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ABSTRACT OF THE DISSERTATION

Modeling and Deep Learning of Cellular Transcriptome and Epigenetic Regulations

by

Honglei Ren

Doctor of Philosophy in Mathematical, Computational, and Systems Biology

University of California, Irvine, 2023

Professor Qing Nie, Co-Chair; Associate Professor Elizabeth L. Read, Co-Chair

Cellular process is meticulously regulated by means of transcription and additional epige-

netic mechanisms. This regulation is further complicated by the communication between

cells, which coordinate gene expression across multiple cells and tissues. Epigenetic modifi-

cations such as DNA methylation, histone modification can induce heritable changes in gene

expression without alterations to the DNA. Dysregulation of epigenome or transcriptome of-

ten leads to various diseases, such as cancer, developmental disorders, and neurodegenerative

diseases. Recent advances in single-cell RNA sequencing (scRNA-seq) and spatially resolved

sequencing has provided us unprecedented insights into cellular heterogeneity, developmen-

tal trajectories, spatial organization, and cell-cell communications. However, how the cells

are spatially and temporally regulated through transcriptome, epigenome, and intercellular

communication, is still not clearly understood. In this dissertation, we studied this issue

from three distinct perspectives. First, we investigated the maintenance of DNA methyla-

tion throughout the cell cycle. Specifically, by analyzing experimental data, we found the

post-replication methylation maintenance rates are correlated between nearby CpGs in a

region-specific manner. Through stochastic modeling, we derived evidences for genome-wide

methyltransferase processivity in cells, and developed an approach to infer lengthscales of

linear diffusion of DNA-binding proteins using the rate correlation. In the second project,

we developed a deep learning method to identify the spatiotemporal organization of cells.

ix



We further proposed the pseudo-Spatiotemporal Map (pSM) as a spatial counterpart of the

pseudotime in scRNA-seq. We validated the accuracy of the pSM using public datasets and

demonstrated its usefulness in revealing developmental sequences and providing insights into

cancer progression. In the last project, we developed a method for summarizing the major

cell-cell communication (CCC) patterns in spatial transcriptome data, which can greatly

reduce the analysis burden for researchers who have to analyze thousands of spatial CCC

patterns from ligand-receptors. This method also offers new biological insights into CCC

through the interpretation for these patterns. For example, we provided the pattern asso-

ciated ligand-receptors (LRs) which helps to explore potential interacting ligand-receptor

network in a tissue specific manner. Overall, our studies provide an approach to reveal

the DNA methylation dynamics in post-replication; a method to unravel the dynamics of

spatiotemporal organization of cells; and a tool to understand how cells communicate to

perform specific functions in tissue.
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Chapter 1

Introduction

Cellular processes are regulated by a complex interplay between the transcriptome and

epigenome. The transcriptome is the complete set of expressed genes in a cell or tissue,

and it reflects the underlying genetic program that is executed by the cell. The epigenome

encompasses all the chemical modifications to DNA and histones that control gene expres-

sion. This regulation complexity is further complicated by the communication between cells,

which coordinate gene expression across multiple cells and tissues.

The transcriptome reflects the active genes in a cell or organism and their level of expression.

RNA molecules can be transcribed from both protein-coding genes and non-coding regions of

the genome, with the latter often playing regulatory roles in gene expression. RNA molecules

can be further modified and processed to produce various types of functional RNA molecules,

including messenger RNA, transfer RNA, and ribosomal RNA.

The epigenome includes modifications such as DNA methylation, histone modifications, and

non-coding RNA molecules that can influence gene expression by affecting the accessibility of

the DNA to the transcriptional machinery. These modifications can be dynamic and respond

to environmental stimuli, leading to changes in gene expression that can drive developmental

1



processes or contribute to disease states.

Cell-cell communication is a fundamental process that allows cells to coordinate their activi-

ties and interactions with one another. This process plays a crucial role in various biological

processes, including development, tissue homeostasis, and disease progression [1]. The mech-

anism of cell-cell communication involves the transmission of signaling molecules, such as

as ligands, from one cell to another, which bind to specific receptors on the target cell and

initiate a cascade of intracellular events leading to a cellular response. This ability enables

cells to adapt to their environment, respond to stimuli, and perform specialized functions.

Spatial organization and temporal dynamics of cells play crucial roles in various biological

processes such as development and cancer [2]. During development, cells undergo complex

spatial and temporal changes, including proliferation, migration, differentiation, to form

functional tissues and organs. Similarly, the proliferation, invasion, and metastasis of cancer

also involves complicated spatial and temporal dynamics in tumor cells. These processes

require precise coordination of cell behaviors in both space and time. Understanding these

processes requires detailed knowledge of the molecular mechanisms that regulate the spatial

and temporal organization of cells.

Recent advances in technology, such as single-cell RNA sequencing and spatially resolved

transcriptomics, have enabled the analysis of gene expression patterns at the single-cell

level and in their spatial context. This allows for the identification of cellular states and

interactions that contribute to spatial organization and temporal dynamics [3]. Additionally,

imaging techniques, such as live-cell imaging, provide insights into the dynamic behavior of

cells in real-time.

However, how the cells are spatially and temporally regulated through transcriptome, epigenome,

and intercellular communication, is still not clearly understood. In this dissertation, we stud-

ied this issue from three distinct perspectives. Specifically, we investigate the mechanism

2



of DNA methylation maintenance in post-replication through bioinformatic analysis and

stochastic modeling; Additionally, we develop approaches to study the spatiotemporal dy-

namics of cells during development and disease progression using spatial transcriptome data.

Lastly, we build tools to identify major cell-cell communication patterns in spatial.
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Chapter 2

Locally correlated kinetics of

post-replication DNA methylation

reveals processivity and region

specificity in DNA methylation

maintenance

2.1 Introduction

DNA methylation is an important epigenetic modification that plays a critical role in devel-

opment, aging, and cancer, and it is well conserved among most plants, animals and fungi

[4, 5]. In mammals, DNA methylation occurs predominantly in the cytosine-phosphate-

guanine (CpG) dinucleotide context. Across most of the mammalian genome, CpGs occur

with low frequency, except for regions called CpG islands (CGIs), which are often associated
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with promoters [6]. Methylated promoters are associated with transcriptional repression,

pointing to a role for DNA methylation as a stable and heritable chromatin mark to pro-

gram alternative gene expression states [7, 8].

The inheritance and maintenance of methylation patterns across cell cycles is important in

development and throughout organismal lifespan. Methylation patterns encode information

related to gene expression [9, 10], differentiation [11], and genomic imprinting [12]. Fail-

ure in maintenance and transmission of such patterns can lead to aberrant gene expression,

and diseases including cancer [13], developmental abnormalities, and even death [14]. The

classical model of DNA methylation maintenance introduced the idea that the symmetrical

nature of the CpG dinucleotide provides a biomolecular structure whereby DNA methylation

could be inherited across a single CpG site by the activity of a, then posited, “maintenance”

methyltransferase enzyme [12, 15]. The mammalian DNA methyltransferase DNMT1 was

subsequently found to serve as the primary maintenance enzyme [16]. However, the clas-

sical model has been refined in a number of ways based on updated understanding of the

biochemical properties and genomic activity of methyltransferases (reviewed in [17]). For

instance, a wealth of evidence suggests that the efficiency and specificity of methylation

enzymes are not sufficient to support the observed high fidelity of maintenance, within the

classical, independent-site model [18, 19, 20, 21, 22].

Interdependence, or coupling, of maintenance methylation activities imparted on CpGs lo-

cated within close proximity can provide some reconciliation between the known biochemistry

of methylation reactions and the observed stability of the genomic methylation landscape.

Recent findings of preferential recruitment of DNMT1 [23], and faster maintenance methy-

lation rates [24], at sites with more neighboring hemimethylated CpGs are clearly at odds

with an independent-CpG-site model. CpG interdependence has been suggested to occur

via various molecular mechanisms, including DNMT1 processivity [25, 26, 27] (in which an

enzyme can methylate multiple neighboring CpGs on nascent DNA sequentially) and coop-

5



erative interactions, e.g., with UHRF1, which localizes, and in turn helps recruit DNMT1

molecules, to hemi-methylated CpGs [28, 29]. Mathematical modeling has also suggested the

importance of CpG interdependence, also called collaboration, both in maintenance and de

novo methylation, for long-term collective stability of methylated and unmethylated genomic

regions [30, 31, 22, 32, 33, 34].

A quantitative and mechanistic understanding of CpG interdependence during maintenance

methylation in vivo is lacking. The genomic lengthscales over which CpG coupling occurs

are not well understood. It is not yet known to what extent processivity, versus other

mechanisms of CpG interdependence, influences dynamics of maintenance methylation. Nor

is it yet well-understood how local genomic context influences these mechanisms in vivo.

In this study, we address these questions by elucidating CpG-coupled-dynamics in mainte-

nance methylation by use of statistical inference, bioinformatics, and stochastic modeling.

We leverage experiments that measured methylation status of nascent-strand CpGs across

post-replication timescales, genome-wide [35]. From these data, we infer how the rates with

which individual CpGs acquire methylation, post-replication, are correlated on nearby sites

in different regional contexts. Using stochastic models and theory of proteins diffusing along

DNA, we demonstrate that the rate correlation as a function of genomic distance provides

a mechanistic fingerprint for post-replication enzymatic processes. Our method provides a

novel way to infer lengthscales of linear diffusion of DNA-binding proteins, and it provides

the first direct evidence for genome-wide methyltransferase processivity in cells. Comparing

simulations to data allows us to extract quantitative insights from data, including the rela-

tive strengths of processive versus non-processive coupling mechanisms in different genomic

regions, and the length of processive steps.
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2.2 Results

2.2.1 Overview of Method

The methodology of this paper can be summarized as follows. We reanalyzed data from

Whole Genome Bisulfite Sequencing (WGBS) [36] and Replication-associated Bisulfite se-

quencing (Repli-BS)[35] in human Embryonic Stem Cells (hESCs) using a combination of

data-driven statistical inference and hypothesis-driven stochastic modeling. First, Maximum

Likelihood Estimation was used to infer per-CpG post-replication remethylation rates from

Repli-BS experiments, following our previously developed method [37]. We analyzed the

correlation of these data-inferred rates on nearby CpGs in different genomic contexts, such

as Enhancer, Promoter, etc., to study regional differences in maintenance kinetics. Next, we

studied the association of the strength of nearby-CpG remethylation-rate correlations with

other local genomic/epigenomic features. To aid interpretation of the experiment-derived

correlation functions and their regional differences and associations, we developed region-

specific stochastic models of post-replication DNA methylation maintenance kinetics. Using

these models, we generated simulated bisulfite sequencing datasets under different mechanis-

tic hypotheses, and we compared the resultant in silico-generated rate correlation functions

to those of the experimental data, focusing both on qualitative and quantitative features,

such as shape and lengthscale. Combining theory with stochastic simulation, we developed

a method to separate processive and non-processive contributions to the experiment-derived

rate correlations.
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2.2.2 Post-replication remethylation rates are correlated on neigh-

boring CpGs, and correlation varies with genomic context

In our previous work, we developed a statistical inference procedure to obtain single-CpG

post-replication maintenance methylation rates (here denoted “remethylation rates”) from

Repli-BS data [37], which further supported the variability of remethylation kinetics across

the genome.

In this paper, we focus on local correlation of methylation kinetics, obtained from Repli-BS

data, and analyze the data-derived correlation using biophysical models of enzymatic methy-

lation reactions. The data-inferred kinetic parameters quantify the rate of accumulation of

methylation at each CpG site across hESCs in the measurement set over the experimen-

tal timecourse of 0-16 hours post-replication. We correlate single-CpG remethylation rate

constants (denoted ki, for the rate at the ith CpG, obtained by Maximum Likelihood Es-

timation, see Methods) on pairs of CpGs, as a function of the genomic distance between

them.

DNA methylation levels (also hereon denoted methylation “states”, or the fraction of cells

exhibiting methylation at an individual CpG site) on neighboring CpGs are also correlated

[38, 33]. This methylation state correlation, as a function of genomic distance in basepairs,

reflects information such as the size of persistently methylated (or unmethylated) domains.

As such, it reflects the generally static methylation landscape in a given cell type.

We observe both common and distinct features in the correlation functions, when comparing

different genomic regional contexts for both data modalities (i.e., rate-correlations and state-

correlations). Common to all regions, and to the genomic average with no region-filtering,

remethylation rate-correlation decreases rapidly with distance until approximately 100 bp

(red curves in Figure 2.1a). After 100 bp, a slower decay is evident in all regions. However,

this steep decrease in correlation and rapid change in decay is not observed in correlation
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of methylation state (navy curves), which generally shows a slower (persisting to >1 kb),

smooth decay, albeit with wide variation in decay-lengths between regions. The existence of

such a pronounced difference between methylation state and rate correlation, persistent in all

genomic regions, suggests that the methylation rate correlations are not determined by the

methylation landscape itself, and raises the question of what dynamic processes determine

rate correlations.

Some features of the correlation functions vary between the genomic regions studied. We

quantify the average magnitude of short-range correlation by the mean correlation to 1

kbp. These magnitudes are highly variable across genomic contexts and across modali-

ties. Genome-wide, the magnitude of rate-correlation is low (0.06) compared to that of

state-correlation (0.82). Across regions, CGIs (CpG Islands) show the highest magnitude of

state-correlation (0.85) while transcription factor binding regions (TFBR) shows the highest

magnitude of rate-correlation (0.15). By contrast, the lowest average magnitude of state-

correlation and of rate-correlation are both found within SINEs (Short Interspersed Nuclear

Elements) regions with 0.18 and 0.035 correlation, respectively. We hereafter refer to these

differences in remethylation rate- and state-correlations according to genomic context as

“genomic region specificity”.

In general, the results for methylation state indicates that methylation on CpGs within

1kb are highly correlated genome-wide. Exceptions are within SINEs and LINEs (Long

Interspersed Nuclear Elements), where state-correlation has significantly decayed by 1 kbp.

Although the methylation rate correlations show an apparently uniform sub-100-bp decay

across regions, differences are visible in their longer-lengthscale (>100 bp) decay profiles

(Figure 2.1b). In particular, CGIs and TFBRs (Transcription Factor Binding Regions) show

the strongest long-distance correlation, persisting near or above 0.1 past 1 kbp. We further

separated the analyzed CpGs from CGIs and TFBRs into “within” and “across” region

pairs (2.1c). “Within” correlation is computed for CpGs that are within one contiguous
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Figure 2.1: Methylation states and post-replication remethylation rates are corre-
lated on neighboring CpGs, and correlation varies with genomic regional context.
(a) Correlation of remethylation rates (red, y-axis) and correlation of percent methylation
(i.e., bulk methylation state, blue, y-axis) of nearby CpGs at given genomic distances (x-
axis), separated in panels by genomic regional context. Each scatter point at distance d
represents the correlation coefficient of rate-pairs {kX , kY } derived from all CpG pairs in the
region with intervening distance d. Dots: raw rate correlation in base pair resolution, lines:
smoothed correlation curve by LOESS(LOcally Estimated Scatterplot Smoothing,[39]) with
100 bp span. (b) Correlation of remethylation rates with curves from different genomic re-
gional contexts overlapped and y-axis zoomed. Only the LOESS smoothed curves are shown
for clarity. (c) Rate correlation functions computed retaining only pairs of sites identified
either as within the same localized region (red) or not within the same localized region (or-
ange).
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region (as defined by the filtering protocol), whereas “across” correlation only retains pairs

of sites that are assigned to non-contiguous regions. The resultant rate correlation functions

indicate generally stronger contribution of within- versus across-region correlation (note that

the number of datapoints for “across” correlations is lower for short distances, since nearby

CpGs are more likely to be in contiguous regions).

In all, these results indicate different magnitudes and decay-lengths of inter-CpG coupling

in maintenance methylation. In particular, they point to more pronounced CpG collectivity

of maintenance kinetics in contiguous CGIs and TFBRs. That is, neighboring CpGs in

CGIs and TFBRs tend to have more correlated remethylation rates and thus more similar

methylation across post-replication time, as compared to other regions. However, all regions

showed correlated rates to some degree.

2.2.3 Regional correlation of DNA methylation maintenance ki-

netics is increased with CpG density and chromatin acces-

sibility, and decreased with higher bulk methylation levels

To investigate the factors associated with the observed region specificity, the association be-

tween remethylation rate correlation and other local genomic characteristics were examined.

For each individual CpG in the dataset, a measure of the local chromatin accessibility is

collected from DNaseI hypersensitivity data in ENCODE/OpenChrom (see Materials and

Methods). The local CpG density surrounding a given site is calculated by the number

of neighboring CpGs within a 500bp window. “Bulk” methylation refers to measurement

of DNA methylation in human embryonic stem cells(HUES64) measured by Whole Genome

Bisulfite Sequencing(WGBS). We plotted the magnitude of the remethylation rate correlation

(0-1000 bp) for each region versus average chromatin accessibility (e.g., DNAse hypersen-

sitivity enrichment) (Figure 2.2a), local CpG density (Figure 2.2b), and WGBS (“bulk”)
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methylation percentage (Figure 2.2c). We calculated the Pearson correlation coefficients

(and associated p-values) between the mean rate correlations and three factors using the

‘stats.pearsonr’ in the Scipy package [40]. Linear correlation was found between the magni-

tude of remethylation rate correlation and these three factors. We found the rate correlation

is positively correlated with DNase level and CpG density (albeit weakly), while it is inversely

correlated with bulk methylation level. These results suggest that the genomic regional dif-

ferences observed in rate correlation in Figure 2.1 may be driven globally by variation in

chromatin accessibility, CpG density, and background methylation landscape.

Figure 2.2: DNA methylation maintenance rates show higher local correlation in
genomic regions with higher chromatin accessibility, CpG density and lower bulk
methylation levels. Mean remethylation rate correlation by region, plotted versus other
quantified, localized genomic measurements from independent measurements: (a)Magnitude
of mean remethylation rate correlation (equal to the average over rate correlation for all
inter-CpG distance < 1 kbp (i.e., integers from 2- 1000) in the given region) versus mean
regional chromatin accessibility, as quantified by DNase level; (b) Versus mean local CpG
density (mean number of neighboring CpGs within a 500bp window); (c) Versus mean
WGBS (“bulk”) methylation level. Note that the datasets are site-matched, so the analysis
is restricted to sites that tend to have intermediate to high methylation, since these are the
sites for which remethylation rates are available.
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2.2.4 Local methylation correlation varies across post-replication

time and shows persistent region specificity

In order to investigate the origins and regional differences of methylation correlation, we

focus on three representative genomic regions characterized by high (CGI), medium (En-

hancer) and low (SINE) methylation state correlation. In figure 2.3, we plot three types of

correlation functions for these three regions: in addition to bulk WGBS correlation and rate

correlation, we also plot correlation of methylation state in “nascent” DNA, which contains

a subset of measurements from the full temporal Repli-BS dataset, corresponding to the

0-hour timepoint of the original pulse-chase experiment[35]. Thus, “nascent” here refers to

methylation readout ≤ 1 hour post-replication.

Note that the red rate and dark blue state correlations are derived from the same data

as in Figure 2.1, but in contrast to Figure 2.1, the curves in each panel of Figure 2.3 are

site matched. In practice, remethylation rates are available for only a subset of CpGs, as

compared to WGBS measurements. This is because the rate constant is undefined where no

methylation is measured, and is often unidentifiable when methylation is very low. Thus,

there is significant overlap between the sites for which rates are not available and sites for

which WGBS percentages are 0 or near 0. We reasoned that some of the methylation state

correlation in Figure 2.1 could arise from the bimodal nature of methylated and unmethylated

regions. For a more direct comparison to rate correlation on a site-specific basis, we thus

filtered to a common set of sites, which in practice retains mostly sites with intermediate to

high methylation in WGBS. After filtering to these common sites, we indeed observe some

decrease in state correlation (dark blue curves in Figure 2.1a versus 2.3), but rate correlation

remained persistently lower than state correlation in all regions.

We observe that methylation state correlation in nascent DNA is generally lower than that

in bulk DNA, suggesting that state correlation increases over post-replication time. (Bulk
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WGBS measurements reflect temporal variability from cells in various stages of the cell cy-

cle and from differences in replication-timing across the genome (meaning it largely contains

matured DNA strands), whereas the nascent data in principle captures reads within one hour

post-replication [35]). In all studied regions, the nascent methylation correlation is interme-

diate between rate and bulk state correlation (with the exception of very short distances in

SINEs).

The trend in genomic region specificity of methylation correlation is persistent across the

three types of correlation functions. This in turn suggests that the region specificity is

persistent across post-replication time. For example, CGIs consistently show the highest

correlation compared to the other regions in rate, bulk methylation, and nascent methylation.

Conversely, SINE consistently shows the lowest correlation.

These results suggest that the processes that govern coupling (or interdependence) of methy-

lation among neighboring CpGs differ depending on the genomic regional context, and that

these processes are region-specific already at early post-replication timepoints. Additionally,

the distinct shapes and magnitudes of the CpG-neighbor correlations across time suggest that

different processes control CpG-neighbor-interactions at early versus late post-replication

times.

