
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title

Techniques for Almost-Asynchronous Distributed Cryptography

Permalink

https://escholarship.org/uc/item/1fb7g51h

Author

Terner, Benjamin

Publication Date

2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1fb7g51h
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Techniques for Almost-Asynchronous Distributed Cryptography

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Benjamin Terner

Dissertation Committee:
Gene Tsudik, Chair

Stanislaw Jarecki
Juan Garay

2023



© 2023 Benjamin Terner



DEDICATION

To Mom and Dad

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES vii

LIST OF TABLES viii

ACKNOWLEDGMENTS ix

VITA x

ABSTRACT OF THE DISSERTATION xi

1 Introduction 1

2 Related Work 6
2.1 Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Mixed and Hybrid Fault Models . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Dishonest-Majority Protocols . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Other Expected Constant-Round Protocols . . . . . . . . . . . . . . . 10
2.1.4 Blockchains and Permissionless Consensus . . . . . . . . . . . . . . . 11

2.2 Concurrent Group Messaging . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Timed and Fine-Grained Cryptography . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Time-lock Puzzles in the Literature . . . . . . . . . . . . . . . . . . . 18
2.3.2 Techniques for Timed Primitives . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Comparison with Other Definitions . . . . . . . . . . . . . . . . . . . 22

3 Modeling and Definitions 24
3.1 Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Communication Models . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Synchronization Constraints (and Asynchrony) . . . . . . . . . . . . . 25
3.1.3 Standard Corruption Models . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.4 Send and Receive Corruptions . . . . . . . . . . . . . . . . . . . . . . 28
3.1.5 Permissionless Executions . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Problem Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Preliminaries for Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.3 Computational Indistinguishability . . . . . . . . . . . . . . . . . . . 31

iii



3.2.4 Consensus and Broadcast . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.5 Graph Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.6 Multi-Party Computation . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.7 Group Messaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Expected Constant-Round Consensus with Send and Receive Corruptions 40
4.1 Pathology of a Send Corruption . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Dolev and Strong’s Lowerbound with Send Corruptions . . . . . . . . 44
4.1.2 Recent Techniques for Adaptive, Strongly Rushing Adveraries . . . . 48
4.1.3 Generic Consensus from Broadcast . . . . . . . . . . . . . . . . . . . 49

4.2 Building Block Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.1 Digital Signatures and Coin Flipping . . . . . . . . . . . . . . . . . . 50
4.2.2 Weak Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.3 Weak Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.4 Graded Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Expected Constant-Round Synchronous Consensus for n > trcv + 2tsnd + 2tbyz 54
4.3.1 All-To-All FixReceive . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Weak Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.3 Weak Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.4 Graded Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.5 Expected Constant Round Consensus . . . . . . . . . . . . . . . . . . 63

4.4 Optimal Synchronous Consensus for Spotty Send Corruptions . . . . . . . . 68
4.4.1 Analysis for Spotty Send Corruptions . . . . . . . . . . . . . . . . . . 69
4.4.2 Optimality with Respect to Spotty Send and Byzantine Corruptions . 71

5 Permissionless Consensus 73
5.1 Resources: An Abstraction for PoX . . . . . . . . . . . . . . . . . . . . . . . 76

5.1.1 Resources Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.2 Execution Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Real-World Implementations of Resources . . . . . . . . . . . . . . . . . . . 80
5.2.1 Proof of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2.2 Proof of Stake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.3 Other Cryptographic and Non-Cryptographic PoX . . . . . . . . . . . 84

5.3 Termination and Liveness Based on Resources . . . . . . . . . . . . . . . . . 85
5.4 Necessary Assumptions for Consensus in the Permissionless Model . . . . . . 86
5.5 A Permissionless Consensus Protocol . . . . . . . . . . . . . . . . . . . . . . 88

5.5.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.2 Formal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.5.3 Theorem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.5.4 Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 From Graph Consensus To One-Bit Consensus . . . . . . . . . . . . . . . . . 98
5.6.1 A Generic Transformation . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6.2 Permissionless One-Bit Consensus Protocol Πbit . . . . . . . . . . . . 99

iv



6 Asynchronous Secure Group Messaging 104
6.1 The Key Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1.1 Key Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.1.2 The Key Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.1.3 Updating a Key Lattice . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.4 Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.1.5 Key Lattice for Generic Key Management . . . . . . . . . . . . . . . 118

6.2 Group Key Agreement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2.1 Security of GKA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Group Randomness Messaging . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.3 Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 Group Messaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.4.1 Group Messaging Security . . . . . . . . . . . . . . . . . . . . . . . . 131
6.4.2 GM from GRM and GKA . . . . . . . . . . . . . . . . . . . . . . . . 137
6.4.3 Well-Ordering and Correctness . . . . . . . . . . . . . . . . . . . . . 142
6.4.4 Security Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.5 Extension to Dynamic Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7 Composing Timed Cryptographic Primitives 151
7.1 Subtleties and Inconsistencies in Random Oracle Analysis for Time-Lock Puzzles152
7.2 A Framework for Computational Puzzles . . . . . . . . . . . . . . . . . . . . 155

7.2.1 Residual Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.2.2 Leakage and Temporary Privacy . . . . . . . . . . . . . . . . . . . . . 158
7.2.3 Simulation Budgets and Depth-Secure MPC . . . . . . . . . . . . . . 159
7.2.4 Composition of Depth-Secure Protocols . . . . . . . . . . . . . . . . . 160

7.3 Example Application: Simultaneous Multiple Round Auction . . . . . . . . . 162
7.4 Defining Time-Lock Puzzles . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.4.1 Residual Complexity and Leakage . . . . . . . . . . . . . . . . . . . . 165
7.5 Modeling Multi-Party Computation . . . . . . . . . . . . . . . . . . . . . . . 166

7.5.1 General Execution Model . . . . . . . . . . . . . . . . . . . . . . . . 167
7.5.2 Sequential Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.5.3 Depth-Bounded Secure Multi-Party Computation . . . . . . . . . . . 170
7.5.4 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.5.5 Simulation for Leaky Functionalities . . . . . . . . . . . . . . . . . . 174

7.6 Residual Complexity of a Time-Lock Puzzle . . . . . . . . . . . . . . . . . . 175
7.7 Concurrent Composition of Depth-Secure Protocols: Proof of Theorem 7.3 . 178

8 Future Work 182

Bibliography 183

v



Appendix A Encryption Definitions 192
A.1 CCA Secure Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 192

A.1.1 Message Authentication Code (MAC) . . . . . . . . . . . . . . . . . . 193
A.2 Key Encapsulation Mechanism (KEM) . . . . . . . . . . . . . . . . . . . . . 194
A.3 Authenticated Encryption with Associated Data (AEAD) . . . . . . . . . . . 195
A.4 Public Key Authenticated Encryption with Associated Data (PKAEAD) . . 197

Appendix B Dolev and Strong’s Impossibility 199

Appendix C Proof of Graph Consensus Protocol ΠG 202
C.1 Properties of an Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
C.2 Consistency of Views for Honest Participants . . . . . . . . . . . . . . . . . . 205
C.3 Outputting Consistent Honest Vertices . . . . . . . . . . . . . . . . . . . . . 213
C.4 Extracting Consistent Corrupt Vertices . . . . . . . . . . . . . . . . . . . . . 219
C.5 Consistency and Liveness of ΠG . . . . . . . . . . . . . . . . . . . . . . . . . 223

Appendix D Proof of Permissionless One-Bit Consensus Protocol Πbit 227

Appendix E Full Proofs for Group Messaging 234
E.1 Proof of Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
E.2 Full Proof of GM Construction . . . . . . . . . . . . . . . . . . . . . . . . . 238

Appendix F Full Model and Proofs for Depth-Secure Computation 252
F.1 Model for Depth-Secure MPC . . . . . . . . . . . . . . . . . . . . . . . . . . 252

F.1.1 Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
F.1.2 The Ideal/Real Paradigm . . . . . . . . . . . . . . . . . . . . . . . . 254

F.2 Sequential Composition of Depth-Secure Protocols: Proof of Theorem 7.4 . . 255

vi



LIST OF FIGURES

Page

3.1 An example DAG in which each vertex is labeled with its depth. . . . . . . 31

4.1 Dolev-Strong Broadcast ΠDS . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Modified Dolev-Strong Broadcast Protocol ΠmodDS . . . . . . . . . . . . . . . 47
4.3 Generic Consensus from Broadcast Construction . . . . . . . . . . . . . . . . 50
4.4 All-to-all FixReceive Protocol ΠFR . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Weak Broadcast Protocol ΠWB . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6 Weak Consensus Protocol ΠWC . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.7 Graded Consensus Protocol ΠGC . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.8 Expected Constant Round Consensus Protocol Π∗ . . . . . . . . . . . . . . . 64

5.1 Protocol ΠG for graph consensus . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Protocol for one-bit consensus using graph consensus . . . . . . . . . . . . . 101

6.1 Illustration of explicitly and implicitly revealed information in a Key Lattice. 111
6.2 Illustration of computable information from a key lattice where KeyRoll is not

one-way. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3 Illustration of computable information from a key lattice where KeyRoll is

one-way. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4 An example of a local key lattice in an execution with two players (blue and

red) from the perspective of the red party. . . . . . . . . . . . . . . . . . . . 115
6.5 Algorithm for GM.Init(G,w) . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.6 Algorithm for GM.Evolve() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.7 Algorithm for GM.Recv(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.8 Algorithm for GM.Enc(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.9 Algorithm for GM.Dec(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.1 Illustration of leakage profiles for two kinds of puzzles. . . . . . . . . . . . . 157

vii



LIST OF TABLES

Page

2.1 Comparison with relevant consensus protocols in mixed corruption models. . 7
2.2 Overview of the latest concurrent group messaging protocols . . . . . . . . . . . . . . 16
2.3 State of Research of Composable Time-Lock Primitives. . . . . . . . . . . . 18

viii



ACKNOWLEDGMENTS

In many ways, Karim Eldefrawy is my “true” PhD advisor. Thank you for supporting me
when I needed it most. You gave me a better education than I could have ever dreamed
possible. Ben Kreuter inspired my interest in cryptography, gave me the opportunities that
initiated my career, and became an incredible friend and mentor throughout the process.
You’ve never led me astray. Pratik Soni became my partner in learning early in this journey.
Your support throughout the highs and lows has been a constant force driving me forward.
We are forever partners in success.

I’ve had a number of academic advisors along the way, and have learned many different
things from each of them. Special thanks to Gene Tsudik, who put me in all the right
places at all the right times, opened incredible doors for me, and pushed me over the finish
line. Thank you to abhi shelat, Rachel Lin, and Stefano Tessaro for opening my eyes to the
richness and depth to be plundered in cryptography, and for teaching me so much.

I’ve learned tremendous amounts of cryptography from all of the mentors I’ve collected along
the way, including Juan Garay, Stanislaw Jarecki, Julian Loss, Victor Shoup, Nigel Smart,
and Moti Yung. In particular, Moti’s tremendous and unwavering encouragement has driven
my development as a scientist. Juan took a chance on me in a challenging time and gave me
a crucial boost that made the rest possible.

My labmates and friends at UVa, UCSB, UW, and UCI, a countable set that is still too
large to enumerate, have kept me laughing. Kelong Cong and Sashidhar Jakkamsetti were
excellent collaborators who kept me on my toes. I am so grateful for my lasting friendships
with Nathan Brunelle and Binyi Chen; I still learn computing from the two of you just by
watching. Thanks to all my colleagues at SRI International, especially Linda Briesemeister,
Nick Genise, Bob Halley, Briland Hitaj, Tim McCarthy, and Hadas Zeilberger. I thoroughly
enjoyed our time together. Thank you to Marty Humphrey, one of my favorite professors,
whose challenges, counsel, and encouragement set the stage for everything that would happen
after. And thank you to Elise deGoege Dorough, whose support kept me on the right path.

Finally, thanks to my brothers Steven, Jeremy, and Zachary. You are my moral compasses
and my inspiration.

ix



VITA

Benjamin Terner

EDUCATION

Doctor of Philosophy in Computer Science 2023
University of California, Irvine Irvine, California

Master of Science in Computer Science 2015
University of Virginia Charlottesville, Virginia

Bachelor of Science in Computer Science 2014
University of Virginia Charlottesville, Virginia

x



ABSTRACT OF THE DISSERTATION

Techniques for Almost-Asynchronous Distributed Cryptography

By

Benjamin Terner

Doctor of Philosophy in Computer Science

University of California, Irvine, 2023

Gene Tsudik, Chair

This dissertation addresses “distributed cryptography” in the presence of “almost” asyn-

chrony. Many machines collaborate to accomplish some goal – whether agreeing on a bit,

secure group messaging, or computing a function of their inputs – over a network that is not

guaranteed to deliver messages within a known time constraint. The applications in this dis-

sertation explore new tradeoffs on the spectrum of synchronous to asynchronous executions,

adversarial advantages, and efficiency.

First, we explore consensus protocols in both a poorly-studied permissioned model and a

novel permissionless model. Consensus protocols require that all parties agree on the same

output bit, and that the output is constrained by their inputs. In the permissioned model,

we study optimal constraints on highly efficient, sublinear-round protocols, where somewhat

faulty but otherwise correct parties must produce outputs consistent with fully functional,

honest parties. In the permissionless model we ask under what synchronization conditions

consensus is possible at all, and illustrate the power of a technique common to most Proof-

of-X primitives to achieve consensus in a very weakly synchronized model.

We then explore asynchronous, concurrent group messaging and provide a framework for

reasoning about group keys that simplifies their security proofs. In concurrent group mes-

saging, parties send application messages while also continuously updating the group key;

xi



in an asynchronous network, there may be many simultaneous latest group keys due to con-

current evolutions by different parties. Using our framework, we prove security of a novel

protocol that achieves better security properties in asynchronous networks than any previous

protocol.

Finally, we analyze timed cryptographic primitives and introduce a novel model for proving

security of arbitrarily composed timed primitives. The model permits an adversary to operate

an asynchronous network, but the adversary is bounded in depth to model realistic passage

of time.

For each application, we discuss or prove how the constraints applied to the asynchronous

model make the problem tractable, and explain how the resulting models represent progress

towards cryptography that could be deployed.

xii



Chapter 1

Introduction

This dissertation considers a range of applications in cryptography which use different mod-

els, different primitives, and different techniques to prove security. Chapters 4 and 5 consider

scenarios for consensus in permissioned and permissionless networks, respectively, in which

all participants produce the same output bit as a function of their inputs. Chapter 6 consid-

ers group messaging, where participants continuously agree on a set of evolving cryptographic

keys used to exchange messages securely. Chapter 7 develops a theory for the composition

of timed cryptographic primitives, such as protocols that include time-lock puzzles. Despite

the variety in these applications, the included research share themes of powerful adversaries

and adverse networks.

The asynchronous model is the most general – and most adverse – model for communication

and computation used in cryptography. Asynchrony is formally modeled in Chapter 3.

Depending on the application, it might mean that the parties executing a protocol are not

running at the same speed, or that they receive messages out of order and after arbitrary

delays, or that an adversary attacking a protocol can pause its attack to run side sessions of

similar protocols, or that all of these adverse conditions are present simultaneously. Networks

1



are modeled as asynchronous in cryptography because if a protocol is proven secure in an

asynchronous network, then it will work in any real-world network that guarantees eventual

message delivery. In practice, eventual delivery is guaranteed by a protocol like TCP [60]

over an unreliable network. However, asynchronous protocols are challenging to design, and

a number of foundational results separate the asynchronous model from synchronous models,

both via impossibility results and by showing differences in tolerable corruption threshold

(such as [58, 67] and many more).

The primary theme of this dissertation is that the network is “almost” asynchronous. “Al-

most” asynchronous means a different thing for each application, but in each case it con-

strains the network assumptions or adversary from a fully asynchronous environment in order

to make the problem more tractable, while still admitting a very powerful adversary that

models a realistic network.

– The model of Chapter 4 is synchronous, but it adds send corruptions and receive cor-

ruptions (in addition to standard byzantine corruptions) to the adversary’s corruption

budget, which allow the adversary to drop messages sent to otherwise honest-behaving

parties. This makes the network more adverse than the standard synchronous model.

– In Chapter 5, the only form of synchronization available to the parties is an upper

bound on the rate at which an abstraction designed to capture many forms of Proof-

of-X (including Proof of Work and Proof of Stake) enter the network relative to the

time it takes for messages to be delivered.

– Chapter 6 studies an asynchronous network, and the protocol in Section 6.4 includes

an optimization that trades synchrony for security or correctness.

– Chapter 7 analyzes a setting for multi-party computation where the adversary can

delay messages arbitrarily and run concurrent executions. The adversary is constrained

computationally by not permitting it to arbitrarily pause an attack to run a side session.

2



Despite these constraints on asynchrony, the hypothetical adversary in each chapter is pro-

vided additional advantages to be as powerful or more powerful than in comparable models.

Even with such a powerful adversary, the works present new feasibility results for their

respective computational problems:

– In Chapter 4, the adversary is permitted to read messages that are sent over the net-

work, and then choose to remove messages and corrupt the senders. The model allows

for an even stronger adversary than comparable work because the attacker can corrupt

the sender of messages without depleting its budget for full malicious parties. Addi-

tionally, the chapter argues that additionally allowing a “send corruption” category is

in some cases (explained in Section 4.1.1) just as pathological as a fully malicious cor-

ruption. Nevertheless, Chapter 4 presents the first constant-round consensus protocol

that allows a majority of online parties to be dishonest.

– In Chapter 5, the adversary has full information about all of the parties – including

their internal states. It can spawn arbitrarily many parties, it can corrupt arbitrarily

many parties, and it even chooses which parties send messages. It is only constrained

by how many protocol messages the corrupt parties send relative to the honest parties.

Despite this powerful adversary, Chapter 5 presents a consensus protocol in a model

designed to abstract many forms of Proof-of-X.

– In Chapter 6, an adaptive adversary delivers messages asynchronously, and some “in-

sider attacks” [10, 12] are allowed. The protocol advances the state of the art of

concurrency for secure group messaging by allowing both concurrent updates and con-

current sessions.

– In Chapter 7, an MPC adversary is constrained in depth by a fine-grained polynomial

(rather than an arbitrary polynomial, the literature standard) to model the depth-

sensitivity of security arguments for timed cryptographic primitives. These constraints

3



lead to new definitions and composition theorems for security of timed cryptographic

primitives.

The final theme of this dissertation is that each contribution is born from a change of

perspective on the problem from the common literature:

– Chapter 4 adopts a “realistic” corruption model (introduced by [131]), where parties

that are operating honestly by following the protocol specification are hampered by

network issues. The model’s novelty – and its challenge – is that these somewhat-faulty

parties should still be considered in the security definitions as if they are not faulty.

– Chapter 5 shifts focus from the number of parties participating in a protocol to the

number of messages that are sent. In the permissioned model, security arguments

bound the proportion of honest and corrupt parties, and each party sends as many

messages as it wants. In the permissionless model, security arguments bound the

number of messages that are sent in the protocol, but allow unlimited participants.

(The number of messages is constrained by making it “hard” to send a message due to

some physical constraint.)

– In Chapter 6, the definitions of forward secrecy and post-compromise secrecy – the

abilities to learn the contents of previous or future keys, respectively – are unified in a

novel key lattice framework, and security is proven based on the framework.

– Chapter 7 observes that the existing literature on timed cryptographic primitives do

not prove security in a model consistent with their constructions. It therefore presents a

falsifiable model for security of timed primitives, and proceeds through the implications

of the corresponding observations all the way to composition of multi-party protocols.

Constraining Asynchrony The protocols and frameworks studied in this thesis overcome

powerful adversaries and challenging networks by applying structure that the adversary

4



cannot break or overcome.

The protocol presented in Section 4.3 uses quorum techniques to make inferences about mes-

sages that must have been sent and received by all honest parties; to complete the protocol,

we adapt standard quorum techniques to handle both send- and receive- corruptions.

The protocol in Section 5.5 builds a graph structure that orders the messages received by the

honest parties, and uses the known upper bound on the rate of PoX to make inferences about

the ordering of events based on this graph. Intuitively, the protocol exploits the relationship

between the collective work of all parties and the (unknown) synchronization constant of the

network.

The protocol in Section 6.4 builds a lattice structure to track the evolution of the group key.

The scheme permits concurrent key updates by multiple honest parties by allowing multiple

valid group keys to exist simultaneously. To prevent the state tracked by every party from

growing exponentially, the scheme employs a homomorphic structure over key evolutions.

The scheme additionally includes a mechanism for honest parties to track which keys might

be used or will never be used again, even in an asynchronous network.

The granular time control of the model in Chapter 7 constrains the total depth of the adver-

sary’s side-sessions. In comparison to the UC [39], in which the adversary can run arbitrary

(polynomial) computations and can likewise pause its attack on a particular protocol, this

limits the computational power of the adversary.

5



Chapter 2

Related Work

This chapter overviews work related to the projects featured in this dissertation. The prob-

lems discussed in this chapter are defined in Chapter 3.

2.1 Consensus

The problem of consensus, in which a group of parties with one-bit inputs must agree on a

single-bit output, has been studied for over forty years [14, 54, 107]. The following overview

of expanded synchronous models compares results that are relevant to the constructions

in Chapters 4 and 5, including recent work in mixed corruption models, constant-round

protocols, and permissionless consensus.

2.1.1 Mixed and Hybrid Fault Models

Toward a realistic failure model in which a majority of parties may be corrupted in some way,

a line of work has explored mixed models that account for both crash faults and byzantine

6



Protocol Faults # Rounds
Modified DS (Section 4.1.1) Send & Byz: 2tsnd + 2tbyz < n O(n)

GP [72] Crash & Byz: tcra + 3tbyz < n O(n)
ZHM [131] Receive, Send, Byz: tsnd + trcv + 3tbyz < n O(n)

ELT [63] Receive, Spotty Send, Byz: trcv + tsnd + 2tbyz < n Ô(1)

ELT [63] Receive, Send, Byz: trcv + 2tsnd + 2tbyz < n Ô(1)

LS [90] Receive, Send, Byz: trcv + tsnd + 2tbyz < n Ô(1)

Table 2.1: Comparison with relevant consensus protocols in mixed corruption models.

faults. In the error-free setting, Garay and Perry [72] and Altmann, Fitzi, and Maurer

[6] show that byzantine agreement is possible if and only if n > tcra + 3tbyz, where tcra

bounds the number of crashed parties and tbyz bounds the number of byzantine parties. In

the asynchronous model, Backes and Cachin [15] showed that reliable broadcast within the

mixed model is possible if and only if n > 2tcra + 3tbyz. For byzantine agreement, Kursawe

[84] developed a protocol for the same bound (n > 2tcra + 3tbyz) assuming a public key

infrastructure (PKI). Recent work in the dishonest majority setting by Wan et al. [125]

showed round efficient broadcast protocols in the majority dishonest setting. Expanding

further into even more realistic failures, Zikas, Hauser and Maurer (ZHM) [131] gave a

protocol in the error-free synchronous model for n > trcv + tsnd +3tbyz, where trcv bounds the

number of receive corruptions and tsnd bounds the number of send corruptions. The work by

ZHM introduced parties which may be faulty but the faulty parties’ outputs must be consistent

with honest parties’ outputs because they otherwise behave honestly. (In all other corruption

models, the output of any faulty party need not be considered towards the correctness

definition.) Subsequent to the publication of the work presented in Chapter 4, Abraham et

al. [4] partially repeated the same results, and expanded to multi-valued consensus and state

machine replication with optimal thresholds of n > 2tbyz + tcra.

Table 2.1 overviews the results most relevant to Chapter 4: consensus protocols in mixed

corruption models. The table includes a construction by modifying Dolev-Strong broadcast

(Section 4.1.1) via the reduction of consensus to broadcast. In the table, Ô(R) indicates the

round complexity R is given in expectation; otherwise the round complexity is worst-case.

7



DS denotes Dolev-Strong. Observe that Loss and Stern [90] built on the results of [63] (on

which Chapter 4 is based) to provide a corruption-optimal protocol with expected-constant

round complexity.

Hybrid Corruption Models

Recent work has generalized corruptions into “sleepy” [106] or “sluggish” [76] faults that

combine properties of synchronous and asynchronous parties. With reference to Section 3.1.2,

these works model “awake” parties as synchronous and “asleep” parties are asynchronous.

They also allow parties to transition between modes subject to some constraints. In general,

leader-based protocols fail in the strongly rushing model with adaptive adversaries, as the

adversary can always adaptively put the leader to sleep.

In the sluggish model [76], a (mobile) sluggish party can be temporarily disconnected from

honest parties due to network partition, but can later rejoin. While disconnected, messages

sent by or to a party are delayed until the party is reconnected. However, in that work it is

(implicitly) required that at least half of the parties are not sluggish and participate in the

protocol at all times, and the adversary is static. Abraham et al. [5], also in the sluggish

model, require a majority of online parties to be honest at all times.

Pass and Shi [106] introduce a model in which the adversary can make parties “fall asleep”

and later wake them up (i.e., temporarily crash them) at which point all messages that they

missed are delivered at once, along with potentially some adversarially-inserted messages.

They show that in their model, a protocol requires only that a majority of the awake parties

are honest at all times. Malkhi et al. [93] consider another similar mixed model of corruption,

in which some corrupt parties attack only correctness of the protocol but not liveness, and

require that a majority of online players behave honestly at any time.

8



2.1.2 Dishonest-Majority Protocols

One might expect that because dishonest-majority broadcast protocols tolerate n > tbyz

corruptions, they are sufficient for building a consensus protocol tolerating n > tsnd + 2tbyz

corruptions via folklore reduction (discussed in Section 4.1.3), which would achieve better

corruption tolerance than the construction in Section 4.3. Section 4.1.2 explains why this

is not the case. Wan et al. [126] provide an expected constant round protocol for dishonest

majority broadcast under a weakly adaptive adversary. Another recent work [125] uses

time-lock puzzles to provide a round-efficient broadcast protocol in the presence of dishonest

majority and a strongly adaptive adversary. However, as explained in Section 4.1.2, these

approaches fail due to partitioning attacks in the presence of send-corrupt parties.

Another recent, dishonest majority byzantine broadcast protocol by Chan et al. [41] runs

in O(κ) rounds (for a security parameter κ independent of n) and requires only O(n2κ)

communication complexity by relying on the player replaceability paradigm. However, this

protocol neither works in the strongly rushing adversary model nor achieves optimal corrup-

tion thresholds within this round complexity, as it can tolerate only any constant fraction

of byzantine corruptions in n, whereas optimality requires corrupting up to n − 1 out of n

parties. (The protocol still works for smaller fractions of honest parties, but becomes as

expensive as the standard Dolev-Strong protocol). Other works that use the player replace-

ability paradigm such as [1] suffer from similar issues.

The work of Loss and Stern [90] built on the work of [63] to provide a corruption-optimal

protocol with expected-constant round complexity in the general send-corruption model.

9



2.1.3 Other Expected Constant-Round Protocols

A number of expected constant-round consensus protocols for the synchronous honest-

majority setting consider only byzantine faults. Feldman and Micali [66] gave an expected

constant round scheme for n > 3tbyz. Katz and Koo [80] later gave a protocol tolerating

n > 2tbyz, assuming a PKI and signatures. Micali [94] gave another simple protocol assum-

ing n > 3tbyz. Abraham et al. [2] gave the most efficient scheme and tolerate a strongly

rushing, adaptive adversary for n > 2tbyz.

Can ZHM [131] be Adapted to an Expected Constant-Round Protocol?

A natural attempt to achieve sub-linear round consensus tolerating n > trcv + tsnd + 3tbyz is

to adapt the protocol by Zikas, Hauser and Maurer (ZHM) [131] to an expected constant-

round protocol using the standard construction [66, 80] via graded consensus and a common

coin protocol. The protocol by ZHM is a linear-round protocol because it depends on the

phase-king paradigm [70]; the protocol must run long enough to guarantee that the king is

honest in at least one round. To move to an expected-constant round protocol, phase king is

replaced with a common coin primitive; however, known common coin constructions require

a threshold scheme. In the model of Chapter 4, threshold schemes work only when n− trcv >

2(tsnd+tbyz), meaning there are more honest parties than send-corrupt or byzantine parties. In

the dishonest majority setting where send-corrupt plus byzantine parties outnumber honest

parties, the construction suffers from the partitioning attack described above: a group of

send-corrupt parties reach the threshold independently of and without knowledge of honest

parties, and honest parties therefore output a different coin than send-corrupt parties. The

ZHM construction and corruption bound therefore fail in sublinear rounds.

10



2.1.4 Blockchains and Permissionless Consensus

Several works have studied one-bit consensus using Proof of Work (PoW) and blockchains.

Among them, Miller and Laviola [100] were among the first, and showed how to achieve

anonymous consensus from moderately hard puzzles when the network delay is known. GKL

[71] show how to achieve byzantine agreement in synchronous networks using the “Bitcoin

backbone” protocol. EFL [59] construct broadcast and consensus from Proof of Work but

require clocks and knowing the network delay.

A number of other works analyze permissionless blockchains with Proof of Work or Proof of

Stake, most notably GKL [71], PSs [104] (followed by Pass and Shi [25]) and their respective

successors. BMTZ [17] model the Bitcoin protocol in the UC model with dynamic player

sets. Ouroboros Praos [51] models a Proof of Stake blockchain with semi-synchronous com-

munication, and Ouroboros Genesis [16] presents their version of dynamic availability. The

Ouroboros protocols (weakly) synchronize their participants via a global clock functionality.

Fan, Katz, Thai, and Zhou [65] provide a Proof of Stake protocol in which parties mine

on multiple unpredictable chains. Among all the works studying PoX consensus protocols,

[122] (on which Chapter 5 is based) is the only one in a deterministic model in which the

adversary controls allocation.

Majority of Online Resources An important contribution of the line of work of blockchain

consensus is that they changed the classical perspective of security arguments from assuming

that all parties are always online. Instead of using quorum techniques [40, 63, 66, 80, 84, 94],

they rely on other techniques to show, for example, that consensus is achievable if a majority

of the online parties are honest [25], or if a majority of the online computational power is

held by honest parties [71, 104].

11



Consensus on DAGs There are many works that implement agreement on directed

acyclic graphs (DAGs). The structure of the DAG protocol presented in Chapter 5 bears

some resemblance to SPECTRE [119] and PHANTOM [120], but Chapter 5 considers a

much stronger adversary. The same is true for Meshcash [24], who adopt the model of [104].

The Avalanche protocol [115] also employs agreement on a DAG for high throughput of

consensus instances for synchronous participants in a permissioned network.

Abraham et al. [3] proposed an incentive-compatible DAG protocol that uses techniques

similar to the graph in Section 5.5, and was subsequent to the publication of the work in

Chapter 5. The adversary for [3] has full information of which parties will add vertices in

the future. Their network is synchronous, with unboundedly many parties. Also subsequent

to the initial preprint of Chapter 5, Lewis-Pye and Roughgarden [87] showed that in a

permissionless network without a bound on the total participation in the protocol, liveness

implies that no protocol is secure; they did not consider bounding instead the rate of special

messages, as is the contribution of Chapter 5.

2.2 Concurrent Group Messaging

Group key agreement and group messaging protocols have a long history. Early work focused

on generalizing the Diffie-Hellman key exchange protocol [79, 121]. Later work extended the

security guarantees (e.g., by providing authentication, forward secrecy, and post-compromise

security) [33, 35, 36, 37], and improved performance and added new features (e.g., support

for dynamic groups) [34]. Recent research has developed increasingly secure protocols in

progressively more asynchronous networks (focusing mostly on concurrency of key updates),

and the Messaging Layer Security (MLS) IETF working group1 is defining standards for

security of secure messaging.

1https://messaginglayersecurity.rocks/

12

https://messaginglayersecurity.rocks/


Ratchet Trees and Propose & Commit:

The family of key agreement protocols popularized by the Message Layer Security (MLS)

working group [20] is based on binary trees. These protocols are efficient and secure; they

require O(log(n)) public key operations to update a shared key, and they achieve both

forward secrecy (FS) and post-compromise security (PCS).

The first in this line of binary-tree protocols introduced asynchronous ratcheting trees

(ART) [46, 83]. In ART, the authors constructed the first asynchronous GKA protocol

with FS and PCS. The group initiator selects the secret keys for nodes on the tree, and

allows the group members to update the secret. TreeKEM [113] evolved ART to introduce

support dynamic for groups.

Alwen et al. [9] explained that TreeKEM does not provide adequate FS. Concretely, they

formalized the security model and showed that, in the worst case, FS is only achieved if

every group member updates their key material, which has a cost of O(n log n). To achieve

optimal FS and reduce the complexity, the authors introduced a modification to TreeKEM,

called Re-randomized TreeKEM (RTreeKEM), that uses updatable public key encryption to

roll the group key with every encryption and decryption. This reduced the healing cost to

O(log n).

Bienstock, Dodis, and Rosler [26] give a tree-based construction that works with concurrent

updates. The communication complexity varies between O(log n), when there is no concur-

rency, and O(n), when the updates are fully concurrent. Alwen et al. [10, 12] added insider

security to the family of TreeKEM protocols by considering the key schedule.

Recent evolutions of ratchet trees employ the “Propose & Commit” framework to achieve

a nontrivial amount of concurrency. Specifically, the parties can concurrently propose up-

dates, which are resolved with a serial or ordered commit in the next round. CoCoA [8]

13



handles concurrent updates within one epoch with the help of a server. Their key idea is

to apply all concurrent updates in one epoch by applying them in an order determined by

an ordering function that is a system parameter.2 Consequently, it may take up to log(n)

rounds to complete all updates. DeCAF [7] improves on CoCoA’s healing time, and requires

a blockchain for ordering. SAIK [11] explicitly models the role of the server in group key

agreement and improves on the upload cost to update the group key using multi-message

multi-recipient PKE. CmPKE [77] is similar to SAIK in these regards, with tradeoffs on the

communication costs compared to SAIK, and does not explicitly model the role of the server.

The closest work to Chapter 6 is by Weidner et al. [127], who introduced “decentralized”

continuous group key agreement (DCGKA). DCGKA makes progress on the concurrency

problems in ART and RTreeKEM so that all group members converge to the same view if

they receive the same set of messages (possibly in different orders). The key primitive that

enables concurrent updates is authenticated causal broadcast, defined in a similar way as

Lamport’s vector clocks [85]. Additionally, the authors made progress on how to manage

group membership in an asynchronous network without a central server. However, their

construction still requires a serial commitment.

In comparison to Weidner et al. [127], the construction in Chapter 6 does not require au-

thenticated causal broadcast; it permits asynchronous messaging by buffering messages that

are received out of order, and authenticates via authenticated encryption for GM. The con-

struction also does not require acknowledgements, since the key lattice enables parties to

change the group key without acknowledgments, and every party can always encrypt with

respect to the latest group key in its own view. This substantially reduces the cost of an

update because DCGKA requires n− 1 broadcast acknowledgements for an update.

2This assumes a fully synchronous network; otherwise, consensus is required.

14



Other Protocols:

There are many group key agreement and group messaging protocols that do not use the

above tree structure, e.g., generalized Diffie-Hellman protocols [79, 121]. These early pro-

tocols do not provide the strong security properties found in modern protocols or are not

efficient (i.e., requiring O(n) rounds of communication to establish a key).

Secure group messaging can be implemented by running two-party Signal between all pairs in

a group [49, 116]. If a party wants to send a message to a group, it sends the message over all

of its pairwise channels3. An advantage of this approach is that if two parties are in multiple

groups, they can reuse their pairwise channel. Forward secrecy and post-compromise security

are guaranteed by the underlying Signal protocol. This approach works in a concurrent

environment because PCS updates are transmitted only over pairwise channels and do not

need to be synchronized.

Sender Keys, currently deployed by WhatsApp [130], also builds group messaging from

pairwise Signal. During initialization, each party sends a symmetric “sender” key to all the

group members using the pairwise Signal protocol. This key is used for encrypting payload

messages by that party. Every party keeps n “sender” keys in their state where n − 1 keys

are used for decryption and 1 is used for encryption.

Sender Keys by itself does not provide PCS since an adversary who corrupts a party will

learn all the symmetric keys and decrypt all future messages. When a corrupted party sends

a new sender key, its symmetric key is healed. However, because the adversary learns all of

the symmetric keys, it can still decrypt messages sent by other parties. Fully healing the

state therefore requires every party to update its symmetric key, which has a cost of O(n2).

The construction in Chapter 6 can be viewed as a generalization of Sender Keys with im-

3In practice it is not as easy as simply creating a Signal instance between every two parties. Additional
steps need to be added for the users to establish the group ID and perform group management tasks.

15



Update Cost

Protocol Sender Receiver
Healing
Rounds

PCS FS
Active
Server

Concurrent
Updates

Proof Adaptive

Original TreeKEM [113] O(logn) O(1) n yes yes Ordering no None n/a
Causal TreeKEM [128] O(logn) O(1) n yes yes none causal StM yes

RTreeKEM [9] O(logn) O(1) 2 yes yes Ordering no ROM yes
Concurrent TreeKEM [26] O(n) O(1) 2 yes no none yes StM yes

Signal group [49, 116] O(n) O(1) 2 yes yes Prekeys yes None n/a

Sender Keys [130, 116] O(n2) O(n) 2 yes yes Prekeys yes None n/a
DCGKA [127] O(n) (□) O(1) 2 yes yes none yes (⋄) ROM no

CoCoA [8] O(logn) O(1) log(n) yes yes
Process
Updates (‡) yes (⋄) ROM yes

SAIK [11] O(logn) O(1) 2 yes yes
Process
Updates (‡) yes (△) ROM yes

DeCAF [7] O(log t) (†) O(1) log(t) yes yes blockchain yes (⋄) ROM yes
CEST [47] (Chapter 6) O(n) O(1) 2 yes yes none yes StM yes

Table 2.2: Overview of the latest concurrent group messaging protocols

proved security and functionality, where parties update the key lattice instead of holding

symmetric keys for each party. The group session heals once a corrupted party’s pairwise

channels heal because the next update it sends or receives is indecipherable to the adversary.

This requires O(n) public key operations (also O(n) communication complexity) after one

corruption.

Summary

Table 2.2 summarizes a representative sample of recent literature on group key agreement

and group messaging. The entry on the last line is featured in Chapter 6. “Update Cost”

gives the communication complexity to update a shared or pairwise key, for the sender and

the receiver, and “Healing Rounds” describes the round complexity of healing the session

after a corruption. “Active Server” is a server that provides additional functionalities other

than a PKI, such as ordering messages or post-processing updates. For example, the Signal

servers need to store single-use pre-keys and the TreeKEM servers need to order messages.

“Adaptive” means whether the adversary can adaptively pick which oracles to query during

the security game. “PCS” denotes post compromise security, and “FS” denotes forward se-

crecy. “ROM” stands for the random oracle model, “StM” denotes the standard model. (□)

an update for DCGKA requires n− 1 broadcast acknowledgements, so the total complexity

is O(n2), although the sender’s computational complexity is O(n). (⋄) These works use the

Propose & Commit paradigm, which assumes the existence of epochs and allows concurrent

proposals, but a serial commitment is required. (†) t is the number of corrupt parties. (‡)

16



The server in CoCoA and SAIK processes an update to send an individual packet to each

participant. The server also orders messages. (△) The SAIK server arbitrarily chooses one

of concurrent updates to be processed.

2.3 Timed and Fine-Grained Cryptography

Time-lock puzzles have been studied since the seminal work of Rivest, Shamir, and Wagner

(RSW) [114] more than twenty-five years ago. Over twenty years ago, Boneh and Naor [31]

introduced timed commitments as a way to achieve fairness in MPC. More recently, in-

herently sequential functions motivated by large scale consensus, distributed ledgers, and

blockchain applications have also precipitated considerable research in verifiable delay func-

tions [30, 109, 129]. The interest in time-lock primitives has yielded various notions like non-

malleable time-lock puzzles [69], non-malleable timed commitments [81], and UC-security

[21, 22] of time-lock puzzles in the random oracle model. Recently, Wan et al. [125] used

time-lock puzzles to construct more efficient broadcast with adaptive security.

Chapter 7 studies composition of timed primitives with other cryptographic primitives, and

casts the time-release of information in a falsifiable model. Table 2.3 frames the work of

Chapter 7 with respect to other recent research that studies composition of time-lock puzzles.

In the table, RO stands for “Random Oracle,” P stands for “Plain,” SAGM stands for “Strong

Algebraic Group Model,” and RC stands for “Residual Complexity.” In the “Composition”

column, UC stands for “Universal Composability,” NM stands for “Non-malleability”, and

S,C stands for “Sequential and Concurrent.”

17



Analytical Model
Protocol Gen Solve Contradiction Composition
Arapinis et al. [13] RO RO No UC
Baum et al. ‘20b [21] Trapdoor RO YES UC
Baum et al. ‘20a [22] Trapdoor RO YES UC
Freitag et al. [69] N/A P,RO N/A NM
Katz et al. [81] Trapdoor SAGM YES NM
Eldefrawy et al. [62] (Chapter 7) Trapdoor RC NO S,C

Table 2.3: State of Research of Composable Time-Lock Primitives.

2.3.1 Time-lock Puzzles in the Literature

In spite of the early work in timed primitives, the work on which Chapter 7 is based [62]

is the first (to the best of our knowledge) that considers composition of timed primitives

with fine-grained security. Recent work (below) on composability of non-malleable time-lock

puzzles and timed-commitments do not provide a full treatment of fine-grained security in

a falsifiable model.

Time-lock Puzzles. The seminal work on time-lock puzzles was produced by Rivest,

Shamir, and Wagner (RSW) [114]. Boneh and Naor [31] introduced timed-commitments,

which progressed the study of using timed primitives for fairness in MPC. Verifiable delay

functions, which are cryptographic primitives that depend on sequential work in order to

delay release of information, have also been the focus of several recent research efforts [29,

109, 129]. Bitansky et al. [27] formally defined time-lock puzzles and constructed them using

randomized encodings, which in turn depend on indistinguishability obfuscation. They also

construct weak time-lock puzzles (with fast parallel generation time, although sequentially

they may take longer to generate than to solve) from one-way functions. Baum et al. [21, 22]

formalized time-lock puzzles in the UC model [39]. Freitag et al. [69] built publicly verifiable,

non-malleable time-lock puzzles. Katz et al. [81] recently constructed non-interactive non-

malleable timed-commitments that come with a proof that they can be forced open. They

additionally showed that in a quantitative group model, speeding up squaring is as hard as

18



factoring. In terms of negative results, Mahmoody et al. [91] proved that in the random

oracle model, there are no time-lock puzzles with more than polynomial time gap.

Two additional works of note have addressed the assumptions underlying the repeated squar-

ing problem in idealized models. Rotem and Segev [117] showed that speeding up repeated

squaring in a generic ring is equivalent to factoring. van Baarsen and Stevens [124] address

multiple hardness assumptions used for timed primitives in generic Abelian hidden-order

groups.

Time-locked Cryptography and Composition. The recent work by Baum et al. [22]

studies composition of time-lock puzzles in the UC model. The recent work by Freitag et

al. [69] studies concurrent composition of non-malleable primitives. To our knowledge, these

are the only other works that consider composition of time-based primitives. The comparison

with Baum is not straightforward because there are common themes with different treat-

ments; we generalize depth-secure computation and Baum considers concurrent composition

of time-lock puzzles in UC. Baum provides an idealized version of RSW’s underlying assump-

tion, while we introduce a generic model which may leak information. Freitag et al. consider

depth-bounded adversaries against concurrent composition of time-lock puzzles and imply

small leakage until a puzzle is solved, but do not consider the more general composition with

MPC.

2.3.2 Techniques for Timed Primitives

We next overview techniques in the literature for modeling and composing timed primitives.

Fine-grained Cryptography: A number of recent works have studied fine-grained cryp-

tographic primitives. Degwekar et al. [53] initiated the study of fine-grained cryptographic

19



primitives that can be built in one complexity class and are secure against adversaries in

larger complexity classes. Egashira et al. [61] extended their results. Ball et al. [18, 19]

built fine-grained proofs-of-work by using fine-grained worst-case to average-case reductions

of hard problems. Lavigne et al. [86] studied the properties necessary to imply fine-grained

public key cryptography and presented a fine-grained key exchange protocol.

Concurrently and independently, Cohen et al.[44] provided composition theorems for a sub-

class of resource-restricted primitives that are special versions of our composition theorems.

Homomorphic Time-lock Puzzles. Malavolta and Thyagarajan [92] provided practical

homomorphic time-lock puzzles that are either additively homomorphic, multiplicatively

homomorphic, or branching programs, but they require indistinguishability obfuscation in

order to achieve full homomorphism. They also do not consider composition of their puzzles

with other cryptographic primitives.

Contrast with the Composition of Baum et al. [21, 22] Baum et al. [22] models

a new abstraction of time by allowing the adversary to control ticks of some time-keeping

functionality. They define a time-lock functionality that implements the assumption by

RSW [114], and provide a protocol that builds a puzzle with respect to this functionality.

The functionality implements an idealized version of their assumption which does not leak

information until the time-lock expires. In contrast, in Section 7.5 time is modeled by the

depth of the environment’s computation, and is therefore not controlled by the adversary. To

enforce time-based privacy, Section 7.5 models idealized leaky functionalities that respond to

environment-directed time. To model gradual release of information from a timed primitive,

we discuss how to simulate an adversary’s view as it extracts information from a time-lock

puzzle.

The central issue for Baum’s approach is a “side-door” attack in which an environment may

20



use cycles from the concurrent execution of a different session in order to solve a time-lock

puzzle in given session. The approach of Chapter 7 considers this particular attack to be

infeasible because all parties are depth-bounded, including the environment. In Section 7.5

an environment should be constrained by the same depth requirements among all of its con-

current executions. An environment that expends computational resources in a concurrent

session in order to solve a time-lock puzzle must also expend the same depth in the session

of a given time-lock protocol; therefore, although the environment may increase its parallel

computation to solve a puzzle by invoking concurrent sessions, the depth constraint remains.

The depth-bounded model specifically excludes this form of attack.

Simulation of Time-Lock Puzzles in Phases. The work of Chvojka et al. [43] builds

time-release encryptions and sequential time-lock puzzles using a phased simulation tech-

nique to argue the security. They define a sequential time-lock puzzle to be one where an

intermediate solution is considered to be the starting point of the next puzzle in the sequence.

However, the intermediate values provided to their simulators in the arguments of security

treat a different issue than arises in our proof. When they consider the simulatability of a

sequential puzzle, they must show how to simulate an intermediate step without computing

the previous steps explicitly. Their technique is to provide a function of the previous steps as

advice to the simulator for an intermediate step, but they cannot provide the true solutions

for previous sequential steps as inputs to their simulator.

The simulation-in-phases technique described in Section 7.5.5 addresses an entirely different

issue; it formulates the ability of an uninterrupted simulator to successfully simulate a prefix

of the execution ending in a specific phase, given only the information it may learn by the

end of that phase. In Section 7.5.5 all of the intermediate values of a prefix of the execution

are available to the simulator; in [43] the intermediate values from a prefix of the sequential

puzzle solution are not available.

21



2.3.3 Comparison with Other Definitions

This section compares the residual complexity model in Section 7.2.1 with popular ap-

proaches for defining time-lock puzzles in the existing literature. In both cases below, the

provided treatment is insufficient for completely modeling the use of such a primitive in

composition with other protocols.

Bitansky’s Time-lock Definition. Bitansky et al. [27] formalized the notion that up to

a certain point in time before the puzzle is solved, the solver’s distribution on the puzzle

solution retains very high pseudo-entropy. Their notion is reproduced in Definition 7.4.

Intuitively, for any puzzle with polynomial running time t and any polynomial time solver

running in time up to tε, where ε < 1 is called the gap parameter, the solver gains only

negligible advantage in guessing the solution of a challenge puzzle. This definition, however,

does not consider what happens after the solver exceeds the time-gapped running time. (The

notion of a time-lock puzzle by [69] has a similar feel, where the solver runs within some

polynomially smaller time than the puzzle has been tuned for, and also does not describe

what happens after the time-lock puzzle expires but before the honest parties solve the

puzzle.)

Blum-Blum Shub. As a more concrete and illustrative example of what happens when

a time-based primitive reaches the end of its guarantees, recall the generalized Blum-Blum-

Shub (BBS) assumption by Boneh and Naor [31].

Definition 2.1 ((n, n′, δ, ε)-Generalized BBS Assumption [31]). For g ∈ Z and a positive

integer k > n′, let Wg,k = ⟨g2, g4, g16, . . . , g22
i

, . . . , g2
2k ⟩. Then for any integer n′ < k < n

and any δ ∗ 2k-depth-bounded A,

| Pr[A(N, g, k,Wg,k mod N, g2
2k+1

) = 1]− Pr[A(N, g, k,Wg,k mod N,R2) = 1] |≤ ε

22



where the probability is taken over the random choice of an n-bit RSA modulus N = p1p2,

where p1 and p2 are equal primes satisfying p1 = p2 = 3 mod 4, and element g ∈ ZN , and

R ∈ ZN .

The assumption was first introduced for the design of a pseudo-random generator [28], and

then elegantly generalized [31] to develop timed commitments (with a trapdoor). As noted

in [31], the assumption states that given the sequence of repeated squares Wg,k of some

generator g, the k + 1st element in the sequence g2
2k+1

is indistinguishable from a random

quadratic residue, for any party whose running time is much less than 2k. This suffices for

showing the pseudo-randomness of the BBS generator.

However, for timed protocols in which any party solves a puzzle as part of the protocol,

eventually the depth of the puzzle solver must approach the sequence length 2k by definition.

At this point, the guarantee of the BBS assumption breaks down! As the solver approaches

the duration of the time-lock – even before it finally learns the solution – the distribution of

the solver’s “best guess” on the solution becomes more refined over time.

23



Chapter 3

Modeling and Definitions

This chapter presents models for distributed cryptography and definitions of computational

problems that will be used in the rest of the dissertation.

3.1 Computational Model

Throughout the thesis, every machine is modeled as an Interactive Turing Machine (ITM).

The execution model is derived from the Universal Composability (UC) Model by Canetti

[39]. For each application, the model is adapted by constraining the network and adversary.

An execution of a protocol is directed by an adversary, sometimes referred to as the envi-

ronment. (We sometimes distinguish the adversary from the environment and sometimes

combine them; we make clear which case in each section.) The adversary “activates” a party

when the adversary permits that party to perform some computation, as specified by the

party’s transition function. When the adversary activates a party, writes a message to the

party’s incoming message tape, which may be the empty string. When the party has fin-

ished executing during its activation, it writes a string to its outgoing tape, which may be

24



the empty string. The adversary reads this string, which encodes what messages the party

intends to send to other parties. (If the empty string, the party sends no messages.) The

adversary determines when (or if) to deliver the message(s) to the intended recipient(s).

In Chapters 4 and 7 the number of parties n in a specific execution is known and does not

change. In Chapter 5, this number is unbounded. In Chapter 6, it may change dynamically.

3.1.1 Communication Models

By delivering messages between parties, the adversary implements a network. The adversary

cannot modify messages sent by one party to another; this models peer-to-peer authenticated

channels. However, the adversary may always write (or inject) messages to the incoming

message buffers of the participants which were not sent by other parties.

In Chapter 5, the partiicpants in a protocol do not know the identities of the other parties

participating. In this case, the adversary must implement a multicast channel. When one

party sends a message via multicast, the adversary must deliver it to all other parties on

the network. However, a party that receives a multicast message cannot tell the difference

between a multicast and a message that was sent directly to it, or to only a subset of the

parties. (Corrupt parties can therefore take advantage of multicast to cause inconsistencies

in the views of honest parties.)

3.1.2 Synchronization Constraints (and Asynchrony)

For the sake of exposition, time is modeled an element from a totally ordered set T .1

1Only in Chapter 4 do the parties have access to clocks with which they can read the current time.
Otherwise, we use time to define an ordering of events, and parties can tell time only by the depths of the
computations that they have performed; see Lamport [85] for a discussion of equivalent executions in time.

25



An execution proceeds in time by allowing the adversary to activate some number of parties

at each time step. In general, an execution is asynchronous if the adversary is not constrained

on the number of parties it activates at each time step; the strength of the constraint levied

on the adversary determines the strength of synchronization. More formally, synchronous

computation and communication are defined as follows:

Definition 3.1 (Φ-Synchronous Computation). For a constant Φ, an execution is Φ-

synchronous if for every time t and every t′ > t, if any participant is activated Φ times

between t and t′, then every other participant is activated at least once between t and t′.

Definition 3.2 (∆-Synchronous Communication). For a constant ∆, communication in an

execution is ∆-synchronous if for any message m that is sent to participant p at time t, if p

does not receive m before t+∆, then p receives m at its first activation at or after t+∆.

Computation and communication are asynchronous if there does not exist a Φ or ∆, respec-

tively that constrains the adversary. DLS [58] modeled environments where Φ or ∆ exist

but are unknown to the protocol as partially synchronous.

Dynamic Participation Participation is dynamic to in an execution if parties can join

and leave an execution at any time. Specifically, the adversary can spawn new parties at

any time, and conversely it can also stop activating a party altogether. In this way, dynamic

participation is an extension of asynchronous computation, with the added feature that

parties can be added or removed from an execution at any time. In the classical form of

asynchronous computation, all parties are expected to be activated infinitely many times

in any infinite execution; in a dynamic environment, an infinite execution may have parties

that are activated only finitely many times due to joining and leaving, including parties that

are only active long enough to send a single message.

