
UCLA
UCLA Electronic Theses and Dissertations

Title
Hamming Distance Computation in Unreliable Resistive Memory

Permalink
https://escholarship.org/uc/item/1hb1566s

Author
Chen, Zehui

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1hb1566s
https://escholarship.org
http://www.cdlib.org/

University of California
Los Angeles

Hamming Distance Computation in
Unreliable Resistive Memory

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Electrical and Computer Engineering

by

Zehui Chen

2018

c© Copyright by

Zehui Chen

2018

ABSTRACT OF THE THESIS

Hamming Distance Computation in
Unreliable Resistive Memory

by

Zehui Chen

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2018

Professor Lara Dolecek, Chair

Enabled by new storage mediums, Computation-in-Memory is a novel architecture that

has shown great potential in reducing the burden of massive data processing by bypass-

ing the communication and memory access bottleneck. Suggested by Cassuto and Cram-

mer, allowing for ultra-fast Hamming distance computations to be performed in resistive

memory with low-level conductance measurements has the potential to drastically speed up

many modern machine learning algorithms. Meanwhile, Hamming distance Computation-

in-Memory remains a challenging task as a result of the non-negligible device variability

in practical resistive memory. In this thesis, as a follow-up to the work from Cassuto and

Crammer, we study memristor variability due to two distinct sources: resistance variation,

and the non-deterministic write process. First, we introduce a technique for estimating the

Hamming distance under resistance variation alone. Then, we propose error-detection and

error-correction schemes to deal with non-ideal write process. We then combine these re-

sults to concurrently address both sources of memristor variabilities. In order to preserve

the low latency property of Computation-in-Memory, all of our approaches rely on only a

single vector-level conductance measurement. We use so-called inversion coding as a key

ii

ingredient in our solutions and we prove the optimality of this code given the restrictions

on bit-accessible information. Lastly, we demonstrate the efficacy of our approaches on the

k-nearest neighbors classifier.

iii

The thesis of Zehui Chen is approved.

Puneet Gupta

Jonathan Kao

Lara Dolecek, Committee Chair

University of California, Los Angeles

2018

iv

Table of Contents

1 Introduction . 1

2 Backgrounds . 4

2.1 Memristors and Resistive Memory . 4

2.2 Variability Due to Resistance Variation . 5

2.3 Variability Due to Non-deterministic Switching Mechanism 6

3 Hamming Distance Estimation-In-Memory Under Resistance Variation 7

3.1 Hamming Distance Estimation-In-Memory (HD-EIM) 7

3.2 Inversion Coding . 11

3.3 Estimation Error Probability and Bounds . 14

3.4 An Average-Case Study on the k-NN Classifier Under Computation Noise

Using HD-EIM . 17

3.4.1 Formal Calculation of Expected Accuracy 19

3.4.2 Average-Case Study Results Using HD-EIM 22

4 Error-Detection and Error-Correction Scheme Under Write BSC 24

4.1 Single Error Detection . 24

4.2 Multiple Errors Detection . 27

4.3 Exact Error Correction with Additional Coding 29

4.3.1 Error Localization . 29

4.3.2 Bit Value Reading . 30

v

4.3.3 Error Correction with Additional Coding 31

4.4 Soft Hamming Scheme for Single Error Correction 31

4.5 An Average-Case Study on the k-NN Classifier Under Attribute Noise Using

the Soft Hamming Scheme . 33

4.5.1 Formal Calculation of Expected Accuracy 34

4.5.2 Average-Case Study Results Using Soft Hamming Scheme 36

5 Error-Detection and Error-Correction under Resistance Variation andWrite

BSC . 38

6 Conclusion . 45

6.1 Summary of Our Results . 45

6.2 Future Directions . 45

Appendices . 46

A Approximation Justification . 46

References . 49

vi

Acknowledgments

Chapter 1, Chapter 2, Chapter 3, Chapter 5, Section 4.1, Section 4.4, Section 4.5 and Ap-

pendix A are a version of [Zehui Chen, Clayton Schoeny, Lara Dolecek, “Hamming distance

computation in unreliable resistive memory,” manuscript submitted to TCOM].

Section 4.2 and Section 4.3 are a version of [Zehui Chen, Clayton Schoeny, Yuval Cassuto,

Lara Dolecek, “A coding scheme for reliable in-memory Hamming distance computation,” in

Proceeding of Asilomar Conference of Signals, System, and Computers, Pacific Grove, CA,

Oct.-Nov. 2017].

I would like to express my sincere gratitude to my advisor Professor Lara Dolecek for her

support of my research. Her guidance helped me in all the time of research and writing of

this thesis. Without her lead on research, I could not have touched this research topic that

is both practically meaningful and interesting to myself.

I would like to thank the rest of my thesis committee: Professor Puneet Gupta and

Professor Jonathan Kao, for their time and invaluable feedback.

My sincerely thanks goes to Professor Yuval Cassuto for his innovating prior work that

opens up this research direction and for the insightful discussion on this topic.

I would like to thank Clayton Schoeny for his patiently help in the writing of all my work

and for his enlightening ideas on my research questions.

The Research is supported in part by a grant from UC MEXUS and an NSF-BSF grant

no.1718389.

vii

CHAPTER 1

Introduction

With many emerging data-intensive applications, it has become imperative to have the means

to store and quickly process vast amounts of high dimensional data. However, current

computer architectures largely suffer from communication and memory access bottlenecks.

Additionally, CMOS technology faces limited scalability issues [CZ14,HXN+15]. Resistive

Random-Access Memory (ReRAM), also simply known as resistive memory, has been shown

to have promising scalability with novel crossbar structure, and is thus a promising candi-

date for next generation none-volatile memories [SSS+08]. Enabled by this new technology,

Computation-in-Memory (CIM) Architecture has been proposed, in which certain computa-

tions are performed in the physical memory itself [HXN+15]. This idea allows us to bypass the

communication and memory access bottlenecks and can be used to speed up data-intensive

applications.

Computing similarity metrics between vectors is a critical component in machine learn-

ing algorithms; image recognition and natural language processing are just some of many

examples. It has already been shown that hashing higher dimensional data into binary

space, and using Hamming distance as the distance metric is well suited for large-scale

applications [KD09, NPF12]. Allowing for Hamming distance to be computed under the

CIM Architecture is thus a promising technique to speed up many modern machine learning

applications. Recently, a technique has been proposed to compute Hamming distance in

resistive memory, assuming an ideal model for the memristors [CC15]. Following from their

1

work, in this thesis, we use more sophisticated models to improve and refine their scheme (to

which we refer as Hamming distance Computation-in-Memory (HD-CIM)). The feasibility of

HD-CIM is studied under two main (and complementary) sources of memristor variability:

resistance variation, and the non-deterministic switching mechanism during the memristor

write process. In order to preserve the low-latency property of HD-CIM, we assume limited

accessibility to information. First, only vector-level conductance measurement can be used,

and second, only one measurement can be used per Hamming distance computation. Dealing

with the two sources of memristor variability is thus more challenging due to these limited

accessibility assumptions, in particular, traditional ECCs based on bit-level information do

not apply. Simple yet effective solutions are proposed to deal with these sources of memris-

tor variability when the information that can be read is limited. As suggested in [CC15],

the optimal code that maps a message to a constant weight codeword while preserving the

Hamming distance is used as the foundation for our solutions. The efficacy of our approaches

under these sources of memristor variability are studied in detail for the k-nearest neighbors

classifier, one promising application for HD-CIM.

Below, we provide a brief outline of this thesis.

Chapter 2 provides background on resistive memory, memristors, and the two sources of

memristor variability investigated in this thesis. The two sources of memristor variability,

variability due to resistance variation and variability due to non-deterministic switching

mechanism, are elaborated in detail. We highlight the trade-offs between these sources of

variability and performance metrics of resistive memory in order to emphasize the necessity

of concerning these sources of variability. The mathematical models of the adverse effects

these variability sources are established in this chapter. The solutions that deal with the

adverse effects the variability sources are at first studied separately.

Chapter 3 provides a solution to estimate the Hamming distance from a single conduc-

tance measurement in resistive memory where the resistances of memristors are formulated

as Gaussian random variables. To generalize our solution, inversion coding is used to provide

2

a priori knowledge about vector weights. The estimation error probability and its bounds are

also studied in Chapter 3 for the case with inversion coding and the case without inversion

coding. In order to evaluate the effect of resistance variation on the end application, we intro-

duce the average-case study framework. Using this framework, we present the performance

of our estimation scheme on the k-nearest neighbors classifier as our main application.

Chapter 4 provides error-detection and error-correction schemes as solutions to bit-errors

caused by the non-ideal write process. Single error detection is first studied and then we gen-

eralize the same idea to multiple errors detection. Two different error correction schemes are

explored in this chapter. The exact error correction scheme is provided based on the inher-

ent error localization capability of inversion coding and an extra code that correct erasures.

Motivated by the error tolerant nature of our application, we also provides an approximate

error correction scheme that have low latency and low overhead. The performance of this

approximate error correction scheme is evaluated under the average-case study framework

for the k-nearest neighbors classifier.

Chapter 5 combines results of Chapter 3 and Chapter 4 and provides a feasible scheme to

estimate Hamming distance in resistive memory under the adverse effects of the two sources

of memristor variability simultaneously. The joint effect of the two variability sources is first

studied and the maximum a posteriori probability estimator is formulated. We then present

a solution to the MAP estimator. Adapting the concept of approximate error correction

scheme discussed in the last chapter, we provide a scheme that achieve estimation and error-

detection/correction simultaneously.

Chapter 6 concludes this thesis. Appendix A provides necessary justification for one key

approximation made in Chapter 3.

3

CHAPTER 2

Backgrounds

2.1 Memristors and Resistive Memory

In this thesis, we focus on resistive memory which uses a crossbar structure [VRK+09]. In

crossbar resistive memory, a resistive switching device (also referred to as a memristor) is

placed at the intersection of each row and column [VRK+09]. The logical states of “0”

and “1” are represented by the internal resistance state of memristor, “High Resistance

State (HRS)” and “Low Resistance State (LRS),” respectively. The state of the memristor

can be programmed by applying different voltages to its terminals and can be sensed by

measuring the corresponding current. In this work, under the same model used in [CC15],

we are interested in inferring the Hamming distance between vectors from the conductance

measurement between rows of memristors where the two vectors are stored. Figure 2.1

shows an example of the circuit representation that stores two vectors, x = (0, 0, 0, 1, 1)

and y = (0, 1, 1, 0, 1), and the example conductance measurement between the two vectors,

G(x,y). Using conductance in our calculations (instead of resistance) allows for a simple

summation of each branch. We assume throughout the thesis that measurements between

the two rows of memristors in resistive memory can be reliably performed.

Figure 2.1: Example of an equivalent circuit for a measurement between two vectors

4

2.2 Variability Due to Resistance Variation

While an on/off ratio from ∼ 10 to above 1000 has been shown in many ReRAM papers as

proof of a large memory operation window, the variations of HRS and LRS are both com-

mon and significant [CL11]. Previous work on HD-CIM assumed constant valued LRS and

HRS resistances [CC15]. It is therefore of interest to take resistance variation into account

and develop corresponding schemes in order to perform Hamming distance computation in

practical resistive memory. In practice, the resistance variation is affected by many opera-

tional parameters. It is reported that LRS variability depends on two main parameters, the

write current limit Ilimit, and the write pulse width [CL11]. A smaller Ilimit favors low-power

operation but increases the variation of LRS. A shorter pulse width favors fast speed opera-

tion but it also increases the variation of LRS. As a result, studying HD-CIM solutions that

tolerate resistance variation not only makes HD-CIM feasible in practice but also provides

useful insight into the trade-off between performance and operation parameters, i.e., pulse

width and Ilimit.

