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Gene Regulation and Speciation

Katya L. Mack1 and Michael W. Nachman1,*

1Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, 
Berkeley, CA 94720, USA

Abstract

Understanding the genetic architecture of speciation is a major goal in evolutionary biology. 

Hybrid dysfunction is thought to arise most commonly through negative interactions between 

alleles at two or more loci. Divergence between interacting regulatory elements that affect gene 

expression (i.e., regulatory divergence) may be a common route for these negative interactions to 

arise. We review here how regulatory divergence between species can result in hybrid dysfunction, 

including recent theoretical support for this model. We then discuss the empirical evidence for 

regulatory divergence between species and evaluate evidence for misregulation as a source of 

hybrid dysfunction. Finally, we review unresolved questions in gene regulation as it pertains to 

speciation and point to areas that could benefit from future research.
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A Role for Gene Regulation in Hybrid Sterility and Inviability

Understanding the genetic basis of speciation is a longstanding problem in evolutionary 

biology. The major model for the evolution of intrinsic post-zygotic isolation postulates that 

hybrid sterility or inviability arises from negative interactions between alleles at different 

loci when joined together in hybrids. The regulation of gene expression is inherently based 

on interactions between loci, raising the possibility that disruption of gene regulation in 

hybrids is a common mechanism for post-zygotic isolation. Although there is accumulating 

evidence that changes in gene regulation play a prominent role in adaptation (e.g., [1,2]), the 

role of regulatory evolution in speciation has received less attention. We evaluate here the 

role of regulatory evolution in speciation, and we suggest, both from recent theoretical and 

empirical studies, that changes in gene regulation play a major role in intrinsic post-zygotic 

isolation. While our focus is on post-zygotic isolation, regulatory divergence may also play 

an important role in establishing other reproductive barriers as a byproduct of adaptive 

divergence (i.e., ecological speciation).
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Conceptual Framework

Single-locus models of hybrid dysfunction all suffer from the problem that mutations that 

lower the fitness of heterozygotes (and thus cause reproductive isolation) are unlikely to 

become established in a new population (e.g., [3–5]). This problem was recognized by 

Bateson [6], Dobzhansky [7], and Muller [8,9], who suggested instead that hybrid 

dysfunction could arise from negative interactions between alleles at two or more loci. In the 

Bateson–Dobzhansky–Muller (BDM) model, alleles that are adaptive or neutral in their own 

genetic background are incompatible with alleles at one or more loci on the alternative 

genetic background (Figure 1). Thus, diverging lineages can accumulate substitutions 

without any loss of fitness. There is now strong empirical support for this model of intrinsic 

post-zygotic isolation [10].

Gene regulation is the process by which cells control the specific amount of gene product 

(i.e., RNA or protein) produced. Gene regulation is a complex process involving the 

interaction of DNA sequences, RNA molecules, and proteins, as well as epigenetic 

modifications. Because the interaction of regulatory elements is required for organismal 

function, interacting regulatory elements are assumed to be co-adapted (e.g., [11]). When 

co-adapted interactions between regulatory elements are disrupted, downstream targets of 

these elements may be misregulated. While disrupted interactions between any of pair of 

regulatory elements or sequences could result in hybrid incompatibilities, the process of 

transcription initiation has received the most attention. While we focus mainly on 

transcriptional control, divergence between regulatory elements affecting other levels of 

gene regulation (e.g., translation) may also play a role in speciation.

Transcription is regulated by the interaction of cis-regulatory elements and trans-acting 

factors. Cis-regulatory elements are stretches of non-coding DNA (i.e., promoters, 

enhancers) that act as binding sites for trans-acting factors to regulate mRNA abundance. In 

the simplest case, the trans-acting factors are transcription factor proteins, although other 

proteins have also been known to act in trans to regulate gene expression [12]. Mutations in 

cis-regulatory regions or in transcription factors can affect mRNA abundance. Transcription 

factors frequently interact with multiple downstream target sequences and thus may be 

pleiotropic. By contrast, a single gene may have multiple cis-regulatory regions that regulate 

it in a tissue-and context-specific manner. As a consequence, changes in cis-regulatory 

regions are thought to be less pleiotropic than changes to the transcription factors they bind. 

The modularity of cis-regulatory regions has given rise to the idea that changes to these 

regions may play a large role in phenotypic evolution, an idea that is now well supported by 

empirical research [13,14]. However, while transcription factors are assumed to evolve more 

slowly than cis-regulatory regions, they can evolve quickly compared to other gene classes 

[15]. Changes to transcription factor proteins have also been implicated in the evolution of 

novel phenotypes (e.g., [16]).

