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ABSTRACT OF THE DISSERTATION 

 

Effects of Aging on the Lymphoid Potential of Hematopoietic Stem Cells 

 

by  

 

Ying Kong 

Doctor of Philosophy in Molecular, Cellular, & Integrative Physiology 

University of California, Los Angeles, 2018 

Professor Kenneth A Dorshkind, Chair 

 

Lymphocyte development declines with age, which in turn contributes to the 

reduced replenishment of naïve lymphocytes in secondary lymphoid organs. An 

impaired ability of old hematopoietic stem cells (HSCs) to generate lymphoid 

progeny is thought to contribute to this attenuation of lymphopoiesis. It is now 

recognized that the HSC compartment is heterogeneous and includes lymphoid 

biased (Ly-HSCs), myeloid biased (My-HSCs) and balanced (Bal-HSCs) 

hematopoietic stem cells. Previous studies have demonstrated that the frequency 

of Ly-HSCs is reduced with age, and this observation has resulted in the 

formulation of a model of stem cell aging which proposes that the age-related 

decline in lymphocyte development is due to a reduction in the number of these 

lymphoid biased precursors. However, findings from this thesis show that this 

model needs to be revised. In particular, Ly-HSCs do no decline and increase 
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significantly during aging. The lymphoid potential of old Ly-HSCs is similar to 

young Ly-HSCs ex vivo shown by the number and aging marker expression of 

produced lymphoid cells. But the genomic pattern of old Ly-HSCs turns into a 

myeloid biased pattern indicated by RNA-Sequencing results, which correlates 

with altered myeloid production from old Ly-HSCs. In terms of reduced lymphoid 

development in vivo during aging, the fact that elevated level of pro inflammatory 

cytokines, one character of senescence-associated secretory phenotype, was 

detected to significantly and irreversibly prohibit the lymphoid differentiation from 

Ly-HSCs. Based on the above results, we propose the revised aging model of 

hematopoietic stem cells: Ly-HSCs do not decline during aging; their lymphoid 

potential remains similar to young Ly-HSCs ex vivo, but when being under the 

pro inflammatory cytokines, their differentiation is irreversible blocked; Whereas, 

their myeloid production is altered even removing from proinflammatory condition, 

which correlates with the fact that old Ly-HSCs show myeloid-biased 

transcriptional pattern. Throughout the projects, the methods utilized include cells 

staining, flow cytometry, cell sorting, lymphoid and myeloid assays, HSC-OP9 

co-culture, cell transplantation, qPCR and RNA-Sequencing. Two supplementary 

files were also included separately: Table 2-11 “Ly-HSC and My-HSC gene 

expression estimates and differential expression results” and Table 2-12 “Ly-

HSC and My-HSC gene signature analysis and functional enrichment results”. 
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Human life span has significantly increased over the course of the past 150 years 

due to advances in medicine and improved public health practices. As a result, it 

is not surprising that the total number of elderly people has risen as well. It has 

been estimated that the number of octogenarians will rise from 125 million in 

2015 to 434 million in 2050 (WHO, Aging and Health).  In fact, the number of 

individuals aged 65 and older is expected to increase significantly in multiple 

countries between now and 2050 (Figure 1-1).  

 

Although many individuals who reach advanced age are healthy, aging often 

negatively impacts the function of one or more organs and processes, which can 

in turn compromise health. For example, a loss of muscle stem cells can lead to 

sarcopenia, and multiple deficiencies that affect various aspects of nervous 

system function have been described. It is also well recognized that age-related 

defects in the immune system that in turn compromise immune function can 

occur. The result is that the elderly are particularly susceptible to infections and 

vaccination efficacy is significantly reduced.  

 

There are two major effects of aging on the immune system (Figure 1-2). First, 

the function of mature immune cells in secondary lymphoid tissues such as the 

spleen and lymph nodes declines. The composition of the CD4+ T cells 

compartment shifts from naïve T cells to memory cells and the number and 

proportion of regulatory CD4+ T cells increases in both mice and human (1-3). 

The reduced number of naïve T cells is primarily due to the involution of the 
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thymus, which shrinks in size and function with age. Aging can also skew the 

repertoire of CD8+ T cells. For example, CD8+ T cells with reactivity towards 

previously encountered antigens such as cytomegalovirus accumulate in 

secondary lymphoid tissues (4). This in turn may compromise the response to 

new antigens (5). Age-related changes in patterns of gene expression can also 

affect expression of various cell surface receptors and cell signaling cascades. 

For example, the expression of CD27 and CD28 is lost, and there is up-

regulation of the dual-specificity phosphatases that in turn affects MAP kinase 

signaling (6). 

 

Mature B cell function is also compromised by aging. Although total serum 

immunoglobulin (Ig) levels remain intact (7), fewer high-avidity antibodies are 

produced and adaptive immune reactivation to newly encountered antigens is 

diminished. Furthermore, instead of a diverse response to new antigen, humoral 

immunity shifts from production of polyclonal to monoclonal immunoglobulin (8). 

Some of these age-related changes in mature B cells may result from cell 

intrinsic effects. In this regard, the expression of E2a and AID (9) is decreased in 

mature B cells leading to decreased Ig class switching and somatic 

hypermutation (10).  However, it is also possible that secondary effects are also 

operative. Mature B cell function requires T cell help, and age-related defects in 

mature T cells could in turn compromise humoral immunity.  

 

One way to circumvent these age-related deficiencies would be to replace old, 

defective B and T cells with newly produced, naïve lymphocytes. However, the 
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second major effect of aging on the immune system is diminished lymphocyte 

development. The thymus is involuted in old individuals, and B cell development 

in the bone marrow is suppressed (Figure 1-3). As a result, few naive 

lymphocytes populate peripheral lymphoid tissues in old individuals. 

 
If the production of naïve B and T cells in the bone marrow and thymus could be 

stimulated in the elderly, then it may be possible to replace old, defective B and T 

cells with newly produced populations. However, achieving this goal will be 

dependent on a detailed understanding of why lymphocyte development declines 

with age. This is the focus of the research described in this thesis.  

 

In order to provide the background for this work, we first provide an overview of 

normal hematopoiesis and the hematopoietic microenvironment. We then 

describe the effects of aging on blood cell production and the ability of the 

environment to support that process. As our focus will be on hematopoietic stem 

cells (HSCs), we will place particular emphasis on these cells and highlight how 

the current research addresses gaps in our understanding of how aging affects 

them.  

 

Hematopoiesis 

 

Blood cell development is generally depicted as a hierarchical process in which 

HSCs mature into intermediates that are lymphoid or myeloid specified. These 

cells then generate progenitor populations that ultimately become committed to 
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generating a specific type of blood cell. 

 

i. Hematopoietic stem cells 

 

The majority of blood cells are derived from HSCs that are generally depicted as 

being at the head of the hematopoietic hierarchy.  HSCs can both self-renew and 

generate differentiated progeny that ultimately become specified to a particular 

hematopoietic lineage.  

 

HSCs develop in the fetus from hemogenic endothelium (11). In mice, this 

process occurs at around embryonic day 10.5. HSCs then seed other fetal 

tissues such as the placenta and liver where they undergo expansion and then 

differentiation (12-14).  However, by late gestation HSCs seed the bone marrow 

and after birth that tissue is the primary site of hematopoiesis.  

 

HSCs are enriched in fraction of Lineage negative (Lin–) CD117(c-Kit)high Sca-1+ 

cells (LSKs).  Lineage negative indicates that the cells do not express a variety of 

lineage markers that include CD3, CD8 TCR TCR NK1.1, TER-119, Gr-1, 

B220 (CD45R) and IgM. However, most groups now use a more sophisticated 

isolation strategy that employs the SLAM marker CD150 (15-17), which is 

expressed on HSCs, and exclusion of additional cell surface determinants such 

as CD48 and CD135 (18-20). Additional markers and strategies for HSC 

purification have been described. For example, in addition to cell surface markers, 
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the Goodell laboratory resolves HSCs based on their ability to efflux the Hoechst 

dye (21).  In humans, HSCs are enriched in the population of Lineage- CD34+ 

CD38- CD90+ CD45RA- cells (22).  

Most schemes of hematopoiesis depict HSCs as a single, homogeneous 

population. However, studies from the Muller-Sieburg laboratory revolutionized 

our thinking by showing that the HSC compartment is heterogeneous and 

includes subpopulations with biased developmental potential. These 

investigators sorted individual HSCs that were allowed to expand in culture for a 

few days, and this population was then transplanted into individual mice. As a 

result of this experimental design, the donor cells repopulating each recipient are 

derived from a single stem cell clone. They observed that some recipients 

showed equivalent lymphoid and myeloid reconstitution while others exhibited 

reconstitution biased towards lymphopoiesis or myelopoiesis. These results led 

to the concept that the HSC compartment includes lymphoid biased HSCs (Ly-

HSCs), myeloid biased HSCs (My-HSCs), and balanced HSCs (Bal-HSCs) (23-

26). Subsequent reports from other labs have also defined 

megakaryocyte/platelet-biased HSCs (27, 28). The developmental relationship 

between these stem cell subsets remains to be defined. They could all be 

derived from a single precursor stem cell or they could be autonomously 

generated.  

As noted above, HSCs express the CD150 cell surface determinant, and the 

level at which it is expressed allows Ly-HSCs, My-HSCs, and Bal-HSCs to be 

resolved. Ly-HSCs and My-HSCs can be identified based on their expression of 



 7 

low and high levels of CD150, respectively, while Bal-HSCs express intermediate 

levels (18, 20). Additional markers such as CD229 may be useful for isolation of 

these cells as well (29). Our strategy for resolution of these HSC subpopulations, 

based on these reports, is shown in Figure 1-4.  

 

ii. Multipotential Progenitors 

 

As HSCs differentiate, they mature into multi potent progenitors (MPPs), which 

are defined by their Lin- Sca-1high CD117(c-Kit)high Flt3+ CD34+ phenotype.  As 

with HSCs, MPPs may be a heterogeneous population containing subsets with 

distinct lineage potential (30). MPPs can reconstitute all lineages following 

transplantation into irradiated mice. However, in contrast to HSCs, they cannot 

stably do so for the lifetime of the recipient, indicating that their self-renewal 

potential is limited. 

 

iii. Myeloid Progenitors 

 

One developmental option for MPPs is to generate myeloid cells via the 

production of common myeloid progenitors (CMPs) that can be identified by their 

Lin- Sca-1- CD117(c-Kit)high CD34+ CD16/32lo phenotype. CMPs can then 

differentiate into lineage biased progenitor populations that include Lin- Sca-1- 

CD117(c-Kit)high CD34+ CD16/32+ granulocyte-macrophage progenitors (GMPs) 

or Lin- Sca-1- CD117(c-Kit)high CD34- CD16/32- megakaryocyte/erythrocyte 
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progenitors (MEPs). GMPs give rise to granulocytes and monocytes while MEPs 

differentiate into megakaryocytes and erythrocytes (31). 

 

iv. Lymphoid Progenitors 

 

MPPs also have the option of maturing into Lin- Sca-1high CD117(c-Kit)high Flt3high  

lymphoid-primed multipotent progenitors (LMPPs). Although LMPPs are 

lymphoid primed, they retain granulocyte-macrophage (32) and limited 

megakaryocyte-erythrocyte potential (33). 

 

A subset of LMPPs expresses the recombinase activating (Rag) protein, which is 

required for the rearrangement of immunoglobulin (Ig) and T cell receptor genes. 

These Rag expressing LMPPs are referred to as early lymphocyte progenitors 

(ELPs) (34). 

 

If LMPPs remain in the bone marrow, they differentiate into Lin- Sca-1low 

CD117(c-Kit)low Flt3+ CD127+ common lymphoid progenitors (CLP). Although 

CLPs may exit the bone marrow and migrate to the thymus, they are not 

generally considered to be the main intermediate from which T cells are 

produced as discussed below. Instead, CLPs can be considered as B lineage 

specified progenitors. CLPs mature through pre-pro B (Lin- CD45R+ CD43+ 

CD93+ CD19- Ly6C-), pro-B (Lin- CD45R+ CD43+ CD93+ CD19+ Ly6C-), and pre-

B (Lin- CD45R+ CD43- CD93+ CD19+ Ly6C-) intermediates before maturing into B 
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cells that express IgM on their surface.  The use of these marker combinations to 

define the various stages of B cell development was first described by Hardy and 

colleagues (35, 36). For simplicity, these stages are often designated as 

Fractions A-F as shown in Figure 1-5.  

