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Recent years have seen a significant slowdown of density scaling in advanced semiconductor

integrated-circuit products, despite multiple innovations in patterning technologies, device and cell architec-

tures, and design methodologies. Designers are unable to fully leverage the potential power, performance,

area and cost benefits offered by new process technologies. Root causes of this inability include the

explosion of scenarios in timing signoff, front-end-of-line (FEOL) layout rules that affect placement,

sizing-placement interactions that require new co-optimizations, back-end-of-line (BEOL) layout rules

and cell height scaling that impact routing, and the increasingly dominant role of BEOL parasitics on final

design quality. To address these challenges for modern system-on-chip physical design and signoff in

advanced manufacturing nodes, new design optimization techniques as well as methodologies for design-
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technology co-optimization are required. Accordingly, this thesis presents new physical optimization and

evaluation methodologies, organized according to three main thrusts.

To address the explosion of corners and modes in timing signoff and the emergence of new

sizing-placement interactions, the post-placement gate sizing optimization thrust of this thesis presents a

gate sizing optimization considering multi-corner multi-mode constraints; a minimum implant rule-aware

gate sizing and placement co-optimization; and heuristics for potential fine-grain exploitation of FDSOI

technologies.

To address the challenges to scaling brought by new placement rules and reduced-track cell architec-

tures, the detailed placement optimization thrust of this thesis presents an integer linear programming-based

incremental detailed placement optimization that considers inter-row and intra-row placement constraints;

and a detailed placement optimization that reduces wirelength in the context of new cell architectures with

vertical M1 pins.

To address the need for design-technology co-optimization, the evaluation of design enablement

thrust of this thesis presents analyses of impacts of patterning technology choices and associated routing

rules on physical implementation density; a study of impacts of BEOL dimensions on block-level power

and area; and a methodology for assessment of routing capacity of a BEOL stack as well as inherent

capability of routers.
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Chapter 1

Introduction

In recent years, the semiconductor industry has struggled to continue the scaling trajectory of

Moore’s Law, i.e., 2× transistor layout density in each successive technology node. Density scaling in

recent technology nodes has been achieved using a variety of levers, including new patterning technologies,

new device and cell architectures, and new design methodologies. This has come at the cost of enormous

R&D investments in manufacturing technology and design enablement. However, despite these efforts,

the past decade has seen a notable slowdown in the scaling of actual IC product quality of results (QoR).

This slowdown is due to a weakened ability of design methodologies to exploit the “available scaling”

afforded by process and device innovation. In other words, current design enablements are unable to extract

sufficient power, performance, area and cost (PPAC) benefits from new nodes. As depicted in Figure 1.1,

there is a significant gap between the actual density scaling and the available scaling from technology.

Since 2008, the actual density scaling (red squares) has slowed down to 1.6× per node, in contrast to 2×

per node of available density scaling (gray arrow).

This thesis addresses root causes of the slowdown in scaling of IC design quality, and proposes

improved design methodologies to tackle physical design challenges in advanced technology nodes.
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Figure 1.1: Design capability gap [182][81]. The gray arrow shows the “available” density scaling, and
the red squares show the “actual” density scaling, in MPU products.

1.1 New Challenges in Advanced Technology Nodes

Root causes of the slowdown in design scaling include the explosion of scenarios in timing signoff,

front-end-of-line (FEOL) layout rules that affect placement, sizing-placement interactions that require new

co-optimizations, back-end-of-line (BEOL) layout rules and cell height scaling that impact routing, and

the increasingly dominant role of BEOL parasitics on final design quality.

1.1.1 Challenges in Gate Sizing Optimization

Discrete gate sizing has been widely adopted for timing and power optimization. The gate sizing

optimization has been studied for many years in academia. However, with new timing signoff challenges

introduced by the explosion of signoff modes and corners, and with new placement constraints in particular

technologies (i.e., Fully Depleted Silicon On Insulator (FDSOI) and sub-22nm), traditional gate sizing

methods are no longer suitable for optimization of current real-world designs.

Explosion of Signoff Modes and Corners

Design methodologies for complex modern systems-on-chip (SOCs) introduce a large number of

signoff modes and corners, resulting in a huge burden for timing signoff and gate sizing optimization tools.

A primary cause of this complexity is the need for extreme low-power consumption in modern SoC designs,

such as mobile and IoT products. Multiple scenarios or modes are mandatory, along with mode-specific

2



design optimizations. For example, mobile products can have sleep and functional modes, and mode-

specific power minimization is required to maximize battery life. Modern SoC products can have dozens

of modes, each with its own signoff criteria; these modes typically include functional (scenario-based,

overdrive, underdrive) and test (scan, at-speed, BIST) modes.

In addition to multiple functional modes, multiple supply voltages and multiple power domains

increase voltage corners. In recent technologies, particular with FinFET devices, the use of extreme supply

voltage scaling has completely changed the delay-power tradeoff in gate sizing, and has brought many

new challenges (e.g., slew times and gate-dominance vs. wire-dominance across signoff corners) to gate

sizing optimizations. The growing impact of manufacturing variations in back-end-of-line (BEOL) and

front-end-of-line (FEOL) processes further increases the number of corners that must also be considered

during design optimization and signoff. For example, BEOL corners now include Cw, Ccw, Cb, RCw,

RCb, etc.; FEOL corners now include FF, SS, TT, FS, SF, SSG, FFG, etc.

Gate Sizing and Placement Interaction

Continued technology scaling has been possible only with introduction of multiple-patterning

technologies and complex design rules. In older technologies before the 22nm node, standard-cell layouts

are “composable by construction”: arbitrary placements of cells in rows are legal and manufacturable,

unless there is an overlap between two cells. However, in advanced technology nodes, the individual cell

size has continued to decrease relative to minimum patternable feature sizes. As a result, free composability

of cells in placement rows is no longer guaranteed, and placement legality can depend on how a cell is

placed in relation to its neighbors. This leads to new challenges for physical design, e.g., interdependencies

between gate sizing and detailed placement. Two prominent examples of new placement constraints are

the minimum implant area (MinIA) constraint and the Vt abutment rule in FDSOI.

Implant (active) layers, which indicate regions for ion implantation, determine the threshold

voltage (Vt) of transistors. The implant layer dimension is typically matched to the width of standard cells

if the cells consist of single-Vt transistors. Due to the limitation of patterning technologies, minimum

width rules for implant layers are introduced to form legal shapes in terms of patterning. Such minimum

width rules have become smaller than the minimum cell width in sub-22nm – such that narrow cells
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cannot be sandwiched between different-Vt cells. As a result, sizing problem formulations of downsizing

and Vt-swapping operations (which by definition do not cause overlaps, and are hence benign in older

technologies) must now comprehend spatially adjacent cell instances and whitespace in order to avoid

creation of sandwiched narrow cells.

Another example of sizing-placement interaction can be seen in FDSOI. Due to the unique FDSOI

device structure that does not have a body node, low-Vt devices are implemented using a special flip

well structure, while regular Vt devices are implemented using the conventional well. As the wells are

flipped, abutting low Vt and regular Vt cells induces a well bias conflict. Due to these constraints, sizing

optimizations must have region awareness: low-Vt cells must be spatially contiguous, forming islands in

the placement.

1.1.2 Challenges in Placement Optimization

Technology scaling to 10nm and below introduces complex intra-row and inter-row constraints

in standard-cell detailed placement. Examples of such constraints are found in rules for drain-drain

abutment, minimum implant region area and width, oxide diffusion (OD) notching and jogging. These

new rules change the definition of “legal” placement, which was simply “non-overlapping” placement in

older technologies. Detailed placers must now consider intra-row and inter-row constraints during the

optimization to maintain the wirelength / timing / power QoR while achieving legal placements.

Cell architectures also have been changed for better detailed routing. For example, “middle-of-line”

layers below M1 are used to gain additional routing resources. New cell architectures wherein inter-row

M1 routing is allowed force consideration of vertical alignment of cells. The rapid emergence of new

placement rules and new cell architectures motivates the introduction of a new final legalization phase for

standard-cell placement tools in advanced (particularly, 10nm and 7nm) foundry nodes.

1.1.3 Challenges in Design-Technology Co-optimization

In advanced technology nodes, BEOL interconnect geometry has become a key lever for design

enablement, and a focal point for design-technology co-optimization, due to its significant impact on

physical design QoR. Complex design rules and more pervasive use of multi-patterning in the BEOL has

4



increased the difficulty of maintaining high layout densities. Intuitively, emerging constraints such as

unidirectional patterning or increased via spacing will decrease achievable density of the final place-and-

route solution, worsening die area and product cost. Also, the rapid increase of interconnect RC leads to

not only performance loss from interconnect delay increase, but circuit power and area degradation as well.

Optimization of BEOL dimensions (i.e., wire width, spacing and thickness subject to a given layer’s pitch

constraint) across the entire metal layer stack is crucial to achieve better product performance, power, area

and cost.

1.2 This Thesis

To address the new challenges in modern SoC physical design and signoff in advanced nodes, this

thesis presents new physical optimization and technology assessment methodologies. Figure 1.2 illustrates

the scope and organization of this thesis, in which three main thrusts respectively address three major

challenges:

• Post-placement gate sizing optimization;

• Detailed placement optimization; and

• Evaluation of design enablement.

To address the explosion of corners and modes in timing signoff and the emergence of new

sizing-placement interactions, the post-placement gate sizing optimization thrust of this thesis presents a

gate sizing optimization considering multi-corner multi-mode constraints; a minimum implant rule-aware

gate sizing and placement co-optimization; and heuristics for potential fine-grain exploitation of FDSOI

technologies.

To address the challenges to scaling brought by new placement rules and reduced-track cell architec-

tures, the detailed placement optimization thrust of this thesis presents an integer linear programming-based

incremental detailed placement optimization that considers inter-row and intra-row placement constraints;

and a detailed placement optimization that reduces wirelength in the context of new cell architectures with

vertical M1 pins.
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To address the need for design-technology co-optimization, the evaluation of design enablement

thrust of this thesis presents analyses of impacts of patterning technology choices and associated routing

rules on physical implementation density; a study of impacts of BEOL dimensions on block-level power

and area; and a methodology for assessment of routing capacity of a BEOL stack as well as inherent

capability of routers.

The remainder of this thesis is organized as follows.

Figure 1.2: Scope and organization of this thesis.

• Chapter 2 presents three distinct gate sizing methodologies that address new challenges in timing

signoff, and the interaction between sizing and detailed placement. First, we study important

constraints of modern industrial designs that are generally not comprehended by previous academic

sizing works. In our study, we point out that various optimization techniques used in academic sizers

can fail to offer benefits in product design contexts due to differences in the underlying optimization

formulation and constraints. To address this gap, we develop a new robust academic sizer, Sizer, from

a fresh implementation of Trident [84]. Experimental results show that Sizer is able to achieve up to

10% leakage power and 4% total power reductions compared to leading commercial tools on designs

implemented with foundry technologies, and 7% leakage power reduction on a modern industrial

design in the multi-corner multi-mode (MCMM) context. Second, we propose heuristic methods that

fix MinIA violations and reduce power with gate sizing, while minimizing placement perturbations
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that potentially create extra timing violations. Compared to recent versions of commercial place-and-

route (P&R) tools, our methodologies achieve significant reductions (up to 100%) in the number of

MinIA violations while satisfying timing and power constraints. Third, we study heuristic methods

for potential exploitation of fine-grained mixed-Vt (and body biasing) in FDSOI implementation,

via a novel “speed domain partitioning” (SDP) problem formulation. We explore a broad space of

implementation flows, then perform a detailed investigation of two implementation flows: an integer

linear programming (ILP)-based approach, and a sensitivity function-based heuristic approach. For

implementations using “generic” library options, up to 20% speed improvement with 53% LL region

area is seen for one out of four testcases studied. For implementations using “rich” library options,

up to 7% speed improvement with 26% LL region area is achieved. In our experiments, we observe

that outcomes are strongly library- and design-dependent. We therefore provide a discussion of

root-cause, intrinsic difficulties of fine-grained exploitation of mixed-Vt in FDSOI technology. We

furthermore suggest a “decision tree” to help assess a design’s amenability to fine-grained mixed-Vt

(as well as body-biasing based) implementation, and to help guide design flow selection for better

design QoR.

• Chapter 3 presents two distinct methodologies for detailed placement optimization for advanced

VLSI manufacturing. First, we develop a mixed integer-linear programming (MILP)-based placer,

called DFPlacer, for final-phase design rule violation (DRV) fixing. DFPlacer finds (near-)DRV-

free solutions that consider various complex FEOL layout constraints including minimum implant

width, drain-drain abutment, and oxide diffusion jogs. To overcome the runtime limitation of

MILP-based approaches, we implement a distributable optimization strategy based on partitioning

of the block layout into windows of cells that can be independently legalized. Using layouts in an

abstracted 7nm library, we find that DFPlacer fixes 99% of DRVs on average with minimal impacts

on area and timing. We also study an area-DRV tradeoff between two types of standard-cell library

strategies, namely, with and without dummy poly gates. Second, we propose again a MILP-based,

detailed placement optimization to maximize direct vertical M1 routing utilization for congestion

and wirelength reduction.
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• Chapter 4 presents three distinct evaluation methodologies for design flows and technology enable-

ments. First, we study impacts of patterning technology choices and associated design rules on

physical implementation density, with respect to cost-optimal design rule-correct detailed routing. A

key contribution is an integer linear programming (ILP) based optimal router (OptRouter) which

considers complex design rules that arise in sub-20nm process technologies. Using OptRouter, we

assess wirelength and via count impacts of various design rules (implicitly, patterning technology

choices) by analyzing optimal routing solutions of clips (i.e., switchbox instances) extracted from

post-detailed route layouts in an advanced technology. Second, we study BEOL interconnect stack

geometry by exploring wire aspect ratio (AR) and wire line-space duty cycle (DC). We perform

SPICE-based analyses of timing path delays to find delay- or power-optimal (AR,DC) combinations,

and also perform block-level studies with placed and routed designs. Based on our experimental

results, we provide various insights on BEOL stack geometry: (i) optimal (AR,DC) for a given wire

pitch with respect to power and delay; (ii) sensitivities of optimal (AR,DC) to circuit parameters

(e.g., driver strength, input slew, output load, wirelength); (iii) optimal (AR,DC) when multiple

interconnect layers are considered; and (iv) potential impacts of BEOL stack optimizations within

future design-aware manufacturing and/or manufacturing-aware design methodologies. Third, we

propose a systematic framework to measure routing capacity of a BEOL stack as well as inherent

capability of routers. Based on our experimental results, we observe consistent results across mesh-

like placement and placements from various placers. Also, our proposed framework enables new

insights into important questions regarding BEOL stack options. Using our framework, we further

empirically study the relation between the routing hotspot size and routing failure. Lastly, we present

an analytical study based on exponentiation of a Markov transition matrix about the impact of design

size on routing failure.

• Chapter 5 concludes the thesis.
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Chapter 2

Gate Sizing Optimizations for Advanced

VLSI Technologies

Discrete gate sizing has been widely adopted for timing and power optimization. The gate sizing

optimization has been studies for many years in academia. However, with the new timing signoff challenge

that is introduced by the explosion of signoff modes/corners and new placement constraints in particular

technologies (i.e., FDSOI and sub-22nm), traditional gate sizing work is no longer suitable for current

real-world designs. In particular, the new placement constraints induce a new problem formulation wherein

gate sizing and detailed placement are tightly linked. Examples of the new placement constraints include

the minimum implant area (MinIA) constraint and the Vt abutment rule in FDSOI. More specifically, with

MinIA rule, a narrow cell cannot be sandwiched between different-Vt cells. In FDSOI, different-Vt (i.e.,

LL, LR) devices must be isolated from each other, which makes realization of fine-grained mixed-Vt and

body-biasing in layout extremely challenging.

This chapter presents three distinct gate sizing methodologies that address new challenges in timing

signoff and the interaction between sizing and detailed placement. First, we study important constraints of

modern industrial designs that are generally not comprehended by previous academic sizing works. In this

study, we point out that various optimization techniques used in academic sizers can fail to offer benefits in

product design contexts due to differences in the underlying optimization formulation and constraints. To
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address this gap, we develop a new robust academic sizer, Sizer, from a fresh implementation of Trident

[84]. Experimental results show that Sizer is able to achieve up to 10% leakage power and 4% total power

reductions compared to leading commercial tools on designs implemented with foundry technologies,

and 7% leakage power reduction on a modern industrial design in the multi-corner multi-mode (MCMM)

context. Second, we propose heuristic methods that fix MinIA violations and reduce power with gate sizing

while minimizing placement perturbation to avoid creating extra timing violations. Compared to recent

versions of commercial P&R tools, our methodologies achieve significant reductions (up to 100%) in the

number of MinIA violations under timing/power constraints. Third, we study heuristic methods aimed

at exploitation of fine-grained mixed-Vt in FDSOI implementation. We propose a novel speed domain

partitioning (SDP) problem formulation that comprehends the spatial contiguity restrictions arising from

flip-well structure of LL regions in popular 28nm commercial FDSOI offerings. We explore a wide space

of implementation flows that include an Integer Linear Programming (ILP)-based approach, and a heuristic

(sensitivity-based) optimization. For implementations using generic library options, up to 20% speed

improvement with 54% LL region is seen for one out of four testcases studied. For implementations using

rich library options, up to 7% speed improvement with 26% LL region is achieved. We further provide a

discussion that summarizes rootcause, intrinsic difficulties of fine-grained exploitation of mixed-Vt.

2.1 Enhancing Sensitivity-Based Power Reduction for an Industry IC De-

sign Context

Discrete gate sizing, i.e., change of gate width and length, and Vt type, has been widely adopted

for timing and power optimization. Gate sizing optimization can be applied at every design stage, e.g., post-

synthesis, post-placement and timing ECO. It is especially suitable for late-stage, post-routing optimization

since it incurs relatively small perturbation to the design netlist and layout compared to other optimizations

such as logic restructuring and buffer insertion. The importance of gate sizing optimization has been

emphasized by both industry and academia for a number of years. The 2012/2013 ISPD gate sizing

contests [119][120] have given practical impetus to academic research, using industry-standard benchmark

data formats and constraint types. The ISPD contest enablement spans consideration of interconnect
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parasitics, maximum transition time (MaxTran) and capacitance (MaxCap) constraints, and use of a

commercial signoff timer for timing analysis. Several academic sizers achieve good performance on the

contest benchmarks. However, due to highly artificial gate delay/power modeling, as well as the lack of

real-world timing constraints, winning codes are unlikely to be able to handle core challenges of gate sizing

optimization in modern industrial designs. Indeed, it is our observation that the simplified constraints

in contest benchmarks can potentially drive academic sizers in wrong directions. This section describes

our experience in identifying and overcoming this mismatch, as we evolved a successful academic sizing

approach to perform well in an industry design context.

Limitations of Academic Sizers

We observe that the academic sizing context has several potential inadequacies or gaps with respect

to commercial use cases, including the following. While an academic contest will never match the “real

world”, we wish to highlight gaps that potentially mislead academic research efforts’ identification of

promising directions.

(1) Important constraint scenarios are overlooked in the academic context. Notably, con-

straints given by academic contests do not include multi-corner multi-mode (MCMM) timing analysis.

MCMM timing signoff is essential for modern product designs, where chip designs typically operate (i)

under various operating conditions with different temperatures and voltages, (ii) in multiple functional

scenarios such as sleep mode and active mode, and (iii) in a regime of manufacturing process variations

[172][198]. In digital timing signoff, a timing corner represents a particular combination of process,

voltage and temperature (PVT) status, and corresponds to a set of timing libraries (Liberty) characterized

for that dedicated PVT corner. A mode represents a functional scenario, and is characterized by timing

constraints (SDC). A timing view is defined by a pair of a timing corner and a mode [172][198]. In the

MCMM context, multiple timing views are considered, and must be simultaneously comprehended by gate

sizing optimization.

In the MCMM context, the electrical properties of each gate, and of its driven net, vary over

different corners. We discuss below how achieving and maintaining timing signoff across multiple corners

and modes (e.g., nominal, turbo and test modes) seems to require very different optimization strategies
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from optimizations that are successful for a single corner/mode. Further, a gate sizing optimization that

does not comprehend multiple corners/modes cannot – to our knowledge – achieve a timing-legal solution

for all corners and modes. Handling of other constraint types, such as multiple clock/power domains, or

timing exceptions, seems to be further removed from the core heuristic design of a gate sizing tool.

(2) Academic sizers are not “robust” across different designs and technologies. Due to the

nature of contests, academic sizers can be “over-trained” with the specific set of testcases and objectives

that are given by a contest. [87] evaluates a commercial sizer and a contest-winning academic sizer

with both contest benchmarks and real designs synthesized with foundry technologies. The academic

sizer is observed to perform better on contest benchmarks while showing worse results on real designs,

as compared to the commercial sizer. The authors of [87] point out that the change in tools’ relative

superiority across technologies raises the possibility that the academic sizer might be specialized to the

contest benchmark designs.

In our experience, an academic sizer that applies strategies particularly adapted to contest bench-

marks may not be capable of producing good solutions for real-world designs. The reasons are (i) real

designs can differ from contest designs with respect to timing slack distribution, netlist structure, instance

count, etc.; and (ii) academic sizers trained for a particular contest technology may not perform well

with different technologies since the electrical characteristics (i.e., leakage/dynamic power-delay tradeoff

curves of standard cells) can differ meaningfully across process technologies. We have also found that (iii)

the simplified and artificial delay/power Liberty model of academic contests cannot capture meaningful

electrical attributes of production cell libraries. More specifically, nonlinear and state-dependent power and

delay values, nonlinear input capacitance values, and multiple power/ground pins, which are generally seen

in foundry Liberty models, are absent from the ISPD contest Liberty models. Due to unrealistic Liberty

models, contest benchmarks might not expose core challenges of sizing optimization in product designs.

For instance, fixing MaxTran violations in an MCMM context was not comprehended. This creates a risk

of misdirecting considerable academic research effort.

(3) Sizing contests typically do not require support for standard formats of Liberty and

design files. Examples of standard formats include Verilog netlist (.v), extracted interconnect parasitics

(SPEF), and timing constraints (SDC). Typically, contest organizers provide simplified versions of such
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files with a parser that only comprehends the simplified input formats. (Yet, open-source and arguably

more robust parsers for the full standard formats are available, e.g., [205] [186] [193].) In our view, the

lack of (insistence on) support for standard formats unnecessarily hampers transfer of academic sizers to

real-world design applications. This necessitates workarounds such as those developed in [87]. Importantly,

efforts that chain together the executables of entries from multiple academic contests are blocked from

assessment in real-world contexts.

Our Work

In this work, we present key learnings from a multi-year “journey” to make an academic sizing tool

applicable to, and yield benefits for, a real industrial IC. We describe aspects of modern industrial designs

that are generally not comprehended by academic sizers, but that strongly affect choice of optimization and

metaheuristic techniques. We also observe how various optimization techniques used in academic sizers

might not be appropriate for product designs due to practical issues such as runtime. We have addressed

such gaps between contest-driven research and the real-world application by developing Sizer, a new,

robust gate sizing optimization tool that incorporates a near-complete change of techniques as compared to

our starting point of Trident [84]. The transition from an academic contest setting to real-world designs

shows that techniques beneficial in the contest setting may not have benefit for real designs – forcing the

development and tuning of a number of new techniques. Ultimately, Sizer achieves 7% leakage power

reduction over the commercial tool’s high-effort solution on a production design, with signoff at over two

dozen mode-corner combinations.

Our contributions are summarized as follows.

• We highlight gaps between academic sizers and commercial sizers due to missing real-world con-

straints and the characteristics of industrial designs. We describe challenges of transfer/productization

that include MCMM timing signoff, MaxTran constraints, hold time constraints, and complex timing

structure of a product design.

• We suggest that the “competitive landscape” of the gate sizing optimization – including aspects that

are particularly challenging to academic approaches – should be better conveyed to the research
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community. Our experiences with Sizer highlight how obliviousness to aspects of real-world

application such as practical runtime/memory limits, input-dependent performance models, etc. can

easily prevent assessment of an academic sizer within a commercial design context.

• We develop Sizer, a new academic gate sizing tool that is applicable to modern industrial designs.

Results reported below show that Sizer achieves solution quality improvement over high-effort

commercial tool results, and achieves benefits for a real industrial IC. Sizer embodies a near-total

change of techniques as compared to the starting point of Trident [84], which had been successful at

the ISPD-2013 gate sizing contest [120].

• We implement dynamic and total power estimations which enable Sizer to go beyond the original

contest optimization objective i.e., leakage power-only optimization, and to smoothly control the

tradeoff between dynamic and leakage power optimization.

• We compare Sizer with two leading commercial sizers.1 We achieve 7% leakage power reduction

over the high-effort solution of a commercial tool on a design from NXP Semiconductors [190]. We

also successfully apply Sizer to various testcases synthesized with different foundry technologies.

• We study the impact of various sensitivity functions on the solution quality of Sizer and provide

intuition regarding the choice of sensitivity functions.

2.1.1 Related Work

Reflecting the importance of the application, numerous algorithms for both continuous and discrete

gate sizing optimizations have been proposed in the literature. Earlier works have focused on continuous

gate sizing that optimizes parameters of transistors [43] or of standard cells, such as drive strength, input-pin

capacitance, etc. Discrete or library cell-based gate sizing works have applied a wide variety of optimiza-

tion techniques – Lagrangian relaxation (LR) [26][29][44][69][99][113][121][131][134][136][150][161];
1The two commercial sizers are from two commercial entities and are selected from among various commercial sizers

(standalone, or integrated in a timing or a place-and-route tool) that are listed under Timing Analysis, ASIC Layout and/or Power
Analysis and Optimization by the industry analyst firm Gary Smith EDA [177] over the past three years. The universe for this
selection includes Synopsys PrimeTime [198], Cadence Encounter Digital System / Innovus [171][174], Blaze MO [200], and
Cadence Tempus [172]. We are unable to identify the tools more specifically due to license restrictions and sensitivity of EDA
vendors.
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Table 2.1: Summary of works on gate sizing optimization.
Work Year Framework Objective Interconnect MaxTran MaxCap MCMM Real

LP LR DP SF BB SA RA Leakage TotalPwr Delay Area delay designs
[13] 90 X X
[34] 05 X X X
[77] 09 X X
[26] 99 X X X
[29] 05 X X
[69] 11 X X X

[44][99][113] 14, 12, 14 X X X X X
[121][122] 11, 12 X X X X X X
[131][134] 13, 15 X X X X

[136] 15 X X X X X
[150] 02 X X X
[161] 15 X X X
[65] 09 X X
[111] 10 X X X
[130] 11 X X X X
[133] 13 X X X X
[157] 09 X X X
[58] 06 X X X

[66][129] 12, 12 X X X X X X
[84] 13 X X X X X X X

[144][154] 04, 00 X X
our work X X X X X X X X

dynamic programming (DP) [65][111]; sensitivity function (SF) [58][66] [84][129][144][154]; branch and

bound (BB) [130]; linear programming (LP) [13][34][77]; parallel and randomized algorithm (RA) [157];

and Simulated Annealing (SA) [133]. Table 2.1 taxonomizes previous gate sizing work. Columns 2 – 8

contain the frameworks that are used for each gate sizing approach. Columns 9 – 12 show the objective

function of each work. Columns 13 – 16 show the important considerations for real-world gate sizing.

The last column shows whether the literature applies its approach to real product designs. An overview

of selected recent literature for two popular frameworks, LR and SF, is as follows. Some previous works

cannot be categorized into a single particular framework, since more than one frameworks or techniques

are used. We attempt to categorize each reference according to the predominant framework or technique

used.

LR-based approaches. A number of recent works use LR-based methods for gate sizing opti-

mization. A successful recent application of LR-based gate sizing optimization for industrial designs is

described by Ozdal et al. [121][122]. In [121][122], a cost function comprehending the tradeoff between

power and timing slack is formulated and then relaxed to a Lagrangian subproblem by Karush-Kuhn-Tucker

conditions as in [26]. The subproblem is modeled as a graph problem and solved by using critical tree

extraction and DP-based optimization. The work of [121][122] is notable for its thorough treatment of

real-world issues such as those we highlight. But, details of implementation are not available to the
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research community. Subsequent academic work driven by [119][120] does not capture real-world issues

as [121][122] do. Huang et al. [69] suggest a method to obtain Lagrangian multipliers based on the

timing history of previous iterations to improve the conventional subgradient-based method. Rahman et al.

[131] use an extended logical effort for gate delay modeling to formulate LR problems to which dynamic

programming is applied. Flach et al. [44] propose a gate sizing optimization flow that combines LR-based

framework and various heuristics. In [44], the LR problem is solved by a sensitivity-based approach;

greedy timing and power optimization is subsequently performed. Reimann et al. [134] extend [44] to

adapt the LR-based gate sizing to industrial designs. In [134], runtime scalability, preserving timing quality

and incremental optimization are considered. Roy et al. [136] solve the gate sizing problem in the context

of multiple operating conditions. They extend the LR-based gate sizing approach of [26][121] to support

multiple scenarios. More specifically, the authors of [136] use the weighted sum of leakage and dynamic

power across different operating conditions as the objective function.

We note that many of LR-based works construct simple analytic gate delay models to encompass

the discrete gate sizes found in Liberty gate timing libraries. Such analytic gate delay models might not be

accurate due to nonlinear characteristics of gate delays. The suboptimality caused by the combination of

inaccurate delay models and intrinsic discreteness of the gate sizing problem is one of the major limitations

of LR-based approaches. Furthermore, for industrial designs, model-based mathematical methods may be

inefficient due to complex constraints such as MaxTran and MaxCap.

SF-based approaches. Wei et al. [154] use the sensitivity function (SF) approach (i.e., iteratively

making discrete sizing moves to follow the gradient of a given SF) for simultaneous sizing and dual-Vt

assignment. Srivastava et al. [144] propose a dual-Vdd and dual-Vt assignment method based on sensitivity

calculations. Gupta et al. [58] use the sensitivities of leakage and delay to gate-length biasing for leakage

power optimization. Rahman et al. [129] apply a cost function that considers total slack and leakage

changes. Kahng et al. [66] propose sensitivity-guided metaheuristics based on sequential importance

sampling and a multistart technique with various sensitivity functions to optimize gate sizing and Vt flavor

for minimized leakage. In follow-on work, the optimizer is improved with an efficient and accurate internal

timer based on various delay models [84]. To ensure the accuracy of the internal timer, timing information

is correlated to the signoff timer’s analysis during the gate sizing optimization, using techniques proposed
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in [117][85].

Our work is distinguished from previous literature in that – to the best of our knowledge – it is the

first academic work, available to public [203], that simultaneously addresses all the essential constraints

for industrial designs. Further, we provide evaluation using a product design in an industry context.

2.1.2 Constraints for Modern Industrial Designs

We now review examples of practical constraints that are not emphasized in previous published

works and academic contests, but are critical for modern industrial designs.

Ozdal et al. [121][122] give a comprehensive summary of the main optimization challenges for

gate sizing in modern industrial designs. These challenges are formulated in the ISPD-2012 and the

ISPD-2013 Gate Sizing Contests [119] [120]; many practical considerations such as use of a golden

signoff timer, interconnect parasitics, maximum transition and capacitance constraints are addressed in

the provided testcases. However, in addition to unrealistic Liberty, we find that there are several missing

constraints that must be considered for a product design in industry.

Multi-Corner Multi-Mode (MCMM). For modern product designs, a number of PVT corners,

along with various functional modes, must be considered during timing signoff. Due to the different delay

and power characteristics of cells across multiple corners, it is difficult to achieve a converged solution in

the MCMM context. In other words, a signed-off netlist at a particular corner and mode could have timing

violations at other corners and modes. Furthermore, there exist “ping-pong” situations where an upsizing

move for setup timing recovery in a timing view (a pair of PVT corner and mode) causes timing violations

in another timing view. Figure 2.1 shows an example of the ping-pong situation. We assume that C2 and

C4 are on the setup timing-critical path in view1, and that C1, C3, C5 and C6 are on the timing-critical

path in view2. To reduce the critical path delay in view1, C2 must be upsized. However, the increased

input capacitance of C2 increases the load capacitance of C1 (a fanin cell of C2) and thus increases C1’s

delay. As a result, a timing violation occurs in view2. Similarly, upsizing cells in view2 can create timing

violations in view1. In modern process technologies, the ping-pong situations become significantly worse

with the explosion of PVT corners [82]. A gate sizing optimization must comprehend the timing impact of

each Vt swapping or width sizing move in all views simultaneously, and be able to avoid the ping-pong
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situations efficiently to obtain a converged solution.

Critical in view1

Critical in view2

C1

C2

C5

C3

C4

C6

Upsizing C2 for view 1 
⇒ Delay C1 ↑ in view 2
⇒ Upsizing C5 for view 2
⇒ Delay C2 ↑ in view 1
⇒ Upsizing C4 for view 1
⇒ Delay C6 ↑ in view 2
⇒….

Figure 2.1: Example showing a ping-pong situation during timing recovery for MCMM.

Importance of transition time. The maximum transition (MaxTran) constraint is an upper limit

for the transition time at a pin of a gate [119][120][172][198]. The MaxTran constraints are specified in

timing libraries or via the set max transition command in EDA tools [172][198]. The actual transition time

is checked against the MaxTran constraint for every pin in the netlist. For example, if the input pin of an

INVX1 instance has a MaxTran constraint of 10, and the actual transition time at the input pin is 15, then

the pin violates the MaxTran constraint.

Fixing MaxTran violations is important for product designs for (i) an accurate timing analysis, and

(ii) total power optimization. More specifically, in NLDM (Non-Linear Delay Model)-library-based timing

analysis, which is still widely used in mature process technologies, violating the MaxTran constraint can

induce an inaccurate cell delay calculation due to extrapolation of the cell delay table. A large transition

time also increases the internal power of gate instances and harms netlist quality in terms of total power.

The ISPD contest benchmarks [119] [120] include MaxTran constraints as one of the criteria

for legal solutions. However, due to the unrealistic timing library, MaxTran violations are relatively

easy to fix in the contest technology. For example, the sensitivity of the output transition time of a cell

to its load capacitance is relatively small compared to the sensitivity to its drive strength. Thus, in the

contest technology, upsizing a cell will always trivially cure a MaxTran violation without causing any new

violation on its upstream driving cell. However, in reality, depending on netlist topology (e.g., having

many high-fanout nets) and technology, MaxTran constraints can be easily violated and the violations
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are difficult to fix. For example, upsizing cells causes transition time violations at the output pins of their

fanin cells due to load capacitance increase. Thus, a viable strategy for fixing MaxTran violations must

comprehend both the topology of the input netlist and the ripple effect of upsizing cells. We observe that in

practice, the MaxTran constraint becomes a “first-class” concern at 65nm and below enablements; a gate

sizing optimization that is oblivious to such constraints can result in numerous violations, even when other

timing constraints such as setup and hold are met.

Hold time consideration. Hold time violations are more critical than setup time violations in

product designs since the functionality of a design fails if any hold time violation exists. Despite its

importance, the hold time constraint has not been emphasized in academic benchmarks due to the nature of

gate sizing for power optimization; most cells are downsized and replaced with higher-Vt cells, which are

less likely to incur many hold time violations. However, hold time violations become more critical in the

MCMM context, as well as during timing recovery and MaxTran fix optimizations. In particular, upsizing

width or decreasing Vt during the timing recovery can lead to hold time violations in a hold-critical timing

view, depending on the structure of timing paths in the input design.

Complex structure of a product design. A product design is more complicated than academic

benchmarks in many aspects, as it may involve multiple power domains, multiple clocks, and the existence

of memories and macros. To support multiple power domains, instances in different power domains must

be analyzed with multiple timing/power Liberty tables. Different clock periods due to multiple clocks per

timing endpoint such as flip-flops and primary outputs must be handled for an accurate timing analysis.

Additional handling in timing analysis is required for memories and macro blocks. That is, the timing graph

of a design must properly capture SDC constraints pertaining to timing paths involved with memories or

macros. Lack of understanding of memories and macro blocks in an academic sizer results in significantly

degraded solution quality with inaccurate timing slack values.

2.1.3 Methodology

We now describe key techniques incorporated in Sizer. Driven by practical constraints seen in

product designs, we introduce new features and techniques including (i) MCMM-aware SF; (ii) total power

estimation; and (iii) MaxTran violation fixing.
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Comparisons to Trident [84]

Trident is an academic sizer originally developed for the ISPD-2013 Gate Sizing Contest [120].

The core engine is based on sensitivity-guided metaheuristics. A multistart technique (go-with-the-winners,

or GWTW [5][50]), kick moves (following the large-step Markov chain optimization technique [116]) and

peephole optimization are used in Trident. The GWTW metaheuristic performs repeated optimizations

within randomized multistarts to effectively explore a large search space. More specifically, Trident runs

multiple optimizations concurrently, guided by different sensitivity functions, and records the best solution

at prescribed intervals. The kick move technique, which originated in large-step Markov chain optimization,

attempts to make a large change, i.e., by upsizing many cells at once, to escape local optima and reach a

solution that is closer to a global optimum. The peephole optimization entails exhaustive search for the

best size combination for a small path-connected series of cells.

Table 2.2 summarizes the optimization techniques used in Trident ([84]) and Sizer (our work). We

do not include the sensitivity function (SF) framework itself in the table since SF-based gradient-following

(greedy, steepest descent) algorithm is not new to [84]; it was in the SensOpt package [202] from which [84]

was derived. The Blaze MO tool [200] is another example of sensitivity-based sizer. MCMM-awareness

is our key improvement to support product designs. Data structures in Sizer store timing information for

each timing view. New sensitivity functions for MCMM are developed to enable effective MCMM-aware

optimization for both timing recovery and power reduction. Total power estimation is added as well,

to guide the total power optimization. Additionally, with the increased importance of transition time in

real designs, we notice that obtaining accurate transition time is essential for the optimization. We thus

implement the internal timer of Sizer to improve the accuracy of transition time. We adopt the transition

time correlation method of [85], whereas Trident [84] performs only slack correlation.

We note that a number of distinguishing innovations in [84] such as the use of GWTW and peephole

optimization were eventually discarded in Sizer because no benefit could be seen in the production context.

For realistic designs with many (i.e., >30) timing views and multiple clocks, the optimization complexity

increases dramatically. For example, the GWTW paradigm requires additional cores according to the

number of multistarts, and each individual optimization requires multiple timers to support MCMM. Thus,
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GWTW demands huge computing resources in the production context, due to its greater complexity of

timing analysis. Peephole optimization is also computationally demanding, since it attempts to evaluate

multiple combinations of solutions for several cells at a time. Such approach is infeasible if computing

resources and runtime are limited. Crucially, our background experiments showed that even with huge

computing resource consumption, the two techniques have little or no benefit in terms of solution quality.

For example, the additional leakage reduction obtained from GWTW is 1% at the cost of 2.5× runtime, for

the AES design. For the M0 design, 3% more leakage reduction can be achieved, but at the cost of 4.3×

runtime. With use of peephole optimization, our background studies found that the final leakage power

worsens for both the AES and M0 designs, by 2.6% and 1.0%, respectively.

Table 2.2: Comparisons of Trident [84] (Tri) and this work (Szr).
Techniques Tri [84] Szr

MCMM-aware static timing analysis - X
MCMM-aware timing recovery - X

MCMM-aware sensitivity function - X
Transition time correlation - X

Total power estimation - X
Dynamic change of sensitivity function - X

Prioritization of moves - X
Kick move X X

Go-with-the-winner (GWTW) X -
Peephole optimization X -

New Sensitivity Functions in the MCMM Context

Sensitivity functions (SFs) are used as guidance to select sizing moves (Vt swapping or sizing) that

give the maximum power reduction benefit with the minimum timing impact.2 For this purpose, an SF

should calibrate the power benefit at the expense of timing slack degradation, or vice versa. However, it is

not straightforward to estimate timing or power impact of a sizing move on the design since (i) the entire

timing graph, which is very complex in modern product designs must be comprehended due to the nature

of timing calculation propagation toward downstream cells, and (ii) in the MCMM context, variations

across multiple corners must be considered as discussed in Section 2.1.2 above.
2Throughout this work, a “move” indicates a Vt-swapping or sizing move of a cell, not a physical movement in placement.
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To address these challenges, we introduce new estimations of timing and power impact, considering

MCMM, for our SFs as follows.

Table 2.3: Notations.
Notation Meaning

P weighted sum of leakage and dynamic power
D clock period

TNS total negative setup time slack
WNS worst negative setup time slack
si setup time slack of cell i
di delay of cell i
ci load of cell i

tranj transition time at pin j
tranmax maximum transition time
strani maximum transition time slack of cell i

#pathsi number of register-to-register paths going through cell i
βv weighting factor for view v for MSF3
γ normalizing factor for transition time slack

Table 2.3 summarizes the notations that we use in our SFs. Each notation can be extended by

adding subscript v to represent the notation associated with timing view v. I.e., si,v is slack of cell i in

timing view v.

• P denotes a weighted sum of leakage and dynamic power. We provide a detailed discussion of

power calculation below.

• si denotes the timing slack of cell i. We consider only setup time slack for our SFs. We consider

hold time differently in our optimizer. We revert any Vt-swapping/sizing move that results in any

hold time violation. This is for two main reasons. First, during the power reduction stage, due to the

nature of power optimization where cells are downsized and/or swapped to higher Vt cells, delays of

the optimized cells typically increase, which is actually better for timing paths with respect to hold

time. Second, during timing recovery, as we seek to cure setup-violating paths, the target cells for

upsizing are mostly setup-critical.3 Also, inclusion of hold time increases computation complexity.
3Even in industrial timing ECO flows, the setup-hold critical paths are typically fixed by engineers manually instead of

commercial sizers [128].
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• di denotes the delay of cell i. For ∆di in SFs, we calculate the delay of each input to output timing

arc of cell i before and after a given move, and return the largest arc delay change.

• ci is the output load of cell i; this output load includes wire capacitance and the sum of input pin

capacitances of cell i’s fanout cells.

• strani is the minimum value of (tranmax − tranj), over all pins j of cell i.

• #pathsi is the number of register-to-register paths that pass through cell i. #pathsi is calculated

by multiplying the number of downstream registers and the number of upstream registers of cell i.

Table 2.4: Sensitivity functions for a single view and MCMM.
Type Index Equation

Single

SF1 ∆P
SF2 ∆P · si
SF3 ∆P/∆di
SF4 (∆P · si)/#pathsi
SF5 (∆P · si)/(∆di ·#pathsi)
SF6 −∆P/(∆si ·#pathsi)

MCMM
MSF1 ∆P ·min(minv∈views (si,v −∆di,v), γ ·minv∈views s

tran
i,v )

MSF2 (∆P ·min(minv∈views (si,v −∆di,v)/ci,v, γ ·minv∈views s
tran
i,v /ci,v))

MSF3 ∆P ·#pathsi · sumv∈viewsβv/∆di,v

Table 2.5: Parameter conditions and their implications.

Condition Parameter Condition Implication
∆P si ∆di ∆si

1 +/- +/- + +
N/A

2 +/- +/- - -
3 - +/- - + Always pick
4 + +/- + - Always avoid
5 + - - + Timing recovery (TR)
6 + + - + Avoid (Aggressive TR)
7 - + + - Power reduction (PR)
8 - - + - Avoid (Aggressive PR)

Table 2.4 shows SFs for single-view and MCMM optimizations. ∆P , ∆si and ∆di denote the

differences in P , si and di values, respectively, before and after a move of cell i. For example, ∆P is the

power (total or leakage power) of the design after a move subtracted by the original power value.
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SF for a single view. In Table 2.4, SF1 simply prioritizes cells that offer large power reduction.

SF2 prioritizes cells with large timing slacks that also offer large power reduction. SF3 selects cells that

have a smaller delay penalty but a larger power reduction. SF4 is a variation of SF2, but we add #paths

so that we do not pick cells that affect slacks of many timing paths. SF5 is a combination of SF3 and SF4.

SF6 picks cells that have less impact on total negative slack (TNS) but have more power reduction. To

reduce runtime, we estimate ∆TNS as (−∆si ·#paths).

SF for MCMM. Simultaneous consideration of multiple timing views is important since (i) power-

critical views are different from timing-critical views, and (ii) timing must be signed off in all the given

timing views. Thus, SFs always need to consider the “worst” timing/power impact considering each of the

given timing views. We propose new SFs to guide the optimizations in the MCMM context, i.e., MSF1,

MSF2 and MSF3, as shown in Table 2.4. Here, ∆P in all MSFs is calculated in the most power-critical

view. MSF1 prioritizes cell moves that lead to large setup time slack (si −∆di) and MaxTran slack, in

conjunction with large power reduction. For the setup time slack and MaxTran slack, the minimum values

across all timing views are considered. For γ, normalizing factor for MaxTran slack, we empirically use

0.5 in our reported studies based on results of background experiments. MSF2 is a variation of MSF1. In

MSF2, ci is used as a denominator to avoid downsizing cells with larger load capacitance (or many fanout

cells). This helps to avoid MaxTran violations.

MSF3 uses weighting factor βv to prioritize timing-critical views and thus address different timing

constraints and slacks for each timing view. We study three weighting factors: (i) 1
Dv

; (ii) TNSv
Dv

; and (iii)

WNSv
Dv

. Based on our experimental results on design M0 in 28nm LP technology, using weighting factors

(i), (ii) and (iii) respectively leads to 26%, 13% and 4% less runtime needed to achieve a timing-feasible

solution, compared to timing recovery without weighting factors.

Example. The following example illustrates how SF values for a single timing view and MCMM

are calculated. Let us assume three timing views, i.e., v1, v2, v3, and v3 is the power-critical view. The

corresponding power, setup time slack, delay, transition time slack, #paths and output load for cell i are

summarized as follows.

• Setup time slack : si,1 = 10, si,2 = 5, si,3 = 20
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• Transition time slack : strani,1 = 20, strani,2 = 16, strani,3 = 40

• ∆Power : ∆P1 = 3, ∆P2 = 4, ∆P3 = 6

• ∆Delay : ∆d1 = 6, ∆d2 = 3, ∆d3 = 1

• The number of paths : #paths = 5

• Output load : ci,1 = 2, ci,2 = 2, ci,3 = 2

• β : β1 = 0.3, β2 = 0.2, β3 = 0.1

Each SF considering view v1 only is calculated as follows.

• SF1: ∆P1 = ∆P = 3

• SF2: 3 · 20 = 60

• SF3: 3/6 = 0.5

• SF4: 3 · 20/5 = 12

• SF5: 3 · 20/(6 · 5) = 2

• SF6: −3/(20 · 5) = −0.03

And, each MSF considering all timing views, i.e., v1, v2 and v3, is calculated as follows.

• MSF1: ∆P = ∆P3 = 6; minv si,v −∆di,v = 2; minv s
tran
i,v = 16;MSF1 = 6 ·min 2, 8 = 12

• MSF2: ∆P = maxv ∆Pv = 6; minv (si,v −∆di,v)/ci,v = 1; minv s
tran
i,v /ci,v = 8;MSF2 =

6 ·min 1, 4 = 6

• MSF3: 6/5 · (0.3/6 + 0.2/3 + 0.1/1) = 0.26

The complexity of SF and MSF computation for a single cell are O(1) and O(N), respectively, where N is

the number of timing views.

Parameter conditions for SF usage. Table 2.5 summarizes parameter conditions and their

implications. “+” means a positive value, “-” means a negative value. ∆di and ∆si cannot be both
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positive or negative, so we do not consider such cases (Conditions 1 and 2). If fanin and/or fanout cells

of target cell i are affected, ∆di and ∆si can be both positive or both negative. However, such cases are

extremely rare in our experiments. We always pick moves that provide both power and timing benefits

(Condition 3). Similarly, we avoid moves leading to both power and delay penalties (Condition 4). For

timing recovery, we use SF6 and MSF3 if Condition 5 is met. We do not consider cells in Condition 6

for upsizing or decreasing Vt. During power reduction, we calculate SFs for a move such that Condition

7 is met. SF1-6, MSF1-2 are used for such cases in our experiments. For Condition 8, we do not allow

downsizing/increasing Vt since aggressive power reduction leads to excessive timing violations.

