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ABSTRACT OF THE DISSERTATION 

 

Spike Neuromorphic Carbon Nanotube Circuits 

 

by 

Kyunghyun Kim 

Doctor of Philosophy in Mechanical Engineering 

University of California, Los Angeles, 2013 

Professor Yong Chen, Chair 

 

 The brain has a superior computation performance in comparison with supercomputers in 

many aspects while the brain consumes much less power (~ 20 W) than supercomputers (~ 10
6
 

W). This is mainly owing to synapses, which are the fundamental elements in the brain, and their 

properties such as spatiotemporal signal processing, memory, and learning. Therefore, it is 

crucial to implement an electronic device which can emulate the elementary functions of 

biological synapses in order to mimic the functions of the brain. In this research, two types of 
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synaptic transistors (synapstors) using carbon nanotubes (CNTs) are demonstrated. First, a CNT 

network transistor with a poly(ethylene glycol) monomethyl ether (PEG) layer in the gate is 

presented. It has successfully emulated the elementary functions of biological synapses with low 

power consumption (250 pW/synapstor). Second, a CNT network transistor with C60 molecules 

is shown to mimic the essential functions of biological synapses with low power consumption 

(2.6 nW/synapstor). A spike neuromorphic circuit (SNC) was developed by integrating CNT 

synapstors. The SNC has a capability of parallel signal processing, spatiotemporal correlation, 

learning with low power consumption. It has both excitatory and inhibitory synapses and can 

generate output spikes from the accumulated post-synaptic currents. The large-scale SNC with 

16,384 synapstors and 16 neurons has been designed and fabricated. The power consumption of 

a large-scale SNC is ~ 1.8 mW. The functions of a SNC were demonstrated. The toy drone was 

used as a platform to interact with the SNC. The SNC dynamically processed the sensing signals 

from the drone and triggered actuation of the drone in real-time. The performance of the drone 

was improved via the learning in SNC. The SNC has a potential to have higher signal processing 

speed and be more efficient in power consumption than a supercomputer when the dimension of 

parallel signal processing exceeds ~10
9
. 
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1. Introduction 

1.1 Distinctive Features in the Brain 

 The brain has a superior computation performance in comparison with supercomputers in 

terms of massive parallel signal processing, learning, long-term memory, pattern recognition, 

and creativity while the brain consumes much less power (~ 20 W)
1
 than supercomputers (~ 10

6
 

W)
2
. For instance, the computational power in the brain is at least estimated as more than 40 x 

10
15

 FLOPS
3
 (FLOPS: FLoating-Point Operations Per Second, a measure of supercomputer 

performance) even though there is difficulty in estimating human computational power in the 

measure of supercomputers. On the other side, the fastest supercomputer in the world as of 

November 2012, Titan
4
, has the computational power of ~ 18 x 10

15
 FLOPS while it consumes 

8.2 MW, which is equivalent to supply electricity for 8000 homes. Moreover, the brain has the 

learning capability while supercomputers, even the fastest and most powerful computational one, 

cannot learn; they can only do tasks which are pre-defined by human beings in the programming 

languages. The method of signal processing is also different – the brain processes signals in a 

massively parallel way, and the supercomputer does it in the combined way of serial and parallel 

processing. This is mainly caused by the basic devices composing the system. Briefly, the brain 

can do similar or better jobs than supercomputers can do while it consumes low power 6 orders 

below than supercomputers’ power consumption. This is mainly because of brain’s structure and 

components, which are neurons and synapses. Especially, a synapse, which is the fundamental 

processing element in the brain, has functions of signal processing, memory, and learning in one 
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element. Therefore, the brain does not need to worry about the bandwidth between the 

processing unit and a memory unit like supercomputers. The comparison between the brain and 

the supercomputer is made in Table 1. 

Brain  Supercomputer 

Neuron (4 ~ 100 m) 

Synapse (~ 100 nm)  
Basic Device  Si  CMOS Transistor (32 nm)  

~ 10
14

 synapses  Number of Devices  ~ 200 x10
12

 CMOS transistors
5
 

~ 19K (CPU+GPU)s
 

 

1 ~ 100 Hz  Operating frequency 1.8 / 3.2 GHz  

> 40 x10
15

 FLOPS3 Computational power  ~ 20 x10
15

 FLOPS 

20 W1 Power  8.2 MW2 

Learning, massively parallel 

signal processing   
Remarks  

Programmed, fast numerical 

calculation, serial/parallel 

processing  
 

Table 1. Comparison between the Brain and a supercomputer. 

 

1.2 Structure of the Brain – Neurons and Synapses 

 In order to understand why the brain has superior computational power than 

supercomputers while it consumes much less power than supercomputers, the structure and 

operation of the brain should be addressed. In this section, the structure of the brain will be 

explained briefly. In the human’s brain, there are roughly 10
11

 neurons
6
 and each neuron has in 

average more than 10
3
 connections with other neurons

7
. A typical neuron is a basic cell of 
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composing the brain and can receive from other neurons or send signals to other neurons. 

Neurons in the brain signal to each other using spikes, which are short duration potential pulses
8
. 

Typical neurons have three functional parts: the soma (cell body), dendrites, and axon. The soma 

or a cell body of a neuron can generate output spikes when the potential is above the threshold 

value. The dendrites are branches extended from the soma. In the dendrites and the soma, a 

neuron can receive signals from other neurons. The axon is another branch from the soma which 

delivers the signal to other neurons. Between neurons, there are signaling connections which are 

called synapses. Biological synapses are the specialized connections between neurons for 

transferring signals to neurons as illustrated in Figure 1. They can process and transmit spike 

signals in an electrochemical way and the estimated number of synapses in the brain is about 

10
14

. With this abundance of synapses, the brain can process numerous signals, associate 

complicated information, and achieve complex intelligence with a help of elementary functions 

of synapses. 

 

Figure 1. Structure of a typical neuron. 
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1.3 Operations of Neurons and Synapses 

 The brain’s amazing power is not utilized by not only the numbers of neurons and 

synapses but also the functions of neurons and synapses. Therefore, it is crucial to understand the 

elementary functions of neurons and synapses about how they process signals and combine 

multiple signals into useful information. As described in the previous section, neurons and 

synapses handle signals in spike format and the amplitude and the duration of spikes are almost 

constant because both parameters are determined by the ion concentration in the brain. Whenever 

the spike arrives at the synapse from an input neuron (so-called a pre-synaptic neuron) to output 

neuron (so-called a post-synaptic neuron), the synapse generates a temporal dynamic response at 

the output neuron, which known as a post-synaptic potential or current
8
. The post-synaptic 

current can last for milliseconds to minutes depending on synapses and cause changes of the 

potential in the output neuron. There are two types of synapses – excitatory and inhibitory 

synapses. The excitatory synapse generates the positive change in the potential at the output 

neuron when it receives the input spike. On the other hand, the inhibitory synapse generates the 

negative change in the potential at the output neuron when it receives the input spike
9
 as 

illustrated in Figure 2. The amplitude of post-synaptic current is typically referred as a synaptic 

weight or synaptic efficacy because spikes in the brain have almost constant amplitude and 

duration as described earlier. In other words, the synaptic weight means that how well the 

synapse can carry the spike signals from one neuron to other neuron. Shortly, there are two types 

of synapses which have both positive and negative synaptic weights. 
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Figure 2. Excitatory and inhibitory synapses and their post-synaptic responses. 

Post-synaptic currents generated from all synapses go to the soma and then will be 

accumulated. If the accumulated post-synaptic current is above the threshold value, then the 

soma generates output spikes corresponding to its level as illustrated in Figure 3. A neuron can 

establish spatiotemporal correlation between a set of input spikes and a set of output spikes using 

the accumulated post-synaptic currents from all synapses in a neuron. For instance, as shown in 

Figure 4, if there are a set of input spikes applied to each individual synapse at different timings, 

then, each input spike triggers excitatory (blue) or inhibitory (red) post-synaptic currents. All 

post-synaptic currents, then, are delivered to the soma, a cell body of a neuron, and accumulated. 

Output spikes are generated correspondingly based on the level of the accumulated post-synaptic 

current. There can be numerous possible forms of the accumulated post-synaptic current 

depending on the amplitude of post-synaptic currents of triggered synapses, timings of input 
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spikes, and types of synapses (Figure 4). Accompanying with described properties of synapses, 

there is another crucial function of synapses, which is massive parallel processing. There is no 

operation clock in neurons and synapses as typical CMOS IC circuit. Therefore, all spikes come 

and go asynchronously and trigger the post-synaptic current and output spikes. For instance, a 

typical neuron can process in average about 10
3
 spike signals if all synapses get the input spikes 

almost simultaneously. Considering the number of synapses per neuron, a single neuron can 

generate abundant forms of the accumulated post-synaptic current and establish almost any types 

of correlation between input spikes and output spikes in a spatiotemporal way. 

 

 

Figure 3. Generation of output spike from post-synaptic current. 
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Figure 4. Spatiotemporal signal processing in a neuron. 

  Other critical function of synapses is synaptic plasticity
10

. The synaptic plasticity is the 

capability of synapses to modify the amplitude of post-synaptic current (or the synaptic weight) 

quantitatively and reversibly. The change may be stored for short term or long term (more than 

minutes to hours). The synaptic plasticity is believed as a basis for learning and memory in the 

brain. This tunable post-synaptic current amplitude makes the accumulated post-synaptic current 

more plentiful. The synaptic weight is sensitive to the relative timing of spikes in both connected 

neurons
11

. In other word, the synaptic weight can be either increased or decreased based on the 

timing difference between pre-synaptic spike and post-synaptic spike. Pre-synaptic spikes are the 

spikes come toward the synapse from pre-synaptic neurons like input spikes. Post-synaptic 

spikes are the spikes from post-synaptic neuron, which are back-propagating spikes. The STDP 

function is described in Figure 5. If pre-synaptic spike comes before the post-synaptic spike, then 
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the synaptic weight is increased and vice versa. Usually, the STDP function causes “Long-Term 

Potentiation” (LTP) and “Long-Term Depression” (LTD) of the synapse, which is believed to 

form a long term memory in our brain
12

. LTP is the strengthening of the synapse and LTD is the 

weakening of the synapse. Both phenomena can  last from hours to days.  

In short, biological synapses can 1) process and correlate spike signals in a 

spatiotemporally way, 2) facilitate memory and learning capability in the brain with help of 

synaptic plasticity while 3) consuming low power of 10
-13

 W when the spike rate is 100 Hz. 

 

 

Figure 5. Spike-timing-dependent plasticity (STDP), the top pulses represent post-spikes and 

pre-spike is coming at t=0
11

. 
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1.4 Cortical Simulation in a Supercomputer 

 As the elementary functions of synapses are revealed in micro-scale, there was a study to 

simulate the brain’s activity in a supercomputer to widen the understanding of large scale neural 

networks, which is the brain. IBM supercomputer, Blue Gene, with 147,456 CPUs and 144 TB 

of main memory was used to simulate the neural network at the complexity level similar to cat’s 

brain
13

, which has about 1.6 x 10
9
 neurons and 0.9 x 10

13
 synapses. The simulation result was 

643 times slower than the cortical activity in real time while it consumed 1.4 MW power. This 

result vividly shows that the conventional Complementary metal-oxide-semiconductor (CMOS) 

integrated circuit (IC) technology is not competitive for large dimension parallel signal 

processing in comparison with the brain. Therefore, in order to capture the advantages of brain 

into a circuit, it is essential to have a novel device which can emulate the synaptic properties and 

build a circuit based on it. 