 

Newly produced B cells in the bone marrow are functionally immature, and they 

migrate to the spleen where they progress through various transitional stages 

before generating either follicular or marginal zone B cells. The precise pathway 

through which transitional cells mature depends on their exposure to B cell 

activating factor (BAFF), engagement of the Notch2 ligand, and antigen. As 

shown in Figure 1-5, transitional cells that engage Notch2 move into the marginal 

zone compartment. Marginal zone and follicular B cells have distinct function. 

Most mature B cells home to B cell follicles in secondary lymphoid organs and 

are referred to as follicular B cells. They participate in T cell-dependent immune 

responses. Marginal zone B cells reside in the outer white pulp of spleen 

between the marginal sinus and the red pulp. They express high levels of CD21 

and CD1d and respond vigorously to blood borne pathogens (37, 38). 

 

LMPPs may also exit the bone marrow and migrate to the thymus, which is the 

site of T cell development. The thymus does not contain self-renewing stem cells 

and must be replenished by precursors from the bone marrow. Upon entering the 

thymus, LMPPs are thought to rapidly differentiate into early thymocyte 

progenitors (ETPs), which are the most immature intrathymic progenitors. In 
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response to signals from the thymic microenvironment, ETPs differentiate 

through double negative (DN) 2, 3, and 4 stages of development before 

becoming CD4+CD8+ double positive thymocytes. These cells then mature into 

CD4 helper or CD8 single positive T cells then exit the thymus and populate 

secondary lymphoid tissues, shown in Figure 1-6.  

 

The Hematopoietic Microenvironment 

 

Hematopoiesis in the bone marrow occurs in association with a supporting 

network of stromal cells that provide the environment that supports blood cell 

production. Figure 1-7 shows basic elements of the medullary circulation. A 

series of venous sinusoids originate at the endosteal surface of the bone and 

then traverse the medullary cavity before ending in a central sinus. The spaces 

between these sinusoids are occupied by a three-dimensional network of bone 

marrow stromal cells. Developing hematopoietic cells associate with the stroma, 

which regulate blood cell development through cell to cell interactions and by the 

secretion of various salutary cytokines (39-41). 

 

The localization of hematopoietic cells in the bone marrow is not random. It is 

thought that HSCs are preferentially found at the endosteal surface of the bone 

or in association with the sinuses (42). Developing B cells move between various 

niches as they mature. For example, IL-7 is an obligate B lymphopoietic factor, 

and as pro-B cells mature into pre-B cells, they are thought to migrate from IL-7 
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producing to IL-7 non-producing niches (43). 

 

Effects of Aging on Lymphocyte Development 

 

The effects of aging on hematopoiesis have been studied in multiple laboratories, 

and it is clear that the properties of HSCs as well as lymphoid progenitors are 

affected.  

 

i. Effects of Aging on HSCs 

 

Multiple stem cell properties are compromised by aging (Table 1-8). For example, 

the number of HSCs is increased with age (20, 44), their proliferative/self-

renewal capacity is decreased (45-47) compared to their young compartments, 

and homing and engraftment potential is compromised (45, 48).  As a result of 

these deficiencies, old HSCs do not effectively compete with young HSCs in 

competitive reconstitution assays (20, 45, 49, 50). The other major functional 

change is that old HSCs do not efficiently generate lymphoid progeny following 

transplantation and instead exhibit a myeloid biased pattern of differentiation (20, 

47) in both mice (20) and humans (22, 51). 

 

The analysis of young and old bone marrow has shown that the frequency of Ly-

HSCs is reduced and that of My-HSCs is increased with age. This has resulted in 

the formulation of the current model of HSC aging, shown in Figure 1-9, in which 
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age-related declines in lymphocyte development are due to a loss of Ly-HSCs.  

In this case, there are fewer stem cells capable of generating lymphocytes (25) 

and an abundance of those with myeloid potential. This shift in the Ly-HSC/My-

HSC balance has been proposed by Rossi and co-workers (52) to explain why 

myeloid lineage genes were upregulated and lymphoid genes were down 

regulated in HSCs that were profiled by microarray analysis.  

 

Several studies have compared the transcriptomes of young versus old total 

HSCs, including at the single cell level, using microarray analysis and whole 

transcriptome profiling (RNA-Seq) (18, 28, 53, 54). Gene Ontology analysis of 

the data indicates that categories related to Cell Adhesion, Cell Proliferation and 

the Ribosome are up regulated while DNA Base Excision Repair, DNA replication 

and Cell Cycle are down regulated (53). Epigenetic changes also characterize 

aging HSCs as demonstrated by studies from the Goodell and Rossi laboratories. 

Expression of key epigenetic regulators such as DNA methyltransferases Tet1 

and Tet3 and repetitive element, decreases with age and there are age 

dependent DNA methylation changes and histone modifications. The altered 

DNA methylation may interfere with the transcriptional network. Beerman et al 

(55) found that proliferation triggered DNA hypermethylation, and this contributed 

to the functional decline of HSCs during aging. However, no studies have 

transcriptionally profiled young versus old Ly-HSCs in order to obtain insights in 

to the genetic changes that may occur in them.  
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ii. B cell progenitors 

 

B cell development is particularly impacted by aging as demonstrated by a 

reduction in the frequency and total number of CLPs, pre-pro-B cells, pro-B cells, 

and pre-B cells (56-58) These progenitors exhibit multiple, age-related defects 

that include decreased proliferative potential, increased rates of apoptosis, and 

diminished ability to differentiate (59).  

 

Multiple molecular defects in developing B lineage cells have been described. 

For example, they exhibit impaired V-D-J heavy chain gene recombination (60), 

possibly because of decreased expression of the E2A encoded transcription 

factors E12 and E47 (10).  P16Ink4a and Arf, are preferentially expressed in aged 

lymphoid progenitors and contribute significantly to their decline in proliferative 

potential and survival (61, 62). 

 

iii. T cell progenitors 

 

The thymus in old mice and humans is severely involuted (63, 64), and the 

frequency and total number of ETPs is significantly reduced compared to young 

mice. ETPs from the old thymus exhibit attenuated proliferation and increased 

apoptosis (65, 66). Similar to B cell progenitors, they also express high levels of 

p16ink4a (61). As a result of these changes, few mature cells are generated in the 

old thymus.  
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iv. Myelopoiesis 

 

In contrast to these drastic changes in lymphocyte development, myelopoiesis is 

intact in old mice and humans. The number of CMPs, GMPs and mature myeloid 

cells is higher in old compared to young mice (59). However, subtle changes in 

myeloid progenitors have been reported (47, 67).  

 

In summary, current models of hematopoietic aging propose that the number of 

My-HSCs increases with age and the number of Ly-HSCs declines. This leads to 

the production of normal to elevated numbers of myeloid progenitors and a 

significant decline in the number of lymphoid progenitors. In addition, the quality 

of those B and T cell progenitors that are produced is severely attenuated by 

aging. These changes are summarized in Figure 1-10.  

 

Effects of Aging on the Hematopoietic Environment 

 

There are two hypotheses to explain why patterns of hematopoiesis change 

during aging. One is that cell intrinsic changes develop in hematopoietic stem 

and progenitor cells and this leads to alterations in their number and/or 

developmental potential. The other possibility is that changes in stem and 

progenitor cells are triggered as a result of their residence in an aging 

environment (Figure 1-11). 
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These are not mutually exclusive alternatives and in fact, it is possible that age-

related changes in the environment trigger changes in stem and progenitor cells 

that compromise their number and/or differentiation.  For example, interleukin 7 

(IL-7) is expressed in bone marrow stromal cells and it is required for normal B 

and T cell development. It has been proposed that aging impairs IL-7 secretion 

by stromal cells (68), which could then account for the decreased proliferation 

and impaired differentiation of B cell progenitors. In addition to variations in bone 

marrow stromal cells, the microenvironment that supports the survival and 

proliferation of peripheral B cells is altered during age as well. For example, 

survival factors such as B cell activating factor (BAFF) and a proliferation-

inducing ligand (APRIL) are significantly reduced in the blood plasma of elderly 

people (69). There is also an extensive literature, beyond the scope of the 

current discussion, demonstrating that age-related changes in the thymic 

microenvironment underlie declines in thymopoiesis (70, 71). 

 

A major environmental change that occurs during aging is an increased 

production of inflammatory cytokines and this has been referred to as 

“inflammaging” (72). Cytokines such as IL-6, TNF-α, IL-1Rα, C-reactive protein, 

and IFN-γ have been reported to be increased in elderly individuals (73-77). The 

precise source of these inflammatory factors is not known, but their increased 

production has significant ramifications for hematopoiesis. In this regard, HSCs 

and progenitor cells express a broad spectrum of inflammatory 

cytokine/chemokine receptors and can thus directly respond to pro-inflammatory 
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factors in their milieu (78-80).  

 

Myeloid skewing may be one major consequence of increased inflammation. 

Inflammatory factors can stimulate myeloipoiesis and a diversion of CD19 

expressing cells from the B lineage to dendritic cells (81). Factors such as IFN-γ 

can impair HSC proliferative capacity, and thus dysregulate HSC maintenance 

(82). Inflammatory factors may also increase the number of CD150hi HSCs (18); 

as noted above, high levels of CD150 are a characteristic of My-HSCs which 

increase in number with age.  

 

Summary 

 

It is evident from the above review that a significant amount of information about 

normal hematopoieisis and how aging affects that process has been acquired. 

However, significant gaps in our understanding of why lymphocyte development 

is so severely affected by aging remain. My research has addressed two main 

questions. 

 

I. How Does Aging Affect Ly-HSCs? 

 

As noted, current models of stem cell aging as shown in Figure 1-9 propose that 

lymphocyte development is reduced with age because the number of Ly-HSCs 

declines. However, as we discuss in Chapter 2, while the frequency of Ly-HSCs 
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is reduced with age, their total number remains stable. This indicates that a 

reduction in their developmental potential, and not their number, underlies age 

related declines in lymphopoiesis. In order to obtain a better understanding of 

this, we compared the transcriptomes of young and old Ly-HSCs and compared 

them to young and old My-HSCs. 

 

II. What are the effects of inflammation on Ly-HSCs and My-HSCs? 

 

While HSCs respond to inflammatory factors and this may skew their 

development, we propose that inflammation triggers changes in Ly-HSCs that 

block their development. As described in Chapter 2 and 3, we have compared 

the effects of inflammation on Ly-HSCs and My-HSCs.  

 

F  



 18 

igures: 

 

Figure 1-1. Percentage of population aged 65 and over worldwide between 2015 
and 2050. Data from the US Census Bureau.  
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Figure 1-2. Changes in the function of mature B and T cells during aging.  Figure 
from Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. J Clin Invest. 2013 
Mar;123(3):958-65. 
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Figure 1-3. Declines in B and T cell development are a feature of aging. Figure 
from Dorshkind K, Montecino-Rodriguez E, Signer RA, Nat Rev Immunol 2009 
Jan;9(1):57-62. 
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Figure 1-4. The resolution of lymphoid biased, myeloid biased, and balanced 
hematopoietic stem cells by flow cytometry. 
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Figure 1-5. B cell development. All stages of B cell development in the bone 
marrow can be distinguished by their unique cell surface profile. A = pre-pro-B 
cells; B-C = pro-B cells; D = pre-B cells; E-F = surface Ig expressing B cells. 
Newly produced B cells exit the bone marrow and mature in the spleen through 
transitional B cell stages before maturing into marginal zone or follicular B cells. 
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Figure 1-6. T cell development. Cells at distinct stage of development can be 
identified based on the expression of various cell surface determinants. Figure 
from Zúñiga-Pflücker J, Nat Rev Immunol 2004 4: 67–72. 
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Figure 1-7. The hematopoietic microenvironment. Cross-section of bone 
showing elements of the medullary circulation, the marrow sinusoids, and the 
location of stromal cells. Figure from Dorshkind K, Annu Rev Immunol. 
1990;8:111-37.  
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Table 1-8. Effects of aging on hematopoietic stem cells number and function. 
Table modified from Geiger H, Denkinger M, Schirmbeck R, Current Opinion in 
Immunology 2014, 29:86-92 
  

Hallmarks of HSC aging Mouse Human
Number/Frequency Increased Increased

Self-renewal Reduced ?
Heterogeneity Altered, increase in CD41+ cell number Altered

 (myeloerythroid and megakaryocytic primed)
clonality increased

Differentiation Myeloid-biased Increased myeloid contribution
decreased myeloid contribution

Localization More distant from endosteum ?
Homing Reduced ?

