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Abstract

Understanding Risk Aversion in Older Americans:
New Approaches Using Genetic Data

by

Amal Cherifa Harrati

Doctor of Philosophy in Demography

University of California, Berkeley

Professor Kenneth Wachter, Chair

In this dissertation, I explore the nature and role of risk aversion among older Americans
from a variety of perspectives. Risk preferences are important to demographers for several
reasons. First, risk preferences are fundamental to most individual-level demographic events,
including to financial decision-making, health behaviors, labor market decisions, migration,
and marriage and family-formation. Second, there is substantial evidence that risk aversion
increases with age. With age also comes increased responsibility in terms of making specific
financial and health decisions. In the age of decreasing pensions, older persons must make
significant decisions about their financial portfolios and finances in light of pending retirement
decisions. In fact, the decision to retire is itself one in which risk plays a role. Third, health
behaviors, which are a function of one’s riskiness, often display their effects at older ages.

I explore the genetic nature of risk aversion through a number of approaches. Taking
advantage of a newly-released database with over two million pieces of genetic variants, I ex-
amine the specific genetic nature of risk aversion through two genomic techniques: a Genome-
Wide Association study (GWAS) and a Genome-Wide Complex Trait Analysis (GCTA). I
provide evidence that risk aversion is a highly complex trait that is a function of a large
number of possibly interactive genetic variants. Through the GWAS, I show that the num-
ber of genetic variants influencing individual-level differences in risk aversion is numerous
and that these variants are likely to be scattered across the genome. The GCTA, while using
a separate methodological approach, confirms this finding. I argue that the intricate nature
of the genetic underpinnings to risk aversion should be better understood in order to more
precisely model economic decisions involving risk preferences.

I also characterize risk aversion from a non-genetic perspective. Using panel data of
risk aversion collected over nearly two decades, I use longitudinal methods to explore the
extent to which the relationship between hypothetical risk and measurable risky behaviors
remain consistent across both time and among individuals. As a follow-up, I examine the
specific time period following the 2008 recession to examine any change in the relationship in
portfolio allocations relative to stated risk tolerance for individuals after the global financial
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crisis. I conclude that the relationship between measured risk and risky behaviors remains
relatively constant across the 15 years prior to the global financial crisis. The analysis also
shows that the relationship between risk and financial assets does in fact change slightly
after the global financial crisis, though the statistical evidence is not very strong.

This dissertation provides a contribution to the understanding of the complex nature of
risk aversion and is on of the first to characterise it’s genetic influences. This research helps
to answer questions on the economic, social and biological drivers and consequences of risk
aversion among older Americans.
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Chapter 1

Introduction

This dissertation explores the nature of risk aversion among older Americans. Risk pref-
erences are important to demographers for several reasons. First, risk preferences are funda-
mental to most individual-level demographic events, including to financial decision-making,
health behaviors, labor market decisions, migration, and marriage and family-formation.
Second, there is substantial evidence that risk aversion increases with age. With age also
comes increased responsibility in terms of making specific financial and health decisions. In
the age of decreasing pensions, older persons must make significant decisions about their fi-
nancial portfolios and finances in light of pending retirement decisions. In fact, the decision
to retire is itself one in which risk plays a role. Third, health behaviors, which are a function
of one’s riskiness, often display their effects at older ages. For example, the deleterious effects
of smoking, drinking, or poor nutritional choices translate into a higher prevalence at older
ages of cancer, diabetes, and organ failure. To boot, because the horizon within which one
can “correct” for any errors that are made is shorter, the optimality of decisions is that much
more important.

While it is evident that studying risk preference in older Americans is important, how to
study such a complex phenomenon is less clear. When I began researching risk aversions, I
followed the very good advice of my advisor, Ken Wachter. I answered the same questions
that measure risk aversion from the Health and Retirement Study (HRS) that I had planned
to use for my work. After all, the dissertation, while far from life and death, is a long-term
investment that includes a series of decisions and questions that are themselves risky; for
example: Will there be any positive findings to my inquiry? Will this particular line of work
take longer than expected? Taking my advisor’s advice, I decided to start my foray into the
topic in the shoes of the respondent rather than the researcher.

The questions from the HRS are themselves fairly straightforward; however, from the
perspective of someone who is researching the topic, they are fraught with complexity. When
I answered the questions, I couldn’t help but think about the different context in which I
might have answered the questions. Would I have given the same answer if I were not
at the same income level? To what extent were my answers a result of a careful thought
process versus a gut reaction? Would my 20-year-old self, or my future 60-year-old self, have
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answered the questions in the same manner? This short exercise highlights the myriad ways
in which studying individual risk aversions is a tricky business.

Risk aversions are an integral part of most human decision-making, yet they remain
poorly understood. Empirical research has examined the important heterogeneity in risk
preferences across populations, including differences across gender (Eckel & Grossman, 2002;
Powell & Ansic, 1997; Schubert, Brown, Gysler, & Brachinger, 1999); across family back-
ground (Hartog et al., 2002); across work characteristics (Praag & Cramer, 2001); across
educational attainment levels (Brunello, 2002); and across different contexts of risk (Soane
& Chmiel, 2005; Weber, 2002). Given the particular importance of risk aversion in decisions
made at older ages, much of the empirical work has focused on the implications for retirement
decisions and savings (Bodie, Merton, & Samuelson, 1992; Hurd, 1990; Karatzas, Lehoczky,
& Shreve, 1987; Sunden & Surette, 1998). More importantly, the common finding across
the literature examining risk aversion, using any one of these measures, is that heterogene-
ity in risk aversion is real and substantial and furthermore cannot be entirely explained by
observed characteristics typically used in empirical models.

This heterogeneity is evident in the ways older Americans vary in their preparation for
the financial burdens of retirement and old age. For example, gender, age, and education
levels are all predictors of risk aversion but often can explain only a small portion of the
variation Americans display in risk aversion (Barksy, 1997). However, while such differences
in preparation cannot be attributed entirely to income, education, cognitive ability, family
background, or other factors alone, evidence does suggest that differences in risk aversion
are an important driver of the variation in wealth accumulation of individuals.

Also central to the study of risk aversion is the debate around the extent to which risk
preferences are immutable and fixed. Economists argue that risk preferences are fixed and
that any variation in stated risk across time are due to measurement error. Others point to
evidence that risk preferences can vary, sometimes drastically, across domains and time. In
other words, even though risk preferences have been well-studied empirically, large amounts
of heterogeneity that remain unexplained.

A plethora of measurements for risk have been created to accommodate the heterogeneity
and the complexity of the research. These measures can be categorized into one of three
forms: (1) survey-based assessments, such as respondents’ answers to hypothetical lottery
gambles; (2) experimental evidence; or (3) inference from observed decision-making in finan-
cial, health, or insurance markets. This dissertation relies heavily on a set of hypothetical
questions about risk first introduced by Barsky et al. (1997). These questions are elabo-
rated upon in Chapter 2 of this dissertation. A number of recent studies have attempted
to validate the Barksy measure of risk preference and other similar instruments and con-
cluded that hypothetical questions track closely, albeit imperfectly, with actual risk-taking
behaviors (Dohmen et al., 2005; Falk & Heckman, 2009; Guiso & Paiella, 2005). While
the debate remains, hypothetical measures of risk are used in good standing and are useful
when behavior is difficult to observe. Falk and Heckman (2009) go even further to argue
that objections against experimental or hypothetical measures are “misguided” and that the
issue of generalizability is no more a concern than is field data.



CHAPTER 1. INTRODUCTION 3

Using both hypothetical and behavioral measures of risk, I investigate the gaps in risk
preference research among older Americans from a few different perspectives. First, I charac-
terize the genetic nature of risk aversion and using a large dataset with a number of genetic
markers referred to as Single-Nucleotide Polymorphisms (SNPs). Second, I use another tech-
nique called the Genome-Wide Complex Trait Analysis (GCTA) to explore the heritability
of risk aversion from another perspective. Third, I step away from the genetic nature of risk
aversion and turn instead to the longitudinal study of measured risk, and in particular, to
what happens to investments when traditionally risk-free assets become more risky. A more
detailed summary of the dissertation is as follows.

In Chapter 2 I describe the data. In Chapter 3 I report a Genome-Wide Association
Study on risk aversion that examines the genetic influences on risk aversion. I use a novel
data set from the Health and Retirement Study (HRS) with over 2.5 million pieces of genetic
material for each of approximately 10,000 respondents. Specifically, in light of the evidence
of heritability from twin studies and candidate gene studies, I explore the polygenicity of risk
aversion. I find that risk aversion, like many other socio-behavioral traits, is not driven by
a few strong causal genetic variants, but appears instead to be a function of a large number
of variants across the genome, each with relatively small effects.

In Chapter Four, I complement the GWAS findings with a GCTA analysis. GCTA
estimates the proportion of phenotypic variability within the sample explained by genome-
wide SNPs. The analysis in this chapter, thus, is not focused on associations to specific
individual SNPs but rather on attempts to explain the total share of heritability in the
aggregate effects of all the SNPs. I find additive contributions from heritability estimates
near zero, suggesting that the heritability in risk aversion is hidden in SNPs not yet made
available based on the chip technology that exists.

In Chapter Five, I move away from the genetics to examine the longitudinal nature of
stated risk aversion. Taking advantage of the multiple wave survey design of the HRS,
I explore two main ideas. First, I look to see if the cross-sectional relationship between
measured risk and risky behaviors in various domains remains consistent over time. Second,
I use the change in riskiness to various assets before and after the Great Recession of 2008 to
examine to what extent stated risk preference remains consistent. Chapter Six summarizes
and critically discusses the main results of the dissertation and critically discusses them. In
this final chapter, I also present my future research plan to expand the work presented in
this dissertation.
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Chapter 2

Data and Methods

In this chapter, I provide information on the data set that I used in the data analysis
contained in Chapters 3, 4, and 5 of this dissertation. The dissertation utilizes the Health
and Retirement Study (HRS), a well-known longitudinal survey dataset. In addition to the
well-utilized survey data, much of the analysis also relies on newly-released genotype data.
Both are described below.

2.1 The Health and Retirement Study

The University of Michigan Health and Retirement Study (HRS) is a longitudinal panel
study that surveys in two-year study waves a representative sample of more than 26,000
Americans over the age of 50. Supported by the National Institute on Aging (NIA U01AG009740)
and the Social Security Administration, the HRS explores the changes in labor force par-
ticipation and the health transitions that individuals undergo toward the end of their work
lives and in the years that follow.

Since its launch in 1992, the study has collected information about income, work, assets,
pension plans, health insurance, disability, cognitive functioning, health care expenditures,
and physical health functioning. The HRS, which is collected through an in-person survey,
has become an important source of multidisciplinary data in addressing important questions
about the challenges and opportunities of aging. Since its inception, over 2,500 academic
and policy papers have been published using HRS data.

The current sample includes over 26,000 persons in 17,000 households. The HRS is
well-known for its high quality measurement of many key socio-economic and labor market
outcomes, including wealth, income, and retirement decisions. With each biennial wave of
data collection, the HRS incorporates rich experimental modules with detailed assessments
for specific topics. This study uses a similar repeated experimental module for risk aversion
particularly well-suited for this study.
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Design History

The HRS and the Asset and Health Dynamics Among the Oldest Old (AHEAD) studies
were created as separate but related surveys. The original HRS study was supported through
a cooperative agreement between the National Institutes on Aging (NIA) and the University
of Michigan, with additional funding from the Social Security Administration, the Assistant
Secretary for Planning and Evaluation (ASPE) in the U.S. Department of Health and Human
Services (DHHS), and the Pension and Welfare Benefit Office (see Juster & Suzman, 1995).
The HRS was joined in 1993 by the companion study, AHEAD, which studies persons born
before 1924 who were aged 70 and over in 1993. It was funded as a supplement to the
HRS (see Soldo et al., 1997). In its original conceptualization, the HRS study was designed
to follow age-eligible individuals and their spouses as they made the transition from active
worker into retirement; the AHEAD study was designed to examine the dynamic interactions
between health, family, and economic variables in the post-retirement period at the end of
life. The HRS study spanned three waves of data collection: 1992, 1994, and 1996. The
AHEAD study included two waves: 1993 and 1995.

The HRS and AHEAD sample designs provided for ‘exit interviews’ with a surviving
spouse, child, or other informant concerning medical expenditures and family interactions
with the deceased during the final stages of life. Exit interviews were also designed to provide
information about the disposition of assets following death.

Both studies obtained detailed information in a number of domains, including demo-
graphics, health status, housing, family structure, disability, retirement plans, net worth,
income, employment of respondent, work history, current employment, and health and life
insurance. In addition, there were several important linkages between HRS and AHEAD
survey data and between information from employers and administrative data. HRS sup-
plementary data included administrative data from Social Security earnings and benefits
records, National Death Index data, Medicare claims record data, and employer pension
data.

In 1998 the HRS and AHEAD studies were merged with respondents from each forming a
cohort in a combined interview. At the same time, two new cohorts were added: the Children
of the Depression Era (CODA), born between 1924 and 1930, and War Babies (WB), born
between 1942 and 1947.

Sample

The target population for the original HRS cohort included all adults in the contiguous
United States born between the years 1931 and 1941 who reside in households and included
a 2:1 oversample of African-American and Hispanic populations. Following conventional
practice for population surveys, institutionalized persons (i.e., those in prisons, jails, nursing
homes, and long-term or dependent care facilities) were initially excluded from the survey
population. However, individuals were still followed if they moved from the household pop-
ulation into any one of these institutional settings during the survey period. The original
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sample was refreshed with new birth cohorts (51 to 56 years of age) every six years and
has been expanded over the years to include a broader range of birth cohorts. Again, panel
members that moved to an institution or a nursing home during the study were kept in the
sample.

The HRS observational unit is an eligible household financial unit. Throughout this
document, the term “household” is used interchangeably for convenience with the more
precise definition “household financial unit.” The HRS household must include at least one
age-eligible member from the 1931 to 1941 birth year cohorts. Age eligible members can be:
(1) a single, unmarried age-eligible person; (2) a married couple in which both persons are
age-eligible; or (3) a married couple in which only one spouse is age-eligible. If a sample
housing unit (HU) contains more than one unrelated age-eligible person, one of these persons
is randomly selected as the financial unit to be observed. If an age-eligible person has a
spouse, the spouse is automatically selected for HRS even if he or she is not age-eligible.

Since 1998, the objective of the HRS has been to provide information about the U.S.
population over age 50 through biennial surveys with samples of that population. Prior to
1998, the target populations were more limited: the original HRS target population was
limited to those born between 1931 and 1941, and that of the AHEAD study was limited
to those born in 1923 or before. For practical reasons, the decision was made to add new
cohorts every six years rather than at each wave of data collection. Therefore, in 1998, the
target population was defined as those born in 1947 or before and thus approximately those
age 51 and older. Since new cohorts were not added in 2000 or 2002, the target populations
were approximately 53 and older in 2000 and 55 and older in 2002. In 2004, a supplementary
sample was added to make the total sample representative of those born in 1953 or before,
and thus, once again, approximately age 51 and older. In the 2010 wave, the mid-baby boom
cohort (born 1954 to 1959) was added, and in 2016 the late baby boom cohort (born 1960
to 1965) is scheduled to be added.

Two of the five samples interviewed by the HRS to date, and a majority of a third sample,
came from a screening conducted in 1992 of 69,337 housing units. That sample of housing
units was generated using a multi-stage, clustered area probability frame. Of those housing
units, 14% (9,419) were determined to be non-sample (i.e., unoccupied or non-households).
In all but 214 of the 59,918 identified households, the eligibility of the household members
for inclusion in the HRS, AHEAD, or WB samples was determined, for a screening response
rate of 99.6%.

At the baseline data collection for the HRS sample in 1992, a total of 15,497 individuals
were eligible for interviews. This total included persons identified in the household screening,
plus their spouses or partners, regardless of year of birth. Of those identified in this way,
interviews were obtained with 12,652 respondents (7,704 households) for an overall response
rate of 81.6%.

The second sample was generated for what began as the AHEAD study. This sample
consisted of individuals born in 1923 or before. Those born between 1914 and 1923, and
about half of those born in 1913 or before, were identified through the 1992 household
screening operation. The other half of those born in 1913 or before were identified using the
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Medicare enrollment files maintained by the Health Care Financing Administration (HCFA,
since renamed the Centers for Medicare, Medicaid Services, or CMS). For the AHEAD
sample, interviews were obtained with 8,222 respondents (6,046 different households) with
a response rate of 80.4%.

In 1998, the HRS and AHEAD studies were merged through a single interview schedule.
At the same time, the third and fourth samples were added. The War Baby (WB) sample
consists of those born between 1942 and 1947, inclusive, and was obtained from the same
1992 household screening. The Children of the Depression Age (CODA) sample consists of
those born between 1924 and 1930 (the ‘missing’ birth cohorts between the HRS and AHEAD
samples). These individuals were identified from the Medicare enrollment file. Since many
members of these birth cohorts were already part of the studythey were current or former
spouses and partners of those in the HRS and AHEAD cohortsthe new samples excluded
those individuals with spouses or partners who were born in 1923 or before, or between 1931
and 1947. The baseline response rates for the CODA and WB samples in 1998 were 72.5%
and 70%, respectively.

In 2004, a new sample cohort of individuals born between 1948 and 1953 (age 51 to 56 in
2004) was introduced, which carries forward the steady-state aspect of the HRS. The Early
Baby Boomer (EBB) sample was obtained through the screening of 38,385 households. Eli-
gibility was determined in 91.3% of the screened households, and a total of 4,420 individuals
in 2,755 households were found to be eligible. Interviews were completed with 3,330 indi-
viduals in 2,154 households for individual and household interview response rates of 75.3%
and 78.2%, respectively. The EBB sample factored in screening response rate yields overall
baseline response rates of 68.7% for individuals and 71.4% for households.

RAND Data

The HRS is a longitudinal household survey dataset deployed for the study of retirement
and health among the elderly in the United States. It is extraordinarily rich and complex.
With the goal of making the data more accessible to researchers, the RAND Center for the
Study of Aging, with funding and support from the National Institute on Aging (NIA) and
the Social Security Administration (SSA), created the RAND HRS data files.

The RAND HRS is a user-friendly version of a subset of the HRS. It contains cleaned
and processed variables with consistent and intuitive naming conventions, model-based im-
putations and imputation flags, and spousal counterparts of most individual-level variables.

The data include any individual interviewed at least once. This set includes individuals
who were age-eligible (i.e., born in eligible years) at the time of their first interview, spouses
that were not age-eligible at baseline, and spouses who married an age-eligible respondent
between survey waves. The HRS public release files provide imputations for many asset and
income types, but the imputation method is not consistent across all waves. The RAND
HRS data contain imputations of all asset and income types using a consistent method for
all waves. Beginning with HRS 2006, RAND has provided the income and asset imputations
for the HRS. The RAND HRS data file contains summary measures of income and assets.
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All analyses in this dissertation that are based on the HRS survey data uses the RAND
data files.

2.2 Phenotype Data

The HRS also included an experimental module, first proposed by Barsky et al. (1997),
in the first wave of the survey in 1994 and was included in a total of six subsequent data
waves for the assessment of risk aversion. The measure is derive from answers to the follow-
ing questions:

Suppose that you are the only income earner in the family, and have a good job guaranteed
to give you your current (family) income every year for life. You are given the opportunity
to take a new and equally good job, with a 50-50 chance it will double your (family) income
and a 50-50 chance that it will cut your (family) income by a third. Would you take the new
job?

If the first job is chosen in the second question again, then: Suppose the chances were
50-50 that the second job would double your lifetime income and 50-50 that it would cut it
by twenty percent. Would you take the first job or the second job?

If first job is chosen in the second question again, then: Suppose the chances were 50-50
that the second job would double your lifetime income and 50-50 that it would cut it by 10
percent. Would you take the first job or the second job?

If second job is chosen in the first question, then: Suppose the chances were 50-50 that
the second job would double your lifetime income, and 50-50 that it would cut it in half.
Would you take the first job or the second job?

If second job is chosen in the second question again, then: Suppose the chances were
50-50 that the second job would double your lifetime income and 50-50 that it would cut it
by seventy-five percent. Would you take the first job or the second job?

Category 1: Respondent would take a job with even chances of doubling income or cutting
it in half.

Category 2: Respondent would take a job with even chances of doubling income or cutting
it by a third.

Category 3: Respondent would take a job with even chances of doubling income or cutting
it 20%.

Category 4: Respondent would take or stay in the job that guaranteed current income
given any of the above alternatives.
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Birth Cohort 1992 1993/94 1995/96 1998 2000 2002 2004 2006 2008

1890-1923
Hispanic 29 433 357 309 277 215 177 136 113

Black 40 1,041 850 707 567 440 346 271 205
White 137 6,007 5,134 4,281 3,554 2,868 2,313 1,809 1,381

Other/Unknown 7 92 74 60 56 38 27 19 16
1924-30
Hispanic 79 119 114 246 229 209 203 178 154

Black 122 183 166 377 334 304 273 246 222
White 806 1,285 1,213 3,064 2,818 2,602 2,367 2,171 1,936

Other/Unknown 13 24 21 65 54 50 43 33 35
1931-41
Hispanic 912 773 758 735 691 694 682 621 602

Black 1,688 1,504 1,401 1,334 1,248 1,197 1,153 1,047 1,013
White 7,048 6,486 6,245 6,045 5,716 5,531 5,291 5,098 4,839

Other/Unknown 169 154 133 126 122 108 103 93 91
1942-47
Hispanic 105 96 98 245 236 227 227 221 215

Black 164 150 146 462 426 429 420 397 393
White 899 874 854 2,336 2,232 2,197 2,117 2,047 1,994

Other/Unknown 27 24 25 58 54 57 52 50 52
1948-53
Hispanic 39 41 41 82 79 79 162 406 405

Black 49 45 43 93 88 85 124 512 495
White 196 188 185 481 492 503 633 2,099 2,045

Other/Unknown 11 11 11 19 18 15 47 91 78
1954+

Hispanic 11 10 14 35 38 46 1,927 147 164
Black 17 12 13 32 43 49 2,879 127 126
White 78 84 90 185 192 207 14,952 611 605

Other/Unknown 5 5 5 7 13 15 371 39 39
TOTAL
Hispanic 1,175 1,472 1,382 1,652 1,550 1,470 1,927 1,709 1,653

Black 2,081 2,936 2,619 3,005 2,706 2,504 2,879 2,600 2,453
White 9,164 14,924 13,721 16,392 15,005 13,909 14,952 13,835 12,800

Other/Unknown 232 310 269 335 317 283 371 325 311

Years of Data Collection

Table 2.1: Counts of responses by race and ethnicity by survey year. Data source: Author’s
tabulation of the HRS
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Table 2.2:  Summary Statistics for Risk Aversion question
Respondents

Survey Year N Mean Standard Deviation Min Max
1992 11707 3.28 1.09 1 4
1998 5117 4.64 1.59 1 6
2000 1359 4.73 1.54 1 6
2002 6093 4.66 1.54 1 6
2004 2956 4.64 1.51 1 6
2006 6414 4.7 1.48 1 6

Spouses
Survey Year N Mean Standard Deviation Min Max

1992 9086 3.29 1.08 1 4
1998 3582 4.64 1.55 1 6
2000 859 4.71 1.51 1 6
2002 4546 4.63 1.54 1 6
2004 2058 4.66 1.49 1 6
2006 4712 4.72 1.45 1 6

Table 2.2: Summary Statistics of Risk Preference Question, 1992-2006. Data source: Au-
thor’s tabulations of the HRS.

