discussed in detail.  To our knowledge, this is also the first 

automatic measure of closure duration and VOT that is reported in detail in the 

literature.  The second half of the paper studies the closure duration and VOT as 

calculated by the procedure described in the first half, and investigate the correlation 

between these durations and a number of linguistic and extra-linguistic factors.   

 

1 Introduction 

Voice onset time (VOT) is a well-studied topic in phonetics.  It has been shown that 

VOT in voiceless stops varies with a number of factors, among which the most 

established one is place of articulation.  Zue (1976), Crystal and House (1987), and 

Byrd (1993) all find longer VOT for velars compared to labials and alveolars in 

connected read speech.  Additionally, Crystal and House (1987) and Byrd (1993) 

both find that alveolars have on average longer releases than bilabials.  In other 

words, the release duration increases as the point of contact moves from the lips to the 

velum.  Cho and Ladefoged’s (1999) cross-linguistic study of 18 languages suggests 

that this rule might be universally true.   

In recent years, more and more studies have focused on the relation between VOT 

and other possible correlates. Roughly speaking, the proposed correlates can be 

divided into two categories, speaker-related and non-speaker-related.  The most 

widely-studied speaker-related factors are gender, age, speaking rate, lung volume, 

and individual talking style.  In addition to place of production, other 

non-speaker-related factors include phonetic context, word frequency, and laboratory 

environmental setting.   

 

1.2 VOT and gender 

Whiteside and Irving (1998) studied 36 isolated words spoken by 5 men and 5 women, 

all in their twenties or thirties, and showed that the female speakers had on average 

longer VOT for voiceless plosives than the male speakers, and the results were 

corroborated by several other studies (Koenig 2000, Ryalls et al. 1997, Whiteside and 

Marshall 2001, Robert et al. 2005, among others).  Whiteside et al (2003) reported a 

developmental study on 5 groups of 46 boys and girls aged 5;8 (5 years, 8 months) to 

13;2, all of whom were British English speakers, and the study suggested that sex 
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differences in VOT, in the same form as found for adults, started to appear well before 

adolescence.  The factors that contribute to the sex differences in VOT have not been 

fully studied, but it has been suggested that physiological and anatomical differences, 

as well as sociophonetic factors could at least partially account for the observed 

differences.  However, it should be noted that there are also studies which report no 

significant sex differences found in VOT, e.g. Ryalls et. al (2002) (see the discussion 

in 1.3) and Syrdal (1996).   

 

1.3 VOT and age 

Petrosino et al’s 1993 study on velar stop production in aged speakers found no 

significant differences in mean VOT of [k] and [g] across the three vowel contexts 

between two age groups, though differences in VOT variability (standard deviation) 

approached significance.  Similarly, a study conducted by Neiman et al in 1983 on 

VOT in young and 70-year-old women found that VOT was generally the same in the 

two age groups, and it was only in certain phonetic contexts that older subjects 

demonstrated significantly shorter VOT.   

However, Ryalls et al (2002) found significant age differences in VOT for 

English voiceless plosives.  They replicated an earlier study (Ryalls et al. 1997) on 

younger speakers among older speakers.  The earlier study found significant effects 

of gender and race on VOT in younger speakers, but the 2002 study found no 

significant effects of gender or ethnicity in older speakers.  Interestingly, significant 

differences were found between the average VOT of the two age groups as older 

subjects’ VOT’s are consistently shorter than those of younger subjects (with the 

difference ranging from 12 ms to 20 ms for [p], [t], [k]).  It was also found that the 

average syllable duration of older subjects, on the other hand, exceeded that of 

younger speakers by about 100 ms, which was counter-intuitive since a lower 

speaking rate ought to yield a longer VOT (the relation between VOT and speaking 

rate will be discussed in 1.4).  A tentative explanation was the smaller lung volumes 

on the part of older speakers.  But it is worth noticing from this study that aging 

might also affect VOT in an indirect way, by masking the effect of other factors, such 

as gender and race.   

 

1.4 VOT, speaking rate and individual talker differences 

VOT is found to be negatively correlated with speaking rate and the correlation is 

highly significant, especially for voiceless stop consonants (Kessinger and Blumstein 

1998, Volaitis and Miller 1992).  This is not surprising at all, since, intuitively, as a 

speaker slows down the speaking rate, all the phonetic segments would be stretched 

and therefore they should all show an increase in duration.  Allen et al (2003) 

reported a study in which four female speakers and four male speakers were recorded 

saying a list of 18 monosyllabic English words beginning with voiceless stops.  The 

results showed that 82% of the total variability was attributable to differences among 

talkers in overall speaking rate, while 43% of the remaining variability (or 8% of the 

total variability) was explained by individual talker identity, leaving 57% unexplained 

(i.e. true error).  Meanwhile, intrinsic word duration (mostly due to the different 
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vowels) was found to have no significant effect on VOT.   

1.5 VOT and lung volume 

Hoit et al (1993) found in a study of five adult male speakers that VOT was longer 

when produced at high lung volumes and shorter when produced at low lung volumes 

in most cases, which pointed out the need to take lung volume into account when 

studying the correlation between VOT and other factors.  As mentioned above, 

Ryalls et al. (2002) considered relatively low lung volumes in older speakers as the 

main reason for their shorter VOT’s compared to younger speakers.   

 

1.6 VOT and other speaker-related factors 

Other factors such as ethnic background (Ryalls et al. 1997), dialectal background 

(Schmidt and Flege 1996, Syrdal 1996 ), presence of speech disorders (Baum and 

Ryan 1993, Ryalls et al 1999), and hormone levels in female speakers (Whiteside et al. 

2004b) have also been studied, but no convincing correlations have been established.     

 

1.7 VOT and non-speaker-related factors 

The most important non-speaker related factor is place of articulation.  As mentioned 

in the beginning, it is widely acknowledged that VOT in English voiceless stops 

increases as the contact point moves from the lips to the velum.  The other 

non-speaker factor that is often mentioned in the literature is the phonetic context, or 

more specifically, the following vowel.  However, previous literature presents a split 

in opinion with regard to this point.  Since most of the previous studies involving 

VOT are based on VOT values in syllables across different vowel types (most 

typically including the three extreme vowels, [a], [i], and [u]), many of them have 

reported that certain trends are only observed in certain vowel setting (Whiteside et al. 

2004a, Neiman et al. 1983, etc).  Nonetheless, as mentioned above in 1.4, Allen et al 

(2003) reported no significant effects of phonetic contexts on VOT.   

Robb et al (2005) reported that the subjects produced longer VOT in a 

laboratory-setting than in a non-laboratory-setting, which suggested that 

environmental setting might have an effect on speech style, which in turn would affect 

the length of VOT.   

 

1.8 Closure duration 

Compared to the large literature on VOT in English, not many studies have 

investigated the closure duration.  Zue (1976) found longer closure portions for [p] 

than [t] and [k].  However, Crystal and House (1987) reported that the duration of 

closure in alveolar stops are slightly but consistently shorter than that of bilabials and 

velars, while bilabials and velars are very similar in closure durations.  Byrd’s (1993) 

report on stops in TIMIT, on the other hand, supports Zue’s finding of longer closure 

portions for [p].   

 

1.9 Current study 

In the broad literature on English VOT and its correlation with other factors, a 

wide range of speakers were studied, however, most of the studies relied on data from 
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specifically designed lab experiments, usually in the form of reading word lists or 

producing target syllables in a carrier phrase.  Therefore, these studies typically have 

a small pool of target syllables, a relatively low variability in phonetic context, as well 

as a small set of subjects.  The only two exceptions are Byrd (1993) and Crystal and 

House (1987), both of which studied VOT in (read) connected speech corpus.  The 

TIMIT corpus that Byrd studied in Byrd (1993) contains 2,342 different sentences 

read by 630 speakers (ten sentences per speaker).  Crystal and House (1987) studied 

the readings of two scripts (totaling approximately 600 words) by 14 speakers.   