Total Power Estimation

In this section, we describe Sizer’s capability to perform total (weighted) power reduction. To

comprehend the total power optimization, we consider both leakage and dynamic power. Dynamic power

consists of net switching power and cell internal power.

For leakage power calculation, we directly use the leakage value of each cell from Liberty files.

Since leakage is state-dependent in the Liberty files, we use the average leakage value across different

states as an approximation. We empirically observe that such approximation overall improves optimization

runtime while offering relatively accurate leakage estimation. If state probabilities are available from

dynamic simulation and power analysis, then replacing the arithmetic mean across states with a weighted

average would be straightforward.

We estimate the net switching power of a net as CV 2Tr
2 , where C is the total net capacitance, i.e.,

the sum of wire capacitance and the capacitance of cell input pins connected to the output of the wire, V is

the supply voltage, and Tr is the toggle rate of the net. We extract the toggle rate and wire capacitance of

each net from a golden signoff timer; input pin capacitances of cells are obtained from Liberty files.

For cell internal power, we obtain the values from lookup tables (LUTs) in Liberty files based on

input slew and output load of the cell. We note that there exist multiple internal power LUTs for a given

cell, where each table corresponds to a particular transition arc, that is, a pair of an input pin and an output

pin. As our power analysis is vectorless, we normalize the internal power values related to different input

pins based on the toggle rates at pins of the cell. An example of a 2-input cell is given in Figure 2.2, where
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cell G has input pins A and B. We estimate the internal power of cell G (PG) as follows.

PG =
(Pint,A · TrA + Pint,B · TrB) · TrZ

TrA + TrB
(2.1)

Here, (i) Pint,A and Pint,B are respectively the internal power values related to input pins A and B based

on LUTs, and (ii) TrA, TrB and TrZ are respectively the toggle rates at input pins A, B and output pin Z.

In the example, PG is calculated as 0.67 according to Equation (2.1).

G
A

B
Z

TrA = 0.2

TrB = 0.1

TrZ = 0.5

Pint,A = 1

Pint,B = 2

PG = !"#.%&%"#.! "#.'
(#.%&#.!) = 0.67

Figure 2.2: Example internal power estimation of a 2-input cell.

Note that for every sizing or Vt swapping, pin capacitance and slew values change and thus the net

switching power and internal power change. To adapt our sensitivity functions for total power optimization,

we replace the power terms P in SFs above with α ·Pleak + (1−α) · (Pint +Psw), where Pleak, Pint and

Psw indicate leakage power, internal power and net switching power respectively. α is a weighting factor

to trade off between leakage power and dynamic power optimization. A larger (resp. smaller) α value

leads to a greater reduction in leakage power (resp. dynamic power). To our knowledge, previous literature

on gate sizing optimization for total power optimization typically uses gate capacitance or transistor width

for dynamic power estimation. By contrast, to achieve a more accurate total power estimation, we follow

industrial standard practice and estimate dynamic power based on both net switching power and cell

internal power.

Handling Maximum Transition Constraints

Our Sizer has two specific features to handle MaxTran violations: (i) transition time correlation,

and (ii) a dedicated procedure for fixing MaxTran violations.
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As noted above, Trident [84] performs slack correlation between its internal timer and the signoff

timer for a more accurate slack estimation. However, lack of transition time correlation in its optimization

can result in additional MaxTran violations due to transition time mismatches. We thus perform transition

time correlation in Sizer using the method of [85], in addition to the slack correlation.

Algorithm 1 Procedures for fixing MaxTran violations.

Procedure: FixMaxTran(netlist,max tran)
Input: netlist netlist, MaxTran constraint max tran
Output: optimized netlist with reduced transition time violations

1: for all cell c ∈ netlist, in topological order do
2: for all violating pin vp ∈ c do
3: if vp is an output pin of c then
4: for all focell ∈ fanout cells of c do
5: downsize focell
6: if sc < 0 then revert the move
7: if tranvp ≤ max tran then break
8: end for
9: while tranvp > max tran do

10: UpsizeCellforTran(vp, c)
11: end while
12: else
13: ficell← the fanin cell of the input net of vp
14: while tranvp > max tran do
15: UpsizeCellforTran(vp, ficell)
16: end while
17: end if
18: end for
19: end for

Procedure: UpsizeCellforTran(vp, cell)
Input: violating pin vp, cell cell
Output: updated netlist

1: SF size← ∆tranvp/∆P (when upsized)
2: SF vt← ∆tranvp/∆P (when Vt swapped)
3: if SF size == 0 and SF vt == 0 then return
4: if SF size < SF vt then
5: upsize cell
6: else
7: decrease Vt of cell
8: end if
9: if scell < 0 then revert the move
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Algorithm 1 shows procedures to fix MaxTran violations. In the FixMaxTran procedure, if

the violation occurs at an output pin, we visit all fanout cells of the violating pin (focell), and perform

downsizing on each of the fanout cells until the maximum transition violation is fixed, unless the downsizing

move leads to a timing violation (Lines 4–8). If downsizing moves of the fanout cells do not fix the

maximum transition violation, we perform upsizing or decreasing Vt of the violating cell by invoking the

UpsizeCellforTran procedure (Lines 9 – 11). If the violation occurs at an input pin, we perform upsizing

width or decreasing Vt of the fanin cell by invoking the UpsizeCellforTran procedure (Lines 14 – 16). In

UpsizeCellforTran, we first evaluate the resultant transition time reductions from upsizing and decreasing

Vt as well as the corresponding power penalties (Lines 20–21). If the transition time does not improve

with both moves, we do not perform upsizing (Line 22). Between upsizing and decreasing Vt, we pick the

move that has a larger ratio of transition time reduction to power penalty (Lines 23–25). We revert the

move if it leads to a timing violation (Line 28).

Other Techniques for Better Optimization

In this section, we describe several other techniques used to achieve improved optimization.

Prioritization of move type. We introduce prioritization of a certain move type on top of the

SF-based prioritization for the following two reasons. First, the types of SFs we use cannot differentiate

between (i) a move that leads to large power reduction as well as large delay increase, versus (ii) a move

that has small impact on both power and delay. Second, at early optimization stages when there is sufficient

timing slack for power optimization, (i) is preferred to (ii), in order to achieve faster convergence to the

local minima.

Figure 2.3 shows the leakage-delay tradeoff of buffers (with two Vt flavors and various gate sizes)

in (a) 140nm and (b) 28nm LP technologies. The leakage and delay values of higher (resp. lower) Vt cells

are shown in red (resp. blue) dots. The delay values of each gate are calculated based on NLDM libraries

with a fixed input transition 50ps and a load equal to four times the input pin capacitance of the driving

gate. Figure 2.3 shows that the leakage values of higher Vt cells (i.e., UVT and RVT) are lower than

those of lower Vt cells (i.e., SVT and LVT). The naming conventions for high and low Vts vary according

to particular foundries and technology nodes. In the 140nm dual-Vt library, UVT (Ultra-high threshold
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voltage) and SVT (Standard threshold voltage) respectively correspond to high and low Vts. In the 28nm

dual-Vt library, RVT (Regular threshold voltage) and LVT (Low threshold voltage) respectively correspond

to high and low Vts.

Vt flavor has much larger impact on leakage power than does gate size. We therefore expect that

Vt swapping is a stronger lever than sizing for leakage optimization. However, if we use SF3, move2 in

Figure 2.3 will be selected over move1, even though move2 is a stronger solution for leakage optimization.

For dynamic power optimization, due to its direct impact on total design capacitance, sizing is preferred

over Vt swapping. Thus, in the contest of different optimization objectives, we prioritize either Vt swapping

or sizing during our optimization. More specifically, we pick the moves with preferred move type (i.e., Vt

swapping or sizing) among the top-k candidate moves (sorted by the sensitivity scores4) to execute. Put

another way: we ignore the non-preferred move type during our optimization unless there is no move of

the preferred move type among the top-k candidate moves. Note that the value of k trades off the effect

of sensitivity function versus that of the preferred move type for selection of optimization moves (e.g., a

small k indicates that the optimization honors sensitivity scores more). Based on our separate study, we

empirically use k = 40 (PRmax in Table 2.6) in our experiments.

SF3(move1) = -350/25 = -14

SF3(move2) = -100/0 = -∞

SF3(move1) = -4.5/6 = -0.75

SF3(move2) = -2.8/0 = -∞

Figure 2.3: Leakage versus delay of Vt swapping and sizing in (a) 140nm (TT, 1.5V , 25◦C) and (b)
28nm LP (TT, 1.0V , 25◦C).

Dynamic change of SF. In a SF-based optimization, the definition of SF can significantly affect

the optimization solution quality. An optimal SF choice is dependent on the status of netlists as well
4We use “sensitivity score” to refer to the values calculated by SF.
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as input design information that is initially given (e.g., foundry technologies or libraries, initial netlists,

timing constraints, and optimization objectives). Thus, using a single SF throughout the entire optimization

procedure increases the likelihood of getting stuck at local minima. To avoid such a situation, we

dynamically change the SF during our optimization to adapt to the status of the input netlist. More

specifically, Sizer changes SF whenever the optimization with the current SF cannot achieve further power

reduction. Based on our experimental results in foundry 140nm technology, such a dynamic change of SF

achieves ∼2% further leakage power reduction.

Unsuccessful Techniques

In this section, we describe several techniques that have not shown noticeable benefits in our

experiments and were eventually dropped.

Tabu search. We have attempted a form of Tabu search [49] during our gate sizing optimization

to avoid being stuck at a local minimum. More specifically, we record three to five most recent sizing/Vt-

swapping moves performed in the power reduction (resp. timing recovery) stage and forbid these moves

for the following timing recovery (resp. power reduction) stage. We initially thought that this would reduce

the likelihood of being stuck at a local minimum. However, the Tabu-search-inspired strategy has not

helped to improve the solutions for our testcases since there were not many cells that went back to their

previous status. We believe that the use of different SFs in the power reduction and timing recovery stages

might help avoid previously-visited solutions for each cell.

Smart guardband. We have attempted “smart”, or variable guardband-based, optimization.

Here, we refer to a timing margin that is added to timing slack as a guardband. Using a positive (resp.

negative) guardband means that timing analysis becomes optimistic (resp. pessimistic) by the amount

of the guardband. We have tried varying these guardbands depending on the iteration count within the

overall optimization. More specifically, we have used a positive guardband at the initial several iterations

of the optimization procedure. We then gradually decrease the guardband at the later iterations of the

optimization procedure; in the end, zero guardband is applied so that no timing violation is allowed. In our

experiments, this approach has not improved the solution but has only rather increased runtime.5 Due to
5This recalls the metaheuristic paradigm of threshold acceptance; see, e.g., [64].
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the optimism introduced at the first few iterations, Sizer downsizes and/or Vt-swaps gates too aggressively

and ends up spending a lot of time on timing recovery.

Multi-step sizing and Vt swapping. We have attempted multi-step sizing and Vt swapping during

timing recovery stages. For example, if 1×, 2× and 4× sizing options are given for a specific gate instance,

we have considered 1× to 4× (two-step) sizing in addition to 1× to 2× (one-step) sizing. Similarly, if

LVT, RVT and HVT Vt flavors are given, we have considered LVT to HVT swapping. In our studies,

we calculated sensitivity scores for multi-step moves and added them to the candidate list. However,

multi-step moves were rarely picked based on the sensitivity scores. Rather, calculating sensitivity scores

of these additional moves increases runtime significantly. We conclude that one-step moves are sufficient

to consider for timing recovery in our experience.

Overall Optimization Flow

In this section, we describe the overall optimization flow of Sizer and the details of key procedures.

Figure 2.4 shows the overall optimization flow of Sizer. The optimization flow is an adapted version

of [84] with our new techniques that are essential for commercial product designs. The optimization

consists of three stages: (i) the sensitivity-based power reduction stage, (ii) the timing recovery stage, and

(iii) the kick move stage. In the power reduction stage, Sizer attempts to downsize cells or swap cells

to high-Vt cells based on sensitivity scores until timing becomes infeasible in any timing view. In this

stage, the dynamic change of SF, the MCMM-aware sensitivity function and the prioritization of moves

are applied as discussed above. In the timing recovery stage, upsizing and/or Vt swapping based on SF

is performed to fix any timing violation occurred during the power optimization stage. In the kick move

stage, Sizer attempts to upsize/swap cells in order to escape local optima and increase timing slack so that

more cells can be downsized. We iterate the optimization loop multiple times and store the best solution

(i.e., minimum power solution with legal timing) obtained during the optimizations.

Overall optimization. We have several user-defined input parameters that can tune the optimiza-

tion flow. Table 2.6 shows the user-defined input parameters and default values. The details of the overall

optimization flow are shown in Algorithm 2. We first store the initial solution to best sol to set it as our

starting point (Line 1). We set SF to the input SFp for power recovery procedure (Line 2). We then
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Figure 2.4: Overview of the overall optimization flow.

Table 2.6: User-defined input parameters.
Notation Meaning (default)
SFp, SF

′
p sensitivity functions for power reduction (MSF1, MSF2)

SFt sensitivity function for timing recovery (MSF3)
X #trials for cell Vt swapping or sizing (20% of total #cells)
α controls leakage and dynamic power optimizations (0.0)

Omax number of optimization loops (8)
Tmax maximum number of iterations of timing recovery (30)
PRmax maximum number of candidate moves for prioritization (40)
Smax threshold for dynamic change of SF (5)
Xk maximum #trials allowed for kick move (0.05% of total #cells)
thp minimum allowed slack threshold for power reduction (-20ps)
thk maximum allowed slack threshold for kick move (20ps)
δ threshold for correlation (5% of total #cells)

perform power reduction with SF , the trial rate X and thp (Line 5). We give a small negative slack margin

thp as default to allow aggressive downsizing and Vt swapping for power reduction. We observe from our

experiments that optimization with a negative slack margin followed by timing recovery typically achieves
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Algorithm 2 The overall optimization flow.

Procedure: PowerOpt(netlist, ...)
Input: netlist netlist, user-defined inputs (See Table 2.6)
Output: an optimized netlist

1: best sol← input
2: SF ← SFp

3: for i = 1 to Omax do
4: stuck count← 0
5: PowerReduction(SF,X, thp)
6: for j = 1 to Tmax do
7: if no timing violation exist then break
8: TimingRecovery(SFt,0,X)
9: end for

10: if no timing violation and power is improved with current sol then
11: best sol← current sol
12: decrease thk, Xk

13: else
14: stuck count← stuck count+ 1
15: increase thk, Xk

16: end if
17: KickMove(thk, Xk)
18: if stuck count > Smax then
19: SF ← SF ′p
20: end if
21: end for

better solution quality compared to the conventional zero-margin optimization. After the power reduction

step, we iteratively perform the procedures for fixing timing violations until all violations are fixed or

j = Tmax. If there is no timing violation with the current solution, and its power is less than the best power

value, we store the current solution as the best solution (Lines 10–11). And, thk and Xk are decreased so

that less cells are upsized in the kick move stage (Line 12). If not, we increase the stuck count which

indicates that the optimization gets stuck (Line 14). And, we increase thk and Xk (Line 15) so that

more cells are upsized in KickMove. We then perform KickMove (Line 17). If stuck count is larger

than Smax, SF is changed to SF ′p (Line 19). We iterate the optimization loop by Omax. In our current

implementation, the cells and moves in the KickMove procedure are determined by a given SF, thk and

Xk (Algorithm 5). The SF is deterministic, while thk and Xk change throughout the entire optimization

process. And, although we change thk and Xk throughout the optimization as described in Algorithm 2,
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the values are not randomly selected. Therefore, our current KickMove implementation is not completely

stochastic. However, as the parameters thk and Xk, and the slacks of cells, change throughout multiple

iterations, the target cells for Vt swap or sizing will change. The net result is a kick move whereby the

current state of the circuit is “perturbed” in a manner designed to escape the current local minimum –

sometimes referred to as a basin of attraction – and thus avoid cycling in the optimization.

Power reduction. Algorithm 3 illustrates the sensitivity-based power reduction procedure

(PowerReduction). The inputs to PowerReduction include the sensitivity function SFp, trial rate

X and the slack threshold thp. We first build a list of candidate solutions where a solution sol indicates a

(target cell sol.cell, target move sol.move) pair, together with its sensitivity score sol.score. We calculate

the sensitivity score for each (cell, move) pair (Line 4). If ∆P of the candidate (cell, move) pair is negative

(indicating that power decreases), we add the solution to the solution list sol list (Line 5). As we downsize

or increase Vt, the delay of the target cell increases while the power decreases in most cases. Thus, the

sensitivity score is typically a negative value, where a smaller value (i.e., a larger absolute value) indicates

a better solution. Therefore, the solution list is sorted in increasing order of sensitivity scores (Line 8). The

only case where the sensitivity score can be positive is when both delay and power decrease. In this case,

we set the sensitivity score to the negative infinite number so that we can always pick such moves first. For

details, please see Table 2.5.

We attempt each candidate move in the solution list (Lines 10–25). To prioritize Vt swapping

(resp. sizing) for leakage (resp. dynamic) power optimization, we search prioritized moves among the

first PRmax solutions in the solution list (Lines 11–12). In a leakage-only optimization, if we find a

Vt-swapping move, we pick the corresponding solution (Line 12), otherwise we pick the first solution

among sol list (Lines 13–14). We then commit the move (Line 16). The committed move is removed from

the solution list (Line 17). We then update design timing and check the updated slack of the optimized cell

in all timing views. During the timing update process, we periodically correlate timing with a signoff timer

for accuracy (Line 18). We revert the move if there is any setup timing (i.e., with respect to thp), MaxTran

or MaxCap violation (Lines 19–20). Even though we check timing for every move to avoid violations,

the mismatch between the internal timer and the signoff timer can result in timing violations during our

optimization. In this case, we quit the procedure (Line 24) and call the TimingRecovery procedure. The

35



trials for sizing or Vt-swapping continue until the number of trials reaches X (Line 10).

Algorithm 3 Procedure of power reduction.

Procedure: PowerReduction(SFp, X, thp)
Input: sensitivity function SFp, trial rate X , slack threshold thp
Output: an updated netlist with less power

1: for all cell c ∈ netlist except for clock do
2: for all move m ∈ candidate moves Mc do
3: sol.cell← c; sol.move← m
4: sol.score← CalculateSensitivity(c,m, SFp)
5: if ∆P < 0 then sol list← sol list

⋃
{sol}

6: end for
7: end for
8: sort sol list in order of increasing sensitivity score
9: cnt← 0

10: while cnt < X do
11: if any prior move exists in top PRmax solutions then
12: sol← PickF irstPriorMove(sol list); PRmax ← PRmax − 1
13: else
14: sol← sol list.front()
15: end if
16: commit sol
17: sol list← sol list \ {sol}
18: if mod(cnt, δ) = 0 then TimingCorr()
19: if ssol.cell < thp or new MaxTran/MaxCap occurs in any timing view then
20: revert sol
21: else
22: cnt← cnt+ 1
23: end if
24: if worst slack < thp then break
25: end while

Timing recovery. Algorithm 4 illustrates the TimingRecovery procedure. In the TimingRecovery

procedure, we upsize or swap a cell to a lower-Vt cell to fix timing violations caused during the

PowerReduction procedure. Fixing MaxTran and MaxCap violations is performed first (Lines 1–2). We

fix MaxTran and MaxCap violations before performing the SF-based upsizing/Vt-swapping, since we

observe that fixing maximum transition and capacitance violations also helps to fix setup time violations

by improving gate delays in our experiments. This is because large transitions and/or load capacitance

tend to increase gate delays. We also note that it is recommended to first fix electrical rule violations (e.g.,

maximum transition and capacitance violations) in the DAC Knowledge Center article of MacDonald
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Algorithm 4 Procedure of timing recovery.

Procedure: TimingRecovery(SFt, th,X)
Input: sensitivity function SFt, slack threshold th, trial rate X
Output: an updated netlist with an improved worst slack

1: if MaxCap violations exist then FixMaxCap()
2: if MaxTran violations exist then FixMaxTran()
3: for all cell c ∈ netlist except for clock do
4: if sc > th continue // skip this cell
5: for all move m ∈ candidate moves Mc do
6: sol.cell← c; sol.move← m
7: sol.score← CalculateSensitivity(c,m, SFt)
8: if ∆dsol.cell < 0 then sol list← sol list

⋃
{sol}

9: end for
10: end for
11: sort sol list in order of decreasing sensitivity score
12: cnt← 0
13: while cnt < X do
14: sol← sol list.first()
15: orig slack ← ssol.cell
16: commit sol
17: sol list← sol list \ {sol}
18: if mod(cnt, δ) = 0 then TimingCorr()
19: if ssol.cell < orig slack or creates hold violations then
20: revert sol
21: else
22: cnt← cnt+ 1
23: end if
24: end while

[115]. For each non-clock cells with slacks less than th (Lines 3–4), we calculate sensitivity scores (Lines

6–7) for its candidate moves (i.e., one-step upsizing or one-step decreasing Vt). If the ∆dsol.cell decreases,

we add sol to sol list. We then sort the solution list in decreasing order of sensitivity scores (Line 11).6

For each solution in the solution list, we commit the corresponding move and update timing (Line 16).

During the procedure, we periodically correlate timing with a signoff timer for accuracy, similarly as in the

power reduction procedure (Line 18). We then check whether the committed move degrades slack and

creates a hold violation in the given timing view v (Line 19). If so, we revert the move (Line 20).
6The delay terms (i.e., ∆di, −∆si) are negative values, and the ∆P term is a positive value since delay decreases and power

increases with upsizing or decreasing Vt, in most cases. As a result, the sensitivity scores for timing recovery are negative values,
and the solutions with larger sensitivity scores (i.e., smaller absolute values) should have higher priorities.
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Algorithm 5 Procedure of kick move.

Procedure: KickMove(thk, Xk)
Input: slack threshold for kick move thk, maximum #trials Xk

Output: an updated netlist
1: SF ← 1/(∆di ·#pathsi)
2: TimingRecovery(SF, thk, Xk)

Kick move. Algorithm 5 illustrates the KickMove procedure. The purpose of KickMove is

to perturb the current status so that the optimization does not get stuck at local minima. Thus, for the

KickMove procedure, we perform upsizing on cells that have positive slacks but less than thk, with a

sensitivity function that considers only timing (Line 1). The number of cell moves during the KickMove

is limited by Xk. The default number of Xk is set to 0.05% of the total number of cells so as not to allow

overly aggressive perturbation.

2.1.4 Experimental Setup and Results

Sizer is implemented with C++ and a Tcl-socket interface [199] to communicate with golden

signoff timers. Sizer supports the standard SPEF/.v formats by using OpenAccess (OA) 22.43 [193] API.

We extend the Liberty parser provided by ISPD-2013 contest to support general Liberty (.lib) files and

collect internal power information of cells. The extended Liberty parser is validated with various foundry

libraries, i.e., 140nm, 65nm GP and 28nm LP.

Experimental Setup

Testcases. We use five testcases in our experiments, each of which is implemented with two

foundry technologies – 65nm GP with triple-Vt libraries and 28nm LP with dual-Vt libraries. To validate

solution quality as well as scalability of Sizer, we use one design (AES) from the OpenCores website [191],

a simplified version of ARM Cortex M0 (M0), and testcases with three and five copies of the M0 (i.e.,

M0x3, M0x5) as well as matrix multiplier (MMULT) from the ISPD-2013 benchmark suite. To implement

M0x3 and M0x5, we connect primary inputs and outputs of M0 with muxes at the RTL level. We synthesize

from RTL to gate-level netlist using Synopsys Design Compiler H-2013.03-SP3 [195] for AES, M0, M0x3

and M0x5. For MMULT, we map the gate-level netlist from ISPD testcases to given technologies using
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Synopsys Design Compiler H-2013.03-SP3 [195]. To perform placement and routing (P&R), we use

Cadence Encounter Digital Implementation System 14.2 [171]. We further optimize the designs using a

leading commercial tool, namely, Comm1, with high-effort leakage and dynamic power optimizations. For

golden signoff timers, we use Synopsys PrimeTime J-2014.12 [198] (PT) and Cadence Tempus 14.2 [172]

(TMP). The tool versions represent the most up-to-date common flow that could be realized across multiple

organizations when this work was performed (see Section 2.1.4). We do not map specific results to specific

tools (although we do indicate a “universe” of tools that we have used), in order to avoid any reporting that

could possibly be construed to be “benchmarking”.

We also validate Sizer on a design from NXP Semiconductors [190] implemented with a 140nm

foundry technology (dual-Vt), which we refer to as NXPIC. The design is used in an application of

RFCMOS for the keyless entry/go system of automobiles. We apply our Sizer to one of the blocks of

NXP’s design, which contains ∼140K standard-cell instances.

MCMM implementation. To implement the designs in the MCMM context, we define multiple

views with various PVT corners and function modes. Table 2.7 summarizes function modes (Column 3),

PVT corners (Columns 4 – 6) and wire RC corner (Column 7) for each view in three foundry technologies.

We use four views selected from available libraries in 65nm and 28nm foundry technologies. For 140nm

foundry technology, we use four representative views (Rows 2–5 of Table 2.7) selected from among 35

views with which the NXPIC is implemented.7 We experimentally confirm that the selected four views

are the dominant views among the 35 views based on timing criticality. Ideally, considering all timing

views in sizing optimization will produce more robust results that honor timing constraints in every timing

view. However, the computation costs increases in proportion to the number of timing views. Thus, the

timing views to consider in optimization must be carefully selected to reduce the computational cost. In

particular, a timing view having sufficiently large positive slack on its worst timing path will typically

not be a dominant view. In the NXPIC case, we exclude the timing views with more than 20× of the

worst (positive) slack throughout all the timing views. For example, since the worst initial slack is 0.033ns

in V1 (Table 2.8), we exclude the timing views with slack values > 0.66ns. The timing information in
7The 35 timing views are the combinations of three functional modes and three voltages, three process corners (SS, TT and

FF) associated with three temperature corners (-40◦C, 25◦C and 150◦C) with complementary views (#modes×#voltages×
#corners+ #complementary views = 3× 3× 3 + 8 = 35).
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Table 2.8 is reported by TMP. We do not include TT and FF corners as our optimization corners since

(i) setup time violations are dominant in the testcases in our experiments; (ii) downsizing/increasing Vt

usually creates setup time violations, and slow corners are more critical during our optimization; and (iii)

as we do not touch cells on clock trees, extra (hold) violations are not created at non-slow corners, i.e.,

TT and FF corners. We experimentally confirm that no extra hold violations are created in optimized

designs. In particular, the optimized NXPIC in Table 2.15 does not have any hold or setup violations in the

31 views other than the selected four views. The detailed information of the testcases is summarized in

Table 2.8. For 65nm and 28nm designs, we set the clock period of each view to a view-specific value in

order to avoid the situation that a particular view dominates others. Thus, the difference in initial slack

values between views is less than or equal to 200ps. The timing information in Table 2.8 is reported by

TMP. For hold slack, we report the worst slack and the sum of total negative slack for the four target views.

Table 2.7: Timing view definitions.
Lib. View Mode Proc. Volt. (V) Temp. (C) RC

140nm

V1 Func SS 1.1 150 Cmax
V2 Test SS 1.1 150 Cmax
V3 Func SS 1.1 -40 Cmax
V4 Test SS 1.1 -40 Cmax

65nm

V1 Func SS 0.9 125 Cmax
V2 Func TT 1.0 25 Cmax
V3 Func FF 1.1 125 Cmax
V4 Func FF 1.1 -40 Cmax

28nm

V1 Func SS 0.9 125 Cmax
V2 Func SS 0.9 -40 Cmax
V3 Func SS 1.1 125 Cmax
V4 Func SS 1.1 -40 Cmax

Design of Experiments. We have conducted four experiments to demonstrate the performance of

Sizer as follows.

• Expt1 shows the comparison between Sizer, a reproduced version of [84] and a commercial leakage

optimization tool, namely, C2.

• Expt2 shows our optimization results with MCMM on the optimized designs with high effort option

using C1.
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Table 2.8: Summary of testcases. The designs are optimized with high-effort optimization options for
leakage and dynamic power using C1. The values are reported by TMP.

Lib. Design #Cells Clock Period (ns) Worst Setup Slack (ns) Hold Slack (ns) Power (mW )
V1 V2 V3 V4 V1 V2 V3 V4 WNS TNS Leakage Total

140nm NXPIC 140K NA NA NA NA 0.033 0.104 0.264 0.574 NA NA 4.17e-5 NA

65nm

M0 13139 1.60 1.10 0.80 0.80 -0.003 0.066 0.02 0.046 -0.294 -39 0.40 20.14
AES 20583 0.90 0.60 0.40 0.40 -0.014 0.032 -0.005 0.013 -0.144 -82 0.78 112.50
M0x3 35473 1.85 1.15 0.85 0.85 0.001 0.003 0.003 0.035 -0.347 -54 0.86 50.09
M0x5 55160 1.90 1.20 0.90 0.90 -0.012 -0.017 -0.005 0.03 -0.185 -54 1.23 74.87

MMULT 123283 2.10 1.40 1.00 1.00 0.002 0.05 0.011 0.043 -0.008 0 3.47 191.98

28nm

M0 9964 1.40 1.60 1.00 1.00 0.016 -0.010 0.036 0.013 -0.276 -44 0.16 15.27
AES 13154 0.90 1.10 0.60 0.60 0.010 0.023 0.011 -0.005 -0.113 -57 0.25 56.76
M0x3 30155 1.40 1.70 1.00 1.00 -0.273 -0.313 -0.139 -0.183 -0.417 -165 0.79 80.13
M0x5 50231 1.50 1.85 1.25 1.25 -0.013 -0.017 0.184 0.153 -0.303 -100 0.47 58.77

MMULT 107619 1.80 2.10 1.30 1.30 -0.011 -0.017 0.037 0.003 0 0 1.66 186.18

• Expt3 studies the impact of six SFs on the solutions.

• Expt4 shows the optimization results of a commercial product design in 140nm.

Table 2.9 summarizes the libraries, tools, signoff tools, the objectives of optimization, whether

MCMM is considered, and the sensitivity functions used for each experiment.

Table 2.9: Design of experiments.
Tech. Tool Signoff Objective MCMM SF

Expt1 65nm
Tri-R

PT Leakage No SF3
C2

Expt2
28nm

C1 TMP
Leakage

Yes MSF1
65nm Total power

Expt3 65nm – TMP Leakage No SF1-6
Expt4 140nm C1 TMP Leakage Yes MSF1-2

Expt1: Comparison between Sizer, [84] and a Commercial Tool (C2)

In Expt1, we compare the performance of our Sizer against our reproduced version of Trident [84]

(Tri-R) and C2 on contest benchmarks and five testcases implemented at 65nm foundry technology.

Tri-R, reproduced Trident. As Trident [84] is designed to perform for contest testcases, it does

not support inputs with standard formats. Thus, we extend Trident to enable support for the standard

SPEF/.v/.lib formats. We refer to this extended version of [84] as Tri-R. We confirm that Tri-R reproduces

similar results to that in [84] (Table 2.10). The golden signoff timer is PT to be consistent with the golden
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Table 2.10: Reproduction of ISPD Trident (Tri) results with Tri-R, and comparison with Sizer (Szr). The
values are reported by PT.

Design #Cells Leakage (mW ) Runtime (min)
Init Tri Tri-R Szr Tri Tri-R Szr

usb phy fast 608 1.73 1.59 1.60 1.59 0.21 0.99 2.7
usb phy slow 608 1.1 1.07 1.07 1.05 0.17 0.64 1.8

pci bridge32 fast 30603 145.6 101.90 99.82 113.24 12 23.62 68
pci bridge32 slow 30603 65.3 58.83 59.04 59.26 5.39 11.95 65

fft fast 32766 583.04 305.29 305.38 357.01 32.58 116.58 116
fft slow 32766 128.62 93.10 92.94 99.82 17.4 42.03 69

edit dist fast 126665 1040 619.30 613.01 1040 170.6 649.19 1321
edit dist slow 126665 63 465.60 464.82 544.09 107.2 337.56 1211

timer used in the ISPD contest. The slight difference in the reported leakage results is due to sensitivity

to the order of calculation as well as randomness seen in multi-threaded operation. The longer runtime

in Tri-R is due to (i) more complex data structures and extra input processing steps (e.g., reading input

SPEF/.v into OA database); and (ii) avoidance of certain hard-wiring of codes used by [84] for speedup.

One caveat of academic sizers is that in many cases, hard-wired codes are used to achieve high quality of

solutions with minimum runtime for a particular set of inputs (i.e., contest testcases). Un-hardwiring leads

to runtime increases. Based on the results, below with the assumption that Trident and Tri-R are equivalent,

we compare Tri-R and Sizer with designs at 65nm technology.

We further compare Trident, Tri-R with Sizer. As Sizer is designed to maintain initial timing slack,

Sizer cannot handle the contest benchmarks as is, in which every gate is sized to the largest size / lowest Vt

and WNS is a huge negative value. Thus, we use intermediate, timing feasible solutions from Trident as

the inputs for this experiment. We observe that Sizer produces similar solution qualities for usb phy fast,

usb phy slow and pci bridge32 slow, but does not perform well for the other contest benchmarks with

longer runtimes. This may reveal the gap between academic sizers that are optimized toward academic

benchmarks and commercial sizers, as also noted in the studies in [87].

Comparison of Sizer, Tri-R and C2 with 65nm designs. Table 2.11 shows leakage results

comparison between Sizer (Szr, Szr-I), Tri-R, and C2. Clock period (CP), worst negative setup slack

(WNS), leakage results (Leak) and runtime are reported. The initial/optimized results do not have any hold

time violation. Sizer achieves leakage reductions of up to 26% (19% on average) as compared to Tri-R.
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Sizer’s runtime is longer than that of Tri-R, due to more iterations of optimization. Thus, we also report

the intermediate results of Sizer (Szr-I) so as to enable an iso-runtime comparison. For the iso-runtime

comparison, our intermediate results also outperform Tri-R by up to 17% (12% on average).

We further compare our results with the results from C2. Sizer achieves further leakage reduction

beyond C2 results by up to 24% (19% on average). Although the runtime of C2 is much better (the runtime

is less than a minute) than Sizer, these data show that C2 leaves significant room for further leakage

optimization. We further observe that we can pay additional runtime for significant additional power

optimization using Sizer.

Table 2.11: Leakage optimization result comparison between Tri-R, Sizer (Szr) and a commercial tool
(C2). The results are reported by PT.

Design CP WNS Leak WNS (ns) ∆Leak Runtime (min)
(ns) (ns) (mW ) Tri-R Szr Szr-I C2 Tri-R Szr Szr-I C2 Tri-R Szr Szr-I C2

M0 1.64 0.031 0.40 0.031 0 0.000 0 0% 23% 16% 4% 52 263 44 0
AES 1.0 0.001 0.78 0.001 0 0.000 0 27% 46% 32% 22% 42 200 44 0
M0x3 2.11 0.032 0.87 0.006 0 -0.001 0 32% 54% 47% 30% 99 541 106 0
M0x5 2.16 0.003 1.23 0.003 0 -0.002 0 24% 50% 41% 25% 115 942 126 0

MMULT 2.15 0.034 3.49 0.034 0 0.000 0 0% 6% 6% 2% 414 1410 391 0

Expt2: Sizer Optimization Results with MCMM on the Solutions of C1

In Expt2, we show experimental results with MCMM-aware optimization using Sizer, on designs

that have been optimized by C1. To ensure a fair comparison between C1 versus Sizer, we perform an

iso-TNS and iso-WNS comparison (with respect to setup time constraints), such that our optimization

honors the initial total negative slack and worst negative slack of the design, and does not permit further

timing slack degradation. We perform the experiments at both 65nm and 28nm technologies, with two

objectives – leakage power reduction and total power optimizations. The leakage and total power values

at V1 view are reported by TMP in Table 2.12. For all designs, there was no extra hold violation after

optimization. The initial timing and power information is reported in Table 2.8. Sizer is able to achieve up

to 10% leakage reduction and 4% total power reduction on initial solutions implemented with high-effort

optimization for both leakage and total power reduction using C1, for 65nm designs. For 28nm designs,

Sizer achieves up to 2% leakage reduction and 4% total power reduction, respectively. Our Sizer could

not optimize power further for some designs (e.g., no leakage reduction for 65nm M0x5, etc.). Of course,
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the initial designs are already optimized by C1, and hence, there is not much timing slack for power

optimization to exploit. Indeed, some designs even have negative initial slack; this implies that C1 used up

all the slacks, and ended up with timing-infeasible solutions.

However, we believe that any improvement that Sizer achieves indicates that there is still room

for further optimization of existing leading commercial sizers. And, although numbers might seem to be

small, even 1 or 2% of power reduction could be helpful for designs that have tight power constraints [72].

Even if Sizer’s performance is “only” very similar to that of leading-edge industry tools, Sizer provides an

important new research platform for academic research, as it gives an industry-strength implementation

accompanied by an open, full description. We feel that this is a strong contrast to industry tools, details of

which are often kept highly confidential by EDA companies. Sizer source codes and scripts are available in

[203].

The larger runtime of multi-corner optimization is mainly due to the timing updates and interface

with golden signoff timer (as shown in Column 14, in Table 2.12).

Table 2.12: Leakage and total power optimization results.
Process Optimization Design Setup Slack (ns) Hold Slack (ns) Final Power (mW ) ∆Power Memory Runtime (min)

V1 V2 V3 V4 WNS TNS Leak Total Leak Total (MB) Total Timer

65nm

leakage

M0 0.000 0.052 0.019 0.044 -0.294 39 0.37 20.00 6% 1% 1680 345 279
AES -0.004 0.034 0.000 0.011 -0.144 81 0.70 111.33 10% -3% 2148 1068 944

M0x3 0.000 -0.001 0.003 0.033 -0.347 53 0.77 49.75 10% 1% 3981 2161 1836
M0x5 -0.012 -0.017 -0.006 0.030 -0.185 54 1.23 74.87 0% 0% 6518 1983 1724

MMULT 0.000 0.050 0.011 0.043 -0.008 0 3.44 191.83 1% 0% 10673 498 397

total

M0 0.000 0.062 0.021 0.051 -0.294 39 0.39 19.66 3% 2% 1680 559 466
AES 0.000 0.032 0.000 0.000 -0.144 81 0.78 108.02 0% 4% 2148 1107 972

M0x3 0.000 0.000 0.004 0.037 -0.347 53 0.80 48.28 7% 4% 3981 2293 1956
M0x5 -0.012 -0.017 -0.006 0.030 -0.185 54 1.23 74.87 0% 0% 6518 2406 2075

MMULT 0.000 0.046 0.006 0.038 -0.009 0 3.52 190.66 -1% 1% 10673 3960 3339

28nm

leakage

M0 0.011 -0.012 0.033 0.008 -0.276 43 0.16 15.24 2% 0% 1310 75 48
AES 0.008 0.02 0.01 -0.006 -0.113 57 0.25 56.76 0% 0% 1775 224 175

M0x3 -0.274 -0.317 -0.14 -0.185 -0.417 165 0.47 58.77 0% 0% 3928 237 174
M0x5 -0.03 -0.029 0.168 0.135 -0.305 112 0.78 80.14 2% 0% 6355 521 347

MMULT -0.011 -0.017 0.037 0.003 0 0 1.66 186.18 0% 0% 10658 2226 1144

total

M0 0.005 -0.011 0.03 0.005 -0.27 36 0.17 14.77 -3% 3% 1310 107 68
AES 0.007 0.026 0.001 -0.022 -0.113 43 0.26 56.53 -6% 0% 1774 383 316

M0x3 -0.261 -0.364 -0.136 -0.178 -0.417 91 0.50 57.41 -8% 2% 3941 406 234
M0x5 -0.018 -0.027 0.184 0.153 -0.305 82 0.81 76.61 -2% 4% 6355 598 349

MMULT -0.014 -0.021 0.035 0 0 0 1.66 186.25 0% 0% 10658 2551 1276

Expt3: Impact of Various SFs on the Solutions

Expt3 studies power reductions and runtime of various sensitivity functions. Table 2.13 shows that

sensitivity function SF3 leads to the best solution quality, and that sensitivity function is a key determinant
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of solution quality and runtime. In general, we observe that the #paths parameter does not help to achieve

better results for the testcases in our experiments. For example, SF2 and SF4 show the impact of #paths;

SF2 (without #paths) leads to better results than SF4 (with #paths). SFs without the parameter #paths

(i.e., SF1, SF2 and SF3) offer better results than those with the parameter #paths (i.e., SF4, SF5 and

SF6). Table 2.14 shows the leakage and runtime results for the three MSFs. MSF3 does not give any power

reduction since MSF3 is also used for timing recovery. Indeed, if the same SF is used for power reduction

and timing recovery, it is likely that the same set of gates will be selected for both power reduction and

timing recovery. Between MSF1 and MSF2, we see that MSF2 has better performance in terms of power

reduction.

Table 2.13: Leakage optimization results of 65nm designs with various SF.

Design ∆Leakage Runtime (min)
SF1 SF2 SF3 SF4 SF5 SF6 SF1 SF2 SF3 SF4 SF5 SF6

M0 14% 16% 23% 1% 0% 3% 256 143 263 143 99 305
AES 26% 31% 46% 8% 8% 13% 242 149 200 163 103 271
M0x3 45% 51% 54% 4% 10% 16% 404 359 541 124 200 873
M0x5 41% 47% 50% 6% 10% 12% 680 1001 942 387 359 1036

MMULT 4% 4% 6% 0% 0% 0% 1838 1470 1410 1568 1171 1330

Expt4: Results of Commercial Industrial Design in 140nm

In Expt4, we apply Sizer to an industrial design in 140nm technology. Our results in Table 2.15

show that Sizer can achieve 7.1% leakage power reduction beyond an input solution that is well-optimized

by commercial P&R tools and ECO optimizations. In this experiment, the integrated use of the signoff

timer has large runtime overhead due to the following reasons. First, the signoff is signal integrity (SI)-

Table 2.14: Leakage optimization results of 65nm designs with various MSF.

Design ∆Leakage Runtime (min)
MSF1 MSF2 MSF3 MSF1 MSF2 MSF3

M0 7% 6% 0% 62 345 48
AES 6% 10% 0% 216 1068 125
M0x3 4% 10% 0% 360 2161 508
M0x5 0% 0% 0% 313 1983 536

MMULT 3% 1% 0% 477 498 384
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aware; to perform SI-aware timing analysis, large databases of timing noise information are loaded and

the full timing analysis takes several minutes. Second, in our experiments, accurate incremental timing

analysis is not available due to a tool limitation. For these reasons, 90% of the total runtime on average is

consumed by the signoff timer. Due to the runtime issue of the signoff timer, we run Sizer several times

with a limited number of cell swaps (i.e., 1000) and a limited number of optimizations (i.e., one). We

report the number of cell swaps (second column) and leakage power (eighth column) for each iteration.

One iteration consists of both the power reduction and timing recovery steps. After the ninth iteration, we

observe that the leakage does not reduce further with MSF2.8 Changing from MSF2 to MSF1 offers an

additional 1.3% reduction.

Table 2.15: Leakage optimization results for NXPIC.

Iter #Swaps SF Final WNS (ns)
∆Leakage Runtime (min)V1 V2 V3 V4

1 181 MSF2 0.033 0.104 0.264 0.574 1.44% 417
2 889 MSF2 0.033 0.104 0.264 0.574 4.02% 1045
3 117 MSF2 0.033 0.104 0.032 0.034 4.31% 437
4 120 MSF2 0.033 0.104 0.032 0.034 4.57% 420
5 36 MSF2 0.033 0.104 0.032 0.034 4.67% 330
6 12 MSF2 0.033 0.104 0.032 0.034 4.70% 362
7 155 MSF2 0.033 0.104 0.032 0.034 4.85% 507
8 40 MSF2 0.033 0.104 0.032 0.034 4.96% 395
9 222 MSF2 0.033 0.104 0.032 0.034 5.29% 856
10 201 MSF1 0.033 0.104 0.032 0.034 6.99% 874
11 28 MSF1 0.033 0.104 0.101 0.060 7.10% 480

2.1.5 Conclusion

Gate sizing optimization has been well studied, and academic sizers have shown significant power

reduction on contest testcases [119] [120]. However, in the real world, design complications (hierarchical

design, existence of hard macros, multiple clocks), modeling complications (state-dependence, complex

slew dependence), timing constraints (MCMM, false paths), and electrical constraints (MaxTran, MaxCap)

block the application of academic sizers to industrial designs. More crucially, the real world can reveal that
8Several additional iterations were attempted with MSF2, but no improvement was observed.
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techniques and “best practices” identified by academic research (driven by popular contest benchmarks)

may not be usable on industrial designs. Our new academic sizer, Sizer, reflects a multi-year evolution

from a successful “contest” sizing tool to a tool that can outperform high-effort commercial results for

a real industrial IC. This evolution has entailed a near-complete change of techniques as compared to

our starting point, Trident [84]. We describe techniques that are useful in the academic contest setting

but not in the real-world context – as well as new techniques specifically developed for Sizer. We also

describe the successful application of Sizer to industrial designs. On a design (i.e., NXPIC) that is well-

optimized by a leading-edge commercial P&R tool as well as ECO steps, Sizer achieves 7% further

leakage reduction without any violation of the given setup/hold and maximum transition constraints in a

multi-corner multi-mode context.

Our future works include (i) runtime improvement with better timing recovery; (ii) improved,

stochastic optimization by introducing different SFs in KickMove function and a random parameter; and

(iii) considerations of other important constraints in industry designs such as noise.

2.2 Minimum Implant Area-Aware Gate Sizing and Placement

As minimum feature sizes decrease, physical design rules have become tighter. Geometric

constraints for layout that arise from limits of patterning technology are described as design rules in

technology files such as LEF [186]. Each layer has width, spacing, minimum-area, etc. rules which

can affect the legality of standard-cell placement. Implant (active) layers, which indicate regions for ion

implantation, determine the threshold voltage (Vt) of transistors. Figure 2.5 shows the implant region in

standard cells and an example minimum implant area (MinIA) layer rule in the LEF file. As shown in the

figure, the polygons of implant layers have drawn dimensions typically matched to the width of standard

cells.

MinIA layer rules affect multi-Vt standard cell-based designs; the multi-Vt regime is essential to

achieve low-leakage, high-performance design implementations [184]. Traditional timing- and routability-

driven placement of cells with multiple Vt values can result in a small island of a given Vt that cannot meet

the MinIA layer rule. A small cell that cannot meet the MinIA rule must be abutted with cells having
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(a) (b)
Figure 2.5: (a) Illustration of implant layer regions in standard cells. (b) An example of an implant layer

rule in a LEF5.7 file.

the same Vt, so as to form a wider implant layer polygon. That is, a narrow cell cannot be sandwiched

between different-Vt cells. Figure 2.6 shows an example of a MinIA violation. The dotted line indicates

the minimum width of the Vt2 implant layer. A narrow cell c2 with Vt2 is surrounded by Vt1 cells, and this

violates the MinIA (equivalently, width) constraint. We note that the impact of the MinIA rule can be huge

when the proportion of small-width cells in the netlist is large; this is a common scenario especially in

cost-driven, low-power mobile IC products. We have studied how “thin” a netlist can be. For example, in a

jpeg netlist synthesized from OpenCores [191] RTL using a 28nm FDSOI foundry library, the smallest

and second-smallest cell widths comprise ∼18% and ∼23% of the total number of instances, respectively.

The (minimum width and spacing) design rules for implant layers have not been critical before,

as cell sizes have been large enough to cover these minimum rules. Hence, up until recent technology

generations, placement and gate sizing/Vt-swapping methods have not had to consider these rules, since

any legal cell placement would be correct with respect to the MinIA criterion. However, as cell sizes have

continued to shrink in advanced process nodes, even as the wavelength used in 193i optical lithography

remains constant, the MinIA rule has become larger than the minimum width of standard cells (e.g., INV×1

cell). MinIA rules constrain cell placement starting with the foundry “20nm” (64nm minimum metal

pitch) node, due to the minimum pattern size limits and cell library (diffusion layer layout) strategies.