The questions posed in the experimental model separated the respondents into four or
six distinct risk preference categories (depending on the survey wave), from least risk-averse
to most risk-averse, and allows one to estimate specific relative-risk coefficients for sample
individuals. In the original paper evaluating this measure, Barsky et al. (1997) found that
this measure of risk is highly correlated with a number of risk behaviors, including smoking,
failing to have insurance, and holding stocks rather than treasury bonds.

Changes to variable over survey waves

The phenotype data on risk aversion were collected in the following waves (or years) of the
HRS survey: Wave 1 (1992), Wave 4 (1998), Wave 5 (2000), Wave 6 (2002), Wave 7 (2004),
and Wave 8 (2006). Proxy respondents were not asked this question in all survey waves, and
the sample of the population asked these questions varies across waves. Specifically, in Wave
1, all self-reporting respondents were asked these questions. In Wave 4, AHEAD cohort
respondents were not asked, but all self-reporting CODA and War Babies respondents were,
along with all new HRS cohort spouses. One of 10 HRS cohort respondents was also randomly
selected for these questions. In Wave 5, the questionnaire indicates that respondents were
selected based on whether they were asked the question in 1998 and their experimental
module assignment in 1996, in addition to random selection among those under 65. But the
criteria involving 1998 and 1996 do not appear to be accurate, nor is the selection based on
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age. It appears instead that one of 12 respondents was randomly selected for these questions,
regardless of age. All entry cohort subsamples were eligible for selection. In Waves 6 and 8
if the person was 65 or older the questions were skipped. Otherwise, all other self-reporting
respondents were asked these questions. In Wave 7 only the new EBB cohort was asked the
question.

There were two important changes to the survey question over the course of its inclusion
in the HRS. First, the classification of individual responses into risk categories expanded
from four categories to six.

From Waves 4 forward, additional questions were asked that allow two more categories
from the original four risk categories:

Category 1a: Less risk-averse than 1 above: Respondent would take a job with even
chances of doubling income or cutting it by 75%.

Category 3a : Between categories 3 and 4 above: Respondent would take a job with even
chances of doubling income or cutting it by 10%.

The second major change, a result of concerns over status quo bias, was a difference in
the wording of the question in which individuals were more likely to choose their current
circumstances when presented with a choice. In Wave 1, the pair of jobs presented were a
hypothetical current job and a new one. To eliminate any concerns of status quo bias, from
Wave 4 forward the pair of jobs presented are both new jobs, given that the respondent will
need to move and find a new job.

To recapitulate, in Wave 1 the question wording was: Suppose that you are the only
income earner in the family, and you have a good job guaranteed to give you your current
(family) income every year for life. You are given the opportunity to take a new and equally
good job, with a 50-50 chance it will double your (family) income and a 50-50 chance that it
will cut your (family) income by a third. Would you take the new job?

(In Waves 2 and 3, these questions were not asked.) From Wave 4 forward the question
wording is: Suppose that you are the only income earner in the family. Your doctor recom-
mends that you move because of allergies, and you have to choose between two possible jobs.
The first would guarantee your current total family income for life. The second is possibly
better paying, but the income is also less certain. There is a 50-50 chance the second job
would double your total lifetime income and a 50-50 chance that it would cut it by a third.
Which job would you takethe first job or the second job?

2.3 Genotyped Data

In 2012, the HRS has recently released a set of genetic markers suitable for a Genome-
Wide Association Study (GWAS) whereby it genotyped 2.5 million single nucleotide poly-
morphisms (SNPs) on 12,507 respondents.
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History of Genetic Data in the HRS

Although HRS data collection began in 1992, it was only in 2004 that practical discussions
about including genetic data began. The 2005 HRS renewal application (requesting funding
for the 2006 to 2011 period) proposed the collection of biomarkers, including DNA collection
extracted from saliva samples as part of the in-home interview, but no funds were requested
for genotyping or analysis at that time. The biomarkers collection began on the first half
of a sample in 2006 and followed on the other half in 2008. Meanwhile, there was ongoing
discussion with NIA staff, the NIA HRS Data Monitoring Committee, and co-investigators
about what studies to perform on the collected DNA. In September of 2010, the National
Academy of Sciences hosted a workshop titled “Using Genome-Wide Association Studies
(GWAS) to Explore Fundamental Questions About Aging in the Health and Retirement
Study (HRS) Sample,” which discussed the key themes and possible challenges of integrating
genotype data with the HRS. The National Institute on Aging (NIA) commissioned the
National Research Council Committee on Population to convene a two-day expert meeting
to consider what data to collect on which traits and endophenotypes to optimize the HRS
GWAS information as well as to explore ways in which the HRS can be harmonized with other
types of large-scale studies to help uncover complex phenotypes attributable to genetics.
Toward this end, more than 30 leaders in the fields of gerontology, economics, sociology,
demography, genetics, population genetics, epidemiology, and psychology from throughout
the United States and Europe convened in Washington, D.C. on September 2324, 2010. The
rationale for the decision to include genetic data into the HRS and the goals thereby can be
summarized in a quote from the expert meeting:

“ Linking rich genotyping with the deep phenotyping available in a ongoing multi-disciplinary
longitudinal study creates uniquely valuable opportunities for research on the genetics
of disease, cognitive and physical function, longevity, and social and economic behav-
ior and decision-making. Longitudinal measurement permits multiple observations on
stable traits and the modeling of trajectories of change in age-related traits or age at
onset in discrete disease states. The breadth of measurement will enable investigation
of correlated genetic patterns in multiple domains, and sophisticated modeling of gene-
environment interactions. A genotype database from a large nationally-representative
sample will be an important reference point on allele frequencies and ancestry admix-
tures in the US population. Finally, the results of genetic analysis can inform future
waves of HRS to sharpen measurement of relevant traits. Equally important, the HRS
is built for comparability with other studies, creating opportunities for replication and
pooling that are crucial for future advance in genetic discovery. This resource creates
new horizons for research in behavioral and health sciences.” (National Institute of
Aging, 2010)]

Beginning in 2006, the study added direct measures of physical function, biomarkers of
cardiovascular risk, social networks, and expanded measurement of psychological traits (e.g.,
big 5 personality measures, affect, and sense of control). As part of the new measures added
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in 2006, the study also began asking respondents to donate DNA samples to be held in
repository for future research.

Collection and Genotyping Procedure

A total of 12,507 study subjects were genotyped. The study was genotyped in two
phases. In 2006, samples were collected using a mouthwash method. In 2008, the study
switched to collection using Oragene DNA self-collection kits, which provide samples with
higher DNA concentration and yield. Based on prior rates of consent, the HRS expects an
additional 3,000 Oragene samples to be added in 2010, including a substantial expansion of
the minority sample.

In 2006, a random one-half of the HRS survey sample was pre-selected to complete
an enhanced face-to-face (EFTF) interview, which in addition to the core HRS interview
included a set of physical performance tests, anthropometric measurements, blood and saliva
samples, and a psychosocial self-administered questionnaire. The sample was selected at the
household-level. In 2008, an EFTF interview was conducted on the remaining half of the
sample. Respondents who consented to the saliva collection in either 2006 or 2008 were
included in the 2012 GWAS data release.

The genetic material was collected using Illumina’s Human Omni2.5-Quad (Omni2.5)
BeadChip methodology. Saliva was collected on half of the HRS sample from each wave
starting in 2006. In 2006, saliva was collected using a mouthwash collection method. In
2008, the data collection method switched to the Oragene kit. Saliva completion rates were
83% in 2006 and 84% in 2008.

The genotyping was performed by the NIH Center for Inherited Disease Research, using
the Illumina Human Omni-2.5 Quad beadchip, with coverage of approximately 2.5 million
single nucleotide polymorphisms (SNPs).

Quality Control

Genotypic data that passed initial quality control at CIDR were released to the Quality
Assurance/Quality Control (QA/QC) analysis team at the University of Washington, the
study investigators’ team and dbGaP. These data were analyzed by all four groups and
the results were compiled into a quality control document by the University of Washington
(2012).

The document provides details on a number of quality control measures that were applied
to the genotype data, including the following list: gender identity, chromosomal anomalies,
relatedness, population structure, missing call rates, batch effects, sample quality, duplicate
sample discordance, Mendelian errors, Hardy-Weinberg equilibrium, minor allele frequency,
duplicate SNP probes, sample exclusion and filtering summary, and SNP filtering summary.

While much of the technical detail of the quality control is best left to the quality control
documentation, there are a few key portions of the quality control procedures of the genotype



CHAPTER 2. DATA AND METHODS 14

that are worth elaborating on as they form important parts of the method in the proceeding
analytical chapters of this dissertation.

Overall Sampling and Data Issues

In the following, the term “sample” refers to a DNA sample and, for brevity, “scan”
refers to a genotyping instance (including genotyping chemistry, array scanning, genotype
calls, etc.). A total of 13,129 samples (including duplicates) from study subjects were put
into genotyping production, of which 12,857 were successfully genotyped and passed CIDR’s
QC process. The subsequent QA process identified 12 subjects with unresolved identity
issues. Of these 12, seven were unexpected duplicates identified by CIDR prior to release,
two were determined to have questionable identity by the SI based on their HRS IDs, one
was a respondent dropped from the HRS sample, and one was found to be an unexpected
relative of another subject. The set of scans to be posted include 12,845 study participants
and 411 HapMap controls.

The 12,845 study scans derive from 12,507 subjects and include 336 subjects with dupli-
cate scans (334 subjects with two scans each and two subjects with three scans each) (Table
2.3). The 411HapMap control scans derive from 88 subjects of which 87 are replicated two
or more times. The study subjects occur as 12,335 singletons and 84 families of two or three
members each. The study families were discovered during the analysis of relatedness. The
HapMap controls include 25 trios as well as 13 singletons.

The reported median call rate is 99.7%. The first phase consists of DNA from buccal
swabs collected in 2006 and extracted using the Qiagen Autopure method. The second phase
consists of saliva samples collected in 2008 and extracted with Oragene. Although the two
phases were genotyped separately, the raw data were clustered and called together. The
samples were genotyped in batches corresponding to 96-well plates. Each plate contained
from one to four HapMap controls, as well as an average of two study sample duplicates. The
HapMap is a catalog of common genetic variants that occur in human beings. It describes
what these variants are, where they occur in our DNA, and how they are distributed among
people within populations and among populations in different parts of the world. Because
the HapMap samples have gone through an extensive clinical and phenotypic investigation,
they are often used, as they are here, as a standard for quality control measurements of other
genotype data.

Gender Identity

One of the quality control checks performed included the verification of sex and gender
for individuals. This check was employed to verify that an individual’s self-identified gender
was the same as the their genetic sex. Since risk aversion —primary phenotype studied in
this dissertation —varies significantly by gender, I will briefly highlight the quality controls
deployed for this data.
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Figure 2: X and Y intensities as in Figure 1, with sex chromosome anomalies annotated.
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Figure 2.1: The X and Y intensities are calculated for each sample as the mean of the sum
of the normalized intensities of the two alleles for each probe on those chromosomes. Sample
sizes are given in the axis labels. X heterozygosity is the fraction of heterozygous calls out
of all non-missing genotype calls on the X chromosome for each sample. Source: University
of Washington, 2012

To check gender identity, the quality control groups examined both X chromosome het-
erozygosity and the means of the intensities of SNP probes on the X and Y chromosomes.
The expectation is that male and female samples will fall into distinct clusters that differ
markedly in X and Y intensities. Figure 2.1 indeed shows that there are two main clusters,
as expected, and no gender mis-annotations are apparent. There are tails of low Y intensity
for males and low X intensity for females, which research has found is not unusual for elderly
subjects (University of Washington, 2012).
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Population Stratification

Population stratification is the presence of a systematic difference in allele frequencies
between subpopulations in a population, possibly due to different ancestry, especially in
the context of association studies. Population stratification becomes important in studies
using genetic data, and particularly in a GWAS study such as that presented in Chapter 3,
because of the possibility of confounding (Knowler, 1988). In other words, spurious allelic
associations can be made between a genetic marker and a phenotype that are actually a
result of the differing frequencies of alleles within subpopulations of the sample.

In the 1990s, concern over population stratification led some researchers to question the
validity of population-based genetic association studies. Currently, the impact of population
stratification is less contentious. The general consensus is that population stratification will
likely be a small source of bias in well-designed studies of Caucasian populations. Still,
nationally-representative random sample surveys such as the HRS do not fit this criterion;
the HRS in particular does not fit this criterion because of its deliberate over-sampling of
African-Americans.

While a number of methods to control for population stratification are used, including
restricting a sample to be Caucasian-only, one of the most common methods to control
for population stratification is the use of principal components (Price et al., 2006). The
HRS quality control applied the oft-used technique developed by Patterson et al. (2006) to
apply a principal components analysis at the individual level. The result of this analysis
is 20 components, or eigenvectors, which are linearly uncorrelated variables that account
for the genetic variance among individuals. The first component has the largest achievable
proportion of variance, the second component has the second greatest share of variance, and
so it continues for all 20 components. The HRS makes a file of individual-level principal
components available to users of the GWAS data. As I elaborate in Chapters 3 and 4, these
principal components are used as control variables as part of the analysis for both of these
chapters.

Figure 2.2 exhibits the principal components method used in the HRS data. The x-axis
presents the values for the first principal component and the y-axis as the values for the
second principal component. Each individual is plotted on these coordinates based on their
values. These figures also include the HapMap control samples, which have been identified
in large part because of their relatively pure genetic ancestry; they therefore provide a good
comparison. Readers will note that the first component, which has the highest share of
genetic variance across individuals, contributes less than 5% of total variance. There are
clear delineations along self-identified racial categories, which is an indication that ancestry-
based genetic variance does indeed exist and that the principal components method may in
fact be an appropriate control measure. Figure 2.3 provides the same analysis without the
inclusion of the HapMap control sample.
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Figure 11: Principal component analysis of 12,507 study subjects with 1230 HapMap controls. Color-coding
is according to self-identified race, while symbol denotes ethnicity (Hispanic or not). Axis labels indicate the
percentage of variance explained by each eigenvector.

27

Figure 2.2: Principal component analysis of 12,507 study subjects with 1230 HapMap con-
trols. Color-coding is according to self-identified race, while symbol denotes ethnicity (His-
panic or not). Axis labels indicate the percentage of variance explained by each eigenvector.
Source: University of Washington, 2012



CHAPTER 2. DATA AND METHODS 18

−0.005 0.000 0.005 0.010 0.015 0.020 0.025

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

EV1 (3.85%)

E
V

2 
(0

.8
4%

)

●●●●
●

●●●●●●●●● ●●●●●●●●●●
●●●●●●●●

● ●●●●
●

●●●

●

●●●●●●●●●●●●●●●●●●
●●●●●●● ●●

●●●●●● ●

●

●
●●

●●●●●●●●●●●●
●●●●●
●●

●
●●●●●●●●●●●

●●●
●

●● ●
●●●●●●

●
●●●●
●

●●● ●●●●●●●●
●
●●●●●●
●●

●

●

●●●
●

●●●●●●●●

●
●● ●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●

●●●●●●
●●●●●●

●●● ●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●

●
●● ●●●●●●●●

●

●●
●●●●●●●

●
●●●●
●●●●
●●●●●●●●●
●

●
● ●
●

●●●● ●●●●●●●●●●●
●
●●

●

●●●●●●●●●●
●●

●●●●●●●●●●● ●●●●●
●

●●●●●●●●●●●●●●●
●●●●●●●●● ●● ●●●●●●

●●●●●●●●●●●●●●●●●●●
●●
●●● ●●●●
●
●● ●●●

●
●●●● ●●●

●
●●●●●●●●●●●●●●●●

●

●

●●●
●●●●●

●
●●●●●●

●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●●●●●●
●●●●●●

●●●●

●

●●●●●●●●●●●●●●
●

●
●

●●●●●●●●●
● ●●●●●

●

●●●●●●●●●●●
●● ●●●●●● ●●

●●
●●●●●
●●●●●●●●●●●●
●●●●● ●

●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●
●●●
●●●●●

●

●●●●●
●

●●●●
●
●●● ●●

●

●●●●●●●●
●
●●●●
●

●●●●●●●●●
●

●●●●● ●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●
●
●●●●
●●●

●

●●●●●●●●●●
●●

●●●● ●●●
●

●●●●●●● ●

●

●● ●●●
●●●●●

●
●●●●●●●●●●
●● ●●●●●●●●

●●●●●
●
●●●●
●●●●●●●●●
●

●●●●●●●●●● ●●●●●●●
●●●●●●●●●●●●
● ●
●

●

●●
●●●●●●●●●●

●●●●●●●●●
●
●●● ●●●●●●

●●●●●●●● ●●●

●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●● ●●●●●●
●●●● ●●●●●

● ●
●●●●●●●●●●●●●●●
●
● ●●
●● ●●●●

●
●●●●●●●●●●●●●

●
●
●

●●●●●●●●●●●●●●
●●●●●●

●

●
●●●
●●●●●● ●●●●

●●●●●
●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●● ●●
●
●●●●
●●●●●●●●● ●● ●●●● ●

● ●

●

●
●●
●
●●

●
●●

●
●●

●

●●●●
●

●●●●●●●●
●●
●
●
●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●
●●●

●

●●●● ●●●●●●●●
●●●

●
●●● ●●●●● ●●●●●

●
●●
●●●
●●●●●●●●●●●●●●●

●
●●

●●●●●●●●●
●●●●●●●
●●●●●●●

●●●●
●● ●

●●
●
●

●
●●●● ●
●●
●●●●●●●●●●●●●●●●●
●

●●●●●●
●●
●●●●●●●●

●●●●●● ●
●●●●●●

●
●●● ●●●●●●●●●●●●
●
●●●●●

●●
●●●●●●●●●

●
●●●●●
●

●●
●

●●●●●●
●●● ●●●●●●●●●●●●

●
●●●●●●
●●● ●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●● ●●●●
●
● ●●● ●
●● ●●●●●●●●●

●

●●●●●●●●●●●
●

●●●●
●

●●●●● ●●●●●●●●
●
●
●●●●●

●
●●●●●●●●●
●●●

●

●●●●
●

●●
●

●●●●●
●●●●●●●

●
●●●●●

●

●●●●●●
●●●●● ●●●

●
●●●●●
●●●
●

●●●●
●
●●●●●●●●●●●●●●
●●● ●●●●●●●●●●● ●●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●

●
●●●
●

●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●
●

●●
●

●●●●●●●●●●●●●●●
●●●●●●●

●●
● ●●●● ●●●

● ●●●●●●●

●

●●●●●●●●●●
●● ●
●●

●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●
●

●●●●●●●●● ●●●●
●●

●
●
●●● ●●●
●●
●●
●●●●●●●●●●●●● ●
●●●●●

●●●●●●● ●●●●●

●

●●● ●●●●● ●●● ●
●●

●●
●●●●●●●●●

●●●●●●

●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●
●●●●●●● ●●●●●●● ●●●●●●

●●●● ●●●● ●●●●●●●●●●
●●

●
●●●●●●●

●
●●●●●

●

●●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●

●
●●●

●
●●●●●●
●●●●●● ●● ●●●●●●●●●●●●●●

●

●●●●● ●●●●●●●●●●●●●

●

●●●● ●●●●●●
●●

●●●●
●● ●●● ●●

●

●●●●●
●●●

●
●

●
●●●●●●●

●
●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●●●●●●●●●●

●●
●●
●●●

●●●●●●●●●●●●
●
●●
●
●●●●●
●●●● ●●●●●●●●●● ●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

● ●●●●
●

●
●

●

●●●●●●●●●●
●●

●
●●●●

●

●
●●●●●●● ●●●●●

●
●●●●●●●
●●● ●

●
●

●●●●
●●●●●

●
●●

●
●●●

●

●● ●●●●
●● ●●●●●●●●●●●
●●

●
●

●●●●

●

●

●●●●●● ●●●
●●●●
●
●●●●

●●●●●●●
●● ●●●●●

●●●●●
●

●●●●●●●●●●●●●●
●●●●●

●
●

●
●●●●●●●●●●
●●●●

●
●●●●●
●
●●●
●●●●●●●●●
●●●●

●
●●●● ●●●
●
●●●●●●

●
●

●●●●●●●●●●●
●

●●●●●●●●●●
●

●
●●●●●● ●●●●●
● ●●●●●● ●●●●●●●●●●●●●

●●
●●● ●●●●

●●●●●●●●●●

●

●
●●●●
●● ●●
●

●●●
●●● ●

●●●●●●●●●●●●●● ●●●● ●●●●
●

●●●●●●●●●●●
●

●●●●●●●●
●
●●
●
●

●

●●●●

●

●●●●●●
●●●●●● ●●●●●●●●●●●●

●

●●●●●●●●
● ●●●●●●●●●●●●●

●●● ●●●● ●●●●●●●●

●

●

●

●●●
●●●●●
●●●● ●●● ●●

●
●

●
●●●●

●●
●

●
●●

●

●●●●●●●

●

●●●●●●●●●●●
●●●●● ●●●●●● ●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●
●
●●●●●●●●●●●

●●●
●

●
●

●●●
●●●●●●●●●●●●

●●●
●

●●
●

●
●

●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●● ●
●●
●●
●●●

●
●●●●●●●●●

●

●●●●●●●●●●

●

●●●● ●●●●●●● ●●●● ●●

●

●●●
●●●●●●●●●●●●●●●●

●
●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●● ●●●●● ●● ●●●●●●●●●●

●●●●●●●●●
●

●●●
● ●●
●
●●●

●
●●●●●●●●●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●
●
●
●●●●●●●●●●●

●
●●●●
● ●
●●●●
●

●
●●●●●●●

●●●●●●

●

●●●●●● ●●●●●● ●●●●●●●●●
●

●●
●●●●●●

●

●●●●●
●●

●
●●●●●●● ●●●

●

●
●●●●

●
●●●●●

●●● ●●●●●●
●●● ●●●●●●●●●●●●●●●●●●

●
●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●

●●
●●●● ●

●
●●●●●●●●●●●

●●●●
●

●

●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●

●
●●●●●●●
●

●●●●●●●●
●

●●●●●
●●●
●●●●●●●●

●●●●●●●●● ●●●●●●●
●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●
●●●●●●●
●

●
●●●●●

●●●●
●●
●●

●
●

●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●
● ●●●●●●●● ●●●●●●● ●●●●●●●

●
●● ●

●●●● ●●●●
●●

●
●●●●●●
●●●●●●●

●
●●●●●●

●
●●●●●

●
●●●●●

●●●
●

●●●●●
●●●●●●●●●

●●●●● ●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●

●

●●●●●● ●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●
●●●●
●
●●●
●
● ●●●● ●●●

●
●●●●●●●●●●●●●
●●●●●●●●

●
●●● ●●
●
●

●

●
●
●

●
●●

●

●●●●●●●●●●●
●
●

●
●●●●●●● ●●●●●●
●●
●●

●
●●●●●●●●●●
● ●●●

●●●●
●

●●●●●●
●

●

●

●
●
●●●●●
●●● ●

●●
●

●
●

●●●●● ●●●●●
●

●●●●●●●

●

●

●
●●●●●

●●●●●
●●

●

●●●●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●

●●●●● ●●●●●●●
●

●

●●●●●●

●

●●●●●●●●
●●●● ●●●●●

●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●

●
●●●●●●●●●
●●●●●●●●●●●●
●● ●●●●●●●●●
●●●●●

●
●●● ●
●

●●●●

●

●●●●●●
●●●●●●●●●●●●● ●●●

●
●●●●●●●
●●● ●●● ●●●●●●●●

●
●
●
●●●●
●

●●
●
●●● ●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●● ●●● ●●●● ●
●●●●●● ●●●● ●
●
●
●●●●●
●●●●●● ●
●●●●●●●●●●●●●

