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Abstract 

 

In Silico Pharmacokinetic Systems 

By 

Tai Ning Lam 

Models are frequently and ubiquitously used in all pharmacokinetic investigations.  

The familiar inductive equation-based pharmacokinetic models formulate hypotheses 

about data; they alone cannot provide mechanistic insights.  We need models that have 

extant, working mechanisms that generate emergent properties analogous to how 

phenomena emerge during wet-laboratory experiments.   

In this dissertation, I report a new class of synthetic, agent-based, discrete events 

models and simulations, with the objective to provide mechanistic insights.  Validated, 

biomimetic software components are plugged together to form in silico analogues of the 

referent experimental systems.  Each synthetic analogue is a mechanistic hypothesis: 

execution produces an observable phenomenon.   

The recirculating in silico livers (RISLs) are in silico analogues of isolated perfused 

rat livers during an experiment in which digoxin is administered, alone or in combination 

with either an uptake or efflux inhibitor.  A RISL that comprised four time-variant 

mechanisms and new enzyme and transporter components achieved the most stringent 

similarity measure: simulated digoxin and metabolite perfusate levels were 

experimentally indistinguishable from the referent data.  The mechanisms simulated 
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unanticipated loss of hepatic viability during the original experiments: erosion of hepatic 

accessibility and of enzyme and transporter activities. 

In silico experimental Caco-2 (cell monolayer) cultures (ISECC) are analogues of the 

confluent, asymmetric cell monolayer used in vectorial transport studies.  To seek an 

explanation for the observed paradoxical saquinavir transport data, I followed an iterative 

refinement protocol that enabled discovery of plausible, new mechanistic details.  The 

ISECC surviving the most stringent similarity challenge produced transport data 

statistically indistinguishable from referent observations.  It required heterogeneous 

intracellular spaces; a biased distribution of metabolizing enzymes; and restrictions on 

intracellular drug movement.  

Experimenting on synthetic analogues, such as RISLs and ISECCs, provides a 

formerly unavailable means of discovering and testing new mechanistic hypotheses.  It is 

a powerful expansion of the scientific method: an independent, scientific means to 

challenge, explore, and improve any inductive mechanism.  Validated, biomimetic 

analogues are concrete instances of hypothetical yet plausible mechanisms, and would 

replace vague, unverified concepts.  The collection of mechanisms, rules, assemblies, and 

interactions of components can be subjected to testing and falsification, and in the 

absence of other competing theories, stands as the current best mechanistic hypothesis for 

the phenomena.   
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1. Models in Pharmacokinetic Investigations 

Pharmacokinetics (from ancient Greek pharmakon "drug" and kinetikos "to do with 

motion") is the study of what the body does to the drug – the processes of absorption, distribution, 

metabolism and elimination. Pharmacokinetics includes the study of the mechanisms of 

absorption and distribution of an administered drug, the rate at which a drug action begins and the 

duration of the effect, the chemical change of the drug in the body by, for example, metabolizing 

enzymes, and the effects and routes of excretion and/or elimination of the parent drug and its 

metabolites.   

1.1. The use of models 

I first introduce the use of models in pharmacokinetic investigations. All scientific 

investigations begin with a hypothesis, or a question (quantity of interest) about a specific aspect 

of a system of interest – the primary system, or the referent system (“referent” hereafter) – as well 

as knowledge and assumptions about that system.  The knowledge is a mental model about the 

system of interest.  The goal of scientific investigation is improved understanding of the referent, 

by confirming the hypothesis (or more frequently in statistical hypothesis testing, falsifying the 
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null-hypothesis) about the referent system.  To test the hypothesis, a secondary system of the 

referent, frequently in the form of an extant model, has to be constructed.  The secondary system 

can take many forms, some of which are described below. 

While most scientific investigations involve one primary system (referent) and one 

secondary system (model), since the earliest era of pharmacokinetics, scientists have been using 

two classes of secondary systems (models) to study pharmacokinetic phenomena.  The first one is 

an experimental model, consisting of living biological components, to which drugs are 

administered and measurements are made.  The second is an induced mathematical model to 

describe the observed pharmacokinetic data, usually in the form of an equation-based model, 

whose structure is influenced by prior knowledge about the biological mechanisms.    

The following aims to dissect the ordinary pharmacokinetic study to highlight the 

frequent, ubiquitous use of models in them.  The goal is to shed light on the use of models at 

every step of common pharmacokinetic investigations.   