The minimum width constraint of implant layers changes the traditional placement and post-layout

gate sizing problems. That is, beyond existing constraints such as timing, power and area, additional

geometric information of cells must be considered. A major change to the traditional sizing problem

formulation is that even downsizing and Vt-swapping operations must comprehend spatially adjacent
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Figure 2.6: An example of the minimum implant area violation. The dotted line indicates the minimum
width constraint of the implant layer. The cell instance c2 (Vt2) violates the constraint as it is narrow and

sandwiched by two cells (c1 and c3) that have a different Vt (Vt1).

cell instances and whitespace in order to avoid creation of sandwiched narrow cells. Further, placement

algorithms must comprehend Vt assignment of spatially adjacent cell instances, as well as whitespace,

for the same reason. Therefore, the two problems cannot be solved independently. A unified method that

considers both cell size/Vt and placement together is needed.

Case Study of P&R Tools

Recently, commercial P&R tools have claimed that minimum implant area rules are considered

during the implementation, given that filler cells with active layers can be used to improve active density

and manage STI stress effects [135]. Commercial P&R tools apparently fix the minimum implant area

violations by inserting filler cells at the final design stage. For example, Mentor Graphics Olympus [189]

has a utility to define an implant layer group for filler cells, so that each narrow cell can be padded filler

cells having the same implant type. Cadence Encounter Digital Implementation System (EDI) [171] checks

and fixes implant area violations according to the rules specified in LEF, during placement and filler cell

insertion. Synopsys IC Compiler (ICC) [197] offers a Voltage-threshold-aware filler cell insertion flow

according to which users can define the Vt filler cells to be inserted between different Vt regions. For

example, users can insert NVT filler cells between NVT and HVT cells, and LVT filler cells between LVT

and NVT cells. In our case studies of P&R tools, we assign HVT filler cells to HVT-NVT and HVT-LVT

pairs, and NVT filler cells to NVT-LVT pairs. We have tested commercial P&R tools using two small

netlists (DMA and AES) synthesized from OpenCores [191] RTL, and a 45nm foundry library along
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with intentionally tightened MinIA constraints. The minimum implant layer rules are defined in LEF. The

portion of each Vt type in the testcases is evenly distributed so as to heighten the number of MinIA rule

violations. The utilizations in the DMA and AES implementations are 77% and 82%, respectively. Figure

2.7(c) shows example commands used with current P&R tools. After routing, the tools’ built-in filler cell

insertion flows are applied. The results shown in Figures 2.7 (a) and (b) show that commercial P&R tools

cannot fix all of the MinIA violations by simply inserting filler cells.

P&R$tool$script$examples$

verifyGeometry$
addFiller${cell_list}$

set_cell_vt_type$
set_vt_filler_rule$“VT1$VT2”${cell_list}$
insert_stdcell_filler$

(c)$
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Figure 2.7: Minimum implant area violation fix results from two commercial tools (P&R1 and P&R2)
through filler cell insertion, for two testcases: (a) DMA and (b) AES. The x-axis shows the minimum
implant width constraints in the number of grids. (c) The commands used for filler cell insertion flow.

This Work

We have discussed how MinIA rules change the gate sizing and placement problems, and we have

observed that commercial P&R tools can handle this new issue only to a limited extent. To our knowledge,

no work in the research literature has tried to solve MinIA violations systematically, for both gate sizing

and placement. The main contributions of our work are summarized as follows.

• We redefine traditional placement and gate sizing problems in view of the minimum implant layer

constraint.
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• We propose methods to minimize MinIA violations and optimize power under the MinIA constraint

with placement perturbation and gate sizing/Vt-swapping.

• Our proposed methods are implemented with C++ programs and incorporated into a standard P&R

flow. Our methods are validated with a commercial tool and 45nm foundry library with a range of

MinIA constraints.

2.2.1 Related Work

Gate sizing, and co-optimization with placement. Traditional gate sizing, which optimizes

power and delay of circuits using size (gate width), Vt, and gate length of cells, has been extensively

reviewed in [98]. Co-optimization of placement and gate sizing has had limited previous consideration.

Lee and Gupta [97] suggest LP-based gate sizing considering an ECO cost, which is computed with respect

to power and area and modeled as a linear function of several parameters. The objective is to minimize

“power + ECO cost”. Luo et al. [114] minimize power by combining placement, sizing and Vt-swapping

optimizations using a slack management technique. The placement, sizing and Vt-swapping phases are

performed sequentially.

Linear (1-D) placement. Since MinIA violations do not occur between standard cell rows, the

associated problem of obtaining a MinIA-legal placement can be treated as a type of linear (1-D) placement.

In the related literature, Kahng et al. [92] and Brenner et al. [16] consider the problem of placing a set of

cells in a single row with a fixed horizontal ordering, with the objective of minimizing the (weighted) sum

of net bounding box perimeters. The paper [89] evaluates several techniques to legalize cell overlaps in

row-based placements, so as to improve metrics of routability and routed wirelength. In [56], Gupta et

al. describe a dynamic programming (DP) based technique for Assist-Feature Correctness (AFCorr) in

detailed placement of standard-cell designs. Their implementation achieves improved depth of focus and

CD control, and subsequent works from the same group use similar DP methods to address leakage and

other objectives.

Layout effect-aware placement. STI stress-aware placement has tangential similarity to our

MinIA placement, in the sense that solutions can seek to increase implant area; however, the main objective
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is different. Joshi et al. [80] propose stress as a means to achieve an optimal power-performance tradeoff.

They study how stress-induced performance enhancements are affected by layout properties, and they

improve standard-cell layouts to achieve maximum performance gain with dual-Vt assignment. Kahng et

al. [91] combine detailed placement and active-layer fill insertion to exploit STI stress for performance

improvement. Chakraborty et al. [21] propose an active area sizing aware cell-level delay model which

forms the basis of linear programming to achieve either maximum performance, or target performance

under a resource budget. Li et al. [102] present a methodology to determine optimal STI well width; using

geometric programming, they also solve a STI stress aware placement optimization formulation.

2.2.2 Problem Formulation

Given a placed standard-cell design9 with potential MinIA rule violations, our ultimate goal is to

find location and sizing/Vt assignment for each cell, so as to achieve minimum power without any violation

of design constraints – including timing, placement legality, and MinIA rule constraints. Implicitly, our

problem formulation assumes the following. (1) We do not consider violations that occur inside of a cell;

individual cells are assumed correct by construction. (2) We assume that the minimum width of an implant

region inside a cell is always the same as the cell width. (3) We do not consider the height of implant

regions within a cell; again, correctness by construction is assumed. To optimize power considering both

timing and geometry information, we combine gate sizing and ECO placement to address MinIA-aware

gate sizing and placement problem:
9Possibly, the design is routed as well, depending on preferences regarding parasitic estimation accuracy versus turnaround

time.
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Problem: MinIA-aware sizing and placement

Minimize:
∑
∀c
P (c)

Subject to: S(c) > 0 (T1)

Tr(c) < Trmax (T2)

We(c) < Imin(Vt(c)), ∀c (P1)

No overlap in placement (P2)

Here, (T1) and (T2) are the timing-related constraints: (T1) is the setup (max path delay) slack constraint,

and (T2) is the maximum transition time constraint. (P1) and (P2) are the placement-related constraints:

(P1) is the minimum implant area constraint, and (P2) is the placement legality (non-overlapping) constraint.

Additional constraints such as max capacitance, hold time checks, and various other physical design rules

can be transparently considered within the approaches that we propose. We omit discussion of these for

simplicity of exposition.

Table 2.16: Notations used in this work.
Notation Meaning
P (c) leakage power of cell c
Vt(c) threshold voltage of cell c
S(c) timing slack of cell c
Tr(c) transition time of cell c
Trmax max transition time constraint
We(c) effective implant layer width of cell c10

B(c) violations caused by cell c in placement11

{N(c)} neighbor cells of cell c
Imin(Vt) minimum implant area constraint for Vt
mk a potential sizing solution

When we optimize both sizing and ECO placement via any sequential/iterative procedure, it is

clear that gate sizing will minimize power at the cost of potential violations (in particular, with respect to
10The maximum width of any contiguous region of an implant layer in c.
11B(c) includes minimum implant area violations.
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MinIA placement rules), and that these violations must be fixed by an ECO placement step. Further, the

sizing and placement problems naturally have different objectives and constraints. How we combine the

two problems in a single framework will induce any of several basic heuristic approaches:

Heur1. Size cells freely (enforcing only the (T1)(T2) constraints, as is traditional in gate-sizing

formulations), and fix placement at a later stage (enforcing all of (T1)(T2)(P1)(P2)).

Heur2. Constrain sizing to enforce all placement and design rules (i.e., with enforcement of

(T1)(T2)(P1)(P2)).

Heur3. Size cells with partial constraints of placement (enforcing (T1)(T2) constraints, and

relaxed (P1)(P2) constraints), such that only a small number of violations require fixing at the ECO

placement stage.

We observe that Heur1 may achieve the best power reduction with its sizing optimization, but may

also result in a large number of MinIA violations in placement. At the other extreme, Heur2 may achieve

only limited power reduction since all potential sizing moves for each cell are restricted by placement.

Heur3 may be viewed as a compromise between the two methods. We note that Heur3 gives the best

results in our experiments reported in Section 2.2.4 below.

A truly simultaneous optimization of sizing and placement for MinIA fixing is not obvious to us at

this point: it appears difficult to explore the entire solution space since there are so many combinations

of sizes, locations, Vt assignments, and filler cell assignments. For now, we have pursued sequential

optimization of sizing and placement, with (i) a sizing heuristic that considers placement, and (ii) placement

perturbation heuristics to fix post-sizing MinIA violations. For the placement optimization stage, we define

a MinIA-aware placement problem, derived from the MinIA-aware sizing and placement problem,
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in which the objective is to minimize the number of violations:

Problem: MinIA-aware placement

Minimize:
∑
∀c
B(c)

Subject to: Sc > 0 (T1)

Tr(c) < Trmax (T2)

The Experiment 1 discussion in Section 2.2.4 below assesses our placement algorithms in the context of

this MinIA-aware placement problem.

2.2.3 Our Approach

We now discuss our gate sizing and placement approaches considering MinIA constraints.

Minimum Implant Area-Aware Placement
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Figure 2.8: Available fixing approaches for MinIA rule violations. A given violation, depicted in (a), can
be fixed by using (b) Vt-swapping, or (c) moving a neighbor cell, or (d) downsizing a neighbor, or (e)

moving the narrow cell.
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Levers to solve MinIA rule violation. If violators of MinIA constraints have enough spacing

around them, then the violations can be easily fixed by inserting same-Vt filler cells, thereby increasing

the width of the implant area. However, when the spacing is insufficient, we must change cell size/Vt or

perturb the placement, such that the implant layer region of the narrow cell can match up with an adjacent

(abutting) implant layer region. Figure 2.8 illustrates four ways to fix a given violation. Suppose that

cell c2 with Vt2 violates the MinIA constraint, and that c1 and c3 are neighbor cells with Vt1 , as shown in

Figure 2.8(a). First, we can fix the violation either by swapping Vt of c2 to Vt1 or by swapping Vt of c1 and

c3 to Vt2 ; this is shown in Figure 2.8(b). Second, we can push out (i.e., shift) c1 and c3 to create spacing

for filler cell insertion, as shown in Figure 2.8(c). Third, c1 and c3 can be downsized to create spacing

around c2, as shown in Figure 2.8(d). Fourth, the violator can be relocated so that it becomes abutted to a

same-Vt cell, c1 in Figure 2.8(e).

Algorithm 6 MinIA-aware Placement Heuristic

Procedure FixMinImpV io(c, {Imin}, D)
Input : a cell c, a set of min implant constraints {Imin}, a netlist D, a placement of D
Output : a sizing/location solution for c ∈ D

1: for all cell c ∈ D do
2: s← 0;
3: for all cell n ∈ {N(c)} do
4: s← s + spacing of c to n;
5: end for
6: MinImpSlack ← c.width− Imin(Vt(c));
7: if s+MinImpSlack ≥ 0 then insert filler cells;
8: end for
9: if #violations is zero then return success;

10: for all cell c ∈ D do
11: if cell c violates then ChangeVtCell(c);
12: end for
13: if #violations is zero then return success;
14: for all cell c ∈ D do
15: if cell c violates then MoveNCell(c);
16: end for
17: if #violations is zero then return success;
18: for all cell c ∈ D do
19: if cell c violates then DownSizeNCell(c);
20: end for
21: if #violations is zero then return success;
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Heuristic approach for fixing minimum implant area violations. Algorithm 6 shows the

overall flow of our heuristic approach, which is based on the four MinIA violation-fixing approaches

noted above. First, whitespace around violating cells is calculated (Line 3). If there is enough spacing,

sufficient width of same-Vt filler cells is inserted to fix the violation (Line 8). In the next step, Vt-swapping

is performed for the violating cell or its neighbor cells with ChangeVtCell (Line 13). For any violations

remaining after this step, there is no space for insertion of filler cells and Vt-swapping is unavailable due

to timing constraints. Thus, we try to create spacing by changing the placement. We first try to move

neighbor cells (Line 17).12 Then, downsizing of neighbor cells (Line 21) can be tried if those cells are

not timing-critical. Note that these steps can be performed in a different order – e.g., downsizing of

neighbor cells can be performed before moving cells. The particular sequence of optimizations of steps

used in our flow has been experimentally determined. Filler insertion is performed first, since it does not

require any cost. Our studies of the permutations of Vt-swapping, moving and downsizing cells indicate

that downsizing of cells occurs very rarely, since many cells are small and timing violations can result.

With respect to Vt-swapping and moving cells, the results are better when Vt-swapping is performed first

(e.g. #MinIA violations of Vt-swapping-first and moving-first are 155 and 44, respectively, for the jpeg

testcase). We also note that our heuristic flow executes steps occur in an order that minimizes perturbation

of placement or sizing.

Details of two levers are described in Subroutine 1. ChangeVtCell tries Vt-swapping for c, using

any Vt in {N(c)}, and checks timing and MinIA violations. If there is any violation, the Vt-swapping of

c is reverted (Line 10). In a similar way, Vt-swapping of neighbor cells is tried. MoveNCell(c) moves

neighbor cells to create additional space. It first checks whitespace around the left and right neighbor

cells and moves these cells if possible, similar to [91]. We limit the movement of cells to avoid large

perturbation of placement, in light of the timing impact of cell placement.13

Algorithm 6 can be used standalone, in an ECO methodology, to fix MinIA violations. We evaluate

our approach with various minimum implant area constraints in Section 2.2.4, Experiment 1.
12We do not need to try moving the target cell (Figure 2.8(e)) as this case could have be fixed at the filler cell insertion stage.
13We observe that up to 10 placement grids of movement will change timing by less than 2ps with the 45nm foundry library.

We allow perturbation of cell location by up to 10 grids.
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Subroutine 1 Functions for MinIA-aware Placement Heuristic
1: Procedure ChangeVtCell(c)
2: Input : a cell c
3: Output : Vt solutions for c and its neighbor cells
4: // Change Vt of the violator
5: Vtorig ← Vt(c);
6: for all cell n ∈ {N(c)} do
7: Vt(c)← Vt(n);
8: w ← total width of c and {N(c)};
9: if w ≥ Imin(Vt(c)) && c does not violate timing then return success;

10: else Vt(c)← Vtorig ;
11: end for
12: // Vt-swapping for neighbors
13: for all cell n ∈ {N(c)} do
14: Vtorig ← Vt(n); Vt(n)← Vt(c);
15: if n violates timing then
16: Vt(n)← Vtorig ; continue;
17: end if
18: w ← total width of c and its neighbor cells;
19: if w ≥ Imin(Vt(c)) then return success;
20: end for

1: Procedure MoveNCell(c)
2: Input : a cell c
3: Output : location solutions for c’s neighbor cells
4: ncl ← the left neighbor cell; ncr ← the right neighbor cell;
5: s← spacing of c to ncl and ncr;
6: MinImpSlack ← c.width− Imin(Vt(c));
7: if ncl has leftside space ∆ then
8: d← max(−(MinImpSlack + s),∆); Move ncl by d; s← s+ d;
9: end if

10: if s+MinImpSlack < 0 then
11: if ncr has rightside space ∆ then
12: d← max(−(MinImpSlack + s),∆); Move ncr by d; s← s+ d;
13: end if
14: end if
15: if s+MinImpSlack ≥ 0 then
16: insert filler cells; return success;
17: else
18: return fail;
19: end if
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Minimum Implant Area-Aware Gate Sizing

Our gate sizing method is based on sensitivity-guided gate sizing [66] [84]. In addition to timing

constraints, we consider the placement constraints (P1)(P2) described in Section 2.2.2. Our objective is to

minimize power without creating any additional (P1)(P2) violations.

Algorithm 7 MinIA-aware Gate Sizing Heuristic

Procedure GSMinImp({Imin}, D)
Input : minimum implant constraints {Imin}, a netlist D, a placement of D, a set of timing constraints
Output : a sizing solution

1: M ← ∅
2: for all cell c in the netlist D do
3: if c is downsizable then
4: mk.c← c; mk.m← downsize; mk.cost← ∆TNS;
5: mk.sensitivity ← ∆Leakage/mk.cost;
6: M ←M ∪mk;
7: end if
8: if ci is not a highest Vt cell then
9: mk.c← c; mk.m← Vt upscaling; mk.cost← ∆TNS;

10: Vtorig ← Vt(ci);
11: Vt(c)← higher Vt; // placement cost calculation
12: {N(c)} ← {N(c)} ∪ c
13: for all n ∈ {N(c)} do
14: if n violates Imin(Vt(n)) then
15: if fixable by Vt-swapping/sizing/move of neighbors n then
16: mk.cost← mk.cost+ CalCost(n);
17: else
18: break; continue to the next ci;
19: end if
20: end if
21: end for
22: Vt(c)← Vtorig ; mk.sensitivity ← ∆Leakage/mk.cost; M ←M ∪mk;
23: end if
24: end for
25: while M 6= ∅ do
26: Pick a mk with maximum sensitivity in M ; Commit mk; M ←M \mk;
27: STA();
28: Fix the extra MinIA violations;
29: if !feasible() then restore mk;
30: end while

For each gate, we check whether the potential sizing produces violations that require placement
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perturbations or sizing of neighbor cells to be resolved. If the neighbor cells need to be changed or

relocated, we estimate the timing impact on neighbor cells and add this to the sensitivity function. During

gate sizing to recover power, a gate can be downsized or its Vt can be swapped to a higher threshold

voltage. Downsizing a gate can produce violations, but if neighbor cells do not consume the whitespace

created by downsizing, the violations can be easily cured by inserting filler cells. However, when a gate

is Vt-swapped and creates violations by itself or in relation to its neighbor cells, possible fixing methods

should be carefully explored. Algorithm 7 describes our sizing flow. ∆Leakage/cost is used as our

sensitivity function. The default cost is the change in total negative slack (TNS). When MinIA violations

occur, we additionally calculate potential decrease (worsening) of TNS from changing neighbor cells to

fix the violations (CalCost(), Line 16). This calculated cost is then added to cost so that the sensitivity

decreases.

Overall Flow

Figure 2.9 shows the overall flow of our optimizer, MinIAOpt. A DEF file of a routed netlist, and

LEF files for geometry information of standard cells and technology information including the minimum

implant layer rules, are converted into OpenAccess [193] DB using def/lef2oa parsers. The minimum

implant area-aware gate sizing is performed to reduce leakage power with considerations of geometry

information. Further minimum implant area-aware placement optimization can be performed to fix MinIA

violations without creating new timing violations. For both stages, a Tcl-socket interface is used to enable

the communication between the P&R tool and/or timer tool and our optimizer. Via this interface, MinIAOpt

can send commands to insert filler cells, size/Vt-swap cells and change the locations of cells, as well as

obtain updated timing information after ECO routing. We also can use a quick timing estimation from

timer tools without ECO routing to achieve faster runtime while sacrificing some accuracy.14

14For any change of cells, ECO routing should be performed and timing should be updated accordingly. But, performing ECO
routing for each cell change takes too much time to be practically feasible. To compensate for the inaccuracy, a timing guardband
can be used.
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Figure 2.9: Overall flow of our optimizer, MinIAOpt.

2.2.4 Experimental Setup and Results

Experimental Setup

Our program is written in C++, and the interface to support DEF/LEF [186] is implemented using

the OpenAccess 2.6 [193] API. We use a Tcl-socket interface (Tcl/Tk 8.4 [199]) to communicate with

P&R and timer tools similar to Trident [84] and SensOpt [202]. We have applied our proposed method

to a set of open-source designs [191], which we synthesize from RTL using Synopsys Design Compiler

H-2013.03-SP3 [195]. For P&R, we use Cadence Encounter Digital Implementation System 13.1 [171].

Implementations in all experiments are with a 45nm foundry technology and library.

Table 2.17 shows the testcases used in our experiments. We compare to the result of a simple filler

cell insertion performed by a commercial P&R tool with high-utilization testcases that are synthesized with

a standard implementation flow. We test various MinIA constraints to understand the scaling of algorithm

performance with instance difficulty (e.g., reflecting MinIA constraints in future technology nodes). The
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utilization, the distribution of cell Vt values15, and the percentage of smaller cells (% Mincells) with width

less than the minimum implant area constraints all affect the difficulty of a given testcase. We use various

minimum implant width constraints Const1, Const2 and Const3, corresponding to four, six and seven,

respectively. In the 45nm library, 3%, 12% and 28% of standard cells are narrower than these constraints.

Also, to study the sensitivity of the results to the difficulty of problem instances, we intentionally tweak the

Vt cell distribution of AES and generate AES var* so that the same placement will have various numbers

of MinIA violations. All experiments are performed on a 2.5GHz Intel Xeon Linux workstation.

Table 2.17: Testcases used in the experiments. WS, Period, Leak respectively indicate worst slack, clock
period and leakage power after routing, before filler cell insertion.

Bench #Inst Util Mincells Vt(H/N/L) WS Period Leak
(%) (%) (%) (ps) (ns) (mW )

DMA 1168 78 59 78/4/16 137 1.0 0.050
MPEG 7121 82 64 83/6/9 39 1.25 0.363
AES 9611 75 84 95/1/2 21 1.5 0.238
JPEG 44911 81 68 82/8/8 36 1.6 2.413

AES var1 9611 75 84 40/30/30 39 2.1 0.129
AES var2 9611 75 84 60/20/20 82 2.4 0.106
AES var3 9611 75 84 80/10/10 137 2.5 0.080

Experimental Results

Table 2.18: Results for a simple filler insertion and our heuristic method.

Bench MinIA Orig. Commercial P&R Heuristic
Const #Vio. ∆ #Vio. (%) ∆ WS (ps) ∆ Leak (mW ) Fill (%) ∆ #Vio. (%) CPU total / tool (min)

DMA
Const1 71 -53 (-75) 0 0.000 0.4 -71 (-100) 1.9 / 1.0
Const2 128 -93 (-73) 0 0.000 1.7 -128 (-100) 2.1 / 1.1
Const3 193 -151 (-78) 0 0.000 2.5 -193 (-100) 2.0 / 1.1

MPEG
Const1 183 -155 (-85) 0 0.000 0.1 -183 (-100) 4.6 / 3.7
Const2 453 -322 (-71) -1 0.000 0.7 -451 (-100) 5.9 / 5.0
Const3 693 -515 (-74) -18 0.000 1.0 -689 (-99) 6.7 / 5.8

AES
Const1 338 -327 (-97) 0 0.000 0.5 -338 (-100) 5.1 / 4.1
Const2 978 -868 (-89) 0 0.000 2.6 -978 (-100) 8.2 / 7.2
Const3 1146 -1005 (-88) 0 0.000 3.4 -1146 (-100) 8.7 / 7.8

JPEG
Const1 1341 -1186 (-88) 0 0.001 0.3 -1341 (-100) 25.3 / 24.3
Const2 3865 -3079 (-80) 0 0.004 1.5 -3850 (-100) 73.8 / 72.9
Const3 7864 -6077 (-77) 0 -0.002 2.5 -7820 (-99) 168.7 / 167.7

AES var1
Const3

2955 -1069 (-36) 28 0.001 10.8 -2863 (-97) 32.3 / 31.4
AES var2 2558 -1106 (-43) -51 -0.002 8.5 -2492 (-97) 25.0 / 24.1
AES var3 1816 -1014 (-56) -84 -0.002 4.1 -1792 (-99) 15.6 / 14.7

15The percentage of each Vt type relative to the total number of cells. H/N/L indicates HVT, NVT and LVT %, respectively.
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Table 2.19: Results for our heuristic sizing algorithm. Const3 is used for the minimum implant width
constraint in this experiment.

Benchmarks WS (ps) Leak (mW ) ∆ #Vio. (%) CPU total / tool (min)
Heur1 Heur2 Heur3 Heur1 Heur2 Heur3 Heur1 Heur2 Heur3 Heur1 Heur2 Heur3

DMA 3 131 4 0.046 0.048 0.047 64 (33) 50 (26) 0 (0) 7 / 5 5 / 3 7 / 5
MPEG2 3 19 19 0.298 0.315 0.309 376 (54) 164 (24) 9 (1) 43 / 41 27 / 26 34 / 33

AES 6 18 18 0.184 0.213 0.203 1734 (151) 814 (71) 412 (36) 98 / 96 51 / 50 69 / 68
JPEG -5 9 10 1.898 2.109 1.954 4861 (62) 2921 (37) 659 (8) 1209 / 1207 663 / 662 1093 / 1091

Experiment 1: Evaluation of MinIA-fix algorithms. Our first experiment evaluates the MinIA-

fix algorithm under power and timing constraints. In Table 2.18, Commercial P&R indicates the result of

simple filler cell insertion performed by a commercial P&R tool. ∆#Vio.(%) shows the absolute (relative)

change in number of MinIA violations compared to the original number of violations (negative numbers

indicate that the number of violations is reduced). Commercial P&R does not change the design, and the

runtime is almost zero. However, it fixes only 36% of MinIA violations in the worst case (i.e., 64% of

violations remain), and 74% on average across all testcases. By contrast, our heuristic substantially reduces

the number of MinIA violations (97% in the worst case, and by 99% on average). Note that the WS of

all testcases is positive even though ∆WS is negative for the case of MPEG with Const3, AES var2 and

AES var3. Fill (%) indicates the portion of the total area occupied by filler cells. We see that the numbers

are very small, which means that whitespace is not all consumed by filler cells. The CPU total/tool shows

the total runtime, and the time consumed by the socket interface between external tools (i.e., P&R and

timer tool) and our optimizer. Nearly all of the total runtime is consumed by external tools, since the

operations used during the optimization such as adding filler cells, moving and/or sizing a cell take O(few

seconds per operation).

Experiment 2: MinIA-aware sizing. Our second experiment evaluates three approaches – free

sizing (Heur 1), restricted sizing (Heur 2) and MinIA-aware sizing (Heur 3) with our heuristic approach

(Algorithm 7) in terms of leakage power, timing and the number of MinIA violations. Const3 is used

for the minimum implant width constraint. Table 2.19 shows Heur 1, Heur 2 and Heur 3 results after

sizing. Although the leakage power values are smallest with Heur 1, the increase in number of MinIA

violations is up to 151% of the original number of MinIA violations. With Heur 2, the leakage power

values are high since the sizing is prevented from creating any violation for the target cell. The increase

in number of violations comes from the impact of sizing on neighbor cells. Heur 3 shows near-zero or
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small increase in MinIA violations with less leakage power than Heur 2. In the Heur 3 results, we see that

solution quality in terms of leakage and timing is nearly maintained, while the number of MinIA violations

is greatly reduced.

Additionally, we have applied our placement heuristic to the results of sizing. For AES, we observe

that 22% of MinIA violations still remain in the result of Heur 1, while 3-4% of those are left for Heur 2

and Heur 3. Note that the MinIA violations may increase the total area and power even though the initial

leakage power might be less with Heur 1.

2.2.5 Conclusion

In this work, we have addressed a new gate sizing/Vt-swapping and placement problem with the

minimum implant area (MinIA) constraint. The MinIA constraint presents a new challenge to the physical

implementation flow in sub-22nm technology, and requires true co-optimization of placement and gate

sizing/Vt-swapping. We have proposed sizing and placement heuristics that optimize power and fixes

MinIA violations while minimizing placement perturbation. Compared to commercial P&R tools, our

methods achieve significant reductions in the number of MinIA violations under timing/power constraints.

Our current heuristics cannot guarantee to minimize the perturbation of placement and/or the

number of violations, though they are straightforward and easy to apply. Hence, similar to [56], we intend

to study the use of dynamic programming to solve single-row placement with MinIA fixing. Procedure

FixRowMinImpVio() in Algorithm 8 sketches such an approach. Our ongoing work includes implementation

of, and analysis of results from, dynamic programming based optimizations.
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Algorithm 8 Dynamic Programming-based MinIA-aware Row Placement

Procedure FixRowMinImpV io({Imin}, R, {T})
Input : minimum implant constraints {Imin}, a placement of a standard-cell row R, a set of timing
constraints {T}
Output : a sizing/placement solution for R
{ci.sol} ← ∅;
// {ci.sol} = sizing/placement solutions from the left-most cell to the ith cell
for i = 1 to k do

for all {l, v, s}, where l = −W to W , v = LVT, NVT, HVT, s = −S to S do
// l = ∆ cell location, v = Vt, s = ∆ cell size
Cost(ci,l,v,s)← minj∈{ci−1.sol}Cost({ci,l,v,s, j})
// Cost(∗) = cost of power and minIA violations
{ci.sol} ← {ci.sol} ∪ ci,l,v,s.sol;

end for
end for
sol← the minimum cost solution in {ck.sol};
return sol;
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2.3 Heuristic Methods for Fine-Grain Exploitation of FDSOI

Fully Depleted Silicon On Insulator (FDSOI) is a promising process technology especially for low

power IoT designs due to its low-cost and low-power potential. Particularly, contrary to the FinFET process

in which body bias is inefficient, body bias in FDSOI is a good knob for speed and leakage optimization.

At a 0.5V supply, speed can be improved by up to 5.5× by using forward body bias (FBB), and leakage

power can be reduced by up to 50× by using reversed body bias (RBB) [45].

Due to the unique FDSOI device structure that does not have body, regular Vt (LR) and low Vt

(LL) devices are implemented by a special structure called a flip well configuration.16 Figure 2.10 shows

the structures of a conventional well (LR) and a flip well (LL). In the flip well structure, an N-well is

implemented under the NMOS transistor, and a P-well is implemented under the PMOS transistor; this

structure enables a wide range of forward body bias [75]. However, as the wells are flipped, abutting LL

and LR cells induces a well bias conflict. Thus, LL and LR cells must be isolated from each other.17

Successful implementations of mixed-Vt and body bias in FDSOI are well-documented in several

previous works [14][45][75]. In these works, the Vt and body bias are assigned in a coarse-grained,

i.e., block-level, manner due to the constraint that different-Vt cells cannot be abutted. To complement

these previous works, and to ensure that the Vt and body bias options in FDSOI are fully exploited,

fine-grained implementations should also be considered and evaluated. However, it is not straightforward

to estimate the benefits of fine-grained mixed-Vt and body bias implementation due to the placement

constraints for different-Vt options. Indeed, our present work shows that in the FDSOI context, benefits

realized from fine-grained use of Vt (hence, body bias) options appears strongly dependent on designs,

libraries, performance targets and power requirements. For example, our results and discussion below

suggest that realizable benefits depend on (i) availability of rich cell library options that offer power-delay

tradeoff, such as poly-biasing options; (ii) the optimized timing structure produced by traditional physical

implementations, including aspects such as multiplicity of timing-critical paths (“wall of slack”) and the
16The names LL and LR map to nomenclature such as LVT/SLVT or HVT/RVT used in popular foundry technologies. In this

work, we generically use LL/LR to avoid the use of any foundry-specific names.
17There exist some foundry technologies which offer different Vt with the same well structure (e.g., 22FDX from Global

Foundries [178]), enabling different-Vt devices to be mixed freely. However, in this work, we refer to “mixing different well
structures” as mixed-Vt: we study the regime where different Vts are generated by using different well structures. Specifically, LL
(resp. LR) is formed by a flip (resp. conventional) well. This corresponds to widely-used 28nm commercial offerings.
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spatial distribution of critical instances; and (iii) a given design’s sensitivity to active leakage and dynamic

power.

In this work, we study the potential of fine-grained, i.e., subblock-level, mixed-Vt assignment in

FDSOI. We frame our study using a novel speed domain partitioning (SDP) problem formulation, since

the Vt assignment essentially seeks to partition the input block into fast and slow parts. Note that in the

following, we focus on the challenge of fine-grained mixed-Vt assignment in FDSOI, and we discuss

only briefly in Section 2.3.5 the (more difficult) challenge of fine-grained body bias assignment. Both

of these challenges share the fundamental problem of determining rectilinear layout regions for speed

boost, i.e., performance improvement, with minimum power increase. Moreover, the mixed-Vt assignment

problem that we study can be seen as closely related to body bias assignment - e.g., FBB assignment can

be comprehended by adding more timing constraints for the FBB mode.

Our main contributions are summarized as follows.

• We formulate the SDP problem and develop two basic optimization flows to address the SDP

problem: an ILP-based flow, and a sensitivity function-based heuristic flow.

• We experimentally study the potential benefits of fine-grained mixed-Vt in FDSOI. Up to 20% (resp.

7%) speed improvement with 54% (resp. 26%) LL region area is achieved for an example with

generic (resp. “rich”) cell library. This said, we observe that outcomes are highly dependent on

available library cells as well as characteristics of the input designs.

• We analyze root-cause challenges to fine-grained mixed-Vt exploitation in FDSOI. Specifically, we

identify three intrinsic difficulties: (i) availability of rich library cell options; (ii) the existence of a

“slack wall” in well-optimized designs; and (iii) spatial contiguity constraints on the placement.

• We suggest a decision tree to help assess the potential benefits for a given design of using mixed-Vt

in FDSOI.

• Finally, we also explain additional difficulties of fine-grained body bias assignment in FDSOI.
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(a) Device structure. (b) Well conflict.

Figure 2.10: (a) The FDSOI device structure. (b) The LL and LR cells cannot be abutted due to well bias
conflicts [45].

2.3.1 Related Work

We now review related works. To the best of our knowledge, there are not many works that

directly address fine-grained mixed-Vt and body biasing in FDSOI. Thus, along with fine-grained body

bias work, we review previous works in multiple-Vdd (voltage island) placement as well as multiple-height

cell placement. The three problems have similarity in that cells are assigned to certain attributes, with

consideration of placement constraints, to optimize design speed and power.

Island generation for dual Vdds. A post-placement Vdd assignment flow to minimize the

number of level converters is proposed in [51]. Sensitivity-based Vdd assignment is followed by placement

optimization based on soft clustering using a min-cut placer to generate voltage islands with a reduced

number of level converters. Liu et al. [107] propose a voltage island generation method in placement for

dual-Vdd designs. The proposed flow starts with power- and timing-driven placement. Sensitivity-based

voltage assignment is performed followed by partition-based placement refinement with soft clustering of

the same Vdd cells. During the placement refinement stage, neighboring bins are merged to create a new

larger bin, and this new bin is repartitioned considering wirelength and clustering for voltage isolation.
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This process is performed iteratively until all the same-Vdd cells are clustered.

Island generation for multiple Vdds. Wu et al. [158] propose a dynamic programming (DP)-

based methodology to group voltage islands for designs with multiple supply voltages. The voltage island

grouping problem is formulated as follows. Given a set of minimum Vdd assignment vg for each grid g, and

an error threshold δ, find a partitioning with the smallest size (i.e., number of islands) where each island has

an error of at most δ. The error of an island I is defined as
∑

g∈I (vmax − vg), where vmax = maxg∈Ivg.

The heuristic method in [158] has two steps: (i) size reduction to a p× q array G where each grid has an

error less than δ so that the array is manageable by DP-based approach, and (ii) applying DP to G. In

the work of [33], a greedy heuristic approach for rectangular voltage island generation is proposed for

multiple-Vdd designs. The largest rectangular regions with the minimum resulting power are selected

iteratively for a given placement along with grid-based voltage assignment.

Row-based dual Vdds. Yeh et al. propose cell layout techniques along with a simulated annealing-

based placement algorithm that support row-based dual-Vdd designs [165]. The authors of [159] propose

an improved placement algorithm that handles local clock buffers (LCB) for the row-based dual-Vdd

designs. The proposed flow consists of two stages: (i) clustering gates to form voltage islands, and (ii)

linear programming (LP)-based legalization. In the work, latches are grouped based on maximum weighted

matching. Then, gates are again clustered based on their distance-based weights, followed by min-cost

max flow-based level shifter assignment. The authors of [160] propose an extension of [159] that improves

timing by moving gates for the row-based dual-Vdd designs. The proposed flow moves timing-critical

gates to feasible locations in a greedy manner, without changing voltage assignments.

Mixed-height cell placements. The work of [37] proposes a placement optimization flow to

implement a fine-grained non-integer multiple-height cell placement. DP-based partitioning is followed by

sensitivity-based gate sizing and placement optimization in the proposed flow.

Other fine-grained body bias work. Flores [46] proposes a greedy algorithm that determines a

body bias island floorplan that gives minimum wirelength. In the proposed algorithm, the size and location

of the islands are selected based on track utilization. Taco et al. [147] study gate-level dynamic body

biasing in 28nm FDSOI in the circuit level. The authors of [147] compare the dynamic threshold voltage

MOSFET circuit (transistor-level body biasing) and the gate-level body-biased circuit [4][32]. Kühn et al.
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[95] propose a body bias domain partitioning method by identifying gates activated through a common

identifier during logic synthesis. The authors of [95] assign body bias to partitioned domains based on

leakage and timing.

In sum, previous works have addressed design optimizations in contexts – notably, voltage island

and mixed-height placement – that are similar to our present FDSOI context. Many of these other works

report noteworthy power/speed/area benefits from their proposed optimizations. However, as seen from

our experimental results as well as the Section 2.3.4 discussion below, the SDP problem in FDSOI seems

fundamentally more challenging for several reasons.

2.3.2 Our Approach

In this section, we first formulate the SDP problem for mixed-Vt FDSOI implementation. We then

describe a set of implementation approaches we have tried, and give details of the two best approaches

that empirically give maximum speed improvements (for given power overhead) subject to placement

constraints.

It must be emphasized that there are many conceivable ways to implement fine-grained mixed-Vt

(and body bias) implementations, working at various design levels in the RTL-to-GDS flow. For example,

one could plausibly synthesize with both Vts and partition the netlist according to the Vt of each gate. Or,

one could synthesize with LR-only and optimize the netlist while making LL cells additionally available.

Among many possible implementation flows that we have investigated, our discussion focuses on post-

placement optimizations in which we start from placed netlists implemented with LR-only cells, without

awareness of placement constraints in FDSOI. We have zeroed in on this space of implementation flows,

for the following reasons. First, it is difficult to identify timing-critical cells that will eventually require

speed boost, based on a pre-placement netlist – since the timing changes disruptively after placement.

Second, if we predetermine (LL) regions for speed boost, this restricts placement and leads to poor quality

of placement results with respect to timing and wirelength. Third, if we allow the mixing of LL/LR Vt

values up front in synthesis, the optimization of LL vs. LR regions becomes highly restricted by existing

(placements of) LL cells; in our experience, this leads to very large timing and/or power penalties.

70



Mixed-Vt Speed Domain Partitioning (“SDP-MVT”) Problem

Given an initial placed design implemented with LR cells only, perform Vt swapping, sizing and

placement optimization to define LL regions under timing/placement constraints.

Input: A placed design, synthesized and optimized with LR cells.

Output: An optimized mixed-Vt netlist/placement, with LL islands.

Constraints: The optimization would typically be subject to timing and placement constraints. For

example, the target operating frequency of the mixed-Vt implementation should be X% higher than that of

the pure-LR implementation; the total power of the mixed-Vt implementation should be no more than Y%

higher than that of the pure-LR implementation; and the total area of LL regions should be no more than

Z% of the total area of the design. Our experiments below attempt to shed light on achievable combinations

of X, Y and Z for the testcases studied.

Overall Flow

Figure 2.11 illustrates our overall flow. The input to the overall flow is a placement implemented

and optimized with LR cells only. We generate LL islands and assign LL to all the cells in the islands. We

then further optimize timing if needed without changing the LL assignment. The output is an optimized

placement (and netlist) with LR and LL cells. Our background experiments have tried a rather large number

(i.e., 4 × 5 = 20) of flow variants with various combinations of island generation methods and timing

optimization methods. Additionally, various alternative ILP-based assignment strategies have been tested.

For the island generation, we have tried four flows, namely, (i) a “brute-force” approach; (ii)

sensitivity-based assignment; (iii) ILP-based assignment; and (iv) iterative heuristic-based assignment.

In the brute-force approach, we first collect all the timing-critical cells in a given placement, and move

these cells into a predefined rectangular region. We sweep the locations and aspect ratios of the predefined

region to find a best solution; thus, the brute-force method is similar to executing the method of [46] with

many different target regions. The sensitivity-based assignment is performed as follows, with respect to a

coarse gridding of the layout region into (∼100) grids. First, for each cell in the layout, we calculate the

sensitivity (1/∆ total negative slack) when the LR cell is changed to LL. We then select the top-k% of all
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Figure 2.11: Overall flow, showing options explored in background studies. Superior flow options are
shown in bold font.

cells with respect to the sensitivity. Among the selected cells, we randomly choose n cells to use as seeds

for the LL region generation. (Since LL regions must be contiguous in the final layout solution, succeeding

LL cells should be close to these seed LL cells.) Using the chosen n cells as “anchors”, we recalculate the

sensitivity of each cell considering proximity, i.e., the quotient (distance to the nearest anchor / ∆ total

negative slack). We then sum all of the cell sensitivity values in each grid. Finally, we assign LL to the

regions (grids) with the largest sums of sensitivity values.

For the timing optimization, we have tried five flows, namely, (i) commercial tool-based opti-

mization for islands where we run post-placement optimization for the LL region only; (ii) commercial

tool-based optimization for the entire placement; (iii) sensitivity-based gate sizing and movement for

islands; (iv) sensitivity-based gate sizing and movement for the entire placement; and (v) no optimization.

For the sensitivity-based gate sizing (iii), we estimate ∆ slack for each potential move and swap. ∆ slack /

current slack is used as our sensitivity function.

From our experimental studies, we have concluded that ILP-based assignment and iterative
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heuristic-based assignment offer clearly superior results in terms of speed improvement for given placement

constraints and power overhead. For timing optimization, none of the methods studied is helpful to improve

worst setup slack. In sum, the two best overall flows that we select for our experiments below are designated

in bold font in Figure 2.11.

Algorithms for Island Generation

We now give details of the two approaches for island generation that offer the best results in

our experiments. In our island generation flows, we perform grid-based assignment, i.e., all the cells in

the same grid have the same Vt. Thus, island generation first splits the layout into a number of uniform

rectangular grids. Empirically, the results of our flows are not sensitive to the number of grids when this

number is 100 or more. Thus, in the following we report results for 100 uniform rectangular grids.

Table 2.20: Notations.
Notation Meaning

α LL island area constraint (0 – 1)
N maximum number of islands

i / j / m / n index of cell / LL island / timing path / grid, respectively
vjn binary indicator of whether grid n belongs to island j
vj binary indicator of whether island j is generated
gi grid index of cell i

∆di delay difference between LR and LL for cell i
LR cell delay subtracted by LL cell delay.

sm negative slack of path m
dm initial delay of path m
cp clock period

max area maximum area constraint for islands
xjl , y

j
l (resp. xju, yju) x, y locations of lower-left (resp. upper-right) corner of island j

xnl , ynl (resp. xnu, ynu ) x, y locations of lower-left (resp. upper-right) corner of grid n
xl, yl (resp. xu, yu) x, y locations of lower-left (resp. upper-right) corner of the layout

G large number

ILP-Based Flow. In our ILP-based flow, we first collect timing critical paths and formulate timing

constraints. Table 2.20 shows the notations used in our ILP formulation. The objective is to minimize the

clock period (Equation (2.2)). Equation (2.3) ensures that total area of islands is not more than a given

maximum area. The area of a rectangle is estimated by its half perimeter. Equation (2.4) ensures at most
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one island to be selected for a grid. Equation (2.5) ensures that the number of islands does not exceed N .

Equation (2.6) ensures the delay improvement of swapping to LL to be larger than −sm for each timing

path m. Equation (2.7) determines the dimension of islands such that every LL grid is covered by LL

islands.

Minimize: cp (2.2)

Subject to: ∑
j

(xju − x
j
l + yju − y

j
l ) < α · (xu − xl + yu − yl) (2.3)

∑
j

vjn ≤ 1, ∀n (2.4)

vj ≥ vjn, ∀n
∑
j

vj ≤ N (2.5)

pm −
∑

i∈pathm

(
∑
j

vjgi) ·∆di < cp, ∀m (2.6)

xju −Gvjn +G > xnu, ∀j

xjl +Gvjn −G < xnl , ∀j

yju −Gvjn +G > ynu , ∀j

yjl +Gvjn −G < ynl , ∀j (2.7)

Sensitivity Function-Based Heuristic Flow

Algorithm 9 shows our sensitivity function-based heuristic flow for LL island generation. We

select LL island regions based on sensitivity, where the average slack of the region as the sensitivity

function (SF). The island regions are comprised of contiguous grids. In Line 1, we find a small rectangular

region based on sensitivity, and use this as a seed for generating island regions. In Lines 2 – 12, we grow

the seed gradually until the area of the region reaches a given max area constraint. More specifically, for

each direction (Line 3), we try growing the seed region by one grid (Line 4) and calculate SF (Line 5). We

select the best direction to grow, which gives the best (minimum) SF score (Line 7).

74



Algorithm 9 Sensitivity function-based heuristic flow.
Procedure: HeurVtAssign()
Input: placement, max area
Output: placement with LL islands

1: region← FindBestRegion(area=0.01, SF)
2: while area < max area do
3: for direction in (east, west, north, south) do
4: grow region← grow(region, direction)
5: score← CalcSF(grow region, SF)
6: if best score < score then
7: region← grow region
8: end if
9: end for

10: area← region.area
11: update timing
12: end while
13: return region

2.3.3 Experimental Setup and Results

In this section, we report the results of our two best flows that we describe in Section 2.3.2. For

each of our testcases, we perform three distinct optimizations to find rectilinear regions for the mixed-Vt

problem: (i) ILP with one island (ILP-1); (ii) Iterative ILP with two islands (ILP-2); and (iii) Heuristic

with two islands (Heur). The Iterative ILP simply defines a first LL island based on the above-described

ILP, and then – based on this LL assignment – sets up and solves the same ILP with updated timing

information to define a second LL island. Our methods are implemented in Tcl 8.4 [199], and CPLEX

v12.6.3 [180] is used as the ILP solver. Runtimes for each solution, including runtimes of commercial tool

steps and any CPLEX runtimes, are at most 6 hours on a 2.8GHz Xeon server with 128GB RAM.

Experimental Setup

We perform experiments in a 28nm FDSOI foundry technology with dual-VT libraries, 0.9V

nominal supply voltage. We validate our flows with ARM Cortex M0 and M3 cores, along with two

designs (ldpc, viterbi) from the OpenCores website [191].

The designs are synthesized with target periods in the range of 0.5ns – 2.5ns, with a 50ps step.

For each synthesized netlist, P&R is performed with three P&R target periods, i.e., synthesis target
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period + {-50, 0, 50}ps. The SP&R (synthesis and P&R) is performed with three library options, i.e.,

LR-only, LL-only and LR+LL (mixed Vt), without placement constraints. For the P&R flow, high leakage

power optimization effort is applied, along with post-placement leakage optimization. For each SP&R

implementation, we record target P&R clock period + worst negative slack (WNS), namely, effective clock

period, along with leakage power and total power. (Assuming a simple single clock constraint, worst setup

slack plus the target clock period is equal to the smallest clock period at which setup slack = 0. We refer to

this as the effective clock period (ECP).)

We have performed our experiments with multiple commercial 28nm FDSOI enablements, one

with 12-track (12T) cells and a “generic” (no poly biasing) library, and the other with 8-track cells and a

“rich” library with poly biases.18

• Enable1. 28nm 12T LL and LR without poly bias (i.e., P0) are used as library cells. Synopsys

Design Compiler N-2017.09 [195] and Cadence Innovus v17.1 [174] are used for logic synthesis

and P&R tools, respectively.