We hypothesize that the three correlation modalities can be interpreted as follows: rate cor-

relation reflects the dynamic mechanisms of maintenance methylation, thus shedding light

on early post-replication-time processes. In contrast, bulk methylation state correlation

largely reflects the steady-state methylation landscape, i.e. reflecting the balance among

methyl-reading/writing/erasing processes operating across post-replication time to regulate

the methylation landscape, but largely reflecting the stable methylation landscape of a given

cell type. Nascent methylation state reflects a mixture of the two, as the experiment “cap-

tures” CpGs in transit between their state immediately (up to one hour) post-replication

and steady state. In the following sections, we test this hypothesis by use of computer
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simulations and model-guided data analysis.

Figure 2.3: DNA methylation correlation increases over post-replication time and
shows persistent region specificity across different data modalities. Data from
three representative regions and three methods of extracting methylation correlation; all
three curves in each panel are derived from the same set of CpGs. Dark blue: correla-
tion of methylation state of neighboring CpGs from Whole Genome Bisulfite Sequencing
Experiments (WGBS, “Bulk”). Light blue: Correlation of methylation state of neighbor-
ing CpGs from WGBS on nascent DNA from Repli-BS-seq experiments (i.e., < 1 hour
post-replication) (“Nascent”). Red: Correlation of remethylation rates inferred from Repli-
BS-seq experiments. Data for rate-correlation (red) is identical to that of Figure 2.1a. Data
for bulk methylation (WGBS) is also derived from the same dataset as Figure 2.1a, but
filtered to retain only those CpG sites for which a rate was available (determined by per-site
read-depths, see Methods).

2.2.5 Rate correlation provides a mechanistic fingerprint for en-

zyme kinetics

We use simulations to generate synthetic data mimicking the various bisulfite sequencing

datatypes (rates from Repli-BS, nascent methylation from Repli-BS, and bulk methyla-

tion state from WGBS). We then compute the correlation functions for the synthetic data.

Figure 2.5 shows simulation-derived correlation functions for three representative genomic

regions from Chromosome 1 for two mechanistic models termed Distributive and Processive.

Briefly, DNMT1 binds to nascent CpGs and catalyzes the addition of a methyl group. In

the Distributive model (Figure 2.4b), the enzyme unbinds after the catalytic step, and must
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independently rebind to an available hemi-methylated CpG in order to catalyze a subsequent

methyl addition. In the Processive model (Figure 2.4c), the enzyme can remain bound to

DNA after methylating a CpG, and can travel along DNA (via a one dimensional diffusive

random walk) to reach neighboring hemi-methylated CpGs and again catalyze methylation.

The random walk occurs with with 1D diffusion coefficient, D, and the enzyme potentially

unbinds before reaching its target with rate koff . The kinetic parameters for both models

are given in the Supplement.

In both Distributive and Processive mechanisms, the simulated bulk methylation correla-

tion approaches the input methylation landscape in the three regions. This is expected,

because the input landscape dictates parental strand methylation in the model, and the

model assumes that as time progresses, the nascent strand methylation will ultimately match

the parental strand input (i.e., it assumes perfect maintenance in the long-time limit). In

contrast, the shapes of remethylation rate correlation are distinct from those of the input

methylation landscape, and are dependent on the model mechanism. In all simulated re-

gions, nascent correlation is intermediate between bulk state and rate, in agreement with

experiments. The Distributive model produces no correlation in remethylation rate, in agree-

ment with our previous results [37]. In contrast, the Processive model produces a nonzero

rate correlation that appears to qualitatively reproduce the experimentally observed rapid

decay of correlation with genomic distance up to approximately 100 bp. Neither model re-

produces the low but persistent correlation visible at distances greater than 100 bp in CGI

and Enhancer in Figure 2.3.

The simulated correlation functions provide a possible explanation for the discrepancy be-

tween methylation state and rate correlations observed from experiments (Figures 2.1 and

2.3). Namely, they suggest that the methylation rate correlation shape is dictated by en-

zymatic maintenance mechanisms, independent of the background methylation landscape.

That is, simulations support that mechanistic insights on maintenance methylation can be

16



Figure 2.4: Schematic of stochastic simulation of DNA methylation maintenance in
different genomic regions, according to either Distributive or Processive mech-
anisms. (a) Each simulation models a strand of N CpGs (N = 25000 to 75000) where
the CpG positions and the parent-strand methylation at the initial condition are taken
from WGBS measurements in a given genomic region (e.g., CGI or SINE). Multiple strand
replicates are simulated over time. Immediate-post-replication DNA is assumed to be un-
methylated on the nascent strand at all sites, and the binary methylation status of the par-
ent strand sites are sampled probabilistically from the input methylation landscape (mean
methylation level in WGBS). During the simulations, DNMT1 targets hemimethylated CpGs
for methylation, according to either a Distributive (b) or Processive (c) mechanism. The
Distributive mechanism assumes that the enzyme binds to each hemi-methylated CpG inde-
pendently. After catalyzing methylation, the enzyme immediately unbinds from DNA (we
assume koff ≫ kcat, such that methylation and unbinding are treated as a single reaction). To
reach a subsequent CpG, the enzyme must independently rebind with rate kf . The Proces-
sive mechanism assumes that, after catalyzing methylation at a CpG, DNMT1 can remain
bound to DNA and reach nearby hemimethylated CpGs by linear diffusion along DNA.

derived using the rate correlation, since it effectively separates correlations introduced by

early post-replication-time processes from those operating at longer timescales (and which
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dominate the bulk WGBS correlation). Thus, the rate correlation is a useful new quantity,

which can be used to distinguish between hypothesized mechanisms. In the processive model,

the rapid dropoff of rate correlation is due to the enzyme’s intrinsically limited capability to

process along DNA over long lengthscales. As such, a pair of CpGs can be strongly correlated

in their methylation state (as dictated by parent-strand methylation, and thus reflective of

the correlated methylation landscape), while showing low correlation of their kinetic rates,

if their distance is outside the enzyme’s processivity range. However, the simulations also

demonstrate that, while the Processive mechanism partially recapitulates experiment-derived

rate correlations, it cannot explain the longer-distance, slow rate correlation decay in CGI.

2.2.6 Rate correlation in Processive model decays exponentially,

dependent on 1D diffusion and unbinding rates

We used simulations and theoretical modeling to determine whether quantitative insights

could be derived from the experimental rate correlations. We first investigated how rate

correlations arising from the Processive mechanism depend on model parameters. In an

idealized theoretical model, we find that the rate correlations are related to the diffusion

constant D and the unbinding rate, koff , as:

Corr(X, Y |d) ∝ e−d
√

koff/D (2.1)

where X, Y are pairs of remethylation rates on sites that are distance d apart (along the

DNA strand). See the Supplemental Information for justification of Equation 2.1.

We find a good match between the above analytical theory and the stochastic simulations

(Figure S2). We performed regional simulations for varying values of D/koff , and then pro-

cessed the simulated data through the MLE inference pipeline and computed the correlation
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Figure 2.5: In simulations, rate correlation but not state correlation depends on
enzymatic mechanism; only Processive model displays nonzero rate correlation.
Simulated correlation functions for three representative regions (SINE, Ehnhancer, CGI) and
using the Distributive (top) or Processive (bottom) mechanism. Simulations are performed
using experimental regional methylation landscapes for SINE, Enhancer, and CGI as initial
condition inputs (grey curves). The simulations provide synthetic data corresponding to each
of the three experimental data modalities, as in Figure 2.3. Synthetic data are processed
in the same way as the experimental data to compute the inferred remethylation rates and
Pearson correlation functions. Both models recapitulate temporal trends in rate correlation
seen in experiments, Figure 2.3 (correlation in rate < nascent state < bulk state). Only the
Processive model captures nonzero rate correlation sub-100-bp; neither model captures low,
persistent correlation > 100 bp observed in Figure 2.3.
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function. We then fit the correlation functions to a single exponential decay, and observe

a good match between the fitted decay constant and the theoretically predicted value of√
koff/D. These results demonstrate that the predicted exponential correlation holds, de-

spite potentially complicating factors in the stochastic model (e.g., the finite time required for

diffusion, many CpG sites and multiple enzymes acting simultaneously on one strand, etc.),

and uncertainty introduced by the MLE-fitting pipeline. The simulations also predicted that

the exponential decay length was not strongly affected by the length of measured reads in

the Repli-BS experiments (Figure S3), though some spurious correlation arising from read-

length was observed in silico. All in all, these results support the finding that processivity,

in a linear diffusion model, is consistent with exponential decay of rate correlations obtained

from Repli-BS, and that the decay constant can be interpreted as
√
koff/D.

2.2.7 Mathematical model for diffusion-based and region-based

components of methylation rate correlation

The Processive model can explain exponential decay of rate correlation, but cannot by itself

explain the significant correlation observed past 100 bp in strongly correlated regions such as

CGI (Figure ??). Nor can it explain the association of this correlation to other regional ge-

nomic characteristics (bulk methylation levels, CpG density, chromatin accessibility). Based

on the observations in Fig ??, we reasoned that this additional rate correlation can be un-

derstood to result from correlated methylation times on neighboring sites due to a variety

of regional features, that we describe as

Corrregion(X, Y |d) = ϕ(features(d)) (2.2)

and refer to as “region-based correlation”. That is, this component of the correlation function

can be expressed as a function ϕ, which depends somehow on local features, e.g., related to the
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chromatin landscape. These features themselves held some distance-dependent correlation.

Consideration of additional correlating factors (beyond diffusion) equates to a revision of the

idealized theoretical model above. Now, in event 1, if the neighboring site is not reached by

diffusion, but rather the two sites are methylated in separate events, their times τi and τj are

nevertheless correlated in a way that depends not only on their distance apart, but also on

various other features of their location within the genome. We do not propose a mechanistic

model for this additional correlation, but label it as ϕ, and estimate it for each region, based

on the data. Given these two contributions, which we term diffusion-dependent (denoted θ)

and region-dependent (ϕ), the total correlation from both contributions is given by:

TotalCorr(X, Y |d) = θ + (1− θ)ϕ. (2.3)

where the above equation can be understood by probabilistic arguments, i.e., the probability

that a neighbor is reached by diffusion is θ (given by Eq.2.1); additional correlation ϕ is

only present when the neighbor is not reached by diffusion, with probability 1 − θ. This

mathematical decomposition of the rate correlation is shown schematically in Figure 2.6a.

The model of equations 2.1, 2.2, and 2.3 makes a prediction: that if ϕ (the component

of correlation due to genomic regional features) can be estimated from the data, then the

remaining correlation (θ) should decay exponentially with distance, and should not depend

on local genomic context.
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2.2.8 Separation of experimental remethylation rate correlation

functions into diffusion-dependent and region-dependent com-

ponents quantifies genome-wide processivity of DNMT1 in

vivo

We developed an approach to estimate ϕ as follows. The total experiment-derived correlation

functions are computed from a list of cytosine positions and their inferred remethylation

rates. Denote xm
n as the position of site n, identified as belonging to regionm (wherem is one

of the fourteen regions of Figure 2.1, and n ∈ [1, N ] given that data is available for N sites in

a region of interest). Denote the remethylation rate as km
n , giving a list of pairs {xn, kn}m for

each region, from which the correlation is computed. We also have additional genomic feature

data: let qmn , r
m
n , s

m
n denote the measured bulk methylation level, the local CpG density, and

the chromatin accessibility acquired from independent datasets (see Methods). We then

perform unsupervised k-means clustering on the features {q, r, s}m to obtain clusters of sites

that are (i) previously assigned as belonging to the same type of genomic region m, and

(ii) share more fine-grained similarity in terms of their bulk methylation level, CpG density,

and chromatin accessibility. We then randomly shuffle the nucleotide positions within each

subcluster, and denote these shuffled positions as x̃n. We now have a new list, {x̃n, kn}m,

where the true nucleotide positions have been randomized, but their reassigned position is

still similar to the true position in terms of the features {q, r, s}m.

We recalculate the correlation functions for each of the regions with the new lists {x̃n, kn}m.

We label this new correlation function as the region-dependent component ϕ, reasoning that

it captures rate correlation that can be attributed to the regional features, according to the

model of Equation 2.2. We then extract θ from the total correlation using equation 2.3. The

results of this decomposition are plotted in Figure 2.6b (a more detailed view in regions CGI,

Enhancer, and SINE is shown in Supplemental Figure S4). We find that ϕ is more variable
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between different genomic regions, as compared to the component θ, which appears nearly

uniform across genomic regions and in all regions shows rapid decay within ≈ 100 bp. We

find that θ is generally well fit by a single-exponential decay and the fitted decay constants

are similar across genomic regions, with a mean decay constant of 0.028 (ranging from .023

to .032, in TFBR and SINE, respectively), corresponding to a mean decay length of 36

basepairs (31 to 43 bp, respectively), Figure 2.6c. Importantly, this decomposition approach

does not impose any a priori assumptions on the functional form of θ. The results confirm our

hypothesis, that after removal of the correlation component dependent on regional features

of the chromatin landscape, the remaining correlation decays exponentially with distance.

Our model predicts that the fitted exponential decay constant should be reflective of param-

eters of enzyme diffusion, namely, equal to
√

koff/D. Thus, the model predicts that the

decay constant is insensitive to other factors, such as variability of inter-CpG spacing. We

confirm this in the experiment-derived correlation functions, by comparing the fitted decay

lengths in each region to the inter-CpG distance distributions in each region (Figure 2.6d).

Despite the significant differences in CpG density in the different regions, the decay lengths

are generally constant, i.e., the median inter-CpG distance is 10 and 161 bp in CGI versus

Intergenic regions, with corresponding fitted decay lengths of 39.6 and 35.6 bp, respectively.

Note that the exponential fit is not perfect, as evident by slight discrepancies in fit constants

obtained for different window sizes. This discrepancy is due to low, persistent, nonzero

longer-range correlation visible in θ in some regions (Figure S4), which we attribute to

our model of ϕ, which was based only on three genomic features, and thus likely did not

fully account for all region-based correlation. We therefore report fit constants from the

100bp window, to estimate the short-range decay while minimizing contamination from long-

range residual correlation. However, the quantitative impact of different fit window sizes on

estimated constants is relatively minor, as seen in Figure 2.6c.

All in all, these findings support that θ reflects the diffusion-based contribution to the cor-
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relation function, because (i) it is the explicitly distance-dependent part that remains after

removing correlation attributed to the other features {q, r, s}m, (ii) it decays exponentially,

(iii) it is uniform across the genome, consistent with processivity being an inherent property

of DNMT1’s mode of action, and thus uniform across genomic regions. If θ is interpreted as

reflecting processivity of the enzyme according to a 1D diffusion model, then diffusion param-

eters can be obtained from the experiment-derived correlation function. We thus estimate

D/koff to be 1300 bp2 and the length of a processive step of DNMT1 to be 36 basepairs, on

average, across the genome.

2.3 Discussion

2.3.1 Summary of key results and methodological contribution

We have analyzed correlations among CpG sites in the genome obtained from estimated

kinetics of post-replication DNA methylation and from WGBS in hESCs. We find that

post-replication remethylation rates on nearby CpGs are correlated, and the nature of this

correlation can shed light on molecular mechanisms of maintenance methylation, when an-

alyzed in conjunction with stochastic simulation and mathematical models. We summarize

our key results as follows: (i) Methylation rate correlation is a new genomic quantity, which

contains information distinct from that contained in methylation state correlation. In par-

ticular, the rate correlation reveals mechanistic information on enzymatic processes. (ii)

Some, but not all, of the rate correlation observed on nearby CpGs decays exponentially

with genomic distance, and is consistent with processive activity of DNMT1 according to a

linear diffusion model. Our analysis indicates an average distance of 36 bp between nearby

CpGs that are methylated processively after DNA replication. (iii) In addition to evidence

of processivity, we also discovered additional correlation, not consistent with a processive
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Figure 2.6: Decomposition of experimental rate correlation into processive and
nonprocessive components allows estimation of DNMT1 diffusion parameters
from data. (a) Mathematical model of mechanistic contributions to rate correlation arises
from diffusion-based (i.e., processive) and region-based (i.e., nonprocessive) processes. (b)
Rate correlation from experimental data are plotted in red, and the corresponding decom-
posed components, diffusion-based components in green and region-based components in
pink. (c) Single-exponential fit decay constants for the green curves (θ). (d) Comparison of
the inter-CpG distances and extracted rate correlation decay length (from θ) of each genomic
region
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model, that is dependent on the genomic regional context. Among studied regions, CGIs

and TFBRs showed the most significant contribution of this non-processive (termed “region-

based”) correlation, which persisted past 1 kbp. In contrast, SINE and LINE showed the least

contribution, suggesting that CpG interdependence in these regions results nearly entirely

from linear diffusion (processivity) of the enzyme. (iv) Further analysis of the region-based

rate correlation indicates that much of the regional variation can be attributed to varia-

tion in three genomic/epigenomic features: chromatin accessibility, CpG density, and bulk

methylation.

More generally, we show how combining “top-down” mathematical modeling (i.e., data-

driven, using statistical inference) with a “bottom-up” approach (i.e., using hypothesis-

driven, or mechanistic models) can be used to glean kinetic insights from a measurement

technique that affords genome-wide readout of the post-replication methylome over time [35].

A major new contribution of our paper is the development of a method for using data-derived

rate correlations on genomic sites as a quantitative fingerprint of diffusive and nondiffusive

enzyme kinetics. This method could be applied to other datasets in the future.

A number of experimental techniques have recently been developed, employing nucleoside-

analog labeling of replicating DNA, followed by isolation/immunoprecipitation and sequenc-

ing [24, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. Our study shows that statistical correlations

from such measurements have potential to yield quantitative insights into molecular mech-

anisms governing epigenetic inheritance, even when time resolution is coarse.

Diffusion of proteins along DNA has been an area of intense study, notably in the context

of how transcription factors locate target sites (reviewed in [51, 52]). Direct measurement of

linear diffusion of proteins along DNA in vivo has been achieved by single-molecule tracking

[53, 54]. Our study shows that, for enzymes with ubiquitous target sites on DNA, correlations

from temporal sequencing can also yield quantitative details on protein diffusion along DNA

within cells (albeit indirectly), without recourse to labeling and microscopy.
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2.3.2 Processivity of DNMT1

While a number of studies have discovered evidence of DNMT1 processivity previously in

in vitro systems [55, 26, 27, 25, 31, 56], our study is the first to our knowledge to uncover

a quantifiable signature of methyltransferase processivity in genome-wide, mammalian cell-

based measurements. Thus our findings shed new light on enzymatic processivity within

the context of maintenance methylation in vivo. Our findings are consistent with a pic-

ture wherein DNMT1 performs processive catalysis regardless of genomic context and in

a quantitatively consistent manner (i.e., with relatively uniform lengths of processive steps

between CpG targets, genome-wide). Our analysis does not afford direct estimation of linear

coefficient D, but rather the ratio D/koff . We are not aware of any existing quantitative

estimates or measurements of DNMT1 linear diffusion coefficient in vivo. If we assume that

DNMT1 has D within similar range to other measured DNA-binding proteins (of order 105

to 107 bp 2/s [57, 52, 58]), our results would indicate average residence times of roughly 10−4

to 10−1 seconds for the enzyme when it is nonspecifically bound to non-CpG sites, en route

to catalytic sites.

Previous in vitro estimates of the length of processive runs of DNMT1 varied widely. For

example, Vilkaitis, et al reported processive runs as long as 520 bp [26] while Goyal et

al. reported processive runs of over 6000 bp [31]. Our estimates based on the Repli-BS

dataset are much shorter than these, with the average length of a processive run being about

36 basepairs for nearby CpGs. One possible explanation for the discrepancy is that our

estimate is from experiments in cells, where the in vivo chromatin environment, replication

machinery, and full complement of DNA-binding proteins are present. These could limit

free diffusion of DNMT1 along DNA. Transcription factors are also thought to search for

targets partly by 1D diffusion along DNA, and the effect of crowding has been considered

[52]. While in vitro estimates for 1D sliding lengths of various DNA binding proteins are

as high as 20 kb [57], in vivo sliding length of the lac repressor was found to be short, at
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45 bp [53]. How the chromatin environment affects the motion of eukaryotic DNA binding

proteins is still poorly understood [59]. In particular, the question of how methyltransferase

processivity is affected by the crowded environment of the cell warrants further study.

Our analysis of the exponential contribution to rate correlation can not be directly or cer-

tainly attributed to the action of DNMT1 alone. For example, PCNA plays a role in recruit-

ment of DNMT1 to replication foci[60], and this protein also can diffuse linearly along DNA

[58] (although DNMT1 processivity does not rely on PCNA [26]). We cannot exclude the

possibility that some mechanism other than intrinsic DNMT1 diffusion along DNA gives rise

to the observed rate correlations, though this interpretation is consistent with the uniform

lengthscale observed across different chromatin environments.