The current study uses data from the Buckeye speech corpus (Pitt et al., 2005).  

The corpus was developed at Ohio State University 

(http://www.buckeyecorpus.osu.edu/), and consists of recordings of spontaneous 

speech of 40 speakers, all long-time local Ohio residents.  The Buckeye Corpus is 

orthographically transcribed and phonetically labeled.  However, it is not labeled for 

the point of release in stops.  Thus the first half of this paper (mostly the 

methodology section) will introduce and discuss the technical details of a novel 

approach for automatically finding the point of release in voiceless stops.  The 

second half of the paper is devoted to the discussion on the distribution of closure 

duration and VOT both inter- and intra- speakers and how they correlate with the 

following five factors: place of articulation, age, gender, speaking rate, and word 

frequency.   

 

2. Methodology 

2.1 Buckeye Corpus 

The Buckeye Corpus contains recordings from 40 speakers (20 male, 20 female, 20 

young – under 30, 20 old – over forty) in Columbus OH conversing freely with an 

interviewer.  All speakers are Caucasian, long time local residents of Columbus.  

Each speaker was being interviewed for about an hour, not knowing the research 

purpose of the interview until the recording was done.  The speech style was 

unmonitored casual speech.  The acoustic signal was digitally recorded in a quiet 

room with a close-talking head-mounted microphone.  Currently the recordings of 20 

talkers (10 male, 10 female, 10 young, 10 old) have been transcribed and phonetically 

labeled.  The data from all but one of these speakers are used in this study.  A 

young male speaker’s data were not included due to an inconsistency in the label files.   

Two types of phonetic labeling are used in the corpus: word labeling and phone 

labeling.  At the word level, an utterance of a word is stored with both the spelling 

form and the actual pronunciation, as well as a timestamp indicating the end of the 

word; at the phone level, each phone – an actual sound uttered by the speaker, not 

necessarily a sound in the citation form of the uttered word – is stored with the phone 

name and a timestamp indicating the end point of the phone.  In addition, since 

labeling is done in an exhaustive way, i.e. every point in the recording has a 

corresponding label in the label files, there are also labels that represent non-linguistic 

sounds, including silence, noise, laughter, and interviewer sounds (interviewer’s 

speech is not recorded or transcribed).  Silence in a running speech flow of the 

speaker is not transcribed as silence, but attributed to the neighboring sounds.   
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The current study uses the data of 19 (out of 20) speakers whose transcription and 

label files are available.  Table I shows the basic information of these speakers, as 

well as their coded names in this study. 

Coded name in the 

Buckeye corpus 

Coded name in the 

current study 

Gender Age (Y-young, 

O-old) 

S02 F01 F O 

S03 M01 M O 

S04 F02 F Y 

S10 M02 M O 

S11 M03 M Y 

S12 F03 F Y 

S13 M04 M Y 

S14 F04 F O 

S15 M05 M Y 

S16 F05 F O 

S17 F06 F O 

S20 F07 F O 

S21 F08 F Y 

S22 M06 M O 

S24 M07 M O 

S25 F09 F O 

S26 F10 F Y 

S32 M08 M Y 

S33 M09 M Y 

Table I  Speaker information 

 

2.2 Material for this study 

The target words for this study are words that are uttered with voiceless plosives in 

the initial position.  It should be noted that we are looking at words that have [p], [t], 

[k] in the initial position in the phonetic transcription, which might not agree with the 

pronunciation of the citation form.  Besides, since it is impossible to tell where the 

closure portion starts in an utterance-initial [p], [t], or [k], all utterance-initial target 

words will not be included in the study of closure duration.  Table II shows the 

number of target words in each speaker.  Nt is the total number of target words; 

Nnon-utterance-initial is the number of target words that are not utterance-initial.   

 

 F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 

Nt 674 572 777 900 1243 490 231 449 699 412 

Nnon-utterance-initial 642 497 743 860 1136 453 217 391 639 363 
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 M01 M02 M03 M04 M05 M06 M07 M08 M09 

Nt 564 1027 784 865 724 512 636 618 718 

Nnon-utterance-initial 514 931 624 793 657 406 541 557 628 

Table II  Count of target words in each speaker 

 

2.2 Finding point of release 

To our knowledge, there has not been much report on automatic measure of VOT in 

the literature.  (Niyogi and Ramesh (1998) used an energy differential operator to 

automatically locate the point of burst, but didn’t provide an error analysis.)  In this 

section, we will discuss the use of similarity scores for automatic air burst detection in 

detail.  

The Buckeye Corpus is hand-labeled only to the level of phones, so there is no 

information on the stop release in the label files.  Therefore the first task is to find 

the point of release for the initial stop in each target case.  A novel similarity scoring 

approach is utilized in the task.  This approach was first introduced by Johnson 

(2006), as an attempt to automatically analyze large speech corpora in a 

speaker-independent way.  The approach involves two steps.  The first is to develop 

a set of phonetically meaningful templates for each speaker.  To do this, a set of 

steady-state phones are first chosen as representing phonetically-important features 

(e.g. [s] represents energy in high frequencies while [sh] represents energy in lower 

frequencies), and a Mel spectral template is derived for each phone in the set by 

averaging over the Mel spectra at mid-point of all “long” examples (greater than 

median duration) within the same speaker.  The second step is to measure the degree 

of similarity between a given chunk of acoustic data and each phone template.  The 

higher the similarity score to a certain phone template is, the more similar that chunk 

of acoustic data is to the related phone (or the more likely it is for the acoustic data to 

have the phonetic feature that is represented by the phone).  If one applies this step 

to a complete audio file, the end product would consist of a series of time-dependent 

similarity scores for each template.  In other words, at each time point, there is a 

corresponding similarity score vector indicating how similar the acoustic data around 

this time point are to each phone template.   

 

2.2.1 Feature templates 

 

The criteria that we used to select phones for making templates are (i) they need to 

have a steady-state spectrogram, and (ii) they should be as independent from each 

other as possible, so that the entropy in the similarity score vector can be maximized.  

In fact, the second criterion is also part of what we mean by “phonetically 

meaningful”.  In the current study, the following 12 sounds are chosen to have 

templates: [f], [s], [sh], [h], [r], [n], [iy], [ae], [aa], [uw], [eh], and silence.  The 

template for silence is acquired by averaging over the Mel spectra of which the 

containing time intervals are labeled as silence in the label files.  The details of 

developing templates are presented below. 

For each phone chosen, first, find all instances of the phone in the speaker, and 
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get the medial phone duration.  Second, disregard all instances with a shorter 

duration than the medial duration value (which would exclude half of the instances).  

Third, for each remaining instance, calculate a Mel frequency spectral vector using a 

20 ms analysis window centered at the center of the phone and store the vector in a 

60-bin array.  This is done by the following XWAVES command: 

(1)  fft –z –wHamming –l$w –r$s:+$w-1 –o10 - - | melspec –n60 - -| pplain 

–fre_spec_val -   

 where $w is the variable that stores window size, and $s stores the starting 

point of the analysis window 

Last, average over the Mel spectral vectors calculated in the previous step.  The 

final template consists of an average spectral vector of 60 dimensions, as well as the 

standard deviation of each dimension.   

The spectral templates of some selected phones ([a], [f], and silence) of speaker 

F01 are shown below in Figure 1. 