• Enable2. 28nm 8T LL and LR with four poly bias options (i.e., P0, P4, P10 and P16) are used

as library cells. Cadence Genus v16.2 [173] and Cadence Innovus v15.2 [174] are used for logic

synthesis and P&R tools, respectively.

We have implemented the M0 and M3 testcases with each of these two enablements. We denote M0 (resp.

M3) implemented with Enable2 as M0-2 (resp. M3-2).

Table 2.21 shows the testcase information. All the numbers are reported by the P&R tools

that correspond to the associated enablements (i.e., Innovus v17.1 and v15.2 for Enable1 and Enable2,

respectively), at the post-placement stage. The Min. LL period and Min. LR period columns show the

minimum achievable effective period with LL-only and LR-only SP&R implementation, respectively. We

observe that roughly 30∼40% speedup can be achieved with LL-only implementations (i.e., 100% LL),

compared to LR-only implementations. This can be viewed as an upper bound on speedup that could be

achieved by any mixed-Vt implementation.
18Poly biasing refers to transistor gate (channel) length biasing, typically by a positive number of nanometers, for ultra fine-grain

exploitation of leakage-delay tradeoff. For example, P10 denotes a +10nm (relative to the nominal value) channel length.
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Table 2.21: Testcases.
Enable Name #Instances Min. LL period Min. LR period

Enable1

M0 7K∼11K 0.803 1.122
ldpc 46K∼59K 0.775 1.027
M3 47K∼60K 1.151 1.599

viterbi 53K∼69K 0.529 0.766

Enable2
M0-2 8∼13K 0.834 1.144
M3-2 47∼71K 1.248 1.669

Experimental Results

Recall that we perform three optimizations, i.e., ILP-1, ILP-2 and Heur, on LR-only implementa-

tions to find rectilinear regions for mixed-Vt FDSOI implementation. To obtain meaningful inputs to our

optimization flows, we select several LR-only implementations with effective clock periods no more than

1.1 × Min. LR period. We run our optimizations with maximum LL% constraints of {20%, 30%, 40%,

50%}. We then report the results with minimum leakage power while meeting {2%, 5%, 7%, 10%, 20%}

speed improvements compared to Min. LR period.

Table 2.22 shows the results of our three heuristics for mixed-Vt optimization (ILP-1, ILP-2,

Heur), along with three reference implementations: the LR-only (LR) baseline implementation, the LL-

only (LL) fastest-possible implementation, and the mixed-Vt (without placement constraints) (LR+LL)

implementation that bounds the mixed-Vt power-speed tradeoff. In each group of columns of the table, we

report parameters (effective clock period, leakage and total power, and percentage area of LL region(s))

of the lowest-power solution that achieves the given percentage speed improvement, relative to the LR

baseline implementation. (Note that for each testcase, the ‘LR’ numbers are the same in each group of

table columns.) Blanks (indicated by ’-’) mean that there is no result that meets the corresponding speed

improvement with the corresponding flow. We note that our target periods are based on Min. LR period

which are aggressive, and that the upper bound of the possible speedup is only 30∼40%. We also note

that we do not include the implementation overhead due to the spacing rules between LL and LR. In

reality, mixed-Vt implementations with placement constraints will have more area and thus consume larger

total power. Figure 2.13 shows the leakage and total power versus the effective clock periods for the four

designs implemented with Enable1, and for the two designs implemented with Enable2. Figure 2.12 shows
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the island shape obtained by ILP-2 for the viterbi testcase in Enable1. This obtains a speedup of 20% with

LL region area of 54%.

Figure 2.12: Island shape obtained by ILP-2 for the viterbi testcase in Enable1. LL regions are
highlighted in red.

Our high-level findings are summarized as follows.

• The overall outcomes, i.e., power and speed benefits from mixed-Vt, are strongly library- and

design-dependent.

• For Enable1 (generic library)-based designs, up to 20% speed improvement with 54% LL region is

observed.

• For Enable2 (rich library)-based designs, up to 7% speed improvement with 26% LL region is

observed.

Designs with generic library cells (Enable1). For the designs implemented with Enable1, we

observe that M0 and viterbi achieve 20% speedup with ILP-based optimizations. For M0, ILP-1 achieves

the 20% speedup with 53% LL area. Compared to LR+LL (without placement constraints) in the ILP-1
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solution, leakage and total power values are 48% and 18% larger while the LL area is the same. For viterbi,

ILP-1 and ILP-2 achieve the 20% speedup with 60% and 54% of LL area, respectively. Compared to

LR+LL, in the ILP-2 solution, leakage power value is 69% larger, but total power value is 1% smaller, while

LL area is 25% larger. For ldpc, ILP-2 achieves the 7% speedup target with 53% of LL area. Compared to

LR+LL, in the ILP-2 solution, leakage and total power values are 101% and 20% larger, respectively, while

LL area is 3% smaller.

We see that ldpc is not a SDP-friendly design, since the LL portion in LL+LR is higher compared

to other designs. Even without placement constraints,∼ 77% of area is needed to achieve the 20% speedup

requirement. For M3, ILP-2 achieves the 7% speedup with 53% LL area. Compared to LR+LL, in the

ILP-2 solution, leakage and total power values are 216% and 119% larger, while LL area is 35% larger.

We believe that there are at least two reasons for not achieving ≥ 10% for M3. First, since M3 has a

relatively larger initial effective clock period compared to other testcases, it is more challenging to achieve

a higher % of speedup. In particular, WNS must be improved by more than 250ps for the 20% speedup

target, while other designs can meet such a speedup goal with less than 200ps WNS gain. Second, the

placement seems to not be SDP-friendly. The required LL area values to achieve 7% speedup target without

and with placement constraints are 18% and 53% respectively, and there is a very large gap (i.e., 35%

difference in LL area) between these two cases. This indicates that critical cells are indeed placed sparsely

(that is, without any spatial contiguity awareness in physical synthesis or sizing steps) by commercial

implementation flows, and that it is not easy to cover the critical cells with only a couple of rectangular LL

regions.

In Figures 2.13(a)-(h), we observe that Heur, ILP-1 and ILP-2 curves are between the LL and

the LR+LL curves, but closer to the LR+LL curves. However, for faster effective clock periods (i.e., less

than the minimum clock period achievable in pure-LR designs), the power values of the Heur, ILP-1 and

ILP-2 increase dramatically. We note that the LR+LL results are obtained without considering placement

constraints while the Heur, ILP-1 and ILP2 consider the placement constraints. The unnecessary cell swap

to LL due to the placement constraints leads to large power increase.

Designs with rich library cells (Enable2). For the designs implemented with Enable2, we

observe that up to 7% and 2% speed improvement is achieved for M0-2 and M3-2, respectively. In
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Table 2.22: Results of ILP-1, ILP-2 and Heur.
Design Flow 2% imprv 5% imprv 7% imprv 10% imprv 20% imprv

ECP PLeak PTot LL% ECP PLeak PTot LL% ECP PLeak PTot LL% ECP PLeak PTot LL% ECP PLeak PTot LL%

M0

LR 1.102 0.17 8.09 0 1.102 0.17 8.09 0 1.102 0.17 8.09 0 1.102 0.17 8.09 0 1.102 0.17 8.09 0
LL 1.059 1.15 7.42 100 1.008 1.24 7.96 100 1.008 1.24 7.96 100 0.996 1.31 8.57 100 0.917 1.49 9.59 100

LR+LL 1.070 0.55 7.05 31 1.025 0.69 7.76 39 1.025 0.69 7.76 39 0.947 0.78 8.23 41 0.911 1.02 9.25 53
ILP-1 1.053 0.39 8.14 15 1.042 0.91 9.11 30 1.007 1.05 9.28 41 0.992 1.27 9.66 52 0.915 1.51 10.95 53
ILP-2 1.046 0.59 8.51 19 1.046 0.59 8.51 19 0.990 1.07 9.53 40 0.990 1.07 9.53 40 - - - -
Heur 1.045 0.45 8.25 17 1.045 0.45 8.25 17 1.027 1.13 9.47 44 1.000 1.48 10.02 54 - - - -

ldpc

LR 1.027 1.17 79.44 0 1.027 1.17 79.44 0 1.027 1.17 79.44 0 1.027 1.17 79.44 0 1.027 1.17 79.44 0
LL 0.972 7.58 89.37 100 0.972 7.58 89.37 100 0.941 8.49 91.21 100 0.916 8.75 86.74 100 0.820 12.41 108.42 100

LR+LL 0.962 4.55 78.07 50 0.962 4.55 78.07 50 0.909 5.63 86.05 56 0.909 5.63 86.05 56 0.817 10.06 104.42 77
ILP-1 1.003 5.51 85.49 22 0.977 11.31 97.12 53 - - - - - - - - - - - -
ILP-2 0.996 4.14 84.53 16 0.967 9.13 93.20 43 0.954 11.32 102.89 53 - - - - - - - -
Heur 1.004 7.24 88.39 40 - - - - - - - - - - - - - - - -

M3

LR 1.577 0.75 29.87 0 1.577 0.75 29.87 0 1.577 0.75 29.87 0 1.577 0.75 29.87 0 1.577 0.75 29.87 0
LL 1.479 6.53 36.10 100 1.479 6.53 36.10 100 1.403 7.08 38.88 100 1.403 7.08 38.88 100 1.295 8.03 43.83 100

LR+LL 1.506 2.05 31.88 18 1.457 2.19 33.81 18 1.457 2.19 33.81 18 1.433 2.37 33.72 20 1.288 5.44 44.43 43
ILP-1 1.524 1.64 32.99 8 1.492 6.50 38.91 47 - - - - - - - - - - - -
ILP-2 1.516 2.79 34.46 18 1.493 3.52 35.67 21 1.459 6.92 40.21 53 - - - - - - - -
Heur 1.536 2.48 33.77 17 - - - - - - - - - - - - - - - -

viterbi

LR 0.755 1.63 157.37 0 0.755 1.63 157.37 0 0.755 1.63 157.37 0 0.755 1.63 157.37 0 0.755 1.63 157.37 0
LL 0.733 15.55 165.62 100 0.700 15.99 175.61 100 0.700 15.99 175.61 100 0.664 16.32 188.49 100 0.615 16.86 201.46 100

LR+LL 0.740 4.71 157.86 10 0.710 7.03 170.08 21 0.643 7.03 187.43 20 0.643 7.03 187.43 20 0.603 8.97 203.19 29
ILP-1 0.719 6.89 167.12 25 0.719 6.89 167.12 25 0.687 7.51 170.20 36 0.666 10.20 177.87 53 0.611 14.58 202.07 60
ILP-2 0.715 6.00 167.54 18 0.715 6.00 167.54 18 0.703 6.15 168.45 21 0.664 6.83 179.53 23 0.629 15.23 200.76 54
Heur 0.698 5.53 172.79 15 0.698 5.53 172.79 15 0.698 5.53 172.79 15 - - - - - - - -

M0-2

LR 1.144 0.08 5.69 0 1.144 0.08 5.69 0 1.144 0.08 5.69 0 1.144 0.08 5.69 0 1.144 0.08 5.69 0
LL 1.067 0.37 5.55 100 1.067 0.37 5.55 100 1.067 0.37 5.55 100 1.014 0.52 6.46 100 0.938 0.64 7.61 100

LR+LL 1.057 0.33 5.69 66 1.057 0.33 5.69 66 1.057 0.33 5.69 66 0.987 0.52 6.72 72 0.897 0.57 7.75 77
Heur 1.073 0.26 6.42 22 1.073 0.26 6.42 22 1.054 0.33 6.62 26 - - - - - - - -

M3-2

LR 1.669 0.48 23.92 0 1.669 0.48 23.92 0 1.669 0.48 23.92 0 1.669 0.48 23.92 0 1.669 0.48 23.92 0
LL 1.555 1.05 21.84 100 1.555 1.05 21.84 100 1.555 1.05 21.84 100 1.477 1.31 23.39 100 1.384 1.63 25.81 100

LR+LL 1.548 0.71 21.74 43 1.548 0.71 21.74 43 1.548 0.71 21.74 43 1.480 0.93 23.65 49 1.389 1.41 26.42 56
Heur 1.625 1.44 25.70 20 - - - - - - - - - - - - - - - -

Figures 2.13(i)-(l), we see that for designs with Enable2, as noted in Section 2.3.4, the benefit of mixed Vt

is relatively less. As expected, the Heur results do not show much power benefit, iso-effective clock period.

2.3.4 On the Difficulty of the SDP Problem

From our experimental results above, we see that the benefit of fine-grained mixed-Vt can be

disappointingly small for FDSOI implementations. In this section, we present what we believe to be

root-cause, intrinsic reasons behind the difficulty of obtaining larger benefits from fine-grained mixed-Vt

in FDSOI. These reasons stem from the nature of popular 28nm FDSOI foundry technologies, as well as

the input designs, that we study. All of these reasons also apply to fine-grained body biasing in FDSOI, as

discussed in Section 2.3.5 below.

In this section, our discussion is supported by experimental results obtained through limited access

to another commercial enablement, which we refer to as Enable3. For Enable3, 22nm 8T LL and LR that

have six cell variants respectively are used as library cells. Synopsys Design Compiler N-2017.09 [195]

and Cadence Innovus v17.1 [174] are used for logic synthesis and P&R tools, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2.13: (a)-(d) Leakage power versus effective periods for the four designs implemented with
Enable1; (e)-(h) total power versus effective periods for the four designs implemented with Enable1; (i)-(j)
leakage and (k)-(l) total power versus effective periods for the two designs implemented with Enable2.

81



Rich Library Cell Options

We observe that the nature of foundry libraries can affect available mixed-Vt benefit. The Enable2

28nm FDSOI foundry enablement offers rich library cell options, i.e., four poly bias (PB) options (P0, P4,

P10 and P16) for each group of LL and LR. (The libraries in Enable3 offer six different cell options for

each of LL and LR. These options in the same-well-structure group can be mixed in the layout without

placement constraints, and they offer power-delay tradeoff wide enough to replace different well structure

groups.)

Study of individual cell delays. Figure 2.14 shows leakage-vs.-delay curves for different sizes of

buffer cells for each Vt/PB option. The delay value of each cell is calculated using the lookup table in the

non-linear delay model (NLDM) library with input slew 50ps and load of 4× the input capacitance of each

cell. The average leakage power and the delay of each cell respectively correspond to the y-axis and the

x-axis in the figure. We observe that the power-delay curves of LL and LR expand with the availability of
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Figure 2.14: Leakage versus delay curves of buffer cells with various Vt and poly bias options available in
Enable2. The delay is measured with input slew 50ps and output load of 4× the input capacitance of each

cell. LL P16 and LL P10 consume less leakage power than LR P4 and LR P0.

more PB options, such that these curves have greater overlap and become more “near-continuous”, with

near-minimum power being achievable for a particular operating frequency without mixing LL and LR.
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Accordingly, the benefit of mixed-Vt is less likely to justify the overheads from placement constraints.

(This might be in contrast to multi-Vdd or mixed-height placement contexts, where delay-power tradeoff

curves remain disjoint and mixing of flavors retains benefits.) Further, a reversed leakage trend is seen,

i.e., leakage power of LL P16 and LL P10 is lower than that of LR P4 and LR P0 with iso-delay, in the

zoomed-in region. With the availability of rich PB options, the benefit of fine-grained mixed-Vt might not

be sufficient, let alone compelling, compared to “mixed PB” implementations.

Study of design implementations. Our experimental studies confirm that with rich cell library

options, mixing of LL and LR might achieve only limited benefits. For example, Figure 2.15 shows the

power and delay tradeoff of different M3 implementations with different library cells, i.e., LL, LR, LR+LL

(mixed-Vt) with Enable1, Enable2 and Enable3. Each dot corresponds to a distinct SP&R implementation

with a target period. The x-axis shows effective clock periods (ECPs) in ns, which we calculate as the target

period subtracted by worst setup slack. Leakage or total power values are shown in the y-axis. We note

that Enable1 is an enablement with “generic” cell library options, since only one cell option is available for

each of LL and LR.

Notice that when a cell library option is limited, as in the case of Enable1, mixing Vt is beneficial

especially for leakage power. However, with rich cell library options (Enable2 and Enable3), the benefit

of mixing Vt is less. In Figure 2.15, the red, yellow, blue curves (dots) correspond to LL, mixed-Vt, LR

designs, respectively. For relatively slower effective clock periods (i.e., achievable by LR designs), LR

always dominates in terms of leakage and total power. For relatively faster effective clock periods (i.e.,

less than the minimum achievable clock period), mixed-Vt dominates in terms of leakage and total power

in Enable1. For Enable1 plots (Figures 2.15(a) and (d)), the gap between the yellow and the red curves

dots is clearly visible. However, such a trend is not observed with either Enable2 or Enable3. We also note

that the plots in Figure 2.15 do not consider placement constraints. The benefits of LL LR designs may be

obviated if placement constraints are considered. That is to say, when spatial contiguity constraints are

considered in the placement, additional Vt swaps must be made to achieve legal placements, and hence the

LL region will be larger than necessary.
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(a) (b) (c)

(d) (e) (f)

Figure 2.15: Leakage power versus effective period curves for various M3 implementations with (a)
Enable1, (b) Enable2 and (c) Enable3, along with total power versus effective period curves for various

M3 implementations with (d) Enable1, (e) Enable2 and (f) Enable3.

Many Near-Critical Paths

We also find that speed domain partitioning is difficult to apply to designs with many timing-critical

paths. In such designs, a standard physical implementation flow will place timing-critical cells all over the

layout. Figure 2.16(a) shows timing statistics of M3 implemented with Enable2. The target clock period of

the M3 design is 2.1ns, and timing is measured after post-placement optimization based on trial route. The

worst setup slack is approximately -410ps, which makes the effective clock period (i.e., the target clock

period subtracted by the worst setup slack) 2.5ns. In the figure, the x-axis and y-axis show the setup slack

values and the occurrence of timing endpoints with the corresponding setup slack. We observe a typical

“slack wall”, namely, that there is a high occurrence of timing endpoints near the worst (leftmost) slack

value. Furthermore, due to the nature of optimizers that try to convert timing slack to minimize power, it is

likely to see such a slack distribution (slack wall) after post-placement optimization. Designs with higher

slack walls are more difficult to improve the worst slack, since more timing endpoints need to be improved
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for the clock period to change. E.g., in Figure 2.16, ∼30% of timing endpoints should be improved to

obtain ∼100ps slack improvement (which is only 4% of the effective clock period).

(a) (b)

Figure 2.16: Timing information of M3 implemented with Enable2. (a) Histogram of path slack values,
showing existence of wall of slack. 30% of paths must be fixed to achieve a 4% speed improvement. (b)
Map of instance timing slacks of M3 implemented with Enable2, with legend shown in the left bar. White

and red cells are timing-critical.

Placement Constraints

The flip well structure in FDSOI is also a root cause of limited benefit in mixed-Vt implementation.

To form rectilinear islands, it is inevitable to make unnecessary Vt swaps: if an LR cell instance must be

swapped to LL, the neighbor cells of this target cell must be swapped as well. Figure 2.16(b) shows a

timing slack map of M3 with Enable2. White and red cells can be considered as timing-critical, as seen in

the left legend bar. We observe that the benefit of using LL, i.e., speed improvement, dramatically drops as

we give more placement constraints. Based on our experiments, for the M3 design, 9% speed improvement

is achievable by swapping 17% of the area to LL without considering placement constraints. However,

with placement constraints, the speed improvement drops to 1% with a similar area of LL swaps (19%).

We also have studied a variety of pre-placement optimizations, but without success. More specifically,

we collect all the timing-critical cells up front and place them locally, i.e., with region constraints. With

the recent release of commercial P&R tools that we use, we find that this approach is too disruptive to
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conventional timing- and wirelength-driven placement, and that it leads to several suboptimal placement

solutions with worse QoR in terms of both timing and wirelength.

2.3.5 Conclusion

In this work, we have studied the potential of fine-grained mixed-Vt optimization in FDSOI. We

formulate the speed domain partitioning (SDP) problem and propose effective heuristics that are capable

of achieving significant speed improvements. We also identify inherent challenges that limit benefit from

fine-grained mixed-Vt: (i) availability of rich cell library options in some commercial foundry enablements;

(ii) existence of a slack wall in well-optimized designs; and (iii) spatial contiguity constraints (arising

from well structure) in the placement. These challenges are confirmed in implementation experiments with

multiple commercial enablements at 28nm and 22nm. Given our observations regarding sensitivity of

mixed-Vt benefits to initial designs and library options, we offer a “decision tree” that may help designers

make implementation choices, as follows.

Figure 2.17: Notional decision tree for FDSOI implementation option choice.

Decision Tree

Figure 2.17 shows our notional ‘decision tree”, based on our experimental studies and observations,

for implementation option choice in FDSOI. For the input RTL, logic synthesis results with LL, LR and

mixed-Vt are needed to see which implementation option offers the minimum power for the target operating

frequency. If mixed-Vt is the best option, measure the portion of LL cells (LL%) in the synthesized netlist.

If LL% > A, it would be better to use LL option since we observe that mixed-Vt designs may not offer
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better power if LL cells are dominant. For A, we empirically recommend to use 15%. This is because

LL% is likely to increase in the presence of placement constraints (in our experimental results, we observe

a typical increase of ∼ 3×). Further, with LL% >∼ 50%, not much power benefit is seen compared to

pure LL designs (i.e., LL% = 100).

Difficulty of Fine-Grained Body-Biasing in FDSOI

Last, we would like to add a brief further discussion regarding the potential for fine-grained

body-biasing in FDSOI, and an additional fundamental challenge for this optimization. We first state the

SDP problem for the body-biasing context, as follows.

Problem formulation (“SDP-FBB”) for forward body bias. Given an initial placed design

implemented with LR cells only, we perform Vt swapping, sizing and placement optimization to define

“LLFBB” (i.e., LL with FBB applied) regions under timing/placement constraints. In this problem

formulation, we would only consider FBB on LL since the feasible range of FBB voltage on LR is very

limited.

Input: A placed design, synthesized and optimized with LR cells.

Output: An optimized mixed-Vt netlist/placement, with FBB islands.

Constraints: The target operating frequency ffbb at FBB mode should be X% higher than fnbb (the

operating frequency at zero/no body bias (NBB)). The ∆ total power ((pfbb − pnbb)/pnbb) is no more than

Y%, where pfbb (resp. pnbb) is the total power at FBB (resp. NBB) mode. LL/FBB regions should be

rectilinear islands, and the area should be less than Z% of the total area of the design.

The SDP-FBB problem has a fundamental, moving baseline challenge inherent in setting the

baseline for speed boost target. This is because both the baseline fnbb and the target ffbb change during

cell-swapping optimization (i.e., LLFBB island generation), as illustrated in Figure 2.18. Thus, it is not

straightforward to calculate a target frequency ffbb. The moving baseline presents a chicken-egg situation:

Once we generate an LLFBB island to improve timing by covering cells on the critical path, we can

improve ffbb. Meanwhile, fnbb gets improved as well since cells in the LLFBB island automatically

become LL. Eventually, an increased fnbb sets a new target ffbb, which induces a convergence issue.
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Figure 2.18: The “moving baseline” challenge: As ffbb is improved, the value of fnbb changes during the
process of LLFBB island generation.

Looking Forward

Finally, we believe that future work must further elucidate the cost-benefit tradeoffs in fine-grain,

mixed-Vt (and, body biasing-based) FDSOI. This will be essential to correct technology adoption decisions

by product teams. Our work is only a first step toward this understanding. We believe that specific

near-term research targets include identification of important parameters that determine SDP-friendly

designs; consideration of clock distribution and on-chip variation in signoff analyses; inclusion of useful

skew into the optimization flows; hold time considerations; and improved optimization heuristics for the

SDP implementation problem.
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Chapter 3

Detailed Placement Optimizations for

Advanced VLSI Technologies

Technology scaling to 10nm and below introduces complex intra-row and inter-row constraints in

standard-cell detailed placement. Examples of such constraints are found in rules for drain-drain abutment,

minimum implant region area and width, and oxide diffusion (OD) notching and jogging. In addition to

placement rules, aggressive pitch scaling in sub-10nm nodes has introduced complex routing rules which

make detailed routing extremely challenging. Cell architectures have also been changed for better detailed

routing. For example, metal layers below M1 are used to gain additional routing resources. New cell

architectures wherein inter-row M1 routing is allowed force consideration of vertical alignment of cells.

The layout complexities inherent in these new placement rules and new cell architectures motivate the

introduction of a final legalization phase for standard-cell placement tools in advanced (particularly 10nm

and 7nm) foundry nodes.

This chapter presents two distinct methodologies for detailed placement optimization for advanced

VLSI manufacturing. First, we develop a mixed integer-linear programming (MILP)-based placer, called

DFPlacer, for final-phase design rule violation (DRV) fixing. DFPlacer finds (near-)DRV-free solutions

considering various complex layout constraints including minimum implant width, drain-drain abutment,

and oxide diffusion jogs. To overcome the runtime limitation of MILP-based approaches, we implement
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a distributable optimization strategy based on partitioning of the block layout into windows of cells

that can be independently legalized. Using layouts in an abstracted 7nm library, we find that DFPlacer

fixes 99% of DRVs on average with minimal impacts on area and timing. We also study an area-DRV

tradeoff between two types of standard-cell library strategies, namely, with and without dummy poly

gates. Second, we propose a MILP-based detailed placement optimization to maximize direct vertical

M1 routing utilization for congestion and wirelength reduction. Our optimization considers two new cell

architectures in sub-10nm nodes, i.e., ClosedM1 which has 1D vertical M1 pins, and OpenM1 which has

M0 pins with more M1 routing resources. With our optimization, up to 6.4% (resp. 2.2%) total routed

wirelength reductions and 14.4% (resp. 4.1%) #via12 reductions are achieved for ClosedM1-based (resp.

OpenM1-based) designs, with no adverse timing impact.

3.1 Scalable Detailed Placement Legalization for Complex Sub-14nm Con-

straints

Continued technology scaling to the foundry 10nm node (42nm minimum metal pitch, 36nm fin

pitch) and below leads to more constraints in physical implementation. Not only do new metal-layer (back

end of line, or BEOL) ground rules arise from multi-patterning techniques, but rules for device layers

(front end of line, or FEOL) also become considerably more complex and restricted. For example, at the

foundry 10nm node (henceforth referred to as N10), there are minimum width and area constraints for

implant regions, as well as notch and jog width constraints for oxide diffusion (OD) regions. In older

technology nodes, such layer rules were fairly benign: while of concern to the library cell designer, once

the library cells were correctly designed, design rule violations (DRVs) could not occur during placement

due to the correctness by construction of any non-overlapping cell placement.

Unfortunately, correctness by construction no longer holds for detailed placement at N10 and

below. Cell sizes and minimum metal pitches have continued shrinking to stay on the Moore’s Law density

curve. However, patterning resolution in device (FEOL) layers has not kept pace due to challenges in

device definition (e.g., ion implant) or lithographic variation (e.g., corner rounding). Thus, placing several

‘legal’ standard-cell layouts next to each other may cause violations of FEOL layer rules such as minimum
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implant width or area [86] rules. Such violations could in theory be prevented with larger cell area budgets

(similar in spirit to how BEOL colorability, especially on the M1 layer, can be preserved) that permit

correct-by-construction (or, more precisely, “composable-by-construction”) cell layout styles. However,

this runs counter to a core purpose of shrinking to the next node, and reduces the return on investment

from enabling that node. Our present work proposes a new, final phase of detailed cell placement that

can potentially maintain placement legality in the face of new N10 FEOL rules – without loss of density,

routability or performance metrics.

N10 FEOL and Cell Placement Constraints

Figure 3.1 illustrates the layout of an inverter cell in the N10 node. The figure shows two fins

each for PMOS and NMOS.19 Source nodes of PMOS and NMOS are connected to M2 power/ground

rails with M1. The input A is connected to the PMOS and NMOS gates using middle-of-line (MOL), a

complementary metal layer below M1 that is used for intra-cell routing. The output Y is connected to the

drain nodes of PMOS and NMOS. The FEOL layers which affect legal placement (i.e., in the context of

other cells’ placements) include implant layer, oxide diffusion (OD) layer and poly, as follows.

• Implant layers, which indicate regions for ion implantation, decide the threshold (Vt) of transistors.

Regions of the implant layer are typically aligned to the boundaries of standard cells.

• Oxide diffusion (OD) defines the active region of transistors.

• Dummy poly gates are inserted at the (vertical) standard cell boundaries to avoid edge device

variability.

Minimum implant width (IW) constraints. Minimum implant width (IW) constraints induce

placement illegalities due to both inter- and intra-row IW violations, as shown in Figure 3.2(a). Below,

we refer to the inter-row IW violation as being of type IW1. We refer to the intra-row IW violation as

being of type IW2. An example of IW1 is shown in the figure, where two same-Vt cells are misaligned

vertically and thus result in a narrow, “staircase” implant layer shape. IW2 occurs when a narrow cell is
19A more typical library in N10 might have 9-track (M2 tracks) cell height, and three fins each for PMOS and NMOS, with a

gear ratio of M2:fin pitch anywhere from 7:6 to 4:3.
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Figure 3.1: Illustration of inverter cell layout in N10 node.

sandwiched between different-Vt cells, which results in a narrow implant region. Interestingly, the IW

rules cause interactions between placement and sizing optimizations (e.g., Vt-swapping) that compromise

the notion of, e.g., “post-route leakage optimization”. This interaction has been recently studied in [86].
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Cell boundary

Figure 3.2: (a) Examples of minimum implant width violations [186]. (b) The design rule for OD jogs.

Minimum OD jog length (OW) constraints. Standard cells can have different oxide diffusion

(OD) region heights according to functionality, drive strength, etc. When cells with different OD heights

abut, OD jogs can result as shown in Figure 3.2(b). This is forbidden in N10 and below due to lithographic

corner rounding and the consequent device performance variability, e.g., under misalignment. In N10, a

minimum OD jog length rule is violated if the jog length is less than a given minimum value. Introducing

sufficient spacing between the violating cells can cure the OD jog violation.

Drain-drain abutment (DDA) constraints. Dummy poly gates create extra dummy transistors

connected to logic transistors within standard cells. The dummy transistors can induce leakage power and
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Figure 3.3: (a) Drain-drain abutment violation with an example standard cell layout. (b) Use of dummy
poly gates in the library design style can avoid DDA violation in a correct-by-construction manner.

logic failure if they are not fully turned off. Hence, gate and source nodes of dummy transistors must be tied

off to power/ground rails; in particular, if two drain nodes are abutted, an extra dummy poly gate is needed

to create an additional source node to be tied up with power/ground rails. The recent work of Du and Wong

[39] studies cell instance flipping as a way of mitigating this issue in detailed placement. Figure fig:d2d(a)

depicts the DDA problem. The leftmost diagram shows an example inverter layout, and the middle and

right diagrams respectively show drain-drain abutment (DDA) and no-DDA cases. To avoid the DDA

problem, we can consider two approaches [2]: (i) a smart detailed placement with comprehension of DDA;

and (ii) standard cells with embedded dummy poly gates as shown in Figure 3.3(b). With approach (ii), the

width overhead for each cell is one poly pitch. (We study the area-DRV tradeoff between approaches (i)

and (ii) in Section 3.1.3 below.)
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This Work

As noted above, [86] and [39] have respectively made initial studies of IW- and DDA-induced

placement issues. However, to our knowledge there is no existing work that addresses all the issues above

simultaneously in detailed placement. Popular techniques used for conventional placement legalization,

including graph-based, dynamic programming-based, etc. methods, appear ill-suited to handling of

complex FEOL layer rules at N10 and below. For example, previous techniques have focused on removing

overlaps between cells while maintaining the ordering of cells within a row, while minimizing half-

perimeter wirelength or placement perturbation. Such previous works are largely single-row-based, and

are applied row by row. Thus, they do not capture inter-row constraints such as IW1 that arise in N10.

Furthermore, a number of implicit assumptions made by placement legalizers are broken when placement

correctness by construction no longer holds, e.g., when more than two cells can interact and create DRVs.

This challenges the use of dynamic programming frameworks, since decomposition into independent

placement subproblems is no longer obvious. Finally, filler cell insertion has not previously been a concern

of placement legalizers, but in N10 the filler cells can cause additional implant layer rule violations.

In this work, we propose a mixed integer-linear programming (MILP)-based placement legalization

that considers complex N10 FEOL-layer design rules including minimum implant width, minimum oxide

diffusion jogs and drain-drain abutment. We also propose a distributable optimization approach based

on partitioning a given placement into many windows of cells, with each window being independently

optimizable. The main contributions of our work are summarized as follows.

• We formulate as an MILP a placement problem that addresses new DRVs caused by complex N10

design rules. In contrast to previous approaches, our formulation captures new inter-row violation

types. We further implement our solution approach in a prototype tool, DFPlacer.

• DFPlacer handles whitespace in the problem formulation and determines filler cell insertions to

solve implant width constraint violations.

• We propose a distributable optimization based on partitioning of an input placement into windows

of cells, and demonstrate that our optimization is scalable via this mechanism.
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• We implement our proposed methods in C++ with OpenAccess 2.2.43 [193] and incorporate them

into a commercial tool-based placement and routing (P&R) flow for evaluation.

• A further study provides insight into timing and area impacts of the dummy poly gate library cell

strategy, using two kinds of libraries: (i) standard cells with dummy poly gates (drain-drain abutment

violation-free) and (ii) standard cells without dummy poly gates.

3.1.1 Related Work

We now summarize relevant previous works on detailed placement and placement legalization.

Dynamic programming-based approaches. Dynamic programming (DP), typically for a single

cell row, has been used by a number of authors. Kahng et al. [89] use DP to legalize placement of a single

row with various minimization objectives: total perturbation, maximum perturbation, and wirelength. A

shortest-path algorithm is applied to a directed acyclic graph constructed from the input ordering of cells.

Gupta et al. [56] perform detailed placement optimization to enable sub-resolution assist feature insertion

for improved manufacturability. A DP-based single row placement achieves this assist-feature correctness

(AFCorr) while minimizing (timing criticality-weighted) perturbations of cell locations. Subsequent work

addresses a 2D formulation that considers both horizontal and vertical interactions between adjacent cells

[57]. The 2D AFCorr approach uses DP in which vertical and horizontal costs are calculated with restricted

perturbations. Hur and Lillis [70] propose optimal interleaving for intra-row optimization in detailed

placement. Their work splits the cells of a single row into two groups with a given window size, and the

two sequences are optimally interleaved via DP while preserving the initial relative ordering of cells in

each group. At the global placement level, cells are assigned to bins and optimized via relaxation-based

local search.

Integer Linear Programming (ILP)-based approaches. Another important class of previous

methods is based on integer linear programming. Ramachandaran et al. [132] apply branch-and-price for

improved scaling of the placement optimization. Li and Koh [100] propose ILP-based detailed placement

approaches using placement site variables. Dantzig-Wolfe decomposition is applied to improve scalability,

and single-cell-placement (SCP) variables enable grouping and mapping of placement site variables into
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patterns. The extension [101] supports mixed-size circuits and improves runtime by bounding solution

spaces. In our present work, we begin with the MILP model of [100] [101], extending it to provide

the first-ever comprehensive support (to our knowledge) of N10-relevant design rules such as minimum

implant width, diffusion jogs and drain-drain abutment.

N10 design rules-aware placement. Du and Wong [39] address the abutment of source and drain

in FinFET-based cell placement (i.e., for the foundry 14nm node onward), where the DDA constraint

becomes prominent. The authors use cell flipping and adjacent-cell swapping as underlying operations

for detailed placement perturbation that minimizes drain-drain abutments. As in [89], the authors of

[39] apply a shortest-path algorithm with their proposed graph model, in which each operation and the

violations are modeled as nodes and node/edge costs, respectively. However, the approach only swaps

and flips cells within a single row, and does not handle interactions between placement rows. Hence, the

optimization is made with respect to a highly restricted portion of the overall detailed placement solution

space. Moreover, DDA-related optimization cannot be performed in isolation at the N10 node: many

other neighborhood-related constraints (e.g., implant, oxide diffusion (OD), etc.) have interactions with,

and constrain, the drain-drain abutment solution. In our present work, we handle neighborhood-related

constraints along with drain-drain abutment, with a larger solution space that includes multiple rows.

3.1.2 Our Approach

Problem Formulation

We now formulate a MILP for our detailed placement problem to address N10-related design rules

including IW, DDA and OW in Section 3.1. Our notation is described in Table 3.1.
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Table 3.1: Notations.
Notation Meaning
C,R,Q sets of cells, rows, columns
fc a binary indicator of whether cell c is flipped

x(y)c,init initial x (y) coordinate of cell c
scrq a binary indicator of whether cell c occupies site (r, q)
Kc a set of candidate states of cell c
λkc a binary indicator of the kth candidate state for cell c

xkc , y
k
c x and y coordinates corresponding to λkc

fkc fc corresponding to λkc
skcrq scrq corresponding to λkc
mrq inter-row variable for IW1
hrq intra-row variable for IW2
W minimum implant width (unit: site)

Minimize:
∑
c∈C

(|xc − xc,init|+ |yc − yc,init|) (3.1)

Subject to: ∑
k∈Kc

λkc = 1, ∀c ∈ C, λkc ∈ {0, 1} (3.2)

fc =
∑
k∈Kc

fkc λ
k
c (3.3)

xc =
∑
k∈Kc

xkcλ
k
c , yc =

∑
k∈Kc

ykcλ
k
c , ∀c ∈ C (3.4)

scrq =
∑
k∈Kc

skcrqλ
k
c , ∀c ∈ C (3.5)

∑
c∈C

scrq ≤ 1, ∀q ∈ Q, r ∈ R (3.6)

For a given input layout, our objective is to minimize the sum of cell displacements while achieving

a legal placement with respect to given N10 design rules. We assume a given perturbation range for each

cell g (g.l, g.r, g.t and g.b are the maximum allowed displacements of the cell in the left, right, top and

bottom directions, respectively); a cell cannot move beyond its given perturbation range. Thus, we have a

limited number of possible states (locations and orientations) within g, for each cell. To represent each
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candidate state for a cell, we adopt the single-cell-placement (SCP) model of [101]. The binary SCP

variable λkc represents a candidate state k for a cell c. The variable λkc is associated with the location and

orientation of cell c, e.g., xkc , ykc and fkc , which are pre-defined values. Also, skcrq, where r ∈ |R| and

q ∈ |Q|, is pre-defined for λkc .

From Constraint (3.2), exactly one state is chosen for cell c among multiple candidate states

λkc , k ∈ Kc; this determines the location and orientation of c. Constraints (3.3), (3.4) and (3.5) determine

the final x, y of cell c and scrq for r ∈ |R|, q ∈ |Q| from a selected candidate site for cell c. To ensure a

legal placement (no overlap), Constraint (3.6) forces a site at (r, q) to be occupied by at most one cell. In

addition to the basic formulation, we add extra constraints to address OW, DDA, IW1 and IW2 rules, as

follows.

OW and DDA constraints. To handle OW and DDA constraints, we pre-characterize all adjacency

conditions which violate OW and/or DDA for each library cell pair. We note that our pre-characterization

considers the orientations of cells (i.e., the adjacency conditions change depending on the orientations of

cells). We then generate a set P of forbidden pairs of λkc . Based on P , we formulate Constraint (3.7) for

every forbidden pair (λic1 , λ
j
c2).

λic1 + λjc2 ≤ 1 where c1, c2 ∈ C, (λic1 , λ
j
c2) ∈ P (3.7)

IW1 and IW2 constraints. IW1 violations occur across rows when vertically-adjacent same-Vt

layers form a narrow staircase shape with width less than the minimum implant width (see Figure 3.2(a)).

To handle IW1, we define a 0-1 inter-row variable, mrq, that indicates whether the site at (r, q) (row r and

column q) and the site at (r + 1, q) have the same Vt (mrq = 1) or not (mrq = 0). Figure 3.4(a) illustrates

the mrq variables and IW1 constraints. As shown in the figure, if a 0-1 sequence of m values is found (e.g.,

m12,m13), the implant region has a staircase shape, and hence (W − 1) consecutive m variables must

be one. Thus, we formulate constraints that, if mr(q−1) = 0 and mrq = 1, force at least W consecutive

inter-row variables mrq = . . . = mr(q+W−1) = 1, so as to satisfy IW1 (e.g., m13, m14, m15 = 1 where

W = 3, in Figure 3.4(a)).
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IW2 violations occur when small-width cells are sandwiched in between different-Vt cells in

the same row. Similar to how we handle IW1, we define a 0-1 intra-row variable, hrq, that indicates

whether the site at (r, q) and the site at (r, q + 1) have the same Vt (hrq = 1) or not (hrq = 0), as shown in

Figure 3.4(b). If hrq = 0, i.e., sites (r, q) and (r, q + 1) have different Vt, we force (W − 1) consecutive

binary variables hr(q+1) = . . . = hr(q+W−1) = 1, so as to have at least W consecutive same-Vt sites.

Figure 3.4(b) shows the case when hrq = 0, where r = 1, q = 2, W = 3.

m11=0 m12=0 m13=1 m14=1 m15=1 m16=0 m17=0

W = 3
h11=1 h12=0 h13=1 h14=1 h15=0 h16=1

W = 3

(a) (b)

Figure 3.4: (a) Inter-row variable mrq for IW1. (b) Intra-row variable hrq for IW2. The color (gray and
white) of regions indicates Vt.

The generalized constraints for IW1 and IW2 are as follows:

mr0 = 0, hr0 = 0 1 ≤ r < |R| (3.8)

mrq + (1−mr(q+1)) + yr(q+2) ≥ 1

0 ≤ q < |Q| −W, 1 ≤ r < |R| (3.9)

yrq ≤ mr(q+w)

2 ≤ q ≤ |Q| − 2, 1 ≤ r < |R|, 0 ≤ w < W − 1 (3.10)

hrq + zrq ≥ 1

0 ≤ q < |Q| −W, 1 ≤ r < |R| (3.11)

zrq ≤ hr(q+1+w)

2 ≤ q ≤ |Q| − 2, 1 ≤ r < |R|, 0 ≤ w < W − 1 (3.12)
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• Constraint (3.8) initializes the leftmost m and h variables where q = 0.

• Constraint (3.9) detects the condition of mrq = 0 and mr(q+1) = 1, and forces yr(q+2) = 1.

• When yr(q+2) = 1, Constraint (3.10) forces (W−1) consecutive binary variables mr(q+2) = . . . =

mr(q+2−(W−1)) = 1.

• Constraint (3.11) detects the condition of hrq = 0 and forces zrq = 1.

• When zrq = 1, Constraint (3.12) forces (W − 1) consecutive binary variables hr(q+1) = . . . =

hr(q+(W−1)) = 1.

We now describe our method of obtaining inter- and intra-row variables (mrq and hrq). We first set

the Vt of cell c as the binary vector ~kc. The length of ~kc is determined by dlog2(nVt + 1)e where nVt is the

number of available Vt options. For example, if we have three Vt options, then ~kc is {k1c k2c}. Concretely,

the binary vectors {0 1}, {1 0} and {1 1} represent HVT, NVT and LVT, respectively. We then define the

Vt variable ~vrq as a binary vector variable {v1rq v2rq} indicating the Vt of the site (r, q). Given that mrq = 1

if ~vrq = ~v(r+1)q, we add the following constraint to obtain mrq:

mrq = (v1rq ⊕ v1(r+1)q) + (v2rq ⊕ v2(r+1)q) (3.13)

Constraint (3.13) is rewritten in our MILP formulation, using binary variables u1, u2 and mrq, as follows:

mrq +mrq ≤ 1;

mrq ≤ u1 + u2; mrq ≥ u1; mrq ≥ u2;

u1 ≤ v1rq + v1(r+1)q; u1 ≥ v
1
rq − v1(r+1)q;

u1 ≥ v1(r+1)q − v
1
rq; u1 ≤ 2− v1rq − v1(r+1)q

u2 ≤ v2rq + v2(r+1)q; u2 ≥ v
2
rq − v2(r+1)q;

u2 ≥ v2(r+1)q − v
2
rq; u2 ≤ 2− v2rq − v2(r+1)q (3.14)
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Similarly, hrq can be formulated as follows:

hrq = (v1rq ⊕ v1r(q+1)) + (v2rq ⊕ v2r(q+1)) (3.15)

We also consider whitespace (empty sites), which can be filled with filler cells. We have the

freedom to choose Vt of filler cells to satisfy IW1 and IW2 constraints. To exploit this flexibility, we define

a binary vector variable ~erq= {e1rqe2rq} which indicates Vt of the site at (r, q). From variables ~kc, scrq and

~erq, the binary vector variable ~vrq is defined as follows:

~vrq =
∑
c∈C

~kc · scrq + ~erq (3.16)

Thus, ~vrq is determined by either
∑

c∈C
~kc ·scrq or ~erq. We add a constraint below for ~erq:

e1rq ≤ 1−
∑
c∈C

scrq; e2rq ≤ 1−
∑
c∈C

scrq (3.17)

Constraint (3.17) states that if a site is occupied by any cell, ~erq= 0. Then, Constraint (3.16) becomes

independent of ~erq. Otherwise, Constraint (3.16) becomes ~vrq = ~erq.

Analysis of the number of variables and constraints. The number of variables and constraints

depends on the number of sites in a target window (|R| · |Q|), the number of instances (|C|) and the size of

the perturbation range (g.size = (g.l + g.r) · (g.t+ g.b)).

• The number of variables scrq is |C| · |R| · |Q|.

• The number of variables xc, yc is (each) |C|; the number of variables xkc , y
k
c , λ

k
c is (each) g.size · |C|.

• The number of inter-/intra-row variables m, h is (each) |R| · |Q|.
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• The number of variables v and e is (each) n · |R| · |Q|, where n is dlog2(nVt + 1)e.

• The numbers of Constraints (3.2), (3.4), (3.5) and (3.6) are |C|, |C|, |C| · |R| · |Q| and |R| · |Q|,

respectively.

• The number of Constraint (3.7) is g.size · |C|2.

• The number of Constraints (3.9), (3.10), (3.11) and (3.12) is (each) |R| · |Q|.

Overall Flow

Figure 3.5: Overall flow of detailed placement legalization.

We implement our flow in C++ with OpenAccess 2.2.43 [193] to support LEF/DEF [186], and

with IBM ILOG CPLEX Optimization Studio v12.5.1 [180] as our MILP solver. Figure 3.5 shows the

overall flow of our tool, which we call DFPlacer. DFPlacer has two optimization stages: global and local

optimization. In the global optimization, we split the given routed layout T uniformly into a set of windows

D and optimize each of the windows d ∈ D in parallel. We use a fixed boundary margin b for each window
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to enable independent optimization among windows. In the local optimization, we generate a new window

for each remaining violation γ ∈ Γ such that the violation is located at the center of the window. We then

remove overlapping windows so that no window affects another. With the new set of windows D′, we

optimize each window d′ ∈ D′ again in parallel. The output cell location solution is saved in DEF file

format, which can be fed into a commercial P&R tool. We perform ECO routing with the solution and

finally obtain a new layout Topt with number of violations |Γ| less than the given target number δ.

Algorithm 10 Overall flow of DFPlacer.

Procedure DFPlacer(T,U, z, b, g, δ)
Input : Layout T , set of design rule constraints U , window size z, boundary margin b, perturbation range
g, target number of DRVs δ
Output : Layout Topt with |Γ| < δ

1: // Global optimization
2: for i = 1 to 3 do
3: A set of windows D ← Partition(T, i, z, b, g);
4: Solve all MILP instances for windows D in parallel;
5: Update MILP solutions to T ;
6: end for
7: // Local optimization
8: Γ ← GetDRV (T,U);
9: while |Γ| < δ do

10: D ← ∅;
11: for all γ ∈ Γ do
12: d ← MakeNewWindows(T, γ, z, b, g);
13: D ← D ∪ d;
14: end for
15: D′ ← NonOverlapWindows(D)
16: Solve all MILP instances for windows D′ in parallel;
17: Update MILP solutions to T ;
18: Γ ← GetDRV (T,U);
19: if |Γ| is the same as |Γ| in the previous iteration then
20: IncreaseWindow(z);
21: IncreasePerturb(g);
22: end if
23: end while
24: Topt ← T ;
25: return Topt;

Algorithm 10 gives further details of our optimization flow. In Lines 2-6, the global optimization

phase solves D in parallel with a small perturbation range g (e.g., g.l = 4, g.r = 4, g.t = 1 and g.b = 1
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sites) of cells. This distributable method overcomes the runtime limitation of MILP-based approaches

and fixes more than 90% of initial |Γ| (see Figure 3.7). In Line 3, we first partition a given routed T into

D, and we solve each d ∈ D in parallel using OpenMP [192] in Line 4. We set a window width z.w as

47 sites, and a window height z.h as nine cell rows in our experiments.20 When running optimizations

for the windows in parallel, we set the vertical (resp. horizontal) boundary margin b.v (resp. b.h) so that

the solution of one window can be isolated from the solutions of neighbor windows. We set b.v as the

minimum implant width W and b.h as two cell row heights. Figure 3.6 shows the boundary margin in

green color. We then update the MILP solutions to the layout T .