 

1.5 Neuromorphic Circuit and Synaptic Devices 

 In the recent decades, the standard Complementary metal-oxide-semiconductor (CMOS) 

integrated circuit (IC) technology based on metal oxide semiconductor field effect transistor 

(MOSFET) has been improved drastically. To attain high performance CMOS transistors, the 

device feature size has kept shrinking. The famous description represents this trend is Moore’s 

law, which is the number of transistors that can be placed inexpensively on an integrated circuit 

has doubled approximately, every two years
14

. Recently, the state-of-the-art transistor has 22nm 
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gate length and that device is successfully integrated in commercialized products
15

. In spite of 

recent success in CMOS IC technology, the practical and physical limits of the transistors’ 

scaling down will be eventually faced because of lithography limits, gate oxide leakage and so 

on
1
. In addition to limits of scaling down, current CMOS integrated circuit cannot do better tasks 

in terms of pattern recognition and intelligence such as learning. The conventional electronic 

circuit has difficulties when perceiving outside worlds from sensory signals when there is huge 

statistical variation, while the brain can easily perceive and process sensory signals. Moreover, 

the power consumption is the critical barrier to overcome. For instance, one of the latest central 

processing unit (CPU) consumes 77 W
16

 and other family CPUs consume similar power
17

, which 

is larger than the power consumption of the brain. The brain has benefits even over 

supercomputers as described in previous sections. If one can utilize such properties into a circuit, 

then, the electronic circuit can be potentially more energy efficient and more computationally 

powerful. To overcome existing problems of current CMOS IC technology and imbed the 

advantages of the brain into a circuit, new concept of emulating neural and biological 

architectures of the brain in the circuit is introduced which is known as a neuromorphic circuit. 

The concept of neuromorphic circuit was firstly pioneered by Carver Mead in 1990
18

. Mead have 

predicted the limitation of Moore’s law and proposed a new direction of building electronic 

circuits based on brain. Most of neuromorphic researches try to 1) emulate the elementary 

synaptic functions in a circuit level or a device level such as spatiotemporal signal processing 

and synaptic plasticity, and 2) build an electronic circuit which can process signals in parallel 

with low power consumption. Since the first report about silicon retina based on floating gate 
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transistors by Mead
19

, numerous researches about neuromorphic engineering have been 

following
20,21

 to capture the brain’s advantages into a circuit. 

 

1.6 Prior Art for Neuromorphic Circuit and Synaptic Devices 

 As described in previous sections, emulating a synapse function is an essential process 

toward the implement of the neuromorphic circuit. There were three types of approaches. First 

one was to design analog CMOS Very-Large-Scale Integration (VLSI) circuit which can emulate 

the function of synapse while consuming substantial power and numbers of transistors as shown 

in Figure 6
22

 and Figure 7
23

. As shown in Figures 6, the synaptic functions were implemented 

with several transistors. The synapse circuit comprises two modules. One is the receptor which 

sets the synapse’s delay constant with low pass filter. The other is the cleft which determines its 

rise time with a pulse extender. The pulse extender is the interface circuit which converts from 

fast digital signal of 10ns duration to slow analog neural signal of several milliseconds duration. 

There is also a soma circuit to mimic the neuron cell body. In order to do that, the capacitor is 

used to set the time constant of neuron circuit. In one neuron chip, there is a 16 by 16 array of 

neurons with 750,000 transistors in 10mm
2
. Though each neuron circuit size is 28μm by 36μm, 

the chip size is fairly large considering the number of neurons. It’s mainly because there are 

many sub-circuits to emulate neurons such as the soma, the synapse, the STDP circuit and so on. 

The STDP circuit comprises three sub-circuits – decay unit, integrator and SRAM.  In their 
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neuron chip, each neuron has 21 STDP circuits. As shown in figure 6, one neuron with 21 

synapses takes 190μm by 120μm area. Moreover, since SRAM is used to construct the STDP 

function, this neuron chip’s memory is volatile. Similarly, there is substantial power 

consumption by numbers of transistors in second analog CMOS VLSI circuit. 

 

 

Figure 6. Analog VLSI neuromorphic circuit (left) circuit schematic for emulating the synaptic 

functions (right) whole chip image
22

. 

 

Figure 7. Analog VLSI excitatory synapse circuit
23

. 
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The second approach was using the floating gate transistor
24,25

. By tunneling electrons 

toward the floating gate, the conductance of the device can be adjusted by the amount of trapped 

electrons in the floating gate (Figure 7)
24

. The advantages in this approach are non-volatile 

memory and its configurability by the amount of electrons in the floating gate. By controlling the 

amount of the charge, the conductance of the device can be configured in analog values so that it 

can emulate the synaptic plasticity in one single device. But it needs high voltage of more than 

15 voltages to make tunneling happen when adjust or configure its conductance since it uses the 

tunneling.  Also, it needs to have control 4 terminals as illustrated in Figure 7 and especially, 

manage all terminals to have complicated voltage functions to achieve the synaptic plasticity. 

 

 

 

Figure 8. Floating-gate synaptic devices (left) using charge transfer from the floating gate
25

 

(right) using charge in the floating gate
24

. 
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Figure 9. Resistive (left)
26

 / memristive (right)
27

 synaptic devices. 

 

The last approach is using a resistive or memristor type devices to emulate the synaptic 

properties
26,27

. The device structures of both cases are shown in Figure 8. Both devices utilize the 

change of resistance for emulating the synaptic plasticity. The resistance change was made 

through creation or destruction of nano-scale filaments between electrodes in resistive devices, 

while the memristor-based device utilizes the formation of conducting filaments by Ag ions 

inside the device. Those devices mimic the synaptic plasticity by the change in the resistance 

between two electrodes. Since single device can emulate some of synaptic properties, it is easier 

to integrate more synaptic devices in an integrated chip. However, there is no post-synaptic 

response which can last for certain time period since they utilize the resistance for their synaptic 

weights. As a result, the short duration response, which can only last for nanoseconds, can be 

generated when there is an input spike and it will be difficult to have temporal correlation in 

spikes. In addition, the power consumption is not low. Their estimated power consumption is 
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about 0.3 mW/device and 1.6 W/device, respectively. This is because of using the resistance of 

devices as the synaptic weights.  

All previous approaches have advantages and disadvantages. The comparison is made in 

Table 2 for all previous approaches introduced in this section. As described earlier, it is essential 

to have the elementary functions of synapses in a single device such as spatiotemporal signal 

processing, learning, and memory with low power consumption. However, analog CMOS circuit 

design can successfully emulate synaptic functions but has drawbacks of power consumption and 

scalability. The floating gate synaptic devices have synaptic plasticity but no spatiotemporal 

correlation due to lack of post-synaptic current with substantial power consumption. The 

resistive/memristive synaptic devices are mimicking the synaptic plasticity but deficient in 

spatiotemporal correlation. 

 

 
Spatiotemporal correlation 

 (post-synaptic response) 

Synaptic 

plasticity 

Power consumption 

per device/circuit 
Scalabiilty 

Analog CMOS
22

 Yes Yes 1 W No 

Analog CMOS
23

 Yes Yes 1.5 W No 

Floating gate
24

 No Yes 4 nW Yes 

Floating gate
25

 No Yes 2.5 W Yes 

Resistive
26

 No Yes 0.3 mW Yes 

Memristive27 No Yes 1.6 W Yes 

 

Table 2. Comparison of prior art. 
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1.7 Research Goal 

 The goal of this research is 1) to develop a novel device which can emulate the 

elementary synaptic properties in a single device with low power consumption (nW/device), 2) 

to build a spike neuromorphic circuit which is capable of parallel signal processing and learning, 

and 3) to demonstrate the dynamic interaction with the environment and leaning capability in 

real time. First goal is essential to emulate the neural network and achieve the advantages of the 

brain into a circuit. The synaptic devices should be able to process spike signals and trigger the 

post-synaptic response, a dynamic temporal response, because the spatiotemporal correlation can 

be obtained from it. Also, memory and learning capability in the circuit can be achieved from 

synaptic devices’ intrinsic property of the synaptic plasticity as biological neural network do. 

The low power consumption is important because synaptic devices are the elementary 

component in a spike neuromorphic circuit. To build a spike neuromorphic circuit, it is critical to 

build a soma circuit in addition to synaptic devices, which can accumulate post-synaptic currents 

from all synaptic devices and generate output spikes correspondingly to the accumulated post-

synaptic current. The configuration of a spike neuromorphic circuit will be introduced. Finally, a 

spike neuromorphic circuit will be used to demonstrate the capability of dynamic interaction and 

learning in real time. A toy drone was selected as a platform for the demonstration.  
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2. Synaptic Transistors (Synapstor) 

2.1 Essential Properties of Synaptic Devices 

 In order to build a neuromorphic circuit having all the fundamental features of the brain, 

it is critical to have a single device with elementary synaptic properties with low power 

consumption as explained in the previous chapter. It is required to select essential properties for 

synaptic devices to have because there are many features of biological synapses and it is 

impossible to emulate all known properties in a single device. Therefore, in this section, the 

essential properties in synaptic devices will be introduced and discussed.  

First, it is better to process signals in spike format. When the information is decoded into a 

spike format, there are advantages in terms of power consumption and use of time domain, 

which is basically unlimited space. Second, the post-synaptic response is required either in 

current or voltage. The post-synaptic response is the key response to correlate signals in space 

and time – spatiotemporally. The lasting time for the post-synaptic response can range from 

milliseconds to seconds. There will be trade-off between energy consumption and time span for 

the correlation. Therefore, longer or shorter lasting time of the post-synaptic response is not 

always good. It will depend on the applications and their operating frequency range. Third, the 

synaptic plasticity is necessary. The synaptic plasticity has two aspects – one is the adjustability 

of the amplitude in the post-synaptic response, and other is the non-volatility of the change. 

Simply, the synaptic weights should be able to be modified and the modification should last for 

long enough time to memorize the learning. Fourth, power consumption per device should be 
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low. To be competitive with the brain or the computer, many synaptic devices should be 

integrated into a single neuromorphic circuit. The power consumption or power density will be 

one of the key issues in such case. In this research, the target power consumption level is 

nW/synaptic device. Fifth, the device should have the scalability considering the large-scale 

integration in a neuromorphic circuit. Therefore, it is preferred to use nano-scale materials in 

device fabrication. Last, the compatibility with CMOS circuit is required. Eventually, the 

implemented neuromorphic circuit will interact with the environment in real time. It will be 

easier to use conventional CMOS circuits as an interface component for the environment 

interaction. Therefore, the compatibility can be one of essential properties for synaptic devices. 

Here is the list of introduced requirements of properties for synaptic devices. 