Many papers have shown that the resistance distribution of LRS and HRS are Gaussian-

like [BKL+05, CLG+11, WLW+10]. The reported resistances of LRS and HRS are both

positive and large, i.e., on the order kΩ and MΩ. It is therefore reasonable to assume

that the conductance also follows a Gaussian distribution if the corresponding resistance is

Gaussian-like. We assume that the process variability in each memristor is identical and

independent. For a memristor i, let Li and Hi be random variables denoting the state “0”

conductance and the state “1” conductance, respectively. We assume Li and Hi follow the

following Gaussian distributions:

Li ∼ N (µL, σ2
L), Hi ∼ N (µH , σ2

H). (2.1)

In the above model, µL and µH are the mean of state “0” and state “1” conductance, and

σ2
L and σ2

H are the variance of state “0” and state “1” conductance, respectively. We define

5

ε = µL/µH which is also the “On/Off” resistance ratio, a key characteristic of memristor

devices [VRK+09].

2.3 Variability Due to Non-deterministic Switching Mechanism

As is the case with resistance variation, the switching mechanism of the memristor is also

non-deterministic. It is reported that the switching time of some memristors, e.g., TiO2

cells, follows a log-normal distribution with the median switching time exponentially depen-

dent on the external voltage [MRPC+11]. Either increasing the programming voltage or

increasing the switching time will increase the switching probability. Meanwhile, increas-

ing the programming voltage will increase energy consumption and increasing the switching

time will slow down the write progress and increase energy consumption [NXX12,YPQ+11].

With finite switching time and programming volatage, instances of unsuccessful memristor

switching are inevitable; studying the effect of the non-deterministic switching mechanism

in HD-CIM and the corresponding solution is thus necessary to make HD-CIM practical.

Unsuccessful write operations lead to bit errors when the former state of a memristor is

different from the data to be written. We thus model this variability as a binary symmetric

channel (BSC) when writing to resistive memory, i.e., a write BSC. The vectors to be stored

are viewed as the input to this channel, while the vectors actually written to the resistive

memory are the output.

6

CHAPTER 3

Hamming Distance Estimation-In-Memory Under

Resistance Variation

In 3.1, we provide a scheme (Hamming Distance Estimation-In-Memory) to estimate the

Hamming distance between two vectors whose Hamming weights are a priori known, as-

suming the conductance of each memristor state is modeled as a random variable. In this

chapter, we also provide a simplified scheme in the regime of small “On/Off” resistance ratios.

In 3.2, an inversion coding technique is used to generalize Hamming distance Estimation-

In-Memory to be applicable to arbitrary vectors with unknown Hamming weights, using a

single conductance measurement. We then prove the optimality of this code and present a

modified estimation scheme. In 3.3, we provide analysis of the estimation error and show

that inversion coding also provides benefits in terms of estimation accuracy. In 3.4, the

average-case study framework is introduced to study the effect of resistance variation on the

k-nearest neighbors classifier when our estimation scheme is used.

3.1 Hamming Distance Estimation-In-Memory (HD-EIM)

For two vectors x,y ∈ {0, 1}n stored in resistive memory where conductances of the two

states of each memristor are modeled as Gaussian random variables, the conductance between

the two rows of memristors is as follows:

7

G(x,y) =
n∑
i=1

[
xiyi

Hi,xHi,y

Hi,x +Hi,y

+ xi(1− yi)
Hi,xLi,y
Hi,x + Li,y

+ (1− xi)yi
Li,xHi,y

Li,x +Hi,y

+ (1− xi)(1− yi)
Li,xLi,y
Li,x + Li,y

]
.

(3.1)

Here, xi, yi denote the i-th entry of vectors x,y respectively. Hi,x and Hi,y are random

variables denoting the "1" state conductances of memristors that store xi and yi respectively,

and they are modeled as Gaussian random variable in (2.1). Li,x and Li,y are similarly defined

for the "0" state conductances. Equation (3.1) follows by summing up the conductances of

each branch i, which is composed of the serial conductance of memristors that store xi and

yi. Note that Equation (3.1) is analogous to Equation (1) in [CC15] with the substitution of

our new variability model.

The following approximation can be made when µH >> σH and µL >> σL:

Hi,xHi,y

Hi,x +Hi,y

≈ Fi ∼ N (µH/2, σ2
H/8), Li,xLi,y

Li,x + Li,y
≈ Ti ∼ N (µL/2, σ2

L/8),

Hi,xLi,y
Hi,x + Li,y

≈ Si ∼ N
(
µL

1 + ε
,

σ2
L

(1 + ε)4

)
. (3.2)

These approximations are made in order to facilitate further calculation (see Appendix A

for justification of approximations). We define ε = µL/µH and provide examples of ε in

Appendix A, Table A.1.

For two vectors x, y ∈ {0, 1}n, we define N00 to be the number of element pairs that

have xi = yi = 0 for i ∈ {1, ..., n}. Similarly we define N01 to be the number of element pairs

that have xi = 0, yi = 1, N10 to be the number of element pairs that have xi = 1, yi = 0, and

N11 to be the number of element pairs that have xi = yi = 1. Using our approximations, the

conductance measurement can be expressed as follows,

G(x,y) ≈ Ḡ(x,y) =
N11∑
i=1

Fi +
N01+N10∑
i=1

Si +
N00∑
i=1

Ti,

8

We normalize Fi, Si, and Ti by µH/2 and denote the normalized random variables by fi,

si, and ti, (where ε = µL/µH) yielding:

fi ∼ N (1, σ2
H/2µ2

H), si ∼ N
(

2ε
1 + ε

,
4σ2

L

µ2
H(1 + ε)4

)
, ti ∼ N (ε, σ2

L/2µ2
H).

Similarly, we compute the normalized conductance measurement, G̃(x,y), as follows:

G̃(x,y) = Ḡ(x,y)× 2
µH

=
N11∑
i=1

fi +
N01+N10∑
i=1

si +
N00∑
i=1

ti.

Using elementary properties of independent Gaussian distributions, we have

G̃(x,y) ∼ N
(
N11 + (N01 +N10) 2ε

1 + ε
+N00ε,

N11σ
2
H

2µ2
H

+ (N01 +N10)8σ2
L

2µ2
H(1 + ε)4 + N00σ

2
L

2µ2
H

)
. (3.3)

We define wx and wy to be the a priori known Hamming weights of x and y, respectively.

We define D(x,y) to be the Hamming distance between x and y. Using the following facts,

N11 = [wx + wy −D(x,y)]/2, N01 +N10 = D(x,y), N00 = n−N11 −N01 −N10, (3.4)

we can compute the following:

D̃(x,y) = 1 + ε

(1− ε)2 [(1− ε)(wx + wy) + 2nε− 2G̃(x,y)]. (3.5)

Note that Equation (3.5) is a substitution of the noisyD(x,y) into Equation (5) from [CC15].

Based on (3.3), (3.4) and (3.5), D̃(x,y) has the following distribution:

D̃(x,y) ∼ N
(
D(x,y), 2(1 + ε)2N11σ

2
H

µ2
H(1− ε)4 + (N01 +N10)16σ2

L

µ2
H(1 + ε)2(1− ε)4 + 2(1 + ε)2N00σ

2
L

µ2
H(1− ε)4

)
. (3.6)

D̃(x,y) is an intermediate random variable computed using the conductance measure-

ment from which we can estimate D(x,y). Note that D̃(x,y) and G̃(x,y) will be rede-

9

fined per chapter for the appropriate context. We can now view the problem of estimating

Hamming distance from a conductance measurement as a classic communication problem.

The transmitter sends D(x,y) and the channel is Gaussian with zero mean and variance

σ2(D̃(x,y)), as specified in (3.6). The receiver sees D̃(x,y) and estimates D(x,y) from the

observation.

We note that D(x,y) takes only integer values from 0 to n. We also observe that for

any two nearby distributions which center at DH and DH + 1, their variances only differ

by a small amount when σH and σL are relatively close. Based on these observations, we

propose an estimator D̂(x,y) = nint(D̃(x,y)). We refer to this estimator as the nearest

integer estimator. The nearest integer estimator completes the last step of HD-EIM, which

estimates D(x,y) from a single measurement G(x,y).

From (3.6), we observe that σ2(D̃(x,y)) does not have a clear relationship to the message

D(x,y) which makes the analysis of the estimation error intractable. The approximation in

(3.2), which leads to (3.6), is suitable for a variety of “On/Off” resistance ratios. However,

smaller “On/Off” resistance ratios are usually reported in literature, e.g., ε = 0.01 [CL11].

Therefore, we seek to further simplify our equations in order provide a single parameter

characterization for the estimation error. When ε is small, the simplified approximations

readily follow:

Hi,xHi,y

Hi,x +Hi,y

≈ Fi ∼ N (µH/2, σ2
H/8), Li,xLi,y

Li,x + Li,y
≈ Ti ∼ N (µL/2, σ2

L/8),

Hi,xLi,y
Hi,x + Li,y

≈ Si ∼ N (µL, σ2
L). (3.7)

With the simplified approximations, the distribution of G̃(x,y) and the calculation of

D̃(x,y) change accordingly:

G̃(x,y) ∼ N
(
N11 + (N01 +N10)2ε+N00ε,

N11σ
2
H

2µ2
H

+ (N01 +N10)8σ2
L

2µ2
H

+ N00σ
2
L

2µ2
H

)
. (3.8)

10

We then compute D̃(x,y) as:

D̃(x,y) = 1
1− 3ε [(1− ε)(wx + wy) + 2nε− 2G̃(x,y)], (3.9)

where

D̃(x,y) ∼ N
(
D(x,y), 2N11σ

2
H + 2N00σ

2
L + (N01 +N10)16σ2

L

µ2
H(1− 3ε)2

)
. (3.10)

The estimation of D(x,y) is performed using the nearest integer estimator. This simpli-

fication is used in the remaining parts of this chapter, Chapter 4, and Chapter 5.

3.2 Inversion Coding

In the previous discussion, we proposed the HD-EIM scheme which estimates the Hamming

distance between two vectors from a single conductance measurement, with the assumption

that the weights of both vectors are a priori known. However, this assumption may not

be valid for many applications. Therefore, in order to generalize our HD-EIM scheme to

applications where vectors with arbitrary weights are of interest, we require a method to

gain knowledge of vector weights. In this section we discuss two approaches to get vector

weights before HD-EIM is performed: weight estimation and inversion coding. We briefly

describe the idea of weight estimation and elaborate on the inversion coding technique.

In [CC15], where the ideal two-state conductance model of a memristor is considered, the

weight of a vector can be computed from the measurement between memristor that store the

vector itself and some preset vector, e.g., the all-1 vector. We can use this idea, in conjunction

with the techniques described in 3.1, to estimate the weight of a vector in the presence of

variability due to resistance variation. After the weights of two vectors are estimated, the

Hamming distance can be then estimated using the HD-EIM scheme. This approach of

estimating the weight of both vectors first, and then estimating the Hamming distance

requires a total of three conductance measurements in order to complete one Hamming

distance estimation. The extra two measurements introduce extra latency which is not

11

favored by frequent read applications. The overall estimation accuracy then also suffers

from additional estimation errors when estimating the weights of vectors.