Guided by theory and knowledge about the referent, scientists design experiments such 

that an intervention would allow measuring the quantity of interest, or expose or disturb 

biological mechanisms, the consequence of which is observed and measured. Most wet-

laboratory experiments involve biological systems that are reductions from the referent and 

therefore less complicated, for good reasons: ease of manipulation, lower costs, higher 

efficiencies, ethical considerations, etc.  Select man-made experimental apparatus are connected 

to the extracted biological parts, which are supported by specialized, engineered medium. An 

intervention, designed to disturb the biology, is given under abnormal physiological conditions. 

The experimental biological system is nontrivially distorted in many ways, and is, in short, 

radically different to the referent biological system.  Hence, experiments themselves are models – 

experimental models.  Despite the above limitations, experimental models may still be the closest 

alternative to the referent biological system. During this selection and construction of 
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experimental models, assumptions, whether necessary or for convenience, explicitly stated or 

implicit in the mind of the experimenter, become an inseparable part of the experimental model.  

Because most wet-lab experiments assemble parts to form a whole experimental system (model), 

they are constructive, or synthetic, in nature.   

Next, observations are made from the experimental model.  The biological system under 

experimentation, although disturbed, presents many aspects for observation.  The concentrations 

of the administered drug and its metabolite in the medium are one aspect.  The gross anatomical 

appearance of the tissue under experimentation is another aspect. Among them, only a few are 

observed and recorded.  The experimental protocol (part of the experimental model) calls for 

even fewer to be measured.  In most pharmacokinetic studies, samples of the medium from the 

experiment are taken and later assayed with validated bioanalytical methods.  At the end, 

measurements usually consist of the time-course profile of an administered drug and its 

metabolite, expressed in concentration terms, and/or the amount of the drug and/or metabolite(s) 

in the biological tissue (cell lysate) or fluid (urine) at some point during or after the experiment.  

The observed data are a model of an aspect of the experimental system from the perspective of 

the experimenter's interaction with it. Outside of these data, some observations, especially 

unexpected, anomalous ones, are ignored.  The unobserved aspects are lost forever as the 

experimenter concludes the experiment and cleans up the apparatus.    

The measurements from experiments form a data set, to be analyzed, using an additional 

model – an inductive model.   In most pharmacokinetic experiments, the expected phenomenon is 

not observable by direct visualization, but rather by changes in (trends in) measured quantities.  

Usually, a pharmacokinetic model is used to relate these measured quantities to the expected 

phenomena.  With the exception of a question calling for a quantity to be directly measured, in 

pharmacokinetics studies, two types of questions are generally asked.  Firstly, does an 

intervention alter the pharmacokinetics of the compound of interest? Secondly, what 
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pharmacokinetic model best describes the data, and what are the best parameter estimates for the 

selected pharmacokinetic model?  In both type of questions, a model structure is assumed, and 

observed data are fitted to the selected model structure.  More precisely, for most 

pharmacokinetic models involving differential equations, a measured state of the integrated 

equations resulting from a presumed, parameterized model is compared to the observed data.  In 

the former type of question, the steps follow common statistical hypothesis testing procedures.  

More often, the investigator derives quantities using additional (pharmacokinetic) models, and 

uses the derived quantities for hypothesis testing.  A test statistic is then calculated and the 

hypothesis is either rejected or confirmed.   

Example:  suppose the investigator hypothesizes a drug-drug interaction between drugs A and B.  

Specifically, co-administration of drug B would reduce the rate of elimination (a natural 

phenomenon) of drug A.  There are multiple ways to test that hypothesis.  Assuming drug A’s 

metabolism is inhibited by drug B, one way is to measure the amount of metabolite of drug A 

formed at the end of experiment.  The hypothesis can be (re)stated: metabolite formation of drug 

A is reduced with co-administration of drug B.  This restatement does not need an additional 

pharmacokinetic model. However, the prior assumption may be unrealistic.  Assuming only that 

elimination is linearly related to drug concentration, an alternative is to quantify the rate of 

elimination by measuring the concentration-time profile of drug A, with and without co-

administration of drug B, and selecting a pharmacokinetic model to describe the time-course 

profiles.  Suppose drug A is known to follow one-compartment kinetics, and so the respective 

pharmacokinetic model is used.  In the selected pharmacokinetic model, clearance (a 

pharmacokinetic parameter) represents the rate of drug elimination.  Hence, the hypothesis can be 