2.3.3 Nonprocessive CpG coupling

We find that additional mechanisms affect post-replication remethylation rate correlation

where the local genomic/chromatin landscape allows it. We find this non-processive (i.e.

non-exponential) source of rate correlation to be most prevalent where chromatin is locally

open, CpGs are dense, and the background methylation is relatively low. Although our

study does not attempt to define the mechanistic basis of the non-processive component of

the rate correlation, various mechanisms can be proposed based on our observations and on

previous literature. For example, any mechanism whereby DNMT1 reaches its CpG target

through cooperative interactions with other molecules could be speculated to have kinetics

dependent on the local genomic and epigenomic context. Neighbor rate correlations could

then be sensitive to local context and have lengthscales determined by the the cooperative

molecular interactions, rather than being solely dependent on linear inter-CpG genomic

distances, in contrast with the processive mechanism. For example, recruitment of DNMT1

to replicating DNA by UHRF1 [28, 29] likely results in context-dependent kinetics, since

28



UHRF1 targeting is dependent on both histone state and the presence of hemi-methylated

CpGs [61]. A recent finding of monoubiquinated histone H3 helping recruit DNMT1 to

DNA stretches with multiple, but not one, hemimethylated CpGs [23] supports the idea that

UHRF1 helps direct DNMT1 to CpG-dense regions, and is consistent with our observation

of higher rate correlation in CpG-dense regions. Our findings may also be consistent with

a nucleation model, in which the initial binding of DNMT1 to replicating DNA occurs on

nucleosomes, directed by UHRF1, after which DNMT1 reaches nearby CpGs processively

[62]. If the initial binding events of separate DNMT1s on nearby nucleosomes are correlated,

such correlation would contribute on a lengthscale on the order of hundreds of basepairs,

while shorter-lengthscale correlation would be introduced through processivity.

In addition to UHRF1-mediated mechanisms, additional factors are likely to play a role in

the non-exponential correlation we observe. First, DNA is not one-dimensional; DNMT1

could reach nearby CpGs by facilitated diffusion (combining 1D diffusion along DNA with

3D diffusion in the nucleosol to nearby sites)[52], or by intersegmental transfer, similar to

transcription factors [51]. Our processive model assumes a 1D substrate, but our results

hint at sensitivity of maintenance kinetics to 3D DNA structure in the weak appearance

of peaks consistent with nucleosome spacing (Figure 2.1). Finally, transient binding of

post-replication DNA by transcription factors could introduce correlation into maintenance

methylation kinetics, as transcription factors could transiently block access to CpGs by

DNMT1 and thus delay remethylation. Such a mechanism could explain why we observe the

most pronounced region-based correlation in TFBRs.

2.3.4 Relationship between WGBS and rate correlation

Our study reveals a significant difference between the local correlation of methylation state

versus rate. We interpret this result as being due to the different information content of the
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two: WGBS experiments capture reads that largely reflect the stable methylation landscape

(though still partially influenced by replication-associated temporal variability [35]), while

the Repli-BS-derived methylation rates reflect the transient dynamic processes occurring

post-replication. Of note, there appears to be some relationship between the two, as we

observed similar trends in region specificity in methylation state and rate (specifically in the

region-specific, or non-processive, contribution to correlation). We furthermore note that,

when we restrict the analysis to common sites (thus retaining CpGs with intermediate to

high methylation levels, as rates are only inferrable for these sites), the similarity between

rate- and state-correlation is increased (i.e., as in Figure ?? versus Figure 2.1, where, for

example, the decay of bulk state-correlation in SINE is nearly as rapid as the decay of

rate-correlation). This suggests partial cross-talk between the transient post-replication

methylation events (including processivity) and the stable methylation landscape. Indeed,

it was previously reported that CpG co-methylation decays within tens to hundreds of bp,

with enzyme processivity proposed as its mechanistic origin [38].

However, our results also show that, in some regions (such as CGI), methylation state correla-

tion is significantly longer-lived than the processive lengthscale and significantly higher than

the rate correlation in total, and so the relationship between state- and rate-correlation is not

directly clear. As our analysis is based only on replication-associated methylation reactions,

it seems likely that our rate correlations are largely indicative of DNMT1-mediated main-

tence methylation, which cannot by itself shape the methylation landscape. The stochastic

models of this paper focus only on sub-cell-cycle timescales and methylation maintenance,

and thus assume that the methylation landscape (i.e., state correlation) is a static property

dictated by the parent-strand landscape at the time of DNA replication. However methyla-

tion models of multi-cycle dynamics suggest that differences in kinetic parameters, including

maintenance kinetics as well as demethylating and de novo methylation, shape the global

methylation landscape across mitotic cycles [22, 63]. Our method for obtaining data-driven

kinetic correlations could therefore be useful in the future to further improve these types of
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multi-cycle mathematical models.

2.3.5 Implications for stability of the methylation landscape

A number of mathematical modeling studies have provided support for the presence of inter-

actions (also called “collaboration”) among CpGs in dynamic methylation processes, includ-

ing in maintenance, de novo methylation, and demethylation reactions [30, 22, 33, 34]. These

models, in which a CpG is in some way affected by the state of nearby CpGs, built upon the

earlier, so-called “standard” model, wherein each CpG was considered to be independently

targeted by methyltransferases [64]. Crucially, as the cited studies showed, these interac-

tions provide the necessary nonlinearity to enable bistability in the dynamic system. That

is, they enable the same family of “reader” and “writer” enzymes to simultaneously maintain

distinct states of hyper- and hypo-methylation on groups of CpGs in different parts of the

genome, thus mimicking observed methylation patterns. While these models tend to be phe-

nomenological in nature (i.e., capturing dynamic phenomena without necessarily encoding

detailed molecular mechanisms), processivity can be considered to be one type of molecular

mechanism that contributes to inter-CpG interactions. Indeed, mathematical modeling also

supports the idea that diffusive processivity enhances multi-generational stability of methy-

lation patterns [31], just as does other mechanisms of CpG interaction [22]. It follows that

interdependence of CpG methylation kinetics, as quantified by correlation in this paper, has

relevance to human ageing and disease, since instability of the methylation landscape has

been linked to both[65, 66].

The mathematical model of Haerter et al. predicted that local (nearest-neighbor) interactions

of methylating reactions was sufficient to achieve stable propagation of methylation states

over multiple generations, though longer-range interactions were required for demethylating

reactions [22]. In the present study, we find that maintenance methylation occurs largely
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independently in regions that are CpG sparse and show low region-dependent correlation,

such as LINE. A nearest-neighbor-only model is consistent with our findings in regions such as

5UTR and SINE, where the processive lengthscale is on the same order as the typical inter-

CpG distance. In CGIs, the processive lengthscale is longer than the inter-CpG distance

(median 10 bp in the analyzed data), suggesting that CpGs in CGIs effectively interact

beyond nearest neighbors. Strong coupling of methylation in CGIs is consistent with faster

maintenance kinetics in CpG-dense regions, as has recently been reported [24]. TFBRs

showed inter-CpG distances similar to the processive lengthscale, however here processivity

is compensated by weak but longer range (region-based) coupling (also evident in CGIs).

These findings may predict enhanced stability of methylation in TFBRs and CGIs across

mitotic cycles, although better understanding of the interplay of correlation lengthscales for

de novo and demethylating reactions is needed.

2.3.6 Limitations of our study

Our study shows that novel experimental techniques that probe replication-associated dy-

namics genome-wide can yield surprisingly detailed dynamic insights, despite the limited

time resolution. However, the statistical inference approach is nevertheless limited. First,

each site-specific inferred rate constant is the result of a fit of the data to a stochastic Poisson

process; undoubtedly this is a simplistic model for dynamics that could potentially be tem-

porally complex in reality, e.g., non-exponential or even non-monotonic. Thus, individual

estimates can be error-prone for a number of reasons, from the inability of the simplistic

model to capture complex dynamics, to the limited time-resolution or sampling depth for a

given site, or all of the above. Because of the inherent difficulty in characterizing dynamics

in detail at any individual CpG genome-wide, we focused here on general features of the rate

correlation functions that are robust across a given genomic region. In this way, the whole-

genome nature of the data partially compensates for the sparse temporal resolution. We
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also ensured that our inference and analysis pipeline performed well on synthetic datasets,

generated from simulations. Going forward, it may be possible to yield more detailed dy-

namic insights with deeper sampling and more fine-grained time resolution (as achieved in

recent experiments [24]), which could enable further investigation into detailed, local kinetic

correlation.

Our study was performed on data from a particular cell line (HUES 64). Cell-type-specific

differences in human methylomes have been reported (e.g., [67]). The hESCs analyzed

here were found to have bimodal CpG landscapes similar to those of somatic cell-types

[68], though significant intermediate methylation is also present and has been attributed to

proliferation[35]. Although our mathematical modeling suggests that the dominant short-

range correlation lengthscale we observed relates to enzymatic properties, and is thus likely

not sensitive to cell-type-specific differences in methylation landscapes, further studies on

other cell types will be needed to determine the generalizability of our findings.

While we focus our models around the enzyme kinetics of DNMT1 (for simplicity and because

it is the dominant methyltransferase responsible for carrying out maintenance activity), we

acknowledge that our rate correlations are likely impacted by the presence of other (de

novo) methyltransferases, which have been known to associate with highly methylated CpG-

dense location (i.e., CGIs) [69]. Although our mechanistic models rigorously incorporate

1D diffusion, they lack the dynamic interplay of de novo, maintenance, and demethylation

reactions that has been studied in mathematical models previously [22, 17]. Our approach

could be applied to different cell lines in the future, e.g., with specific methyltransferases

disrupted, to further disentangle the molecular basis of kinetic correlation.

Another limitation of the model is that it does not directly include the dynamics of DNA

replication, nor account for the presence of multiple distinct origins of DNA replication in

the genome. Replication timing of distinct loci could introduce kinetic correlations in DNA

methylation that were not directly analyzed in our study. However, it is possible that rate
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correlation reported here could be related to replication origins, as CGIs have been partly

linked to replication origin activity [70] and show more pronounced region-specific correlation

in our study.

2.4 Methods

2.4.1 Site-specific post-replication methylation kinetics inference

The post-replication methylation data (Repli-BS data) of Human Embryonic Stem Cells

(HUES 64) was downloaded from GSE82045. In the Repli-BS experiments [35], cells were

pulsed for one hour with bromodeoxyuridine (BrdU). Then, bisulfite sequencing of BrdU-

labeled DNA captured CpG methylation reads from DNA that was replicated during the

pulse interval. The pulse-chase experiment captured methylation level of CpGs at timepoints

0, 1, 4, and 16 hours post-pulse, thereby giving a genome-wide temporal readout of CpG-

methylation over sixteen hours post-replication.

The Maximum Likelihood Estimation (MLE) procedure for inferring per-CpG post-replication

methylation rates from Repli-BS data is described in detail in [37]. Briefly, the temporally

distributed binary read-data (methylated-1 or unmethylated-0) at each CpG site is fitted

by a Poisson process, with each site i characterized by two inferred constants, ki and fi,

which represent the rate at which methylation accumulates at the site over the course of the

experiment, and the steady-state (or long-time) fraction of cells in the measurement set that

exhibit methylation at site i, respectively. We hereon refer to the inferred parameters ki as

the “post-replication remethylation rates” or simply the “remethylation rates”. Details of

the inference approach can be found in the Supplement (Extended Methods). Note that,

while the per-site inferences are obtained based on an analytical, independent Poisson process

model, the inferred rate parameters can nevertheless be used to investigate more complex
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types of dynamics and inter-site dependencies through correlations that are observed among

inferred parameters on nearby CpGs.

The ability to infer a remethylation rate for a given CpG site, and the uncertainty associated

with that inferred rate, depends on the read-depth of the experimental data, which varies

across sites and across timepoints. Details of uncertainty quantification can be found in

the Supplement and in our previous study [37]. We estimated on average 30% error in

any given estimate of rates ki. We validated our method by ensuring that ground-truth

rate correlations (obtained from simulated data), could be accurately recovered by the MLE

inference pipeline.

2.4.2 Annotations of genomic regions

The GRCh37/hg19 genome was used as the reference genome in this paper. The region

annotations for genes, promoters, exons, introns, 3’UTRs and 5’UTRs are downloaded from

the UCSC Genes track in UCSC Table Browser, whereas the LINEs (Long Interspersed

Nuclear Elements), SINEs (Short Interspersed Nuclear Elements), LTRs (Long Terminal

Repeats) were extracted from RepeatMasker track. CGIs (CpG Islands), Enhancers were

downloaded from CpG Island track and GeneHancer track, respectively. The promoters in

this paper were defined as regions 2000bp upstream and 200bp downstream of transcription

start sites (TSS). Local CpG density for a site was defined as the number of neighboring

CpGs in a 500bp window centered at that site.

The chromatin accessibility data was retrieved from ENCODE/OpenChrom(Duke Univer-

sity) H1 cell line. The regions of transcription factor (TF) peaks or TFBR denoted in

this paper were acquired from ENCODE ChIP-seq clusters for 161 TFs in H1 cells. The

Whole Genome Bisulfite Sequencing (WGBS) dataset used in this study was retrieved from

GSM1112841.
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2.4.3 Region-specific stochastic simulations of post-replication main-

tenance methylation

In order to gain further biological insight from the experiment-derived methylation correla-

tion functions, we perform region-specific stochastic simulations of maintenance methylation

(Figure 2.4), and use these simulations to generate synthetic data analogous to the vari-

ous experimental bisulfite sequencing data modalities. From these synthetic data, we com-

pute regional correlation functions and compare to those derived from experiments. Briefly

(see Methods), the simulations track nascent-strand methylation status of stretches of se-

quentially positioned CpGs, numbering on the order of tens of thousands. In contrast to

mathematical models that treat the interplay of de novo, maintenance, and demethylating

reactions, e.g. [22], we apply minimal models of single-site-resolution DNMT1-mediated

methylation on post-replication timescales. Each stochastic simulation tracks the binary

(methylated or not methylated) status of the “nascent-strand” CpGs. At the start of the

simulation (representing exactly time 0 with respect to DNA replication at that site-i.e.,

the time of nucleotide addition), all nascent CpGs are assumed to be unmethylated. The

presence or absence of methylation on cytosine bases on the opposing parental-strand at

time 0 is determined probabilistically from a data-derived regional methylation landscape

that acts as the simulation input. If the parental cytosine is methylated at time 0, then

the CpG is considered hemimethylated and the nascent cytosine is assumed to be a target

for DNMT1-catalyzed methylation, and it will acquire methylation stochastically at some

post-replication timepoint, according to the chemical reaction kinetics encoded in the model.

If the parental cytosine is unmethylated at time 0, then DNMT1 does not target the nascent

cytosine for methylation, and the site will remain fully unmethylated. In this way, the model

tracks only unidirectional maintenance methylation, and does not include active demethyla-

tion reactions. It also does not account for any de novo methylation activity. The simulation

tracks post-replication timescales (following experiments, to approximately 16 hours), up to
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but not including subsequent replication events.

Region-specificity is encoded at the start of the simulation in two ways: (1) the CpG posi-

tions and (2) the local methylation landscape, meaning: the probability of the nascent CpG

to be a target for DNTM1-catalyzed methyl-addition due to the presence of methylation on

the parental strand CpG dinucleotide. Both of these quantities are derived from experimen-

tal WGBS data with a regional filter to retain only CpGs in the desired region. Thus, in

simulating a CGI region, the ith simulated CpG (i ∈ [1..N ]) has a genomic position xi and

a probability fi to be targeted for methylation. We obtain both xi and fi from WGBS data

from hESCs, where xi is the integer site-ID for the cytosine (which is identified as being

located within a CGI) and fi ∈ [0, 1] is taken to be equal to the measured methylation

fraction at that site. For example, if a given CpG in the dataset has a WGBS-measured

methylation fraction of 0.8, then the model assigns the parental cytosine to be methylated

at the start of the simulation with a probability equal to 0.8. Strands are simulated in

replicate. With sufficient replicates, the simulation eventually recapitulates the experiment-

derived input methylation landscape, if it is run for a period of time that is sufficiently

long. That is, the simulation assumes perfect recapitulation of parent-strand methylation

by DNMT1 eventually, though the time at which each hemi-methylated CpG gains nascent

strand methylation is stochastic. In practice, the number of replicates and sampled time-

points are chosen to match those of the experimental data (see Methods). Note that the

WGBS-data-derived landscape likely reflects some degree of replication-associated temporal

variability [35], rather than a true steady-state. Nevertheless, use of the WGBS-background-

methylation landscape as the simulation input allows us to encode realistic region-specific

differences in CpG densities and qualitative differences in bulk methylation levels.

Region-specific simulations of single-CpG stochastic enzyme-kinetic models were carried out

using two candidate mechanisms, the Distributive model and the Processive model (Figure

4). The model reactions and associated rate parameters are graphically depicted in Figures
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4b and 4c. The Distributive model was simulated using the Gillespie Stochastic Simulation

Algorithm [71]. To incorporate 1D diffusion into the Processive model, we used a First Pas-

sage Time Kinetic Monte Carlo algorithm inspired by [72]. The methylation maintenance

model and simulation method is based in part on our previous simulation studies [37]. In

the present paper, we refined our Processive model and simulation algorithm to rigorously

incorporate physics of 1D diffusion (also called “sliding”) of proteins along DNA, with un-

binding [52], while enabling simulation of large numbers of CpGs. Our analytical results

on enzyme diffusion and simulation algorithm are presented in the Supplement (Extended

Methods), along with further details of the models. Parameter values are chosen to be in

line with experimentally measured values for DNMT1 where possible [73], and also to match

features of the Repli-BS data (see Supplemental Table S1 for details).

Simulations are performed for stretches of N CpGs, (N = 25000 − 75000). Simulations

mimic two types of experimental data modalities: WGBS and Repli-BS. To simulate WGBS

experiments, for a region of CpGs, the simulation is initialized at post-replicaton time=0, and

then read out at randomly sampled timepoints between zero and 24 hours later, to reflect

the variable post-replication timings of bulk cells in WGBS experiments. Ten simulation

replicates are combined to generate estimates of average per-site methylation levels. To

mimic the Repli-BS experiment, the methylation status of CpGs in the simulation were read

out at timepoints sampled from intervals matching pulse-chase experiments[35], including

uncertainty with respect to true post-replication timing. That is, given the finite BrdU

pulse-length, the 0-hour experimental timepoint is assumed to correspond to t ∈ [0−1] hours

post-replication, the 1-hour experimental timepoint corresponds to t ∈ [1 − 2] hours post-

replication, etc.. Therefore, timepoints of simulation readout were sampled from tchase+ r ∈

[0, 1] hour, where experimental timepoints tchase were 0, 1, 4, 16 hours and r is a uniformly

distributed random number. The number of simulations and read-outs at each timepoint

were chosen to mimic the distribution of experimental read-depths. The synthetic Repli-

BS data were then processed with the same MLE procedure as the experimental data, to
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infer per-CpG methylation rates. Simulations were used to validate our statistical inference

procedure. We tested that ground-truth correlation functions produced by the two models

could be recapitulated by the inference procedure.
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Chapter 3

Identifying Multicellular

Spatiotemporal Organization of Cells

with SpaceFlow

3.1 Introduction

The spatiotemporal pattern of gene expression is critical to unraveling key biological mech-

anisms from embryonic development to disease. Recent advances in spatially resolved tran-

scriptomics (ST) technologies provide new ways to characterize the gene expression with

spatial information that the popular nonspatial single-cell RNA-sequencing (scRNA-seq)

method is unable to capture. The majority of current ST technologies may be catego-

rized into in situ hybridization (ISH)-based and spatial barcoding-based, varying in gene

throughput and resolution [74, 75, 76]. ISH-based methods can detect target transcripts at

the sub-cellular resolution, such as Multiplexed Error-Robust Fluorescence ISH (MERFISH)

and sequential fluorescence ISH (seqFISH), for about 100-1000 and 10,000 genes respectively
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[77, 78]. Spatial barcoding-based methods can capture the whole transcriptome with varying

spatial spot resolutions, such as Visium in 55 µm, the Slide-seq in 10 µm [79], and the spa-

tiotemporal enhanced resolution omics’ sequencing (Stereo-seq) in nanometer (subcellular)

resolution [80].

Many methods developed for non-spatial transcriptomic data such as scRNA-seq or bulk

spatial transcriptomics data [81, 82] may provide insights in designing approaches for ST

data at single-cell resolution through recasting the relevant tasks in a spatial manner. For

example, the identification of spatially variable genes in ST data [83, 84] can be viewed as

the spatial extension of the highly variable genes in scRNA-seq data. Similarly, methods

have been developed to identify spatial domains in ST data [85], the analog of cell clustering

in scRNA-seq data analysis, but using spatial information to produce spatially coherent

regions. Giotto [86], BayesSpace [87], and SC-MEB [88] use Markov random fields to model

the related gene expression in neighboring cells. stLearn utilizes morphological information to

perform spatial smoothing before clustering [89]. MULTILAYER uses graph partitioning to

segment tissue domains [90]. MERINGUE performs graph-based clustering using a weighted

graph that combines spatial and transcriptional similarity [91]. SpaGCN [92], SEDR [93],

SCAN-IT [94], stMVC [95], and STAGATE [96] build deep auto-encoder networks to learn

low-dimensional embeddings of both gene expression and spatial information, and segment

domains through embedding clustering. RESEPT learns a three-dimensional embedding

from ST data by a spatial retained graph autoencoder and treats the embedding as a 3D

image, identifying domains through image segmentation using a convolutional neural network

[2].