●
●●
● ●●●●●●● ●●●●●●●●

●
●●●●●●●●●

●
●●●●● ●●●●●●●

●

●
●
●●●●●●●

●

●●
●●●

●
●●

●

●●● ●●
●

●●●●●
●

●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●● ●● ●●●●●●●●●●●
●●●
●

●
●●●●●●●●●●

●
●●●●●
●●●
●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●
●●●●●●●●●●●● ●

●●
●●●

●
●● ●●●●●
●

●●
●
●●● ●● ●●● ●●●●●●●

●

●
●

●
●●●●●●●

● ●
●●●●●●●● ●●●

●
●●●●●●●●●●●●●●●

●

●
●

●●●●●●●●●●●●●●●
●●●●
●
●●●●

●
●●●●●●●
●●●●●
●

●

●● ●●●
● ●●●●●●●●
●●●●●●●● ●●●

●
●

● ●●
●●●●

●●●●●●
●
●●●●●

●

●●
●

●●●●●●●●●●●●●
●

●●●●●●●●● ●●●●●●●●●●
●●●●●

●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●● ●●●●●●
●
●●●●●●●●●●●●●●

●●
●●●●
●●●●
●●

●
●●●●

●
●

●
●●●●

●●
●●●●
●●●●

●●
●
●

●● ●●●
●●●
●

●
●●●●●●●●●

●●●●●●●●
●
●●●●●●
●●●●●●

●
●●● ●●●●● ●●●●●●●●

●
●●●●● ●●●●●

●●
●

●●●●●●●●●●●●
●
●●●●●●●●●●●

●
● ●
●

●●●●
●

●●●●●●●●●
●●●●●
●

●●●●●●●●
●● ●●●●●●●●●●●

●●●●
●●●●●●●●●●● ●●● ●●●●● ●● ●●●●

● ●●●●●●●
●
●●●●●●●●●●●●
●●● ●●● ●●●●●●●●●●●●●●●

●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●

●●●
●●●●
●●●●●

●
●●●●● ●●●●●●●●●●●● ●●●●●●●●

●

●●●
●●●●●●●

●

●●●●
●●●●
●
●●●●● ●●●
●

●●
●

●
●

●●●
●

●●●●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●●
●●●●●● ●●●●●●●●●●

●
●
●●●●●●●●●●●●●

●

●●●●●● ●●●
●

●●●●●●●●●●
●●●●●●●

●●●●●
●●●

●
●●●●●
●●●●●●
●
●●●●●●●●●●●

●
●●●●●●●●●●●●●●●

● ●
●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●●●● ●●●●
●●●●●●●

●
●●●●●●●●●●●●●

●●●●●●●

●

●●●●●●●●●
●

●●●●●●●●●●
●●●●●

●
●●●●●●●●

●●●●●
● ●●●●

●

●●●●●●●●●●
●●
●●●●● ●● ●●●●●●●●

●
●●●●● ●●●● ●●●●●●●●●●●●●
●●●●●

●
●●●●●●●●●●●●●

●
●

●
●●

●
●●●●●●●●

●●●●●●●●●●●●
●●●●

●

●●

●

●●●●●●● ●●●●
●

●●●●●●●●●●●●●

●

●●●● ●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●

●●●●●●● ●●●●●●●● ●●●●●●●●● ●
●●

●

●●
●●● ●●●●●●●

●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●● ●●
●

●
●●●●●●●●●●●●●●●● ●●●●●●●

●
●●●●●●●●●●●● ●●●●●●● ●

●

●●●●●● ●●●●●● ●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●
●

●●●● ●●●●

●

●●●
●

●
●●●●●

●●●● ●●●●●●●●●●●●
● ●●●●●
●●●

●

●
●●●●●●●

●
●● ●●●
●
●●●●●●●●●●●●
●
●●●●

●
●●●●●

●

●●

●

●●●●
●●●
●
●●●●●

●

● ●●●●●●●
●●●●●

●●●
●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●

●
●
●
●

●

●● ●●●●●●●●●●●●●●●●●●
●
●

●●●
●

●●●●●●●
●●
●

●
●●●●●●●●●● ●●●●●●●●●●●

●●●●

●

●●●●●
●●●●●

●●
●

●●●
●

●
●

●●●●●●
●

●●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●● ●

●●
●●
●● ●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●
●●●●
●

●● ●

●

●
●

●
●●●●●●●●●
●●●●●●●●●●●

●
●

●
●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●
●

●●●●
●
●●●●●●●●●●●
●
●●●

●
●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●● ●●
●●●●●●
●

●
●●●●

●
●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●● ●●●

● ●●●●●●●●●●●
●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●
●●●●●●●● ●
●

●●●●●●●
●● ●●

●●● ●●●●●

●

●●●●
●

●●●

●

●●●●
●
●●●●●●●
●● ●●

●
●●●●●●●●● ●●●●●

●
●●●●
●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●● ●●
●●●

●●●●
●

●● ●●●●●●●●●●● ●●●●

●

●●●●●●●●
●●●●●●●●●

●

●●●●●●● ●●●●●● ●●●●●●●●●

●

●●●●●●●●●●
●●●●● ●●●●●●●●●●●●●●●●●●

●

●●●●●● ●●
●

●●●
● ●●

●
●●●●

●
●●●●● ●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●

●
●●●●●●●●●●●●● ●●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●●

●
●●●●●

●

●●● ●●●●●●●●●●
●

●
●●●
●●●●●●●●●●●●●

●
●●●

●●●●●●●●
●●●●●●●●

●

● ●●●●●●●●●
●●●●●
●
●●●●●●●

●●●●●● ●
●

●●

●
●●
●●●●●

●
●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●● ●●

●

●●●●●●●
●

●●
●●
●●●●●●●●●●●

●●
●●●●●●●

●●●
●

●●●●●●●●●●●●●
●●

●
●
●●●●●●●●●●

●
●●●●●●●●●●
●●●●●●●●●●●●
●
●

●●●●●●●
●
●

●

●

●●●
●

●●●●●●●●●●
●● ●●●●●●●●●●

●
●●●●●
● ●●●●●●●
●
●●●●●●●●●●●●●●●●

●● ●
●●●
●●●
●●●●●●●●●●
●●

●
●●
● ●
●●●● ●●

●

●●●●●●●●
●

●●

●

●●●●●●
●
●●
●●●●●●

●
●●●●

●
●
●●●●●●●●●

●

●●●●
●●●●●●●

●●●● ●
●●●
● ●●● ●●●●●●●●●●
●●

●

●●●●●●●●●●●● ●●●●●●●●● ●
●●●●
●●●●●
●●●●●●● ●●●●●●●●

●

● ● ●●
●●

●

●●●●
●●
●●●●
●●●●●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●
●
●●●●
●●

●●●●●
●●●●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●

●
●●●●●●

●●● ●●●
●

●● ●●
●●●●●●●●●●●●●●

●●●●●●●●●● ●●●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●
●

●●●●●
●

●●●●●●●●●●●●●

●

●●●●●●●
●● ●●

●●●●●●●●●●
●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●
●

●
●●●●●●●
●●

●
● ●● ●●●●●●●●●
●●●●●●●
●●

●●●●●●●●●●●●

●

●●●●●●●●●●●●
●●● ●●●●●

●
●●●●●●●●●●●
●● ●
● ●●●●●

●
●●●●

●
●●●●●●

●●●●●●●●●●●
●●●

●●
●

●●●
●

●
●
●● ●●●●●●●
●
● ●●●●●●●●

●
●● ●●

●
●●●●●●●●●●●●●●

●

●●●●
●●●●●●●●
●●●●
●

●●●●●
●●
●●
●●●●●●●●● ●●

●

●●
●

●●
●
●●
●
●●
●●●
●

●●●●●●●●
● ●●● ●●●●●●● ●●

●

●●●

●
●●

●●
●●

●
●●●●●●●●

●
●●●●
●

●●●●
●●●●●●●●●●
●
●●●●●● ●
●●●●●●●
●●

●●●
●●

●
●●●

●
● ●

●

●●●●●●●●●●●
●●●●●●
● ●
●●●●●●●●●

●
●●●●●

●
●●●●●●
●●●

●
●●●
●●●●●●●●●●●

●●●●●● ●●●●●
●
●●●

●●●●●●●

●
●●●

●●●●●●●● ●●●●●●●
● ●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●

●
●●●●●●

●
●●●●

●●
●
●●●
●

●●●●●●●●●●●●● ●●●●●

●

●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●
●

●●
●●●●●●●●●●●

●
●●●●●●●●

●●●●●●●●●●●●
●

●
●

●●●●●●

●

●●●●●●●●●
●

●●●●●●●●●●●●●●●
●

●●
●

●●●●● ●
●
●
● ●●●●●

●
●●●

●

●●●
●
●●●●●●●●●

●

●●
●●●●●●●●●●●●●●●●●●●●
●

●●●●
●
●●●● ●●●● ●●●●●●●●

●●●●●●
●●●●●●●●●●●●

●●●●●●●●

●
● ●●●●●●●●

●●●●●
●●●●●

●
●●●●●

●
●

●
●●●●●●●● ●●

●
●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●

●●●●●●● ●● ●●●
●●●●●●●●

●●●●●●●
●
●●

●
●●

●
●●● ●●●●
●
●●●●●●●●●●● ●●●●●●●●●●●●
●

●●●● ●
●

●●
●

●●●●●●●●●
●●●●● ●●●●●●●●●●●●●●●●●●●

●
●●●●
●●●●

●●●●●
●
●

●●●●●●● ●●●●●●●●●●
●
●●

●●●●●●
●●●●

●

●●●●
●

●
●●●●●●●●●

●●●●
●

●●●●●●●●●●●●●●●●
●

●●●●●● ●

●

●●●●●●●●●●●●●●●●●●● ●●●●●●●
● ●●
●●
●
●●● ●●
●●●●

●

●

●●●●●●●●●●●●●●●●●

●
●●● ●●●●

●●
●
●

●●●●●●●●●
●●●●●● ●●●●●●●● ●●●●●

●●●●●●●●●●● ●●●●●
●
●●●●●●●●●

●●
●●●●●

●

●●●●
● ●●●●
●

●●●●●●●●
●●●●●●●●●●

●●●●●
●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●

●
●●●●●●●●● ●●●●● ●●
●

●●●●
●

●●●●●● ●
●
●

●●
●

●●●●●●●
●●●● ●●●●●●●
●
●●●●●●●●

●
●●●

●
●●●●●●●●●●●●●●●

●●
●

●
●●●●●●●●●●●
●
●●●●●●

●
●●●●
●

●

●

●●●●● ●

●
●●●●●●●●●

●

●
●●●●●●●●●
●●●●
●●●●

●
●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●
●

●
●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●

●●●●●●
●●●●●●●●

●
●●●●●●●●●●●●

●
●●●●●●●●

●●
●●●

●●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●
●●●●●●●●

●●●●●●
●● ●●●●●●●●●●●●●●●●
●

●
●●●●●●●

●●●●●●●● ●●●●●● ●●● ●●●● ●●

●

●●●● ●●●●●
●

●●●●●●●●●● ●●
●●●

●

●●●●

●

●● ●
● ●●

●

● ●●●●●●●●●●●
●●●
●●●
●

●

●●●●●
●●●●●●●●●●●●●●

●
● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●

● ●
●
●●●●

●● ●
●●●●●●●●●●

●
●●●●●

●

●
●● ●●

●●●●●
●
●●●●●●●●●●

●●●●●●●●●●
●

●●●● ●●●

●

●●●●
●

●●●●●●

●

●
●●

●

●
●●●●●● ●●●●●●●

● ●●●●●●
●●●●●●●●●●●●●● ●
●
●●●●

●

●●●●●●
●

●●
●●●●●●

●

●●●●●●●●●●●●●●
●● ●●●●●●●●●●●●●

●●●●●●
●

●●●●●●
●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●

●
●●●●●●●
●
●●●●●●●●●●

●
●●●

●●●●●
●● ●●●●●●●●●●●

●●●● ●●●●●●●
●

●●●●●
●●

●

●

●●●●●●●●●●●●●●●●
●●
●●
●●●●● ●●●●●

●
●●
●●

●

●●●●●●●●●●●●●●●●●●
●●●● ● ●●●●●●
●●●●●●● ●●

●
●●●●
●

●●●●●●
● ●●●●●●●
●●●

●●●●●●●
●

●●●●
●
●●●●●●●● ●●●●●

●
●●●●●●●●●●●●

●
●●●●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●●●●●
●
●
●
● ●●
●●●●●●●
●

●●●●●●
●

●
●

●●

●

●● ●
●●●

●●●
●●●●●●

●
●●●●●●●●●

●
●●●●●●●●●●● ●●●●●●●

●
●●●●●
●
●●●●●●●●●● ●●●●●●●● ●●●●●●● ●●●●●●
●●●●●●●●
●●●●●●●●●●●●
●●●● ●●
●
●●● ●
●

●●●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●

●
●

●●●
●●●●●

●●●
● ●

●●●
●●●

●

●
●

●●●●●●●

●

●
●●●

●
●●●●●●●●●●
●
●●●●●●●●
●●

●
●●●●●●●●● ●●●●●●●●●

●●●●●●●●●
●

●
●●
●●●● ●●● ● ●●

●
●

●●● ●●
● ●● ●● ●●● ●●●

●●
●●

●
●●●●● ●●

●

●
● ●●● ●●

●

● ●● ●● ●●
●

● ●● ●●
●● ●●● ● ●●● ●●

●
●

● ● ●
●● ● ●

●
●● ● ●

●●
●● ●● ●●

● ● ●● ●
● ●● ●●● ●●● ●●

●●●● ● ● ●●●● ●●● ● ●● ●● ● ●●● ●● ●●● ●●
●

● ● ●●● ●●
●●

●● ● ● ●●
●

●
●

●●
●● ●● ●●●

● ●
●● ●●●● ●●●● ● ●●

● ● ●
●

●●
●

●● ● ●●●● ●●
●●

●

●

●

●●● ●● ●●
●

●●●● ●●●●● ● ●
●

●● ●●●
●●

●
●
●●

●● ●●
●

●

●

●
●

● ●● ●● ●
●●● ●● ●

● ●
● ● ●●●

●
● ● ●●●

●
●

●
●●●

●
● ●● ● ●●

●
●

●●●● ●
●●● ● ●

●●

●●●
●●● ● ●

●
●●● ● ●

●
●● ●

●● ● ●● ●●●●

●

●●●
●

●● ●
● ●
●

● ●● ● ●
●

●●
●●● ●●

●
● ●●

●
●

●● ●
●

●
● ●

● ●
●

●

●● ● ● ●●●●●●●

●

●
●

● ●●
●● ●●● ●●

●
●●●

●
●●●● ●●●

●● ● ●●● ●● ●
●

●
●

●● ●
● ●

●

●
●● ● ●● ●● ●●

●
●

●● ● ●●●
●●●

●●●
●

● ●● ●● ●
●

● ● ●● ●●●
●

●
● ●●

●
●

●

●●● ●● ●● ●
●

●
●●
●●● ●●

●

●

●
●

● ●●
●● ●

●●● ●●● ●
●

●● ●
●

●
●

● ●●●
●

● ●● ● ●●● ● ●●
●

● ●
● ●● ●●● ●● ●●● ●

● ● ●
●●

● ●●
●●●● ● ●●● ●
●

●
●●

●
● ●●

● ●
●

●
●● ●●

●

●
●

● ●●● ●●
●

●
●

●
●

●●
●

●
●
●● ● ●●●● ● ●

●
●● ●

●

●●●
● ●●● ●● ●

●●
●

●● ●● ●●
● ● ●

●

●●
●●

●
● ●

●●

●
●

● ●
● ●

● ●
●●

●●● ● ●●●
●

●● ●● ●●● ●
●
● ● ●●

●
●●●

●
● ●● ● ●●

●

●● ●● ●
●●

● ●● ●●

●

● ●●
● ●●

● ●● ●
●
●

● ●● ● ●●
●

●●●
●

●
● ● ●

● ●●● ●● ●
●

● ●
●● ●●

●
●

●

● ● ●
●

● ●
●

● ●●● ●
● ●●

●

●● ●
●● ● ●●●●●● ●

●

● ●
● ●●
●

●
●

●●●● ●●● ●●● ● ● ●
●

●● ●
●

●
●● ●

●

●●●
● ● ● ●

● ●● ●● ●
●

● ●
●

●● ● ● ●●
● ●

●

● ● ●● ●
● ●●

● ●●
●●● ●●●

●
●

● ●●● ●● ●
●
●●● ●● ●● ●● ●●●●●● ●

●
● ●

●● ●●
●●● ●●●●

● ●●●
●

●●● ●● ●● ●●● ●●
● ●●● ●

● ●●● ●●
● ●●

●
●●

●●
●● ● ●●●●● ●

●●
●● ● ● ●●● ●● ●

● ●●●●

●

●● ●● ●● ●●
●

●
●●● ● ● ●●

●
●●

●●● ● ●● ●● ● ●●
●

●
●●
●

●●● ● ● ●●
●●● ●●● ● ●

●

● ●
●●

●
●

●

●● ● ●● ●● ●
●

● ● ●● ●●

●

●

●
●

●

●●● ●●
● ●

●●● ●●● ●
●●● ●● ●

●
●
●

●

●
●● ●●

● ●●
●●

●●
●
●
●

●
●●●●●

●●
●● ●● ●

●● ● ●●
●

● ●● ●●● ●

●

●● ●
●

●● ● ●
●

●

●

●●●
● ●●

● ● ●●●
●

●●

●

●● ● ●●●●

●

●●
●

● ●● ●
●

●● ●●● ●●●●
● ●

● ●●● ●●
●

●
●●

●●
●●

●
●● ●●●

●
●● ●● ●

● ●● ● ● ●
●

●● ● ●●●

●

●● ●●
●● ● ●●●●● ● ●

●
●●

● ●●
●● ●●

●
●● ● ●
●

●
●

●
● ●●

●
●●
●● ● ●

●
●

● ●● ●●
●

●
● ●

●
●●

●
●

●● ●
●● ●

●

●
●●●

●
● ●● ●●

●

●● ● ●● ● ●
●

●●● ●
●●

●●●●● ●
●

● ●●
●● ● ●

● ●●
●

●
● ●

●●●● ● ●

●

●
●

●
● ●●● ●● ● ●

● ●● ●●●
●

●●●
●●

●●
●●

● ●●● ●
●

●
●

● ●●
● ●●● ●●●● ● ●

● ● ●● ●
●

● ●●
●

●
●

● ● ●● ●●●

●

●●
●●● ●● ●

● ●●●
●●

●
●● ●●●●

●

●●● ● ● ●● ● ●● ● ●●
● ●● ●

● ●
●● ●●●●

●
●

●
● ● ●

●

●
● ●● ●●●

●
●

●
●● ● ●

●

●●
●

●
●

●●● ●
●

●●

●

●●●
●●

●
●

●●
●●

●
●

● ● ●● ● ●
●●

●● ●●●●
●

●

●

●

●

●●
●

● ●●●● ●
●

●
●

●● ● ●●●
●● ●●●●● ● ●

● ●●
●

●● ●●● ●●
● ●

● ● ●● ● ●
●● ●●●
●●●
●●

●●●●● ● ●● ●● ●● ● ●●● ●●
●

●● ●●
●

●

●
● ●
● ● ●●

●●●● ●
●●
●●●

●● ●●● ● ●●●●●
● ● ●

●
● ●

●● ●● ●●●

●
●

● ●
●

●
●

●

●●●
● ●

●
● ●● ●

●

●●

●

●

● ●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●
●

●
●
●●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●
●

●

●

●
●

●
●

●

●●
●
●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●●

●

●

●

●●

●

●●
●

● ●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●
●●

●

●

●

●

●

● ●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

Asian
Black
Mixed
Native
Pac_Isl
Unknown
White
Mex_Amer
Not_Hisp
Oth_Hisp

Figure 13: Principal component analysis of 12,419 unrelated study subjects without HapMap controls.
Color-coding is according to self-identified race, while symbol denotes ethnicity (Hispanic or not). Axis
labels indicate the percentage of variance explained by each eigenvector.
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Figure 2.3: Principal component analysis of 12,419 unrelated study subjects without HapMap
controls. Color-coding is according to self-identified race, while symbol denotes ethnicity
(Hispanic or not). Axis labels indicate the percentage of variance explained by each eigen-
vector. Source: University of Washington, 2012
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Confidentiality Protections

The genotype data and a limited set of phenotype measures were deposited in the
NIH GWAS repository (dbGaP), which provides a convenient method of distribution to
researchers who meet NIH requirements for access. My access to the data was approved as
an internal collaborator under a subproject of the Center for the Economics and Demog-
raphy of Aging (NIA Grant 2P30AG012839-18), with Ronald Lee, Principal Investigator,
and Kenneth Wachter, Project Leader. The protocol approved by the DbGAP Data Access
Committee is number 3630, under request 14779. The first approval and the most recent
approval came on July 10, 2014. came on June 1, 2012. Approval for linking genotype and
phenotype data was granted by the HRS under their Genetic Data Access Use Agreement.
The research plan was approved by the University of California Committee for the Protec-
tion of Human Subjects, protocol 2011-10-3707, dated Nov. 18, 2011 and renewed Oct. 4,
2012, Nov. 29, 2012, November 13, 2013, and Sept. 2, 2014. The process to request access
to any dbGaP study is done via the dbGaP authorized access system. Once all application
procedures were completed, the data were downloaded onto a dedicated secure server with
an encryption system. In order to merge together the confidential genetic data with the
publicly-available HRS phenotype data, I made use of two data “cross-walks,” one made
available with the genetic data and one supplied separately by the HRS.
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Value 1992 1998 2000 2002 2004 2006
65+, not asked 9468 10380
Skip, not selected 8631 15927
Cohort skipped 4984 15198
Don't know 109 335 160 406 113 325
Other missing 194 123 3 23 15 28
Refuse 151 68 139 45 62
Proxy (skip) 642 2043 2062 2036 1802 1260
1.  Least Risk Averse 1503 323 71 363 157 283
2 1279 375 95 378 199 426
3 1358 483 122 590 271 628
4 7567 773 196 954 519 980
5 863 239 1160 601 1349
6. Most Risk Averse 2300 636 2648 1209 2748

Total 12652 21384 19579 18165 20129 18469

Table 2.3: Distribution of Risk Aversion in Study Sample. Data source: Author’s tabulation
from the HRS RAND data set.
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Chapter 3

Genome-Wide Association Study

3.1 Introduction and Motivation

Older Americans vary in their preparation for the financial burdens of retirement and old
age. These differences cannot be attributed entirely to income, education, cognitive ability,
family background, or a number of other factors. Evidence suggests that differences in risk
aversion are an important driver of the variation in wealth accumulation of individuals. Risk
preferences are not entirely understood; though they have been well-studied empirically,
there are still large amounts of heterogeneity that remain unexplained. Gender, age, and
education levels are all predictors of risk aversion but often can explain only a small portion
of the variation Americans display in risk aversion (Barksy, 1997). Risk aversion is known
to be a heritable trait (Benjamin et al., 2012; Cesarini et al., 2009, 2010) implying that risk
aversion is partly driven through variations in individual genetic propensities (see Section
2.2 for more detail).