(re)stated: clearance of A is decreased when co-administered with drug B.  Either way, the 

investigator, based on his knowledge about pharmacokinetic properties of drugs A and B, designs 

an experiment where one group of subject animals are first given drug A alone (control) and 

another group given drugs A and B together (treatment).  In the former way, the amount of 

metabolite is collected and measured at the end of experiment, summarized, and compared with a 
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Student’s t-test. In the latter way, a time series concentration of drug A is taken, clearance values 

of drug A from both control and treatment are calculated and compared.  Under the null 

hypothesis, where there is no interaction, a statistical model is assumed: the difference in the 

amount of metabolite, or in the clearance values between both control and treatment groups would 

follow a t-distribution with a mean equal to zero.  A test statistic – the ratio of difference in mean 

values to its respective variance – evaluates the probability that the measured amounts of 

metabolite or calculated clearance values are consistent to the selected statistical model (i.e. the t-

distribution.).  A decision can be made to reject the null-hypothesis, and to conclude there is drug-

drug interaction, if the probability (p-value) is sufficiently small.  Depending on the drugs’ 

properties, different or additional pharmacokinetic models may be needed to calculate clearance 

values.  Note that rejecting the null-hypothesis when the amount of metabolite is measured leads 

to knowledge about the mechanism: that metabolite formation of drug A is inhibited by drug B.  

However, decrease in clearance value with co-administration of drug B does not tell anything 

about why or how the rate of elimination of drug A is reduced – there is no mechanistic 

knowledge generated.   

In the latter type of questions, where the estimation of pharmacokinetic parameters is of 

interest, investigator would select a pharmacokinetic model based on the pattern in observed data, 

as well as knowledge and assumption about the experimental system.  The observed data are then 

“fitted” to the selected model, and the model parameters are estimated. The fitting steps are 

usually done with computational software, using an optimization algorithm. An optimized 

parameter vector is calculated (estimated), which together with selected model structure, best 

describes the observed the pharmacokinetic data.  In essence, the information from observed data 

– a large collection of observations of low information content – is abstracted and simplified to 

form a representative model, which is a simpler description of higher information content, by 

using a selected model structure and estimated model parameter values.  A statistic of goodness-

of-fit criterion can be defined and evaluated, and a model with sufficiently high goodness-of-fit 

value is deemed a “good”, “validated” or “adequate” description of the data.   
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Example: suppose a whole animal pharmacokinetic experiment was performed.  The subject 

animal was given an extravenous dose of the study drug, and blood samples of the animal were 

taken at specific time points, and concentrations of the study drug in the blood sample were 

assayed.  The concentration-time data were plotted and revealed an upward curve, followed by a 

peak and a two phase decline.  Based on the observed pattern and prior knowledge, the 

investigator concluded – induced – a two-compartment model with first order input would 

adequately describe the data.  In other words, the investigator decided the pharmacokinetics of the 

test drug was consistent with the mechanisms implied in a two-compartment model with first 

order input. Specifically, the investigator inferred that absorption into central compartment was 

proportional to the amount of the drug present, and that the distribution of the drug inside the body 

can be simplified to distribution between a central, rapidly equilibrating pool and a peripheral pool.  

A corresponding equation in the form of  a sum of exponentials was derived, and entered into a 

computer program whose algorithm was to “fit the data to the curve”.  More specifically, given the 

model structure (set of equations) and input data (observed concentration-time profile) the 

computer algorithm found an optimized set of parameters that would give a minimized prediction 

error (or maximized likelihood.)  The model prediction – measured states of the optimized model, 

in the form of a set of parameterized equations – was compared to the observed concentration-time 

profile, and was deemed adequate.  The model structure and its parameters were reported and the 

modeling process was then complete. The pharmacokinetic quantities of interest may then be 

calculated from model parameters. Knowledge about the pharmacokinetics of the study drug was 

limited to conceptual requirement of the validated (or falsified) pharmacokinetic model: that the 

concentration-time profile appeared to be consistent (or inconsistent) with the selected model.  

Whether those requirements were mechanistically realistic, or what mechanisms led to the 

inconsistency is unknown.   

In both types of questions, the selected model is induced from the observed data – they 

are inductive in nature. Interpreting observed data creates understanding about the referent system.  

Either a quantity is measured, or a hypothesis is confirmed or rejected. Describing the referent 

system using a pharmacokinetic model creates predictive power, as well as the ability to leverage 
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established knowledge from other pharmacokinetic systems that are adequately described by the 

same pharmacokinetic model. Parameters from pharmacokinetic models, although not 

physiologic parameters, are usually useful in predicting drug disposition, above and beyond 

describing them.   

It is important to draw the distinction between pharmacokinetic properties and 

pharmacokinetic parameters. Pharmacokinetic properties are observations of the intrinsic 

properties of a unique system: a drug interacting with a particular biological system. A 

pharmacokinetic property is an aspect of that system  (e.g. whether the drug is excreted 

unchanged in urine, or the extent it is distributed in adipose tissue under a particular dosing 

condition). The properties are not fully separable into those of the drug and those of the biology. 