Mobiliaztion efficiency Enhanced ?
Stem cell polarity Apolar ?
Stem cell niche RANTES elevated ?

Alters clonality in HSCs upon aging
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Figure 1-9. Current model of HSC aging. During aging, Ly-HSCs decrease in 
number whereas My-HSCs increase significantly. As a result, My-HSCs 
predominate in the bone marrow of old individuals. Figure from Muller-Sieburg C, 
Sieburg HB. Cell Cycle. 2008 Dec 15;7(24):3798-804. 
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Figure 1-10. Summary of aging effects on hematopoiesis. Figure from Kovtonyuk 
LV, Fritsch K, Feng X, Manz MG, Takizawa H. Front Immunol. 2016 Nov 
14;7:502 
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Figure 1-11. Effects of extrinsic and intrinsic factors on age related changes in 
hematopoiesis. Figure from Kovtonyuk LV, Fritsch K, Feng X, Manz MG, 
Takizawa H, Front Immunol. 2016 Nov 14;7:502. 
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Summary 

 

Current models propose that reductions in the number of lymphoid biased 

hematopoietic stem cells (Ly-HSC) underlie age-related declines in 

lymphopoiesis. We show that Ly-HSCs do not decline in number with age and 

retain normal lymphoid potential when removed from the old in vivo environment. 

We compared gene expression in young and old Ly-HSCs as well as young and 

old myeloid biased HSCs (My-HSCs) and found that aging differentially affects 

the transcriptomes of these stem cell subsets. While the genetic changes that 

occur in old Ly-HSCs do not affect their potential to generate lymphoid 

progenitors, they acquire an imprinted, myeloid biased pattern of gene 

expression that correlates with changes in the types of myeloid cells generated. 

These results indicate that current models proposing that lymphopoiesis declines 

with age due to loss of Ly-HSCs require revision and provide an additional 

perspective on the genomic changes that occur in HSCs during aging.  

 

 

 

 

 

 

 



 
 

42 

Introduction 

 

Aging significantly alters the pattern of blood cell production in the bone marrow 

of mice (1, 2) and humans (3, 4) with declines in lymphocyte production being a 

prominent feature. The significant reduction in the frequency and total number of 

B lineage cells produced (5-8) results in reduced replenishment of naïve B cells 

in secondary lymphoid tissues. Intrinsic hematopoietic stem cell (HSC) 

perturbations are thought to contribute to the decline in lymphopoiesis (9-12), 

which may in turn contribute to an increased susceptibility of the elderly to 

infection and a reduced efficacy of vaccination (13). In contrast, myelopoiesis 

predominates in the bone marrow of old individuals, although age-related 

deficiencies have been reported (14, 15).  

 

Multiple processes that include proliferation, DNA repair, and cell polarity are 

altered with age in HSCs (1, 16, 17). In order to provide a molecular basis for 

these observations, several laboratories compared the transcriptomes of young 

and old stem cells (4, 18-22). Consistent with their altered functions, old HSCs 

exhibited changes in expression of genes that regulate multiple processes that 

include self-renewal and differentiation (18, 20). In addition, alterations consistent 

with their myeloid bias were also evident. In particular, an increase in the 

expression of myeloid lineage genes, including those specifying 

platelet/megakaryocyte differentiation (21), and a downregulation of genes that 

specify lymphoid production were observed (23). Whether or not these age-
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related changes in gene expression compromise lymphoid differentiation has not 

been determined.   

 

The realization that the HSC compartment is heterogeneous and includes 

lymphoid biased (Ly-HSCs) and myeloid biased (My-HSCs) subpopulations (24, 

25) provided an additional perspective on why age-related declines in 

lymphopoiesis occur. In this regard, Muller-Sieburg and colleagues reported that 

the age-associated attenuation of lymphopoiesis is due to reductions in the 

number of Ly-HSCs (26). Ly-HSCs and My-HSCs express low and high levels, 

respectively of the CD150 (Slamf1) cell surface determinant (11, 27), and 

phenotypic analyses demonstrated that the proportion of Ly-HSCs is reduced in 

old mice while that of My-HSCs is increased (11, 27). Based on these results, the 

currently accepted model is that the loss of Ly-HSCs contributes to declines in 

lymphocyte production in aging individuals (2, 24, 28).  

 

However, this view of hematopoietic stem cell aging does not take the fact that 

the total number of HSCs increases with age into account (14, 29). We now show 

that when this point is considered, the number of Ly-HSCs does not decrease in 

old mice, and they retain a normal capacity to produce lymphoid progenitors 

upon removal from the in vivo, inflammatory milieu. This is the case even though 

transcriptome changes occur in old Ly-HSCs as determined by whole 

transcriptome sequencing. In particular, analysis of the gene expression data 

revealed that old Ly-HSCs acquire a myeloid biased pattern of gene expression 
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that correlates with a change in the types of myeloid cells they generate. These 

observations provide an additional perspective on the genomic changes that 

occur in HSCs over time and indicate that current models proposing that 

lymphopoiesis declines with age because of a loss in Ly-HSCs are in need of 

revision. 

 

Results  

 

The number of Ly-HSCs does not decline with age 

 

Current models propose that reductions in the number of Ly-HSCs contribute to 

age-related declines in lymphopoiesis and that the number of My-HSCs and 

myelopoiesis increases (2, 24, 28). We quantified the frequency of Ly-HSCs and 

My-HSCs, based on their lineage negative, Sca-1+ CD117(c-Kit)+ (LSK) CD48— 

CD135— CD150low and LSK CD48— CD135— CD150high phenotypes, respectively 

(Figure 2-8A), in young and old C57BL/6 (B6) mice and found that, consistent 

with previous reports (11, 27), the proportion of Ly-HSCs significantly declines 

with age while that of My-HSCs significantly increases (Figures 2-1 A and B). 

However, in agreement with published observations (30, 31), both the frequency 

and number of HSCs increases with age in B6 mice (Figure 2-1C). When this is 

considered, it is clear that there is a significant increase in My-HSC number and 

that they are the predominant stem cell population in old mice. It is also evident 

that the total number of Ly-HSCs does not decline with age and is significantly 
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higher in old compared to young bone marrow (Figure 2-1D). A similar result was 

observed when we quantified HSC numbers in young and old BALB/c mice which 

do not exhibit an increase in HSCs number with age (30, 31). We found that the 

total number of Ly-HSCs also did not decline with age in the BALB/c strain 

(Figure 2-1E).    

 

Old Ly-HSCs efficiently generate immature lymphoid progenitors in vitro 

 

We seeded young and old Ly-HSCs on OP9 stromal cells in vitro to assess how 

aging affects Ly-HSC developmental potential. The results showed that they 

generated similar numbers of CD19+ B lineage cells over the course of several 

weeks in culture (Figure 2-2A). In order to more accurately quantify the number 

of lymphoid progenitors generated, we developed an in vitro system in which the 

combination of stromal cell signals and lymphopoietic factors promote the 

formation of CD127+ CD135(FLT3)+ CD19– progenitors from HSCs following 12 

days of culture (Figure 2-2B). The CD127+ CD135(FLT3)+ CD19– phenotype 

identifies a subset of lymphoid primed multipotential progenitors (LMPPs), 

referred to as early lymphoid progenitors (ELPs) (32), as well as common 

lymphoid progenitors (CLPs), both of which are early intermediates in the B cell 

differentiation pathway (33). We found that old Ly-HSCs generated a similar 

number of CD127+ CD135(FLT-3)+ progenitors as young Ly-HSCs (Figure 2-2C). 

Young and old My-HSCs also generated CD127+ CD135(FLT-3)+ cells but, 

regardless of age, the numbers were consistently lower compared to Ly-HSCs 
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(Figure 2-2C), indicating that the lineage bias of Ly-HSCs and My-HSCs is 

maintained in these cultures.  

 

Ly-HSCs acquire specific changes in gene expression with age  

 

The observation that old Ly-HSCs had normal lymphoid developmental potential 

was surprising in view of several reports showing that aging affects gene 

expression in total HSCs (4, 18-22). This raised the possibility that transcriptome 

changes do not occur in Ly-HSCs or that the changes that occur do not affect 

their lymphoid developmental potential. We performed RNA sequencing (RNA-

Seq) on Ly-HSCs and My-HSCs isolated from three independent groups of 

young and old mice to distinguish between these possibilities. We compared our 

data to two separate sets of gene expression signatures (ImmGen and The 

Mouse Body Atlas, see Materials and Methods). For both sets, all our samples 

showed maximal and consistent enrichment for HSC-specific signatures (Figure 

2-9A and B, and Table 2-11).   

 

We identified 1062 genes whose expression was significantly altered by age 

and/or differed between the two HSC lineages (Table 2-11). Gene ontology 

analysis of these genes resulted in the formulation of a functional network that 

included cell homeostasis (including myeloid cell homeostasis), myeloid cell 

differentiation, cytokine production and the regulation of lymphocyte cell 

adhesion and differentiation as key nodes (Figure 2-10, Table 2-12).  
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Clear differences between Ly-HSCs and My-HSCs irrespective of age were 

apparent for genes in most functional categories (Figure 2-3). For example, we 

found that genes encoding GTPase and G-protein coupled receptor pathway 

elements were more frequently expressed in a lineage-specific manner 

(hypergeometric test p-value < 0.001, Table 2-12). Since they function in the 

transduction of external signals, these results suggest that the response of Ly-

HSCs and My-HSCs to environmental signals is distinct.  

 

Nevertheless, age induced variations were also evident (Figure 2-3) and were 

overall more prevalent than differences between Ly-HSCs and My-HSCs (Wald 

test adjusted p-value <0.05, Table 2-11). Genes significantly regulated by age 

regardless of lineage bias were over-represented in both myeloid differentiation 

and regulation of cell adhesion (hypergeometric test p-value < 0.001, Table 2-

12). We also found that age-induced variations in gene expression occurring in 

Ly-HSCs largely mirrored those in My-HSCs (Pearson correlation = 0.47, 

Student’s t test p-value <10 e-58 for all variable genes). In particular, some 

genes changed in common in both stem cell subsets (Wald test adjusted p-value 

<0.05, Figures 2-3 and 2-4A) and included Plk2, Lamp2, Pim1, Mmrn1, Aldh1a1, 

Cd74, Rorb, Clu and Selp, that have been reported by others as markers of 

aging in total HSCs (4, 18-22) 
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However, we also found that gene expression changes in Ly-HSCs were often 

markedly higher and skewed toward extreme values (two-sample Kolmogorov-

Smirnov test p-value < 0.05, Table 2-12) compared to those which occurred in 

My-HSCs; this was particularly significant for genes annotated in intracellular 

signaling pathways (Rho GTPases, MAPK), response to stress, DNA damage, 

and cell cycle control (Table 2-12). As a result, at any given significance 

threshold, the number of genes classified as age-regulated in Ly-HSCs was 

higher than in My-HSCs (Figure 2-4B, 292 and 104, respectively for Wald test 

adjusted p-value < 0.05). These observations emphasize the importance in 

separately profiling Ly-HSCs and My-HSCs in order to understand how aging 

affects patterns of gene expression in the stem cell compartment. Because the 

HSC population predominantly includes My-HSCs (Figure 2-1D), gene 

expression analysis of young and old total HSCs would be dominated by age-

induced changes in My-HSCs. We found this to be the case (Figure 2-4C), for 

many genes previously identified as makers of aging in total HSCs (22).  

 

The fact that age-related gene changes in Ly-HSCs and My-HSCs were often 

distinct suggested that similar biological processes might be altered by aging in 

both subsets but in a reflection of the transcriptional heterogeneity between 

them, not in an identical manner. As shown in Figure 2-3 and Table 2-12, the 

expression of genes involved in cell cycle regulation changed in Ly-HSCs and 

My-HSCs with age but with a distinctly different pattern. We therefore measured 

Ki-67 expression in young and old total HSCs (Figure 2-4D), and in agreement 
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with previous reports (14, 16), we found that stem cell proliferation/cell cycle 

entry is reduced with age (Figure 2-4E). However, analysis of Ly-HSCs versus 

My-HSCs showed that while My-HSCs exhibited a significant decrease in Ki-67 

positivity compared to their young counterparts, the frequency of young and old 

Ly-HSCs that were Ki-67+ was equivalent (Figure 2-4F). These results indicate 

that the reduced proliferation in total HSCs from old mice (14, 16) primarily 

reflects changes in My-HSCs. 