 Handling spike signals 

 Post-synaptic response for spatiotemporal correlation 

 The synaptic plasticity 

 Low power consumption: ~ nW/device 

 Scalability – nano-scale material 

 Compatibility with CMOS circuit 

 

2.2 Synaptic Transistor – Synapstor 

 Even though synapses have two terminals (pre-synaptic neuron as an input terminal and 

post-synaptic neuron as an output terminal), it is not necessary to have two terminals in synaptic 
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devices. As seen in resistive/memritive synaptic devices, two terminal synaptic devices may 

suffer from power consumption and short lasting post-synaptic response due to their nature or 

operation. Therefore, it can be a good candidate to use three terminal devices similar with CMOS 

transistors. The advantages of three terminal synaptic devices are to easily generate the long-

lasting post-synaptic response and conveniently design devices considering low power 

consumption. For example, when the input spike in a fixed format (pulse amplitude and pulse 

duration) is applied on the gate, the long-lasting post-synaptic current can be realized. Moreover, 

if the gate current is small during the input spike, the power consumption can be basically 

controlled by the conductance through the channel. Therefore, in this research, synaptic devices 

in a transistor structure are explored and studied. Synaptic transistors will be called Synapstors in 

this thesis. 

 

2.3 Carbon Nanotube (CNT) / Poly(ethylene glycol) monoethyl ether (PEG) 

synapstor 

2.3.1 Structure and Fabrication 

 As described in section 2.1, it is desirable to use nano-scale material in synapstors. In this 

research, carbon nanotubes (CNTs) are used as a main material for constructing a channel in 

synapstors. However, CNT-based devices are usually suffered by CNTs’ dispersed bandgaps
28

 

which are made during the synthesis process. Various studies have been taken to control the 
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CNT bandgaps by passing high currents
29

, mechanical strain
30

, changing synthetic conditions
31

, 

post-synthesis differentiation
32

, and chemical functionalization
33

.  Nevertheless, it is impossible 

to completely eliminate the bandgap variations due to their intrinsic structural disparity. In 

CNT/PEG synapstors, a network of randomly aligned single-walled CNTs is used as a channel to 

avoid such difficulty. When a randomly aligned CNT network is used in synapstors, it is easy to 

pattern, immune to bandgap variation of CNTs, and simple to form an electrical path
34

.  

First of all, the structure of a CNT/PEG synapstor is shown schematically in Figure 10a
35

. 

A 10 m wide single-walled CNT network was patterned as a synapstor channel on a silicon 

substrate with a 100 nm thick SiO2 layer. The CNTs in the network are self-assembled CNTs 

with dispersed metallic and semiconducting characteristics, which have lengths ranging between 

0.2 and 2.0 m and diameters ranging between 0.8 and 1.2 nm. Ti/Au (10 nm / 50 nm) source 

and drain electrodes were then interconnected with the CNT network channels. A 5 nm thick 

Al2O3 insulating layer covered the CNT channel, and a ~1 m wide window was made in the 

Al2O3 layer to expose the central section of the CNT channel. A poly(ethylene glycol) 

monomethyl ether (PEG) layer with 90 nm thickness was then deposited and cross-linked by e-

beam lithography, and contacted the central section of the CNT network through the Al2O3 

window. An Ti/Al (15 nm / 85 nm) top gate electrode was fabricated on the top of the PEG layer. 

Finally, an electrochemical cell is integrated into a synapstor with the PEG polymer layer as an 

electrolyte, and the Al/Ti and CNTs as electrodes (Figure 10b).  
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Figure 10. CNT/PEG synapstor
35

 a. the structure of a CNT/PEG synapstor b. the structure of an 

electrochemical cell integrated into a CNT/PEG synapstor. 
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2.3.2 Operation Mechanism 

 In the PEG polymer layer, mobile hydrogen ions, or protons, can be produced and drifted 

with a high mobility under the external electrical field through the layer
36,37

. Such mobile 

hydrogen ions can react with CNTs at the channel and change the overall bandgap of CNTs. 

When hydrogen ions react with CNTs, the sp
2
 bonding between carbon atoms at CNTs is broken 

and converted to the sp
3
 bonding between carbon atom and hydrogen

38
; as a result, the bandgap 

of CNTs can be modified, which is called hydrogenation of CNTs. The change of bandgap can 

be reversibly increasing or decreasing depending on the degree of hydrogenation at CNTs
39

. 

When CNTs are hydrogenated, the conductance of CNTs is decreased because of increasing 

bandgap
40

. Contrastingly, the conductance can be increased when CNTs are dehydrogenated. 

Therefore, in a CNT/PEG synapstor, when a positive voltage is applied on the gate electrode 

with respect to CNTs, mobile hydrogen ions drift from their original positions in a PEG polymer 

toward CNTs, thus resulting in hydrogenation of CNTs and dehydrogenation of a PEG polymer. 

Oppositely, when a negative gate voltage is applied, CNTs are dehydrogenated and a PEG 

polymer is hydrogenated.  

 The source-drain current (IDS) can be electrochemically configured by applying gate 

voltages (VG). Most of CNT devices show p-type behavior when undoped CNTs are exposed to 

the environment and it is believed because of atmospheric O2
41

. Similarly, in the control device 

in which the PEG polymer layer was replaced by an epoxy layer, typical p-type behavior was 

observed (Figure 11a). In a CNT/PEG synapstor, some of CNTs at the channel was hydrogenated 

during fabrication process, thus resulting in the change of the bandgap locally and showing 
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ambipolar behavior as shown in Figure 11b. A typical IDS curve versus VG which was measured 

at the room temperature with a source-drain voltage VDS = 0.5 V is plotted in Figure 11b. When 

VG swept from –5 V to 5 V, an “M”-shaped IDS-VG curve with hysteresis was observed. First, IDS 

reached the minimum value of around 57 pA near VG = 0 V, which represents the characteristics 

of an ambipolar CNT transistor. Therefore, both electron and hole transports can dominate IDS 

with semiconducting CNTs under the positive or negative gate voltages. When VG swept from 3 

V to 5 V, IDS was eminently reduced with negative transconductance, which indicates that CNTs 

were hydrogenated at VG > 3 V. When VG swept back from 5 V to –5 V, a “U”-shaped IDS-VG 

curve was observed. When VG swept from 3.4 V to –1.8 V, IDS was suppressed below 100 pA 

because IDS in this range was the current through the hydrogenated CNTs. When VG swept from 

–1.8 V to –5 V, IDS was gradually increased and recovered to high values, which indicates that 

CNTs were gradually dehydrogenated. The redox currents through the electrochemical cell (or 

the leakage currents through the synapstor gate) were < 0.1 nA, and always significantly less 

than IDS which also indicates that the power consumption during the device configuration is < 1 

nW. From this current, the total amount of hydrogen ions reacted with CNTs can be estimated. 

The area of exposed CNTs to a PEG polymer layer is 10 m
2
 and the gate current is ~ 0.1 nA, 

thus resulting that the electric charge moving per area is 0.1 x 10
-9

 C/(sm
2
). Therefore, the 

estimated number of protons per area and time is roughly 6.25 x 10
8
 /(sm

2
) 
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Figure 11. a. IDS vs. VG curve in a control device b. IDS vs. VG curve in a CNT/PEG synapstor
35

. 
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 In order to confirm the hydrogenation and dehydrogenation of CNTs at the channel of a 

CNT/PEG synapstor, Raman spectra from CNTs at the network in a CNT/PEG synapstor was 

performed. Typically, there are two peaks can be measured when Raman spectra is performed on 

carbon-based nano-scale materials such as CNT and Graphene. First peak is called a graphitic 

(G-) peak around 1590 cm
-1

 and second peak is so-called a disorder (D-) peak around 1340 cm
-1

. 

G-peak corresponds to the tangential vibration of carbon atoms and represents the presence of 

the graphitic layers. Simply, it is related to the sp
2
 bonding between carbon atoms in CNTs. D-

peak is closely related to any kinds of defects in CNTs
42

. Moreover, it has been proved that the 

ratio between the D-peak and the G-peak (RD/G) is increasing as CNTs are hydrogenated and vice 

versa
40,43,44

. It means that the CNT hydrogenation, the formation of C–H bonds on the CNT 

sidewalls, convert the C–C sp
2
 orbital in the original CNTs to the C sp

3
 orbital in the 

hydrogenated CNTs, which induces the relative increase in D-peak intensities in Raman spectra. 

To verify the hydrogenation of CNTs by Raman spectra, three different types of devices were 

experimented. First, pure pristine CNTs were examined by Raman spectroscopy. The pristine 

CNTs were deposited on a SiO2/Si substrate and the Raman spectrum experiment was performed 

on it. The ratio RD/G was measured as 0.17. Second, the control device which has an epoxy layer 

instead of a PEG layer was examined by Raman spectroscopy. The measured ratio of RD/G was 

0.20, which is slightly larger than the pristine CNTs. Finally, a CNT/PEG synapstor was 

examined by Raman spectroscopy. For a CNT/PEG synapstor, three states were measured – as-

fabricated, hydrogenated, and dehydrogenated. An “as-fabricated” synapstor means a CNT/PEG 

synapstor was examined by Raman spectroscopy right after finish of fabrication without 
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applying any voltage pulses on the gate. A “hydrogenated” synapstor is the CNT/PEG synapstor 

after it is hydrogenated by applying gate pulses with the amplitude of 7 V and the duration of 1 

ms. A “dehydrogenated” synapstor is similarly the CNT/PEG synapstor after it is 

dehydrogenated by applying gate pulses with the amplitude of −7 V and the duration of 1 ms. 

The ratio RD/G was measured 0.36 for the as-fabricated CNT/PEG synapstor. The ratio of the 

hydrogenated CNT/PEG synapstor was increased to 0.43, and then, decreased to 0.31 for the 

dehydrogenated CNT/PEG synapstor. The Raman spectroscopy results for all types of devices 

are shown in Figure 12. The increment in the D-peak intensity is caused by the accumulated 

degree of hydrogenation of CNTs, thus indicating in the formation of the C–H bonds and sp3 

orbital in CNTs and consequently the enlarged overall bandgaps in a CNT/PEG synapstor. 

Oppositely, the decrease in the D-peak intensity is caused by the accumulated degree of 

dehydrogenation of CNTs, thus indicating in the rupture of the C–H bonds in CNTs and 

consequently the decreased overall bandgaps in a CNT/PEG synapstor.  