The domain segmentation methods reviewed above are the ST counterpart of cell cluster-

ing in scRNA-seq data analysis. Contrary to discrete clustering, another powerful analysis

in scRNA-seq is the concept of continuous pseudotime which can represent developmental

trajectories. The dynamics of many developing systems such as regeneration and cancer
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progression are often spatially organized [2, 97]. The ST data thus provides an opportunity

to simultaneously reveal both spatial and temporal structures of development. While pseu-

dotime methods for scRNA-seq can be directly applied to ST data, the resulting trajectory

may be discontinuous in space. stLearn combines non-spatial pseudotime with spatial dis-

tance by simple average, as well as filters connections between clusters inferred by scRNA-seq

trajectory inference methods using a spatial distance cutoff, but the resulting connections

are limited by the initial pseudotime trajectories inferred without using spatial information

[89]. There is thus a demand for computational tools for integrative reconstruction of fine-

resolution spatiotemporal trajectories from ST data which is continuous both in time and

space.

As pseudotime trajectories are traditionally computed from a low-dimensional embedding

of transcriptomic data [98], the computation of spatiotemporal trajectories can be viewed

as a problem of constructing spatially-aware embeddings of ST data. Multiple strategies

for computing spatially-aware embeddings may be used such as Hierarchical SNE [99], Hi-

erarchical UMAP [100], dual embedding [101]. Additionally, deep graph neural network-

based approaches, such as DeepWalk [102], Variational Graph Auto-Encoder (VGAE) [103],

Graph2Gauss [104], and Deep Graph Infomax (DGI) [105], while computationally more ex-

pensive, have been utilized for ST data due to their flexibility to model and learn non-linear

and complex salient spatial dependencies between genes and cells.

In this work, we develop a framework to reveal continuous temporal relationships with spatial

context using ST data. By combining a DGI framework with spatial regularization designed

to capture both local and global structural patterns, we extract a spatially-consistent low-

dimensional embedding and construct a pseudo-Spatiotemporal Map (pSM), representing a

spatially-coherent pseudotime ordering of cells that encodes biological relationships between

cells, along with a region segmentation. We compare SpaceFlow with five existing methods on

six ST datasets, demonstrating competitive performance on benchmarks, and use SpaceFlow
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to reveal evolving cell lineage structures, spatiotemporal patterns, cell-cell communications,

tumor-immune interfaces and spatial dynamics of cancer progression.

3.2 Results

3.2.1 Overview of method

SpaceFlow takes Spatial Transcriptomic (ST) data as input (Figure 3.1a) and outputs a

spatially-consistent low-dimensional embedding, domain segmentation, and pseudo Spa-

tiotemporal Map (pSM) of the tissue. The input ST data consists of an expression count

matrix and spatial coordinates of cells or spots. The output embedding encodes the expres-

sion of ST data so that nearby embeddings in the latent space reflect not only the similarity

in expression but also spatial proximity. The domain segmentation characterizes the spatial

patterns of tissue without the need for histological or pathological knowledge. The pSM is

a map that represents the pseudo-spatiotemporal relationship of cells in ST data.

Before applying the deep graph network, a Spatial Expression Graph (SEG) is constructed

(Figure 3.1b) with nodes in the graph representing cells with expression profile attached,

while edges model the spatial adjacency relationship of cells (Figure 3.1b). In addition,

an Expression Permuted Graph (EPG) is constructed by randomly permuting the nodes in

SEG and used as negative inputs for the network. To encode the SEG into low-dimensional

embeddings, a graph convolutional encoder is built with Parametric ReLU (PReLU) as

activation (Figure 3.1c). The graph convolutional encoder applies a weighted aggregation

to the expression of a cell with its spatial neighborhood to capture local expression patterns

into embeddings. We utilize a Deep Graph Infomax (DGI) framework to train the encoder

[105], which optimizes a Discriminator Loss (Figure 3.1d bottom) to learn to distinguish the

embeddings from SEG and EPG input. Compared to other GCN architectures, this allows
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Figure 3.1: Overview of SpaceFlow. (a). The input ST dataset consist of an expression
count matrix and spatial coordinates of spots/cells. (b). A spatial expression graph (SEG)
is constructed as the network input, with edges characterizing the spatial neighborhood, and
nodes representing cells/spots with expression profiles attached. By randomly permuting
the nodes in SEG, Expression Permuted Graphs (EPG) are built as negative samples. (c).
A two-layer GCN encodes the SEG or EPG input into low-dimensional embeddings. (d).
The embeddings are regularized for spatial consistency. With the Spatial Regularization loss
and the Discriminator loss, the encoder is iteratively trained until convergence. (e). The
low-dimensional embedding is obtained from the trained encoder. (f). The output consists
of the pseudo-Spatiotemporal Map (pSM), domain segmentation, and the visualization of
low-dimensional embeddings.

the encoder to learn embeddings that emphasize specifically the spatial expression patterns

that corresponding to meaningful structure as opposed to those due to non-spatial variation

or noise.

Distant cells of the same cell type may exhibit a high degree of transcriptional similarity even

when in very different parts of tissue. Consequently, in order to produce embeddings that

most meaningfully represent spatial structure, one needs spatial consistency in embeddings,

meaning that the latent space embeddings should be distant not only if their expression

profile is distinct, but also when the expression is similar but their spatial locations are dis-

tant. We use embedding regularization to enforce this structure in the latent space (Figure

3.1d), which takes the spatial distance matrix and the embedding distance matrix of cells
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or spots as input. These two matrices are then input into linear kernels (Spatial kernel and

Embedding kernel) to calculate the loss of each cell pair based on the spatial or embedding

distance. The spatial losses and embedding losses of cells from these kernels are then com-

bined to produce the final regularization loss which is added to the discriminator loss used to

train the encoder (Methods). The learned low-dimensional embeddings (Figure 3.1e) for the

ST data are then used in downstream analysis, including the pseudo-Spatiotemporal Map

(pSM), domain segmentation, and low-dimensional visualization (Figure 3.1f) to analyze

spatiotemporal patterns of tissues.

3.2.2 Comparison of SpaceFlow with five existing methods for ST

data at spot resolution

To evaluate the quality of the SpaceFlow embeddings, we compared it with five existing

methods for unsupervised segmentation on ST data: one non-spatial method Seurat v4

[106], and four spatial methods Giotto [86], stLearn [89], MERINGUE [91], and BayesSpace

[87] on a 10x Visium human Dorso-Lateral Pre-Frontal Cortex (DLPFC) dataset consisting

of twelve samples [107]. Spots are annotated as one of six layers (layer 1 through layer 6) or

white matter, and these annotations are used as the ground truth for benchmarking.

To compare the domain segmentation performance quantitatively, we used the adjusted

Rand Index (ARI) to measure the similarity between the inferred domains and the expert

annotations across all twelve sections (Figure 3.2a). SpaceFlow shows a 0.427 median ARI

score, the second-highest across the six methods, slightly lower than the BayesSpace, which

has 0.438 median ARI. MERINGUE shows the lowest median ARI score (0.232), followed by

Seurat (0.300) and then Giotto (0.332), and stLearn (0.369). Interestingly, the DGI method

without the spatial regularization used in SpaceFlow shows a significant decrease in ARI,

with a 0.332 median score, indicating that spatial regularization does effectively improve the

45



domain segmentation of DGI.

Next, we performed a more detailed analysis on section 151671 (Figure 3.2b-f). We first

computed the domain segmentation for each method and visualized the output compared to

the expert annotation (Figure 3.2b). It is seen that all methods fail to capture the subtle

structure of Layer 4 (L4), suggesting that this ST data does not have the necessary spatial

resolution to capture the L4 structure. Both SpaceFlow and BayesSpace can capture all the

remaining structures (L3, L5, L6, and WM) observed in the annotation. Moreover, BayesS-

pace identified the outer ring of the WM as an additional structure, whereas SpaceFlow

found a different structure at the top right part of Layer 3 (labeled as domain 3 in orange).

The structure found in SpaceFlow is consistent with the domains from Giotto, stLearn, and

MERINGUE. stLearn also identified L5, L6, and WM that are consistent with the annota-

tion but with noisy boundaries between domains. Giotto and MERINGUE identified the L6

and WM domain but are unable to identify the boundary of L5 along with the same noisy

boundary issues. Seurat showed an overall disordered domain structure and can barely cap-

ture the white matter (WM) structures. The DGI method (Figure 3.2b), like SpaceFlow but

without spatial regularization, showed a layered structure with inconsistent boundary shape

and non-contiguous domains, reinforcing the importance of spatial regularization. Similar

results can also be observed in samples 151507 and 151673 (Supplementary Fig. 1a, c).

We next compared the low-dimensional embeddings from Seurat, stLearn, DGI, and Space-

Flow (the segmentation methods Giotto, MERINGUE, and BayesSpace do not produce em-

beddings), applying UMAP to the embeddings to produce a two-dimensional visualization of

all spots colored by the layer annotation. We observe that SpaceFlow embeddings produce

embeddings that clearly separate the spots by layer when compared to stLearn, DGI, and

Seurat (Figure 3.2c). As the separation between low-dimensional embeddings of the regions

provides an upper limit on the ability of segmentation to separate the regions, this shows

that the incorporation of spatial regularization produces more distinct embeddings between
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different layers and thereby a greater ability to distinguish them in downstream analysis.
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Figure 3.2: Comparison with five unsupervised methods shows that SpaceFlow can
identify biological meaningful spatial domains and generate spatially-consistent
low-dimensional embeddings. (a). Boxplot of clustering accuracy in all sections of the
LIBD human dorsolateral prefrontal cortex (DLPFC) ST dataset [107] (n=12 sections) in
terms of adjusted rand index (ARI) scores for seven methods. In the boxplot, the center line,
box limits and whiskers denote the median, upper and lower quartiles, and 1.5× interquartile
range, respectively. (b). Domain segmentations of cortical layers and white matter by
annotation (top left panel) and by seven different methods (other panels) using section
151671 of DLPFC data. (c). UMAP visualizations for DLPFC data section 151671, using
low-dimensional embeddings from Seurat, stLearn, DGI, and SpaceFlow colored by the layer
annotation of spots. (d). Cell spatial locations (left panel) and UMAP visualizations (right
four panels) colored by the Euclidean distance between spot/cell and origin (0,0), which is the
left bottom corner of the first panel. (e). Dot plot of the gene expression of domain-specific
markers. The dot size represents the fraction of cells in a domain expressing the marker
and the color intensity represents the average expression of the marker in that domain. (f).
Spatial expression for the top-1 markers of the identified domains. (g). The Gene Ontology
(GO) enrichment analysis of the domain-specific genes (161 genes) for the domain 3 in panel
b, SpaceFlow. Both the color and the length of bars represent the enrichment of GO terms
using -log10(p-value) metric from topGO analysis. P-values were obtained using the one-
sided Fisher’s exact test without multiple-testing correction. P values ¡ 0.001 were considered
significant.

To study how the low-dimensional embeddings from different methods encode spatial in-

formation, we show the same UMAP embeddings colored by the spatial distances between

the spot and the origin (Figure 3.2d), so that embeddings which preserve the spatial struc-

ture will maintain this color gradient. Seurat embeddings exhibit a high level of mixing

in this color, indicating significant deformities in both local and global structure, whereas

DGI shows local color gradients with a minor color mixture and shows no global gradient

structure. In contrast, SpaceFlow and stLearn both exhibit a clear global gradient structure

with a clear coloring trend in each annotation layer. This indicates the learned embeddings

from SpaceFlow and stLearn encode transcriptional information while also preserving the

local and global spatial structure of the data.

To check whether the identified domains from SpaceFlow are biologically meaningful, we

performed a domain-specific expression analysis. We found spatial specific expression pat-

terns for the identified domain-specific genes. For instance, the top domain-specific gene for
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domain 3 (orange) in SpaceFlow is SAA1. Within domain 3, it is expressed in 90% of cells

with a mean expression of 0.96 (scaled from 0 to 1), whereas outside this domain it is ex-

pressed in less than 30% of cells with a mean expression of approximately 0.13 (Figure 3.2e).

This spatial expression specificity is also clear in the spatial expression heatmap showing

top-1 marker genes for each domain (Figure 3.2f). Among these genes, we found that PCP4

was previously reported as the marker for layer 6 in prefrontal cortex [108]. The other genes

have clear layer correlations although not previously reported, suggesting new experiments

are needed for validating the potential new marker genes. We carried out a Gene Ontology

(GO) analysis for the domain-specific genes whose p-value is less than 0.01 in domain 3

(Figure 3.2g). We observed GO terms associated with regulation of cAMP-dependent pro-

tein kinase activity, ionotropic glutamate receptor signaling pathway, regulation of long-term

synaptic potentiation regulation of synaptic plasticity, etc. This suggests that the spatially

specific expression in the identified domain 3 may be related to long-term synaptic activ-

ity, which is consistent with the observation that several top domain-3 specific expression

patterns such as MALAT1 (p-value< 5.5 × 10−33) [109], CAMK2A (p-value< 7.4 × 10−23)

[110], PPP3CA (p-value< 4 × 10−16) [111] are involved in long-term synaptic potentiation.

The fact that this gene expression is clearly related to neural activity indicates a meaning-

ful subdivision of Layer 3 despite a lack of annotations for this region. This suggests that

the expert annotations, even if accurately describing the layer structure, may not paint a

complete picture of the spatial structure within the data.

3.2.3 SpaceFlow uncovers pseudo-spatiotemporal relationships

among cells

Next, we study the pseudo-Spatiotemporal Map (pSM) computed by SpaceFlow. Differ-

ent from traditional pseudotime as used in scRNA-seq analysis, which only considers the

similarity in expression between cells, the pSM considers both spatial and transcriptional

relationships among cells simultaneously (Methods). In spatial visualizations of the pseu-
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dotimes produced from Seurat, Monocle, traditional single-cell pseudotime methods that do

not incorporate spatial information, we observed a lack of layered patterns as well as sig-

nificant noise (Figure 3.3a). In contrast, both spatially-aware methods tested, stLearn and

SpaceFlow present a layer-patterned pSM with a clear and smooth color gradient (Figure

3.3a), suggesting a pseudo-spatiotemporal ordering from White Matter (WM) to Layer 3.

This ordering mirrors the correct inside-out developmental sequence of cortical layers and

reflects the layered spatial organization of the tissue. However, stLearn shows less consis-

tency with the annotation in the White Matter (WM) region when compared to SpaceFlow.

Similar patterns can also be observed in samples 151507 and 151673 (Supplementary Fig.

1b, d). We also run SpaceFlow on more 10x Visium ST datasets, the results can be found

in Supplementary Information (Supplementary Figure 3.3).

To test the capability of SpaceFlow on single-cell resolution ST data with a large number of

cells, we evaluated SpaceFlow on a Stereo-seq dataset from mouse olfactory bulb tissue, cap-

turing 28243 genes across 18197 cells [80], comparing with traditional pseudotime methods

Seurat, Monocle, and Slingshot. We observed that Seurat shows little variation in pseu-

dotime across the tissue except for the outer rings, which show slightly higher pseudotime

values than in the inside. Monocle is much noisier than Seurat and shows no clear patterns.

Slingshot is similar to Seurat and exhibits outer-ring patterns. By contrast, SpaceFlow

presents a clear layered pattern mirroring the annotated layers of the olfactory bulb tissue

(Figure 3.3b). The pSM value (red) is lowest in the external plexiform layer (EPL) and then

increases when moving away in both directions. This ordering in the pSM is consistent with

the developmental sequence of these layers, where starting from the central EPL, develop-

ment proceeds bilaterally outwards, leading to the mitral cell layer (MCL) and glomerular

layer (GL), olfactory nerve layer (ONL), and the granule cell layer (GCL) develops last

[112]. The highest values are observed on the inner side, with the peak in the granule cell

layer (GCL) and the rostral migratory stream (RMS). This shows that the pSM computed by

SpaceFlow is not only more clearly spatially organized than non-spatial pseudotime, but that
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these results also more accurately represent the temporal and developmental relationships

between cells.

We next identify marker genes from the pSM. By calculating the top genes by correlation with

the pSM values, we found genes that are predominantly expressed in layers of the olfactory

bulb tissue (Figure 3.3c). One of the top marker genes, NRGN, shows clear expression

patterns localized in the granule cell layer (GCL), and previous experiments have shown that

NRGN is usually expressed in granule-like structures in pyramidal cells of the hippocampus

and cortex [113]. This shows how the pSM can be used to facilitate biomarker identification

for tissues.

Next, we compared the domain segmentation performance of SpaceFlow against Seurat,

running without incorporating spatial data, as well as the spatial methods MERINGUE

and DGI on the Stereo-seq data. We show a global and a zoomed view of the identified

domains for each method (Figure 3.3d). The Seurat segmentation is characterized by two

large regions – all inner layers except the olfactory nerve layer (ONL) are mainly combined

into one region (domain 0 in dark blue) and the ONL is segmented as another (domain 1

in orange). However, even in the inner layers, there are many cells classified as domain

1 (orange), lacking a clear separation between domains. To control for the effect of the

resolution parameter, we considered values of 0.3 to 0.8, 1.0 and 2.0, resulting in 13, 15

and 30 clusters respectively (Supplementary Fig. 2a). However, the spatial consistency of

clusters does not improve with a higher resolution parameter. MERINGUE identified three

major layers, with one additional compared to Seurat, which corresponds to the external

plexiform layer (EPL) in the annotation in Figure 3.3b; however, there is significant spatial

noise and it is difficult to see boundaries between tissue layers even in the zoomed view.

With the DGI method, we observed a layered structure of domains, but significant mixing of

domains is still visible in the zoomed view. In SpaceFlow, the eight-layer structure is much

clearer, as nearly no mixture between occurs the corresponding ONL (domain 2 in green)

and GL (domain 5 in silver gray) regions, whereas there are clear mixtures of labels by the
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other methods across all regions.
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Figure 3.3: SpaceFlow generates pseudo-Spatiotemporal Map for ST data and
uncovered pseudo-spatiotemporal relationship between cells in both spots-
resolution and single-cell resolution ST data. (a). Spatial visualization of pseudotime
calculated by Seurat, Monocle, stLearn, and the pSM generated by SpaceFlow on DLPFC
data (same dataset as in Figure 3.2, spot resolution) and (b). Spatial visualization of pseu-
dotime calculated by Seurat, Monocle, Slingshot, and the pSM generated by SpaceFlow
on Stereo-seq data (single-cell resolution). (c). Spatial expression of genes exhibiting the
highest correlation between expression and the pSM value of corresponding spots/cells. The
color represents the z-score of expression level. (d). Domain segmentations of Stereo-seq
ST data given by Seurat, MERINGUE, DGI, and SpaceFlow. Top row: full views of the
domain segmentations from different methods, bottom row: zoomed views of regions boxed
in each panel.

3.2.4 SpaceFlow reveals evolving cell lineage structures in chicken

heart development ST data

To study how the pSM may be used to uncover spatial expression dynamics in embryonic

development, we retrieved and utilized an ST dataset on the chicken heart [2] at four key

Hamburger-Hamilton ventricular developmental stages. The dataset contains 12 tissue sec-

tions in total, and is sequenced at day 4 (5 sections), day 7 (4 sections), day 10 (2 sections)

and day 14 (1 section). To build a baseline for comparison, we first visualized spot anno-

tation from the original study (Figure 3.4a). Then, we computed the domain segmentation

from SpaceFlow for each time point (Figure 3.4b) and labeled the domains based on their

top marker genes as compared with the literature (Details in Supplementary Data 1).

We first found an evolving lineage structure, annotated as Valve in Figure 3.4b. This newly

identified structure is evident from Day 7 (D7) with a layered structure and consistent shape

during heart development. The identified structure is consistent with the anatomical regions

of the chicken heart at the sequenced stages [2, 114]. We also characterized the transition

dynamics of the myocardium from the immature to the mature state across the period from

D4 to D14 (immature myocardium annotated by orange/yellow change into cardiomyocytes

annotated in red/pink). Moreover, we identified that the epicardium structure (annotated
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in green) on the outer ring of immature myocardium transformed into cardiomyocytes from

D7 to D14.

To better understand the spatiotemporal organization of the chicken heart during develop-

ment, we computed the pSM for each time point separately (Figure 3.4c), considering that

pseudo-time across tissues with different time points may not be comparable. Similar to the

domain segmentation, the identified valve structures are clear from D7 to D14 in the pSM. In

addition, the myocardium in the ventricles is more homogeneous in the pSM (blue) than in

the domain segmentation. This suggests the difference in the myocardium of ventricles might

be much more subtle than regions showing different pSM values. We also found the annotated

myocardium in ventricles to consistently show higher pSM values (blue) than other regions,

which indicates the pseudo-spatiotemporal ordering of the myocardium in the ventricles is

later than other regions in the same stage. By contrast, the identified valve structures show

yellow color in the pSM from D7 to D14, suggesting the ordering is relatively late compared

with the regions colored in red or orange. By plotting pSM values of spots against the first

component of the UMAP embedding (Figure 3.4d), similar patterns can be observed, where

the cells with valve annotations colored in blue shows intermediate pSM values (y-axis) and

lies in the middle of the trajectories in Figure 3.4d. These spatiotemporal patterns revealed

in the pSM are consistent with previous observations in chicken cardiac development [114].