When computation is asynchronous but communication is synchronous – or when dynamic

26



participation is permitted in a synchronous network – parties can go through long periods

of no activation, then “wake up” and receive many messages. This model was analyzed as

early as [14] and [54].

3.1.3 Standard Corruption Models

Honest parties are those which specified protocol. Corrupt parties deviate from the protocol.

Throughout this thesis, the adversary can adaptively corrupt parties, meaning it may choose

to corrupt any party at any time, and in particular may do so after reading messages that

have been sent during an execution. Once corrupted, a party is always corrupted for the

remainder of the execution (recoveries are not considered).

The most adverse form of corruption is a malicious or byzantine corruption. In this case, the

adversary learns the party’s internal state, reads all of its incoming messages, and chooses

which messages the party sends and to whom. A malicious or byzantine party may deviate

arbitrarily from the protocol specification in order to break the desired security properties.

Rushing Adversary A rushing adversary is a strenghthening of the power of the adver-

sary’s ability to corrupt parties. A rushing adversary is permitted to read the messages

that a party sends, and after reading a message the adversary may choose to corrupt the

sending party and optionally remove the read message from the network. The adversary in

Chapters 4 and 5 is rushing. (In Chapters 6 and 7, rushing adversaries do not impact the

analysis.)

27



3.1.4 Send and Receive Corruptions

Chapter 4 additionally considers send corruptions and receive corruptions in a model in-

troduced by ZHM [131]. Send and receive corruptions are both forms of omission faults,

which were originally studied by Perry and Toueg [108], and later by Raynal and Parvedy

[103, 112]. A send corrupt party may have its messages “dropped” by the adversary, meaning

the adversary may adaptively decide not to messages sent by that party. A receive corrupt

party may have its incoming messages similarly dropped. A party can be both send-corrupt

and receive-corrupt, in which case the adversary adaptively chooses whether to deliver mes-

sages sent by or sent to the corrupt party. Note that otherwise, send-corruptions and receive

corrupt parties still follow the honest protocol. Send corruptions and receive corruptions

are both strict generalizations of crash corruptions. A crashed party ceases to both send

and receive messages, but unlike send and receive corrupt parties, a crashed party ceases to

participate.

Spotty Send Corruptions Chapter 4 introduces a spotty send corrupt party, named to

describe when a party is sometimes able to send messages and sometimes cannot send any

messages. For a spotty send corruption, the adversary must choose whether to deliver all

messages sent by the corrupt party within a period of ∆ time, or none of them. The spotty

send corruption is born from the observation that when a party’s sent messages are either

delivered to all parties or no parties, it is less harmful to the protocol execution.

Zombies Zombie parties were introduced by ZHM [131] to describe honestly behaving

parties that recognize they are corrupted and therefore drop out of the protocol. When an

honest party recognizes that it is corrupted and cannot contributed to the protocol, it sends

the message zombie to all parties and ceases to participate, outputting ⊥.

28



3.1.5 Permissionless Executions

A permissionless execution is distinct from a “classical” execution in the following ways:

1. The set of parties participating in an execution is not known to the honest parties

beforehand, and it may be determined by the adversary during the execution.

2. The adversary can corrupt arbitrarily many parties, and its corruption budget is not

bounded as a constant proportion of the total number of parties.

3. Participation is fully dynamic: (honest) parties may join and leave an execution arbi-

trarily.

The permissionless model attempts to capture internet-scale protocols where parties may

participate sporadically over inconsistent network links. Moreover, the adversary may launch

Sybil attacks [56] by spawning fake identities. In particular, some honest parties may join

an execution, send a single message, and then leave the execution forever, and this message

must factor into the decision made by the online honest parties. (This was later modeled for

MPC by Gentry et al. [73])

3.2 Problem Definitions

This section introduces notation and defines the computational problems addressed in the

rest of this thesis.

29



3.2.1 Notation

Denote by N the natural numbers and by Z the integers. For a list ℓ, denote by ℓ[i] the

ith element of ℓ. A is negligible function negl is a function such that for every polynomial

p there exists an n∗ such that for all n > n∗, negl(n) < 1
p(n)

. Write [m] = {1, . . . ,m}, and

[a, b] = {a, a+1, . . . , b− 1, b} where b > a. For a set S, |S| denotes the cardinality of S. For

graphs G and G′, G ⊆ G′ denotes that G is a subgraph of G′. Let P be the group of parties

in an execution, and let n = |P|.

3.2.2 Preliminaries for Graphs

The protocol presented in Chapter 5 is based upon graphs. A graph G = (V,E) is a set of

vertices and a set of edges between vertices. For a graph G, we denote the set of its vertices

as G.V and its edges as G.E. This work considers only directed acyclic graphs (DAGs);

therefore, every reference to a graph is a DAG. A root vertex in a graph is a vertex with

in-degree 0. In this work, every graph has exactly one root vertex. (In cryptocurrencies, this

is analogous to the genesis vertex.)

Depth of a vertex and depth of a graph are defined in a non-standard way:

Definition 3.3 (Depth of a Vertex, Depth of a Graph). Let root be the root vertex of a

graph G. The depth of a vertex v in G is defined as the length of the longest path from root

to v. The depth of G is defined as the depth of its deepest vertex.

D(G) denotes the depth of a graph G, and DG(v) denotes the depth of a vertex v in G.

When the graph is implied from context, we simply write D(v). The depth of a root vertex

is always 0. G|d denotes the subgraph of G including only vertices with depth ≤ d. Figure

3.1 illustrates the depths of vertices in a simple graph. A path from vertices v to u is denoted

v → u. A path v → u spans d depth if D(u)−D(v) = d. u ∈ G.V is reachable from v ∈ G.V if

30



0 1
1

2 3

Figure 3.1: An example DAG in which each vertex is labeled with its depth.

there is a path v → u. For a vertex v ∈ G.V , the predecessor graph of v is the subgraph of G

containing v and every vertex and edge on every path from root to v. ∪ denotes graph union

and ⊆ denotes a subgraph. indegree(v) denotes the indegree of a vertex v and outdegree(v)

denotes its outdegree. For applications, a vertex may also have a “payload” string that gives

semantics to the vertex.

3.2.3 Computational Indistinguishability

Chapters 4 and 5 assume an idealized model that does not require cryptographic hardness;

however, Chapters 6 and 7 do require cryptographic hardness. We therefore define compu-

tational indistinguishability.

Definition 3.4 (Computational Indistinguishability). Two ensembles X =

{X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N are computationally indistinguish-

able, denoted X
c≡ Y if for every probabilistic polynomial time distinguisher D there exists

a negligible function negl(·) such that for every a ∈ {0, 1}∗ and every n ∈ N

Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1] ≤ negl(n)

Chapter 7 introduces granular runtime constraints on machines by their depth; we therefore

require a notion of depth-bounded indistinguishability. In the following definition, a machine

is d-depth bounded, where d = d(n) is a polynomial function, if it runs in time no more than

d. An ensemble of machines is denoted D = {Dn}n∈N, where the depth of Dn is bounded by

d(n).

Definition 3.5 (Depth-Bounded Indistinguishability). Two ensembles X =

31



{X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N are d-depth-indistinguishable, de-

noted
d
≈ if for every d-depth-bounded distinguisher D = {Dn}n∈N there exists a negligible

function negl(·) such that for every a ∈ {0, 1}∗ and every n ∈ N

Pr[Dn(X(a, n)) = 1]− Pr[Dn(Y (a, n)) = 1] ≤ negl(n)

3.2.4 Consensus and Broadcast

In the definition of classical consensus [54, 58, 80, 107], every participant has a bit b ∈ {0, 1}

as input, and each party outputs a bit v ∈ {0, 1}. In the related primitive of broadcast

[55, 70, 125], a dealer D ∈ P wishes to send a message m ∈ {0, 1}∗ to the parties in P . Each

party p ∈ P outputs a message m′ ∈ {0, 1}∗ ∪ {⊥}.

Security of these protocols is defined with respect to the number of parties that the adversary

may corrupt. tsnd, trcv, and tbyz denote thresholds on the number of send, receive, and

byzantine corruptions, respectively, in an execution. The following definition facilitates the

problem definitions by constraining how many parties are corrupted in an execution. Note

that for most studies of consensus, tsnd = trcv = 0.

Definition 3.6 ((tsnd, trcv, tbyz)-Compliant Execution). For a protocol Π, an execution of Π

is (tsnd, trcv, tbyz) compliant if at most tsnd, trcv, and tbyz parties are send-corrupted, receive-

corrupted, and byzantine-corrupted, respectively, in the execution.

Live Parties In the following definitions, live parties are honest, send-corrupt, or receive-

corrupt but not zombies. These parties’ inputs and outputs are constrained in the security

definition because they are defined to be honestly following the protocol specification. Note

that in models where there are no send or receive corruptions, the live parties are exactly

the honest parties, and therefore the following definition is a strict generalization of the

32



literature standard (for example, [68, 80]).

Definition 3.7 (Consensus). Let Π be protocol for parties P = {p1, . . . , pn} in which each

party has an input b ∈ {0, 1}. Π is a Consensus protocol if the following properties hold

except with negligible probability.

1. (tsnd, trcv, tbyz)-Validity: Π is (tsnd, trcv, tbyz)-valid if in every (tsnd, trcv, tbyz)-compliant

execution in which all live parties have the same input b ∈ {0, 1}, all honest parties

output b.

2. (tsnd, trcv, tbyz)-Consistency: Π is (tsnd, trcv, tbyz)-consistent if in every (tsnd, trcv, tbyz)-

compliant execution in which any live party outputs v, every live party outputs v.

3. (tsnd, trcv, tbyz)-Termination: Π is (tsnd, trcv, tbyz)-terminating if in every

(tsnd, trcv, tbyz)-compliant execution, every live party outputs v ∈ {0, 1} and ter-

minates within finitely many steps.

If Π is (tsnd, trcv, tbyz)-valid, (tsnd, trcv, tbyz)-consistent, and (tsnd, trcv, tbyz)-terminating then we

call it (tsnd, trcv, tbyz)-secure.

Definition 3.8 (Broadcast). Let Π be a protocol for parties P = {p1, . . . , pn} in which a

distinguished party D ∈ P holds an input m ∈ {0, 1}∗. Π is a Broadcast with Unanimity for

Send-Corruptions protocol if the following properties hold except with negligible probability.

1. (tsnd, trcv, tbyz)-Validity: Π is (tsnd, trcv, tbyz)-valid if in every (tsnd, trcv, tbyz)-compliant

execution in which D is honest or receive corrupt (but not send-corrupt), every live

party outputs m.

2. (tsnd, trcv, tbyz)-Consistency: Π is (tsnd, trcv, tbyz)-consistent if in every (tsnd, trcv, tbyz)-

compliant execution in which any live party outputs m′ ∈ {0, 1}∗ ∪ {⊥}, every live

party outputs m′.

33



3. (tsnd, trcv, tbyz)-Termination: Π is (tsnd, trcv, tbyz)-terminating if in every

(tsnd, trcv, tbyz)-compliant execution, every live party outputs some m′ ∈ {0, 1}∗ ∪ {⊥}

and terminates within finitely many steps.

If Π is (tsnd, trcv, tbyz)-valid, (tsnd, trcv, tbyz)-consistent, and (tsnd, trcv, tbyz)-terminating then we

call it (tsnd, trcv, tbyz)-secure.

3.2.5 Graph Consensus

In an execution of a graph consensus protocol, participants have no input. Each participant

p maintains a local graph Gp based on the messages it has received so far and the protocol

specification. A graph consensus protocol specifies how participants generate new vertices,

and how to propose that other participants include the new vertices in their local graphs.

It also specifies how a participant determines whether a new vertex, which it receives in a

proposal from another participant, should be included in its local graph. For a participant p

active at time t, G
(t)
p denotes its local graph after all vertices are added at t. Each participant

p additionally maintains an output graph G∗
p, which it outputs whenever it is active. The

protocol must specify a deterministic way for each p to compute G∗
p as a function of its local

graph Gp. G
∗(t)
p denotes the output of p at time t.

An execution of graph consensus may continue indefinitely. The goal of a protocol is for

the participants’ outputs to obey consistency and liveness properties across time. Graph

consistency requires that if participants p active at t and q active at t′, output G
∗(t)
p and

G
∗(t′)
q , then one output graph must be a subgraph of the other.

Definition 3.9 (Graph Consistency). A protocol Π satisfies graph consistency if in every

execution of Π, for all times t and t′, and for all honest p and q active at t and t′, respectively:

G
∗(t)
p ̸⊆ G

∗(t′)
q =⇒ G

∗(t′)
q ⊆ G

∗(t)
p .

34



A protocol can trivially satisfy graph consistency if participants always output the empty

graph. Therefore, liveness requires that each participant p’s output G∗
p grows in time. The

following definition depends on the environment allocating resources, which is a novel con-

tribution of the work described in Chapter 5 and presented formally in Section 5.3. One can

roughly understand the number of resources allocated by time t as the number of vertices in

G
(t)
p .2

Definition 3.10 (f -Liveness). Let f :N → N. A protocol Π satisfies f -liveness if in every

execution, for every time t and honest participant p active at t: if the environment has

allocated N resources by time t, then |G∗(t)
p .V |≥ f(N).

In some applications, it is desirable to show that some proportion of the vertices in an honest

participant’s output must be generated by honest participants. If a vertex is generated by

an honest participant, it is considered an honest vertex ; otherwise, it is considered a corrupt

vertex. hon(G.V ) denotes the honest vertices in G. h-honest-vertex quantifies the guaranteed

proportion of honest vertices in a participant’s output graph.

Definition 3.11 (h-Honest-Vertex Liveness). Let h:N→ N. A protocol Π satisfies h-honest-

vertex liveness if in every execution, for every time t and honest participant p active at t:

|hon(G∗(t)
p .V )|≥ h(|G(t)

p .V |).

f -liveness and h-honest vertex liveness are sometimes referenced together by f, h-liveness.

Note that because graph consensus does not place thresholds on the number of corrupt

parties, thresholds are elided from the security definitions.

2Due to malicious withholding, this is not precisely true; however, for the purpose of intuition this suffices
until the definition is presented in Section 5.3.

35



3.2.6 Multi-Party Computation

Chapter 7 studies secure multi-party computation with timed cryptographic primitives and

therefore requires a definition for secure multi-party computation that considers fine-grained

running times of the adversary and distinguisher.

The Ideal/Real Paradigm

As in the UC model [39], our model for secure computation separates the roles of the adver-

sary and the environment. The environment directs the execution by activating parties and

the adversary. The adversary chooses which parties to corrupt and participates on behalf of

the corrupt parties. We prove security via the ideal/real paradigm described below.

Separating the environment and the adversary decouples the malicious effects of different

roles, which is especially relevant to Chapter 7. The adversary attacks the timed primitive,

and it will attempt to solve the primitive before honest parties. The environment attacks

the execution involving a timed primitive; it distinguishes the execution of a real protocol

from an idealized execution (below), and may spawn side sessions in order to help it attack

the execution.

Execution in the Real Model. In the real model, participants execute a protocol Π to

compute the desired functionality F without a trusted party. At the end of the execution,

honest parties output their protocol outputs. The corrupt parties output nothing. The

adversary outputs an arbitrary function of its inputs and the messages that corrupt parties

have received. The environment learns every output. The random variable REALΠ,A(z),Z(x)

denotes the output of the environment in a real execution of Π with honest inputs x, auxiliary

input z to A, with environment Z.

36



Execution in the Ideal Model. In an ideal execution, the parties interact with a trusted

party by submitting all of their inputs to the trusted party in the beginning of the execution.

The trusted party computes the desired function of all parties’ inputs and returns an output

to every party. At the end of the execution, honest parties output whatever they have

received from the trusted party. Corrupt parties output nothing, and the adversary outputs

an arbitrary function of its input and the messages that corrupt parties have received from the

trusted party. The environment learns every output. The random variable IDEALF ,A(z),Z(x)

denotes the output of the environment in an ideal execution of functionality F on honest

inputs x, auxiliary input z to A, with environment Z.

Defining Secure Computation

The definition of seure computation used in Chapter 7 is a strict generalization of the liter-

ature standard [75, 89]. When ds is expected polynomial time and da and de are arbitrary

polynomials, this is exactly the standard definition.

Definition 3.12 (Depth-Bounded Secure Computation: General). Let da = da(λ), ds =

ds(λ), and de = de(λ). Protocol Π (da, ds, de)-depth securely computes F if there exists a

ds-depth-bounded S such that for every real-world da-depth-bounded adversary A and every

de-depth-bounded environment Z, the following two ensembles are de-depth indistinguishable:

{REALΠ,A(z),Z(x)}x∈({0,1}∗)n,z∈{0,1}∗

{IDEALF ,S(z),Z(x)}x∈({0,1}∗)n,z∈{0,1}∗

37



3.2.7 Group Messaging

In a group messaging protocol, the parties maintain and evolve a set of group keys under

which they encrypt messages. When a party wants to send a message, it encrypts it under

one of the group keys in its local state. When a party wants to decrypt a message, it selects

a group key from its local state for decryption. In a group messaging protocol, each party

should be able to successfully decrypt every message that it receives. To aid in security, the

parties also consistently change the group key via an evolution function.

Definition 3.13 (Group Messaging). A group messaging protocol is a tuple of five stateful

algorithms (Init,Evolve,Recv,Enc,Dec) defined as follows:

– GM.Init(G,w): Initialize the protocol with group G ⊆ P and the windows size w.

Output a set of messages, one for each party in G.

– GM.Evolve(): Outputs a set of update messages, one for each party in G.

– GM.Recv(M): Processes the message M (e.g., from the network), and outputs a re-

sponse.

– GM.Enc(m): Encrypts a plaintext m and outputs a ciphertext.

– GM.Dec(c): Decrypts ciphertext c and outputs a plaintext.

A secure group messaging protocol’s algorithms are constrained for both correctness and

security. For correctness, all messages must be decrypted correctly. In the security game,

the adversary must be shown not to learn any group keys that are not explicitly held in

the states of parties it corrupts. The security properties ared defined via oracle games.

Because of the technical detail of the oracle game to describe security of group messaging,

the formalism is deferred to Chapter 6. Next we overview oracle games and highlight how

they model asynchrony.

38



Oracle Games

In an oracle game, the adversary directs a simulated execution of a protocol. The adversary

invokes the API calls of the parties in the execution by calling oracles that maintain the

state of the protocol for each party, and return the responses (i.e. messages to be sent)

that an honest party would. The adversary may also corrupt the parties represented by

specific oracles, in which case it learns the parties’ internal state. This is analogous to how

the environment directs the execution of a protocol for a multi-party computation, except

that when the environment directs the multi-party computation execution, we think of it as

activating the parties themselves, and not oracles that keep the state of the parties. The

adversary in an oracle game may also run arbitrarily many (polynomial) side-sessions of the

protocol it is attacking, by specifying to the oracles to launch new sessions.

The difference between the oracle game model and an adversary’s game for multi-party

computation is that in the oracle game, the adversary is not distinguishing between an ideal

and real execution. In the oracle game, the adversary issues a single Test query that attacks

a security property of the protocol under attack. In the fulfillment of a Test query, the

oracle flips a bit that determines whether to respond faithfully to the query or whether to

replace the response with some random value. The adversary must distinguish the possible

executions with respect to the oracle’s chosen response.

In the oracle game defined in Chapter 6, the adversary emulates an asynchronous network

by choosing to deliver messages as if the network were fully asynchronous – specifically, both

computation and communication may be asynchronous.

39



Chapter 4

Expected Constant-Round Consensus

with Send and Receive Corruptions

This chapter presents the first expected-constant round protocol for single-shot consensus in

which a majority of the online parties are dishonest. The computation and communication

model for this protocol is the strongest found in this thesis: computation is fully synchronous

– every party is activated in each time step – and communication is ∆-synchronous. The

challenge is the variety and quantity of corruptions. Some parties are send corrupted, some

are receive corrupted, and some are byzantine corrupted. The work on which this chapter is

based [63] studies the different pathologies of these forms of corruption, and asks “what are

optimal thresholds in the cryptographic setting that can be tolerated with mixed corruptions?”

For receive corruptions, the optimal threshold is achievable by applying (a simple modifica-

tion of) a protocol by ZHM, which is presented in Section 4.3.1. Surprisingly, for the most

general form of send corruption, we could not find a constant-round protocol that could

tolerate more send corruptions than byzantine corruptions; however, we also could not prove

that send corruption is as pathological to a consensus protocol as a full byzantine corruption.

40



Note that in the work by ZHM, a send corruption is as pathological as a receive corruption.

For a weaker form of send corruption termed a spotty send corruption, we showed that it is

less pathological to a consensus protocol than a byzantine corruption.

4.1 Pathology of a Send Corruption

This section discusses the pathology of “standard” send corruptions with respect to current

techniques in the literature, and describes why send corruptions appear as deleterious as full

byzantine corruptions. Although the focus is on consensus protocols, we consider techniques

for both consensus and broadcast; the two are related by a (folklore) reduction, which is

presented in Section 4.1.3.

1. We first provide an intuitive overview of the pathologies of our two forms of send

corruptions.

2. We then recall the proof by Dolev and Strong that any deterministic broadcast protocol

requires at least tbyz + 1 rounds (for at most tbyz byzantine corruptions), and we show

that the impossibility result immediately requires that when send-corrupt parties exist,

any deterministic broadcast protocol requires at least tsnd + 1 rounds (for at most tsnd

send-corruptions).

3. We show that the Dolev-Strong broadcast protocol fails as written when considering

send corruptions. We modify the protocol and show that without new ideas, its cor-

ruption threshold degrades from n > tbyz (in the original model) to n > 2(tsnd + tbyz).

4. We visit recent techniques for security against strongly rushing, adaptive adversaries

– who have the ability to adaptively remove messages from the network after they

have been sent – and show that these also fall short of a corruption threshold better

41



than n > 2(tsnd + tbyz) (which our construction in Section 4.3 achieves). One might

expect these techniques would apply to send-corrupt parties because of the adversary’s

ability to adaptively drop messages from a majority of parties. However, the techniques

fail when requiring send-corrupt parties’ outputs to be consistent with honest parties’

outputs.

Pathology of a (standard) send corruption. The standard model of a send corruption

permits the adversary to selectively drop messages by send-corrupting a party. Because this

behavior is a subset of a byzantine corruption, one would expect that corruption bounds

follow directly from the byzantine case. This is not the case in general. The consistency

property of many current protocols breaks under the specific attack that some (corrupt)

party selectively sends a message to some honest parties which other honest parties may

never receive. Therefore, a send-corrupt party may receive a message that would change its

output and fail to inform any honest party about the message.

As an illustrative example (embodying a common technique), the Dolev-Strong [55] broad-

cast protocol requires that if some honest party – whose output is constrained by definition –

receives a message, then all other honest parties will receive that message before the protocol

terminates. But as shown in Section 4.1.1, Dolev-Strong breaks down in our model because

a send-corrupt party may receive a message that would change its output but fail to forward

it.

Generalizing this theme, an adversary can undermine current techniques by dividing the

execution such that send-corrupt parties are unable to send messages to honest parties, but

send-corrupt parties receive all messages sent by honest parties. Crucially, a situation results

where there are two sets of parties with different sets of messages received by the end, but

their outputs are constrained by consistency. For example, divide an execution into sets such

that S contains all send-corrupt parties and H contains all honest parties, and let |S|> |H|.

42



Then it may be the case that a majority of parties cannot communicate with the honest

parties, but all of their outputs must be consistent.

Although we could not prove it, it appears very difficult to tolerate more send-corrupt parties

than honest parties because this partition requires the use of some threshold scheme to

ensure sufficiently many parties are “aware” of a message to allow it to influence the output.

Specifically, we do not know how to generate and use information that an honest party has not

received a message sent by a send-corrupt party as part of the protocol. On the other hand,

impossibility proofs that depend on partitioning techniques also fail in this model because

it is impossible to completely separate the send-corrupt group from the honest group, since

send-corrupt parties always receive all of the honest parties’ messages.

The spotty corruption model, described below, alleviates the above issue because it enforces

unanimity: if any send-corrupt party or honest party receives a message sent by a send-

corrupt party, then all honest and send-corrupt parties receive the message. This is sufficient

to enforce consistency of honest and send-corrupt views that permits thresholds over the

number of byzantine parties.

Pathology of a spotty send corruption. Although the “spotty” send corruption is

limited in some ways, it is still rich enough to cause failure of some popular techniques

for synchronous consensus. In particular, it is unclear how to construct a protocol that

employs leader election in order to reach constant expected round complexity in our model.

Specifically, a strongly rushing adversary can wait for a leader to be elected – and even

to send messages that attest to its election (e.g., based on a Verifiable Random Function,

VRF, as in [95, 74]) – spotty-corrupt the party, and force it to fail as leader for the duration

of its tenure, without even expending its budget towards byzantine corruptions. While in

the purely byzantine model this type of attack can be easily mitigated by using threshold

signatures (see, e.g., [88, 2]), this approach completely fails in our model, as electing a leader

43



in this way would most likely elect one of the potentially tsnd send-corrupt parties (since tsnd

can be much larger than the number of honest and in-synch parties). For this reason, recent

protocols for dishonest majority broadcast that rely on the player-replaceable paradigm, such

as [1] and [41] fail in a model that includes send corruptions.

4.1.1 Dolev and Strong’s Lowerbound with Send Corruptions

The classical lowerbound for deterministic broadcast by Dolev and Strong transfers directly

to the case of send corruptions, applying the observation (discussed in their paper) that all

of the byzantine parties in their proof are constrained to dropping messages that should be

sent, but otherwise behave honestly. A full exposition of Dolev and Strong’s lowerbound is

provided in Appendix B.

Theorem 4.1 (Dolev and Strong [55]). There is no deterministic broadcast protocol tolerat-

ing tsnd send corruptions which terminates in fewer than tsnd + 1 rounds, even assuming an

idealized PKI and signatures.

Recent work by Chan, Pass, and Shi [41] extends the lowerbound by Dolev and Strong to

randomized protocols. Because their adaptation also requires only dropping sent messages,

their lowerbound also directly transfers to the send-corrupt model.

Modifying Dolev-Strong Broadcast

As an example of the pathology of send-corruptions, recall the classical authenticated broad-

cast protocol by Dolev and Strong [55] in Figure 4.1.

The protocol uses a data structure called a sig-chain. A 1-sig-chain is a pair (m,σ), where

σ is a signature on string m. For i > 1, an i-sig-chain is a pair (m,σ), where m is an (i− 1)-

sig-chain and σ is a signature on m. A valid i-sig-chain is a sig-chain with the property that

44



Protocol 1 Dolev Strong Broadcast Protocol ΠDS

Shared Setup: Public Key Infrastructure for a signature scheme.
Inputs: The dealer D ∈ P has an input m ∈ {0, 1}∗.
Outputs: Each party p ∈ P outputs a value m′ ∈ {0, 1}∗ ∪ {⊥}.
Local Variable: Each party p ∈ P maintains a local variable S, which is a set initialized to
{}.
Protocol: The protocol begins at time 1 and proceeds in rounds. Each round party p proceeds
as follows:

1. Round 1: Dealer’s Messages The Dealer D signs its input σ ← signsk(m) and sends
(m,σ) to all parties.

2. Sig Chains For every round i from 2 to tbyz+1: For every valid (i−1)-sig-chain c that
p received at the end of round i−1 in which none of the signatures were constructed by
p, p computes σ ← signsk(c) and sends (σ, c) to all parties. For every valid i-sig-chain
c received in round i, let m′ be the message contained by c. Update S = S ∪ {m′}.

3. Output If |S|= 1, then p outputs the element m′ ∈ S. If |S|≠ 1, then p outputs ⊥.

Figure 4.1: Dolev-Strong Broadcast ΠDS

no two signatures in the sig-chain are computed using the same key. An i-sig-chain contains

a message m′ if m′ is the message of the 1-sig-chain on which the sig-chain is built.

The protocol operates as follows: In the first round, the dealer creates a 1-sig-chain containing

its input and sends the sig-chain to all parties. In every subsequent round i, any party that

received a valid i−1 chain in the previous round that did not contain a signature that it had

computed creates an i − 1 sig-chain by appending its own signature to the chain. It then

sends the i-sig-chain to all parties. In any round i, if a party receives a valid i-sig-chain, then

it adds the message m contained in the sig-chain to a set of candidate outputs. If the set

of candidate outputs contains only one candidate at the end, then the party outputs that

message. Otherwise it outputs ⊥.

Where Dolev-Strong Fails. In the send-corruption model, the Dolev-Strong protocol

fails because it is possible for send-corrupt parties to output some message m while honest

parties output ⊥. Consider an execution in which the parties are partitioned into three sets:

45



H contains all of the honest parties, S contains all send-corrupt parties, and B contains

all byzantine parties. (For the sake of this argument, we need not consider receive-corrupt

parties.) Let the dealer be send-corrupt. It is possible that in this execution, the send-

corrupt parties communicate only with parties in S ∪ B. Then send-corrupt and byzantine

parties can collectively build a tbyz+1-chain containing m and no honest parties ever receives

the dealer’s message or any sig-chain containing the message. But this violates consistency,

because all send-corrupt and honest parties are required to output the same thing.

Modifications. In order to resolve this problem, modify the protocol in two ways. First,

a party must receive an tsnd + tbyz +1-sig-chain for any message that it will output; no chain

of less than tsnd + tbyz + 1 length may add a message to the set of candidate outputs. (This

additionally requires that the protocol is run for tsnd + tbyz + 1 rounds.) Second, we update

the bounds to require that n > 2tsnd + 2tbyz. A majority of honest parties is necessary to

ensure that honest parties can always build a tsnd + tbyz + 1-sig-chain without the assistance

of byzantine or send-corrupt parties, which is necessary for validity.

The modified Dolev-Strong protocol (ΠmodDS) is presented in Figure 4.2.

Theorem 4.2. ΠmodDS is a (tsnd, tbyz)-secure broadcast protocol for n > 2tsnd + 2tbyz.

Proof. The proof is similar to the original by Dolev and Strong, subject to modifications

described above. Validity follows from the fact that when n > 2tsnd + 2tbyz and the dealer is

honest, the honest parties build a (tsnd + tbyz + 1) sig-chain, and that no sig-chain can exist

containing some m′ that the dealer did not send. Consistency follows from the fact that if

a (tsnd + tbyz + 1) sig-chain exists, then some honest party’s signature must be included. It

follows that if any honest party output m, then all honest parties receive a (tsnd + tbyz + 1)

sig-chain containing m. Assume that some honest party receives a (tsnd + tbyz + 1) sig-

chain containing m and another honest party receives a (tsnd + tbyz + 1) sig-chain containing

46



Protocol 2 Modified Dolev Strong Broadcast Protocol ΠmodDS

Shared Setup: Public Key Infrastructure (PKI) for a signature scheme.
Inputs: The dealer D ∈ P has an input m ∈ {0, 1}∗.
Outputs: Each party p ∈ P outputs a value m′ ∈ {0, 1}∗ ∪ {⊥}.
Local Variable: Each party p ∈ P maintains a local variable S, which is a set initialized to
{}.
Protocol: The protocol begins at time 1 and proceeds in rounds. Each round party p proceeds
as follows:

1. Round 1: Dealer’s Messages The Dealer D signs its input σ ← signsk(m) and sends
(m,σ) to all parties.

2. Sig Chains: For every round i from 2 to tsnd + tbyz + 1: For every valid (i − 1)-sig-
chain c that p received at the end of round i− 1 in which none of the signatures were
constructed by p, p computes σ ← signsk(c) and sends (σ, c) to all parties.

3. Output: For every valid (tsnd+ tbyz+1)-sig-chain c that p received at the end of round
tsnd + tbyz + 1, let m′ be the message contained by c and update S = S ∪ {m′}. If
|S|= 1, then p outputs the element m′ ∈ S. If |S|≠ 1, then p outputs ⊥.

Figure 4.2: Modified Dolev-Strong Broadcast Protocol ΠmodDS

m′. Then both sig-chains must include an honest signature, and therefore there must be

(tsnd + tbyz + 1) sig-chain containing m and m′ in the view of every honest party. It follows

that every honest and send-corrupt party outputs ⊥.

Can Dolev-Strong Be Fixed to Support n > tsnd + tbyz? Without new ideas, Dolev-

Strong cannot be updated to tolerate n > tsnd + tbyz (which it is easy to prove is an optimal

corruption budget). However, we cannot rule out such a threshold. In the pathological

execution described above, honest parties do not send any messages if they do not receive

any valid sig-chains. However, honest parties may send messages in each round containing

⊥, indicating “I have not received a message,” which conveys that the party’s sent message

was not dropped. This provides more information to the protocol, but we do not know how

to use such a technique to improve broadcast.

47



4.1.2 Recent Techniques for Adaptive, Strongly Rushing Adver-

aries

Recent techniques for byzantine agreement and broadcast against a strongly rushing adver-

sary also fail when requiring consistency between send-corrupt parties’ outputs and hon-

est parties’ outputs, even when the adversary is not strongly adaptive. For example, the

byzantine agreement protocol by Abraham et al. [2] and the broadcast protocol by Wan et

al. [125] achieve security against a strongly adaptive adversary by effectively committing to

any leader’s messages early in the protocol, and then revealing a leader in a later round.

This thwarts strongly rushing adaptive adversaries because by the time a leader is elected,

it is too late to corrupt the leader and remove the messages it has sent.

In the partitioning attack, send-corrupt parties are able to communicate with each other but

not with the honest parties, and are able to reach signature thresholds on messages that no

honest party ever receives. For example, in [2], messages often require b+1 distinct signatures

(implying at least one honest party signed a message) in order to be recognized by an honest

party. But when there are more send-corrupt parties than honest parties, any threshold

number of signatures that honest parties must be able to attain on their own must also

be attainable by send-corrupt parties only. This can cause send-corrupt parties to adopt

a different leader in some step than the honest parties. Similarly, in [125], send-corrupt

parties’ puzzles may never be delivered to honest parties. When honest parties choose a

leader based on the solutions to a set of time-lock puzzles, send-corrupt parties may make a

decision based on a larger set than the honest parties, and their decisions may differ. This

form of attack is prevented by the implicit echoing assumption in [125], but it does not carry

into the send-corrupt model. In our model, this attack is thwarted by requiring the number

of honest parties be greater than 2(tsnd+ tbyz), as thresholds on the number of signatures can

enforce that some honest party signs a message.

48



4.1.3 Generic Consensus from Broadcast

This section presents the the folklore construction (also discussed by Fitzi [68]) of achieving

consensus using a broadcast primitive. Recall that we do not know how to prove an optimal

corruption threshold for consensus in our regime for the general form of send corruption.

By this construction, the problem is reduced to finding a broadcast protocol tolerating

n > trcv + tsnd + 2tbyz.

Given a broadcast protocol ΠB, all parties simultaneously broadcast their inputs. Each party

counts the number of broadcasts for which it outputs 0, 1, and ⊥, and it outputs whichever

of 0 and 1 appears more. In our model, we require that n > tsnd + trcv +2tbyz to enforce that

even if all send-corrupt parties’ broadcasts and receive-corrupt parties’ broadcasts output

⊥ (because they fail in their own respective ways), a majority of the remaining parties are

honest.

Note that it is still an open problem (with closest attempt coming from Wan et al. [126])

to obtain a constant round byzantine broadcast protocol for dishonest majority, with only

crash and byzantine faults. Our model is still stronger than theirs, as we consider a strongly

adaptive adversary (theirs is weakly adaptive) and permit send-corruptions.

Lemma 4.1. If there exists a (tsnd, trcv, tbyz) secure broadcast protocol for n > tsnd+trcv+2tbyz

then there is a (tsnd, trcv, tbyz)-secure consensus protocol for n > tsnd + trcv + 2tbyz.

Proof. Given a (tsnd, trcv, tbyz) secure broadcast primitive or protocol ΠB for n > tsnd + trcv +

2tbyz, we construct a corresponding consensus protocol ΠC as outlined in Figure 4.3.

We prove that ΠC is a (tsnd, trcv, tbyz)-secure protocol. Termination follows from the fact

that ΠB terminates. Consistency follows from consistency of ΠB, which requires that if

any live party output m ∈ {0, 1,⊥} from any instance of ΠB, then all live parties output

the same thing. It follows that every live party has the same values of n0, n1, and n⊥.

49



Protocol 3 Consensus from Broadcast ΠC

Inputs: Each party p ∈ P has an input b ∈ {0, 1}.
Outputs:Each party p ∈ P outputs v ∈ {0, 1}.
Protocol: Each party p proceeds as follows:

1. Broadcast Input: Each party broadcasts its input to all other parties using ΠB.

2. Count Received Bits: For u ∈ {0, 1,⊥}, let nu be the number of broadcasts in the
previous step for which p output u.

3. Output: Output v ∈ {0, 1} for which nv > n1−v. If n0 = n1 then output 1.

Figure 4.3: Generic Consensus from Broadcast Construction

Validity follows from the fact that even if all send-corrupt parties’ broadcasts output ⊥

and all receive-corrupt parties become zombies before completing their broadcast protocols

(implicitly assuming that a protocol at worst outputs ⊥ if a receive-corrupt sender does not

complete the protocol), then there are still more honest parties who successfully broadcast

than byzantine parties. This follows from n− tsnd − trcv > 2tbyz.

4.2 Building Block Primitives

This section presents the building blocks for the expected-constant round consensus protocol

in Section 4.3.

4.2.1 Digital Signatures and Coin Flipping

Our constructions require the use of a digital signature scheme. In particular, we assume

that parties have access to a public key infrastructure (PKI) for a digital signature scheme,

meaning each party is aware of a set of public keys {pk1, . . . , pkn}, where pki is associated

50



with pi for i ∈ [n]. We assume that all parties choose their own public and private keys; in

particular, some parties may adversarially choose their key pairs. Our constructions addi-

tionally assume an idealized signature scheme for which signatures are perfectly unforgeable;

when using signature schemes that achieve unforgeability against computationally bounded

adversaries, the protocols achieve our desired properties except with negligible probability.

Additionally, our construction requires the use of an unbiasable coin flipping protocol Πcoin.

Our protocols assume idealized access to such a primitive, which may be considered to be

implemented by an ideal functionality that takes no input (or more formally, takes as input

the empty string) and delivers a uniformly random bit to all parties. At a high level, we

require that:

– Until at least one live party queries Πcoin in the r-th invocation, the output for that

invocation is uniformly distributed for the adversary.

– All live parties output the same value in Πcoin.

Such a coin flipping protocol may be instantiated (assuming a trusted setup) by augmenting

threshold signatures [88] (using threshold tbyz + 1, see below) with a protocol for reliable

sends in our model, such as FixReceive ([131], or ours below).

We now define a series of building block protocols that build up to broadcast and binary

consensus in our model. Recall that binary consensus and broadcast are already defined in

Definitions 3.7 and 3.8.

4.2.2 Weak Broadcast

The first building block is a weak broadcast primitive. In a weak broadcast protocol, a dealer

D ∈ P wishes to send a message m ∈ {0, 1}∗ to the parties in P . Each party p ∈ P outputs

51



a message m′ ∈ {0, 1}∗ ∪ {⊥}, subject to the following constraints:

Definition 4.1 (Weak Broadcast). Let Π be a protocol for parties P = {p1, . . . , pn} and a

distinguished party D ∈ P holds an input m ∈ {0, 1}∗. Π is a Weak Broadcast protocol if

the following properties hold except with negligible probability.

1. (tsnd, trcv, tbyz)-Validity: Π is (tsnd, trcv, tbyz)-valid if in every (tsnd, trcv, tbyz)-compliant

execution in which D is honest or receive corrupt (but not send-corrupt), every live

party outputs m.

2. (tsnd, trcv, tbyz)-Unanimity: Π is (tsnd, trcv, tbyz)-unanimous if in every (tsnd, trcv, tbyz)-

compliant execution in which D is live, either every live party outputs m ∈ {0, 1}∗ or

every live party outputs ⊥.

3. (tsnd, trcv, tbyz)-Consistency: Π is (tsnd, trcv, tbyz)-consistent if in every (tsnd, trcv, tbyz)-

compliant execution in which any honest party outputs m′ ∈ {0, 1}∗, every live party

outputs m′ or ⊥.

4. (tsnd, trcv, tbyz)-Termination: Π is (tsnd, trcv, tbyz)-terminating if in every

(tsnd, trcv, tbyz)-compliant execution, every live party outputs some m′ ∈ {0, 1}∗ ∪ {⊥}

and terminates within finitely many steps.

If Π is (tsnd, trcv, tbyz)-valid, (tsnd, trcv, tbyz)-consistent, and (tsnd, trcv, tbyz)-terminating then we

call it (tsnd, trcv, tbyz)-secure. If Π is additionally (tsnd, trcv, tbyz)-unanimous, then we call it

(tsnd, trcv, tbyz)-secure with unanimity.

4.2.3 Weak Consensus

In a weak consensus protocol, all honest parties have an input b ∈ {0, 1,⊥}, and all honest

parties are expected to output a value v ∈ {0, 1,⊥}, subject to the following:

52



Definition 4.2 (Weak Consensus). Let Π be a protocol for parties P = {p1, . . . , pn} in which

every party p ∈ P has an input b ∈ {0, 1}. Π is a Weak Consensus protocol if the following

properties hold except with negligible probability.

1. (tsnd, trcv, tbyz)-Validity: Π is (tsnd, trcv, tbyz)-valid if in every (tsnd, trcv, tbyz)-compliant

execution in which all honest parties have the same input b and no live parties have

input 1− b, all honest parties output b.

2. (tsnd, trcv, tbyz)-Consistency: Π is (tsnd, trcv, tbyz)-consistent if in every (tsnd, trcv, tbyz)-

compliant execution in which any live party outputs v ∈ {0, 1}, no live party outputs

1− v.

3. (tsnd, trcv, tbyz)-Termination: Π is (tsnd, trcv, tbyz)-terminating if in every

(tsnd, trcv, tbyz)-compliant execution, every live party outputs v ∈ {0, 1,⊥} and

terminates within finitely many steps.

If Π is (tsnd, trcv, tbyz)-valid, (tsnd, trcv, tbyz)-consistent, and (tsnd, trcv, tbyz)-terminating then we

call it (tsnd, trcv, tbyz)-secure.

4.2.4 Graded Consensus

Graded consensus was originally introduced by Feldman and Micali [66]. In a graded con-

sensus protocol, each party has an input b ∈ {0, 1}. Each party is expected to output a pair

(v, g) ∈ {0, 1}2, where v is the output bit and g is a grade.

Definition 4.3 (0/1 Graded Consensus). Let Π be a protocol for parties P = {p1, . . . , pn}

where each party has input b ∈ {0, 1,⊥}. Π is a 0/1 Graded Consensus protocol if the

following properties hold except with negligible probability.

53



1. (tsnd, trcv, tbyz)-Validity: Π is (tsnd, trcv, tbyz)-valid if in every (tsnd, trcv, tbyz)-compliant

execution in which all honest parties have the same input b ∈ {0, 1} and no live parties

have input 1− b, all live parties output (b, 1).

2. (tsnd, trcv, tbyz)-Consistency: Π is (tsnd, trcv, tbyz)-consistent if in every (tsnd, trcv, tbyz)-

compliant execution in which any live party outputs (v, 1), every live party outputs

(v, g) ∈ {0, 1}2.

3. (tsnd, trcv, tbyz)-Termination: Π is (tsnd, trcv, tbyz)-terminating if in every

(tsnd, trcv, tbyz)-compliant execution, every live party outputs (v, g) ∈ {0, 1}2 and

terminates within finitely many steps.

If Π is (tsnd, trcv, tbyz)-valid, (tsnd, trcv, tbyz)-consistent, and (tsnd, trcv, tbyz)-terminating then we

call it (tsnd, trcv, tbyz)-secure.

4.3 Expected Constant-Round Synchronous Consen-

sus for n > trcv + 2tsnd + 2tbyz

This section presents a protocol for consensus in synchronous networks in the presence of

send corruptions, receive corruptions, and byzantine corruptions where digital signatures are

available. The protocol is (tsnd, trcv, tbyz)-secure for n > trcv + 2tsnd + 2tbyz. Section 4.4 shows

that the same protocol is (tsnd, trcv, tbyz)-secure for n > trcv+tsnd+2tbyz when send corruptions

are spotty, and that corruption budget is optimal.

Towards presenting the consensus protocol, we first present protocols for weak broadcast,

weak consensus, and graded consensus. Before these building blocks, we introduce another

protocol for reliable sending when all parties send messages to each other. A party detects

whether it is receive-corrupt based on the number of messages it receives; if so, it becomes

54



Protocol 4 All-To-All FixReceive Protocol ΠFR(tsnd, trcv, tbyz)
Inputs: Each party p ∈ P has an input m ∈ {0, 1}∗.
Outputs:Each party p ∈ P outputs some message for every other party in P , or outputs
zombie.
Protocol: The protocol proceeds in two rounds, in which every party sends its input m
to every other party, and then parties forward the unique messages they have received, as
follows:

1. Send Messages: Each party sends its signed input m to every other party.

2. Replay: Every party forwards every unique message that it received in Round 1 to
every other party. If a party did not receive any unique messages in Round 1, it sends
⊥ to every other party.

3. Output: If a party p does not receive more than n− tsnd − tbyz > tbyz + trcv messages
(including ⊥) in either round, then it sends zombie to all other parties, outputs ⊥, and
becomes a zombie. Otherwise, p outputs the set of unique messages that it received in
Round 2.

Figure 4.4: All-to-all FixReceive Protocol ΠFR

a zombie and notifies the other parties. If not, it continues to participate and outputs the

messages that it received.

4.3.1 All-To-All FixReceive

We present a protocol that is similar to FixReceive from [131], tuned for the common scenario

in our protocols, in which all parties attempt to send a message to all other parties. The

parties all forward unique messages that they receive, in order to ensure that every party

either receives message that was sent, or detects that it is receive-corrupted. The parties

output all unique messages that they receive during the protocol.

We prove that a receive-corrupt party that does not become a zombie must receive a message

from another honest or send-corrupt party. We then prove that if some honest party attempts

to send a messagem via the protocol, then every non-zombie party must receive that message.

Lemma 4.2. Any party p becomes a zombie during ΠFR only when it is receive-corrupt. If p

55



does not become a zombie then it received a message from at least one honest or send-corrupt

party.

Proof. If p receives fewer than n− tsnd − tbyz then it must be receive-corrupt, since at most

tsnd send-corrupt parties and tbyz byzantine parties may not send messages to p. If p does

not become a zombie, then it must receive at least n − tsnd − tbyz > tbyz + trcv messages.

Therefore, one of the messages it received must have been from an honest or send-corrupt

(but not also receive-corrupt) party.

Lemma 4.3. If an honest party or receive-corrupt party (but not send-corrupt) sends a

message m using ΠFR, then every live party receives m or becomes a zombie.

Proof. Follows from the fact that in the first round, all honest parties and send-corrupt

receive m. In the second step, if any party p does not become a zombie, then it must receive

a message either some honest or send-corrupt party, which must include m.

4.3.2 Weak Broadcast

Our protocol for weak broadcast is presented in Figure 4.5. It follows a standard construction,

adapted for our corruption model by invoking ΠFR to distribute messages. It permits a

designated dealer to send an arbitrary message m to all parties, with the guarantee that

every party outputs either m or ⊥.

Lemma 4.4. Protocol ΠWB(tsnd, trcv, tbyz) is a (tsnd, trcv, tbyz)-secure weak broadcast protocol

for n > tsnd + trcv + 2tbyz.

Proof. Termination is trivial. We prove validity and consistency.

56



Protocol 5 Weak Broadcast Protocol ΠWB

Shared Setup: Public Key Infrastructure for a signature scheme, every party knows the
identity of the dealer and its public key pk.
Inputs: The dealer D ∈ P has an input m ∈ {0, 1}∗.
Outputs: Each party pi ∈ P outputs a value m′ ∈ {0, 1}∗ ∪ {⊥}.
Protocol: The protocol begins at time 0 and proceeds in rounds, in which each round lasts
for ∆ time. Each round party p proceeds as follows:

1. Dealer’s Messages: The Dealer D signs its input σ ← signsk(m) and sends
(deal,m, σ) to all parties, where σ is the signature on m using its secret signing key sk.

2. Echo Dealer’s Value: Parties run ΠFR based on the messages they received from
D. If p received a message from D, let (m′, σ) be the message and signature that p
received. p inputs (echo,m′, σ) to ΠFR. Otherwise, p inputs (echo,⊥,⊥) to ΠFR.

3. Replay: Parties again run ΠFR based on the messages they received in the previous
round, where each party provides all of the unique messages it received in the previous
ΠFR as input.

4. Verification and Output: If p did not output any messages signed with D’s key from
the first run of ΠFR, then it outputs ⊥. If in the outputs of the second run of ΠFR, p
receives any two pairs (m′

i, σi) and (m′
j, σj) such that m′

i ̸= m′
j but verpk(σi) = 1 and

verpk(σj) = 1, then p outputs ⊥. Otherwise, p outputs the unique message m′ that it
received in the first run of ΠFR whose signature verifies with D’s public key.

Figure 4.5: Weak Broadcast Protocol ΠWB

(tsnd, trcv, tbyz)-Validity: If the dealer is honest or receive-corrupt (but not send-corrupt)

then every honest party receives a valid signature on the dealer’s input m from the dealer.

Then, by Lemma 4.3, all non-zombie parties output m from the first run of ΠFR. By the

unforgeability of our idealized signature scheme, no signed message m′ under the dealer’s

key can be forged. Therefore, every live party outputs m.

(tsnd, trcv, tbyz)-Consistency: Assume that honest party p outputs m and live party q out-

puts m′. Then p forwards m and its signature to q via the second invocation of ΠFR. By

Lemma 4.3, q must outputm and its signature from the second invocation of ΠFR, or become

a zombie. Because q is not a zombie, it received a signed message containing m that verifies

with the dealer’s public key, and therefore does not output m′, a contradiction.

57



We provide an additional statement about the outputs of ΠWB when the sender is corrupt

but not byzantine. Specifically, consistency holds over the outputs of all live parties when

the dealer is send-corrupt (and not only when some honest party outputs m ̸= ⊥).

Lemma 4.5. When the dealer is send-corrupt, if one live party outputs m ̸= ⊥, then every

live party outputs m′ ∈ {m,⊥}

Proof. Follows directly from unforgeability of the idealized signature scheme.

4.3.3 Weak Consensus

We present our weak consensus protocol ΠWC in Figure 4.6. The protocol is an adaptation

of the reduction from Weak Consensus to Weak Broadcast [68], modified for our corruption

setting. Specifically, the protocol proceeds in two synchronous rounds. First, in parallel,

each party signs its protocol input and sends its signed input to all parties. Second, upon

receiving all other parties’ inputs, each party attempts to generate a certificate in favor of

some output value. A certificate for a bit u is a set of n − tsnd − trcv − tbyz unique, valid

signatures on u. If a party is able to generate a certificate, it sends the certificate to all other

parties.

A party outputs a bit v only if it meets three conditions: First, it must generate a certificate

in the beginning of the second round; second, it must receive at least n − tsnd − trcv − tbyz

valid certificates from distinct parties; third, it must not receive a valid certificate for 1− v

from any other party. Otherwise it outputs ⊥.

Intuitively, validity of the protocol is guaranteed by the fact that if all live parties have input

b, then all honest parties will be able to construct a certificate for b, and there will not be

enough corrupt parties to construct a certificate for 1− b. Consistency is guaranteed by the

fact that if two live parties are able to generate certificates for opposite values, then they

58



Protocol 6 Weak Consensus ΠWC(tcra, tbyz)
Shared Setup: Public Key infrastructure for a signature scheme.
Inputs: Each party p ∈ P has an input b ∈ {0, 1,⊥} and a secret signing key for the signature
scheme.
Outputs: Each party p ∈ P outputs a value v ∈ {0, 1,⊥}.
Protocol: The protocol begins at time 0 proceeds in rounds, in which each round lasts for ∆
time. Each party pi proceeds as follows:

1. Sign Inputs: In parallel, each party signs its input bit and sends its signed input to
all other parties.

2. Construct Certificates and WB: Each party collects all of the signed input bits
from the other parties. If there is a v ∈ {0, 1} for which n − tsnd − trcv − tbyz valid
signed messages are received, p constructs a certificate composed of n− tsnd− trcv− tbyz
signatures from distinct parties on v. The parties then invoke n weak broadcasts
in parallel, in which pi is the dealer in the ith weak broadcast, and pi provides its
certificate as input if it has one; otherwise pi provides ⊥ as its input.

3. Output: Each party receives any certificates sent to it in Round 2. If p constructed
a certificate for some v in round 2 AND p has received at least n − tsnd − trcv − tbyz
certificates for v by the end of round 2 from distinct parties AND p has not received
a valid certificate for 1− v, then p outputs v. Otherwise, p outputs ⊥.

Figure 4.6: Weak Consensus Protocol ΠWC

must share their certificates with each other, and then both output ⊥.

Lemma 4.6. Protocol ΠWC(tsnd, trcv, tbyz) is a (tsnd, trcv, tbyz)-secure Weak Consensus protocol

in synchronous networks for n > trcv +
3
2
tsnd + 2tbyz.

Proof. Termination is trivial. We separately prove validity and consistency.