 

Taken together, the above analyses demonstrated that age-related changes in 

gene expression occur in Ly-HSCs and revealed that aging has distinct effects 

on the two HSC subpopulations. 

 

IL-1 blocks lymphocyte development from Ly-HSCs  

 

The production of inflammatory cytokines such as IL-1 increases in the bone 

marrow with age (34, 35), and these factors can inhibit lymphopoiesis and 

stimulate myelopoiesis (36). We determined how IL-1 affects lymphocyte 

development from Ly-HSCs and My-HSCs in view of the RNA-Seq data showing 

that Ly-HSCs expressed genes encoding the IL-1 receptor as well as various 

RhoGTPases such as Cdc42.  RhoGTPases play multiple roles within cells 

including the transduction of signals from the IL-1 receptor (37, 38). We found 

that the addition of 1 ng/ml of IL-1 to the lymphoid progenitor assay almost 

completely blocked the emergence of CD127+ CD135(FLT3)+ CD19– cells from 
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Ly-HSCs, regardless of age. In addition, IL-1 treatment also abrogated the limited 

lymphopoietic potential of My-HSCs (Figure 2-2D). 

 

Ly-HSCs acquire a myeloid biased pattern of gene expression with age 

 

Further analysis of our RNA-Seq data by multidimensional scaling revealed that 

old Ly-HSCs acquired a pattern of gene expression that overlapped with My-

HSCs, and this was even more pronounced when age-responsive genes specific 

to Ly-HSCs were considered (Figure 2-5A).  

 

We identified the genes whose change in expression contributed to the myeloid 

biased signature of old Ly-HSCs by grouping old Ly-HSCs with young and old 

My-HSCs and comparing their combined pattern of gene expression to that in 

young Ly-HSCs. The rationale for combining old Ly-HSCs together with young 

and old My-HSCs was based on the multidimensional scaling showing that these 

three groups of stem cells clustered together (Figure 2-5A). This analysis 

identified 507 genes (Wald test adjusted p-value<0.05) that were associated with 

response to stress/DNA damage, chromatin/histone modification, regulation of 

cell differentiation, hemopoiesis, cell cycle, hemostasis (platelet signaling), 

apoptosis, TGF-  signaling, and myeloid differentiation (Figure 2-5B and Table 

2-12). We also performed a supervised analysis in which we compared the gene 

changes observed in old Ly-HSCs to a myeloid signature list defined in a 

previous study (19). This analysis revealed that some of these myeloid specific 
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genes were overexpressed in old Ly-HSCs at levels similar to those in old My-

HSCs (Figure 2-5C). 

 

Young and old Ly-HSCs generate phenotypically distinct myeloid progeny  

 

These above observations raised the possibility that the myeloid potential of old 

Ly-HSCs is affected by aging. We tested this by culturing young and old Ly-

HSCs and My-HSCs under myeloid conditions and examining the phenotype of 

the myeloid cells produced 11 days later. The majority of myeloid cells produced 

by young Ly-HSCs were Gr-1+ CD11bhigh while old Ly-HSCs primarily generated 

Gr-1+ CD11blow cells. The cell populations produced by old Ly-HSCs were similar 

to those generated from young My-HSCs and, in agreement with the 

multidimensional scaling data, even more so to those produced by old My-HSCs 

(Figure 2-6A). Median fluorescence intensity (MFI) analyses of CD11b and Gr-1 

expression levels confirmed a specific decrease in CD11b expression by the 

myeloid progeny of old Ly-HSCs (Figures 2-6B and 2-6C). We also observed that 

Ly-6C expression levels on the myeloid progeny of old Ly-HSCs was lower when 

compared to myeloid cells generated from young Ly-HSCs and more similar to 

that of My-HSC derived myeloid cells (Figure 2-6D).  
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Discussion 

 

The central conclusion of this study is that age-related declines in lymphopoiesis 

do not result from a loss of Ly-HSCs in the bone marrow. As a result, current 

models of HSC aging presented in various reviews, including from our own 

laboratory (2, 12, 28), need to be revised to indicate that the number of Ly-HSCs 

is maintained with age and they develop a myeloid biased pattern of gene 

expression (Figure 2-7). In addition, our results indicate that the various age-

related defects identified in total HSCs (16) are not necessarily associated with 

all HSC subpopulations. For example, while old HSCs exhibit declines in 

proliferation, our data indicate this is primarily a property of My-HSCs. These 

observations demonstrate that a full understanding of how aging affects HSCs 

will be dependent upon assessing the various stem cell populations.    

 

Our data also demonstrate that the Ly-HSCs present in old mice have normal 

lymphoid developmental potential ex vivo. We used two in vitro assays to show 

this and purposely avoided the use of transplantation assays for two reasons. 

First, the irradiation used to condition recipients can cause numerous systemic 

changes, such as increased inflammation (39), that could differentially affect the 

young and old stem cells. In addition, old HSCs exhibit bone marrow homing 

defects (16, 40). In this case, reports that old Ly-HSCs exhibit diminished 

lymphoid reconstituting potential (24, 27) may reflect the fact that fewer of these 
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cells seeded the marrow rather than a defect in their ability to generate 

downstream progeny.  

 

Ly-HSCs did not decline in number with age and retained normal lymphoid 

potential ex vivo, indicating that the gene changes in them do not disable their 

lymphoid developmental program. These results raised the question of why few 

immature lymphoid progenitors, such as CLPs (6, 7) are present in the bone 

marrow of old mice. We demonstrate that exposure of Ly-HSCs to inflammatory 

cytokines whose production is known to increase with age in the bone marrow 

(34, 35) blocked their ability to produce lymphoid progenitors (Figure 2-7). We 

focused on IL-1 because it is a key effector of the senescence associated 

secretory phenotype (41), and it can stimulate myelopoiesis (42) and inhibit 

lymphocyte development (43, 44). In addition, Ly-HSCs expressed high levels of 

various RhoGtpases such as Cdc42, which are important for IL-1 signal 

transduction (37, 38). We also found that IL-1 blocked lymphocyte development 

from My-HSCs. Thus, age-related declines in lymphopoiesis may reflect the 

reduced production of lymphoid progeny from both stem cell subsets. Taken 

together, these results suggest that residence in the aging environment underlies 

the reduced production of B lineage cells from Ly-HSCs and My-HSCs. 

Inflammatory cytokines have differential effects on Ly-HSCs and My-HSCs (11, 

45), and the data provide additional information regarding their effects on 

lymphoid development from them in the context of aging.  
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This report provides the first sequencing-based resource of gene expression data 

for young and old murine Ly-HSCs and My-HSCs that will be of value to future 

studies of these populations. They also complement a previously described 

microarray based genomic analysis that compared young Ly-HSCs and young 

My-HSCs (11). We found that some differences in gene expression between Ly-

HSCs and My-HSCs occurred irrespective of age and reflected distinctions 

between these two stem cell populations. However, the majority of differences in 

gene expression between Ly-HSCs and My-HSCs were age induced, and the 

number of genes whose expression changed with age was almost three fold 

higher in Ly-HSCs compared to My-HSCs. In addition, Ly-HSCs exhibited more 

extreme changes in gene expression with age, particularly with regard to genes 

involved in the response to external cues. Together, these results indicate that 

Ly-HSCs are subject to stronger transcriptional regulation than My-HSCs. Such 

differences between young and old Ly-HSCs could not be elucidated in the 

multiple studies that compared the transcriptomes of young and old total HSCs. 

 

An unexpected observation was that old Ly-HSCs had acquired a myeloid biased 

pattern of gene expression. This result is consistent with previous observations 

that total HSCs acquire a platelet/megakaryocyte biased pattern of gene 

expression (21). Rossi and colleagues reported an increased expression of 

myeloid lineage genes in total HSCs during aging (23). Our results indicate that, 

in addition to the increased number of My-HSCs, gene expression changes in Ly-

HSCs also contribute to this myeloid biased signature HSCs from old mice. The 
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gene changes that occurred in old Ly-HSCs, which are likely to be epigenetically 

induced, had an enduring effect on myelopoiesis even upon removal of the cells 

from the old environment. In this regard, young Ly-HSCs produced a high 

proportion of CD11bhigh myeloid cells while old Ly-HSCs, along with young and 

old My-HSCs, primarily produced CD11blow progeny ex vivo (Figure 2-7). The 

functional ramifications of this shift in cell production remain to be determined. In 

this regard, it is known that the CD11b+ Gr-1+ phenotype identifies a population 

of myeloid derived suppressor cells (46, 47) that have been implicated in the 

age-related declines in lymphocyte development  (43).  

 

In summary, the data in this report demonstrate that the number of Ly-HSCs 

does not decline with age, necessitating a revision of current models of stem cell 

aging (2, 24, 28) proposing that reduced Ly-HSC number accounts for the age-

related diminution of lymphopoiesis. The results further show that despite 

changes in their transcriptome, the inhibition of lymphoid development from old 

Ly-HSCs is dependent on their continued exposure to external signals, because 

they had normal lymphoid potential when removed from the old environment 

(Figure 2-7). The latter result is in accord with genomic analyses showing that Ly-

HSCs exhibit significant changes in the expression of genes involved in the 

response to external cues. The normal developmental potential of old Ly-HSCs is 

also consistent with the fact that p16Ink4a, a biomarker and effector of aging (48, 

49) that is expressed in old pro-B cells and compromises their proliferation and 

differentiation (50), was not detected in old Ly-HSCs (Table 2-11). A previous 
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study also detected no change in p16Ink4a expression between young and old 

total HSCs (18). These results suggest that targeting changes that occur in the 

aging environment may be fruitful in rejuvenating lymphocyte production in old 

individuals. 

  

Experimental Procedures 

 

Mice 

 

Young 8-12 week-old C57BL/6 (B6) and BALB/c (BALB) mice were obtained 

from The Jackson Laboratory or the UCLA Division of Laboratory Animal 

Medicine. Old B6 and BALB mice were obtained from the National Institute on 

Aging colony and were used at 18 months of age. All experiments were 

conducted according to UCLA Institutional Animal Care and Use Committee 

guidelines. All animals were housed in the UCLA Division of Laboratory Animal 

Medicine vivarium. Animal care and use were conducted according to the 

guidelines of the Institutional Animal Care and Use Committee.  

 

Flow Cytometry 

 

Bone marrow cell suspensions were prepared as previously described (6, 51). 

HSCs were resolved using specific combinations of FITC, PE, PerCP/Cy5.5, 

PE/Cy7, APC-efluor780, Pacific BlueTM, and efluor-605NC conjugated antibodies 
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as previously described (51). The lineage cocktail included antibodies to CD3, 

CD8 TCR TCR NK1.1, TER-119, Gr-1, B220(CD45R) and IgM. Ly- and 

My-HSCs were resolved within the lineage negative CD48— population using 

antibodies to CD117(c-Kit), Sca-1, CD150 and CD135 as shown in Figure 2-8. 

For Ki-67 staining, cells were fixed, permeabilized, and stained with PE/Cy7 

labeled anti-Ki-67 antibody or rat IgG2a,  isotype, as per manufacturer 

instructions (Life Technologies). Cells produced in long term-cultures and colony 

assays were analyzed for expression of CD45, CD135, CD127, CD19, CD11b, 

and Ly-6C and/or Gr-1 as indicated in the figure legends. All the antibody clones 

used and their sources are listed in Figure 2-8B. HSCs were purified using Aria 

Cell sorters (BD Biosciences) located in the Jonsson Comprehensive Cancer 

Center flow cytometry core and analyses were performed on an LSRII (BD 

Biosciences) located in the Broad Stem Cell Research Center flow cytometry 

core, both at UCLA. 

 

In vitro lymphoid and myeloid assays 

 

The lymphoid potential of Ly-HSCs was initially assessed by seeding 150 purified 

stem cells per well of 12 well plates on confluent layers of OP9 stroma cells (52) 

in RPMI 1640 supplemented with 10% heat inactivated FCS, 5x10-5 M 2ME 

(SIGMA), 2 mM L-glutamine, 100 U/ml streptomycin, 50 μg/ml gentamycin, 

100 U/ml streptomycin, 100 μg/ml penicillin, 0.1 mM MEM vitamins, 0.1 mM 

nonessential amino acids, and 1 mM sodium pyruvate (all from GIBCO). The 
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contents of the wells were harvested weekly by trypsinization. Cells were 

counted and one tenth was used for phenotypic analysis and the remaining cells 

were seeded on newly established OP9 stromal cells. This cycle of harvest and 

re-seeding was repeated for approximately five weeks.  