 In short, an electrochemical cell with a hydrogen-containing PEG electrolyte is integrated 

in the gate of a CNT/PEG synapstor to modify the CNT structures and bandgaps. CNTs in the 

channel can be functionalized by electrochemical hydrogenation driven by gate voltages.   
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Figure 12. Raman spectroscopy of CNT networks
35

. Pristine CNT − Raman spectra of pristine 

CNTs on a SiO2/Si substrate, Control − CNTs covered by an epoxy layer in a control device, 

As-fabricated −  CNTs covered by a PEG polymer layer in an as-fabricated device, 

Dehydrogenated − CNTs dehydrogenated by input spikes, Hydrogenated − CNTs 

hydrogenated by post-synaptic spikes. All the spectra are normalized to their graphitic (G-) peaks 

around 1590 cm
–1

. 
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2.4 Synaptic Properties of CNT/PEG synapstors 

 As discussed in Chapter 1, it is crucial to emulate the elementary functions of biological 

synapses. In this section, the synaptic properties in a CNT/PEG synapstor will be introduced and 

explained
45

. To perform experiments on CNT/PEG synapstors under the condition similar to a 

biological synapse, a customized electronic circuit was built to achieve high electric resolution 

and extremely low noise and its schematic is shown in Figure 13. The drain electrodes of 

CNT/PEG synapstors are connected to the current-to-voltage converter to acquire the post-

synaptic current (the source-drain current, IDS) whereas the source electrode of a CNT synapse 

can be switched between the constant VDS voltage (0.5 V) and post-synaptic spikes. A 

commercial field programmable gate array (FPGA) circuit (National Instrument sbRIO-9632) 

generates spikes with spatiotemporal correlations at the fixed amplitude of 3.3 V. An amplitude 

converter circuit transfers the amplitudes of the pre- and post-synaptic spikes with amplitudes 

ranging between −6 V to 6 V. The post-synaptic current was measured by an analog-to-digital 

converter circuit, National Instruments PCI-4472.  

 

Figure 13. A schematic showing a customized testing circuit for CNT/PEG synapstors
45

. 
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In this section, it will be shown that CNT/PEG synapstors can emulate the spatiotemporal 

signal processing, memory, and learning functions of biological synapses in a single device. 

More precisely, CNT/PEG synapstors can generate the post-synaptic current, process signals in a 

spatiotemporal way based on the triggered post-synaptic current, facilitate memory with long-

term potentiation (LTP) or depression (LTD), and learn with spike-timing dependent plasticity 

(STDP).  

2.4.1 Post-synaptic Current 

 To measure the post-synaptic current, or the source-drain current IDS, from a CNT/PEG 

synapstor, a constant channel voltage VDS = 0.5 V was applied on the source with respect to the 

drain. While the input spike, which is a voltage pulse on the gate with the amplitude of 5 V and 

the duration of 1 ms, is applied on the gate, the post-synaptic current was then measured. The 

post-synaptic current was amplified and converted to analog voltage signals using a customized 

current-to-voltage converter circuit. Analog voltage signals were then sampled to a computer by 

an analog-to-digital converter circuit (National Instruments PCI-4472). Typical temporal 

responses of a CNT/PEG synapstor by an input spike of 5 V amplitude and 1 ms duration are 

shown in Figure 14. The experiments were repeated for 20 times and plotted as gray lines and the 

average post-synaptic current was calculated and plotted in a red line. As shown in Figure 14, the 

input spike triggers an excitatory post-synaptic current (EPSC) above the resting current (~ 5.2 

nA), which reaches a peak value (~ 22.4 nA) at the end of the spike, and gradually decays back 

to the resting current in ~ 23.7 ms, which is similar to EPSC in a biological excitatory synapse
46

. 

The synaptic weight can be defined as the amplitude of an EPSC triggered by an input spike. It 
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should be noted that the amplitude and the duration of input spikes in this thesis are fixed at 5 V 

and 1 ms, if there is no further comment. 

 

Figure 14. The post-synaptic current from a CNT/PEG synapstor
45

. 

 The EPSC is generated by movements of hydrogen ions inside a PEG polymer layer 

which is triggered by an input spike on the gate. When the input spike drives mobile hydrogen 

ions inside a PEG polymer towards CNTs at the channel, such driven hydrogen ions can induce 

and accumulate the electrons in the CNTs and produce the post-synaptic current through the 
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CNT channel. This is because CNT/PEG synapstors have ambipolar behavior, which means that 

either holes or electrons can be mobile charge carriers. In CNT/PEG synapstors, the post-

synaptic current was temporally increased by accumulated electrons at CNTs, which are induced 

by mobile hydrogen ions in a PEG layer nearby CNTs as illustrated in top insets in Figure14. 

Then, after the end of an input spike, the driven hydrogen ions are gradually and slowly drifted 

back to their equilibrium positions in a PEG layer, producing a gradually decaying current as 

plotted in Figure 14. As a combination of all described behaviors, EPSC can be triggered from a 

CNT/PEG synapstor. 

It is known that there are two types of synapses, excitatory and inhibitory synapses as 

described in Chapter 1. The CNT/PEG synapstor can produce an excitatory post-synaptic current 

with a positive VDS of 0.5 V. In order to make an inhibitory post-synaptic current (IPSC), a 

negative VDS can be simply applied to a CNT/PEG synapstor. This will be discussed in details in 

the next chapter.  

The average energy consumption for CNT/PEG synapstors to produce an EPSC also has 

been calculated as 7.5 pJ/spike, which is significantly lower than the energy consumption by 

conventional CMOS circuit (900 pJ/spike)
23

 and is comparable with the energy consumption of  

memristors (~ 10−9 J/spike)
27,47,48

 and phase-change memory (~ 10−9 ~ 10−8 J/spike)
49,50

. The 

average energy consumption of CNT/PEG synapstors was measured and calculated from the 

post-synaptic current triggered by an input spike with the amplitude of 5 V and the duration of 1 

ms. The currents through the gate were 3 ~ 4 orders lower than the post-synaptic current, 

therefore the gate currents can be ignored in the energy consumption. The energy consumption 
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of the CNT/PEG synapstor per spike was derived by the integration of the power consumption of 

the CNT/PEG synapstors with respect to time during an EPSC. Total 115 CNT/PEG synapstors 

were tested and the average energy consumption was derived. If the input spike rate is assumed 

as 1 Hz, the average power consumption at 1 Hz input spike rate is 250 pW/synapstor, which is 

much less than the target power consumption of nW/synapstor in chapter1. 

2.4.2 Spatiotemporal Signal Processing 

 To experiment spatiotemporal signal processing in CNT/PEG synapstors, two CNT/PEG 

synapstors were used in a simple network (Figure 15a). When two input spikes with an inter-

spike interval, ∆tpre2-pre1, are applied at the CNT/PEG Synapstor 1 and the CNT/PEG Synapstor 2 

respectively, they trigger two EPSCs (EPSC1 and EPSC2) with different amplitudes and two 

EPSCs are accumulated and producing a dynamic analog function of time and ∆tpre2-pre1 as shown 

in Figure 15b. When ∆tpre2-pre1 = 0, the EPSC1 and EPSC2 are prompted simultaneously, the 

amplitude of the accumulated EPSC increases to the maximum value as seen at the fourth plot 

from the top in Figure 15b. When EPSC1 from the Synapstor 1 is triggered earlier than EPSC2 

from the Synapstor 2 (∆tpre2-pre1>0), EPSC1 was not affected by EPSC2 and there was slight 

increase in EPSC2 because of short lasting time of EPSC1; whereas EPSC1 from the Synapstor 1 

is triggered later than EPSC2 from the Synapstor 2 (∆tpre2-pre1<0), the amplitude of EPSC1 was 

increased due to EPSC2. When ∆tpre2-pre1 decreases further (∆tpre2-pre1<<0), the increase in the 

EPSC1 by EPSC2 is gradually less significant as their being separated more than the lasting time 

of EPSC2. 
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Figure 15. Spatiotemporal signal processing in CNT/PEG synapstors a. A scheme showing 

EPSC triggered by a pair of spatiotemporally correlated spikes applied through two CNT/PEG 

synapstors. b. EPSCs triggered by single and pairs of spatiotemporally correlated input spikes 

are shown versus time
45

. 

a 

b 
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2.4.3 Synaptic Plasticity in CNT/PEG synapstors 

 The synaptic plasticity has been understood as the essential property for memory and 

learning in the brain
51,52

. Especially, the long-term plasticity is crucial for such functions because 

the change made through learning should be able to remain for long time to keep and utilize the 

learned information. The long-term plasticity (LTP) property of CNT/PEG synapstors was 

examined by modifying the synaptic weight, the amplitude of the post-synaptic, through the 

Long-Term Potentiation (LTP)/Long-Term Depression (LTD) stimulation. In this experiment, 

the amplitude of an EPSC was measured every 2 seconds for 16 minutes before the stimulation 

and one hour after the stimulation by applying an input spike to the gate as shown in Figure 16a. 

The relative change of the amplitude of an EPSC was then measured and calculated by 

comparing between the average EPSC amplitude of the first 1,000 seconds (500 data points) 

before the LTP/LTD stimulation was applied and the average EPSC amplitude of the last 1,000 

seconds (500 data points) as seen in Figure 16b.The LTP/LTD stimulation was applied at t=0. 

The LTP stimulation was composed of two hundred input spikes at 500 Hz and the LTD 

stimulation was composed of one hundred post-synaptic spikes applied on the channel at 500 Hz. 

When the high frequency stimulation at 500 Hz was applied at 500 Hz, then, there was a 

significant increase or decrease in the amplitude of an EPSC as seen in Figure 16b. This is 

because the accumulated dehydrogenation and hydrogenation of CNTs at the channel changed 

the conductance through the channel, resulting increasing or decreasing in the amplitude of an 

EPSC. 
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Figure 16. Synaptic plasticity in a CNT/PEG synapstor
45

 a. The stimulation protocol to induce 

long-term potentiation (LTP) and depression (LTD) b. LTP/LTD measured in a CNT/PEG 

synapstor. 

a 

b 
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Figure 17. Non-volatile experiment in a CNT/PEG synapstor
35

. 

 The non-volatile characteristic of CNT/PEG synapstors was further investigated by 

measuring the amplitude of an EPSC for two weeks. Total three CNT/PEG synapstors were 

tested every 5 minutes for two weeks – “As-fabricated”, “Dehydrogenated”, and “Hydrogenated”.  

As-fabricated device was not applied any stimulation on it, while other two devices had sets of 7 

V pre-synaptic spikes and post-synaptic spikes on them respectively. Essentially, the 

modification in current was remaining without significant change within two weeks, which 

indicates that the hydrogenated CNTs are stable, and the CNT hydrogenation is energetically 

favored (exothermic).  
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2.4.4 Learning in CNT/PEG synapstors 

 The amplitude of an EPSC can be modified to analog states quantitatively and reversibly 

as a function of numbers of spikes applied on the device and the amplitude of spikes. The 

modification of the EPSC amplitude is shown in Figure 18a and 18b as function of numbers of 

applied spikes with different amplitude of spikes. For decreasing case of the EPSC amplitude 

(Figure 18a), the EPSC amplitude was first adjusted to the maximum value (~ 9 nA) by applying 

a series of −7 V input spikes. Then, the EPSC amplitude was measured as applying a series of 

input spikes with a fixed duration of 1 ms, frequency of 500 Hz, and different amplitude of 3 V, 

4 V, 5 V, and 6 V. For increasing case of the EPSC amplitude (Figure 18b), the EPSC amplitude 

was first adjusted to the minimum value (~ 2 nA) by applying a series of 7 V input spikes. Then, 

the EPSC amplitude was sequentially decreased as applying a series of input spikes with a fixed 

duration of 1 ms, frequency of 500 Hz,  and different amplitude of −3 V, −4 V, −5 V, and −6 V. 