Until recently, this idea was difficult to test empirically. However, there has been growing
enthusiasm for the use of molecular genetic data in social science research (Benjamin et al.,
2012) and the recent introduction of genetic data in social science surveys has provided
researchers with a new chance to link survey responses with individual’s biological measures.
As such, a growing body of research has emerged that correlates genetic heritability to
observed social and economic behavior. These studies borrow from long-standing techniques
from the biological and medical science that have shown that genetic variation helps explain
individual risk’s for Alzheimer’s disease, various cancers, and a number of other diseases.

As an important and often difficult to measure parameter, risk preferences have been a
primary focus of economists in this area of study. Still, little is known presently about the
nature of the relationship between an individual’s biology and their risk preferences. Genetic
variants that lead to differences in observed traits typically take two forms. The first is that
one or a few genetic mutations cause direct observable differences in traits. A variant on the
APOE gene that has been linked to Alzheimer’s disease is a good example, as is the BRCA
gene, which is known as the “breast cancer gene.” While these often get our attention in
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both academic and popular media because of the genes’ direct corollary to observable traits,
they remain scientifically very rare. A more common expression of genetic variability is the
second form, that lower-level activity at different areas across the human genome collectively
translates to differences in observed behavior.

Using the newly-released genetic data from the U.S. Health and Retirement Study, this
study is one of the first of its kind to run a genome-wide association of risk aversion using a
large, nationally-representative sample. Specifically, this study seeks to answer the question:
Is the heritable portion of risk aversion in individuals driven by a few genetic variants with
large causal effects or by a high number of variants that all contribute small effects separately
leading to large individual variation in risk aversion collectively? In light of the evidence of
substantial heritability of risk preference, this study seeks to use the individual-level genetic
data to explore the nature of this heritability.

To preview the findings, this study concludes that risk aversion is not driven by a few
specific genetic variants with strong causal effects and is likely to be highly polygenetic in
nature. The analysis finds no individual genetic variant to be statistically significant at a
specific threshold of detectability with a sample size of over 7,000 individuals. The whole
sample was initially divided into an exploratory subsample of 90% of the respondents and a
confirmatory subsample of 10% respondents. This implies that risk aversion is likely to be
the result of a series of small and compounding biological pathways and does not operate
like cognitive decline or like certain diseases driven strongly by specific genetic mutations.
The observed heterogeneity in risk aversion among older Americans, then, is partially the
result of a large number of smaller genetic factors that collectively lead to large variations
in observed behavior.

This paper is organized as follows. Section 2 reviews the literature that provides com-
pelling evidence of the heritability of risk preferences. Section 3 describes data used and
Section 4 details the empirical strategy. Section 5 discusses the results. The paper will end
with a discussion in Section 6 and plans for further research in Section 7.

3.2 Background

There is evidence that variations in risk preferences are partially driven by genetic vari-
ation, or in other words, have an aspect of heritability. A number of twin studies provided
early evidence that risk aversion was heritable. By observing and measuring monozygotic
(identical) and dizygotic (fraternal) twins, these studies were able to create estimates of heri-
tability while controlling for shared environment factors. These studies, described in Section
3.2, lend substantial support to the idea that risk preferences are heritable, with estimates
ranging from 20-60 percent, but cannot point to any specific genetic activity explaining this
heritability. A subsequent body of work has shown correlations between experimentally-
elicited risk preferences to a few specific genes, most notably the dopamine and serotonin
transporters that are associated with reward systems in the brain. These studies, also de-
scribed in Section 3.2, provide evidence that risk preferences do have a genetic component,
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but are unable to provide information on the biological pathways that might drive this
heritability or the possible influence of any other genetic effects.

Since the conclusions of these studies, the introduction of genome-wide data has provided
researchers the opportunity to scan large portions of the genome rather than just a few
specific pieces of genetic material. Genome-wide data collects hundreds of thousands or
even millions of individual single-nucleotide polymorphisms (SNPs), which are areas on the
genome where variation can exist. The human DNA is composed of base pairs of alleles that
lie along the twenty-three chromosomes. These base pairs of alleles make up the “ladder
rungs,” so to speak, of the double-helix form of the DNA, and are passed down from parent
to offspring. Single-nucleotide polymorphisms (SNPs) are specific base pairs where there is
some variation in the combination of alleles, which can lead to phenotypic differences among
individuals. (A comprehensive explanation of molecular biology written for economists can
be found in Beauchamp et al., 2011.)

From a methodological perspective, the introduction of these data offers the potential
for more sophisticated and high-powered empirical work in this area; prior heritability work
was limited to a small sample of twins or a subset of genes commonly used in the biomedical
literature. Genome-wide studies allow researchers to test every individual measured SNP
in the genome against the outcome of interest and as such, move down to a lower level
of aggregation: from humans in twin studies, to genes, to individual SNPs. If one were
to consider this within the context of standard regression, this is equivalent to obtaining
information on hundreds of thousands of additional covariates for a model. The promise
of these data is impressive. Still, while the samples on the genetic material have grown
substantially in size, some reaching 2 million pieces of genetic data, samples of respondents,
who are more costly and difficult to gather, has not grown in step and remain underpowered.
As a result, many of the early findings correlating genetic variation to economic preferences
have failed to replicate and have produced false positives.

Measures of risk aversion vary largely

Given its centrality in everyday life, empirical research has examined the important het-
erogeneity in risk preferences across populations including differences across gender (Eckel
& Grossman, 2002; Powell & Ansic, 1997; Schubert, Brown, Gysler, & Brachinger, 1999);
family background (Hartog et al., 2002); work characteristics (Praag & Cramer, 2001); and
educational attainment levels (Brunello, 2002), as well as across different contexts of risk
(Soane & Chmiel, 2005; Weber, 2002). Given the particular importance of risk preferences
in decisions made at older ages, much of this empirical work has focused on the implica-
tions for retirement decisions and savings (Bodie, Merton, & Samuelson, 1992; Hurd, 1990;
Karatzas, Lehoczky, & Shreve, 1987; Sunden & Surette, 1998). With all of these studies has
come a plethora of measures of risk preferences. These measures typically take one of three
forms: survey-based assessments such as respondent’s answers to hypothetical lottery gam-
bles, experimental evidence, or inference from observed decision-making in financial, health
or insurance markets.
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This study uses a measure of risk aversion first introduced by Barsky et al. (1997) that
categorizes risk aversion through responses to a series of hypothetical gambles on lifetime
income through a specific job. Barksy and his coauthors concluded that this measure is
positively related to a number of risky behaviors and provide evidence about the validity and
usefulness of measures of this preference parameter. Since introduction, this measure of risk
preference has been used in a number of studies attempting to measure risk preferences (Evan
& Smith, 2010; Schulhofer-Wohl, 2007; Smith et al., 2004), has inspired similar measures in
other surveys (Dohmen et al., 2011; Falk et al., 2005) and the original paper confirming the
validity of the measure has been cited over a thousand times (Google Scholar).

Survey-based evidence on attitudes towards risk has been criticized, mainly on the
grounds that hypothetical measures may not be well-connected to behavior exhibited within
a set of real constraints. A number of recent studies have attempted to validate Barksy et
al.’s measure of risk preference and other similar instruments and concluded that hypothet-
ical questions track closely, albeit imperfectly, with actual risk-taking behaviors (Dohmen
et al., 2005; Falk & Heckman, 2009; Guiso & Paiella, 2005). While the debate remains,
hypothetical measures of risk are used in good standing and are useful when behavior is dif-
ficult to observe. Falk and Heckman (2009) go even further to argue that objections against
experimental or hypothetical measures are “misguided” and that the issue of generalizability
is no more a concern than in field data.

More importantly, the common finding across the literature examining risk preferences
using any one of these three measures is that heterogeneity in risk preferences is real and
substantial and cannot be entirely explained by observed characteristics typically used in em-
pirical models, further underscoring the importance of this study exploring genetic correlates
to risk preferences.

Twin studies provide estimates of heritability of risk preferences

Twin studies are the mainstay of behavioral genetics and play a crucial role in establishing
heritability. Evidence suggesting that risk aversion might be partially hard-wired arose from
twin studies using the comparison of monozygotic (MZ, or identical) and dizygotic (DZ, or
fraternal) twins to estimate heritability. These studies exploit the fact that MZ twins share
one hundred percent of their genetic material and DZ twins only half in order to estimate
a percentage of the variation in observed risk aversion that can be attributed to genetic
variation.

Given the difficulty in obtaining large samples of twins, risk preferences in this body of
work are most often elicited through experimental techniques. Cesarini et al. (2009) use a
twin study design to show that genetic differences explain about 20 percent of individuals’
variation in experimentally-elicited preferences for risk. The authors also used measures of
survey-based hypothetical questions similar to those used in this study as well as additional
measures of risk based on observed experimental behaviors with financial incentives attached.
Using a sample of 314 identical twin pairs and 141 non-identical twin pairs, the authors
conclude that there is strong evidence that preferences for risk are broadly heritable (Cesarini
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et al., 2009). Around the same time, Zhong et al. (2009) published a twin study from
a sample of 232 twin pairs in China (167 were monozygotic and 65 were dizygotic) and
provide evidence of the heritability of economic risk attitude to be as high as 57 percent.
The authors measure risk attitude through a hypothetical measure that asks subjects to pick
from a series of gambles with different probability distributions and payoffs. Zyphur et al.
(2009) study a subset of 200 male twin pairs from the Minnesota Twin registry and attribute
approximately half of the variation in risk preferences to be of a genetic nature. One of the
largest twin studies exploring risk preferences was done on a total of 1,875 twin pairs in
Australia, comprising 867 pairs of identical twins and 1,008 pairs of non-identical twins (Le
et al., 2010). They found that approximately 20 percent of the variation in attitudes towards
risk are linked to genetic differences by using responses when individuals were asked to rank
their risk aversion on a scale from 1 to 10.

Some twin studies do exist using financial decision-making to measure risk preferences
and find similar results. A follow-up study by Cesarini et al. (2010) using the Swedish
twin registry showed that 25 percent of variations in the difference in riskiness of portfolio
allocation could be attributed to genetic variation. Barnea and Cronqvist (2010) also use
the Swedish twin registry on identical and fraternal twins’ financial portfolios to examine
heritability of risk as measured through the relative amount of portfolio invested in equities
as well as overall portfolio volatility. They find that a genetic factor explains about one-
third of the variance in stock market participation and asset allocation and conclude that
there are “innate differences in factors affecting stock market participation costs” that can
be attributed to genetic variation in risk preferences.

Research based on twins has been used previously by economists to good effect in the
study of both earnings and educational attainment (Le et al., 2012). In the study of earn-
ings, the framework has been used to address the issue of genetic influences on earnings as
well as the bias in the conventional estimate of the return to schooling. Due in large part to
Ashenfelter and Krueger (1994), this approach has stimulated considerable interest and has
now been applied to data from the US (Ashenfelter & Rouse, 1996), Australia (Miller, Mul-
vey, & Martin, 1995, 2006), the UK (Bonjour, Cherkas, Haskel, Hawkes, & Spector, 2003),
and Sweden (Isacsson, 2003). This replication across countries has generated additional
confidence in the findings.

Candidate genes point to specific areas on the genome but lack
precision of strength of effect

While twin studies provide estimates of overall heritability, candidate gene studies provide
complementary evidence through the association of measured risk preferences to specific
genes. The candidate studies point to four or five genes for which genetic variants have
repeatedly been associated with multiple measures of risk preferences.

Recent findings in neuroscience suggest that the neurotransmitters dopamine (Schultz,
2007) and serotonin (Daw, Sham, & Dayan, 2002) have important roles in decision making.
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Genes that regulate these neurotransmitters impact the processing of information about
rewarding stimuli (Yacubian et al., 2007) and harmful stimuli (Frank et al., 2007; Kim et
al., 2006); are related to personality traits such as extraversion (Rueter & Henning, 2005),
novelty seeking (Ebstein, 1996), and anxiety; and are associated with the development of
addiction (Kreek, 2005). Moreover, activity within parts of the brain regions activated by
serotonergic and dopaminergic neural pathways has been shown to relate to individuals’
financial risk taking behavior (He et al., 2010).

Among dopamine receptors, DRD4 has been cited a number of times as a gene associated
with risk taking. The DRD4 gene regulates dopamine uptake in the brain and individuals
with a specific polymorphism of the DRD4 gene have been found through numerous stud-
ies to be more risk seeking. Those with the specific polymorphism in question have been
measured to take more risk when choosing between a risky and riskless asset in a number
of experimental settings including playing investment games (Kuhnen & Chiao, 2009) and
financial gamble (Dreber et al., 2010), hypothetical lottery questions (Zhong et al., 2009), or
self-reported general risk taking or behavior in risk-related activities (Dreber et al., 2010).

In addition to being so under general conditions, DRD4 is associated with differences
in individuals under specific risk conditions, such as decisions under ambiguity. Carriers of
specific variants of the DRD4 gene are more likely to increase the amount of risk they incur
when the outcomes become ambiguous or when potential losses are allowed compared to
risk baseline (Carpenter et al., 2011), although in some samples this finding was significant
only among female (Chew, Ebstein, & Zhong, 2012) or male (Roe et al., 2009) subjects.
Moreover, those individuals seem to not only be less risk averse in general, but also appear
to be better decision-makers under risk; a study of male bridge players showed that those
with specific variants of the gene take more good risks and fewer bad risks, while the opposite
is found for those without the variant (Dreber et al., 2011).

Recent studies using behavioral and neuroimaging techniques have also examined the
effect of a serotonin receptor—specifically—the 5-HTTLPR geneon economic decision mak-
ing (Crisan et al., 2009; Homberg et al., 2008; Kuhnen & Chiao, 2009; Roiser et al., 2009;
Stoltenberg & Vandever, 2010; van den Bos et al., 2009; Zhong et al., 2009), revealing that
individuals with the short allele (versus the long) are more likely to exhibit risk aversion.
These studies revealed that the short allele was associated with less investment in risky assets
(Kuhnen & Chiao, 2009), less engagement in actively making investments decisions, and hav-
ing fewer credit lines (Kuhnen, Samanez-Larkin, & Knutson, 2011). Similar to dopamine,
the short allele is associated with taking less risk under ambiguity (Crisan et al., 2009),
as well as other non-standard decision-making under risk such as familiarity bias (Chew,
Ebstein, & Zhong, 2012) and higher loss aversion (He et al., 2010).

Other studies have linked risk preferences to a polymorphism in monoamine oxidase A
gene (MAOA). Studies find that carriers of the MAOA-L polymorphismsubjects with the
high activity (4-repeat) allele versus subjects with the low activity (3-repeat) allelewere
more likely to take financial risks (Frydman et al., 2011), purchase less insurance and prefer
a longshot lottery (Zhong et al., 2009). Associations to risk aversion have also been found in
nicotine receptors (Roe et al., 2009), oxycotin (Apicella, 2010), and testosterone (Zethraeus
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et al., 2009).
This work on specific genes provides an important starting point for the exploration of a

full genome-wide analysis. The candidate gene literature provides evidence of specific areas
on the genome that are correlated to variations in risk aversion but stops short of making any
inference on the biological pathways at work since the genetic material used in these studies
is limited. Taken as a whole, this body of work provides evidence that a variety of risk
attitudes have a strong genetic component. Still, the genes that have been identified are not
SNPs but another less common kind of genetic variation called “tandem repeats.” Tandem
repeats represent only a small percent of the heritability, estimated at approximately 10%
(Monolio et al., 2009), and are not available in the HRS data. The analysis in this paper
uses the large data on SNPs to run a genome-wide analysis study (GWAS), which tests each
individual SNP against the measure of risk aversion. This dataset, with more than a million
SNPs, represents an important contribution towards the understanding of the heritability of
risk preferences.

3.3 Data

This study uses both phenotype and genotype data from The Health and Retirement
Study (HRS), which has been detailed in Chapter 2 of this dissertation. As a review, the
University of Michigan Health and Retirement Study (HRS) is a longitudinal survey of
a representative sample of Americans over the age of 50. The target population for the
original HRS cohort includes all adults in the contiguous United States born during the
years 1931-1941 who reside in households, with a 2:1 oversample of African-American and
Hispanic populations. The HRS includes rich experimental modules with each wave that
have detailed assessments of specific topics. This study will use such a repeated experimental
module featuring risk aversion that is particularly well-suited for this study.

The HRS has recently released a set of genetic markers suitable for a Genetic Wide
Association studies whereby it genotyped 2.5 million single nucleotide polymorphisms (SNPs)
on respondents, which is the genotype data for this chapter. The total sample size for
respondents for the GWAS is 12,595 respondents. A careful procedure of quality control was
applied to the genetic data, which is described in more detail in the Results section of this
paper.

For the phenotype data of this chapter, I used the risk aversion assessment question
detailed in Chapter 2 of this dissertation. As a brief reminder, the HRS has included an
experimental module for the assessment of risk aversion proposed by Barsky et al. (1997)
that was introduced in the first wave of the survey in 1994 and included in a total of six data
waves with a lottery question. The questions separate the respondents into four distinct risk
preference categories, from least risk-averse to most risk-averse, and allow one to estimate
specific relative-risk coefficients for sample individuals.
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3.4 Empirical Strategy

In this section, I provide more details on the methods use for the GWAS of risk aversion.
In a GWAS, tens or hundreds of thousands of genetic markers are individually tested for
association with a trait of interest. In this study, I analyzed data on approximately 7,314
individuals from the Health and Retirement Study who have been genotyped at over two
million SNPs and searched for SNPs that correlate with the specific measure of risk aversion
detailed earlier.

Quality Controls for the Genetic Data

As mentioned above, the original sample of 12,595 was reduced to 7,314 after subsetting
the sample to include only those with a non-missing value for risk aversion as well as reserving
part of the sample for validation. Further filters were then applied to control for the quality
of the genotype data. Following usual practices (Sullivan & Purcell, 2008), I applied four
quality control measures to the sample.

First individuals were dropped because they had a “missingness” larger than 0.05. An
individual’s missingness is the fraction of the SNPs in the array with missing data for the
individual. A high missingness can be suggestive that some problem occurred in the genotyp-
ing procedure for this individual, and therefore that the nonmissing genotypic data might
not be accurate enough. A requirement of less than 5% missingness is customary in the
molecular genetics literature (Sullivan & Purcell, 2008). Only one individual was dropped
due to this criterion.

Next, SNPs with a missing data frequency greater than 5% were deleted. A high miss-
ingness can be suggestive that some problem occurred in the genotyping procedure for the
SNP. Third, I eliminated SNPs for which the least common allele had an incidence smaller
than 1% (called the “minor allele frequency”). Coefficients on these SNPS will generally be
imprecisely estimated and can thus be misleading.

Finally, I excluded SNPs which failed a test of Hardy-Weinberg equilibrium at the 10-4
level. The null hypothesis of this test is that the observed genotype frequencies are equal to
their theoretical expectations under random mating. A large departure from Hardy-Weinberg
equilibrium may be an indication of genotyping errors or the consequence of population
stratification in the sample.

These four quality control measures are widely used by convention in the molecular
genetics literature (Pearson & Manolio et al., 2008; Sullivan & Purcell, 2008). From the
original 2.5 million SNPs on our array, 19,542, did not satisfy the missingness criteria, 567,254
did not satisfy the minor allele frequency criteria, and 627,763 did not pass the Hardy-
Weinberg test. Applying all filters leaves a total of 1,222,014 SNPs and 7,313 individuals for
analysis.



CHAPTER 3. GENOME-WIDE ASSOCIATION STUDY 29

Population Stratification

Population stratification refers to differences in allele frequencies across subpopulations.
Such differences can occur in the absence of random mating between subpopulations as a
consequence of founder effects, genetic drift, and differences in natural selection pressures.
When both the frequencies of alleles and environmental factors affecting a trait of interest
vary across subpopulations, spurious associations between those alleles and the trait might
result (Beauchamp et al., 2011). Without population stratification controls, markers which
differ significantly in frequency between racial subpopulations could be found to be associated
with a specific outcome measure, but those associations will usually be partly due to cultural,
social or environmental differences, not to genetic differences. Population stratification has
been shown to be a concern even in samples of European Americans (Campbell et al., 2005),
so will be of particular concern for the HRS, which has an oversampling of African Americans.

As part of the quality control measures, the HRS applied principal component analysis
to the genotypic data. In following standard procedure, I include the component scores on
the leading ten principal components as control variables in the main regression specifica-
tion. These values contain information about population structure, so including them in an
association test partly controls for population stratification. Because principal component
analysis assumes independent observations and because the HRS is not a family-based study,
I use all observations included in the GWAS data.

Association Analysis

While this study takes the behavioral genetics perspective, the empirical models will be
familiar to demographers. For each individual SNP that passed the filters, I ran the following
regressions using an Ordinary Least Squares method:

Risk Aversion =αi + β1 SNPS + β2 PC + β3X + ε, (1)

where Risk Aversion is a measure taking values from 1-4, with 4 being the most risk-
averse, SNPS is the number of copies of the minor allele (0, 1, or 2) an individual has at SNPs,
PC is a vector of the 10 top principal components of the sample (to control for population
stratification as mentioned above), and the vector X includes age measured in the same year
as last measure of risk aversion and gender. I ran a total of 1,222,014 regressions, one for
each SNP that passed my quality control screening, using the GenABEL library in R.

The computation of p-values in the GWAS analysis uses the “Gaussian” rather than the
“Binary” specification of traits. In my case, the trait is measured not as a continuous but on
a four-point discrete scale. However, with over 7,000 respondents, standard normal theory
arguments would lead us to expect that the coefficients for effect sizes would be very close
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to asymptotic normality and the calculated p-values would be appropriate. I checked this
assumption with simulations based on a two-way table of risk aversion by allele count for
one SNP in the tail of the distribution of observed p-values and found, as expected, that the
simulated estimates of effect sizes conformed closely to asymptotic normality well out into
the tail of the distribution. Thus, I feel confident that the calculation of p-values has not
been distorted by the discrete character of my trait measure.

Inference Under Multiple Hypothesis Testing

As is apparent from the above specification, the difficulty in interpreting the results of a
GWAS comes from the repeated number of regressions that are run on the same sample of
respondents. Because the sample of respondents is much smaller than the number of SNPs
and because a very large number of hypotheses are being tested, many SNPs will inevitably
turn out to be statistically significant at conventional levels just because of sampling varia-
tion. In other words, if my genetic sample includes 500,000 SNPs, one would expect 12,500
SNPs to be significant at the 5% level through random chance alone. As such, standard levels
of significance for p-values are not appropriate for this technique. Instead, several methods
have been proposed to address this issue. The most utilized threshold in the literature for
large GWAS’s based on 500,000-SNP array data was set by the Wellcome Trust Case Control
Consortium, to set a p-value of 5 x 10−7 (Burson et al., 2007). In following with standard
practice, this was the threshold used for the results discussed below in Section 5.
The most stringent solution is to use the Bonferroni correction, in which the conventional
significance threshold is divided by the number of tests performed to obtain a Bonferroni-
corrected significance threshold or, equivalently, all p-values are multiplied by the number
of tests performed to obtain Bonferroni-corrected p-values. In the first stage study with the
HRS data, 1,222,014 tests were performed (one for each SNP that passed the quality-control
filters), thus yielding a Bonferroni-corrected significance threshold of p=0.05/1,222,014=4.09
x 10−8. However the Bonferroni approach is generally agreed to be overly conservative, be-
cause SNPs that are close to one another are generally correlated and thus not statistically
independent.

As has been discussed in previous studies of this nature, prior experience with false
positives in the field of medical genetics has led researchers to be cautious in interpreting any
result that has not been replicated in an independent sample. Hence, the above significance
thresholds must be seen as suggestive (Beauchamp et al., 2011).