When we nevertheless do so, e.g., to compare the "pharmacokinetic properties" of two drugs, we 

apply a separation model that can be characterized by the assumptions made.  For example, one 

can compare the extent being excreted unchanged in urine for two drugs, assuming the renal 

function is the same and “normal”. Pharmacokinetic properties are independent of any 

pharmacokinetic models.  Pharmacokinetic parameters are numerical values of pharmacokinetic 

models’ parameter (e.g. renal clearance, volume of distribution.)  Conflating them is the result of 

failure to recognize the use of inductive models in pharmacokinetic studies.  Pharmacokinetic 

models are selected such that their parameters map to, or estimate, important pharmacokinetic 

properties.  This is why pharmacokinetic models are useful and valuable.  Pharmacokinetic 

parameters do not inform how pharmacokinetic properties come about.  Hence, understanding 

pharmacokinetic properties, or in other words, the generating mechanisms of the observed (and 

measured) phenomena, is what makes pharmacokinetic studies interesting and worthwhile, and 

that requires additional methods beyond fitting pharmacokinetic models.   
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1.2. The gap 

The observation in the preceding section about the two classes of models can be 

organized in the following figure, which depicts models used in biomedical and pharmaceutical 

research.   

Fig. 1.1 depicts the space of major model classes used today in pharmaceutical and 

Figure 1.1 Major classes of models used in pharmaceutical biomedical research.  Left: For purposes of 

illustration, model types, and the analytic and explanatory methods that use them, are arranged 

according to abstraction level versus biological character; in reality they are not independent. The 

arrangement of model types is discussed in the text. More abstract indicates a greater capability for 

simple and focused representation. More realistic indicates a greater capability for aggregating 

collections of facts. The biological axis (biomimetic) indicates the degree to which a model resembles 

and behaves, at some level of detail, like its wet-lab referent. An inductively defined, equation-based 

model, for example, can mimic time-course measures of an aspect of a biological system very well 

(high, aspect-specific biomimesis), but, as a complex algorithm implemented atop a numerical 

integrator, it is not at all realistic (yet the conceptual model to which it is tied may include some 

realistic features). An unvalidated agent-based model can implement detailed representations of almost 

any physiological process and yet be incapable of behaving like the referent in any particular context; 

hence, it exhibits high realism but little biomimicry. Right: Illustrated is the gap that exists between 

inductive, mathematical models and the wet-lab models used in biomedical research. Models that can 

bridge the gap will be biomimetic computational analogues of their wet-lab counterparts. 
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biotechnology research. Model types on both sides have different uses. The ultimate referents for 

both are specified subsets of patients. Not represented are the conceptual mental models on which 

all scientists rely and the prosaic models (often supported by sketches of idealized mechanistic 

events) that describe these mental models. Moving to the right in Fig. 1.1, model aspects (the 

perspective taken when a system is observed) become more realistic, relative to their referents.  

Moving up, similarities between model and referent attributes increase: the models become more 

biomimetic. The diagram excludes patients. Model organisms are in the upper right. In vitro cell 

and tissue models are next. Below them are cell-derived systems. Statistical and correlative 

models are to the lower left. Above them are the familiar, induced mathematical computer models. 

Included within the latter are network, pathway, pharmacokinetic, pharmacodynamic, and 

physiologically-based models; they are induced from data.  

In Fig 1.1, the most biological model is a model organism.  A specific species of 

organism is carefully selected or even engineered for experimentation to provide the needed 

biological parts and mechanisms to answer the scientific question.  Often that requires substantial 

similarity between the model organism and the referent (human pharmacokinetics).  Frequently 

used model organisms in the pharmacokinetic context are mice, rats, dogs, monkeys, and their 

engineered, or genetically modified, counterparts.      

In vitro systems usually consist of living biological components taken from model 

organisms.  Only the biological parts thought to be relevant to the research question are extracted 

and studied.  The extracted, yet living biological parts are placed in a well-controlled, engineered 

environment in which the experiment is performed.  Because of its lower cost, ease of use and 

lesser variability and complexity compared to in vivo systems, in vitro systems are often preferred 

by experimentalists for deducing biological mechanisms of action. However, the controlled 

conditions present in the in vitro system differ significantly from those in vivo, and may give 
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misleading results. Therefore, in vitro studies are usually confirmed by in vivo studies.  An 

example of an in vitro system is cell cultures grown in Petri dishes.   

An even less biological model can be made with an assembly of non-living biochemical 

molecules.  An example is an enzymatic study in a test-tube.   