As seen in Figure 18, the modification rate of the EPSC amplitude can be adjusted by the 

amplitude of spikes and it was increased significantly when the amplitude of spikes increased 

from 3 V (−3 V) to 6 V (−6 V). Also, the amount of the EPSC amplitude change was increased 

as more spikes applied on the CNT/PEG synapstors as plotted in Figure 18. It indicates that the 

degree of hydrogenation or dehydrogenation in a CNT/PEG synapstor can be controlled to any 

analog state as a function of numbers of applied spikes and the amplitude of spikes.  
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Figure 18. Learning in CNT/PEG synapstors a. when positive input spikes applied b. when 

negative input spikes applied on CNT/PEG synapstors. 

 

a 

b 
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2.4.5 Short Life-Time of CNT/PEG synapstors 

As demonstrated in previous sections, the CNT/PEG synapstors successfully emulated the 

elementary functions of biological synapses such as the post-synaptic current, spatiotemporal 

signal processing, and synaptic plasticity. The CNT/PEG synapstors are operated based on 

dynamic interactions between CNTs and mobile hydrogen ions inside a PEG polymer layer, 

which is integrated into a CNT/PEG synapstor.  However, there is a critical problem in 

CNT/PEG synapstors. The devices’ properties are gradually degraded during repeated 

hydrogenation/dehydrogenation. Since hydrogenation and dehydrogenation processes are the 

chemical reactions between carbon atoms and mobile hydrogen ions, it will gradually and slowly 

break the structure of CNTs, resulting in significant degradation of device performance. This can 

be critical issue for building a spike neuromorphic circuit because the life-time of synapstors will 

decide the total life span of a neuromorphic circuit. Therefore, it is desirable to have a device or 

synapstor which can operate without chemical reactions inside. 

 

2.5 Carbon Nanotube (CNT) / C60 synapstor 

2.5.1 Structure and Fabrication 

In order to avoid using the chemical reaction as a underlying mechanism in a synapstor, 

C60 molecules were used and integrated into a CNT synapstor. First of all, the charge carrier 

concentration in CNTs can be sensitively adjusted by surrounding electronic charges
53,54

. It is 

also well known that CNT transistors typically show p-type characteristics as discussed earlier 
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section. Therefore, if electrons can be provided nearby CNTs, then the conductance of CNTs can 

be adjusted by the amount of electrons provided. For such purpose, C60 molecules were 

introduced. C60 molecules, spherical fullerene molecules, have been highlighted as one of 

candidating materials for nano-scale electronic devices because of their strong electron affinity 

from their rehybridization at their molecular orbitals. As a result, electrons trapped into the C60 

molecule can be stably remained
53-55

. The structure of a CNT/C60 synapstor is shown in Figure 

19
56

.  

 

Figure 19. The structure of a CNT/C60 synapstor
56

. 

As CNT/PEG synapstors, the channel was fabricated by a randomly aligned CNTs 

network and CNTs were spin-coated using 98% semiconducting single-wall CNTs solution 

(IsoNanotubes-S). In contrast to CNT/PEG synapstors, for CNT/C60 synapstors, semiconducting 

CNTs were used because there is no chemical reaction related in this device to change the 
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conductance of CNTs. Then, Ti/Au (5 nm / 45 nm) source and drain electrodes were made to 

connect a CNT channel. The CNT channel was then patterned as having a length of 30 m and 

width of 8 m. After CNT channel definition, a polyimide (PI) barrier layer with 30 nm 

thickness and a second PI layer with 30 nm thickness which containing C60 molecules as a 

electron trapping layer were sequentially deposited on top of a CNT channel and patterned at the 

same time by O2 plasma etching. For the second PI layer with C60 molecules, C60 and PI 

solution was made by dissolving a C60 derivative, 6,6-phenyl-C61 butyric acid methyl ester 

(PCBM) and PI in a 1-vinyl-2-pyrrolidinone solvent with a PCBM:PI weight ratio of 1:22. The 

second PI layer was deposited by spin-coating of PCBM:PI solution. An Al2O3 layer with 30 nm 

thickness was deposited on top of PI layers as a charge protection layer between the gate 

electrodes and C60 molecules in the second PI layer. Finally, the top gate electrode with Ti/Al 

(15nm / 100nm) was deposited by e-beam evaporation and patterned by conventional 

photolithography. 

2.5.2 Operation Mechanism 

Typical IDS-VG curve at VDS= 0.5 V is shown in Figure 20
56

. As typical CNT transistors 

with exposed CNTs to the environment, a CNT/C60 synapstor is also showing p-type 

characteristics, which indicates that holes are the major mobile charge carrier. When VG is swept 

from −6 V to 6 V, the source-drain current (IDS) is significantly dropped to pA range from A 

around VG = 0 V and stay around pA when VG >  0 V. The sub-threshold swing at around VG≈ 0 

V was around 460 mV/dec. When VG starts sweeping back from 6 V to −6 V, IDS starts 
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increasing before VG= 0 V and exhibiting the hysteresis with counter-clockwise direction. In 

Figure 20, the direction of hysteresis was indicated by two arrows with black and red colors. A 

black arrow is IDS-VG curve when VG was swept from −6 V to 6 V and a red arrow is IDS-VG 

curve when VG was swept from 6 V to −6 V. When VG decreases to −6 V, IDS is on ~ 10
7
 A and 

staying at the similar level. This is caused by the trapped electrons inside C60 molecules at the 

second PI layer during positive VG sweep. The shift of a threshold voltage was made by trapped 

electrons. The ratio of IDS at VG= 0 V was about 104, roughly two order difference.  

 

 

Figure 20. Typical IDS-VG curve in a CNT/C60 synapstor
56

. 
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Figure 21. Energy diagram of a CNT/C60 synapstor
56

. 

 It is more obvious and easy to understand to see the energy diagrams of a CNT/C60 

synapstor as shown in Figure 21. When the positive VG is applied on a CNT/C60 synapstor (left 

schematic in Figure 21), the lowest unoccupied molecular orbital (LUMO) energy level of C60 

molecules in the second PI layer is reduced below CNTs’ energy level, thus inducing electrons 

being trapped into C60 molecules via hopping tunneling through the PI layer and C60 molecules 

in the PI layer
57,58

. As more electrons are injected into C60 molecules, they can induce more 

holes as counter charges in CNTs, thus resulting in decreasing of the threshold voltage. When the 

zero gate voltage is applied (middle schematic in Figure 21), there is no electron injection 

happening because of absence of driving potential for electrons to tunnel. When the negative 

gate voltage is applied (right schematic in Figure 21), the highest occupied molecular orbital 

(HOMO) energy level of C60 molecules is above the CNTs’ energy level, inducing escaping of 

electrons and increasing of the threshold voltage. 
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2.6 Synaptic Properties of CNT/C60 synapstors 

 Similarly with CNT/PEG synapstors, the synaptic properties of CNT/C60 synapstors 

have been examined such as the post-synaptic current, spatiotemporal signal processing, synaptic 

plasticity, and learning. The same customized electronic circuit was used, which is described in 

section 2.4. The configuration of an input spike is the same as one used for CNT/PEG synapstors 

– 1 ms duration and 5 V amplitude, when there is no additional comments.  

2.6.1 Post-synaptic Current of CNT/C60 synapstors 

 The post-synaptic current in a CNT/C60 synapstor was measured from the source-drain 

current (IDS) with a constant source-drain voltage VDS= 0.5 V while the input spike is applied on 

the gate of a CNT/C60 synapstor. When the positive voltage pulse (an input spike) is applied on 

the gate of a CNT/C60 synapstor, electrons are attracted and injected into C60 molecules in the 

PI layer as explained in the previous section (however, the current drops during the pulse 

because the device is a p-type transistor). As a result, more holes can be induced at CNTs after 

the input spike, thus producing higher current level as seen in Figure 22. As time goes, trapped 

electrons in C60 molecules are gradually and slowly starting escaping, causing decreasing IDS as 

function of time. Therefore, it generates an excitatory post-synaptic current (EPSC) similar to 

one from a CNT/PEG synapstor, while the lasting time of the post-synaptic current from a 

CNT/C60 synapstor is much longer (> 30 seconds). This indicates that the energy required for 

trapped electrons to escape is much higher than the energy for mobile hydrogen ions to go back 

to their equilibrium position in a PEG layer. Typical post-synaptic current from a CNT/C60 
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synapstor by an input spike of 5 V amplitude and 1 ms duration are shown in Figure 22. The 

experiments were repeated for 20 times and plotted as gray lines and the average post-synaptic 

current was calculated and plotted in a red line. Similarly, the synaptic weight can be defined as 

the amplitude of an EPSC triggered by an input spike. The average power consumption in 

CNT/C60 synapstors was calculated as 2.6 nW/synapstor at 1 Hz input spike rate, which is larger 

than the power consumption in CNT/PEG synapstors due to their long lasting time. 

 

 

Figure 22. The post-synaptic current in a CNT/C60 synapstor. 
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2.6.2 Spatiotemporal Signal Processing in CNT/C60 synapstors 

 The spatiotemporal signal processing of CNT/C60 synapstors was experimented using 

two CNT/C60 synapstors as shown in Figure 23a. When two input spikes with an inter-spike 

interval, ∆tpre2-pre1, are applied at the CNT/C60 Synapstor 1 and the CNT/C60 Synapstor 2 

respectively, they trigger two EPSCs (EPSC1 in green, figure 23b, and EPSC2 in blue, Figure 23 

c) with different amplitudes and lasting time. Both EPSCs from two CNT/C60 synapstors can be 

accumulated and produce a dynamic analog function of time and ∆tpre2-pre1 as shown in Figure 

23d, 23e, 23f. In Figure 23d, when ∆tpre2-pre1 is 1 second, the amplitude of EPSC2 was increased 

by EPSC1. As ∆tpre2-pre1 is increasing, or as two input spikes are separating, the amount of change 

in the amplitude of EPSC2 by EPSC1 was decrease as shown in Figure 23e and 23f. For instance, 

the amplitude of EPSC2 at ∆tpre2-pre1= 10 seconds (Figure 23e) is larger than the amplitude of 

EPSC2 at ∆tpre2-pre1= 30 seconds (Figure 23f). Since the lasting time of the post-synaptic current 

is longer (> 30 seconds) than one of CNT/PEG synapstors, there can be more correlation in time 

between EPSCs. Therefore, CNT/C60 synapstors can possibly correlate spikes within 30 seconds 

and the degree of correlation will be determined based on the separation of spikes in time, the 

interval between spikes. Considering the lasting time of CNT/PEG synapstors (~ ms), CNT/C60 

synapstors have much longer correlation time window. However, the power consumption will be 

larger because of long lasting time of the post-synaptic current. 
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Figure 23. Spatiotemporal signal processing in CNT/C60 synapstors a. A schematic for 

spatiotemporal signal processing experiment b. Single EPSC from Synapstor 1 c. Single EPSC 

from Synapstor 2 d. The accumulated EPSC with ∆tpre2-pre1= 1 s e. The accumulated EPSC with 

∆tpre2-pre1= 10 s f. The accumulated EPSC with ∆tpre2-pre1= 30 s. 

a b 

c d 

e 

f 
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2.6.3 Synaptic Plasticity in CNT/C60 synapstors 

 The synaptic plasticity in CNT/C60 synapstors was also examined. The EPSC amplitude 

was configured to different state as represented in different colors in Figure24. The change of the 

EPSC amplitude at VDS= 0.5 V was measured for one week after modification. As shown in 

Figure 24, the modified EPSC amplitude can be remained for one week. This result implies that 

CNT/C60 synapstors have the synaptic plasticity and non-volatile characteristic. The non-

volatile characteristic could be possibly originated from the strong electron affinity of C60 

molecules in the PI layer. The modified EPSC amplitude was gradually increased or decreased as 

time goes and it could be induced by the leakage of electrons from C60 molecules. This leakage 

problem can be potentially relaxed by increasing the thickness of the PI layer or altering the 

insulating material.  