 

Lymphoid progenitor production from Ly-HSCs and My-HSCs isolated from 

young and old B6 bone marrow was measured by mixing 200 purified stem cells 

with 5.0 x 104 S17 stromal cells (53) in 1.5 ml of methylcellulose (MC) medium. 

MC medium was prepared by supplementing α-MEM with 30% heat inactivated 

FCS, 1% methylcellulose (Stem Cell Technologies), 5x10-5 M 2ME, 2 mM L-

glutamine, 50 μg/ml gentamycin, 100 U/ml streptomycin, 100 μg/ml penicillin, 0.1 

mM MEM vitamins, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate (all 

from GIBCO) and 20 ng/ml SCF, 20 ng/ml Flt-3L ligand, and 50 ng/ml IL-7 (All 

from Biosource). In some experiments the cultures were additionally 

supplemented with 1 ng/ml of IL-1 (Biosource). The mixture was plated in non-

tissue culture treated 3.5 cm2 dishes (Becton Dickinson). Following 12 days of 

culture, the contents of the plates were harvested, cells were enumerated, and 

examined for production of CD45+ CD127+ CD135+ CD19— lymphoid progenitors 

by flow cytometry.  

 

Myeloid assays were initiated by resuspending 200 purified stem cells in 1.5 ml 

α-MEM  supplemented with 30% FCS, 1% methylcellulose, 5x10-5 M 2ME, 2 mM 

L-glutamine, 50 μg/ml gentamycin, 100 U/ml streptomycin, 100 μg/ml penicillin, 



 
 

59 

0.1 mM MEM vitamins, 0.1 mM nonessential amino acids,1 mM sodium pyruvate 

(all from GIBCO) and 20 ng/ml IL-3, and 50 ng/ml SCF and 10 ng/ml IL-6 in 3.5 

cm2 petri dishes in triplicate. Following 11 days of culture the contents of the 

plates were harvested and tested for production of CD11b, Gr-1 and Ly-6C 

expressing myeloid lineage cells by flow cytometry.  

 

 All cultures were placed at 37oC, 5% CO2 humidified incubators until processing. 

 

RNA-Sequencing and data analysis  

 

Whole transcriptome profiling of Ly-HSCs and My-HSCs purified from three 

independent groups of young and old mice was performed. RNA was extracted 

using the Zymo Direct-Zol RNA MiniPrep Plus (cat# R2070, Irvine, CA) as per 

the manufacturer’s instructions. Total RNA was quantified and 260/280 ratios 

determined using Nanodrop. RNA sequencing and library preparation were 

performed in the Jonsson Comprehensive Cancer Center Genomics Shared 

Resource using the KAPA Stranded mRNA-seq kit (Roche Sequencing, 

cat#KK8421, Pleasanton, CA, USA), according to the manufacturer’s 

instructions. The work-flow consisted of mRNA enrichment, cDNA generation, 

end repair to generate blunt ends, A-tailing, adaptor ligation and PCR 

amplification. Different adaptors were used for multiplexing samples in one lane. 

Sequencing was performed on the HiSeq3000 System for a paired-ended 150bp 

run. All samples (12 total, 2 cell types, 2 ages, 3 biological replicates each) were 
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pooled and sequenced in two different lanes of the flow cell. Raw sequence files 

are available at NCBI’s Gene Expression Omnibus (GSE112769).  

 

The STAR ultrafast universal RNA-seq aligner v2.5.2b (54) was used to generate 

the genome index and perform paired-end alignments. Reads were aligned to a 

genome index that includes both the genome sequence (GRCm38 primary 

assembly) and the exon/intron structure of known gene models (Gencode M12 

genome annotation). Alignment files were used to generate strand-specific, 

gene-level count summaries with STAR's built-in gene counter. Technical 

replicates showed high reproducibility and were pooled. Only protein-coding 

genes in the Gencode M12 annotation were considered (85% of total counts on 

average). Independent filtering was applied as follows: genes with no counts in 

any sample, count outliers or low mappability were filtered out for downstream 

analysis (55). Counts were normalized per-sample in units of FPKMs after 

correcting for gene mappable length and sample total counts. The table of 

expression estimates (FPKM) was used as input for SaVanT (56) to compute 

enrichment scores on two different databases of mouse gene expression 

signatures: ImmGen (http://immgen.org) and the Mouse MOE430 Gene Atlas 

(http://biogps.org/). Non-default parameters for SaVanT were "Convert matrix 

values to ranks" and "Compute null distribution with 10000 iterations". The most 

significant enrichment scores are shown in Figure 2-9, and unabridged output 

from SaVanT is provided in Table 2-12. 

 

http://immgen.org/
https://urldefense.proofpoint.com/v2/url?u=http-3A__biogps.org_&d=DwMFAw&c=UXmaowRpu5bLSLEQRunJ2z-YIUZuUoa9Rw_x449Hd_Y&r=S9MG8WyFfNXM9Hq68KKT60Tg8tv54cUMiPrFXgNoZkI&m=2zBHx9nDjBcv8ogjMjB_Gh2NCAjcyNDL4FBFc9Doo7M&s=gDEdQ2J7ge1LUfn4eCO1w4YmNiSd-qglsoEQ_lcddrU&e=
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Differential expression analysis was performed with DESeq2 (57). Count data 

were fitted to additive models using Age (Young/Old) and Bias 

(Lymphoid/Myeloid) as explanatory factors. The individual effect of each factor on 

the expression of each gene was tested using a contrast with reduced models 

(likelihood ratio test). Pairwise differential expression (young vs. old Ly-HSCs 

and My-HSCs, young and old Ly-HSCs vs. My-HSCs) was performed to classify 

genes as differentially expressed between any two conditions. The set of most 

variable genes was generated after pooling all genes that were classified as 

significant (Wald or likelihood ratio tests, adjusted p-value < 0.05) by additive of 

pair-wise tests. An additional pair-wise test was performed (young Ly-HSCs vs. 

the rest of the samples) to identify genes similarly expressed in old Ly-HSCs and 

My-HSCs (507 genes, Figure 2-5B and Table 2-11).  

 

Functional enrichment was performed with Metascape (http://metascape.org) 

using Gene Ontology (GO) biological processes annotations in mouse. The 

network of ontology terms in was computed in-house and visualized with 

Cytoscape (58) (Figure 2-10). Nodes with the same color are specific ontologies 

in the same GO generic class, and are labeled using a representative member 

(Table 2-12). Node size is proportional to statistical significance (hypergeometric 

p-value as provided by Metascape). Edge thickness is proportional to between-

node similarity and was computed in-house in Matlab (Release 2017a, The 

MathWorks, Inc) using Kappa statistics, and reflects the overlap between the 

gene sets annotated in both ontology terms. Hierarchical clustering (Figure 2-3, 
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2-4A and 2-5B) was performed and visualized in Matlab using z-scores from 

variance-stabilized data as input for each group of genes. Multi-dimensional 

scaling (MDS) was performed with the function cmdscale in R (https://www.R-

project.org/) using variance-stabilized data as input.  

 

Statistical Analysis  

 

Data are expressed as a mean ± SEM as indicated in the figure legends. 

Differences between groups were tested by a two-tailed, unpaired Student’s t test 

(α = 0.05). 
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Figures 

Figure 2-1. Quantification of Ly-HSCs and My-HSCs in the bone marrow of 
young and old mice. (A) FACS plots showing the strategy used for the resolution 
of CD150low CD135— Ly-HSCs and CD150high CD135— My-HSCs within the 
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lineage negative, Sca-1+ CD117(c-Kit)+ (CD48— LSK) population. (A complete 
gating strategy is shown in Figure 2-8A). (B) Relative frequency of Ly-HSCs and 
My-HSCs within the total HSC population in the bone marrow of young and old 
B6 mice. (C) Frequency and total number of HSCs in the bone marrow of young 
and old B6 mice. (D) Total number of Ly-HSCs and My-HSCs in the bone 
marrow of young and old B6 mice. (E) Number of total HSCs (left panel) and of 
Ly-HSCs and My-HSCs (right panel) in the bone marrow of young and old 
BALB/c mice. Panels A-E: Each symbol represents an individual young (8 to 12 
week) or old (18 months) mouse; levels of significance for the differences 
between populations are indicated. 
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Figure 2-2. Old Ly-HSCs generate lymphoid progenitors in vitro. (A) Frequency 
and number of CD19+ B lineage cells produced in culture from 150 Ly-HSCs 
purified from young and old mice seeded on OP9 stroma in vitro. Representative 
FACS plots show CD19+ cell production at 3.5 weeks of culture. Data are 
representative of 3 experiments. (B) Diagram of the in vitro assay used to 
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generate lymphoid progenitors from Ly-HSCs and My-HSCs. (A detailed protocol 
is described in the methods section). Representative FACS plots showing 
CD127+ CD135+ lymphoid progenitors generated from young Ly-HSCs and My-
HSCs. MC = methylcellulose supplemented medium. (C) Total number of 
CD127+ CD135+ lymphoid progenitors generated by young and old Ly-HSCs and 
My-HSCs. (D) Total number of CD127+ CD135+ lymphoid progenitors generated 
by young and old Ly-HSCs and My-HSCs in the presence or absence of 1 ng/ml 
of IL-1. Each symbol in panels C and D represents production per culture dish. 
Cultures were initiated with Ly-HSCs and My-HSCs purified from 3 and 2 
independent cohorts of 6 young (8 to 12 weeks) and 4 old (18 months) B6 mice, 
respectively. Levels of significance for the differences between populations are 
indicated.  
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Figure 2-3. Gene ontology analysis of age and/or lineage biased gene 
expression in young and old Ly-HSCs and My-HSCs. Hierarchical clustering 
showing the expression levels for genes in selected ontology categories. The 
results for each biological replicate are shown. Categories are sorted by overall 
statistical significance from top left to bottom right with levels of significance 
shown in parentheses (e.g. 11 stands for p-value = 10e–11). The gene font 
colors distinguish genes that are age regulated (orange), lineage regulated 
(green), or both age and lineage regulated (purple), following results from 
additive models for both factors (Table 2-11). Only a few genes in each category 
are shown to provide representative examples of lineage and/or age biased 
genes. Full results are provided in Table 2-12. Genes annotated in several 
categories are only shown for the most significant function, with the exception of 
genes highlighted for cell-cell adhesion (See also Figure 2-9 and 2-10).  
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Figure 2-4. Ly-HSCs and My-HSCs exhibit specific changes in gene expression 
with age. (A) Hierarchical clustering for the 44 genes classified as age-regulated 
in both Ly-HSCs and My-HSCs for each individual biological replicate. (B) Venn 
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diagram showing the number of genes whose expression changed significantly 
(adjusted p-value < 0.05) between young and old Ly-HSCs and young and old 
My-HSCs and which changed in common in both stem cell subsets. (C) Barplots 
of average expression levels (relative to the mean across all samples) for genes 
classified as markers of an “old specific cluster” by single-cell RNA-Seq analysis 
of total HSCs (22).  Each bar represents the average of three biological 
replicates. (D) FACS plot showing Ki-67 staining of total HSCs with Ki-67 
antibody and isotype control. (E) Frequency of Ki-67 expressing young and old 
total HSCs. (F) Frequency of Ki-67 expressing young and old Ly-HSCs and 
young and old My-HSCs. Each symbol in panels C and D represents cells 
analyzed from an individual mouse. 
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Figure 2-5. Ly-HSCs acquire a myeloid bias with age. (A) Multidimensional 
scaling analysis of young and old Ly-HSCs and My-HSCs. Each symbol 
represents a distinct cohort of Ly-HSCs or My-HSCs isolated from 6-8 B6 mice. 
Shown is a scatterplot of the first multidimensional scales obtained from all 
variable genes (1062 genes, y axis) or from those identified as regulated 
between young and old Ly-HSCs (337 genes, x axis). (B) Hierarchical clustering 
for genes classified as significant (adjusted p-value<0.05) in a pair-wise test 
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between young Ly-HSCs and the rest of the samples, thus showing similar 
expression levels in old Ly-HSCs and My-HSCs. Genes are grouped by 
functional categories (only significant categories are shown, p-value<0.01). 
Representative gene names are shown (blue: lower expression and red: higher 
expression in young Ly-HSCs). A list of the specific genes in each plot can be 
found in Table 2-12. (C) Barplots of average expression levels (relative to the 
mean across all samples) for selected genes classified as “myeloid genes” in the 
Hematopoietic Fingerprints database (19). Each bar represents the average of 
three biological replicates. 
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Figure 2-6. Aging affects myeloid cell production from Ly-HSCs. (A) 
Representative t-SNE plots showing the distribution of Gr-1+ CD11bhigh and Gr-1+ 
CD11blow myeloid cells generated from young and old Ly-HSCs and My-HSCs in 
culture for 11 days. Mean fluorescence intensity (MFI) of (B) CD11b, (C) Gr-1, 
and (D) Ly-6C expression by myeloid cells generated by young and old Ly-HSCs 
and My-HSCs. Each symbol represents cells produced per culture dish from 200 
HSCs. Cultures were initiated with Ly-HSCs and My-HSCs purified from 3 and 2 
independent cohorts of 6 young and 4 old B6 mice, respectively. Levels of 
significance for the differences between populations are indicated.  
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Figure 2-7. Model showing the effects of aging on Ly-HSCs. In young individuals 
both Ly-HSCs and My-HSCs generate lymphoid progeny, although Ly-HSCs do 
so more efficiently as indicated by the thicker arrow. The myeloid cells (M) 
produced by young Ly-HSCs are mostly CD11bhigh Gr-1+. In contrast to current 
models of HSC aging, while there is an expansion of My-HSCs in old individuals 
the data herein indicate that the number of Ly-HSCs does not decline with age. 
The figure further indicates that the lymphoid developmental potential of old Ly-
HSCs and My-HSCs is blocked due to residence in the old, inflammatory 
environment. Finally, old Ly-HSCs acquire a myeloid biased pattern of gene 
expression (as indicated by the darker nuclear shading) that is more similar to 
that of My-HSCs. This in turn correlates with a change in the types of myeloid 
cells produced; specifically, myeloid cells produced form old Ly-HSCs have a 
CD11blow Gr-1+ phenotype that is more similar to the myeloid cells generated 
from My-HSCs.  
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Supplemental Information 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-8. Reagents and strategy used to resolve bone marrow HSC subsets. 
(A) Detailed strategy for resolution of Ly-HSCs and My-HSCs from the bone 
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marrow of 8-12 weeks old young and 18 months old B6 mice. (B) List of antibody 
clones used in this study and their sources.  
 