       

    1a           1b 

           

    1c 

2.2.2 Similarity Scores 

A similarity score measures how similar the current frame (window size=20ms) is to a 

spectral template by comparing the Mel spectral vector of the current frame to the 

average Mel spectral vector of the template.  The Mel spectral vector of the current 

Fig. 1a is the spectral 

template for [a]; Fig. 1b is 

the spectral template for [f]; 

Fig. 1c is the spectral 

template for silence.  The 

X-axis represents 60 

equidistant bins on the Mel 

scale from 0 to 8000. All 

figures are made by speaker 

F01’s data.   
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frame is computed using the XWAVES commands in (1).  If the current acoustic data 

is longer than 20ms, a similarity score will be calculated every 5ms (step size = 5ms).  

On the time scale, the calculated similarity score will be associated with the midpoint 

of the frame.   

A similarity measure is calculated in two steps.  First a distance measure 

between the two vectors is calculated using the following formula: 

(2a)  di = 
n

sd
ux

ij

i

j

ijj

,1

,

1
||∑

=

−

    

(where di is the distance measure to between the current frame and template i; xj 

is the jth coordinate in the current vector, and uj,i is the jth coordinate in the 

average spectral vector of template i; sdj,i is the standard deviation of the jth 

coordinate in the average Mel spectral vector of template i.) 

 

Second, the distance measure is normalized using the exponential function with 

k=-0.005.   

 (2b)  Si = e-0.005di    

(where Si is the similarity score of the current frame to template i. ) 

 

Figure 2 illustrates the similarity scores for two templates, [s] (in blue/grey) and 

silence (in black/dark), for the utterance of the word “personality” by speaker M08. 
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Figure 2  Illustration of similarity scores to [s] (in blue/grey) and silence (in 

black/dark) in an utterance by M08 

The .words pane shows word transcription; the .phone pane shows phone transcription; the 

data pane shows the two similarity scores; both the spectrogram and the similarity score 

curves are highlighted during the duration of the phone [s] in “personality”. 

 

As shown in the highlighted section in Figure 2, during [s], the silence score is 

low while the s score is high, which is what one would expect given the definition of 

similarity scores.   

 

2.2.3 Algorithm for finding the point of release 

This section discusses how to use similarity scores to find the point of release in a 

voiceless stop.  Intuitively, the similarity score measures how similar the acoustic 

data are to a phone template, and therefore in the closure portion of a stop, the silence 
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score should be high, while in the release portion it should be much lower since the 

spectrogram is almost noise-like.  In other words, at the point of release, there should 

be a significant drop in the silence score.  Simultaneous with this change, there 

should be an increase in similarity scores to [h], [sh], and [s], since these phones are 

characteristic of energy across a wide range of frequency (cf. Figure 2).  In fact, we 

do see this pattern in similarity scores around the point of burst.  Figure 3 illustrates 

three target words said by speaker F01, which start with [p], [t], [k] respectively.  In 

all three cases, the data pane shows similarity scores for silence, [sh], [s], and [h].  

The order of the score curve is indicated in the box on the right.  In all three figures, 

only the similarity scores in the target word are shown; elsewhere, they are merely 

straight lines connecting between target words.  In Figure 3b and 3c, the point of 

burst is marked by the cursor (in red/grey), while in Figure 3a it is marked by a 

bi-directional arrow because the first release is very weak and the streak in 

spectrogram would easily be covered by the cursor line.   

 

 

UC Berkeley Phonology Lab Annual Report (2007)

192



 

 

Figure 3a  The word “people” by F01 with an initial [p] and the similarity scores for 

silence, [s], [sh], and [h] 

- [h] 

- [s] 

- [sh] 

- silence 
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Figure 3b  The word “doing” by F01 with an initial [t] and the similarity scores to 

silence, [s], [sh], and [h] 

- [h] 

- [s] 

- [sh] 

- silence 
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Figure 3c  The word “countries” by F01 with an initial [k] and the similarity scores 

to silence, [s], [sh], and [h] 

 

As seen from above, the similarity scores for [sh], [s], and [h] (for the sake of 

simplicity, they will be referred to as <sh> score, <s> score, and <h> score 

respectively) rise significantly around the point of burst, where the <silence> score 

drops significantly.  In view of this, we first implemented an algorithm that found the 

time points corresponding to the highest peaks in <sh> score, <s> score, and <h> 

score, and the time point corresponding to the lowest valley in <silence> score.  

Therefore, the algorithm produced four candidates for the point of burst for each 

target case.  In order to test the results, we hand tagged the point of release in all 

target cases of speaker F07.  This speaker was chosen both because she has the 

smallest target set among all speakers and because her average speaking rate 

(measured in the number of syllables per sec) is the lowest (which probably make 

- [h] 

- [s] 

- [sh] 

- silence 

UC Berkeley Phonology Lab Annual Report (2007)

195



 

automatic processing easier).  When deciding the point of burst manually, we mainly 

relied on the cues in the spectrogram, and in cases where it’s hard to decide from the 

spectrogram, we also used waveforms as second evidence.  If the phone has more 

than one release, the earliest one will be taken to be the real point of burst.  The 

comparison of the true values and the four candidates given by the program showed 

that the best prediction was made by the <silence> score, with an average error (RMS 

(error)) of around 10ms.  However, 10ms of error is still higher than tolerable for 

studying the distribution of VOT and closure durations.  We also tried fitting the data 

with linear regressions of different combinations of the four estimates, but it didn’t 

reduce the error significantly.   

More careful observation of the scoring pattern revealed that slope was a better 

predictor than absolute score value for the point of burst because the lowest valley or 

highest peak in <silence> score could occur either before, around or after the point of 

burst, but the most drastic dropping or rising in scores (i.e. the point with the greatest 

slope) occurs consistently near (usually a few milliseconds before) the burst.  Figure 

4 illustrates the problem with a [k]-initial target word said by speaker M01.  Only 

two scores, <silence> (in black/dark) and <sh> (in red/grey), are shown for simplicity.  

It can be seen that the true burst point (where the lower arrow points to on the 

spectrogram) is very close to the end point of the most drastic dropping in <silence> 

score and the most drastic rising in <sh> score, as pointed by the bi-directional arrow.  

After the release, <silence> score keeps dropping and <sh> score keeps rising, both at 

slower rate though, and as a result, both the valley in <silence> score and the peak in 

<sh> score (pointed approximately by the two unidirectional arrows) occur tens of 

milliseconds after the release.   
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Figure 4  The word “could” said by speaker M01 

Highlighted area corresponds to the duration of the initial [k]; two similarity scores are 

shown: <silence> score (in black/dark) and <sh> score (in red/grey) 

 

In view of this, we implemented a new algorithm which found not the time point 

corresponding to the peak or valley of the score, but the end point of the most drastic 

change in similarity score (the most drastic rising in the <sh> score and the most 

drastic falling in the <silence> score).  We also reduced the number of scores in 

consideration from four to two by dropping the h score and the s score since they were 

shown to have a similar pattern as the <sh> score.  So now the program only finds 

two candidates for the point of release in each target case, one from <silence> score 

and the other from <sh> score, and returns the mid point of the two.  If no decreasing 

period is found in <silence> score or no increasing period is found in <sh> score, the 

target case would be disregarded from the target set.  

- [sh] 

- silence 
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Using the new algorithm, the root mean square of error is 7.22ms, which shows a 

significant improvement over the 10ms error of the previous algorithm.  Moreover, it 

is found that the error values (i.e. real point of burst - estimate) are mostly distributed 

around 5ms (as shown in Figure 5 below), with a mean of 5.35ms.   