3.5 Results

Descriptive Analysis

Table 3.1 details some of the descriptive statistics of the sample for the GWAS. The total
sample size is 10,455 respondents who have been genotyped and have at least one response
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  Gender N % 

 Male 4,311 41% 
 Female 6,144 59% 
   

 
  

 Age     
 0-49 503 5% 
 50-54 1,941 19% 
 55-59 3,258 31% 
 60-64 3,483 33% 
 65-69 707 7% 
 70-79 536 5% 
 80+ 27 0% 
   

 
  

 Risk Aversion     
 Least Risk Averse 1,189 11% 
 2nd Most Risk Averse 1,037 10% 
 3rd Most Risk Averse 1,482 14% 
 Most Risk Averse 6,747 65% 
   

 
  

 N 10,455   
 

 
 

  
    
  

Table 3.1: Summary Statistics for GWAS Sample

for the hypothetical risk measure. The test sample is a random subset of 70% of the full
sample, for a total of 7,314 respondents. As is expected, the distribution of demographic
characteristics for both the subset and the full sample are nearly identical. The sample is
nearly 60 percent female and, as is consistent with the sampling procedure, the majority
of the sample is between the age of 50 and 65. Although the HRS sample is restricted
to individuals aged 50 and over, spouses are included, and as such the youngest sample
member is 25. The oldest person in the sample is 92. As noted earlier, the set of risk
aversion questions allows a categorization of four progressive categories of risk averse, with
the value of four representing the most risk averse. In this sample, approximately 65% of
the sample is categorized as most risk averse. The other respondents are fairly even split
between the remaining three categories, with just over 10% being the most risk-seeking.

The risk aversion question was asked in Waves 1 and 4-8, with the number of respondents
in each wave ranging from 748 in Wave 5 to 5,451 in Wave 1. For the analysis, I pooled all
respondents who had ever responded to the hypothetical risk aversion question. For those
who have been sampled more than once, I used the most recent response. Not surprisingly,
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risk aversion tends to increase with age, although not by a marked amount here since the
sample consists primarily of persons over the age of 50 years. Also in line with the literature
on risk aversion, there are slightly higher shares of females categorized as most risk averse.
Finally, because I pooled responses across different waves, I ran some analyses to ensure that
there were no systematic differences in responses across waves. Because the sample includes
some spouse pairs, it is possible that these results are influenced by some assortative mating
on risk preferences. Further work to explore this issue is planned.
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Table 2: Risk Aversion by Control Factors (For Test Sample) 
 

     
  

Risk Aversion 
Measure       

  
Least Risk 

Averse 
2nd Most Risk 

Averse 
3rd Most Risk 

Averse Most Risk Averse 
Sex         
Male 436 345 410 1,790 
  15% 12% 14% 60% 
Female 384 399 633 2,948 
  9% 9% 15% 68% 
  

   
  

Age Category       
0-49 37 40 55 213 
  11% 12% 16% 62% 
50-54 167 157 226 800 
  12% 12% 17% 59% 
55-59 242 219 299 1,547 
  10% 9% 13% 67% 
60-64 280 251 355 1,567 
  11% 10% 14% 64% 
65-69 52 45 70 325 
  11% 9% 14% 66% 
70-79 40 31 36 272 
  11% 8% 9% 72% 
80+ 2 1 2 14 
  11% 5% 11% 74% 
Most Recent Wave With Data     

1994 229 208 210 1,259 
  12% 11% 11% 66% 

2000 65 66 84 471 
  9% 10% 12% 69% 

2002 35 19 36 193 
  12% 7% 13% 68% 

2004 148 118 184 749 
  12% 10% 15% 62% 

2006 11 7 8 36 
  18% 11% 13% 58% 

2008 332 326 521 2,030 
  10% 10% 16% 63% 

   
Table 3.2: Risk Aversion by Control Sample
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Results of GWAS Analysis

In Table 3.3, I report results for the 20 SNPs which attained the highest statistical
significance for the specification in Equation 1 for the test subsample. The first column
gives the “name,” or rs or kpg number, of each SNP with the chromosome on which it is
located. In the second column, I report the effect size of the SNP. In the third column I
report the p-value for each SNP. None of the approximately 1.2 million of the SNPs reached
the conventional significance threshold of 5*10-7 established by the Wellcome Trust Case
Control Consortium. Likewise, since the Bonferroni is a stricter threshold of significance,
none of the SNPs meet the Bonferroni significance of 4.09 * 10-8. In fact, none of the SNP
reached a significance of 10-7; seven of the top twenty SNPs reach a signficance level of 10-6.

SNP Effect size P-value allele chromsome position
kgp4560299 0.14694087 3.15E-06 GA 5 435256
kgp1703572 0.14580118 3.87E-06 AG 5 435273
rs818185 0.07931359 4.02E-06 GA 2 10648857
kgp5696875 -0.079052 4.73E-06 AG 19 9102742
rs10099909 -0.13249798 5.01E-06 AG 8 11287371
rs186493 0.08415274 6.47E-06 AC 16 3289331
kgp7673403 -0.18416093 8.39E-06 AG 12 58918789
kgp4043337 0.09221066 1.06E-05 AG 5 478655
rs7657627 -0.08238064 1.30E-05 AG 4 16412051
rs7762279 -0.13126482 1.48E-05 AG 6 32755290
rs957792 0.13700457 1.54E-05 GA 5 429989
kgp9153906 0.07763928 1.54E-05 CA 19 7924957
kgp910500 0.07500762 1.70E-05 GA 12 61497958
kgp12522368 0.07538613 1.86E-05 AG 12 61537215
kgp6975417 0.11141721 1.94E-05 GA 5 496730
kgp5076136 -0.34611196 2.02E-05 AG 12 22951899
kgp9495611 -0.28826115 2.09E-05 AG 14 67446965
rs9471770 -0.10335409 2.11E-05 AC 6 42081642
rs2079134 0.08690109 2.23E-05 AG 4 106006036
kgp9614205 0.13442179 2.34E-05 AG 5 429031

Table 3.3: Top SNPs for Test Sample

The SNPs are found on a number of chromosomes, suggesting that risk aversion is not
driven by a small number of SNPs with large effects but rather, that there may be low-
level genetic activity across different parts of the genome. This can be seen in the fourth
column which reports the minor allele for each SNP. Columns five and six represent the
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chromosome and the position on the chromosome where the SNP is found. The collection
of SNPs from the list of the top twenty is spread over nine chromosomes. Six of the SNPs
are concentrated near each other on chromosome 5 and there is another concentration of
SNPs on chromosome 12. Otherwise, the rest of the SNPs are somewhat scattered across
a number of chromosomes. These results would suggest that risk aversion is not driven by
a small number of SNPs with large effects but rather, that there may be low-level genetic
activity across different parts of the genome. Figure 3.1 shows the plot of the top-ranked
SNPs analyzed against the -log10 of the p-value. This version of a “Manhattan plot” as it is
often called, only displays the top of the “skyline”—the subset of SNPs with log10(p-value)
greater than 4. In other words, this plot includes only the top 113 SNPs; most of the SNPs
lie below this threshold and therefore would be at the bottom of this plot if the y-axis were
extended to zero. I’ve truncated The axis is truncated to put the top-ranked SNPs into
context relative to significance. As is evident, none of the SNPs makes their way up to the
significance threshold of 10-7, but there are a large number of SNPs that “rise above” with
p-values in the range of 10-6. With this sample size, it is impossible to distinguish between
what are SNPs with actual effects and what is statistical noise. As sample size grows and our
statistical tools become more powerful, the genetic components of risk aversion will likely
reveal themselves.
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Figure 1: Manhattan Plot for Top−Ranked Snps 
 Associated with Risk Aversion

Figure 3.1: Manhattan ”Skyline” Plot. Data source: HRS GWAS data

The results for Table 3.3 are based on a subset of the whole sample since part of the
sample was reserved as a validation sample for positive results. Since there were no positive
results to validate, the full sample can be re-run for the analysis. Table 3.4 shows the results
of the GWAS run on the full sample of 10,455 individuals that have been genotyped and
have at least one response to the risk aversion measure. Again, no SNPs meet the traditional
significance threshold of 5*10-7. So, the increase in sample size does not add enough power
to detect any SNPs that meet the significance criteria. It does, however, change the ranking
of top SNPs. Interestingly, only two SNPs (kgp5696875 and rs10099909) are on the list of
top hits for both runs. Moreover, the chromosome with the highest concentration of top
SNPs move from chromosome 5 to chromosome 7. This might suggest that these may be
the two SNPs that have true effects on risk aversion.

The results from Table 3.3 are based on the specification that controls for age and gender
as well as population stratification through the inclusion of the top ten principal components.
I re-ran the analysis without the inclusion of the principal components. While the exact
order of SNPs moves around slightly, the results remain largely unchanged, implying that
population stratification is not too much of a concern in this sample.
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SNP name P-value allele chromosome position
kgp6835378 3.85E-06 CA 2 19298409
kgp4319112 5.71E-06 AG 13 110916213
kgp12230322 6.40E-06 CA 2 19287912
rs2064389 7.54E-06 GA 6 69425811
kgp5070982 9.77E-06 GA 13 110917782
kgp11108464 9.83E-06 GA 7 81374817
rs9363963 9.86E-06 GA 6 69439107
kgp9523505 1.02E-05 CA 13 110917768
rs10208636 1.04E-05 GA 2 19279238
rs10099909 1.05E-05 AG 8 11287371
kgp4233366 1.07E-05 AC 14 20951094
kgp5696875 1.35E-05 AG 19 9102742
rs686642 1.38E-05 CA 13 110917768
kgp8478356 1.40E-05 AG 20 49690694
kgp11028672 1.57E-05 CG 12 133696785
kgp8459226 1.59E-05 GA 2 19299787
kgp7522087 1.69E-05 GA 10 5361694
kgp3375800 1.74E-05 AC 8 13484030
rs11895316 1.88E-05 AG 2 19284343
kgp12799769 1.98E-05 AC 11 5692543

Table 3.4: Top SNPs for Full Sample

Detection Bounds

The results from the GWAS are consistent with a picture in which large numbers of small
genetic effects combine to account for the known heritability of risk aversion. Hiding within
the random noise produced by sampling error with my sample of 7,313 respondents, there
might be a few moderately large causal effects, but not too many and not too large. The
analysis allows some quantification of these terms “too many” and ”too large.” One good
strategy is to calculate the statistical power function for a GWAS test statistic against a
family of alternative hypotheses.

Of course there are a number of different ways of constructing families of alternative
hypotheses. Here I adopt a simple approach. I develop a standard of what is meant by
“large” by considering the p-statistics for SNPs that show up in the tail of the distribution,
specifically the batch B of SNPs in the data with estimated p-values smaller than 104. These
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p-values are the ones based on the chi-square test on one degree of freedom appropriate to
an additive genetic model as already shown in Figure 3.1. The strength of effect for SNPi

is measured on a log scale by

Gi = −log10(pi)

Under the null hypothesis the true causal effects for all SNPs are zero, so that all the
variation being seen is due to sampling error, I expect one in ten-thousand of all SNPs to
appear in the batch B. Indeed they do. The expected number of SNPs to appear in this
batch is 122; I observe 107 in our data.

Under the null hypothesis, Gi are independent exponential random variables. If I had
used natural logarithms they would have been exponential variables with unit means. Since
I am using logarithms to the base 10, they are exponential random variables with mean
1/log10. The observed mean for SNPs in batch B is 4.329. The expected mean would
be 4 + 1/log10 = 4.434 , very close to the observed mean of 4.329. For our standard for
“large”, I take effects whose true strengths measured on the G-value scale are as large as the
observed mean for SNPs in B, namely 4.329. For every choice of k = 5, 6 ... 15, I consider
an alternative hypothesis that k SNPs have true effects this large and all the others have
true effects of zero. All SNPs are subject to the sampling error found in my sample, making
observed estimates vary around the corresponding true values. This construction gives us a
family of alternative hypotheses Hk indexed by k.

The customary GWAS test statistic for a test of the null hypothesis of no causal effects
(all noise) is max(Gi). As I have discussed, the customary rejection region for the test is
R1 = max(G > 7-log10(5)), based on the traditional p-value criteria set by the Wellcome
Trust Case Control Consortium. With my data, I would reject the null hypothesis with any
rejection region inside the regions R2 = max (G > 5.501), which is the maximum value in
my data. Figure 3.2 shows the statistical power functions for test R1 and test R2 against our
family of alternative hypothesis Hk as a function of the posited possible number of causal
alleles k. We see that for k bigger than 10 the customary test R1 has power greater than
92.74% . For test R2 the power is greater than 98.9% for any k bigger than 10, and power
of greater than 90.26% for k bigger than 3.
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Figure 3.2: Power Calculation Against the Alternative Hypothesis

We see that it is unlikely that we would be rejecting the null hypothesis if there were
more than a dozen or so SNPs with true causal effects on risk aversion as strong as the
apparent effects in the batch we have described.

Higher sample sizes would allow us to strengthen these bounds. But our power func-
tion calculations already point strongly to a highly polygenic character for the heritable
component of risk aversion.

3.6 Discussion

As the results have shown, my analysis reveals that risk aversion is likely to be highly
polygenic in nature and it not driven by a few genetic variants with large causal effects.
The results of the GWAS using a large, nationally-representative survey were unable to find
any associations of single SNPs significant at the conventional threshold of genome-wise
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significance required for the sample size of 7,313. The interpretation of these results is that
the heritability of risk aversion must be driven by large numbers of genetic variants with
causal effect sizes small enough that they cannot be detected with the current sample sizes.

I confirm these results through some analysis of detectability bounds to eliminate a family
of alternative hypotheses in which a few large causal SNPs drive genetic variation in risk
aversion. My findings suggest that much of the “missing heritability”, the gulf between the
cumulative explanatory power of specific common variants identified to date and the overall
heritability estimated through twin studies, reflects the fact that risk preferences have a
complicated genetic nature that require still-larger sample sizes to identify.

These findings add to a body of accumulating evidence from studies exploring a number
of economic, political and social preferences (Beauchamp et al., 2011; Benjamin et al., 2012;
Fowler and Dawes, 2013) that suggest that the effects of common genetics variants explored
through candidate gene studies on complex outcomes are small. The introduction of genome-
wide data allows the inclusion of genetic variants that are less common and previously
unexplored, and as a result, allows for a much more precise understanding of the nature
of the preferences that underlie economic parameters. A study exploring a similar measure
of risk aversion using a sample size of 2,900 (Benjamin et al., 2012) showed no significant
SNPs associated with risk aversion; my study has expanded this scope by exploring whether
some of these genetic variants would come to light using a sample size more than two and
a half times the size. Continued investment in these data types and subsequent studies
will ultimately reveal more about the complex genetic nature of risk preferences and other
important economic parameters.

Genetic variation is an important component of risk preferences and until very recently,
has been largely neglected. As large cohorts of older workers are moving into retirement,
and as retirement savings are driven in growing shares by private savings, there is a growing
imperative to understand the unexplained heterogeity in individual risk aversion. The recent
introduction of genetic material into social science surveys presents scholars with a unique
opportunity to capture sources of variation that until recently have been nearly impossible
to measure. This finding is consistent with the hypothesis that two individuals who are iden-
tical in terms of income, education, wealth, and age may still make very different portfolio
investment choices. That is, faced with the same budget constraints and optimization prob-
lem, individuals with different genetic endowments may still make very different investment
choices. My results suggest that genetic markers may well ultimately help us shed light on
the fundamental question of why individuals differ in their willingness to take risks.
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Chapter 4

GCTA

4.1 Introduction

The results of Chapter 3 suggest that risk aversion is, like many complex traits, a highly
polygenic trait in which causal SNPs are not detectable at the current HRS sample size.
Based on this finding, in this chapter, I extend the analysis to another genomic technique to
estimate the genetic contribution to observed variation in risk aversion. Using a technique
called the Genome-Wide Complex Trait Analysis (GCTA) (Yang et al., 2010), this chapter
seeks to answer the straight-forward question of whether there is evidence of heritability for
risk aversion.

To answer this question, the GCTA technique gathers statistical strength by estimating
all SNPs simultaneously, rather than by examining the effects of each SNP individually,
and thus the total genetic variance that can be attributed to phenotypic variation. The
GCTA technique depends on measures of genetic variants that are near each other through
a genetic phenomenon called linkage disequilibrium. Actual causal variants remain unknown,
but the “common” variants that are linked to causal variants and that are captured on the
commercial chips used to genotype individuals and be shared by individuals to the similar
degree to the unknown causal variants. As such, there is an important distinction in the
reading of this and other studies between the terms “causal” SNP and “common” SNP, where
the latter refers to the actual SNPs used in the analysis. The results give an estimate of
narrow-sense heritability, meaning the total amount of variation in risk aversion that can be
attributed to the aggregate additive effects of all the common SNPs in the data. (I will refer
to this technique exclusively as GCTA but it is also referred to as the Genomic-Relatedness-
Matrix Maximum Likelihood (GREML)).

The technique starts by building a genetic relatedness matrix (GRM) between all possible
pair-wise combinations of individuals using the available SNP data. Then, using maximum-
likelihood approach, it calculates the total share of phenotypic variation among individuals
that can be attributed to the genetic variation GRM. The result is an estimate of heritability
that measures the percentage of total variation in risk aversion that can be attributed to
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genetic variation among sample individuals. The advantage of this technique is that it does
not rely on the statistical significance of one or many SNPs but instead takes all the SNP
data as a whole. Given the lack of significant SNPs found in the GWAS in Chapter 3, this
technique provides an excellent alternative.

A preview of the findings is as follows: I find no detectable levels of heritability for risk
aversion using the HRS data. I posit that the most likely explanation is that the polygenetic
nature of risk aversion is one that is characterized by moderate numbers of causal SNPs
whose correlation with the full set of common SNPs is not sufficiently high to be captured
in the “common” SNPs found in the data. This, and other possible explanations for this
finding, are discussed in detail in later sections of this chapter.

4.2 Background

Since its introduction in 2010, the GCTA technique has been widely adapted among
behavioral genetics. It has been applied to height (Yang, 2010), intelligence (Chabris et al.
2012; Davies et al., 2011), personality (Vinkhuyzen et al., 2012), several common diseases
(Lee, Wray, Goddard, & Visscher, 2011), schizophrenia (Lee et al., 2012), and a number of
political and economic phenotypes (Benjamin et al., 2012).

Two main findings emerge from this body of work. First, heritability estimates tend
to be approximately half of the estimates produced in twin studies. The gap between these
estimates is often referred to as “missing heritability” and has been hotly debated in the field
of behavioral genetics for a number of years. The most common explanations for the missing
heritability are either that the gap in estimates between twin studies and GCTA studies is
due to upward bias in the twin studies or to inaccurate tagging of SNPs in the genetic data.
A more detailed discussion of this issue is found towards the end of this chapter.

Second, the amount of genetic variance explained by any one chromosome is proportional
to chromosomal length. The longer the chromosome is in length, the more genetic variability
is associated with it. This has been found in intelligence, economic and political phenotypes,
and a number of other complex traits that have been tested.

The GCTA technique was first tested on human height because of its strong known
heritability (Fisher, 1928; Hewitt, 1999; Wood et al., 2014; Yang et al., 2010). Height in
humans is a classic quantitative trait, is easy to measure, and studies for well over a century
have used it as a model for investigating the genetic basis of complex traits (Fisher, 1918;
Galton, 1886). Rare mutations that cause extreme height have been found, but these do not
explain much of the variation in the general population. The heritability of height has been
estimated at approximately 80% (Fisher, 1918; Macgregor et al., 2006; Silventoinen et al.,
2003); and the GCTA estimate found in Yang et al. (2010) is 45%.

Findings traits are heritable have been fairly ubiquitous and a number of studies have
used GCTA-like techniques to calculate these heritability estimates. Perhaps most relevant
to this study is the work of Benjamin et al. (2012) who used a Swedish sample to study 10
traits measuring various economic and political preferences, including risk aversion. Using
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GCTA, they did not find a significant finding on a heritability estimate for risk aversion.
That is, the narrow-sense heritability estimate for risk aversion was measured at 13%, but
the p-values showed the estimate could not be distinguished as being statistically different
from zero. However, significant heritability estimates were found for educational attainment
(16%), trust (24%), and political views on economic policies (34%).

A wide range of other complex socio-behavioral traits have also been studied. Estimates
of the narrow-sense heritability of extraversion and neuroticism taken from SNP data from
approximately 12,000 unrelated individuals are 12% and 6%, respectively (Vinkhuyzen et al.,
2012). Using GCTA analysis, Boardman, Domingue, and Daw (2014) provided evidence that
education has a heritability of 33%, BMI of 43%, depression of 19%, and self-rated health
of 18%. Subjective well-being has common narrow-sense heritability estimates between 12%
and 18% when using GCTA techniques (Reitvald et al., 2013). Estimates of the heritability
of postpartum depression range from 6% to 22% (Byrne et al., 2014); and the ability of
individuals to recognize various facial expressions ranged from 30% to 40% (Dickie et al.,
2014).

Studies on intelligence suggest narrow-sense heritability estimates of 40% for crystallized-
type intelligence and 51% for fluid-type intelligence (Davies et al., 2011). Authors of this
study stated that their “results unequivocally confirm that a substantial proportion of indi-
vidual differences in human intelligence is due to genetic variation, and are consisted with
many genes of small effects underlying the additive genetic influences on intelligence” (Davies
et al., 2011, p. 256). Interestingly, estimates of the heritability of intelligence increases from
about 20% in infancy to as high as 80% in later adulthood, depending on the construct of
intelligence (Plomin & Deary, 2014).

A similar number of reports can be found that study traits proximal to disease. Perhaps
the most notable of these studies comes from the author of the seminal GCTA paper on
height (Yang, 2010), who used a sample of Koreans to analyze 49 human quantitative traits
that are relevant to human diseases. These traits included measures of obesity, liver and
kidney functions, diabetes, blood counts, and others (Yang et al., 2014). They found that
43 of the 49 traits had non-zero estimates of narrow-sense heritability, ranging from 7.8% to
76.8%.

Taken as a whole, this literature shows heritability estimates to vary widely. This is
to be expected since the underlying “true” heritability, which is unknown, differs across
phenotype. For that reason alone, heritability estimates using any technique will and should
differ. However, methodological constraints may also impact estimates to a second-order
degree in two ways. First, the accuracy of the measure of the phenotype differs; some
phenotypes are more or less precisely measured. For example, specific diseases may be
measured more precisely than some economic or social preferences, which may have multiple
ways in which to measure or which may be subject to greater measurement error. Second,
difference in the size of the SNP sample can contribute to less precise estimates. Because the
method depends on capturing genetic variance from SNPs that are in linkage disequilibrium
to the unknown causal variants, both the size and the nature of the SNP sample can have
marginal effects on the heritability estimates.
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Since the initial introduction of the GCTA technique, studies have emerged that either
extend or critique this method. The partitioning of the genome-wide variation into individual
chromosomes, for example, led to the common finding discussed above that the amount of
genetic variation explained by any given chromosome is proportional to the length of that
chromosome. In addition, studies have used GCTA methods on subsets of SNPs to measure
the share of genetic variance across different sets of SNPs, which helps to create boundaries
on the total number of causal SNPs that may exist for highly polygenic traits. For example,
in estimating the heritability of height using a sample of over 250,000 individuals, Wood et al.
(2014) tested a different number of variants, and showed that the most strongly associated
SNPs 2,000, 3,700, and 9,500 —explained 21%, 24%, and 29% of phenotypic variance,
respectively. The results of this analysis led them to conclude that height is not likely to be
driven by more than 1,000 causal SNPs.