Through a hierarchical clustering for domains across all four stages based on the expres-

sion of top domain-specific marker genes, we found expression programs specific to evolving

structures (Figure 3.4e). We observed the valves of D7 and D10 to be similar to each other in

expression, with genes that regulate cell growth and proliferation such as S100A11, S100A6,

and CNMD, as well as genes associated with cell-collagen interaction such as TGFBI, found

as the top marker genes for these populations. We also performed GO analysis to study

the function of identified valve structures (Figure 3.4f) and found enrichment of GO terms

associated with negative regulation of BMP signaling pathway and negative regulation of

epithelial-mesenchymal transformation (EMT). Previous studies found that EMT mediated
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by BMP2 is required for signaling from the myocardium to the underlying endothelium to

form endocardial cushion (EC), which ultimately gives rise to the mature heart valves and

septa [115]. We also observed enrichment of positive regulation of canonical Wnt signaling

pathway, previously shown as a regulator of endocardial cushion maturation as well as valve

leaflet stratification, homeostasis, and pathogenesis [116].

To investigate cell-cell communication between the identified valve structures and other tissue

regions, we performed space-constrained CellChat analysis [117] using the domain labels

from SpaceFlow as groupings. The top two identified pathways for the valve structures are

midkine (MK) and pleiotrophin (PTN), which belong to the subfamily of heparin-binding

growth factors. We observed strong signaling in MDK-SDC2, MDK-NCL, PTN-SDC2, and

PTN-NCL ligand-receptor pairs from valve tissue to nearby immature cardiomyocytes and

atrium cardiomyocytes (Figure 3.4g). These interactions have various functions, such as

angiogenesis, oncogenesis, stem cell self-renewal, and play important roles in the regeneration

of tissues, such as the myocardium, cartilage, neuron, muscle, and bone52. Studies have

shown that midkine impedes the calcification of aortic valve interstitial cells through cell-cell

communications [118]. In addition, SDC2 is found required for migration of the bilateral

heart fields towards the mid-line in zebrafish model [119]. Pleiotrophin (PTN) is usually

considered a cytokine and growth factor that promotes angiogenesis [120]. Together, the

observed cell-cell communication based on the structures identified by SpaceFlow suggests

anti-calcification and pro-angiogenesis processes are important during the maturation of

valve tissue.

55



56



Figure 3.4: SpaceFlow reveals evolving cell lineage structures in chicken heart
development ST data. (a). Annotation of ST spots from the original study [2], where
cell types are predicted by mapping scRNA-seq data to ST data. (b). Annotations from
SpaceFlow, with identified valve structures colored in blue. (c). The pSM generated by
SpaceFlow. (d). The pSM value versus UMAP component 1 from low-dimensional em-
beddings colored by annotations from SpaceFlow. (e). Hierarchically clustered heatmap of
top-3 domain-specific genes for spots in all time points. (f). Gene Ontology (GO) enrich-
ment for the top domain-specific genes (32 genes) in the identified valve structures. Both
the color and the length of bars represent the enrichment of GO terms using -log10(p-value)
metric from topGO analysis. P-values were obtained using the one-sided Fisher’s exact
test without multiple-testing correction. P-values < 0.005 were considered significant. (g).
Space-constrained CellChat inferred cell-cell communication of MDK (left) and PTN (right)
pathways with signals sent from spots in the valve regions.

3.2.5 SpaceFlow identifies tumor-immune microenvironment in

human breast cancer ST data

To study the cancer microenvironment interaction and tumor progression, we applied Space-

Flow to human breast cancer ST data [121]. We show here results for sample G, consistent

with the original paper. Results for other samples can be found in the Supplementary Infor-

mation (Supplementary Fig. 6). First, we performed domain segmentation and compared it

to the expert annotation (Figure 3.5b). The obtained domains were labeled based on their

marker genes (Details in Supplementary Data 2). The regions in-situ cancer-1/2, APC, B,T-

1/2, and invasive-1/2 identified in the SpaceFlow segmentation agreed with the annotations

Immune rich, Immune:B/plasma, and Cancer 1 respectively from the original study. How-

ever, we also identified three tumor-immune interface regions, labeled as Tu.Imm.Itfc-1/2/3,

which were labeled as mixtures of other cell types in the original study.

To reveal the pseudo-spatiotemporal relationship between spots in tissues, we generated the

pSM and compared it with the spatially visualized pseudotime calculated by two alterna-

tives: Monocle, which does not use spatial information, and applying DPT to spatially aware

embeddings from stLearn. In the Monocle pseudotime, we observed regional patterns consis-

tent with the Cancer: immune rich and Cancer 1 annotations from the original study (Figure
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3.5c). However, the spatial noise in the Monocle pseudotime makes visualizing the overall

structure of cancer development difficult. In the pseudotime from stLearn, we can only ob-

serve two major types of regions, the Cancer: immune rich regions with larger pseudotime

values, and other regions that are more homogeneous but noisy in pseudotime (Figure 3.5d).

In the SpaceFlow pSM, we see a much clearer representation of the spatiotemporal structure

of the cancer cells and the patterns is highly consistent with the expert annotation in Cancer:

Immune rich, Cancer 1, and Immune: B/plasma regions (Figure 3.5e). The in-situ cancer-1

regions show the lowest pSM values, whereas the Invasive-1 and Invasive-2 regions present

the highest pSM values, which indicates the in-situ cancer-1 developmentally preceded than

invasive regions. This trajectory can be seen clearly when we plot pSM values against the

UMAP component 1 of the embeddings (Figure 3.5f). A smooth progression is shown start-

ing from the left bottom corner with the in-situ cancer-1 and branching into APC,B,T-1/2,

and in-situ-cancer-2, which then merge into tumor-immune interface populations and end in

the invasive-1/2 population. This suggests that in-situ-cancer-2 may be metastasized from

in-situ cancer-1.

To study the characteristics of the tumor microenvironment, we identified marker genes for

each domain (Figure 3.5g). We found invasive-1, invasive-2, and Invasive-Connective (Inva-

Conn) share strong expressions of the genes MMP11 and MMP14. Matrix metalloproteinase

(MMP) family genes are involved in the breakdown of the extracellular matrix in processes

such as metastasis [122]. In the in-situ cancer-1 population, we observed region-specific

Interferon-induced expressions, such as IFI27, IFI6, which are associated with cancer growth

inhibition and apoptosis promotion [123]. The in-situ cancer-2 population shows a strong

and specific expression of TMEM59 and SOX4, which both can promote apoptosis. In

tumor-immune interfaces, we found both pro-tumor and anti-tumor gene expressions. For

instance, In tumor-immune interface-3, pro-tumor expression markers are TIMP1, a member

of MMPs involved in the degradation of the extracellular matrix, whereas IGFBP4, PFDN5,

CD63 repress tumor progression [124, 125]. We visualized these dual activities of pro-tumor
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and anti-tumor expression and annotated with pro-tumor or anti-tumor labels to confirm our

observations (Figure 3.5h). These dual activities are also confirmed in GO analysis (Figure

3.5i). The enrichment of the marker genes of tumor-immune interface-1 show pro-tumor

GO terms such as: negative regulation of intrinsic apoptotic pathway in response to DNA

damage by p53 class mediator, negative regulation of plasmacytoid dendritic cell cytokine

production (reduce type I interferon production). Anti-tumor enrichment is also found, such

as positive regulation of T cell mediated cytotoxicity (promotes the killing of cancer cells),

antigen processing and presentation via MHC class I B (enhances antigen presentation).

To study the cell-cell communication between the invasive (or in-situ cancer) regions and

the tumor-immune interfaces, we inferred cell-cell communication through Space-constrained

CellChat analysis [117]. We found strong cell-cell communication between the invasive tissue

region and the nearby tumor microenvironment through the collagen pathway, which facilities

EMT transition and multiple processes associated with cancer progression and metastasis.

Similar cell-cell communication is observed in in-situ cancer, where MDK-SDC1 and APP-

CD74 signaling are observed to promote the progression and metastasis (Figure 3.5j-k).
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Figure 3.5: SpaceFlow identifies tumor-immune cell-cell communication in human
breast cancer ST data. (a). H&E image and annotation from the original study for the
spots of sample G in human breast cancer ST data [121]. (b). Domain segmentation from
SpaceFlow (c). Spatial visualization of pseudotime calculated by Monocle. (d). Spatial
visualization of pseudotime calculated by stLearn (e). The pSM from SpaceFlow. (f). The
pSM versus UMAP component 1 from low-dimensional embeddings colored by annotations
from SpaceFlow. (g). Dot plot of the gene expression of domain-specific markers. The dot
size represents the fraction of cells in a domain expressing the marker and the color intensity
represents the average expression of the marker in that domain.(h). Spatial expression of
top domain marker genes with anti-cancer, pro-cancer, or dual function labels. (i). Gene
Ontology (GO) enrichment for the top domain-specific genes (48 genes) in the identified
Tumor-Immune-Interface-1 (Tu.Imm.Itfc.1). Enriched GO terms are presented as -log10(p-
value) using topGO analysis. P-values were obtained using the one-sided Fisher’s exact
test without multiple-testing correction. P values ¡ 0.005 were considered significant. (j-k).
Space-constrained CellChat inferred cell-cell communications with cell-cell communications
signaling sent from Invasive-1 in Collagen pathway ((j)) and from In-situ cancer 1 in MK
and APP pathways (k).

3.3 Discussion

In this work, we presented SpaceFlow, which (1) encodes the ST data into low-dimensional

embeddings reflecting both expression similarity and the spatial proximity of cells in ST

data, (2) incorporates spatiotemporal relationships of cells or spots in ST data through a

pseudo-Spatiotemporal Map (pSM) derived from the embeddings, and (3) identifies spatial

domains with consistent expression patterns, clear boundaries, and less noise.

SpaceFlow achieves competitive segmentation performance with alternative methods when

benchmarked against expert annotations. Furthermore, the pSM utilizes the spatially consis-

tent embeddings to reveal pseudo-spatiotemporal patterns in tissue. In DLPFC and Stereo-

seq data, the pSM shows layered patterns that are consistent with the developmental se-

quences of the human cortex and mouse olfactory bulb respectively, which is not visible

from non-spatial pseudotime. Applied to chicken heart developmental data, the pSM reveals

evolving lineage structures and uncovers the dynamics in the spatiotemporal relationships

of cells across different developmental stages, helping to understand the changes of func-
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tional and structural organization in tissue development. Studying human breast cancer ST

data using SpaceFlow, we demonstrate its potential to identify tumor-immune interfaces and

dynamics of cancer progression, providing tools to study tumor evolution and interactions

between tumor and the tumor microenvironment.

Though similarity in gene expression and spatial proximity are related in many cases [126],

this relationship is not absolute. Pseudotime methods developed for scRNA-seq data, such

as Monocle [127] and Slingshot [128] can produce developmental trajectories that are not

spatially organized. The pSM developed here can generate spatially contiguous trajectories

based on the integrative usage of gene expression and spatial information. Specifically, the

spatial regularization in SpaceFlow constrains the low-dimensional embedding spatially so

that the embedding is continuous both in space and time. The low-dimensional spatial con-

straint also reduces noise in the high-dimensional gene expression data resulting in smoother

domain segmentation boundaries and spatiotemporal maps.

In practice, the training time of SpaceFlow on ST data with fewer than 10,000 cells is usually

less than 5 minutes on a GPU. The computational cost of training largely depends on the

calculation of spatial regularization loss for model optimization, which is quadratic to the

number of cells or spots. To accelerate model training, we compute this regularization loss

over a random subset of cell-cell pairs (Details in Methods). With a fixed number of cell pairs

in the subset, the training can scale linearly with the number of cells or spots, and it has been

shown not affecting the outcome (Supplementary Fig. 2b-e). In the current implementation,

the training will automatically be switched to the approximated regularization strategy when

detecting a cell population larger than 10,000. With this strategy, training time varies from

30 seconds to 3 minutes for numbers of cells/spots ranging from 3,000 to 50,000 on GeForce

RTX 2080 Ti GPU. Future work could explore possible alternatives to selecting random

subsets such as density-based subsampling [99, 100, 129], which may be more accurate for

estimating the regularization loss.

The spatial regularization used in this work reflect the a priori assumption that nearby cells
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with similar gene expression are more closely related than spatially distant cells with the

same level of transcriptional similarity. In connected tissues with low geometric complexity

examined in this work, the current spatial regularization with Euclidean distance has good

performance. However, it may not cover the complexity of the spatial distribution patterns

and dependencies that may vary among different locations of a tissue. Extension of regular-

ization for disjoint tissues like lymph nodes or tissues with high geometric complexity can

be developed by location adaptive spatial regularizations. The general framework proposed

in SpaceFlow can also be easily extended by combining the latent space regularization with

other choices of embedding algorithms, which may offer various tradeoffs in terms of expres-

sive ability and computational efficiency. However, we expect that the general principle that

explicit regularization for spatial structure improves performance on ST to hold for a variety

of different embedding architectures.

In addition to spatial regularization, SpaceFlow is a flexible framework able to incorporate

auxiliary features about connectivity among cells in spatial or single-cell omics data. For

example, it can be directly applied to 3D ST data with spatial graph input based on 3D

coordinates. Future improvement could be achieved by adapting the framework for spatially

resolved Epigenetic data with proper preprocessing steps, such as peak calling on spatially

resolved chromatin modification data [130]. Other non-genomic data modalities, such as

the local texture features from histological images or expert domain annotation priors could

be used to improve the robustness of the SpaceFlow embeddings. Under the SpaceFlow

framework, different regularization terms reflect different prior knowledge about the tissue

organization and their integration might enhance the performance of the result. In addition,

the directed connectivity matrix inferred by RNA velocity [131] could be used as a constraint

to derive low-dimensional embeddings consistent with RNA velocity which may improve the

representation of developmental trajectory. Overall, SpaceFlow provides a robust framework

and an effective tool to incorporate prior knowledge or spatial constraints to ST data analysis

for inference of spatiotemporal patterns of cells in tissues.
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3.4 Methods

3.4.1 Data preprocessing

The raw count expression matrix of ST data is preprocessed as the following. First, genes

with expression in fewer than 3 cells and cells with expression of fewer than 100 genes are

removed. Next, normalization is performed, where the expression of each gene is divided by

total expression in that cell, so that every cell has the same total count after normalization.

Then, the normalized expression is multiplied by a scale factor (10,000 by default) and log-

transformed with a pseudo-count one. The log-transformed expression matrix of the top

3,000 highly variable genes (HVGs) is then selected as the input for constructing the spatial

expression graph. We adopted a dispersion-based method to select highly expressed genes67.

The genes are put into 20 bins based on their mean expression, and then the normalized

dispersion is computed as the absolute difference between dispersion (variance/mean) and

median dispersion of the expression mean, normalized by the median absolute deviation of

each bin. Genes with high dispersion in each bin are then selected.

3.4.2 Construction of Spatial Expression Graph

We next convert the log-transformed expression matrix of highly expressed genes into a

Spatial Expression Graph (SEG) as the input of our deep graph network. The Spatial

Expression Graph is built based on the spatial proximity of cells, with nodes representing

cells with expression profiles attached, while edges characterizing the spatial neighborhood

of cells. Similarly, in spot-resolution ST data, we use a node to represent a spot in the graph.

The SEG is characterized by two matrices, expression matrix X = {x1, x2, .., xn} and spatial

adjacency matrix A ∈ R(N×N). Here, xi represents the expression features of the cell or

spot i, while the element Ai,j in adjacency matrix is equal to 1 if there is an edge between

cell/spot i and j, otherwise, A(i, j) = 0.

We provide two methods for constructing the SEG, namely, alpha-complex-based and k-
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nearest-neighbor-based. The alpha-complex-based method is used by default, where a

Voronoi cell is first created for each cell or spot located at r as:

V (r) = {x ∈ R2|∥x− r∥ ≤ ∥x− r′∥, ∀r′ ∈ C} (3.1)

where C is the set of coordinates for all the cells or spots, and∥ · ∥ is the Euclidean distance.

Next, the 1-skeleton of the alpha complex [132] is used to determine the neighborhood edges

E of the spots, which can be formulated as follows:

E = {(i, j)| ∩k∈{i,j} (V (rk ∩B(rk, δ)))} (3.2)

Where B(rk, δ) is a circle area in R2 centered at x with a radius δ. The radius δ is estimated

by the mean distance of k nearest neighbors of the spot. In k-nearest-neighbor-based method,

the edges of SEG are built based on the top k nearest neighbors of cells.

3.4.3 Spatially-regularized Deep Graph Infomax

To encode the ST data into low-dimensional embeddings of cells or spots, we use the

Deep Graph Infomax (DGI) [105], an unsupervised graph network, as the framework of

our model. DGI has the advantage of capturing not only the cell expression patterns

but also the cell neighborhood microenvironment, as well as high-level patterns, such as

global or regional patterns. Specifically, a two-layer Graph Convolutional Network (GCN)

is used as the encoder of DGI with SEG as input. The GCN generates node embeddings

ε(X,A) = H = {h1, h2, .., hn} for each cell or spot.

DGI adopts a contrastive learning strategy [133] to learn the encoder, where features are

learned through teaching which data points from an unlabeled dataset are similar or distinct.

Similar data points are constructed by pairing cell embedding hi with a global summary

vector s, whereas the distinct data points are represented by the pairs of the summary vector

s and embeddings from a constructed Expression Permuted Graph (EPG). The summary
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vector s reflects global patterns of SEG, and it is implemented by a sigmoid of the mean

of all cell embeddings. EPG is a graph built by random permutating the node features X

in SEG, with the adjacency A keeping the same. Mathematically, this learning process is

achieved by maximizing the following objective function:

LDGI =
1

2N
(

N∑
i=1

E(X,A)[logD(hi, s)] +
N∑
j=1

E(X̃,Ã)[1− logD(h̃j, s)])} (3.3)

where hi is the embedding of node i from the SEG, h̃j is the embedding of node j from

the EPG. X̃ and Ã are the permuted node features and corresponding adjacency matrix of

EPG. The D is the discriminator, which is defined by D(hi, s) = Sigmoid(hT
i Θs), where

Θ ∈ R(NF×NF ) is trainable weight. Through this contrastive learning strategy, the encoder

is forced to learn global patterns and neglect random spatial expression patterns in the

embeddings.

To enforce the spatial consistency in the embeddings, so that the closeness between embed-

dings not only reflects the expression similarity but also their spatial proximity, we add a

spatial regularization to the objective function in DGI. Mathematically, the revised objective

function can be expressed as follows:

LTotal = LDGI + γ ∗
N∑
i=1

N∑
j=1

D
(s)
i,j ∗ (1−D

(z)
i,j )

N ∗N
(3.4)

, where D(s), and D(z) are the pair-wised distance matrices of cells in physical space and

embedding space.

3.4.4 Domain segmentation and pseudo-Spatiotemporal Map

The domain segmentations are obtained by running Leiden clustering [134] with the low-

dimensional embeddings from SpaceFlow as input. By default, the parameter for the lo-
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cal neighborhood size is set to 50 for to produce a smoother segmentation. The pseudo-

Spatiotemporal Map (pSM) is calculated by running the diffusion pseudotime (DPT) [98]

using the low-dimensional embeddings output from SpaceFlow. The DPT is an algorithm

using diffusion-like random walks to estimate the ordering and transitions between cells. Us-

ing the embeddings from SpaceFlow that encoded both spatial and expression information

of cells as input, DPT can output a spatiotemporal order which is consistent in both space

and pseudotime. The root cell for pSM can be specified with prior knowledge, otherwise, in

default, the cell that with the largest sum distance to others in embedding space is assigned

as the root cell in our strategy.

3.4.5 Parameters of the model

The deep graph network is built and trained based on PyTorch. To construct SEG, the

default number of nearest neighbors k of a cell or spot for adding edges is set to 15; A larger

k will lead to a bigger spatial neighborhood. The DeepGraphInfomax model in PyTorch

Geometric library is used for implementing DGI. The default latent dimension size for low-

dimensional embeddings is set to 50. A two-layer Graph Convolutional Network (GCN) is

utilized as the encoder for SEG with Parametric ReLUs (PReLU) as the activation functions.

The number of neurons for both layers is set equal to the low-dimensional embedding size.

3.4.6 Training procedure

The optimizer used for training DGI is Adam with a default learning rate lr=0.001 applied

[135]. The maximum number of epochs for training is set to 1000, with an early stopping

strategy applied to avoid overfitting. Specifically, the minimum epoch for early stopping is

set to 100, and the patience of epochs with no loss decrease is set to 50. A GeForce RTX 2080

Ti GPU is used for training the DGI model. The training time varies from 30 seconds to 3

minutes numbers of cells/spots ranging from 3,000 to 50,000, and the subsampling strategy

stated below needed to be applied when the number is greater than 10,000.