Alternatively, in applications where latency is the primary concern, we use the following

coding technique to force every vector to have the same Hamming weight prior to the data

being written to resistive memory, thus enabling Hamming distance Estimation-In-Memory

with only one conductance measurement.

Auxiliary Code 1. (cf. [CC15]). We define an inversion encoding of the vector x to be

x(c) = [x|¬x], where ¬x is the bitwise complement of x and | denotes concatenation.

We refer to Auxiliary Code 1 as inversion coding throughout this thesis. Let us define the

weight of a vector x as w(x). With inversion coding, we have w(x(c)) = n,∀x ∈ {0, 1}n. With

inversion coded vectors stored in resistive memory, the weights are known to be n, thus HD-

EIM can be readily used. By the nature of inversion coding, we haveD(x(c),y(c)) = 2D(x,y).

This relationship can thus be used to estimate D(x,y) from the G̃(x(c),y(c)) using the

following equation of the redefined D̃(x,y):

D̃(x,y) = 1
2D̃(x(c),y(c)), (3.11)

where

D̃(x(c),y(c)) = 1
1− 3ε [2n(1− ε) + 4nε− 2G̃(x(c),y(c))]. (3.12)

The random variables G̃(x(c),y(c)) denote the normalized conductance measurements be-

tween two rows that store the coded vectors x(c) and y(c); G̃(x(c),y(c)) will be redefined per

chapter and section for the appropriate context. Adapting (3.8), we have the distribution of

G̃(x(c),y(c)) as follows:

G̃(x(c),y(c)) ∼ N
(
N ′11 + (N ′01 +N ′10)2ε+N ′00ε,

N ′11σ
2
H

2µ2
H

+ (N ′01 +N ′10)8σ2
L

2µ2
H

+ N ′00σ
2
L

2µ2
H

)
. (3.13)

Here N ′gh is defined to be the number of coordinates having bit g in x(c) and bit h in y(c),

12

for g, h ∈ {0, 1}. We therefore have:

D̃(x(c),y(c)) ∼ N
(
D(x(c),y(c)), 2N ′11σ

2
H + 2N ′00σ

2
L + (N ′01 +N ′10)16σ2

L

µ2
H(1− 3ε)2

)
, (3.14)

and

D̃(x,y) ∼ N
(
D(x,y), 2N ′11σ

2
H + 2N ′00σ

2
L + (N ′01 +N ′10)16σ2

L

4µ2
H(1− 3ε)2

)
. (3.15)

We can thus estimateD(x,y) from D̃(x,y) using the nearest integer estimator D̂(x,y) =

nint(D̃(x,y)), thus adapting the HD-CIM scheme to the case where an inversion coding is

used. We now show the optimality of inversion coding in terms of its redundancy among all

constant weight codes.

Lemma 1. Define a code to be a injective mapping that maps a message x ∈ {0, 1}a to a

codeword x̄ ∈ {0, 1}b. Let D(x,y) denote the Hamming distance between two vectors x and

y. We define a code to be Hamming distance preserving if and only if D(x̄, ȳ) = f (D(x,y))

for some bijective function f . We also define a constant weight code to be a code that satisfies

the property w(x̄) = w0,∀x̄ ∈ {0, 1}b and some constant w0. The necessary conditions for a

constant weight code to be Hamming distance preserving are:

w0 ≥ a, b ≥ 2a.

Proof. Define D1 to be the range of D(x,y) for x,y ∈ {0, 1}a. We have |D1| = a+1. Define

C1 to be the set of length-b binary vectors that have weight w0. Also define C2 to be the

set of length-b codewords generated by any constant weight code with weight w0. Due to

the nature of codes, C2 ⊆ C1. Define D2 to be the range of D(x̄, ȳ) for x̄, ȳ ∈ C1, define D3

to be the range of D(x̄, ȳ) for x̄, ȳ ∈ C2. The following relationship can be easily verified,

|D2| = min(w0 + 1, b − w0 + 1). In order for the code to be Hamming distance preserving,

i.e., f to be a bijective function, we need |D3| = |D1| = a + 1. Since C2 ⊆ C1, we have

|D3| = a+ 1 ≤ |D2| = min(w0 + 1, b− w0 + 1), which proves our necessary conditions. �

13

Due to the limited read accessibility to resistive memory, there is no direct access to x̄, ȳ.

For any constant weight code we could use, we can only estimate the Hamming distance

between between pairs of codewords using HD-EIM scheme. It is therefore necessary for our

constant weight code to be Hamming distance preserving so that we can directly recover the

Hamming distance between the corresponding pairs of messages. Since the rate of this code

is a/b, Lemma 1 implies that the maximum rate of a code of this type is 1/2. The inversion

coding indeed has rate 1/2 and is thus optimal in term of redundancy.

3.3 Estimation Error Probability and Bounds

In previous sections, we have introduced two methods of conductance variability to the HD-

CIM method of [CC15]: one in which vectors with known weights are stored and the other

in which inversion coded vectors are stored. Due to resistance variation, estimation errors

can occur when determining the Hamming distance between vectors. In this section, the

estimation error probability is studied for the two cases and the results are compared.

Lemma 2. When two vectors x,y ∈ {0, 1}n with known weight are stored in resistive mem-

ory, relying on approximation (3.7), we can estimate D(x,y) using D̂(x,y) = nint(D̃(x,y)),

with D̃(x,y) computed from (3.9), and the normalized conductance measurement G̃(x,y)

from (3.8). Then, the conditional estimation error probability has the following bound:

P (D̂(x,y) 6= D(x,y) | D(x,y)) ≤ 2Q
 1

2
√
β(n+ 7D(x,y))

 , (3.16)

where β = 2 max(σ2
L,σ

2
H)

µ2
H(1−3ε)2 and Q(·) is the Q-function, i.e., Q(x) = 1√

2π

´∞
x

exp(−u2

2)du.

Proof. From D̂(x,y) = nint(D̃(x,y)) and (3.10), the probability of erroneous estimation

14

can be calculated as:

P (D̂(x,y) 6= D(x,y) | D(x,y)) = 2Q
(

1
2σ(D̃(x,y))

)
,

Define σ2
max = max(σ2

H , σ
2
L). The standard deviation of D̃(x,y) can be upper bounded:

σ(D̃(x,y)) =

√√√√2N11σ2
H + 2N00σ2

L + (N01 +N10)16σ2
L

µ2
H(1− 3ε)2

≤

√√√√2N11σ2
max + 2N00σ2

max + (N01 +N10)16σ2
max

µ2
H(1− 3ε)2 =

√
β(n+ 7D(x,y)).

Using elementary properties of the Q-function, Lemma 2 is proved. �

Lemma 2 provides us with a single parameter relation between β and the estimation error

probability. The parameter β serves as a measure of device reliability and examples of β are

provided in Appendix A Table A.1. It is also observed that the estimation error probability

is largely dependent on the Hamming distance. A smaller Hamming distance is associated

with a smaller estimation error probability. This property is well suited for classification

problems in which objects with smaller distances are of interest.

We also provide a bound of the unconditional estimation error probability of HD-EIM

when vectors with known weights are stored.

Corollary 1. The unconditional estimation error probability of HD-EIM, when vectors with

known weights are stored, is upper bounded as:

P (D̂(x,y) 6= D(x,y)) ≤ 2Q
(

1
4
√

2βn

)
.

Proof. Follows immediately from D(x,y) ≤ n,∀ x,y and Lemma 2. �

This simple bound gives insight into the trade-off between β, the device reliability and

n, the vector length (scalability). For instance, we can achieve the same level of Hamming

distance calculation accuracy with larger resistance variation by shortening the vectors.

15

We next adapt Lemma 2 and Corollary 1 to the case where inversion coding is used.

Lemma 3. When two inversion coded vectors, x(c),y(c) ∈ {0, 1}2n, corresponding to two

original vectors x,y ∈ {0, 1}n, are stored in resistive memory, relying on approximation

(3.7), we can estimate D(x,y) using D̂(x,y) = nint(D̃(x,y)), with D̃(x,y) computed from

(3.11), and the normalized conductance measurement G̃(x,y) from (3.13). Then, the con-

ditional estimation error probability is upper bounded as:

P (D̂(x,y) 6= D(x,y) | D(x,y)) ≤ 2Q
 1√

2β(n+ 7D(x,y))

 , (3.17)

where β = 2 max(σ2
L,σ

2
H)

µ2
H(1−3ε)2 .

Proof. The proof of this lemma is similar to proof of Lemma 2 with σ2(D̃(x,y)) following

from (3.15) in conjunction with the following properties of inversion coding:

N ′11 = N ′00 = N11 +N00, N
′
01 = N ′10 = N01 +N10.

�

We also provide a simple bound of the estimation error probability of HD-EIM when

inversion coded vectors are stored.

Corollary 2. The unconditional estimation error probability of HD-EIM, when inversion

coded vectors are stored, is upper bounded as:

P (D̂(x,y) 6= D(x,y)) ≤ 2Q
(

1
4
√
βn

)

Proof. Follows immediately from D(x,y) ≤ n,∀ x,y and Lemma 3. �

The bounds in Lemmas 2 and 3 are tight when σ2
H = σ2

L. We observe that when these

bounds are tight, the estimation error probability using coded vectors is smaller than the

16

one using uncoded vectors. This observation shows that inversion coding also improves the

estimation accuracy, in addition to its ability to generalize HD-EIM to vectors with unknown

weights. Note that additional coding, e.g., encoding x to be [x|¬x|x|¬x], further improves

estimation accuracy but may not be favorable in terms of redundancy. The single inver-

sion coding technique is the maximum rate constant weight code that preserves Hamming

distance, thus allowing HD-EIM to be efficiently performed with a single conductance mea-

surement. However, additional coding only improves estimation accuracy with diminishing

returns.

3.4 An Average-Case Study on the k-NN Classifier Under

Computation Noise Using HD-EIM

In the previous chapter we analyzed the estimation error of the Hamming distance Computation-

in-Memory scheme from [CC15] under device variability due to resistance variation. Due to

resistance variation, the Hamming distance between vectors has to be estimated and could

lead to estimation error. From the application point of view, the estimation error can be

viewed as computation noise when Hamming distance computation is performed. We have

provided a bound on the conditional error probability. Meanwhile, erroneous Hamming dis-

tance computations may not necessarily lead to erroneous results due to the error-tolerant

nature of some applications, e.g., the k-nearest neighbors classifier. In this section, we focus

on the k-nearest neighbors classifier as our main application and provide analysis on how

this computation noise affects the classification accuracy. Throughout this whole section,

we assume binary attributes (vectors) are inversion coded and stored in resistive memory.

We next introduce the framework we use to analyze the k-nearest neighbors classifier under

computation noise.

The average-case analysis framework, introduced by Pazzani and Sarrett [PS92], is a

useful theoretical framework to understand the behavior of learning algorithms. This frame-

17

work is based on the formal computation of the expected accuracy of a learning algorithm

for a certain fixed class of concepts [OY97]. In section 3.1, we use this framework to for-

mally compute the expected accuracy of the k-NN classifier to learn the m-of-n/` concept,

a boolean threshold function, under computation noise. The m-of-n/` concept is defined

by the number of relevant attributes (n), the number of irrelevant attributes (`), and the

threshold (m). Under this concept, an instance is positive if m or more relevant attributes

exist and is negative if fewer than m relevant attributes exist. Note that n is redefined in

this section in order to be consistent with [OY97]. We assume that relevant and irrelevant

attributes occur with probabilities p and q, respectively. The k-NN classifier classifies an

instance as positive if more than half of its k nearest neighbors are positive. When a tie

occurs, the classifier randomly decides the class. We compute the expected accuracy when

the bound is tight, i.e., σ2
H = σ2

L and the computation noise is parameterized by β, as stated

in Lemma 3. The expected classification accuracy is a function of n,m, p, q, k,N, and β,

where N is the size of the training space. We use the next example to illustrate the idea

of the k-nearest neighbors classifier and how an erroneous Hamming distance computation

may not lead to erroneous classification.