  



 
 

76 

 
 
Figure 2-9. SaVanT enrichment scores for the RNA-Seq samples in this study 
using all the expression signatures from the (A) Immunological Genome Project 
(ImmGen) and (B) Mouse MOE430 Gene Atlas (BioGPS). Highlighted ImmGen 
signatures in panel (A) are: HSCs: HSC signatures (LTSL BM, STSL BM, ST34F 
BM, LT34F BM, LTSL FL, MPP34F BM, CMP BM and STSL FL); Progenitors: 
MLP, ETP, pre-T; Other: all other expression signatures. 
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Figure 2-10. Functional enrichment network for all genes differentially expressed 
in Ly-HSCs and My-HSCs. Individual gene ontology terms with similar gene 
members are grouped by categories (node color), and labeled using a 
representative member. Node size is proportional to statistical significance. Edge 
thickness is proportional to between-node similarity and reflects the overlap 
between the gene sets annotated in both ontology terms. Only edges 
representing a Kappa similarity score greater than 0.2 are shown. Only 
significant ontology terms are shown (hypergeometric p-value p<0.01). 
 
 
 
Table 2-11. Ly-HSC and My-HSC gene expression estimates and differential 
expression results. 
 
 
 
Table 2-12. Ly-HSC and My-HSC gene signature analysis and functional 
enrichment results. 
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Introduction 

 

The effects of aging on stem and progenitor cells can be manifest at several 

levels. For example, intrinsic changes may occur within these populations as a 

result of programmed events. However, stem and progenitor cells are also 

subject to local, tissue, and systemic influences. As a result, many of the intrinsic 

changes in these populations may be induced via their interactions with 

environmental components throughout life. One prominent feature of aging in this 

regard is chronic inflammation. The term, “inflammaging”, describes this low-

grade, chronic condition that correlates with increasing rates of morbidity and 

mortality in the elderly (1, 2). 

 

Multiple factors contribute to inflammaging including debris from damaged cells 

and free radicals from oxidative stress (3). Various microbial constituents may 

also do so. In particular, the ability of the gut to sequester microbes and/or their 

products declines with age, and the leakage of these elements into the circulation 

can lead to chronic low-grade inflammation in tissues (4). Even without such 

leakage, the composition of the intestinal microbiota might change leading to the 

production of inflammatory cytokines in the gastrointestinal tract. Finally, many 

cells that become senescent acquire a senescence-associated secretory 

phenotype (SASP) (5). Such populations then secrete one or more inflammatory 

factors.  Some cells with a SASP may express p16Ink4, and their removal has 

been shown to reverse or delay many aging effects (6). Thus, there is evidence 
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that targeting inflammatory factors may provide a way to mitigate some effects of 

aging.  

 

Both animal and human epidemiological studies have identified many of the 

inflammatory factors produced during aging, and these include interleukin-6 (IL-6) 

(7), tumor necrosis factor-α (TNFα), interleukin-1 α (IL-1α), and interferon γ (IFNγ) 

(8). It has been proposed based on a cardiovascular health study that levels of 

IL-6 and soluble TNFα receptor 1 are predictors of 10-year mortality rates (9). 

 

Hematopoiesis was traditionally thought to be a programmed process not 

affected by local or systemic events such as infection. However, it is now 

recognized that this view is not correct and that hematopoietic stem cells (HSCs) 

and progenitors express receptors for various cytokines and bacterial products. 

For example, HSCs express Toll-Like Receptor 4, which allows them to respond 

to bacterial lipopolysaccharide. When these agents bind to stem and progenitor 

cells, this results in proliferation and skewing to myeloid differentiation (10-12). 

Inflammatory cytokines, such as IL-6 and IFNs, appear to stimulate HSCs to 

proliferate in the short term but little is known about the long-term effects of 

sustained inflammation (13, 14). For example, sustained exposure of HSCs to 

IFNγ impairs their proliferation and maintenance (15), and chronic TNFα 

signaling has been associated with myelodysplastic syndrome and bone marrow 

failure (16). 
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While the effects of inflammatory cytokines on hematopoiesis are increasingly 

well defined, how these factors affect the developmental potential of specific 

HSC subsets has not been fully explored. Using a long-term culture system in 

which the lineage bias of Ly-HSCs and My-HSCs is maintained in vitro, we 

confirm and extend the conclusions in Chapter 2 showing that inflammatory 

factors can inhibit lymphocyte development from HSCs. We show that chronic 

exposure of HSCs to inflammation blocks lymphocyte development and we 

identify bone marrow adipocytes, which increase in number with age (17), as a 

source of inflammatory cytokines.  

 

Results: 

 

Old Ly-HSCs have diminished lymphoid potential in vivo 

 

It has been reported that Ly-HSCs from old mice exhibit a diminished capacity to 

produce lymphoid progeny based on their potential to reconstitute donor cells in 

the peripheral blood of lethally irradiated recipients (20). However, this study did 

not examine the status of B cell development in the bone marrow of recipients.   

 

We repeated these experiments to address this issue. We harvested bone 

marrow Ly-HSCs from 8-week old and 18-month old B6 mice and transplanted 

300-400 cells into sublethally irradiated (550R) young recipients (Figure 3-1). We 

(21, 22) and others have shown that the effects of aging on lymphocyte 
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development are clearly evident in 18-month old mice (20, 23, 24). The donor 

cells were from mice that expressed the CD45.2 allele and the recipients 

expressed the CD45.1 allele, which allowed us to identify donor cells in the 

recipients (Figure 3-1). 

 

The status of B cell development in the bone marrow of recipients was 

determined six weeks later by measuring the frequency and number of donor 

(CD45.2) cells that expressed the CD45R (B220) cell surface determinant that is 

a characteristic of B lineage cells (25). The results showed that the total number 

of donor B lineage cells was significantly lower in recipients of old compared to 

young Ly-HSCs (Figure 3-2). 

 

Ly-HSCs retain normal developmental potential in vitro 

 

The in vivo reconstitution data are not in accord with the conclusions in Chapter 2 

that Ly-HSCs exhibit normal developmental potential when removed from the in 

vivo environment and cultured in vitro.  We therefore developed a second in vitro 

system in which stem cells are seeded on OP9 stroma to confirm that the 

developmental potential of old Ly-HSCs is normal when they are removed from 

the old milieu. The protocol for this system, which is described in the Methods 

section, is shown in Figure 3-3A.  
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Cobblestone areas of hematopoiesis emerge around 5 to 6 days after seeding 

Ly-HSCs while these develop from My-HSCs at around day 9 to 10 following 

initiation of the cultures. At weekly intervals the frequency and number of CD19+ 

B lineage and CD11b+ myeloid cells were determined in cultures initiated with Ly-

HSCs and My-HSCs. Although B lineage cells develop from Ly-HSCs a week 

earlier than from My-HSCs, it is clear that the developmental bias of these stem 

cell subsets is maintained in culture. While Ly-HSCs produce some myeloid cells, 

most cell production is lymphoid biased (Figure 3-3B). In contrast, My-HSCs 

produce few lymphoid cells while myelopoiesis predominates (Figure 3-3C). 

 

Old Ly-HSCs efficiently generate lymphocytes  

 

We used this culture system to compare the lymphoid developmental potential of 

young and old Ly-HSCs by seeding 150 Ly-HSCs per well from young (8-12 

weeks) or old (18 months) mice on OP9-GFP stromal cells. The production of 

CD19 and CD11b expressing cells was compared at weekly intervals. The 

results show that when Ly-HSCs are removed from old mice and cultured in vitro, 

they can generate lymphoid progeny as efficiently as young Ly-HSCs (Figure 3-

4). These data confirm the conclusions in Chapter 2 that upon removal from the 

in vivo environment, old Ly-HSCs can produce lymphoid progeny as well as their 

young counterparts. 
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The expression of p16Ink4a, which is both a biomarker and effector of aging, 

increases in B lineage cells with age (21).  P16Ink4a is not expressed in young 

cells due to high expression of Bmi1 (26). We examined Bmi1 expression in the 

B lineage cells generated in the cultures from young or old Ly-HSCs by 

quantitative RT-PCR. CD19+ cells were harvested from the cultures between 

days 36-41 days after initiation.  As shown in Figure 3-5, no significant difference 

in Bmi1 expression was detected between the B lineage cells generated from 

young and old Ly-HSCs.  

 

Exposure to pro-inflammatory cytokines inhibits lymphocyte development from 

Ly-HSCs 

 

The production of inflammatory cytokines increases with age and these factors 

are thought to affect patterns of hematopoiesis (27).  The data in Chapter 2 

demonstrate that these cytokines can inhibit lymphocyte development from Ly-

HSCs. We used the in vitro system described above to provide additional insights 

into the effects of inflammation on Ly-HSCs.   

 

First, young Ly-HSCs were pre-incubated with a pro-inflammatory cytokine 

cocktail that contained IL-1α, IFNγ and TNFα for 15 hours before seeding on 

OP9-GFP stromal cells. The pre-incubation with inflammatory cytokines did not 

affect the kinetics with which cobblestone areas emerged in the cultures (data 
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not shown) or the production of B lineage cells. In addition, no significant effects 

on myeloid cell production were observed (Figure 3-6).  

 

These data indicated that short-term exposure to inflammatory cytokines had no 

major effect on hematopoietic development from Ly-HSCs. We next tested the 

effect of extended exposure of hematopoietic cells to inflammatory cytokines. Ly-

HSCs were seeded on OP9 stromal cells in medium supplemented with or 

without inflammatory cytokines; these factors were left in the cultures up until the 

time cobblestone areas emerged. The inflammatory factors were then removed 

and the cultures were maintained in medium without them. 

 

The presence of inflammatory cytokines did not affect the time at which 

cobblestone areas emerged in cultures seeded with Ly-HSCs (day 6 after 

seeding). However, as shown in Figure 3-7, B lineage cells did not emerge in the 

cultures. Nevertheless, myeloid cells were produced in the inflammatory cytokine 

supplemented cultures.  