67



3.4.7 Accelerating the computation of spatial regularization loss

Because the computational cost of training largely depends on the calculation of spatial reg-

ularization loss, which is quadratic to the number of cells or spots, we designed a strategy as

follows to accelerating the training. The spatial regularization loss is used in model optimiza-

tion, which involves calculating the weighted average of an inner product of a spatial distance

matrix and an embedding distance matrix. It has O(M×N2) computational complexity and

memory cost, where N2 is the number of edges in a fully-connected spatial graph with N

cells, M is the size of the latent dimension. However, during each training step, we compute

the spatial regularization loss over a random fixed-size subset of edges, which reduces the

computational complexity of regularization loss from quadratic to constant. When tested on

the slideseqv2 dataset with 41,876 cells, the computational and memory cost dropped from

over 5 hours and 18GB to less than 3 minutes and 4GB (Supplementary Fig. 4). We ad-

ditionally found significant improvements in performance applying SpaceFlow to a seqFISH

mouse embryogenesis dataset [136] (Supplementary Fig. 5).

3.4.8 Benchmarking

Segmentation Benchmarking

To benchmark domain segmentation performance, we compare SpaceFlow against five meth-

ods, Seurat 4 [106], Giotto [86], stLearn [89], MERINGUE [91], BayesSpace [87] using the

LIBD human dorsolateral prefrontal cortex (DLPFC) ST data [107]. To make the domains

comparable between benchmarking methods, we set the target number of clusters equal to

the number of clusters in annotation for all benchmarking methods. The adjusted Rand

index (ARI) is used to quantify the similarity between the clustering result and the annota-

tion.

With Seurat, the RNA transcript counts are used for the input, with genes expressed in

fewer than 3 cells filtered, and cells expressing fewer than 100 genes removed. Then, the
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SCTransform function in Seurat R package is applied to normalize the UMI count data using

regularized negative binomial regression. Next, the RunUMAP, FindNeighbors, FindClusters

methods are performed on the normalized count data sequentially with the latent dimension

size of 50 and default cluster resolution of 0.4.

When benchmarking with stLearn, the count matrix and the spot positions were used as in-

put, which is downloaded directly from the data sources (see Data Availability). The count

matrix input was read via Read10X function in the stLearn package. Next, filter genes,

normalize total, log1p, run pca functions were applied sequentially to preprocess data,

with the minimal number of genes for filtering set to 3. Next, the histological image of

the tissue is preprocessed by using the tiling and extract features functions. Then,

the SME normalize function is used with the parameter setting of use data="raw" and

weights="physical distance". Finally, the scale and run pca are performed on the nor-

malized data with number of principal components of 50. The principal components from

normalized data will then be used for segmentation or pseudotime analysis via Leiden and

DPT, respectively.

With Giotto, we input the count matrix and the spot positions, and then applied the

normalizeGiotto, addStatistics, calculateHVG to preprocess data and identify highly

variable genes (HVG). HVGs expressed in at least 3 cells and with a mean normalized ex-

pression greater than 0.4 are then feed into runPCA function for the principal components.

The spatial network was then created through the createSpatialNetwork function with

the parameter for the kNN method method set to k=5 and a maximum distance of 400 in

kNN. Finally, the doHMRF method is used for clustering with the parameter beta set to 40.

For BayesSpace benchmarking, we input expression matrix and the spot positions through

the getRDS("2020 maynard prefrontal-cortex") method. Next, the modelGeneVar and

getTopHVGsmethods in scran method are used to model the variance of log-expression profile

of each gene and extract the top 2000 highly variable genes. Then, the runPCA function in

the scater package is used for principal components. The BayesSpace clustering method
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spatialCluster is applied with 15 principal components, with 50,000 MCMC iterations

and gamma=3 for smoothing.

For MERINGUE benchmarking, we input the spatial locations and the top 50 principal com-

ponents from the expression matrix of ST data. Next, the spatial adjacency weight matrix

is constructed using the getSpatialNeighbors function in the R package of MERINGUE,

with a setting of filterDist=2. Then, getSpatiallyInformedClusters is performed to

get spatially informed clusters by weighting graph-based clustering with spatial information,

with a setting of k=20, alpha=1, beta=1.

Pseudo-Spatiotemporal Map Benchmarking

The pSM is compared to the spatial embedding method stLearn [89], and three non-spatial

pseudotime methods, Seurat 4 [106], Monocle [127], and Slingshot [128]. In stLearn, because

the histological image of the tissue is required for spatial-aware embedding, we only made

comparisons when the histological was available. We calculated pseudotime from stLearn by

running the diffusion pseudotime (DPT) [98] using the stLearn embedding. In Seurat 4, the

DPT is run using the principal components of the expression data, whereas in Monocle and

Slingshot, the recommended workflows with the default parameters are performed.

3.4.9 Downstream analysis

Marker genes identification

To identify marker genes that can best characterize specific expressions for domains output

from SpaceFlow, the rank genes groups method in the Scanpy package (v1.8.2) is used.

When performing this method, the Wilcoxon rank-sum test with a Benjamini-Hochberg p-

value correction is applied. The cutoff of the adjusted p-value for domain-specific marker

genes is set to 0.01.
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Domain Annotation

The domains identified by SpaceFlow are annotated based on the literature report of the

domain-specific marker genes.

Gene Ontology Enrichment Analysis

The Gene Ontology (GO) Enrichment Analysis in the GO Consortium website is carried out

to identify the enriched GO terms for domain-specific maker genes with adjusted p-value ¡

0.01.

Space-constrained CellChat Analysis

CellChat analysis is performed on ST data using the domain labels from SpaceFlow as

groupings. Inferred CellChat communications between domains are further scrutinized such

that the communication links are only allowed between spatially adjacent domains. The

CellChat v1.1.3 is used under a R v4.1.2 environment.

3.4.10 Data availability

All data analyzed in this paper can be downloaded in raw form from the original publication.

Specifically, the DLPFC data is available in the spatialLIBD package. The processed Stereo-

seq data from mouse olfactory bulb tissue is accessible at SEDR analyses. The chicken heart

ST data is retrieved from GEO database under accession code GSE149457. The human

breast cancer ST data can be obtained from the Zenodo dataset 4751624. The sample we

used is the same as the one demonstrated in the original paper (patient G-sample 1). Both

chicken heart ST data and breast cancer ST data were sequenced by 10x Visium platform.

The Slide-seq V2 can be accessed in Squidpy package [136] or downloaded from Broad In-

stitute database. The seqFISH data can be accessed at the Spatial Mouse Atlas. The Gene

Ontology Consortium database can be accessed via Gene Ontology Consortium.
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Chapter 4

Identifying Cell-Cell Communication

Patterns in Spatial Transcriptome

4.1 Introduction

4.1.1 Cell-cell communication

Cell-cell communication is an essential process in cellular biology that facilitates the inter-

action and coordination of activities among cells. It is a critical element in various biological

processes, including development, tissue homeostasis, and disease. The process encompasses

the exchange of information between cells through different mechanisms, such as signaling

molecules, gap junctions, and cell surface receptors. This ability enables cells to adapt to

changing conditions, respond to their environment, and perform specialized functions.

There are several types of cell-cell communication, which include paracrine signaling, jux-

tacrine signaling, and endocrine signaling [1]. In paracrine signaling, a cell releases signaling

molecules that have a local effect on neighboring cells. Juxtacrine signaling involves the

interaction between two adjacent cells through direct contact, such as binding of cell surface

receptors. Endocrine signaling occurs when signaling molecules released into the bloodstream

act on distant target cells.
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To directly measure the proteins involved in cell-cell communication (CCC), specialized

biochemical techniques and a thorough understanding of protein domains are necessary.

Standard assays for studying the protein-protein interactions (PPIs) underlying CCC in-

clude yeast two-hybrid screening, co-immunoprecipitation, proximity labelling proteomics,

fluorescence resonance energy transfer imaging, and X-ray crystallography [1].

Cell-cell communication plays critical roles in lots of important biological process. For in-

stance, organism development relys on accurate cell communication in both temporal and

spatial, therefore unraveling CCC dynamics helps to understand the cell fate decision mech-

anism. As another example, although the immune system receives signals from various

tissues, only certain signals enable it to coordinate a properly functioning immune response

[1]. Cell-cell communication can be regulated at multiple levels, including the expression of

signaling molecules and receptors, the activation of signaling pathways, and the localization

of signaling complexes. Dysregulation of cell-cell communication can lead to various diseases,

such as cancer, autoimmune disorders, and developmental disorders.

4.1.2 Spatial transcriptome

Spatial Transcriptomics (ST) is a technique that involves the spatially resolved capture of

RNA molecules from tissue sections, which can be sequenced and analyzed to reconstruct

the gene expression profiles of individual cells in situ. It provides a high-resolution map of

the gene expression patterns in the context of tissue architecture, allowing the identification

of cell types, cell-cell communication networks, and spatially regulated gene expression [3].

Spatial transcriptomics technologies can be classified into two main categories. The first

category is next-generation sequencing (NGS)-based, which involves encoding positional in-

formation onto transcripts before sequencing. Representative technologies includes: Visium

[137], Slide-seq [138, 139], etc. The second category is imaging-based, which includes in situ

sequencing (ISS)-based methods, where transcripts are amplified and sequenced directly in

the tissue, and ISH-based methods, which involve sequentially hybridizing imaging probes
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in the tissue [140]. Popular fluorescence in situ hybridization (FISH) based techniques are

MERFISH [141] and seqFish+ [142].

4.1.3 Cell-cell communication inference

To infer Cell-Cell Communication (CCC), existing techniques developed assume the gene

expression can represents protein abundance, and the protein abundance is sufficient to infer

PPI strength. The estimation of the CCC likelihood is typically based on gene co-expression

from transcriptomic data, where a curated gene list from literature is used as the potential

interacting proteins [1]. Existing CCC inference methods can be categorized into 1. differ-

ential combination based, 2. expression permutation based, 3. graph or network based. In

Differential combination based method, cell-cell communication is assigned when both lig-

and and receptor are differentially expressed in a given pair of cells. Representative methods

are : CellTalker [143], iTALK [144], PyMINEr [145]. On the other hand, the expression

permutation-based methods determine a communication score for each ligand-receptor pair

and then assess its significance using methods such as permutation of cluster labels, non-

parametric tests to compare against a null model, or empirical approaches [1]. This category

of method is most widely used across the three, popular methods are CellChat [117], Cell-

PhoneDB [146], Giotto [147], NeuronChat [148], etc. Network based based methods usually

utilize the gene gene interaction information to build a network of ligand–receptor rela-

tionships. For instance, SoptSC [149] and NicheNet [150] both integrates the downstream

signalling expression in the model.

The above approaches for CCC inference all target for scRNA-seq dataset, however, a im-

portant factor in cell-cell communication, i.e. spatial, is neglected. This could results in

false-positives in the identified interactions because paracrine signaling can only work in a

limited spatial range [1]. To better utilize the spatial transcriptome data and improve the

confidence of CCC inference, serveral spatial CCC inference methods have been developed.

For example, SpaOTsc builds an optimal transport model to infer CCC from signal senders
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to target signal receivers in space [151]. SpaTalk utilize graph network and knowledge graph

techniques, and combines the concepts of ligand-receptor proximity and ligand-receptor-

target (LRT) co-expression consideration, to model and score the patially resolved cell-cell

communication [152]. stMLnet infers spatial cell-cell communication by quantifying diffusion

based LR signaling and mass action models [153].

4.1.4 Research gap

Although several spatial intercellular communication inference tools have been developed,

there are still some challenges remained for researchers, which impedes their analysis process

and hinders the study of cell-cell communication. First, although existing tools can infer the

likelihood of spatial cell communication, the output usually contains the communications

likelihoods of thousands of ligand-receptor pairs. Moreover, different ligand-receptor pair

may have similar or totally different spatial CCC patterns, which can indicate their specific

functionalities in biological process. However, currently, there is no available tools for sum-

marizing the major spatial patterns and revealing the representative LRs for each pattern.

Instead, researches have to investigate the spatial CCC patterns of thousands of LRs one by

one, which can take huge amount of time and work. As an initial trial, Cellchat provides

pattern recognition based tool to discover dominant cell communication patterns. However,

this tool can only identify the patterns at cell type resolution, and does not provide any

spatial context, which can be a critical issue for understanding spatial cell communications

in tissue. Therefore, based on the existing spatial CCC inference tool, we aims at developing

methods which can summarize the major spatial CCC patterns with biological interpreta-

tion, such as the associated LRs for each pattern. This will significantly reduce the burden

of analysis for researchers so that they can focus on discover the biological insights and po-

tential applications behind these patterns. To aid that, we will develop downstream analysis

approach for the identified patterns to understand them through its pathway composition,

and protein interaction network, etc.
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4.2 Methods

We investigated two approaches for analyzing and summarizing patterns of spatial cell-cell

communication. Both approaches rely on Graph Neural Networks (GNN), with one being

unsupervised and the other being supervised. The supervised GNN method consists of

two main steps: pre-hierarchical clustering and followed by cluster-regularized graph neural

network.

4.2.1 Unsupervised GNN approach

The unsupervised GNN approach does not utilize the clustering as a guidance, but learn the

spatial CCC patterns through a unsupervised Encoder-Decoder with specifically designed

regularizations (Figure 4.1).

Figure 4.1: The workflow of the unsupervised GNN approach.

Given a spatial transcriptome data with a expression matrix (n cell × n cell) and corre-

sponding spatial coordinates (n cell × 2), we first infer the spatial cell-cell communication

through COMMOT’s spatial communication function [154], with CellChat [117] database

used as default. To limit the spatial range of CCC, we set the parameter dis thr (distance
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threshold) by the maximium distance in the k-nearest neighbor(kNN) built on spatial coor-

dinates, where k is set by 15 based on our experience. The inferred CCC matrix and the

kNN graph together form a spatial CCC graph (Figure 4.1 (2)). Next, a Encoder-Decoder

framework is employed to transform the Spatial CCC graph into low-dimensional embed-

ding. Specifically, the Encoder includes one Graph Convolutional layer, which can aggregate

spatial neighborhood CCC information. The Decoder, on the other hand, is a one layer fully

connected network (linear condensed layer), which is used to reconstruct the spatial CCC as

close to input as possible. During the training, specific regularization techniques are applied

to the Encoder-Decoder to better learn the spatial CCC patterns. First, a Mean Square

Error(MSE) metric is used as reconstruction loss, which takes the input CCC feature matrix

(dimension: n cell×n LRs) and the constructed CCC matrix as input. In addition, a spatial

regularization is applied to constrain the embedding space, such that the embeddings close

to each other also close in physical space (as been demonstrated in our previous work [155]).

The mathematical expression of the spatial regularization is:

Lspatial =
N∑
i=1

N∑
j=1

D
(s)
i,j ∗ (1−D

(z)
i,j )

N ∗N
(4.1)

where D(s), and D(z) are the pair-wised distance matrices of cells in physical space and

embedding space. N represent the number of cells/spots.

Exlusive Sparsity regularization

To restrict the connections in weight matrix, we used a Exlusive Sparsity regularization so

that each LR in input only contribute to mutual exclusive embeddings and contributed as

few embedding as possible. This Exlusive Sparsity regularization is first proposed in [156],

which here can be used to promotes each embedding to compete a few meaningful LRs from

input. This is implemented through a (1,2)-norm, which enforce the weights of the network
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fit to mutually exclusive sets of input features. Mathematically, this is:

Ω(W ) =
1

2

n embed∑
g=1

(
n LRs∑
i=1

|Wg,i|)2 (4.2)

where g is embedding index, i is the index of LRs, W is the weight matrix in GCN.

Pathway-based regularization

To learn pathway specific spatial CCC patterns, alternatively, we can replace the Exclusive

Sparsity Regularization with a Pathway regularization, which is a one-hot matrix initializa-

tion to weight matrix, similar to the initialization by cluster labels. Mathematically, the

pathway based weights matrix is initialized by:

Wi,j =


1, if LRi is from pathway j.

0, otherwise.

(4.3)

where we retrieve the pathway membership of LRs through CellChat database [117]. The

GNN will further refine the contribution of each LR to its pathway CCC patterns through

training.

Visualization

We can visualize each embedding in spatial using the cell/spots locations (Figure 4.2(7))

by coloring the cells by embedding value. Each embedding represents one principal spatial

CCC pattern summarized by the trained GNN, and can be used to analyze the enrichment of

CCC in spatial and the spatial interactions between LRs through the downstream analysis.
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4.2.2 Supervised GNN method

Pre-hierarchical Clustering

The workflow for the pre-hierarchical clustering is illustrated in Figure 4.2a. Given a spatial

transcriptome data with a expression matrix (n cell × n cell) and corresponding spatial

coordinates (n cell×2), we first infer the spatial cell-cell communication through COMMOT.

The output of COMMOT is a Cell-Cell Communication (CCC) matrix (n cell × n cell ×

n LRs), where n LRs is the number of ligand-receptor pairs in CellChat database. To

reduce computational burden and simplify the visualization of spatial CCC, we split each

CCC entries in the obtained CCC matrix equally between the sender cell and receiver cell.

This results in a distributed CCC matrix with n cell × n LRs dimension, which represents

the aggregated CCC likelihood for each cell with respect to each ligand-receptor (Figure

4.2b).

In order to quantify the similarity of the spatial CCC patterns between LR pairs, we tested

a lot of similarity metrics, such as the Mean Squared Error(MSE), Pearson Correlation,

Structural Similarity Index (SSIM) [157], Jaccard index, etc., we found that the Jaccard

index generated the best results. Moreover, we found that if we mesh the spatial locations

of the cells into grids (n grid × n grid), and aggregate the CCCs for cells in the same grid

by sum, we can generate a better performance in clustering similar spatial CCC patterns.

For instance, we calculated the similarity matrix and visualize the spatial ccc patterns in

both raw and gridded format (Figure 4.2b-e), we can observe that the pattern in Fgf8-Fgfr2

share similar parts with Fgf7-Fgfr2. This similarity is clear in the similarity matrix from the

gridded ccc, but is not clear in the raw spatial ccc form, where the similarity between Fgf8-

Fgfr2 and Fgf7-Fgfr2 is just 0.04. The generated gridded CCC matrix has the dimension of

n row× n col× n LRs, where n row and n col are both set to 100 in default (Figure 4.2d).

Next, we calculate the Jaccard Similarity Matrix (n LRs × n LRs) to quantify the pair-

wised similarity of spatial CCC patterns between LRs using their corresponding gridded
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CCC matrices (Figure 4.2e). We then perform hierarchical clustering to group LRs with

similar spatial CCC patterns (Figure 4.2f). The cluster labels assigned to LRs will be used

as the regularization for the Graph Neural Network.

Cluster Supervised Graph Neural Network

As being illustrated in (Figure 4.2g), the Graph Neural Network (GNN) we constructed use

Spatial Transcriptome (ST) data as input, which consists of the expression matrix of cells

and their spatial locations. The ST data is preprocessed before feeding into the GNN. In

preprocessing, we applied the k-nearest neighbor algorithm on cell/spot spatial locations to

get an adjacent matrix A, and performed the CCC inference using COMMOT[154] to get

a CCC feature matrix X. The preprocessed data next is input into a Graph Convolutional

layer, whose weights are initialized by the one-hot cluster labels obtained from the pre-

hiearchical clustering step. The shape of the weight matrix in GNN is n LRs × n embed,

which corresponds to the size of the input and output of the GNN. Specifically, the input

shape of GNN is a n cell×n LRs, while the output (i.e., embeddings) has a size of n cell×

n embed. Therefore, the weight matrix represents a mapping from LRs to embedding, which

is initialized by the cluster labels. Mathematically, the weights matrix is initialized by:

Wi,j =


1, if LRi is from clustering j.

0, otherwise.

(4.4)

Spatial Regularization

The output embedding and the weight matrix of GNN is refined during the iterative training

and regularized by both spatial regularization (same as the previous) and Jaccard similar-

ity regularization. An effect of the spatial regularization is smoothing and denoising the

embeddings.

80



Figure 4.2: The workflow and output of the pre-hierarchical clustering. (a). The
workflow the pre-hierarchical clustering. (b). The annotation of the cells in Mouse Em-
bryogenesis ST data(left) [80], and four representative spatial CCC patterns inferred using
COMMOT[154]. (c). The jaccard similarity matrix for the four spatial CCC patterns.
(d)-(e), similar to b, c, but on the gridded spatial CCC patterns. (f). The hiearchical
clustering on the Jaccard similarity matrix calculated on the gridded spatial CCC patterns
of all ligand-receptors. (g). The architecture of the clustering supervised Graph Neural
Network.
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Jaccard Similarity Regularization

Another regularization added to GNN is Jaccard similarity regularization, which aims at

constraint the embedding similar to the cluster-average spatial CCCs from pre-clustering.

Mathematically, this is:

LJaccard =
1

M

M∑
i=1

J(Zi,
1

NCi

NCi∑
j=1

X:,j) (4.5)

where M is the number of clusters, NCi number of LRs in cluster i, Zi is the embedding i,

X:,j is the CCCs of cells for LRj, J is the Jaccard Index function.

Therefore, each trained embedding represents a specific spatial CCC pattern which summa-

rizes the CCC patterns of a collection of LRs with similar spatial patterns.

Identification of potential spatial interacting LRs

One of the downstream analysis the output embedding can be utilized for is to identify the

potential spatial interacting LRs. To achieve this, in the unsupervised method, we rank

the LRs based on their trained GCN weights with respect to each embedding. For each

embedding, we choose the top contributed LRs as the explanation of the embedding and the

potential collections of LRs that are spatially interacting with each other.