(tsnd, trcv, tbyz)-Validity : If all honest parties have input b, then because there are at least

n− tbyz − tsnd − trcv honest parties, every honest party receives at least n− tbyz − tsnd − trcv

signatures on b in the first round. It follows that at least n− tbyz − tsnd − trcv honest parties

construct valid certificates for v and weak broadcast them to all live parties. By validity of

ΠWB, all of these weak broadcasts are received by all live parties. Moreover, because no live

parties have input 1− b and n− tbyz − tsnd − trcv > tbyz, no certificate can be constructed by

59



corrupt parties for 1− b. Therefore, every live party outputs b.

(tsnd, trcv, tbyz)-Consistency : Assume live party p outputs v and live party q outputs 1−v.

Then p must have received at least n − tbyz − tsnd − trcv certificates for v and q must have

received at least n− tbyz − tsnd − trcv certificates for 1− v.

Let A be the set of parties from which p received a certificate and B be the set of parties

from which q received a certificate. Note that by validity and Lemma 4.5, no live party in

A may also be in B, or vice versa; otherwise, q (respectively p) received a certificate for v

(respectively 1− v), and q (respectively p) did not output 1− v (respectively v). Therefore,

only corrupt parties may be in both p and q, and there are at most b of them.

We proceed toward contradiction by showing that in fact, there must be some honest or

receive-corrupt party in both A and B. We do so by arguing about the size of the union of

A and B. If |A ∪ B|> tsnd + tbyz, then there must be some honest or receive-corrupt party

that weak broadcasted the same certificate to p and q, and by validity both p and q received

that certificate. This is sufficient to conclude the proof, because then p or q does not output

v or 1− v, as argued above.

Recall that |A ∪ B|= |A|+|B|−|A ∩ B|. We have argued that |A|≥ n − tbyz − tsnd − trcv,

|B|≥ n− tbyz− tsnd− trcv, and |A∩B|≤ tbyz. Then |A∪B|≥ 2(n− tbyz− tsnd− trcv)− tbyz, and

when n > trcv+
3
2
tsnd+2tbyz, |A∪B|> tsnd+ tbyz. As explained above, this is a contradiction.

4.3.4 Graded Consensus

Graded consensus protocol ΠGC is presented in Figure 4.7; it is an adaptation to our fault

model of the reduction of graded consensus to weak broadcast discussed by Fitzi [68]. Specif-

60



Protocol 7 Graded Consensus ΠGC(tsnd, trcv, tbyz)
Inputs: Each party p ∈ P has an input b ∈ {0, 1,⊥}
Outputs: Each party p ∈ P outputs a pair (v, g) ∈ {0, 1}2
Protocol: The protocol begins at time 0 and proceeds in synchronous rounds, labeled below,
where each round lasts long enough for its corresponding subprotocol to complete. Each
party p proceeds as follows:

1. Weak Consensus: Run ΠWC with b as input. Let b′ denote the output of ΠWC.

2. Weak Broadcast: In parallel, all parties invoke n copies of ΠWB(tsnd, trcv, tbyz), where
pj is the dealer in the jth copy. pj uses the value b′ as its input to ΠWB. For u ∈
{0, 1,⊥}, let nu denote the number of weak broadcasts for which p outputs u.

3. Output:

– Assign v ← u ∈ {0, 1} for which nu > n1−u. Break ties by assigning v ← 1.
Assign g ← 1 if nv ≥ n− tbyz − trcv − tsnd. Else g ← 0. Output (v, g)

Figure 4.7: Graded Consensus Protocol ΠGC

ically, ΠGC proceeds in synchronous rounds in which two subprotocols are invoked. First,

parties invoke a weak consensus protocol, using their protocol inputs as input to the weak

consensus protocol. Second, in parallel, all parties weak broadcast their outputs from the

weak consensus protocol. Parties determine their outputs based on the weak broadcasts they

receive. First, a party sets the bit v to the value u ∈ {0, 1} for which it received more weak

broadcasts carrying u than 1 − u. Second, a party sets its grade g to 1 if it receives than

n − tbyz − trcv − tsnd weak broadcasts carrying bit v, and sets its grade to 0 otherwise. It

then outputs (v, g). Intuitively, each party outputs a bit v based on the majority of weak

broadcasts that it has received. A party outputs grade 1 if it has received a large enough

majority of weak broadcasts carrying v that it is guaranteed no other honest party has re-

ceived a majority of weak broadcasts carrying 1 − v. The proof follows from a standard

quorum argument.

Lemma 4.7. Protocol ΠGC(tsnd, trcv, tbyz) is a (tsnd, trcv, tbyz)-secure graded consensus protocol

in synchronous networks for n > trcv + 2tsnd + 2tbyz.

Proof. Termination is trivial. We separately prove validity and consistency.

61



(tsnd, trcv, tbyz)-Validity: By the validity of ΠWC, if all honest parties have the same input

b ∈ {0, 1} and no live parties have input 1−b, then every live party outputs b from ΠWC, and

no live party outputs 1− b from ΠWC. Next, every honest party weak-broadcasts b via ΠWB,

so there are at least n−tbyz−tsnd−trcv weak broadcasts from which each honest party outputs

b. Moreover, because no live party outputs 1− b from ΠWC, there are at most tbyz executions

of weak broadcast from which any party outputs 1−b. Because n− tbyz− tsnd− trcv > tbyz (by

assumption), each honest party outputs b as its value. Because at least n− tbyz − tsnd − trcv

honest parties weak broadcasted b, each live party outputs 1 as its grade.

(tsnd, trcv, tbyz)-Consistency: Suppose a live party pi outputs (v, 1) for v ∈ {0, 1} and a live

party pj outputs (1− v, g) for some g ∈ {0, 1}.

First we establish that no live party weak-broadcasted 1−v in Round 2. It must be the case

that pi output v from at least n − tbyz − tsnd − trcv parties in Round 2. Because n − tbyz −

tsnd− trcv > tbyz, there must be some live party that sent v to pi. Let this honest party be q.

It must therefore be the case that q output v from the execution of ΠWC. By the consistency

of ΠWC, no live party output 1− v from ΠWC, and therefore no live party weak-broadcasted

1− v.

Next, consider that pi received at least n − tbyz − tsnd − trcv weak broadcasts of v. We now

consider the view of pj

1. In at most s weak broadcasts, the dealer was send-corrupt; therefore pj output ⊥ from

at most s of the broadcasts with live dealer from which pi output v.

2. Let b∗ be the number of weak broadcasts with byzantine dealer from which pi output v.

By consistency of weak broadcast, pj must output v or ⊥ from those weak broadcasts.

Because pj output (1 − v, g) it must be the case that n1−v > nv in pj view. By the above

62



statements, nv must be at least n − tbyz − tsnd − trcv − s − b∗ in pj’s view. Because only

byzantine parties may have weak broadcasted 1− v, and because b∗ corrupt parties did not

weak broadcast 1− v, n1−v is at most tbyz − b∗ in pj’s view. This is a contradiction because

n− tbyz − tsnd − trcv − s− b∗ > tbyz − b∗ when n > r + 2tsnd + 2tbyz, and therefore nv > n1−v

in pj’s view and pj did not output (1− v, g). This is a contradiction.

4.3.5 Expected Constant Round Consensus

Figure 4.8 presents Π∗, our expected-constant round consensus protocol. The protocol follows

the standard coin-loop paradigm to go from graded consensus to byzantine agreement. The

protocol ensures that when a party terminates, it holds a certificate that it can send to all

parties in order to make them terminate with the same value.

Theorem 4.3 (Main Theorem). Π∗(tsnd, trcv, tbyz) is a Π∗(tsnd, trcv, tbyz)-secure consensus pro-

tocol in synchronous networks for n > trcv + 2tsnd + 2tbyz, where a common coin primitive is

available.

We proceed to prove the theorem via a sequence of lemmas. We start with validity.

Lemma 4.8 (Validity). Π∗(tsnd, trcv, tbyz) is (tsnd, trcv, tbyz)-valid in synchronous networks for

n > trcv + 2tsnd + 2tbyz.

Proof. If all live parties have input v, then by (tsnd, trcv, tbyz)-validity of Graded Consensus,

each live party outputs (v, 1) from every iteration of Graded Consensus. It follows that the

first time Πcoin outputs v, all live parties output v.

Before proving consistency and termination, we prove the following claim of any

(tsnd, trcv, tbyz)-compliant execution of Π∗ that will facilitate the proofs of both properties:

63



Protocol 8 Expected Constant Round Protocol Π∗(tsnd, trcv, tbyz)
Common Setup: The parties have access to a public key infrastructure for some signature
scheme.
Inputs: Each party p ∈ P has an input b ∈ {0, 1}
Outputs: Each party p ∈ P outputs some b′ ∈ {0, 1}
Internal Variable: Each party maintains a variable v ∈ {0, 1} which is initialized to b. For
each u ∈ {0, 1}, each party also maintains a set Du of distinct (decide, u) messages that it
has received.
Protocol: The protocol begins at time 0 and proceeds in synchronous rounds. Each party p
proceeds as follows:

– Loop starting with iteration i = 0 until terminating:

1. Subround A (Graded Consensus): Run ΠGC(tsnd, trcv, tbyz) with v as input.
Let (u, g) denote p’s output of ΠGC.

2. Subround B (Common Coin): Invoke a common coin protocol Πcoin and assign
to ϕi the output.

3. Conditional Update: If g = 0, then update v ← ϕi. If g = 1, then update
v ← u.

4. Conditional Decision: If g = 1 and v = ϕi: sign (decide, v), send the signed
message to all parties, and output v.

5. Certificate Send: All parties invoke ΠFR, where any party that has generated
or received a certificate since the last invocation of ΠFR provides the certificate
as input, and terminates after ΠFR. Any party that does not have a certificate
inputs ⊥.

– Certificate: Upon receiving a signed (decide, u) message from any party, add the
message to Du. When Du contains at least tbyz + 1 messages from distinct parties,
construct a certificate of tbyz + 1 (decide, u) messages from distinct parties. Upon
receiving a certificate, output u (if have not already output).

Figure 4.8: Expected Constant Round Consensus Protocol Π∗

Claim 4.1. Let i be the iteration in which the first live party p outputs u. Then in every

iteration s > i while no honest party has terminated, every live party outputs (u, 1) from

subprotocol ΠGC.

Proof. We will show that at the end of iteration i, every live party updates its internal value

v to u. The claim follows from the fact that in the following iteration, every live party inputs

64



u to ΠGC. By validity of Graded Consensus, this implies that every live party outputs (u, 1)

from ΠGC in that iteration and maintains the value of its internal variable v.

Inductively, as long as no honest party terminates, no live party ever changes its internal

variable v after iteration i. This follows from the fact that all honest parties maintain the

value of their internal variable v as long as all honest parties have input v and no live party

has input 1 − v; although send-corrupt or receive-corrupt parties may terminate before an

honest party, their inputs are treated as ⊥ in the subsequent executions ΠGC, and the honest

parties’ internal variable of v is maintained by validity.

Now we show that at the end of iteration i, every live party updates its internal value v to u.

We consider the two following cases for any live party q ̸= p, based on q’s output from ΠGC

in iteration i. By consistency of Graded Consensus, because p output (u, 1), q may output

either (u, 0) or (u, 1) from ΠGC:

1. q output (u, 0). Then q updates its internal variable v to the value ϕ from the coin

tossing in that iteration. By the fact that p outputs v in iteration i, ϕi = v.

2. q output (u, 1). Then q updates its internal variable v to the value u by the protocol

specification.

Lemma 4.9 (Consistency). Π∗(tsnd, trcv, tbyz) is (tsnd, trcv, tbyz)-consistent in synchronous net-

works for n > trcv + 2tsnd + 2tbyz.

Proof. To prove consistency, we show that if some live party p outputs u, then no live party

q ever outputs 1 − u. Recall that are two methods by which a party may produce output.

We enumerate them as follows:

1. First, a party may output in iteration i when its internal variable v matches ϕi.

65



2. Second, a party may output by receiving a certificate of signed decision messages.

Assume that in a (tsnd, trcv, tbyz)-compliant execution of Π∗, some live party p outputs u and

another live party q outputs 1 − u. First we claim that no two live parties may output

conflicting values if both output by method 1.

Claim 4.2. In any execution of Π∗, no two live parties r and s may output u and 1 − u,

respectively, by method 1.

Proof. Let there be an execution in which live party r outputs u by method 1 and live party

s outputs 1− u by method 1. If r and s both output by method 1, they must have different

values of their internal variable v at the moments they output. This is because when any

party p outputs a value u by method 1, it must hold u in its internal variable v. However,

because in every iteration, r and s both output the same value from Πcoin, and because each

party outputs only when the output of Πcoin matches the value of its internal variable v, r

and s may not both output in the same iteration. Therefore, r and s must produce their

outputs in different iterations.

Without loss of generality, let r produce output before s, and let s be the first live party

to output 1 − u by method 1 after r outputs u. (If s was not already the first live party

to output 1 − u by method 1 after r outputs u, then proceed to derive contradiction with

respect to the first such party.) By Claim 4.1, every live party must have u in the value of

its internal variables v until some honest party terminates. Therefore, because s must have

1 − u in the value of its internal variable v when it outputs 1 − u, some honest party must

terminate between the time that r produces output and s produces output. Let w be the

first honest party to terminate, and let it terminate in iteration i. Since w is the first honest

party to terminate, by Claim 4.1 w must terminate after outputting u. But then w sends its

certificate via ΠFR in round i, and by Lemma 4.3, s received w’s certificate or s becomes a

zombie at the end of ΠFR. Then s does not output 1− v, which is a contradiction.

66



It follows from Claim 4.2 that p and q may not both have output by method 1. Therefore,

at least one party must have output by method 2.

Before concluding the proof, we claim that if any live party outputs a value u by method 2,

then some live party must have output u by method 1. This follows directly from the fact

that a valid certificate requires tbyz + 1 signed (decide, u) messages. In particular, at least

one live party’s signed (decide, u) message must be included in any certificate, and parties

only produce signed (decide, u) messages when producing output by method 1.

We conclude the proof using this claim. Without loss of generality, let p output u by method

1 and q output 1 − u by method 2. Then by the previous claim, there must be two honest

parties that output conflicting values by method 1, which is a contradiction with Claim 4.2.

We derive a similar contradiction with Claim 4.2 if two live parties output conflicting values

by method 2.

Lemma 4.10 (Termination). For all κ ≥ 1 and n > trcv + 2tsnd + 2tbyz, with probability at

least 1− 1
2κ
, every live party running Π∗(tsnd, trcv, tbyz) terminates in at most 2κ+1 iterations.

Proof. To analyze the probability that the all live parties terminate after m iterations, we

separate the analysis into two steps. First, we define a unanimous iteration as an iteration

at the end of which all live parties set their internal variables v to the same value. We will

denote the first unanimous iteration of the protocol by i∗ and analyze how many iterations

the protocol requires until its first unanimous iteration. Second, we analyze how many

iterations the protocol requires until all honest parties terminate after i∗.

There are two possible ways that a unanimous iteration may occur:

1. If every live party outputs (·, 0) from ΠGC in iteration i, then at the end of iteration i,

every live party updates its internal variable v to ϕi.

67



2. If some live party outputs (u, 1) from ΠGC in iteration i and ϕi = u, then at the end of

the iteration, all live parties update their internal variable v to u.

Therefore, i∗ is the first iteration in which either all live parties output g = 0 from ΠGC or

in which some live party outputs (v, 1) from ΠGC and Πcoin outputs v. Conditioned on the

fact that some live party outputs (·, 1) from ΠGC in each iteration, it follows from the fact

that Πcoin is not biasable that each iteration i is unanimous with probability 1
2
. It follows

that i∗ occurs by iteration ℓ with probability at least 1 − 1
2ℓ
. Let all live parties set their

internal variable v to some v∗ ∈ {0, 1} at the end of iteration i∗. Next we claim that every

live party outputs a bit no later than the next iteration s > i∗ in which ϕs = v∗. The claim

follows as a direct consequence of Claim 4.1, since all live parties are guaranteed to output

(v∗, 1) from ΠGC in every iteration after i∗, and in the case that ϕs = v∗, every party that

has not yet produced output must output v∗. Because Πcoin is not biasable, ϕs = v∗ with

probability 1
2
in each iteration s > i∗. It follows that every live party outputs v∗ by iteration

i∗ + ℓ with probability at least 1− 1
2ℓ
. It follows from linearity of expectations that all live

parties output a bit from Π∗ within 2κ iterations with probability 1− 1
2κ
. When all honest

parties output a bit, it follows that they all sign and send (decide, v) messages to each other.

At latest, each party receives a certificate at the end of the iteration in which all honest

parties output. Therefore, all live parties terminate Π∗ within 2κ iterations with probability

1− 1
2κ
.

4.4 Optimal Synchronous Consensus for Spotty Send

Corruptions

In this section, we present slight modifications to the proofs in Section 4.3 that show Π∗

achieves better corruption bounds when send-corruptions are spotty. We then prove that

68



protocol Π∗ is optimal in the number of corruptions it tolerates when send-corruptions are

spotty.

4.4.1 Analysis for Spotty Send Corruptions

We now show that Π∗ achieves better bounds for send-corruptions when such send failures

are spotty.

Theorem 4.4. When send-corruptions are spotty and a common coin primitive is available,

Π∗ is (tsnd, trcv, tbyz)-secure for n > trcv + tsnd + 2tbyz.

The proof follows in the remainder of this section, by updating the bounds and proofs of the

underlying building block protocols.

Weak Broadcast With Unanimity. First we show that ΠWB is (tsnd, trcv, tbyz)-secure with

unanimity when send failures are spotty, for n > trcv + tsnd +2tbyz. Because the construction

does not change, we simply append the proof of unanimity.

Lemma 4.11. ΠWB is (tsnd, trcv, tbyz)-unanimous for n > trcv+ tsnd+2tbyz when send corrup-

tions are spotty.

Proof. We show that if the dealer is live and broadcasts m, then every live party either

outputs m or every live party outputs ⊥. By the unforgeability of our idealized signature

scheme, no signed message m′ under the dealer’s key can be forged. Therefore, whether

every party outputs m or every live party outputs ⊥ is determined completely by whether

D’s send succeeds in the first round of ΠFR. If D is honest, receive-corrupt, or if its send

succeeds, then every honest and send-corrupt party receives m in the first round of ΠFR. If

any receive-corrupt party does not receive m in the first round of ΠFR, then it must receive

m in the second round, or become a zombie.

69



Weak Consensus We show that ΠWC is (tsnd, trcv, tbyz)-secure for n > trcv + tsnd + 2tbyz

when send corruptions are spotty. We do not need to update the protocol, and we update

only the proof of consistency.

Lemma 4.12. ΠWC is (tsnd, trcv, tbyz)-consistent for n > trcv + tsnd + 2tbyz when send corrup-

tions are spotty.

Proof. The proof is identical to the one for Lemma 4.6, except that if send-failures are spotty,

then we require only that |A ∪ B|> b. This is because if any send-corrupt party sends a

weak-broadcast that is received by any honest party, it must be received by all others by

unanimity of Weak Broadcast, Lemma 4.11.

Graded Consensus We next show that ΠGC is (tsnd, trcv, tbyz)-secure for n > trcv+tsnd+2tbyz

when send corruptions are spotty. Once again, we do not need to update the protocol, and

for this protocol we only update the proof of consistency.

Lemma 4.13. ΠGC is (tsnd, trcv, tbyz)-consistent for n > trcv+tsnd+2tbyz when send corruptions

are spotty.

Proof. The proof is identical to the one in Lemma 4.7, except that we need not consider

send-corrupt parties whose weak broadcasts are delivered to pi but not to pj.

Because pj output (1− v, g) it must be the case that n1−v > nv in pj view. Then nv must be

at least n− tbyz− tsnd− trcv− b∗ in pj’s view. Because only byzantine parties may have weak

broadcasted 1−v, and because b∗ corrupt parties did not weak broadcast 1−v, n1−v is at most

tbyz−b∗ in pj’s view. We reach a contradiction because n−tbyz−tsnd−trcv−b∗ > tbyz−b∗ when

n > r+ tsnd+2tbyz, and therefore nv > n1−v in pj’s view and pj did not output (1−v, g).

And it follows that ΠGC is (tsnd, trcv, tbyz)-secure because the proof of validity requires only

n > trcv + tsnd + 2tbyz.

70



Expected Constant Round Consensus The protocol and proof of Π∗ do not need to be

updated, as they inherit the bounds of the building block protocols, all of which are secure

for n > trcv + tsnd + 2tbyz.

4.4.2 Optimality with Respect to Spotty Send and Byzantine Cor-

ruptions

We now prove that Π∗ is optimal in the number of corruptions it tolerates with respect to

send corruptions and byzantine corruptions when send-corruptions are spotty. The proof

does not consider a model with receive-corrupt parties. Recall that this model generalizes

the crash failure model.

Theorem 4.5 (Optimal Send- and Byzantine Fault Tolerance). There is no protocol for

synchronous consensus in the mixed fault model which permits zombie processes that tolerates

tsnd send corruptions and tbyz byzantine corruptions for n ≤ trcv + tsnd + 2tbyz

Proof. The proof considers only send-corrupt and byzantine parties. It can be trivially

extended to include a factor for trcv parties simply by adding an additional group of receive

corrupt parties and forcing them to become zombies as the protocol begins.

Assume there is a consensus protocol Π resilient to tsnd and tbyz faults for tsnd+2tbyz ≥ n. We

proceed by analyzing three separate executions of Π. As a tool towards analyzing executions,

we first divide the set of parties P into three groups: A, B, and S. Group A has n− tsnd− tbyz

parties, Group B has tbyz ≥ n − tsnd − tbyz parties, and Group S has tsnd parties. In the

following three executions, the schedules of messages sent by and delivered to all parties are

identical. Only the corruption status of parties across groups A, B, and S differ.

1. Execution 1: In this execution, all of the parties in Group A are honest and all

71



have input 1. All the parties in Group B are byzantine and act as if they were honest

parties with input 0. All of the parties in Group S are send-corrupt and do not send

any messages, but have input 1. By validity, the honest parties (Group A) must output

1.

2. Execution 2: In this execution, all of the parties in Group A are byzantine and act

as if they have input 1. All of Group B are honest and have input 0. All of the parties

in S are send corrupt and do not send messages, but have input 0. By validity, all of

the honest parties (Group B) must output 0.

3. Execution 3: In this execution, all parties in Groups A and B are honest. Group A

all have input 1 and Group B all have input 0. All of the parties in S are send corrupt

and do not send messages, but have input 1.

We now analyze the outputs of the parties in Execution 3. Notice that to the parties in

Group A, this execution is identically distributed to Execution 1, so they must output 1. To

the parties in Group B, this execution is identically distributed to Execution 2, so they must

output 0. This violates consistency.

72



Chapter 5

Permissionless Consensus

In this chapter, we depart from the classical regime of consensus protocols and consider

a radically different regime, called permissionless consensus. In a traditional consensus

protocol, as in Chapter 4, the set of parties participating in the protocol is known beforehand,

and protocols are proven secure with respect to thresholds on the proportion of total parties

which are corrupted. In the permissionless regime, the set of participating parties is unknown

to the protocol and it may be unbounded; therefore, classical quorum and signature-based

techniques fail.

The work on which this chapter is based [122] proposes a general abstraction for a spe-

cial, elite category of message, whose supply is constrained by the protocol, and which

is implemented via constraining physical resources. We argue that Proof of Work, Proof of

Stake, and many other Proof of X (PoX) implement this abstraction, which is simply termed

resources. We show that by constraining the adversary’s ability to control these special mes-

sages, consensus in the permissionless regime is possible. Specifically, as long as the honest

parties know a rough upperbound on the rate at which resources enter the system, and that

the honest parties receive a majority of resources in the long term, consensus is possible,

73



independent of the specific number or ratio of parties controlled by the adversary.

On the Power of Resources: An Adversarial Environment

Weak Network Assumptions. This model assumes a highly adversarial network environ-

ment, with weaker synchronization assumptions than comparable studies of permissionless

consensus. Parties do not know the network delay, do not have clocks, and there is no bound

on the number of participants. To date, all other works we know for the permissionless

model require either knowledge of the network delay [25, 50, 59] or (weakly synchronized)

clocks [16, 17, 51, 74], plus some assumption about the number of active participants.

Separating PoX Layers. The “competition process” for resources is modeled implicitly

(and more generally) by deferring it to the (adversarial) environment. This decouples the

resource-producing process (e.g. mining) from the resource-consuming process (e.g. a graph

protocol). Moreover, the environment has full information about the states of all honest

parties, it can corrupt parties adaptively, and it chooses which parties receive resources and

when they receive them. (Note that in the full information model, there are no secure digital

signatures; this work shows that resources imply consensus without signatures.)

Player-Replaceability. Any protocol that is secure in our model must achieve consensus

even when every honest participant sends at most one message before it leaves the execution,

and even when every honest participant is only active for a (very) short period of time from

the moment it joins to the moment it leaves. (In the extreme, just long enough to receive

the state of the execution and send a single message.)

74



On Knowing the Rate Limit

It is easy to show via partitioning attack (Section 5.4) that some constraint on the network

is necessary in order to achieve consensus. However, knowing a bound on the resource rate

relative to the network delay is a weaker assumption than knowing the network delay. Given

knowledge of the network delay, participants can execute synchronous protocols that proceed

in rounds. This is possible because the adversary cannot manipulate honest participants’

timekeeping abilities. A bound on just the resource rate does not directly yield synchroniza-

tion, since the adversary may induce a large difference in two honest processors’ views at the

same moment in time by selectively delivering corrupt resources to one honest participant

but not to another.

The question remains of why it suffices to constrain the rate at which resources enter a sys-

tem relative to the maximum network delay. In their seminal work, DLS [58] showed that

consensus is possible in partially synchronous environments in which there exists any rela-

tionship between processor synchronization and the maximum network delay. The protocol

in Section 5.5 uses the rate at which resources are allocated to measure aggregate processor

activity. Even when parties are constantly joining and leaving an execution, it is possible to

aggregate the amount of computational work they do over time. This relationship between

aggregate activity and the network delay suffices for consensus.

In practice, it has been reasonable to assume knowing the rate of resource allocations relative

to the network delay despite the fact that the true network delay is unknown. For example, a

PoW system is parameterized by estimating the time required to propagate a block through

the network (as by [52]) and then tuning a hardness parameter to bound the rate of puzzle

solutions per “safely estimated” network delay. PoS systems also tune their parameters to

achieve a certain number of PoS solutions per round.

75



On Determinism

Our work is the first we know that attempts to model PoX in a deterministic model that

gives the adversary the ability to determine which parties get resources and when resources

are allocated. This is significant for more than just the power of the adversary. FLP [67] and

Ben-Or [23] showed a separation between the feasibility of (classical) consensus protocols in

deterministic and randomized fully asynchronous models. In comparison, our work is the

first to show deterministic consensus in the permissionless model, and although our network

is not completely asynchronous, we prove in Section 5.4 that some network assumption is

necessary in the permissionless model.

Although the protocols in Sections 5.5 and 5.6.2 are deterministic, our model is still capable

of capturing nondeterministic lottery-style protocols. In most PoX protocols, the sources

of nondeterminism in the execution are the lottery selection and message delivery over the

network. Our model strengthens this this nondeterminism by replacing it with an adversarial

allocation.

5.1 Resources: An Abstraction for PoX

Resources are an abstraction of a special protocol message which is supply-constrained by

some factor external to the protocol. In most protocols that use PoX, the PoX carry ad-

ditional, unique semantics (meaning two parties cannot point to the same PoX and claim

different semantics), and a party that receives a PoX can verify its validity with respect to

the external process that produced it. PoX can also refer to other PoX. We next explain the

properties chosen as for the resources abstraction at a high level, then formalize them via a

syntactic model in Section 5.1.2.

76



5.1.1 Resources Intuition

The following informal rules govern how resources appear in an execution:

1. Unforgeability No participant can “fake” the fact that it has a resource. In practice,

PoX schemes enforce this requirement by requiring that PoX solutions must be found

by solving some puzzle, and the solutions are verifiable by other participants. An

execution satisfies resource unforgeability if no resource appears in the execution before

its allocation event. This enforces that parties are constrained to obtaining resources

only by receiving them from the environment, which abstracts the resource-producing

process.

2. Binding Each resource can be bound with one and only one string, which gives the

resource semantics. The string must be chosen at the moment that the resource is

generated. This models that in PoX schemes, parties attempt to solve puzzles with

respect to a specific message they wish to send. (In some implementations, this message

includes a public key that boostraps special status to future messages signed with that

key.) A string m bound to a resource ψ is encoded as ψ||m||ψ 1, where || denotes

concatenation. An execution satisfies resource binding if for any two encodings ψ||m||ψ

and ψ′||m′||ψ′: ψ = ψ′ implies m = m′.

Constraining the Supply of Resources

Constraints on the supply of resources over arbitrary periods of time enforce their scarcity:

1. Long Term Honest Majority Over any period of time in which n resources are

allocated, we require that αn − ε are allocated to honest participants and at most

1This is a standard encoding technique. By encompassing the message with its resource, it is clear where
the string bound to the resource begins and ends

77



βn + ε are allocated to corrupt participants, where β = 1 − α. When α > β, we

say that honest participants receive a long term majority of resources. ε represents

a short-term corrupt advantage, which models an adversary which pools its physical

resources in order to achieve a short “burst” of resources.

2. Rate Limit We let ρ upperbound the number of resources that may be generated per

∆ time, where ∆ is the (unknown) maximum network delay.

5.1.2 Execution Constraints

This section describes formal constraints on an execution that give resources semantics and

constrain their supply, as discussed above.

Resources are a set of symbols Ψ that augment the alphabet used by the protocol to compose

strings. The environment allocates a resource to some party by writing the resource to the

party’s incoming message tape. When a party is allocated a resource, it must choose the

semantics of the resource by binding a string to it.

Definition 5.1 (Resource Binding). An execution satisfies resource binding if

1. every bound resource ψm is properly encoded as ψ||m||ψ, and

2. for any two bound resource encodings ψ||m||ψ and ψ′||m′||ψ′, if ψ = ψ′ then m = m′.

Just as no participant can solve a PoX puzzle without evaluating some function, no partici-

pant may send a bound resource to another participant if the resource has not been allocated.

This property is unforgeability.

Definition 5.2 (Resource Unforgeability). An execution respects resource unforgeability if

no resource is sent in any message before it is allocated by the environment.

78



An admissible execution satisfies the previous two constraints. All of the theorems we prove

are with respect to admissible executions.

Definition 5.3 (Admissible Execution). An execution is admissible if it respects resource

allocation and resource unforgeability.

Resource Allocations and Corruption The following notation constrains resource al-

locations by both the rate of allocation and by the proportion of honest allocations.

Definition 5.4 (ρ-Rate-Limiting). Let ρ ∈ N and let ∆ be the communication synchroniza-

tion constant, or the network delay. An execution with network delay ∆ is ρ-rate-limited if

for all t, there are at most ρ resources allocations between t and t+∆.

The following notation denotes how many resources are allocated to honest and to corrupt

participants over some span of time.

Definition 5.5 (Ψ(t,t′),Ψ
(t,t′)
hon ,Ψ

(t,t′)
cor ). We denote the sets of resources allocated by the envi-

ronment to all participants, honest participants, and corrupt participants between times t and

t′ in an execution as follows:

– Ψ(t,t′) is the set of all resources allocated between t and t′.

– Ψ
(t,t′)
hon is the set of resources allocated to honest participants between t and t′.

– Ψ
(t,t′)
cor is the set of resources allocated to corrupt participants between t and t′.

The following notation constrains the proportions of resources allocated to honest and cor-

rupt parties:

Definition 5.6 ((α, ε)-honest resource allocation, (β, ε)-corrupt resource allocation ). Let

α ∈ [0, 1] and let ε ∈ N. An execution satisfies (α, ε)-honest resource allocation if for all

79



times t, t′ > t: |Ψ(t,t′)
hon |≥ α|Ψ(t,t′)|−ε. Equivalently, let β = 1 − α. An execution satisfies

(β, ε)-corrupt resource allocation if for all times t, t′ > t: |Ψ(t,t′)
cor |≤ β|Ψ(t,t′)|+ε.

Intuitively, α and β capture the long-term ratios of honest and corrupt resource allocations,

respectively, and ε represents a small amount of “slack” in the ratios. ε also captures the

short term advantage that corrupt participants may obtain in receiving resources. Note that

for any t and t′ for which |Ψ(t,t′)|< ε
α
, all of the resources allocations may be to corrupt

parties.

5.2 Real-World Implementations of Resources

What Makes a Pox? We now intuitively explain how the most popular forms of PoX

puzzles implement resources. For each scheme every puzzle solution constitutes a resource.

PoX are made hard to obtain by the fact that physical resources in the system are con-

strained, and cryptographic puzzles enforce that each PoX is semantically bound to a single

string. Protocols then base their security guarantees on the constraint that a majority of

the special messages must be generated by honest participants.

To formally show that any PoX scheme implements resources, one would proceed through

the intermediate step of defining a “fair allocation” of resources, then prove that the PoX

implementation achieves fair allocation. Proving a fair allocation should require with over-

whelming probability that over a long enough period of time, honest parties compute a ma-

jority of puzzle solutions, and that the rate at which solutions are found be upper-bounded.

Because full formal proofs of PoX schemes require careful analysis in each scheme’s syntactic

model, such proofs are out of scope of this thesis.

80



5.2.1 Proof of Work

In a Proof of Work (PoW) scheme, parties attempt to find solutions to a hash puzzle for

a cryptographic hash function H. A “solution” to a hash puzzle is a string x for which

H(x) < D, where D is a difficulty parameter. In most PoW schemes, the input x is composed

of a nonce, a payload, and a pointer to a previous puzzle solution. When a puzzle solution

is found, we consider the input x to be the string that is bound to the resource. Note that

to strictly implement resources, it is not necessary that an input to a hash puzzle include

a pointer to a previous hash puzzle; however, this property is used by many Proof-of-Work

protocols to prevent precomputation and to enforce a graph structure.

Unforgeability of a resource in a PoW scheme follows from verifiability of the hash function.

Honest parties can easily verify that a string x is a valid solution to the hash puzzle H(·) < D.

Binding of a resource follows from the collision resistance of the hash function. Given a

resource bound to string x, in order to claim the resource has been bound to another string,

a corrupt party must find an x′ such that H(x′) = H(x). (See [99] for a discussion.) Honest

majority of PoW schemes follows from the assumption that honest parties maintain a

majority of active computational power at all times.

Rate limiting of PoW schemes is enforced in practice by regularly retargeting the difficulty

parameter. The difficulty parameter is set based on the total hash power of the network

(measured as the number of hash function evaluations per second, this is an estimate of

physical computing resources) in order to target a particular rate of puzzle solutions. For

Bitcoin, the difficulty parameter is set such that a puzzle solution is found about every 10

minutes [102]; in Ethereum the difficulty parameter is set such that a puzzle solution is

found about every 13 seconds [64]. In order to show that a proof-of-work scheme implements

resources, one would have to identify realistic assumptions from which to show that difficulty

calibration of the hash puzzle effectively upperbounds the rate at which hash puzzles are

81



found.

5.2.2 Proof of Stake

In Proof of Stake (PoS), during each time step each participant evaluates some number of

virtual lottery tickets to determine if it is the leader in the protocol at that time step. The

number of lottery tickets each party can evaluate at any time step is proportional to its stake

in the system at that time. In every PoS, a lottery ticket evaluates some function F (x, pk),

where pk is a public key associated with stake in the system, and x encodes a time slot and

some protocol state which must contain entropy. For a “winning ticket,” the message bound

to the corresponding resource is therefore (x, pk); this ties the public key pk to the global

state of the system at the time it becomes the leader.

Rate-limiting is imposed by parameterizing each Proof of Stake protocol to upperbound

the number of winning lottery tickets that are evaluated per time step. (This is analogous to

parameterizing the number of proof of work solutions per network delay, or upperbounding

the number of resources that are allocated per span of time.) We remark that each of the

schemes that we overview relies on either knowing the maximum communication delay of the

network or on loosely synchronized clocks in order to synchronize the rounds of the lottery.

Lottery by VRF In the PoS schemes of both Ouroboros [51] and Algorand [74], lottery

tickets are implemented using a verifiable random function (VRF) [51, 96]. A participant

evaluates a lottery ticket by computing vrf.provesk(x) → π, where sk is the secret key

associated with a stake in the system that the participant owns a particular time, x is

the state of the system, and π is the output of the vrf. (We elide details about Algorand’s

cryptographic sortition.) A lottery ticket is a “winner” if π < D, for some tunable parameter

D. To verify the role of a claimed leader, other participants must verify the VRF via

82



vrf.vfypk(x, π), where pk is the public key associated with sk.

Binding follows from the unpredictability of the VRF. Given one solution, it should be hard

to find another input to the VRF that evaluates to the same proof. Unforgeability follows

from the verifiability of the VRF, because one cannot fake that a puzzle solution has been

found.

Lottery by Hash Function The PoS mechanisms of Snow White [50] and FKTZ [65]

use a cryptographic hash function that is seeded by a stateful nonce which depends on

the previous hash puzzle solutions. Specifically, the PoS is evaluated as H(st, pk, t) < D,

where D is a difficulty parameter, st is a protocol state, pk is a public key for a digital

signature scheme, and t is a timestamp ([65] includes a signature σ on st in the input to

H). If H(st, pk, t) < D then the participant with public key pk becomes a leader. Binding

follows from collision resistance of the hash function, and unforgeability follows from the

verifiability of the hash function.

Enforcing Honest Majority: Preventing Grinding PoS constructions must argue

that the adversary cannot increase its share of puzzle solutions to be more than roughly its

proportion of stake in the system. This requires proving that the adversary cannot efficiently

“predict” keys which will be leaders in any particular time slot. (If it could, it might create

a long adversarial branch to compete with the honest branch.) Existing PoS constructions

require that the state encoded in the input x contains enough entropy that the outputs

are unpredictable, making pre-computation attacks and “grinding” attacks computationally

infeasible. For a full treatment, refer to the discussions in each of the PoS implementations

we have referenced. In [51] refer to the discussion on VRF Unpredictability under Malicious

Key Generation (Section 3.2). In [74] refer to the discussions on choosing the VRF seed in

each round and setting secret keys well before each round (Sections 5.1, 5.2). In [50], refer to

83



the discussion on security under adversarially biased hashes (Sections 2 and G). The recent

work of Fan, Katz, Thai, and Zhou [65] show a PoS scheme with maximal unpredictability

in which all parties simultaneously mine PoS on multiple chains.

5.2.3 Other Cryptographic and Non-Cryptographic PoX

There have been many additional cryptographic PoX variants proposed, for example Proof of

Spacetime [101] and Proof of Retrievability [98]. We do not analyze them all here. However,

we remark that PoX need not necessarily be implemented cryptographically. For example,

Proof of Elapsed Time [118, 42] elects leaders in a consensus protocol via verifiable timer.

Additionally, resources could be implemented in low-power environments in which partici-

pants seldom have enough energy to send a message. In this case, every message would be

associated with a resource, as the resource represents physical energy. Future research could

study ways to move resource allocation to the environment (e.g. by random lottery based

on external factors), rather than by solving hash puzzles.

An Example: Satellites and Base-Stations For the sake of exposition, we give an

extended example of how resources may be implemented without PoX puzzles. Imagine that

a number of “base stations” on the surface of Earth wish to perform consensus, and the base

stations communicate with some known number of satellites whose orbits around the earth

follow randomized paths. A base station may communicate with a satellite only when the

satellite is “overhead,” meaning within the line of sight of the base station. When a satellite

is overhead, a base stations may request a resources from the satellite by requesting that it

issue a signature on a message that the base station requests. Each satellite is programmed

to respond to each request it receives with probability 1
2
, subject to the constraint that a

satellite signs at most one message per 24 hours, where time is kept in the UTC time zone.

If the number of satellites is known to the base stations, all of the satellites’ public keys are

84



known to the base stations, and the satellites can be trusted to only sign messages subject to

the constraints above, then a satellite’s signature on a message constitutes a resource. Each

signature is bound to the message it signed. The rate limit is computable because the rate

of resources per day is bounded by the total number of satellites. Unforgeability of resources

follows from unforgeability of the signature scheme.

5.3 Termination and Liveness Based on Resources

Our definition of termination for permissionless consensus and our definition of liveness

(Definition 3.10) in graph consensus depend on resources. We discuss them in detail here,

with the context of both intuition and definitions of resources.

Participants are required to terminate only if sufficiently many resources have been allocated.

In comparison, classical definitions require participants to terminate after finitely many steps.

Intuitively, because our model features asynchronous parties that do not have clocks and do

not know the network delay, they have no way to tell how many other parties are in an

execution who haven’t yet sent messages. The only constraint by which termination can be

enforced is the number of resources in the execution.2

Definition 5.7 (Termination). An execution satisfies termination if there exists a positive

integer R∗ such that if R∗ resources have been allocated by the environment at time t, then

for every honest participant p active at any time t′ > t: p outputs 0 or 1.

For graph consensus, we desire that a protocol is live with respect to the total number of

resources that have been allocated by the environment, and not those simply the number

in a party’s view. This definition forces the claim of a protocol’s liveness to account for the

2Chapter 5 argues that an upperbound on the resource rate is a weaker form of synchronization than
knowing the network delay.

85



possibility of withholding by corrupt parties who do not send messages to honest parties

using the resource they receive.

We can now restate the definition of f -Liveness:

Definition 3.10 (f -Liveness). Let f :N → N. A protocol Π satisfies f -liveness if in every

execution, for every time t and honest participant p active at t: if the environment has

allocated N resources by time t, then |G∗(t)
p .V |≥ f(N).

5.4 Necessary Assumptions for Consensus in the Per-

missionless Model

This section incluides proofs that both (1) a long term majority of honest resources, and (2)

some constraint on the network delay, are necessary for consensus. (Recall that our model

bounds the network delay relative to the resource rate, which Section 5 argues is weaker

than directly bounding the network delay.)

Theorem 5.1. There is no consensus protocol in the permissionless regime that does not

require a long-term honest majority of resources.

Proof. Assume there is a protocol Π that achieves consensus in the permissionless regime

without an honest majority of resources. We proceed by describing several similar executions,

and bring contradiction at the end.

In each execution, we divide the participants into two groups, A and B. In Execution 1, all

participants in A are honest and have input b ∈ {0, 1}. All participants in B are corrupt,

and act as if they were honest with input 1−b. Group A collectively receives fewer resources

than Group B, but a sufficient proportion of resources for Π to guarantee consensus. By

validity, all honest participants must output b.

86



In Execution 2, we divide the same participants in to the same groups, A and B. All

participants in A are corrupt and act as if they are honest with input b. All participants

in B are honest and have input 1 − b. The activation schedule, including the allocation of

resources, in Execution 2 is identical to Execution 1. Again by validity, all honest participants

must output 1− b.

Now consider a third execution, Execution 3. In Execution 3 we divide the same participants

into the same groups, A and B. However, all parties are honest. In Group A all parties have

input b, and in Group B all parties have input 1− b. The activation schedule, including the

allocation of resources, in Execution 3 is identical to Executions 1 and 2. Because the view

of every participant in A is the same as in Execution 1, each participant in A must output

b. Similarly, each participant in B must output 1− b. This violates consistency.

Theorem 5.2. There is no consensus protocol in the permissionless regime that does not

require a constraint on the network delay.

Proof. If there is no constraint on the network delay known to the honest parties, then the

proof follows from a standard partitioning attack, similar to that of Pass and Shi [105]. For

completeness, we present a full proof here.

Consider an execution in which all participants are honest, and an adversary that can par-

tition the honest parties into two groups, A and B, such that all honest parties in group

A have input b ∈ {0, 1} and all honest parties in group B have input 1 − b. By validity

and termination, there must be some execution in which A output b if no messages sent

by parties in B are received by A, and similarly there must be some execution in which B

output 1− b if no messages sent by A are received by parties in B. If there is no constraint

on the network delay, then an adversary can delay messages sent by parties in A until after

the parties in B have output 1− b, and similarly the adversary can delay messages sent by

parties in B until after the parties in A have output b. This violates consistency.

87



Note that the proof holds if the network is asynchronous by our definition of asynchrony,

or if the network is partially synchronous but the parties do not know any constraint on

∆ (relative to any known parameter). Specifically, the protocol cannot depend on ∆, and

therefore there must be values of ∆ for which groups A and B output their values before ∆

time has elapsed.

5.5 A Permissionless Consensus Protocol

Protocol ΠG, presented in Figure 5.1, is a graph consensus protocol. It is parameterized by α

and ε, which describe the proportion of honest resources which are allocated (Definition 5.6),

and the maximum rate of resource allocation ρ (Definition 5.4).

5.5.1 Intuition

At a high level, our graph protocol uses the properties of resources to build a directed

acyclic graph (DAG) which captures the (partial) ordering in which the honest parties receive

resources. Importantly, every resource received by an honest party is associated with a vertex

in the global DAG (much like every PoX is associated with a vertex in a blockchain). The

honest participants embed structure into the DAG that can be used to infer when corrupt

parties attempt to cheat by “withholding” their resources, i.e. not immediately multicasting

a vertex they have added to the graph. The unforgeability and binding properties of resources

enforce that corrupt participants cannot manipulate the graph structure other than choosing

where to add their vertices.

The structure that honest participants build into the global DAG is reachability. Every

honest vertex which is added to the global DAG is guaranteed to gain an honest successor,

and to always be a predecessor of one of the deepest vertices in the global DAG. Importantly,

88



we require that the honest participants can build deeper branches on the DAG than the

corrupt participants. If honest participants can build longer paths in the global DAG over

time than corrupt participants, then if corrupt participants withhold their vertices for too

long, their withheld branches will eventually fall behind the depth of the global DAG.

The technical challenge is to compute how long it takes – measured in depth – for a withheld

branch to fall short of the honest parties’ branch. Honest participants extract their outputs

by selecting vertices in their local views of the global DAG which are predecessors of the

deepest vertices in their views, excising all corrupt vertices on branches which have fallen

short.

5.5.2 Formal Description

Each participant p maintains a local DAG Gp in which every vertex except the root is a

resource. The graph Gp is initialized to ({root}, ∅), and grows from the root toward high

depths throughout the execution as participants are allocated resources and receive messages.

Whenever p is allocated a resource, it adds the resource to its graph as a new vertex, and then

immediately multicasts its local graph including the new vertex to all honest participants.

When an honest participant receives a message containing a graph, it updates its local graph

to include new vertices and edges not previously in its local graph. We must show how a

participant p chooses the predecessors of each vertex that it adds to its graph, and p computes

its output G∗
p from its local graph Gp.

Resources are described as vertices as follows. When any participant is allocated resource

ψ, we let vψ denote the vertex corresponding to ψ. When describing an arbitrary vertex, we

denote it as v or u, eliding its respective resource.

When any honest participant p adds a new vertex to its graph, it adds the vertex to its graph

89



as the new deepest vertex. Specifically, when p is allocated a resource ψ and adds vertex vψ

to its local graph Gp, p adds an inbound edge to vψ from every vertex u in Gp which (a) has

no outbound edges in Gp, and (b) is close in depth to Gp. When p is allocated ψ, it must

also choose vψ’s edges immediately, as p must bind the inbound edges of vψ to ψ. Because

each vertex’s inbound edges are bound to the vertex’s respective resource, it may not gain

additional predecessors.

Over time, some vertices will gain successors and some vertices may be “orphaned” and

stop gaining successors. Each participant computes its output G∗
p as a subgraph of its Gp

consisting of vertices which are both far from the end of its graph (measured in the difference

in depth between the vertex and the graph) and are still gaining successors.

Encoding a Graph Using Resources

We model a resource as a black box object which is bound to a string that conveys its

semantics at the moment it is allocated. In ΠG, the string bound to each resources encodes

the direct predecessors of its respective vertex; when a participant is allocated a resource ψ,

it binds to ψ the encoding of each vertex which has an outbound edge to vψ. If no edges

are bound to ψ, then vψ is defined to have an edge from root. In this way, each vertex is

uniquely committed to its predecessors at the moment it is allocated.

Event Responses

We now detail how participants respond when they are allocated resources and when they

receive messages, and we explain how participants compute their outputs from their local

graphs.

90



Protocol 9 DAG Protocol for Graph Consensus ΠG(α, ε, ρ)
Parameters: α, ε, ρ
Derived Constants:

1. β = 1− α

2. γ = (1 + β)ρ+ ε+ ε
ρ
+ 1

3. c = γ + ρ+ ε
α

4. ℓ1 = γ + ρ

5. ℓ2 = c(ε+1)+ ρ+ cβ
α
ρ
−cβ (c(ε+1)+ (2+

β)ρ+ ε
α
+ 2 ε

ρ
+ 2)

6. ℓ∗ = ℓ1 + ℓ2

Internal Variables:

1. Gp = (Vp, Ep) is a participant’s local state. Initially, Gp = ({root}, ∅)

2. G∗
p = (V ∗

p , E
∗
p) is a participant’s output graph. Initially, G∗

p = (∅, ∅)
Event Responses:

1. On Receiving a Graph (G′)

– Gp ← Gp ∪ validateGraph(G′)

– G∗
p ← extract(Gp)|D(Gp)−ℓ∗

2. On Being Allocated a Resource ψ

– Gp ← addVert(Gp, ψ)

– multicast Gp

– G∗
p ← extract(Gp)|D(Gi)−ℓ∗

Internal Functions:

1. addVert(G,ψ):

– V ′ ← {u ∈ G.V :D(G)− D(u) < c and outdegree(u) = 0}
– return new graph G′ such that

– G′.V ← G.V ∪ {vψ}
– G′.E ← G.E ∪ {(u, vψ):u ∈ V ′}

2. extract(G):

– S ← {v ∈ G.V :D(G)− D(v) ≤ c+ ρ} // “starting vertices”

– return S ∪ {v ∈ G.V :∃u ∈ S such that u is reachable from v}

3. validateGraph(G′):

– if

(a) ∃(u, v) ∈ G′.E such that D(u)− D(v) > c, or

(b) ∃(u, v) ∈ G′.E such that u ̸∈ G′.V

then return (∅, ∅)
– return G′

Figure 5.1: Protocol ΠG for graph consensus

91



On Resource Allocation When an honest participant p is allocated a resource ψ, we

say that it generates a vertex vψ that it adds to its local graph Gp. Participant p chooses

the inbound edges of vψ based on its current graph Gp by adding an edge to vψ from each

vertex u in Gp for which both outdegree(u) = 0 and D(Gp)−D(u) < c, where c is a constant

computed from the protocol parameters and is the maximum depth spanned by an honestly

chosen edge. Immediately after generating vψ, p multicasts its entire local graph containing

vψ and its inbound edges.

On Receipt of a Message Every message sent between participants is an encoding of

a graph. (Any other message is ignored.) When a participant p receives a graph G′ in a

message, it verifies that G′ is a valid graph. If G′ is valid, then p updates its local graph as

Gp ← Gp ∪G′. If G′ is not valid, then p ignores G′.

G′ may be invalid in two ways. First, G′ may contain an edge (v, u) which spans more than

c depth. Second, G′ may be “missing a vertex,” meaning there is a vertex v in G′.V for

which not all of v’s predecessors are in G′.V . (This means the graph G is incomplete in the

party’s view.)

Computing Output An honest participant p computes its output G∗
p from its local graph

Gp by first extracting a subgraph of Gp into an intermediate graph, and then outputting all

but the deepest vertices in the intermediate graph. More precisely, p extracts a subgraph of

Gp using the procedure extract(Gp), as follows. First, p selects a set of “starting vertices”

as the set S = {v ∈ Gp:D(Gp) − D(v) < c + ρ}. Next, p extracts every starting vertex

and every vertex from which any starting vertex is reachable. Finally, p outputs G∗
p ←

extract(Gp)|D(Gp)−ℓ∗ , which contains all the vertices in its extracted subgraph with depth less

than D(Gp)− ℓ∗, where ℓ∗ is derived from the protocol parameters.

Remark 5.1 (Sending a Whole Graph). Whenever a participant generates a new vertex, it

92



multicasts its entire graph. This is unrealistic in practice, and (like most blockchain protocols)

we believe with additional analysis it is possible to reduce this to sending the latest vertex.

5.5.3 Theorem Statement

Our main theorem states that protocol ΠG satisfies graph consensus for appropriate param-

eters.

Theorem 5.3. For all N , all ρ, and all ε, and for all α > ρ(1−α)((3−α)ρ+ ε
α
+ ε
ρ
+ε+1) every

(α, ε)-honest, ρ-rate-limited, admissible execution of ΠG(α, ε, ρ) satisfies graph consistency

and f, h-liveness for f(N) = h(N) = αN − ε − ρ(ℓ∗ + 1), where ℓ∗ is a derived constant

defined as in the protocol.

Recall that in ΠG, each participant computes its output by extracting a subgraph from its

local graph and then chopping off the deepest vertices in the extracted subgraph, where

the chop-off threshold is the derived constant ℓ∗. Liveness follows from the fact that as a

participant’s local graph increases in depth, the depth of the graph which it outputs also

increases. The main objective of the proof is to show that the protocol achieves graph

consistency.