Despite the role of transcriptional variation in phenotypic evolution, mRNA levels are often 

constrained on long timescales [17]. Genome-wide comparisons of mRNA levels between 

species show widespread reductions in divergence compared to neutral expectations [18–20], 

suggesting that changes in transcript levels are frequently deleterious. Despite the existing 
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constraint on transcript levels, gene regulatory networks themselves are not necessarily well 

conserved between species [21]. Interestingly, data on mRNA abundance from yeast, worms, 

and flies suggest that expression evolution best fits a ‘house of cards’ model of stabilizing 

selection [22] in which mutations generally have large effects that exceed the standing 

genetic variation [23,24]. As a consequence, mutations that affect mRNA abundance can 

bring down the evolutionary house of cards and cause a cascade of changes between co-

evolved cis and trans factors within a gene regulatory network.

Given these theoretical and empirical considerations, the epistatic interactions that underlie 

gene regulatory networks may lead to dysfunction in hybrids. In the simplest case, 

regulatory incompatibilities may arise either as a result of (i) the independent divergence of 

interacting elements between lineages (Figure 2A) or (ii) lineage specific co-evolution 

between elements (Figure 2B). In the first model, populations respond differently to drift or 

parallel or opposing directional selection. One population fixes a cis-regulatory change, the 

other fixes a trans change. In the second model, a cis change that affects expression is 

compensated for by changes to an interacting trans-acting factor, or vice versa. In either 

model, negative interactions between divergent regulatory elements in hybrids may result in 

the misregulation of downstream targets. More complicated models are possible, including 

cis and trans changes in both lineages or interactions between more than two loci.

Recent simulations and mathematical models indicate that these types of regulatory 

incompatibilities can evolve quickly if selection is acting [25–29]. In particular, regulatory 

incompatibilities will evolve most quickly as a byproduct of adaptation when cis and trans 
regulatory elements diverge under positive selection [25,28]. Incompatibilities will evolve 

more slowly under a model of stabilizing selection, where compensatory changes follow 

genetic drift [28]. Because transcription factors often regulate the expression of many genes, 

opposing selective pressures may constrain functional divergence and slow the evolution of 

regulatory incompatibilities. However, it was recently shown that it is possible for 

substantial hybrid misregulation to arise even when transcription factors are under moderate 

pleiotropic constraint [30].

Regulatory Divergence Between Species Is Widespread

Recent genomic surveys have found abundant evidence for transcriptional regulatory 

divergence between species. Divergence in putative cis-regulatory regions can be inferred 

through comparisons of transcription factor binding sites between species. While the loss 

and gain of transcription factor binding sites has generally been rapid over evolutionary time 

[31], examination of individual cis-regulatory elements has demonstrated that regulatory 

function can be maintained despite significant sequence divergence [32–34]. This 

observation may be explained by the fixation of functionally compensatory mutations.

Regulatory divergence affecting the expression of individual genes can also be inferred 

through interspecific crosses. In F1 hybrids, differences in transcript abundance between two 

alleles indicates that differences between the parents at this locus are due to changes in cis 
because the two alleles in the F1 are in a common trans-acting environment [35] (Figure 

3A). By contrast, if the two alleles in the F1 show the same level of transcript abundance, 
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this indicates that differences between the parents are due to changes in trans [36] (Figure 

3B), although interpretation can be complicated by dominance in regulatory pathways [37]. 

This approach has now been used to study genome-wide regulatory divergence between 

species of mice, birds, flies, yeast, and plants (e.g., [38–42]). Interspecific divergence in cis 
and trans is common, with cis-regulatory variants generally contributing more to divergence 

between species than variation within species [41,43,44]. However, a significant proportion 

of regulatory divergence can be attributed to a combination of cis- and trans-acting variants. 

When cis and trans changes are found together, interactions between them can increase or 

decrease gene expression divergence between species. When cis and trans variants act in 

opposition, their effects may buffer one another in a compensatory fashion. Consistent with 

stabilizing selection, such cis–trans compensation appears to play a prominent role in 

regulatory evolution [38,41,42,45,46].