 

HSCs are not maintained in vitro, and long-term cell production in the above 

cultures almost certainly reflects the activity of progenitor cells. To understand 

the effects of pro-inflammatory effects on cells at these stages of development, 

we added pro-inflammatory cytokines to cultures after 3 weeks after their 

initiation with Ly-HSCs (Figure 3-8). The results clearly showed that the 

inflammatory mediators induced a suppression of lymphopoiesis. We then 
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removed the inflammatory cytokines to determine if B cell production would re-

initiate and found that this was the case. This result is in agreement with previous 

study (28), which reported that IL-1 inhibition of B lymphopoiesis by IL-1 is 

reversible.  

 

Adipocytes inhibit lymphocyte development from Ly-HSCs 

 

Adipocytes have been shown to be a source of various cytokines, including 

inflammatory factors, and their number increases in the bone marrow with age 

(29). In view of this, we tested the hypothesis that fat cells would affect 

lymphocyte production from Ly-HSCs. We induced fat cell accumulation in our 

cultures in order to do so. 

 

The development of bone marrow fat from mesenchymal stem cells is dependent 

on expression of the peroxisome proliferator-activated receptor gamma (PPAR-γ) 

transcription factor (30) and it can be induced by Rosiglitazone (RGZ) (31). We 

treated OP9 stromal cells, which share properties with mesenchymal stem cells 

(32), with 10 µM RGZ for 1 week (33). This protocol resulted in induction of 

PPAR-γ expression (Figure 3-9A) and adipocyte formation (Figure 3-9B) in the 

cultures.  

 

RGZ was washed from the cultures, which were then seeded with young Ly-

HSCs. Adipocyte numbers remain constant in the cultures for at least a week 
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following drug removal (data not shown). The production of CD19+ cells was 

lower in the RGZ treated compared to control cultures (Figure 3-9C).  In order to 

correlate these results with the production of inflammatory cytokines, we 

quantified IL-6 expression in control cultures and those treated with RGZ. As 

shown in Figure 3-10, there was a significant increase in IL-6 expression by the 

RGZ treated stromal cells.  

 

Discussion: 

 

A key conclusion from this study is that HSCs exhibit relatively normal lymphoid 

developmental potential when they are removed from the old in vivo environment. 

These observations are consistent with the conclusions in Chapter 2 in which we 

measured the potential of young and old Ly-HSCs to generate CD127+ CD19– 

early lymphoid progenitors (ELPs) and common lymphoid progenitors (CLPs).  

The studies in Chapter 2 as well as the current chapter also addressed the 

question of why lymphocyte development is blocked in vivo but not in vitro. Our 

working hypothesis in this regard was that HSCs in the old environment are 

exposed to inflammatory mediators that block their differentiation while in vitro 

they are removed from this deleterious milieu. Previous studies have shown that 

inflammatory factors can inhibit lymphocyte development from total young stem 

cells (13), but an analysis of their effects on young and old Ly-HSCs has not 

been reported.  
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In order to address this issue, we developed an in vitro culture system in which 

stromal cells supported the differentiation of Ly-HSCs or My-HSCs into lymphoid 

or myeloid cells. A distinguishing feature of this culture system is that the 

lymphoid and myeloid biased pattern of Ly-HSC and My-HSC differentiation 

observed using in vivo transplantation studies is reproduced in vitro. We chose to 

monitor the emergence of B lineage cells in these cultures by labeling them with 

antibodies to CD19, in contrast to CD45R(B220), which is commonly used to 

identify B lineage cells. One reason for this is that harvest of cells from the 

cultures at weekly intervals was dependent on trypsinization. This process can 

remove CD45R(B220) from the cell surface but it does not affect CD19 

expression (data not shown).  Second, CD45R(B220) can be expressed on many 

non-B lineage cells (34) while CD19 is a B lineage restricted cell surface 

determinant (25). 

 

We observed that old Ly-HSCs retain the ability to generate CD19+ B lineage 

cells in the in vitro cultures. This result is in agreement with data in Chapter 2 

showing that conditions in the old in vivo environment were responsible for the 

inhibition of B cell development. In view of the considerable literature implicating 

the increased production of inflammatory cytokines during aging on patterns of 

hematopoiesis (27), we investigated their effects in the in vitro cultures.  

 

We found that short-term exposure of Ly-HSCs to a cocktail of inflammatory 

factors did not affect their lymphoid potential. However, when cytokines were 
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maintained in the cultures for the first week after their initiation, B cell 

development was suppressed. Cobblestones areas of hematopoiesis formed and 

hematopoietic cells formed in these cultures, but cell production in these cultures 

was limited to CD11b+ myeloid cells. These results are consistent with previous 

studies indicating that lymphoid and myeloid development are differentially 

sensitive to inflammatory factors (35). The addition of inflammatory cytokines to 

cultures that had established allowed us to test their effects on progenitors, and 

here too we found that B cell development was suppressed. These results, which 

extend the observations made in Chapter 2, indicate that chronic exposure of 

HSCs to inflammatory factors is required to affect their developmental potential. 

In addition, we found that when the inflammatory cytokines were removed from 

the cultures, B cell development re-initiated. The latter result is also consistent 

with data showing that old Ly-HSCs can generate B lineage cells in vitro when 

removed from the old in vivo milieu. 

 

Our results further suggest that adipocytes may be the source of inflammatory 

factors that inhibit B lymphopoiesis. Consistent with previous studies that indicate 

fat has a negative effect on hematopoiesis (29, 36), we found that the production 

of lymphoid cells was suppressed by fat containing stroma, which produced IL-6. 

Additional studies are needed to determine if adipocytes are the key stromal cell 

element responsible for the age-dependent declines in B cell development or 

other microenvironmental components also play a role. 
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The results from our in vitro studies showing that Ly-HSCs have normal lymphoid 

developmental potential conflicts with studies showing that old Ly-HSCs do not 

reconstitute donor cells as efficiently as their young counterparts when injected 

into lethally irradiated recipients (20). That study only examined total donor cells 

in peripheral blood, and we have extended it to demonstrate that old Ly-HSCs do 

not efficiently reconstitute B cell development in the bone marrow of the 

recipients. There are several possible reasons for why the in vitro and in vivo 

differentiation data are not in agreement. HSCs are thought to develop homing 

defects with age (37), but these are not operative in the in vitro system. Thus, 

when old and young Ly-HSCs are injected in vivo, the old cells may home to the 

bone marrow less efficiently. Another consideration is that the irradiation used to 

condition the recipients may differentially affect the young and old Ly-HSCs.  

Irradiation induces inflammation (38), and as a result donor cells are being 

injected into a systemic inflammatory environment. Thus, the old cells are 

removed from one inflammatory environment (39) and transferred into another 

one (Figure 3-11). The inflammation in the recipients may also affect the young 

donor cells but not to the same degree, because they are derived from a young, 

non-inflammatory environment. These hypotheses are consistent with the well-

known effects of inflammation on suppression of lymphoid production and effects 

on HSCs (15, 35).  

 

In summary, the results from this study provide a better understanding of why 

lymphocyte production declines with age.  The fact that B cell development can 
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initiate when HSCs are removed from the inflammatory environment is also a key 

finding, because it raises the possibility that interventions that reduce 

inflammation may result in the rejuvenation of B lymphopoiesis.   

 

Methods: 

 

Mice 

 

8-12 weeks old C57BL/6J mice were purchased form the Jackson laboratory or 

the UCLA Division of Laboratory Animal Medicine; 18 months old C57BL/6J mice 

were obtained from the National Institute on Aging colony. For Ly-HSC 

transplantation, recipients were 6-week old female CD45.2 RAG-2/SJL mice 

(strain TAC 000461-M) purchased from Taconic Laboratories. All animals were 

housed in the vivarium of the Division of Laboratory Animal Medicine, University 

of California at Los Angeles. Animal care and use were conducted according to 

the guidelines of the Institutional Animal Care and Use Committee.  

 

Flow Cytometry 

 

Bone marrow cell suspensions were prepared as previously described (18). 

HSCs and B lineage cells were resolved with specific combinations of FITC, PE, 

PerCP Cy5.5, APC, Pacific Blue and Biotin conjugated antibodies as described in 

chapter 2. All sorting experiments used Aria I Cell sorters (BD Biosciences) 
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located in the Jonsson Cancer Center flow cytometry core, and analyses were 

performed on an LSRII (BD Biosciences) located in the Broad Stem Cell 

Research Center flow cytometry core at UCLA.  

 

Ly-HSC Transplantation 

 

Ly-HSCs were pooled from either 9-week old (n=6, 3 female and 3 male) or 18-

month old (n=6, 3 female and 3 male) CD45.2 B6 bone marrow. Cells were 

transplanted into 6-week old CD45.1 recombinase activation gene deficient RAG-

2/SJL female recipients (n=3, 300-500 Ly-HSCs per recipient) that had been 

conditioned 24 hours prior to transplantation with 550 R of sublethal irradiation 

form a 137Cs irradiator.  Reconstitution of B lineage cells was examined 6 weeks 

later.  

 

In vitro cultures 

 

5x104 OP9-GFP stromal cells were seeded per well in 12-well plates in α-Minimal 

Essential Medium supplemented with 5% Fetal Calf Serum, 1 mM L-glutamine, 

100 U/ml streptomycin and 100 μg/ml penicillin.  One day later various numbers 

of Ly-HSCs or My-HSCs were seeded into these wells in triplicate in 1.5 ml of 

RPMI 1640 medium supplemented with 10% heat-inactivated FCS, 1 mM L-

glutamine, 100 U/ml streptomycin, 100 μg/ml penicillin, 50 μM 2-ME, 50 μg/ml 

gentamicin, 0.1mM non-essential amino acid, 0.1mM vitamin and 1mM pyruvate. 
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Cells were fed every two days thereafter by removing 0.5 ml of medium and 

adding 0.5 ml medium to the wells. 

 

The contents of the wells were harvested by trypsinization ten days later. One 

tenth of the cells was used for phenotypic analysis and the remaining cells, 

depleted of any residual OP9 stroma, were seeded on newly established OP9-

GFP stromal cells as just described.  OP9 stroma was depleted by seeding cells 

in a 10 cm-diameter tissue culture dish for 45 minutes at 37 ̊C, 5% CO2 air 

humidified incubator with gentle swirling of the plates every 15 minutes at 3 times 

totally. This process was repeated at weekly intervals for up to six weeks post-

initiation of the cultures.  

 

Addition of inflammatory cytokines to cultures 

 

In some experiments Ly-HSCs or My-HSCs in 100 μL were incubated in wells of 

96-well U bottom culture plates in SCF (20 ng/mL), IL-3 (20 ng/mL), TPO (10 

ng/mL) and Flt-3L (10 ng/mL) supplemented culture medium (19) at 37°C in a 5% 

CO2 air humidified incubator. Some wells were maintained under these 

conditions while others were additionally supplemented with a pro-inflammatory 

cytokine cocktail that contained IL-1α (15 U/ml), IFNγ (15 U/ml) and TNF α (10 

ng/ml). Following a 15-hour incubation, the cells were washed 5 times in PBS 

and seeded on OP9-GFP confluent stromal cells prepared as described above. 
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In other experiments, 150 Ly-HSCs or My-HSCs were seeded on OP9 stromal 

cells in medium supplemented with or without IL-1α (15 U/ml), IFNγ (15 U/ml) 

and TNFα (10 ng/ml). Once cobble stone areas had formed, the inflammatory 

cytokine supplemented medium was removed from the cultures and replaced 

with fresh medium.   

 

Quantitative reverse transcriptase PCR (qRT-PCR) 

 

RNA was extracted with the RNeasy Plus microkit from flash-frozen aliquots of 

purified cells and used to synthesize cDNA with the RT First Strand kit (both from 

Qiagen) by the manufacturer’s instructions. Reactions were run in 20 μl volumes 

with Taqman PCR master mix (Bio-Rad) as recommended by the manufacturer. 

Amplification efficiencies were routinely found to be between 95 and 105%, and 

all reactions were run in duplicate. All primers were purchased from Thermo 

Fisher Scientific and included mBmi1 (Mm03053308_g1) and mAcb 

(Mm00607939_s1). The presence of PCR products was confirmed by melt curve 

analysis. Data were analyzed with Bio-Rad IQ5 software using the Pfaffl method. 