The familiar statistical models, being numbers on paper completely removed from their 

biological context, are the most abstract and least biomimetic models; they are at the lower left 

corner. In essence, the statistical models assert that observations made could be adequately 

described by some statistical distributions. Falsification of that assertion based on statistical 

probability leads to a more probable alternative hypothesis. Because the alternative hypothesis is 

usually formulated with conceptual mapping to the referent, rejecting the null and accepting the 

alternative hypothesis leads to an improved conceptual understanding of the referent; however, no 

causal basis can be asserted from statistical tests.    

Above and to the right of statistical models are mathematical models used to describe the 

relationships between quantities measured from biological experiments, which in turn reflect the 

biological processes in a quantitative way. Within this class of models, the model could take 

many forms, ranging from simple mathematical relationships to complex systems of differential 

equations. These mathematical relationships are more biologically relevant in a number of ways: 

1) the quantities in the equations often map to related quantities in the biological process, 2) 

predictions from these models are usually verified by performing the biological experiment and 

measuring the relevant biological quantities; 3) the form and structure of the mathematical 

models are induced by observations made from biological experiments; 4) selection of one model 

versus another is often informed by prior knowledge about biological mechanisms and as such the 

selected model usually conceptually maps to biological mechanisms in some ways.  Examples 

include the familiar Michaelis-Menton enzymes kinetics, pharmacokinetic compartmental model, 

and physiologically-based pharmacokinetic models.   
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The preceding analysis show the gap between the two classes of models – inductive, 

mathematical models on the lower left, and experimental, biological models on the upper right.  

Models that span the gap will be biomimetic analogues of their wet-lab counterparts; they can be 

expected to be used for evaluating explicit mechanistic hypotheses in the context of many aspects 

of the referent. 

1.3. Hypotheses about the mechanisms 

When a hypothesis is confirmed by the familiar statistical test, or by rejecting a simpler 

pharmacokinetic model and accepting a more complex one with different parameter values, how 

much can we say about what spatiotemporal mechanisms play roles in the emergence of a 

pharmacological response or a pharmacokinetic phenomenon?  Not much: hypotheses confirmed 

or rejected are about the data observed from the experimental model, not about the mechanisms 

of the referent, as illustrated in Fig 1.2.  In the familiar inductive pharmacokinetic modeling and 

simulation, the determination of pharmacokinetic parameters limits the use of the model (and its 

parameters) to the current system of interest where the current pharmacokinetic model applies; it 

is model-dependent.  It is fragile to changes in context. The same model can be used to represent 

any number of individuals and even different mammals, but only under similar conditions. Even 

in the specific cases where pharmacokinetic models are informed by prior knowledge on 

mechanisms, the gained knowledge from these models remains conceptual in nature. Concepts 

require subjective interpretations by scientists. Only an understanding of the pharmacokinetic 

properties and the mechanism underlying the properties would provide concrete answers to 

questions about how biological phenomena emerge, and to translate the results to systems in a 

different context or to a different level of biological complexity.  The inductive procedures alone 

described above lack the possibility of providing concrete mechanistic insight; it cannot generate 

nor test hypotheses about mechanisms, or in other words, the generator of the phenomena.   
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The exploration of an inverse map from phenomena to generators requires the researcher 

to hypothesize generators that could result in the observable phenomena. The question posed is 

this: given phenomena, what hypothetical generators (and measures) might generate them? The 

goal is to find a hypothetical generator in the form of mechanisms and interactions constructed 

from its components, i.e., a simplified, synthetic wet-lab experimental apparatus and 

corresponding measurements, or an in silico synthetic analogue (a collection of biomimetic 

mechanisms constructed using object-oriented software tools).  The constructed experiment, or 

computational analogue, when executed, is expected to produce the target phenomena.  When one 

is found, either wet-lab or in silico, we are still ignorant of the referent system as we were before, 

but we now have a concrete instance of a plausible mechanism where before we had only vague, 

Figure 1.2 Hypothesis about data. Guided by prior knowledge about the biological system of interests, 

a scientist designs experiments and protocols.  Measurements are made from the experiments and are 

subsequently abstracted and analyzed (modeled) with the familiar inductive methods. Hypothesis 

confirmed or rejected is about the data generated from the experiment. The question being asked is, 

whether the observed data are consistent with the model? In itself, it does not inform the underlying 

mechanism.  If the inductive model is specified by mechanistic knowledge, then conceptual insight may 

be possible: rejecting such a hypothesis (model) may mean the hypothesized mechanism is inadequate. 