The main desideratum of the proof of graph consistency follows:

Proposition 5.1. Let c = (3 − α)ρ + ε
α
+ ε

ρ
+ ε + 1 (as in Protocol ΠG). If α > ρβc, then

for all k, times t and t′, and honest participants p and q active at t and t′, respectively, if

D(G
(t)
p ) > k + ℓ∗ and D(G

(t′)
q ) > k + ℓ∗, then extract(G

(t)
p )|k = extract(G

(t′)
q )|k.

where c and ℓ∗ are defined as in ΠG.

Graph consistency follows directly from assigning G∗
p ← extract(Gp)|D(Gp)−ℓ∗ , since when

two honest participants output graphs, then the less deep output graph must always be a

93



subgraph of the deeper (if the output graphs have the same depth, then they must be the

same graph).

5.5.4 Proof Overview

We now overview the proof of Proposition 5.1. The full proofs of Proposition 5.1 and

Theorem 5.3 are in Appendix C.

Building a Virtual Global Graph We consider that the participants collectively build a

virtual global graph G throughout an execution. When the execution begins, G is initialized

to a graph with only a root vertex. Whenever any participant is allocated a resource,

the vertex that it generates is immediately added to G. In particular, even if a corrupt

participant generates a vertex and “withholds” the vertex by not sending it to any honest

participant, the vertex is still added to G at the moment that it is generated. We denote by

G(t) the state of G after all vertices are added at time t.

G represents the global state of the execution. Consider that G
(t)
p is p’s its local view of

G(t), and it is easy to see that G
(t)
p must be a subgraph of G(t). Moreover, for every vertex

v ∈ G(t).V , if v is in G
(t)
p , then DG(t)(v) = D

G
(t)
p
(v). Henceforth, when we refer to the depth

of a vertex, we simply write D(v) because its depth is uniquely defined.

Outputting Predecessors and Omitting Orphans Recall that an honest partici-

pant p active at time t outputs a vertex v from its local graph G
(t)
p if and only if

v ∈ extract(G
(t)
p )|

D(G
(t)
p )−ℓ∗ . By applying extract() and chopping off the deepest vertices,

the protocol enforces two requirements in order to output a vertex. First v must be far from

the end of a participant’s graph (D(G
(t)
p ) > D(v) + ℓ∗). Second, v must be a predecessor of

one of the starting vertices in G
(t)
p .

94



Intuitively, one can consider that every participant p decides whether each vertex v in its

view should be output or not. However, p “waits” before making a decision until v is

sufficiently far from the end of its graph. At that point, p does not output v only if v has

been “orphaned.” A vertex is “orphaned” if it is more than ℓ∗ depth from the end of a graph

but not a predecessor of one of the graph’s starting vertices.

To achieve graph consistency, p must make the same decision on v as every other honest

participant. We show that by the time the depth of Gp exceeds ℓ∗ more than the depth of

v, v’s status as an orphan or not an orphan has been determined in G and will not change;

moreover, v’s orphan status in Gp must mirror its status in G. If v is not a predecessor of

one of the starting vertices in Gp, then v will never be a predecessor of a starting vertex in

any honest participant’s local graph which is deep enough to decide on v. However, if v is a

predecessor of one of the starting vertices in Gp, then v will never be orphaned in any honest

participant’s local graph.

Consistency of Honest Vertices

We first show consistency of the honest vertices which honest participants output. We do

so by showing that no honest vertex is ever orphaned, and therefore all honest vertices

are eventually output by honest participants. Our high-level lemma towards this statement

actually says something stronger. It says that every honest vertex in G which is more than

ℓ1 < ℓ∗ distance from the end of an honest participant’s graph must be extracted from the

graph when it computes its output from its local graph.

Lemma 5.1 (Honest Vertex Extraction). For every time t, honest participant p active at t,

and honest vertex v ∈ G(t): D(G
(t)
p )− D(v) > ℓ1 =⇒ v ∈ extract(G

(t)
p ).

Lemma 5.1, consistency of honest vertices in participants’ outputs, follows trivially from

composition of Lemmas 5.2 and 5.3, described below. Lemma 5.2 shows that by the time

95



D(Gp) > D(v) + ℓ1 for any honest participant’s graph Gp and honest vertex v, enough time

must have passed since v was originally multicast that v is in Gp. Lemma 5.3 shows that

every such honest vertex in an honest participant’s graph must be a predecessor of a starting

vertex in the graph.

Consistency of Honest Vertices in Honest Views For the first step, we show that if

an honest participant’s local graph Gp is deeper than an honest vertex v by more than a

fixed distance ℓ1, then v ∈ Gp.

Lemma 5.2 (Depth-Based Indicator for Honest Vertices). For all t, honest p active at t,

and honest vertex v ∈ G(t): D(G
(t)
p )− D(v) > ℓ1 =⇒ v ∈ G(t)

p .

Intuitively, ℓ1 is derived as follows. Let tv be the time that some honest vertex v is generated

by honest participant q. Naively, one would like to claim that if D(G
(t)
p ) − D(v) > ρ, then

ρ vertices must have been generated after v, and it follows from the rate limit on resource

allocations (Definition 5.4) that t > tv+∆. However, the naive attempt makes the unfounded

assumption that at tv, v must be the deepest vertex in G(tv). Instead, we derive a constant

γ that gives the maximum difference between G(t) and an honest view G
(t)
p at any time t.

We then derive ℓ1 = γ + ρ and show that if D(G
(t)
p ) − D(v) > ℓ1, then ∆ time must have

elapsed since v was generated and multicast. It follows that v ∈ G(t)
p .

Extracting Every Honest Vertex Recall that an honest participant extracts the starting

vertices in its graph and all their predecessors, and then outputs only the vertices which are

far from the end of its graph. We show that an honest participant always extracts every

honest vertex in its graph.

Lemma 5.3 (Extracting All Honest Vertices in a Local Graph). For every time t, honest

participant p active at t, and honest vertex v ∈ G(t): v ∈ G(t)
p =⇒ v ∈ extract(G

(t)
p ).

96



The lemma follows by showing that every honest vertex v eventually gains at least one honest

successor which is not too far from v, measured in terms of depth. Intuitively, after an honest

vertex v is generated, the first vertex generated by an honest participant with v in its view

must be a successor of v. It follows that for every honest vertex v which is not a starting

vertex in an honest participant’s graph, there must be a path from v to a starting vertex in

the graph.

Consistency of Corrupt Vertices

We show that consistency of corrupt vertices follows from consistency of their honest suc-

cessors (or lack thereof). If every vertex is honestly generated and immediately multicast,

then no vertex is ever orphaned. Only if a corrupt participant withholds a vertex can the

vertex be orphaned. We show that after a corrupt vertex is generated, there is a limited

time during which it must gain an honest successor or it will be orphaned. Imagine that

starting at some time in an execution, corrupt participants use all of their resources to build

a “withheld branch” B of G which includes no honest vertices, while honest participants

continue to build G as per the protocol. Intuitively, if α
ρ
> β (as we require), then the

corrupt participants cannot keep pace with the honest participants, and eventually B will

fall behind the depth of G. We can compute for how long a withheld branch B can remain

close in depth to G. We derive a constant ℓ2 for which any vertex which is ℓ2 depth from

the end of an honest participant’s local graph and is a predecessor of a starting vertex must

have an honest successor.

Lemma 5.4 (Honest Reachability Requirement for Extraction). For all t, participant p

active at t, and vertex v ∈ extract(G
(t)
p ): D(G

(t)
p )− D(v) > ℓ2 implies there exists an honest

vertex u reachable from v such that D(u)− D(v) ≤ ℓ2.

Recall that an honest participant decides whether to output a vertex v only once v is ℓ∗ =

97



ℓ1+ ℓ2 depth from the end of its local graph. If v is a predecessor of a starting vertex, then it

must have an honest successor which is more than ℓ1 depth from the end of the graph. This

honest successor must be in every honest participant’s local graph with depth sufficient to

output v; therefore, because u must be extracted from every honest view in which it exists,

every honest participant with local graph deep enough to output v must do so.

5.6 From Graph Consensus To One-Bit Consensus

5.6.1 A Generic Transformation

We now show that one-bit consensus is implied by any graph consensus protocol which guar-

antees a long-term majority of honest vertices are accepted by honest parties. Specifically,

we show that for any protocol that satisfies (a) graph consistency and (b) h-liveness such

that there exists some N∗ for which for all N ≥ N∗: h(N) > N
2
, there must exist a one-bit

consensus protocol secure under the same parameters.

Theorem 5.4. For any graph consensus protocol Π that satisfies both graph consistency and

h-liveness for which there exists some N∗ for which for all N ≥ N∗: h(N) > N
2
, there exists

a one-bit consensus protocol that satisfies agreement, termination, and nontriviality under

the same parameters.

Proof. The proof transforms Π into a one-bit consensus protocol. We let Πb represent the

transformed protocol. The transformation works as follows. Whenever a participant gener-

ates a vertex, it binds an additional one-bit label, which is the participant’s input bit, to the

vertex. The participants run Πb without producing output until a majority of the vertices

output by the underlying Π must be honest vertices, and then they compute a majority of

the bit labels of the graph output by Π. Termination follows because any honest participant

98



with enough vertices in its graph can output a bit. Nontriviality follows because a majority

of the parties’ extracted vertices must be honest vertices. Agreement follows because honest

participants compute the majority bit of vertex labels in the same output graph.

Honest participants run Πb until they can output from their local graphs the smallest graph

containing at least N∗

2
vertices. By h-liveness, there must be some point at which honest

participants can output a graph with at least N∗

2
vertices. If not, then there would not be

there exists an N∗ such that for any honest participant p’s local graph G
(t)
p at time t for

which |G(t)
p .V |> N∗, that |hon(G∗(t)

p .V )|≥ |G(t)
p .V |
2
≥ N∗

2
.

We must argue that honest participants identify the same smallest graph containing at least

N∗

2
vertices. We argue that in every execution, each honest participant’s output graph must

be partially ordered, and that any two participants’ graphs must obey the same partial

ordering. Assume that in some execution there is no such a partial ordering of vertices of

honest participants’ output graphs. Then it may be the case that for two honest participants

p and q active at t and t′, it is possible that that G
∗(t)
p ̸⊆ G

∗(t′)
q and that G

∗(t′)
q ̸⊆ G

∗(t)
p . But

this is a contradiction with the fact that Π satisfies graph consistency. However, it may be

the case that some vertices in the participants’ output graphs cannot be ordered relative to

each other, (i.e. there are vertices u,v such that u ̸≺ v and v ̸≺ u) so there may not be

an output graph containing exactly N∗

2
vertices. Therefore, honest participants identify the

smallest graph containing at least N∗

2
vertices by the partial ordering of their outputs.

5.6.2 Permissionless One-Bit Consensus Protocol Πbit

We now show how to achieve one-bit consensus by slightly modifying ΠG. Our protocol Πbit

differs slightly from the generic transformation provided in Section 5.6.1 for simplicity of

presentation and proof.

99



We modify the graph consensus protocol as follows. Whenever a participant generates a

vertex, it binds an additional one-bit label, which is simply the participant’s input bit, to

the vertex along with the vertex’s edges. The participants run ΠG without producing output

until their local graphs reach depth k∗ + ℓ∗, where ℓ∗ is the same as in ΠG and k∗ is an

additional constant derived from the protocol parameters. For any participant p active at

time t for which D(G
(t)
p ) ≥ k∗ + ℓ∗, the participant outputs extract(G

(t)
p )|k∗ from the graph

consensus subprotocol. As its one-bit consensus output, p computes the one-bit label that is

bound to a majority of extracted vertices. Even after a participant produces its output bit,

it must continue to participate in the underlying execution of ΠG indefinitely; we explain

why in a remark below.

Figure 5.2 describes protocol Πbit for one-bit consensus. Πbit is parameterized by α, ε, and ρ,

which describe the ratio of honest resources and the maximum rate of resource allocation.

Remark 5.2 (Indefinite Execution). Note that although honest participants may produce

their outputs when their local graphs reach a fixed depth, it is important that honest partici-

pants continue to run the underlying graph consensus protocol indefinitely, until the execution

ends. The reason is straightforward: if ever honest participants stop running the underlying

graph protocol, then corrupt participants can, with enough time, run an execution on their

own which builds a deeper graph, with the property that the labels bound to vertices in the

second graph would induce a decision of the opposite bit. This could cause disagreement

with any honest participant that “wakes up” long after honest participants stop building the

original DAG, and is presented with the two competing graphs.

Theorem 5.5. For all ρ and all ε, and for all α > ρ(1−α)((3−α)ρ+ ε
α
+ ε

ρ
+ ε+1) every

every (α, ε)-honest, ρ-rate-limited admissible execution of Πbit(α, ε, ρ) satisfies termination,

consistency, and validity.

100



Protocol 10 DAG Protocol for One-Bit Consensus Πbit(α, ε, ρ)
Parameters α, ε, ρ
Derived Constants

1. β = 1− α

2. γ = (1 + β)ρ+ ε+ ε
ρ
+ 1

3. c = γ + ρ+ ε
α

4. x = cε+ c+ ρ+ ε
ρ
+ 1

5. ω = βρ
α
(x+ γ + ε

ρ
+ 1) + ε

6. k∗ = ω+2ε
α−β

Input

1. Each participant has a 1-bit input b

Internal Variable

1. Gp = (Vp, Ep) is a participant’s local state. Initially, Gp = ({root}, ∅)

Protocol

1. Framework Run Protocol ΠG

2. Labeling Vertices Whenever a participant is allocated a resource, it additionally
binds a one-bit label to the vertex it generates, where the label is the participant’s
input b

3. Output If D(Gp) > k∗ + ℓ∗, output the majority bit in the labels of all vertices in
extract(Gp)|k∗ . Ties are broken by outputting 1.

Figure 5.2: Protocol for one-bit consensus using graph consensus

Proof Overview The proof of Theorem 5.5 inherits heavily from the proof of Theorem 5.3.

In fact, termination and agreement follow directly from the liveness and graph consistency

of ΠG.

– Consistency: By Proposition 5.1, all honest participants output exactly the same

graph. Therefore, to achieve one-bit consistency, the one-bit consensus output can be

any fixed function of the labels that the participants output from the underlying graph

protocol.

– Termination: By Lemma C.1, honest participants’ graphs grow as long as honest

vertices are perpetually added. Therefore, if enough resources are allocated to honest

101



participants, then honest participants’ graphs grow to sufficient depth for them to

output a bit, and Πbit terminates.

To prove Theorem 5.5, only nontriviality remains. The intuition for the proof of nontriviality

follows. We leverage the (assumed) property that honest participants have a long-term

advantage in generating vertices over the corrupt participants, and run the graph consensus

protocol until the graph is deep enough to guarantee that there must be substantially more

honest vertices in G than corrupt vertices. We also use the property that each participant

extracts all of the honest vertices in its view to guarantee that the long-term advantage in

generating honest vertices translates to the fact that a majority of vertices output from each

honest participant’s local graph are honest. Validity follows from outputting the bit that

comprises the majority of one-bit labels embedded in the extracted vertices. If all honest

participants have the same input b, then b is guaranteed to be the label on a majority of the

extracted vertices.

The only tricky part of the proof is due to the fact that honest participants stop adding

vertices below depth k∗ once their local graphs become deeper than k∗, but the corrupt

participants may continue to add vertices at depth k∗ even after the honest participants stop

adding vertices at that depth. This gives the corrupt participants extra time to add vertices

with depth k∗.

We use the following technique to overcome this difficulty. Intuitively, at some time t∗,

D(G(t∗))− k∗ will be so large that no vertex added at any t > t∗ with depth k∗ will ever be

extracted by any honest participant. Therefore, the extra time for corrupt participants to

add extra vertices with depth k∗ is limited to the range of time between tk∗ , defined as the

moment when G reaches k∗ depth, and t∗. Therefore, in order to ensure that the majority of

vertices extracted by honest participants up to depth k∗ are honest, it suffices to bound the

number of corrupt vertices that can be generated in the window of time between tk∗ and t∗.

102



The proof proceeds as follows. Fist, we show that there is a distance x such that if some

(corrupt) vertex v is generated at tv and D(G
(tv)
H )−D(v) > x then v can never be extracted

from any honest participant’s graph. Second, we upperbound how many corrupt vertices may

be generated in any execution between the time that G reaches an arbitrary depth k and

GH reaches depth k + x, and let this number be ω. Finally, we use the honest participants’

known long-term advantage to set k∗ to guarantee that from the beginning of the execution

until the moment when D(G) = k∗, the difference between the number of honest vertices that

have been generated and the number of corrupt vertices that have been generated exceeds ω.

This guarantees that when an honest participant eventually computes its output, a majority

of the vertices up to depth k∗ in its extracted subgraph must be honest.

The full proof of Theorem 5.5 is in Appendix D.

103



Chapter 6

Asynchronous Secure Group

Messaging

This chapter presents a novel protocol for asynchronous group messaging. Our group mes-

saging (GM) (Section 6.4) protocol consists of three building blocks: (1) an initial group

key agreement (GKA) protocol (Section 6.2), (2) a group randomness messaging (GRM)

protocol used to transport key updates (Section 6.3), and (3) a key lattice (Section 6.1).

The key lattice is the main contribution of the work on which this chapter is based [47].

Adversarial Model

This chapter considers the strongest adversary of any in this thesis. In the security game,

the adversary orchestrates a simulated execution by invoking oracles that emulate protocol

actions taken by all parties. The adversary additionally may delay and rearrange the order

of messages arbitrarily, as in an asynchronous network. However, to simplify the presenta-

tion, proper ordering of messages within a subprotool is enforced by sequence numbers on

our updates and encrypted messages, and therefore in the exposition we assume that each

104



subprotocol’s messages are ordered, but messages sent by different subprotocols (such as

GKA, GRM, and GM application messages) are not ordered with respect to each other.

In addition, rather than corrupting parties explicitly in order to send messages on their

behalves, the adversary is permitted to call its oracles on messages that have not been sent

by honest parties. However, because all messages in our constructions are authenticated,

successfully changing the state of an oracle without knowledge of a party’s underlying key

would break the security of a cryptographic authentication mechanism.

The adversary can corrupt parties to learn protocol keys, and in some cases may inject

messages based on those keys. For example, learning a group key allows the adversary to

inject application messages, but these injections do not affect the security of other keys.1

Insider Security The state of the art in group messaging includes achieving a limited

amount of “insider security” [10, 12]. The adversary can “take over” a party by first learning

its GRM key (via a different query than leaks the group keys) and then and evolving the

group key on the party’s behalf. This kind of corruption is generally referred to as an

insider attack, as the party has become impersonated, and it is not considered recoverable

in any known scheme if the same party ever issues a competing key update. However, if the

adversary only uses the discovered state to send a message early which would have been sent

later by the party as in [10], then the attack is naturally covered by our security framework

“for free,” as this attack is equivalent in our game to calling an oracle’s evolution function

early and delaying delivery of the message to other parties.

The techniques of [12] for insider security require incorporating another protocol key into

the key schedule, which might not be revealed alongside a party’s other local state, as well

as the simulator’s ability to learn RO calls. The former is beyond the scope of the key lattice

1Some authentication schemes require parties to sign messages with their long-term keys [57] but adapting
this to concurrent group messaging is non-trivial, and not the focus of this work.

105



but could be included in a comprehensive system, and it is unclear that the latter is possible

in the standard model.2

A Concurrent and Fast-Healing Construction

The key lattice framework extends the state of the art in distributed group messaging by

achieving very strong concurrency – both for parties making concurrent updates within a

protocol session, and for concurrent protocol sessions. Our construction also allows us to

achieve a very fast healing mechanism measured in rounds and messages, although the work

required by each updating party is O(n), which is higher than the goal of O(log n) by the

MLS working group. We briefly highlight concurrency and our healing mechanism.

Full Concurrency by Eliminating Propose-and-Commit: Because we don’t require

the propose-and-commit framework to complete an update, we reduce the round complexity

of every group update operation. Propose-and-commit requires that parties first propose a

group addition or key update and then another party commits. If simultaneous commits

occur, then in lieu of an explicit consensus protocol, some infrastructure must determine

the winner. Even DCGKA [127], the decentralized work closest to ours by eliminating

the central server, requires that a dominating commitment is made in order to heal after

compromises, but in the event of concurrent commitments there is no solution. Additionally,

if multiple updating or committing parties encrypt group messages with respect to their

own commitments but before receiving the competing concurrent update (or commit), their

message is not guaranteed to be decryptable by any party that receives the competing commit

before the encrypted message.

2When [10] provide a construction without their RO, they also achieve only static security.

106



Partnering and Concurrent Sessions: In comparison to other recent work on group

messaging [7, 8, 9, 26, 127], our construction achieves security of concurrent sessions by

considering partnering. Partnering [37, 38, 82] (also called matching) states that parties par-

ticipating in concurrent sessions of group key agreement commonly distinguish the separate

sessions. It may be the case that the infrastructure server in the recent work also assigns

unique session identifiers to distinguish sessions, as alluded in the PhD thesis of [45]. Other

works explicitly model that only one CreateGroup instruction may be called [10].

Fast Healing: Our key lattice and modular framework achieves a fast and intuitive healing

mechanism. In fact, even if all parties are corrupted simultaneously – meaning the adver-

sary learns all of the keys in all parties’ local states – this means all of the keys in its local

lattice and all updates in its local state are learned by the adversary. as soon as any succes-

sive, uncompromised key update is generated, the resulting group key is not compromised.

Specifically, if any party is compromised, it must first heal its local GRM execution by call-

ing its evolution function once (this refreshes the state of the channel as well as updates

the group key). The next update that it receives from an uncompromised party yields an

uncompromised key (including if the recovered party performs the second evolution itself.)

This means that healing requires 2 GRM messages.

6.1 The Key Lattice

The key lattice is our central idea for managing concurrent key updates. In our key lattice

framework, every group key in a group messaging protocol is associated with a coordinate in

a discrete n-dimensional space, where n is the number of players in the group. When parties

update the group key (at some index), the new key produced is mapped to a larger index.

For example, for n = 2, a key k1,0 at coordinate (1, 0) may be updated to a new key with an

107



associated coordinate k1,1. We also provide a graphical explanation of a key lattice in which

the indices in the discrete n-dimensional space are vertices, and each vertex is labeled with

a key. In the graph, edges between vertices represent key updates.

Because the key lattice tracks the set of group keys generated during a group messaging

execution, we additionally define security of group messaging with respect to the key lattice.

We now formally define a key lattice.

Definition 6.1 (Key Lattice). We define K to be the space of keys, and we define L to be

the lattice of Nn where the ordering is defined by ia ≤ ib if all elements in ia are less or

equal to ib, and i ∈ Nn denotes a point on the lattice. A key lattice L = {(i, ki)}i∈L where

ki ∈ K∪{⊥} is a discrete lattice for which every point i ∈ L is associated with either a single

key or ⊥.

We denote the association by letting ki be the key associated with i. We also say that the

key for an index i is defined if ki ̸=⊥. Intuitively, parties will compute and agree on many

pairs (i, ki).

Given a key lattice, a key ki is j-maximal if there is no j ∈ Nn for which j(j) > i(j) and kj ̸=⊥.

If a key is j maximal for all j ∈ [n], we say the key is maximal in the lattice. Looking ahead,

in each party’s local lattice there is always a maximal key, computed by all applying all

updates that the party knows.

6.1.1 Key Evolution

When a party evolves the group key, it adds a new key (or, as in our construction in Sec-

tion 6.1.4, a group of keys), to the key lattice. Key evolution is described by a function

KeyRoll : K × X → K, where K is the key space and X is the update space, which en-

codes the data applied to the key during evolution. In our construction, we will require a

108



few properties of the KeyRoll function. First, we require that KeyRoll is commutative, i.e.

KeyRoll(KeyRoll(k, x), x′) = KeyRoll(KeyRoll(k, x′), x) for all k ∈ K and x, x′ ∈ X .

In addition to commutativity, we require that KeyRoll : K × X → K is unpredictable in

its second input. Intuitively, knowing only the first input (a key from K), no adversary

can “predict” the output (another key from K), if the second input (an update from X )

is sampled at random. Similarly, we say that KeyRoll’s inverse is unpredictable if given

only k′ ← KeyRoll(k, x), no adversary can “guess” the input k. More formally, we have the

following.

Definition 6.2 (Unpredictability). A family of functions F = {Fλ}λ where Fλ:Kλ ×Xλ →

Kλ is unpredictable in its second input if there exists a negligible function negl such that for

every probabilistic polynomial time adversary A and every λ:

Pr[y = Fλ(k, x): k ← Kλ, x← Xλ, y ← A(1λ, k)] ≤ negl(λ)

F ’s inverse is unpredictable if there exists a negligible function negl such that for any poly-

nomial time adversary A and every λ:

Pr[k′ = k: k ← Kλ, x← Xλ, k′ ← A(1λ, Fλ(k, x))] ≤ negl(λ)

where in each experiment, k and x are sampled at random from their respective domains.

There are many families of unpredictable functions. For instance, KeyRoll(k, x) = k ⊕ x

satisfies the unpredictability definition, as well as KeyRoll(k, x) = PRFx(k)
3. In both cases,

it is not possible to predict the output without knowing the key. The difference between

the first construction and the second is that in the first case, knowing the first input and

the output completely leaks the update material x. This property is not critical to our

construction; we can prove security for our main protocol assuming only that KeyRoll is

3In practice we cannot use the PRF construction because it is not commutative.

109



unpredictable. However, for completeness (and for situations where unpredictability is not

enough), one can define one-wayness similarly to the traditional version.

One-wayness. Intuitively, a function is one-way on a challenge (first or second) input if,

given F (k, x) and the other input, it is hard for any adversary to compute the challenge input.

Below we provide definitions of one-wayness on the second input. Although we do not use it

in our construction, it is also possible to define one-way-ness in the first input analogously

to one-way-ness in the second input. Intuitively, given x and F (k, x), it should be hard to

compute k. If KeyRoll is one-way in the first input, then the construction inherits additional

useful properties, which we describe in Section 6.4.4. We now present our definitions for

one-wayness on the second input.

Definition 6.3 (One-Wayness (on the Second Input)). A family of functions F = {Fλ}λ

where Fλ:Kλ × Xλ → Kλ is one-way on its second input if there exists a negligible function

negl such that for every probabilistic polynomial-time adversary A and every λ

Pr[x′ = x: k ← Kλ, x← Xλ, x′ ← A(1λ, k, Fλ(k, x))] ≤ negl(λ).

where k and x are sampled randomly from their respective domains.

ℓ-Point One-Wayness. The definition above can be generalized to the setting where A

obtains polynomially many (in the security parameter) samples of (k, Fλ(k, x)) pairs for

different randomly sampled k but the same x. This additional property allows us to further

constrain the power of the adversary. We defer the definition and discussion to Section 6.4.4.

110



k0,0

k1,0

k2,2

k0,2

(a) The red vertices and edges are explicitly
revealed to the adversary.

k0,0

k1,0

k2,2

k0,2

(b) The full set of information that an ad-
versary can compute from 6.1a.

Figure 6.1: Illustration of explicitly and implicitly revealed information in a Key Lattice.

6.1.2 The Key Graph

In our construction, parties track the group key(s) by assigning each key to a point on the

lattice. When a party evolves the group key, it defines the transition from one point on the

lattice to another. In fact, our construction defines the transitions from a family of points

to another family of points. Therefore, it is useful to describe the key lattice as a graph,

where the vertices are labeled with keys, and the edges encode key evolutions. Specifically,

we define a key graph G, where each lattice point i ∈ Nn is a vertex, and each vertex is

labeled with a single key or with ⊥. In our discussion, we refer to vertices by the lattice

points they represent. There exists an edge from vertex i to j if j = increment(i, k) for some

k ∈ [n], and we say that a pair of vertices i and j are neighbors if there is an edge from i

to j. Edges in a key graph are labeled with the key evolutions that they represent. We say

there exists a path ρ of length ℓ between two vertices i and i′ if there exists a sequence of

edges (v1, v2), (v2, v3), . . . , (vℓ−1, vℓ) such that (a) v1 = i, (b) vℓ = i′, and (c) vj−1 and vj are

neighbors for all j ∈ [2, ℓ]. Cycles are not allowed in a path.

FS & PCS: Our key graph allows us to discuss FS & PCS in a unified and simple manner,

as directional variants of the same abstraction. We color a vertex or edge black if it is not

revealed to the adversary, and we color a vertex or edge red if it is revealed to the adversary.

A party that “knows” both the key corresponding to a vertex and an edge leaving that vertex

111



will also “know” the vertex’s neighbor. FS & PCS mean that the only way the adversary

can learn a key k∗ at some target vertex v∗ is by starting with a red vertex on the graph and

following a path of red edges to v∗. In the traditional definition of FS, this would mean that

given a vertex v, without following (in reverse) a path of red edges, the adversary cannot

learn a predecessor of v. In the traditional definition of PCS, this would mean that given a

vertex v, without following a path of red edges, the adversary cannot learn a successor of v.

We illustrate this paradigm in Figure 6.1; every key is mapped to a point on the graph, and

updates are mapped to edges in the graph. In Figure 6.1a, the red vertices and edges are

explicitly revealed to the adversary. If PCS holds, then the adversary cannot compute the

key k2,2 because there is no path of red edges from a red vertex to k2,2. In Figure 6.1b, the

adversary can compute the keys k0,1, and k0,1, and k1,1 by starting at k0,0 and following a path

of red edges. FS can analogously be visualized by traversing the directed graph “backwards”

in order to reveal vertices at smaller indices than a compromised vertex.

Computable Lattice:

The description of a key lattice L may not be “complete” in the sense that given a set

L = {(i, k)} representing a key lattice, it may be possible to infer the keys assigned to other

indices on the lattice (i.e., points not in L). Below we illustrate the possible inferences

depend on the choice of the KeyRoll function. Consider the case where KeyRoll is defined

using XOR, then knowing the key at i and a neighboring key at i′ = increment(i, d) allows

us to derive the update σ, which may allow us to derive the keys at other lattice points j

such that j(d) = i(d).

We introduce a function Computable(L,E)→ L′ to output all the computable lattice points

L′ given the original lattice L and a set of updates E = {(d, j, x)}, where d ∈ [n] is the

dimension, j is an index and x is the argument to KeyRoll.

112



Figure 6.2: Illustration of computable information from a key lattice where KeyRoll is not
one-way.

Figure 6.3: Illustration of computable information from a key lattice where KeyRoll is one-
way.

The examples in Figures 6.2 and 6.3 illustrate the dependence of Computable on the properties

of KeyRoll. Figure 6.2 illustrates how Computable works if a KeyRoll function is not one-way.

Suppose the red keys in the figure on the left are revealed in a key lattice. If the KeyRoll

function is unpredictable but not one-way, then knowledge of a pair of adjacent keys would

reveal all edges (updates) in the corresponding row or column, as shown in the middle figure.

These inferred edges lead to additional computable keys (colored in red) in the right figure.

Figure 6.3 illustrates the difference when KeyRoll is one-way. The figure begins with the

same lattice as in Figure 6.2 but assumes KeyRoll is one-way. The lattice points in the left

figure do not allow us to compute a new lattice with more keys. However, given additional

information on the edges in the middle figure, it is possible to compute one additional lattice

point (top left in the right figure).

The function Computable(L,E) can be realized as follows:

1. Interpret the lattice L as a directed graph G. Initially this graph has no edges, only

vertices from L.

2. Add every edge from E to the graph. Recall that every edge in E corresponds to

113



multiple edges in G. Specifically, e = (d, j, x) describes all edges that begin with a

vertex (. . . , j, . . .) and end with a vertex (. . . , j + 1, . . .) where j and j + 1 are on the

dth position, and each edge is labeled with the update x.

3. Traverse G from the origin. For every pair of neighboring vertices (u, v) where u ̸=⊥

and v =⊥, if there exists an edge labeled with x connecting u to v, then compute

kv ← KeyRoll(ku, x).

4. Similar to above, but traverse G backwards and if two neighboring vertices (u, v) where

ku =⊥ and kv ̸=⊥ then compute ku ← KeyRoll−1(kv, x), where x is the label on the

edge between u and v. Note that, if KeyRoll is one-way on its first input, then this step

is omitted, as it is hard to compute u given x and v.

6.1.3 Updating a Key Lattice

We next explain how parties add and remove keys, and the maintenance they perform in

order to prevent too much state expansion.

Adding Keys: Parties may update the key lattice using the function Update(L, e) → L′

which takes a key lattice L and an update e = (d, j, x) and a returns a new key lattice L′ as

follows:

– Let D = {im} be all d-maximal index vectors in L.

– Output a new lattice L′ with additional points defined by the tuple (increment(i),

KeyRoll(ki, x)) for all i ∈ D.

Note that since the lattice points included in D are d-maximal, all keys in increment(i, d+1)

are ⊥ in the original lattice L. One can think of this operation as (possibly) adding keys to

114



y

x
k0,0

(a)

y

x

k0,1

(b)

y

x

k1,1

k1,0

(c)

Figure 6.4: An example of a local key lattice in an execution with two players (blue and red)
from the perspective of the red party.

the lattice based on e.

Forgetting Keys: A key lattice is an infinite object. In order to manage memory require-

ments, (and looking ahead, to provide FS) we need a way to remove keys from a party’s

local version of the key lattice. We next explain how parties track the keys of other parties

and introduce the function Forget to formally describe how keys are removed.

Parties will maintain a local key lattice in order to track the group keys, but they do not

(necessarily) need to maintain a full view of the key lattice. Each party tracks only the keys

that it may need in the future in order to decrypt a message that it has not yet received. This

permits the construction to achieve the best possible FS while also achieving correctness; as

soon as some party knows it no longer needs the key, it deletes the key from its view (in

order to prevent an adversary from learning the key after it has become deprecated).

The function Forget(L, i) → L′ takes a key lattice L and an index vector i, and returns a

new lattice L′ such that all keys all keys in index vectors i′ such that i′ < i, are set to ⊥.

We illustrate our approach in Figure 6.4. For simplicity, we only consider two parties labelled

with the colors red and blue. The shaded regions, assigned by color, indicate the set of points

towards which the corresponding party may define a new group key in the future. Any point

in a totally unshaded region represents an index of a key that can be deleted. In our

115



construction, when any party updates the key, it moves the latest group key towards a point

in the n-dimensional space along an axis that has been assigned uniquely to it. Blue and

red update the key towards higher indices on the x axis and y axis, respectively.

1. In Figure 6.4a, the red and blue parties initialize their local key lattices with k0,0.

2. In Figure 6.4b, red evolves the group key, which moves red’s latest key to k0,1.

3. In Figure 6.4c, suppose red received an update message from blue. Red applies the

update and evolves its own index from k0,1 to k1,1. Because red knows that blue evolved

its key, red updates its view of blue’s index k0,0 to k1,0. Specifically, red’s perspective of

the latest key for blue becomes k1,0. Since k0,0 and k0,1 are outside the shaded region,

these keys are removed.

Windowing to Limit State Expansion: In addition to the state reduction described

above, we can apply a state “window” to prevent the state from blowing up when encrypted

messages are delayed over the network, at the expense of the ability to decrypt long-delayed

messages. Consider that if one party makes m updates to the shared group key, resulting

in m possible different group keys, then parties must keep O(m) state in case another party

sends a message using one of those m keys. In our windowing scheme, each party maintains

at most the latest w key evolutions from every other party, which provides the ability to

compute at most wn total keys on the key lattice at any time.

We write Forget(L,w) → L′ to provide a window parameter w to Forget, which works as

follows.

– For every dimension d ∈ [n], let id the maximum j such that there is a key defined in

L at index j in dimension d.

– Let iw be an index vector such that for every d ∈ [n], i
(d)
w = max(0, id − w).

116



– Execute Forget(L, iw) and return the new lattice L′.

When using this scheme, there are situations in which parties may send messages such that

some application messages are not decryptable. Suppose sender S sends an application

message m encrypted under key k, and then suppose S updates the group key w times

starting with k. If S’s message m is delayed until after receiver R receives S’s key updates,

then R will delete the key material describing how to decrypt m. In synchronous networks,

the window can be set such that parties update their keys once per epoch, and the window

can be set large enough (by setting w is equal to the number of epochs that measure the

network delay) for sent messages to always be received in time to be decrypted. In the general

asynchronous case, the window can be set to ∞ in order to always guarantee decryption,

but this approach loses FS.4 Thus, the w parameter allows us to trade between security and

correctness.

6.1.4 Instantiation

We now describe how our group messaging protocol, which is presented in Section 6.4.2,

allows parties to manipulate a key lattice.

Generating a Set of Key Evolutions. In our construction, each party updates the group

key in its own “direction” in L; the dth party (U ∈ P for which ϕ(U) = d) always updates

the group key towards larger indices in the dth dimension on the lattice. A key update σ ∈ Σ

sent by one party to another is therefore a tuple (d, j, x), where d is a dimension in the key

lattice (generated by the party U such that ϕ(U) = d), j ∈ N is an index that annotates

how many times the updating party has updated the group key, and x ∈ X is data that

4This tradeoff was similarly explored by [110]; our asynchronous security model specifically accounts for
the attacks they describe by withholding some ciphertexts and corrupting a party days later to recover the
messages.

117



describes how to update the key (for KeyRoll). In other words, Σ = [n] × N × X . The jth

key evolution generated by any party therefore defines the transition from every index i to

index i′ such that i(d) = j and i′ = increment(i, d), and it defines the evolution to use update

data x. In our construction, the space X is the same as described in Definitions 6.2 and 6.3.

Observe that each key update in our construction defines a group of key evolutions, which can

be described in our graphical representation as a group of edges. We require commutativity

of KeyRoll to guarantee that when transitioning from key k to key k′ (over one or more edges),

where k is represented by vertex u, k′ is represented by vertex v, and there are multiple paths

between u and v in some party’s key lattice, it does not matter which path is taken.

Our KeyRoll Function. Our construction depends on the discrete logarithm assumption

to instantiate KeyRoll(k, x) as kx. That is to say, let key space K be a prime-order group G in

which the discrete log problem is hard, and let update space X be Z|G|−1. This construction

easily satisfies our commutativity requirement since (kx)x
′
= (kx

′
)x. For appropriately chosen

parameters, the construction is trivially unpredictable. If the discrete logarithm problem is

hard in G, then KeyRoll is also one-way on its second input.

6.1.5 Key Lattice for Generic Key Management

The key lattice enables building a concurrent group messaging protocol from existing prim-

itives such as pairwise channels. The following generic approach uses a key lattice to build

concurrent group messaging with three building blocks: (1) an initial group key, (2) a secure

pairwise channel between all parties in a group and (3) an AEAD scheme for sending payload

messages.

– Given the initial group key k0, the parties initialize their key lattice with (0, k0), and

assign ⊥ to the key at every other lattice point.

118



– If a party at index d ∈ [n] wants to update the key for the jth time, it samples x
$←− X

and sends (d, j, x) using the secure pairwise channels.

– Upon receiving (d, j, x) the receiver adds key k′ ← KeyRoll(k, x) to the lattice at point

i′ where k is the maximal key at point i in the lattice and i′ ← increment(i, d).

– If a party at index d ∈ [n] wants to send an application message, it encrypts the

message using the maximal key k in its local key lattice and sends the ciphertext to

the group members (without using the secure pairwise channels). The ciphertext is

encrypted using AEAD where the associated data is the lattice index that corresponds

to the key that was used to encrypt the message.

– Upon receiving the ciphertext encrypting a payload message, the receiver checks

whether it has the key in the key lattice required to decrypt. If so, then the receiver

decrypts it immediately. Otherwise, the receiver buffers the message until it receives

sufficient information to decrypt.

– Of course, storing all the keys that are in the key lattice is expensive and trades off

forward security. Every party also runs Forget(L,w) for its lattice L and the window

parameter w every time the party processes an update message.

6.2 Group Key Agreement

To agree on the very first shared key we use an existing group key agreement (GKA) protocol.

Many GKA protocols exist in the literature [32, 36, 37, 111]; for our purposes adapt the one

from [37] as it captures strong-forward secrecy and a strong corruption model. In this section,

we reproduce the definition with syntactic tweaks for the context of a group.5

5GKA protocols were originally formulated for 2-party messaging.

119



Definition 6.4 (Group Key Agreement). We use G ⊆ P to denote some group of players

that participate in the protocol. Each party U ∈ P is assumed to already have a long term

public/private key pair (pkU , skU). We assume a PKI exists and the public keys are available

to all parties.

The protocol consist of two stateful algorithms.

– {mV }V ∈G ← GKA.Init(G): Initialize an instance of the GKA protocol for a group

represented by G and return a set of responses, one for every party in G.

– {mV }V ∈G ← GKA.Recv(M): Process message M and return a set of responses.

The GKA may output done with a key k to notify to the party that the protocol is completed.

6.2.1 Security of GKA

Defining security requires additional terminology. We use Πgka
U,i to denote an oracle which

models the i-th instance of party U engaging in the group key agreement protocol. Below,

we will also use the notation (U, i) to refer to this oracle instance. We write n = |P| to

define the total number of participants, and we assume that each participant U can engage

in at at most nS sessions, i.e. i ∈ [1, . . . , nS].

An oracle Πgka
U,i maintains a number of variables (δU,i, κU,i, gidU,i, sidU,i, kU,i).

– The value δU,i denotes the current state of the oracle, which can be one of the following

– pending: this is the initial state of each oracle. It signals that the oracle has not

yet determined a key.

– accept: this state indicates that the oracle has determined a key.

120



– abort: this indicates that for some reason the oracle has aborted.

– The value κU,i ∈ {⊥, corrupted} indicates the corruption state of the oracle. It is

initially set to be ⊥.

– The value gidU,i ⊆ P denotes the intended group with which the oracle intends to

engage in a group discussion. For convenience we assume U ∈ gidU,i.

– The value sidU,i is a session identifier. Note that the index i in Πgka
U,i is not the same

as sidU,i. The value i acts as an internal session identifier. sidU,i is a global session

identifier which the protocol needs to establish. Once established, all group members

share the same sid.

– Finally kU,i is a key for the group gidU,i, which is initially set to ⊥.

Several functions can be called on the oracles Πgka
U,i , which allow us to model the protocol and

respond to messages. The adversary has complete control of the network and so can decide

what messages to send to parties, and when.

– Πgka
U,i .Init(G): Initialize an instance of the GKA protocol for the group members in G

where U ∈ G. Sets gidU,i ← G and return a set of messages {MV }V ∈G, where MV is a

message intended to be passed to an oracle associated with party V .

– Πgka
U,i .Recv(M):

– If δU,i = abort then this call does nothing.

– Otherwise, the oracle Πgka
U,i responds with a set of messages {MV }V ∈G, where MV

is a message intended to be passed to an oracle associated with party V .

If δU,i is changed to accept by this call, then Πgka
U,i outputs done.

121



– Πgka
U,i .Corrupt(): This sets κU,i = corrupted for all i associated with identity U . This

command will return skU . Since the long-term keys are associated with the party U

across all instances, calling Πgka
U,i .Corrupt is the same as Πgka

U,j .Corrupt where i ̸= j.

– Πgka
U,i .Reveal(): If δU,i ̸= accept, do nothing. Otherwise, return the shared group key

kU,i.

– Πgka
U,i .StateReveal(): Return the internal state stateU,i.

– Πgka
U,i .Test(): If δU,i ̸= accept, abort the protocol. Otherwise, sample either output

the shared group key from the GKA protocol, or a random key, depending on the

challenger’s choice.

Using these definitions, we can give the security definition of a GKA protocol. As is usual

the key definitions to define security for key agreement are partnering and freshness.

For our partnering definition we slightly deviate from the formalism of [37], in that we

define partnering to be defined only for the whole group; whereas [37] does this in a pairwise

manner. By transitivity of the pairwise partnering relation the two are essentially equivalent.

Definition 6.5 (Partnering of GKA). Given a group G ⊆ P and a set of pairs Q =

(U, iU)U∈G (there is one pair per group member) defining associated oracles Πgka
U,iU

, we say

the oracles corresponding to Q′ ⊆ Q are partnered if the following conditions hold:

1. For all (U, iU) ∈ Q′ we have δiUU = accept.

2. For all (U, iU) ∈ Q′ we have gidU,iU = G.

3. There is a single value sidQ′ such that for all (U, iU) ∈ Q′ we have sidiUU = sidQ′.

4. No oracles, apart from Πgm
U,iU

for (U, iU) ∈ Q′, accept with session identifier sidQ′.

122



The freshness definition below describes the state where an oracle is unaffected by the ad-

versary. It is a form of “adversary restriction” which stops the adversary from winning the

game using trivial attacks, e.g., revealing the shared key and then immediately making a

test query. Freshness also helps us define forward secrecy implicitly as we will see in the

security definition in Definition 6.7. This freshness definition is different to one in Section 6.4

because GKA does not have the concept of a key lattice so we use the traditional freshness

definition.

Definition 6.6 (Freshness of GKA). An oracle Πgka
U,i is considered fresh if

– No (U, i) ∈ gidU,i is asked for a Corrupt query prior to a Πgka
V,j .Recv(M) such that

(V, j) ∈ gidU,i before the partners of Πgka
U,i are in the accept state.

– Neither (U, i) or its partners are asked for a StateReveal query before they are in the

accept state.

– Neither (U, i) or its partners are asked for a Reveal query after having accepted.

Definition 6.7 (Security of GKA). Security of Group Key Agreement is defined by the

following sequence of steps:

1. All queries can be executed without restriction.

2. The adversary selects a fresh target (U, i) and calls Πgka
U,i .Test(). The challenger samples

a bit b
$←− {0, 1} and outputs the real shared group key k or a random key r sampled

uniformly at random.

3. Continue interacting with the GKA oracles.

4. The adversary outputs a bit b′ and terminates.

123



Any time that a session is accepted, the sid and the gid are passed to the adversary. The

advantage of the adversary A in this game is

AdvgkaA = 2 · |Pr[b = b′]− 1/2|.

The correctness definition is described below. It is similar to the definition in [37] except we

modify it to use our group-based partnering definition.

Definition 6.8 (Correctness of GKA). A key agreement protocol is said to be correct if for

a group G ⊆ P and a set of pairs Q = (U, iU)U∈G (with one pair per group member) giving

associated oracles Πgka
U,iU

, then the oracles being partnered implies that each oracle has the

same shared group key kU,iU , i.e. for all (U, iU), (V, iV ) ∈ Q we have kU,iU = kV,iV .

6.3 Group Randomness Messaging

We present the group randomness messaging (GRM) abstraction through which the parties

communicate update messages. The main functionality is to broadcast some authenticated

data and a ciphertext that encrypts a random message, which is used to update the key

lattice, to all members in the group using a pairwise channel. We require the point-to-

point channels to have FS & PCS properties. Below we give the definition of GRM and an

instantiation using public-key AEAD (PKAEAD) (Definition A.9).

Definition 6.9 (Group Randomness Messaging (GRM)). Consider the player executing the

protocol is U , a GRM scheme consists of three stateful algorithms.

– {cU,V }V ∈G ← GRMU .Init(k, w,G): initialize the GRM instance using the initial key k,

the window size w, and the group members G.

124



This step initializes the internal state stateU,i. The output is a set of ciphertexts, one

for every player in G.

– {cU,V }V ∈G ← GRMU .Evolve(): output a ciphertext cU,V for every V ∈ G.

– σV,U ← GRMU .Recv(cV,U): process the ciphertext cV,U , update the internal state and

return the plaintext σV,U if the decryption is successful. If decryption is unsuccessful,

return ⊥.

In the above definition, σV,U is a triple (U, j, x) where U is the identity of the sender, j is a

positive integer and x ∈ X .

6.3.1 Security

Security for GRM is defined in Definition 6.10. Compared to the syntax in Definition 6.9,

we add StateReveal and Test queries. Furthermore, Init, Evolve and Recv are modified as

follows: Init does not take a key k because these would allow the adversary to trivially win

the security game described later. Additionally, Init takes a set of oracles Q instead of a

set of players G. This change is required because the challenger needs to make sure the

adversary initializes the oracles that correspond to the same session, using the same key k.

For the same reason, the Evolve oracle does not output the plaintext anymore. Finally, Recv

takes an additional flag dec flag which allows the adversary to see the plaintext messages

of the updates it uses to evolve the oracle’s states. In other words, Recv can be used as a

decryption oracle.

Intuitively, our security definition aims to captures FS and PCS. Namely, the adversary is

allowed to reveal the state either before or after the test query. Nevertheless, as long as

the group member under attack had a chance to recover from the corruption or deleted its

old state, the adversary should learn nothing about the plaintexts that the group member

125



sends or sent. We assume out-of-order messages, including repetition, do not happen in

the point-to-point channels. In practice, this kind of attack can be detected using sequence

numbers or hash chains.

Definition 6.10 (GRM Security). The security of a GRM scheme is defined by a game

between the adversary and a challenger. A mapping QtK between a group of oracles Q and

a key k is kept so that the challenger uses the same key for oracles in the same Q during

initialization. This mapping is not revealed to the adversary. The adversary has access to

oracles Πgrm
U,i , each of which maintains internal state stateU,i and can be invoked as follows:

– {cU,V }(V,·)∈Q ← Πgrm
U,i .Init(w,Q): initializes GRM for the window size w and oracles

Q. If QtK[Q] =⊥, sample a symmetric key k and set QtK[Q] ← k. Finally, return

GRM.Init(QtK[Q], w,G).

– {cU,V }V ∈G ← Πgrm
U,i .Evolve(): return GRM.Evolve().

– σ ← Πgrm
U,i .Recv(c, dec flag): process the ciphertext c using GRM.Recv(c). If dec flag =

1, output the plaintext message σ, otherwise output σ =⊥.

– stateU,i ← Πgrm
U,i .StateReveal(): returns stateU,i to the caller.

– (x0, x1)← Πgrm
U,i .Test(c

∗): described in the game below.

The security game is divided into phases, separated by the adversary’s Test() query, as fol-

lows:

1. All queries can be executed without restriction.

2. The adversary calls the test query. Πgrm
U,i .Test(c

∗). The challenger samples a bit b
$←−

{0, 1}, samples a value x0
$←− X and then computes (V, j, x1) ← GRM.Recv(c∗). The

adversary is given the output (V, j, xb), (V, j, x1−b).

126



3. All queries can be executed without restriction.

4. At any time the adversary can stop making queries and output a bit b′ and win the

game if b′ = b.

The game above is additionally constrained by the following restrictions, which prevent trivial

attacks:

– The adversary is not allowed to call Recv with dec flag = 1 on c∗, the ciphertext given

to the test oracle.

– Let c∗ be the test ciphertext. There may be no other c′ such that c∗ and c′ were both

output from the same call to Evolve, for which c′ has already been an input to any oracle

query Πgrm
V,i .Recv(c

′, dec flag = 1).

– Further, consider the call to Πgrm
V,i .Test(c

∗), where c∗ is taken from a call to Πgrm
U,i .Evolve.

We do not allow Πgrm
V,i .StateReveal to be called until w + 1 calls have been made to

Πgrm
V,i .Evolve from the time that Πgrm

V,i .Test(c
∗) is called. This condition ensures that

oracle Πgrm
V,i has refreshed its state.

The advantage of the adversary A in this game is

AdvgrmA = 2 · |Pr[b = b′]− 1/2|.

The scheme is secure if, for any probabilistic polynomial-time adversary, the advantage is

negligible in the security parameter.

127



6.3.2 Correctness

The correctness definition for GRM requires correct decryption of all key evolutions under

two conditions which already appeared in the security definition (Definition 6.10).

1. Messages in the point-to-point channels are not reordered, i.e., these channels are

modelled as FIFO queues.

2. Each point-to-point channel can buffer at most w messages, this is similar to the final

restriction that prevents trivial attacks from Definition 6.10.

The constraints above can be viewed as a ω-well-ordered execution from ?? when ω = 0.

Definition 6.11 (GRM Correctness). A GRM protocol is correct if in every infinite ex-

ecution by every PPT adversary A who must deliver all messages, for all U ∈ G, for all

{cU,V }V ∈G ← GRMU .Evolve(), there exists a σ and for all V ∈ G there exists an oracle call

σV,U ← GRMV .Recv(cU,V ) such that σV,U = σ and σ ̸=⊥.

Correctness (Definition 6.11) of the protocol described in Section 6.3.3 holds by construction.

That is, the secret keys used for decryption are guaranteed to be available as long as there

are no more than w messages in the FIFO queue.

6.3.3 Instantiation

We instantiate GRM using PKAEAD. In essence, every party keeps a queue of w public and

secret key-pairs. This queue is updated every time the party calls Evolve by dropping the

oldest keypair and adding a new one. Each party U also maintains a public key for every

other party V which is updated whenever U receives the output of V ’s Evolve. U uses this

128



public key in order to encrypt messages to V . U also maintains an integer jV that tracks

the index of the latest public key U has received from V .

This initial message sent by each party is a pair (pk0U ,m), where pk0U is the party’s initial

ephemeral public key, m is a MAC on the public key using the key k provided as input to

Init. Where k is the key output by a GKA execution, this effectively “ties” a GRM to the

GM application that uses it, as the MAC links the output k of a GKA session with the GRM

session that will be used to evolve the key.

On a high level, the protocol achieves PCS because public keys are cycled over time and

FS because old keys are dropped. Our construction is detailed below. Let the set X to be

domain from which updates are randomly sampled.