On the other hand, in the supervised method, for each cluster, we rank the LRs based on

their total CCC levels (sum over all cells). The reason for choosing sum instead of the top

Jaccard index is that we find top Jaccard index tends to prioritize the LRs with less CCC

signals. The LRs with more obvious patterns (in terms of CCC intensity) and high pattern

similarity to embedding will be put to the last, when Jaccard index is used to rank the LRs

for each cluster.
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4.3 Results

4.3.1 Spatial regularization enables the identification of spatial

patterns

To investigate whether the raw GNN based Encoder-Decoder framework can identify the

Spatial CCC patterns in the input data, we applied the unsupervised GNN model (see

Methods) on the mouse embryogenesis ST data [80]. The model includes a Graph Convolu-

tional layer as the Encoder, followed by a fully connected layer as the decoder. In the raw

form, only the Mean Square Error loss is added. After training the model, we visualize the

output embeddings (Figure 4.3a). We can observe only top 11 embeddings output signals

and the embeddings from #12 to #14 is just empty. In the top 11 embeddings, the output

patterns are very noisy and similar to each other. The differences mainly come from the

overall pattern intensity. For instance, it can be observed that embedding #5 shows the

most visible pattern as the color is denser in specific regions. Embedding #3, #8 show the

intermediate pattern intensity. The patterns in embedding #1 and #10 is just barely visible.

To check whether the model can summarize spatial CCC patterns into the embeddings, we

choose the embedding #6 and plots the spatial CCCs from the top 9 contributed LRs to this

embedding according to the weights from GCN model. The reason for choosing embedding

#6 is that, in the region annotated as heart in first panel of Figure 4.3a, the pattern is more

obvious than the patterns in other regions. From the spatial CCCs of the top contributed

LRs, we can hardly observe any similarity between the spatial distribution of the CCC

patterns. Moreover, the CCCs in the heart region in the embedding #6 is not universally

enriched across the CCCs in top contributed LRs.

Next, we replace the MSE loss by spatial regularization to test whether it can helps to identify

the spatial CCC patterns that shared across a subset of LRs. Indeed, we observed the output

embeddings present clearer and more diverse spatial patterns (Figure 4.4a). The better

visibility of patterns can be seen through a greater contrast in color intensity between regions.
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b

Figure 4.3: Embeddings of the raw unsupervised GNN model: GCN Encoder
+ FC Deocoder with MSE loss only. (a). The first panel: the cell type annotation
for the E11.5S1 sample from the MOSTA dataset [80], rest panels: the visualization of the
embeddings output from the model. The intensity of red represents the embedding value.
(b). The embedding #6 and the visualization of the CCCs for the top 9 contributed LRs
for this embedding ranked by the weights in GCN model.
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Figure 4.4: Embeddings of the raw unsupervised GNN model: GCN Encoder
+ FC Deocoder with spatial regularization only. (a). The first panel: the cell
type annotation for the E11.5S1 sample from the MOSTA dataset [80], rest panels: the
visualization of the embeddings output from the model. (b). The embedding #11 and the
visualization of the CCCs for the top 14 contributed LRs for this embedding ranked by the
weights in GCN model.
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The pattern variation is shown by differences in the distribution of colors in the region with

the highest intensity. Furthermore, we investigate whether the spatial regularization can

helps to aggregate similar patterns into the same embedding. To check this, similar to the

MSE model, we select embedding #11 and draw its top 14 contributed LRs. Unsurprisingly,

we find more spatial overlap between the embedding and its top contributed LRs. Specifically,

the patterns are enriched in the brain region in embedding, this regional pattern enrichness

is observed in the following LRs: Ptn-Ptprz1, Fgf17-Fgfr2, Fgf15-Fgfr3, Fgf18-Fgfr2,

Mdk-Ptprz1, Wnt7b-Fzd3 Lrp5, Fgf17-Fgfr1, etc. Overall, the results suggests that the

spatial regularization can helps to identify the spatial patterns in the input.

4.3.2 Regularizations for reducing the pattern redundancy in em-

bedding

Although the spatial regularization can better identify the spatial patterns, the issue of

redundant patterns in embedding still remains. We did some exploration on how to reduce

them through direct regularization on the GCN weights. Multiple techniques were tried to

regularize the GCN weights, such as L1 regularization, entropy based (which aims to limit

the number of embeddings each LR contributes through entropy based loss), and Exclusive

Sparsity regularization [156]. We will only introduce the result of the Exclusive Sparsity

regularization, since it can promotes the embeddings to compete and select a subset of

the input LRs so that the subsets are mutually exclusive (Figure 4.5a). We visualized the

heatmap of the trained GCN weights in Figure 4.5b to verify its effect. Indeed, we find

the LRs for each embeddings are not overlapped and each LR only contributed to a limited

number of embedding (usually one). By contrast, in the heatmap of the entropy based

weight regularization, we observed each LR ususally contributes to over 2 embeddings, and

sometimes over 90% of the embeddings (see SI Figure). However, although the weights

regularization is effective, the trained embedding still present severe redundancy issue (Figure

4.5c). In addition, the correlation of the spatial patterns between the embedding and its top
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Figure 4.5: Embeddings of the unsupervised GNN model: GCN Encoder + FC
Deocoder with Exclusive Sparsity regularization [156] applied to GCN weights.
(a). The illusration of the Exclusive Sparsity regularization, which promotes the upper
layer neurons to compete and select a disjoint subset of the lower feature neurons. (b). The
heatmap of the GCN weights (in part) regularized by Exclusive Sparsity. (c). The first
panel: the cell type annotation for the E11.5S1 sample from the MOSTA dataset [80], rest
panels: the visualization of the embeddings output from the model. (d). The embedding
#12 and the CCCs for the top 9 contributed LRs for this embedding ranked by the weights
in GCN model. 87



contributed LRs is not improved as well.

4.3.3 Jaccard Index based hiearchical clustering can identify LRs

with similar spatial patterns

A motivation of this study is to develop tools to ease the spatial CCC analysis for researchers,

since there are usually thousands of LRs with different spatial CCC patterns to analyze.

Therefore, the identification of a few major CCC patterns in the LRs is necessary, so that

the identified patterns can be representative and diverse. However, based on the previous

results, we find the top LRs contributed to the same embedding are not neccessarily similar

in their spatial CCC patterns produced by GNN with Exclusive Sparsity regularization (or

Entropy based Regularization). Therefore, we think the a explicit regularization, instead of

the implicit ones, may be able to encourage LRs with similar spatial CCC patterns cluster

into the same embedding. However, the form of this explicit regularization is hard to come

up with. Thus, we try to first find a method which can cluster similar spatial CCC patterns

well as a initial step.

As been mentioned in Methods, when clustering spatial patterns, a good metric to quantify

their similarities is critical for the ultimate performance. An intuitive thought is to compare

the difference of their CCC levels cell by cell between two LRs using Mean Square Error

(MSE) or calculate the correlation with Pearson Correlation. In addition, image similar-

ity metrics, such as Structural Similarity Index (SSIM) [157], seems also good candidates.

However, upon investigation, we discovered that utilizing a metric that analyzes data at

the level of individual cells typically leads to poor performance due to a high level of noise

present in the data. To mitigate this issue, we mesh the cells in to a lower resolution grid

(100× 100), aggregate the CCCs of cells into grids, and then use these grids instead of raw

data to calculate the pairwised similarity matrix. Through exploration, we find the metric of

Jaccard Index can give the best performance in clustering similar spatial patterns probably

because of it’s a coarse grained metric and count on positive overlap instead of counting both
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negative and positive (the data is extremely sparse and we only care to how much degree

the positive parts are overlapped).

By hiearchical clustering the LRs using Jaccard Index, we obtained the information about

which groups of LRs are similar to each other in spatial CCC patterns. To further derive

the representative spatial CCC pattern for each cluster, we remodel the GNN network as

the Figure 4.2g shows. Specifically, we removed the decoder and constrained the GCN

weights matrix by initializing it using the one hot representation of the cluster labels. In

this way, the LRs that does not belongs to the specific cluster will have zero weights for the

embedding that corresponds to that cluster. In addition, we added the spatial regularization

to the embedding to make the output embedding more spatially continuous. Furthermore,

we added a Jaccard similarity regularization to make the embedding as similar to the cluster

average CCC patterns as possible. This is more like a refinement to the cluster average CCC

patterns so that it’s more spatially continuous and less noisy.

Next, we visualized the trained Embeddings and annotated the cell types distribution in

the cells with embedding signals (Figure 4.6a). From the figure, it can be observed that

the spatial patterns are now quite diverse across embeddings. This is due to the Jaccard

index based clustering, because we can find similar patterns if we calculate the average

CCCs for LRs in each cluster (Figure 4.6b). By analyzing the pattern, we observed that

the Embedding #2, #7, #8, #10 are enriched in brain cells (light blue annotation), but

their spatial location is different, which may indicates distinct functions through CCCs. By

contrast, embedding #4 shows significant enrichment in the dermomyotome and sclerotome,

which might suggests its function role in somite development for the LRs associated with

this embeddings. In embedding #6, we observe enrichment in heart, liver, GI tract, dorsal

root ganglion, this could imply that these organs share similar CCCs for specific functions

during mouse development.

Although the embedding and cluster average CCC is similar, we can still observe differences.

For example, in the embedding (or cluster) #5, #13, #14, we can see the pattern in em-
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Embeddings

Cluster Average CCCs

Figure 4.6: Comparison between embeddings and cluster average CCC patterns
(a). Visualization of Embeddings by GNN with Jaccard Index based Preclustering (b). The
Cluster Average CCC Patterns, where the CCCs for LRs in the same cluster is averaged.

90



bedding is much more clear and enriched in specific regions, whereas the CCC patterns in

cluster average distribute across the whole sample.

4.3.4 Identifying potential interacting ligand-receptors (LRs)

through embedding associated LRs

To identify the potential interacting LRs and understand the pattern source for each em-

bedding, we hypothesize that interacting LRs are more likely to co-locate in spatial and

therefore have similar spatial CCC patterns. Based on this hypothesis, we extracted the

LRs in the same cluster as the top contributed LRs to each embedding (Figure 4.7g-l). It

can be seen that the embeddings are now highly overlapped with the spatial CCC patterns

for the top contributed LRs, which confirmed the effectiveness of the clustering. Moreover,

we can observed that many contributed LRs within the same embedding usually share the

same or similar ligand or receptor. For instance, in embedding #4, we find ligand Fgf6,

Fgf7, receptor Fgfr1, Fgfr2 appear multiple times in the contributed LRs (Figure 4.7g).

To investigate how the embedding associated LRs may perform function collectively through

interacting with each other, we inferred the interaction network with the embedding asso-

ciated LRs using STRING.db (Figure 4.7m-o). Three groups of LRs can be seen for the

interaction network for embedding #4. One is Fgf family, where ligands Fgf4/5/6/7 in-

teract with Fgfr1/2/3/4 receptors. Gene Ontology (GO) analysis suggests Fgf4 and Fgf6

associate with cartilage condensation. Indeed, it’s been reported that Fgf6 has restricted

expression in the myogenic lineage during the development of skeletal muscle, indicating its

signaling role in somite formation [158, 159]. Fgf7 is also suggested to play similar role [160].

These indicates the CCC patterns in embedding #4 associated with the somite formation

process. In addition, GO analysis suggests Fzd1/2/3 associate with neural tube closure.

As another example, we find although the patterns in embedding #7 and #8 are similar to

each other and partially overlapped in brain region, their associated pathway composition is

quite different (Figure 4.7k, l). Eembedding #7 is predominantly associated with Bmp and
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Interaction Network for Embedding #6
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Interaction Network for Embedding #8

Figure 4.7: Inferred cell-cell communication patterns in embeddings and the top
contributed LRs for each embeddding (a)-(d). The selected representative embed-
dings. (e)-(h). The top 5 contributed LRs corresponding to the embeddings in the first
columns. (i)-(l). The pathway distribution of all contributed LRs for the embeddings in
the first columns. textbf(m)-(p). Interaction Network for LRs Contributed to Embedding
#4, #6, #7 and #8. Edges indicate both functional and physical protein associations from
STRING.db. Edge thickness indicates the confidence from data support.
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Fgf, whereas Wnt play a major role in Embedding #8. Interaction network of their LRs reveal

this difference clearly (Figure 4.7o, p). In the interaction network of embedding #7, ligands

Fgf8/17/18 interact with Fgfr1/2/3 receptors, Bmp6/8b interact with Bmp1r and Acvr1.

Only one Wnt family ligand Wnt7b is in embedding #7. By contrast, Wnt3/4/6/7a/7b/9a

interacts densely with Fzd1/2/3/7/8/10, and the only one Fgf family ligand Fgf15 is in

embedding #8. These suggests although spatially similar, the cell cell communications in

embedding #7 and #8 is distinct, and the LRs utilized across embeddings are not usually

overlapped. Together, these examples demonstrates the usefulness of the embedding in CCC

pattern summarization, and its potential to reveal LRs which might interact with each other

and perform functions collectively.

4.3.5 More confirmative results from 10x Visium datasets

To further validate the effectiveness of the proposed method, we tested our pre-clustering

GCN model on a 10x Visium ST dataset (Figure 4.8. Sample: Adult Mouse Brain Coronal

Section 1). Similar to the previous analysis, we extracted the top embedding associated

LRs for two representative embedding pattern (Embedding #5, #7). Again, we can see the

highly overlapped patterns between the embedding and CCCs in embedding associated LRs,

which confirmed the effectiveness of our method on a different sequencing technology.

4.4 Discussion

In this work, we explored the approaches for summarizing and analyzing the spatial cell-cell

communication patterns. We proposed two graph neural network (GNN) based methods

for achieving this, unsupervised GNN and supervised GNN. The unsupervised GNN model

optimize the embedding through reconstruction loss, spatial regularization and exclusive

sparsity regularization. However, the resulting embeddings have severe redundancy issue,

and some embedding associated LRs do not share similar patterns with its embedding. To
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Figure 4.8: Inferred cell-cell communication patterns in embeddings and the
top contributed LRs for each embeddding (a). The trained embeddings from pre-
hiearchical clustering GCN model. (b)-(c). The top 9 embedding associated LRs corre-
sponding to the representative embeddings: #5, and #7.
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address this, we hypothesize a explicit regularization which based on a metric that can mea-

sure the similarity between spatial CCC patterns is necessary. However, the form of this

explicit regularization is hard to come up with. Therefore, we proposed a pre-clustering

strategy to supervise the GNN model. This strategy helps to group similar patterns into the

same embedding and differentiate different patterns into separate embeddings. To clustering

similar spatial CCC patterns, the choice of similarity metric is critical. We found the metric

of Jaccard Index achieves the best performance among the metrics from Min Square Error,

Pearson correlation, to other image similarity metrics such as SSIM. Using the clustering

labels as the GCN weight initialization, the trained GNN model can identify diverse and

biological meaningful spatial CCC patterns. Although the trained embeddings are similar

to the cluster average CCC patterns, the patterns from embedding are much cleaner, which

may help researchers to prioritize important patterns or spatial regions. To facilitate the

interpretation of the patterns from embeddings, the top contributed LRs to each embed-

ding are also generated. These LRs might represent potential interacting LRs, which can

help us understand the full picture of cellular communication mechanism. We showcase the

utility of the proposed methods on a mouse embryogenesis ST dataset. The analysis results

demonstrated the effectiveness of the pre-clustering strategy in grouping similar spatial pat-

terns and diversifying the embedding patterns. By exploring the protein interaction network

revealed via the embedding associated LRs, we showed how this method can be used to

uncover new biological insights.

Despite the usefulness of the proposed method in aiding researchers to analyze the biologi-

cal significance of numerous LR patterns, there are still some unresolved issues. First, the

pre-clustering based GNN model seems too ad-hoc, and the GNN model seems unnecessary

compared with the results from cluster average CCCs. To improve this, an end-to-end deep

learning approach with flexibility to serve multiple purpose for spatial CCC analysis would

be ideal. However, based on the results from the unsupervised GNN, implicit regularization

strategies seems not working well. Moreover, learned from the fact that Jaccard Index is
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a great metric for clustering similar spatial patterns, it is reasonable to construct regular-

izations based on Jaccard similarity matrix between CCCs from LRs. One thing we tried

with this is to regularize the GCN weights so that the connections to embeddings from LRs

that have less Jaccard similarity would be penalized. However, the results seems not good.

Another aspect the current work can be improved is providing the strategy to determine

the best number of major patterns. Currently, we leave it as a free parameter to user in

hierarchical clustering (i.e. n cluster: # of cluster). A better approach could be founded

on the principle of information gain, where the new information might be quantified by the

similarities between the new embedding to all existing ones. If the maximum similarities are

less than a threshold, adding the new embedding may provide richer pattern information.

Finally, this study only investigated the approach to summarize spatial cell-cell communi-

cation patterns using a single sample of spatial transcriptomic data. There are numerous

possibilities for extending this research, which could be both interesting and valuable. For

example, making the embeddings comparable between different conditions, would be a in-

teresting perspective to explore, such as comparison between healthy and disease samples,

samples with different temporal points. Similarly, integrating multi-slice samples would also

be valuable to study since it is the trend of ST in the future. One strategy to integrating

multi-slice samples that works great and has been tested in SpaceFlow is integrating the em-

beddings from multiple slices by methods such as Harmony [161]. Moreover, we can further

extend the current potential interacting LR network identified to their downstream targets

to form a larger network for a larger picture. In addition, the downstream target of the po-

tential interacting LR network may also have different CCC patterns or expression patterns.

Investigating the expression and downstream impact of the CCCs in LR interacting network,

which produce multiple heterogeneous response, might be interesting to study. Finally, we

hope that this work may pave the way for better analyzing the spatial CCC patterns and

contribute to the discovery of novel insights into cell-cell communication.
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Chapter 5

Future Work

In this dissertation, we explored the spatial and temporal regulation of cells from three

distinct perspectives, and revealed the complicated connections between transcriptome,

epigenome, and intercellular communication. With the development of multi-omics, spa-

tial transcriptomics, and live cell imaging, and the recent advances in AI, it is possible to

develop approaches to consider these factors and their connections together. For example,

we may soon be able to sequence multi-omics data in a spatially resolved manner [162],

just like the spatial CITE-seq published recently, which can detect both proteins and whole

transcriptome simultaneously. Based on our exploration, one natural extension for DNA

methylation maintenance modeling is to build a multiple cell and across cell cycle version,

which can helps us understand the spatialtemporal dynamics of the DNA methylation main-

tenance mechanism. Additionally, we can extend SpaceFlow to deal with spatial multi-omic

data (such as spatial epigenome–transcriptome co-profiling [163]) for a more fine grained

picture of the spatiotemporal state and dynamics of cells. Lastly, for the spatial CCC analy-

sis study, it might be useful to utilize epigenome–transcriptome co-profiling data to identify

the sub-communication state, similar to the metastable state concept in transcriptome or

primed state in epigenome. This may refine our understanding on the mechnism of the CCC

process.
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Appendix A

Supplement to Locally-correlated

kinetics of post-replication DNA

methylation reveals processivity and

region-specificity in DNA methylation

maintenance

A.1 Extended Methods

A.1.1 Maximum Likelihood Estimation of Remethylation Rates

The Repli-BS dataset[35] contains read-depths that vary widely both across CpGs and across

measured timepoints. The data can be expressed as {N0
ij, N

1
ij}, or the number of unmethy-

lated (0) and methylated (1) reads observed at site i at timepoint j. We assume that the
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probability of finding a methylated read at site i and at time tj is

p(1|ki, fi, tj) = fi(1− exp (−kitj)) (A.1)

where ki is the rate of accumulation of methylation post-replication and fi is the steady-

state fraction of cells in the population methylated at site i. Parameters are estimated from

the data by Maximum Likelihood Estimation (MLE), as in [37]. In the MLE pipeline, we

use a per-site minimum read-depth threshold to increase the baseline accuracy of inferred

parameters. In the current work, the threshold was set as follows: each CpG required a

minimum of 5 reads (methylated or unmethylated) at both timepoint t = 0 and combined

timepoints t > 0 (for a total minimum of 10 reads over all timepoints). Furthermore, each

CpG required a minimum of 5 methylated reads in total (over all measured timepoints). (We

performed detailed testing and uncertainty quantification for various methods of setting

thresholds previously [37], finding that a read-depth-based threshold gave good balance

between genomic coverage and uncertainty in estimates). For each site, we compute the

Likelihood Function, L(θ∥xi), where θ contains the parameters θ = {k, f} and xi is the

observed data at site i, given the Poisson process model. We observed three cases:

1. The parameters are identifiable. This occurs when the likelihood function contains

a global maximum in θ = {k, f}; the location of the maximum gives the inferred

parameter values. The majority of sites in the dataset fall in this category;

2. The parameters are practically unidentifiable. This occurs when a global maximum

exists, but the confidence interval is very wide. We discard sites for which this occurs,

requiring that the 75% confidence interval on k (obtained by the profile likelihood

method) fall within the range of values [0.01− 10]h−1;

3. The rate k is unidentifiable, but its value can be bounded. This occurs frequently, as

many sites show full methylation already at the first experimental timepoint, indicat-

ing a post-replication methylation rate that is faster than the time-resolution of the
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experiment, given the one-hour pulse length. We observe this in a likelihood function

L(θ∥xi) that plateaus at high rate values. In these cases, we use a procedure to estimate

a lower bound for ki: we determine the 25% lower bound of the confidence interval on

k, relative to the plateaued value of L(θ∥xi). We choose this value for the lower bound

on k, reasoning that it estimates the location where the likelihood function is no longer

increasing significantly.