 

 

Figure 5   Distribution of error values (in s) in F07, using the new algorithm 

X-axis shows the error intervals in s, and Y-axis is the number of cases in the error interval 

 

If 5ms is added to all estimated values, the RMS of error is further reduced to 

4.85ms, across 231 target cases.   

In order to test the robustness of the algorithm, we used part of the data from 

another speaker, M08, to do a similar test.  Speaker M08 was chosen because he 

seemed to be the opposite of speaker F07 in every aspect.  As shown in Table III 

below, F07 is a female, older speaker with on average a low speaking rate (in fact the 

lowest among all 19 speakers), while M08 is a male, younger speaker with the fastest 

speaking rate among all talkers.  Average speaking rate is measured in the average 

number of syllables produced per second.   

 

 Gender Age Average Speed Speed rank 

F07 F old 4.02 #19 

M08 M young 6.43 #1 

Table III  Comparing speaker F07 and M08 

 

The same procedures were applied to M08’s data.  First, the first 261 target 

cases of M08 were chosen to comprise a target sample with a comparable size to 

F07’s data.  Next, all of the 261 cases were hand-tagged for the point of burst in the 

initial plosive.  This process proved to be much harder than dealing with F07’s data.  
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M08 being both a fast and extremely soft talker (which might actually be due to the 

low gain setting during the recording), his data contain many cases in which even an 

experienced phonetician would have problems deciding where the point of burst is.  

In particular, in some cases, it is clear that the burst doesn’t exist.  That is to say, 

even if the phone is transcribed as a word-initial voiceless plosive, there is no 

closure-release transition during the duration of the phone – either all silence or all 

noise throughout the duration.  In other cases, the burst is not significant enough.  

Some problematic cases are shown below in Figure 6a-c.  

 

 

Figure 6a   “to” said by speaker M08 

Highlighted area corresponds to the duration of the initial [t]; two similarity scores are shown: 

<silence> score (in black/dark) and <sh> score (in red/grey) 

 

In Figure 6a, the transcribed duration of [t] is basically all blank in spectrogram, 

- [sh] 

- silence 
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and the production of the following vowel starts right after the silence – in other 

words, the stop is incomplete since it doesn’t have a release.   

 

 

Figure 6b “to” said by speaker M08 

Highlighted area corresponds to the duration of the initial [t]; two similarity scores are shown: 

<silence> score (in black/dark) and <sh> score (in red/grey) 

 

Figure 6b shows a case where the transcribed duration of the stop is all noise in 

spectrogram, with no closure portion.   

 

- [sh] 

- silence 
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Figure 6c “question” said by speaker M08 

Highlighted area corresponds to the duration of the initial [k]; two similarity scores are 

shown: <silence> score (in black/dark) and <sh> score (in red/grey) 

 

Figure 6c shows a word-initial [k] in speaker M08.  This velar stop is weakly 

(and doubly) released, which corresponds to only two faint streaks on the spectrogram 

around the mid point of the duration of the phone, with no noise-like distribution of 

energy following the release.  The waveform shows no periodicity after the 

hypothesized release either, until the following vowel starts.  Besides, when listening 

to the audio, we can’t hear a velar release throughout the duration of the phone.  All 

the evidence points to the conclusion that the streak in the spectrogram might just be a 

spurious burst, and therefore it shouldn’t be counted as a velar release.   

Altogether 23 problematic cases are found among the 261 cases of M08 that are 

hand-tagged, and the three cases shown in Figure 6a-c are typical of most of them.  

silence - 

[sh] - 
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The real points of burst are designated to be the starting point of the phone, in order to 

make it possible to calculate the average error value.  If anything, this distortion 

increases the error value.  The RMS error is 13.11ms.  The histogram in Figure 7 

shows that the majority of errors are in the interval [0, 20ms], however, there exist a 

number of outliers with large error values.   

 

Figure 7   Error distribution in M08 after the first rejection rule is applied 

X-axis shows the error intervals in s; Y-axis is the number of cases in the error interval; 

dataset size = 261 cases 

 

Not surprisingly, the outliers are mostly those problematic cases.  If the stop 

doesn’t contain a release in the first place, whatever release point found by the 

program would be an error.  To solve this problem, the algorithm needs to be able to 

detect cases with no significant releases and reject them.  A rejection rule is 

implemented for this purpose.   

 

(3) First rejection rule 

A target word will be rejected if the most drastic changes found in scores are not 

drastic enough.  The delta criterion is defined as a rising rate of 0.02 per step (i.e. 

per 5 ms) for <sh> score and a dropping rate of 0.04 per step for the <silence> 

score.  If the <silence> score and <sh> score don’t meet the delta criterion, the 

case will be rejected.   

 

The two cutoff numbers, 0.02 and 0.04, are decided based on M08’s test dataset.  

It is observed that when used together, these two cutoff numbers are able to block a 

highly exhaustive and exclusive set of the problematic cases of M08, as shown in the 

table below.   
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 N NP NR NP^R  

M08 261 23 28 19 

Table IV  Number of cases rejected in M7’s examined data, using the cutoff points 

0.02 and 0.04 

N is the number of all cases that are examined in speaker M08; NP is the number of 

problematic cases found in M08; NR is the number of cases that are rejected using the two 

cutoff points; NP^R is the number of problematic cases that are rejected. 

 

After rejecting 28 cases, the RMS of the error goes down to 9.27ms.  Figure 8 

shows the histogram of the error distribution. 

 

 

Figure 8   Error distribution in M08 after the first rejection rule is applied 

X-axis shows the error intervals in s; Y-axis is the number of cases in the error interval; data 

set size = 233 cases 

 

As shown above, most of the error values are distributed in the interval [0,10ms], 

which is consistent with the finding from speaker F07’s data that the found point of 

release is on average 5 ms earlier than the real point.  However, the overall 

performance is dragged down because of the existence of a number of outliers whose 

estimated points of burst are more than 20ms away from the true values.  And even 

shifting the estimate values by 5ms to the right doesn’t help improve the error value, 

only yielding an error value of 9.26ms.   

Now that the cases with insignificant bursts are mostly excluded after the first 

rejection rule, the found release points in the remaining cases should all indicate real 

bursts.  Therefore, if the found points don’t coincide with the real values, the most 

natural explanation is that the automatic program is finding wrong points of burst.  If 

the found point is significantly earlier than the real point of burst, it is most likely that 
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the program finds a spurious burst (e.g. a transient), which is part of the residual after 

the first rejection rule.  If the found point is significantly later than the real point of 

release, it most likely is a case of multiple release.  Multiple release is known to 

occur most often in velar stops.  In fact, the case with the greatest error value (error 

= -60ms) is a multiply-released initial [k], shown in the figure below. 

 

Figure 9  The word “cause” with an initial [k] said by speaker M08 

Highlighted area corresponds to the duration of the initial [k]; two similarity scores are 

shown: <silence> score (in black/dark) and <sh> score (in red/grey) 

 

The initial [k] in “cause” as shown in the figure above is unusual, not only in the 

multiple releases but also in the fact that first three (or four) releases are widely apart.  

As shown above, instead of finding the first release (roughly pointed by the 

downward arrow), the <silence> score tracker finds the second major release (pointed 

by the leftmost upward arrow) while the <sh> score tracker finds the third major 

- [sh] 

- silence 
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release (pointed by the rightmost upward arrow), and the program in turn returns the 

mid point of the two (as pointed by the middle upward arrow).   