The proportion of genes with cis–trans divergence has also been shown to accumulate with 

phylogenetic distance. Transgenic assays called ‘enhancer swaps’, where orthologous 

regulatory regions are tested in the same trans-acting environment, have found that lineage-

specific cis–trans evolution is more common in comparisons between distant than closely 

related taxa [47]. Similarly, pairwise comparisons between species of Drosophila found that, 

although the number of genes with cis-regulatory divergence increased linearly with 

divergence time, the number of genes with total expression divergence does not [44]. This 

suggests that cis changes are often compensated for by changes in trans variants, or by other 

trans-regulatory feedback mechanisms [48–50].

A few clear cases of such cis–trans compensatory evolution have now been reported [51,52]. 

In the nematodes Caenorhabditis elegans and C. briggsae, the expression of the gene unc-47 
is conserved between species even as its regulation has changed. Reciprocal swaps of C. 
briggsae and C. elegans regulatory elements identified lineage-specific changes consistent 

with compensatory cis–trans evolution. Regions in the C. briggsae unc-47 promoter have co-

evolved with specific changes in the C. briggsae trans-regulatory environment. 

Compensatory modifications in regulatory elements associated with unc-47 represent an 

example of how gene expression can be maintained despite underlying regulatory divergence 

[52].

Misregulation as a Mechanism for Hybrid dysfunction

Misregulation of genes in hybrids can lead to misexpression, defined as gene expression that 

falls outside the range of the parental species. Novel interactions between divergent cis and 

trans variants are one way misexpression can arise in hybrids. Consistent with this 

prediction, a number of studies have associated misexpression with cis–trans compensatory 

evolution ([40,41,46,53,54], but see also [44,55]). Misexpression is commonly seen in sterile 

interspecific hybrids [56–61] and has been shown to accumulate with phylogenetic distance 

in Drosophila [44].

In some interspecific hybrids, abnormal expression is disproportionately observed in male-

biased genes [56,57] and genes involved in spermatogenesis [62,63], suggesting that 

regulatory divergence might underlie some cases of hybrid male sterility. Comparisons 
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between sterile and fertile hybrids of Drosophila species [64] and of house mouse subspecies 

[46,61] have found that a greater number of genes are misexpressed in sterile hybrids than in 

fertile hybrids. Moreover, in house mice, some expression quantitative trait loci (QTL) 

colocalize with sterility QTL in hybrids, suggesting a causal role for regulatory changes in 

hybrid male sterility [65]. Also in mice, misexpression in sterile hybrids is associated with 

compensatory cis–trans changes, consistent with a model where disrupted interactions 

between these types of loci contribute to hybrid sterility [46].

The X chromosome often plays a central role in post-zygotic isolation [10,66]. If regulatory 

divergence underlies hybrid dysfunction, evolutionarily diverged regulation of sex-linked 

genes may be expected [67]. Several recent studies have found that expression diverges 

faster for some genes on the X (in XY taxa) and Z (in ZW taxa) chromosomes than on the 

autosomes between species [68–73]. Faster divergence of sex-linked gene expression is 

especially strong for genes with sex-biased effects (male-biased effects in XY taxa and 

female-biased effects in ZW taxa) [69,70,71,74]. However, comparisons of expression 

patterns in whole tissues may obscure differences in individual cell types. For example, it 

was recently shown that expression evolution for X-linked genes depends on the 

developmental stage of spermatogenesis, with genes expressed late in spermatogenesis 

showing slower divergence on the X [75]. Disproportionate misexpression of X-linked genes 

has also been reported for sterile hybrids [61,65,74,76].

There are several caveats to bear in mind when considering whether misexpression is 

causing hybrid sterility or inviability. First, the widespread misexpression seen in many 

interspecific crosses can be the result of one or a few upstream changes that cause a 

cascading effect on genes downstream in a regulatory network [77]. This has been seen in 

hybrids between Saccharomyces cerevisiae and S. paradoxu, where misexpression is 

primarily due to a shift in the timing of meiosis [78]. Second, while misexpression in 

interspecific hybrids has been the subject of intense scrutiny, misexpression has also been 

observed in intraspecific hybrids where dysfunction is absent [44,79]. Third, changes in 

cellular composition can also conflate associations between hybrid dysfunction and 

misexpression. Sterile and inviable animals often have gonads of differing cellular 

composition or suffer from atrophied tissue relative to their fertile counterparts. Because 

many studies isolate mRNA from whole animals or whole tissues, differences in tissue or 

cellular composition between sterile or inviable hybrids and parental species can produce 

misexpression. As a result, hybrid misexpression that is a direct result of regulatory 

divergence is likely to be overestimated [80]. In the future, studies that make use of sorted 

cell populations may mitigate this problem somewhat by comparing gene expression only in 

equivalent cell types [75,81,82].