– GRMU .Init(k, w,G): Generate an ephemeral key pair (pk0U , sk
0
U). Initialize stateU .sks =

{sk0U} and stateU .pks = ∅, and save w as the window parameter. Compute m ←

MAC(pk0U ; k), where k is the input key, pk0U is the message and MAC is a cryptographic

MAC scheme. Send the same message (pk0U ,m) to every member in G.

– GRMU .Evolve():

1. A new private key sk
j+1
U is generated, along with its public key pk

j+1
U .

2. Sample x
$←− X and let σ ← (U, j + 1, x), where j is the index of the latest secret

key in stateU .sks.

3. Repeat the steps below for every V ∈ G (including U).

– If the public key of the receiver V is not known, abort.

– Call (c, t) ← PKAEAD.Enc(pkj+1
U ∥σ, jV ; pk

jV
V ) and then set cU,V ← (c, t, jV ).

Note that pkjVV can be found in stateU .pks and jV is the index of the public

key associated with V .

4. stateU is updated as follows.

129



– Add sk
j+1
U to stateU,i.sks

– If |stateU .sks|> w, remove the oldest one (i.e., skj−wU ).

– GRMU .Recv(cV,U): There are two possible message formats. The message output by

Init is an ephemeral public key pk0V with a Mac; if the message is this type, then verify

the Mac using the key k provided to Init6 and then set V ’s public key in stateU .pks to

be (0, pk0V ). All other messages are handled as follows.

1. Parse the message cV,U as (c, t, j), where j is an index into the current user U ’s

secret key.

2. Find secret key sk
j
U . Abort the protocol if it does not exist.

3. pkjVV ∥σV,U ← PKAEAD.Dec(c, t, j; skjU), abort if this step returns ⊥.

4. Add or update V ’s public key in stateU .pks to be (j, pkjVV ).

5. Let jmin be the smallest j in {(j, pkiVV ) : V ∈ G}.

6. Delete all secret keys skjU where j < jmin.

7. Return σV,U

Theorem 6.1. Let A be an adversary against the GRM game, let B be an adversary against

the PKAEAD game, and let C be an adversary against the MAC EUF-CMA game. Then

AdvgrmA ≤ nS · Advmac
C + 2 · |Q|max·nQ · AdvpkaeadB .

where |Q|max is the upperbound for the number of oracles in a group, nQ is the upperbound of

the number of queries to the encryption oracle that B makes on behalf of A for the instance

under test, and nS = poly(λ) is the maximum number of concurrent GRM sessions that A

is allowed to invoke in its security game.

The proof of this therorem is in Appendix E.1.

6If verification fails due to trying the wrong key from multiple concurrent sessions, return ⊥ and process
the incoming message via the Recv function of a different session.

130



6.4 Group Messaging

In this section, we provide a GM protocol (Definition 3.13) built on GKA, GRM, and a key

lattice, and prove its security. In our construction, parties who wish to participate in a GM

instance begin by running a GKA protocol to obtain a shared symmetric key k. They use k

to initialize their key lattice, and then use GRM to securely communicate update messages

that can be applied to the key lattice to evolve the shared group key. When a party encrypts

an application (payload) message, it always uses the latest key in its key lattice.

6.4.1 Group Messaging Security

The security of GM is modeled via an oracle game, directed by the adversary, in which it ac-

tivates oracles corresponding to parties running a polynomial number of protocol executions.

In the game, we explicitly use the key lattice to track the evolution of the group key(s) over

time. The adversary invokes a semantic security challenge against a “fresh” key on one of

the lattices. A key is “fresh” precisely if the adversary cannot derive that key from its view

of the execution thus far; graphically, this means that the key is black in the corresponding

graph akin to Figure 6.1b. The adversary wins the semantic security challenge if it can

distinguish two ciphertexts encrypted under a fresh key.

The adversary invokes oracles Πgm
U,i where U is a group member and i ∈ [1, . . . , nS], where

the subscript i denotes a specific instance of the oracle that belongs to party U . Different

instances that belong to the same party may share long-term keys, e.g., identity keys.

Each oracle Πgm
U,i maintains internal variables to track each party’s view of the key lattice and

the group messages that have been received by that party. They also collectively maintain

global state that tracks which elements of the key lattice and which key updates have been

explicitly revealed to the adversary. We denote by Lrev
sid the key lattice describing all keys

131



(points on the lattice) which are revealed to the adversary, and we denote by Erev
sid the set of

key updates, modeled as edges in the graphical interpretation of the key lattice, which are

revealed to the adversary. Srev
sid = (Lrev

sid , E
rev
sid ) denotes all of the key material that is revealed

to the adversary in some session sid. The session ID sid is a unique identifier for the group

members who have successfully completed the initial group key agreement and established a

session (described in detail in Section 6.2 since it is a property inherited from GKA). Indeed,

sid is not defined when a GKA session begins, but this is not an issue since the session’s

lattice is instantiated only after the session is established. The full information on the key

lattice available to the adversary is given by Computable(Lrev
sid , E

rev
sid ). We remark that the

session ID (sid) is not the same as the instance ID. The instance of an oracle, e.g., (U, i), is

established when the oracles are initialized, but the session ID is only established some time

later, after the oracles are ready to evolve keys.

Specifically, the oracles maintain the following state:

– δU,i ∈ {pending, accept, abort} indicates whether the oracle is ready to start evolving

keys.

– LU,i represents the key lattice maintained by oracle Πgm
U,i. We use the language from

Section 6.1 to describe the key lattice.

– stateU,i is the remaining state that the implementation may keep.

– Srev
sid = (Lrev

sid , E
rev
sid ) represents the key lattice Lrev

sid containing all the revealed keys by the

adversary as well as the revealed updates Erev
sid in session sid.

The full details of the GM oracles are specified below.

– Πgm
U,i.Init(G,w): Initialize an instance of the GM protocol for the group members in G

where U ∈ G and w is the window size. Set δU,i = pending. The response is returned

132



to the adversary.

– Πgm
U,i.Corrupt(): Return the long-term secret to the adversary.

– Πgm
U,i.Reveal(): If δU,i ̸= accept then return ⊥. Otherwise, return the set of keys that

are computable from LU,i, and add these keys to Lrev
sid

– Πgm
U,i.StateReveal(): If δU,i ̸= accept then return ⊥. Else, return the internal state stateU,i

except the computable keys LU,i. Add any revealed key updates to Erev
sid .

– Πgm
U,i.Evolve(): If δU,i = abort then return ⊥. Else, return a set of message {MV }V ∈G.

– Πgm
U,i.Recv(M):

– If δU,i = abort then this call does nothing.

– Otherwise process the message, optionally update the state stateU,i and the key

lattice LU,i. Return a set of messages {MV }V ∈G. The input M should be from

either the output of Recv or Evolve.

– Πgm
U,i.Dec(c): Use the available internal state to decrypt the ciphertext c and output

the plaintext. If the oracle does not have enough information to decrypt the message,

then it is buffered.

– Πgm
U,i.Enc(m): Encrypts the plaintext m using the maximal key in LU,i and returns a

ciphertext.

– Πgm
U,i.Test(m0,m1): This is defined in the security game below.

By execution of Corrupt, Reveal and StateReveal queries the adversary can learn the entire

secret internal state of the oracle Πgm
U,i. Specifically, Corrupt gives the party’s long-term public

key and secret key, Reveal gives the party’s current group keys, and StateReveal gives the

party’s internal state except for what is provided by the former two queries. Also note how

the above gives the adversary a decryption oracle via Dec.

133



Modeling Pairwise Channels in the Oracle Game:

In the general oracle game, the adversary is permitted to invoke the oracles in any order,

which models an asynchronous network. However, to describe the guarantees that the pro-

tocol achieves when windowing, we define a syntactic model to describe the messages sent

“between parties” in the oracle game. Specifically, between every ordered pair of parties

(U, V ) the adversary maintains a special buffer CU,V called a channel representing the pair-

wise connection between U and V . When an oracle query returns a message c to be sent

from U to V , the adversary places (c, n) into CU,V , where n is an integer recording that c is

the nth message placed into the channel.

In the above game description, each oracle provides three queries to generate messages to

other parties. Πgm
U,i.Enc(m) encrypts a message using the oracle’s latest key and returns

a ciphertext which is forwarded to all other parties. Whenever a Πgm
U,i.Enc(m) query is

made, the returned message c is simultaneously put into the channels CU,V for all V ∈ G.

Πgm
U,i.Evolve() generates a key evolution, but returns a different message for each other party

in the execution. Similarly, Πgm
U,i.Recv(M) may output a different message for every other

party in the execution, but it may also output no messages. Whenever a Πgm
U,i.Evolve() or

Πgm
U,i.Recv(M) query is made, the oracle returns a list of ciphertexts cV , one for each V ∈ G.

Each of these messages is immediately placed into the corresponding channel CU,V along with

its index.

A message c generated by an Enc query is removed from its corresponding buffer only when it

is input to a corresponding oracle Πgm
V,j.Dec(c). A message c generated by an Recv or Evolve

query is removed from its corresponding buffer only when it is input to a corresponding

oracle Πgm
V,j.Recv(c). Note that if an oracle receives a message that it cannot yet process

due to reordering of messages over a pairwise channel, then the oracle is expected to buffer

the message until it can process the message, and return the result once it can process the

134



message.

The adversary may additionally invoke Recv or Dec oracles on messages that have not been

placed in channels but instead were adversarially generated. These actions do not affect the

channels.

Partnering:

For group messaging, partnering is analogous to the case for GKA. Intuitively, a group in a

GKA protocol is partnered if the parties participate in the same session and agreed on the

same group key. For group messaging, parties are partnered if they are running a protocol

with each other to agree on a lattice of group keys.

Definition 6.12 (Partnering). Given a group G ⊆ P and a set of pairs Q = (U, iU)U∈G

defining associated oracles Πgm
U,iU

, we say the oracles are partnered if the underlying GKA

oracles Πgka
U,iU

(see Definition 6.5) are partnered.

For some security parameter λ we define a security game for the adversary A, this consists

of the set of participants P where n (the number of participants) is a polynomial function

of λ, as is the maximum number of sessions per participant nS. Thus the number of oracles

Πgm
U,i is also a polynomial function of λ. The adversary A is given at the start of the game

all the public keys pkU for pk ∈ P and it interacts with the oracles Πgm
U,i via the sequence of

oracle queries as above.

Freshness:

We now define freshness for our game. Intuitively, we say that a key is fresh if it has not been

revealed to the adversary, either explicitly via Reveal queries, or implicitly, via a combination

135



of Reveal and StateReveal queries. The global state Srev
sid tracks the keys computable by the

adversary, and a key is fresh if and only if it is not computable from Srev
sid .

Definition 6.13 (Freshness). In a session sid, a key ki∗ with at index i∗ is fresh if and

only if it is not computable from Srev
sid using the Computable function, as defined in the group

messaging definition (Definition 3.13).

Security Game:

The security game tries to break the semantic security of a message sent between the parties.

It runs in two phases, the division between the two phases is given by the point in which the

adversary executes a Test query.

– Phase 1: All queries can be executed without restriction.

– Test Query: Πgm
U,i.Test(m0,m1): Given two equal length messages m0 and m1, if kU

is fresh, where kU is the maximal key of instance(U, i), then the challenger selects a

bit b ∈ {0, 1} and applies Πgm
U,i.Enc(mb), returning the output ct∗ to the adversary. We

denote the test oracle by Πgm
U∗,i∗ . We call i∗ the test index.

– Phase 2: All queries can be executed except for:

1. Any query that would add ki∗ to the set of keys computable from Srev
sid .

2. If the message ct∗ is at any point processed by Dec(ct∗), by the oracles, then the

result is not returned to the adversary (however the game still continues).

Queries to Reveal, StateReveal or Corrupt during Phase 1 are used for capturing PCS and

queries to these oracles during Phase 2 captures FS. At the end of the game, the adversary

A needs to output its guess b′, and wins the game if b = b′. We define

AdvA(λ) = 2 · |Pr[b = b′]− 1/2|.

136



Definition 6.14 (Security of Group Messaging). A GM scheme is secure if for any prob-

abilistic polynomial time adversary A the advantage AdvA(λ) is negligible in the security

parameter λ.

Correctness

Intuitively, a GM protocol is correct if every message that is encrypted with the group key

is correctly decrypted by every recipient. We write the formal definition with respect to the

oracles defined for our security game. Our definition of correctness requires all encrypted

messages must eventually be correctly decrypted under a property called “well-ordered exe-

cution” which we define as well.

Definition 6.15 (Correctness of Group Messaging). A GM protocol is correct if in every

infinite execution by every PPT adversary A who is allowed to query the GM oracles except

Corrupt, StateReveal,Reveal and Test and must deliver all messages, for all U, i, for all c ←

Πgm
U,i.Enc(m), and for all V ∈ G \ {U} there exists a j and an oracle call m′ ← Πgm

V,j.Dec(c)

such that (U, i) is partnered with (V, j) and m′ = m.

6.4.2 GM from GRM and GKA

We first present our construction of GM from GKA, GRM, and a CCA-secure AEAD scheme;

we then prove security of GM based on the underlying primitives.

Protocol Overview

In our construction of a group messaging protocol, parties maintain local versions of a global

key lattice in order to track the group key. They then encrypt and decrypt messages using

keys from the lattice, and they update the group key by adding new keys on the key lattice.

137



Our protocol uses the above primitives to initialize their key lattices, encrypt and decrypt

messages using the keys in the lattice, send updates to the group key, and remove keys from

their lattices. Specifically, each party maintains a local key lattice L, a local set of key

updates E , and a buffer B of unprocessed messages, which contains both GRM messages that

it cannot yet process and encryptions that it is not yet able to decrypt. Every update e ∈ E

has the form (d, i, x) where d ∈ [n] corresponds to the dimension of the party that generates

the update, i is an index and x is key transformation data. Parties also maintain a list of

index vectors I ∈ (Nn)n that tracks each party’s view of the current key of every other party,

which is used to optimistically exclude keys from its state.

Message Headers and the Recv Subprotocol. We make the distinction between proto-

col messages and application messages. Protocol messages in GM are either GKA messages

(to agree on an initial group key) or GRM messages (to evolve the group key). Application

messages are encryptions under some group key.

Our construction uses a single Recv function to process every incoming protocol message,

provided in Figure 6.7, which directs the incoming message to the appropriate subprotocol

(either GKA or GRM). To help distinguish between GKA protocol messages and GRM

protocol messages in the descriptions of the protocols and the proofs, we say that a message

is a “GKA message” if it contains a prefix gka, and a message is a “GRM message” if it

contains a prefix grm. In an implementation, these headers can be encoded as flags. Where

the context is clear, we elide these prefixes from the exposition.

Initialization:

When a group of parties begin a GM protocol, they initialize the execution via GM.Init(),

which is described in Figure 6.5. Each party saves the set of other parties in the protocol

138



and the window parameter. They also agree on a hash function H described below, which

is a public parameter. The parties then run GKA in order to agree on an initial group key.

Note that the key lattice and GRM is not initialized yet; they can only be initialized after

the GKA outputs the initial key as shown in Figure 6.6.

Sending and Receiving Key Updates:

Our GM construction uses GRM as a transport for generating and communicating random

key updates. In Figure 6.6 and Figure 6.7 we specify how parties generate new key updates

and process updates form other parties, respectively.

Specifically, when a party wishes to evolve the group key, it invokes GRM.Evolve() to receive

a random key update σ along with an encryptions of the update to send to each other party

via pairwise channel. The calling party adds σ to its set of edges E and computes any possible

new points in L. When a party receives a key update, it calls GRM.Recv() on the update,

and if a key update is returned then it adds the update as an edge in E and computes any

possible new keys in L. If it cannot yet decrypt the key update, it buffers the message.

Encrypting and Decrypting a Message:

Whenever a party wishes to encrypt a message m using the group key, it calls GM.Enc using

the maximal key in its key store. Specifically, we require a hash function H:K → K, that

maps from the keyspace of the key lattice to the keyspace for a CCA-secure AEAD encryption

scheme.7 When a party encrypts a message, it provides the hashed key corresponding to the

maximal index i in its key lattice L as input to AEAD.Enc, and it includes the index i as

associated data. The encrypting party then forwards the encrypted message to every other

7This hash function’s purpose is semantic to convert between types. We only require that if the adversary
does not know k then it does not know H(k). We elide discussion of H in the proof.

139



party.

When a party seeks to decrypt a message, it looks up the corresponding key (the index of

which is found in associated data), and supplies the hashed key to AEAD.Dec. When a party

receives an encrypted message, it checks whether the index of the key used to encrypt is in

Computable(L, E). If so, it uses the key at that index to decrypt the message. If not, it adds

the message to the buffer B. The implementations of encryption and decryption in given in

Figure 6.8 and Figure 6.9.

Pruning the Key Lattice:

Parties continuously attempt to prune elements from their local state, both in order to

manage the size of the state they keep, and also because deleting old keys facilitates forward

secrecy. When a party knows that it will no longer receive any messages encrypted with

keys below a particular key index i, it optimistically prunes all such keys from its lattice

via Forget(L, i). Additionally, if ever a key index exceeds the key window (keys whose index

vector that are less than the threshold index vector iw) it purges the key (and relevant

updates) from L (and E).

Whenever a party receives an encryption from a party V , it updates its index vector I[ϕ(V )]

tracking the keys used by V . Recall that because our construction requires key updates to

move toward higher lattice indices, the set of future indices is the union of the n-dimensional

hyperplanes H∗ =
⋃

iV ∈I H≥iV . Any index outside this union represents an obsolete key, and

the related keys are deleted via Forget in Figure 6.9.

In summary, keys and edges that fall outside the window parameter are deleted as specified

in Figure 6.7. Keys and edges that will not be used in the future are deleted as specified

in Figure 6.9. This is possible because parties also send their maximal lattice point along

with their message (in Figure 6.8) so that the receiving party can compute the minimum view

140



(lattice point) of all parties and delete keys and edges that are smaller than the minimum

view.

GM.Init(G,w)

On execution of GM.Init(), run GKA.Init(G) and output the result. Note that U holds
the long-term key pair (pkltU , sk

lt
U).

Figure 6.5: Algorithm for GM.Init(G,w)

GM.Evolve()

U calls {cU,X}X∈G ← GRM.Evolve(), and outputs cU,X to X for X ∈ G.

Figure 6.6: Algorithm for GM.Evolve()

GM.Recv(M)

– If M is a GKA message:

– Compute {mU,V }V ∈G ← GKA.Recv(M), and outputs mU,V to party V for
V ∈ G.

– If GKA outputs done with a key k:

∗ Initialize L with the point (0, k).

∗ Initialize a GRM execution via {cU,V }V ∈G ← GRM.Init(k, w,G) and
send cU,V to V for V ∈ G.

∗ Initialize an empty message buffer B← ∅.

– If M is a GRM message received from party V :

1. Compute σ ← GRM.Recv(M). If σ =⊥, then add M to B and return.
Otherwise, let (d, j, x) ← σ, add (d, j, x) to the set of edges E and then
compute L ← Computable(L, E).a

2. Delete deprecated keys using L ← Forget(L, w).
3. Delete deprecated edges from E that precede the corresponding index in

the threshold index vector (see Section 6.1.3). Specifically, suppose the
threshold index vector is iw = (i1, . . . , inS

) and E = {(dk, jk, xk)}k, then
remove all edges (dk, jk, xk) where jk < idk .

4. While B is not empty or B has not changed from the previous iteration:

– For every message M ∈ B, execute GM.Recv(M)

aA sanity check would be that d = ϕ(V ) and j should equal the dth element of the maximal index
vector of L.

Figure 6.7: Algorithm for GM.Recv(M)

141



GM.Enc(M)

Player U finds the ϕ(U)-maximal lattice point i in its local lattice L, computes
(ct, t)← AEAD.Enc(m,U∥i, ;H(ki)), and then returns (ct, U∥i, t).

Figure 6.8: Algorithm for GM.Enc(M)

GM.Dec(M)

Parse M as (ct, V ∥i, t). If M is not of this form, return ⊥. Then:

– If i < iw, where iw is the threshold index vector, or if i < I[ϕ(V )], then return
⊥.

– Update I[ϕ(V )]← i, compute imin as the index vector of the element-wise mini-
mum of all i ∈ I, and then execute L ← Forget(L, imin).

– Find the key at i in L using Computable(L, E), if ki =⊥, then add M to B and
return ⊥.

– If ki ̸=⊥, compute m← AEAD.Dec(ct, V ∥i, t;H(ki)). If m =⊥, abort the proto-
col. Otherwise, return m.

Figure 6.9: Algorithm for GM.Dec(M)

6.4.3 Well-Ordering and Correctness

Recall that our oracle game tracks the order in which messages are returned from oracles to

be sent to other parties via our abstraction of pairwise channels, and that the adversary may

delay and reorder messages sent via the pairwise channels. A channel is ω-well-ordered if

the nth message sent over C is removed from the channel before the (n+ ω)th message (via

delivery to the correct oracle), for all n ∈ N. An execution is ω-well-ordered if all pairwise

channels are ω well-ordered.

We claim that when windowing with our protocol, for any ω-well-ordered execution, if the

window parameter w is greater than or equal to ω, then the protocol is correct. The proof is

trivial by construction of the protocol. When w < ω, windowing may force some decryption

keys to be purged before the corresponding message is delivered.

Remark 6.1 (Well Ordering and Network Synchrony). Well-ordering is a strict relaxation of

network synchrony that depends on ordering messages rather than on time. In a synchronous

142



network, a delay parameter of ∆ implies ∆-well-ordered channels; therefore, setting w = ∆

implies correctness. If the network is asynchronous, then w must be set to ∞ in order to

guarantee correctness. However, this sacrifices forward secrecy, as parties may store old

group keys indefinitely.

6.4.4 Security Theorem

We now state our theorem for the security of our construction and provide an overview of

the proof. The full proof is in Appendix E.2.

Theorem 6.2 (Security of Group Messaging). If A is an adversary against the GM

game, then there exist adversaries B, C, and D such that Advgm(A) ≤ 2nSAdv
gka(B) +

2nSnAdv
grm(C) + nSψAdv

cca(D), where nS = poly(λ) is the maximum the number of GM

sessions A may invoke, and ψ = poly(λ) is the maximum number of keys that A may query

in a session.

Proof Sketch. The proof proceeds via three reductions. In the first, we present an adversary

B for the GKA game. B attacks the initial key established by GKA for GM, and it uses A to

distinguish between the output of a GKA scheme and a randomly sampled key. Intuitively,

B simulates a GM execution for A, and B itself generates all of the keys and edges in the

lattice for A after the initial key is produced by GKA. In the test session (which B must

guess), B targets the initial key by invoking the GRM oracle’s Test() query to be provided

either the key output by GKA or a random key. On all other sessions, B uses its own Reveal

query to learn the GKA key. In either case, this GKA key is used as the initial key for the

session’s key lattice. B then internally simulates GRM for A and, because it knows all of

the keys, can perform any requested encryption and decryption. The core idea is that A will

attack a specific key k∗ in the lattice. However, because B knows the transformations from

the initial key to k∗, B can also perform the inverse computation to attack the initial GKA

143



key (although B does not do this explicitly in the reduction).

In the second reduction, we present an adversary C for the GRM game. Similar to the GKA

adversary B, C simulates an execution of GM and tracks the keys and updates for A in the

key lattice defined by the execution. C learns every edge except for one, which it uses to call

its own Test() query. C guesses its test edge such that with some (polynomial) probability,

the key that A tests will depend on the update represented by C’s chosen edge. If A is able to

distinguish between games in which this edge is faithful to the GRM protocol and a random

edge, then C directly inherits the advantage to distinguishing whether the decryption output

by its challenger was a faithful decryption of the update or random.

In the final reduction, we present an adversary D that attacks the CCA-security of an AEAD

scheme. D again simulates GM for A, and in this case D knows every key and update except

for the test key. D therefore answers every encryption and decryption query that A asks

using its knowledge of the key lattice; for queries on the test key, D forwards A’s requests

to its own challenger. The one difficulty of the proof is that D does not know which key

A will attack in GM, and A is able to ask for encryptions under that key before it makes

its Test query, which is D’s only indicator of the test key. Therefore, D adaptively guesses

which key will be the one tested. Observe that if A makes n evolutions, 2n keys are defined.

If n = poly(λ), then this is exponential in the security parameter. However, A can only run

in polynomial time (in the security parameter), and therefore can only explore a polynomial

number ψ of them. D adaptively guesses that the next key explored by A will be the test

key with probability 1
ψ
. We show that by this strategy, D chooses the correct key with some

probability greater than the inverse of a polynomial in the security parameter.

The theorem requires that KeyRoll and its inverse are unpredictable, and therefore the adver-

sary cannot learn arbitrary vertices by revealing a single vertex in the lattice. The properties

of KeyRoll do not appear in the reductions because they directly imply the definition of fresh-

ness, which rules on which Reveal and StateReveal queries that A may make in the game to

144



enforce that A may never explicitly or implicitly reveal the test key. If KeyRoll is not unpre-

dictable, then if the adversary reveals any vertex, the entire lattice is revealed. If KeyRoll is

one-way, the the adversary is permitted to learn more information about vertices and edges

around the test vertex than if KeyRoll is only unpredictable. In the following discussion, we

explain how the properties of KeyRoll impact the information that the adversary learns from

its corruption queries.

Discussion

The Key Lattice, Forward Secrecy, and Post-Compromise Secrecy. We frame our

analyses of the above reductions in terms of the graph that represents the collective key lattice

defined by the execution. Specifically underpinning our analyses, we require that GKA is

forward secure and that GRM updates are both forward secure and post-compromise secure.

Consider the conceptualization in which vertices and edges on the key lattice are black if

they are not revealed to the adversary, and red if they are revealed to the adversary. Also

color red any vertex that is discoverable by the adversary by starting at a revealed vertex

and following a path of revealed edges. If GRM is both forward secure and post-compromise

secure, then these are the only edges that are computable from those that are revealed, and

therefore the adversary cannot learn new edges – and as a result, new keys – on the graph.

Our constructions – and our definition of freshness – explicitly rely on this paradigm. If

some part of the key lattice L defined by some execution is revealed to the adversary, then

the adversary should not be able to learn any more information on the lattice, except for

what it can compute by following paths of red edges from red vertices. Our simulators

explicitly traverse the key lattice in order to attack their underlying primitives. The GKA

adversary B builds a path from the initial vertex to the key tested by the GM adversary; the

distinction between its two environments is whether the GKA key it tests was sampled at

random. Intuitively, if the GM adversary can distinguish between environments in its game,

145



then the GKA adversary B can backtrack through the path of updates it constructed to the

initial GKA key, and in doing so win its GKA challenge. The GRM adversary C similarly

simulates an execution of GM, and it chooses an edge on the key lattice to attack that the

GM adversary’s key depends on. By forward and post-compromise secrecy, this edge should

not be discoverable by any adversary given other revealed vertices and edges. The fact that

the GM adversary distinguishes in its game implies that, given some information on the

other keys and updates in the lattice, the GM adversary can learn information about this

edge. C exploits this information in order to win its game. The CCA adversary D similarly

requires that the GM adversary cannot learn the test key from the other vertices and edges

in the graph which it reveals.

Properties of the Evolution Function. Implicit in the above reductions is that the

GM adversary A cannot learn vertices or edges in the key lattice which it does not explicitly

reveal. At a high level, this is enforced by the fact that key updates are sampled at random,

and that the evolution function maintains that the evolved key is hard to guess without

knowing the key update. In depth, to enforce the fact that the adversary cannot learn

additional components of the key lattice (which preserve the definition of freshness), we

depend on properties of the key evolution function KeyRoll, described in Section 6.3. We

now relate the properties of KeyRoll to the (in)ability of the adversary to learn additional

components of the key lattice. In the following discussion, we refer to KeyRoll simply as F .

If F is unpredictable in its second input (Definition 6.2), then given only the key k corre-

sponding to a vertex v, the adversary cannot learn learn the key k’ at any successor of v

for which the connecting edge is unrevealed. More granularly, given only k, A cannot learn

F (k, x) when x was sampled at random (as the protocol specifies). Similarly, given only

F (k, x), where k and x were sampled at random, the adversary cannot “traverse the graph

backwards” to learn the preceding key k. This is the only property of KeyRoll which our

146



proof requires. We next describe the impact of additional desirable properties of KeyRoll on

the ability of the adversary to infer points on the key lattice.

If F is one-way on the second input (Definition 6.3), then given a pair of vertices (u, v), A

cannot learn the transformation that describes the key evolution between them. Letting k

be the key associated with the vertex u and F (k, x) be the key associated with v, A therefore

cannot learn x. Recall that in our construction, each key evolution corresponds to a group

of edges in the key graph. Therefore, it may be the case that the adversary learns a number

of vertices (u1, u2, . . . , uℓ) and (v1, v2, . . . , vℓ) (for ℓ < n), where all ui correspond to lattice

points with the same index j in dimension d, and all vi correspond to points with index j+1

in dimension d. Then the adversary may attempt to use multiple points in order to learn the

transformation, which is guaranteed to be the same between each ui and vi. We would like to

prevent A from learning some target key k∗ which also has index j+1 in dimension d, even if

A already knows the preceding key (the key with index j in dimension d but the same index

in all other dimensions, which corresponds to the key before applying transformation x). We

therefore call on an ℓ-point version of the one-wayness definition (Definition 6.16), which

says that given the keys (kui , kvi) corresponding to predecessor-successor vertices (ui, vi) for

i ∈ [1, ℓ] and the key kuℓ+1
corresponding to the vertex um+1, the adversary still cannot learn

the key kvℓ+1
corresponding to vertex vℓ+1, even if all ui follow the same transition (the same

key evolution) to vi.

Definition 6.16 (ℓ-Point One-Wayness (on the Second Input)). F = {Fλ}λ is ℓ-point one-

way on its second input if there exists a negligible function negl such that for every proba-

bilistic polynomial-time adversary A and every λ

Pr[x′ = x: k⃗ ← Kℓ
λ, x← Xλ, x′ ← A(1λ, k⃗, [Fλ(k1, x), . . . , Fλ(kℓ, x)])] ≤ negl(λ).

where x and k⃗ = (k1, . . . , kℓ) are sampled randomly from their respective domains.

147



One-Wayness on the First Input Although not used in our construction, it is still

illustrative to explain the properties of the revealed lattice if F is one-way on the first input

(Definition 6.3). Given given the update x on an edge (u, v) and the key corresponding to

vertex v, the adversary still cannot learn the key corresponding to vertex u. For multiple

points, the discussion is analogous to the previous discussion of ℓ-point one-wayness on the

second input.

6.5 Extension to Dynamic Groups

We provide an extension of our framework that permits dynamic group membership “for

free,” and additionally handles simultaneous adds and removals with no additional effort,

thus completely avoiding “splitting” [10] issues in synchronous protocols where multiply

parties make competing simultaneous updates. The extension is a feature of the key lattice,

and group messaging protocols that are defined with respect to a key lattice such as ours

should be able to adapt the protocol to permit dynamic membership with little cost, save

application-specific rules. We do not re-prove our theorems for security of our protocol with

dynamic groups.

Recall that our general definition of the key lattice is an n-dimensional space, where n is

the set of all players. Let P be the set of all identities. The function ϕ:P → N assigns a

canonical ordering to P . Players who evolve the group key only do so in their respective

dimensions corresponding to ϕ. When a new party joins the group, points become defined

in a new dimension corresponding to that party. When a party leaves the group, its future

group updates become invalid. Parties running the protocol maintain a lossless compression

of the lattice by tracking only indices corresponding to participants in the protocol.

Treating dynamic membership in this way averts all of the problems of concurrency incurred

148



by other works – including with respect to insider attacks – since groups including the new

members are only defined in the lattice as successor points of the addition operation, and

we incur no conflicts by maintaining multiple copies of the lattice that correspond to groups

both with and without the new member.

Adding Members For a group G that starts an execution, all of the members of G are

initialized at point 0 in their dimension. In other words, there exists a key at the lattice

point 0 which is the initial group key. All other parties not in G are initialized at point ⊥

(which is compressed by omitting the dimension from any index vectors). At any point, a

member can add a new party to the group with a message (AddMember, U, i), where U is the

identity of the newly added member and i is the maximal lattice point of the adding party

(which includes the new dimension). The adding party also sends ki to party U . In response,

all parties that receive the message will begin receiving from and sending messages to U .

When a new member is added to the group, that member is defined to belong to the group

only for messages (and key updates) that succeed the AddMember message on the key lattice.

(The newly added party is defined to not be in the group with respect to messages that are

concurrent to the AddMember message.) When U is added to the group, the adding party

must send the party a key with which to initialize its lattice (at i). To prevent V from

learning group messages from before it was a member, the adding party must associate

the addition with a key update, which it sends along with the AddMember message to the

other parties in the group. If two parties add the same group member concurrently, the

new member is defined to be part of the group for all messages that succeed either of the

corresponding AddMember messages. Where the two concurrent updates meet in the lattice,

the two key updates provided by the adding parties compose naturally by the commutativity

of KeyRoll. Note that since we assume PKI, the long-term public key of U can be fetched by

all the parties.

149



Removing Members Any member of a group can remove another member with a message

(RemoveMember, U, i), where U is identity of the member to be deleted, and i is the lattice

point for which U should no longer receive updates. (The deleting party sets i as its maximal

lattice point at the time it sends the RemoveMember message.) A group member is defined

to be removed from the group for all messages that succeed the RemoveMember message,

meaning all lattice points that are greater than i. For messages that are concurrent to

RemoveMember in the key lattice, the party is still in the group.

If two parties attempt to concurrently remove the same member from the group (and that

party is already in the group), then the party is removed for all messages that succeed either

RemoveMember message. If two parties attempt to concurrently add and remove a member

from the group who is not yet in the group, then the RemoveMember message must be

invalid and only the AddMember is processed. If two parties attempt to concurrently add

and remove a member who is already in the group, then the AddMember message must be

invalid and only the RemoveMember message is processed.

150



Chapter 7

Composing Timed Cryptographic

Primitives

The work on which this chapter is based [62] observes that the current understanding of time-

release cryptography is based on idealized, non-falsifiable models. This chapter initiates a

foundational study of time-release cryptography by introducing a falsifiable, formal notion

of security with which to characterize the time-release. The foundations of time-lock puzzles

must address composability in order to allow puzzles to serve a larger distributed compu-

tation setting, specifically multi-party computation in which time-lock puzzles are solved

as part of the protocol. Section 7.5 presents a new depth-bounded model of secure multi-

party computation that includes time-release cryptography. The composition theorems in

Section 7.5.4 reveal degradation in security when composing timed primitives.

The model in Section 7.5 presents new constraints on the usual asynchronous model of

Canetti [39] or malicious model of [75]. Specifically, both the adversary and the environment

in our model are depth-bounded, and protocols that are run concurrently by the environment

both count against the environment’s depth. While it allows an adversary attacking a timed

151



primitive to execute an arbitrary (polynomial) number of side-sessions in order to assist its

attack, these sessions must be run in parallel (time) to the main protocol it is attacking.

In other words, the depth of each side session counts against the adversary’s time budget,

even if the adversary is not using that time to attack its main protocol. This is in contrast

to the referenced models by [39] and [75], which allow the environment to run protocols

completely “asynchronously,” meaning the environment can pause its target protocol and

run a full side-session of another protocol (or polynomially many other protocols) without

counting towards the depth used to attack the target protocol.

7.1 Subtleties and Inconsistencies in Random Oracle

Analysis for Time-Lock Puzzles

To a large extent, timed cryptography still treats cryptographic puzzles as essentially a

random oracle [13, 21, 22]1. At a high level, an iterated algebraic computation is modeled

such that each iteration gives a random result, and hence the intermediate computations

are all random until the determined time when the puzzle is solved. Others similarly cast

the solution of a puzzle into a generic group (or ring) model [81, 117, 124] in order to make

analogous claims about the information available before the solution time (in generic models

the intermediate results are again random and not related to each other). As a common

theme, these works arrive at an “instantaneous” revelation model, where the solver only

learns the solution in the final step.2

However, Mahmoody et al. [91] showed that time-lock puzzles with superpolynomial gap

1While the authors in [69] do not explicitly treat their base puzzles as random until solved, we argue that
their analysis implicitly does so, as they treat the repeated squaring assumption as having “instantaneous”
reveal.

2In some cases, this is a limitation of the definition of time-lock puzzles only quantifying secrecy until the
time when an adversary can guess the solution with non-negligible probability. In generic group models, the
solution is explicitly hidden until the last step.

152



cannot be constructed from just random oracles. Their analysis explicitly considers a timed

primitive for which each intermediate step is random. Therefore, analyzing any algebraic

timed primitive in this way is applying an analysis to the solver that has already been shown

does not match reality (or even approximate it) if assuming that a puzzle can be generated

(via a trapdoor) much faster than it can be solved. Simply, applying random-oracle analysis

to the solver is inconsistent with an algebraic puzzle generator, as we know random-oracle

analysis does not yield a puzzle with superpolynomial gap. This leaves an open question

of modeling the leakage mode of computational puzzles without a random oracle, which is

necessary to fully analyze a time-lock puzzle with superpolynomial gap. We expound on this

mismatch below.

Mahmoody et al.’s Result and Popular Idealized Analysis. Mahmoody et al.[91]

showed that time-lock puzzles based only on random oracles cannot provide super-polynomial

gap between generation and solving time. Their analysis explicitly considers time-lock puz-

zles for which each step in the solving process produces a random result.

This analysis is mirrored by analyses of time-lock puzzle solving in the literature. For

example, Baum et al. [21, 22] explicitly model an idealized time-lock functionality that

provides a uniformly random result at each step of the solving process. This form of analysis

provides the next step in the solve algorithm as a random element that reveals no more

information than the element itself. In the strong algebraic group model of [81, 124] and

the generic ring model of [117], each element is expressed as a function of factors or as an

inverse of another element, which gives algebraic structure to the elements that have been

seen so far, but leaks nothing more about the final solution.

Analytical Mismatch. Analyzing a trapdoor-based time-lock construction by modeling

the solving process as if a random oracle leads to apparent contradiction. On the one hand,

153



algebraic constructions are believed to realize super-polynomial gaps between generation and

solving. On the other hand, Mahmoody’s analysis in which each next step is random and

independent has been shown to only yield polynomial gaps. The state of current analysis

is that puzzles are generated using a trapdoor and then the solving process is treated as a

random oracle. These analyses do not match the realization, which should account for the

computational difficulty of the solving process.

Implicit Random Oracles. Other works do not explicitly model the solving process via

a random oracle, but either the modeling implies a random oracle or it overlooks leakage as

the puzzle is partially solved. For example, the base time-lock puzzle in the construction of

Freitag et al.[69] defer to analysis by Pietrzak [109] that assumes the hardness of repeated

squaring. But the formalization simply assumes it is infeasible to guess the solution of

a repeated squaring until the final squaring; either it implicitly treats the process as if

the probability of guessing the solution before the end is negligible, or it uses a game-

based definition that implies the solution process is essentially a random oracle. Therefore,

these techniques as well are not differentiated in any meaningful way from the analysis of

Mahmoody et al. and incur the same analytical mismatch as above.

Modeling Leakage After the Lock Expires. In the examples above, the repeated

squaring assumption fails to model the leakage as the solver approaches the final squaring.

Moreover, time-lock definitions such as those by [27] or [69] only require that the puzzle

remain hard to solve until “close” to the honest solution time fall implicitly into the same

trap. For these definitions, the modeling is still incomplete. The difference between the time

when the honest parties arrive at the solution (following the honest solve algorithm), and

the hypothesized time when the “gap” expires and the adversary can guess the solution with

noticeable probability, is important to modeling a time-lock puzzle utilized during an MPC

protocol. In this time, the adversary can use the puzzle solution with a head-start over the

154



honest parties, even when honest parties are fully synchronized. We therefore advocate for

a complete analysis that fully models the leakage of computational puzzles.

7.2 A Framework for Computational Puzzles

Current computational puzzles follow the following blueprint:3

1. The puzzle generator uses a trapdoor to efficiently sample a puzzle.

2. The solver uses a sequential algorithm to solve the puzzle. The puzzle is parameterized

such that the sequential algorithm is faster than any known method to recover the

trapdoor.

In this blueprint, the solver must be able to recover the secret within time that is polynomial

in the puzzle’s security parameter. Therefore, the (leaky) iterative process occupies a regime

of fine-grained polynomial complexity, where (too much) information must not be leaked

to an adversary with some polynomial depth d, but all information must be leaked when

surpassing a different polynomial depth d′ > d.

The above guides our work into a model of cryptography with fine-grained polynomial depth

which, as we explain below, brings new challenges in modeling and intricate formal defini-

tions.

7.2.1 Residual Complexity

To formalize the above notion of fine-grained polynomial hardness – in which some problems

are solvable while related underlying problems remain hard – we introduce our definition of

3Recall that by Mahmoody et al.[91], there is no time-lock puzzle based solely on random oracles with
superpolynomial time-gap, and therefore in practice puzzles depend on trapdoors.

155



residual complexity. Intuitively, residual complexity quantifies the “remaining hardness” of

a puzzle that has already been (partially) solved by an adversary of depth d.4

Definition 7.1 (Residual Complexity (Informal)). A puzzle scheme has residual complexity

rd if no depth-d adversary can guess the solution of a randomly sampled puzzle with probability

more than rd.

By this definition, 1-rd is the “remaining hardness” of the puzzle after attempting to solve it

in d depth. Our formalization (Definition 7.5 ) is a generalization of a technique in defining

the depth-hardness of certain computational problems in [81] and others.

Residual complexity models the entire leakage profile of a puzzle by defining the “leakage”

of a puzzle as the decrease in residual complexity of the puzzle between every two levels

of depth of the best solving algorithm. We provide example curves of puzzle schemes in

Figure 7.1. In the figure, the x axis represents time, and the y axis represents the best

adversary’s probability of guessing the solution. A point (x, y) on the curve represents that

the best x-depth adversary guesses the solution with probability y. At the moment of the

time-parameter, the puzzle is guaranteed to be solvable with probability 1 by the honest

strategy.

As an illustration of the complexity degradation of a time-lock puzzle consider the RSW

time-lock puzzle construction [114], which depends on the hardness of an iterative squaring

mod RSA modulus N , while the underlying trapdoor problem of finding Φ(N) remains hard.

Specifically, a solution χ is encoded via a puzzle (α, t,N) by setting χ = α2t mod N , where t

is a hardness parameter that determines how many times the solver must repeatedly square

α mod N in order to discover the solution, and log(N) is a function of the security parameter

λ.

4Note that the remaining hardness measures pseudo-entropy rather than entropy, as the solution of a
timed primitive is always committed at the moment it is generated. (Otherwise the solving algorithm could
not be deterministic.)

156



0

1

critical time
time parameter

(a) Example leakage profile for a time-lock puz-
zle.

0

1

time parametercritical time

(b) Example leakage profile for a puzzle scheme
that briefly hides its solution.

Figure 7.1: Illustration of leakage profiles for two kinds of puzzles.

For RSW on smallN , it is easy to see that revealing such intermediate steps leaks information

about the nearby upcoming solutions. For larger moduli, even knowing x2 mod N leaks

non-trivial information about (x ± δ)2 mod N for small δ (on the order of log(N)).5 By

expanding the modulus to tune the hardness of the problem, the leakage diminishes but

does not disappear because the algebraic structure remains.

In realistic computing scenarios and using clever algorithms6, the solver learns a nontrivial

distribution on the puzzle solution before it performs t squarings; we upper-bound the ability

of an adversary to learn the solution by hypothesizing a leakage curve for the RSW scheme

given a particular security parameter λ and time parameter t. We then quantify the difference

in time between when the best adversary can guess a puzzle solution (with non-negligible

probability) and the time that the honest parties learn the solution via the scheme’s solve

algorithm, and can name the moment when the adversary can guess with non-negligible

probability as the critical time.7

5This is in contrast to a random oracle analysis, for which the next step of a puzzle is always independent
of the current state.

6As another example, using parallel processors to compute forward mapping tables for quadratic residues
modulo N .

7A negligible function is an asymptotic notion. For each security parameter, the protocol designer can
choose a probability that is “unacceptable” for guessing the solution, and designate the depth for which
the residual complexity meets this threshold as the critical time. This specifies the moment at which the
time-lock is considered to expire.

157



7.2.2 Leakage and Temporary Privacy

The time-release of information is modeled by idealizing leaky functionalities which slowly

provide information to the parties in a set of phases which take the place of time steps. A

leaky functionality is parameterized by the leakage curve of the puzzle scheme it idealizes,

which determines how much information (as a reduction in pseudo-entropy, as described

above) the functionality provides to the adversary at each phase.

This treatment of idealized leakage captures applications where sensitive information is re-

vealed during the computation, but must not be revealed before some specific point in time.

For example, consider an accountable computing application, where parties time-lock their

inputs and are held accountable to them at a later time. In traditional definitions of MPC,

there is no way to quantify security of such a protocol. These inputs would be output by

all parties, making any security reduction trivial. Because the simulator would receive all

parties’ inputs (as one party’s output), the standard reduction for proving security would

declare that no adversary could learn more information than a simulator which already knows

all of the parties’ inputs.

The formalization of temporary privacy requires that the simulator knows no more informa-

tion at each phase than the adversary, which by definition learns information as the ideal

functionality reveals it. Therefore, the simulator’s input does not include the information

which is revealed slowly throughout a computation; instead, it learns the information at the

same rate as the adversary. It follows that in the security reduction, the proven statement

is that the adversary can do no worse than a simulator which knows the same amount of

information at each step of the computation. We can then claim that for time-release com-

putations, privacy of some information holds for a specific amount of time, after which it is

revealed and the adversary (respectively simulator) can use it.

158



7.2.3 Simulation Budgets and Depth-Secure MPC

Our treatment of time-based primitives and protocols requires a granular, depth-based def-

inition of secure computation which departs from the standard cryptographic regime of

“security up to arbitrary composition within complexity class P,” and must account for the

depths of all involved machines – the adversary, the simulator, and the distinguisher.8

Specifically, security should hold with respect to an adversary with depth that is bounded

by a fixed polynomial (in comparison to any polynomial in the security parameter). We

bound the depth of a distinguisher (or environment) in tandem with the adversary. After

surpassing these parameterized depths, it is alright for the information to be revealed.

Crucially, the simulator must also be bounded to some depth less than the puzzle requires

to solve. Otherwise, the claim of privacy via reduction will completely fail: the reduction

becomes a claim that an adversary can do no worse than a simulator that could solve a puzzle

outright and learn the solution.9 Therefore, the simulator has a granular “depth budget” and

it must run in less time than privacy is required to hold. We give the formal definition in

Section 7.5.3 and describe it informally as follows:

Definition 7.2 (Depth-Secure Multi-Party Computation (Informal)). A protocol Π

(da, ds, de)-securely implements a functionality F if Π’s simulator runs in no more than ds

depth, and the distribution of views produced by the simulator remains indistinguishable from

the distribution of real executions for any da-bounded adversary and any de-depth bounded

distinguisher (environment).

Our observation on the simulator’s depth budget leads to new questions about whether

existing works apply to a realistic model such as ours. The simulator in the work by Baum

8To generalize between the works of [69] and [81], our definition states the depth of the environment, but
the variable could be either polynomially bounded or unbounded. See [69] for discussion.

9For phased simulations, discussed in Section 7.5.5, this becomes that the simulator should run in less
depth per phase than the adversary.

159



et al. [22] explicitly solves a time-lock puzzle during simulation, and is able to shortcut the

solving process only because the simulator is not bound by the global clock functionality. 10

Freitag et al. [69] allow the simulator to explicitly solve puzzles, and artificially constrain the

distinguisher by allowing it only to see a function of the solution of modified puzzles, which

does not conform with meaningful definitions of a distinguisher which could run the simulator

on its own. These are very delicate arguments, and while the corresponding constructions

are elegant, they fall short of the nuances our fine-grained model brings to light: since

the simulators are of a much different type than usual, nuances regarding the qualitative

properties of the proofs using them follow.

7.2.4 Composition of Depth-Secure Protocols

We encounter additional challenges when composing secure timed primitives. For example,

sequentially compose protocols Π and ρ, where Π is proven secure in the F -hybrid model

against a da-depth adversary, and ρ securely implements F against a d′a adversary. The

composition Πρ is not trivially secure against a da + d′a-depth adversary! An adversary

against Π could use the time during ρ in order to continue attacking Π; similarly, an adversary

against ρ could use the time after ρ concludes and Π resumes in order to continue attacking

ρ. Similar issues occur in concurrent composition, although they are of the same ilk – in our

model, the depth used by an environment to run a “side session” during an attack against

Π counts towards its depth in the attack.

When composing protocols with timed primitives, the composed simulation must also be

shorter than the time that privacy must hold. We also show that the black-box composition is

secure only against the smaller of the two protocols’ distinguishers, and against an adversary

that is smaller adversary than the first protocol’s adversary by the size of the second’s

10This observation is more an indictment of bounding time with a global clock functionality than of the
simulation technique, since the simulator is not constrained by the functionality and therefore not granularly
constrained by depth/time.

160



simulator.

Theorem 7.1 (General Composition (Informal)). Let Π (da, ds, de)-securely implement F

and let ρ (d′a, d
′
s, d

′
e)-securely implement G. The composition of Π and ρ is (da − d′s, ds +

d′s,min(de, d
′
e))-secure.

The term da− d′s comes from our simulation technique. Intuitively, if the composition is not

secure against this depth of adversary, then there exists a da-depth adversary that simulates

an execution of ρ in parallel to its attack on Π and uses the simulation to break Π.

The above theorem considers concurrent as well as sequential composition. We additionally

prove another specialized, relaxed composition theorem, for protocols that cannot be proven

concurrently composable but may be proven sequentially composable (e.g. if the simulator

must be rewound).

Theorem 7.2 (Special Sequential Composition (Informal)). Let Π (da, ds, de)-securely imple-

ment F in the G-Hybrid model and let ρ (d′a, d
′
s, d

′
e)-securely implement G. The composition

Πρ (da − d′s, ds · d′s,min(de, d
′
e))-securely implements F .

The multiplication in the middle term results from considering rewinding.

We present formal versions of these composition theorems for depth-bounded secure com-

putation (Theorems 7.3 and 7.4) in Section 7.5.4. Note that our techniques are limited to

composing depth-secure protocols in a black-box manner, and we do not prove tightness of

degradation. The theorems also provide endpoints of a spectrum of budget depletion between

the two extremes; when computing depletion for a specific composition in a non-black-box

manner, it is possible to reason about the execution time of each simulator. There may be

better techniques, including those with knowledge of the underlying protocols, that show

tighter security preservation under composition.

161



7.3 Example Application: Simultaneous Multiple

Round Auction

Our framework for depth-secure multiparty computation with timed cryptographic primitives

enables us to reason about composition of timed primitives in a realistic setting. Consider

that an application requires privacy of a primitive until time t11. The protocol designer

parameterizes the scheme such that no one refutes (no experiment or mathematical analysis

has shown otherwise to date) that the puzzle is unsolvable in t depth. We therefore conclude

that the scheme is secure against a t-depth adversary. After depth t, we assume that the

adversary can use the solution (earlier than honest parties learn the solution, who must wait

for the time parameter).

As an illustration, consider the following variant of a Simultaneous Multiple Round Auc-

tion [97] with partial knowledge restriction and forced reveal.12 As is standard in time-lock

literature, time-locked bids guarantee that no party has information about other parties’

bids within a round, while allowing for forced reveal.

Stage 1: Every party i submits a bid b1,i in an auction for the first round of bidding, to be

opened not before time t1.

Stage 2: After t1, all bids for the first stage of the auction are opened. The parties who submitted

the top c (constant) bids in Round 1 are chosen to submit stage-2 bids (b2,i), to be

opened not before t2.

Winner: The winner of the auction is the party i that maximizes B = b1,i+b2,i constrained such

that i’s bid in Stage 2 was opened. Party i pays $B.

11t is the critical time described in Section 7.2.1
12This variant also has only a fixed number of rounds, but this can be trivially extended as per a true

Simultaneous Multiple Round Auction.

162



Observe that this construction requires both concurrent and sequential composition of timed

primitives. Within a stage of bidding, all of the time-lock puzzles require security in con-

current composition with each other. For each discrete round of bidding, the concurrently

composed bids require sequential composition in order to be analyzed in the framework of a

larger protocol.

Tuning for Timed Security We apply our composition theorems to estimate parameters

to tune the security of concurrent primitives within the first round. Assume a protocol for

submitting and solving an individual puzzle bid which can be set to be (da, ds, de)-secure.

If the concurrent composition of n puzzles must be secure against an adversary of depth t1,

then each individual puzzle must be tuned such that da = t1 + (n− 1)ds. The depth of the

composed simulation is at most nds. The concurrent composition for this round is then (at

least) (t1, nds, de)-secure.

To analyze the full example above, including sequential composition between rounds, we

analogously apply the composition theorems again, tuning so that the first round is secure

for t1 depth, the second round is secure for t2 − t1 depth, and the full composition is secure

for t2 depth.

7.4 Defining Time-Lock Puzzles

The following definitions for time-lock puzzles are adopted from Bitansky et al. ([27] Defi-

nition 3.1).

Definition 7.3 (Puzzle). A puzzle for solution domain M = {Mλ}λ is a pair of algorithms

Puz = (Puz.Gen,Puz.Solve) for which

– Z ← Puz.Gen(t, χ) is a probabilistic algorithm over difficulty parameter t ∈ N and

163



solution χ ∈Mλ, where λ is a security parameter, and outputs puzzle Z.