Ideally we would want the program to be able to find the first significant release 

in cases like the above, but in reality, we just tell the program to ignore them.  Apart 

from the obvious benefit of keeping the program simple (relatively!), there are 

actually also a couple of rational reasons for doing so.  The most important one is 

that simply favoring the earliest found point would interfere with the rejection of 

spurious releases.  Currently the rejection of spurious releases is not only done by 

the first rejection rule, but also built-in in the algorithm, since the program looks for 

the most likely point of release, not the first point of release, with the underlying 

assumption that the point of burst (i.e. the first release if multiple releases exist) 

should also be the point of the most abrupt changes in <silence> score and <sh> score.  

That being said, though favoring temporal precedence might help solve the problem 

of these unusual multiple releases, it would probably affect the estimation for other 

cases, which are the majority of the data set.  In view of all these, we implemented 

the second rejection rule, which states as follows: 

 

(4) Second rejection rule 

If the two found points, one from the <sh> score and one from the <silence> 

score, differ from each other by more than 4 steps (i.e. 20 ms), the case will be 

rejected and dropped from the data set.   

 

According to the second rejection rule, the case in Figure 9 will be rejected 

because the two found values differ by 40ms.  It should be noted that by applying 

this rejection rule, we are not excluding all cases with multiple releases.  The reason 

is that in most cases, the repeating releases are quite close, within 20ms from each 

other.  Therefore, if the two found points do belong to two separate releases that are 

within 20ms from each other, the error value by returning the midpoint of the two 

instead of the first point would be less than 10ms, which is considered tolerable (if it 

only happens occasionally, of course!).  What if the two found points belong to the 

same release but that release is not the first one in the series?  The program with the 

two rejection rules will have no way to detect this problem.  However, hopefully it 

won’t happen very often, since it is only possible if (i) the multiple releases are more 

than 20ms apart, and (ii) one of the (non-initial) releases is found by both <silence> 

score and <sh> score.   

Let’s take M08’s data for illustration.  After applying the second rejection rule, 

20 cases are dropped and the new distribution of error is shown in the figure below.  

This time the mean absolute value of error is 4.50ms, still around 5ms.  The RMS 

error is 5.64ms, and after adding 5ms to the estimate values, the root mean square is 

reduced to 3.44ms.  Notice that this error value is near-optimal since the step size is 

5ms, and theoretically the best error value that can be achieved is 5/2=2.5ms.  Notice 

also that the number of outliers (i.e. residual after the rejection rules) is reduced to 

only 2, one on the positive side and one on the negative side.   
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Figure 10  Error distribution in M08 after the first rejection rule is applied 

X-axis shows the error intervals in s; Y-axis is the number of cases in the error interval; 

dataset size = 213 cases 

 

We have seen that the two rejection rules significantly improve the performance 

of the program.  Now the question is: are they speaker independent?  To test this, 

we apply the rules to the estimated values in speaker F07’s target set.  Table V shows 

the results after the rejection rules in F07’s data, and for comparison, we also include 

M08’s results here.   

 

 F07 M08 

 size error error+5 sd size error error+5 sd 

before rejection 231 7.22 4.85 4.85 261 13.11 14.00 13.17 

after 1st rejection 227 6.81 4.19 4.19 233 9.27 9.26 8.94 

after 2nd rejection 224 6.02 3.22 3.23 213 5.64 3.44 3.41 

 Table V   Results with speaker F07’s and speaker M08’s test data 

Size is the number of cases in the dataset; error is the RMS error value; error+5 is the RMS 

error after the estimates are shifted by 5ms to the right; sd is the standard deviation of error.   

 

Overall, 7 of 231 cases are dropped in F07’s data (rejection rate = 3.03%), and the 

RMS error is improved by 33.6%; in M08’s data, 48 of 261 cases are dropped 

(rejection rate = 15.05%), and the RMS error is improved by 75.4%.  In both 

speakers, the shifted error value is significantly better than the unshifted one, which 

means the point found by the program consistently occurs about 5ms earlier than the 

real point of burst; both RMS and the standard deviation of the error is significantly 

reduced after the rejection rules, in both speakers.  Besides, both speakers achieved a 

RMS error lower than 3.5ms after the rejection rules.  The large difference in 
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rejection rate, 3.03% vs. 15.05%, suggests that the rejection rates are 

speaker-dependent.  Remember that speaker F07 and M08 are chosen because they 

are vastly different from each other in their basic information, and also considering 

the fact that speaker M08’s data contain a significant portion of problematic cases that 

need to be dropped while no particularly difficult cases were noticed in F07’s data 

during the hand-tagging process, the low rejection rate in F07 and the relatively high 

rejection rate in M08 suggests that the algorithm, together with the rejection rules, is 

robust enough to be applied to a wide range of speakers without any changes.  The 

complete process for finding the point of release is illustrated in the flow chart below. 
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Figure 11  Flow chart for finding the point of release 

 

We applied the above procedure to all speakers’ data, and the rejection rate ranges 

from 3.03% to 30.5%, with the average value of 13.13% and a standard deviation of 

8.6%.  The details of rejection in all speakers are attached in appendix I.  Being 

cautious, we compiled a random list of 50 target cases from all speakers, in which 

about half of the cases were from speakers with a high rejection rate (>20%), and 

manually checked the estimated values.  In the 43 cases that are not rejected, error is 

always within 5ms; in the 7 cases that are rejected, 3 of the 4 cases rejected by the 

first rule and 2 of the 3 cases rejected by the second rule are legitimate.  The two 

Calculate <silence> score and <sh> score 

Calculate the slope in <silence> score and <sh> score 

In a labeled voiceless stop span, (i)find the time point of largest positive slope in <sh> score, and 

store in p1; (ii)find the time point of smallest negative slope in <silence> score, and store in p2 

 

return (p1+p2)/2+0.005 

p1 = null or p2 = null 

|p1–p2|>=0.02 s  

slope (p1)<0.02 and 

slope (p2)>0.04 

reject the case 
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wrongly rejected cases are shown in Figure 12a-b below. 

  

 

Figure 12a  “park” said by speaker F02 (rejection rate = 30.5%), which is rejected 

for having insignificant changes in <silence> and <sh> score.  A phonetician might 

want to consider the point around the arrow as the release point. 

- [sh] 

- silence 
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Figure 12b  “kids” said by speaker M02 (rejection rate = 21.7%), which is rejected 

for having two peaks that are two far apart.  A phonetician might want to consider 

the point around the arrow as the release point. 

silence - 

[sh] - 

UC Berkeley Phonology Lab Annual Report (2007)

209



 

3. Results 

This section shows average closure and release duration across speakers, and 

discusses the correlation between closure duration and VOT on one hand and a 

number of linguistic and extra-linguistic factors on the other hand.  All durational 

values shown in this section are predicted by the burst-detecting program.  For the 

purpose of comparing closure and release, only non-utterance-initial cases are 

included in the statistical analysis in this section.  As shown in Table II in the 

previous section, non-utterance-initial words make up of around 80%-95% of the 

target set in each speaker. 

 

3.1 Distribution of average duration of closure and release across speakers and 

place of articulation 

Table VI lists the mean and standard deviation of closure duration, VOT, and total 

duration by place of articulation. 

 

 labial ([p]) alveolar ([t]) velar ([k]) 

N 2461  4142 3566 

Mean(Dc) 69.5 48.9 54.9 

Sd (Dc) 36.4 23.9 22.9 

Mean(Dr) 48.0 51.2 57.9 

Sd (Dr) 25.1 27.5 26.0 

Mean(Dt) 117.6 100.2 112.9 

Sd (Dt) 46.5 41.2 37.7 

Table VI  Duration (in milliseconds) of non-utterance-initial (but word-initial) 

voiceless stops 

 N = total number of tokens; Dc = closure duration; Dr = release duration; Dt = total duration 

 

Compared with the average durations found in Byrd (1993) for read speech in 

TIMIT (cf. Table VII below), the Buckeye values are very similar, though the release 

duration is a little bit longer.   