Figure 3.6: Partitioning of layout for parallel global optimization.

Since the fixed boundary cells corresponding to b of the first iteration can contain DRVs which are

not fixed in the first iteration, we perform a second iteration with a new partitioning that is shifted by half

of z.w and z.h in the x- and y-directions, respectively; these are shown in yellow color in Figure 3.6. We

then partition the current T into a new D and solve the corresponding MILP instances to fix the violations
20Window size affects the tradeoff between the number of remaining violations |Γ| after global optimization and the runtime of

global optimization. Our studies of different window sizes (i.e., z.w ranging from 40 sites to 55 sites and z.h ranging from five
cell row heights to 11 cell row heights) find that for a sample design (JPEG) a width of 47 sites and a height of nine cell row
heights empirically achieves a good outcome (< 10% of initial |Γ|) with relatively small runtime (< 30 minutes). We therefore
use this window size in all of our reported experiments.
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Γ remaining from the first iteration. We then update the MILP solutions to T . Even after the first and

second iterations, DRVs could still exist in the intersections of the fixed boundary regions (red color in

Figure 3.6). To fix the Γ in the uncovered intersection region, we perform a third iteration that has new

partitioning lines shifted by a quarter of z.w and z.h in x-direction and y-direction. Note that a quarter of

z.w and of z.h should respectively be larger than or equal to b.v and b.h. This ensures that the windows of

the third iteration contain the uncovered regions, such that the fixed boundary region of the third iteration

is not overlapped with the uncovered intersection region.

The small window size and perturbation range used in global optimization restricts the solution

space, potentially leading to infeasible solutions for certain windows. To fix the remaining Γ, we perform

the local optimization in Lines 8-24. For each DRV, the function MakeNewWindows() creates a new

window whose center is the DRV point. In Line 15, NonOverlapWindows() picks a set of disjoint

windows D′ to process in parallel. We then update the solutions to the current T and check the remaining Γ

(Lines 16-17). In Lines 19-22, if the current |Γ| is the same as the |Γ| of the previous iteration, we increase

z.w by 10 sites and z.h by one cell height. For perturbation range, we increase g.l, g.r, g.t and g.b by 2,

2, 1 and 1 sites, respectively. When the current |Γ| is less than the target number of DRVs δ, we save the

current T as Topt and terminate the optimization. In our experiment, we set δ as 1% of initial |Γ|.

3.1.3 Experimental Setup and Results

Experimental Setup

We evaluate DFPlacer using two open-source designs (AES *, JPEG *) [191], an ARM Cortex

M0 without memories (M0 *) and a 3×ARM Cortex M0 without memories (M0x3 *). We synthesize these

testcases from RTL, and perform P&R with an abstracted 7nm dual Vt library. Our RTL-to-layout flow

uses Synopsys Design Compiler H-2013.03-SP3 [195] and Cadence Encounter Digital Implementation

System 13.1 [171] for logic synthesis and P&R, respectively. All experiments are performed with 40

threads on a 2.6GHz Intel Xeon E5-2690 dual-CPU server. In principle, the number of threads could be as

large as the number of layout windows.
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Table 3.2: Testcases used in the experiments.

Design #Inst LVT Util. WL Area WSS WHS
(%) (%) (µm) (µm2) (ps) (ps)

M0 nd 8260 52 77 114685 7668 38 0
M0x3 nd 27248 56 80 392540 24463 126 0
JPEG nd 47948 51 77 694624 49629 12 0

M0 d 8238 51 77 116866 8668 93 1
AES d 12491 54 80 150632 10596 58 0
M0x3 d 26690 55 79 409579 27400 107 0
JPEG d 48317 52 77 764738 55824 13 0

Libraries and design rules. We use a prototype 7nm standard-cell library from a leading IP

provider. Since our design enablement for the 7nm technology is missing detailed BEOL technology

information such as RC values and BEOL stack options, we scale the library to use a 28nm BEOL stack,

following the methodology described in [60]. The site width and height are 0.136µm and 0.9µm; these

values correspond to placement site and cell row height parameters of the 28nm enablement. For design

rules, we set the OW, IW1 and IW2 rules as four site widths. To check for DDA and OW violations, we

pre-characterize all pairs of standard cells in the 7nm library. The library has 62 standard cells and the

total number of pairs is 15376 (= 62×62×2×2), including cell flipping. For the standard cells without

dummy poly gate, 7172 pairs out of the 15376 pairs violate the DDA constraint, and these pairs require at

least one site space. Similarly, with the 4 site widths for OW, 280 out of the 15376 pairs violate the OW

constraint, and such pairs also require one site space.21

Tradeoff between area/wirelength and DRVs. Table 3.2 shows the testcases used in our experi-

ments. LVT, WSS, WHS and WL respectively indicate the portion of LVT cells, the worst setup and hold

slacks, and wirelength. We assign Vt to cells uniformly to create more IW1 and IW2 violations. We use

two kinds of libraries: (i) without dummy poly gates (CWOD) and (ii) with dummy poly gates (CWD).

CWD is designed with dummy poly gates inserted to avoid interactions between cells which create DDA

violations. For the CWD library, cell width is increased by one poly pitch compared to the CWOD library.

The suffixes * d and * nd indicate that the designs are implemented with CWD and CWOD libraries,

respectively. The same initial netlists are used for both * d and * nd. While comparing * d and * nd
21Based on our OW rule and library, all pairs of standard cells that violate OW constraints require only one site space. However,

depending on the OW rule and library, some pairs of standard cells could require two or more site spaces.
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designs, we observe that the average wirelength and area overhead of designs implemented using libraries

with dummy poly gates are 7% and 14%, respectively. In terms of DRVs, * nd testcases have 134%∼176%

more initial DRVs as reported in the second and fourth columns of Table 3.3.

Experimental Results

Table 3.3: Results of DFPlacer.
Design IW #Vio. DDA/OW #Vio. WSS (ps) WHS (ps)

∆WL (%) Max. ∆loc. Avg. ∆loc. #Changed cells (%) CPU total (sec)
Init Final Init Final Init Final Init Final (µm) (µm) Global Total

M0 nd 926 11 1611 14 38 83 0 0 2.79 2.89 0.56 4489 (54%) 768 2820
AES nd 1771 16 1900 18 90 71 0 -1 3.42 2.89 0.52 5939 (49%) 787 2992
M0x3 nd 3514 17 4230 48 126 113 0 0 2.90 3.02 0.51 12752 (47%) 957 6897
JPEG nd 4056 29 12024 135 12 22 0 0 2.30 8.99 0.70 24169 (50%) 1788 11983

M0 d 988 10 0 0 93 85 1 0 3.04 2.89 0.57 2996 (36%) 161 434
AES d 1566 11 0 0 58 80 0 0 3.10 2.89 0.54 3852 (31%) 425 1207
M0x3 d 2810 27 0 0 107 105 0 -2 2.14 2.89 0.58 9340 (35%) 517 1336
JPEG d 6296 43 0 0 13 81 0 0 -0.57 3.02 0.49 12244 (27%) 954 1401

Table 3.3 summarizes the number of DRVs (#Vio.), WSS, WHS, ∆WL, maximum ∆location

(Max. ∆loc.), average ∆location (Avg. ∆loc.), the number of moved cells (#Changed cells) and runtime.

Our DFPlacer fixes more than 99% of initial violations in runtime that is reasonable for practical contexts.

From a timing perspective, ∆WSS (i.e., final WSS − init WSS) ranges from -19ps to 68ps, but all final

designs have no negative WSS. Similar to WSS, ∆WHS ranges from -2ps to 0ps. The timing impact

is small since most of the cells are moved within a given small perturbation range. Some cells can be

moved more than 20 sites (i.e., 0.136× 20 = 2.72µm) from their initial locations due to the accumulated

displacement in the iterative local optimization. However, those cells are less likely to be in the most

critical path, which is how the WSS or WHS would worsen. Also, the positive ∆WSS implies that there is

room to improve timing, and that we could potentially co-optimize the timing along with DRV fixing in

detailed placement legalization. This is a direction of ongoing work.

On the other hand, DFPlacer increases wirelength by up to 3%. The accumulated displacements of

cells and the limited pin access for the standard cells in N10 could be causes of this wirelength increase.

Between * nd and * d testcases, the ∆WL% of * nd cases is similar or slightly larger. We believe that this

is because IW violations are harder to fix compared to the OW and DDA violations, since the constraints

are more complex. The rate at which the number of IW violations reduces is slower than that for OW

and DDA violations. Also, since the CWD library cells are larger than the CWOD library cells, the
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displacement of cells in * d cases might have more impact on the wirelength increase. Therefore, % WL

increase of * d cases is smaller in general, but not necessarily always less than that of corresponding * nd

cases.

Columns Max. ∆loc. and Avg. ∆loc. show maximum and average cell displacement, respectively.

We observe that the average cell displacement for all designs is up to 0.70µm, which is ∼5 sites’ width.

The maximum displacement is up to 8.99µm for JPEG nd. For other designs, the maximum displacement

is similar to the half-perimeter of the perturbation range used in the global optimization (2.888 =

0.9 · 2 + 0.136 · 8 microns).

When we compare the results of designs with CWOD and CWD, we see a tradeoff between area

and the number of DRVs (and runtime). We observe that the area overhead of using cells with dummy poly

gate is 14% on average (up to 19%). However, the number of DRVs decreases by 61% on average (up to

64%). This affects the runtime of detailed placement legalization.

Figure 3.7: Remaining violations versus runtime. Each dot indicates an iteration; after the third iteration,
local optimization is performed. The diamond-shaped markers represent third-iteration points.
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Figure 3.7 shows the remaining number of DRVs (%) versus runtime (sec). Each dot stands for

an iteration of the optimization, and the third iteration points are marked with diamond-shaped markers.

During the global optimization, which includes first, second and third iterations, the remaining violations

drop quickly; ∼90% of DRVs are fixed in most of the designs during the global optimization. The runtime

of the global optimization phase still increases with the problem size. However, with added computing

resources to run windows of cells in parallel, the runtime can be further reduced. After the third iteration,

when entering into local optimizations, the rate of decrease of the number of DRVs becomes much lower,

implying that DFPlacer spends considerable time to fix the last few DRVs. This is because these last

DRVs cannot be solved with small window sizes and perturbation ranges in the global optimization; thus,

DFPlacer tries to resolve them in the local optimization by increasing window sizes and perturbation

ranges. The poor scaling of MILP solution versus instance size leads to the observed runtimes.

Figure 3.8: (a) Layout before optimization. OW, DDA, IW1 and IW2 violations are respectively
highlighted in green, light green, yellow and brown colors. (b) Layout after optimization. The DRVs in the

initial layout are fixed.

Figures 3.8(a) and 3.8(b) respectively show layout snapshots from the pre- and post-detailed

placement legalization phases. In Figure 3.8(a), we highlight the cells that violate OW (green color), DDA

(light green color), IW1 (yellow color) and IW2 (brown color) rules. Figure 3.8(b) shows the displacement
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of corresponding cells in post-detailed placement legalization. We observe that our DFPlacer fixes the

DDA violation by flipping one of the violating cells; the IW1, IW2 and OW violations are all resolved by

moving the violating cells or their neighbor cells within and/or across rows.

3.1.4 Conclusion

In this work, we have proposed a scalable detailed placement legalization flow for complex FEOL

constraints arising at the N10 foundry node. These include drain-drain abutment, minimum implant width,

and minimum OD jogging rules. Given initial (timing-driven) placements, our DFPlacer fixes 99% of

DRVs with 3% increase in wirelength and minimal impact on timing. We feel that our use case of fixing all

but a few tens of violations, with a highly parallelizable two-iteration strategy, is a good practical tradeoff

between runtime complexity and DRV fixing. Further, the level of DRV fixing achieved by DFPlacer

is encouraging, given that our default experimental configuration makes no attempt at “correctness by

construction”. Using OpenMP, we confirm that our flow is scalable via a distributed optimization strategy.

Additionally, we study an area-DRV tradeoff between two types of standard-cell library strategies, namely,

with and without dummy poly gates.

Our future work includes (i) timing and wirelength-driven placement legalization, which we believe

can be enabled by more compact optimization formulations along with a more restricted perturbation range

for each cell; (ii) a “smart ECO” method for the few DRVs that remain after global placement legalization;

and (iii) further investigation of the scalability of our partitioning-based distributed optimization approach.

Finally, we believe that our present placement-centered work may converge with such recent routing-

centered works as [60], leading eventually to an “optimal detailed P&R” that can shield physical design

teams from impacts of increasing ground rule complexity at N10 and beyond.

3.2 Vertical M1 Routing-Aware Detailed Placement for Congestion and

Wirelength Reduction in Sub-10nm Nodes

In tandem with aggressive pitch scaling in sub-10nm technology nodes, the detailed routing

problem has become extremely challenging. Routing today must deal with large numbers of complex
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design rules that are driven by patterning technologies – notably, self-aligned multiple patterning and

line-end cut on minimum-pitch metal layers, as well as contact- and via-layer patterning. The quest to scale

“PPAC” (power, performance, area, cost) has led to a very delicate balancing act among power delivery,

routing resource, and resistivity in middle-of-line (MOL) and local metal layers.

To address these challenges, the industry has seen rapid innovation in standard-cell architecture

starting at the foundry 10nm (“N10”) node, and accelerating into the N7/N5 enablement. As examples of

cell architecture evolution, metal layers below M1 are used for internal routing within a standard cell, or

horizontal M1 power/ground pins are removed to gain additional routing resources for inter-cell routing.

These new cell architectures, wherein inter-row M1 routing is allowed, force new consideration of vertical

alignment of cells.

New Cell Architectures in Sub-10nm

Figure 3.9 illustrates inverter (INV) layout in three types of cell architectures: (a) conventional 12-

track, (b) ClosedM1 7.5-track, and (c) OpenM1 7.5-track. The conventional 12-track INV has power/ground

(VDD/VSS) in M1, which prevents use of vertical M1 routing for pin access. In other words, with the

conventional cell architecture, pin access is available only with M2 routing. However, in sub-10nm nodes,

where metal layers below M1 are used for internal cell routing, the M1 layer can be used for pin access as

well as for routing with both the ClosedM1 and OpenM1 cell architectures.

ClosedM1 standard cell architecture. A ClosedM1 standard cell has 1D vertical M1 pins,

including VDD/VSS pins, as shown in Figure 3.9(b). The M1 VDD/VSS pins at the left and right

boundaries of the cell are connected to M2 VDD/VSS pins at the top and bottom boundaries by using

via V12. In this way, VDD/VSS pins do not block inter-row M1 routing. Also, due to the design rules

for self-aligned multiple patterning (SAMP), the M1 pins in ClosedM1 have 1D shapes and are regularly

placed with a fixed pitch. In particular, the ClosedM1 cell library that we use in this work has M1 pitch

equal to the width of a placement site. Therefore, if we vertically align pins of given net, these pins can

be connected by a small M1 segment with negligible routing cost or overheads. Figure 3.10(a) illustrates

an example of direct vertical M1 routing (dM1) between two INVs. Here we define a direct vertical

M1 routing as a (sub)net routing using only one M1 routing segment. Importantly, even though the

112



(a)

VDD

VSS

A ZN

(b)

VSSVSS
ZNA

VDDVDD

VDD

VSS

VDD

VSS

(c)

VDD

VSS

I
ZN

ZN
ZN

M1

M2

V01

M0

Cell boundary

Figure 3.9: New cell architectures to gain additional routing resources. (a) Conventional 12-track INV; (b)
ClosedM1 7.5-track INV; (c) OpenM1 7.5-track INV.

ClosedM1 cell architecture enables inter-row M1 routing, the realized power/performance/area (PPA)

benefit from M1 routing may not be significant unless a router can effectively exploit the availability of

direct vertical M1 routing. This is because M1 routing tracks are blocked by M1 pins, and the inter-row

M1 routing can be used only when two pins are sufficiently aligned. Thus, both the detailed placer and the

router must comprehend vertical alignment in order to maximally exploit direct vertical M1 routing for

ClosedM1-based designs.

OpenM1 standard cell architecture. At sub-10nm nodes, the OpenM1 standard cell architecture

is introduced to enable more M1 routing resource than with the ClosedM1 architecture. For OpenM1 cells,

M1 routing is “open” since most of the pins are on the M0 layer, which is a complementary layer below

the M1 layer. As shown in Figure 3.9(c), the I, ZN, VDD, VSS pins have horizontal M0 segments, and

an M1 segment connects two M0 segments for the ZN pin. We note that there is no connection between

M0 and M2 segments for VDD/VSS pins. Thus, M1 routing for VDD/VSS pins must be accomplished

with a special structure for the power distribution network.22 In terms of signal routing, if two pins are

overlapped horizontally (i.e., their projections onto the x-axis intersect), direct vertical M1 routing can be

used to connect them. Figure 3.10(b) shows a direct vertical M1 routing between the ZN pin of the upper

INV and the I pin of the lower INV. As long as the ZN and I pins are overlapped horizontally, the two pins
22For example, vertical M1 segments must be inserted with a fixed pitch to staple M2 and M0 VDD/VSS pins.
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can be connected using a single vertical M1 segment along with two V01 vias.

Compared to both the conventional and the ClosedM1 cell architectures, OpenM1 effectively

enables an additional metal layer for routing, which can have considerable routability benefits. Furthermore,

unlike with the sub-10nm ClosedM1 architecture, conventional P&R tools can easily find benefits from

OpenM1 without any special optimization to maximize M1 routing. This being said, below we explore

the question of whether there might still be room (beyond the current state of the art in commercial P&R

tooling) to optimize for better pin accessibility in OpenM1-based designs, given that pins are horizontal.

For instance, by maximizing “overlap” between pins in a net, we might induce a router to use more direct

vertical M1 routing between pins, which would reduce usage (blockage) and detouring on upper layers

(M2, M3, etc.). In Section 3.2.4, we report experimental results with and without a detailed placement

optimization that maximizes pin overlaps for OpenM1.
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Figure 3.10: Direct vertical M1 routing examples: (a) ClosedM1 and (b) OpenM1.

This Work

In this work, we propose a vertical M1 routing-aware detailed placement optimization based on

mixed-integer linear programing (MILP) for two new sub-10nm cell architectures, i.e., OpenM1 and
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ClosedM1. We note that the vertical M1 routing-aware detailed placement is a completely different

problem from traditional wirelength-driven detailed placement, in the sense that the routing cost is non-

monotonic due to vertical M1 routing, which is almost “free”. Our MILP formulation enables exploration

of the tradeoff between minimization of the traditional half-perimeter wirelength (HPWL) objective and

maximization of the number of vertical pin alignments (= potential direct pin-pin routings using vertical

M1) via a weighting factor (α). Below, we specifically study the impact of α on routed wirelength. The

main contributions of our work are summarized as follows.23

• We propose an MILP-based detailed placement optimization for two cell architectures that are

relevant in sub-10nm process nodes, to consider and exploit (direct vertical) inter-row M1 routing.

• We propose a distributable window-based optimization to overcome the runtime limitation of the

MILP-based approach.

• We implement our proposed approach in C++ with OpenAccess 2.2.43 [193] and incorporate it into

a commercial tool-based placement and routing (P&R) flow. The results from our approach are

evaluated using a commercial tool flow.

• We explore various metaheuristic configurations (optimization degrees of freedom, window size,

iteration strategy, etc.) and study impacts on runtime and solution quality.

3.2.1 Related Work

We classify relevant previous works on detailed placement and placement legalization into three

categories: (i) dynamic programming-based approaches, (ii) graph model-based approaches, and (iii)

MILP-based approaches. Our present work is most closely related to the third category.

Dynamic programming-based approaches. Dynamic programming (DP) has been a popular

framework, particularly for row-based detailed placement, for many years. Kahng et al. [92] propose

a HPWL-driven ordered single-row detailed placement with free sites. Gupta et al. [56] propose a DP-

based single-row placement optimization to enable sub-resolution assist feature insertion for improved
23The MILP formulation will differ according to the standard cell template and layer directionality. However, our distributable

optimization and exploration of metaheuristic configurations can apply with any technology.
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manufacturability. Subsequent work addresses a 2D formulation [57], using DP in which vertical and

horizontal costs are calculated with restricted perturbations. Hur and Lillis [70] propose a DP-based

optimal interleaving for intra-row optimization in detailed placement. For double-patterning-aware

detailed placement, Gupta et al. [52] propose a DP-based algorithm that solves coloring conflicts while

minimizing the displacement of timing-critical cells.

Graph-based approaches. A literature of graph model-based approaches typically formulates

placement optimization as a shortest-path computation in an appropriate directed graph. Kahng et al. [89]

legalize placement of a single row with various minimization objectives, by calculating a shortest path in a

directed acyclic graph constructed from the input ordering of cells. The work of [164] proposes a triple-

patterning-aware detailed placement using a graph model. The authors formulate a graph to determine cell

locations as well as coloring solutions for a single row placement. Du and Wong [39] address the abutment

of source and drain in FinFET-based cell placement. The authors propose a graph model that captures

cell flipping and adjacent-cell swapping as underlying operations for detailed placement perturbation. A

shortest-path algorithm then minimizes the cost induced from the source-drain abutment. Lin et al. [106]

propose a graph-based detailed placement to resolve inter-row middle-of-line conflicts. Similar to [39], a

graph is constructed to handle cell flipping, swapping and shifting operation for local reordered single row

refinement.

MILP-based approaches. While DP-based and graph model-based approaches are efficient for

single-row placement, it is not easy to handle multiple-row placement optimizations (specifically, in the

context of this work, vertical M1 routing-aware placement) with these approaches due to interaction

between vertically adjacent cells. However, several mixed integer-linear programming (MILP)-based

approaches have been proposed which handle both single-row and multiple-row placement. Lin and

Chu [105] formulate a MILP for triple-patterning-aware detailed placement. The MILP is used to assign

a coloring solution for each standard cell and determine the location of each cell in a single row, while

minimizing placement perturbation and coloring conflicts. Li and Koh [100] propose MILP-based detailed

placement approaches using single-cell-placement (SCP) variables. The SCP variables correspond to

locations, orientations as well as placement sites of each cell. The MILP determines the best SCP variable

for each cell. The same authors’ extension [101] supports mixed-size circuits and improves runtime by
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bounding solution spaces. Han et al. [61] adopt the MILP model of [100] [101] and extend it to support

N10-relevant design rules. Further, a distributable optimization is proposed based on partitioning of the

layout into windows that can be independently legalized. In our present work, we use a similar strategy as

the work of [61], extending it to handle vertical M1 routing for new cell architectures in sub-10nm. Overall,

our work is distinguished from previous (MILP-based) approaches in that (i) we formulate inter-row cell

alignment to maximize direct vertical M1 routing, which has not been addressed in previous works, and

(ii) we improve the distributable optimization of [61] by a smart selection of target windows along with a

metaheuristic strategy.

3.2.2 MILP-based Optimization

In this section, we give our problem statement, followed by MILP formulations for vertical

M1 routing-aware detailed placement optimization with two sub-10nm cell architectures, OpenM1 and

ClosedM1.

Vertical M1 Detailed Placement

Given: a post-routed placement, and per-cell placement perturbation range.

Perform: Perturb the input placement to optimize a weighted sum of (minimized) HPWL and (maxi-

mized) inter-row pin alignments, while satisfying cell location perturbation bounds and placement legality

constraints.

MILP Formulation for ClosedM1

We formulate an MILP for our detailed placement problem for the ClosedM1 cell architecture.

In the following, we use notation as described in Table 3.4. For a given input layout, our objective is to

minimize the weighted sum of HPWL of all nets subtracted by the total number of pin alignments for

direct vertical M1 routing, while achieving a legal placement (no overlap of cells).
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Minimize: − α ·
∑

dpq +
∑
n∈N

βn · wn (3.18)

Subject to:

wn = xmax,n − xmin,n + ymax,n − ymin,n, ∀n ∈ N (3.19)

xmax,n ≥ xc + xp, xmin,n ≤ xc + xp

ymax,n ≥ yc + yp, ymin,n ≤ yc + xp

∀p ∈ Pn, where c is the owner cell of pin p (3.20)

(xc + xp)− (xc′ + xq) ≤ G(1− dpq)

(xc + xp)− (xc′ + xq) ≥ −G(1− dpq)

(yc + yp)− (yc′ + yq) ≤ G(1− dpq) +H

(yc + yp)− (yc′ + yq) ≥ −G(1− dpq)−H

∀(p, q) in n, where c, c′ are owners of pins p, q (3.21)∑
k∈Kc

λkc = 1, ∀c ∈ C (3.22)

fc =
∑
k∈Kc

fkc λ
k
c , ∀c ∈ C (3.23)

xc =
∑
k∈Kc

xkcλ
k
c , yc =

∑
k∈Kc

ykcλ
k
c , ∀c ∈ C (3.24)

scrq =
∑
k∈Kc

skcrqλ
k
c , ∀c ∈ C (3.25)

∑
c∈C

scrq ≤ 1, ∀q ∈ Q, r ∈ R (3.26)

HPWL calculation. Constraint (3.19) calculates the HPWL for each net n, where HPWL as

usual corresponds to the half-perimeter of the minimum bounding box that contains all pins of n. The

maximum and minimum x, y coordinates of pins of the net n are obtained by Constraint (3.20). The

absolute coordinates of pin p is determined by adding the coordinates (xc, yc) of p’s owner cell c to (xp,

yp).
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Table 3.4: Notations.
Notation Meaning
dpq a binary indicator of whether pins p and q are aligned (ClosedM1) or overlapped (OpenM1)
wn half-perimeter wirelength (HPWL) of net n
α a weighting factor for direct vertical M1 routing
βn a weighting factor for HPWL of net n

C,R,Q sets of cells, rows, columns (placement sites)
N set of nets

x(y)min,n minimum x (y) and maximum x (y) coordinates of
x(y)max,n net n

Pn set of pins in net n
G a large positive constant number
H placement row height

xc(yc) x (y) coordinate of the center of cell c
xp(yp) relative x (y) coordinate of pin p to its owner cell’s x (y) coordinate
xmin,p minimum (maximum) x coordinate of pin p

(xmax,p) relative to its owner cell’s x coordinate
fc a binary indicator of whether cell c is flipped
scrq a binary indicator of whether cell c occupies site (r, q)

Kc a set of candidates of cell c
λkc a binary indicator of whether candidate k for cell c is selected

xkc (ykc ) x (y) coordinate corresponding to λkc
fkc fc corresponding to λkc
skcrq scrq corresponding to λkc
γ maximum allowed length for a direct vertical M1 routing (unit: number of placement rows)
vpq a binary indicator of whether pins p and q are within a given range (γ) in y direction
opq length of overlap between pins p and q
δ minimum required overlap length for direct vertical M1 routing
ε a weighting factor for the sum of overlap lengths (opq)

Checking pin alignment. Constraint (3.21) checks whether pins p, q are aligned, by comparing

their absolute coordinates. If the (absolute) x coordinate of p, q are not the same, dpq = 0. Otherwise,

the left side of the first and second constraints in Constraint (3.21) becomes zero, which makes dpq = 1

allowed. In our implementation, we always ensure dpq = dqp.

Placement of each cell. Similar to [61], we assume that a perturbation range is given for each

cell c, and that a cell cannot move beyond its given perturbation range. As in [61], we adopt the single-

cell-placement (SCP) model of [101] to represent each candidate location and orientation for a cell. The

binary variable λkc represents a candidate k for a cell c, including the coordinates (xkc , ykc ), the orientation

(fkc ), and whether placement site (r, q) is occupied (skcrq). These relations are handled by Constraints
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(3.23), (3.24) and (3.25). Constraint (3.22) ensures that exactly one candidate is chosen for cell c among

all λkc , k ∈ Kc. Constraint (3.26) ensures a legal placement.

MILP Formulation for OpenM1

To maximize direct vertical M1 routing for the OpenM1 cell architecture, we must maximize

“overlap” between target pins, which is different from the objective for ClosedM1. In addition to maximizing

the number of overlapping pin pairs, we also maximize the sum of overlap lengths of each pin-to-pin

(sub)net so as to increase the probability that the router completes the direct vertical M1 routing. The

OpenM1 objective is:

Minimize: − α ·
∑

dpq − ε ·
∑

opq +
∑
n∈N

βn · wn (3.27)

To support OpenM1, we slightly modify the previous MILP formulation for ClosedM1 by introduc-

ing extra variables. In this case, dpq becomes a binary indicator of whether pins p and q are “overlapped”,

and Constraint (3.21) is replaced with Constraints (3.28)–(3.30). Our notation is again as described in

Table 3.4.

a ≥ xc + xmin,p, a ≥ xc′ + xmin,q

b ≤ xc + xmax,p, b ≤ xc′ + xmax,q

∀p, q, where c, c′ are the owner cells of pins p, q (3.28)

(yc + yp)− (yc′ + yq) ≤ G · vpq + γ ·H

(yc + yp)− (yc′ + yq) ≥ −G · vpq − γ ·H

∀p, q, where c, c′ are the owner cells of pins p, q (3.29)
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a ≥ xc + xmin,p, a ≥ xc′ + xmin,q

opq ≤ b− a− δ +G(1− dpq), opq ≤ G · dpq

opq ≥ −G(1− dpq)

∀(p, q) pin pairs in net n, ∀n (3.30)

dpq + vpq ≤ 1, ∀p, q (3.31)

Checking pin overlaps. Constraint (3.28) calculates the length of overlap in x direction between

pins p and q. It first identifies the left side (a) and the right side (b) of the overlap between pins p and q.

The overlap length opq is determined by a and b in Constraint (3.31). Constraint (3.29) checks whether the

absolute difference of y coordinates of pins p and q is larger than γH and, if so, forces vpq = 1. γ is a

user-defined value for the maximum allowed vertical span of a direct vertical M1 routing.24

We use γ = 3, which means that a direct vertical M1 routing can cross three placement rows. For

the case vpq = 1, we do not need to make overlaps in the x direction since pins are multiple rows apart

vertically; in such cases, it is difficult (i.e., highly improbable) to make a direct vertical M1 routing across

multiple rows. Thus, Constraint (3.31) forces dpq = 0 if vpq = 1 so that the optimization does not make

unnecessary overlaps. Constraint (3.30) forces dpq = 1 if b− a is larger than a predefined δ, which is the

minimum required overlap length. Then, the opq is bounded by b− a− δ. Otherwise, opq is bounded by

zero.

3.2.3 Overall Flow

We now describe the overall flow of our optimization.

Distributable Optimization

In practice, the most critical limitation of the MILP-based approach is runtime. To overcome the

runtime limitation, we adopt the distributable optimization proposed in [61].

We partition the layout into small windows (with width bw, height bh and optimize these windows
24For example, γ = 1 means that direct vertical M1 routing can traverse between two adjacent cell rows, and γ = 2 (resp. 3)

means that direct vertical M1 routing can go through one (resp. two) intervening cell row(s).
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in several iterations. In each iteration, we select a subset of windows that are independently optimizable,

and optimize them in parallel. More specifically, we select windows that do not have any horizontal or

vertical overlap (i.e., have disjoint projections onto the x-axis and onto the y-axis). For example, as shown

in Figure 3.11, windows that are diagonally adjacent can be selected and optimized in parallel. This is

because a given window’s optimization is unaware of cell displacements concurrently being made outside

of the window; if windows share projections onto the x- or y-axis, the impact of solutions on HPWL from

each window cannot be accurately captured.

Figure 3.12 illustrates two example cases of (a) target windows with intersecting projections (on

the y-axis) and (b) target windows with disjoint projections. Since the target windows are optimized in

parallel, the optimizer calculates ∆HPWL1 for the displacement of p in w1 without knowing pin q’s

displacement, and vice versa (∆HPWL2 for q in w2). However, according to the final locations of p and

q, the pins that determine the bounding box corresponding to HPWL can change, as shown in the figure.

In the (a) case, this results in a discrepancy between the total ∆HPWL and the sum of ∆HPWL from

each window. In the (b) case, since p and q always determine the top-left point and the bottom-right point

of the bounding box, the sum of ∆HPWL from each window is equal to the total ∆HPWL.

Target window for the current optimization
Untouched window
Optimized window in previous iterations

Figure 3.11: Illustration of distributable optimization.

Overall Flow

Algorithm 11 (VM1Opt()) gives the metaheuristic outer loop of our detailed placement optimiza-

tion considering direct vertical M1 routing. The inputs include a routed layout T , a weighting factor α
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Target window for the current optimizationUntouched window

ΔHPWL1 ΔHPWL2

Total ΔHPWL ≠ ΔHPWL1 + ΔHPWL2  

ΔHPWL1

ΔHPWL2

Total ΔHPWL=ΔHPWL1 + ΔHPWL2  

w1 w2

w3 w4

w1 w2

w3 w4

p

q

p

q

(a) (b)

Figure 3.12: HPWL calculation for two cases. (a) Target windows with intersecting projections on the
y-axis. (b) Windows with disjoint projections. In the case of (a), the total ∆HPWL is not equal to the

sum of ∆HPWL values that are calculated from each window.

and a sequence(queue) of input parameter sets U . Each parameter set in U includes window width (bw),

window height (bh), maximum x displacement for cells (lx), and maximum y displacement of cells (ly).

The sequence U is determined empirically based on experimental results (see Section 3.2.4). The output is

an optimized layout Topt with a heuristically minimized objective value Obj.

In Line 2, we obtain the first input parameter set u in the current U . In Lines 3–11, we iteratively

run DistOpt() with u until the normalized improvement (∆Obj) of the objective with respect to Obj

of the previous iteration is less than a threshold θ. We use θ = 1% as the threshold. In Line 4, we first

store the previous Obj value as preObj. In Lines 6–7, we then perform DistOpt() with window size

and perturbation range defined in u (i.e., u.bw, u.bh, u.lx, u.ly) but without allowing the flip operation

(f = 0). After that, DistOpt() is performed again in Lines 8–9, with allowing of the flip operation

(f = 1) but without allowing perturbation. Empirically, we observe that a sequential optimization that

performs perturbation and flipping serially is faster than an optimization that performs perturbation and

flipping simultaneously, while both optimizations give similar solution quality. In Line 10, we update the x

and y shift values for windows (tx, ty). Although we avoid interference between windows by selecting

diagonally-adjacent windows (recall Figure 3.11) for parallel optimization, cells at the boundary (i.e., cells
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that overlap two windows simultaneously) cannot be optimized. Thus, similar to the method of [61], we

shift the windows to handle the unoptimized boundary region of the previous iteration. If ∆Obj is less

than θ (Line 3), we change u to the next input parameter set in U (Line 2). We iterate the optimization

until we reach the last input parameter set in U .

Algorithm 12 describes details of DistOpt(). According to the given input parameters, we

partition the layout into small windows (Line 1). We then select target windows that are independently

optimizable and store them in D (Line 3) as explained above. Since we select target windows such that

windows do not have any vertical or horizontal overlaps, the parallel optimization has k =
√
|W | iterations,

where |W | is the total number of windows. In Lines 5–6, all windows d ∈ D are optimized in parallel.

For each window, we list candidates for each cell according to a given perturbation range (i.e., lx and ly,

the maximum displacement of x and y, respectively). Along with input parameters α, βn, γ and δ, we

formulate the MILP instance for the window and use CPLEX to solve the MILP instance. The solution

is updated for each window, and is then used as a boundary condition for the target windows in the next

iteration.

Algorithm 11 Overall flow of VM1Opt

Procedure VM1Opt(T, α, U)
Input : Layout T , weighting factor α, queue of parameter sets U
Output : Layout Topt

1: while U 6= ∅ do
2: u ← U.pop(); ∆Obj ← ∞;
3: while ∆Obj ≥ θ do
4: preObj ← Obj;
5: lx ← u.lx; ly ← u.ly; f ← 0;
6: (T,Obj) ← DistOpt(T, tx, ty, u.bw, u.bh, lx, ly, f, α);
7: lx ← 0; ly ← 0; f ← 1;
8: (T,Obj) ← DistOpt(T, tx, ty, u.bw, u.bh, lx, ly, f, α);
9: Update tx, ty

10: ∆Obj ← (preObj −Obj)/preObj;
11: end while
12: end while
13: Topt ← T ;
14: return Topt;
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Algorithm 12 Procedure DistOpt

Procedure DistOpt(T, tx, ty, bw, bh, lx, ly, f, α)
Input : Horizontal (vertical) offset tx (ty), width (height) of window bw (bh), perturbation range in x
(y) lx (ly), binary indicator of whether flip operation is allowed f , weighting factor α
Output : Updated layout Topt, objective value Obj

1: A set of windows W ← Partition(T, tx, ty, bw, bh);
2: for i = 1 to

√
|W | do

3: D ← set of current target windows;
4: // parallel optimization
5: MILPFormulation(d, lx, ly, f, α) for ∀d ∈ D;
6: Solve MILP and update MILP solutions to T ;
7: // parallel optimization ends
8: end for
9: Topt ← T

10: Obj ← CalculateObj(Topt);
11: return Topt;

3.2.4 Experimental Setup and Results

Experimental Setup

We implement our flow in C++ with OpenAccess 2.2.43 [193] to support LEF/DEF [186], and

with IBM ILOG CPLEX Optimization Studio v12.6.3 [180] as our MILP solver. We apply our detailed

placement optimization flow to ARM Cortex M0 core (M0) and three designs (AES, JPEG and VGA) from

the OpenCores website [191]. The design information is summarized in Table 3.5. The four designs are

implemented with 7nm OpenM1 and ClosedM1 triple-Vt libraries from a leading technology consortium.

We synthesize the testcases using Synopsys Design Compiler K-2015.06-SP4 [195], and then perform

placement and routing using Cadence Innovus v16.1 [174]. The experiments are performed with 8 threads

on a 2.6GHz Intel Xeon dual-CPU server. We note that with flexible computing resources, the number

of usable threads could be as large as the number of layout windows that are independently optimizable

(
√
|W |) to reduce runtime for larger designs.

Experimental Results

We have conducted two basic types of experiments. Expt1 experiments seek to optimize our overall

flow by finding input parameters and optimization sequences that give dominating runtime versus solution
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quality tradeoffs. The AES design with ClosedM1 is used for Expt1 experiments. Expt2 experiments

apply our flow to both ClosedM1-based and OpenM1-based designs. For all experiments, we use β = 1 so

that our MILP formulation minimizes pure HPWL.

Figure 3.13: Scalability test with various window sizes and perturbation ranges.

Figure 3.14: Sensitivity of total routed wirelength (RWL) and the number of direct vertical M1 routings
(#dM1) to α.

Expt1-1: Scalability study on window size and perturbation range. We sweep the window

size and the perturbation range to study the tradeoff between solution quality and runtime. We assume

square windows and vary bw = bh from 5µm to 80µm. For the perturbation range, we try lx ∈ {2, 3, 4, 5},
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Figure 3.15: Results of various optimization sequences.

ly ∈ {0, 1}. In this experiment, we only run one iteration in Algorithm 11 (i.e., one pair of DistOpt()).

Figure 3.13 shows the normalized routed wirelength (RWL) and runtime versus the window size. As the

window size increases, the routed wirelength decreases, as expected. However, we observe huge runtime

increases, e.g., 5× runtime increase with bw = bh = 40µm. To compromise the runtime overhead and

the solution quality, we select the option with shortest runtime that gives ≤ 1% total routed wirelength

increase compared to the minimum routed wirelength; this is bw = bh = 20µm, lx = 4, and ly = 1.

Expt1-2: Sensitivity study for α. We sweep α values and study the impact of α on the number of

direct vertical M1 routings (#dM1) and the routed wirelength (RWL). We vary α from 0 to 6000 – e.g., for

ClosedM1-based design, the objective with α = 10 prefers one more aligned pin pair at the cost of at most

10 units increase in HPWL. Figure 3.14 shows total routed wirelength (RWL) and the number of direct

vertical M1 routings (#dM1) versus α. As α increases, the number of direct vertical M1 routings increases.

However, maximizing the number of direct vertical M1 routings does not always reduce routed wirelength,

Based on our studies, we select α = 1200 for ClosedM1. Similarly, we experiment on OpenM1-based

designs and select α = 1000.

Expt1-3: Sequence of optimization. We explore various sequences of input parameter sets

(bw = bh, lx, ly) to optimize our overall flow. We illustrate this with five example optimization sequences:

(1) (20, 4, 1); (2) (10, 3, 1)→ (10, 4, 0)→ (20, 4, 0) ; (3) (10, 3, 1)→ (20, 3, 1)→ (20, 3, 0); (4) (10, 3,
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1)→ (20, 3, 0) ; and (5) (10, 3, 1)→ (10, 3, 0)→ (20, 3, 1)→ (20, 3, 0). Figure 3.15 shows RWL and

runtime for these optimization sequences. We observe that optimization sequences 1 and 2 with lx = 4

give better solution quality (in terms of RWL). However, optimization sequence 2 consumes twice the

runtime of optimization sequence 1. Therefore, (20, 4, 1) would be a preferred choice of sequence.

Table 3.5: Results of Expt2.
Design #Inst Util

α
#dM1 M1 WL (µm) #via12 HPWL (µm) RWL (µm) WNS (ns) Power (mW ) Runtime

(%) Init Final (∆%) Init Final (∆%) Init Final (∆%) Init Final (∆%) Init Final (∆%) Init Final Init Final (∆%) (sec)
ClosedM1-based designs

M0 9922 75% 1200 545 2955 (442.2) 676 629 ( -7.0) 35766 31932 (-10.7) 22850 23760 ( 4.0) 27636 26833 (-2.9) 0.000 0.000 2.444 2.431 (-0.5) 344
AES 12345 75% 1200 631 3177 (403.5) 970 710 (-26.8) 43248 38631 (-14.4) 30420 28890 (-5.0) 32560 30471 (-6.4) 0.000 0.000 3.240 3.212 (-0.9) 711
JPEG 54570 75% 1200 3694 20688 (460.0) 3605 3329 ( -7.7) 179315 153500 (- 5.7) 91030 88900 (-2.3) 96621 90593 (-6.2) 0.000 0.000 28.592 28.399 (-0.7) 1216
VGA 68606 75% 1200 2460 12473 (407.0) 5973 5428 ( -9.1) 270930 255466 (-10.7) 169200 169800 ( 0.4) 206558 204269 (-1.1) 0.000 -0.002 53.614 53.542 (-0.1) 561

OpenM1-based designs
M0 9891 75% 1000 1183 1931 (63.2) 3681 3790 ( 3.0) 35099 34336 (-1.7) 24790 24570 (-0.9) 29884 29575 (-1.0) -0.003 0.000 2.475 2.468 (-0.3) 298
AES 12348 75% 1000 1341 1975 (47.3) 4646 4620 (-0.5) 43004 42269 (-4.1) 30670 29980 (-2.2) 34338 33592 (-2.2) 0.000 0.000 3.273 3.263 (-0.3) 325
JPEG 54689 75% 1000 8391 13763 (64.0) 18709 19244 ( 2.8) 173622 166411 (-3.8) 92100 91110 (-1.1) 103257 101463 (-1.7) 0.000 -0.001 29.024 28.957 (-0.2) 1026
VGA 68729 75% 1000 7714 13132 (70.2) 26912 26823 (-0.3) 261424 251558 (-2.2) 170000 168700 (-0.8) 215218 213598 (-0.8) 0.000 -0.002 53.805 53.730 (-0.1) 515

Expt2-1: Detailed placement optimization for ClosedM1-based designs. Table 3.5 shows

overall results for our detailed placement optimization. Our optimizer increases the number of direct

vertical M1 routings by more than 4× compared to the initial post-routing solution, while decreasing overall

M1 wirelength. This means that we remove long vertical M1 routings that are not used for direct vertical

routing, while generating many short, direct vertical M1 routes; this results in smaller M1 wirelength and

a larger number of M1 routing segments. Along with the increase in the number of direct vertical M1

routings, we achieve up to 6.4% routed wirelength (RWL) reduction and up to 14.4% #via12 reduction

without design rule violations (DRVs).25 Total power also decreases by up to 0.9%. For half of the designs,

HPWL increases in favor of more dM1 to further reduce routed wirelength.

To study the impact of direct M1 routing on congestion reduction, we increase the initial utilization

on the AES design so as to induce congestion hotspots, which lead to design rule violations. In Figure 3.16,

we show that our optimizer has the added benefit of avoiding a substantial fraction of DRVs (#DRVs orig

versus opt in the figure). We note that even though our optimization consistently decreases DRVs, routing

QoR is ultimately determined by the initial placement quality. Notably, placement QoR with utilization

83% from the commercial tool is worse than placement with utilization 84% in terms of DRVs. The cause

of this phenomenon is beyond our present scope.
25Here we refer to routing DRVs. In this work, we do not consider advanced node placement rules (e.g., drain-drain abutment,

minimum implant area, etc.). However, our framework is fully compatible, and can be easily integrated, with the work of [61] and
complex sub-14nm rules.
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Figure 3.16: The number of DRVs after optimization for AES design with various utilizations. Also
shown: the number of direct vertical M1 routings.

Expt2-2: Detailed placement optimization for OpenM1-based designs. Our optimizer in-

creases the number of direct vertical M1 routings by around 60% compared to the initial post-routing

solution. We observe that the increase of the number of direct vertical M1 routings for OpenM1-based

designs is much smaller than that for ClosedM1-based designs. This small increase of the number of

direct vertical M1 routings results in only up to 2.2% routed wirelength reduction, and up to 4.1% #via12

reduction, without design rule violations. There can be several reasons for the lesser improvement seen for

OpenM1-based designs. Our current hypothesis is that P&R for OpenM1 is very similar to traditional P&R

in terms of pin access. In traditional P&R flows with conventional libraries, where most pins are on M1,

the M2 layer is used to access the pins. Similarly, OpenM1 cells also have pins (on or) below M1, and M1

can be used for pin access. Thus, P&R for OpenM1 can be seen as a variant of the conventional P&R flow,

where the bottom routing layer is shifted down to M1. Indeed, in OpenM1-based designs, direct vertical

M1 routing can block access to other pins, which limits the wirelength reduction. On the other hand, in

ClosedM1-based designs, direct vertical M1 routing does not block any pin access, and is thus “free” in

terms of routing resource. Compared to ClosedM1, where routed wirelength can be reduced even at the

cost of HPWL increase, OpenM1-based designs prefer smaller α to reduce HPWL. However, given our

use of a black-box commercial router, it is difficult to identify root causes of the improvement difference

between OpenM1 and ClosedM1. This is the subject of one of our ongoing studies.
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3.2.5 Conclusion

In this work, we propose a vertical M1 routing-aware detailed placement optimization based on

mixed-integer linear programing (MILP) for two new cell architectures in sub-10nm nodes, i.e., ClosedM1

and OpenM1. With our optimization, up to 6.4% (resp. 2.2%) total routed wirelength reductions and 14.4%

(resp. 4.1%) #via12 reductions are achieved for ClosedM1-based (resp. OpenM1-based) designs, with no

adverse timing impact.