– χ← Puz.Solve(Z) is a deterministic algorithm that takes as input puzzle Z and outputs

solution χ ∈Mλ.

subject to the following constraints:

– Completeness: For every security parameter λ, difficulty parameter t, solution χ ∈

Mλ, and puzzle Z in the support of Puz.Gen(t, χ), Puz.Solve(Z) outputs χ.

– Efficiency:

– Z ← Puz.Gen(t, χ) can be computed in size poly(log t, λ).

– Puz.Solve(Z) can be computed in size t · poly(λ).

We continue by adapting the more constrained definition of a time-lock puzzle by Bitansky

et al. ([27] Definition 3.2).

Definition 7.4 (Time-Lock Puzzles). A puzzle Puz = (Puz.Gen,Puz.Solve) is a time-lock

puzzle for solution domain M = {Mλ}λ with gap ε < 1 if there exists a polynomial r(·) such

that for every polynomial t(·) ≥ r(·) and every polynomial size, tε-depth-bounded adversary

A = {Aλ}λ∈N, there exists a negligible function negl such that for every λ ∈ N, and every

pair of solutions χ0, χ1 ∈Mλ:

Pr[b← Aλ(Z): b← {0, 1}, Z ← Puz.Gen(t(λ), χb)] ≤
1

2
+ negl(λ)

164



7.4.1 Residual Complexity and Leakage

Residual Complexity

Residual complexity more granularly describes the remaining hardness of a partially-solved,

randomly sampled puzzle than Definition 7.4 above. Specifically, it measures the pseudo-

entropy [78, 123] of a puzzle solution from the perspective of a computationally bounded

solver.

Definition 7.5 (Residual Complexity). For a function r:N → [0, 1], we say that a puzzle

Puz with solution domain M = {Mλ}λ∈N has (d, r) residual complexity if for every depth

d-bounded adversary Ad, and every λ ∈ N:

Pr[χ← Ad(Y ):χ←Mλ, Y ← Puz.Gen(λ, χ)] ≤ r(λ)

When d is implied by context, we refer the residual complexity of a puzzle by the function r.

When we consider the residual complexity of a puzzle at a particular depth d, we explicitly

write rd. One can consider 1− r(λ) to be the remaining hardness of the puzzle.

Leakage

Residual complexity naturally induces a definition of a puzzle’s leakage over time. We call

the function describing the loss in pseudo-entropy at each level of depth a leakage curve.

For depths d1 and d2 the quantity rd2 − rd1 represent the loss in pseudo-entropy of a puzzle

between d2 and d1.

For any puzzle scheme, there exists a family of leakage functions indexed by the security

parameter and the time parameter, denoted L = {ℓλ,τ}λ,τ , such that each function describes,

based on the parameterization, the information a party can extract from the puzzle over time.

165



The time parameter τ describes the number of sequential operations required to “solve” the

puzzle in the honest case. The security parameter λ tunes the computational difficulty

of guessing the solution before τ has elapsed. Specifically, λ parameterizes the underlying

computational problem which the iterative process solves; for the RSW puzzle, λ describes

the size of the modulus used for repeated squaring. In this work, we always consider a specific

leakage function ℓ and elide the subscripts from the notation because they are implied by

context.

Intuition: The Distribution of Solutions Intuitively, we consider the leakage that a

party obtains on a puzzle to inform the distribution that the party learns on the puzzle’s

solution. Any puzzle-solving strategy must imply a distribution on the strategy’s “best

guess” of a puzzle solution at any point in time. When a party receives a puzzle, the

distribution of its best guess has very high pseudo-entropy. As the party learns leakage

on the solution, the pseudo-entropy of the distribution of the solution decreases, and the

distribution redistributes its mass until eventually all of the mass lies in a single point: the

puzzle’s solution. We can then understand the leakage of a puzzle to provide a distribution

on the solution of the puzzle for every depth d. The residual complexity rd gives an upper

bound on the mass implied at the point of the puzzle solution.

7.5 Modeling Multi-Party Computation

This section discusses in detail the modeling issues that arise from composition of timed

primitives with other cryptographic computations, including simulating leaky functionalities.

To provide a full treatment of depth-secure multi-party computation, we present two models:

1. A “general” model which adapts the Universal Composability (UC) framework [39]

166



such that all parties (including the environment, trusted third party, and adversary)

are modeled as interactive circuits.

2. A “sequential” model, which is useful for proving security of sequential composition of

protocols which cannot be proven secure in our more general model, but is otherwise

similar, and adapts standard sequential models to our fine-grained treatment.

We then present our definitions for depth-secure computation and theorems – both general

and sequential – for how depth-secure protocols compose.

7.5.1 General Execution Model

In our generalized, UC-like model, we consider an execution in the presence of an environment

that provides inputs to parties and reads their outputs. The environment is an interactive

Turing machine which directs the execution, analogously to the environment in the UC [39].

It delivers inputs to parties as well as messages that have been sent to them by the adversary.

The environment is also responsible for delivering messages between parties.

The adversary informs the environment which parties it will (adaptively) corrupt, and the

environment passes the adversary all of the corrupt parties’ inputs, the queries they make,

and the responses they receive (the latter two are analogous to the messages they send and

receive, adapted for our model). The adversary may also inform the environment before the

execution which parties it will corrupt from the start; in this case, the environment passes

the adversary those parties’ inputs and the adversary may choose to replace their inputs by

responding to the environment. Only after this exchange, the environment provides inputs

to all honest parties. This models that an adversary may select inputs in order to affect a

computation, which is within the application scenario of accountable computation.

For a full treatment of the execution model, refer to Appendix F.1.

167



The Ideal/Real Paradigm in the General Model

We next describe our general ideal/real paradigm for granular-depth secure multi-party

computation (MPC).

Execution in the Real Model. In the real model, participants execute a protocol Π to

compute the desired functionality F without a trusted party. At the end of the execution,

honest parties output their protocol outputs. The corrupt parties output nothing. The

adversary outputs an arbitrary function of its inputs and the messages that corrupt parties

have received. The environment learns every output. The random variable REALΠ,A(z),Z(x)

denotes the output of the environment in a real execution of Π with honest inputs x, auxiliary

input z to A, with environment Z.

Execution in the Ideal Model. In an ideal execution, the parties interact with a trusted

party by submitting all of their inputs to the trusted party in the beginning of the execution.

The trusted party for a leaky functionality responds to the parties by dividing an execution

into phases such that at the end of each phase, the parties receive some output.

At the end of an execution, honest parties output whatever they have received from the

trusted party. Corrupt parties output nothing, and the adversary outputs an arbitrary

function of its input and the messages that corrupt parties have received from the trusted

party. The environment learns every output. The random variable IDEALF ,A(z),Z(x) denotes

the output of the environment in an ideal execution of functionality F on honest inputs x,

auxiliary input z to A, with environment Z.

168



7.5.2 Sequential Model

Our sequential model is like the general model, except that each protocol execution is con-

sidered in isolation, and instead of being directed by the environment, it is directed by the

adversary itself. The adversary that controls message deliveries and may adaptively corrupt

parties throughout an execution. The adversary activates all parties within each round, and

within each round all parties execute a computation of the same depth. The adversary can

additionally adaptively corrupt parties and inject messages, analogously to the exposition in

Appendix F.1.

The Real/Ideal Paradigm in the Sequential Model

Execution in the Real Model In the real model, the parties execute a protocol Π in

the presence of an adversary A. The random variable REALΠ,A(z)(x) denotes the execution

transcript on a real execution of Π with honest inputs x and auxiliary input z to adversary

A. The execution transcript includes all of the honest parties’ inputs, the honest parties’

outputs, and the adversary’s output.

Execution in the Ideal Model As in the general model, in the ideal experiment the

honest parties send their inputs to a trusted third party, and the third party delivers the

results. The simulator generates an execution transcript by interacting with the third party

and with the adversary on behalf of the honest parties. The random variable IDEALF ,S(z)(x)

denotes an execution transcript generated by an adversary S in an idealized execution of

functionality F on honest inputs x and auxiliary input z to S.

169



7.5.3 Depth-Bounded Secure Multi-Party Computation

Depth Constraints For a meaningful definition of secure multi-party computation (MPC)

with timed primitives, the computational power of the simulator must be constrained in a

manner similar to the adversary’s. Otherwise, if the depth of the simulator is substantially

more than the adversary, then the simulator could (for example) solve a time-lock puzzle,

and use the solution in the simulation. It would be meaningless to argue privacy by claim-

ing that any information the adversary can learn about the honest parties’ inputs in a real

execution could also be learned by a simulator which explicitly solves a time-lock puzzle in

order to learn secret information (such as honest parties’ inputs).

Our definitions below therefore constrain the depths of both the simulator and the adversary.

We also depth-constrain the distinguisher, intuitively because for timed primitives we need

only to show security for some amount of time.

Definition 7.6 (Depth-Bounded Secure Computation: General). Let da = da(λ), ds =

ds(λ), and de = de(λ). Protocol Π (da, ds, de)-depth securely computes F if there exists a

ds-depth-bounded S such that for every real-world da-depth-bounded adversary A and every

de-depth-bounded environment Z, the following two ensembles are de-depth indistinguishable:

{REALΠ,A(z),Z(x)}x∈({0,1}∗)n,z∈{0,1}∗

{IDEALF ,S(z),Z(x)}x∈({0,1}∗)n,z∈{0,1}∗

Remark 7.1. Ours definitions for composition say that a protocol (da, ds, de)-securely com-

putes some functionality if there is a ds-depth bounded universal simulator S such that for

every da-depth-bounded adversary, S produces a distribution of views that is de-depth in-

distinguishable from a real execution. Although we reverse the order of quantifiers for the

simulator and adversary in the definition from the standard ordering, most proofs are written

by providing a universal simulator that works for any adversary.

170



The depth of the distinguisher. The constraint on a distinguisher’s depth (in this

case, the environment; below, the distinguisher) is a significant weakening of the definition

compared to those by Goldreich or Lindell’s [75, 89], as neither constrains the depth of the

distinguisher by a granular polynomial. However, this weakening is sufficient for our setting,

since in practice, if a time-locked output will eventually be revealed anyway, we require

indistinguishability of the simulation only for the duration of the experiment.

Depth-Secure Computation: Sequential In the sequential model, as explained above,

the execution is directed by the adversary, and the real and ideal experiments should be

indistinguishable to a depth-bounded distinguisher who receives a transcript of the execution.

Definition 7.7 (Depth-Bounded Secure Computation: Sequential). Let da = da(λ), ds =

ds(λ), and de = de(λ). Protocol Π (da, ds, de)-depth securely computes F if there exists a ds-

depth-bounded S such that for every da-depth-bounded real-world adversary A, the following

two ensembles are de-depth indistinguishable:

{REALΠ,A(z)(x)}x∈({0,1}∗)n,z∈{0,1}∗

{IDEALF ,S(z)(x)}x∈({0,1}∗)n,z∈{0,1}∗

7.5.4 Composition

We now treat the composition of depth-secure protocols. In the following, we use the notation

Πρ to denote that protocol Π calls ρ as a subroutine, as per the convention by Canetti [39].

We use the notation that ΓΠ,ρ denotes the concurrent composition of Π and ρ.

171



General/Concurrent Composition

We now state our general composition theorem, which includes concurrent composition.

Theorem 7.3 (Composition of Two Depth-Secure Protocols). Let Π (da, ds, de)-depth-

securely compute functionality F and let ρ (d′a, d
′
s, d

′
e)-depth-securely compute functionality

G. Then ΓΠ,ρ is (da − d′s, ds + d′s,min(de, d
′
e))-secure.

Sketch. We define a simulator S for Πρ that simply composes the simulators SΠ and Sρ which

exist by assumption. We then perform a reduction that shows if there is an attack against Πρ,

we can isolate an attack against Π in the G-hybrid model. The reduction is straightforward,

although it must carefully consider the depths of all simulators and adversaries. Given an

adversary A which attacks Πρ, we define an adversary B such that B runs A as a black box,

and B forwards messages sent by A to their recipients. The only exception is that B must

simulate an execution of ρ for A when A expects ρ to be called. The full proof is deferred

to Section 7.7.

Remark 7.2 (The Depths da and d
′
e). For all composition theorems, we require that da < d′e.

This is a natural choice; in particular if da ≥ d′e then the theorem is not meaningful. Specif-

ically, if da ≥ d′e, then the adversary for the first protocol is deep enough to distinguish an

execution of the protocol ρ which is called by it from the callee’s simulation; the composi-

tion therefore does not have meaningful real-world consequences, since a realistic adversary

against the composition implies an adversary for the callee protocol. For all following theo-

rems, we elide the statement of this requirement.

We see from the composition theorem that when composing two depth-secure protocols in

order to achieve security against any d∗a-depth adversary, the composed protocols must be

parameterized so that they are secure against stronger adversaries, due to the loss in security

that results from composition. Moreover, the composition remains secure only against the

172



smaller of the two distinguishing environments.

Discussion: Non-malleability. One might think that Theorem 7.3 implies that any

depth-secure puzzle is non-malleable because we have shown that the protocols are naively

composable. This is not quite true; our result says that a secure protocol remains secure

(and non-malleable) only for the min granular depth of the concurrent runtimes, and against

a smaller adversary. In comparison, nonmalleability definition as in the definition of [69] are

secure for arbitrary polynomial runtime of the adversary; however, they prove only bounded

nonmalleability (is possible), and require tuning parameters based on the number of com-

posed primitives (as we do).

Sequential Composition

In some cases, a protocol cannot be proven concurrently composable, if the simulator needs

to be rewound. We therefore provide a “weaker” theorem for the sequential composition of

protocols that cannot be proven secure with respect to the general theorem.

Theorem 7.4 (Sequential Composition of Two Depth-Secure Protocols). Let Π (da, ds, de)-

depth-securely compute F in the G-hybrid model, and let ρ (d′a, d
′
s, d

′
e)-depth-securely compute

G. Πρ (da − d′s, ds · d′s,min(de, d
′
e))-depth-securely computes F .

Observe that the decrease in simulation budget for the concurrent composition theorem

appears to be “better” than the “weaker” sequential theorem because the simulation budget

does not deteriorate as much; however, this is attributable to the fact that the simulator for

a concurrently composable protocol must already be more efficient than the simulator for

the sequential theorem above, as rewinding is not permitted (as in the UC[39]).

We note that the (ds · d′s) term in the (·, ds · d′s, ·)-depth security of the composed protocols

is too pessimistic in some cases. In the case that the simulator for the calling protocol

173



never needs to rewind over the invocation of the subroutine protocol, we can prove stronger

security for the composition. This is in fact a direct fallback to Theorem 7.3.

Corollary 7.1 (Optimistic Sequential Composition of Depth-Secure Protocols). Let Π

(da, ds, de)-depth-securely compute F in the G-hybrid model, and let ρ (d′a, d
′
s, d

′
e)-depth-

securely compute G. If the simulator for Π in the G-hybrid model never rewinds over the

point at which G is invoked, then Πρ (da − d′s, ds + d′s,min(de, d
′
e))-depth-securely computes

F .

Sketch. This follows immediately from Theorem 7.3, and in fact when the simulator does

not need to be rewound, the protocol is also concurrently composable.

Discussion. Theorem 7.4 and Corollary 7.1 give the bounds on the spectrum of “simulation

budget depletion” that may occur when composing depth-secure protocols. Specifically, in

order to make a meaningful statement about security, the middle term ds must remain smaller

than both of the outer terms da and de. For a particular composition, the protocol designer

may compute the actual security statement by computing the runtime of the composed

simulator.

7.5.5 Simulation for Leaky Functionalities

In the standard definition of secure multi-party computation (MPC) [75, 89], the simulator

is given – as input – the adversary’s ideal-world outputs, and then it must produce a view for

the adversary that is indistinguishable from its view in a real execution. For functionalities

where honest parties’ inputs are not revealed, privacy is implied by this definition because

the simulator must produce such an execution without access to the honest parties’ inputs

or outputs. However, in some leaky applications the adversary may learn the honest parties’

174



inputs, but crucially, the honest parties’ inputs are hidden for some period of time.13 For

such applications, the standard MPC definition does not imply privacy of honest parties’

inputs up to the point in time that they are revealed because the simulator receives the

honest parties’ inputs in the beginning.

When we require privacy for some amount of time, we decompose the simulation into a series

of phases such that in each phase the simulator learns only the information which is permitted

to be revealed at the end of that phase.14 Specifically, an ideal functionality is parameterized

with the leakage function ℓ of the puzzle it emulates. In each phase, the simulator receives

from the functionality only the information that the functionality is defined to release during

that phase. The leakage is specified by the difference in residual complexity between phases,

as described in Section 7.4.1, which is given by the parameterized leakage function ℓ. This

means that in contrast to standard definitions of secure computation, the simulator does not

receive all of the adversary’s outputs as an input to the computation. This enforces that the

simulator does not learn any information before it is supposed to, which implies privacy of

the inputs until they are revealed.

7.6 Residual Complexity of a Time-Lock Puzzle

The qualification of a time-lock puzzle tells us that for any circuit Ad attempting to solve

a puzzle for which d is much less than the depth required by Puz.Solve, the probability of

guessing the solution should be no better than random guessing plus negligible advantage.

However, a circuit Ad whose depth d exceeds tε (as enforced in the definition) may have

non-negligible advantage in guessing the solution. Therefore, a time-lock puzzle constrains

the residual complexity function r of the puzzle to remain small for as long as the time-lock

13For example, in accountable computing scenarios.
14This is morally similar to the simulation technique of Baum[21], where the simulator forwards next-step

queries to the ideal functionality and returns the result. Our simulator automatically learns the leakage for
a phase (which may be longer than one step) at the beginning of the phase so that it can simulate the rest.

175



endures. We now formally prove this intuition.

Theorem 7.5 (Time-Lock Puzzle Implies Small Residual Complexity). Let Puz =

(Puz.Gen,Puz.Solve) be a time-lock puzzle for solution domain M = {χλ}λ with gap ε < 1

for which |Mλ| is super-polynomial in λ. Then there exists a polynomial r(·) for which for

every polynomial t(·) > r(·) and tε-depth-bounded At, there exists a negligible function negl

such that for every tε-depth-bounded B, and every λ ∈ N

Pr[χ← B(Y ):χ←Mλ, Y ← Puz.Gen(λ, χ)] ≤ negl

Proof. We prove the lemma by showing that if there exists an adversary Bt for which Pr[χ←

B(Y, z)] > negl, then there exists an adversary At, infinitely many λ and corresponding

solutions χ0, χ1 ∈ Mλ such that Aλ can win the time-lock challenge with probability more

than 1
2
+negl. For the sake of the proof, let r > negl be the probability with which B outputs

χ in the above challenge game.

Actually, we show a result corresponding to a stronger statement. If there exists an adversary

B that wins the above challenge game with non-negligible advantage, then there exists an

adversary A such that for every χ0 there are many solutions χ1 such that Aλ can win the

time-lock challenge with probability more than 1
2
+ negl. Our time-lock game is slightly

weaker than the definition of a time-lock puzzle (and therefore if our time-lock game is

broken, the puzzle is not a time-lock puzzle). Rather than quantifying over all χ0 and χ1,

we allow the adversary A to choose any χ0, χ1 ∈ χλ and provide them to a challenger, who

samples b and provides A with a puzzle. A must guess b′ and wins if b′ = b.

We now explain how A uses B. Recall that B is given a randomly sampled puzzle and

outputs a guess χ′ of the solution. In the time-lock game, A samples χ0 and χ1 at random

and must determine which one has been encoded in a challenge puzzle Z. A forwards Z to

B. At the end, A inspects the guess χ′ that B makes. If χ′ is equal to either χ0 or χ1, then

176



A guesses the b for which χb = χ′. If neither χ0 nor χ1 is guessed by B, then A samples b′

uniformly at random and outputs b′. Note that the depth of A is the same as B.

Recall that B wins its game with probability r, and that by assumption r is non-negligble.

We now analyze the probability with which A wins its game.

Claim 7.1. Pr[χ′ ∈ {χ0, χ1}] ≥ Pr[B wins] > negl

Proof. Follows immediately from the definition that B wins when it guesses the solution,

and by assumption that B wins with non-negligible probability.

Claim 7.2. Pr[χ′ = χ1−b] = negl

Proof. Consider that χ1−b is selected at random by A, and B has no information about

χ1−b. Recall that conditioned on the fact that B guesses some possible solution with non-

negligible probability (the true solution), and let X be the part of the solution space for

which B outputs solutions in X with non-negligible probability. Let Y be the part of the

solution space for which B guesses solutions with negligible probability. We claim that X

composes a negligible proportion of the solution space, and that therefore χ1−b is in Y except

for negligible probability. The proof proceeds by counting. For all of the points in X, B

must guess each point with probability at least the inverse of some polynomial. It follows

that there may only be a polynomial number of points in X. However, there are a super-

polynomial number of points in the solution space. Therefore, the probability that χ1−b

is in Y is overwhelming. And by definition of Y , the probability that B guesses χ1−b is

negligible.

It follows from the previous claim that conditioned on B outputting χ0 or χ1, A wins with

probability 1− negl.

Claim 7.3. Pr[A wins | χ′ ∈ {χ0, χ1}] = 1− negl

177



Proof. The probability that A wins given that one of the solutions output by B is divided

into cases:

1. χ′ = χ1−b. A loses

2. χ′ = χb. A wins

By the previous claim, the probability of the first event is negl. In the remaining case, A

wins. Note that because the second case with non-negligible probability, this case dominates,

as the other composes a negligible proportion of the event space. It follows that A wins with

probability 1− negl given B outputs either χ0 or χ1.

We can now conclude the proof:

Pr[A wins] = Pr[A wins | χ′ ∈ {χ0, χ1}] Pr[χ′ ∈ {χ0, χ1}]

+ Pr[A wins | χ′ ̸∈ {χ0, χ1}] Pr[χ′ ̸∈ {χ0, χ1}]

= (1− negl) Pr[χ′ ∈ {χ0, χ1}] +
1

2
Pr[χ′ ̸∈ {χ0, χ1}]

Recall that the two events χ′ ∈ {χ0, χ1} and χ′ ̸∈ {χ0, χ1} are complements. Therefore, if

Pr[χ′ ∈ {χ0, χ1}] > negl, then Pr[A wins] > 1
2
+negl. The proof concludes by the first claim,

which states that Pr[χ′ ∈ {χ0, χ1}] ≥ Pr[B wins] > negl.

7.7 Concurrent Composition of Depth-Secure Proto-

cols: Proof of Theorem 7.3

In this section, we provide the full proof of Theorem 7.3, which we restate below for con-

venience. Recall the notation that ΓΠ,ρ denotes the concurrent composition of Π and ρ.

178



Similarly, ζF,G is a functionality that concurrently provides functionalities F and G. We also

let VIEWA(·) denote the view of A during the enclosed experiment.

Theorem 7.3 (Composition of Two Depth-Secure Protocols). Let Π (da, ds, de)-depth-

securely compute functionality F and let ρ (d′a, d
′
s, d

′
e)-depth-securely compute functionality

G. Then ΓΠ,ρ is (da − d′s, ds + d′s,min(de, d
′
e))-secure.

Proof. First we create a simulator S for the composition. S works by invoking the simulators

SΠ and Sρ (for Π and ρ, respectively) in parallel. Note that its depth is at most ds + d′s.

For the sake of the following lemma, we use the notation x to denote the honest parties’

inputs and z to denote an auxiliary input. Because we consider two separate protocols in

concurrent composition, we let x = (x1, x2) where x1 are for Π and x2 are for ρ, and similarly

we let z = (z1, z2) with analogous association.

We now state our main lemma, from which the proof follows.

Lemma 7.1. Let f ′ = min(de, d
′
e). For every da − d′s-depth adversary A, every min(de, d

′
e)-

depth environment Z, and every x ∈ ({0, 1}poly)n and z ∈ {0, 1}poly:

REALΓΠ,ρ,A(z),Z(x)
f ′

≈ IDEALζF,G,S(z),Z(x)

Proof. Assume towards contradiction that the above is not true. Then there exist a (da−d′s)-

depth adversary A, a min(de, d
′
e)-depth environment Z, and inputs x, z for which (A,Z)

distinguishes the two distributions (for any simulator S).

We build an adversary B and environment E that distinguish the execution of Π from its

simulation on honest inputs x and advice string z. E will run Z as a black box, forwarding

messages to Z, sending whatever messages Z sends, and outputting whatever Z outputs. B

will use A and Z to attack its real-world execution of Π, but B will simulate the concurrent

execution of ρ for A (and Z) in parallel to the execution of Π. By the assumption that ρ

179



is secure, this will imply that B and E use A and Z to distinguish Π from its simulation,

reaching contradiction.

We first introduce notation for an experiment which B uses to attack Π. In this experiment,

B and E will attack a real execution of Π by running A and Z as black boxes; when they

expect messages from the run of ρ, B simulates a concurrent execution of ρ using Sρ. We

denote the experiment by REALBΓΠ,G,A(z),Z(x). We argue that by the security of ρ, A’s view

of this distribution must be indistinguishable from its view of REALΓΠ,ρ,A(z),Z(x).

Claim 7.4. Let f ′ = min(de, d
′
e). For any f ′-depth Z, for all x ∈ ({0, 1}poly)n and z ∈

{0, 1}poly

VIEWA(REALΓΠ,ρ,A(z),Z(x))
f ′

≈ VIEWA(REAL
B
ΓΠ,G,A(z),Z(x))

Proof. The difference between the two distributions is that on the right, B simulates an

execution of ρ using the simulator Sρ and provides those messages to A (and Z), and then

continues to callA after the call to Sρ using messages from its real execution. By assumption,

A is (da − d′s)-depth-bounded and da < d′e. Therefore, A must not be able to distinguish

the messages in the real execution of ρ on the left from the simulation on the right. By a

similar argument, neither can (any) Z. The claim follows from the additional fact that all

other messages in A’s view are distributed indistinguishably in both experiments, since they

are both from a real execution of Π.

We make another claim that is analogous to the previous, but for the ideal experiment. We

claim that A cannot distinguish between an idealized execution of ζF,G in which S generates

A’s view of the execution, and an idealized execution of F in which B forwards messages

generated for it by SΠ, and in place of the ideal functionality call to G, B generates a view

of the call to ρ (realizing G) by simulating Sρ, and forwards these messages to A. (The

right-hand distribution denoted IDEALBζF,G,SΠ(z),Z(x) represents the ideal world execution of

180



B’s attack on Π, in which B must still simulate the functionality G for A.)

Claim 7.5. For all x ∈ ({0, 1}poly)n and z ∈ {0, 1}poly

VIEWA(IDEALζF,G,S(z),Z(x)) ≡ VIEWA(IDEAL
B
ζF,G,SΠ(z),Z(x))

Proof. The proof is analogous to the previous. However, in this case, B perfectly simulates

the execution of ρ in comparison to A’s view in the ideal execution of Πρ, since B does

exactly the same thing that S does: both run Sρ. In light of this observation, the claim is

mostly notational, since on the left A receives messages from S, and on the right it receives

the same messages, simply forwarded by B (and generated by B for the call to G).

Note that B runs A and Sρ as black boxes, so its depth is da − d′s + d′s = da. E ’s depth is at

most min(de, d
′
e) because it is identical to Z.

If there exist x, z for which A,Z distinguish REALΓΠ,ρ,A(z),Z(x) and IDEALζF,G,S(z),Z(x), then

by Claims 7.4 and 7.5, B and E distinguish REALBΓΠ,G,A(z),Z(x) and IDEALBζF,G,SΠ(z),Z(x). The

latter two are exactly B, E ’s game against Π, except that we specified a strategy by which B

simulates a concurrent execution of ρ which it feeds to A when it runs A. Therefore, we have

a contradiction to the security of Π, because (B, E) are a (da, de) adversary and distinguisher

for Π.

181



Chapter 8

Future Work

This dissertation provides a number of unanswered questions and opportunities to build on

results that have been presented. Chapter 5 introduces a model that can be used to analyze

a variety of chain structures used across a growing field of PoX protocols. It also provides a

framework that can be used to model consensus protocols that do not use graphs, but still use

PoX-type objects. Chapter 6 can be extended to reduce the number of encryptions per group

update from O(n) to O(log n), which is the goal of the MLS standard. Chapter 7 introduces

a new falsifiable model for timed cryptographic primitives and opens new directions for

multi-party computation in timed models, including accountable computing scenarios.

182



Bibliography

[1] I. Abraham, T. H. Chan, D. Dolev, K. Nayak, R. Pass, L. Ren, and E. Shi. Communi-
cation complexity of byzantine agreement, revisited. In Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, 2019.

[2] I. Abraham, S. Devadas, D. Dolev, K. Nayak, and L. Ren. Synchronous byzantine

agreement with expected o(1) rounds, expected o(n{̂2} ) communication, and optimal
resilience. In International Conference on Financial Cryptography and Data Security,
2019.

[3] I. Abraham, D. Dolev, I. Eyal, and J. Y. Halpern. Colordag: An incentive-compatible
blockchain. Cryptology ePrint Archive, Paper 2022/308, 2022.

[4] I. Abraham, D. Dolev, A. Kagan, and G. Stern. Authenticated consensus in syn-
chronous systems with mixed faults. Cryptology ePrint Archive, Paper 2022/805,
2022. https://eprint.iacr.org/2022/805.

[5] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin. Sync hotstuff: Simple and
practical synchronous state machine replication. Cryptology ePrint Archive, Report
2019/270, 2019. https://eprint.iacr.org/2019/270.

[6] B. Altmann, M. Fitzi, and U. M. Maurer. Byzantine agreement secure against general
adversaries in the dual failure model. In DISC, 1999.

[7] J. Alwen, B. Auerbach, M. C. Noval, K. Klein, G. Pascual-Perez, and K. Pietrzak.
Decaf: Decentralizable continuous group key agreement with fast healing. Cryptology
ePrint Archive, Paper 2022/559, 2022. https://eprint.iacr.org/2022/559.

[8] J. Alwen, B. Auerbach, M. C. Noval, K. Klein, G. Pascual-Perez, K. Pietrzak, and
M. Walter. CoCoA: Concurrent continuous group key agreement. Cryptology ePrint
Archive, Report 2022/251, 2022. https://eprint.iacr.org/2022/251.

[9] J. Alwen, S. Coretti, Y. Dodis, and Y. Tselekounis. Security analysis and improvements
for the IETF MLS standard for group messaging. In D. Micciancio and T. Ristenpart,
editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 248–277. Springer,
Heidelberg, Aug. 2020.

183

https://eprint.iacr.org/2022/805
https://eprint.iacr.org/2019/270
https://eprint.iacr.org/2022/559
https://eprint.iacr.org/2022/251


[10] J. Alwen, S. Coretti, D. Jost, and M. Mularczyk. Continuous group key agreement
with active security. Cryptology ePrint Archive, Report 2020/752, 2020. https:

//eprint.iacr.org/2020/752.

[11] J. Alwen, D. Hartmann, E. Kiltz, and M. Mularczyk. Server-aided continuous group
key agreement. In CCS. ACM, 2022.

[12] J. Alwen, D. Jost, and M. Mularczyk. On the insider security of MLS. IACR Cryptol.
ePrint Arch., 2020.

[13] M. Arapinis, N. Lamprou, and T. Zacharias. Astrolabous: A universally composable
time-lock encryption scheme. Cryptology ePrint Archive, Report 2021/1246, 2021.
https://ia.cr/2021/1246.

[14] C. Attiya, D. Dolev, and J. Gil. Asynchronous byzantine consensus. In PODC. ACM,
1984.

[15] M. Backes and C. Cachin. Reliable broadcast in a computational hybrid model with
byzantine faults, crashes, and recoveries. In DSN. IEEE Computer Society, 2003.

[16] C. Badertscher, P. Gazi, A. Kiayias, A. Russell, and V. Zikas. Ouroboros genesis:
Composable proof-of-stake blockchains with dynamic availability. In ACM Conference
on Computer and Communications Security, 2018.

[17] C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas. Bitcoin as a transaction ledger:
A composable treatment. In CRYPTO. Springer, 2017.

[18] M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan. Average-case fine-grained hardness.
In STOC, 2017.

[19] M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan. Proofs of work from worst-case
assumptions. In CRYPTO (1), 2018.

[20] R. Barnes, B. Beurdouche, J. Millican, E. Omara, K. Cohn-Gordon, and R. Robert.
The Messaging Layer Security (MLS) Protocol. Internet-Draft draft-ietf-mls-protocol-
11, Internet Engineering Task Force, Dec. 2020. Work in Progress.

[21] C. Baum, B. David, R. Dowsley, J. B. Nielsen, and S. Oechsner. Craft: Composable
randomness beacons and output-independent abort mpc from time. Cryptology ePrint
Archive, Report 2020/784, 2020. https://eprint.iacr.org/2020/784.

[22] C. Baum, B. David, R. Dowsley, J. B. Nielsen, and S. Oechsner. TARDIS: A foundation
of time-lock puzzles in UC. In EUROCRYPT (3), 2021.

[23] M. Ben-Or. Another advantage of free choice (extended abstract): Completely asyn-
chronous agreement protocols. In Proceedings of the second annual ACM symposium
on Principles of distributed computing, 1983.

184

https://eprint.iacr.org/2020/752
https://eprint.iacr.org/2020/752
https://ia.cr/2021/1246
https://eprint.iacr.org/2020/784


[24] I. Bentov, P. Hubácek, T. Moran, and A. Nadler. Tortoise and hares consensus: the
meshcash framework for incentive-compatible, scalable cryptocurrencies. IACR Cryp-
tology ePrint Archive, 2017.

[25] I. Bentov, R. Pass, and E. Shi. The sleepy model of consensus. IACR Cryptology
ePrint Archive, 2016.

[26] A. Bienstock, Y. Dodis, and P. Rösler. On the price of concurrency in group ratcheting
protocols. In R. Pass and K. Pietrzak, editors, TCC 2020, Part II, volume 12551 of
LNCS, pages 198–228. Springer, Heidelberg, Nov. 2020.

[27] N. Bitansky, S. Goldwasser, A. Jain, O. Paneth, V. Vaikuntanathan, and B. Waters.
Time-lock puzzles from randomized encodings. In ITCS-2016, 2016.

[28] L. Blum, M. Blum, and M. Shub. Comparison of two pseudo-random number genera-
tors. In Crypto82, 1982.

[29] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. Verifiable delay functions. In CRYPTO,
2018.

[30] D. Boneh, B. Bünz, and B. Fisch. A survey of two verifiable delay functions. Cryptology
ePrint Archive, Report 2018/712, 2018. https://eprint.iacr.org/2018/712.

[31] D. Boneh and M. Naor. Timed commitments. In Crypto’00, 2000.

[32] C. Boyd, A. Mathuria, and D. Stebila. Protocols for Authentication and Key Estab-
lishment. Information Security and Cryptography. Springer Berlin Heidelberg, 2020.

[33] E. Bresson, O. Chevassut, and D. Pointcheval. Provably authenticated group Diffie-
Hellman key exchange – the dynamic case. In C. Boyd, editor, ASIACRYPT 2001,
volume 2248 of LNCS, pages 290–309. Springer, Heidelberg, Dec. 2001.

[34] E. Bresson, O. Chevassut, and D. Pointcheval. Dynamic group Diffie-Hellman key
exchange under standard assumptions. In L. R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 321–336. Springer, Heidelberg, Apr. / May 2002.

[35] E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater. Provably authenti-
cated group Diffie-Hellman key exchange. In M. K. Reiter and P. Samarati, editors,
ACM CCS 2001, pages 255–264. ACM Press, Nov. 2001.

[36] E. Bresson and M. Manulis. Securing group key exchange against strong corruptions.
In M. Abe and V. Gligor, editors, ASIACCS 08, pages 249–260. ACM Press, Mar.
2008.

[37] E. Bresson, M. Manulis, and J. Schwenk. On security models and compilers for group
key exchange protocols. In A. Miyaji, H. Kikuchi, and K. Rannenberg, editors, IWSEC
07, volume 4752 of LNCS, pages 292–307. Springer, Heidelberg, Oct. 2007.

[38] C. Brzuska. On the foundations of key exchange. PhD thesis, Darmstadt University
of Technology, Germany, 2013.

185

https://eprint.iacr.org/2018/712


[39] R. Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. Cryptology ePrint Archive, Report 2000/067, 2000.

[40] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance. In OSDI, 1999.

[41] T. H. Chan, R. Pass, and E. Shi. Round complexity of byzantine agreement, revisited.
IACR Cryptology ePrint Archive, 2019.

[42] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi. On security analysis of proof-
of-elapsed-time. In International Symposium on Stabilization, Safety, and Security of
Distributed Systems, 2017.

[43] P. Chvojka, T. Jager, D. Slamanig, and C. Striecks. Versatile and sustainable timed-
release encryption and sequential time-lock puzzles. Cryptology ePrint Archive, Report
2020/739, 2020. https://ia.cr/2020/739.

[44] R. Cohen, J. A. Garay, and V. Zikas. Completeness theorems for adaptively secure
broadcast. In CRYPTO (1), volume 14081 of Lecture Notes in Computer Science,
pages 3–38. Springer, 2023.

[45] K. Cohn-Gordon. On secure messaging. PhD thesis, University of Oxford, UK, 2018.

[46] K. Cohn-Gordon, C. Cremers, L. Garratt, J. Millican, and K. Milner. On ends-to-ends
encryption: Asynchronous group messaging with strong security guarantees. In D. Lie,
M. Mannan, M. Backes, and X. Wang, editors, ACM CCS 2018, pages 1802–1819. ACM
Press, Oct. 2018.

[47] K. Cong, K. Eldefrawy, N. P. Smart, and B. Terner. The key lattice framework for
concurrent group messaging. IACR Cryptol. ePrint Arch., 2022.

[48] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Comput-
ing, 33(1):167–226, 2003.

[49] C. Cremers, B. Hale, and K. Kohbrok. The complexities of healing in secure group
messaging: Why cross-group effects matter. In M. Bailey and R. Greenstadt, editors,
USENIX Security 2021, pages 1847–1864. USENIX Association, Aug. 2021.

[50] P. Daian, R. Pass, and E. Shi. Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In Financial Cryptography, 2019.

[51] B. David, P. Gazi, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-secure,
semi-synchronous proof-of-stake blockchain. In EUROCRYPT (2), 2018.

[52] C. Decker and R. Wattenhofer. Information propagation in the bitcoin network. In
P2P. IEEE, 2013.

[53] A. Degwekar, V. Vaikuntanathan, and P. N. Vasudevan. Fine-grained cryptography.
In CRYPTO (3), 2016.

186

https://ia.cr/2020/739


[54] D. Dolev, C. Dwork, and L. J. Stockmeyer. On the minimal synchronism needed for
distributed consensus. In FOCS. IEEE Computer Society, 1983.

[55] D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agreement. 1983.

[56] J. R. Douceur. The sybil attack. In IPTPS, 2002.

[57] B. Dowling, F. Günther, and A. Poirrier. Continuous authentication in secure messag-
ing. In V. Atluri, R. Di Pietro, C. D. Jensen, and W. Meng, editors, ESORICS 2022
, Part II, volume 13555 of LNCS, pages 361–381. Springer, Heidelberg, Sept. 2022.

[58] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial syn-
chrony. Journal of the ACM (JACM), 1988.

[59] L. Eckey, S. Faust, and J. Loss. Efficient algorithms for broadcast and consensus based
on proofs of work. IACR Cryptology ePrint Archive, 2017.

[60] W. Eddy. Transmission Control Protocol (TCP). RFC 9293, Aug. 2022.

[61] S. Egashira, Y. Wang, and K. Tanaka. Fine-grained cryptography revisited. In ASI-
ACRYPT (3), 2019.

[62] K. Eldefrawy, S. Jakkamsetti, B. Terner, and M. Yung. Standard model time-lock puz-
zles: Defining security and constructing via composition. Cryptology ePrint Archive,
Paper 2023/439, 2023. https://eprint.iacr.org/2023/439.

[63] K. Eldefrawy, J. Loss, and B. Terner. How byzantine is a send corruption? In ACNS,
2022.

[64] etherchain.org. The ethereum blockchain explorer, 2020.

[65] L. Fan, J. Katz, P. Thai, and H.-S. Zhou. A permissionless proof-of-stake blockchain
with best-possible unpredictability. Cryptology ePrint Archive, Report 2021/660, 2021.
https://eprint.iacr.org/2021/660.

[66] P. Feldman and S. Micali. An optimal probabilistic protocol for synchronous byzantine
agreement. SIAM J. Comput., 1997.

[67] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM (JACM), 1985.

[68] M. Fitzi. Generalized Communication and Security Models in Byzantine Agreement.
PhD thesis, ETH Zurich, 3 2003. Reprint as vol. 4 of ETH Series in Information
Security and Cryptography.

[69] C. Freitag, I. Komargodski, R. Pass, and N. Sirkin. Non-malleable time-lock puz-
zles and applications. Cryptology ePrint Archive, Report 2020/779, 2020. https:

//eprint.iacr.org/2020/779.

187

https://eprint.iacr.org/2023/439
https://eprint.iacr.org/2021/660
https://eprint.iacr.org/2020/779
https://eprint.iacr.org/2020/779


[70] J. A. Garay, J. Katz, C. Koo, and R. Ostrovsky. Round complexity of authenticated
broadcast with a dishonest majority. In FOCS. IEEE Computer Society, 2007.

[71] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis
and applications. In EUROCRYPT, 2015.

[72] J. A. Garay and K. J. Perry. A continuum of failure models for distributed computing.
In WDAG, Lecture Notes in Computer Science, 1992.

[73] C. Gentry, S. Halevi, H. Krawczyk, B. Magri, J. B. Nielsen, T. Rabin, and S. Yakoubov.
YOSO: you only speak once - secure MPC with stateless ephemeral roles. In CRYPTO,
2021.

[74] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich. Algorand: Scaling
byzantine agreements for cryptocurrencies. In SOSP, pages 51–68. ACM, 2017.

[75] O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. 2009.

[76] Y. Guo, R. Pass, and E. Shi. Synchronous, with a chance of partition tolerance. Cryp-
tology ePrint Archive, Report 2019/179, 2019. https://eprint.iacr.org/2019/179.

[77] K. Hashimoto, S. Katsumata, E. Postlethwaite, T. Prest, and B. Westerbaan. A con-
crete treatment of efficient continuous group key agreement via multi-recipient PKEs.
In G. Vigna and E. Shi, editors, ACM CCS 2021, pages 1441–1462. ACM Press, Nov.
2021.

[78] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from
any one-way function. SIAM J. Comput., 1999.

[79] I. Ingemarsson, D. T. Tang, and C. K. Wong. A conference key distribution system.
IEEE Trans. Inf. Theory, 1982.

[80] J. Katz and C. Koo. On expected constant-round protocols for byzantine agreement.
In CRYPTO, 2006.

[81] J. Katz, J. Loss, and J. Xu. On the security of time-lock puzzles and timed commit-
ments. In TCC (3), volume 12552 of LNCS, pages 390–413. Springer, 2020.

[82] J. Katz and M. Yung. Scalable protocols for authenticated group key exchange. In
D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 110–125. Springer,
Heidelberg, Aug. 2003.

[83] Y. Kim, A. Perrig, and G. Tsudik. Group key agreement efficient in communication.
IEEE Transactions on Computers, 2004.

[84] K. Kursawe. Distributed protocols on general hybrid adversary structures. 2004.

[85] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Com-
munications of the ACM, 1978.

188

https://eprint.iacr.org/2019/179


[86] R. LaVigne, A. Lincoln, and V. V. Williams. Public-key cryptography in the fine-
grained setting. In CRYPTO, 2019.

[87] A. Lewis-Pye and T. Roughgarden. A general framework for the security analysis of
blockchain protocols. CoRR, 2020.

[88] B. Libert, M. Joye, and M. Yung. Born and raised distributively: fully distributed
non-interactive adaptively-secure threshold signatures with short shares. In PODC.
ACM, 2014.

[89] Y. Lindell. How to simulate it - A tutorial on the simulation proof technique. In
Tutorials on the Foundations of Cryptography. 2017.

[90] J. Loss and G. Stern. Zombies and ghosts: Optimal byzantine agreement in the
presence of omission faults. Cryptology ePrint Archive, Paper 2023/954, 2023. https:
//eprint.iacr.org/2023/954.

[91] M. Mahmoody, T. Moran, and S. P. Vadhan. Time-lock puzzles in the random oracle
model. In CRYPTO, 2011.

[92] G. Malavolta and S. A. K. Thyagarajan. Homomorphic time-lock puzzles and appli-
cations. In CRYPTO (1), 2019.

[93] D. Malkhi, K. Nayak, and L. Ren. Flexible byzantine fault tolerance. CoRR, 2019.

[94] S. Micali. Byzantine agreement , made trivial. 2017.

[95] S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable random functions. In FOCS.
IEEE Computer Society, 1999.

[96] S. Micali, S. Vadhan, and M. Rabin. Verifiable random functions. In Proceedings of
the 40th Annual Symposium on Foundations of Computer Science, FOCS 99. IEEE
Computer Society, 1999.

[97] P. Milgrom. Putting auction theory to work: The simultaneous ascending auction.
Journal of political economy, 2000.

[98] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz. Permacoin: Repurposing bitcoin
work for data preservation. In Proceedings of the 2014 IEEE Symposium on Security
and Privacy, 2014.

[99] A. Miller, A. Kosba, J. Katz, and E. Shi. Nonoutsourceable scratch-off puzzles to
discourage bitcoin mining coalitions. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, 2015.

[100] A. Miller and J. J. LaViola Jr. Anonymous byzantine consensus from moderately-
hard puzzles: A model for bitcoin. Available on line: http://nakamotoinstitute.
org/research/anonymous-byzantine-consensus, 2014.

189

https://eprint.iacr.org/2023/954
https://eprint.iacr.org/2023/954


[101] T. Moran and I. Orlov. Simple proofs of space-time and rational proofs of stor-
age. Cryptology ePrint Archive, Report 2016/035, 2016. https://eprint.iacr.

org/2016/035.

[102] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[103] P. R. Parvédy and M. Raynal. Uniform agreement despite process omission failures.
In IPDPS, page 212. IEEE Computer Society, 2003.

[104] R. Pass, L. Seeman, and a. shelat. Analysis of the blockchain protocol in asynchronous
networks. IACR Cryptology ePrint Archive, 2016.

[105] R. Pass and E. Shi. Rethinking large-scale consensus. In Computer Security Founda-
tions Symposium (CSF), 2017 IEEE 30th, 2017.

[106] R. Pass and E. Shi. The sleepy model of consensus. In ASIACRYPT (2), 2017.

[107] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
Journal of the ACM (JACM), 1980.

[108] K. J. Perry and S. Toueg. Distributed agreement in the presence of processor and
communication faults. IEEE Trans. Softw. Eng., 12(3):477–482, mar 1986.

[109] K. Pietrzak. Simple verifiable delay functions. In ITCS, 2019.

[110] J. Pijnenburg and B. Poettering. On secure ratcheting with immediate decryption.
In ASIACRYPT, volume 13793 of Lecture Notes in Computer Science, pages 89–118.
Springer, 2022.

[111] B. Poettering, P. Rösler, J. Schwenk, and D. Stebila. SoK: Game-based security models
for group key exchange. In K. G. Paterson, editor, CT-RSA 2021, volume 12704 of
LNCS, pages 148–176. Springer, Heidelberg, May 2021.

[112] M. Raynal. Consensus in synchronous systems: A concise guided tour. In 2002 Pacific
Rim International Symposium on Dependable Computing, 2002. Proceedings., pages
221–228. IEEE, 2002.

[113] E. Rescorla. Subject: [MLS] TreeKEM: An alternative to ART. MLS
Mailing List, 2019. https://mailarchive.ietf.org/arch/msg/mls/

e3ZKNzPC7Gxrm3Wf0q96dsLZoD8/, Accessed 2022-01-19.

[114] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical report, 1996.

[115] T. Rocket, M. Yin, K. Sekniqi, R. van Renesse, and E. G. Sirer. Scalable and proba-
bilistic leaderless BFT consensus through metastability. CoRR, 2019.

[116] P. Rösler, C. Mainka, and J. Schwenk. More is less: On the end-to-end security of
group chats in signal, whatsapp, and threema. In 2018 IEEE European Symposium on
Security and Privacy, EuroS&P 2018, London, United Kingdom, April 24-26, 2018.
IEEE, 2018.

190

https://eprint.iacr.org/2016/035
https://eprint.iacr.org/2016/035
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8/
https://mailarchive.ietf.org/arch/msg/mls/e3ZKNzPC7Gxrm3Wf0q96dsLZoD8/


[117] L. Rotem and G. Segev. Generically speeding-up repeated squaring is equivalent to
factoring: Sharp thresholds for all generic-ring delay functions. In CRYPTO (3), 2020.

[118] sawtooth.hyperledger.org. Hyperledger sawtooth poet 1.0 specification, 2020.

[119] Y. Sompolinsky, Y. Lewenberg, and A. Zohar. Spectre: A fast and scalable cryptocur-
rency protocol. IACR Cryptology ePrint Archive, 2016.

[120] Y. Sompolinsky and A. Zohar. PHANTOM: A scalable blockdag protocol. IACR
Cryptology ePrint Archive, 2018.

[121] M. Steiner, G. Tsudik, and M. Waidner. Diffie-Hellman key distribution extended to
group communication. In L. Gong and J. Stern, editors, ACM CCS 96, pages 31–37.
ACM Press, Mar. 1996.

[122] B. Terner. Permissionless consensus in the resource model. In Financial Cryptography,
2022.

[123] S. P. Vadhan and C. J. Zheng. Characterizing pseudoentropy and simplifying pseudo-
random generator constructions. In STOC. ACM, 2012.

[124] A. van Baarsen and M. Stevens. On time-lock cryptographic assumptions in abelian
hidden-order groups. In ASIACRYPT (2), Lecture Notes in Computer Science, 2021.

[125] J. Wan, H. Xiao, S. Devadas, and E. Shi. Round-efficient byzantine broadcast under
strongly adaptive and majority corruptions. In TCC, 2020.

[126] J. Wan, H. Xiao, E. Shi, and S. Devadas. Expected constant round byzantine broadcast
under dishonest majority. In TCC, 2020.

[127] M. Weidner, M. Kleppmann, D. Hugenroth, and A. R. Beresford. Key agreement for
decentralized secure group messaging with strong security guarantees. In G. Vigna
and E. Shi, editors, ACM CCS 2021, pages 2024–2045. ACM Press, Nov. 2021.

[128] M. A. Weidner. Group messaging for secure asynchronous collaboration. M.phil thesis,
University of Cambridge, 6 2019. https://mattweidner.com/acs-dissertation.

pdf.

[129] B. Wesolowski. Efficient verifiable delay functions. In EUROCRYPT, 2019.

[130] WhatsApp Inc. Whatsapp encryption overview. Online, Sep 2021. https://www.

whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf, Accessed 2022-01-
19.

[131] V. Zikas, S. Hauser, and U. M. Maurer. Realistic failures in secure multi-party com-
putation. In TCC, 2009.

191

https://mattweidner.com/acs-dissertation.pdf
https://mattweidner.com/acs-dissertation.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf


Appendix A

Encryption Definitions

A.1 CCA Secure Encryption Scheme

Definition A.1 (Symmetric Key Encryption Scheme). A symmetric key encryption scheme

consists of three algorithms:

– KeyGen(1λ): Output a symmetric key with security parameter λ.

– Enc(m; k): On plaintext input m, output a ciphertext c encrypted under the symmetric

key k.

– Dec(c; k): Decrypt the ciphertext input c using k and output the plaintext m if success-

ful, otherwise output ⊥.

Definition A.2 (Symmetric Encryption Scheme IND-CCA Security). The security of an

IND-CCA symmetric encryption scheme is defined by a game between a challenger and an

adversary A as follows:

1. Challenger samples a symmetric key k
$←− KeyGen(1λ).

192



2. The adversary A outputs two messages m0,m1.

3. The challenger selects b
$←− {0, 1} and computes c∗ ← Enc(mb; k).

4. The challenger sends c∗ to A.

5. A outputs b′.

The adversary has access to an encryption oracle and a decryption oracle. On input x, the

former outputs Enc(x; k) and the latter outputs Dec(x; k). After the adversary learns c∗, it

is not allowed to query the decryption oracle on c∗. The advantage of the adversary is

2 · |Pr[b = b′]− 1/2|.

We say an encryption scheme described in Definition A.1 is secure if, for any polynomial-

time adversary A, the advantage of the game above is negligible in the security parameter

λ.

A.1.1 Message Authentication Code (MAC)

Definition A.3 (MAC). A MAC consists of three algorithms

– k ← MAC.KeyGen(1λ),

– t← MAC(m; k), and

– b← MAC.Verify(m, t; k).

For correctness we require for every λ, every key k and every m ∈ {0, 1}∗ it holds that

MAC.Verify(m,MAC(m; k); k) = 1.

193



Definition A.4 (MAC EUF-CMA Security). The security of a MAC is modelled using

the existentially unforgeable under an adaptive chosen-message attack (EUF-CMA) game

between challenger C and adversary A.

– C generates k ← MAC.KeyGen(1λ).