 

 p t k 

Mean(Dc) 69 53 60 

Sd (Dc) 24 29 26 

Mean(Dr) 44 49 52 

Sd (Dr) 22 24 24 

Table VII Duration (in milliseconds) values from Byrd (1993) 

 

Our data show the same general pattern in duration by place of articulation as in 

Byrd (1993).  [p] on average has a greater closure duration than [t] and [k] in our 

data , which is in line with the finding of both Byrd (1993) and Zue (1976) but not 

Crystal and House (1988a).  The average VOT follows the pattern claimed in many 

previous studies that VOT increases as the place of contact moves from lips to the 

velum.   
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Figure 13 shows the average closure and release durations in each speaker.   

 

average closure and release duration in each speaker
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Figure 13 

 

In Figure 13, we see some individual differences in terms of average length of 

closure and release.  Speaker M03 has on average the longest VOT (=77.7 ms), as 

well as the longest total duration (=134.5 ms), though his average closure duration 

(=56.8s) is not among the longest ones.  Speaker M08, on the other hand, has the 

shortest total duration (80.6s), the shortest VOT (=34.8s), as well as the shortest 

closure duration (=45.8s).  As the figure shows, speaker M03’s average VOT is 

almost twice as long as that of speaker M08’s.  Checking the speaker information 

table (Table I) in section 2, we find that speaker M03 and M08 are both younger male 

speakers, but they do show a difference in average talking speed.  As mentioned in 

section 2, speaker M08’s data (together with speaker F07’s) were chosen to train the 

burst detector partly because this speaker is ranked # 1 in average talking speed, with 

on average 6.43 syllables produced per second.  Speaker M03, on the other hand, 

produces 4.87 syllables per second, and is ranked # 13 among the 19 speakers.  (A 

complete table on average talking speed among speakers can be found in appendix II.)  

This preliminary comparison seems to suggest that age and sex might not contribute 

to the variability in these duration measures as much as speaking rate does.  This 

issue will be further investigated in section 3.2. 

Figure 14 shows the average proportion of closure and release in the total 

duration of the phone across speakers.   
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proportion of closure and release in each speaker
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Figure 14 

Similarly, Figure 14 shows individual differences in terms of ratio of closure and 

release, which suggests that the ratio is not constant across speakers.   

Figure 15a-c show the average closure and release duration, as well as the 

proportion of closure in total duration, in each place of production, across speakers. 

 

Average closure duration of [p],[t],[k]

across speakers
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Figure 15a 

It is clear from the above figure that the average closure duration of [p] is 

consistently and significantly greater than [t] and [k] in all speakers.  A student’s 
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t-test on place confirms that the average closure duration of [p] across speakers is 

significantly different from that of [t] and [k] ([p] and [k]: t = -5.0663, df = 32.487, p 

<0.001; [p] and [t]: t = -7.0883, df = 32.275, p <0.001).   This provides further 

support for the finding in Table VI with regards to closure durations by showing that 

the pattern is highly robust across speakers.  From the figure we can tell that the 

average closure duration of [k] is greater than [t] in all speakers, though to a lesser 

degree compared to the difference between [p] and the other two stops.  A t-test 

confirms that the difference in average closure duration in [k] and [t] is much less 

significant (p = 0.020). 

 

Average VOT of [p],[t],[k] across speakers
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 Figure 15b 

Figure 15b illustrates average VOT by place across speakers.  Unlike closure 

duration, the pattern of VOT by place shows much more variation across speakers.  

First of all, not every speaker follows the pattern [k]>[t]>[p] regarding VOT.  In fact, 

just from the figure one can already tell that in at least two speakers’ data (F03 and 

F10), VOT of [k] is clearly exceeded by that of [t], and that in at least four other 

speakers’ data (F02, F07, M02 and M03), it is hard to tell if [k] has the longest VOT 

of the three.  In other words, in almost one-third of the speakers, average VOT of [k] 

is not necessarily longer than that of [p] or [t].  A t-test shows that average VOT in [k] 

across speakers is not significantly different from VOT in [t] (t = -1.9723, df = 35.413, 

p = 0.056), though it is more different from [p] (t = -3.1011, df = 34.395, p = 0.004).  

Furthermore, [p] and [t] are even more similar to each other in terms of VOT across 

speakers (t = -1.1646, df = 35.712, p = 0.2519).  That said, even if we do see in the 

figure that most speakers’ data follow the rule of [k]>[t]>[p] in average VOT (which 

explains why the grand means in Table VI follow the pattern too), there is a great deal 
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of individual difference that might be masked if we only look at the grand mean 

values. 

 

Average proportion of closure by place
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Figure 15c 

Figure 15c shows the average closure-total ratio by place in all speakers.  

Similar to Figure 14, no constancy is observed here, either across place of articulation 

or across speakers.  The most salient pattern, though, is that closure has a greater 

proportion in the production of a [p] sound than in [t] and [k], consistently across 

speakers.  

In this subsection, we have briefly talked about the overall distribution of 

duration values by place, by speaker and by both.  The grand mean values predicted 

for the (partial) Buckeye speech files (by the burst detecting program described in 

section 2) are in general close to the measurements of the TIMIT speech database.  

However, a great deal of variation across speakers and across phones has been 

observed.  In the following subsection, we will investigate the correlation between 

the variation and a number of factors.  We divide these factors into several largely 

independent groups, including place of production, speaker background, speaking rate, 

phonetic context, and word frequency.   

 

3.2 Factors for variance in duration values  

3.2.1 Place of production 

As discussed in previous sections, place of production has been considered as a highly 

correlated factor with closure and release durations in voiceless stops in English and 
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many other languages (Cho & Ladefoged 1999).   

An ANOVA on phone type ([p],[t],[k]) and release duration shows that phone 

type has a significant effect on VOT (F(2,10166) = 115.51, p<0.001).  But it only 

accounts for 2.2% of the variability in VOT.  An ANOVA on phone type and closure 

duration shows that it also has a significant effect on closure duration (F(2,10166) = 

447.95, p<0.001).  It accounts for 8.1% of the variability in closure duration.  

 

3.2.2 Factors of speaker background 

Gender and age are the two most well-studied speaker-background factors in 

determining VOT.  As mentioned in the introduction, a number of studies claimed 

that women have longer VOT than men and younger speakers have longer VOT than 

older speakers.  The explanation for the difference usually has to do with 

physiological and anatomical differences as well as sociophonetic factors.  However 

most of these studies are based on results from well-controlled experiments with a 

small number of stimuli.   

Using the Buckeye data, a two-factor ANOVA testing the effect of age and gender 

and their interaction, on release duration shows that there is some effect of both age 

(F(1,10165) = 20.068, p<0.001) and gender (F(1,10165)= 47.336, p<0.001), as well as 

their interaction (F(1,10165)=38.466, p<0.001).  But altogether they can only 

account for 1% of the variability in VOT.   

Individual talker difference is another speaker factor that has been investigated 

(Allen et al. 2003, Pitt et al. 2005 among others).  In our data, the speaker identity 

factor shows an effect on VOT (F(1,10150) = 58.855, p<0.001)1 and it alone accounts 

for 9.29% of the variability in VOT.   

Similarly, speaker identity factor also shows an effect on closure duration 

(F(1,10150) =22.916, p<0.001) and accounts for 3.7% of the variability.  Age and 

gender, together with their interaction, only accounts for less than 1% of the 

variability in closure duration. 