Example 1. In this example, we are interested in the classification of the testing instance

based on the 5 training instances using a k-nearest neighbors classifier. The 1 testing instance

and 5 training instances are listed in the next Table. We set k to be 3 for the k-NN classifier.

The training instances are generated according to the 4-of-8/0 concept and we use 1/0 to

mark positive/negative class labels.

Table 3.1: k-NN Example

Testing Instance
Attribute 11111000

Training Instances
Instance # 1 2 3 4 5
Class Label 1 0 1 0 0
Attribute 11111100 11100000 11110100 11000000 11000100

Hamming Distance to Testing Case 1 2 2 3 4

18

In the error-free case, i.e., all Hamming distances are computed correctly, the k-NN

classifier classifies the testing instance as positive because its 3 nearest neighbors (instance

#1, #2, and #3) have class labels 1, 0, and 1 respectively. Positive is the correct class label

for the testing instance based on the 4-of-8/0 concept.

Now we consider the case where Hamming distance computation is prone to estimation

error due to resistance variation. We take a special case where the Hamming distance between

the testing instance (11111000) and training instance #2 (11100000) is erroneously computed

to be 3. Note that there are two training instances (#2 and #4) at distance 3 w.r.t. the

testing instance; the k-NN classifier will randomly choose one to be the nearest neighbor of

the testing instance. Observe that although the Hamming distance computation is erroneous,

the classification result is still positive because the 2 closest training instance (#1 and #3)

are both positive. This example illustrate how erroneous Hamming distance computation may

not lead to erroneous classification.

3.4.1 Formal Calculation of Expected Accuracy

In [OY97], Okamoto and Nobuhiro used the average-case study framework to analyze noisy

attributes and class labels. We adapt some of their equations to the scenario involving

computation noise. For the calculations of expected accuracy that have already been done

by Okamoto and Nobuhiro, we simply state their results here (we refer readers to [OY97]

for further details). We modify the equations to incorporate the computation noise and to

reflect the fact that in our model, the attributes and class labels are noise-free.

The probability that an instance consists of x relevant attributes and y irrelevant at-

tributes can be calculated as [OY97]:

Poc(x, y) =
(
n

x

)(
l

y

)
px(1− p)n−xqy(1− q)l−y.

19

Then the expected classification accuracy can be calculated as [OY97]:

A(k) =
l∑

y=0

[
m−1∑
x=0

Poc(x, y)(1− Ppos(k, x, y)) +
n∑

x=m
Poc(x, y)Ppos(k, x, y)

]
,

where Ppos(k, x, y) represents the probability that the k-NN classifier classifies an arbitrary

test instance with x relevant attributes and y irrelevant attributes as positive.

To calculate Ppos(k, x, y), we first calculate Pdp(x, y, e) (Pdn(x, y, e), resp.) which is the

probability that an arbitrary positive (negative, resp.) training instance has Hamming dis-

tance e from the arbitrary testing instance t(x, y) ∈ I(x, y). The Hamming distance e is

assumed to be estimated by HD-EIM scheme from an observation ẽ. I(x, y) represents the

set of instances in which x relevant attributes and y irrelevant attributes simultaneously

occur. Pdp(x, y, e) and Pdn(x, y, e) can be represented as:

Pdp(x, y, e) =
n∑
ê=0

l∑
ŷ=0

n∑
x̂=m

Poc(x̂, ŷ)Pdis(x, y, x̂, ŷ, ê)PH(e, ê), (3.18)

and

Pdn(x, y, e) =
n∑
ê=0

l∑
ŷ=0

m−1∑
x̂=0

Poc(x̂, ŷ)Pdis(x, y, x̂, ŷ, ê)PH(e, ê). (3.19)

Pdis(x, y, x̂, ŷ, e) is the probability that an arbitrary instance in I(x̂, ŷ) has Hamming distance

e from an arbitrary instance in I(x, y). PH(e, ê) is the probability that the original Hamming

distance ê is estimated to be e.

In order to compute PH(e, ê), we consider the following scenario where the observation

ẽ is a random variable with distribution N (ê, 1
2β(n + 7ê)). This corresponds to the case

that two attribute vectors with Hamming distance ê are inversion coded and then stored in

resistive memory. For e = nint(ẽ) if 0 ≤ ẽ ≤ n, e = 0 if ẽ < 0, and e = n if ẽ > n, using

elementary properties of Gaussian distribution, PH(e, ê) is calculated as follows:

20

PH(e, ê) =

1−Q
(

1
2−ê√

1
2β(n+7ê)

)
if e = 0,

Q

(
n− 1

2−ê√
1
2β(n+7ê)

)
if e = n,

Q

(
e−ê− 1

2√
1
2β(n+7ê)

)
−Q

(
e−ê+ 1

2√
1
2β(n+7ê)

)
otherwise.

The remaining equations in this subsection are stated directly from [OY97]; we include

them here for completeness. Pdis(x, y, x̂, ŷ, e) can be calculated as follows [OY97]:

Pdis(x, y, x̂, ŷ, e) =
∑

(zr,zi)∈S

(
x
zr

)(
n−x
x̂−zr

)
(
n
x̂

)
(
y
zi

)(
l−y
ŷ−zi

)
(
l
ŷ

) ,

where S is a set of all pairs of zr and zi that satisfy the following conditions:

max(0, x+x̂−n) ≤ zr ≤ min(x, x̂),max(0, y+ŷ−l) ≤ zi ≤ min(y, ŷ), zr+zi = x+ y + x̂+ ŷ − e
2 .

Ppos(k, x, y) can be then calculated.

Ppos(k, x, y) =
n+l∑
d=0

k−1∑
a=0

N−a∑
b=k−a

Pnum(x, y, d, a, b)Psp(x, y, d, a, b).

where

Pnum(x, y, d, a, b) =
(
N

a

)(
N − a
b

)
Pl(x, y, d)a × Pd(x, y, d)b(1− Pl(x, y, d)− Pd(x, y, d)N−a−b,

Pl(x, y, d) =
d−1∑
e=0

(Pdp(x, y, e) + Pdn(x, y, e)),

Pd(x, y, d) = Pdp(x, y, d) + Pdn(x, y, d),

and

Psp(k, x, y, d, a, b)

=
a∑

u=0

b∑
v=0

{
P

(u)
lp (a, u)P (v)

dp (b, v)
v∑

w=d k+1
2 e−u

{
P

(w)
dp (k, a, b, v, w) + 1

2P
(w)
dp (k, a, b, v, k2 − u)

}}
,

21

where

P
(u)
lp (a, u) =

(
a

u

)
(
∑d−1
e=0 Pdp(x, y, e)
Pl(x, y, d))u(

∑d−1
e=0 Pdn(x, y, e)
Pl(x, y, d))a−u,

P
(v)
dp (b, v) =

(
b

v

)
(Pdp(x, y, d)
Pd(x, y, d))v(Pdn(x, y, d)

Pd(x, y, d))b−v,

P
(w)
dp (k, a, b, v, w) =

(
v
w

)(
b−v

k−a−w

)
(

b
k−a

) .

This ends our derivation for the expected accuracy.

3.4.2 Average-Case Study Results Using HD-EIM

First we study the effects of different levels of computation noise on the 3-of-5/2 concept.

In Figure 3.1a, we fix N to be 32 and we report two device reliability (noise-level), β = 0.01

and β = 0.1, for k spanning from 1 to 16.

0 5 10 15
0.6

0.65

0.7

0.75

0.8

k

A
cc

ur
ac

y

β = 0
β = 0.01
β = 0.1

(a) 3-of-5/2 concept under computation noise

10
−3

10
−2

10
−1

10
00.55

0.6

0.65

0.7

0.75

0.8

Computation Noise Level β

A
cc

ur
ac

y

3−of−5/2 concept
4−of−7/2 concept
5−of−9/2 concept
5−of−11/2 concept
10−of−22/2 concept

(b) computation noise v.s. max accuracy

Figure 3.1: Average-Case Study Results on Computation Noise

In Figure 3.1a, the upper line is the theoretical result for the noise-free classification ac-

curacy, which is consistent with the results in [OY97]. The two lower lines are the theoretical

accuracy with different device parameter β. When k is an even number, it is observed that

the classification accuracy of the k-NN classifier drops remarkably due to the randomness

22

when a tie occurs. Figure 3.1a shows that the computation noise decreases the classification

accuracy for all k and the amount of decrement largely depends on the noise level β.

We next show the effects of computation noise for a wide range of noise levels on a variety

of different concepts in Figure 3.1b. The classification accuracy of k-NN at each noise level

for each concept is chosen to be the maximum accuracy out of the range 2 ≤ k ≤ 16.

In Figure 3.1b, β ranges from 10−3 to 1 in order to see a clear trend. However, from

a realistic point of view, β = 2 max(σ2
L,σ

2
H)

µ2
H(1−3ε)2 = 1 is unlikely to occur in a real device. We

observe that for small β, i.e., β < 10−2, the influence of the estimation error is negligible.

It is interesting to note that the impact of the estimation error decreases as the dimension

of concepts increases, which could be beneficial for applications with many attributes, e.g.,

n = 22.

23

CHAPTER 4

Error-Detection and Error-Correction Scheme Under

Write BSC

In this chapter we consider memristor variability due to unreliable write operations. The

adverse effect of unreliable write operation can be modeled as a write BSC and therefore can

be viewed as attribute noise in learning problems. In [OY97], the authors provide an average-

case study and observed that attribute noise decreases classification accuracy. In order to

keep the low latency property of HD-CIM, we are restricted to the conductance measurements

between rows of memristors. Therefore, traditional ECCs based on entry-wise access can

not be used to deal with the write BSC and this fact motivates us to provide error-detection

and error-correction schemes based on conductance measurements only. In this chapter,

error-detection schemes are explored in 4.1 and 4.2. Two different error-correction schemes

are explored in 4.3 and 4.4. In 4.5, we present the average-case study on k-nearest neighbor

classifier using one of our proposed error-correction scheme. Throughout this chapter, we

assume the memristors have no resistance variation, i.e., σ2
H = σ2

L = 0. We again assume

inversion coded vectors are stored in the resistive memory.

4.1 Single Error Detection

Define x(c) and y(c) to be two inversion coded vectors corresponding to two length-n vectors

x and y. Let x̃(c) and ỹ(c) be the noisy vectors actually stored due to the write noise (BSC).

24

We first establish necessary equations to compute the Hamming distance between x and

y from a measurement between rows of memristors that store x̃(c) and ỹ(c). Define the

normalized conductance measurement to be G̃(x̃(c), ỹ(c)). As resistance variability is not

considered in this section, G̃(x̃(c), ỹ(c)) is a constant rather than a random variable. We thus

have:

G̃(x̃(c), ỹ(c)) = Ñ ′11 + (Ñ ′10 + Ñ ′01) 2ε
1 + ε

+ Ñ ′00ε. (4.1)

Here Ñ ′gh is defined to be the number of coordinates having bit g in x̃(c) and bit h in ỹ(c),

for g, h ∈ {0, 1}.