A number of newer studies have also begun to look more closely at the proper conditions
necessary for the validity of SNP-based heritability estimation (Lee & Chow, 2014) as well
as for testing the assumptions implicit in the GCTA technique (Conley et al., 2014; Plomin,
2014). For example, a key assumption in the approach that uses a genetic relatedness
estimation through the maximum likelihood model, as GCTA does, is that genetic relatedness
between individuals is completely independent to environmental similarity. A recent study
using the HRS (and two other surveys) showed that two unrelated individuals are in fact
more likely to have been reared in a similar environment if they are genetically similar
and that this effect was not eliminated by controls for populations structure (Conley et
al., 2014). However, when the authors included this environmental confound in the GCTA
models, heritability estimates did not change substantially, and thus they concluded that
the potential bias in GCTA estimates is probably minimal.

Da and Wang (2013) have introduced a technique for a joint prediction of heritability for
genetic variation attributed to both additive and dominance effects, along with an associated
software package called GVCBLUP. This technique has been applied to animal breeding
models but also has the potential for adaption to human genetics. Zuk et al. (2012, 2014)
have released a series of papers looking to expand the estimates of narrow-sense heritability.
First, they tackle the issue of epistatis by testing the assumption implicit in GCTA methods
that there is no genetic interaction among variants (Zuk et al., 2012). They use Crohn’s
disease to show that up to 80% of the missing heritability could be attributed to genetic
interactions among three genetic pathways. In a more recent paper, they described an
analytical framework for the design of rare variants association studies (Zuk et al., 2014),
rather than the common variants used in the current GCTA techniques.
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4.3 Data and Methods

Data

As detailed in Chapter 2, both the genotype and the phenotype data used in this chapter
come from the HRS.

The genetic data are the same genome-wide association data used in Chapter 3, and
the same number of quality control measures that were applied in the GWAS analysis in
Chapter 3 were also applied to this data. In addition, and in keeping with standard practice,
individuals with a genetic relatedness of greater than 0.025 were excluded from the analysis.

The phenotype data for risk aversion use the continuous measure of risk first developed
by Miles et al. (2008) and discussed in detail in Chapter 2 of this dissertation. As a reminder,
this measure is a composite measure based on individual-level responses from the ordinal
risk aversion question asked in the HRS. It is a measure of risk tolerance where 0 is most
risk averse and 1 is most risk seeking. The mean value for this sample is 0.23 (s.d. 0.08)
(details on this measure can be found in Chapter 2). Because the construction of the risk
measure requires responses in at least two survey waves, the sample size is restricted to 5,411
individuals.

As a point of comparison, the GCTA analysis is also run for two other phenotypes,
height and cognition. Height is measured in inches and is measured in either 2006 or 2008,
corresponding to the same year the individual was genotyped. Cognition is a composite
measure from the HRS that is intended to capture a total cognition score based on a series
of individual cognition questions asked in the HRS. It sums the responses of a series of
recall questions, where respondents were asked to recite back a list of random words both
immediately and five minutes after they were given, as well as some self-reported mental-
status questions. Total cognitive scores range from 0 to 35, with higher scores indicating
stronger recall and self-reported mental status. The values are again taken from responses
from either the 2006 or 2008 survey to correspond to the same year the individual was
genotyped. The mean cognitive score in the sample is 22.02 and the standard deviation is
5.16.

Controls in the analysis include respondent sex, age in the year of genotyping, and the
first ten principal components used to control for population stratification which are provided
by the HRS with the GWAS data.

Methods

The GCTA method uses SNP data to estimate narrow-sense heritability through two
steps. First, it builds a genetic relatedness matrix (GRM) between all possible pair-wise
combinations of individuals using the available SNP data. The result is a N x N matrix,
where N is the number of individuals in the sample and every entry in the lower or upper
diagonal represents the genetic relatedness between each pair of individuals. Then, using a
restricted maximum-likelihood technique, it calculates the total share of phenotypic variation
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among individuals that can be attributed to the genetic variation found in the GRM, resulting
in an estimate of narrow-sense heritability.

The power of the method comes from comparing not just two groups, like monozygotic
and dizygotic twins, but from the millions of pair-by-pair comparisons in samples of thou-
sands of individuals. GCTA provides a lower-bound estimate of narrow heritability that does
not rest on the same set of assumptions relied on in twin studies. A key assumption behind
GCTA is that among individuals who are not in the same extended families, environmental
factors are uncorrelated with differences in the degree of genetic similarity, or “relatedness.”
In this analysis, genetic relatedness is directly estimated from the SNP data, unlike in be-
havior genetic studies, where expected relatedness (inferred from the family pedigree) is
used.

GCTA detects only those genetic effects tagged by the common SNPs that are incorpo-
rated in commercially available DNA arrays used in GWA studies. Because these SNPs are
only imperfectly correlated with the causal variants, relatedness with respect to the causal
variants is measured with error. Consequently, the estimated relationship between pheno-
type and genetic relatedness is attenuated, and hence the estimator is a lower bound for
narrow-sense heritability (Yang, 2010). Additionally, as mentioned above, GCTA is limited
to detecting the additive effects of SNPs; it cannot detect gene-gene or gene-environment
interaction.

The team of authors of Yang et al. (2010) have developed an accompanying open-source
software package by the same name which I used for this analysis. I ran the analysis in
the following steps. First, I create the GRM matrix for all individuals with a relatedness
greater than 0.025. I ran the GRM for each one of the 22 autosomal chromosomes separately
and then merged them together because of the large file. Then, I performed the restricted
maximum likelihood analysis (REML) for each one of the three phenotypes described above
(risk aversion, height, cognition) using the merged GRM. For each one of the three REML
runs, I included the following controls: sex, age at year of genotype, and the first 10 principal
components. The results are described below.

4.4 Results

Table 4.1 describes the output from the GCTA analysis for the main phenotype of interest,
risk aversion, as well as two comparison phenotypes, height and cognition. The first row,
V(G), refers to the additive genetic variance for the trait. The second row, V(E) refers to
environmental variance for the phenotype. The assumption implicit in GCTA is that the
total phenotypic variance is due either to genetic variance or to environmental. As such, Vp,
is the sum of both components of variance, since the variance is assumed to be additive. The
estimate of interest, V(G)/Vp, measures the share of total variance attributed to genetic
variance, or in other words, narrow-sense heritability. The remaining rows describe the
standard error and associated p-values for the heritability estimate (ie. V(G)/Vp) and the
total number of individuals included in the analysis.
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 Risk Aversion Height Cognition 

V(G) 0 0.001774 7.60639 

V(E) 0.005108 0.002773 12.470267 

Vp 0.005108 0.004548 20.076657 

V(G)/Vp 0.000001 0.390133 0.378867 

S.E. 0.03898 0.037349 0.037574 

P-value 0.5 6.92E-13 3.89E-16 

N 5411 7171 7253 

 

Table 4.1: Results from GCTA Analysis for Risk Aversion, Height, and Cognition

As Table 4.1 shows, the heritability estimate for risk aversion in this sample is nearly
zero and not statistically significant. This corroborates an earlier finding from Benjamin
et al. (2012) which also found no statistically-significant heritability estimates for risk,
albeit using a very different sample and a different measure of risk. Because the restricted
maximum likelihood does not, by default, allow non-negative values, the estimated variance
is constrained to be at or above zero. (Additional runs without the constraint did not change
the findings.)

In contrast, both height and cognitive score have positive heritability estimates that are
strongly statistically significant. The heritability estimate on height is 39%, which is well
within a reasonable range of recent GCTA estimates on other samples. This is only slightly
lower than the typical findings in the literature that the SNP-based approach to heritability
is approximately half of the estimates based on twin studies. Twin study estimates are
around 80% and Yang et al. (2010) found a GCTA estimate of 45%.

Likewise, cognition, which has heritability estimate of 37.9%, is statistically significant.
Interpretation of these heritability estimates within the wider context of other heritability
estimates in the literature is tricky for a few reasons. Firstly, cognition itself is a broad
concept and can incorporate a number of definitions including fluid intelligence, memory,
spatial or verbal reasoning, and different definitions of intelligence. Moreover, cognition
and cognitive capacities vary largely over the life course, so that the age of the sample is
particularly important. The measure here is a composite intended to capture immediate
and delayed recall (memory) as well as self-reported mental status. As such, there are two
studies that may be most relevant. A twin study by (Finkel et al., 1994) used a sample
of adult twins aged 65 to 85 and found the heritability for a general cognitive score to be
54%. Likewise, a twin study McClearn et al. (1997) use a Swedish sample of individuals
over 80 years old without any major cognitive or motor impairment and, using a similar
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composite measure of cognition, estimate heritability to be 62%. The SNP-based estimate
of 37.9% that I report here supports the common finding of being approximately half of the
twin-based estimates.

Despite the twin studies literature demonstrating moderate levels of heritability. , risk
aversion has no significant heritability estimate. There are a number of possible explanations
for this finding, all of which are discussed in the following section.

4.5 Discussion

Given the evidence I summarize in Chapter 3, there is strong reason to believe that risk
aversion is indeed heritable. A number of twin studies and candidate gene studies have all
shown evidence of heritability in risk aversion. As such, the estimate in Table 4.1 of zero
heritability is a bit puzzling. There are a number of possible reasons for a zero estimate of
heritability of risk aversion from this sample. I will discuss the most likely primary reason
and will also discuss other explanations that may either work also contribute to this null
estimate.

My approach for Chapters 3 and 4 is to examine the genetic nature of risk aversion from
two extreme perspectives. First, in Chapter 3, I take a granular approach by characterizing
the genetic nature of risk aversion from the individual SNP perspective, examining one SNP
at a time. In this chapter, I take the opposite approach, taking the effects of the entire set of
SNPs among which the causal SNPs are assumed to be hidden. Since the heritability does
not appear through either extreme approach, it is feasible that the heritability is somewhere
in the middle; the genetic nature of risk aversion is one that is too polygenic to be found with
the single SNP GWAS approach but too sparse or uneven for the GCTA approach. A likely
conclusion is that the the genetic architecture of risk aversion is of a moderate polygenicity
in which causal SNPs are numerous, but not too numerous, and perhaps spread unevenly
across the genome. In such circumstances, it may be very difficult to uncover heritability of
risk aversion through current genomic techniques.

Previous papers have found that the SNP-based heritability estimates are between one-
quarter and one-half the size of twin study estimates. One interpretation of the gap is that
genotyped SNPs tag less than half the additive genetic variation in those traits. If the
causal alleles are unevenly scattered across the genome, it is possible that there is a greater
likelihood that the common SNPs used in the GCTA analysis miss these causal alleles, and
as such, the heritability estimates of risk aversion using this technique is not captured.

Of course, the GCTA approach used here and the twin studies do rely on different as-
sumptions. The merits and critiques of twin studies are hotly debated in behavioral genetics
and this paper is not the place for a treatise of the matter. Still, a few things are worth
noting. The twin studies rely on a shared environment assumption that states that monozy-
gotic and dizygotic twins share the same similarity in environment and as such, any difference
between and among twins, regardless of zygosity, can be entirely attributed to genetic vari-
ation. The issue of the shared environment assumption is one that is generally debated. It
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is feasible that this shared environment may hold up well with certain phenotypes and less
well with others. Given the complex nature of risk aversion, perhaps the shared environment
assumption fails and as such, the heritability estimates from twin studies are overstated.

Moreover, risk aversion may be a broad phenotype in which more precise measurement is
needed in order to capture the true phenotypic variation. The various forms of measurement
for risk aversion have been debated at length (Falk and Heckman, 2009). Economists and
psychologists have developed a variety of methodologies to elicit risk preferences that encom-
pass experimental methods, field experiments, and observing behaviors deemed risky. The
measures of risk tolerance take a number of forms and much debate exists around what these
measures capture and whether the concepts are identical, overlap, or are domain-specific.
Importantly, heritability estimates based on twin studies are also based on a number of dif-
ferent measures of risk. It may be that without a more precise definition of the phenotype,
heritability estimates are too noisy.
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Chapter 5

Do Stated Risk Preferences Predict
Behavior Over Time?

5.1 Introduction

Older Americans vary in their preparation for the financial burdens of retirement and old
age. These differences cannot be attributed entirely to income, education, cognitive ability,
family background, or a number of other factors. Evidence suggests that differences in risk
aversion are an important driver of the variation in wealth accumulations of individuals.
Risk preferences are not entirely understood; though they have been well-studied empiri-
cally, there are still large amounts of heterogeneity that remain unexplained. Gender, age,
and education levels are all predictors of risk aversion but often can explain only a small
portion of the variation Americans display in risk aversion (Barksy, 1997).
What is less well understood is to what extent these relationships hold over time, both across
and within individuals. This chapter seeks to answer two questions. First, does the relation-
ship between hypothetical risk and measurable risky behaviors remain consistent across both
time (cross-sectionally) and among individuals (longitudinally)? Secondly, does the change
in the riskiness of bonds following the 2008 recession change the relationship in portfolio al-
locations relative to stated risk tolerance for individuals? This paper is organized as follows.
Section 2 reviews the literature related to measures of risk, as well as a brief description of
the nature of risky assets during the Global Financial Crisis. Section 3 describes data used
and Section 4 discusses the results. The paper will conclude in Section 5.

5.2 Background

Measures of risk aversion vary largely

Given its centrality in everyday life, empirical research has examined the important het-
erogeneity in risk preferences across populations including differences across gender (Schu-
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bert, Brown, Gysler and Brachinger, 1999; Powell and Ansic ,1997; Eckel and Grossman,
2002); family background (Hartog et al. 2002); work characteristics (Praag and Cramer,
2001); and educational attainment levels (Brunello, 2002), as well as across different con-
texts of risk (Weber, 2002; Soane and Chmiel, 2005). Given the particular importance of
risk preferences in decisions made at older ages, much of this empirical work has focused on
the implications for retirement decisions and savings (Karatzas, Lehoczky and Shreve, 1987;
Hurd, 1990; Bodie, Merton, and Samuelson, 1992; Sunden and Surette, 1998). With all of
these studies has come a plethora of measures of risk preferences. These measures typically
take one of three forms: survey-based assessments such as respondent’s answers to hypo-
thetical lottery gambles, experimental evidence, or inference from observed decision-making
in financial, health or insurance markets.

This study makes use of a measure of risk aversion first introduced into the HRS by Barsky
et al. (1997) that categorizes risk aversion through responses to a series of hypothetical
gambles on lifetime income through a specific job and that is detailed in Chapter 2. The
work of this paper is built upon the work put forth by Barsky et al. (1997) that established
the measure of risk aversion used in this analysis. Since it’s inception, a number of other
studies have validated its use. Additionally, other measures of risk preferences using answers
relating to hypothetical questions have been developed and used to see how predictive they
are of actual risk behavior.

Studies risk show consistency but longitudinal studies are sorely
lacking

The Barsky et al. (1997) measure has been used to predict a variety of
behaviors with mixed results

First introduced in the HRS and analyzed in Barsky et al. (1997), these questions are
now included on several other large household surveys, and are widely used in empirical
studies of risk-taking behavior. Further, these questions have been externally validated
by evidence of statistically significant associations with a wide range of behaviors including
financial investment, insurance demand, smoking, drinking, education, marriage and fertility.
Variations of these questions have also appeared in the Panel Study of Income Dynamics
(Luoh and Stafford, 2007), a 1997 survey of French households (Arrondel, 2002) and a 1998
survey of Dutch households (Kapteyn and Teppa, 2002).

Lusardi (1998) found that the categorical measure of risk aversion was significantly as-
sociated with wealth accumulation and Rosen and Wu (2004) reported that a risk-taking
indicator was associated with risky asset ownership. Dave and Saffer (2007) found a nega-
tive and significantly relationship of risk aversion and alcohol consumption.
Anderson and Mellor (2008) use the Barsky measure to predict a variety of health behaviors
including purchase of health insurance, use of preventative medical care, and engaging in
behaviors that increase mortality risk including cigarette smoking and seat belt use. They
find that after controlling for a number of demographic and economic traits, the Barsky mea-
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sure of risk is negatively and significantly associated with cigarette smoking, heavy episodic
drinking, being overweight or obese, and seat belt non-use.

This measure of risk exists in other nationally-representative datasets

A nearly identical measure to the HRS was introduced into the Panel Study of Income
Dynamics (PSID) in 1996. Using this measure, Charles and Hurst (2003) find a strong
correlation between parental risk tolerance and child risk tolerance and show that adult
children with higher levels of risk tolerance were more likely to own a business and more
likely to own stocks than those with the lowest levels of risk tolerance. Several studies show
similar relationships to non-financial decisions. Kan (2003) found that risk aversion was
negatively and significantly associated with job changes and residential moves. Brown and
Taylor (2007) show that risk aversion is negatively associated with educational attainment
and Schmidt (2008) reported higher levels of risk tolerance associated with delayed marriage,
earlier births at young ages and delayed fertility at older ages.

Likewise, studies from the National Longitudinal Study of Youth (NLSY), that also has
a nearly identical measure of risk, show similar relationships. Spivey (2007) use data from
NLSY79 to demonstrate that risk aversion is associated with the timing of first marriage.
In the NLSY, evidence regarding the predictive power of this measure is more mixed as
it relates to health behaviors and healthcare. Lahiri and Song (2000) reported that risk
aversion had a negative effect in a model of smoking initiation but had no effect on smoking
continuation. Sloan and Norton (1997) reported no relationship for risk aversion in a model
of long-term care insurance demand, and Picone et al. (2004) found that risk tolerance had
either insignificant effects or effects of the wrong signs on demand for preventative medical
tests.

Other measures of hypothetical risk have been developed

Guiso and Paiella (2005) use hypothetical willingness to pay for a risky asset to examine
decision making in the 1995 Bank of Italy Survey of Household Income and Wealth. Risk
aversion indicators have a significant effect on the likelikehood of having a chronic disease
but unexpected negative effects in models of health insurance ownership.

Perhaps the most well-known additional measure of risk preference was established by
Dohmen et al. (2005). They designed a hypothetical question that asked how much of
a 100,000 euros that had just been won in a lottery would be invested in an investment
project that either doubles or halves the amount invested. Respondents were also offered
choices between a “safe value” and a specified lottery; successively increasing the safe values.
They find a significant correlation between a set of behaviors defined as risky and their
hypothetical measure of risk and conclude that “in this sense, we qualify the conclusions
derived by Barsky et al. (1997) and Guiso Paiella (2005).” Their findings also show that
individual risk perceptions vary significantly across domain and that careful prediction of
behaviors related to risk should consider domain-specific risk questions.
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Dohmen et al. (2005) also used a question on self-reported attitudes as another means of
measuring individual risk preferences. More than 20,000 subjects from German households
were surveyed about their general willingness to take risks on a scale of 0 to 10. A binary
measure of risk tolerance constructed from this scaled was used to predict various behaviors
and were found to have positive and significant effects on smoking, stock investment and
self-employment.

Kruse and Thompson (2003) studied a hypothetical willingness to pay for a risk mitigation
device. They compared subject responses about willingness to pay for a lock that reduced the
chance of burglary to subject play in an experiment with identical losses and probabilities,
but with real money at stake. The experimental and survey-based measures were consistent
on average, but on an individual level they were consistent for less than one-quarter of
the subjects. Lusk and Coble (2005) compared subject responses to survey questions on
the willingness to consume genetically modified foods to subject decisions in a lottery choice
experiment. Their main finding is that the experimental measure was significantly associated
with risk-taking behavior.

The HRS risk measure has been used few times in longitudinal work

Though multiple waves of the HRS data are available, surprisingly few studies have
traced both the stability of the responses themselves as well as their predictive power over
time. The only study I know of to date is that by Sahm (2007). Sahm finds that, while
risk tolerance changes with age and macroeconomic conditions, individuals have relatively
constant relative risk aversion. No follow-up work to this has been done to my knowledge.

Guiso et al. (2013) draw on a repeated survey of a large sample of Italian Bank customers
to measure individual risk attitudes using a Holt and Laury (2002) strategy. Respondents
were asked to choose between a fixed lottery and different safe amounts. They investigated its
stability based on the 2008 financial crisis. These authors found that changes in risk aversion
after the crisis were correlated with portfolio choices, but not with wealth, consumption
habits or background risk.

Mandal and Roe (2014) pair the HRS data with the same measure from the NLSY
between the years of 1993 and 2007 to examine the age effects of risk tolerance. However,
they do not examine the validity of the predictive power of this measure over time. Jung and
Triebiech (2014) use data from the Osaka Panel Survey to examine whether self-reported
measures of risk aversion vary over time and find that there exists a component of risk
aversion that is in fact time-variant and susceptible to macroeconomic and personal shocks.
However, while their survey does include the Barsky measure, they use another self-reported
measure of risk tolerance as their measure.

Bucciol and Miniaci (2011) use the US Survey of Consumer Finance from 1998 to 2007 to
study households’ portfolio risk bearing and find that risk bearing fell in the 2000s. However,
they use risk based on financial portfolios, not self-reported measures.

The relative paucity of studies examining the relationship between elicited and behavioral
measures of risk provides an ample opportunity to leverage the multiple waves of the HRS
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data to extend the analysis. Just as importantly, the newest wave of the HRS provides
information after the global financial crisis, allowing the opportunity to explore to what
extent, if at all, these relationships changed.

The Great Recession changed the nature of risk/non-risky assets

The financial crisis that began in 2008 has a major impact on retirement finance. Because
of the economic situation, the role of traditionally non-risky assets, such as treasury bills,
suddenly turned. Traditionally, treasury securities are considered the most conservative,
or “safe” investment, along with other forms of bonds and money market funds. These
instruments have stood for decades as a bastion of safety in the turbulence of investment
markets. Importantly, the guarantees that stand behind these securities are indeed regarded
as the cornerstone of both domestic and international economy, making them attractive to
both individual and institutional investors. The greatest advantage of treasury securities
is that they are unconditionally backed by the full faith and credit of the US government;
investors are guaranteed the return of both their interest and principal that they are due,
as long as they hold them to maturity. Treasury Bills specifically have a yield considered
to be the definitive risk-free rate of return by financial analysts and market technicians. As
such, individuals are counseled to move a greater share of whatever financial assets they have
into these investment vehicles. Empirical evidence largely supports this, as greater shares of
older Americans with financial holdings have higher shares in these traditionally conservative
assets. Traditional lore is that investors with short-term horizons, like older Americans at or
nearing retirement, should minimize their risk, therefore investing a majority of their financial
portfolio in T-bills and other low-risk assets. The greatest risk for a T-bill is the default
risk, that the United States government would default on its debt obligations. Historically,
default risk was not very likely and the risk-free rate is rarely called into question. That is,
until the economic environment falls into disarray, as in the economic climate of 2008 and
the financial collapse that followed.

5.3 Data and Methods

This study uses two separate measures of risk. The first has been detailed in Chapter 2
and is the same measure of risk used in the GWAS analysis used in Chapter 3. As a brief
reminder, this measure is a hypothetical question asking respondents to choose between two
jobs with varying probabilities on income. The questions separate the respondents into four
distinct risk preference categories, from least risk-averse to most risk-averse, and allows one
to estimate specific relative-risk coefficients for sample individuals.

Barksy et al. concluded that this measure is positively related to a number of risky
behaviors and provide evidence about the validity and usefulness of measures of this pref-
erence parameter (Barsky et al., 1997). Since introduction, this measure of risk preference
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has been used in a number of studies attempting to measure risk preferences (Smith et al.,
2004; Schulhofer-Wohl, 2007; Evan and Smith, 2010).