We note that the library characterization model for ClosedM1 library cells might need to change

since the vertical M1 routings might affect cells’ library model (change in gate capacitance, etc.). However,

according to our study with an INV cell in ASAP ASU 7nm PDK [169], the timing impact is negligible (≤

0.1ps).26

Our future works include (i) a comprehensive study of timing library characterization for ClosedM1,

to accurately capture the timing impact of direct vertical M1 routing; (ii) extension of our placement

objective function to consider other design criteria, including timing criticality, pin density, routing

congestion, and routing design rules; (iii) (meta)heuristic innovation to improve QoR and scalability; and

(iv) theoretical understanding of OpenM1-based layout design to inform an improved optimization strategy.
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Chapter 4

Evaluations of Design Enablements for

Advanced VLSI Technologies

In advanced technology nodes, BEOL interconnect geometry has become a key lever for design

enablement and design-technology co-optimization, due to its significant impact on physical design QoR.

Complex design rules along with more pervasive use of multi-patterning have increased the difficulty of

maintaining high layout densities. Intuitively, emerging constraints such as unidirectional patterning or

increased via spacing will decrease achievable density of the final place-and-route solution, worsening

die area and product cost. Also, the rapid increase of interconnect RC leads to not only performance loss

from interconnect delay increase, but circuit power and area degradation as well. Optimization of BEOL

dimensions (i.e., wire width, spacing and thickness subject to a given layers pitch constraint) is crucial to

achieve better product performance, power and area.

Understanding the interaction of design flows and technology choices is a crucial need for early

development of BEOL process technologies. However, it is nontrivial to evaluate BEOL stack options

since the routing outcomes highly depend on the input design (e.g., netlist, placement, etc.). As far as we

know, no systematic methodology exists for accurate assessment of BEOL stack choice impact on physical

chip implementation.

This chapter presents three distinct evaluation methodologies for design flows and technology
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enablements. First, we study impacts of patterning technology choices and associated design rules on

physical implementation density, with respect to cost-optimal design rule-correct detailed routing. A key

contribution is an Integer Linear Programming (ILP) based optimal router (OptRouter) which considers

complex design rules that arise in sub-20nm process technologies. Using OptRouter, we assess wirelength

and via count impacts of various design rules (implicitly, patterning technology choices) by analyzing

optimal routing solutions of clips (i.e., switchbox instances) extracted from post-detailed route layouts

in an advanced technology. Second, we study BEOL interconnect stack geometry by exploring wire

aspect ratio (AR) and wire line-space duty cycle (DC). We perform SPICE-based analyses of timing path

delays to find delay- or power-optimal (AR,DC) combinations, and also perform block-level studies with

placed and routed designs. Based on our experimental results, we provide various insights on BEOL stack

geometry: (i) optimal (AR,DC) for a given wire pitch with respect to power and delay; (ii) sensitivities

of optimal (AR,DC) to circuit parameters (e.g., driver strength, input slew, output load, wirelength);

(iii) optimal (AR,DC) when multiple interconnect layers are considered; and (iv) potential impacts of

BEOL stack optimizations within future design-aware manufacturing and/or manufacturing-aware design

methodologies. Third, we propose a systematic framework to measure routing capacity of a BEOL stack

as well as inherent capability of routers. Based on our experimental results, we observe consistent results

across mesh-like placement and placements from various placers. Our proposed framework also enables

other insights into BEOL stack options. Using our framework, we empirically study the relation between

the routing hotspot size and routing failure. We also present an analytical study, based on exponentiation

of a Markov transition matrix, of the impact of design size on routing failure.

4.1 Evaluation of BEOL Design Rule Impacts Using an Optimal ILP-based

Detailed Router

To scale semiconductor process nodes below the resolution limits of 193i optical lithography,

multi-patterning techniques (e.g., litho-etch-litho-etch (LELE) and self-aligned double and quadruple

patterning (SADP, SAQP) [103] have already been widely used in production. Multi-patterning is expected

to be the basis of mainstream process offerings through the foundry 10nm and even 7nm nodes, and will
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persist even with deployment of extreme ultraviolet (EUV) lithography [185]. Although multi-patterning

techniques are key enablers for advanced sub-20nm process technologies, they can induce highly complex

design rules which challenge both IC physical design tools and the development (and enablement) of IC

physical implementation methodology. Tight design rules (e.g., via placement restrictions, unidirectional

routing on Mx layers, etc.) lead to design wirelength and density overheads, to the point where benefits from

technology scaling reduce or even disappear altogether. Assessing the real value of a prospective future

technology is also difficult in FinFET nodes, where higher drive strengths enable smaller standard-cell

footprints that further challenge pin access and routability [3].

Given the above considerations, as well as the enormous cost of technology development and design

enablement for a new process node, it is critical for the industry to be able to assess the impact of design

rules (implicitly, patterning technology choices) on physical implementation metrics. Such assessments

should be made as early as possible, to permit correct choices among various technology options and

to enable design-technology co-optimization. Unfortunately, there are two basic reasons why process

technology developers cannot easily evaluate impacts of complex design rules on chip implementation

metrics. First, EDA vendors often require prolonged, close co-development with customers to correctly

support new advanced design rules. While the latest Library Exchange Format standard (LEF5.8) [186]

supports advanced design rule descriptions, even for the rapidly approaching foundry 10nm node there

is varying (and contradictory) support across the EDA industry today [139, 127]. Thus, it is practically

difficult to study new “future” design rules with current EDA tools. Second, EDA tools apply many

heuristics to perform efficient large-scale layout optimizations. This clouds evaluations of how new

patterning technologies or design rules impact chip implementation metrics. In other words, the “chicken-

egg” relationship between current EDA algorithms that are optimized for current design enablements

(design rules, cell libraries, etc.) makes it difficult to assess true impacts of future design enablements.

Wherever possible, we would like to reduce the “chicken-egg” obstacles to design rule and patterning

technology assessment.

In this work, we provide a framework for evaluating how prospective sub-20nm design rules – as

well as back-end-of-line (BEOL) stack choices – will affect chip implementation metrics such as density

or wirelength. Our framework is based on optimal detailed routing that is correct with respect to advanced
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design rules. We describe OptRouter, an ILP-based optimal detailed router which considers various design

rules and technology options especially for the coming 10nm/7nm process nodes. OptRouter computes

optimal routing solutions for small switchboxes (approximately the size of a single gcell [88], similar to

the recent work of [78]), and has the ability to consider routing direction (unidirectional or bidirectional),

design rules induced by advanced patterning technology (e.g., SADP), via adjacency restrictions, and pin

shapes. Our studies combine realistic testcases in multiple technologies (including testcases synthesized

with a prototype 7nm cell library from a leading commercial IP provider) with cost-optimal detailed

routing. It is this combination that enables new, quantitative assessment of design rule impact on detailed

routing metrics. The key contributions of our work are summarized as follows.

• We formulate as an integer linear program (ILP) a minimum-cost switchbox routing problem that

arises in advanced technology nodes (corresponding to clips from standard-cell place-and-route

instances). In contrast to previous approaches, our formulation captures multi-pin net routing (i.e.,

Steiner routing), via shapes, via adjacency restrictions, pin shapes, layer uni-/bi-directionality, and

SADP constraints that occur with sub-20nm patterning.

• We develop OptRouter, which extracts layout clips from place-and-route solutions and uses IBM

ILOG CPLEX Optimization Studio v12.5.1 [180] to solve the corresponding ILP instances. The

correctness and capability of OptRouter are validated against commercial router results with foundry

28nm 8- and 12-track and 7nm 9-track libraries.

• We apply OptRouter within a novel methodology to quantify and rank impacts of complex sub-20nm

design rules on layout metrics (wirelength, vias, and routability). Our testbed notably includes

a prototype 7nm PDK from a leading IP provider, as well as the aforementioned 28nm foundry

libraries.

• Our comparisons of different design rules’ impacts can potentially guide patterning technology

choices and other basic design-technology co-optimization decisions.
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4.1.1 Related Work

Relevant previous works are found in two areas: (1) design rule evaluation frameworks, and (2)

ILP-based global and detailed routers.

Design rule evaluation. The work of [53] exemplifies efforts to connect layout ground rules with

layout area, electrical variability, and parametric yield implications. Specifically, the authors of [53] study

the effect of a line-end extension rule on logic standard cell and SRAM bitcell layout area, and on leakage

variability and parametric yield. Ghaida and Gupta [48] propose DRE, a platform that comprehensively

connects design rule alternatives to the automated synthesis of standard-cell library cells, and then to

the power-performance-area envelope of standard-cell based layouts of small blocks. Subsequently, [47]

extends the DRE approach to chip-level analyses. Badr et al. [11] suggest a pattern matching-based design

rule evaluation method, which is then applied to checking of routing within standard cells. A fundamental

distinction between these previous works and our present work is that we provide a new capability to assess

design rule and patterning technology choices with cost-optimal detailed routing.

ILP-based routers. ILP has been widely used for optimization problems due to its simplicity

along with its ability to find optimal solutions up to some limit of tractable instance complexity. A number

of works adopt ILP for global routing, often starting from a multi-commodity flow perspective. The early

work of Carden and Cheng [20] uses column-generating techniques within a multi-commodity flow based

global router. Cho et al. [28] propose a global router based on box expansion and progressive ILP. After

decomposing nets into two-pin nets, ILP is used to choose a routing between two L-shaped candidate

routings for each two-pin net within a box. The approach iteratively expands the box and solves new nets

within the expanded new box, using progressive ILP and maze routing. Similarly, Hu et al. [67] use ILP

for global routing; they enumerate two path candidates to connect two-pin nets after initial routing, and an

ILP is formulated to select the better path between the two candidates.

An important recent work is that of Jia et al. [78], which proposes a detailed router based on

multi-commodity flow. The authors of [78] formulate an ILP for detailed routing with all nets being

two-pin nets. Pin shapes and basic design rules (side-to-side, tip-to-tip, cut-to-cut) are considered. The

proposed methods are demonstrated to reduce the number of Design Rule Check violations in a 45nm
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technology without wirelength or via overheads. A fundamental distinction between the work of Jia et al.

[78] and our present work is that [78], while using ILP, does not guarantee optimal routing since multi-pin

nets are not handled in the formulation. Further, only basic design rules are considered. In particular, the

ability to compute minimum-cost optimal routing solutions with SADP-specific rules and via shapes is

unique to our present work.

4.1.2 Optimal Routing Formulation

We now describe our ILP-based formulation of the detailed routing problem for a netlist of multi-

pin nets, with consideration of via adjacency restrictions, unidirectional routing, SADP-aware line end

rules, pin shapes, and via shapes. Like previous works, our development adopts the well-known paradigm

of multi-commodity flow. Table 4.1 gives the notations that we use.

Table 4.1: Notations.
Notation Meaning

N set of multi-pin nets
nk kth multi-pin net
sk source of nk
Tk set of sinks of nk
tk,i ith sink of nk

G(V,A) routing graph
V set of vertices (of the routing graph)
vi a vertex with the location (xi, yi, zi)
A set of directed arcs
ai,j a directed arc from vi to vj
eki,j 0-1 indicator whether ai,j is used in the routing of nk
cki,j cost for ai,j in the routing of nk
fki,j flow variable for ai,j in the routing of nk

pkr,i(p
k
l,i)

0-1 indicator whether there are the flows connected to vi
coming from right (left) side, in the routing of nk

General Routing Problem Formulation

We use a routing graph G = (V,A) to represent available routing resources, e.g., metal tracks

on multiple layers, and inter-layer vias. Each vertex vi ∈ V is associated with variables that represent

coordinates in the three-dimensional routing resources: horizontal metal track xi, vertical metal track yi
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and metal layer zi. A directed arc ai,j , where xj = xi, yj = yi and zj = zi ± 1, represents a via. We solve

the optimization:

Minimize:
∑
nk∈N

∑
ai,j∈A

cki,j · eki,j

Subject to:∑
nk∈N

(eki,j + ekj,i) ≤ 1 ai,j , aj,i ∈ A (4.1)

eki,j ≥
fki,j
|Tk|

ai,j ∈ A,nk ∈ N (4.2)

eki,j ≤ fki,j ai,j ∈ A,nk ∈ N (4.3)

∑
vj :ai,j∈A

fki,j −
∑

vj :aj,i∈A
fkj,i =



|Tk| if vi = sk, nk ∈ N

−1 else if vi ∈ Tk, nk ∈ N

0 otherwise

(4.4)

The objective is to minimize the weighted sum of eki,j , i.e., weighted total wirelength and the

number of vias. Constraint (4.1) ensures that each arc is used by only one net. Constraints (4.2) and (4.3)

pertain to the binary variable eki,j , which indicates whether there is a flow through ei,j . Constraint (4.4)

ensures source-sink connectivities (flow conservation). The first and second terms respectively represent

the sum of the flows exiting vi (outflows of vi) and the sum of the flows entering vi (inflows of vi). For any

internal node that is not a source or a sink, the sum of the node’s outflows must equal to the sum of the

node’s inflows. For a source sk, the sum of outflows of sk must be |Tk| (the number of sinks) since there

must be |Tk| flows which connect between sk and |Tk| number of sinks in nk, and the sum of inflows of sk

must be zero. On the other hand, for a sink vi ∈ Tk, the sum of inflows must be one since a flow coming

from sk must reach each sink, and the sum of outflows must be zero.

Figure 4.1 shows a two-net example consisting of a three-pin net (n1) and a two-pin net (n2),

along with its solution. Net n1 has a source v1 and two sinks, v3 and v4. Net n2 has a source v5 and a sink,

v6. According to Constraint (4.4), for n1, the sum of outflows of the source node v1 = 2 (|T1|) and the
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Figure 4.1: Example showing multi-pin nets and the routing solution.

sum of inflows of sink nodes v3 and v4 = −1. Similarly, for n2, the sum of outflows of v5 = 1 and the

sum of inflows of v6 = 1. For all other vertices, the sum of outflows is equal to the sum of inflows so that

flows are conserved for each net. According to Constraint (4.1), e11,2, e12,3 = 1, which connects between v1

and v3, since f11,2, f12,3 have non-zero values. Constraint (4.1) forces e21,2, e22,1, e12,1 to be zero so that the

edge between v1 and v2 can be reserved only for n1.

Routing Rule Formulation

Via restrictions. As noted in [103], placement of vias next to each other is not allowed in advanced

nodes. That is, as via pitches are larger (e.g., by a
√

2 factor) than metal pitches, placement of a via at a

particular location blocks horizontally and vertically adjacent locations, and sometimes diagonally adjacent

locations as well. We use the following constraint so that any neighbor vertical arcs ai′,j′ of a vertical

arc ai,j can be blocked if there is a via between vi and vj , where xi′ = xj′ = xi ± 1, yi′ = yj′ = yi ± 1,

zi′ = zi and zj′ = zj .

eki,j + ekj,i + eki′,j′ + ekj′,i′ ≤ 1 ∀ ai′,j′

In our study below, we consider two types of restrictions: (i) blocking of orthogonally adjacent

locations (N, E, S, W neighbors) and (ii) blocking of both orthogonally and diagonally (NE, NW, SE, SW)

adjacent locations.
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Unidirectional routing. Patterning with severe restriction, as with one-pitch/one-orientation

metal layers, is used because of better robustness, scalability and manufacturability – as well as fewer

masking steps – compared to a standard LELE-patterned bidirectional metal layer. We trivially restrict

routing on a given layer to be unidirectional by removing arcs that are not in the preferred direction. (See

also our discussion of SADP constraints, below.)

Pin shape. In the above example of Figure 4.1, we assume that each source or sink has a single

fixed location. However, in actual routing, a pin has multiple access points, which means that the source

or sink locations ultimately used in the routing solution can vary. Multiple access points for source and

sink are captured by creating a supersource or supersink which is connected to all available access points

in the corresponding pin. We note that the supersource and supersink are virtual vertices, which are not

actually located but which nonetheless have flows. We also observe that each access point for source or

sink becomes an internal node.27

Via shape. To trade off between manufacturability and routability, various via types with square

or rectangular shapes may be instantiated. Some vias shapes, e.g., 2× 2 size, are too large to be modeled

as a single vertex in our routing graph. We model a via’s shape by creating a representative vertex which

is connected to all the vertices that belong to a via, according to that via’s footprints on lower and upper

layers.28

Figure 4.2(a) shows a via and its vertices in a routing graph. vv is a square via with size 2 × 2

(with respect to the number of metal tracks). With the flow conservation constraint (Constraint (4.3)), once

a flow (routing) enters vv, the flow goes through one of four vertices in the upper layer. Note that for each

via type, vertices are created for all possible locations where the via can be placed. For example, if a 2× 2

size square via type is added to the routing graph with three layers and 15× 15 tracks (15× 15× 3), we

will create 392 (14× 14× 2 = (15− 1)× (15− 1)× (3− 1)) vertices for the square via at all possible

27Pin shape is important in assessment of routing costs, e.g., smaller pin geometries with fewer access points
in advanced FinFET nodes are a major challenge to detailed routing. In 7.5T or 7.25T library cells in FinFET
nodes, power/ground rails, fin connections and other aspects of standard cell architectures must reconcile with
pin shapes (access points). Strict tip-to-tip spacing (more than one contacted poly pitch (pin pitch)), diagonal via
placement restriction as discussed above, and wider power rails also decrease the number of access points to a cell
and potentially cause unroutability [104]. We study interactions of smaller pin shapes in 7nm (Figure 4.9(c)) and
routing rules in Section 4.1.3.

28Doubled or redundant vias are also modelable with small modification of via shape formulation.
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Figure 4.2: Via shape. (a) 2× 2 square via. (b) 2× 1 bar via.

locations. Further, note that we use lower cost values for larger via shapes so that the optimization selects

as many larger vias as possible to achieve better manufacturability.

In addition to the basic formulation with Constraints (4.1)–(4.3), vertices used by a via must be

blocked and not be used by other nets. For example, in Figure 4.2(a), as v7 is selected by e2, all the gray

edges connected to other vertices used by the via (v5, v6, v8) must be disabled for other nets. A generalized

formulation is given in Constraint (4.5) where i′ are the vertices that are not used for the routing but are

within the used via shape, and j′ are the neighbor vertices of i′:

∑
nk∈N

(ekv,i + eki,v) +
∑

nk′∈N,vi′ ,vj′ :ai′,v ,aj′,i′∈A
(ek
′

i′,j′ + ek
′

j′,i′) ≤ 1

where ai,v ∈ A, k′ 6= k, i′ 6= i (4.5)

Thus, Constraint (4.5) prevents any other nets from using the vertices i′ or the edges connected to

i′. Figure 4.2(b) shows an example of 2 × 1 size bar via shape. Vertices s and t are source and sink,

respectively. The red lines are selected as routing from s to t. The gray dots in Figure 4.2(b) are disabled

for other nets by Constraint (4.5), so that there is no overlap between the bar via and other nets.

SADP-aware rules. Xu et al. [162] propose SADP-specific design rules. Figure 4.3(a) illustrates

how the end of line (EOL) of a wire segment is the key parameter to check with such rules.
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Figure 4.3: (a) SADP-specific design rules. (b) Example showing that via location does not provide
enough information to distinguish the upper and lower cases, i.e., to check SADP-aware rules.

In our ILP formulation, we use via locations to check the locations of EOL, but this is not enough

to differentiate the two cases in Figure 4.3(b), where the upper case is an illegal routing while the lower

case is legal with the same via placements. Therefore, binary variables pkr,i, p
k
l,i that indicate whether there

are flows connected to a vertex vi that come from right or left direction, respectively, are defined for a

net nk to represent the directions of the EOL. Note that there are only two directions, since we assume

unidirectional routing.

vi

vt

vb

vr

vl

Via

pkr,i = 1 pkl,i = 1

(b)(a)
Figure 4.4: An example of a routing graph. (a) The p variable of a vertex vi is determined by flow

variables of edges with vertex vi’s neighbor vertices vt, vb, vl and vr. (b) Wire segment geometries that
respectively result when pkr,i = 1 and pkl,i = 1.

Figure 4.4(a) shows a vertex vi and its top, bottom, left, right neighbor vertices (vt, vb, vl, vr) in a

routing graph, and Figure 4.4(b) enumerates the cases when each p variable = 1. For the left EOL at (xi,
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yi, zi) in Figure 4.4(a), where pkr,i = 1, the right edge (ekr,i) connected to vi must be used in routing and the

left edge (ekl,i) connected to vi must not be used. By Constraint (4.4), the expression ekr,i && ¬ekl,i is equal

to the right-hand side of Constraint (4.7). The right EOL (pkl,i = 1) is formulated in the same manner, i.e.,

as Constraint (4.6).

pkl,i = (ekl,i ∗ eki,t)||(ekl,i ∗ eki,b)||(eki,l ∗ ekt,i)||(eki,l ∗ ekb,i) (4.6)

pkr,i = (ekr,i ∗ eki,t)||(ekr,i ∗ eki,b)||(eki,r ∗ ekt,i)||(eki,r ∗ ekb,i) (4.7)

As all the variables are binary, we can convert the quadratic constraints in Constraint (4.6) and (4.7) to

linear constraints by using a simple technique as shown in (4.8). The (a ≤ b) && (a ≤ c) condition

ensures that a is zero when either b or c is zero. The condition (a ≥ b+ c− 1) makes a = 1 when both b

and c are one.

a = b ∗ c⇐⇒ (a ≤ b) && (a ≤ c) && (a ≥ b+ c− 1) (4.8)

We then convert the Constraint (4.6) to a set of linear constraints as shown in Constraint (4.9).

pkl,i ≥ pkl,i,1 ; pkl,i ≥ pkl,i,2 ; pkl,i ≥ pkl,i,3 ; pkl,i ≥ pkl,i,4

pkl,i ≤ pkl,i,1 + pkl,i,2 + pkl,i,3 + pkl,i,4

(pkl,i,1 ≤ ekl,i) && (pkl,i,1 ≤ eki,t) && (pkl,i,1 ≥ ekl,i + eki,t − 1)

(pkl,i,2 ≤ ekl,i) && (pkl,i,2 ≤ eki,b) && (pkl,i,2 ≥ ekl,i + eki,b − 1)

(pkl,i,3 ≤ eki,l) && (pkl,i,3 ≤ ekt,i) && (pkl,i,3 ≥ eki,l + ekt,i − 1)

(pkl,i,4 ≤ eki,l) && (pkl,i,4 ≤ ekb,i) && (pkl,i,4 ≥ eki,l + ekb,i − 1) (4.9)
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Here, pk∗,∗ is a net-specific variable. As SADP rules must be checked over all nets, we define global p

variables as follows:

pl,i =
∑
nk∈K

pkl,i, pr,i =
∑
nk∈K

pkr,i (4.10)

vi vi vi

pr,i = 1 pr,i = 1

vj1
vj2

vj3

vj4

vj5

vj1

vj2

vj3

vj6

vj7

pr,i + pl,j2 ≤1 pr,i + pr,j6 ≤1

(a) (b) (c)

Figure 4.5: (a) A wire segment, of which the EOL is located at vertex vi with the wire coming from the
right side. (b) Forbidden via locations for other wire segments with pl,j = 1. (c) Forbidden via locations

for other wire segments with pr,j = 1.

Figure 4.5 shows how the p variables can be used to formulate SADP-aware rules for ILP.

Figure 4.5(a) shows a wire segment, of which the EOL is located at vertex vi with the wire coming from

the right side; (b) and (c) show forbidden via locations for the other wire segments. The constraints shown

in Figures 4.5(b) and (c) are formulated as Constraints (4.11) and (4.12), respectively.

(pr,i + pl,j1 ≤ 1) && (pr,i + pl,j2 ≤ 1) && (pr,i + pl,j3 ≤ 1)

&& (pr,i + pl,j4 ≤ 1) && (pr,i + pl,j5 ≤ 1) (4.11)

(pr,i + pr,j1 ≤ 1) && (pr,i + pr,j2 ≤ 1) && (pr,i + pr,j3 ≤ 1)

&& (pr,i + pr,j6 ≤ 1) && (pr,i + pr,j7 ≤ 1) (4.12)
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4.1.3 Empirical Studies

Our empirical studies seek to answer two basic questions:

• What are the design costs of various BEOL rules with respect to wirelength, the number of vias, and

routability metrics?

• How much do impacts of design rules vary across different technologies and different-track cell

architectures?

Overall flow of BEOL rule evaluation. We implement our experimental testbed in C++ code,

with interface to support LEF/DEF [186] implemented via the OpenAccess 2.6 [193] API. We use IBM

ILOG CPLEX Optimization Studio v12.5.1 [180] as our ILP solver. Figure 4.6 shows our overall BEOL

rule evaluation flow. From a routed design, all possible routing clips are extracted, and evaluated according

to our pin cost metric. The clips with highest pin cost are selected, and each clip (= switchbox instance) is

converted to a routing graph based on available metal tracks, and then to a corresponding ILP instance, for

each routing rule configuration that we study. Our OptRouter then obtains optimal routing solutions by

solving the ILP. From the solution, we report out wirelength, number of vias, and feasibility (routability)

for each given clip with each given rule configuration. For the experiments that we report here, routing

cost in the ILP is defined as wirelength + 4× number of vias. We have separately observed that the ILP

sensibly handles alternative routing cost definitions with different weighting of via count.

Physical implementation with advanced technology. We verify our methods using the open-

source AES design [191] and an ARM Cortex M0, implemented with three different technologies and

standard-cell libraries: 8-track in 28nm FDSOI (N28-8T), 12-track in 28nm FDSOI (N28-12T), and 9-

track in 7nm (N7-9T). We use Synopsys Design Compiler H-2013.03-SP3 [195] for synthesis and Cadence

Encounter Digital Implementation System 13.1 [171] for P&R. We implement each design multiple times,

with a range of final utilizations. Table 4.2 summarizes benchmark design information.

For 7nm technology, we use 7nm standard-cell libraries (P&R, layout and timing views) from

a leading IP provider; metal pitches on layers M1 to M6 and layers M7 to M8 are 40nm and 80nm,
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Figure 4.6: Overall flow of BEOL rule evaluation.

Table 4.2: Benchmark designs.
Tech. Design Period (ns) #Inst. Util. (%)

N28-12T
AES 1.2 13.5–14K 89–94
M0 2.2 9.2K 90–96

N28-8T
AES 2 12–12.7K 89–95
M0 2.5 9.3–9.5K 90–95

N7-9T
AES 0.6 13–15K 93–97
M0 1.2 9.7–11.4K 92–95

respectively. In this technology, our design enablement is missing detailed BEOL technology information

such as RC values and BEOL stack options. Thus, to obtain timing-closed P&R results we scale up the

geometries of the 7nm 9-track cells by 2.5× in the vertical dimension (i.e., by the ratio of 1× metal pitch

in 28nm horizontal layers (100nm) to 1× metal pitch in 7nm horizontal layers (40nm)). Then, the scaled

7nm cells fit into the 28nm BEOL stack with the same number of horizontal metal tracks, for which we

use 100nm metal pitch in horizontal layers. To scale the widths of the 7nm standard cells, we scale by

the ratio of the 28nm placement grid (vertical metal layer pitch of 136nm) to that of the 7nm placement

grid (vertical metal layer pitch of 54nm), which is ∼2.5. We further adjust pin locations so that pins are
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on-grid, since simple scaling results in off-grid pins which affect routability.29 To derive the missing 7nm

wire RC information from 28nm RC values, we scale up R by 15× for 7nm wire R, and use the same

wire C value. This follows methodology of, e.g., [23] to account for the rapid increase of resistivity in

advanced nodes. Then, since we are using the scaled geometries to mimic a 7nm P&R flow, R and C per

unit length are scaled down (in the P&R tool) by 2.5×. The end result is that 7nm R and C per unit length

(RN7, CN7) are obtained from 28nm R and C per unit length (RN28, CN28) as RN7 = 6 × RN28 and

CN7 = CN28/2.5.

Extraction of routing clips. We use 1µm × 1µm routing clips extracted from the routed designs

as input instances; these correspond to 7 vertical routing tracks × 10 horizontal routing tracks, with eight

metal layers, for OptRouter. Figure 4.7 shows example routing clips extracted from layouts with (a)

N28-12T cells, (b) N28-8T cells, and (c) N7-9T cells.30

(c)(a) (b)
Figure 4.7: Routing clips from (a) N28-12T, (b) N28-9T and (c) N7-9T. Standard cell boundaries and

power/ground rail are highlighted with white lines and yellow dashed lines, respectively.

We select “difficult-to-route” clips based on pin cost metrics of Taghavi et al. [148], specifically, a

pin existence cost (PEC), a pin-area cost (PAC =
∑PEC

i=1 22−
area(pi)

θ ) and a pin-spacing cost (PRC =

29In greater detail: the 28nm and 7nm placement grids are 136nm and 54nm, respectively, with ratio between the two being
∼2.519. It is not possible to obtain integer cell widths by simply scaling with this number. Thus, we scale up the 7nm cells by
2.5 so that all cell widths are a multiple of 135nm. We then increase each cell width by scaled cell width /135 in order to make it
a multiple of 136nm, which is the foundry 28nm placement grid. Since scaling by 2.5× results in a pin pitch of 135nm, which
is off-grid with respect to a 136nm grid, we perform a scripted movement of pin locations so that all pins are again on-grid (the
pin x locations should be multiples of 136nm).

30By comparison, the recent work of [78] uses 1.26µm × 1.26µm clips in a 45nm technology; these correspond to
9 vertical routing tracks × 9 horizontal routing tracks.
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∑PEC−1
i=1

∑PEC
j=i+1 22−

spacing(pi,pj)

3θ ). We use PEC +PAC +PRC as the pin cost for a routing clip, with

θ = 500 to obtain a reasonable range of costs.

We calculate the pin cost for every routing clip in the routed testcases listed in Table 4.2 (∼10K

clips per testcase). Figure 4.8 shows the top-100 pin cost ranges for several versions of AES and M0 design

implementations in N7-9T with different utilizations. The utilizations of AES v1, AES v2 and AES v3

are 93%, 95% and 97% respectively, and the utilizations of M0 v1, M0 v2 and M0 v3 are 92%, 94% and

95%31. We observe that pin cost distributions do not change significantly with different utilizations, and

that pin cost distributions are not design-specific: ranges of top-100 pin costs of both designs are similar

(AES: 33∼42, M0: 30∼41). Thus, in each technology we select top-100 clips from across all design

implementations, according to the pin cost metric.

(a) (b)
Figure 4.8: Pin cost distributions (per the PEC + PAC + PRC metrics in [148]) of (a) AES and (b) M0

with different utilizations.

Design of Experiments

We evaluate various BEOL design rule configurations, each of which is a combination of via

restrictions and mix of LELE/SADP BEOL layers. (All routing layers are unidirectional in our study.)

Table 4.3 shows the BEOL design rule configurations, denoted as RULE1-RULE11, used in the experiments.
31We use high utilizations to obtain designs that are “difficult-to-route” and sensitive to design rules due to routing

congestion.
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We test three via restriction cases (0 neighbors blocked; 4 neighbors blocked; and 8 neighbors blocked) and

five LELE/SADP layer combinations (M2-M8 LELE layers (No SADP); M2-M8 SADP layers (SADP ≥

M2); M2 LELE + M3-M8 SADP layers (SADP ≥ M3); M2-M3 LELE + M4-M8 SADP layers (SADP ≥

M4); and M2-M4 LELE + M5-M8 SADP (SADP ≥ M5)). Via restrictions are applied to the V12 through

V78 layers.

We select the top 100 routing clips according to pin costs across all designs in Table 4.2, for each

of the three combinations of technology node and cell height, as discussed above. We then run OptRouter

on each of the 100 routing clips to evaluate the impact of each given routing rule configuration. We obtain

the ∆cost of each rule configuration, relative to the routing cost of RULE1 (no constraints).32 In the

present study, we do not use M1 as a routing resource.

Table 4.3: BEOL design rule configurations.
Name SADP rules Blocked via sites

RULE1 No SADP
0 neighbors blocked

RULE2, RULE3, RULE4, RULE5 SADP ≥ {M2, M3, M4, M5}
RULE6 No SADP

4 neighbors blocked
RULE7, RULE8 SADP ≥ {M2, M3}

RULE9 No SADP
8 neighbors blocked

RULE10, RULE11 SADP ≥ {M2, M3}

We have evaluated all of RULE1 to RULE11 for the N28-12T and N28-8T technologies. However,

we do not test RULE2, RULE7, and RULE9 to RULE11 for N7-9T since the smaller pin shapes in the

7nm standard cells do not permit the diagonal (adjacency in) via placement which is required for these

rules. Figures 4.9(a), (b) and (c) show pin shapes in a NAND2X1 cell in N28-12T, N28-8T and N7-9T,

respectively. In Figure 4.9(c), the input pin shapes have only two access points and the two pins are close to

each other. With eight via sites blocked, it is impossible to connect to the two input pins without violations.
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Figure 4.9: Pin shapes in NAND2X1: (a) N28-12T, (b) N28-8T and (c) scaled N7-9T.

Figure 4.10: ∆cost with different RULE* in (a) N28-12T, (b) N28-8T and (c) N7-9T.

Experimental Results

Figures 4.10(a), (b) and (c) respectively show sorted ∆cost per clip of each RULE, in N28-

12T, N28-8T and N7-9T cell-based designs. The ∆ is relative to costs with RULE1 (i.e., the minimum

achievable routing cost with eight unidirectional LELE layers and no via restrictions). For unroutable clips,

we arbitrarily set ∆cost=500 for convenience of plot generation.

In N28-12T (Figure 4.10(a)), we observe that SADP rules for upper metal layers above M3 do not
32Our separate studies support the claimed optimality of OptRouter. We have compared the results of OptRouter and those of

the commercial routing tool, and have found that OptRouter always achieves non-positive ∆cost with respect to the commercial
tool’s solution. Indeed, the average ∆cost of -10∼-15, relative to an average routing cost of ∼380, suggests the potential for
using OptRouter for detailed routing improvement.
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significantly affect routing costs. Two kinds of via restrictions (4 or 8 neighbors blocked) show similar

routing costs, suggesting that the orthogonal via restriction (4 neighbors blocked) is dominant. When

SADP rules are applied (RULE4, RULE7, RULE2), routing costs vary across routing clips. By comparing

the “crossing” traces for RULE2 and RULE6, we see that routing costs are higher with SADP layers than

with via restriction rules, but that in terms of absolute feasibility, the via restriction appears to result in

fewer feasible routings.

With N28-8T (Figure 4.10(b)), in contrast to the N28-12T case, there is higher sensitivity of ∆cost

to the number of SADP layers: we see a clear increasing cost trend across RULE2 through RULE5. With

respect to via restriction, for the 8 LELE layer (no SADP) cases, having 4 and 8 neighbors blocked yields

different pin cost distributions (RULE6 versus RULE9), i.e., the orthogonal via restriction is less dominant

in this particular context. However, when via restriction is combined with SADP layers, the two forms of

via restriction again show similar results (RULE7 versus RULE10, RULE8 versus RULE11).

With N7-9T (Figure 4.10(c)), SADP routing rules have less cost impact on layers above M4, as

RULE4, RULE5 and RULE6 show similar ∆cost distributions. When M3 is made into an SADP layer

(RULE3), the vertical line (i.e., the clip index at which sorted ∆cost goes to infinity (infeasible solution))

shifts left significantly. When the 4-neighbors via restriction is added to RULE3 (i.e., in RULE8), the

vertical line shifts again. (RULE3, RULE4, RULE5, RULE6 and RULE8 respectively have 26, 14, 11, 13

and 39 infeasible clips out of 100.)

From the preceding discussions, we may tentatively form two general observations. (1) First, the

via restriction and SADP routing rules show different trends, i.e., effects on the ∆cost profile. Moreover,

the sensitivities of ∆cost to design rules and routing options vary with technology. For example, when

SADP rules are applied to upper metal layers in N28-12T or N7-9T, the routing costs do not change

significantly, which we interpret to mean that SADP rules do not affect routability significantly for these

clips. This is different from what we observe in N28-8T. (2) Second, for design rules that are applied to

upper metal layers (>M3), almost half of routing clips show zero ∆cost. This could imply that the pin cost

metric of [148] cannot, by itself, accurately quantify the difficulty. In other words, there is a gap between

pin accessibility metrics such as [148] and our switchbox-centric evaluation of routability.

Analysis of the number of variables and constraints. The number of directed arcs (|A|), the
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number of vertices (|V |) and the number of nets (|N |) determine the number of variables and constraints in

the ILP. Without via restrictions and SADP rules (no restriction), the number of variables is O(|A| · |N |).

With Constraints (4.1)–(4.4), the number of constraints is O((|V | + 3 · |A|) · |N |). Regarding via

restriction, when α neighbor sites are blocked, the number of variable is the same as the basic case (no

restriction), and the number of constraints is O(α · |V | + (|V | + 3 · |A|) · |N |). With the SADP routing

rules, the number of variables is O((10 · |V | + |A|) · |N |) because of the additional binary indicator (p);

the number of constraints is O((34 · |V | + 3 · |A|) · |N | + 10 · |V |). Regarding via shapes, when a β

size of via shape is considered, the number of variables is O((β · |V | + |A|) · |N |) due to the creation of

additional via edges, and the number of constraints is O(β2 · |V | · |N | + (β · |V | + 3 · |A|) · |N |).

4.1.4 Conclusion

In this work, we have studied impacts of patterning technology choices and design rules on

physical implementation metrics, with respect to cost-optimal design rule-correct detailed routing. We

describe OptRouter, an ILP-based optimal detailed router that correctly handles multi-pin nets and various

sub-20nm routing challenges including via restrictions, via shapes, and SADP patterning rules. OptRouter

enables design rule evaluation using “difficult” routing clips (switchboxes) selected according to a pin

cost metric. We study ∆cost distributions for different design rules, relative to a RULE1 where all layers

are LELE and there are no via restrictions. From the results, we observe that the sensitivities of ∆cost to

design rules and routing options vary with technology. Also, we observe that there is a gap between pin

accessibility metrics such as [148] and our switchbox-centric evaluation of routability.

Future work includes speedup of OptRouter to gain insights into physical implementation impacts

at larger granularity (switchbox size). Currently, OptRouter average runtime for a 7 track × 10 track

switchbox (1.0 × 1.0µm2 layout area in 28nm) is 1047 seconds (single-threaded) with SADP and via

restriction rules. Without such rules (as in [78]), average runtime is 842 seconds.33 As noted above, our

results give insight into the degree of suboptimality in current routing tools, and open up the possibility of

(massively distributed) local improvement of detailed routing solutions. Also, for better quantification of
33OptRouter runtime for a 10 track × 10 track switchbox, with (resp. without) SADP and via restriction rules, is

1340 (resp. 925) seconds.
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“difficult-to-route” clips, development of a metric beyond [148] to estimate routability in sub-20nm nodes

will be an important aspect of our future work.

4.2 Performance- and Energy-Aware Optimization of BEOL Interconnect

Stack Geometry in Advanced Technology Nodes

In advanced technology nodes, power and performance requirements are increasingly stringent

even as classical Moore’s-Law scaling has slowed down. BEOL interconnect stack geometry has become

a key lever for design enablement. Reasons for this include: (i) the resistance of Cu interconnect has

increased dramatically in sub-100nm nodes due to grain boundary and trench liner effects [79]; and (ii)

the scaling of effective dielectric constant has slowed in recent years, resulting in severely increased

interconnect capacitance [182] and diminished performance benefits at new nodes. The resulting rapid

increase of interconnect RC leads to not only performance loss from interconnect delay increase, but circuit

power and area degradation as well. In this work, we study the potential value of BEOL interconnect

stack geometry optimizations, by exploring wire aspect ratio (AR) and wire line-space duty cycle (DC).

Our broad objective is to assess whether new manufacturing-aware design (MAD) [54] and design-aware

manufacturing (DAM) methodologies can contribute “equivalent scaling” in the N7/N5 nodes and beyond.

Industry Implementations

For interconnect geometry optimization, wire height/width aspect ratio (AR) and wire width/pitch

duty cycle (DC) are the two obvious levers for a given metal pitch value and BEOL process (see Figure 4.11).

In the most recent technology nodes, IC companies have deviated from “classic” 2:1 AR and 50% DC

for each metal layer, for reasons of performance, energy, reliability and manufacturability. Narasimha et

al. [118] achieve 20% reduction in RC delay by optimizing liner resistivity and metal line aspect ratio of

1× layers in IBM’s high-performance 45nm SOI technology node. Jan et al. [76] describe two different

interconnect geometries that meet different product types, power and performance goals in Intel’s 22nm

node. Figure 4.12 depicts the BEOL stacks for high-performance CPU and high-density SoC in Intel’s

22nm node [76]. For high-performance CPU, thicker and wider wires with large AR and DC are observed.
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By contrast, flat wires with moderate DC are used for high-density SoC. Zhu et al. [167] have patented

a local optimization to improve SoC performance using two BEOL stacks. The first stack is used for

non-critical blocks while the second stack, with larger line width and via width, is used for critical blocks.

Figure 4.11: Illustration of height/width aspect ratio (AR) and width/pitch duty cycle (DC).

Figure 4.12: Interconnect architecture comparison of 22nm CPU and SoC [76].

Current Approaches and Limitations

Even as sophisticated IC companies have adopted various choices of AR and DC for different

design targets in each technology node, to our knowledge it is not obvious how to optimize BEOL

dimensions, and there is no general methodology to identify an “optimal” BEOL stack option for a given
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design. Two levels of optimization exist in previous works: (i) device level, and (ii) block level. For (i), the

Elmore delay model [151] provides fast modeling of RC networks. Elfadel et al. [40] describe AQUAIA,

which enables fast modeling and simulation of delay, slew and crosstalk. Faruk et al. [41] utilize AQUAIA

for variability modeling with different line widths, heights, pitches and dielectric constants. Bakoglu et

al. [12], Ismail et al. [74] and Pamanuwa et al. [123] develop delay models considering repeater insertion,

inductance and coupling capacitance. These techniques enable fast modeling of delay and energy for given

driver, load and interconnect structures. Thus, for instance, “optimal” single-stage (AR,DC) with fixed

driver and load can be determined by sweeping (AR,DC) combinations. For (ii), Anand et al. [9][8] develop

a framework to optimize a metal stack in a more global sense. The authors conclude with a suggestion

of low AR and DC. Takahashi et al. [149] propose a methodology for determining overall interconnect

strategy, including repeater insertion, as well as adoption of new metal and dielectric materials. Other

works including [168] optimize DC only, for long interconnects. Recently, [140] performs block-level

validations of BEOL optimization based on results from single-stage simulation for advanced nodes. The

work of [30] suggests that different optimal (AR,DC) combinations may apply when considering driver

and load.

Our Approach

In this work, we study optimization of BEOL interconnect stack geometry through exploration of

wire aspect ratio (AR) and wire width/pitch duty cycle (DC) impacts in sub-10nm nodes. We perform

SPICE-based analyses of timing path delays to find delay- or power-optimal (AR,DC) combinations, and

also perform block-level studies with placed and routed designs. Based on our experimental results, we

provide various insights on BEOL stack geometry: (i) optimal (AR,DC) for a given wire pitch with respect

to power and delay; (ii) sensitivities of optimal (AR,DC) to circuit parameters (e.g., driver strength, input

slew, output load, wirelength); (iii) block-level optimal (AR,DC) with multiple interconnect layers; and

(iv) potential impacts of future design-aware manufacturing (DAM) and/or manufacturing-aware design

(MAD) methodologies [54] that co-optimize product designs and BEOL interconnect stacks.

The contributions of this work are summarized as follows.

• We explore various wire dimensions using SPICE simulation and determine “optimal” wire dimen-
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sions (AR,DC) for a given metal pitch with respect to power and performance.

• We study the sensitivities of (AR,DC) optimization to several parameters that determine circuit

performance and power (e.g., driver strength, input slew, output load, wirelength).

• We show that performance and power results from a standard place-and-route (P&R) flow (including

post-route parasitic RC extraction (PEX) and static timing analysis (STA)) are consistent with our

SPICE simulation-based results.

• We investigate the potential impacts of future design-aware manufacturing (DAM) and manufacturing-

aware design (MAD) methodologies by performing P&R with real block-level designs.

4.2.1 Related Work

In this section, we review two important related works on BEOL interconnect optimization for

sub-14nm nodes.

Shah [140] analyzes the impact of local layer interconnect dimensions on the performance of

single-stage, single-size inverter circuits for various technology nodes, and identifies optimal AR and DC

values with respect to slew-bounded delay and slew-bounded energy-delay product (EDP). Based on SPICE

simulation and field-solver analyses for single gate-interconnect stages, it is shown that the combination of

low AR and high DC can achieve a better overall performance for advanced nodes. The author provides

validations using predictive technology models, and furthermore studies multi-stage impact using a physical

design flow for sample benchmark designs and a random path model. While [140] considers effects seen

in advanced process technologies, such as new barrier and dielectric materials and the impact of process

variations based on the ITRS roadmap [182], several limitations are noted. First, predictive technology

models and scaled libraries for advanced nodes are based on generic planar-bulk 32/28nm libraries,

with mismatched scaling of parasitics versus the dimensions of devices and interconnects; this may not

accurately match current and impending 7nm/5nm FinFET nodes. Second, optimal wire dimensions are

determined only for local metal layers, whereas long interconnects on higher layers may play a more

important role in BEOL interconnect optimization. Third, the design-level analysis of [140] only compares

power and timing performance implications of the suggested optimal AR and DC values to those of ITRS
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predicted values. Tradeoffs of AR and DC at the design level are not contemplated in [140], as the work

focuses only on single-stage analysis for fixed-size inverters.

Ciofi et al. [30] investigate the impact of wire geometry on the resistance, capacitance, and RC

delay of Cu/low-k damascene interconnects for fixed line-to-line pitch for the 7nm logic technology node.

The resistance is computed by applying a semiempirical resistivity model and the capacitance is simulated

by means of a 2D field solver. The authors show that RC delay can be significantly reduced by trading

capacitance for resistance with wider and thicker wires. They also show that a given RC delay can be

achieved with several geometries, which provides a useful degree of freedom for system-level optimization.

Next, the authors suggest that the optimal point for circuit performance in terms of power and delay may

differ from the RC delay and give delay and power contours for different AR and DC combinations for

×1 and ×4 drivers with a wirelength of 300 contacted poly pitches (CPPs). However, this work does not

suggest any method to incorporate the existing findings to block-level designs, which include different

types of cells, and semi-global/global interconnect layers.

4.2.2 Path-Based Simulation

We now describe our methodology to evaluate power and delay impacts of various BEOL inter-

connect stack geometries, based on path-based SPICE-level simulations. Based on SPICE-level simulation,

we study the sensitivities of delay and power to driver strength, wirelength, output load and input slew. We

further show that the P&R flow’s analysis results (i.e., including PEX and STA) are well-correlated with

SPICE-level simulation results.

Single-Stage SPICE Simulation

For SPICE-level simulation, we evaluate the power and delay impacts of various wire dimensions

using single-stage circuits. We first extract RC values per unit length (µm) with different AR and DC

values for three metal layer types34 and use these values to construct single-stage circuits with various

configurations (i.e., sizes of buffers, wirelength, output load and input slew).
34We consider 1×, 1.5× and 2.5× layers (i.e., pitch = 32, 48 and 80nm).
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(a) (b)

Figure 4.13: Contour maps of (a) resistance and (b) capacitance per unit length (µm) for metal pitch
32nm.

RC extraction for various wire dimensions. We perform parasitic RC extraction using Cadence

QRC [175] with QRC techfiles and LEF files [186] to obtain per-unit length (µm) R and C values for

various wire dimensions. To model different wire thicknesses, we generate multiple QRC techfiles with

ICT [175] files that are modified with various thickness values for each metal layer, using Cadence QRC

Techgen [175]. To sweep metal width values, we modify the “WIDTH” and “SPACING” fields in LEF

files.35 To obtain wire RC with fine-grained width and thickness values, we perform linear interpolation.

Figures 4.13(a) and (b) show the contour maps of per-unit length (µm) r̄ and c̄ for metal pitch 32nm36,

respectively. Both r̄ and c̄ increase with larger width and thickness values, as expected. Our observations

are consistent with those reported in [30].

Circuit structure for SPICE simulation. Figure 4.14 shows the circuit structure that we use for

SPICE simulation. With the extracted per-unit length (µm) values r̄ and c̄, we compute wire resistance

Rwire and capacitance Cwire for a given wirelength. We then construct an RC circuit using the Π3 model

for wire segments.