A variable denoting the normalized conductance measurement between rows of memris-

tors that store x(c) and y(c) can be defined as:

G̃(x(c),y(c)) = N ′11 + (N ′10 +N ′01) 2ε
1 + ε

+N ′00ε. (4.2)

Here N ′gh is defined to be the number of coordinates having bit g in x(c) and bit h in y(c),

for g, h ∈ {0, 1}.

We again use an intermediate variable D̃(x,y) to denote the result calculated from the

measurement as follows:

D̃(x̃(c), ỹ(c)) = 1 + ε

(1− ε)2 [2n(1− ε) + 4nε− 2G̃(x̃(c), ỹ(c))]. (4.3)

D̃(x,y) = 1
2D̃(x̃(c), ỹ(c)) = 1 + ε

(1− ε)2 [n+ nε− G̃(x̃(c), ỹ(c))]. (4.4)

Note that when no error occurs, D̃(x,y) = D(x,y). Equation (4.3) is adapted from Equation

(3.5) when inversion coding is used and write BSC is considered.

It is useful to denote the difference in conductance measurements between the noisy and

the noise-free case as:

∆G̃(x(c),y(c), x̃(c), ỹ(c)) = G̃(x̃(c), ỹ(c))− G̃(x(c),y(c)).

25

Similarly, let us define ∆D(x,y, x̂, ŷ), which is later used to characterize bit errors, as

follows:

∆D̃(x,y, x̃, ỹ) = D̃(x,y)−D(x,y) = −(1 + ε)∆G̃(x(c),y(c), x̃(c), ỹ(c))
(1− ε)2 . (4.5)

We now calculate how ∆G̃(x(c),y(c), x̃(c), ỹ(c)) and ∆D̃(x,y, x̃, ỹ) are affected by a single

bit error, i.e., t = 1. Due to the symmetry of this problem, there are only four different fun-

damental types of errors for a pair of elements x(c)
i and y(c)

i , (0, 0) → (0, 1), (0, 1) → (0, 0),

(0, 1) → (1, 1), and (1, 1) → (0, 1), which we denote as error types A, B, C, and D, respec-

tively. All other error types are expressed in terms of these four error types. Each of these er-

ror types affects the relationship between {N ′00, N
′
01, N

′
10, N

′
11} and {Ñ ′00, Ñ

′
01, Ñ

′
10, Ñ

′
11}. For

example, an error that changes (0, 0) into (0, 1) will result in Ñ ′01 = N ′01 + 1, Ñ ′00 = N ′00 − 1,

Ñ ′11 = N ′11 and Ñ ′10 = N ′10. Table 4.1 lists the resulting values of ∆G̃(x(c),y(c), x̃(c), ỹ(c)) and

∆D̃(x,y, x̃, ỹ) for each error type. The above two variables are abbreviated as ∆G̃(x(c),y(c))

and ∆D̃(x,y) since the relative relationship is clear.

Table 4.1: The 4 Types of Errors

Error Type (x(c)
i , y

(c)
i)→ (x̃(c)

i , ỹ
(c)
i) ∆G̃(x(c),y(c)) ∆D̃(x,y)

A (0,0) → (0,1) 2ε
1 + ε

− ε −ε
1− ε

B (0,1) → (0,0) −
(2ε

1 + ε
− ε

)
ε

1− ε

C (0,1) → (1,1) −
(2ε

1 + ε
− 1

) −ε
1− ε − 1

D (1,1) → (0,1) 2ε
1 + ε

− 1 ε

1− ε + 1

We use the following lemma to detect a single bit error.

Lemma 4. If exactly one of x̃(c) or ỹ(c) contains a single bit error, i.e., D(x(c), x̃(c)) +

D(y(c), ỹ(c)) = 1 and 0 < ε < 1
2 , then we can detect that D̃(x,y) 6= D(x,y).

26

Proof. If no error is present, we have D(x,y) = D̃(x,y), i.e., ∆D̃(x,y) = 0. For 0 < ε < 1
2 ,

each error type will cause the value of ∆D̃(x,y) to be a non-integer and in turn lead to

non-integer D̃(x,y) (since D(x,y) is always an integer and D̃(x,y) = D(x,y)+∆D̃(x,y)).

A single bit error can thus be detected by first computing D̃(x,y) and checking whether it

is an integer or not. �

This process of error detection is later referred to as an integer check. When error-free,

D̂(x,y) = D̃(x,y) = D(x,y) where D̂(x,y) is the estimated result from the intermediate

variable D̃(x,y).

Lemma 4 suggests that a single bit error is detectable under certain reasonable constraints

on ε. However, the error type can not be uniquely determined from D̃(x,y). For example,

a vector with D(x,y) = DH incurring error type B would result in an identical value for

D̃(x,y) as a vector with D(x,y) = DH − 1 incurring error type D. Note that this multiple

solution result is due to the nature of the underlying problem and is thus unavoidable if only

vector-level information is used.

4.2 Multiple Errors Detection

So far we have shown that a single bit error in a pair of inversion coded vectors can be

detected by checking whether D̃(x,y) is an integer or not. Next, we generalize the idea of

an integer check to multiple errors.

Lemma 5. If together x̃(c) and ỹ(c) contain an odd number of bit errors t, i.e., D(x(c), x̃(c))+

D(y(c), ỹ(c)) = t (odd), then we conclude that D̃(x,y) 6= D(x,y) for the following constraint

on ε:

0 < ε <
1

t+ 1 .

Proof. Define ei,p, i ∈ {1, ..., t}, p ∈ {x(c),y(c)} to be the error vectors corresponding to the

i-th error in the vector indexed by p. For clarity, the superscript in p is omitted. For example,

if the i-th bit flip is at the j-th position of x(c), ei,x is the all-0 vector with 1 at the j-th

27

position and ei,y is an all-0 vector. (We permit error at the j-th position in yc but there will

be another pair of error vectors corresponding to it.) We further define ∆D̃(ei) to be the

change in output induced by ei,x and ei,y, i.e.,

∆D̃(ei) = −(1 + ε)∆G̃(x(c),y(c),x(c) + ei,x,y
(c) + ei,y)

(1− ε)2 .

The following relation is observed:

∆D(x,y, x̃, ỹ)

=
t∑
i=1
{−(1 + ε)[G̃(x(c) + ei,x,y

(c) + ei,y)− G̃(x(c),y(c))]
(1− ε)2 }

=
t∑
i=1

∆D(ei).

Each ∆D(ei) can be viewed as the change of the output for a single bit error, thus assuming

the same value as the last column in Table 4.1. For 0 < ε <
1

t+ 1 , D̃(x,y) has a non-integer

value because any odd t choices from those values ofD(ei) will be summed to ∆D(x,y, x̃, ỹ),

where 0 < |∆D(x,y, x̃, ỹ)| (mod 1) < 1. Here and elsewhere, the operation x (mod 1) is

defined as the fractional part of x. As a result, any odd number of bit errors can be detected

by an integer check.

�

We next present the result for an even number of errors, t.

Lemma 6. We denote the fraction of errors that are detectable for even t as rd(t). If together

x̃(c) and ỹ(c) contain an even number of bit errors t, i.e., D(x(c), x̃(c)) + D(y(c), ỹ(c)) = t

(even), and the channel parameter satisfies 0 < ε <
1

t+ 1 , then

rd(t) = 1−

(
t
t/2

)
2t .

Proof. For an even number of errors, some error patterns are undetectable. We define tA,C

28

to be the number of errors of either type A or C and similarly for tB,D. Notice that error

types A and C (and error types B and D) have the same integer parts in ∆D(ei), thus

contributing equally to |∆D(x,y, x̃, ỹ)| (mod 1). The analysis on tA,C and tB,D thus covers

all the possible error combinations. The error pattern is undetectable when tA,C = tB,D =

t/2. By viewing this error detection problem as a fair-coin flipping problem in which t/2

heads and t/2 tails occur in t trials, we calculate the probability of an undetectable pattern

occurring to be
(
t
t/2

)
/2t. When tA,C 6= tB,D, let t′ = |tA,C − tB,D|. We have |∆D(x,y, x̃, ỹ)|

(mod 1) = εt′

1−ε , 0 < t′ ≤ t. With 0 < ε <
1

t+ 1 , we have 0 < |∆D(x,y, x̃, ỹ)| (mod 1) < 1

which directly allows for error detection. �

Lemma 5 and Lemma 6 show that multiple errors are sometimes detectable by an integer

check. Note that by an integer check alone, we are unable to differentiate the detected

multiple errors and the detected single error.

4.3 Exact Error Correction with Additional Coding

From previous discussion, we have error detection schemes to detect erroneous computation

of D(x,y) by an integer check of D̃(x,y). Our ultimate goal is to recover the correct

Hamming distance between vectors x and y. In this section, we provide an error correction

scheme based on acquiring the full error profile, i.e., error location and error value, in vectors

x̃(c) and ỹ(c) and we call this scheme the Exact Hamming scheme. Error localization is done

by comparing with preset vectors while utilizing property of inversion coding. x(c) and y(c)

can thus be successfully recovered relying on extra error correction code.

4.3.1 Error Localization

Claim 1. Define L to be the set of vectors li ∈ {0, 1}2n, 1 ≤ i ≤ n whose all bits are one

except the the i-th and the (i+n)-th bits. Also define 1 to be the all-1s vector with length 2n.

Assume error is detected in a pair of vectors x̃(c) and ỹ(c), with n+ 1 pairwise measurements

29

between rows of memristors that store x̃(c) and vectors in L ∪ 1, we can narrow the location

of each error (if any) to two positions, i and i+ n except rare cases. Same applies to ỹ(c).

Without loss of generality, we assume there are bit errors in x̃(c). With the measurement

of G̃(x̃(c),1), we compute D̃(x̃,1) using Equation 4.4. We then perform n measurements

between rows of memristor that store x̃(c) and each of the vectors in L to compute D̃(x̃, li)

using the same equation. Error localization is achieved by computing ∆Di(x̃(c),1, x̃(c), li) =

D̃(x̃, li)−D̃(x̃,1) for all 1 ≤ i ≤ n. Let Ierror = {i ∈ I|∆Di(x̃(c),1, x̃(c), li) = 2ε
1− ε+2}∪{i ∈

I|∆Di(x̃(c),1, x̃(c), li) = 2ε
1− ε}. There is an error either at position i or at position i+n for

each i ∈ Ierror.

By Auxiliary Code 1, for a given li, if both the i-th and the (i + n)-th positions of

x̃(c) are error-free, the error patterns are (1,1) → (0,1) and (0,1) → (0,0) which result

in ∆Di(x̃(c),1, x̃(c), li) = 2ε
1−ε + 1. If a bit error occurs at either the i-th or the (i +

n)-th position of x̂c, then the corresponding error patterns are two (1,1) → (0,0) which

lead to ∆Di(x̃(c),1, x̃(c), li) = 2ε
1−ε + 2 for bit flip from 1 to 0 or two (0,1) → (0,0) with

∆Di(x̃(c),1, x̃(c), li) = 2ε
1−ε for bit flip from 0 to 1. If errors occur at both the i-th or the

(i+ n)-th positions of x̂c, we are unable to localize those two errors.

4.3.2 Bit Value Reading

Using the same idea of comparing with preset vectors, we are able to read bit-value at

arbitrary location using conductance measurements between rows of memristor.