It remains unknown how that rejected mechanism is inadequate. 
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unchallenged concepts. In the absence of other concrete, competing theories, this plausible 

mechanism can stand as the current best explanation for the phenomena. A full study of any 

inverse map requires abduction (several hypotheses), deduction (simulation, or experimentation), 

and induction (falsification) and that can only be done with concretizable hypotheses: synthetic 

wet-lab experiments, or synthetic computational analogues. It cannot be done with hypotheses 

that remain conceptual. 

1.4. Synthetic, mechanistic analogues 

In order to demonstrate that we have achieved deeper insight into how molecular details 

interface with and exert influence at higher levels and emerge as features of observations made 

from experiments, and to understand biological responses and their plausible generative 

mechanisms, we need models and methods that can bridge the gap as presented in Fig 1.1.  We 

need models that are made increasingly more similar to their referents—models that have extant 

(actually existing, observable) mechanisms that generate emergent properties analogous to how 

phenomena emerge during wet-lab experiments. We need to build these extant, working 

mechanisms that exhibit some of those same phenomena. We need analogue mechanisms that are 

transparent such that investigators can trace how temporally and hierarchically networked 

generators cause their respective phenomena.  These extant, plausible, mechanistic analogues are 

fundamentally different from the traditional pharmacokinetic models that “fit the data.”  Such 

analogues are instantiations (represented with concrete instances) of (abstract) mechanistic 

hypotheses – hypotheses about the generation of a phenomenon – that can be subjected to testing 

and falsification.    

While we cannot yet build such analogues from biochemicals, we can build extant 

biomimetic mechanisms using object-oriented software tools. Those models will be synthetic, as 

are wet-lab models.  When object-oriented, software engineering methods are used to implement 

a mechanism as described in the following chapters, the resultant software implementation is an 
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abstract, but extant mechanistic hypothesis: the components (objects), their assembly and their 

interactions collectively will produce a mechanism upon execution. By so doing, we have 

instantiated a mechanism in silico, as depicted in Fig 1.3. A consequence of mechanism execution 

will be the emergence of phenomena that are similar (or not) to pre-specified phenomena, such as 

a response following exposure to a xenobiotic. An important use for such models will be testing 

hypotheses about mechanisms (rather than about patterns in data).  Execution produces a 

simulation with features that we can measure; those measurements enable testing the hypothesis. 

Figure 1.3 Hypothesis about mechanisms. Alternative to using familiar inductive models, constructing 

a synthetic analogue begins when a scientist organizes his or her knowledge, assumptions, and 

ignorance about mechanisms to form an abstract mechanistic model.  The prior knowledge provides 

specification as to how the analogue should be constructed and what components may be needed.  Next, 

the scientist instantiates the abstract mechanistic model using software algorithms and tools. 

Implementation of the algorithm gives an executable program.  Execution of the program (simulation) 

provides observations, and measurements are made and compared to those from its referent 

experiments.  The scientist may verify if the simulated results are consistent with prior knowledge and 

assumptions.  The analogue may undergo many cycles of revision, during which hypothesized in silico

mechanisms may be added and modified, before it is validated by experimental data.  Each of the 

analogues is therefore a mechanistic hypothesis. When a degree of similarity between simulation results 

and experimental observations is established, one can assert (or hypothesize) that the in silico dynamics 

and mechanisms, consistent with their level of resolution, may have biological counterparts.  This 

provides mechanistic insight into the referent.   
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If phenomena similarities meet some pre-specified criteria, then the simulation stands as a 

challengeable yet tested theory about abstract yet plausible mechanistic events that may have 

occurred during the wet-lab experiments.   

My thesis is thus: experiments with synthetic, mechanistic analogues of biological system 

provide mechanistic insights to the underlying biology.  The analogues serve as informative 

experimental devices to explore potential consequences of mechanistic interventions and to 

facilitate hypothesis generation, falsification and selection.  In the remainder of this dissertation, I 

present a novel method for the study of pharmacokinetics using computational, agent-based 

modeling and simulation: the use of synthetic, mechanistic analogues to provide mechanistic 

insights.      

This dissertation is organized as follows.  Chapter 2 provides an overview of models used 

in pharmaceutical research, in pharmacokinetics in particular.  I begin by illustrating the two 

modeling approaches used in today’s pharmaceutical research: the wet-laboratory, synthetic, 

experimental systems using biological components in a well-engineered experimental apparatus 

and the computational, inductive, data-driven mathematical and statistical models consisting of 

equations and systems of ordinary differential equations. For biological models, I focus on the in 

vitro, Caco-2 cell monolayer cultures in a Transwell system and an ex vivo, isolated perfused rat 

liver system.  For mathematical models, I briefly describe the widely-used analysis and modeling 

methods including compartmental analysis, noncompartmental analysis, and physiological-based 

pharmacokinetic modeling. Then, I summarize the key features and principles for agent-based 

models used in developing and instantiating a synthetic, mechanistic model of a referent 

pharmacokinetic system. 