 

 

Figure 24. Synaptic plasticity in CNT/C60 synapstors. 
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2.6.4 Learning in CNT/C60 synapstors 

 The amplitude of an EPSC from a CNT/C60 synapstors can be also configured to analog 

states quantitatively and reversibly as a function of numbers of spikes applied on the device and 

the amplitude of spikes. The modification of the EPSC amplitude is shown in Figure 25a and 25b 

versus numbers of applied spikes with different amplitude. The duration of spikes used in this 

experiment was fixed at 1 ms regardless of the amplitude.  For experiments of tuning with 

positive amplitude spikes (Figure 25a), the EPSC amplitude was first modified to its lowest 

value by applying a series of −8 V input spikes. Then, the change in the EPSC amplitude was 

measured as applying a series of input spikes with a fixed duration of 1 ms, frequency of 500 Hz 

(2 ms pulse interval), and different amplitude of 2 V, 4 V, 6 V, and 8 V. Similarly, for 

experiment with negative amplitude spikes, the EPSC amplitude was tuned to its maximum value 

by 8 V spikes and then, a series of input spikes was applied with a fixed duration of 1 ms, 

frequency of 500 Hz, and different amplitude of −2 V, −4 V, −6 V, and −8 V. As seen in Figure 

25a, the EPSC amplitude was gradually increased as numbers of applied spikes increased when 

positive spikes applied. This is because more electrons are trapped in C60 molecules 

accumulatively as applied more positive spikes. The rate of the change in the EPSC amplitude is 

also a function of the amplitude of applied spikes – higher amplitude, faster and more change in 

the EPSC amplitude. Similarly, the EPSC amplitude was gradually decreased as more negative 

spikes applied and its rate depends on the amplitude of spikes used. It indicates that the amount 

of electrons trapped in C60 molecules can be adjusted to any analog state as a function of 

numbers of applied spikes and the amplitude of spikes. 
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Figure 25. Learning in CNT/C60 synapstors a. when positive input spikes applied b. when 

negative input spikes applied on CNT/C60 synapstors. 
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2.7 CNT Synapstor Comparison 

 As introduced and demonstrated in previous sections, CNT/C60 synapstors can 

successfully emulate the elementary functions of biological synapses, similar with CNT/PEG 

synapstors, such as the post-synaptic current, spatiotemporal signal processing, and synaptic 

plasticity with low power consumption of 2.6 nW at the input spike rate of 1 Hz. The CNT/C60 

synapstors are operated based on the change of conductance by induced hole carriers from 

trapped electrons inside C60 molecules. The comparison of two CNT synapstors with prior art is 

made in Table 3. The power consumption was calculated when the input spike rate is 1 Hz in 

Table 3. 

 
Spatiotemporal correlation 

 (post-synaptic response) 

Synaptic 

plasticity 

Power consumption 

per device/circuit 
Scalabiilty 

CNT/PEG 

synapstor
45

 
Yes Yes 250 pW Yes 

CNT/C60 

synapstor
56

 
Yes Yes 2.6 nW Yes 

Analog CMOS
22

 Yes Yes 1 W No 

Analog CMOS
23

 Yes Yes 1.5 W No 

Floating gate
24

 No Yes 4 nW Yes 

Floating gate
25

 No Yes 2.5 W Yes 

Resistive
26

 No Yes 0.3 mW Yes 

Memristive27 No Yes 1.6 W Yes 
 

Table 3. Comparison of CNT synapstors with prior art. 
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3. Spike Neuromorphic Circuit (SNC) 

3.1 Schematic Overview 

 Since the properties of CNT synapstors have been discussed, it will naturally lead to 

build a neuromorphic circuit based on them as a next step. Before moving on the implementation 

of a neurormorphic circuit, the operation of biological neurons and synapses will be reviewed 

briefly again in this section. A biological neuron is composed of a large number of synapses and 

a soma, a cell body. It can transmit and process signals in a spike format. When a synapse is 

triggered by a spike, it generates a temporal response, called the post-synaptic current (PSC). All 

triggered post-synaptic current from numerous synapses will be collected and accumulated in a 

soma. If the potential change by the accumulated PSCs is above the threshold value, then a 

neuron will fire output spikes corresponding to the level of PSCs. The amplitude of PSCs in 

synapses can be also modified to any analog states. Therefore, a neuron can establish complex 

spatiotemporal correlations between sets of input spikes and output spikes by utilizing all the 

properties mentioned above. In order to emulate such functions of biological neurons, it is also 

crucial, as well as CNT synapstors, how to build a neuromorphic circuit based on CNT 

synapstors. The neuromorphic circuit implemented from CNT synapstors will be called as a 

Spike Neuromorphic Circuit (SNC) in this paper because our circuit can handle spike signals 

while emulating neural network properties. The schematic overview is illustrated in Figure 26a. 

The detail explanation will be given sequentially following the operation in a SNC. 
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Figure 26. Spike Neuromorphic Circuit (SNC) a. Schematic overview of a SNC with input 

spikes b. post-synaptic currents (PSC) triggered by input spikes c. the accumulated PSCs 

generated d. output spikes triggered from the accumulated PSCs. 

a b 

c d 
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 In a SNC, there is an array of CNT synapstors, in which each row of CNT synapstors will 

have a shared input spike channel and each column of CNT synapstors will have a shared output 

channel to a soma circuit as seen in Figure 26a. Therefore, an input spike on one of input 

channels can trigger multiple CNT synapstors simultaneously and all the post-synaptic current 

from CNT synapstors in a column will be collected and accumulated in a soma circuit. First, a 

set of input spikes will be arrived on input channels of a SNC (Figure 26a). Input spikes 

represent sensing signals from the external environment. The timing and the rate of spikes 

contain the analog information about the sensing signals from the sensors. In other words, 

sensors will sense the external environment, and then convert sensed information into the spikes 

with timing and rate. Then, each input spike will trigger the post-synaptic currents from CNT 

synapstors which have the input spikes as illustrated in Figure 26b. Then, all the triggered post-

synaptic current will go to soma circuits in each column and produce the accumulated PSCs as 

seen in Figure 26c. The output spikes will be generated at soma circuits when the accumulated 

PSC level is above the threshold value as seen in Figure 26d. A SNC will have the following 

properties with the explained structure. First, it can process signals in parallel because an input 

spike can trigger multiple post-synaptic current and it will affect the generation of output spikes. 

Second, it can establish the spatiotemporal correlation between input spikes and output spikes 

from the post-synaptic currents of CNT synapstors. Third, it has the learning capability. The PSC 

amplitude of CNT synapstors can be modified to any analog states and memorized for a long 

time. Therefore, if the PSC amplitudes of CNT synapstors are adjusted in a correct way, then 

such change will create the better correlation between a set of input spikes and output spikes, 
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thus producing better performance eventually when a SNC interacts with the environment. Last, 

a SNC will consume low power intrinsically from the power consumption of CNT synapstors. 

The detail information about each component will be introduced in following sections. 

 

3.2 Soma – Integrate-and-Fire (I&F) Circuit 

 In order to generate the output spikes based on the level of the accumulated post-synaptic 

currents, a soma circuit is required. There is a good candidate for such purpose, the Integrate-

and-Fire (I&F) circuit
23

. For a SNC, the conventional I&F circuit was used and the schematic is 

shown in Figure 27. 

 

Figure 27. The schematic of an Integrate-and-Fire circuit in a SNC. 
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 I&F circuit was built with a conventional CMOS technology and served as a soma circuit 

in a SNC. When CNT synapstors produced multiple post-synaptic currents by input spikes, they 

will be collected at I&F circuit interface (IPSC). There is a leaky CMOS transistor to control the 

threshold current level by the bias, VTH. The collected post-synaptic current will be subtracted by 

the leaky current and then, rest of current will go to a membrane capacitor (CI&F). The coming 

current will be integrated on the membrane capacitor and build up the corresponding voltages 

(Vout). If the voltage on the membrane capacitor is above the logical threshold of the first stage 

amplifier, then it will be propagated to next amplifiers. After the first stage amplifier flips its 

output, a p-type CMOS transistor, M2, will be turned on and provide more current to the 

membrane capacitor. By doing that, M2 can help I&F circuit maintain the constant pulse-width 

as ~1 ms. After the delay of few stages of amplifiers, a n-type CMOS transistor, M3, will be 

turned on, discharge the membrane capacitor to the ground and finish generating an output spike. 

Therefore, an output spike can be generated by operation of two CMOS transistors (M2 and M3) 

and amplifiers. When the output spike is generated, the membrane capacitor is reset to the 

ground by M3 and ready to integrate the following PSCs. The transfer function between the 

constant input current (IPSC) and the rate of output spikes is plotted in Figure 28.If the input 

current, which is the accumulated PSCs (IPSC), is below the threshold value (~ 5 nA), then no 

output spike is generated from an I&F circuit. As the input current increases from 5 nA to 40 nA, 

higher rate of output spikes are generated and the change of the frequency in output spikes is 

linearly increased as seen in Figure 28. When the input current is more than 40 nA, the output 
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spike frequency starts being saturated gradually. The saturated output spike frequency is about 

70 Hz.  

 

Figure 28. Transfer function of a single I&F circuit. 

 

3.3 Excitatory and Inhibitory Synapstors in a SNC 

 In order to produce both excitatory and inhibitory post-synaptic currents from CNT 

synapstors, it is required to make two VDS with opposite polarity due to their nature of operation. 

Therefore, two columns were introduced to produce both excitatory and inhibitory post-synaptic 

current, which are positive and negative post-synaptic currents respectively as shown in Figure 

29. The blue horizontal lines at CNT synapstors mean the positive VDS (0.5 V) and the red 
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horizontal lines at CNT synapstors mean the negative VDS (−0.5 V). As seen in Figure 29, there 

are two columns of CNT synapstors in a SNC and their post-synaptic currents are collected at the 

end. The collected post-synaptic current is the sum of both excitatory (IEPSC) and inhibitory post-

synaptic currents (IIPSC). The total post-synaptic currents (IPSC) will then go to two I&F circuits.  