Evidence from Speciation Genes

Misexpression identified in sterile hybrids provides only indirect evidence of the role of 

misregulation in hybrid dysfunction. ‘Speciation genes’ – defined here as genes that 

contribute to reproductive isolation – provide the best direct evidence for the role of 

regulatory divergence in reproductive isolation. Unfortunately, relatively few speciation 

genes have been identified and molecularly characterized [83,84]. Despite this limitation, 
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some broad-scale patterns have started to emerge. Of the speciation genes identified so far, 

many have either a putative role in transcriptional or translational regulation, or are 

themselves misexpressed in hybrids (Table 1). While this pattern is intriguing, it is necessary 

to characterize the molecular and physiological basis of hybrid dysfunction in each case to 

determine whether regulatory divergence is causal. We discuss a few speciation genes that 

have been particularly well characterized in Drosophila and house mice, highlighting some 

of the challenges in linking specific mutations to misregulation.

Hybrid male rescue (Hmr) and Lethal hybrid rescue (Lhr)

Hybrid male lethality in crosses between D. melanogaster and D. simulans can be explained 

in part by the genes Hmr and Lhr. The protein products of Hmr and Lhr form a complex that 

localizes to heterochromatic regions of the genome [85,86] where they transcriptionally 

repress transposable elements and repetitive sequences [86,87] and play a crucial role in 

mitotic chromosome segregation [86].

Loss-of-function mutations at Lhr in D. simulans or at Hmr in D. melanogaster restore 

hybrid male viability [85,88–90]. The D. simulans and D. melanogaster orthologs of both 

genes have diverged extensively under positive selection [85]. These observations led to the 

prediction that adaptive functional divergence between Hmr, Lhr, and species-specific 

heterochromatin sequences causes hybrid dysfunction. However, orthologs of Lhr appear to 

be functionally equivalent: sequence divergence between Lhr orthologs does not affect the 

localization of the Lhr protein, and overexpression of either the D. simulans or D. 
melanogaster ortholog has hybrid lethal effects [91].

Hybrid lethality is instead a consequence of species-specific changes in the abundance of 

Hmr and Lhr protein products. HMR expression is higher in D. melanogaster, and LHR 

expression is higher in D. simulans. Increased expression of HMR in D. melanogaster and 

LHR in D. simulans results in an elevated amount of the HMR–LHR complex in hybrids. 

The activity of the HMR–LHR complex is dosage-dependent, and overexpression leads to 

mislocation of the complex [86].

Because hybrid lethality is a consequence of HMR–LHR overexpression, the observed 

asymmetric lethal effects of D. melanogaster Hmr and D. simulans Lhr are likely the result 

of divergence in regulatory pathways between D. melanogaster and D. simulans rather than 

of functional divergence between orthologs [92]. Supporting this hypothesis, transcriptional 

differences between Lhr orthologs in hybrids has been linked to compensatory cis-by-trans 
divergence between species in allele-specific expression [92,93].

PR/SET domain 9 (Prdm9)

Crosses between Mus musculus domesticus and M. m. musculus produce sterile hybrid 

males [94]. A series of laboratory mapping experiments by Forejt and colleagues [95–98] 

led to the positional cloning and identification of Prdm9 [99], the only known hybrid sterility 

gene in vertebrates. Prdm9 is believed to interact with so far uncharacterized loci on the X 

chromosome and autosomes to cause spermatogenic failure in hybrids [100,101]. Sterile 

hybrid males show sex-specific failure to pair chromosomes during meiosis as well as 

misexpression of genes on the X and Y chromosomes [76]. While Prdm9 contains conserved 
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domains associated with transcriptional regulation [102,103], the effect of Prdm9 on 

misexpression may be a secondary consequence of the role of Prdm9 in meiotic 

recombination.

Prdm9 has been implicated in recombination rate variation in both humans and mice [104–

106]. During meiosis in mammals, double-stranded breaks are created throughout the 

genome and then repaired, leading to homologous recombination. These breaks are 

concentrated in regions called recombination hotspots. In mice, PRDM9 appears to mediate 

the process of recombination at hotspots by binding to DNA sequences [104]. Intriguingly, 

another QTL implicated in recombination rate variation was recently found to overlap with a 

hybrid male sterility QTL on the X chromosome [107]. Altogether, these results suggest a 

genetic connection between recombination and hybrid sterility [108].