– A is allowed to query the MAC oracle (i.e., MAC(m; k)) on for any message m of his

choice. All the queried messages are stored in a table T . Additionally, A is also allowed

the verification oracle MAC.Verify(m, t; k) on his input (m, t).

– Eventually, A outputs (m∗, t∗) to C.

– A wins the game if MAC.Verify(m∗, t∗; k) = 1 and m∗ /∈ T .

The advantage of the adversary is given as

Advmac
A = Pr[A wins EUF-CMA].

The scheme is secure if, for any polynomial-time adversary A, the advantage is negligible in

the security parameter λ.

A.2 Key Encapsulation Mechanism (KEM)

Definition A.5 (KEM). A KEM consists of three algorithms

– (pk, sk)← KEM.KeyGen(1λ),

– (c, k)← KEM.Encap(pk), and

– k ← KEM.Decap(c; sk).

194



For correctness we require if (c, k) ← KEM.Encap(pk) then k = KEM.Decap(c; sk) for all

(pk, sk)← KEM.KeyGen(1λ).

Definition A.6 (KEM IND-CCA Security). The security of KEM is modelled using a game

between challenger C and adversary A.

– C generates (pk, sk)← KEM.KeyGen(1λ),

– C generates a random key k0 from the symmetric key space.

– C runs encapsulation algorithm (c∗, k1)← KEM.Encap(pk)

– C samples b
$←− {0, 1} and outputs (c∗, kb) to A.

– Finally A outputs a bit b′.

During the game, A is allowed to query the decapsulation oracle KEM.Decap(c; sk) on any c

that is not c∗. The advantage of the adversary is given as

AdvkemA = 2 · |Pr[b = b′]− 1/2|.

The scheme is secure if, for any polynomial-time adversary A, the advantage is negligible in

the security parameter λ.

A.3 Authenticated Encryption with Associated Data

(AEAD)

Definition A.7 (AEAD). An AEAD scheme consists of three algorithms:

– k ← AEAD.KeyGen(1λ),

195



– (c, t)← AEAD.Enc(m, d; k), and

– {m,⊥} ← AEAD.Dec(c, d, t; k).

For correctness, we require that if (c, t) ← AEAD.Enc(m, d; k) then we will obtain m =

AEAD.Dec(c, d, t; k) for all (pk, sk) ← AEAD.KeyGen(1λ), m ← {0, 1}∗ and d ← {0, 1}∗

where m is the message and d is the associated data.

Definition A.8 (AEAD IND-CCA Security). The security of AEAD is described using a

game between a challenger C and an adversary A.

1. C generates k ← AEAD.KeyGen(1λ).

2. C samples b
$←− {0, 1}.

3. A calls the test query Test((m0, d0), (m1, d1)).

4. The challenger returns (c∗, t∗)← AEAD.Enc(mb, db; k).

5. A outputs a bit b′.

A is allowed to query the encryption oracle AEAD.Enc(m, d; k) for any (m, d) and the decryp-

tion oracle AEAD.Dec(c, d, t; k) for any c, d, t except when c = c∗ or t = t∗. The advantage

of the adversary is given as

AdvaeadA = 2 · |Pr[b = b′]− 1/2|.

The scheme is secure if, for any polynomial-time adversary A, the advantage is negligible in

the security parameter λ.

196



A.4 Public Key Authenticated Encryption with Asso-

ciated Data (PKAEAD)

Definition A.9 (PKAEAD). A PKAEAD scheme consists of the following algorithms:

– (pk, sk)← PKAEAD.KeyGen(1λ) : generate the key pair.

– (c, t) ← PKAEAD.Enc(m, d; pk) : encrypt the plaintext m and authenticate the associ-

ated data d under the public key pk. The ciphertext c and the authentication tag t is

returned.

– {m,⊥} ← PKAEAD.Dec(c, d, t; sk) : decrypt the ciphertext c using sk and then return

the plaintext m. This procedure fails if t is not a valid authentication tag for c or d.

For correctness we require that if (c, t) ← PKAEAD.Enc(m, d; pk) then, for all m ←

{0, 1}∗, d ← {0, 1}∗, and (pk, sk) ← PKAEAD.KeyGen(1λ), we will obtain m =

PKAEAD.Dec(c, d, t; sk).

Definition A.10 (PKAEAD IND-CCA Security). Here we describe a typical IND-CCA

security adapted to PKAEAD.

1. The challenger generates (pk, sk) ← PKAEAD.KeyGen(1λ) and sends pk to the adver-

sary.

2. The challenger samples b
$←− {0, 1}.

3. A calls the test query Test((m0, d0), (m1, d1)).

4. The challenger returns PKAEAD.Enc(mb, db; pk).

5. A outputs a bit b′.

197



The adversary is allowed to query the the decryption oracle PKAEAD.Dec(c, d, t; sk) for any

c, d, t except when (c = c∗ or t = t∗). The advantage of the adversary is given as

AdvpkaeadA = 2 · |Pr[b = b′]− 1/2|.

The scheme is secure if, for any polynomial-time adversary A, the advantage is negligible in

the security parameter λ.

Below we instantiate PKAEAD scheme using a KEM and a symmetric key AEAD.

– PKAEAD.KeyGen(1λ) : return KEM.KeyGen(1λ).

– PKAEAD.Enc(m, d; pk) : (k, e) ← KEM.Encap(pk), (c, t) ← AEAD.Enc(m, d; k), return

((e, c), t).

– PKAEAD.Dec((e, c), d, t; sk) : k ← KEM.Decap(sk; e), return the plaintext via

AEAD.Dec(c, d, t; k).

The security of this construction can be proven in a similar way as hybrid ciphers [48]. We

sketch the proof below. In G0, A plays the standard PKAEAD IND-CCA game. In G1,

we modify the test query to use a different symmetric key to encrypt and authenticate the

message in the AEAD component. This allows us to build an adversary A1 for the KEM

game by asking its challenger for a key which might or might not be the key that corresponds

to the encapsulation. Additionally, we can build an adversaryA2 that plays the AEAD game.

Namely, A2 forwards ((m0, d0), (m1, d1)) to the AEAD challenger and creates a “fake” KEM

encapsulation for A. The security of PKAEAD holds from the security of AEAD and KEM.

198



Appendix B

Dolev and Strong’s Impossibility

In this section we provide an exposition of Dolev and Strong’s lower-bound on the round

complexity of a deterministic broadcast protocol. We highlight the fact that the proof requires

only send-corruptions and not fully byzantine corruptions, and therefore the impossibility

result holds for only send-corruptions.

Recall that the result by Dolev and Strong proves there is no deterministic broadcast protocol

tolerating b byzantine parties that terminates in at most b rounds. The proof proceeds by

assuming such a protocol and considering a “good” execution in which all messages of the

protocol are delivered in every round. It then proceeds to define a series of “neighboring”

executions such that every two neighboring executions are identical except that in one of

the two executions, there is one exactly one round in which a message sent by one party is

dropped. The transition between neighboring executions maintains two invariants:

1. In every pair of neighboring executions A and B, there is some honest party q such

that the view of q is identical in A and B. (This means that q receives exactly the

same messages in the two neighboring executions.)

199



2. In no execution are more than b parties corrupted.

Because of invariant 1, we require that in every execution in the sequence, all honest parties

output the same value. This follows from the fact for every pair of neighboring executions,

the party q whose view is identical in the two executions must output the same value in both,

and all other parties must output q’s value in both executions by consistency. Contradiction

follows by arriving at an execution in which the dealer sends no messages; therefore, the

output of every party must be independent of the dealer’s value.

In order to define a series of executions that satisfy the above properties, the proof defines a

“communication graph” that describes all messages sent in an execution. A communication

graph is a directed acyclic graph (DAG) which is divided into “levels” such that in each

level, every party is represented by a distinct vertex. If in some execution, party A sends a

message to party B in round r that B receives round r + 1, then there is an edge from A’s

vertex in level r to B’s vertex in level r + 1. (We assume synchronous communication in

which all messages sent in round r are always delivered in round r + 1.)

The proof begins with the full execution graph and defines a recursive procedure by which

all messages sent by a party in round r and greater can be removed from the graph, while

maintaining the properties required above. Let R be the final round in an execution, and

consider two graphs such that the only difference is that a message from party A to party

B sent in round R − 1 and received in R is removed from one of the two graphs. Clearly,

all parties except for B have views that are identical between the two executions. Next,

consider two graphs such that the only difference between the two is that a message from

party A to party B sent in round r < R − 1 and received in r + 1 is removed from one of

the two graphs, but for which B sends no messages in any round r′ ≥ r + 1. Again, all

parties except for B have the same view of the execution in the two graphs. Similarly, the

reverse operations also preserve invariant 1. Namely, an edge can be “restored” from A to

200



B in either of the two above scenarios.

The proof shows how to remove all edges from the sender while maintaining the above

invariants. In order to remove all messages from a party P starting at round r: For every

party Q that receive a message that P sends in round r and are delivered in round r + 1,

remove all future edges sent by Q starting in round r + 1. Then remove the edge from

P to Q sent in round r and delivered in round r + 1. Then restore all edges sent by Q

starting in round r + 1. The proof guarantees that in any execution graph, at most one

party is corrupted per round of the protocol in which messages are dropped, which maintains

that if the protocol requires R rounds, then at most R parties need to be corrupted. The

contradiction follows for any protocol requiring fewer than tbyz + 1 rounds – or in our case,

tsnd + 1 rounds.

For a full treatment, we refer the reader to the very thorough explanation by [41], complete

with diagrams.

201



Appendix C

Proof of Graph Consensus Protocol

ΠG

We present the proof of Theorem 5.3, which proves graph consistency and liveness for our

graph consensus protocol ΠG.

Theorem 5.3. For all N , all ρ, and all ε, and for all α > ρ(1−α)((3−α)ρ+ ε
α
+ ε
ρ
+ε+1) every

(α, ε)-honest, ρ-rate-limited, admissible execution of ΠG(α, ε, ρ) satisfies graph consistency

and f, h-liveness for f(N) = h(N) = αN − ε − ρ(ℓ∗ + 1), where ℓ∗ is a derived constant

defined as in the protocol.

Most of our effort towards proving Theorem 5.3 is focused on the proof of Proposition 5.1,

which we restate here.

Proposition 5.1. Let c = (3 − α)ρ + ε
α
+ ε

ρ
+ ε + 1 (as in Protocol ΠG). If α > ρβc, then

for all k, times t and t′, and honest participants p and q active at t and t′, respectively, if

D(G
(t)
p ) > k + ℓ∗ and D(G

(t′)
q ) > k + ℓ∗, then extract(G

(t)
p )|k = extract(G

(t′)
q )|k.

Consistency will follow directly, and liveness will follow easily from the techniques we use

202



for Proposition 5.1. We begin to prove Proposition 5.1 by showing consistency of the honest

vertices that honest participants output. Recall for the duration of the proof that we require

α > ρβc, where β and c are defined as in the protocol specification; particularly, β = 1− α

is the long-term proportion of corrupt resources and c is a derived constant.

Recall that in Section 5.5.4, we presented an overview of the proof of Proposition 1. We

reproduce these lemmas here and then present their proofs.

Lemma 5.1 proves that the honest vertices in honest participants’ extracted graphs are

consistent.

Lemma 5.1 (Honest Vertex Extraction). For every time t, honest participant p active at t,

and honest vertex v ∈ G(t): D(G
(t)
p )− D(v) > ℓ1 =⇒ v ∈ extract(G

(t)
p ).

We prove it by decomposition into Lemmas 5.2 and 5.3

Lemma 5.2 (Depth-Based Indicator for Honest Vertices). For all t, honest p active at t,

and honest vertex v ∈ G(t): D(G
(t)
p )− D(v) > ℓ1 =⇒ v ∈ G(t)

p .

Lemma 5.3 (Extracting All Honest Vertices in a Local Graph). For every time t, honest

participant p active at t, and honest vertex v ∈ G(t): v ∈ G(t)
p =⇒ v ∈ extract(G

(t)
p ).

We then prove consistency of corrupt vertices by proving Lemma 5.4.

Lemma 5.4 (Honest Reachability Requirement for Extraction). For all t, participant p

active at t, and vertex v ∈ extract(G
(t)
p ): D(G

(t)
p )− D(v) > ℓ2 implies there exists an honest

vertex u reachable from v such that D(u)− D(v) ≤ ℓ2.

In section C.2 we prove Lemma 5.2. In section C.3 we prove Lemma 5.3 and complete the

proof of Lemma 5.1. In Section C.4 we prove Lemma 5.4. Finally, in Section C.5 we conclude

the proofs of Proposition 5.1 and Theorem 5.3.

203



C.1 Properties of an Execution

Before presenting the proof, we first observe a number of useful properties of an execution.

Constrained Vertex Generation A participant can generate a vertex only when it is

allocated a resource. It immediately follows that the set of all vertices that have been

generated in an execution at some point in time is the set of resources that have been

allocated in the execution up to that point in time. Furthermore, constraints on the rate at

which vertices are generated and the proportion of honest vertices in an execution inherit

directly from the respective constraints on resource allocation. Specifically,

– the rate at which vertices are generated in an execution is also upperbounded by ρ

vertices per ∆ time (Definition 5.4), and

– the proportion of vertices generated by honest participants is the proportion of honest

resources allocated in an α, ε-honest execution (Definition 5.6)

Consistency Properties of Local Graphs We say that a graph G is completely de-

scribed if for every vertex v in G, every one of v’s predecessors is also in G. The protocol

specification enforces the invariant that every honest participant’s local graph is always com-

pletely described. Recall that each participant’s graph is initialized to a graph with only

the root vertex, and that participants’ local graphs grow when they generate vertices and

when they receive messages. No participant’s local graph can become incompletely described

when it generates a vertex, and any message that might cause a graph to be incompletely

described is discarded. Therefore, if v is in an honest participant’s local graph, then all of

v’s predecessors must be in the graph as well.

Recall that each vertex that is generated is uniquely committed to its predecessors. Because

204



of this and the fact that every honest participant’s local graph is always completely described,

it follows that if v is in both G
(t)
p and G

(t′)
q , then v’s predecessor graph is the same in both

graphs. Moreover, it is immediate that D
G

(t)
p
(v) = D

G
(t′)
q

(v).

Temporal Ordering Consider that because participants cannot “make up” resources

(Definition 5.2), at the moment when the inbound edges for a vertex v are chosen, v cannot

have an inbound edge from any vertex u which has not yet been generated. Because each

vertex is uniquely committed to its predecessors, it follows that the predecessor-successor

relations among vertices in a participant’s local graph obey the temporal order in which the

vertices are generated. Specifically, for all vertices v and u in any participant’s graph, if v is

generated before u in the execution, then u cannot be a predecessor of v.

C.2 Consistency of Views for Honest Participants

Towards proving Lemma 5.2, we begin our technical lemmas with a foundational statement

that lowerbounds the growth rate of the depth of G in an execution as a function of the

number of vertices that are generated.

Intuitively, the depth of G is driven up by honest participants which add vertices that

increase the depths of their local graphs. As a tool to understand what vertices must be in a

participant’s local graph at any point in time, we define a virtual graph G
(t)
H , which for time

t answers “what is the smallest graph of an honest participant at time t?” One may consider

that G
(t)
H is guaranteed to contain at least all of the honest vertices that are generated before

t−∆, since each honest vertex is immediately multicast when it is generated, and at most

∆ time may elapse before the multicast message is guaranteed to be delivered.

The following lemma lowerbounds the growth of GH between any t and t′ > t as a function

205



of the number of resources allocated between t and t′. The growth of GH is lowerbounded

by the number of resources that are allocated to honest participants and by how many

honest resources can be allocated concurrently. GH must grow by at least 1 depth for every

ρ honest vertices that are generated. This is because at most ρ honest participants can

concurrently generate vertices with the same depth before one of their vertices is guaranteed

to be delivered, and increases the depth of all honest graphs that have not yet reached that

depth.

Lemma C.1 (Lowerbound Honest Growth). Define G
(t)
H as:

G
(t)
H =

⋂
t′≥t,p active at t′

G(t′)
p

For all t and t′ > t: D(G
(t′)
H ) ≥ D(G

(t)
H ) + α|Ψ(t,t′)|−ε−ρ

ρ
.

Proof. Assume towards contradiction that for some t and t′ in an execution, D(G
(t′)
H ) −

D(G
(t)
H ) < α|Ψ(t,t′)|−ε−ρ

ρ
. The lemma follows from the following three claims.

Claim C.1. Between times t and t′ in any execution, at least α|Ψ(t,t′)|−ε−ρ honest vertices

generated between t and t′ are in G
(t′)
H .

Proof. Consider an execution between times t and t′. By α, ε-honest execution (Definition

5.6), at least α|Ψ(t,t′)|−ε resources are allocated to honest participants between t and t′.

Recall that by the protocol specification, whenever an honest participant receives a resource,

it immediately generates and multicasts a new vertex. The only reason why an honest

vertex may not be in G
(t′)
p for any participant p active at t′ is if the vertex is delayed over the

network; therefore, only vertices generated after t′−∆ may not be in G
(t′)
H . By ρ-rate-limiting

(Definition 5.4), at most ρ resources may be allocated between t′ −∆ and t′. Therefore, at

least α|Ψ(t,t′)|−ε− ρ honest vertices generated between t and t′ are in G
(t′)
H .

206



Claim C.2. For any time t in an execution, every honest vertex generated after t has depth

greater than D(G
(t)
H ).

Proof. Recall by the protocol specification, whenever an honest participant p generates a

vertex v at time s > t, v is the unique deepest vertex in G
(s)
p . Thus D(v) = D(G

(s)
p ).

Additionally, observe that v cannot be in G
(t)
H since it cannot be delivered to all honest

participants by t if it is generated at s > t. Because G
(t)
H ⊆ G

(s)
p by definition, v is the unique

deepest vertex in G
(s)
p , and v ̸∈ G(t)

H , it follows immediately that D(G
(s)
p ) ≥ D(G

(t)
H ) + 1, and

therefore D(v) > D(G
(t)
H ).

Claim C.3. For any time t in an execution, there may be at most ρ honest vertices in G(t)

with the same depth.

Proof. Recall by the protocol specification, whenever an honest participant p generates a

vertex, the generated vertex is the unique deepest vertex in p’s graph. Therefore, if an

honest participant generates a vertex of depth d, then before it generated the vertex, its

graph had depth d − 1. It follows that if more than ρ honest vertices with depth d are

generated, then there must be more than ρ honest participants which, when allocated a

resource, have graphs of depth d − 1. Let p1, . . . , pρ+1, be the first participants, in order,

which generate vertices when their local graphs have depth d − 1. Let v1, . . . , vρ+1 be the

vertices that they generate, and let the vertices be generated at tv1 , . . . , tvρ+1 , respectively.

It must be that tvρ+1 > tv1 +∆ because of ρ-rate limiting (Definition 5.4). But this implies

that v1 must be in G
(tvρ+1 )
pρ+1 , and therefore D(G

(tvρ+1 )
pρ+1 ) ≥ d. This is a contradiction.

We now conclude the proof of the lemma. By Claim C.1, at least α|Ψ(t,t′)|−ε−ρ of the vertices

which are allocated between t and t′ are in G
(t′)
H . By Claim C.2, all such vertices have depth

greater than D(G
(t)
H ). By the contradiction hypothesis, D(G

(t′)
H ) − D(G

(t)
H ) < α|Ψ(t,t′)|−ε−ρ

ρ
.

207



Therefore, there must be some depth d > D(G
(t)
H ) such that more than ρ honest vertices in

G(t′) have depth d. This is a contradiction with Claim C.3.

Next, we present a lemma that bounds the difference between the depth of G(t) and the

depth of G
(t)
p for any honest participant p active at any time t. Intuitively, this bounds how

far behind G that an honest participant’s view can lag at any point in time.

Lemma C.2 (Bounding D(G
(t)
p ) relative to D(G(t))). Let γ = (1+β)ρ+ ε+ ε

ρ
+1. If α

ρ
> β,

then for all t and honest participant p active at t, D(G(t))− D(G
(t)
p ) ≤ γ.

Sketch. The proof technique is to select an honest vertex vc in reference to which the

growth of both G(t) and G
(t)
p can be measured. We then upperbound the difference D(G(t))−

D(G
(t)
p ) by upperbounding D(G(t)) − D(vc) and lowerbounding D(G

(t)
p ) − D(vc). The crux

of the proof is to show that there must exist a vertex vc with respect to which the growth

of each graph can be measured. Given the existence of vc, we can bound the differences

D(G(t)) − D(vc) and D(G
(t)
p ) − D(vc) in terms of the number of vertices that have been

generated between the time when vc is generated and t. We then use these bounds to show

the desired statement.

Proof. Assume for the sake of reaching a contradiction that in some execution at time t and

for some participant p active at t

D(G(t))− D(G(t)
p ) > γ (C.1)

Let vd be the vertex in D(G(t)) with the greatest depth. (If there are multiple such vertices,

choose any one as vd.) Choose any longest path in G(t) from root to vd, which is defined

to be a path root → vd such that the depth spanned by every edge is 1. Note that such a

path must exist, since the depth of each vertex is defined to be one more than its deepest

208



predecessor, and it is therefore always possible to walk backwards from vd to root via a path

in which each edge spans depth 1. Let vc be the honest vertex with the maximum depth on

this path subject to the constraint that vc is in G
(t)
H ; in the worst case (if no honest vertices

on the path are in G
(t)
H ), vc = root. We let tvc denote the time at which vc is generated. (If

vc = root, then let tvc = 0.)

We upperbound D(G(t))−D(G
(t)
p ), using vc as a reference point, by first decomposing it into

parts

D(G(t))− D(G(t)
p ) = [D(G(t))− D(vc)]− [D(G(t)

p )− D(vc)] (C.2)

It will suffice to upperbound D(G(t))− D(vc) and to lowerbound D(G
(t)
p )− D(vc). We begin

with an upperbound for D(G(t))− D(vc):

Claim C.4.

D(G(t))− D(vc) ≤ β|Ψ(tvc ,t)|+ε+ ρ (C.3)

Proof. Recall that because vd is the deepest vertex in G(t), D(vd) = D(G(t)) by definition. We

upperbound D(G(t))−D(vc) by upperbounding D(vd)−D(vc). Recall also that there must be

a path vc → vd on which each edge of the path spans 1 depth. To upperbound D(vd)−D(vc),

it therefore suffices to upperbound the number of vertices on the path vc → vd. We divide

the analysis into two parts: first we upperbound the number of honest vertices on the path,

and then we upperbound the number of corrupt vertices on the path.

We claim that there may be at most ρ honest vertices on the path vc → vd. Recall that

vc is defined to be the deepest vertex on a longest path from root to vd which is also in

G
(t)
H . All of the honest vertices on the path (which are successors of vc) must not be in G

(t)
H .

In order for an honest vertex v to not be in G
(t)
H , there must be some honest participant

q activated at some t′ ≥ t for which v is not in G
(t′)
q . This is only possible if v is delayed

209



over the network to q at t′; therefore, any honest vertex which is on the path vc → vd but

is not in G
(t)
H must have been generated after t−∆ (by Definition 3.2). By the limit on the

rate of resource allocations per ∆ time (Definition 5.4), there may be at most ρ such honest

vertices. Therefore, there may be at most ρ honest vertices on the path vc → vd.

We now upperbound the number of corrupt vertices on the path vc → vd. Consider that all

corrupt vertices on the path vc → vd must be generated after tvc because each is a successor

of vc. By the definition of a β, ε-corrupt execution (Definition 5.6), at most β|Ψ(tvc ,t)|+ε

corrupt resources may be generated between tvc and t. It follows that there are at most

β|Ψ(tvc ,t)|+ε corrupt vertices on the path vc → vd.

Summing the upperbounds for honest and corrupt vertices on the path vc → vd, it follows

that

D(G(t))− D(vc) ≤ β|Ψ(tvc ,t)|+ε+ ρ

as claimed.

We next lowerbound D(G
(t)
p )− D(vc):

Claim C.5.

D(G(t)
p )− D(vc) ≥

α|Ψ(tvc+∆,t)|−ε− ρ
ρ

(C.4)

Proof. Lowerbounding the difference D(G
(t)
p )− D(vc) is challenging because we do not have

enough information about vc to directly upperbound its depth. However, we do know that

D(G
(tvc+∆)
H ) ≥ D(v), since v must be in the view of every honest participant activated at or

after tvc +∆, and by definition it must therefore be in G
(tvc+∆)
H .

Given the upperbound of D(vc) in terms of G
(tvc+∆)
H , we complete the desired lowerbound of

210



D(G
(t)
p ) − D(vc) by lowerbounding G

(t)
p in terms of G

(t)
H and directly invoking Lemma C.1.

This is trivial, since we know G
(t)
H ⊆ G

(t)
p by definition, and therefore D(G

(t)
p ) ≥ D(G

(t)
H ).

We conclude:

D(G(t)
p )− D(vc) ≥ D(G(t)

p )− D(G
(tvc+∆)
H )

≥ D(G
(t)
H )− D(G

(tvc+∆)
H )

≥ α|Ψ(tvc+∆,t)|−ε− ρ
ρ

We now use the upperbound on D(G(t)) − D(vc) and the lowerbound on D(G
(t)
p ) − D(vc) to

conclude the lemma. Recalling (in order) Inequality C.1, Equation C.2, Inequality C.3 and

Inequality C.4, we conclude:

γ < D(G(t))− D(G(t)
p )

= [D(G(t))− D(vc)]− [D(G(t)
p )− D(vc)]

≤ [β|Ψ(tvc ,t)|+ε+ ρ]− [
α|Ψ(tvc+∆,t)|−ε− ρ

ρ
]

= β|Ψ(tvc ,tvc+∆)|+β|Ψ(tvc+∆,t)|+ε+ ρ+
ε

ρ
+ 1− α|Ψ(tvc+∆,t)|

ρ

≤ (β − α

ρ
)|Ψ(tvc+∆,t)|+(1 + β)ρ+ ε+

ε

ρ
+ 1

where the last inequality follows because β|Ψ(tvc ,tvc+∆)|≤ βρ, since at most ρ resources may

be allocated between tvc and tvc + ∆ by the rate limit on resource allocations (Definition

5.4).

Therefore, it must be the case that

(β − α

ρ
)|Ψ(tvc+∆,t)|+(1 + β)ρ+ ε+

ε

ρ
+ 1 > γ (C.5)

211



but when α
ρ
> β, this is true only when |Ψ(tvc+∆,t)| is negative. This is a contradiction

because there cannot be negative resource allocations.

We now complete the proof of Lemma 5.2, which we restate here. Intuitively, the lemma

shows that if for some honest participant p active at time t, and some honest vertex v,

D(G
(t)
p )−D(v) > ℓ1 = ρ+ γ, then more than ∆ time has elapsed since v was generated and

multicast. It will follow that v ∈ G(t)
p .

Lemma 5.2 (Depth-Based Indicator for Honest Vertices). For all t, honest p active at t,

and honest vertex v ∈ G(t): D(G
(t)
p )− D(v) > ℓ1 =⇒ v ∈ G(t)

p .

Proof. Assume that there is a vertex v generated by an honest participant q at time tv, and

there is another honest participant p active at time t > tv such that v ̸∈ G(t)
p . We will show

that it must be the case that D(G
(t)
p )− D(v) ≤ ℓ1.

Consider that because G
(t)
p ⊆ G(t), the difference D(G

(t)
p ) − D(v) is trivially upperbounded

by D(G(t)) − D(v). The difference D(G(t)) − D(v) can be decomposed into the sum of two

parts: D(G(tv)) − D(v), the difference in depth between v and G at the moment when v is

generated, and D(G(t))− D(G(tv)), or the amount that G has grown since v was generated.

First, we observe that D(G(tv))−D(v) = D(G(tv))−D(G
(tv)
q ), since v is the deepest vertex in

G
(tv)
q . We directly apply Lemma C.2 to bound D(G(tv))− D(G

(tv)
q ) ≤ γ.

Second, we upperbound D(G(t))−D(G(tv)) as follows. Recall that when an honest participant

generates a vertex, it immediately multicasts the vertex. If v is not in G
(t)
p , then it must be

delayed over the network; therefore, it must be that t < tv + ∆. We use the rate limit on

resource allocations (Definition 5.4) to conclude that |Ψ(tv ,t)|≤ ρ. Because G can increase in

depth between tv and t by at most the number of vertices which are generated between tv

and t, it follows that D(G(t))− D(G(tv)) ≤ |Ψ(tv ,t)|≤ ρ.

212



Therefore we conclude,

D(G(t)
p )− D(v) ≤ D(G(t))− D(v)

= D(G(t))− D(G(tv)) + D(G(tv))− D(G(tv)
q )

≤ |Ψ(tv ,t)|+γ

≤ ρ+ γ

= ℓ1

C.3 Outputting Consistent Honest Vertices

We now re-state and prove Lemma 5.3, which states that an honest participant always

extracts every honest vertex in its local graph.

Lemma 5.3 (Extracting All Honest Vertices in a Local Graph). For every time t, honest

participant p active at t, and honest vertex v ∈ G(t): v ∈ G(t)
p =⇒ v ∈ extract(G

(t)
p ).

We show that every vertex in an honest participant’s local graph must be either a starting

vertex in the graph or a predecessor of a starting vertex in the graph. We prove this in

two steps. First we show that every vertex v that is generated by an honest participant

is guaranteed to gain an honest successor in G which is at most c deeper than v. Second,

we show that if an honest vertex v is more than c + ρ depth from the end of an honest

participant’s graph, then its guaranteed honest successor must also be in the graph. Recall

that the starting vertices in a participant’s graph are defined to be those with depth within

c + ρ of the graph itself. It follows that from every honest vertex which is not a starting

vertex in a participant’s graph, there must be a path to an honest starting vertex in the

213



graph.

Before we proceed, we first introduce a useful property of an execution that bounds how

many consecutive corrupt vertices may be generated in a span of time in which no honest

vertices are generated.

Fact C.1. For all t, t′ in an α, ε-honest execution: if |Ψ(t,t′)
hon |= 0 then |Ψ(t,t′)|≤ ε

α
.

Proof. Direct from Definition 5.6. |Ψ(t,t′)
hon | is lower bounded by α|Ψ(t,t′)|−ε, which is greater

than 0 for all t, t′ for which |Ψ(t,t′)|> ε
α
.

Next we show that each honest vertex v is guaranteed to gain at least one honest vertex as

a successor in G before G grows too far away from v. Specifically, we show that maximum

the difference in depth between v and its guaranteed honest successor is c, and that at any

time t after v is generated, if D(G(t))− D(v) > c then v’s honest successor is guaranteed to

already exist in G.

Lemma C.3. Let c = γ+ρ+ ε
α
. For every time t and honest vertex v ∈ G(t), D(G(t))−D(v) >

c implies there exists an honest vertex u in G(t) such that D(u)−D(v) ≤ c and u is reachable

from v.

Sketch. Let tv be the time when v is generated. First, we show that if D(G(t))−D(v) > c,

then there must be some honest vertex generated after tv + ∆. Let v1 be the first honest

vertex generated after tv + ∆. Second, we show that D(v1) − D(v) ≤ c, and that v1 is

reachable from v.

Proof. For a vertex u, use the notation that tu is the time at which u is generated. The

proof follows from the following two claims.

214



Claim C.6. If D(G(t)) − D(v) > c, then there must be an honest vertex generated after

tv +∆.

Proof. Assume that D(G(t))−D(v) > c but there is no honest vertex generated after tv+∆.

Consider that

D(G(t))− D(v) = D(G(t))− D(G(tv)) + D(G(tv))− D(v)

Lemma C.2 immediately bounds D(G(tv))− D(v) ≤ γ. If D(G(t))− D(v) > c and D(G(tv))−

D(v) ≤ γ, then it must be the case that D(G(t)) − D(G(tv)) > ρ + ε
α
. This immediately

implies that |Ψ(tv ,t)|> ρ + ε
α
, because G cannot grow in depth between tv and t more than

the number of vertices which are generated in that time.

Let v1, . . . , vρ+ ε
α
+1, be in chronological order the first ρ + ε

α
+ 1 vertices generated between

tv and t. Consider that between tv and tv +∆, as most ρ vertices may have been generated

because of the rate limit on vertex generation (Definition 5.4). It follows that vρ+1, . . . , vρ+ ε
α
+1

must all be generated after tv +∆. Moreover, by the contradiction hypothesis, they are all

corrupt. But this means that more than ε
α
consecutive corrupt vertices are generated, which

is a contradiction to Fact C.1.

Next, using many of the same techniques, we bound the difference in depth between v and

this honest vertex generated after tv +∆, and show that it is reachable from v.

Claim C.7. In any execution, consider any honest vertex v for which some honest vertex is

generated after tv+∆, and let v1 be the first vertex generated after tv+∆. Then D(v1)−D(v) ≤

c and v1 is reachable from v.

Proof. First we show that D(v1)− D(v) ≤ c. Assume that it D(v1)− D(v) > c.

215



As in the previous claim, we observe that D(v1)−D(v) is upperbounded by the difference in

depth between v and G at the moment that v is generated, plus the amount that G grows

between tv and tv1 . Specifically,

D(v1)− D(v) = D(v1)− D(G(tv)) + D(G(tv))− D(v)

≤ D(G(tv1 ))− D(G(tv)) + D(G(tv))− D(v)

First, by an immediate application of Lemma C.2, D(G(tv)) − D(v) ≤ γ. Second we bound

how much G can grow between tv and tv1 . Clearly, D(G(tv1 )) − D(G(t)) ≤ |Ψ(t,tv1 )|, since G

cannot grow by more vertices than the number of resources allocated in this span of time.

As in the previous claim, it must be the case that |Ψ(t,tv1 )|> ρ + ε
α
. By an analogous

argument to the previous claim, since only ρ vertices may be generated between t and

t+∆, this implies that |Ψ(tv+∆,tv1 )|> ε
α
. But because v1 is the first honest vertex generated

after tv +∆, this leads to the conclusion that more than ε
α
consecutive corrupt vertices are

generated between tv + ∆ and tv1 , which is a contradiction with Fact C.1. We therefore

conclude that D(v1)− D(v) ≤ c.

Next we show that v1 is reachable from v. Let r be the participant that generates v1.

We claim that v must be in G
(tv1 )
r . Recall that v is generated by an honest participant

and immediately multicast at tv. Therefore, v must be in the local graph of every honest

participant activated after tv +∆. Because tv1 > tv +∆, it is immediate that v is in G
(tv1 )
r .

Consider that if v has outdegree 0 in r’s local graph before adding tv1 , then because

D(v1) − D(v) ≤ c, the protocol specification requires that r add an edge from v to v1.

If outdegree(v) > 0 in r’s local graph before adding tv1 , then there must be some vertex u

in r’s local graph with an edge from v. If outdegree(u) > 0 in r’s local graph, then recur-

sively follow u’s successors until reaching a vertex w that has outdegree 0 in r’s view when

216



r generates v1. Notice that because w is a successor of v, D(w) > D(v), and it follows that

D(w) − D(v1) < c. Therefore, by the protocol specification, r must add an edge from w to

v1, and there is a path from v to v1.

The lemma follows immediately by composing the two claims. By Claim C.6 D(G(t))−D(v) >

c implies that there is an honest vertex generated after tv+∆. By Claim C.7, the first honest

vertex v1 generated after tv +∆ must be reachable from v and D(v1)− D(v) ≤ c.

The previous lemma showed that each honest vertex v is guaranteed to gain an honest

successor in G before G grows to be much deeper than v. However, although v’s honest

successor is guaranteed to exist in G(t) if D(G(t)) − D(v) > c, it is not necessarily true that

the honest successor is in G
(t)
p if D(G

(t)
p ) − D(v) > c. In the following lemma we show that

instead, we can guarantee that if D(G
(t)
p ) − D(v) > c + ρ, then v is guaranteed to have at

least one honest successor in G
(t)
p . Intuitively, the extra ρ required to show the statement

for honest participants’ local graphs allows enough time for v’s honest successor v1 to be

delivered over the network to every honest participant.

Lemma C.4. For every time t, honest participant p active at t, and honest vertex v ∈ G(t)
p :

D(G
(t)
p )−D(v) > c+ ρ implies there exists an honest vertex u ∈ G(t)

p which is reachable from

which v.

Proof. Assume that D(G
(t)
p ) − D(v) > c + ρ but there is no honest vertex u ∈ G(t)

p which is

reachable from v. Let tv be the time at which v is generated, and let it be generated by q.

By Lemma C.3, there must be a vertex u in G(t) which is reachable from v such that

D(u) ≤ D(G(t))− c. It must therefore be the case that u is not in G
(t)
p .

Consider that when u is generated by an honest participant at time tu, it is immediately

multicast. The only way that u is not in G
(t)
p is if it is delayed over the network. Therefore,

it must be the case that t ≤ tu +∆.

217



This implies:

D(G(t)
p )− D(v) ≤ D(G(t))− D(v)

= D(G(t))− D(G(tv)
q )

= D(G(t))− D(G(tu)) + D(G(tu))− D(G(tv))

+ D(G(tv))− D(G(tv)
q )

≤ |Ψ(tu,t)|+|Ψ(tv ,tu)|+γ

≤ 2ρ+
ε

α
+ γ

= c+ ρ

where D(G(tv)) − D(G
(tv)
q ) ≤ γ by Lemma C.2, |Ψ(tu,t)|≤ ρ because t ≤ tu + ∆ and by

Definition 5.4, and |Ψ(tv ,tu)|≤ ρ+ ε
α
by an argument used in Lemma C.3.

This is a contradiction with the premise of the lemma.

Armed with Lemma C.4, Lemma 5.3 is straightforward. We re-state it and prove it.

Lemma 5.3 (Extracting All Honest Vertices in a Local Graph). For every time t, honest

participant p active at t, and honest vertex v ∈ G(t): v ∈ G(t)
p =⇒ v ∈ extract(G

(t)
p ).

Proof. If D(G
(t)
p ) − D(v) ≤ c + ρ, this is trivial because v is a starting vertex. If D(G

(t)
p ) −

D(v) > c + ρ then it follows from Lemma C.4 that v is reachable from a starting vertex as

follows. Consider the honest vertex u ∈ G(t)
p which is reachable from v by Lemma C.4. If u

is a starting vertex, then we are done. If not, then recursively apply Lemma C.4 to u until

a starting vertex is reached. The depth of the recursion is bounded by the fact that if u is

reachable from v, then D(u) > D(v).

We now also restate and conclude the proof of Lemma 5.1, as it is immediate by composing

Lemmas 5.2 and 5.3.

218



Lemma 5.1 (Honest Vertex Extraction). For every time t, honest participant p active at t,

and honest vertex v ∈ G(t): D(G
(t)
p )− D(v) > ℓ1 =⇒ v ∈ extract(G

(t)
p ).

Proof. This is by Lemmas 5.2 and 5.3. By Lemma 5.2, if D(G
(t)
p )−D(v) > ℓ1 then v ∈ G(t)

p .

By Lemma 5.3, if v is in G
(t)
p then v ∈ extract(G

(t)
p ).

C.4 Extracting Consistent Corrupt Vertices

Thus far we have shown that for any two honest participants p and q, active at t and t′

respectively, for which D(G
(t)
p ) > k + ℓ1 and D(G

(t′)
q ) > k + ℓ1, p and q extract the same

honest vertices from their graphs up to depth k.

To complete the proof of Proposition 5.1, we now show an analogous consistency property

of the corrupt vertices extracted by honest participants. We show that every corrupt vertex

that is extracted from an honest participant’s graph and is sufficiently far from the deepest

vertices in the graph must be a predecessor of some honest vertex in the graph. We will

show that consistency of extracted corrupt vertices will follow from the consistency of their

honest successors. We proceed by re-stating and proving Lemma 5.4.

Lemma 5.4 (Honest Reachability Requirement for Extraction). For all t, participant p

active at t, and vertex v ∈ extract(G
(t)
p ): D(G

(t)
p )− D(v) > ℓ2 implies there exists an honest

vertex u reachable from v such that D(u)− D(v) ≤ ℓ2.

Sketch. We show that if a vertex v is both extracted from G
(t)
p and is sufficiently far from

the deepest vertices in G
(t)
p , then v must have an honest successor u whose depth is at most

ℓ2 more than D(v). Consider that if v is in extract(G
(t)
p ), then there must be some starting

vertex z in G
(t)
p which is reachable from v. If there is no honest vertex u reachable from v

whose depth is within ℓ2 of v, then z must be reachable from v via a long sequence of corrupt

219



vertices which starts with v and extends either all the way to z or to some honest vertex

u between v and z. Let w be the deepest corrupt vertex on this corrupt-only sequence.

Intuitively, if w has an outbound edge to an honest vertex, or if w is a starting vertex in the

view of any honest participant after it is generated, then the depth of w must be “close” to

the depth of G(tw).

The proof shows that contrary to the above intuition, w is actually far from the depth of

G(tw). We show this as follows. Because w is quite far from v (by contradiction hypothesis),

there are many corrupt vertices on the path between v and w. However, if many corrupt

vertices are on the path between v and w, then between tv and tw, many more honest vertices

than corrupt vertices are generated. Those honest vertices must extend the depth of G so

much that at tw, w is very far (measured in depth) from the deepest vertices in G(tw). In fact,

w is so far away from the deepest vertices in G(tw) that it could never be a starting vertex in

the view of an honest participant, and it is not close enough to the deepest vertices in G
(tw)
H

(which lowerbounds the depths of honest participants at tw) to ever gain an outbound edge

to an honest vertex.

Proof. Assume for the sake of contradiction that there is a vertex v in extract(G
(t)
p ) such that

D(G
(t)
p )−D(v) > ℓ2 but there is no honest vertex v

′ reachable from v such that D(v′)−D(v) ≤

ℓ2. Because v is in extract(G
(t)
p ) and D(G

(t)
p )−D(v)≫ c+ ρ, there must be a starting vertex

z in G
(t)
p which is reachable from v. Moreover, there must be a path v → z in G

(t)
p .

Let w be the deepest corrupt vertex on the path v → z which is reachable from v via a path

consisting of only corrupt vertices, and let tw be the time at which w is generated. We now

show that w must be quite far from v, measured in depth.

There are two cases. If there is no honest vertex on the path v → z, then w is a starting

vertex in G
(t)
p . Otherwise, there is an honest vertex u with an edge from w on the path

v → z.

220



(A) In the case that w is a starting vertex, it must be the case that

D(G(t)
p )− D(w) ≤ c+ ρ (C.6)

And we know by the premise of the lemma that D(G
(t)
p )−D(v) > ℓ2. We can therefore

conclude that D(w)− D(v) > ℓ2 − (c+ ρ).

(B) In the case that there is an honest vertex u with an edge from w, there must be an

honest participant q that generates u at some time tu > tw such that

D(G(tu)
q )− D(w) ≤ c (C.7)

and in particular that D(u)− D(w) ≤ c.

Moreover, we know by the contradiction hypothesis that D(u) − D(v) > ℓ2. We can

therefore conclude that D(w)− D(v) > ℓ2 − c.

In either case, it must be true that

D(w)− D(v) > ℓ2 − (c+ ρ) (C.8)

Henceforth we use this relationship between w and v.

We have shown that w is quite far from v. We next we lowerbound the total number of

vertices that have been generated between tv and tw. Then we show that during any span of

time in which this many corrupt vertices have been generated, so many more honest vertices

must have been generated that G must have grown to be much deeper than w.

Claim C.8.

|Ψ(tv ,tw)|>
ℓ2−(c+ρ)

c
− ε

β
(C.9)

221



Proof. We show the claim in two steps. We first use the distance between w and v to

lowerbound the number of corrupt resources that are allocated between tv and tw. Then we

use the number of corrupt vertices in order to lowerbound the total number of vertices which

must have been generated between tv and tw.

Recall that w is reachable from v via a path consisting of only corrupt vertices. D(w)−D(v)

is therefore upperbounded by c times the number of vertices on the path v → w, since by

the protocol specification, no edge on the path may span more than c depth. Therefore,

c(β|Ψ(tv ,tw)|+ε) ≥ D(w)− D(v) (C.10)

The lowerbound on |Ψ(tv ,tw)| follows from applying Inequality C.8 and Inequality C.10 to

show

c(β|Ψ(tv ,tw)|+ε) ≥ D(w)− D(v) > ℓ2 − (c+ ρ)

and with algebra we arrive at Inequality C.9, completing our claim.

What remains is to show that between tv and tw, the depth of G has grown so much that for

any honest participant r active at any t′ ≥ tw, G
(t′)
r must be too deep for w to be a starting

vertex in G
(t′)
r and too deep for r to add a vertex with an edge to w.

Claim C.9. For every time t′ ≥ tw and any honest participant r active at t′, D(G
(t′)
r ) −

D(w) > c+ ρ.

Proof. First, we lowerbound the difference D(G
(t′)
r ) − D(w) in terms of |Ψ(tv ,tw)|. We then

invoke the lowerbound on |Ψ(tv ,tw)| from Claim C.8 to give a concrete bound.

222



We start by lowerbounding D(G
(t′)
r ) in terms of |Ψ(tv ,tw)| and of D(v).

D(G(t′)
r ) ≥ D(G

(t′)
H )

≥ D(G
(tw)
H )

= D(G
(tw)
H )− D(G

(tv)
H ) + D(G

(tv)
H )

≥ α|Ψ(tv ,tw)|−ε− ρ
ρ

+ D(G(tv))− γ

≥ α|Ψ(tv ,tw)|−ε− ρ
ρ

+ D(v)− γ

where D(G
(tv)
H ) ≥ D(G(tv)) − γ by a direct application of Lemma C.2, and D(G(tv)) ≥ D(v)

trivially because v ∈ G(tv).

Recall that by Inequality C.10, D(w) ≤ c(β|Ψ(tv ,tw)|+ε)+D(v). We can therefore lowerbound

D(G
(t′)
r )− D(w) as a function of |Ψ(tv ,tw)|

D(G(t′)
r )− D(w) ≥ α|Ψ(tv ,tw)|−ε− ρ

ρ
+ D(v)− γ − (c(β|Ψ(tv ,tw)|+ε) + D(v))

= (
α

ρ
− cβ)|Ψ(tv ,tw)|−γ − cε− ε− ε

ρ
− 1

When plugging in our lowerbound for |Ψ(tv ,tw)| from Inequality C.9, we find that D(G
(t′)
r )−

D(w) > c+ ρ as claimed.

This claim presents a contradiction with both cases above. In case (A), in which w is a

starting vertex in G
(t)
p , this is a contradiction to Inequality C.6. In case (B), in which w has

an edge from some honest vertex u, this is a contradiction to Inequality C.7.

C.5 Consistency and Liveness of ΠG

We can now complete the proofs of Proposition 5.1 and Theorem 5.3.

223



Proposition 5.1. Let c = (3 − α)ρ + ε
α
+ ε

ρ
+ ε + 1 (as in Protocol ΠG). If α > ρβc, then

for all k, times t and t′, and honest participants p and q active at t and t′, respectively, if

D(G
(t)
p ) > k + ℓ∗ and D(G

(t′)
q ) > k + ℓ∗, then extract(G

(t)
p )|k = extract(G

(t′)
q )|k.

Proof. Assume without loss of generality that there is a vertex v that is in extract(G
(t)
p )|k

but not in extract(G
(t′)
q )|k. It is trivial that D(v) ≤ k if v ∈ extract(G

(t)
p )|k.

Assume that v is an honest vertex. By the protocol specification, v must be output by q at t′

if v is extracted from G
(t′)
q because D(G

(t′)
q ) ≥ D(v) + ℓ∗. Therefore, v must not be extracted

from G
(t′)
q . But this is a contradiction with Lemma 5.1, which says that v must be extracted

from G
(t′)
q since D(G

(t′)
q )− D(v) > ℓ1.

Therefore, v must be a corrupt vertex. By Lemma 5.4, if v is in extract(G
(t)
p )|k, then there

must be an honest vertex u such that D(u) ≤ D(v) + ℓ2 such that u is reachable from v. By

Lemma 5.1, u must be in extract(G
(t′)
q ) because D(G

(t′)
q )− D(u) ≥ k + ℓ∗ − (k + ℓ2) > ℓ1.

Because u is reachable from v, v must be in extract(G
(t′)
q ) by the protocol specification. And

because D(v) < k by assumption, v must be in extract(G
(t′)
q )|k. This is a contradiction.

Corollary C.1 (Graph Consistency). Protocol ΠG achieves graph consistency.

Proof. In any execution, consider any two times t, t′ and p, q active at t and t′, respectively.

Without loss of generality, assume that D(G
(t)
p ) ≥ D(G

(t′)
q ). By Proposition 5.1, it must be

that extract(G
(t)
p )|

D(G
(t′)
q )−ℓ∗ = extract(G

(t′)
q )|

D(G
(t′)
q )−ℓ∗ , and therefore extract(G

(t′)
q )|

D(G
(t′)
q )−ℓ∗ ⊆

extract(G
(t)
g )|

D(G
(t)
g )−ℓ∗ .

Liveness follows from the fact that an honest participant outputs every honest vertex in its

local graph with depth more than ℓ∗ from the end of its graph.

Lemma C.5 (h-Liveness). Protocol ΠG achieves h-liveness, for h(N,α, ε, ρ) = αN − ε −

ρ(ℓ∗ + 1).

224



Proof. Recall that in order to compute its output, an honest participant extracts vertices

from its view using the extract() function and then outputs the extracted vertices which

are more than ℓ∗ depth from the end of its graph. Recall that Lemma 5.3 show an honest

participant always extracts every honest vertex in its local graph. We lowerbound the number

of honest vertices that an honest participant outputs at any point in time by lowerbounding

how many of the vertices in its view must be honest, and then upperbounding how many

honest extracted vertices may have depth too high to be output.

First we lowerbound the number of vertices in an honest participant’s graph which must be

honest. By Claim C.1, we know that at least α|Ψ(0,t)|−ε−ρ honest vertices which have been

generated from the beginning of the execution until t must be in G
(t)
p . Consider also that

the total number of vertices that have been generated up to any point in time upperbounds

the number of vertices in a participant’s view, or |Ψ(0,t)|≥ |G(t)
p .V |. It follows that

|hon(G(t)
p .V )|≥ α|Ψ(0,t)|−ε− ρ ≥ α|G(t)

p .V |−ε− ρ

What remains is to upperbound the number of honest vertices in a participant’s graph at

any point in time which are not output. Recall that an honest participant outputs all of the

vertices which it extracts from its local graph up to ℓ∗ depth from the end of its graph. By

Claim C.3, there may be at most ρ honest vertices in G(t) with the same depth, which implies

that at each depth in G
(t)
p , there may be at most ρ honest vertices. Therefore, there may be

at most ρℓ∗ honest vertices in Gp with depth more than D(Gp)− ℓ∗, which are therefore not

output.

We conclude that |extract(G(t)
p )|

D(G
(t)
p )−ℓ∗|≥ α|G(t)

p .V |−ε− ρ− ρℓ∗. The lemma follows.

Corollary C.2 (f -Liveness). Protocol ΠG achieves f -liveness, for f(N,α, ε, ρ) = αN − ε−

ρ(ℓ∗ + 1).

225



Proof. Immediate from Lemma C.5. f -liveness is lowerbounded by h-liveness. The lower-

bound is tight because an honest participant could extract no corrupt vertices from its local

graph.

226



Appendix D

Proof of Permissionless One-Bit

Consensus Protocol Πbit

We restate Theorem 5.5.

Theorem 5.5. For all ρ and all ε, and for all α > ρ(1−α)((3−α)ρ+ ε
α
+ ε

ρ
+ ε+1) every

every (α, ε)-honest, ρ-rate-limited admissible execution of Πbit(α, ε, ρ) satisfies termination,

consistency, and validity.

The proof of Theorem 5.5 follows the outline in Section 5.6.2. Consistency and termination

are trivial, and we provide three lemmas to show validity. First, we show that for every depth

k in an execution, there is a time after which no (corrupt) vertex of depth k can be added to

G which will ever be extracted by any honest participant. Second, we show the maximum

number of corrupt vertices ω that can be generated from the time that G reaches depth k to

the time when no (corrupt) vertex of depth k can ever be added and subsequently extracted

by an honest participant. Finally, we show that by the time an honest participant’s graph

reaches depth k∗, there are more than ω honest vertices in its graph up to k∗ than corrupt

vertices.

227



Lemma D.1. Let x = cε+ c+ ρ+ ε
ρ
+ 1. For every vertex v generated at tv: if D(G

(tv)
H ) >

D(v) + x, then there is no time t ≥ tv and honest participant p active at t for which v ∈

extract(G
(t)
p ).

Sketch. Recall that in order for v to be extracted from G
(t)
p , it must be either a starting

vertex in G
(t)
p or a predecessor of a starting vertex in G

(t)
p . We show that D(G

(tv)
H ) is already

so much deeper than v that no honest participant which is activated in the future would ever

have v as a starting vertex, and no honest participant which generates a vertex in the future

would ever generate a vertex with an inbound edge from v or from any (corrupt) vertex

which is reachable from v. To show this, we lowerbound the difference in depth between

GH and the deepest vertex reachable from v at any point in time t > tv, as a function of

the number of vertices that are generated between t and tv. We show that the difference is

always greater than c+ρ. Because GH lowerbounds the view of an honest participant, we can

therefore conclude that v will never be a starting vertex in any honest participant’s graph

and no honest participant could ever add a vertex with an inbound edge from a (corrupt)

successor of v.