 

Figure 29. Excitatory and inhibitory columns in a SNC (left) A schematic view of excitatory and 

inhibitory synapstors (right) Operation of two columns – excitatory and inhibitory synapstors. 
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At the both I&F circuits, there is a CMOS interface circuit which can split the total post-synaptic 

currents into the positive portion and the negative portion and feed them to the positive and the 

negative I&F circuits, respectively. As the configuration of a SNC with dual columns, positive 

output spikes will be generated when the positive or excitatory post-synaptic current is 

dominating, and negative output spikes will be generated when the negative or inhibitory post-

synaptic current is larger as illustrated in the right schematic of Figure 29.  

 

3.4 Operation of Excitatory and Inhibitory Synapstors 

 In order to elucidate the operation of excitatory and inhibitory synapstors, the actual 

experiment results using two synapstor – one excitatory and one inhibitory synapstors – are 

shown in Figure 30. The schematic view of this experiment is shown in Figure 30a.  

 

 

IEPSC IIPSC
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Figure 30. Experiment results of an excitatory and an inhibitory synapstors a. A Schematic 

overview of experiments b. IPSC from a set of input spikes on both synapstors, the positive and 

the negative output spikes are shown before the tuning of synaptic weights. c-d. As synaptic 

weights are tuned, different correlations between input and output spikes can be generated. 
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The accumulated post-synaptic current (IPSC) was plotted with positive and the negative output 

spikes in Figure 30b. On a top plot of Figure 30b, input spikes applied on an excitatory synapstor 

were plotted in blue lines while input spikes on an inhibitory synapstor were plotted in red lines. 

For experiments of Figure 30b to 30d, the same set of input spikes was applied on the same pair 

of synapstors, 5 input spikes on an excitatory synapstor and then 4 input spikes on an inhibitory 

synapstor were applied at every 1 second. As more input spikes applied on an excitatory 

synapstor, IPSC was sequentially increased by accumulated post-synaptic currents. And positive 

output spikes started being generated while negative output spikes stopped being generated. In 

Figure 30b, less positive output spikes were generated than negative output spikes for a given set 

of input spikes because of the smaller synaptic weight of an excitatory synapstor than one of an 

inhibitory synapstor. After increasing both synaptic weights (Figure 30c), there were more 

positive and negative output spikes triggered. After decreasing the excitatory synaptic weight, 

there was only one positive output spike generated from the given set of input spikes. As clearly 

seen in Figure 30, a SNC with two columns of synapstors can trigger both excitatory and 

inhibitory post-synaptic currents, establish the complex spatiotemporal correlation between input 

spikes and output spikes, and adjust its spatiotemporal correlation by tuning the synaptic weights.  
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3.5 Large-Scale Spike Neuromorphic Circuit 

3.5.1 Design and Fabrication 

 The large-scale spike neuromorphic circuit was designed and fabricated based on the 

structures explained in previous sections. The large-scale spike neuromorphic circuit has 16384 

CNT synapstors, CMOS interface circuits for CNT synapstors, and 16 I&F soma circuits. The 

ratio of synapses per neuron, a number of synapstors per I&F soma circuit, is 1024, similar level 

with biological neurons. The fabricated chip image is shown in Figure 31a. In the center area, 

there is an array of static random-access memory (SRAM) like CMOS interface circuit to realize 

the parallel dynamic interface between a FPGA and CNT synapstors as illustrated in Figure 31b. 

On top of the CMOS interface circuit, CNT synapstors were integrated utilizing a post-CMOS 

process. There are 16 I&F soma circuits below the array of synapstors. The CMOS interface 

circuit and I&F circuit were design and fabricated using MOSIS TSMC 0.35 m process with 

the size of 5 mm by 5 mm. CNT synapstors were fabricated between micron scale electrodes 

(source, drain, and gate electrodes for CNT synapstors) defined by the top metal layer (Al) where 

the over-glass etching was conducted at the foundry readily exposed the top metal layer. After 

the fabrication of CMOS chips, a reactive-ion etching (RIE) process was performed to remove 

the residue on top of the source, drain and gate electrodes for CNT synapstors. To provide good 

electrical contacts between electrodes and CNT synapstors, a thin Al2O3 layer, which was 

naturally formed, was removed by wet etching process and immediately and electroless zincation 

plating process was performed. Electroless zincation plating process started with immersed the 

chip into 1 M sodium hydroxide solution for 1 minute following by DI water rinsing and 



65 

 

nitrogen dry.  Then, immerse the chip in zinc plating solution (zinc oxide 0.2 g/L, sodium nitrate 

0.025 g/L, potassium sodium tartrate tetrahydrate 0.6 g/L, ion chloride 0.015 g/L and sodium 

hydroxide 40 g/L) at 40 °C for 2 minutes. The electroless plating process is a low cost deposition 

method which does not require an additional lithography steps and prevented the underlying 

aluminum from getting re-oxidized and reduced the contact resistance between CNTs and the Al 

electrodes. After electroless plating process, the same CNT synapstor fabrication process was 

performed on top of defined electrodes in the following sequence: CNT spin-coating and CNT 

channel definition, deposition of a PI layer, deposition of a PI:PCBM layer, patterning and 

etching of both PI layers, deposition and patterning of an Al2O3 layer, and fabrication of top gate 

electrodes. The image of part of fabricated CNT synapstors is shown in Figure 31c. 

 

 

a 



66 

 

 

 

Figure 31. A large-scale spike neuromorphic circuit a. A full chip image of a large-scale spike 

neuromorphic circuit b. A schematic of CMOS interface circuit c. Image of one cell containing 8 

synapstors. 
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3.5.2 Power Consumption in a Large-Scale Spike Neuromorphic Circuit 

Power consumption is one of crucial properties for neuromorphic applications. The power 

consumption of a large-scale spike neuromorphic circuit was measured and estimated. First of all, 

the average power consumption in one CNT synapstor is about 100 nW at the input spike rate of 

10 Hz (2.6 nW at the input spike rate of 1 Hz). Second, the average power consumption of one 

I&F soma circuit is about 10 W at output spike rate around 100 Hz. It is slightly varying 

depending on the input current level to an I&F circuit. The average power consumption of 10 

W was calculated by considering the number of synapstors per I&F soma circuit and their 

average current. Therefore, the total power consumption of a large-scale spike neuromorphic 

circuit without the interface circuit can be estimated by the following equation. 

                                   

The total estimated power consumption in a large-scale spike neuromorphic circuit is 1.8 

mW for 16384 synapstors and 16 I&F soma circuits. 
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4. Dynamic Interaction and Learning of a SNC 

4.1 Overview 

 The Spike Neuromorphic Circuit based on CNT synapstors has interesting capabilities as 

described in a previous chapter. First, it can establish the dynamic interactions with the 

environment in real time. Whenever there is a set of input spikes, the output spikes will be 

generated as seen in Figure 32. If there are proper sensors and actuators interfacing between a 

SNC and the environment, the dynamic interactions in real time can be performed by a SNC 

easily. Second, it can learn to improve the preset performance function by modifying the SNC’s 

transfer function from input spikes to output spikes. This is mainly originated from the synaptic 

plasticity of CNT synapstors. To demonstrate dynamic interaction and learning capability of a 

SNC, a toy drone (Parrot AR.Drone 2.0) was selected as a platform. The overall schematic view 

of the demonstration is seen in Figure 32. 

 

Figure 32. The overview of the demonstration of a SNC. 
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4.2 Experiment Set-up 

 The detail set-up of the demonstration will be explained and discussed in the following 

sections. The main idea of this demonstration is to let a SNC to interact with the environment (a 

drone) in real time and modify itself to improve the given performance function by learning. 

More precisely, there will target lights in front of a drone, and a SNC needs to learn to interact 

with the drone so that it can point at the target lights without any given pre-knowledge about the 

drone and itself. As illustrated in Figure 32, the detail information will be explained in the 

following order – from sensing, processing in a SNC, actuation, performance, and learning. 

4.2.1 Sensing Signals from a Drone 

 The wide-angle lens and a camera were attached at a drone so that it can see things in 

front. In front of the drone, the target lights with blue lights were present and swung at every 15 

seconds. The images were taken from a camera at every 50 ms and were then processed in an 

interface program composed by Visual Studio. The interface program filtered images, calculated 

the position of the target lights in images, and converted it to input spikes. Sensing signals are 

the information about the relative position of the target lights in the images with respect to the 

center line of the taken images. There are two sensing signals – XL and XR as illustrated in 

Figure 33. When the position of the target lights can be changed by either the movements of the 

lights or a drone, then input spikes are generated correspondingly to the relative position of the 

lights. As seen in Figure 33a, if the lights are moved to the left with respect to a drone, then, 

there will be input spikes on XL input channel with the frequency proportional to the position. 
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Figure 33. Sensing signals (XL and XR) from a drone a. An illustration of XL input spikes being 

generated when the target lights (yellow) are in the left plane of the image by lights moving. b. 

An illustration of XR input spikes being generated by a drone’s movement. 

b 

a 
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In Figure 33b, there are input spikes on a XR input channel because a drone is rotated to the 

left, causing the lights are located in the right plane of the taken image from the center line. The 

input spike frequency is proportional to the position of the lights.  

4.2.2 Processing Signals in a SNC 

 When there are input spikes on input channels, which carry the information about the 

relative position of the target lights, they will directly go to a SNC and trigger the output spikes 

based on synaptic weights of a SNC. In this experiment, four CNT synapstors, two excitatory 

and two inhibitory CNT synapstors, were selected. Each pair of an excitatory and inhibitory 

synapstors has the same input spikes – XL and XR. Therefore, if the synaptic weights of both 

synapstors are the same, then, there will be no accumulated post-synaptic current (IPSC) at I&F 

soma circuits. If one of synaptic weights is stronger than the other one, then one type of output 

spikes can be generated from that pair of synapstors. Therefore, a SNC should learn to modify 

one of the synaptic weights either increasing or decreasing in order to control a drone so that it 

can finally improve the performance function. The details about the learning will be discussed in 

the following sections. The schematic overview of processing in a SNC is illustrated in Figure 34. 

When input spikes are generated and fed to a SNC, CNT synapstors having input spikes will 

produce the post-synaptic currents. All triggered post-synaptic currents are then accumulated at 

I&F soma circuits and will trigger the corresponding output spikes. For instance, if IPSC is 

positive, then positive output spikes will be generated and vice versa. 

 



72 

 

 

 

Figure 34. Processing in a SNC a. An illustration of XR input spikes triggering the post-synaptic 

currents and the accumulated post-synaptic current. b. An illustration of XL input spikes 

triggering the post-synaptic currents and the accumulated post-synaptic current. 

b 

a 
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4.2.3 Actuations Signals from a SNC 

 There are 4 possible actuations on a drone – up and down (altitude actuation), left and 

right (translational actuation), forward and backward, and rotation left and right. In this 

experiment, only rotation actuations were selected for a SNC to control. The positive output 

spike was assigned to rotation left (aL), and the negative output spike was assigned to rotation 

right (aR) as illustrated in Figure35. If there are positive output spikes from a SNC, 1) their rate is 

sensed by a FPGA board, 2) the interface program converts it to series of actuation commands to 

a drone, and 3) the converted commands are sent to a drone through the wireless communication. 