Variation in the number of PRDM9 zinc-finger tandem repeats has been implicated in house 

mouse sterility [99]. The PRDM9 zinc-finger array co-evolves with species-specific binding 

sites. Meiotic drive against recombination hotspots is thought to result in the rapid turnover 

of these binding sites. Species-specific erosion of PRDM9 binding sites may explain 

asymmetric binding of PRDM9 in F1 hybrids that is associated with hybrid sterility. 

Supporting this prediction, hybrid fertility can be rescued by replacing the sterility-

associated zinc-finger array with an orthologous region from humans [109]. While it is clear 

that sterile hybrid males show misexpression of genes on the X and Y chromosomes, the 

direct role, if any, of Prdm9 in this misexpression remains unclear.

Open Questions and Future Directions

While the evidence so far suggests that changes in gene regulation may contribute to the 

origin of new species, there are also cases where hybrid incompatibility appears to be 

independent of regulatory changes. For example, the speciation genes Nup160 and Nup96 
cause hybrid inviability in crosses between Drosophila simulans and D. melanogaster. The 

protein products of both genes form architectural components of the nuclear pore complex 

and show evidence of adaptive protein evolution [110,111]. We do not wish to provoke a 

debate on the relative importance of coding versus regulatory mutations to speciation; both 

surely occur and both are likely to be important in some instances. Instead, we offer several 

research directions that are likely to be particularly useful in understanding the connection 

between regulatory divergence and speciation (see Outstanding Questions).

First, the study of speciation has benefited from studies of natural populations and from 

studies that utilize laboratory crosses. However, most of what is known about the role of 

regulatory divergence in speciation comes from laboratory studies. These studies represent a 

small sliver of phylogenetic diversity and they rely mainly on model systems (Table 1). If we 

are interested in understanding generalities of the speciation process, greater taxonomic 

sampling is necessary. It would also be useful to compare patterns of gene expression in 

naturally-occurring hybrid individuals that contain mixed genetic backgrounds to those seen 

in laboratory crosses.
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Second, there are two aspects of many natural populations that merit further study: the 

presence of later-generation hybrids and the fact that alleles contributing to reproductive 

isolation may be polymorphic rather than fixed [112]. Studying both of these issues in the 

context of the role of regulatory divergence and reproductive isolation is important. For 

example, while great progress has been made studying F1 hybrids, using F2 or later-

generation hybrids makes it possible to identify disrupted gene expression caused by 

recessive alleles [65].

Third, most of the focus has been on the role of regulatory divergence in intrinsic post-

zygotic isolation. The role of regulatory divergence in other forms of reproductive isolation 

(i.e., ecological, mating, and gametic) is still largely unexplored. Regulatory divergence may 

commonly lead to phenotypic differences between populations that result in different types 

of reproductive barriers. In particular, to the extent that changes in gene regulation underlie 

adaptive evolution, such changes may be fairly common in ecological speciation, but this 

remains to be shown.

Fourth, there is a need to better integrate speciation theory with empirical evidence from 

gene expression studies. For example, the exposure of recessive mutations on the X (or Z) 

chromosome in heterogametic hybrids (i.e., XY males or ZW females) has been invoked to 

explain observations such as Haldane’s rule and the large X effect [10,113,114]. According 

to this hypothesis, many of the alleles that decrease hybrid fitness are at least partially 

recessive. It is possible to test the dominance of expression inheritance using crosses or 

chromosome substitution lines [79,82,115], and this would help to link theoretical 

predictions with empirical observations of gene expression. Similarly, BDM 

incompatibilities are predicted to accumulate at a non-linear rate over evolutionary time, 

resulting in a ‘snowball’ effect [116]. Controlled gene expression studies may be able to 

determine whether regulatory incompatibilities conform to this prediction and increase 

nonlinearly with phylogenetic distance.

Fifth, the evolutionary forces that drive regulatory divergence and contribute to hybrid 

incompatibilities remain largely unknown. Many of the known speciation genes show a 

signature of positive selection [83]. While this observation is consistent with a model of 

adaptive divergence driving the evolution of hybrid incompatibilities, a model of 

compensatory evolution is equally possible. Compensatory evolution requires positive 

selection to fix compensatory changes to mask the deleterious effects of an earlier mutation. 