Proof. Assume that at the time tv when v is generated, D(G
(tv)
H ) ≥ D(v) + x and that there

exists a time t > tv and honest participant p for which v ∈ extract(G
(t)
p ).

First, we claim that v cannot be a starting vertex for any honest participant’s extract()

function at any time t′ ≥ tv. For every time t′ ≥ tv and every honest participant q active at

t′,

D(G(t′)
q ) ≥ D(G

(t′)
H ) ≥ D(G

(tv)
H ) > D(v) + x > D(v) + ρ+ c

Therefore, because v ∈ extract(G
(t)
p ) and v is not a starting vertex in G

(t)
p , there must be

a starting vertex z ∈ G(t)
p reachable from v. Specifically, if z is a starting vertex, then by

228



definition

D(G(t)
p )− D(z) < ρ+ c (D.1)

We now separately consider the following two cases regarding the path v → z. First, we

consider the case that there are no honest vertices on the path v → z. Second we consider

the case that there is at least one honest vertex on the path v → z.

Consider the case that there are no honest vertices on the path v → z. Towards contradiction

with Inequality D.1, we lowerbound the difference D(z)−D(v) by upperbounding D(z) with

respect to D(v) and |Ψ(tv ,t)|, and lowerbounding D(G
(t)
p ) with respect to D(v) and |Ψ(tv ,t)|.

First, we upperbound D(z). We claim that

D(z) ≤ D(v) + c(β|Ψ(tv ,t)|+ε) (D.2)

By assumption, there are only corrupt vertices on the path v → z. Recall from the definition

of a β, ε-corrupt execution (Definition 5.6) that at most β|Ψ(tv ,t)|+ε corrupt vertices may

be generated between tv and t. By the protocol specification, if v → z is in an honest

participant’s local graph, then each edge on the path may span no more than c depth. It

follows that D(z) is no more than D(v) plus c depth for every corrupt vertex generated

between tv and t.

Second, we lowerbound D(G
(t)
p ) using the premise of this lemma and a direct application of

229



Lemma C.1:

D(G(t)
p ) ≥ D(G

(t)
H )

= D(G
(t)
H )− D(G

(tv)
H ) + D(G

(tv)
H )

≥ α|Ψ(tv ,t)|−ε− ρ
ρ

+ D(v) + x

We can immediately lowerbound the difference D(G
(t)
p ) − D(z) using the upperbound and

lowerbound just computed

D(G(t)
p )− D(z) ≥ (

α

ρ
− cβ)|Ψ(tv ,t)|+x− cε− ε

ρ
− 1 (D.3)

but when α
ρ
> cβ this is a contradiction with Inequality D.1 because |Ψ(tv ,t)| must be non-

negative.

Therefore, there must be an honest vertex on the path v → z. Let w be the deepest corrupt

vertex on the path v → z such that there are no honest vertices on the subpath v → w. Then

there must be an honest vertex u with an inbound edge from w. Let q be the participant

that generates u, and let tu be the time at which q generates u.

Now, because there are no honest vertices on the path v → w, we can invoke the same

argument that we used for the above case in which there are no honest vertices on the path

v → z, replacing z with w, and replacing t with the time tu at which q generates u.

The only difference in the proof is that the difference G
(tu)
q −D(w) is less than the difference

G
(t)
p − D(z) above. Specifically, it must be the case that

D(G(tu)
q )− D(w) ≤ c (D.4)

230



The rest of the proof follows analogously.

Lemma D.2. Let ω = βρ
α
(x+ γ+ ε

ρ
+1)+ ε, and let the notation tk denote the earliest time

for which D(G(tk)) = k. For every time t, honest participant p active at t, and depth k: at

most ω corrupt vertices in extract(G
(t)
p )|k were generated after tk.

Sketch We show that if more than ω corrupt vertices in extract(G
(t)
p )|k were generated

after tk, then there must be some corrupt vertex u in extract(G
(t)
p )|k which was generated

when GH was already more than x depth deeper than u. This is a contradiction to Lemma

D.1.

Proof. Assume that there are more than ω corrupt vertices generated between tk and t that

are in extract(G
(t)
p )|k. Let u be the last such corrupt vertex that is generated, and let tu be

the time at which it is generated. Trivially, it must be the case that t > tu (otherwise u

could not be in G
(t)
p ).

We lowerbound |Ψ(tk,tu)| as follows. By the contradiction hypothesis, more than ω corrupt

vertices have been generated between tk and tu. We can therefore lowerbound |Ψ(tk,tu)| using

Definition 5.6 and the number of corrupt vertices which have been generated between tk and

t. Specifically, recall that the number of corrupt vertices that are generated between tk and

tu is upperbounded by β|Ψ(tk,tu)|+ε. By assumption, we have that β|Ψ(tk,tu)|+ε > ω, which

implies that |Ψ(tk,tu)|> ω−ε
β
.

Towards contradiction, we now lowerbound D(G
(tu)
H ). We do so by invoking Lemma C.1 to

lowerbound how much GH must grow as honest participants add vertices to G between tk

231



and tu. Specifically,

D(G
(tu)
H ) = D(G

(tu)
H )− D(G

(tk)
H ) + D(G

(tk)
H )

≥ α|Ψ(tk,tu)|−ε− ρ
ρ

+ D(G(tk))− γ

>
αω−ε

β
− ε− ρ
ρ

+ D(G(tk))− γ

≥ α

βρ
(ω − ε)− γ − ε

ρ
− 1 + k

≥ k + x

where it follows our definition of tk that D(G(tk)) = k. Additionally, it follows from Lemma

C.2 and the definition of G
(tk)
H =

⋂
t′≥tk,q active at t′ G

(t′)
q that D(G

(tk)
H ) ≥ D(G(tk))− γ.

This is a contradiction with Lemma D.1. Recall that D(u) ≤ k by assumption, and therefore

D(G
(tu)
H ) > D(u)+x. Lemma D.1 says that if at the time tu when u is generated, D(G

(tu)
H ) >

D(u) + x, then u may never be in extract(G
(t)
p ) for any p active at t > tu.

Claim D.1. For every time t and all k: D(G(t)) ≥ k =⇒ |Ψ(0,t)
hon |−|Ψ

(0,t)
cor |≥ (α− β)k − 2ε

Proof. As a direct consequence of Definition 5.6, between any t and t′ > t, |Ψ(t,t′)
hon |−|Ψ

(t,t′)
cor |≥

(α− β)|Ψ(t,t′)|−2ε.

Using this fact and the fact that |Ψ(0,t)|≥ D(G(t)) (because G(t) can be no deeper than the

number of vertices in G(t)):

|Ψ(0,t)
hon |−|Ψ

(0,t)
cor | ≥ (α− β)|Ψ(0,t)|−2ε

≥ (α− β)D(G(t))− 2ε

≥ (α− β)k − 2ε

232



Lemma D.3. Let k∗ = ω+2ε
α−β . For every time t and honest participant p active at t, if

D(G
(t)
p ) ≥ k∗ + ℓ1, then the majority of vertices in extract(G

(t)
p )|k∗ are honest.

Proof. Let t∗ be the earliest time at which D(G(t∗)) = k∗. We show that there are more

honest vertices with depth less than k∗ generated between the beginning of the execution

and t∗ than the sum of (a) the number of corrupt vertices generated between the beginning

of the execution and t∗ and (b) the total number of corrupt vertices with depth less than or

equal to k∗ which can be generated after t∗ and still extracted from any honest participant’s

graph after t∗. Because all honest vertices that have been generated with depth up to k∗ are

guaranteed to be extracted from an honest graph with depth k∗ + ℓ1, it follows that there

must be more extracted honest vertices up to depth k∗ than extracted corrupt vertices up

to depth k∗.

The formal argument follows. By Claim D.1, there are at least ω more honest vertices in

G(t∗) than corrupt vertices. By Lemma 5.2, if D(G
(t)
p ) > k∗ + ℓ1, then all of the honest

vertices generated before t∗ are in G
(t)
p . By Lemma D.2, there are at most ω corrupt vertices

in extract(G
(t)
p )|k∗ which were generated after t∗. Therefore, if D(G

(t)
p ) > k∗ + ℓ1, a majority

of vertices in extract(G
(t)
p )|k∗ are honest.

Lemma D.4 (Validity of Πbit). If all honest participants have input b ∈ {0, 1}, then all

honest participants that do not fail output b.

Proof. Lemma D.3 shows that for all t and participants p active at t, D(G
(t)
p ) > k∗+ℓ1 implies

a majority of the vertices in extract(G
(t)
p )|k∗ are honest. Therefore, if all honest participants

have input b, then for all t and p active at t such that D(G
(t)
p ) > k∗ + ℓ∗, a majority of the

vertices in extract(G
(t)
p )|k∗ have label b. It is immediate that every honest participant outputs

b.

233



Appendix E

Full Proofs for Group Messaging

E.1 Proof of Theorem 6.1

For the proof of Theorem 6.1 we briefly define a restricted variant of the EUF-CMA game

for MAC forgery. The challenger samples a signing key k, which it does not provide to the

adversary. It provides the adversary with oracle access for MACs on randomly sampled

messages (by the challenger) which are guaranteed to verify under the key k. (Note the

difference between this game and the EUF-CMA game, that the adversary does not sample

the messages that it asks of the oracle.) The adversary wins the game if it can construct

a message m∗ that verifies using k. We require that in this game, the challenger samples

messages from the domain of public keys for a public-key AEAD scheme.

Proof. In the zeroth game G0, we handle all the queries normally, as prescribed by the GRM

protocol. Note that MAC forgery is possible in this game. This happens when A outputs

(pkV , cV )← Πgrm
U,i .Recv(c, 0), where pkV is a public key that did was not output by any oracle

call to Init() but cV is a valid MAC on pkV verified using the key k used to initialize some

oracle.

234



The game G1 is the same as G0 except we add a forgery check as follows.

– On Πgrm
U,i .Init(w,Q): Generate {(pkV , skV )}V ∈Q and compute the MAC for cV ←

MAC(pkV ) for every V ∈ Q. Output {(pkV , cV ) : V ∈ Q}.

– On Πgrm
U,i .Recv(c, dec flag): If c has the format (pkV , cV ) and pkV is not one of the public

keys generated then we consider two cases.

1. If cV is an invalid MAC on pkV , abort the game as prescribed.

2. Otherwise, also abort the game and denote this event as F . This is the forgery

event.

Observe that only difference between G0 and G1 is event F , the forgery event.

Claim E.1. There exists and adversary C against the restricted EUM-CMA game described

above that uses the adversary A for GRM such that Advmac(C) ≥ Pr[A forges a MAC].

Proof. We first build an adversary C for the modified EUF-CMA game above as follows. In

the security game for the GRM game, A invokes oracles via their Init() query, but the key

k used to initialized a set of oracles Q is not exposed to the adversary. When an oracle U

within a group Q is called with Init by the adversary, the game initializes that oracle and

outputs a key pkU along with a MAC cU on pkU which is guaranteed to verify with k.

C first guesses which session i∗ of a maximum of nS GRM sessions (where nS is allowed to

be polynomial in λ). When the adversary A for the GRM game calls Init on an oracle in

a group Q in the i∗th session, the C forwards the query to its challenger as a request for a

signed message. C stores the response (pk, c) and forwards it to A. (Note that the A will

make only up to |Q| such queries because it can only call Init once per oracle in the group

per session.) For every other session C samples a MAC and simulates the GRM session for

A perfectly as if it were A’s challenger.

235



In the i∗th session, whenever A calls Recv using a message (pk, c) that C has already for-

warded to A in the response to an Init query, C continues the game as normal. If A never

calls Recv using a message (pk, c) that C has not forwarded to A, then C returns a random

message and MAC to its challenger. When A calls Recv using a message (pk, c) that C has

not forwarded to A, C forwards the message to its challenger. C wins its game with at least

the probability that A constructs a valid forgery, conditioned on guessing i∗ correctly.

We bound Pr[A wins G1] by designing adversary B against the PKAEAD game. At the start,

B guesses the instance that A will query. This guess is correct with probability 1/|Q|max.

Additionally, B guesses the index of the ciphertext that A will use in Test. Specifically,

there will be a critical query to B’s PKAEAD.Enc oracle and the output of this query is used

by A in the test query. The guess will be correct with probability 1/nQ, where nQ is the

upperbound of the number of queries to the encryption oracle that B makes on behalf of A

for the instance under test. B sets c∗ ←⊥.

Since forgery does not occur in G1, we can replace the MACs by ideal MACs. That is, B

stores a lookup table M that maps messages to MACs. Every time a MAC needs to be

generated for message m, eitherM[m] is returned if it exsits, otherwise a MAC v sampled

uniformly at random is returned andM[m]← v is stored.

Concretely, the queries are handled as follows.

– Πgrm
U,i .Init(w,Q): Follow the steps in Definition 6.10, i.e., call the function

GRMU .Init(k, w,G) using the same k for the same Q.

– Πgrm
U,i .Evolve(): Perform the steps described in the protocol instantiation except sub-

stitute PKAEAD.Enc to calls to B’s oracle. If one of the calls to PKAEAD.Enc is the

critical query, then instead of calling PKAEAD.Enc, B samples (r∗0, r
∗
1)

$←− R2 and then

236



calls

c∗ ← PKAEAD.Test(m∗
0,m

∗
1),

where m∗
0 = pk

j+1
U,i ∥r∗0 and m∗

1 = pk
j+1
U,i ∥r∗1.

– Πgrm
U,i .Recv(c, dec flag): If c = c∗, abort. Otherwise, perform the steps described in the

instantiation except B substitutes PKAEAD.Dec to calls to B’s oracle.

– Πgrm
U,i .StateReveal(): return stateU,i.

– Πgrm
U,i .Test(c): If c = c∗, return (m∗

0,m
∗
1). Otherwise, abort.

Finally, A will output a bit b′ to B and B outputs the same bit b′ to the challenger.

Observe that although A is allowed to call StateReveal, it is not allowed to call it if one

of the secret keys can be used to decrypt c∗ or any ciphertext from the same Evolve call

due to our security definition. So A gains no advantage from having access to StateReveal.

Specifically, consider Πgrm
U,i .Test(c

∗) where pk∗U,i is used to encrypt the plaintext m∗ such that

(c∗, t∗)← PKAEAD.Enc(m∗, d∗; pk∗U,i), then there are four cases.

1. Πgrm
U,i .StateReveal is called before Πgrm

U,i .Test: the time when StateReveal is called would

not have sk∗U,i to decrypt the key.

2. Πgrm
U,i .StateReveal is called after Πgrm

U,i .Test: the key sk∗U,i would have been deleted when

StateReveal is called.

3. Πgrm
U,i .StateReveal is called before Πgrm

V,j .Test where (U, i) ̸= (V, j): only the oracle Πgrm
V,j

has the private key to decrypt c∗, so revealing the state of (U, i) does not give A an

advantage.

237



4. Πgrm
U,i .StateReveal is called after Πgrm

V,j .Test where (U, i) ̸= (V, j): only the oracle Πgrm
V,j

has the private key to decrypt c∗, so revealing the state of (U, i) does not give A an

advantage.

Additionally, due to our security definition, A is not allowed to use the decryption oracle on

c∗ or any ciphertext c′ that came from the same call to Evolve as c∗. So A gains no advantage

in distinguishing the two plaintexts on top of its existing advantage from PKAEAD.

Our simulator perfectly simulates the view of A with probability 1
|Q|max·nQ

. Thus we have

Advgrm
′

A ≤ |Q|max·nQ · AdvpkaeadB ,

where Advgrm
′

A = 2|Pr[A wins G1]− 1/2|.

Recall that the adversaries of Game 0 and Game 1 attack disjoints events of the probability

space of A’s security game. Summing the inequalities of the adversaries’ advantages, we

obtain

AdvgrmA ≤ nS · Advmac
C + 2 · |Q|max·nQ · AdvpkaeadB .

E.2 Full Proof of GM Construction

Theorem 6.2 (Security of Group Messaging). If A is an adversary against the GM

game, then there exist adversaries B, C, and D such that Advgm(A) ≤ 2nSAdv
gka(B) +

2nSnAdv
grm(C) + nSψAdv

cca(D), where nS = poly(λ) is the maximum the number of GM

sessions A may invoke, and ψ = poly(λ) is the maximum number of keys that A may query

238



in a session.

Proof. We begin by defining three games which will allow us to complete the reduction. The

first game Game0 is the group messaging game. The second game, Game1, is like the group

messaging game, except that in the beginning of the game, the challenger selects a random

initial group key. The third game, Game2, is like Game1, except that the challenger switches

the update σ corresponding to some party’s key evolution to a random update. We will

show that if A is an adversary against the GM game, then we use these games to construct

adversaries B for the GKA game, C for the GRM game, and D for the AEAD-CCA game that

use A to win their respective games, with the advantages given in the theorem statement.

Lemma E.1. There exists an adversary B for GKA such that Advgka(B) ≥
1
nS
|Pr[A wins Game0]− Pr[A wins Game1]|.

Proof. We show how to construct B such that it uses A to win the GKA game. Specifically,

the difference between the two games is that Game0 is the GM game, and in Game1, the GKA

key on the oracle under test is switched for a random key. B uses A’s ability to distinguish

between these two games in order to win its key indistinguishability game, which is exactly

whether, on the Test instance, B is given the correct output of GKA or a random key.

B’s challenger samples long-term keypairs (pkU , skU) for every parties U in the game. It

provides B with the parties’ public keys. It also samples a bit bgka ← {0, 1} which serves as

the challenge bit.

We now describe how B emulates the environment for A. B begins by guessing the instance

ŝid which A will test. Whenever A makes an oracle query that corresponds to a gka query,

B forwards the query to its own oracle and returns the response directly to A. For every

instance sid ̸= ŝid, as a first step after any gka subprotocol outputs a key, B queries its oracle

Πgka
U,j .Reveal() (for any instance (U, j) which has the initial group key for sid in its state) to

239



learn the group key. For instance ŝid, B queries Πgka
U,i .Test() immediately after the gka session

outputs a key (for appropriate (U, i) mapped to that instance), and receives either the group

key or a random key. B denotes its initial group key in session sid by k
(0)
sid .

After GKA has been executed for a session, B emulates the key evolutions and encrypted

messaging of GM for A. Whenever A makes an oracle query that corresponds to a GRM

query, B emulates the GRM oracle internally. Specifically, once it has an initial group key

k
(0)
sid for session sid, B begins to simulate a GRM instance and tracks every key update σ

generated by every party. It applies these updates to k
(0)
sid as necessary in order to fulfill

A’s requests. Whenever A makes an encryption query Πgm
U,j.Enc(), B evolves k

(0)
sid (for the

appropriate corresponding sid) to the appropriate key (which is exactly the key corresponding

to the maximal index in U ’s lattice in the instance mapped to sid). B similarly responds to

decryption queries, first by looking up the key index referenced by the decryption message

and then evolving the initial key using the appropriate updates.

We now provide the full details of the reduction. B receives all parties’ long-term public

keys as input in its game. Throughout the game, it maintains state for each party in

the GM execution in order to emulate GM internally. It maintains the variables δU,i ∈

{pending, accept, abort} to denote party U ’s pairing status in instance (U, i) (which maps to

some session sid in which other (V, j) are present; B internally computes this mapping and

we elide the details), and κU,i ∈ {corrupted,⊥} to denote U ’s corruption status.

In addition to the local state of all parties, B maintains additional state to track the simu-

lation. Lsid is a key lattice of all the keys and updates defined in session sid. The vertices

and edges that are colored red in Lsid correspond to Lrev
sid . We note that in the description of

the simulator, we do not have B track the GM buffer BU for each party U . The adversary A

learns every message M that would be put in the buffer, and can invoke its oracles in order

to mimic the behavior of the GM protocol, if it chooses.

240



B responds to oracle queries by A as follows:

– Πgm
U,i.Init(G): B initializes local states for party U ∈ G for instance i by setting δU,i ←

pending and ρU,i ←⊥. If U has not been initialized before, then B sets κU ←⊥. B

initializes the GKA protocol for party i by forwarding A’s query to its own oracle

Πgka
U,i .Init(G) and returns the output to A.

– Πgm
U,i.Corrupt():

– B sets κU ← corrupted.

– B forwards the corruption query to Πgka
U,i .Corrupt() and returns to A the output.

– Every future GKA message received by Πgm
U,j for any j is passed to A, and cor-

responding vertices and edges that it learns are colored red in the respective Lsid

(for the sid mapped by (U, j)).

– Πgm
U,i.Evolve(): B internally executes {(cU,V , xU,V )}V ∈G ← Πgrm

U,i .Evolve() to generate a

message x (where each xU,V is equal to x) and a set of ciphertexts c encoding x. B

updates Lsid (for sid mapped by (U, i)) by labeling the edges corresponding to the key

evolution with x, and returns c to A.

– Πgm
U,i.Recv(M):

– If δU,i = abort, B does nothing.

– Else if M is a GKA message (contains a header gka) and δU,i = pending, B

queries Πgka
U,i .Recv(M) and returns the output to A. If Πgka

U,i outputs done, B sets

δU,i = accept. If U is the first party in the session for which δU,i = accept (meaning

Πgka
U,i is not yet partnered with any other oracles), then:

∗ if the sid mapped by (U, i) is the test session sid∗, B queries Πgka
U,i .Test() and

assigns the output to k
(0)
sid , and updates Lsid by assigning k

(0)
sid to the vertex at

0.

241



∗ if the sid mapped by (U, i) is not the test session sid∗, B queries Πgka
U,i .Reveal(),

assigns the output to k
(0)
sid , and updates Lsid by assigning k

(0)
sid to the vertex at

0.

– Else if M is a GRM message (contains a header grm) and δU,i = accept, B inter-

nally runs Πgrm
U,i .Recv(M) and forwards to A anything that is returned

– Πgm
U,i.Dec(M):

– If M is not of the form (V ∥i∥ct) or δU,i ̸= accept, then B sets δU,i = abort and

returns ⊥ to A.

– Otherwise, B if there is no key at index i in U ’s lattice (for instance i), B returns

⊥ to A. Otherwise, B returns m← Dec(k, ct) to A, where k is the key at index

i in U ’s lattice.

– Πgm
U,i.Enc(M):

– If δU,i ̸= accept then set δU,i ← abort and return ⊥.

– Otherwise, B computes iU as the maximal index in U ’s local lattice and k as the

key corresponding to iU in U ’s lattice. B computes ct← Enc(k,M), and returns

(U∥iU∥ct) to A.

– Πgm
U,i.Reveal(): If δU,i ̸= accept then B does nothing. If this query is called after Test()

on the test session sid∗ and the key with index i∗ (defined in Test) is computable from

U ’s local state (in instance (U, i)), then B does nothing. Otherwise B computes K as

the set of all keys computable from (U, i)’s local state, and marks every vertex in K as

red in Lrev
sid (for the sid mapped by (U, i)). Finally, B computes s ← Πgka

U,i .Reveal() and

returns the values (s,K) to A.

– Πgm
U,i.StateReveal(): B computes s ← Πgka

U,i .StateReveal() and returns (s, stateU,i) to A,

where stateU,i is the state that B maintains for (U, i) in its GRM instance. B also marks

all edges in Lrev
sid as red that are revealed by stateU,i or in EU,i.

242



– Πgm
U,i.Test(m0,m1): B computes iU as the maximal index in U ’s local lattice and kU as

the key corresponding to iU in U ’s lattice. If kU is computable from Lrev
sid (in the sid

mapped by (U, i), then B ignores the request, as this key is not fresh. Otherwise, B

sets i∗ ← iU , samples b← {0, 1} and returns c← Enc(kU ,mb) to A.

Note that B ignores A’s Test query only if A is testing a key which has already been revealed

to it; in this case, A’s query is disallowed by the game.

The advantage of B in the GKA game follows directly from the advantage of A in its own

game. Assume that B correctly guesses the instance sid∗ which A tests (meaning ŝid = sid∗);

this occurs with probability at least 1
nS
. When B’s challenger’s bit bgka = 0, A’s environment

is exactly Game0. When B’s challenger’s bit bgka = 1, A’s environment is exactly Game1.

When A outputs b′ = b, B outputs 1. When A outputs b′ ̸= b, B outputs 0. It follows that

B’s advantage is lowerbounded by the probability that B guesses the instance correctly times

the advantage of A in distinguishing Game0 and Game1.

Advgrm(B) ≥ 1

nS
|Pr[A wins Game1]− Pr[A wins Game0]| (E.1)

We next proceed to the difference between Game1 and Game2.

Lemma E.2. There exists an adversary C for GRM such that Advgrm(C) ≥
1

nSn
|Pr[A wins Game2]− Pr[A wins Game1]|.

Proof. Recall that Game1 is the GM game, except that the initial group key is replaced with

a random key on the test instance. Moreover, Game2 is just like Game1, except that some

key update for the key under Test is swapped for a random update.

243



The GRM adversary C simulates the GM oracle queries for A by (a) internally simulating a

GKA execution and (b) forwarding all GRM queries to its own challenger. Note that because

the GRM adversary C now internally simulates all GKA instances for A, it therefore knows

the random initial group key for GM. (This is because C samples the long term keys for

A’s GM game, and therefore knows them for the execution of GKA.) Starting with the

initial random key k
(0)
sid for each session sid, C initializes its GRM oracles and plays the GRM

game. C responds to A’s encryption queries by tracking all of the keys and key updates

requested by A, and encrypting messages under the appropriate keys. When A makes a

query c⃗← Πgm
U,i.Evolve(), C forwards the query to Πgrm

U,i .Evolve(). When any ciphertext cV ∈ c⃗

is submitted to Πgm
V,i.Recv(cV ), C invokes x← Πgrm

U,i .Recv(c, dec flag = 1), and C then uses this

value of x as the decryption of every c′ ∈ c⃗. Because C knows the initial group key k
(0)
sid for

session sid and every x, it can “fill out” the entire key lattice Lrev
sid defined by the execution,

and therefore it can derive every encryption key used in the session.

C adapts this strategy slightly in order to tie its Test() query to A’s, and therefore derives an

advantage in its game from A’s advantage. Recall that A sends a pair of messages (m0,m1)

to its challenger, receives the encryption of mb under some party U∗’s latest key (where

b is the bit sampled by the challenger), and must guess whether b = 0 or b = 1. Let i∗

be the maximal index of a defined key in U∗’s state; this is the key k∗ for U∗’s challenge.

Let sid∗ be the session in which A queries its Test() oracle. To respond to A’s query, C

must encrypt one of A’s two messages under k∗. However, instead of faithfully encrypting

A’s query with the appropriate key C chooses an edge e along a path from 0 to i∗, and

calls (x0, x1) ← Πgrm
U∗,sid∗ .Test(c), where c corresponds to the ciphertext encrypting U∗’s true

update along the edge e. C samples xβ for a random β ∈ {0, 1}, and replaces the true

update along e with xβ. If C guesses the correct update (β is the same as its challenger’s

test bit), then A’s environment is exactly Game1. If C guesses the random update, then A’s

environment is exactly Game2.

244



C’s full strategy therefore deviates from learning every update as follows. At the beginning

of the game, C uniformly at random chooses some Û ∈ P and some ŝid ∈ nS. When A makes

its first call to Πgm

Û ,ŝid
.Evolve(), C queries c⃗ ← Πgrm

Û ,ŝid
.Evolve(). C then immediately makes its

Test() query by choosing a c ∈ c⃗ and invoking (x0, x1) ← Πgrm

Û ,ŝid
.Test(c). C then randomly

samples β ∈ {0, 1} and sets xβ as the value of the update corresponding to U ’s evolution

along that edge in Li for the duration of the game. If C’s Test query corresponds to an update

on the path from 0 to i∗, then when A outputs a bit b ∈ {0, 1} for its game, C responds

with the same bit. If C’s Test query does not correspond to an update on the path to i∗ or

C guesses the wrong instance ŝid (ŝid ̸= sid∗), then C outputs a uniformly random bit.

We remark here that for technical reasons, because Game1 requires that the Test() instance

have a random k(0), C must guess the session sid∗ on which A will call its Test() query at the

beginning of the simulation. C samples a random session ŝid, and samples a random key k
(0)

ŝid

independent of the execution of GKA for that session. (C is correct if ŝid = sid∗.)

We now provide a full description of C. C uniformly at random chooses some Û ∈ P and

some ŝid ∈ nS. It then proceeds as follows:

– Πgm
U,i.Init(G,w):

– C sets δU,i ← pending, ρU,i ←⊥ and κU,i ←⊥.

– C simulates Πgka
U,i .Init(G) and forwards to A anything that is returned

– Πgm
U,i.Corrupt():

– C sets κU ← corrupted.

– C returns skU to A, and mark all vertices and edges that are computable from

messages that have been delivered to U as red in Lrev
sid . If no key has yet been

derived (it must be the case that this party has not yet completed GKA in session

i), then once this party derives the initial group key, mark it as red in Lrev
sid . Every

245



future GKA key learned by U in another session is revealed in the corresponding

Lrev
sid .

– Πgm
U,i.Evolve():

– C calls c⃗← Πgrm
U,i .Send()

– if U = Û and (U, i) maps to ŝid, then C chooses an appropriate c ∈ c⃗ (corre-

sponding to the ciphertext intended for any V ̸= U) and computes (x0, x1) ←

Πgrm
V,i .Test(c). C samples β ← {0, 1} uniformly at random, and applies xβ to the

lattice Lrev
sid on the edge corresponding to U ’s update. (This edge is still black in

Lrev
sid .)

– Otherwise, U chooses the appropriate c ∈ c⃗ (corresponding to the encryption of

the update for U), and computes x ← Πgrm
U,i .Recv(c, dec flag = 1). C then applies

x to the lattice Lrev
sid (for sid mapped by (U, i)) on the edge corresponding to U ’s

update.

– Πgm
U,i.Reveal():

– If δU,i = abort, then C returns ⊥.

– If δU,i = pending then C emulates the call Πgka
U,i .Reveal() for its simulation of U ’s

view in GKA instance (U, i) and returns the response to A.

– If δU,i = accept, then C computes the set of pairs (i, k) from LU (for sid mapped

by (U, i)) corresponding to the vertices and keys in (U, i)’s local state. Let this

set be R. If Test() has already been called and (i∗, k∗) is included in R, then C

ignores the query. Otherwise, C returns R to A and colors all of the vertices in R

as red in Lrev
sid .

– Πgm
U,i.StateReveal():

– If δU,i = abort, then C returns ⊥.

246



– If δU,i = pending then C emulates the call Πgka
U,i .StateReveal() for its simulation of

U ’s view in GKA instance (U, i) and returns the response to A.

– If δU,i = accept, then C computes the set of edges EU which are defined in (U, i)’s

current state. If Test() has already been called and coloring all of the edges of EU

red in Lrev
sid would also color the vertex at i∗ red, then C ignores the call. Otherwise,

C returns E to A and colors all of the edges in E red in Lrev
sid (for the session sid

mapped by (U, i)).

– Πgm
U,i.Enc(M): If δiU ̸= accept then set δiU = abort and return. Otherwise, let i the

maximal index in U ’s local lattice (in instance (U, i)), and let ki be the key defined at

that index. C computes (ct, t) ← AEAD.Enc(m,U∥i, ; ki), and returns (ct, U∥i, t) to

A.

– Πgm
U,i.Dec(M): If δiU = abort, then C ignores the query. C parses M as (ct, V ∥i, t). If

M is not of this form, C returns ⊥. Let k be the key at index i in U ’s local state. If k

is not computable, then buffer M . If k is computable from U ’s state, then C computes

m← AEAD.Dec(ct, V ∥i, t; ki). If m =⊥, C sets δiU = abort. Otherwise, C returns m to

A.

– Πgm
U,i.Recv(M):

– If δU,i = abort, B does nothing.

– Else if M is a GKA message (contains a header gka) and δU,i = pending, C simu-

lates the execution of Πgka
U,i .Recv(M). If Πgka

U,i .Recv(M) does not output done, then

C returns to A anything that is returned. If done is returned, then C derives k
(0)
sid

(for the session sid mapped by (U, i). Because C simulated this execution, it knows

k
(0)
sid ; recall as well that if sid = ŝid, then C samples a uniformly random key k

(0)
sid

independent of the simulated GKA execution. C then calls Πgrm
U,i .Init(k

(0)
sid , w), and

returns to A any messages that were returned, except for the initial group key

k
(0)
sid .

247



– Else if M is a GRM message (contains a header grm) and δU,i = accept:

∗ if Test() has been called, and M is a ciphertext c′ which was output in the

same set of ciphertexts as the ciphertext on which Test() was called, then

C updates the state of U (in instance (U, i)) as if calling GM.Recv where

xβ is returned from GRM.Recv, where xβ was the update chosen by C after

receiving its challenge.

∗ Otherwise, C compute x ← Πgrm
U,i .Recv(M). If x =⊥, then do nothing. Oth-

erwise, update U ’s local state (in instance (U, i)) as in the description of

GM.Recv letting x be the decrypted update by adding x to U ’s set of edges

E, propagating the changes by computing all additional keys in L, and for-

getting keys as described in GM.Recv.

– Πgm
U,i.Test(m0,m1):

– if δU,i ̸= accept then return ⊥

– Let i∗ = iU such that iU is the maximal index in U ’s local state. If i∗ is red in Lsid

(for sid mapped by (U, i)) then ignore the query. Otherwise, C computes k∗ = kU

such that kU is the key corresponding to iU .

– C samples b
$←− {0, 1}, computes (ct, t) ← AEAD.Enc(mb, U∥i∗, ; k∗) and returns

(ct, U |i∗, t) to A.

We now analyze the advantage of C in winning the GRM game. C derives an advantage

from A’s ability to distinguish between Game1 and Game2 precisely when the edge that C

chooses for its Test() query corresponds to an update used to compute k∗. We note that it

may be the case that A never evolves the GM key, and always invokes Test() on the initial

group key. This case is irrelevant to the lemma, as A’s advantage can be shown to break

either GKA (the first game hop) or CCA (the final game hop). Assume that A chooses to

evolve the key at least once. Then there must be at least one party U on whose oracle A

248



calls Πgm
U,i.Evolve(). C derives an advantage from A if C correctly guesses this party, which it

does with probability at least 1
n
. Additionally, C must correctly guesses the session on which

A will execute its Test() query; this occurs with probability at least 1
nS
. It follows that

Advgrm(C) ≥ 1

n · nS
|Pr[A wins Game2]− Pr[A wins Game1]| (E.2)

Lemma E.3. There exists an adversary D for CCA such that Advgka(D) =

1
nSψ
|Pr[A wins Game2]− 1

2
|.

Proof. D uses A’s advantage in the GM game in order to break the CCA security of an

encryption scheme as follows. D emulates the entire execution of GM for A, and forwards

only encryptions and decryptions on its own challenge key to A. Specifically, D samples

long term public and private keys for all parties, emulates each GKA execution for A, and

learns the initial key k(0) for every group of oracles. D then simulates the execution of

GRM internally, and learns every key evolution output by GRM. D uses this information

to construct a key lattice L for each execution and label every vertex and edge on the

lattice with the appropriate key and update, respectively. When A requests an encryption

or decryption, D uses its knowledge of the key lattice to compute the encryption; specifically,

computes the lattice key at the index that A queries, and evaluates H in order to compute

the encryption key corresponding to that point. Similarly, when A requests a decryption of

a message, D uses its knowledge of the key to decrypt A’s message. For technical reasons as

in the previous lemma, D also chooses some update output by Evolve() to be replaced with

a random update; this is chosen as described below such that the test key depends on the

random update.

D only does not answer encryption queries on its own when A issues queries to Enc,Dec,

249



or Test on i∗, where i∗ is defined as the current lattice index of the oracle on which A

issues Πgm
U,i.Test(). When A makes encryption or decryption requests for ki∗ , D forwards the

requests to its own challenger. Note that because the key at ki∗ is randomly distributed

from the view of A, and because D’s challenger selects the encryption key at random, the

responses of D’s challenger are distributed just as A’s challenger in its game. Specifically,

when A makes its Test query, D forwards the messages (m0,m1) to its own challenger, and

it returns the resulting encryption to A; when A outputs a bit b′ ∈ {0, 1}, D outputs the

same bit, and wins with the same probability that A wins.

However, D does not know the key on which A will call Test(), and moreover it cannot wait

for A to call Test() to begin forwarding queries to its own adversary, because A may request

encryptions under some key before it calls Test() on that key. Therefore, D must guess the

key on which A will call Test(). First, D uniformly at random guesses the session on which

A will call Test(), and guesses correctly with probability 1
nS
. Second, D guesses the key

within that session on which A will guess Test(). Observe that when A makes n Evolve()

queries to define new keys, in fact there are 2n keys defined. This is an exponential number

of keys. However, A must be a polynomial-time adversary and therefore can only explore ψ

keys by making queries to them. D therefore guesses that this key will be the one tested by

A with probability 1
ψ−l each time that C issues a query to a new key, where l is a counter

that tracks how many times A has challenged a key. This scheme adaptively guesses the

next key uniformly at random with total probability 1
ψ
for each key.

It follows that

Advcca(D) ≥ 1

nS · ψ
|Pr[A wins Game2]− 1

2
| (E.3)

Using the above lemmas we complete the proof by computing the advantage of the adversaries

250



B, C, and D with respect to A.

Advgm(A) = 2 · |Pr[A wins G0]−
1

2
|

= 2 · |Pr[A wins G0]−
1

2
+ Pr[A wins G1]− Pr[A wins G1]

+ Pr[A wins G2]− Pr[A wins G2]|

≤ 2 · |Pr[A wins G0]− Pr[A wins G1]|

+ 2 · |Pr[A wins G1]− Pr[A wins G2]|

+ 2 · |Pr[A wins G2]−
1

2
|

≤ 2 · nS · Advgka(B) + 2 · nS · n · Advgrm(C) + 2 · nS · ψ · Advcca(D)

251



Appendix F

Full Model and Proofs for

Depth-Secure Computation

F.1 Model for Depth-Secure MPC

This appendix is an extension of Section 7.5. Here, we discuss in more detail the execution

of the ideal model.

F.1.1 Execution Model

Our execution model is based on a simpler version of the Universal Composability (UC)

framework, modified for our application scenario and depth-bounded computation. In our

execution model, all parties (including the environment, trusted third party, and adversary)

are modeled as interactive circuits.

252



The Environment: As in the UC framework, we consider an execution in the presence of

an environment that provides inputs to parties and reads their outputs. The environment

directs the execution by proceeding in rounds. It delivers inputs to parties, activates each

party in every round, and delivers messages between parties. The environment controls the

time elapse of an execution via the number of protocol rounds it has directed. In every

round, each party is permitted to perform computation of the same depth.

When the adversary is activated, it learns the corrupt parties’ inputs, the queries they send,

and the responses they receive. In the beginning of the execution, the adversary informs the

environment of the identities of the parties it wishes to corrupt. The environment responds

with the corrupt parties’ inputs, and the adversary may choose new inputs for the corrupt

parties based on the provided inputs and its auxiliary information. (This models the fact

that inputs for corrupted parties may be adversarially selected, which is in the application

scenario of accountable computation.)

The environment activates the adversary after activating all other parties in each round,

informing the adversary of the messages the corrupt parties send and the responses they

receive. The adversary can respond to the environment, including by corrupting additional

parties.

Defining a View: The view of any party is defined to be the ordered list of inputs and

events it receives from the environment, along with the ordered list of messages it receives

from other parties. Formally, we denote the view of party i in an execution of protocol Π on

inputs x⃗ and security parameter λ as ViewΠ
i (x⃗, λ) = (xi; r; m⃗), where xi is party i’s input,

r is the party’s randomness, and m⃗ is the set of messages that party i receives from other

parties and the environment.

253



F.1.2 The Ideal/Real Paradigm

Execution in the Ideal Model.

We define an ideal model in which parties interact with a trusted third party in an execution

that is secure by definition.

Interaction with the Trusted Party In an ideal execution, the parties interact with a

trusted party as follows:

1. Initialization: The adversary A receives an auxiliary input z, and may choose to

corrupt some parties. It informs Z of the corruptions.

2. Inputs: The environment sends the corrupt parties’ inputs to A, which choose new

inputs for the corrupted parties based on its auxiliary information and the inputs

provided by the environment. It then forwards the new inputs to the environment. All

parties then receive inputs from the environment.

3. Send Inputs to Trusted Party: Each party sends its input xi to the trusted party.

4. Computing Functionalities: After receiving all inputs, the trusted third party com-

putes the functionality outputs over the provided inputs and saves the outputs.

5. Phased Output Release: An execution is divided into phases such that at the end

of each phase, the parties learn some information from the trusted party. The moment

that the trusted party provides the protocol participants with their ith message denotes

the end of the ith phase and the beginning of the i+ 1st phase.

6. Protocol Outputs: At the end of an execution, honest parties output whatever

they have received from the trusted party. Corrupt parties output nothing, and the

254



adversary outputs an arbitrary function of its input, the messages it has received from

the environment, and the messages that corrupt parties have received from the trusted

party. The environment learns every output.

The random variable IDEALF ,A(z),Z(x) denotes the output of the environment in an ideal

execution of functionality F on honest inputs x, auxiliary input z to A, with environment

Z.

Execution in the Real Model.

In the real model, participants execute a protocol Π to compute the desired functionality F

without a trusted party. At the end of the execution, honest parties output their protocol

outputs. The corrupt parties output nothing. The adversary outputs an arbitrary function

of its inputs and the messages that corrupt parties have received.

The random variable REALΠ,A(z),Z(x) denotes the output of the environment in a real execu-

tion of Π with honest inputs x, auxiliary input z toA, with environment Z. The environment

learns every output.

F.2 Sequential Composition of Depth-Secure Proto-

cols: Proof of Theorem 7.4

In this section, we provide the full proof of Theorem 7.4, which we restate below for conve-

nience.

Theorem 7.4 (Sequential Composition of Two Depth-Secure Protocols). Let Π (da, ds, de)-

depth-securely compute F in the G-hybrid model, and let ρ (d′a, d
′
s, d

′
e)-depth-securely compute

G. Πρ (da − d′s, ds · d′s,min(de, d
′
e))-depth-securely computes F .

255



Notation. For the proof of Theorem 7.4, we require notation to describe the distribution

of executions in the ideal world for a fixed simulator, fixed distinguisher, and fixed inputs,

making explicit the adversary. Let IDEALF ,S(z)(x) denote the distribution of executions of

the naive protocol in the ideal world that calls functionality F , with simulator S and advice

string z, on honest inputs x. (In this experiment, the parties forward their inputs the ideal

functionality, and the simulator generates a view for A that is indistinguishable from the

real experiment.)

Proof. The proof will use the simulators SΠ for Π and Sρ for ρ to construct a new simulator

S for Πρ such that S is (ds · d′s)-depth bounded, and for every (da − d′s)-depth A, and every

min(de, d
′
e)-depth Z, the distributions REALΠρ,A(z)(x) and IDEALF ,S(z)(x) are min(de, d

′
e)-

depth indistinguishable.

The simulator S works by composing the simulators SΠ and Sρ. Specifically, to simulate an

execution of Πρ up to the point that ρ is called, S runs SΠ. When ρ is called, S invokes Sρ.

After ρ terminates, S resumes SΠ.

Claim F.1. S’s depth is bounded by ds · d′s.

Proof. The claim follows from the observation that every time SΠ is rewound, Sρ must also

be rewound the maximum number of times. If SΠ’s running time is at most ds, then for

each rewinding of SΠ, Sρ must be rewound at most d′s times. The total run-time of S is thus

ds · d′s.

We proceed with our main lemma, which completes the proof:

Lemma F.1. For every (da − d′s)-depth adversary A, and every x ∈ ({0, 1}poly)n and

z ∈ {0, 1}poly the distributions REALΠρ,A(z)(x) and IDEALF ,S(z)(x) are min(de, d
′
e)-depth in-

distinguishable.

256



Proof Sketch: If there is an adversary A and a distinguisher D that distinguishes the

above two distributions, then we create another adversary B and distinguisher E that isolates

an attack against the caller protocol Π in the G-hybrid model. B runs A as a black box,

and when Π must call ρ, B simply simulates an execution of ρ (using Sρ), feeding messages

to A so that A believes it is running a full execution of Πρ. Similarly, E is provided

with the execution transcript generated by B, with the call to ρ in the transcript replaced

by the simulated output generated by B. Because the transcript of the simulation of ρ

is indistinguishable from a real execution by assumption, this attack must distinguish an

execution of Π in the real model from its simulation, contradicting the security of Π.

Proof. Assume to the contrary that the lemma statement is false. Then there exists a

(da − d′s)-depth adversary A, a min(de, d
′
e)-depth distinguisher D, and inputs x, z such that

the distributions REALΠρ,A(z)(x) and IDEALF ,S(z)(x) are min(de, d
′
e)-depth distinguishable

(for any (ds · d′s)-depth S).

We will show how to use A for Πρ in order to build an adversary B to contradict the

(da, ds, de)-security of Π in the G-hybrid model.

In an execution of Π in the G-hybrid model, B works as follows:

1. Until the point at whichG is invoked, B runsA as a black box, forwarding any messages

output by A

2. When G is invoked, B submits its input y to G and receives some output w. B runs

the simulator Sρ(y, w) for ρ, forwarding messages provided by the simulator to A, and

forwarding the replies by A to Sρ to continue the simulation.

3. After Sρ terminates, B resumes calling A as a black box given messages from its

execution of Π. B outputs whatever A outputs.

Claim F.2. B runs in depth at most da.

257



Proof. B runs the adversary A as a black box, which requires depth at most da − d′s. B

also runs the simulator Sρ, which requires depth at most d′s. (Recall that we have already

counted the depth of rewinding A during this step towards the depth d′s.) The sum of the

two run-times is da − d′s + d′s = da which concludes the claim.

We proceed to compare the views of the adversary A when it is running in its own execution,

or being called by B. Let VIEWA(REALΠρ,A(z)(x)) denote the view of A in a real execution of

Πρ, and let VIEWA(REALΠG,A(z)(x)) denote the view of A in a real execution of Π in the G-

hybrid model, in which B calls A. Similarly, we denote by VIEWA(IDEAL
B
F ,S(z)(x)) the view

of A in support of the ideal experiment in which B calls A, and S runs both the simulators

for Π and for ρ; and we denote by VIEWA(IDEAL
B
F ,SΠ(z)(x)) the view of A in support of the

ideal experiment in which B must call the simulator for ρ.

Claim F.3. Let f ′ = min(de, d
′
e). For all x ∈ ({0, 1}poly)n and z ∈ {0, 1}poly

VIEWA(REALΠρ,A(z)(x))
f ′

≈ VIEWA(REALΠG,A(z)(x)})

Proof. The difference between the two distributions is that on the right, B simulates an

execution of ρ using the simulator Sρ and provides those messages to A, and then continues

to call A after the call to Sρ using messages from its real execution. By assumption, A is

(da − d′s)-depth-bounded and da < d′e. Therefore, A must not be able to distinguish the

messages in the real execution of ρ on the left from the simulation on the right. The claim

follows from the additional fact that all other messages in A’s view are distributed identically

in both experiments, since they are from the real execution of Π.

We make another claim that A cannot distinguish between an idealized execution of F

in which S generates its view of the execution and an idealized execution of F in which

B interacts with SΠ in the G-hybrid model, forwarding its messages to A and when B’s

execution of in the G-hybrid model invokes G, B runs Sρ to generate a view for A.

258



Claim F.4. For all x ∈ ({0, 1}poly)n and z ∈ {0, 1}poly

VIEWA(IDEAL
B
F ,S(z)(x)) ≡ VIEWA(IDEAL

B
F ,SΠ(z)(x))

Proof. The proof is analogous to the previous. However, in this case, B perfectly simulates

the execution of ρ in comparison to A’s view in the ideal execution of Πρ, since B does

exactly the same thing that S does: both run Sρ.

To complete the proof, we describe how the distinguisher E is built from D. E simply runs

D as a black box and outputs whatever D outputs.

Next we claim that D’s view in support of REALΠρ,A(z)(x) is min(de, d
′
e)-depth indistinguish-

able from its view in support of REALΠ,B(z)(x) (as forwarded by E). This follows from Claim

F.3, due to the fact that A’s views in support of the two distributions are min(de, d
′
e)-depth

indistinguishable, and D sees the transcript of A’s interaction with the real protocol, and

A’s outputs must not be distinguishable by the claim.

Similarly, D’s view in support of IDEALAF ,S(z),D(x) is min(de, d
′
e)-depth indistinguishable from

its view in support of IDEALBF ,SΠ(z),E(x) (as forwarded by E). This follows from Claim F.4,

via the same argument as above.

It follows that if D distinguishes REALΠρ,A(z),D(x) and IDEALAF ,S(z),D(x), then E distinguishes

REALΠ,B(z),E(x) and IDEALBF ,SΠ(z),E(x). Notice that because B’s depth is bounded by da

(by Claim F.2), and because E’s depth is bounded by min(de, d
′
e) (by assumption toward

contradiction, since E’s depth is exactly D’s depth), this contradicts the (da, ds, de)-depth

security of Π in the G-hybrid model.

259


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Related Work
	Consensus
	Mixed and Hybrid Fault Models
	Dishonest-Majority Protocols
	Other Expected Constant-Round Protocols
	Blockchains and Permissionless Consensus

	Concurrent Group Messaging
	Timed and Fine-Grained Cryptography
	Time-lock Puzzles in the Literature
	Techniques for Timed Primitives
	Comparison with Other Definitions


	Modeling and Definitions
	Computational Model
	Communication Models
	Synchronization Constraints (and Asynchrony)
	Standard Corruption Models
	Send and Receive Corruptions
	Permissionless Executions

	Problem Definitions
	Notation
	Preliminaries for Graphs
	Computational Indistinguishability
	Consensus and Broadcast
	Graph Consensus
	Multi-Party Computation
	Group Messaging


	Expected Constant-Round Consensus with Send and Receive Corruptions
	Pathology of a Send Corruption
	Dolev and Strong's Lowerbound with Send Corruptions
	Recent Techniques for Adaptive, Strongly Rushing Adveraries
	Generic Consensus from Broadcast

	Building Block Primitives
	Digital Signatures and Coin Flipping
	Weak Broadcast
	Weak Consensus
	Graded Consensus

	Expected Constant-Round Synchronous Consensus for n> trcv+2tsnd+2tbyz
	All-To-All FixReceive
	Weak Broadcast
	Weak Consensus
	Graded Consensus
	Expected Constant Round Consensus

	Optimal Synchronous Consensus for Spotty Send Corruptions
	Analysis for Spotty Send Corruptions
	Optimality with Respect to Spotty Send and Byzantine Corruptions


	Permissionless Consensus
	Resources: An Abstraction for PoX
	Resources Intuition
	Execution Constraints

	Real-World Implementations of Resources
	Proof of Work
	Proof of Stake
	Other Cryptographic and Non-Cryptographic PoX

	Termination and Liveness Based on Resources
	Necessary Assumptions for Consensus in the Permissionless Model
	A Permissionless Consensus Protocol
	Intuition
	Formal Description
	Theorem Statement
	Proof Overview

	From Graph Consensus To One-Bit Consensus
	A Generic Transformation
	Permissionless One-Bit Consensus Protocol bit


	Asynchronous Secure Group Messaging
	The Key Lattice
	Key Evolution
	The Key Graph
	Updating a Key Lattice
	Instantiation
	Key Lattice for Generic Key Management

	Group Key Agreement
	Security of GKA

	Group Randomness Messaging
	Security
	Correctness
	Instantiation

	Group Messaging
	Group Messaging Security
	GM from GRM and GKA
	Well-Ordering and Correctness
	Security Theorem

	Extension to Dynamic Groups

	Composing Timed Cryptographic Primitives
	Subtleties and Inconsistencies in Random Oracle Analysis for Time-Lock Puzzles
	A Framework for Computational Puzzles
	Residual Complexity
	Leakage and Temporary Privacy
	Simulation Budgets and Depth-Secure MPC
	Composition of Depth-Secure Protocols

	Example Application: Simultaneous Multiple Round Auction
	Defining Time-Lock Puzzles
	Residual Complexity and Leakage

	Modeling Multi-Party Computation
	General Execution Model
	Sequential Model
	Depth-Bounded Secure Multi-Party Computation
	Composition
	Simulation for Leaky Functionalities

	Residual Complexity of a Time-Lock Puzzle
	Concurrent Composition of Depth-Secure Protocols: Proof of Theorem 7.3

	Future Work
	Bibliography
	Appendix Encryption Definitions
	CCA Secure Encryption Scheme
	Message Authentication Code (MAC)

	Key Encapsulation Mechanism (KEM)
	Authenticated Encryption with Associated Data (AEAD)
	Public Key Authenticated Encryption with Associated Data (PKAEAD)

	Appendix Dolev and Strong's Impossibility
	Appendix Proof of Graph Consensus Protocol G
	Properties of an Execution
	Consistency of Views for Honest Participants
	Outputting Consistent Honest Vertices
	Extracting Consistent Corrupt Vertices
	Consistency and Liveness of G

	Appendix Proof of Permissionless One-Bit Consensus Protocol bit
	Appendix Full Proofs for Group Messaging
	Proof of thm:GRMThm
	Full Proof of GM Construction

	Appendix Full Model and Proofs for Depth-Secure Computation
	Model for Depth-Secure MPC
	Execution Model
	The Ideal/Real Paradigm

	Sequential Composition of Depth-Secure Protocols: Proof of Theorem 7.4