 

3.2.3 Factors of speaking rate 

In section 2, we briefly mentioned the use of (global) average speaking rate, measured 

in number of syllables produced per second, as part of the speaker information used in 

selecting pilot study subjects.  In this subsection, we will test two local speaking rate 

measures.  The first one is similar to the global speaking rate measure, but in a more 

local environment.  The locality of this measure is defined as the speech stretch 

(naturally delimited by silence, laughter, noise and other non-linguistic sounds) that 

contains the target phone.  This rate measure, referred to as the local stretch speed 

and measured in number of syllables per second, represents the characteristic 

speaking rate of the current stretch.  The second speech rate measure is the duration 

of the following phone (which, in most cases, is a vowel).  This measure is 

independent of the duration of the target phone.  It represents an even more local 

speed measure than the local stretch speed, however, it should be noted that because it 

                                                        
1 Since the speaker identity variable is inherently correlated with other speaker-background factors such as gender 
and age, there is no need to test the interaction between them.   
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only measures the duration of one segment after the target phone, it is also more 

susceptible to non-rate-related factors, such as intrinsic vowel duration.   

A two-factor ANOVA testing the effects of local stretch speed measure and 

duration of the following phone, as well as their interaction, on VOT shows that both 

of them, but not so much the interaction, have significant effects on the release 

duration (see Table VIII below).  Altogether they account for 12.99% of the 

variability in VOT.  A similar ANOVA on the speed measures’ effects on closure 

duration shows that basically only the local stretch speed has an effect on closure, but 

not the duration of the following phone nor their interaction.  Altogether they can 

account for 4.9% of the variability in closure duration (while local stretch speed alone 

can account for 4.8%). 

 

 df de F p 

local stretch speed 1 10165 915.79 <0.001 

duration of following phone 1 10165 598.69 <0.001 

interaction 1 10165 6.87 0.008 

Table VIIIa  ANOVA on the effects of two speed measures and their interaction 

on VOT; df = degree of freedom; de = degree of error 

 

 df de F p 

local stretch speed 1 10165 517.71 <0.001 

duration of following phone 1 10165 10.24 =0.001 

interaction 1 10165 1.68 0.194 

Table VIIIb  ANOVA on the effects of two speed measures and their interaction 

on closure duration; df = degree of freedom; de = degree of error 

 

3.2.4 Factors of phonetic context 

In order to study the effects of phonetic context, the two neighboring phones of the 

target phone are coded for category (C for consonant, V of single vowel, O of 

diphthong and nasalized vowels, <N> for non-linguistic noise).  Since this whole 

section only concentrates on word-initial voiceless stops in non-utterance-initial 

location, by definition none of the target cases immediately follow a sound of 

category <N>.  Besides, most of them precede a vowel sound and none of them 

immediately precede a sound of category <N>, which is not surprising since they are 

all word-initial.  Table VIIII gives a general count of neighboring phones by 

category.   

 C V O <N> 

preceding phone 5528 4596 45 0 

following phone 670 9375 124 0 

 Table VIIII  Counts of preceding phones and following phones by category 

 

The ANOVA results on the effects of both the preceding phone category and the 

following phone category and their interaction on VOT are shown in Table Xa and 

test results on their effects on closure duration are shown in Table Xb.   
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 df de F p 

preceding phone cat. 2 10161 55.74 <0.001 

following phone cat. 2 10161 13.21 <0.001 

interaction 3 10161 1.95 0.118 

Table Xa ANOVA on the effects of phonetic context factors on VOT 

 

 df de F p 

preceding phone cat. 2 10161 372.35 <0.001 

following phone cat. 2 10161 1.51 0.22 

interaction 3 10161 0.57 0.63 

Table Xb ANOVA on the effects of phonetic context factors on closure 

duration 

 

Both variables but not their interaction have an effect on VOT; but only preceding 

phone category has an effect on closure duration, not following phone category nor 

their interaction.  Altogether they account for 1.3% of the variability in VOT, and 

6.8% of the variability in closure duration.    

 

3.2.5 Word frequency 

In addition to the factors discussed so far, we also tested the effects of word frequency 

on release and closure duration.  The frequency of a word is calculated as the 

number of tokens of that word divided by the total number of target cases (i.e. tokens) 

of the same speaker.  Therefore, all tokens of the same word will have the same 

frequency value within the speaker, but might differ across speakers.  Figure 16 

shows the distribution of frequency values in all speakers’ data.   

 

Figure 16 Distribution of word frequency values  
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As shown in the above figure, the distribution of word frequency values roughly 

follows the inverse function, with most word tokens accumulated in the 

low-frequency bins and only a few in the high-frequency bins.  Notice that the above 

figure plots the frequency variable of each token, and if the word has a high frequency 

in the data set, there are also more tokens of it in the set by definition.  That is why 

there appears to be an increase along the vertical direction near the right end of the 

horizontal axis.   

This frequency variable has also been shown to have an effect on VOT and 

closure duration (Fosler-Lussier and Morgan 2000).  In our study, as shown in the 

figure, the frequency distribution of words in real speech is anything but balanced.  

In fact, in all the speakers, the most frequent word in their target set is the word “to” 

(frequency ranging from 8% to 13% across speakers), without exception.  If some 

words occur extremely often, it is possible that they become the target of certain 

changes in production, for instance, acceleration, phone reduction and coarticulation.  

Therefore if the frequency variable is shown to have an effect on duration values like 

closure and release in stops, it can be a sign of the presence of these processes.   

An ANOVA on word frequency’s effect on VOT shows there to be a significant 

effect of word frequency on VOT (F(1,10167) = 547.67, p<0.001).  This variable 

alone accounts for 5% of the variability in VOT.  The ANOVA on word frequency 

and closure duration shows that there, too, is also a significant effect of word 

frequency on closure (F(1,10167) = 306.88, p<0.001).  The word frequency variable 

accounts for 2.92% of the variability in closure duration.   

 

3.2.5 Overall correlation with variance in duration values 

For both closure and release duration values, a multi-variable linear regression is 

performed on all the factors that are shown in previous subsections to have significant 

effects.  The variables that are used in each regression model (Model A for VOT and 

Model B for closure duration), together with a summary of statistics, are listed below. 

 

 Model A:  

formula:  VOT ~ phone type + speaker + local stretch speed + duration of 

following phone + preceding phone category + following phone category + 

word frequency  

adjusted R square: 26.06% 

F(27,10141) = 134.1 

p<0.001 

 

Model B:  

formula:  closure ~ phone type + speaker + local stretch speed + preceding 

phone category + word frequency  

adjusted R square: 20.72% 

F(24,10144)=111.7 

p<0.001 
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In other words, we are only able to account for about 26% of the variability in 

release duration and 20% of the variability in closure duration in the data, after taking 

into account all factors that have been so far examined and shown to be correlated 

with closure or release duration.  The proportion of variability accounted for is much 

lower than what has been shown in previous studies, using similar factors.  (Among 

others, Allen et al. 2003 claims that 80% of the variability in VOT can be accounted 

for by speaking rate, measured in the duration of the following vowel+coda. ) 

As seen from the two models above, VOT and closure have different predictors.  

The duration and category of the following phone are not significantly correlated with 

closure duration (duration: p=0.001; category: p=0.22. cf. section 3.2.3 and 3.2.4).  