Finally, while there is significant interest in the role of regulatory divergence in speciation, 

transcriptional control has received nearly all the attention. The regulation of gene 

expression is a complex process that may be modulated at many stages, including 

transcription, translation, and post-translation [117]. The yeast speciation genes AEP2 and 

OLI1 provide one example of how translational misregulation can result in hybrid sterility. 

AEP2 encodes a mitochondrial protein that translationally regulates OLI1. In interspecific 

hybrids of S. cerevisiae and S. bayanus, the Aep2 protein is unable to bind to OLI1 
transcripts. The inability of Aep2 to mediate the translation of OLI1 is thought to result in 

hybrid sterility [118]. Advances have made the study of post-transcriptional regulation more 

feasible [119]. Allele-specific analyses of translational efficiency can now be used to infer 

cis and trans divergence acting on translation rate [120–122]. QTL mapping techniques have 
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been employed to study intraspecific variation in translation and protein abundance 

[117,123–125]. Studies that combine each of these levels will provide a more complete 

picture of the role of regulatory divergence in speciation.
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Trends

Simulation studies suggest that hybrid incompatibilities can evolve rapidly 

when selection acts on regulatory pathways.

Genomic approaches have identified widespread regulatory divergence 

between species in cis and trans.

Cis–trans regulatory divergence increases with phylogenetic distance and 

has been associated with misexpression in interspecific hybrids.

Many known hybrid incompatibility genes have either a putative regulatory 

function or are misexpressed in hybrids.
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Outstanding Questions

Does regulatory divergence contribute to other reproductive barriers such as 

mating isolation, gametic isolation, or ecological isolation?

Do disrupted interactions between post-transcriptional regulatory elements 

contribute to hybrid dysfunction?

Does dysregulation typically arise as a consequence of strictly adaptive 

evolution or as a consequence of compensatory evolution?

Mack and Nachman Page 16

Trends Genet. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The Bateson–Dobzhansky–Muller Model of Hybrid Incompatibility. In the ancestral 

population, the genotype is AABB. After the two populations are isolated, new mutations 

arise independently on each lineage as indicated by the asterisks. In one population, A 
evolves into a, in the other population B evolves into b. In hybrids, negative interactions 

between the a and b alleles can result in sterility or inviability. The a and b alleles are found 

together for the first time in hybrids, explaining how this incompatibility could evolve 

without either lineage experiencing an intermediate state of reduced fitness.
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Figure 2. 
Regulatory Divergence as a Source of Hybrid Incompatibilities. Panels (A) and (B) are 

schematics of a two-locus model for hybrid incompatibilities. Each hybrid incompatibility 

arises as a consequence of the molecular interactions between a cis-regulatory region and a 

trans-acting factor. Changes in binding between interacting regulatory elements affect the 

expression of a downstream gene. Asterisks represent mutations that become fixed along a 

lineage. (A) A change to a cis-regulatory region in one species and the interacting trans-

acting factor in the other result in hybrid dysfunction. Divergence in this example may be the 

result of drift or selection. In hybrids, the binding configuration represented by (iii) results in 

misregulation, while (i), (ii), and (iv) produce normal transcriptional output. This model is a 

realization of the Bateson–Dobzhansky–Muller model. (B) Lineage specific co-evolution 

between cis- and trans-regulatory elements result in hybrid dysfunction. In this example, a 

change in cis is followed by a compensatory change in trans to mask the deleterious effect of 

the first mutation. In hybrids, the binding configuration represented by (iii) results in 

misregulation. The binding configuration represented by (ii) results in reduced expression 
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compared to the parents, while the binding configurations represented by (i) and (iv) result 

in the same expression as in the parents.
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Figure 3. 
Using Allele-Specific Expression To Infer Regulatory Divergence between Species. 

Differences in the expression of alleles in an F1 can be used to determine whether 

expression divergence between the parents is due to changes in cis or to changes in trans. 

(A) Species 1 carries the A allele while species 2 carries the a allele. In the parental species, 

the transcript abundance of A is 2 and the transcript abundance of a is 3. Differences in the 

expression of the A and a alleles in the F1 hybrid suggests cis-regulatory divergence 

between species 1 and 2 because these two alleles are in the same trans-acting environment 

in the F1. (B) A and a have equal transcript abundances in the F1 hybrid despite the 

difference in expression seen between the parents. This suggests that differences between the 

parents are due to changes in trans.
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