A.1.2 Stochastic Simulation

The models are written in the form of stochastic biochemical kinetic reaction models (or in

the case of the processive mechanism, a stochastic reaction-diffusion model). The models

concentrate solely on the process of maintenance methylation, i.e., the remethylation process

that occurs in less than 24 hours, while ignoring other processes such as demethylation.

Both models treat DNA as a 1D strand with CpG sites that can be unmethylated (u), hemi-

methylated (h), or methylated (m). Sites are assumed to be unmethylated or hemimethylated

immediately after replication, with hemimethylated sites susceptible to remethylation by the

enzyme. The distributive and processive models differ in how the enzyme moves to new

hemimethylated sites after catalyzing methylation at one site. The Distributive mechanism

treats individual CpG sites as fully independent. The DNMT1 will be disassociated from

DNA after it methylated a hemimethylated site. By contrast, in the Processive model, after

methylation DNMT1 can diffuse towards its neighbor sites either upstream or downstream.

We assume the enzyme travels with 1D diffusion coefficient D and unbinds with rate koff. E

denotes a free enzyme (not bound to DNA). Eh is a complex formed when E is bound to h

(similar for m). The model reactions are as follows.
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Distributive Model

E + h −−⇀↽−− Eh k1f , k1r

Eh −−→ E +m kcat

After the catalytic step, unbinding is assumed to happen rapidly, therefore the catalytic step

and unbinding are assumed to occur together in one step, with rate kcat (i.e., we assume that

koff ≪ kcat).

Processive Model

E + h −−⇀↽−− Eh k1f , k1r

Eh −−→ Em kcat

Emi + hj −−→ mi + Ehj D

Em −−→ E +m koff

In the processive model, the diffusive step allows the enzyme to reach a hemimethylated

CpG from a nearby CpG in Em state. The likelihood of this occuring before unbinding with

rate koff depends on the properties of diffusion (see below).

Model Parameters

Model parameters were chosen to be approximately in line with experimentally measured

values for DNMT1 where possible [73], while also showing reasonable agreement with our

experiment-derived methylation rates and rate correlation (in the case of the Processive

model). Parameters used in simulations are shown in Table 1.
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Simulation algorithms

For the distributive model, the standard Gillespie Stochastic Simulation Algorithm was used

[71]. For the processive model, we combine stochastic reactions with a 1D lattice model of

diffusion. The lattice spaciging is 1 basepair. We apply a First Passage Time Kinetic Monte

Carlo algorithm inspired by [72]. This allows us to simulate diffusive steps efficiently, since

we do not need to track each diffusive hop with basepair resolution. Rather, the algorithm

requires sampling from the First Passage Time Distribution for an enzyme to reach a nearby

CpG by diffusion. This allows us to simulate large stretches (tens of thousands) of CpGs.

In the simulations, the enzyme is allowed to diffuse bidirectionally along DNA. Consider an

enzyme with a starting position located at a CpG in the Em state. Let there be two nearest

neighbor CpGs in the h state (which are thus candidates to be subsequently targeted by

the enzyme, according to the Processive model reactions above). We refer to the diffusion

Domain as the 1D region between left and right neighbors. Let dL be the distance (in bp)

between the left neighbor and the starting position, and similarly dR for the right neighbor.

Then the next event that can occur for this Em CpG is one of: (1) the enzyme diffuses

distance dL to the left neighbor with diffusion coefficient D. The current CpG undergoes

Em −−→ m and the left neighbor undergoes h −−→ Eh; (2) Similar for the right neighbor;

or (3) The enzyme unbinds from DNA before reaching either left or right neighbor at rate

koff , so Em −−→ E+m. For the simulation, we must compute the waiting time distribution

(or First Passage Time Distribution f(t)) for the enzyme to exit the domain by one of these

events. We must also compute the exit probabilities, i.e. the probability of events (1),(2) or

(3) occuring, which we refer to as PL, PR, Poff , and PL + PR + Poff = 1. The distribution

F (t) and the exit probabilities can be solved analytically (see Finite Domain model, below).

These events, which involve diffusion, have non-exponential waiting times, and we refer to

them as FPT (first passage time) events. The other reactions (k1f , k1r, kcat) are assumed

to proceed via standard Markovian (memoryless) kinetics, with exponential waiting times,

and are referred to as KMC (kinetic Monte Carlo) events. Following [72], a sketch of the
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algorithm for the processive simulation is then:

Initialize N CpGs at post-replication time tp.r. = 0 in u or h state by sampling from

input methylation landscape

while tp.r. < tout (tout is the desired readout time)

Determine which CpG undergoes next event and which reaction occurs at that site

by :

∗ For all CpGs in h or Eh, determine next KMC event and time to event,

τKMC , by the Gillespie algorithm [71].

∗ Build new diffusion domains. For all CpGs newly in Em state, determine

domain length L=dR + dL and x0 = dL. Sample τ iFPT from F (t) and store

in event queue. Compute corresponding exit probabilities for each ith site,

P i
L, P

i
R, P

i
off .

∗ Update diffusion domains. For all CpGs remaining in Em state since last

event, determine whether left or right neighbor has changed. If so, rebuild

diffusion domain and resample τ iFPT from F (t) and replace in event queue.

∗ Select the minimum FPT time, and the corresponding site j for the next

FPT event, τFPT = τ jFPT = miniτ
i
FPT.

if τKMC < τFPT , set τnext = τKMC . Update system state according to KMC

event.

else τnext = τFPT . Sample from the exit probabilities for the jth site to determine

outcome and update system state according to FPT event.

end if

Update the system time: tp.r. = tp.r. + τnext.

Update FPT queue by τ iFPT = τ iFPT − τnext. (Remove the site which underwent

diffusion previously from event queue).
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end while

Record system state.

Table A.1: Table of Parameters

Parameter Symbol Units Value Source or Comment
Catalytic rate, h → m kcat hr−1 40 [73]
Michaelis Constant Km µM 0.8 [73]
Stochastic Michaelis
Constant

Kstoch.
m # 11500 estimated from Km, as-

suming well-mixed reac-
tion volume ≈ 10−15L

Enzyme unbinding from
h-CpG

k1r hr−1 5 estimated from rate cor-
relation maximum as
d → 0 (Processive)

Enzyme binding to h-
CpG

k1f (# · hr)−1 0.039 from Kstoch.
m , k1r

Enzymes per h initially E0/h(t = 0) unitless 1/45 estimated by assuming
a median half-time to
methylation of ≈ 0.5
h (based on Repli-BS
data)

Initial hemimethylated
substrate #

S0 = h(t = 0) # ≈ 20000 arbitrary, balance of
simulation time and
region coverage

Enzyme 1-D diffusion
coefficient

D bp2s−1 106 estimate from other
DNA-binding proteins
[164]

Enzyme drop-off from
DNA

koff hr−1

Ratio D/koff D/koff bp2 1300 estimated from rate cor-
relation decay (Proces-
sive)

A.1.3 Analytic 1D Diffusion Model

Consider two target sites labeled i and j, located on a 1D strand of DNA, that are located

some distance d away. Let τi be the time (post-replication) at which site i acquires methy-

lation (similarly, τj). Assume that in a particular realization of the stochastic process, two

possible events can occur:
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1. Each of the sites is independently methylated, in which case τi and τj are independent

samples from some common distribution, denoted Tmethyl. Tmethyl reflects the distribu-

tion of times required for all biochemical steps in the site acquiring methylation, e.g.,

for DNMT1 to bind DNA from the nucleosol, form a complex with the CpG site, and

successfully catalyze methylation.

2. Alternatively, one of the sites could be methylated by an enzyme that has reached it

by diffusion after first acting on the other site. In this case, assuming (without loss

of generality) that site i is the first, then τi is sampled from Tmethyl and τj = τi + τD,

where τD is sampled from random variable Tdiff . Tdiff reflects the distribution of times

for DNMT1 to diffuse the distance d to reach the neighbor site, form a complex, and

successfully catalyze methylation.

The likelihood of event 1 or 2 above taking place depends in part on the probability that the

enzyme can remain bound to DNA and diffuse a distance d before unbinding. In the limit

of
√

D/koff ≪ d, then event 1 always occurs, and

Corr(X, Y |d) = 0 (A.2)

where X, Y now denotes pairs of methylation times at sites with intervening distance d. The

correlation is zero because τi and τj are assumed to be i.i.d. random variables. Conversely,

in the limit of
√

D/koff ≫ d, then event 2 always occurs, and

Corr(X, Y |d) = 1, (A.3)

(in the limit of τD ≪ τi). Assuming that the enzyme need only reach the next target site by

diffusion, in which case the catalytic step occurs subsequently with probability 1, then the
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correlation is equal to the probability of event 2 occuring, i.e.

Corr(X, Y |d) = Prob(enzyme reaches neighbor) (A.4)

= e−d
√

koff/D (A.5)

where the exponential dependence on linear distance, with decay rate
√

koff/D, is obtained

from a 1D analytical diffusion model with parameters koff , D, on a semi-infinite domain with

an absorbing state at the target site at distance d from the starting point. Such models

have been used previously for theory of transcription factor searching on DNA [52]. In the

full Processive model, the enzyme does not always successfully methylate the target upon

reaching it, leading to the proportional relationship of Equation 1 (Main Text). The complete

analytical results are presented below.

Semi-infinite Domain

Following the model described in the main text, consider two CpG sites, linear distance d

apart. Let P (x, t) be the probability density of a particle (enzyme) to be at location x in

1D at time t. For simple diffusion (no unbinding) the governing equation

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2

with initial condition P (x = 0, t = 0) = 1 and absorbing boundary condition P (x = d, t >

0) = 0 gives the density

P̃ (x, t)− P̃ (x− 2d, t)

where P̃ (x, t) = 1√
4πDt

exp (−x2/4Dt) is the solution to the standard 1D diffusion model on

an infinite domain (no absorbing boundary condition).
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When unbinding is included in the model, the governing equation becomes:

∂P (x, t)

∂t
= D

∂2P (x, t)

∂x2
− koffP (x, t)

The solution to this PDE with the same absorbing condition at distance d as above gives

P (x, t) =
e−koff t

√
4πDt

(
e−x2/4Dt − e−(x−2d)2/4Dt

)
.

We then have the survival probability for the protein to remain bound on DNA at time t:

S(t) =

∫ d

−∞
P (x, t)dx = e−kterf(

d√
4Dt

)

leading to an expression for the total probability flux to “exit” the DNA (either by unbinding

or by absorption at x = d):

F (t) = −∂S

∂t
= e−kt

(
kerf(

d√
4Dt

) +
d

t

1√
4πDt

e−d2/4Dt

)

The first term is the flux to exit by unbinding, the second is the flux to the absorbing state

at distance d, i.e. F (t) = Funbind(t) + Fabsorb(t). Total probability to reach the absorbing

state at distance d by diffusion, integrating the absorbing flux,

R(d) =

∫ ∞

0

Fabsorb(t)dt = e−d
√

k/D

Thus, the probability for the enzyme to reach a site at distance d away from the initial site

before unbinding is given by e−d
√

k/D.

Finite Domain

In the simulations, we need to consider not just pairs of CpGs distance d apart, but consider

that an enzyme bound to DNA may have two neighbors within reach in h state, left and right.

107



Let the total domain length be L=dR + dL, and the enzyme starting position is x0 = dL.

We have a diffusion model, with unbinding, with initial condition P (x = x0, t = 0) = 1 and

absorbing boundary conditions at both ends, P (x = 0, t > 0) = 0; P (x = L, t > 0) = 0. The

Fourier series solution is

P (x, t) =
∞∑
n=1

Pn(x, t)

Pn(x, t) =
2

L
sin

nπx0

L
sin

nπx

L
exp (−(

Dn2π2

L2
+ k)t)

The survival probability of the enzyme on DNA at location x (i.e. before either unbinding

or reaching left or right neighbor) is

S(t) =
∞∑
n=1

Sn(t)

Sn(t) =

∫ L

0

Pn(x, t)dx

=
2

nπ
sin

nπx0

L
(1− (−1)n) exp (−(

Dn2π2

L2
+ k)t)

The first passage time distribution f(t) can be obtained by normalizing the time-dependent

probability flux F (t) = −∂S(t)
∂t

. For purposes of the simulation, we sample from f(t) making

use of the C.D.F. for f(t). This C.D.F. is given by:

C(t) = 1− S(t).

To determine the exit probabilities as a function of time, (i.e., the relative likelihood of

exiting left, right, or to solution), we make use of the time-dependent probability fluxes to
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each end-state: FL(t), FR(t), Fsolution(t). These are obtained as:

FL(t) = DP (x = 1, t)

FR(t) = DP (x = L− 1, t)

Fsolution(t) = kS(t).

A.1.4 Relationship between Semi-infinite domain model and Pro-

cessive simulation

Using the analytical semi-infinite domain model together with the arguments in main text,

the correlation between methylation times at two sites separated by distance d is given by

e−d
√

k/D. In our Processive simulation, there are a number of additional complicating factors

that are not present in the idealized theoretical model. For example, after the enzyme reaches

the neighbor by diffusion, there is a chance for it to unbind (rate k1r) before successfully

catalyzing methylation (rate kcat). There is also a chance that the neighbor site will already

be occupied by another copy of the enzyme. Finally, in the simulation τD is on the same

order as τi, not much less as assumed in the idealized model, because it accounts for the fast

diffusion time as well as the slower time for complex formation and methylation, introducing

delay between subsequent methylation events. All of these factors serve to decrease the

correlation at a given distance d, but can be assumed to not significantly affect the distance-

dependence, thus predicting that correlation should be proportional, but not strictly equal

to, e−d
√

k/D.

Note the distinction between the correlation of methylation times at individual sites (on

which our analytical theory is based is based) and methylation rates, which we extract from

experiments and simulations. Exact methylation times at individual sites are not currently

measureable in genome-wide pulse-chase experiments, but methylation rates ki are estimated

from Repli-BS-Seq experiments, where, for a given CpG sites i, the experiment-inferred
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methylation rate constant ki is by definition taken to be equal to 1/ < τi >, i.e., the inverse

of the average over methylation times at site i across different cells. The inverse relationship

between rates and times could in principle affect the linear Pearson correlation, however,

from simulations we found that the Pearson correlation function was not sensitive to the

distinction, and the rate correlation decay was well described by e−d
√

koff/D, in accordance

with the analytical theory (see Figure A.2).
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Figure A.1: Histogram of the sizes of contiguous elements in different genomic
regional contexts. y-axis is the probability density (occurence) and x-axis is the region
size in basepairs. The studied regions vary in size.
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Figure A.2: Comparison of analytical theory of enzyme processivity to stochastic
simulations (Left) Processive simulations were performed choosing four different values for
the parameter ratio D/koff. (Values for sets {1, 2, 3, 4} were {150, 500, 1402, 1890}bp2. All
other parameters were held constant.) After inferring remethylation rates from the synthetic
data by the MLE pipeline, ensuing rate correlations were fitted to a single exponential de-
cay function in an unbiased manner. (Right) Fitted decay constants from simulated data
(colored dots) overlaying the theoretically predicted decay constant from the model param-
eters (

√
koff/D), showing close agreement of theory and simulation, despite the increased

complexity of the methylation dynamics simulation, as compared to the 1D analytical model.
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Figure A.3: Rate Correlations from Simulations of Read Length Effect. Simulations
were performed to study the effect of experimental sequencing read-length on kinetic corre-
lation using read-lengths of 100, 150, 200, or 300 bps. “Full” refers to a read-length that
spans the full set of simulated CpGs, corresponding to a read-length of ≈ 105 bps (black
curve). Theory (red dashed) is from Equation 1. Read-length simulations were performed
as follows: 3000 simulations were performed corresponding to each experimental timepoint.
Replicates contained at least 1500 CpGs spanning on the order of 105 bps. From these simu-
lated replicates, reads of a given length were randomly sampled from the available sites, i.e.,
only those sampled CpG states were recorded. The shorter the read-length, the higher the
number of independent replicates were sampled, in order that the total per-site read num-
bers reached the minimum required from the experiments (approximately 5-10 independent
reads per timepoint per site). The Repli-BS experiments used 100-bp paired-end sequenc-
ing on fragments with an average length of 300 bp. Overall the simulations indicate that,
although read-length can introduce spurious correlation, the short read-lengths used in the
experiments do not strongly interfere with the measurement of the exponential decay length
resulting from enzyme processivity.
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Figure A.4: Decomposition of experiment-derived rate correlation functions by
region into region-based and diffusion-based components. Simultaneous plotting
of correlation components and exponential fits for the three representative regions (same
data as Figure 6b in main text, but providing a more detailed view). SINE shows a nearly-
zero region-based component (yellow), indicating that the total rate-correlation is already
reasonably well-fit by an exponential decay. In contrast, Enhancer and CGI both show
small but persistent region-based correlation that is the dominant contributor to the total
correlation beyond 100 bp (Enhancer) and beyond 50 bp (CGI). Removal of the region-
based component according to the model in Figure 6 results in remaining component θ
(green), which is reasonably well fit by a single exponential decay. However, some residual
nonzero correlation is still apparent at longer range in the green curves. The exponential fits
shown correspond to a 100 bp fitting window to fit the short-range decay while minimizing
contribution from residual correlation at longer range.
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Appendix B

Supplement to Identifying

Multicellular Spatiotemporal

Organization of Cells with SpaceFlow
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Figure B.1: Benchmarking on sections 151507 and 151673 using LIBD human
dorsolateral prefrontal cortex (DLPFC) ST data. a. Domain annotation (top left
panel) and segmentations given by different methods (other panels) using section 151507 of
DLPFC data. b. The spatial visualization of pseudotimes calculated by Seurat, Monocle,
stLearn, and the pseudoSpatiotemporal Map (pSM) generated by SpaceFlow on section
151507 of DLPFC data. c. Domain annotation (top left panel) and segmentations given
by different methods (other panels) using section 151673 of DLPFC data. d. The spatial
visualization of pseudotimes calculated by Seurat, Monocle, stLearn, and the pSM generated
by SpaceFlow on section 151673 of DLPFC data.
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Figure B.2: Domain segmentation and pSM on Stereo-seq data and SlideseqV2
data. a. Domain annotation (left panel) and segmentations given by Seurat with different
resolution settings (right three panels) on Stereo-seq data. b-c. Domain segmentations of (b)
Stereo-seq data and (c) Slide-seqv2 data given by SpaceFlow computing regularization over
different subsets of cells, showing lack of meaningful variation even when regularization is
computed over only a subset. d-e. The pseudo-Spatiotemporal Map (pSM) of (d) Stereo-seq
data and (e) Slide-seqv2 data given by SpaceFlow computing regularization over different
subsets of cells, again showing qualitatively matching results in each case.
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Figure B.3: Domain segmentation and pSM on five 10x Genomics official Visium
datasets. a-e. H & E images of five Visium datasets (a. V1 Mouse Brain Sagittal Posterior,
b. V1 Human Lymph Node, c. V1 Breast Cancer Block A Section 1, d. V1 Adult Mouse
Brain Coronal Section 1, e. Parent Visium Human Cerebellum). f-j. Domain segmentations
of the corresponding datasets given by SpaceFlow. k-o. pSM of the five datasets given by
SpaceFlow.
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Figure B.4: SpaceFlow analysis on slideseq v2 dataset. a. Annotation b-d. Domain
segmentations produced by Seurat (b), MERINGUE (c) and SpaceFlow (d). e-h. The spatial
visualization of pseudotimes calculated by Seurat (e), Monocle (f), Slingshot (g), and the
pSM generated by SpaceFlow (h). i. Dot plot of the gene expression of domain-specific
markers. The dot size represents the fraction of cells in a domain expressing the marker and
the color intensity represents the average expression of the marker in that domain. j. Spatial
expression for representative markers of the identified domains.
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Figure B.5: Domain segmentation and pSM on six samples of Human Breast
Cancer datasets. a-f. H & E images of the six samples (Sample A1, B1, C1, E1, F1, H1,
respectively). g-l. Annotations of the datasets given by the original paper. m-r. Domain
segmentations of the datasets given by SpaceFlow. s-x. pSM of the datasets given by
SpaceFlow.
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Figure B.6: SpaceFlow analysis on seqFISH mouse embryogenesis dataset.
a.Annotation b-d. Domain segmentations produced by Seurat (b), MERINGUE (c) and
SpaceFlow (d). e-h. The spatial visualization of pseudotimes calculated by Seurat (e), Mon-
ocle (f), Slingshot (g), and the pSM generated by SpaceFlow (h). i. Dot plot of the gene
expression of domain-specific markers. The dot size represents the fraction of cells in a do-
main expressing the marker and the color intensity represents the average expression of the
marker in that domain. j. Spatial expression for representative markers of the identified
domains.
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[104] A. Bojchevski and S. Günnemann, “Deep gaussian embedding of graphs: Unsupervised
inductive learning via ranking,” July 2017.
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