In fact, if we compare the effects of each single factor on VOT and on closure 

duration (Figure 17), we find interesting differences between VOT and closure 

duration.   
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Figure 17 

 

As shown in the above figure, the best predictors for VOT are very different from 

the best predictors for closure duration.  For instance, speed (both two measures) and 

speaker identity are the best predictors for VOT (the two speed measures account for 

7.8%, 8.4% of the variability separately, and 12.99% when they are combined; 

speaker identity accounts for 9.29% of the variability in VOT), but they only account 

a small amount of the variability in closure duration (4.8% and 0.7% from the two 

speed measures separately and 4.9% when they are combined; speaker identity 

accounts for 3.7% of the variability in closure duration).  On the other hand, the best 

predictors for closure duration – place of phone production (a.k.a. phone type) and the 

category of previous phone – account for 8.1% and 6.8% (respectively) of the 
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variability in closure but only 2.2% and 1.3% in VOT.  Word frequency also has a 

noticeable difference in explaining the variability of the two (5% in VOT and 2.92% 

in closure).   

When put together, all the pieces suggest that closure duration is most sensitive to 

a very local environment, i.e. the current phone and the previous phone (not even the 

following phone since that’s already separated by the release).  VOT, on the contrary, 

is more susceptible to global and therefore more general factors, such as speaker 

differences, speaking rate, word forms, etc.  This sheds light on the direction for 

future study in search of the sources of the remaining 80% variability: for studying 

closure duration, more variables with respect to the current and the previous phone 

need to be examined; for studying VOT, more variables with a global domain (at least 

as big as a syllable or a word) need to be taken into account.   

 

4. Discussion 

This paper mainly discusses two issues.  The first is a methodology question: how to 

automatically extract phonetically important information (such as VOT and closure 

duration in voiceless stops) from a large-scale speech corpus?  The second one is a 

linguistic question: how is closure and release duration distributed over speaker and 

context in spontaneous connected speech, and what factors vary with the variation in 

closure and release duration?  

 

4.1 On the methodology 

Our take on the first one is to further develop the similarity score approach, which 

was first proposed and tested in Johnson 2006, and implement a burst detector 

program that makes use of the calculated scores.  The scoring approach is, in its very 

heart, just a simple measure of how similar one piece of acoustic information is to 

another on the spectrogram.  But together with Mel spectral templates developed for 

a set of steady-state phones of the speaker, one is able to measure how similar a piece 

of acoustic data is to, say, the typical [a], or the typical [f] of the same speaker.  

Therefore the method itself is in essence speaker-independent.   

In this study, we have developed an algorithm that recognizes certain patterns in 

the score vectors and uses that to determine the point of release in voiceless stops.  

We find that a two-dimensional score vector (<silence> score plus <sh> score) is 

already adequate to represent the pattern of release in stops and such a pattern is 

robust enough across a wide range of context in uncontrolled spontaneous speech.  

The pattern recognition algorithm works confidently on average around 90% of the 

time (average rejection rate among the 19 speakers is 13.13%); the optimal error in 

theory is 2.5ms due to the 5ms step size in scores and the mean error is estimated to 

be around 3-5ms (error is around 3.22ms in the two training cases, and within 5ms in 

the test with 50 examples across speaker).  As discussed before, a large portion of 

the error comes from residuals of the two rejections rules (e.g. spurious releases) and 

unusual multiply-released stops.   
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4.2 On the linguistic question 

As for the second question, most of the previous research involving VOT and closure 

duration in stops was about well-controlled laboratory experiments, typically 

involving reading of word lists or short paragraphs.  The biggest advantage of these 

studies is that many factors can be carefully controlled and unambiguously recorded.  

However, these can be disadvantages, too, since they no longer reflect the features of 

natural speech, and whatever conclusion is achieved cannot be applied in a wider 

context.   

In this study, we used predicted values for VOT and closure duration in 

word-initial voiceless stops in 19 speakers’ data from the Buckeye Corpus, and 

studied their correlation with a number of factors.  As discussed in the result session, 

all the factors we’ve investigated, which are also factors that have been studied a lot 

in previous literature, only account for up to 26% of the variability in VOT and 

around 20% of the variability in closure duration.  Specifically, our data clearly show 

that gender and age, whose effect on VOT has been asserted in a number of studies 

(Koenig 2000, Ryalls et al. 1997, Whiteside and Marshall 2001, Robert et al. 2005, 

among others), only account for no more than 1% of the variability in both VOT and 

closure duration.  (But it should be noted that the division between younger and 

older speaker groups in our study is by under thirty and over forty, while in most of 

other studies, the age gap between the two groups is much bigger.)   

Speaking rate, which, according to Allen et al. (2003), accounts for 80% of the 

variability in VOT, in our data only accounts for 13% of the variability in VOT and 

4.5% of the variability in closure, even if the rate measure employed in their study, the 

duration of the following vowel, is very similar to one of the two rate measures we 

use in our study.   

Place of articulation doesn’t account for much variability in VOT either (2.2%).  

As a matter of fact, the widely-recognized rule of velars having the longest VOTs and 

alveolars the shortest is not strictly followed in one third of the speakers.  But place 

of articulation has a more significant effect on closure duration (8.1% of variability).  

We also tested the word frequency variable.  Our preliminary results show that it 

could have a significant effect on both VOT and closure duration.   

Last but not least, our study also shows the different patterns of VOT and closure 

duration in terms of both mean value distribution and correlate factors.  VOT is 

shown to have higher correlation with global variables while closure duration is 

mostly only sensitive to the local setting (i.e. the previous phone and the current 

plosive).  Though this suggestion needs to be examined more thoroughly, it certainly 

points to a promising direction for future study on the topic of VOT and closure 

duration in English stops. 
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Appendix I  Rejection details in all speakers 

 

 F01 F02 F03 F04 F05 F06 F07 F08 F09 F10 

N 674 572 777 900 1243 490 231 449 699 412 

Rsil 2 1 0 0 4 0 0 1 0 0 

Rsh 1 1 1 0 1 0 0 0 0 0 

R1 46 48 207 28 75 24 4 29 21 14 

R2 12 30 29 33 48 31 3 18 15 18 

Ngood 613 492 540 839 1115 435 224 401 663 380 

R% 9.05 13.98 30.5 6.77 9.64 11.22 3.03 10.69 5.15 7.76 

 

 M01 M02 M03 M04 M05 M06 M07 M08 M09 

N 564 1027 784 865 724 512 636 618 718 

Rsil 0 0 0 1 0 0 0 0 0 

Rsh 0 1 0 0 2 0 1 0 1 

R1 31 94 7 48 93 53 3 54 7 

R2 12 128 39 27 98 21 12 44 20 

Ngood 521 804 738 789 531 438 663 520 690 

R% 7.62 21.71 5.86 8.78 26.65 14.45 2.51 15.85 3.89 

 

N = the total number of target cases 

Rsil = the number of cases where no decreasing period is found in <silence> score 

Rsh = the number of cases where no increasing period is found in <sh> score 

R1 = the number of cases rejected by the first rejection rule  

R2 = the number of cases rejected by the second rejection rule 

Ngood = the number of remaining cases after all rejection 

R% = 1- Ngood /N, the rejection rate 

 

Rejection is applied in the above sequence. 
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Appendix II  Speakers’ average speaking rate and their relative rank in the group 

 

 Average speaking rate rank 

F01 5.8552 3 
F02 5.1846 10 
F03 5.7704 4 
F04 5.3442 8 
F05 5.3042 9 
F06 4.5032 16 
F07 4.0218 19 
F08 4.8831 12 
F09 5.3513 7 
F10 4.3584 18 
M01 4.4421 17 
M02 5.889 2 
M03 4.8757 13 
M04 4.6359 14 
M05 5.6882 5 
M06 4.6359 15 
M07 5.6137 6 
M08 6.4345 1 
M09 5.1081 11 

 

Average speaking rate = total number of syllables produced / total amount of time (in 

s) 

rank: the fastest (highest averaging speaking rate) is ranked 1, and the lowest speed is 

ranked 19.   
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