Sensitivity of power and delay to input configurations. Using SPICE simulation with the circuit

structure described above, we study the sensitivities of performance and power to several parameters with
35The default ICT and LEF files that we use are provided by our collaborators at a leading technology consortium. In our study,

we do not investigate patterning or manufacturing issues that may pertain to different (AR,DC) combinations.
36As in [30], we focus on 1× metal layers in N7/N5 nodes.

158



Figure 4.14: Circuit structure for SPICE simulation.

1× metal layer (pitch = 32nm). We vary driver strength, wirelength, output load and input slew, as follows.

The values in bold font are defaults.

• driver strength = {X1, X4, X8, X16}

• wirelength = {5µm, 10µm, 15µm, 20µm}

• output load = {2fF , 3fF , 5fF , 10fF}

• input slew = {50ps, 100ps}

Figures 4.15(a), (b), (c) and (d) show the power and delay contour maps for various driver sizes,

i.e., BUF X1, BUF X2, BUF X8 and BUF X16, respectively. We observe that (i) with BUF X1, smaller

width and thickness values are always better for both power and delay (no tradeoff between power and

delay is observed), and (ii) delay-optimal wire dimension changes according to the driver strength. The

reason for (i) is that the effective resistance of the BUF X1 is relatively larger than the resistance of the

wire, which results in a larger impact of wire capacitance (compared to that of wire resistance).

Figures 4.16(a), (b), (c) and (d) show power and delay contour maps with different wirelength

values, i.e., 5µm, 10µm, 15µm and 20µm, respectively. The delay contours move toward the right and

upward as the wirelength increases, as expected.

Figures 4.17(a), (b), (c) and (d) show power and delay contour maps with output load values 2fF ,

3fF , 5fF and 10fF , respectively. We observe that larger width values are preferred as the load cap

increases. This might be because as the load capacitance increases, the stage delay dependence on wire

capacitance lessens, and the relative sensitivity to wire resistance increases.
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Figure 4.15: Sensitivity of power and delay to driver strength: (a) BUF X1, (b) BUF X2, (c) BUF X8 and
(d) BUF X16.
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Figure 4.16: Sensitivity of power and delay to wirelength: (a) 5µm, (b) 10µm, (c) 15µm and (d) 20µm.

161



1610

1640

1670

1670

1700

1700

1720

1720

1750

1750

1780

1780

1810

1810

1840

1840

1870

1870

1900

1930
1960

55.6

55.6

55
.7

55.7

55.7 55.8

55
.8

55.8

55.8

55.9

55.9

55.9

55
.956

56

56

56

56.1

56.1

56
.1

56.256.356.4

14 16 18 20 22 24
width (nm)

24

26

28

30

32

34

36

th
ic

kn
es

s 
(n

m
)

Power (nW)
Delay (ps)

(a)

1850

1880

1910

1910

1940

1940

1970

1970

2000

2000

2030

2030

2060

2060

2090

2090

2120

2120
2150

2170
220057

.3

57.3

57.3

57
.4

57.4

57.4

57
.5

57.5

57.5

57.5

57.7

57.7

57.8

57.8

58

58.158.358.4

14 16 18 20 22 24
width (nm)

24

26

28

30

32

34

36

th
ic

kn
es

s 
(n

m
)

Power (nW)
Delay (ps)

(b)

2340

2370

2400

2400

2430

2430

2460

2460

2490

2490

2520

2520

2550

2550

2580

2580

2610

2610
2640

2660
2690

60
.2

60.2

60.2

60.5

60.5

60.5

60.8

60.8

61

61

61.3

61.3
61.661.962.162.462.7

14 16 18 20 22 24
width (nm)

24

26

28

30

32

34

36

th
ic

kn
es

s 
(n

m
)

Power (nW)
Delay (ps)

(c)

3560

3590

3620

3620

3650

3650

3680

3680

3710

3710

3740

3740

3770

3770

3800

3800

3830

3830

3860

3890
3920

67.3

67.3

67.9

67.9

68.5

68.5

69.1

69.1

69.7

69.7

70.3

70.971.572.172.874

14 16 18 20 22 24
width (nm)

24

26

28

30

32

34

36

th
ic

kn
es

s 
(n

m
)

Power (nW)
Delay (ps)

(d)

Figure 4.17: Sensitivity of power and delay to output load: (a) 2fF , (b) 3fF , (c) 5fF and (d) 10fF .
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Figure 4.18: Sensitivity of power and delay to input slew: (a) 50ps and (b) 100ps.

Figures 4.18(a) and (b) give power and delay contours showing the sensitivity to input slew.

Although the absolute delay and power values are different, the relative delay and power values do not

change significantly, suggesting that input slew is not a critical factor in determining power- and/or

delay-optimal wire dimensions.

Validation on Single-Stage Paths

We have confirmed consistency between our SPICE-based results and the block-level analysis

flow within a commercial P&R tool [174]. As shown in Figure 4.19, for each type of layer, we generate

eight bits37 of signal wires, and compare (i) the stage delay of the middle signal as reported by the P&R

tool’s static timing analysis (STA) capability to (ii) the delay reported from SPICE simulation. To avoid

effects of via parasitics, the drivers are located at each wire input port with modified driver output pins on

the metal layer of the wire. For each type of layer, we sweep DC (i.e., 0.4, 0.45, 0.5, 0.55, 0.6, 0.65 and

0.7) and AR (i.e., 1.5, 1.75, 2.0). We use three wirelength values (i.e., 100µm, 200µm and 300µm) and

three output load values (i.e., 5fF , 10fF and 15fF ). Figure 4.20 plots the delays reported by the P&R

tool and SPICE simulation, suggesting strong correlation of STA in P&R with SPICE simulation.
37Our background study indicates that for each signal wire, more than one neighboring signal wire contributes to its capacitance.

Out of eight parallel wires, we consider the fourth and fifth to be “middle” wires.
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Figure 4.19: The artificial testcase with eight bits of single-stage paths.

Figure 4.20: Correlation between timing reports from P&R timing analysis and SPICE simulation.

4.2.3 Block-Level Validation

For block-level validation on real designs, we enable a commercial P&R tool flow with the

following steps. (i) We first group cells by their driver strength, and place-and-route using Cadence

Innovus [174] within each group. From SPICE-based simulation studies, driver strength is the key factor in

determining optimal wire dimensions. Thus, by limiting the range of driver strength of cells, we can find

better correlation to SPICE-based results. In our implementation, we partition the cells into two groups,

with driver strengths of×1 and×4, respectively. (ii) To avoid the tool’s noise, we use one fixed post-routed

layout for a design with default wire dimensions (i.e., AR38 = 2.0, DC = 0.5) for all metal layers. Then

we extract parasitics by using different BEOL stack by varying (AR,DC) combinations, and report design
38For consistency over all metal widths, AR is henceforth defined as metal thickness divided by metal half-pitch.
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metrics (timing and power). For DC, we sweep from 0.5 to 0.7 with 1nm step in wire width for 1× and

1.5× layers, and with 2nm step for the 2.5× layer. For AR, we use 1.50, 1.75, 2.00 and 2.25 for selection.

In our experiment, we run our extraction flow for all (AR,DC) combinations for each layer type, while

fixing the other layer types with the default configuration.

Figures 4.21 and 4.22 show the contour maps of delay (power) from both SPICE simulation and

place-and-route runs. For SPICE simulation, we assume a wirelength of 10µm and FO3 capacitance

load.39 For block-level validation, we use a low-density parity-check (LDPC) decoder block [191] as our

reference design. We report the contour maps of delay and power, with varying metal width and thickness.

From Figures 4.21(a) – (c), we can see that for the ×1 cell group, there is no tradeoff between power and

delay. Therefore, optimal power and delay are always achieved with smaller width and thickness, which

is verified in Figures 4.21(d) – (f). From Figures 4.21(a) – (c), we see that there is a tradeoff for the ×4

cell group. For better delay, medium (resp. small) DC is preferred with higher AR for 1× (resp. 1.5×)

metal layers, while smaller (AR,DC) is preferred for 2.5× metal layers, which is also verified from our

block-level design.

For both cell groups, smaller (AR,DC) is always preferable in terms of power, due to smaller

capacitance; this can be seen in Figures 4.23(d) – (f). To create a simplified real-world configuration for

high-performance blocks, we rerun the P&R flow enabling both ×1 and ×4 cells with the tightest clock

period achievable40 and we plot the contour maps in Figure 4.23. We also show the wirelength distribution

per layer type, labeled by the cell group of the driver. As shown in Table 4.4, since ×4 cells drive more

than double the wirelength on every layer, the contour plot is more similar to that of ×4’s.

Overall, if the designs with×1 cells can be seen as low frequency and low power, and designs with

×4 cells can be seen as high frequency and high performance, our observations show that those designs

prefer distinct BEOL stacks, as shown in Figure 4.12. For a simplified real-world high-performance

configuration with cells of multiple driver strengths, the above preference of BEOL stack from high-drive

cells still holds as larger cells drive at least 2× wirelength on each metal layer, suggesting that optimization

of (AR,DC) towards high-drive cells may be beneficial for every layer.
39In our background study, we place-and-route seven designs from the OpenCores website [191], observing average net length

of 2µm to 8µm, and average fanout of approximately three for each design. A similar configuration is used in [30].
40A timing target is considered to have been achieved if setup worst negative slack (WNS) > -50ps.
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Table 4.4: Wirelength distribution per layer type (normalized) grouped by driver cells.
Layer 1× 1.5× 2.5×
Driver ×1 ×4 ×1 ×4 ×1 ×4

Design
AES 0.15 0.41 0.06 0.31 0.02 0.05

LDPC 0.11 0.21 0.03 0.28 0.02 0.36
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Figure 4.21: Block-level validation to single-stage SPICE simulation: (a) – (c) contour maps of power and
delay (BUF X1) for 1×, 1.5× and 2.5× metal layers, respectively, assuming wirelength of 10µm and load
of 2fF ; (d) – (f) contour maps of TNS (total negative slack) when varying (AR,DC) for 1×, 1.5× and

2.5× layers, respectively.

4.2.4 Experimental Setup and Results

In this section, we explore the potential future benefits of design-aware manufacturing (DAM)

and manufacturing-aware design (MAD) [54] methodologies. Design-aware manufacturing refers to the

optimization of manufacturing to maximize the quality of a given product design. Here, DAM means

that (AR,DC) is tuned according to the characteristics of each design. For example, in a DAM flow, we

may propose a specific BEOL stack for a given P&R solution. Manufacturing-aware design refers to the

optimization during physical implementation, where a downstream, post-P&R optimization of (AR,DC) is

assumed in the P&R flow, and thus is applied in both P&R and manufacturing.

166



1850

1880

1910

1910

1940

1940

1970

1970

2000

2000

2030

2030

2060

2060

2090

2090

2120

2120
2150

2170
220057

.3

57.3

57.3

57
.4

57.4

57.4

57
.5

57.5

57.5

57.5

57.7

57.7

57.8

57.8

58

58.158.358.4

14 16 18 20 22 24
width (nm)

24

26

28

30

32

34

36

th
ic

kn
es

s 
(n

m
)

Power (nW)
Delay (ps)

(a)

1860

1890

1920

1920

1960

1960

1990

1990

2020

2020

2060

2060
2090

2090

2120

2120

2160

2160

2190

2190
2220

2260
2290

55
.3

55.3

55.4

55
.4

55.5
55

.5

55.5

55.6
55.6

55.7
55.7

55.8
55.8

55.9
55.9

56
56

56

56

56.1

56.1
56.2

56.2
56.3

56.3
56.4

56.5

20 25 30 35
width (nm)

40

45

50

th
ic

kn
es

s 
(n

m
)

Power (nW)
Delay (ps)

(b)
1820

1860

1860

1890

1890
1930

1930

1960

1960

2000

2000

2030

2030

2060

2060

2100

2100

2130

2130

2170

2170
2200

2240
227054.1

54.1

54.3

54.3
54.4

54.4
54.6

54.6

54.7

54.7

54.8

54.8
55

55

55.1

55.1

55.3

55.3

55.4

55.4

55.6

55.7
55.9

56

35 40 45 50 55 60
width (nm)

60

65

70

75

80

85

90

th
ic

kn
es

s 
(n

m
)

Power (nW)
Delay (ps)

(c)

-22.9
-17.5

-12.1

-6.7

-6.7

14 16 18 20 22

width (nm)

25

30

35

th
ic

kn
es

s 
(n

m
)

(d)

-7.55
-6.61

-6.61

-5.66

-5.66

-4.71

-4.71

-4.71
-3.77

-3.77

20 25 30

width (nm)

40

45

50

th
ic

kn
es

s 
(n

m
)

(e)

-14.9
-13.3
-11.7

-10

-8.41

-6.78

-5.16

-5.16

-3.53

35 40 45 50 55

width (nm)

60

70

80

90

th
ic

kn
es

s 
(n

m
)

(f)

Figure 4.22: Block-level validation to single-stage SPICE simulation: (a) – (c) contour maps of power and
delay (BUF X4) for 1×, 1.5× and 2.5× metal layers, respectively, assuming wirelength of 10µm and load
of 3fF ; (d) – (f) contour maps of TNS (total negative slack) when varying (AR,DC) for 1×, 1.5× and

2.5× layers, respectively.

Experimental Setup

We investigate the design freedoms of DAM / MAD, and their impacts, for a total of 108 BEOL

stacks covering wide (AR,DC) ranges as follows. (i) We perform P&R using the 108 BEOL stacks. By

covering a variety of BEOL stacks, we effectively explore MAD. (ii) For each implementation with a

different BEOL stack, we perform PEX and STA using all BEOL stacks of the DAM study. This step

shows DAM for each stack.

After P&R and PEX, we report the total negative slack (TNS) and the total power from STA for

108×108 data points (the total number of pairs of a MAD stack and a DAM stack). In the following

discussion, we use the naming convention (P{stack number}, R{stack number}) to represent the pair of a

MAD stack and a DAM stack.

In our BEOL stack, we have two 1× layers, two 1.5× layers, and four 2.5× layers. For each type

of layer, we choose from three DC combinations (i.e., 0.5, 0.6, 0.7). For all the layers, we apply a uniform
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Figure 4.23: Contour maps of (a) – (c) TNS (total negative slack) and (d) – (f) power when varying
(AR,DC) for 1×, 1.5× and 2.5× layers, respectively.

AR from four combinations (i.e., 1.5, 1.75, 2.0, 2.25) to reduce the number of combinations. Thus, we

have a total of 3× 3× 3× 4 = 108 BEOL stacks. Table 4.5 summarizes a noteworthy subset of the BEOL

stack configurations.41 All experiments are performed at the typical-typical (TT) process corner, for the

LDPC testcase with clock period of 0.8ns, and with availability of both ×1 and ×4 cells.

Table 4.5: A noteworthy subset of BEOL stack configurations.
Stack 1× 1.5× 2.5×
index AR DC AR DC AR DC

1 1.50 0.5 1.50 0.5 1.50 0.5
4 2.25 0.5 2.25 0.5 2.25 0.5
18 1.75 0.5 1.75 0.6 1.75 0.6
25 1.50 0.5 1.50 0.7 1.50 0.5
55 2.00 0.6 2.00 0.6 2.00 0.6

108 2.25 0.7 2.25 0.7 2.25 0.7

41Index = 36 · i+ 12 · j + 4 · k + l, where i, j and k are the indices of DC for 1×, 1.5× and 2.5× layers, respectively, and l
is the index for AR. See the examples in Table 4.5.
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Experimental Results

Figure 4.24 shows the results of the DAM and MAD studies. In the figure, the x-axis gives 108

different BEOL stacks42 for P&R, and the y-axis gives both TNS and total power. For each P&R stack,

we give the TNS after PEX and STA with the default BEOL stack in red dots and the respective power is

represented in black bars. Red columns show TNS after PEX and STA with all 108 stacks, while the orange

columns show the power, also for all 108 stacks. We sort the P&R stack indices along the x-axis, according

to TNS based on the default BEOL stack. In this way, the impact of DAM is presented horizontally (by

comparing between red dots and black bars), and the impact of MAD is presented vertically (shown in red

and orange bars), for each P&R stack.

The red dots indicate that different physical implementations may result in up to 40% difference in

TNS. For example, the TNS difference between the leftmost BEOL stack (P55,R55) and the rightmost

BEOL stack (P25,R25) in red dots is 2.59ns (40% of TNS with (P55,R55)). This means that TNS can

be improved by up to 40% by exploiting the DAM. Regarding the MAD, we observe that for the P&R

implementation with the default BEOL stack P108, the TNS can vary from -9.15ns to -5.28ns. This means

that we can improve the TNS by up to 49%. By combining the DAM and MAD exploration, the maximum

improvement of the TNS is from -9.15ns ((P108,R1)) to -3.66ns ((P18,R4)), which is a 60% improvement,

albeit dependent on the given timing specification.

The black bars in Figure 4.24 indicate that different physical implementations may result in up

to 7% difference in power. Also, we can observe that the red dots and black bars stay steady for each

red and orange column, suggesting that given a routed design, a particular BEOL stack may be preferred

regardless of the BEOL stack used for P&R. Even though we sort the P&R stack by TNS, we cannot find a

monotonic trend for power, suggesting a weak correlation of timing and power for each design.

4.2.5 Conclusion

In this work, we have investigated the potential impact of design-aware manufacturing (DAM) and

manufacturing-aware design (MAD) methodologies to optimize BEOL dimensions in sub-10nm nodes.
42Due to the limited space, we do not show the names of all the 108 BEOL stack options in the chart. Wire dimension

information of noteworthy BEOL stack options is shown in Table 4.5.
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Figure 4.24: Study of DAM and MAD.

We study BEOL interconnect stack geometry by exploring the wire aspect ratio (AR) and duty cycle (DC).

We perform SPICE-based analyses of timing path delays and correlate these with analyses in the P&R tool,

using a single-stage artificial netlist construction. We also perform block-level studies with placed and

routed designs. Based on our studies, we find the optimal (AR,DC) for a given wire pitch with respect

to power and delay; we also show the sensitivities of BEOL stack geometry to circuit parameters and

validate our SPICE analyses with real block-level designs. We further perform studies on design-aware

manufacturing and manufacturing-aware design to explore the design freedoms and potential benefits of

DAM and MAD. Large differences in design metrics exist across DAM and MAD. By proper utilization

of DAM and MAD, we can save up to 60% in TNS and 7% in power for a particular LDPC testcase.

Furthermore, based on our experiments, we conjecture that an optimal MAD and DAM BEOL stack exists

for any given design.

Our future works include (i) the co-optimization of the front-end (i.e., gate sizing / buffer insertion,

etc.) with the back-end (BEOL stack geometry); (ii) study on the impact of airgap layer and airgap-aware
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BEOL stack optimization. More specifically, we hope to study “chicken-and-egg” loop for MAD and

DAM, where P&R is guided by the input BEOL stack option and the netlist changes accordingly, while the

optimal BEOL stack option changes according to the design (netlist) information, such as driver strength,

wirelength and slack distribution. Figure 4.25 shows an example flow for co-optimization of the design

implementation front-end with the manufacturing technology back-end. In this flow, we suggest a big-loop

optimization that considers the interactions between P&R and optimal BEOL stack options (including

airgap layers).

UCSD VLSI CAD Laboratory 5

P&R (physical design)

Extract design information
(e.g., driver strength, wirelength, 

slack distribution)

Predict optimal BEOL stack

optimal 
BEOL stack

• SPICE simulation data
• BEOL stack options 

(with airgap layers)

Figure 4.25: Co-optimization of SoC physical implementation (design process) with BEOL stack
optimization (manufacturing process). BEOL stack options include airgap layers.

4.3 PROBE: A Placement, ROuting, Back-End-of-line Measurement Util-

ity

Particularly in advanced technology nodes, interconnects significantly affect the power, area

and performance of integrated circuits. Requirements of high integration density and performance, as

well as patterning technology, design rules and cost implications, make it imperative to determine good

back-end-of-line (BEOL) stack options for sub-22nm technology nodes. Yet, to our knowledge, there

has been no systematic framework to measure the routing capacity of a BEOL stack for a given router,

or for a combination of router and placement, particularly in a tool-agnostic, intrinsic sense. Moreover,
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measurement of the routing capacity is nontrivial due to the gear ratio of metal pitches, via blockages

and many other factors. A common methodology to measure the routing capacity of a given BEOL

stack will simply perform routing on instances of placed designs (e.g., placement solutions for different

netlists, possibly with different utilization and aspect ratio configurations). However, the routing outcomes

will highly depend on the input netlist, placement solution quality and technology (e.g., standard cell

architecture and track height, BEOL design rules). It has not been previously contemplated in the literature

that design-technology co-optimization might be supportable with a “quasi-universal” routing capacity

rank-ordering of alternative BEOL stacks, where this rank-ordering is – empirically – general across

different netlists and placement solutions.43

In this work, we propose a general framework to measure the routing capacity of a BEOL stack

with a given router. Based on the gradual perturbation of an initial placement of a netlist topology (e.g.,

a 2D mesh), our framework is able to obtain a ranking of alternative BEOL stacks according to routing

capacities, for a given router. Quite interestingly, we further experimentally confirm that the measurement

(i.e., routing capacity ranking of BEOL stacks) based on mesh-like placements is largely consistent with

those based on placements generated by a commercial P&R tool within a standard SP&R flow (see Section

4.3.3 below). Moreover, our results appear, empirically, to be robust across various mesh-like placements

with different characteristics (e.g., types of cells, track height, number of instances, row utilization, pin

alignment and 1D/2D routing).

Our proposed framework enables new insights into important questions regarding BEOL stack

options, such as “In terms of routing capacity, one P100 (100nm pitch) layer is equivalent to how many

P150 layers, for a given router?” and “On which layer(s) is it most valuable to enable bidirectional routing?”

By gradually perturbing mesh-like placements, we also generate placements with different routing “hotspot”

sizes.44 We study the relation between routing hotspot size, placement quality (i.e., indicated by the amount

of perturbation away from the optimal mesh-like placement), and the number of post-route design rule

violations (#DRVs). Last, we present an analytical study based on exponentiation of a Markov transition
43In this work, we use the term “quasi-universal” to refer to rank-orderings of BEOL stacks that are empirically highly

correlated (e.g., correlation coefficient > 0.9) across different designs and/or design enablements (e.g., different netlists, placers
and routers).

44Following common usage in the IC and EDA fields, we use the term “hotspot” to refer to a local window of the layout that is
spatially co-located with routing failure.
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matrix to demonstrate how, with the same placement density and quality, a larger design is more likely to

experience routing failures, an observation which is also supported by our empirical data. Our contributions

are summarized as follows.

• We propose a systematic framework to assess routing capacity of BEOL stack options for a given

router.

• We propose a novel metric, K, that intuitively corresponds to a systematic worsening of placement

quality for a given standard-cell netlist – achieved by iteratively swapping pairs of adjacently-placed

cell instances – starting from a given initial placement.

• By sweeping K, we determine Kth as the minimum K that results in routing failure.45 We apply

Kth in our routing capacity assessment.

• We empirically demonstrate a quasi-universal rank-ordering of Kth for BEOL stack routing capacity

across placements generated by a commercial P&R tool and simple mesh-like placements.

• We show that the proposed framework can be used to evaluate routers.

• We study the size and placement quality of a routing hotspot and their correlation with #DRVs after

routing.

• We perform both an analytical study and an experimental study to demonstrate how, with the same

placement density and quality, a larger design is more vulnerable to routing failures.

• We suggest the possibility of a technology-dependent sweetspot of block size (trading off overheads

of design decomposition against overheads of routing difficulty) that provides the best QoR in SoC

implementation.

• A utility that implements the above framework for arbitrary enablement (LEF, .lib) is available at

[201].
45In this work, if a routed design has #DRVs > 150, we consider it as a design with routing failure.
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The mesh-like placements in our framework cannot perfectly represent real-life placements which

comprehend timing, signal integrity, power integrity and other conflicting objectives and constraints that

circuit designers face. However, rather than generating testcases that mimic real designs, our approach

enables systematic generation of benchmarks with gradually increasing routing difficulty. This enables

a principled rank-ordering of the respective routing capacities of different BEOL stacks, which to our

knowledge cannot be straightforwardly achieved using specific real design instances. Our work empirically

shows that dependence on specific design instances may be avoidable, which would help resolve a long-

standing controversy regarding the utility of artificial versus real testcases. In sum, our results suggest that

the mesh-like placements may be usable as proxies of real-life placements, at least to rank-order BEOL

stack options in terms of routability. The routability-oriented rank-ordering can help reduce the number of

configurations that must be considered as product teams address the complex BEOL stack optimization

problem.

4.3.1 Related Work

In this section, we review the previous literature on (i) benchmark construction and (ii) routability

estimation.

Benchmark Studies

Many works have evaluated VLSI optimizations and design enablements using various kinds of

benchmarks. This literature can be divided into two basic categories: (i) artificial benchmark generation,

and (ii) realistic benchmarks.

Artificial benchmarks. To evaluate the performance of VLSI optimizations, a number of artificial

benchmark generation approaches have been proposed in previous literature. These include circ/gen

[71], gnl [145] and the work of [36]. In the interests of realism, circ/gen [71] measures characteristics

(e.g., circuit size, number of IOs, path depth and fanout distribution) of existing circuits and uses these

characteristics as constraints in its synthetic circuit generation. As an extension to graph-based benchmark

generation (which only considers graph-based properties such as Rent parameter [96] and net degree

distribution), gnl [145] considers functional information, in that it uses a specified component library
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and avoids combinational loops. The authors of [36] propose a method for generating random circuits

for routability measurement. The input parameters of their benchmark generation include the size of the

design, the Rent parameter and the number of IOs.

Several methodologies produce instances with known optimal solutions, which enables quantifi-

cation of a heuristic optimization’s suboptimality. For placement optimization, the PEKO benchmark

generator [25] provides a netlist (with user-specified number of placeable modules and net degree dis-

tribution) as well as a constructive placement solution with known minimum wirelength. Attributed to

Boese in [59], PEKU [31] further improves the realism by including non-local nets, while generating

instances with known upper bounds on optimal wirelength. In a similar spirit, there are also gate-sizing-

oriented benchmarks with known optimal solutions. The work of [55] generates benchmark circuits

(called eyecharts) of arbitrary size along with a method to compute their optimal solutions using dynamic

programming. The work of [83] generates more realistic benchmarks (by comprehending path depth and

fanin / fanout distributions) with known optimal solutions for gate sizing problems.

Realistic benchmarks. Artificial benchmarks with known optimal solutions can help quantify

suboptimality of heuristics for NP-hard optimizations. However, their artificial nature has lessened their

impact among practitioners. Certain methodologies quantify suboptimality of heuristics for hard VLSI

optimizations based on transformations of existing realistic benchmarks. Hagen et al. [59] propose a

general measure of heuristic performance based on the notion of scaling suboptimality. The authors

construct scaled VLSI instances from initial VLSI instances (e.g., by replicating a netlist or connecting

together multiple copies of a netlist) and use these to obtain quantified lower bounds on the suboptimality

of VLSI layout heuristics such as placers and partitioners. Kahng and Reda [90] propose zero-change

transformations to quantify the suboptimality of existing placers. Given a netlist and its placement from a

placer, their zero-change transformations alter the given netlist while keeping its half-perimeter wire length

(HPWL) constant, resulting in zero change to achievable HPWL. In [90], the authors show that placers fail

to attain their original HPWL results, with large deviations, on the altered netlists. Their work can provide

suboptimality information with respect to a given arbitrary (real) benchmark.

However, none of these previous benchmarks and benchmark generation methodologies helps

to evaluate technology itself, or the capability of tools in a technology-dependent manner. For example,
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it would be enormously valuable if semiconductor product companies, foundries and equipment makers

could measure the related routing capacities of alternative BEOL stacks for given combinations of, e.g.,

placement and routing tools. In this work, we propose benchmarks and methodologies to measure the

routing capacity of BEOL stacks for a given router.

Routability Studies

Literature on routability estimation can be divided into the categories of: (i) BEOL stack options,

and (ii) estimation of congestion.

BEOL stack options. Only a few works in previous literature study the design enablement (i.e.,

BEOL stack options) in terms of routability. Dong et al. [38] propose an analytical model to estimate the

required number of metal layers for a design, based on assumed wirelength distribution and metal layer

utilization efficiency. However, realistic constraints such as timing and design rules are not considered in

their model. Also, the model simply assumes maximum metal layer utilization at lower layers, and does

not comprehend the router’s behavior. A recent work [24] develops machine learning-based models to

predict whether a placement solution is routable for a given number of metal layers; based on this, an

early-stage estimation of the minimum required number of metal layers can be obtained.

Estimation of congestion. Many works perform early estimation of routability and congestion

of a placement or even a netlist. The works [62][94][109][124] simply use academic global routers (e.g.,

BFG-R [68] or FastRoute 2.0 [125]) to estimate routing congestion. [15] uses pin density and constructs

Steiner trees (where multi-pin nets are split into many two-pin nets) to estimate congestion. Liu et al. [108]

estimate wirelength and routing congestion of a netlist based on net range (i.e., circuit depth spanned by all

terminals of a net) and structural pin density (i.e., the ratio between total number of pins of a net versus the

total pin count in the design). [142] models the routing demand by assuming a rectangular uniform wire

density per net. Yang et al. [163] use Rent exponent to estimate wirelength distribution of a region, based

on which they predict congestion. Taghavi et al. [148] propose a local congestion metric that indicates the

routing difficulty for each cell in the design library. Wei et al. [155] estimate both global and local routing

congestions. Kahng and Xu [93] comprehend blockage effects in their congestion estimation model. The

congestion estimation in [110] comprehends layer directive and scenic constraints to limit the routing layer
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usage and the maximum wirelength of timing-critical nets. Westra et al. [156] study the actual behavior of

a routing engine. Their results show that the number of nets with detour (e.g., nets with many bends) is

negligible. They also observe that the ratio between L-shapes and Z-shapes of two-pin nets is roughly a

constant value. Based on these observations, they propose a fast congestion prediction model. [138] also

assumes no wires are detoured and proposes an analytical model based on probabilities of v-bend paths to

estimate congestion. Based on the global routing information, Zhou et al. [166] propose a learning-based

model to estimate routing congestion after detailed routing. Based on pin density and congestion map from

global routing, Qi et al. [126] apply multivariate adaptive regression splines (MARS) to predict routing

congestion.

4.3.2 Assessment of Design Enablements

In this section, we describe our framework to measure routing capacity of BEOL stack options as

well as inherent capability of routers and, potentially, placers. We summarize the notations used in this

work in Table 4.6. The basic idea of our framework is as follows. We start with (an instance of) a placed

netlist that is straightforward to route, i.e., the routing can be completed by the routing tool with no design

rule violations. We then gradually perturb the placement by randomly swapping the placed locations of

adjacently-placed cell instances (i.e., a neighbor-swap operation) to increase the routing difficulty.46 After

a number of neighbor-swaps, the routing becomes infeasible (i.e., the number of post-route design rule

violations exceeds a predefined threshold). We use the number of neighbor-swaps that leads to routing

failures as an indicator of the routing capacity of the given BEOL stack, as well as of the capability of the

router. For example, we may obtain a ranking of different BEOL stacks in terms of their routing capacities,

based on the corresponding values of this indicator.

Our use of the neighbor-swap operator is intuitively reasonable for placement perturbation, for

at least two reasons. First, as observed by Alpert et al. [7], with high utilizations the placement problem

reduces to the ordering problem since there is not much whitespace in which cells can move. Second, a

neighbor-swap is an intuitive quantum of suboptimality or error in placement; in this light, starting from a
46We use a discrete uniform distribution to randomly select a cell, and then a random neighbor of that cell, for swapping. Thus,

it is possible for one random swap to revert a previous random swap.
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mesh (Rent p = 0.5) that is perfectly placed, and then executing random neighbor-swaps, intuitively allows

us to dial up particular amounts of suboptimality in placement.

The key benefit of our approach is its ability to systematically evolve a placement from routable

to unroutable; this enables evaluation and ranking of BEOL stacks in terms of their routing capacities. It

is more challenging to perform such a ranking with real designs, due to larger instance counts (making

high-volume experimentation more time-consuming), non-uniformity of topology, and non-uniformity of

cell sizes. Further, with real designs, the transition from routable to unroutable is often much more abrupt

than with the mesh-based netlists and initial placements that we use. This being said, Section 4.3.3 below

confirms the robustness of our analyses and conclusions in multiple ways, including with real netlists and

non-uniform (real) cell sizes.

Table 4.6: Description of notations used in our work.
Term Meaning
Dh gate-level netlist (index of netlist ≡ h)
Pk placer (index of placer ≡ k)

Ωh,k placement solution of netlist Dh using placer Pk

U placement utilization
Rj router (index of router ≡ j)
Bi BEOL stack (index of BEOL stack ≡ i)
N square root of the total number of instances in a design
J number of neighbor-swaps

K
number of neighbor-swaps normalized to
the total number of instances N2 (= J/N2)

Kth minimum K value that results in routing failure
Π

Rj
B (Dh, Pk) BEOL ranking in terms of routing capacity on Ωh,k using Rj

ED
sum of edge distances normalized to
the total number of instances N2 (See Section 4.3.4)

CC
crossing count normalized to
the total number of instances N2 (See Section 4.3.4)

EDth minimum ED value that results in routing failure
CCth minimum CC value that results in routing failure

Our Goal

Given a netlist Dh, we place it using the placer Pk. We then apply our proposed methodology

(described below) to measure routing capacities of BEOL stacks {B1, B2, ..., Bi} for a given router
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Figure 4.26: Our overall goal: determine whether it is possible to find a quasi-universal ranking of BEOL
stacks in terms of routing capacity, and potentially a ranking of place-and-route tools as well.

Rj . We denote the ranking of BEOL stacks in terms of routing capacity as Π
Rj
B (Dh, Pk). Our goal is

to determine a quasi-universal ranking of BEOL stacks (in terms of routing capacity) for a given router,

that is, Π
Rj
B (Dh, Pk) = Π

Rj
B (Dh′ , Pk′) ∀h, k, h′, k′. In this work, we measure the routing capacity of 73

BEOL stack options with various Dh, Pk and Rj . Detailed information of the 73 BEOL stack options is

given in Section 4.3.3.

Mesh-like Placement

We first study routing capacity of BEOL stacks based on mesh-like placements. We create a netlist

having a square mesh topology (with Mr rows indexed by p and Mc columns indexed by q) using a given

2-input or 3-input cell. In the netlist, we connect the output pin of the gate instance with index (p, q) to

input pins of the gate instances with indices (p+ 1, q), (p, q + 1) and (p+ 1, q + 1).47 We then place the

netlist (according to its mesh topology) uniformly in a Wdie ×Hdie region, where Hdie = Mr ·Hgate and

47For a netlist composed of 2-input cells, we only connect the output of (p, q) to the inputs of (p+ 1, q) and (p, q + 1).
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Wdie = Mc ·Wgate/U . Here, Wgate and Hgate are respectively the width and height of the given cell, and

U is the predefined placement (row) utilization. We note that all gate instances have the same size.

Two‐input cells Three‐input cells

output
input

input output

net

Swapped cells Flyline changed by cell swaps

Routing difficulty ↑
(a)

(b)

(p,q) (p,q+1)

(p+1,q)

(p,q) (p,q+1)

(p+1,q) (p+1,q+1)

Figure 4.27: (a) Illustration of mesh-like placement and perturbations by two neighbor-swap moves. (b)
Connections for 2-pin cells and 3-pin cells.

The initial mesh-like placement, where all gate instances are connected only to their physically

adjacent gate instances, is easy to route. We gradually increase the routing difficulty by iteratively swapping

adjacently-placed gate instances. In each move, we randomly select a gate instance and then swap it with

one of its (up to four) adjacently-placed gate instances (up, down, left, right) to swap. Figure 4.27(a)

shows an example with two neighbor-swap moves. Such swap moves will cause routing congestion by

progressively worsening the quality (as measured by the sum of embedded edge lengths) of the placement,

and eventually lead to a placement that is infeasible to route. We denote the minimum K (number of

neighbor-swaps normalized to the total instance count) that leads to an unroutable placement as the K

threshold (Kth). The value of Kth is an indicator of the routing capacity of the given BEOL stack in the
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context of a (given) router, where a BEOL stack with larger Kth has higher routing capacity.48 In our

experiments, we perform multiple trials of the iterative swapping process for a given initial placement and

report the average observed Kth as a measure of routing capacity. Since the Kth measurement requires a

number of routing trials, we reduce runtime by first performing a coarse-grained search to narrow down the

search space, and then performing a fine-grained search within the reduced search space.49 It is possible to

perform binary search or other search techniques to further reduce the runtime.

The mesh-like placement can be implemented with various different configurations, such as number

of total instances, standard cell types, row utilizations, pin alignments, etc. To support the robustness of

outcomes and conclusions, we have performed our basic experiment with various mesh-like placements

with different configurations. Details are given in Section 4.3.3.

Cell Width-Regularized Placement

We also measure routing capacity based on placements generated by a commercial P&R tool,

using cell width-regularized netlists. Our primary experiment uses bloated standard cells to help maintain

placement legality as neighbor-swaps are performed.50 Of course, a width-regularized netlist is generally

not produced in the course of a usual SP&R flow. To generate a width-regularized netlist, we modify the

cell LEF [186] such that all gate instances in the netlist have the same size. Here, we simply increase the

width of cells without changing the layouts within the cells. We then use a commercial placer to place

the netlist with bloated cells. Similar to the method for generating mesh-like placements, we iteratively

swap locations of random pairs of adjacently-placed cells until the placement becomes unroutable. Again,
48The difference between K and Kth is that K is an indicator that represents suboptimality of a placement, while Kth is the

minimum K value that results in routing failure. Thus, K can serve as a metric to evaluate the quality of a placement itself in
terms of routability (i.e., K indicates the routing difficulty increase with respect to a mesh-like placement); and Kth can be used
as a metric to evaluate the routing capacity of a BEOL stack option, or the routing capabilities of a router for a given BEOL stack
option and initial placement. This is because Kth shows how much a BEOL stack option (or a router) can sustain (i.e., while still
being able to support successful routing of the design) in terms of suboptimality of the given placement (K).

49In our experiments with 5K-instance designs, the runtime for routing is ∼10 minutes (single-threaded) on average. For most
cases, the runtime for Kth measurement is less than 3 hours with a single core, which is a small cost for crucial technology
insight.

50Here, we use cell bloating to make cell widths uniform (i.e., regularized), thus enabling neighbor-swaps without legalization.
(When instances have different widths, placement legalization is required to ensure a legal placement after a sequence of
neighbor-swaps; hence, the perturbation of the initial placement is not as gradual.) We note that to evaluate routing in terms of pin
accessibility, we can use smaller, but still regularized, cell widths for all instances. Supplementary experiments use the AES and
VGA designs and non-uniform (non-bloated, with original widths from the production library) cells in our framework, where we
keep track of row utilization after every neighbor-swap to help maintain placement legality and to ensure the same density for all
placement rows. Details are given in Section 4.3.3, below.
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we find K leading to an unroutable placement (Kth) and use Kth to indicate the routing capacity of the

BEOL stack. In this flow, cell bloating avoids placement legalization after each neighbor-swap move.

Here the definition of adjacently-placed gate instances within the same row is trivial. However, unlike

the placement of the square mesh topology, gate instances are not necessarily aligned vertically. In our

experiments, for a given gate instance, we define its neighbors in the two (or, one) adjacent rows as

the gate instances with the minimum center-to-center distances in horizontal direction (see Figure 4.28,

left). In Figure 4.28, brown cells that have line segments drawn to each blue cell are considered as the

neighbor cells of that blue cell. As with the experimental flow for mesh-like placements, we perform

multiple runs of the iterative swapping for a given initial placement and report the average Kth in our

experiments. Supplementary studies with two OpenCores [191] designs and non-uniform (non-bloated,

i.e., with original, non-regularized widths) cells (see Figure 4.28, right) are also reported in Section 4.3.3.

Figure 4.28: Illustration of the neighbor cell relation in a placement generated by a commercial P&R
tool, for the cases of one adjacent row and two adjacent rows. Left: cells with uniform (bloated) widths.

Right: cells with non-uniform (non-bloated) widths.

Extension to Evaluations of Placers and Routers

Similar to evaluating the routing capacity of a BEOL stack option based on Kth, we can also

use the metric Kth to evaluate capabilities of placers and routers with respect to routability for a given

BEOL stack option. For example, a placement that results in a higher Kth value for a given BEOL stack

and router is more likely to be routing-friendly. Also, with respect to a given BEOL stack option and a

placement, the router that achieves a higher Kth value is more likely to have better performance in terms
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of routability.

4.3.3 Experimental Setup and Results

In this section, we describe the setup and results of three basic types of experiments.

• Expt1: Measurement of routing capacity of various BEOL stack options for mesh-like placements

and cell width-regularized placements with two commercial routers.

• Expt2: Comparison of different BEOL stack options that have the same routing resources to derive

new understanding of equivalences (e.g., between different-pitch layers) that can guide the choice of

BEOL stack option.

• Expt3: Further verification of the robustness of the rank-ordering of BEOL stack options.

Experimental Setup

Testcases. In our experiments, we use mesh-like placements, and the AES encryption core and

the enhanced VGA core from the OpenCores website [191]. Information about testcases is summarized in

Table 4.7. For AES, the first utilization number is used for cell width-regularized placement; the second is

used for non-bloated-cell-based placement. We use 8-track (8T) standard cells from a 28nm LP foundry

library.51 Mesh-like placements (e.g., AOI-mesh, or a mesh with AOI cells) are implemented as described

in Section 4.3.2. Since routing hotspots occur locally, intuitively we do not need to use very large designs

to measure the routing capacity of a BEOL stack.52 Thus, we use 5K-instance designs. Indeed, we

experimentally confirm below that the number of instances (i.e., design size) does not change the rank-

ordering of BEOL stacks. Also, using small designs help to reduce the runtime. In our experiments, the

runtime for routing on the 5K-instance design is ∼10 minutes (single-threaded) on average. The AES and

VGA designs are synthesized with Synopsys Design Compiler K-2015.06-SP4 [195] and implemented with
51Below, we show that results obtained using 12-track (12T) cells are consistent with those obtained using 8T cells.
52Routing difficulty does increase as design size increases, as quantitatively analyzed in Section 4.3.4 and as empirically

demonstrated in Figure 4.35(d) below. Increased routing difficulty in larger designs reflects a higher probability of (local) routing
hotspots, for a given placement quality. Indeed, the small designs used in our study can be viewed as sampled routing hotspots
within larger design; see Section 4.3.4 below. From our studies, we currently believe that standard-cell netlist complexity of
∼15K instances (e.g., AES) or greater can afford useful conclusions regarding relative capacities of alternative BEOL stacks.
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bloated combinational cells (e.g., AOI21, AOI22, BUF, INV, NAND2, NOR2, OAI12, OAI211, OAI22)

and one flip-flop cell. For 8T cells, the post-bloating width of combinational cells is eight placement sites,

and the flip-flop cell width, which we leave unchanged, is 23 placement sites. The average and standard

deviation of width increase are 2.22 and 1.67 placement sites, respectively, for combinational cell masters.

Table 4.7: Testcases.
Name #Inst. #Nets Util. Clock period (ns)

AOI-mesh 5000 15000 90% NA
AES 15K 15K 65% / 50% 1.4
VGA 80K 80K 45% 1.2

BEOL stack options. In the 28nm LP foundry library that we use, the minimum metal width and

the minimum metal pitch (i.e., width + spacing) are 0.05µm and 0.1µm, respectively. We introduce 1×,

1.5×53 and 2×metal layers based on these minimum width and pitch values. The width (resp. pitch) values

for 1.5× and 2× metal layers are 0.074µm (0.15µm) and 0.1µm (0.2µm), respectively. We generate 73

BEOL stack options according to the following rules.

• The pitch and width values of M1 and M2 are not changed. The M1 and M2 pitch values are

0.136µm and 0.1µm, respectively, in the 28nm library that we use.

• The total numbers of metal layers are five, six, seven and eight.

• Different numbers of 1×, 1.5× and 2× layers are tried.

• From M2 upward, the pitch of a given metal layer is always greater than or equal to the pitches of all

lower metal layers. In other words, pitch values increase monotonically from lower to upper metal

layers.54 Also, a BEOL stack option is determined according to its numbers of 1×, 1.5× and 2×

layers. For example, if #1×, #1.5× and #2× layers are respectively 4, 1 and 1, then the pitch values
53We derive 1.5× metal and via layers from the existing 1× and 2× layers in 28nm LEF since there is no 1.5× layer in the

28nm BEOL LEF that we use. The 1.5× metal width and spacing are 0.074µm and 0.076µm, respectively. We use the same
EOL extension spacing as seen for the 1× layer; for the minimum length rule, we use the mean of the 1× and 2× layers’ values.
The minimum enclosure area rule is set to that of a 2× layer. We set via spacing such that two vias cannot be placed immediately
(i.e., horizontally or vertically) next to each other, but can be placed diagonally adjacent.

54The M1 layer is an exception to this monotonicity, since it is used for pins or internal routing within standard cells, and its
pitch follows the contacted poly pitch.
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of M1, M2, M3, M4, M5 and M6 are respectively 0.136µm, 0.1µm, 0.1µm, 0.1µm, 0.15µm and

0.2µm.

Table 4.8 summarizes the numbers of 1×, 1.5× and 2× layers, and the routing resources, of all

the BEOL stacks that we study, with total numbers of metal layers equal to five, six, seven and eight. There

are 27 possible combinations of BEOL stack options for eight metal layers. For the cases where the total

number of metal layers is less than eight, we ignore BEOL stack options with layer number larger than the

specific total number of metal layers (in Table 4.8, such BEOL stack options are marked with NA).

The routing resource (i.e., sum of track densities per unit channel height) of each combination of

(BEOL stack option, total number of layers) is calculated as
∑

b
1

pitchb
, where b is a metal layer, and pitchb

is the pitch value of b.55 Note that we assume routing is unidirectional in all of our experiments, except for

the experiments where we specifically study the impact of bidirectional routing (Section 4.3.3 below).

Table 4.8: BEOL stack options.
Name #1× layers #1.5× layers Total number of layers = 8 Total number of layers = 7 Total number of layers = 6 Total number of layers = 5

#2× layers Resource #2× layers Resource #2× layers Resource #2× layers Resource
BEOL0 2 0 6 40 5 35 4 30 3 25
BEOL1 3 0 5 45 4 40 3 35 2 30
BEOL2 4 0 4 50 3 45 2 40 1 35
BEOL3 5 0 3 55 2 50 1 45 0 40
BEOL4 6 0 2 60 1 55 0 50 NA NA
BEOL5 7 0 1 65 0 60 NA NA NA NA
BEOL6 8 0 0 70 NA NA NA NA NA NA
BEOL7 2 1 5 42 4 37 3 32 2 27
BEOL8 3 1 4 47 3 42 2 37 1 32
BEOL9 4 1 3 52 2 47 1 42 0 37
BEOL10 5 1 2 57 1 52 0 47 NA NA
BEOL11 6 1 1 62 0 57 NA NA NA NA
BEOL12 2 2 4 43 3 38 2 33 1 28
BEOL13 3 2 3 48 2 43 1 38 0 33
BEOL14 4 2 2 53 1 48 0 43 NA NA
BEOL15 5 2 1 58 0 53 NA NA NA NA
BEOL16 6 2 0 63 NA NA NA NA NA NA
BEOL17 2 3 3 45 2 40 1 35 0 30
BEOL18 3 3 2 50 1 45 0 40 NA NA
BEOL19 4 3 1 55 0 50 NA NA NA NA
BEOL20 5 3 0 60 NA NA NA NA NA NA
BEOL21 2 4 2 47 1 42 0 37 NA NA
BEOL22 3 4 1 52 0 47 NA NA NA NA
BEOL23 4 4 0 57 NA NA NA NA NA NA
BEOL24 2 5 1 48 0 43 NA NA NA NA
BEOL25 3 5 0 53 NA NA NA NA NA NA
BEOL26 2 6 0 50 NA NA NA NA NA NA

55We use the sum-of-track-densities measure to achieve a design-independent, normalized measure for comparison of BEOL
stack options. Thus, our definition of routing resource is a normalized routing resource. This measure reflects current usage in
industry [141]. We observe that using total track length or total number of routing tracks as a measure of routing capacity would
require knowledge of layout dimensions, thus introducing a design-dependence.
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Expt1: Routing Capacity of Various BEOL Stack Options

In this experiment, we show our measurement of routing capacity for various BEOL stack options.