Gender N %
Male 8,973 44%
Female 11,309 56%

Age
0-49 241 1%
50-54 3314 16%
55-59 6340 31%
60-64 6700 33%
65-69 1368 7%
70-79 1543 8%
80+ 120 1%

Risk Aversion
Least Risk Averse 2,432 12%
2nd Most Risk Averse 1,991 10%
3rd Most Risk Averse 2,626 13%
Most Risk Averse 13,233 65%

N 20,282

Table 5.1: Descriptive Statistics for Study Sample. Data Source: Author’s tabulations from
the HRS.

The second measure used is a cardinal measure that was developed by the same authors
who introduced the original ordinal measure mentioned about (Kimball et al. 2008). Follow-
ing the release of this set of questions and the original paper that evaluated its performance
(Barsky 1997), a proxy measure of relative risk aversion was developed from the original
ordinal responses (Kimball et al., 2008). This relative risk measure had two distinct fea-
tures. First, it created a cardinal measure from the original four categories so as to create
a range of values rather than a set of distinct values. Secondly, it uses multiple responses
of individuals across survey waves to correct for measurement error in the original values.
This chapter uses the measure of risk aversion, where a higher value represents higher risk
aversion. Values run from 1.2 to 16.6. The statistical model and associated details can be
found in Kimball et al., 2008. Initial evaluation of this cardinal measure shows that results
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are consistent with Barsky’s original findings. In the multivariate analysis, this paper uses
this cardinal measure as a measure of risk tolerance.

Table 5.1 details some of the descriptive statistics of the sample. The total sample size is
20,282 respondents and includes any respondent or spouse with at least one wave of response
for the risk survey question. The sample is nearly 56 percent female and, as is consistent
with the sampling procedure, the majority of the sample is between the age of 50 and 65.
Although the HRS sample is restricted to individuals aged 50 and over, spouses are included,
and as such the youngest sample member is 25. The oldest person in the sample is 92. As
noted earlier, the set of risk aversion questions allows a categorization of four progressive
categories of risk averse, with the value of four representing the most risk averse. In this
sample, approximately 65% of the sample is categorized as most risk averse. The other
respondents are fairly evenly split between the remaining three categories, with just over
10% being the most risk-seeking.

Given the evidence that risk aversion increases with age, it is not surprising that there
is a high share of individuals categorized as strongly risk averse. Still, these distributions
are not wildly different from younger populations or the population as a whole. Work from
the NLSY that uses an identical question to elicit risk aversion for a younger population
shows that the share of individuals categorized as most risk averse ranges between 46 to 54
percent, depending on the year of analysis (Spivey, 2010). Likewise, the share of individuals
between the ages of 20 and 69 considered most risk averse using the identical measure from
the PSID is 49.1 percent (Kimball et al. 2009).



CHAPTER 5. DO STATED RISK PREFERENCES PREDICT BEHAVIOR OVER
TIME? 57

Gender N %
Male 5,218 44%
Female 6,398 56%

Age (2010)
0-49 1,250 11%
50-54 3,988 34%
55-59 4,010 35%
60-64 1,939 17%
65-69 339 3%
70-79 84 1%
80+ 84 1%

N 11,616

Risk Aversion
Obs Mean Std. Dev Median Min Max
11616 0.206 0.068 0.168 0.087 0.732

Table 5.2: Summary Statistics for Cardinal Measure of Risk Aversion. Data Source: Author’s
tabulation of HRS data.

Table 5.2 shows the summary statistics for the sample that have the cardinal measure.
Because of the manner in which the cardinal measure was constructed, which required that
every respondent have a response in at least two of the survey waves, the sample size is smaller
at 11,616. The distribution of the demographics is similar to that for the ordinal measure;
the higher shares of younger individuals most likely reflects the increased likelihood that
spouses are included because of the need to include only those with multiple wave responses.

Figure 5.1 shows the distribution of risk tolerance for the sample using the proxy measure.
As a reminder, this is a measure that ranges from 0 to 1, with the value of 1 representing
the least risk averse. The minimum value of risk tolerance in this sample is 0.087 and is
shared by two respondents while the maximum is at 0.732. The mode can be seen clearly
at 0.168, with nearly 40% of the sample sharing that value of risk tolerance. This value is
nearly the median as well. Still, there are a number of relatively higher values shared among
some of the respondents, which can be seen as high points in the histogram. Nearly 1,500
respondents have a risk tolerance between 0.232 and 0.261 and another 905 respondents have
a risk tolerance of 0.326. The distribution is clearly skewed to the left; at the risk tolerance
value of 0.5, less than .5% of the sample remain.
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Figure 5.1: Distribution of Risk Aversion using Cardinal Measure.

The empirical strategy for this paper follows three parts. First, I will replicate and ex-
pand upon the original analysis of this measure detailed in the Barsky paper (1997). With
six waves of data, I am able to see to what extent these stated preferences remain constant.
Secondly, the analysis will examine the stability of these preferences over time for those
that have multiple responses. Given that there were changes to the number of individuals
asked the risk preference question in each wave, this analysis is limited to a subset of total
respondents. There is a lively discussion in the literature as to what extent risk preferences
are fixed and immutable over time (Reynaud et al., 2012; Sahm, 2012; James, 2007) and
this section attempts to contribute to this knowledge. Finally, the analysis will focus on the
measures of financial assets in later waves to see to what extent there were changes in the
relationship between stated risk preference in anticipation of the changing financial climate.
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5.4 Results

Cross tabulations replicate Barsky’s original finding and,
cross-sectionally, remain very consistent over time (1992 to 2006).

In this section I examine the extent to which measured risk tolerance predicts behavior
over time. A body of empirical work has identified a number of behaviors that are asso-
ciated with risk preferences. I examine to what extent these correlations hold true over
time. These behaviors include smoking behavior, drinking, educational attainment, self-
employment, whether one is a Westerner, and whether one has purchased health insurance
and life insurance. The justification for the choice of these particularly risk behaviors is
described in greater detail in each of the subsections below. Table 5.3 shows correlations
between the measures of risk and a variety of risky behaviors for all of the waves in which
the risk measure was asked. This table shows that the relationship between risk preferences
and risky behavior remains fairly stable over time. The distribution of individuals catego-
rized in risk aversion does not change over the six survey waves in which the question was
included. One might have expected an age effect might appear, in which higher shares of
individuals are categorized as more risk averse as the panel ages. However, because the HRS
study design is such that the panel is refreshed with a younger cohort every 6 years, the
sample is not necessarily older in later waves than it is in earlier waves. Moreover, because
the question was not asked to the entire sample every time, the average age of the sample is
not necessarily two years older in every subsequent survey wave. The effects of age will be
examined in closer detail in later sections of this chapter.

Tables 5.3 and 5.4 also demonstrate that the direction of the relationship is as one
would expect a priori; higher shares of individuals who identify as less risk averse (more
risk tolerant) engage in more risky behavior. There are a few exceptions in which the
relationship appears to be more U-shaped than linear, with higher shares of risk tolerant
individuals engaging in moderate but not high levels of risky behavior. Such an example
includes drinking. These relationships will be examined in more detail in the subsequent
sections.

It is important to not that the results from Table 5.3 are cross sectional, and as such, it
is possible that there is actually a lot of individual-level movement across categories that is
not captured in the aggregate. While there is evidence that this might be the case, which
I present in a later section of this paper, it is also true the nature of the panel data of the
HRS is such that most of the respondents remain the same across any given time period.
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Table 5.3: Tabulations for Risk Aversion Across Different Risky Behaviors, 1992 to 2006.
Data source: Author’s tabulation of the HRS.
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Drinking and Smoking

The first rows of Table 5.3 show the distribution of risk tolerance conditional on smoking
and drinking. The deleterious effects of both smoking and drinking are well-known. Individ-
uals who have ever smoked are more risk tolerance than those who never smoked and those
who smoke now are more risk tolerant than those who do not smoke now. Of particular
interest are those who say they once smoked, but do not smoke now. The sample is largely
composed of middle-aged to older individuals. Hence, those who quit smoking would have
done so during a period of increasing public awareness of the risks associated with cigarette
smoking. Those who quit smoking are somewhat more risk tolerant than those who never
smoked, but less risk tolerant than current smokers (Barsky et al., 1997).

Drinking alcohol is also related to measured risk tolerance and often used as a measure of
risky health behavior. Specifically, risky drinking is categorized as relatively heavy drinking;
moderate drinking is not generally believed to be a health risk. Risk tolerance is higher for
those who drink than for those who do not drink. The difference in risk tolerance between
drinkers and nondrinkers is about the same as between smokers and nonsmokers. Table 5.3
shows risk tolerance by drinks per day. Those who take less than one drink per day have
a willingness to accept the moderate gambles relatively often. As drinks per day increase,
there is a monotonic increase in mean risk tolerance. Moreover, in the case of both smoking
and drinking, risk tolerance remains relatively constant over time.

Educational Attainment, Employment, Immigration

The second portion of Table 5.3 shows a U-shaped relationship between years of schooling
completed and the measure of risk tolerance that stays constant over time. Individuals with
exactly twelve years of schooling are the least risk tolerant. Those with some post-college
education (years greater than sixteen) have substantially greater than average risk tolerance.

Among the biggest risks voluntarily taken by a large segment of the population is self-
employment. The self-employed generally face a riskier overall income stream than their
wage-earning or salaried counterparts. Thus, one would expect risk tolerance to be positively
associated with the decision to undertake self-employment. Table 5.2 shows that the self-
employed are more risk than employees. There is no obvious prediction about the risk
tolerance of those not working with this older sample, as they are mainly retired individuals
and spouses not in the labor force.

One of the boldest risks is that of immigration; to move to a new country in search of
a better life. The idea that immigrants, who move to another country or another region
in search of a better life, are more daring than non-immigrants is well-documented (Barsky
et al., 1997). In following with Barsky et al. (1997), I also examine the time-trend of
risk tolerance and being from the Western part of the United States. The western United
States has in the past been an internal frontier to which one might argue the more daring
have migrated (Barsky et al., 1997). Some of the attitudes from the frontier past may have
persisted to the present. Table 5.3 shows that Westerners are continually categorized as
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having higher risk tolerance across time.

Health and Life Insurance

Understanding the role of risk tolerance in purchase of insurance is complex. Anyone with
positive risk aversion should be fully insured against purely financial risks when insurance
is actuarially fair. In the presence of a load factor, however, those who are most risk averse
should be willing to buy insurance against financial risks (Barsky et al. 1997). A complication
arises because the kinds of insurance purchases on which we have information are health
and life insurance, where the risks are not purely financial. However, since most of these
individuals are married or have children, I argue that financial responsibility for the support
of others would explain why that the financially more risk averse are more likely to purchase
both medical and life insurance.

The bottom portion of Table 5.3 examines respondents’ stated risk preference to insur-
ance purchase. Given that many receive insurance coverage through employment, I follow
Barsky’s convention and report insurance coverage for employed, self-employed and the not
employed. Tabulations exclude individuals already covered by Medicare. Perhaps surpris-
ingly, there are higher share of individuals with health insurance that state that they are
relatively less risk averse. There are fewer individuals that have health insurance in the
fourth category, categorized as the most risk averse. The U-shaped relationship between the
four risk categories and insurance coverage also holds steady across time as well; the propor-
tion of individuals with and without insurance across all risk categories remains very similar
across all HRS waves. This is a departure from the original Barksy analysis, that shows
that more risk tolerant individuals are less likely to hold insurance. Unlike Barsky, the effect
of risk tolerance on the propensity to be insured is smaller for the non-employed and the
employed than it is for the self-employed. Between groups, the self-employed have a higher
risk tolerance and have a much lower average propensity to be insured than employees.

Similar patterns hold true for life insurance. Like many of the other behaviors detailed,
there are higher shares of individuals that identify as highly risk averse than in any other
category. However, there is very little difference in the categorization of risk aversion across
those with or without life insurance. This holds true cross-sectionally across all of the waves
of HRS.

Wealth and Income

Table 5.4 shows risk tolerance by quintiles of risk. Risk tolerance decreases with income
and wealth until the middle of the distributions, and then increases. This pattern is similar
to those for a number of other behavior discussed above, as well as the pattern across age.
Like the original Barsky findings, risk tolerance rises at the high end of wealth and age
distributions. Home equity is a major component of wealth for most individuals. The 20
percent of individuals who do not live in homes they own are substantially more risk tolerant
than those who own their homes. The most risk-tolerant individuals are much less likely to
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own homes than the least risk tolerant individuals. Although home prices are volatile and
houses are often highly leveraged (Belsky et al., 2002), owning a house insulates individuals
from local changes in the cost of shelter, and thus provides some consumption insurance
(Barsky et al., 1997).
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% Choosing Response

Risk Category 1 2 3 4
Wealth Quintiles

1 17.46 11.48 8.9 62.16
2 12.14 10.95 11.41 65.5
3 11.48 10.63 11.52 66.37
4 10.15 11.19 13.07 65.58
5 13.13 10.38 13 63.49

Wealth Quintiles
1 14.91 7.22 13.88 63.99
2 11.52 10.65 14.49 63.34
3 12.01 8.74 15.29 63.97
4 13.24 9.52 14.1 63.14
5 16.94 10.41 17.03 55.62

Wealth Quintiles
1 11.66 10.6 12.72 65.02
2 8.61 10.11 12.73 68.54
3 10.65 6.46 12.55 70.34
4 13.8 8.08 14.48 63.64
5 17.36 9.06 18.87 54.72

Wealth Quintiles
1 12.13 9.91 13.15 64.81
2 10.2 8.68 14.99 66.13
3 10.66 9.65 16.22 63.47
4 12.65 9.69 15.45 62.21
5 15.88 10.22 17.62 56.28

Wealth Quintiles
1 12.28 8.19 13.64 65.89
2 10.05 9.25 15.63 65.07
3 11.44 8.46 18.74 61.36
4 12.98 9.69 20.11 57.22
5 14.66 10.56 21.12 53.66

Wealth Quintiles
1 11.28 9.6 13.2 65.92
2 10.11 8.22 12.8 68.87
3 10.24 9.91 15.03 64.83
4 9.75 10.13 16.83 63.29
5 14.05 10.99 18.29 56.67

Wave 8: 2006

Wave 1:  1992

Wave 4: 1998

Wave 5: 2000

Wave 6: 2002

Wave 7: 2004

Table 5.4: Tabulations of Risk Preferences For Wealth Across HRS Survey Waves: 1992 to
2006. Data source: Author’s tabulations of the HRS.
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Addressing Survey Response Error

One of the challenges of working with this data is that there is a sizeable amount of
movement across categories of risk within individuals and on the aggregate. Survey waves
are every two years and responses to hypothetical gambles likely provide a noisy signal of
true risk tolerance. This issue has been documented extensively in literature related to risk
preferences and remains true for these data. (See Camerer and Hogarth (1999) for a review
of several experiments with varying financial incentives.) Table 5.5 demonstrate the shares of
individuals that remain consistent or change responses across two consecutive waves. These
tables are cross-tabulations of aggregate values; as such, the number of individuals that give
consistent responses are in the diagonal of the table and inconsistent values are in the off-
diagonals of the table. The total number of individuals in each table is a subset of the total
sample, since it includes only respondents that are in both survey waves. (There are shared
no observations between survey waves from 2002 and 2004).
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Consistency of Responses across survey waves between 1992 and 1998
Wave 4 (1998)

Wave 1 (1992) 1 2 3 4 Total

1 (Least risk averse) 19 9 24 52 104
2 (3rd most risk averse) 14 16 14 49 93
3 (2nd most risk averse) 14 14 24 58 110
4 (Most risk averse) 75 47 73 300 495

Total 122 86 135 459 802

Consistency of Responses across survey waves between 1998 and 2000
Wave 5 (2000)

Wave 4 (1998) 1 2 3 4 Total

1 (Least risk averse) 35 14 18 61 128
2 (3rd most risk averse) 16 6 15 47 84
3 (2nd most risk averse) 19 14 37 87 157
4 (Most risk averse) 36 44 68 389 537

Total 106 78 138 584 906

Consistency of Responses across survey waves between 2000 and 2002
Wave 6 (2002)

Wave 5 (2000) 1 2 3 4 Total

1.least risk averse 21 10 13 32 76
2.3rd most risk avers 6 4 8 28 46
3.2nd most risk avers 9 7 21 58 95
4.most risk averse 20 28 43 216 307

Total 56 49 85 334 524

Consistency of Responses across survey waves between 2004 and 2006
Wave 8 (2006)

Wave 7 (2004) 1 2 3 4 Total

1.least risk averse 107 52 39 109 307
2.3rd most risk avers 36 50 44 102 232
3.2nd most risk avers 37 67 126 231 461
4.most risk averse 107 121 211 1,084 1,523

Total 287 290 420 1,526 2,523

Table 5.5: Consistency of Responses Across Survey Waves. Source: Author’s tabulation of
the HRS.
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Across all of these survey waves approximately half of the respondents have the same
response as in the previous wave. The greatest share of consistent responses occurs between
2004 and 2006, with 54 percent of individuals keeping the same response. The lowest share,
at 45 percent, occurred between 1992 and 1998, which is not surprising given that the elapsed
time period is longer. Of the remaining individuals, approximately 25 percent of individuals
have a stated preference of more risk averse; the range is 23 percent (from 2004 to 2006)
to 28 percent (from 2002 to 2004). Given that risk aversion does increase with age, this is
perhaps not surprising. Still, evidence from the risk aversion literature does imply that risk
aversion might not change that significantly in such little time. Moreover, approximately
twenty percent of respondents move from more to less risk averse.

Still, while there is movement in the risk categories from year to year, there is also a
consistency of responses across time. Regression results show that past responses for risk do
in fact predict future responses with very high significance. Table 5.6 illustrates results that
predict the outcome for risk in the final survey wave in which it was collected (2006) as a
function of all other responses from previous survey waves, as well as a specification in which
sample size is larger. All are statistically significant. A number of additional specifications
yield similar results; in all cases, previous risk preferences are strongly associated with future
risk preferences.

Associations to Responses for Risk Preference in Wave 8 (2006)
(1) (2) (3) (4)

Risk 1992 0.111
(0.0704)

Risk 1998 0.282 0.195
(0.079) (0.059)

Risk 2000 0.165 0.137 0.137
(0.773) (0.060) (0.058)

Risk 2002 0.202 0.203 0.288 0.207
(0.091) (0.066) (0.065) (0.017)

r2 0.289 0.1627 0.1261 0.0465

Note: Responses from 2004 were omitted because there are no shared observations

Table 5.6: Associations of Individual Risk Preferences Survey Responses Across Survey
Waves
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Regressions for early waves of risk behaviors show consistency
over time

Statistical Model

For the analysis of risky behaviors in this chapter, the data are pooled across waves.
There are multiple observations for each individual respondent. Behaviors are measured
separately at each wave; each outcome is a report for a given respondent, indexed by i, at
a given wave (or year of time) indexed by t, e.g. current smoking for individual i in year t.
The predictor of central interest, however, is the composite cardinal measure of risk aversion
described in previous sections, which takes a single value for each respondent and remains
fixed across waves. Some other covariates, gender, race, and religion, also remain fixed across
waves, but most covariates, like age and the logarithm of income, vary across waves. When
data have this kind of structure, an ordinary regression model is inappropriate, because
such a model treats errors of prediction around each data point as independent, identically
distributed random variables, whereas many unobserved determinants of an individual’s
behavior are likely to be strongly correlated from wave to wave. For this reason, “multi-
level” or “hierarchical” linear models of the kind described, for instance, by Gelman (2006)
are employed.

In each of the linear multi-level models, the Level One equation takes the form

Yit = αi +
∑
k

βkXitk + εit

where Yit is the outcome, αi is a random intercept term specific to the individual and constant
across waves, and βk and Xitk are coefficients and covariate values for respondent-wave
pairings for covariates (indexed by k) that vary across waves. Given the individual-level
values of αi, the errors εit are considered to be independent and identically distributed with
some unknown variance σ2(ε). The Level Two equation expresses αi as a linear function
of the composite cardinal risk aversion measure and other covariates (indexed by m) that
remain constant across waves:

αi = µ+
∑
m

γmWim + δi

Here µ is an intercept, γm are the coefficients, and Wim the covariates fixed across waves.
The parameters to be estimated are the βk, γm, µ, σ2(ε), and σ2(δ).

These formulas apply to linear versions of the models. Similar formulas apply to logistic
regression variants with the same multi-level structure, used for some of the analyses.

The multi-level models are fitted using the STATA routines called xtmixed and xtlogit.
In these models, the measure of risk aversion is the continuous, cardinal measure detailed

above and those taken from Kimball et al. (2001), which is detailed in Chapter 2. The
cardinal measure ranges from 0 to 1. Individuals closer to 0 are least risk averse and those
closer to 1 are most risk averse. In other words, a positive coefficient implies a positive



CHAPTER 5. DO STATED RISK PREFERENCES PREDICT BEHAVIOR OVER
TIME? 69

relationship between greater risk aversion and frequency or likelihood of risk behavior. Also,
because the increments of change in the risk tolerance measure are very small, the coefficients
on the regression results are often very large. Importantly, this risk measure captures the
time-invariant measure free of measurement error. Control variables include respondent race,
religion and gender, as well as age in the year of the behavior measured.

Drinking and Smoking

Table 5.7 shows results from multivariate analyses for drinking and smoking behavior.
The two panels on the left show the association between drinking behavior and risk aversion.
The dependent variable in the panel furthest on the left refers to the average number of days
in a week that the respondent drinks any amount of alcohol, ranging from 0 to 7. The model
is a linear regression and the coefficients can be interpreted as slopes. The measure of risk
aversion is statistically associated with the frequency of drinking days, in the direction one
might expect—the greater one’s risk aversion, the fewer days, on average, include alcohol
consumption. The panel immediately to the right measures drinking behavior as a continuous
variable equal to the total number of drinks consumed when drinking. The range is from 0
to 23, plus a response for 99, where 99 refers to the response, ‘I drink all day,” which was
excluded. These specifications include all respondents, including those who do not drink
at all. Again, the coefficient on risk aversion is statistically significant and in the expected
direction. However, as with the previous panel, the coefficient is relatively small, more than
one order of magnitude smaller than race and gender.

The second half of Table 5.7 displays the results of a logistic model examining the asso-
ciation between risk aversion and smoking behavior. The coefficients are odds-ratios. Here,
there are two outcomes measured. The first measures whether an individual used to be a
smoker and quit at some point before the survey wave i wich they are interviewed. The
second outcome is whether a respondent is currently a smoker. Both of these measures
might behaviors involving elements of risk. Within the time period spanned by this panel,
the deleterious effects of smoking became increasingly known and publicized, and with it,
a number of public health campaigns aimed to encourage current smokers to quit smoking.
As such, the decision to quit or to continue smoking is one that involves trading off known
information about the potentially harmful effects of smoking. Still, and perhaps surpris-
ingly, the measure of risk aversion here is not significantly associated with either quitting or
continuing to smoke.
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Num. Days Number of Drinks Quit Currently
Drinking When Drinking Smoking Smoking

Gender (ref. male) -0.667*** -0.619*** -0.956*** -0.683***
(0.0348) (0.0275) (0.167) (0.125)

Race (ref. White)
Black/African-American -0.505*** -0.111** -0.695** 0.568***

(0.0462) (0.0365) (0.236) (0.166)
Other -0.775*** -0.334*** -0.673 -0.580

(0.106) (0.0838) (0.621) (0.375)
Religion (ref. Protestant)
Catholic 0.258*** 0.213*** 0.209 0.162

(0.0387) (0.0305) (0.179) (0.137)
Jewish 0.180 -0.0114 2.313*** -1.158*

(0.127) (0.100) (0.516) (0.477)
None 0.624*** 0.360*** -0.704 1.321***

(0.0800) (0.0633) (0.371) (0.305)
Other 0.277 -0.0511 1.307 -0.547

(0.193) (0.153) (0.846) (0.681)

Age -0.0137*** -0.0236*** 0.195*** -0.112***
(0.00306) (0.00242) (0.0156) (0.0114)

Year 0.0284*** 0.0246*** 0.133*** -0.305***
(0.00646) (0.00512) (0.0337) (0.0264)

Risk Aversion -0.0314*** -0.0148** -0.0347 -0.0152
(0.00703) (0.00556) (0.0343) (0.0255)

Constant 3.045*** 3.074*** -7.382*** 1.417*
(0.191) (0.151) (0.968) (0.713)

Observations 66,890 66,844 33,766 54,485
Number of groups 10,560 10,558 7,388 11,593

DRINKING BEHAVIOR SMOKING

Standard errors in parentheses
*** p<0.001, ** p<0.01, * p<0.05

Table 5.7: Relationship between Risk and Smoking, Drinking: 1992 to 2010. Data Source:
HRS.