Claim 2. Define B to be the set of vectors bi ∈ {0, 1}2n, 1 ≤ i ≤ 2n whose bits are all one

except the i-th bit. The i-th bit value of a given vector, say ỹ(c), can be inferred from two

pairwise measurements between, ỹ(c) and bi; ỹ(c) and 1.

Two measurements, G̃(ỹ(c),1) and G̃(ỹ(c), bi), are taken and the corresponding D̃(ỹ,1)

and D̃(ỹ, bi) are computed using equation 4.4. The inference of the i-th bit value in ŷc is

based on ∆Di(ỹ(c),1, ỹ(c), bi) = D̃(ỹ, bi) − D̃(ỹ,1). For y(c)
i = 1, the error pattern is (1,1)

30

→ (1,0) with ∆Di(ỹ(c),1, ỹ(c), bi) = ε

1− ε + 1 and for y(c)
i = 0, the error pattern is (0,1) →

(0,0) with ∆Di(ỹ(c),1, ỹ(c), bi) = ε

1− ε .

4.3.3 Error Correction with Additional Coding

For each error we localized using technique described in 4.3.1, we have ambiguity among two

locations. One of these locations is in the first half of the erroneous vector and the other is in

the second half. Based on the underlying inversion coding, the values at those two positions

are complement of each other when error-free. We can thus focus on recovering the value

of the first position by viewing it as an erasure. Here we propose adding extra redundancy

by encoding the first half of x(c) using a standard erasure correcting code. After error is

detected, these parity bits can be accessed using technique described in 4.3.2. Because

of this additional coding, we are able to correct every erasure that is conveyed by the error

localization step. With the bit-value information of the corresponding vector (acquired using

technique in 4.3.2), we are able to recover the Hamming distance between the uncorrupted

vectors. The error correction capability of this Exact Hamming Scheme depends on the

erasure correction capability of this exact code.

The caveat here is that for this erasure correcting code, the Hamming distance may

not be preserved. As a result, error correction capability requires the ability to measure

the conductance between sub-rows of memristor that store two sub-vectors in the resistive

memory.

4.4 Soft Hamming Scheme for Single Error Correction

The Exact Hamming scheme can correctly find the exact error location and error value thus

achieving the goal of recovering the original Hamming distance. However, it suffers from

many aspects. First, the error correction capability of Exact Hamming scheme requires

extra erasure correction code which adds redundancy and also requires sub-vector reading.

31

Second, the error localization procedure incurs many costly read operations between rows of

memristors. Lastly, the error localization procedure may fail if rare error patterns occur and

the erasure correction procedure may fail if there is bits error in the corresponding parity

bit. These drawbacks of the Exact Hamming schemes make it not favorable in terms of its

cost in space and time.

We notice that some of the potential application of HD-CIM, e.g., the k-nearest neighbor

classifier, have certain error tolerant capability. This observation motivate us to provide

an approximate error correction scheme focused on correcting the most frequent error, the

single bit error. This approximate error correction scheme will improve the performance

of our application under the write BSC while keep a small error-detection/error-correction

latency. This scheme is based on the following corollary.

For single bit error that occurs, although the error type can not be uniquely determined

by an integer check, with further constrains on ε, we are able to determine whether the error

is of type {B,D} or {A,C} .

Corollary 3. If D(x(c), x̃(c)) + D(y(c), ỹ(c)) = 1 and 0 < ε < 1
3 , then we conclude that

D̃(x,y) 6= D(x,y) and we determine whether the error is of type {B,E} or {A,C}.

Proof. The ε range here, 0 < ε < 1
3 , falls within the range of ε in Lemma 4, thus a single

bit error is detectable. Since | ε
1−ε |<

1
2 , if the error belongs to type {B,D}, D̃(x,y) −

nint(D̃(x,y)) < 1/2. Similarly, if the error belongs to type {A,C}, we have nint(D̃(x,y))−

D̃(x,y) < 1/2. This relationship between D̃(x,y) and its nearest integer uniquely determine

whether the error is of type {A,C} or {B,D}. �

We say D̃(x,y) lies on the right-hand-side (or left-hand-side) of its nearest integer if

D̃(x,y)− nint(D̃(x,y)) < 1/2 (or nint(D̃(x,y))− D̃(x,y) < 1/2).

As a result of Corollary 3, if 0 < ε < 1
3 , for the detected single bit error, we have two

possible Hamming distances that could be the original one. We summarize the candidate

32

original Hamming distance as follows:

If D̃(x,y)− nint(D̃(x,y)) < 1/2,

then D(x,y) = nint(D̃(x,y)) orD(x,y) = nint(D̃(x,y))− 1;

if nint(D̃(x,y))− D̃(x,y) < 1/2,

then D(x,y) = nint(D̃(x,y)) orD(x,y) = nint(D̃(x,y)) + 1.

We now seek to provide a correction scheme to the detected single bit error. We first realize

that choosing randomly between the two candidate solutions is functionally the same as

always choosing D̂(x,y) = nint(D̃(x,y)). Therefore, choosing randomly would not be wise

because it does not take advantage of the extra information we can get from Corollary 3.

We propose the following scheme for error-detection and error-correction.

If D̃(x,y) = nint(D̃(x,y)), then D̂(x,y) = nint(D̃(x,y));

if D̃(x,y)− nint(D̃(x,y)) < 1/2, then D̂(x,y) = nint(D̃(x,y))− 1/2;

if nint(D̃(x,y))− D̃(x,y) < 1/2, then D̂(x,y) = nint(D̃(x,y)) + 1/2.

(4.6)

The previous scheme is derived by taking the average of the two candidate Hamming

distances after an error is classified as either type {A,C} or {B,D}. As this error-detection

and correction scheme has the possibility to give non-integer Hamming distance as the result,

we refer it as the Soft Hamming scheme. Analysis of this Soft Hamming scheme on the k-

nearest neighbors classifier will be provided in the next chapter.

4.5 An Average-Case Study on the k-NN Classifier Under

Attribute Noise Using the Soft Hamming Scheme

In order to incorporate the Soft Hamming scheme into the average-case study framework,

we assume all error patterns, except the undetectable errors, are detectable and can be

33

separated into the two classes—{A,C} or {B,D}—. We also assume ε is sufficiently small

and the Soft Hamming scheme is used to correct the detected error.

The next example helps to illustrate how the Soft Hamming Scheme can be used to

improve classification accuracy under the write BSC.

Example 2. In this example we use the same setup as Example 1. Consider the case that

under the adverse effect of write BSC, the attribute of training instance #3 (11110100) is

changed to 01110100. Without the Soft Hamming scheme, the Hamming distance between

training instance #3 and the testing instance is 3. Both instance #3 (class: positive) and

instance #4 (class: negative) now have distance 3 w.r.t. the testing instance. Choosing

randomly among instance #3 and #4 to be the third nearest neighbor of the testing instance,

the k-NN classifier have 50% chance to have erroneous classification.

If we implement the Soft Hamming scheme, the error pattern (1, 1) → (0, 1) can be

detected when computing the Hamming distance between the testing instance and training

instance #3. The Soft Hamming scheme will therefore set the Hamming distance between

them to be 2.5 based on previous discussions. As a result, the k-NN classifier can correctly

classify the testing instance as positive.

4.5.1 Formal Calculation of Expected Accuracy

We define an augmented variable e(s) = 2D̂(x,y), where D̂(x,y) is the result of the Soft

Hamming scheme. For example, e(s) = 3 corresponds to the case that either D̃(x,y) is on the

left-hand-side of 1 or D̃(x,y) is on the right-hand-side of 2. As another example, e(s) = 4

corresponds to the case that D̃(x,y) = D̂(x,y) = 2. Most calculations from Section IV

are applicable in this context by setting β = 0 since resistance variation is not considered.

We recalculate P (s)
dp (x, y, e(s)) (P (s)

dn (x, y, e(s)), resp.) which is the probability of an arbitrary

positive (negative, resp.) training instance having distance e(s) from the arbitrary testing

instance t(x, y) ∈ I(x, y). This calculation is separated into two cases. We assume, in this

subsection, an arbitrary attribute is flipped with probability p.

34

In the first case, we consider an even value for e(s) where no error is detected. From

previous discussion, no error is detected when the number of bit flips from 0 to 1, s, is equals

to the number of bit flips from 1 to 0, r. When e(s)is even, P (s)
dp (x, y, e(s)) and P (s)

dn (x, y, e(s))

can be expressed as:

P
(s)
dp (x, y, e(s)) =

n+l∑
ê=0

Pdp(x, y, ê)P s=r
dif (ê, e(s)/2), P (s)

dn (x, y, e(s)) =
n+l∑
ê=0

Pdn(x, y, ê)P s=r
dif (ê, e(s)/2),

(4.7)

where Pdp(x, y, e) and Pdn(x, y, e) are the probabilities calculated from Section IV and P s=r
dif (ê, ê′)

is the probability that D̂(x,y) = ê′ given that D(x,y) = ê and s = r. We can calculate this

probability by examining Table 1. We observe that each bit flip from 0 to 1, neglecting the

fraction parts, will either decrease D̃(x,y) by 1 or keep it the same. Also, each bit flip from

1 to 0, neglecting the fraction parts, will either increase D̃(x,y) by 1 or keep it the same.

P s=r
dif (ê, ê′) can therefore be calculated as:

P s=rdif (ê, ê′) =
n+l∑

s=|ê′−ê|

min(s+|ê′−ê|,s)∑
w=|ê′−ê|

[(
s

w

)
(1
2)s
(

s

w− | ê′ − ê |

)
(1
2)s
(
n+ l

s

)(
n+ l

s

)
p2s(1−p)2n+2l−2s

]
.

(4.8)

In the case that e(s) is an odd number, e(s) can arise from two cases: either D̃(x,y) is on the

left-hand-side of (e(s) − 1)/2, i.e., r < s, or D̃(x,y) is on the right-hand-side of (e(s) + 1)/2,

i.e., r > s. When e(s)is odd, P (s)
dp (x, y, e) and P (s)

dn (x, y, e) can be expressed as:

P
(s)
dp (x, y, e(s)) =

n+l∑
ê=0
{Pdp(x, y, ê)[P s>r

dif (ê, (e(s) − 1)/2) + P s<r
dif (ê, (e(s) + 1)/2)]},

P
(s)
dn (x, y, e(s)) =

n+l∑
ê=0
{Pdn(x, y, ê)[P s>r

dif (ê, (e(s) − 1)/2) + P s<r
dif (ê, (e(s) + 1)/2)]}.

P s>r
dif (ê, ê′) is defined to be the probability that nint(D̃(x,y)) = ê′ given D(x,y) = ê and

s > r. P s<r
dif (ê, ê′) is defined to be the probability that nint(D̃(x,y)) = ê′ given D(x,y) = ê

and s < r.