We first demonstrate positive correlation between the number of DRVs (#DRVs) and K, and show how we

characterize Kth. As detailed in Section 4.3.2 above, in our experiments we use Kth as an indicator of the

routing capacity of a BEOL stack option (or, the routing capability of a router). We then show Kth versus

routing resource (number of available routing tracks) of various BEOL stack options. Our experimental

results suggest that routing resource may not be the only factor to determine routing capacity of a BEOL

stack option. In light of this, we further study the ranking of BEOL stack options with the same routing

resource based on our framework using mesh-like placement and cell width-regularized placement, with

two commercial routers.

Characterization of Kth. We measure #DRVs to characterize the Kth. Figure 4.29 shows #DRVs

versusK with the AOI-mesh design. For eachK value, we run three trials with different random sequences

of neighbor-swaps to avoid noise from tools and randomness of the perturbation process.56 Each dot

corresponds to a pair of a perturbation and a BEOL option. The average values of the sets of three runs are

marked by the solid traces. We increase K until the average #DRVs > 150. We then record the current K

as Kth. In Figure 4.29, Kth values are zero, four, 11, and >14 for BEOL0 6, BEOL1 6, BEOL2 6 and

BEOL3 6. The naming convention is {BEOL stack option name} {total number of layers}. A higher Kth

value for a particular BEOL stack means that the BEOL stack has a higher routing capacity to sustain more

perturbed placements (i.e., placements with more hotspots).

Kth versus routing resources. We study the ranking of BEOL stack options with respect to Kth.

Figure 4.30 shows Kth values versus routing resource values, measured using three commercial routers

(R1, R2 and R3). The figure shows a positive correlation between Kth and routing resource values for all

the three routers.57

We find that there are several points which show a reversed correlation between Kth and routing

resources, i.e., a smaller routing resource point shows a higher Kth. Also, there are points which have

different Kth values even though the corresponding routing resource values are the same. This result
56In our experiments, Kth varies by ≤ 2 across any set of three trials.
57To avoid unnecessary flow complications, we report post-route #DRVs out of the routing tool used. We separately verify that

routing tools R1, R2 and R3 report the same number of DRVs for a given routed DEF file.
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Figure 4.29: The number of DRVs versus K. This result is from a mesh-like placement implemented
with 5000 AOI21 cells, and row utilization of 90%.

suggests that “counting routing tracks” may not be an accurate estimation of the routing capacity of a

BEOL stack option.58 Indeed, intuition tells us that measurement of the routing capacity is nontrivial,

since gear ratio of metal pitches and via blockages affect routability. Additionally, there could be effects of

‘height’ of layers – lower metal layers would be more valuable than upper metal layers due to vias. Simply

counting routing tracks does not account for such impacts on routability.

BEOL stack options with same routing resource. Since we notice that routing resource may

not be a good indicator of routing capacity, we further analyze different BEOL stack options that have the

same routing resource value. As R3 is an older release of a commercial router, in subsequent experiments

below we focus on two routers, i.e., R1 and R2, which are essentially the latest releases available of two

commercial routers. We group BEOL stack options according to routing resources, i.e., all BEOL stack

options in each group have the same routing resource value that corresponds to the group. Figure 4.31

and Table 4.9 show Kth values for different BEOL stack options with the same routing resource values.
58Nevertheless, total track count has been used (and is still used) as a routing capacity metric in industry, and it is an important

factor that decides business and technology strategic plans for patterning technology and equipment manufacturing [141].
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Figure 4.30: Kth values versus routing resource with three commercial routers (R1, R2 and R3). The
results are extracted using mesh-like placements implemented with 5000 AOI21 cells and 90% row

utilization. Each dot corresponds to a BEOL stack option.

The results of six types of implementations, e.g., (i) mesh-like placement with R1 (m-R1), (ii) mesh-

like placement with R2 (m-R2), (iii) cell width-regularized placement with placer P1 and router R1

(r-P1-R1), (iv) placer P2 and router R1 (r-P2-R1), (v) placer P1 and router R2 (r-P1-R2), and (vi)

placer P2 and router R2 (r-P2-R2), are reported in the figure. For cell width-regularized placements,

placements change depending on BEOL stack options, since BEOL stack options affect placements due to

in-built trial routing mechanisms inside the placement tool.

Figure 4.31: Kth values for (a) Group 1, (b) Group 2, (c) Group 3 and (d) Group 4 of BEOL stack
options in Table 4.9.

Figure 4.32 shows the correlations of the rank-ordering of BEOL stack options (in increasing order
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Table 4.9: Kth values for groups of BEOL stack options having the same routing resource. The routing
resource (T ) value for each group is shown in the first column. Kth values are measured based on six types
of implementations: (i) m-R1; (ii) r-P1-R1; (iii) r-P2-R1; (iv) m-R2; (v) r-P1-R2; and (vi) r-P2-R2.

Group (T ) Name (i) (ii) (iii) (iv) (v) (vi)

Group 1 (40)

BEOL1 7 8 15 10 10 1 4
BEOL2 6 16 34 22 20 26 9
BEOL3 5 13 26 14 19 18 8
BEOL17 7 8 14 8 15 0 5
BEOL18 6 12 28 18 16 15 6

Group 2 (45)

BEOL1 8 13 34 22 14 1 7
BEOL2 7 18 40 28 22 28 10
BEOL3 6 24 59 42 29 34 11
BEOL18 7 12 30 21 16 15 5

Group 3 (50)

BEOL2 8 26 77 59 31 44 14
BEOL3 7 26 61 43 32 39 11
BEOL4 6 46 121 116 45 72 17
BEOL18 8 18 55 43 22 23 10
BEOL19 7 23 60 46 30 39 12

Group 4 (55)
BEOL3 8 51 114 110 44 64 15
BEOL4 7 54 123 119 48 73 17
BEOL19 8 36 105 89 40 59 16

of Kth) between mesh-like placement results and cell width-regularized placement results. We observe

that the rank-ordering based on mesh-like placement and the rank-ordering based on cell width-regularized

placements are well-correlated. The correlation coefficients of the rank-orderings of BEOL stacks between

the six types of implementations are all larger than 0.9.

We summarize our observations from the results as follows.

• BEOL stack options with the same routing resources show different Kth values. This suggests that

the routing resource (i.e., sum of routing track counts) alone is not sufficient to quantify the routing

capacity of given BEOL stack options.

• The correlation of the rank-orderings of BEOL stack options between cases m-R1 and m-R2 is

high (i.e., correlation coefficient > 0.9). This suggests at least a possibility that the rank-ordering

of BEOL stack options is quasi-universal across different routers for the same placements. (From

our studies, we conjecture that such quasi-universality holds regardless of the tool that produced the

given placement.)
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• As shown in Figure 4.32, the correlation of the rank-orderings of BEOL stack options between cases

m-R1, r-P1-R1 and r-P2-R1 is high (i.e., all correlation coefficients > 0.9). Also, the correlation

of the rank-orderings of BEOL stack options between cases m-R2, r-P1-R2 and r-P2-R2 is high

(i.e., all correlation coefficients > 0.9). This could indicate that at least in this routability-centric

evaluation where other constraints such as timing, power and noise are not considered, the folklore

gap between artificial and real benchmarks – in terms of ability to provide insight into CAD heuristic

performance – may not be as significant as previously believed.
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Figure 4.32: Correlations of the rank-ordering of BEOL stack options (in increasing order of Kth)
between mesh-like placement results and cell width-regularized placement results: (a) R1 and (b) R2.

Expt2: Comparison of BEOL Stack Options

In this experiment, we seek to understand further the implications of the results from our framework,

and which BEOL stack options can better apply a given amount of routing resource. Here, we regard the

BEOL stack that offers the larger routing capacity (i.e., having the larger Kth in our framework) among

all of the candidate BEOL stacks as the better BEOL stack option. First, we study correlation between

Kth and maximum achievable utilization, in order to understand the impact of BEOL stack options on

area. Next, we analyze BEOL stack options with the same Kth to derive additional understanding of the
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height-dependent routing capacity of metal layers. Finally, we study 1D and 2D routing to answer the

question “On which layer(s) is it most valuable to enable bidirectional routing?”.

Correlation between Kth and maximum achievable utilization. To study the correlation be-

tween Kth and area, we run P&R with different initial row utilization values and see if there are DRVs after

routing. We implement cell width-regularized placements (AES) with bloated cells and sweep the initial

row utilization from 45% to 75%.59 The BEOL stack options in Group 1 are tested with unidirectional

routing, placer P1 and routerR1 (r-P1-R1 in Figure 4.31). We record the maximum achievable utilization

values such that #DRVs < 150. The placements are perturbed with K = 20 to make routing harder.

Figure 4.33 shows the Kth values obtained from cell width-regularized placements (r-P1-R1) in blue

bars (left y-axis) and the corresponding maximum achievable (initial) row utilization values in orange

trace (right y-axis). We observe that a BEOL stack option with a higher Kth achieves a higher maximum

achievable utilization.

Figure 4.33: The Kth values obtained from cell width-regularized placements versus maximum
achievable (initial) row utilization values. The BEOL stack options in Group 1 are tested using the AES
design and R1. We record the maximum achievable utilization values such that #DRVs < 150 (shown in

the orange trace).

Analyses of BEOL stack options with same Kth. Figure 4.34 shows the results of m-R1 mesh-

like placements for subsets of BEOL stack options with same Kth values. Figures 4.34(a), (b), (c) and
59For row utilizations > 75%, the results do not change since bloated standard cells introduce porosities in placements that we

cannot control using initial row utilizations. For example, for 8T cell masters, the average width increase is 2.22 placement sites,
which means that every cell effectively has ∼2 placement sites of embedded, i.e., internal, whitespace.

191



(d) show the results of BEOL stack options with Kth = 4–6, Kth = 9–11, Kth = 14–16 and Kth = 19–21,

respectively. Since Kth indicates routing capacity, BEOL stack options with the same Kth values are

regarded as equivalent with respect to routing capacity. Example findings from m-R1 results are as follows.

• The added or incremental routing capacity of a layer depends on the height of the layer according

to the m-R1 results, as one would expect. For example, in Figure 4.34(a), one 1× layer on M3 is

equivalent to two 2× layer on M5 and M6 (BEOL12 6 and BEOL13 5); or, one 1× layer on M3 and

one 2× layer on M5 are equivalent to two 1.5× layers on M3 and M5 (BEOL8 6 and BEOL17 6).

In Figure 4.34(b), two 1× layers on M3 and M4 are equivalent to four 1.5× layers on M3, M4, M5

and M6 (BEOL2 5 and BEOL21 7).

• We also observe that if the numbers of 1× and 1.5× layers are sufficient, higher metal layers do not

significantly affect routing capacity. In Figure 4.34(b), if the number of 1× and 1.5× layers ≥ 6,

additional layers do not help.

• Last, the data indicate that using more 1× layers reduces the required total number of layers

for a given routing capacity. Obviously, added dimensions to our study, such as signal integrity

performance and/or power delivery, are directions for follow-on research.

1D versus 2D routing. We study the question “On which layer(s) is it most valuable to enable

bidirectional routing?”. Here, we use 1D routing to indicate unidirectional routing where routing in the

non-preferred direction is not allowed. We use 2D routing to indicate bidirectional routing where routing

segments in both horizontal and vertical directions can exist on the given layer. We use the same metal

pitch for both directions for 2D routing. We compare Kth of various BEOL options with six 1× 1D layers

(e.g., BEOL4 6) and one 2D routing layer enabled using the m-R1 implementation. Table 4.10 shows

the layer configuration of each BEOL option and the corresponding Kth value. We note that the routing

resource of each option in this experiment is the same since all metal layers are 1× layers. However, each

option has different horizontal and vertical resources. 1D, 2D-B and 2D-D have three horizontal routing

layers and two vertical routing layers. And, 2D-A and 2D-C have two horizontal routing layers and three

vertical routing layers. All BEOL options with one 2D routing layer show smaller Kth compared to the
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Figure 4.34: Results of m-R1, shown for subsets of BEOL stack options that have the same Kth values.
(a) BEOL stack options with Kth = 4–6; (b) BEOL stack options with Kth = 9–11; (c) BEOL stack

options with Kth = 14–16; and (d) BEOL stack options with Kth = 19–21.

1D BEOL option. This may indicate that having two 1D layers is always better than having one 2D layer.

Even though the routing resource (measured by pure track count) is the same in both cases, routing rules

can limit the utilization of the given routing resource in a 2D routing layer.

By comparing between 2D options, we observe that it may be more valuable to enable 2D routing

on lower metal layers; this can be seen by comparing 2D-B versus 2D-D, and 2D-A versus 2D-C. We may

also infer that horizontal routing resources are more valuable than vertical resources, for our nearly-square

blocks comparing 2D-A versus 2D-B, or 2D-C versus 2D-D. That is, BEOL options with more horizontal

routing resources show higher Kth values (i.e., better routing capacity). We do not claim to be the first to

observe such correlations, and our results are each specific to a given enablement. This being said, ours is

the first framework for quantifying such assessments in a general, design-agnostic manner.
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Table 4.10: Kth results of various 2D options.
Option M2 M3 M4 M5 M6 Kth

1D (BEOL4 6) 1D 1D 1D 1D 1D 46
2D-A 2D 1D 1D 1D NA 13
2D-B 1D 2D 1D 1D NA 14
2D-C 1D 1D 2D 1D NA 12
2D-D 1D 1D 1D 2D NA 13

Expt3: Robustness of the Rank-Ordering of BEOL Stack Options

We now show further experimental results to support the robustness of our observed quasi-universal

rank-ordering of BEOL stack options across mesh-like placements and cell width-regularized placements,

and two routers.

Various mesh-like placement configurations. We perform experiments for various mesh-like

placements implemented with different configurations. Note that the baseline is the AOI-mesh in Table 4.7.

The different configurations for mesh-like placements are summarized as follows.

• Different total numbers of instances (#Instances = 5000, 15000 and 20000)

• Different standard cell types (NAND2 and AOI21)

• Different row utilizations (70%, 80% and 90%)

• Different pin alignment

• Different routing direction (1D versus 2D)

• Different standard cells (8T and 12T)

Figure 4.35 shows Kth values for five BEOL stack options, measured with various mesh-like

placements with different configurations. The five BEOL stack options have the same routing resources,

T = 40 (Group 1 in Table 4.9). Our findings from the results are as follows.

• Figure 4.35(a) shows the results of two mesh-like placements implemented with AOI21 (three-input

cell) and NAND2 (two-input cell). The width values of AOI21 and NAND2 are 1.088µm and

0.952µm, respectively. The NAND2 case has higher Kth values. This is because the NAND2-based
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Figure 4.35: Kth of mesh-like placements with various configurations. (a) Different cell types: AOI21
(three-input cell) and NAND2 (two-input cell); (b) different row utilizations: 70%, 80% and 90%; (c)

different pin alignments; (d) different total number of instances: 5K, 15K and 20K; (e) 1D and 2D routing;
and (f) 8T and 12T cells.

implementation has a lower net degree. However, the rank-ordering of BEOL stack options with

respect to Kth values is the same as that of the AOI21 case.

• Figure 4.35(b) shows the results of m-R1 with different row utilizations, 70%, 80% and 90%.60 As

expected, placements with lower utilizations achieve higher Kth. The rank-ordering of BEOL stack

options with respect to Kth is the same for 80% and 90% cases, but there is a deviation for 70%

case. (i.e., reversed ordering of BEOL3 5 and BEOL2 6).

• Figure 4.35(c) shows the impact of different pin alignments. In a mesh-like placement, pins
60We observe that in the implementation with 70% utilization, due to rounding effects the space between two horizontally

adjacent cells can vary (three or four placement sites). Such cases, where cells are not distributed uniformly, lead to more DRVs
in the router outcome. To make a mesh-like placement with uniform distribution, the row utilizations we can implement are
limited to w/(w + s), where w and s are the cell width and the spacing between cells, respectively. Since w, s are integer
(in placement sites) and since w = 8 in the experiment, we can implement row utilizations 72.7%, 80.0% and 88.9% with
s = 3, 2, 1, respectively. To implement an exact 70% utilization, we would need to use multiple values of s, which would result in
non-uniform mesh-like placements. Therefore, we use 72.7%, 80.0% and 88.9% utilizations for 70%, 80% and 90%, respectively,
to make a fairer comparison among the three cases.
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of standard cells are aligned unless we apply different offsets for each placement row. For the

“misaligned” case, we add a different offset for each placement row to create vertical misalignment

between cells in adjacent placement rows. The result suggests that the impact of pin alignment is

negligible.

• Figure 4.35(d) shows the impact of different numbers of instances, i.e., 5000, 15000 and 20000. As

the number of instances increases, Kth slightly decreases. This result suggests that design size is

related to Kth (See Section 4.3.5, below). Kth of BEOL18 6 is relatively lower in the 20000 case,

and this results in a different rank-ordering of BEOL stack options. However, except for BEOL18 6,

the rank-ordering of BEOL stack options remains consistent.

• Figure 4.35(e) shows results of 1D and 2D routing, where bidirectional routing is enabled for all

metal layers for the 2D routing. (Note that this is a different experiment from 1D versus 2D routing

above, where bidirectional routing is enabled for only one layer.) Kth is higher with 2D routing,

which suggests routing capacity of 2D routing is larger. The rank-ordering of BEOL stack options

remains the same.

• Figure 4.35(f) shows results of 8T and 12T cells. In this experiment, we use 8T and 12T cells with

the same width. Kth is higher with 12T cell, as one would expect. The rank-ordering of BEOL2 6

and BEOL3 5 is reversed with 12T cell, as compared to other configurations.61

In summary, the rank-ordering of the BEOL stack options with respect to Kth does not change

significantly across different mesh-like placements with a wide range of configurations. However, there do

exist deviations across configurations (track height, utilization, routing directionality), indicating that no

one configuration perfectly represents all other possible configurations. Thus, it would be important for

designers to select a proper set of configurations to reflect the properties of target designs.

Cell width-regularized placement with standard cell variants. We perform similar experiments

with cell width-regularized placements using more standard cell variants62, for five BEOL stack options
61We have applied multiple runs (> 10) to further remove noise due to randomness of the sequence of neighbor-swaps, but

have found results to be consistent (i.e., stable).
62We use 8T and 12T cells bloated to have different widths (i.e., eight and 10 placement sites). The width of a flip-flop is 23

placement sites.
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in Group 1. Figure 4.36 shows Kth values of the BEOL stack options in Group 1 for four cases among

the combinations of two heights (8T and 12T), two widths (eight and 10 placement sites) and two routing

directions (1D and 2D). I.e., (i) 8T bloated cells (width=8) and unidirectional routing (R-8T-B1-1D), (ii)

8T bloated cells of a wider width (width=10), and unidirectional routing (R-8T-B2-1D), (iii) 8T bloated

cells (width=8) and bidirectional routing (R-8T-B1-2D) and (iv) 12T bloated 12T cells (width=8) and

unidirectional routing (R-12T-B1-1D). The results are obtained using P1 and R1 (Figure 4.36(a)), and P2

and R2 (Figure 4.36(b)).63 We observe that R-8T-B2-1D shows higher Kth values than R-8T-B1-1D. This

may be due to larger spacings between pins in the R-8T-B2-1D case. We also see that R-8T-B1-2D shows

slightly higher Kth values when compared to R-8T-B1-1D. We observe that using 12T cells increases

routing capacities dramatically (R-12T-B1-1D).

Placements generated by a standard SP&R flow. We support our observed routing capacity-

based ordering of BEOL stacks using placements that are implemented by a standard SP&R flow. Specifi-

cally, we implement placements for the AES and VGA testcases using a full set of library cells without

any modification, and apply our neighbor-swap-based approach. As noted in Footnote 50, to maintain

placement legality we check whitespace after every neighbor-swap operation between placement rows.

If the row utilization with the updated whitespace exceeds a pre-defined sum of initial row utilization +

margin, we revert the neighbor-swap operation. For AES and VGA, we use 50% and 45% for initial row

utilization, respectively, and we use 1% margin for both designs.

Algorithm 13 gives details of the procedure for perturbing real-cell-based real placements. We

initialize the number of neighbor-swaps performed (num swap) in Line 1. We iteratively perform

neighbor-swaps until the total number of neighbor-swaps reaches the target (calculated from the given N2

and K). For a neighbor-swap, we randomly select target cell (cell) and direction (dir) (north, south, east

and west) in Lines 3 and 4. This determines the neighbor cells of cell (Line 5). In Line 6, the target cell

and its neighbor cell are swapped, and row utilizations are updated (Line 7). We increment num swap in

Line 8. If the neighbor-swap is performed between rows and the widths of the target cell and its neighbor

cell are different (Line 9), we check that updated row utilizations do not exceed a pre-defined limit (Line
63We could not obtain results for case (iv) with P2 and R2, since R2 could not produce DRV-clean results for K = 0 with

12T cells.
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10). If this check fails, we revert the neighbor-swap operation (Lines 11 and 12).

The use of real cell widths leads to less-gradual perturbation due to the effect of placement

legalization before routing. The results of the non-bloated-cell-based implementation are shown in

Figure 4.37 (R-8T-NB-1D-AES and R-8T-NB-1D-VGA). R-8T-B1-1D-AES is given as a reference (R-8T-

B1-1D in Figure 4.36). We see that indeed, Kth values of R-8T-NB-1D-AES and R-8T-NB-1D-VGA are

dramatically smaller than those of R-8T-B1-1D-AES. Although our focus is on the rank-orderings of BEOL

stack routing capacities based on Kth, as opposed to the magnitudes of Kth values, this experiment clearly

shows a gap between cell width-regularized placements and placements generated within production SP&R

flows. We emphasize that the AES-derived, width-regularized testcase is a compromise between real and

synthetic, due to the cell bloating. And, further understanding of the significance of the cell bloating used

in our studies of the PROBE methodology remains an important direction for future research. In terms

of the rank-ordering, the result of R-8T-NB-1D-AES remains the same as the reference, while there is a

deviation (BEOL2 6) in the R-8T-NB-1D-VGA case. This data point may indicate that the rank-ordering

has additional dependencies on netlist structure and size.

Algorithm 13 Placement perturbation

Input: an input placement, total number of instances N2, target K, target utilization U , utilization
margin M
Output: a perturbed placement

1: num swap← 0
2: while num swap < N2 ·K do
3: cell← RandomlySelectCell
4: dir ← RandomlySelectDirection
5: neighbor cell← GetNeighborCell(cell, dir)
6: Swap cell, neighbor cell
7: Update row utilization
8: num swap← num swap+ 1
9: if ((dir == north) || (dir == south)) && wcell 6= wneighbor cell then

10: if row utilization > U +M for any row then
11: Swap cell, neighbor cell (revert)
12: num swap← num swap− 1
13: end if
14: end if
15: end while
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Figure 4.36: Kth values of the BEOL stack options in Group 1 for various cases: (i) R-8T-B1-1D, (ii)
R-8T-B2-1D, (iii) R-8T-B1-2D and (iv) R-12T-B1-1D. The results are obtained (a) using (P1, R1) and (b)

using (P2, R2).
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Figure 4.37: Kth values of the BEOL stack options in Group 1 for AES and VGA placements with
non-bloated 8T cells (R-8T-NB-1D-AES and R-8T-NB-1D-VGA). R-8T-B1-1D-AES is shown for a

reference. The results are obtained using (P1, R1).

4.3.4 Additional Study of Routing Hotspot and Routing Failure

The studies above focus on ranking of BEOL stack options based on fixed-size designs and use

of the Kth criterion as an indicator of routing capacity. The Kth-based BEOL stack ordering is shown

empirically to be stable across a number of factors - routing tool, netlist topology, utilization, porosity,

layer directionality, etc. Notably, Figure 4.35(d) suggests that the Kth-based stack ordering is independent

from design size, even as the Kth values themselves change with design size.

By necessity, our studies involve small netlists, which raises the important question of how to

extend insights to when designs are large. In this section, we provide additional studies of (i) the size
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and placement quality of a routing hotspot, and (ii) the impact of design size on routing failure. These

provide context for the preceding experimental results: (i) routing failure (in hotspots) is a function of

both hotspot size and placement suboptimality (Kth), and (ii) the observed change of Kth with design size

(Figure 4.35(d)) matches the outcomes of a more quantitative analysis.

Routing Hotspots

Routing failure is caused by local routing hotspots in many cases. However, not every routing

hotspot contributes equally to routing failure. Figure 4.38 shows hotspots of two different sizes, along

with post-route DRVs (white crosses). Both hotspots are generated with the same number K × S2 of

neighbor-swaps (where S is the dimension of the S × S hotspot, and defines the size of the hotspot). We

observe that while the two hotspots have the same K, the numbers of DRVs are different, and hotspot1

does not contribute much to DRVs. This example suggests that the size of routing hotspots is another key

factor - in addition to K - that determines routing failure. Thus, in this section, we further empirically

study various sizes of routing hotspots.

In mesh-like placements, we generate routing hotspots with various locations and sizes. Specifi-

cally, we vary the size of a hotspot (i.e., by performing K × S2 random neighbor-swaps within a specific

subregion). An S × S hotspot is a subregion with S columns and S rows. We study various (S, K) pairs

and record #DRVs. For each (S, K) pair, we generate 10 random data points. Figure 4.39 shows a contour

map that indicates routability for various (S, K) pairs. The x-axis shows K normalized by S2 because

there are O(S2) total edges, and the y-axis shows S. The solid (resp. dotted) line is the contour based

on average (resp. maximum) numbers of DRVs (of 10 trials for the corresponding (S, K) pair), where

the upper shaded regions correspond to routing failures. The figure shows that (i) if the size of hotspots

(S) is smaller than a certain value, then Kth =∞; and (ii) the Kth values increase as the size of hotspots

decreases.

Impact of Design Size on Routing Failure

Design size is an important factor (along with routing algorithms, BEOL stack options, netlist

topology, placement utilization, etc.) that affects routing difficulty. To better understand the connection
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hotspot1

hotspot2

Figure 4.38: A routed layout with two hotspots. DRVs are indicated by white crosses. Other colors
(green, pink, orange) indicate metal layers. Although each hotspot is perturbed by the same K (×S2,

where S is the dimension of the S × S hotspot), hotspot1 (S = 16) produces noticeably fewer DRVs than
hotspot2 (S = 33).

between design size and routing difficulty that is seen in Figure 4.35(d), we now provide a more quantitative

study of the impact of design size on the probability of routing failure. That is, given similar placement

quality (measured by the size-normalized number of neighbor-swaps from a mesh-like placement), we

examine the relation between design size and the probability of routing failure.

As reviewed in Section 4.3.1, many metrics have been proposed to estimate routability, such as pin

density [15], pin shape [148], wire density [142], Rent exponent [163], net range [108] and the number of

incoming/outgoing edges [24]. We study two metrics that have been closely related to routing failures in

the recent work of [24]. The first metric is the sum of edge distances (ED), i.e., the sum of half-perimeter

wirelengths of nets corresponding to lattice edges initially in a given window. (An S × S window of the

initial square mesh contains 2 · S · (S − 1) lattice edges.) The second metric is crossing count (CC),

which is the total number of nets that cross a given local window. In other words, nets having positive-area

overlap with a given window are counted in CC (overlap only along the window boundary is not counted).

Figure 4.40 shows examples of edge mapping, ED and CC. In Figure 4.40(a), initial lattice edge ((p1, q1),
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Figure 4.39: A contour map that indicates routability for various (S, K) pairs. The solid line is the
contour based on the average number of DRVs, and the dotted line is the contour based on the maximum
number of DRVs in 10 trials per each (S, K) pair. Based on the contour lines, the upper shaded regions

show where routing fails.

(p2, q2)) (vertices (p1, q1) and (p2, q2) are adjacent in the initial mesh) is mapped to ((p3, q3), (p4, q4)) after

neighbor-swaps. For this edge, the ED = |p3 − p4|+ |q3 − q4|. In Figure 4.40(b), in red are net bounding

boxes, and in blue is the window, where Nets B and C contribute to CC, but Nets A and D do not.

We perform exponentiation on transition matrices to estimate the ED and CC changes after

neighbor-swaps, which further provide an estimation for the probability of routing failures (i.e., ED (or

CC) is greater than a threshold EDth (or CCth)).

Figure 4.40: Illustrations of edge mapping, ED and CC.
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We describe our transition matrix-based estimation as follows. Given a mesh-like placement

(where an edge exists between each pair of neighboring instances) with size (N × N ), and number of

neighbor-swaps (K ×N2), we estimate the expected ED within the hotspot based on a transition matrix

(i.e., a matrix used to describe the transition of iterative neighbor-swaps, where MT [i][j] is the probability

that a vertex moves from location i to location j in a single neighbor-swap [10]). Specifically, from a

given matrix that is the exponentiation (to the Kth power) of a given transition matrix, we compute the

ED and CC over a given hotspot region.

Algorithm 14 describes the transition matrix construction. Based on the transition matrix, we

are able to estimate the probability of mapping an edge ((p1, q1), (p2, q2)) to another edge ((p3, q3), (p4,

q4)) (i.e., embedded in the matrix as the entry in the (N3 · p1 + N2 · q1 + N · p2 + q2)th row and the

(N3 ·p3 +N2 ·q3 +N ·p4 +q4)th column). We then multiply such probabilities by the Manhattan length of

the (post-neighbor-swapping) mapped edge to achieve an estimation of the expected edge distance. Lastly,

we take the sum over expected edge distances of the lattice edges (i.e., edges between adjacently-placed

cells in the initial mesh). In Line 9, we set MT [i][i] to the difference between 2 · N · (N − 1) and

rowSum so that when we normalize the rows by 2 ·N · (N − 1) (Line 11), every entry will represent a

marginal probability of transitioning to that state.64 However, due to the large size of the transition matrix

O(N4), the runtime complexity of the dense matrix exponentiation is O(N4k), where O(Nk) = matrix

multiplication complexity. Thus, the complexity of the sparse matrix exponentiation is O(N8).

To reduce the runtime complexity, we propose an an approximate calculation approach, shown

in Algorithm 15. The transition matrix in Algorithm 15 is of size N2 ×N2 as opposed to N4 ×N4 in

Algorithm 14, because it keeps track of the mapped vertex locations as opposed to the mapped edges. Thus,

Algorithm 15 assumes that the mapped vertex locations are independent, which is intuitively reasonable

given that the expected number of neighbor-swaps for each vertex is still the same. In Algorithm 15, we

first create a distance matrix MD of size N2 ×N2, where MD[N · p1 + q1][N · p2 + q2] is the Manhattan

distance between (p1, q1) and (p2, q2) in the mesh-like placement (Line 1). We then create a transition

matrix MT (Line 2), as presented in Algorithm 16. We exponentiate the transition matrix to the Kth power,
64The normalization factor is 2N(N − 1) because this is the total number of events or possible neighbor-swaps that can occur.

Thus, in Line 11, we divide the matrix through by 2N(N − 1) to obtain a transition matrix in which each row sums to 1.
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to approximate the resultant placement after K moves (Line 3). Lastly, according to ME , we calculate the

expected edge distance, as summarized in Algorithm 17. The runtime complexities for construction of the

distance matrix (Line 1), construction of the transition matrix (Line 2), exponentiation of the transition

matrix (Line 3) and calculation of the expected edge distances (Line 4) are respectively O(N4), O(N4),

O(N6 · log(K)) and O(N6).65 Overall, the runtime complexity of our procedure is O(N6 · log(K)).

Algorithm 14 Create transition matrix (exact), MT

1: MT ← N4 ×N4 zero matrix
2: for p1 := 1 to N , q1 := 1 to N , p2 := 1 to N , q2 := 1 to N , p3 := 1 to N , q3 := 1 to N , p4 := 1 to N , q4

:= 1 to N do
3: if (((p1, q1) == (p3, q3) && isNeighbor((p2, q2), (p4, q4))) || ((p2, q2) == (p4, q4) && isNeighbor((p1,

q1), (p3, q3))) || ((p1, q1) == (p4, q4) && (p2, q2) == (p3, q3) && isNeighbor((p1, q1), (p2, q2)) &&
((p1, q1) 6= (p2, q2) || (p3, q3) 6= (p4, q4)))) then

4: MT [N3 · p1 +N2 · q1 +N · p2 + q2][N
3 · p3 +N2 · q3 +N · p4 + q4]← 1

5: end if
6: end for
7: for i := 1 to N4 do
8: rowSum←

∑
j MT [i][j]

9: MT [i][i]← 2 ·N · (N − 1)− rowSum
10: end for
11: MT ←MT /(2 ·N · (N − 1))

Algorithm 15 Expected edge distance (approximation)
1: MD ← create distance matrix
2: MT ← create transition matrix
3: ME ← exponentiate transition matrix MT to the Kth power
4: dist← calculate expected edge distance
5: return dist

Similarly, Algorithm 18 describes our approximate calculation of crossing count. Algorithm 16

and Algorithm 19 respectively describe the transition matrix construction and expected crossing count

calculation. To calculate CC, in Algorithm 19 Line 4, the variable count contains the expected number of

edges, where we add in the probability that ((p1, q1), (p2, q2)) is mapped to ((p3, q3), (p4, q4)) by assuming

independence and multiplying the probability that (p1, q1) is mapped to (p3, q3) by the probability that (p2,

q2) is mapped to (p4, q4). Furthermore, for every pair of undirected edges, we add the probability of that
65We use Python np.linalg library to perform matrix exponentiation.
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Algorithm 16 Create transition matrix (approximation)

1: MT ← N2 ×N2 zero matrix
2: for p1 := 1 to N , q1 := 1 to N , p2 := 1 to N , q2 := 1 to N do
3: if isNeighbor((p1, q1), (p2, q2)) then
4: MT [N · p1 + q1][N · p2 + q2]← 1
5: end if
6: end for
7: for i := 1 to N2 do
8: rowSum←

∑
j MT [i][j]

9: MT [i][i]← 2 ·N · (N − 1)− rowSum
10: end for
11: MT ←MT /(2 ·N · (N − 1))

Algorithm 17 Calculate expected edge distance

1: dist← 0
2: for all edges ((p1, q1), (p2, q2)) do
3: for i := 1 to N2, j := 1 to N2 do
4: dist += ME [N · p1 + q1][i] ·ME [N · p2 + q2][j] ·MD[i][j]
5: end for
6: end for
7: return dist

mapping four times.66 Specifically, we count the edge mapping of (v1, v2) to (v3, v4) once for each of the

two edge permutations of (v1, v2) and once for each of the two mapped edge permutations of (v3, v4). So,

we count this probability 2 · 2 = 4 times; we then divide by 4 to eliminate double counting (Line 7). We

note that for a large K value, the approximated edge distance and crossing count should be off by a factor

of (N2)/(N2 − 1) with respect to the exact values. This is because the approximation algorithms count

the set of degenerate edges.67

Algorithm 18 Expected crossing count approximation
1: MT ← create transition matrix
2: ME ← exponentiate transition matrix MT to the Kth power
3: count← calculate expected crossing count
4: return count

Based on the transition matrix exponentiation, we estimate the probabilities of ED ≥ EDth and
66Here, an undirected edge is an unordered pair of vertices (e.g., edge ((p1, q1), (p2, q2)) in Figure 4.40(a)). In our constructed

mesh placement, there can be at most one net between two instances, and we therefore treat each net as an undirected edge in our
analyses.

67There are (N2)(N2 − 1) total edges, and there are (N2)(N2) ordered pairs of vertices, which the approximation algorithm
counts. Therefore, for large K, we expect to be off by around a factor of (N2)/(N2 − 1) with respect to the exact values.
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Algorithm 19 Calculate crossing count
1: count← 0
2: for all edge ((p1, q1), (p2, q2)) do
3: for all mapped edge ((p3, q3), (p4, q4)) that overlap with the given S × S hotspot do
4: count += ME [N · p1 + q1][N · p3 + q3] ·ME [N · p2 + q2][N · p4 + q4]
5: end for
6: end for
7: count← count/4
8: return count

Figure 4.41: Probability of ED ≥ EDth increases with N . Shown: K = 50 based on (a) Monte Carlo
simulation and (b) transition matrix exponentiation.

Figure 4.42: Probability of CC ≥ CCth increases with N . Shown: K = 50 based on (a) Monte Carlo
simulation and (b) transition matrix exponentiation.
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CC ≥ CCth for an S × S hotspot (EDth and CCth values are normalized to N2) as follows. For ED,

we assume a Gaussian distribution for the distribution of ED after K ×N2 neighbor-swaps. Using the

transition matrix exponentiation, we thus find the mean and variance in distance for each lattice edge.

We then treat ED for each S × S window as the sum of Gaussian random variables – the lattice edges

composing the window – which gives a Gaussian distribution with mean =
∑

latticeedges{means} and

variance =
∑

latticeedges{variances}. We further assume that the window probabilities are independent.

Finally, we can approximate the probability that ED ≥ EDth. For CC, we assume that the probabilities

that each of the lattice edges is mapped to an edge that crosses a given fixed window are independent,

i.e., each mapped edge’s respective crossing of the given window is an independent Bernoulli-distributed

random variable. Accordingly, the distribution for the number of crossers for a fixed window (i.e., the

number of edges crossing over a fixed window) can be represented as a sum of independent Bernoulli

random variables, which is the Poisson Binomial distribution [42]. This is then approximated using the

Poisson distribution, with error bound of 9 ∗maxi∈windows pi, as described in [63].

Figure 4.41 and Figure 4.42 respectively show the probabilities of ED ≥ EDth and CC ≥ CCth

for S = 2 in an N × N mesh-like placement with (K = 50) · N2 neighbor-swaps, based on both

Monte Carlo simulations (with 500 trials) and transition matrix-based estimations.68 We observe that

the probabilities of having some window’s ED or CC value larger than given thresholds increase with

N (where N × N indicates the design size). This observation can also be confirmed by application of

the Pigeonhole Principle. Suppose we have N1 < N2 with corresponding neighbor-swaps J1 = K ·N2
1

and J2 = K ·N2
2 , respectively (J1 and J2 are absolute values of numbers of neighbor-swaps, and K is a

normalized number of neighbor-swaps). By the Pigeonhole Principle, we can find an N1 ×N1 window

within the N2 ×N2 mesh-like placement that has at least J1 neighbor-swaps performed on it. Thus, for

each window of this N1 ×N1 design, the probability of exceeding both EDth and CCth will be at least as

large as that of the N1 ×N1 mesh-like placement. This observation indicates that with the same placement

quality (i.e., normalized K value with respect to N2), a larger design is more vulnerable to routing failures.

We also perform a similar study on mesh-like placements. Specifically, we perform some normal-
68The small discrepancy between the results from Monte Carlo simulations versus those from transition matrix-based estimations

is due to errors of the approximation from the Normal and Poisson distributions. Note that in this section, we use mesh placements,
which are more general and can be modeled using the Markov transition matrix technique, instead of real placements.
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ized number of neighbor-swaps (K) with respect to the design size (i.e., N2), and sweep the value of N

to study how routing failure probability changes according to N . For each pair (N , K), we perform 10

trials of perturbation and routing, and then report the probability of routing failures. Figure 4.43 shows our

results, which empirically support the above analysis that the probability of routing failure increases with

the design size, when placement quality as captured by normalized K is kept constant.
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Figure 4.43: Routing failure probabilities versus N for K = 55, 90 and 145.

4.3.5 Conclusion

In this work, we propose a systematic framework that measures routing capacity of BEOL stack

options as well as inherent capability of routers and, potentially, placers. Using our framework, we

demonstrate a “quasi-universal” rank-ordering of various BEOL stacks by routing capacities, for a given

router. We also study the relationship between routing hotspot size and placement quality. Lastly, we

present an analytical study based on exponentiation of a Markov transition matrix to demonstrate how,

with the same placement density and quality, a larger design is more likely to experience routing failures,

an observation which is supported by empirical data.

This last observation, that the probability of routing failure increases with the design size (i.e.,

N × N ), is particularly intriguing. This may indicate that there might be an “optimal block size” for
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dividing an SoC into hard macros for a given design enablement, in a similar spirit to how the authors

of [146] proposed 50K to 100K gates as an optimal size of place-and-route blocks nearly 20 years ago.69

For example, Figure 4.44 shows our notional (hypothesized) tradeoff between design area and block size,

which is derived based on several simple assumptions. The x-axis shows block size normalized to the entire

chip area, and the y-axis shows area penalty induced by decomposition (i.e., loss of global optimization

in hierarchical physical design relative to flat physical design) and/or routability. When the block size is

too large, the probability of routing failure is high, and we will end up with a lower utilization to avoid

routing failure (orange curve). On the other hand, if the block size is too small, we will have to pay for the

cost of partitioning, i.e., loss of optimality due to decomposition (blue curve). To derive the area penalty

from routing failure, we first derive a linear model for ∆ utilization as a function of Kth −K from the

result in Figure 4.33 (the routing failure is directly related to maximum achievable utilization, as shown

in Section 4.3.3). We then assume that Kth is inversely proportional to the square root of the normalized

block area, and K is the same for all block sizes (same quality of placements). To derive the area penalty

from decomposition, we simply assume that the blocks are connected as clique model, and there is a

certain amount of area overhead for each cut. The minimum total area penalty point is shown as the local

minimum in the gray curve. According to such a simple model we see in Figure 4.44 that there may be a

choice of block size for hard macros in hierarchical design that best compromises between routing failure

probability and the cost of partitioning.70

Open questions for future researchers might include:

• extension of our framework to comprehend realistic design considerations such as timing, power,

manufacturing cost, complex design rules, multi-height cells and power delivery network require-

ments;

• estimation of “equivalent K” (or another metric to assess and/or rank (windows of) placements with

respect to routability) in arbitrary real placements;
69The landmark paper of [146] arrived at its predicted block size based on entirely different justifications, namely, scaling of

interconnect RC delay and noise, and of gate drive and leakage. The envisioned size of P&R blocks in a hierarchical physical
design methodology has evolved differently from the prediction of [146].

70Here, our study mainly considers routing and corresponding impacts on timing and power. The actual best choice of block
size for hard macros would be dependent on many other aspects of designs and design enablements, e.g., standard cell layouts,
netlists, and the characteristics of placers and routers.
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• an analytical model to predict optimal block size for minimum area penalty (considering both cost

of decomposition and routability) with a given performance (and, possibly, design turnaround time)

requirement.
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Figure 4.44: A hypothesized tradeoff between overall design area and instance count in individual P&R
blocks. The x-axis shows block instance count, and the y-axis shows overall design area overheads

induced by (1) decomposition and (2) difficulty of routing.
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Chapter 5

Summary

This thesis has presented new optimization and evaluation methodologies for advanced VLSI

manufacturing. The presented methods help overcome new difficulties in physical design arising from

advanced design rules as well as technology choices, which are tightly linked to design QoR.

Chapter 2 has presented three distinct gate sizing methodologies that address new challenges in

timing signoff and the interaction between sizing and detailed placement. First, we have proposed a new

academic sizer, Sizer, that reflects a multi-year evolution from a successful “contest” sizing tool to a tool

that can outperform high-effort commercial results for a real industrial IC. We describe techniques that

are useful in the academic contest setting but not in the real-world context – as well as new techniques

specifically developed for Sizer. We also describe the successful application of Sizer to industrial designs.

On a design (i.e., NXPIC) that is well-optimized by a leading-edge commercial P&R tool as well as by

ECO steps, Sizer achieves 7% further leakage reduction without any violation of the given setup/hold and

maximum transition constraints in a multi-corner multi-mode context.

Second, we have addressed a new gate sizing/Vt-swapping and placement problem with the

minimum implant area (MinIA) constraint. The MinIA constraint presents a new challenge to the physical

implementation flow in sub-22nm technology, and requires true co-optimization of placement and gate

sizing/Vt-swapping. We have proposed sizing and placement heuristics that optimize power and fix MinIA

violations while minimizing placement perturbation. Compared to commercial P&R tools, our methods
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achieve significant reductions in the number of MinIA violations under timing/power constraints.

Third, we have studied heuristic methods for exploitation of fine-grained mixed-Vt in FDSOI

implementation. We explore various implementation flows that include an ILP-based approach and a

sensitivity-based heuristic optimization. Based on our experimental results, we summarize fundamental

inherent difficulties of fine-grained exploitation of mixed Vt (and body biasing) in FDSOI. We observe that

outcomes are highly dependent on designs and library options. Thus, we suggest a decision tree to help

designers make early decisions regarding FDSOI implementation choices.

Chapter 3 has presented two distinct methodologies for detailed placement optimization for

advanced VLSI manufacturing. First, we have proposed a scalable detailed placement legalization flow

for complex FEOL constraints arising at the N10 foundry node. These include drain-drain abutment,

minimum implant width, and minimum OD jogging rules. Given initial (timing-driven) placements, our

DFPlacer fixes 99% of DRVs with 3% increase in wirelength and minimal impact on timing. We feel

that our use case of fixing all but a few tens of violations, with a highly parallelizable two-iteration strategy,

is a good practical tradeoff between runtime complexity and DRV fixing. Further, the level of DRV fixing

achieved by DFPlacer is encouraging, given that our default experimental configuration makes no attempt

at “correctness by construction”. Using OpenMP, we confirm that our flow is scalable via a distributed

optimization strategy. Additionally, we study an area-DRV tradeoff between two types of standard-cell

library strategies, namely, with and without dummy poly gates.

Second, we have proposed a vertical M1 routing-aware detailed placement optimization based on

mixed-integer linear programing (MILP) for two new cell architectures in sub-10nm nodes, i.e., ClosedM1

and OpenM1. With our optimization, up to 6.4% (resp. 2.2%) total routed wirelength reductions and 14.4%

(resp. 4.1%) #via12 reductions are achieved for ClosedM1-based (resp. OpenM1-based) designs, with no

adverse timing impact.

Chapter 4 has presented three distinct evaluation methodologies for design flows and technology

enablements. First, we have studied impacts of patterning technology choices and design rules on physical

implementation metrics, with respect to cost-optimal design rule-correct detailed routing. We describe

OptRouter, an ILP-based optimal detailed router that correctly handles multi-pin nets and various sub-

20nm routing challenges including via restrictions, via shapes, and SADP patterning rules. OptRouter
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enables design rule evaluation using “difficult” routing clips (switchboxes) selected according to a pin

cost metric. We study ∆cost distributions for different design rules, relative to a baseline rule set, RULE1,

wherein all layers are LELE and there are no via restrictions. From the results, we observe that the

sensitivities of ∆cost to design rules and routing options vary with technology. Also, we observe that there

is a gap between pin accessibility metrics such as [148] and our switchbox-centric evaluation of routability.

Second, we have investigated the potential impact of design-aware manufacturing (DAM) and

manufacturing-aware design (MAD) methodologies to optimize BEOL dimensions in sub-10nm nodes.

We study BEOL interconnect stack geometry by exploring the wire aspect ratio (AR) and duty cycle (DC).

We perform SPICE-based analyses of timing path delays and correlate these with analyses in the P&R

tool, using a single-stage artificial netlist construction. We also perform block-level studies with placed

and routed designs. Based on our studies, we find the optimal (AR,DC) combination for a given wire

pitch with respect to power and delay; we also show the sensitivities of BEOL stack geometry to circuit

parameters and validate our SPICE analyses with real block-level designs. We further perform studies on

design-aware manufacturing and manufacturing-aware design to explore the design freedoms and potential

benefits of DAM and MAD. Large differences in design metrics exist across DAM and MAD. By proper

utilization of DAM and MAD, we can save up to 60% in TNS and 7% in power for a particular LDPC

testcase. Furthermore, based on our experiments, we conjecture that an optimal MAD and DAM BEOL

stack exists for any given design.

Third, we have proposed a systematic framework that measures routing capacity of BEOL stack

options as well as inherent capability of routers and, potentially, placers. Using our framework, we

demonstrate a “quasi-universal” rank-ordering of various BEOL stacks by routing capacities, for a given

router. We also study the relationship between routing hotspot size and placement quality. Lastly, we

present an analytical study based on exponentiation of a Markov transition matrix to demonstrate how,

with the same placement density and quality, a larger design is more likely to experience routing failures,

an observation which is supported by empirical data.
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