Life Insurance and Employment

Table 5.8 displays the results for two logistic multi-level models for the decision to be self-
employed. The decision to be self-employed, particularly in this sample of individuals over the
age of 50, is one that is relatively risky as it does not offer the more certain aspects of health
insurance, and a regular salary. In the panel, 21.68% of those working are self-employed. The
odds-ratio on self employment is -0.109, statistically significant and in the expected direction
—as one individual’s risk aversion score increases, the odds of self-employment decreases.
Table 5.8 also displays results for the decision to purchase life insurance. Approximately
34% of the panel does not have life insurance. The results here also show a positive and
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statistically significant relationship between risk aversion and the decision to purchase life
insurance. An increase in risk aversion increases the odds of purchasing life insurance.

(1) (3)
VARIABLES selfemp lifein

Gender (ref. male) -1.174*** -1.121***
(0.127) (0.0698)

Race (ref. White)
Black/African-American -1.460*** 0.0588

(0.178) (0.0915)
Other -0.129 -1.385***

(0.401) (0.206)
Religion (ref. Protestant)
Catholic -0.714*** -0.535***

(0.143) (0.0771)
Jewish 2.071*** -1.153***

(0.536) (0.254)
None 0.974** -1.090***

(0.307) (0.158)
Other 0.433 -1.688***

(0.759) (0.377)

Age 0.0817*** -0.0269***
(0.0123) (0.00613)

Year -0.00629 -0.0993***
(0.0254) (0.0128)

Risk Aversion -0.109*** 0.0639***
(0.0260) (0.0141)

Constant -7.433*** 5.476***
(0.731) (0.385)

Observations 40,758 88,375
Number of hhidpn 8,714 11,577

Standard errors in parentheses
*** p<0.001, ** p<0.01, * p<0.05

Table 5.8: Regression Results for Decision to Purchase Life Insurance and Self-Employment:
1992 to 2010. Data source: HRS.

Financial Decisions

The final portion of this analysis explores the relationship between risk and financial
assets and, specifically, to what extent the relationship holds over time. Special attention
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is paid to analysis from the most recent wave of survey data, which covers the time period
after the global financial crisis of 2008, to examine whether this relationship changes.

Table 5.9 explores the association between the cardinal measure of risk aversion and the
share of various financial instruments in the sample member’s portfolio allocation. As with
the previous models, the analysis is a multi-level linear regression with random effects . The
outcome measures represent the share of total non-housing wealth that are held in each
of the various financial holdings, which include stocks, bonds, savings accounts or money
markets, a traditional retirement IRA account, a ROTH IRA account, and treasury bills.
These outcomes include all possible non-housing and non-pension wealth that are asked in
the survey. As such, the sum of shares for any given individual in any given year across these
outcomes sums to 100%. The sample is restricted to those with at least $1,000 in reported
wealth. Covariates include self-reported race and religion, gender, age, as well as income and
wealth in the corresponding survey year, both measured on a logarithmic scale.

The results for the analysis show that risk aversion plays a signicant role in some but not
all financial portfolio allocations. The most significant and strongest effect can be seen in
the relationship between risk aversion and higher shares of wealth savings held in traditional
savings accounts. Savings account are considered an essentially risk-free asset, as there is
no investment per se, and as such, no risk of default or large risk of loss. Conversely, it is
also the investment vehicle with the least amount of possibility of wealth growth, as savings
accounts traditionally have low interest rates. Another relatively low-risk investment is the
treasury-bill, as discussed in the background section of this chapter. As such, there is a
significant and positive effect of risk aversion on the share of non-housing wealth that is
invested in treasury bills across the panel. Likewise, significant effects are seen for the share
of wealth held in ROTH IRAs, which hold greater tax-sheltering benefits than traditional
IRAs. Finally, there is a negative association between shares of non-housing wealth invested
in stocks and risk aversion; individuals with greater risk aversion are less likely to invest
in stocks. All of these relationships operate in the expected direction and mirror what one
might expect to hear from a financial planner. Still, the effect sizes are small. They are
approximately equal to the effect of an additional year of age, but are at least two orders
of magnitude smaller than the effects of financial decisions arising from income and existing
wealth.
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Share Share Share Share Share Share
Stock Bond Savings IRA Roth T-Bill

Gender (ref. male) 0.00885* 0.00317*** -0.00756 -0.0182*** 0.00305 0.0115***
(0.00346) (0.000891) (0.00517) (0.00478) (0.00232) (0.00260)

Race (ref. White)
Black/African-American -0.0428*** -0.00338** 0.140*** -0.0687*** -0.0143*** -0.0123**

(0.00498) (0.00130) (0.00742) (0.00684) (0.00336) (0.00375)
Other -0.0193 -0.00283 0.0771*** -0.0474** 0.00802 -0.0137

(0.0113) (0.00294) (0.0168) (0.0155) (0.00763) (0.00851)
Religion (ref. Protestant)
Catholic -0.00400 -0.00168 0.0151** 0.00956 -0.00839*** -0.0113***

(0.00377) (0.000962) (0.00565) (0.00522) (0.00251) (0.00283)
Jewish 0.0477*** 0.0170*** -0.0885*** 0.0219 0.0270*** -0.0279**

(0.0122) (0.00309) (0.0183) (0.0169) (0.00808) (0.00915)
None -0.000434 0.00209 0.0216 -0.0255* 0.0161** -0.0152**

(0.00773) (0.00197) (0.0116) (0.0107) (0.00514) (0.00581)
Other 0.0465* -0.000431 -0.0279 -0.00997 0.00771 -0.0203

(0.0193) (0.00498) (0.0289) (0.0266) (0.0130) (0.0145)

Age -6.43e-05 0.000306*** 0.000935* -0.00176*** -0.00155*** 0.00213***
(0.000306) (7.88e-05) (0.000457) (0.000422) (0.000205) (0.000230)

Wealth (log) 0.0407*** 0.00555*** -0.113*** 0.0505*** 0.00838*** 0.00846***
(0.000879) (0.000261) (0.00124) (0.00112) (0.000652) (0.000676)

Income (log) 0.0141*** 0.00256*** -0.00647*** -0.0145*** 0.00336*** 0.00234***
(0.000863) (0.000276) (0.00119) (0.00107) (0.000675) (0.000670)

Year -0.00551*** -0.00112*** 0.00956*** 0.00117 -0.00108* -0.00302***
(0.000667) (0.000181) (0.000982) (0.000904) (0.000463) (0.000505)

Risk Aversion -0.00176* -0.000323 0.00348*** -0.00119 -0.00168*** 0.00158**
(0.000692) (0.000176) (0.00104) (0.000961) (0.000460) (0.000520)

Constant -0.452*** -0.0933*** 1.739*** -0.0648* 0.0456** -0.192***
(0.0230) (0.00625) (0.0337) (0.0310) (0.0160) (0.0174)

Observations 72,465 72,465 72,465 72,465 72,465 72,465
Number of groups 10,730 10,730 10,730 10,730 10,730 10,730

Standard errors in parentheses
*** p<0.001, ** p<0.01, * p<0.05

Table 5.9: Regression Results for Financial Portfolio Allocation: 1992 to 2010. Data source:
HRS.

Financial Decisions After the Recession

Table 5.10 displays the results of a set of models that explore the relationship between
risk aversion and financial portfolio allocation after the great recession. The specifications
of the models are identical to those in Table 5.9 and discussed in the above text, with one
important distinction: the inclusion of an interaction term of risk aversion with the post-
recession years. Because the Great Recession officially began in December 2007 (though,
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arguably, effects were felt for individuals sooner) and ended in July of 2009 according to
the Board of Governors of the Federal Reserve System, and given the precise timing of the
HRS fielding of the survey, the recession in this analysis was coded as the survey years for
2008 and 2010. The interaction term is defined as the individual-level risk aversion measure
multiplied by an indicator variable on the recession years.

The results displayed in Table 5.10 show that the relationship between financial instru-
ments and risk aversion remains similar across time. Importantly, there does not appear to
be a change in relationship between risk aversion and investment in treasury bills, even if
the risky nature of treasury bills changed dramatically during the recession. The coefficient
on the interaction term remains positive and significantly, implying that any multiplicative
effects of risk aversion after the recession remain positive. One possible interpretation of
these results is that individuals did not internalize or comprehend the changing nature of
these financial instruments and thus, did not react appropriately. Other possible interpreta-
tions are that individuals were either too scared or too optimistic to make changes to their
financial portfolios, or that they made diversification choices in non-financial wealth, such
as housing decisions.
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Share Share Share Share Share Share
Stock Bond Savings IRA Roth T-Bill

Gender (ref. male) 0.00900** 0.00317*** -0.00759 -0.0181*** 0.00298 0.0114***
(0.00346) (0.000891) (0.00517) (0.00478) (0.00232) (0.00260)

Race (ref. White)
Black/African-American -0.0432*** -0.00338** 0.140*** -0.0690*** -0.0141*** -0.0120**

(0.00498) (0.00130) (0.00742) (0.00685) (0.00336) (0.00375)
Other -0.0193 -0.00283 0.0771*** -0.0474** 0.00800 -0.0137

(0.0113) (0.00294) (0.0168) (0.0155) (0.00763) (0.00851)
Religion (ref. Protestant)
Catholic -0.00403 -0.00168 0.0151** 0.00954 -0.00838*** -0.0113***

(0.00377) (0.000962) (0.00565) (0.00522) (0.00251) (0.00283)
Jewish 0.0479*** 0.0170*** -0.0886*** 0.0220 0.0269*** -0.0280**

(0.0122) (0.00309) (0.0183) (0.0169) (0.00809) (0.00915)
None -0.000403 0.00209 0.0216 -0.0255* 0.0161** -0.0152**

(0.00773) (0.00197) (0.0116) (0.0107) (0.00514) (0.00581)
Other 0.0470* -0.000434 -0.0280 -0.00966 0.00747 -0.0206

(0.0193) (0.00498) (0.0289) (0.0267) (0.0130) (0.0145)

Age 5.79e-06 0.000306*** 0.000919* -0.00171*** -0.00158*** 0.00208***
(0.000306) (7.89e-05) (0.000457) (0.000422) (0.000205) (0.000230)

Wealth (log) 0.0403*** 0.00555*** -0.113*** 0.0502*** 0.00856*** 0.00874***
(0.000880) (0.000261) (0.00124) (0.00113) (0.000652) (0.000676)

Income (log) 0.0142*** 0.00256*** -0.00649*** -0.0144*** 0.00330*** 0.00225***
(0.000862) (0.000276) (0.00119) (0.00107) (0.000675) (0.000670)

Year -0.00373*** -0.00113*** 0.00924*** 0.00213* -0.00214*** -0.00441***
(0.000701) (0.000196) (0.00102) (0.000939) (0.000496) (0.000533)

Risk Aversion -0.00138* -0.000325 0.00341** -0.000990 -0.00190*** 0.00129*
(0.000694) (0.000177) (0.00104) (0.000962) (0.000462) (0.000521)

Post-Recession Risk Aversion -0.00264*** 1.73e-05 0.000479 -0.00146*** 0.00154*** 0.00206***
(0.000321) (0.000109) (0.000434) (0.000389) (0.000261) (0.000251)

Constant -0.461*** -0.0933*** 1.740*** -0.0704* 0.0512** -0.185***
(0.0230) (0.00626) (0.0338) (0.0310) (0.0160) (0.0175)

Observations 72,465 72,465 72,465 72,465 72,465 72,465
Number of groups 10,730 10,730 10,730 10,730 10,730 10,730
Standard errors in parentheses
*** p<0.001, ** p<0.01, * p<0.05

Table 5.10: Changes in Associations to Risk Aversion Before and After the Recession. Data
source: HRS.

5.5 Discussion

The extent to which measured risk predicts risky behavior over time remains poorly
understand. This paper has addressed two questions. First, does the relationship between
hypothetical risk and measurable risky behaviors remain consistent across both time and
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among individuals? Secondly, does the change in the riskiness of bonds following the 2008
regression change the relationship in portfolio allocations relative to stated risk tolerance
for individuals after the global financial crisis? This analysis shows that the relationship
between measured risk and risky behaviors remains relatively constant across the 15 years
prior to the global financial crisis. Moreover, the relationship between risk aversion and
financial decisions does not appear to change after the Global Financial Recession, though
it is possible that other tradeoffs in wealth protection were made by individuals during this
time period that are not captured in these data.
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Chapter 6

Conclusion

With this chapter, I conclude my dissertation on risk aversion in older Americans. First,
I summarize the main results of the study. Second, I discuss the relevance of the findings
and the limitations of my approach. Last, I propose some avenues for future research.

6.1 Summary

This study provided a quantitative assessment of risk aversion in older Americans by
using both genotype and phenotype data from the Health and Retirement Study (HRS). I
used this data to examine heritability at an overall genome-wide level and at an individual
genetic marker level. I then provided a longitudinal analysis of the role of risk tolerance in
behaviors over time.

In Chapter 2, I explained the data in sufficient detail to facilitate understanding of
the analysis used in subsequent chapters. I described the measures of risk tolerance used
throughout the dissertation and also spent some time discussing the genetic data, including
a discussion of the format, the confidentiality issues, and the quality control measures that
made it relevant for analysis in this dissertation.

Chapter 3 detailed a genetic-wide association study that looked for genetic markers called
SNPs that might be associated with risk aversion. I found no single SNP that passed
significance at the threshold required for this large sample of genetic data. I argued that
a likely interpretation of this result is that risk tolerance is a highly polygenic trait. This
means that the heritability of risk is the result of the aggregation of activity from a large
number of genetic markers along the genome, each with effect sizes too small to detect
with current sample sizes. I then ran a crude analysis of detectability in order to quantify
how many genetic markers this might imply, given an assumed effect size. I discounted the
possibility that there was likely to be fewer than 20 SNPs with moderate effect sizes that
were undetected in my sample.

In Chapter 4, I pulled the view-finder back, so to speak, to examine the overall heri-
tability of risk aversion using genetic variance across the entire genome by way of a method
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called Genome-Wide Complex Trait Analysis (GCTA). While Chapter 3’s analysis focused
on specific spots along an individual’s genome that might be associated with risk tolerance,
the GCTA technique used a maximum likelihood method to calculate total heritability by
examining the total phenotypic and genetic variance across the data sample. The results
of the GCTA analysis indicated that, despite the evidence from twin studies that risk aver-
sion is heritable, there does not appear to be any evidence of heritability in risk aversion in
this HRS sample. The GCTA results showed estimates of near zero, with high statistical
significance. I proposed a number of possible explanations that might explain the lack of
heritability resulting from this study.

Chapter 5 moved away from the genetic view of risk aversion and examined the longi-
tudinal nature of risk tolerance. In this chapter, I aimed to answer two questions. First, I
examined whether risk aversion was a significant indicator of various health-related, labor-
market, and financial decisions for older Americans. I found that for most behaviors exam-
ined, risk tolerance was indeed a significant contributor to these decisions, though its effect
was often smaller than other factors, including factors such as gender or religiosity. Second,
I examined the extent to which this relationship holds true over time. I used the longitudinal
nature of the HRS to examine if the association between risk and behavior varies across time,
where social norms and economic climates might differ. I used a cardinal measure of risk
aversion that took into account the possible problems with measurement error. I found that
the relationship between risk tolerance and behavior was more or less significant in different
years, often with intuitive possible explanations, though not always.

6.2 Implications

The results of the analysis from this dissertation have a number of broader implications.
First, the results of this analysis cast a bit of a shadow on the idea that risk tolerance is

in fact fixed and immutable, as is often assumed in the economic literature and elsewhere.
The results from Chapters 3 and 4 showed that risk tolerance may not be as heritable as
earlier studies suggested, and that these preferences may instead be driven by other forces.
Likewise, the high levels of change in responses between survey waves for individuals may
indeed be attributed to measurement error, or it may indicate that risk tolerance is more
flexible than previously assumed. At the very least, a better understanding of what might
be the more ”fixed” portion of these preferences versus the time-varying component of risk
within individuals should be better understood.

There are also implications for older Americans in regards to retirement and labor-market
decisions. Results from Chapter 5 show that individuals do not necessarily adjust their fi-
nancial portfolios with regards to their stated risk tolerance as economics conditions change.
Given the increasing onus on individuals to make proper financial decisions as retirement
plans move away from pensions and towards self-directed IRAs and other financial instru-
ments, it is more important than ever that risk tolerance and its role in financial planning
be well understood. Scholarly research needs to carefully identify the role of risk tolerance
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and decision-making in order to properly inform financial advisors and individuals on these
important decisions.

Likewise, the same holds true for health policies. Possible interpretations of the results
of Chapter 5 show that there is in fact some elasticity in risk tolerance with regards to
the social norms and public health campaigns of risky activities like smoking and heavy
drinking. Highly risk-tolerant individuals do not seem to change their health behaviors even
in times when the deleterious effects of these behaviors become well-known. Perhaps targeted
interventions that account for risk tolerance may be more effective in curbing dangerous
health behaviors.

Finally, this study has a more general implication towards survey measurement of risk
tolerance. There is still much to be learned about what we are actually measuring when
analyzing the survey measures used. One possible interpretation of the null findings from
the GCTA analysis on heritability that I discussed in Chapter 4 is that the measure of risk
used from the phenotype does not approximate whatever “inherent” or “hard-wired” risk
tolerance may actually exist among individuals. There is a lively debate in a number of fields
about the issue of risk tolerance and its measurement and I hope that the results from these
analyses have made a contribution.

6.3 Limitations

In this section, I discuss the major drawbacks of my analysis. First, I address general
issues regarding the data. Second, I move to specific limitations of the analysis covered in
the analytical chapters of the dissertation.

Perhaps the largest drawback from using this particular data in the analysis is the low
variation in the responses to the risk aversion question. This is a problem for two reasons.
First, because the HRS is a survey of older populations, the large majority of respondents
are categorized as the most risk averse. Second, because the question was not asked to all
persons in all years, there is sometimes little overlap between survey waves. This makes
doing some longitudinal work difficult. However, I believe I successfully circumvented this
issue by using the cardinal measure I introduced in Chapter 5, but this does mean it is
nearly impossible to perform any longitudinal analysis on the original categorical data. The
GWAS study was also limited by the issue of a lack of overlapping samples between waves. A
sizeable share of the original sample was lost when I had to restrict the sample to individuals
who had both a response for the risk aversion question and also had genetic data available.

Part of the analysis from Chapter 5 focused on any changes in potentially risky behavior
that might occur in different economic or financial climates, with particular attention paid
to shifts made in financial portfolios. However, because the HRS starts at age 50, it is
not possible to gather much information about these changes earlier in life. It is possible
that individuals may be making more shifts in portfolio allocation earlier in life when they
anticipate that the horizon for their working life is becoming smaller. If that is the case, my
analysis will not capture these actions.
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6.4 Further Study

This dissertation has been an exciting learning process, and this process will not end
with the completion of this chapter. As with all research, answers to one question lead to
many more questions, and this endeavor has proven to be no exception. Over the course
of my study, research questions have multiplied and with them my enthusiasm to address
each one. Below I propose some avenues of research that I will pursue in the near future.
One possible area of refinement concerns the GWAS results. As I mentioned in Chapter
3, because it is likely that risk aversion is the function of numerous SNPs and therefor
highly polygenic, it would require a very large number sample of individuals to identify the
SNPs involved. This is a direct consequence of the difference in the extremely large number
of SNPS available (nearly 2 million) relative to the small number of individuals available
(approximately 10,000). There are two possible improvements that can be made to reduce
this statistical issue: one must either reduce the number of SNPs or increase the number
of individuals in the study. I propose one future research project for each of these two
possibilities.

First, I would like to run another GWAS with the same sample of individuals from
the HRS but on a smaller, more refined number of SNPs. There are no known SNPs for
risk aversion to date, but there have been a number of positive findings in GWAS studies
on phenotypes that might be associated with risk. These include educational attainment,
extraversion, and neuroticism. These phenotypes have all been shown to be related to the
risk aversion. It may be, then, that they share a set of genetic markers as well. A careful
meta-analysis of the GWAS literature may narrow down a list of SNPs associated with related
phenotypes on which to run the GWAS for risk. With a sample of individuals around 10,000,
this may be sufficient to detect any SNPs that have small effects. Running a GWAS on the
full panel of available SNPs assumes no prior knowledge of the genetic correlates to risk,
which seems appropriate given there had been no prior genetic study of risk.

A second project in this vein involves increasing the sample size of individuals. As I
mentioned in previous chapters, there are attempts to increase sample sizes for complex
traits by consolidating various social science surveys through consortium efforts, similar to
what has been done in the psychology and medical literature for a number of years, most
notably through the establishment of the Social Science Genetic Association Consortium
established in 2011. As the number of social surveys with genetic material increases, so does
the ability to test for associations with larger sample sizes. Still, the number of phenotypes
has been limited to a short list, which includes self employment and educational attainment,
that can be universally measured. For the time being, risk aversion is still measured in a
myriad of ways. However, this might not always be the case. Both Ad Health and the PSID
have the identical measure of risk aversion used in the HRS, and Ad Health already has
genetic material available and the PSID has plans to include it. It is possible that the ability
to combine samples of individuals who have an identical measure of risk aversion to run a
GWAS may not be in the distant future. If and when that time arrives, I hope to be the
first to expand on my original GWAS analysis with a larger sample.
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Additionally, the results from the GWAS and the GCTA analysis are somewhat at odds
with previous research using twin studies and candidates genes that suggest a heritability of
risk should be present. This tension leaves me feeling intellectually unsettled. I would like
to find a way to explore this discrepancy more fully.

Finally, I would like to move away from risk aversion to explore the phenotype of cogni-
tion. Cognition, like risk tolerance, is a central part of life —particularly for older Americans
—and yet remains poorly understood. The HRS has dedicated significant effort to carefully
measuring cognition and has some of the richest longitudinal data on cognition that exists.
Moreover, my GCTA analysis shows that positive heritability estimates can be gleaned from
the GWAs data, which is in line with the twin studies and candidate gene literature. There
are a number of potential inquiries related to this data. Of particular interest to me is the
role of cognitive decline in older Americans on a variety of subsequent outcomes. While it
is unlikely that there are a number of alleles with strong effects that would be highly deter-
ministic in any model, it may be possible to create a genetic risk score that could be used
in models of retirement decisions, insurance purchase, and financial decision-making.
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