35

From Table I, we can express P s>r
dif (ê, ê′) and P s>r

dif (ê, ê′) as following:

P s>r
dif (ê, ê′)

= 1(ê > ê′)
n+l∑

s=ê−ê′

s−1∑
r=0

min(r+ê−ê′,s)∑
w=ê−ê′

{(
s

w

)
(1
2)s+r

(
r

w − ê+ ê′

)(
n+ l

s

)(
n+ l

r

)
ps+r(1− p)2n+2l−s−r

}

+ 1(ê ≤ ê′)
n+l∑

r=ê−ê′

n+l∑
s=r+1

min(r+ê−ê′,s)∑
h=ê−ê′

{(
s

h

)
(1
2)s+r

(
r

h− ê+ ê′

)(
n+ l

s

)(
n+ l

r

)
ps+r(1− p)2n+2l−s−r

},

P s<r
dif (ê, ê′)

= 1(ê ≥ ê′)
n+l∑

s=ê−ê′

n+l∑
r=s+1

min(r+ê−ê′,s)∑
w=ê−ê′

{(
s

w

)
(1
2)s+r

(
r

w − ê+ ê′

)(
n+ l

s

)(
n+ l

r

)
ps+r(1− p)2n+2l−s−r

}

+ 1(ê < ê′)
n+l∑

r=ê−ê′

s−1∑
s=0

min(r+ê−ê′,s)∑
h=ê−ê′

{(
s

h

)
(1
2)s+r

(
r

h− ê+ ê′

)(
n+ l

s

)(
n+ l

r

)
ps+r(1− p)2n+2l−s−r

} ,

where 1 denotes the indicator function.

This ends our derivation for P (s)
dp (x, y, e(s)) and P

(s)
dn (x, y, e(s)). These two probabilities

can then be used in place of Pdp(x, y, e) and Pdn(x, y, e) from Section IV. We proceed with

the rest of the calculation in Section IV using e(s) instead of e and calculate the classification

accuracy accordingly.

4.5.2 Average-Case Study Results Using Soft Hamming Scheme

We use the above equations to calculate the expected accuracy of the k-NN classifier where

the Hamming distance is computed using the Soft Hamming scheme on the 3-of-5/2 concept.

We set N = 32 and the accuracy is selected to be the maximum accuracy for 2 ≤ k ≤ 16.

The attribute noise levels are characterized by the cross over probabilities of the write BSC,

Pbsc.

We also plot the expected classification accuracy of the noise-free case and the expected

classification accuracy under attribute noise without error-detection/error-correction. We

observe that in the region where attribute noise is small, e.g., pbsc < 10−2, the attribute noise

has little effect on classification accuracy. In the region where attribute noise is large, e.g.,

36

10
−3

10
−2

10
−1

0.65

0.7

0.75

0.8

P
bsc

A
cc

ur
ac

y

Soft Hamming
Without Soft Hamming
Noise Free

Figure 4.1: attribute noise v.s. max accuracy

pbsc > 10−2, our Soft Hamming scheme can successfully improve the classification accuracy

under attribute noise.

37

CHAPTER 5

Error-Detection and Error-Correction under

Resistance Variation and Write BSC

In previous chapters, we proposed HD-EIM to feasibly compute Hamming distance in re-

sistive memory under the adverse effect of memristor variability due to resistance variation.

We also provided the Soft Hamming scheme to deal with single bit error introduced by mem-

ristor variability due to nondeterministic switching mechanism. In this chapter, we seek to

combine the two approaches in order to deal with memristor variability due to both sources.

Again, we suppose x(c) and y(c) are inversion coded vectors to be stored. And we define x̃(c)

and ỹ(c) to be the noisy vectors actually stored due to write BSC. In order to make the math

tractable, we provide a solution to a simpler problem, where σ2
H = σ2

L = σ2
0.

With resistance variation taken into account, the normalized conductance measurement

is a random variable that is additionally affected by the write BSC. Combining Equations

(3.13) and (4.1), we have the distribution of the normalized conductance measurement as

follows:

G̃(x̃(c), ỹ(c)) ∼ N
(
Ñ ′11 + (Ñ ′01 + Ñ ′10)2ε+ Ñ ′00ε,

Ñ ′11σ
2
0

2µ2
H

+ (Ñ ′01 + Ñ ′10)8σ2
0

2µ2
H

+ Ñ ′00σ
2
0

2µ2
H

)
. (5.1)

Here G̃(x̃(c), ỹ(c)) is a random variable denoting the normalized conductance measurement

between rows of memristors that store x̃(c) and ỹ(c). Ñ ′gh is defined to be the number of

coordinates having bit g in x(c) and bit h in y(c), for g, h ∈ {0, 1}. We use the following

38

equation to calculate an intermediate random variable D̃(x,y):

D̃(x,y) = 1
1− 3ε [n+ nε− G̃(x̃(c), ỹ(c))]. (5.2)

Once again, there are four different fundamental types of errors for a pair of elements x(c)
i

and y(c)
i , (0, 0) → (0, 1), (0, 1) → (0, 0), (0, 1) → (1, 1) and (1, 1) → (0, 1), which we define

them as error types A, B, C, and D, respectively.

Let us define a random variable E that represents the error type of a single bit error and

whether the error occurs or not.

P (E) =

pe, if E = A,B,C,D

1− 4pe if E = 0,

where E = A,B,C,D stands for the case that a single type A, B, C or D error occurs,

respectively; E = 0 stands for the error-free case. We define pe to be the probability that a

single bit error occurs in a pair of coded vector x(c) and y(c), which can be calculated from

the BSC parameter.

We then study the conditional distribution of D̃(x,y). Given D(x,y), for the error-free

case, i.e., E = 0, D̃(x,y) assumes the following distribution:

N
(
D(x,y), (n+ 7D(x, y))σ2

0
µ2
H(1− 3ε)2

)
. (5.3)

In the Table 5.1, we summarize the distribution of D̃(x,y) for a single error of each

type, in terms of its mean and variance. To simplify notation, we define γ = ε
1−3ε and

λ = σ2
0

µ2
H(1−3ε)2 . Table 5.1 is derived by examining (5.1) and Equation (5.2) for each error

type.

From Table 5.1 and Equation (5.3), we have the conditional pdf, f(D̃(x,y) | D(x,y), E)

for each pair of D(x,y) ∈ {0, ..., n} and E ∈ {0, A,B,C,D}. We can therefore estimate E

39

Table 5.1: Fundamental Error types under Resistance Variation

Error Type Mean Variance
A D(x,y)− γ λ(n+ 7D(x,y) + 7/2)
B D(x,y) + γ λ(n+ 7D(x,y)− 7/2)
C D(x,y)− γ − 1 λ(n+ 7D(x,y)− 7/2)
D D(x,y) + γ + 1 λ(n+ 7D(x,y) + 7/2)

andD(x,y) given the observation D̃(x,y). Denoting our estimation of the pair {E,D(x,y)}

to be the pair {Ê, D̂(x,y)}, respectively, we have the following MAP (maximum a posteriori

probability) estimator:

{Ê, D̂(x,y)} = arg max
{E,D(x,y)}

f(D(x,y), E | D̃(x,y))

= arg max
{E,D(x,y)}

f(D̃(x,y) | D(x,y), E)f(D(x,y), E)
f(D̃(x,y))

= arg max
{E,D(x,y)}

f(D̃(x,y) | D(x,y), E)f(D(x,y), E)

= arg max
{E,D(x,y)}

f(D̃(x,y) | D(x,y), E)P (E)P (D(x,y))

= arg max
{E,D(x,y)}

f(D̃(x,y) | D(x,y), E)P (E).

(5.4)

Next, we present a solution to the above MAP estimator. Define sm(DH) for DH ∈

{0, ..., n− 1} to be a solution of equation:

f(D̃(x,y) | D(x,y) = DH , E = B) = f(D̃(x,y) | D(x,y) = DH + 1, E = A), (5.5)

such that DH + γ < sm(DH) < DH + 1.

Note that for Equation (5.5), there always exists a solution that satisfies the constraint

of sm(DH) therefore sm(DH) always exist.

40

We define s(1)
0 and s(2)

0 to be solutions of the following equation:

f(D̃(x,y) | D(x,y) = 0, E = A) = f(D̃(x,y) | D(x,y) = 0, E = C), (5.6)

such that:

−1− γ < s
(1)
0 < −γ, and s(2)

0 < −1− γ.

We also define sn to be a solution of the equation:

f(D̃(x,y) | D(x,y) = n,E = B) = f(D̃(x,y) | D(x,y) = n,E = D), (5.7)

such that:

n+ γ < sn < n+ 1 + γ.

We define s+(DH) for DH ∈ {0, ..., n} to be a solution, if exist, of the equation:

(1− 4pe)f(D̃(x,y) | D(x,y) = DH , E = 0) = pef(D̃(x,y) | D(x,y) = DH , E = B), (5.8)

such that:

DH < s+(DH) < sm(DH) for DH ∈ {0, ..., n− 1},

n < s+(DH) < sn for DH = n.

Similarly, we define s−(DH), DH ∈ {0, ..., n} to be a solution, if exist, of the equation:

(1− 4pe)f(D̃(x,y) | D(x,y) = DH , E = 0) = pef(D̃(x,y) | D(x,y) = DH , E = A), (5.9)

such that:

sm(DH) < s−(DH) < DH for DH ∈ {1, ..., n},

s
(1)
0 < s−(DH) < 0 for DH = 0.

41

Note that there exist cases where none of the solutions of Equation (5.8) or Equation

(5.9) satisfies the constraint of s+(DH) or s−(DH). Hence s+(DH) or s−(DH) may not exist

for certain device parameters.

If s+(DH) and s−(DH) exist for all DH , and the following conditions are true:

pef(sm(DH) | D(x,y) = DH , E = B) = pef(sm(DH) | D(x,y) = DH + 1, E = A)

≥(1− 4pe)f(sm(DH) | D(x,y) = DH , E = 0), for DH ∈ {0, ..., n− 1};

and

pef(sm(DH) | D(x,y) = DH , E = B) = pef(sm(DH) | D(x,y) = DH + 1, E = A)

≥(1− 4pe)f(sm(DH) | D(x,y) = DH + 1, E = 0), for DH ∈ {0, ..., n− 1};

and

pef(s(1)
0 | D(x,y) = 0, E = A) = pef(s(1)

0 | D(x,y) = 0, E = C)

≥(1− 4pe)f(s(1)
0 | D(x,y) = 0, E = 0);

and

pef(sn | D(x,y) = n,E = B) = pef(sn | D(x,y) = n,E = D)

≥(1− 4pe)f(sn | D(x,y) = n,E = 0);

42

then the MAP estimator has a solution as follows:

If s−(DH) < D̃(x,y) ≤ s+(DH) for some DH , then Ê = 0, D̂(x,y) = DH ;

if s+(DH) < D̃(x,y) ≤ sm(DH) for some DH ,

then Ê = B, D̂(x,y) = DH , or Ê = D, D̂(x,y) = DH − 1;

if sm(DH − 1) < D̃(x,y) ≤ s−(DH) for some DH ,

then Ê = A, D̂(x,y) = DH , or Ê = C, D̂(x,y) = DH + 1;

if s(1)
0 < D̃(x,y) ≤ s−(0) then Ê = A, D̂(x,y) = 0, or Ê = C, D̂(x,y) = 1;

if s+(n) < D̃(x,y) ≤ sn then Ê = B, D̂(x,y) = n, or Ê = D, D̂(x,y) = n− 1;

if s(2)
0 < D̃(x,y) ≤ s

(1)
0 , then Ê = C, D̂(x,y) = 0;

if D̃(x,y) > sn, then Ê = D, D̂(x,y) = n;

if D̃(x,y) ≤ s
(2)
0 , then Ê = A, D̂(x,y) = 0, or Ê = C, D̂(x,y) = 1.

(5.10)

Note that the MAP estimator has multiple solutions when an error is detected, i.e.,

E 6= 0. This is similar to what we observed in Section V and it is due to the underlying

problem, e.g., f(D̃(x,y)|D(x,y) = DH , E = B) = f(D̃(x,y)|D(x,y) = DH − 1, E = D).