For instance, if the relative position of the target lights in the left plane of the image, then sensing 

program will generate input spikes to a XL input channel with corresponding frequency as seen 

in Figure 35a. Assuming they can trigger the positive output spikes as seen in Figure 35a, and 

then triggered positive output spikes are sampled by a FPGA board, the rate of output spikes is 

converted to a series of actuation commands, and then converted commands are sent to a drone. 

As a result (Figure 35b), a drone will rotate to the left and change the relative position of the 

target lights in the image. Therefore, also input spikes will be diminished as the relative position 

is aligned to the center line of the image as seen in Figure 35b. However, this is the case with 

well modified synaptic weights. For instance, if XL input spikes trigger the negative output 

spikes, then a drone will rotate to the right and the relative position of the target lights will be 

deviated more from the center line. Therefore, it is crucial for a SNC to modify the synaptic 

weights in the right direction through a learning process, which will be discussed in the 

following. 
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Figure 35. Actuation by a SNC a. An illustration of positive output spikes triggered by XL input 

spikes b. As positive output spikes assigned to rotation left (aL), a drone will rotate to the left, 

resulting in change of input spikes. 

b 

a 
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4.2.4 Performance Function of a SNC 

 Before the learning process is discussed, it should be explained about the performance 

function of a SNC. During the experiment, the performance function is measured as a following 

equation. 

           
 

 

 

The performance function is the integral of square of the deviation of the target lights from the 

center line of the take images. In other words, the performance function is the numerical 

reference of how well a drone points at the target lights for given amount of time, T = 10 seconds. 

In this experiment, a SNC interacts with a drone for 10 seconds, and then there is a learning 

process for 2 seconds. The interaction and learning periods are then repeated until the end of the 

experiments. In other words, the learning process is performed every 10 seconds within 2 

seconds.  

4.2.5 Modeling and Learning in a SNC 

The learning performed in this experiment will be explained in this section. The closed-

loop of a SNC and a drone can be simply modeled as illustrated in Figure 36. The actuation 

signals, a(t), are output spikes from a SNC triggered by input spikes and CNT synapstors. There 

is also unexpected noise term in the actuation signals to a drone, a0(t), which is originated by 

coupling with other actuation signals, drift, and air turbulence. The sensing signals, x(t), are the 

relative position of the target lights in the image and sensed from a drone and an interface 
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program. Also, in the sensing signal, there is a noise term, x0(t), which is the change in the 

sensing signals by other actuations, drift of a drone, or the air turbulence. Let’s assume that h(t) 

is the transfer function of synapstors which can be adjusted by learning process, and g(t) is the 

transfer function of a drone, which is time-invariant function. 

 

Figure 36. Modeling of dynamic interaction and learning of a SNC. 

The operation of the closed-loop interactions can be described in the following equations 

based on the definitions aforementioned.  

                        
 

 
 ,                         
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To simplify the problem, the average of sensing and actuation signals can be taken as 

well as linear assumption. Then, two modeling equations can be simplified as a following 

equation. 

                    

The goal of a SNC is to maximize the given performance function by the learning process. 

In other words, a SNC needs to improve the performance function by modifying the synaptic 

weights and change the correlation between input and output spikes. Therefore, the change in the 

performance function by the change of h(t) should be positive to improve the performance 

function by the learning process. 

  

  
                          

Therefore, if ∆h is satisfying above equation, then, the performance function will be 

improved gradually.  ∆h used in this experiment is described in the next equation: 

     
     

  
            

 

   

        

Simply, the given learning rule is to reward (increase) the synaptic weight which has 

more correlation and to punish (decrease) the synaptic weight which has less correlation between 

sensing signals and actuation signals in a way to improve the performance function. 
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4.3 Experiment Results without Learning 

 In order to see the necessity of the learning, two different experiments were performed – 

first experiment without the learning process, and second experiment with the learning process. 

The experiment results without the learning are plotted in Figure 37. The sensing signal 

measured by a drone is plotted as a function of time in Figure 37a and the actuation signal from a 

SNC is plotted as a function of time in Figure 37b. The performance function calculated at every 

10 seconds is also plotted versus time in Figure 37c. As clearly seen in Figure 37, the actuation 

signal kept oscillating from rotation left and right with a significant delay (~ 5 seconds). Also, 

when a drone pointed at the target lights by rotation left actuation (aL), then rotation right 

actuation (aR) was triggered from a SNC, resulting in huge deviation of a drone from the target 

lights. This is mainly caused by the unbalanced synaptic weights of four CNT synapstors. Since 

there is no learning process to modify them, a SNC kept doing the same operations until the end 

of the experiment. As more accumulation of wrong actuations, the drone was deviated from the 

target lights, thus resulting that the performance function at the end of the experiment was 

decreasing close to −300. This implies that even the oscillating actuation with a certain delay can 

cause huge decrease in the performance function. Therefore, it is obvious that the learning 

process is necessary for a SNC to improve the drone’s performance function – let a drone point 

at the target lights under the circumstance of swinging lights and disturbance by coupled 

actuations, drift, and air turbulence. In the following section, it will be shown how well the 

learning process can improve the performance function. 
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Figure 37. Experiment results without learning a. Sensing signals from a drone versus time. b. 

Actuation signals from a SNC versus time c. Performance function at every 10 seconds. 

 

 

b 

a 

c 
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4.4 Experiment Results with Learning 

The experiment with the learning process was also performed and the results are plotted 

in Figure 38. The sensing signal measured by a drone is plotted as a function of time in Figure 

38a and the actuation signal from a SNC is plotted as a function of time in Figure 38b. The 

performance function calculated at every 10 seconds is also plotted versus time in Figure 38c. 

The learning spikes applied on synapstors are also plotted versus time in Figure 38d. Blue dots 

mean the number of learning spikes on CNT synapstors having XL input channel, and red dots 

mean the number of learning spikes on CNT synapstors having XR input channel. The numbers 

of learning spikes was determined by the equation                   
 
    and the 

frequency of learning spikes was 500 Hz, which is much higher than the frequency of input 

spikes (0 ~ 3 Hz). As clearly seen in Figure 37c, the performance function was gradually 

improved as time goes. This is mainly because the actuation signals triggered by synapstors are 

balanced. As a comparison between without and with learning, Figure 37c and Figure 38c can be 

compared. When the performance function was about −200 ~ −300 in the experiment without 

learning, the performance function was in the range of −20 ~ −30 in the experiment with learning 

in a SNC. Therefore, it is clearly shown that a SNC can improve the given performance function 

through a learning process by changing the synaptic weights of CNT synapstors. In summary, it 

is demonstrated that 1) a SNC can dynamically process sensing signals from the drone and 

trigger the actuation signals for the drone in real-time, 2) the performance of the drone can be 

improved by the learning process in a SNC. 
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Figure 38. Experiment results with learning a. Sensing signals from a drone versus time. b. 

Actuation signals from a SNC versus time c. Performance function at every 10 seconds. d. The 

learning spikes applied on synapstors. Blue dots representing learning spikes on synapstors 

having XL input channel, and red dots representing learning spikes on synapstors having XR 

input channel. 

b 

a 

c 

d 
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4.5 Comparison of a SNC with Prior Art 

 As demonstrated in previous sections, a SNC based on CNT synapstors has capabilities 

of dynamic interactions with the environment and learning in real-time. Two representative 

works using other device type are chosen and compared with a SNC in Table 4. For a 

neuromorphic circuit based on analog CMOS design
59

, it can emulate the elementary functions 

of biological synapses and parallel processing using peripheral Input/Output (I/O) circuit with 32 

neurons and 4096 synapses. However, the numbers of neurons and synapses is limited due to the 

numbers of transistors required. Though the power consumption for whole chip operation is 

unavailable in the reference, there will be substantial the power consumption in analog CMOS 

design. Second reference is a neuromorphic circuit based on resistive switch devices. There was 

no neuron-type of circuit but only an array of 1,600 resistive switch devices. Also, the power 

consumption for whole chip operation is unavailable in this reference but the power consumption 

in one device is roughly around W. Therefore, the power consumption will be also considerable 

and there will be weak spatiotemporal correlation due to the nature of resistive type devices. 

Device 
Number of 

Neurons 

Number of 

Synapses 
Synapses per 

neuron 

Power 

consumption 

CNT synapstors 16 16,384 1,024 1.8 mW 

Analog CMOS
59

 32 4,096 4 N/A 

Resistive switches
60

 N/A 1,600 N/A N/A 
 

Table 4. Comparison of neuromorphic circuit implementation. 
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Figure 39. Estimation performance (speed) of SNCs with different numbers of synapstors 

against power – in comparison with the brain and supercomputer (Blue Gene). 

In Figure 39, the estimated performance of SNCs with different numbers of synapses 

(synapstors) is plotted in the speed of synaptic operation and the power consumption space in 

blue dots and a blue dotted line. Blue dots were the measured performance and the blue dotted 

line is the estimation made by an extrapolation. The performance of the brain and the 

supercomputer simulation
13

 was also plotted for comparison as a green star and a red square. As 

seen in Figure 39, SNC has a potential to have higher signal processing speed and be more 

efficient in power consumption than a supercomputer when the dimension of parallel signal 

processing exceeds ~10
9
.  
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5. Conclusions 

 The brain, essentially a biological neural network, has advantages over supercomputers in 

power consumption, parallel processing, spatiotemporal correlation, learning, and intelligence. 

The neural network is composed of synapses – the fundamental component. In order to emulate a 

neural network by a circuit, it is crucial to realize the device which can emulate the elementary 

functions of synapses. Carbon nanotube (CNT) based transistors, CNT synapstors, were designed, 

fabricated, and tested to emulate the essential functions of the synapses. The CNT synapstors can 

generate post-synaptic current, process spike signals in a spatiotemporal mode, and have the 

memory and learning functions with low power consumption (250 pW for CNT/PEG synapstors 

and 2.6 nW for CNT/C60 synapstors). 

 A spike neuromorphic circuit (SNC) based on CNT synapstors was designed, fabricated, 

and tested. A SNC has the capability of parallel signal processing and spatiotemporal correlation 

between input spikes and output spikes. The spatiotemporal correlation can be established by 

utilizing the synaptic plasticity of CNT synapstors. A large-scale spike neuromorphic circuit was 

designed and fabricated with 16,384 synapstors and 16 Integrate-and-Fire (I&F) soma circuits. 

The average power consumption for a large-scale spike neuromorphic circuit is 1.8 mW. 

 To demonstrate the function of the SNC, a toy drone was used as a platform. A SNC 

formed a dynamic closed-loop interaction with the drone, and the SNC dynamically processed 

signals from the drone and triggered the actuation signals for the drone in real-time. The 

performance of the drone was significantly improved by the learning process in the SNC. A 

large-scale SNC can successfully emulate the massively parallel signal processing and learning 



85 

 

functions of a biological neural network and be potentially used for applications for speech 

recognition, pattern recognition, statistic inference, and other intelligent behaviors.   
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