All reactions were run 2 times using 3 independent biological samples. 

 

Statistical Analysis  

 

Data are expressed as a mean ± SEM as indicated in the figure legends.  



 103 

Differences between groups were tested by a two-tailed, unpaired Student’s t test 

(α = 0.05). 
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Figures: 

 

 

Figure 3-1. In vivo transplantation protocol. Ly-HSCs purified from CD45.2 mice 
were injected intravenously into young (10-12 weeks old) CD45.1 recombinase 
activation gene deficient RAG-2/SJL recipients. This strain is immunodeficient 
due to its inability to recombine immunoglobulin and T cell receptor genes. The 
mice are pre-conditioned with sublethal irradiation (550R) to facilitate lymphoid 
reconstitution and do not require transplantation of carrier bone marrow for 
survival. All recipients received an injection with the same number of young and 
old donor CD45.2 cells. Six weeks after transplantation, the frequency and 
number of donor CD45.2 B lineage cells in the recipients’ bone marrow were 
enumerated. 
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Figure 3-2. Old Ly-HSCs have diminished lymphoid potential. Two out of 6 Rag 
recipients of old Ly-HSCs had significant levels of CD45.2 donor cells in their 
lymphoid tissues compared to 5 out of 6 Rag mice injected with young Ly-HSCs. 
(A) Representative FACS plot showing frequency of donor CD45.2+ cells in 
recipient bone marrow. (B) Number of donor B lineage CD45R(B220)+ cells in the 
bone marrow of recipients. 
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Figure 3-3. Ly-HSCs and My-HSCs retain their developmental bias in vitro. (A) 
Protocol for initiation of cultures (left panel) and appearance of cultures 10 days 
after seeding 150 HSCs on OP9 stroma. The round refractile cells are on top of 
the stroma while the round dull cells are beneath the stroma. OP9 stromal cells 
were seeded with (B) 150 Ly-HSCs or (C) 150 My-HSCs. Cells were harvested 
from cultures weekly, counted, and analyzed for CD19 and CD11b expression. 
The FACS plots show resolution of CD19+ and CD11b+ cells in cultures seeded 
with Ly-HSCs (week 4 after seeding) and My-HSCs (week 3 after seeding). 
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Figure 3-4. The comparison of lymphoid and myeloid cell production from young 
and old Ly-HSCs in vitro. (A) FACS plots show resolution of CD19+ and CD11b+ 
cells in cultures seeded with young and old Ly-HSCs at week 3.5 after culture 
initiation. (B) Frequency and number of CD19+ and CD11b+ cells in cultures 
established with young and old Ly-HSCs. The data are based on cell production 
in 3 independent sets of cultures. 
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Figure 3-5. The relative level of Bmi1 expression is similar in CD19+ cells 
generated from young and Ly-HSCs old HSCs. Relative expression of Bmi1 in 
CD19+ cells generated from young and old Ly-HSCs at 36-41 days after initiation. 
The data are based on 3 biologic replicates.  
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Figure 3-6. Lymphoid and myeloid cell production in cultures initiated with young 
Ly-HSCs pre-treated with inflammatory cytokines (IL-1α, IFNγ and TNFα) for 15 
hours before seeding on OP9 stromal cells. Each time point is based on two 
biological replicates 
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Figure 3-7. Effect of inflammatory cytokines (IL-1α, IFNγ and TNFα) on the 
production of lymphoid and myeloid cells from young Ly-HSCs. The cytokines 
were present in the cultures up until the time that cobble stone areas emerged. 
Cytokines were then washed from the cultures which were then maintained for 
several weeks thereafter. Each time point is based on two independent biologic 
experiments. 
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Figure 3-8. Effects of inflammatory cytokines on the production of lymphoid cells 
from progenitors in cultures initiated with Ly-HSCs. Number of CD19+ expressing 
cells in cultures at weekly intervals in the presence of cytokines (IL-1α, IFNγ and 
TNFα) and following their removal. The times at which cytokines were added and 
removed from the cultures is indicated by the arrows.  
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Figure 3-9. Adipocytes inhibit B lymphopoiesis in vitro. (A) Induction of 
PPARgamma in stromal cell cultures treated with Rosiglitazone (RGZ). 
PPARgamma expression measured by qRT-PCR. (B) Appearance of cultures 
after treatment with RGZ for one week. Fat cells were identified based on Oil Red 
O straining. (C). Production of CD19+ lymphoid cells in control and adipocyte 
containing cultures seeded with Ly-HSCs.  
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Figure 3-10. Adipocytes produce IL-6. Induction of il6 in stromal cell cultures 
treated with Rosiglitazone (RGZ). Levels of il6 measured by qRT-PCR. Cultures 
were treated with RGZ for 7 days. Drug was then removed, and cultures were 
maintained for an additional 7 days at which time the stromal cell layer was 
harvested for analysis of gene expression. 
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Figure 3-11. Irradiation induces inflammation. Old Ly-HSCs were transferred 
from the inflammatory environment into another inflammatory environment 
induced by irradiation. In contrast, young Ly-HSCs had not been exposed 
previously to inflammation in the young environment. 
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One of most prominent changes that occurs during aging is the decline in 

immune function. As reviewed in Chapter 1, the number of naïve B and T cells in 

secondary lymphoid tissues is reduced and functional changes in mature 

lymphocytes result in attenuated responses to new antigens. One way to address 

these issues would be to replace old lymphoid cells with newly produced naïve B 

and T cells. However, as we have emphasized throughout this thesis, 

lymphocyte production in the bone marrow and thymus is depressed in old 

individuals. The aim of our work has been to understand why this occurs as a 

basis for developing strategies for rejuvenation of lymphocyte production in 

elderly individuals. Our focus was on hematopoietic stem cells (HSCs), as age-

related defects are thought to underlie their reduced ability to produce lymphoid 

progeny. The results we have obtained have provided the following new insights: 

 

I. The number of lymphoid biased HSCs does not decline with age 

 

It is now accepted that the HSC compartment is heterogeneous and includes 

lymphoid biased (Ly-HSCs) and myeloid biased (My-HSCs) stem cells (1). 

Current models of HSC aging propose that lymphocyte development declines 

because the number of Ly-HSCs is reduced. However, this conclusion is based 

on frequency data alone and does not incorporate changes in cell number. We 

show in chapter 2 that Ly-HSCs do not decline in number in the elderly and 

instead significantly increase. This finding necessitates a revision of current 

models of HSC aging. 
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II. Ly-HSCs acquire changes in gene expression that correlate with 

defects in stem cell processes 

 

 The data in Chapter 2 further demonstrate that Ly-HSCs exhibit changes in gene 

expression that are associated with alterations in various stem cell processes 

such as cell cycle progression, apoptosis, and DNA damage repair. These 

changes are in accord with various studies that have shown that HSCs acquire 

various functional deficits as they age (2). The transcriptomes of young and old 

total HSCs were compared, and the data we present in Chapter 2 are the first to 

show the genetic changes that occur in Ly-HSCs and My-HSCs with age. The 

genetic databases we have generated will be of value to future researchers as 

they investigate how aging affects HSCs subsets.  

 

III. Old Ly-HSCs retain normal developmental potential 

 

We unexpectedly found that the genetic changes that occur in old Ly-HSCs do 

not block their lymphoid potential, as they efficiently produced lymphoid 

progenitors in vitro. This result raised the question of why lymphocyte 

development declines with age.  
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IV. Exposure of Ly-HSCs to inflammation inhibits lymphocyte 

development 

 

It is recognized that the production of inflammatory factors increases with age, so 

we examined their effect on lymphocyte development from Ly-HSCs and report 

in Chapter 2 that they almost completely inhibited that process. Thus, our view is 

that cell extrinsic signals are largely responsible for the age-related decline in 

lymphocyte production. Chapter 3 extended these conclusions by examining the 

effects of specific inflammatory cytokines on HSCs and by demonstrating that 

chronic exposure of stem cells to inflammatory factors is required to block 

lymphocyte development. In this regard, we incubated Ly-HSCs with IL-1α, TNFα 

and IFNγ for 15 hours before seeding them in our in vitro differentiation system 

and found that this did not block lymphocyte development. However, if IL-1α, 

TNFα and IFNγ were maintained throughout the culture period, lymphocyte 

development was inhibited. It is known that adipocyte derived factors can inhibit 

lymphocyte development, and Chapter 3 provides evidence that these cells 

interfere with lymphocyte development from lymphoid biased stem cells. We also 

demonstrate that adipocyte derived factors include IL-6.  Finally, we showed that 

upon removal of the cytokines from the cultures, lymphocyte development re-

initiated. This is an important observation, because it raises the possibility that 

interventions that reduce inflammation may result in the rejuvenation of B 

lymphopoiesis. 
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V. Ly-HSCs produce myeloid cells in response to inflammation 

 

Although exposure of Ly-HSCs to inflammatory factors blocked lymphocyte 

development, they produced myeloid cells. This result correlates with a myeloid 

biased pattern of gene expression in old Ly-HSCs.   

 

VI. In vivo systems may not accurately measure stem cell 

developmental potential 

 

We transplanted young and old Ly-HSCs into young recipient mice and found 

that old Ly-HSCs do not reconstitute B lineage cells as well as their young 

compartments. This result is in agreement with a report from Rossi et al. who 

found that the reconstitution efficiency of old Ly-HSCs is compromised (3). 

However, the results in Chapters 2 and 3 show that old Ly-HSCs have normal 

lymphoid developmental potential when removed from the aging bone marrow 

and cultured in vitro. Our view is that in vivo reconstitution is not an appropriate 

model to compare the developmental potential of young and old stem cells 

because the latter populations acquire homing defects with age. As a result, 

differences in developmental potential between young and old stem cells in vivo 

may reflect differences in bone marrow homing potential rather that differences in 

developmental potential. Furthermore, irradiation used to condition the recipients 

may differentially affect young and old Ly-HSCs. 
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VII. A model of lymphocyte development in young and old mice 

 

We have proposed a revised aging model of stem cell aging (Figure 4-1), based  

on our results, which proposes that Ly-HSCs do not decline during aging but their 

differentiation is blocked due to residence in an inflammatory environment.  

 

Future perspectives: 

 

The work in this thesis also raises a number of interesting questions. 

 

I. What bone marrow cells are affected by inflammatory cytokines? 

 

Inflammatory factors may be acting at the stem cell level as well as on 

downstream intermediates in the lymphoid developmental pathway. In addition to 

these direct effects, indirect effects are also possible. For example, inflammatory 

factors might affect stromal cell function. Further studies are needed to define 

direct and indirect effects of inflammatory cytokines on lymphocyte development 

and to identify the precise stage(s) at which they act.  

 

II. Do HSC subsets exist in humans? 

 

A fundamental question is whether HSC subsets exist in humans.  If so, they 

might express different cell surface determinants that allow their isolation. Thus, 
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it will be important to resolve human HSCs and then determine if they can be 

further divided based on expression of additional cell surface determinants. If so, 

these human HSC subpopulations can be isolated and their developmental 

potential tested using in vivo or in vitro systems.  

 

III. What genetic changes occur in HSCs during aging? 

 

Our studies have compared overall patterns of gene expression in young and old 

stem cells. However, the expression and/or function of additional regulatory 

elements such as long non-coding RNAs (lncRNAs) may also be affected by 

aging. In this regard, lymphoid commitment can be characterized by lncRNA 

expression patterns, which are highly stage specific and more lineages specific 

than protein-coding genes (4). It would be of interest to compare lncRNA patterns 

in young versus old HSCs subsets to determine if there is a change of lineage 

specificity of each subset during aging. lncRNAs may also play a role in 

epigenetic regulation of HSC function (5), and this is also in need of further study. 

 

IV. What is the relationship between Ly-HSCs and My-HSCs? 

 

The origin of Ly-HSCs and My-HSCs is not clear. It has been suggested that 

CD150 high HSCs can generate CD150 low populations (6), raising a precursor 

progeny relationship between stem cell subsets. This has generally been tested 

in vivo and further studies are needed to validate or refute this model. Another 
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possibility is that Ly-HSCs and My-HSCs develop independently from distinct 

precursors (7). 
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Figure: 

 

Figure 4-1. Revised model of Ly-HSCs and My-HSC aging. The model proposes 
that Ly-HSCs are maintained at normal levels with age but their differentiation is 
blocked as a result of residence in an inflammatory environment. 
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