In chapter 3 I describe a few basic features of the In Silico Pharmacokinetic System 

(ISPKS) that is common in the subsequent chapters.  They provide foundations on which the 
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Recirculating In Silico Liver (RISL) and the In Silico Experimental Caco-2 Cell Monolayer 

Cultures (ISECC) are built.   

In chapter 4 I detail the effort of extending the ISPKS to model a recirculating isolated rat 

liver, the result of which is the Recirculating In Silico Liver (RISL).  From those experiments, I 

assert that there was deterioration in the function and viability of the isolated liver during the 

referent experiment, resulting in time-dependent changes in pharmacokinetic mechanisms. 

In chapter 5 I describe the instantiation of ISPKS to represent a Caco-2 monolayer culture 

in a vectorial transport experiment. I was able to provide a plausible explanation for the 

unresolved paradoxical observation from the investigators: that heterogeneous intracellular 

microenvironment may have played a role in saquinavir transport and metabolism.   

I conclude with my perspective of how synthetic modeling and simulation may be made 

scientific and how it will impact today’s pharmaceutical research and care in chapter 6.    
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2. Pharmacokinetic Model Approaches 

2.1. Introduction 

The need to achieve deeper mechanistic insight into biological systems has been the 

motivation for the recent development and application of a new class of models referred to by 

Fisher and Henzinger (2007) as executable biology. Hunt et al. (2010) have referred to the 

method used as the synthetic modeling and simulation method. The method is distinct from the 

traditional inductive pharmacokinetic (PK) and pharmacodynamic modeling method. A 

computational model from this new class represents a hypothesis about the mechanism 

underlying the data of interest, whereas a traditional PK model formulates hypotheses about the 

data.   

Aspects of the methods and approach used in developing and validating this new class of 

models are fundamentally different from those used in developing traditional pharmacokinetic 

and pharmacodynamic models. In this chapter, I present background information on the two 

classes of models and explore differences and similarities between them.   
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2.2. Wet-lab experiments 

An experimental system used in pharmacokinetic experiments includes a test drug and its 

mode of administration, biological components (organ, cell, or enzymes) of interest, as well as 

everything else called for in the experimental protocols; for example, perfusate or growth media, 

the investigators and their surgical techniques, sample collection and storage technology, 

monitoring devices, and analytical equipment. Together, the experimental apparatus are the world 

within which the biological components in the experimental system live, and within which drugs 

are absorbed, distributed, metabolized, and eliminated. Consequently, they influence, and so are 

“part of,” the biological mechanisms of interest. During a pharmacokinetic experiment, cellular 

components interact with transiting drug molecules. The mechanistic details, envisioned in the 

mind of the scientist, are represented at the middle in Fig. 2.1. They range from macromolecules 

binding the drug and cell organelles that are thought to sequester the drug, to microarchitectural 

features of intracellular organelles or extravascular space. Collectively, these events change the 

concentration-time profile of the drug. They cause systemic behaviors—phenotypic attributes that 

may be observed and measured in a variety of ways. Although several attributes may be measured 

during such experiments, the drug and metabolite levels in perfusate or the medium are most 

often the focus of attention. The raw, drug-level time series data are often transformed or 

manipulated for easier viewing or interpretation. For example, the final observable may be the 

fraction of administered dose per unit of perfusate plotted versus time or ratio of flux of dose to 

initial concentration divided by surface area (i.e. apparent permeability). Together, this is the 

experimental (apparatus) model. The time series data resulting from measurements of the 

observable, as just one set of possible measurements that can result from applying measures, are a 

concrete filtrate of events that occurred within the system during experiments, and so represent a 

perspective-dependent model of the experimental system. I present two particular experimental 

models in the following sections, the Caco-2 cell monolayer culture, and the isolated perfused rat 

liver. 
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Figure 2.1 Inductive and synthetic modeling. Two different modeling approaches, inductive traditional 

pharmacokinetic modeling and synthetic modeling and simulation, are fundamentally different from 

each other. Here we have the two classes of model to the same referent system: perfused rat livers. 

Shown are relationships between the wet-lab models used for perfused liver experiments, traditional PK 

models, and our analogue Recirculating In Silico Liver (RISL). Center: Perfused rat livers in their 

experimental context are the referent systems. During experiments, liver components interact with 

transiting drug molecules causing changes in the compound’s concentration-time profile. Systemic 

behaviors are reflected in the collected data. Left: The researcher identifies patterns in the wet-lab data 

and induces a mechanistic description of what is thought to have occurred. That mental model provides 

abstract, conceptual mappings from that description to hepatic mechanisms. A set of PK equations is 

selected that can generate most of the identified time-course patterns. A discretized, validated model of 

the equations in software is executed providing simulated output. Metrics specify the goodness of fit of 

the simulated output to the data. Right: The abstract mechanistic description is more knowledge-based. 