As a solution, we adapt the same idea of the Soft Hamming scheme and propose the following

43

estimator:

If s−(DH) < D̃(x,y) ≤ s+(DH) for some DH , then D̂(x,y) = DH ;

if s+(DH) < D̃(x,y) ≤ sm(DH) for some DH , then D̂(x,y) = DH − 1/2;

if sm(DH − 1) < D̃(x,y) ≤ s−(DH) for some DH , then D̂(x,y) = DH + 1/2;

if s(1)
0 < D̃(x,y) ≤ s−(0), then D̂(x,y) = 1/2;

if s+(n) < D̃(x,y) ≤ sn, then D̂(x,y) = n− 1/2;

if s(2)
0 < D̃(x,y) ≤ s

(1)
0 , then D̂(x,y) = 0;

if D̃(x,y) > sn, then D̂(x,y) = n;

if D̃(x,y) ≤ s
(2)
0 , then D̂(x,y) = n− 1

2 .

(5.11)

Note that we do not specify the error type in the above estimator. D̂(x,y) is estimated

by taking the average between two candidate estimation in Estimator (5.10). This estimator

therefore can successfully estimate the Hamming distance between vectors in resistive mem-

ory under the adverse effect of resistance variation while also have the capability to detect

and correct a single bit error caused by the write BSC. Also note that the threshold values,

e.g., s±(DH), can be precomputed and stored in table to improve efficiency.

44

CHAPTER 6

Conclusion

6.1 Summary of Our Results

In this thesis, under the assumption of limited accessible information, we studied the feasi-

bility of Hamming Distance Computation-in-Memory (HD-CIM) under two main (and com-

plementary) sources of memristor variability. We use the optimal constant weight code that

preserves Hamming distance, i.e., inversion coding, to provide a priori knowledge of vector

weights. Analysis of the Hamming-distance estimation is provided when the resistances of

memristors are modeled as Gaussian random variables. Our Soft Hamming scheme is pro-

posed to detect and correct a single bit error introduced by the write BSC. The two schemes

are evaluated for the k-NN classifier using the average-case study framework. These two

schemes are combined at the end to tackle both resistance variation and non-deterministic

write mechanism simultaneously.

6.2 Future Directions

Future research will focus on reliable HD-CIM suitable for vectors whose weights are partially

known, e.g., within a known range. Codes that map a vector with arbitrary weight to a vector

whose weight is within a known range while preserving Hamming distance will be studied

to further reduce redundancy.

45

APPENDIX A

Approximation Justification

In Chapter 2, the following approximations are made:

Hi,xHi,y

Hi,x +Hi,y

≈ Fi ∼ N (µH/2, σ2
H/8), (A.1)

Li,xLi,y
Li,x + Li,y

≈ Ti ∼ N (µL/2, σ2
L/8), (A.2)

Hi,xLi,y
Hi,x + Li,y

≈ Si ∼ N
(
µL

1 + ε
,

σ2
L

(1 + ε)4

)
, (A.3)

Li,xHi,y

Li,x +Hi,y

≈ Si ∼ N
(
µL

1 + ε
,

σ2
L

(1 + ε)4

)
. (A.4)

Here we show that the approximated distributions are close to the original distributions by

studying these approximations using data from a variety of memristor technology reported

in the literature [CL11]. We model the reported resistance variations for 9 types of ReRAM

devices. For each ReRAM device, let L and H denote the random variables for low state

conductance and high state conductance, respectively. We assume L and H follow the

following two Gaussian distributions respectively:

H ∼ N (µH , σ2
H), L ∼ N (µL, σ2

L). (A.5)

For each ReRAM device, µH and µL are set to be the reciprocal value of its mean low-

state resistance and high-state resistance, i.e. RL
avg and RH

avg, respectively. σH and σL are

46

calculated using the following rule:

σH = 1
2 min

(
1

RH
min

− 1
RH
avg

,
1

RH
avg

− 1
RH
max

)
, σL = 1

2 min
(

1
RL
min

− 1
RL
avg

,
1

RL
avg

− 1
RL
max

)
,

where RL
min and RL

max are the smallest and largest low-state resistance value reported, re-

spectively. Similarly, RH
min and RH

max are the smallest and largest low-state resistance values

reported. The resulting models for the 9 ReRAM devices are summarized in Table III. For

Table A.1: ReRAM Models and Bhattacharyya Distances

µL σL µH σH ε β D1
B D2

B D3
B D4

B

TiOx 1.0e-3 2.5e-4 2.5e-2 2.5e-3 4.0e-2 2.5e-2 6.5e-4 5.0e-3 8.3e-5 8.3e-5

HfOx(1) 1.0e-3 2.1e-4 5.0e-3 8.3e-4 2.0e-1 3.4e-1 2.0e-3 3.5e-3 9.2e-4 9.2e-4

AuZrOx(1) 3.3e-7 1.0e-7 1.4e-2 2.1e-3 2.3e-5 4.5e-2 1.5e-3 8.4e-3 3.2e-7 2.4e-7

SrZrO3 5.0e-7 8.3e-8 1.7e-3 3.3e-4 3.0e-4 8.0e-2 3.0e-3 2.0e-3 2.5e-7 2.5e-7

CuGeSe 1.7e-6 3.3e-7 3.3e-4 6.7e-5 5.0e-3 8.2e-2 3.0e-3 3.0e-3 1.5e-6 1.6e-6

CoOx 1.3e-5 3.8e-6 2.0e-4 3.8e-5 6.3e-2 1.1e-1 2.5e-3 7.7e-3 2.9e-4 3.0e-4

HfOx(2) 1.3e-5 3.8e-9 1.0e-4 2.5e-5 1.3e-4 1.3e-1 5.0e-3 7.7e-3 2.0e-7 2.6e-7

TiON 1.7e-7 3.3e-8 5.0e-5 1.6e-5 3.3e-3 2.3e-1 9.7e-3 3.0e-3 9.0e-6 9.0e-6

AuZrOx(2) 2.5e-8 6.3e-9 1.0e-5 2.5e-6 2.5e-3 1.3e-1 5.0e-3 5.0e-3 8.0e-7 9.5e-7

each ReRAM device, we calculate four discretized distributions on the left hand side of the

approximation. We first generate 107 samples for Hi,x, Hi,y, Li,x and Li,y according to the

(A.5). Then we calculate the discretized distributions for expressions on the left-hand-side of

Approximation (A.1), (A.2), (A.3) and (A.4) by dividing all samples into 100 bins with equal

bin width. We also calculate the discretized approximated distributions (the right-hand-side

of Approximation (A.1), (A.2), (A.3) and (A.4) using the same bins. For each approximation

in (A.1), (A.2), (A.3) and (A.4) we calculate the Bhattacharyya distance for each pair of

47

distributions using the following equations:

DB(p, q) = − ln(BC(p, q)), (A.6)

where

BC(p, q) =
∑

x∈X=1,..,100

√
p(x)q(x), (A.7)

where p is the discretized original distribution and q is the discretized approximated distri-

bution.

The four distance metrics for each ReRAM device, D1
B, D2

B, D3
B and D4

B—the Bhat-

tacharyya distance between the left distribution and the right distribution of approximations

(A.1), (A.2), (A.3) and (A.4), respectively—are listed in Table III. Bhattacharyya distance

close to zero means the two distribution are close. Thus we have showed our approxima-

tions are suitable for a variety of ReRAM devices which have a large range of resistance

variation.

48

References

[BKL+05] I. Baek, D. Kim, M. Lee et al., “Multi-layer cross-point binary oxide resistive

memory (OxRRAM) for post-NAND storage application,” in Proc. Int. Electron

Devices Meeting (IEDM) Tech. Dig., Washington, DC, Dec. 2005, pp. 750–753.

[CC15] Y. Cassuto and K. Crammer, “In-memory Hamming similarity computation in

resistive arrays,” in Proc. IEEE Int. Symp. on Inf. Theory (ISIT), Hong Kong,

June 2015, pp. 819–823.

[CL11] A. Chen and M.-R. Lin, “Variability of resistive switching memories and its

impact on crossbar array performance,” in Proc. IEEE Rel. Physics Symp.

(IRPS), Monterey, CA, April 2011, pp. MY–7.

[CLG+11] X. Cao, X. Li, X. Gao et al., “All-ZnO-based transparent resistance random

access memory device fully fabricated at room temperature,” Journal of Physics

D: Applied Physics, vol. 44, no. 25, p. 255104, 2011.

[CZ14] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges, tech-

niques and technologies: A survey on Big Data,” Inf. Sciences, vol. 275, pp.

314–347, Aug. 2014.

[HXN+15] S. Hamdioui, L. Xie, H. A. D. Nguyen et al., “Memristor based computation-

in-memory architecture for data-intensive applications,” in Proc. IEEE Des.

Automation & Test in Europe Conf. & Exhibition (DATE), Grenoble, France,

Mar. 2015, pp. 1718–1725.

49

[KD09] B. Kulis and T. Darrell, “Learning to hash with binary reconstructive embed-

dings,” in Proc. Neural Inf. Process. Syst. (NIPS), Vancouver, Canada, Dec.

2009, pp. 1042–1050.

[MRPC+11] G. Medeiros-Ribeiro, F. Perner, R. Carter et al., “Lognormal switching times for

titanium dioxide bipolar memristors: origin and resolution,” Nanotechnology,

vol. 22, no. 9, p. 095702, Jan. 2011.

[NPF12] M. Norouzi, A. Punjani, and D. J. Fleet, “Fast search in Hamming space with

multi-index hashing,” in Proc. IEEE Computer Vision and Pattern Recognition

(CVPR), Providence, RI, July 2012, pp. 3108–3115.

[NXX12] D. Niu, Y. Xiao, and Y. Xie, “Low power memristor-based ReRAM design with

error correcting code,” in Proc. IEEE Des. Automation Conf. Asia and South

Pacific (ASP-DAC), Sydney, Australia, Jan./Feb. 2012, pp. 79–84.

[OY97] S. Okamoto and N. Yugami, “An average-case analysis of the k-nearest neigh-

bor classifier for noisy domains,” in Proc. Int. Joint Conf. on Artificial Intel.

(IJCAI), Nagoya, Aichi, Japan, Aug. 1997, pp. 238–245.

[PS92] M. J. Pazzani and W. Sarrett, “A framework for average case analysis of con-

junctive learning algorithms,” Machine Learning, vol. 9, no. 4, pp. 349–372,

1992.

[SSS+08] D. B. Strukov, G. S. Snider, D. R. Stewart et al., “The missing memristor

found,” Nature, vol. 453, no. 7191, pp. 80–83, May 2008.

[VRK+09] P. O. Vontobel, W. Robinett, P. J. Kuekes et al., “Writing to and reading from

a nano-scale crossbar memory based on memristors,” Nanotechnology, vol. 20,

no. 42, p. 425204, Sep. 2009.

50

[WLW+10] M. Wang, W. Luo, Y. Wang et al., “A novel Cu x Si y O resistive memory

in logic technology with excellent data retention and resistance distribution

for embedded applications,” in Proc. IEEE Symp. on VLSI Technol. (VLSIT),

Honolulu, HI, June 2010, pp. 89–90.

[YPQ+11] W. Yi, F. Perner, M. S. Qureshi et al., “Feedback write scheme for memristive

switching devices,” Appl. Phys. A: Materials Science & Processing, vol. 102,

no. 4, pp. 973–982, Jan. 2011.

51