We start by coming up with a set of mechanisms that, when executed, produce simulated dynamics that 

are acceptably similar to experimental observations. Abstract, software components are designed, 

coded, verified, assembled and connected, guided by that mechanistic description. The product of the 

process is a collection of mechanisms rendered in software. A clear mapping—C—is intended to exist 

between components and how they plug together, and hepatic physiological and microanatomic details. 

Relative similarity is controlled in part by parameterizations. Compilation and source code execution 

gives rise to a working analogue. Its dynamics (mapping B) are intended to represent abstractly 

corresponding dynamics (believed to occur) within the liver during an experiment. Measures of 

simulated dynamics provide time series data that are intended to mimic counterpart measures of wet-lab 

perfusion experiments. Achieving measurable similarities enables mapping A to be made concrete. 
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2.2.1. Caco-2 cell monolayer culture to study vectorial 
transport 

The Caco-2 monolayer is widely used across the pharmaceutical industry as an in vitro 

model of the human small intestinal mucosa to predict the absorption of orally administered drugs 

(Meunier et al., 1995). Caco-2 cells, when grown on polycarbonate filters, form confluent 

monolayers that can be used as an in vitro model of the intestinal mucosa. By measuring the 

permeability of a compound across these cell monolayers, one can estimate the extent of its 

permeation through the intestinal mucosa. As oral administration of drugs remains the most 

acceptable route of administration, models for intestinal permeation and in vitro permeability 

assays remain a valuable tool of screening scientists for lead compound optimization (Press and 

di Grandi, 2008).   

The Caco-2 cells are derived from a colon carcinoma. When cultured under specific 

conditions, the cells become differentiated and polarized such that their phenotype, 

morphologically and functionally, resembles the enterocytes lining the small intestine (Hildago 

1989). Caco-2 cells express tight junctions, microvilli, and a number of enzymes and transporters 

that are characteristic of such enterocytes, such as peptidases, esterases, P-glycoprotein, and 

uptake transporters for amino acids, bile acids and carboxylic acids. Caco-2 cells are most 

commonly used not as individual cells, but as a confluent monolayer on a cell culture insert filter 

(e.g., Transwell®). When cultured in this format, the cells differentiate to form a polarized 

epithelial cell monolayer that provides a physical and biochemical barrier to the passage of ions 

and small molecules (Gao et al., 2000).  

The procedure to set up a Caco-2 monolayer transport experiment can be summarized as 

follows and as depicted in Fig. 2.2. A filter is placed in a Petri dish and Caco-2 cells are seeded 

onto the filter and incubated for 3-4 weeks at 37 ºC until the cells are fully differentiated and 

polarized and the proteins are fully expressed. The cells are grown in media that provide nutrients; 
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additives may be added to the medium to stimulate or modify expression of particular enzymes or 

transporters. For example, Caco-2 cells may be induced to express higher levels of CYP3A4 by 

treatment with vitamin D3 (van Breemen and Li, 2005). When a confluent monolayer of Caco-2 

cells is formed on the filter, the monolayer is ready for experiments. Typically, medium in the 

apical compartment is spiked with test compound, and the aliquots from the basolateral 

 
Figure 2.2 Top: Schematic of a Caco-2 cell. Caco-2 cells form tight junctions with each other and thus 

form a permeability barrier to drugs. They express various transporters. Bottom: Schematic of Caco-2 

cell monolayer on a Transwell device. Caco-2 cells are grown to a confluent monolayer on a permeable 

filter. The layer of cell separates the medium into two compartments, the apical compartment and the 

basolateral compartment. Drug is dosed in one compartment and transport across the cell monolayer is 

assessed. 
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compartment are taken to assay for the appearance of test compound over the duration of the 

experiments, which usually runs between 1 to 3 hours.   

The correlation between the in vitro apparent permeability (Papp) across Caco-2 

monolayers and the in vivo fraction absorbed is well established (Artursson and Karlsson, 1991; 

Hildago, 2001). The apparent permeability coefficient (Papp) of a test compound can be 

determined using the data generated from the transport experiment, and the magnitude of this Papp 

value is a reflection of how well the compound permeates cell monolayers.  
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where Papp is the apparent permeability; (ΔQ/Δt) is the linear appearance rate (flux) of the 

test compound; A is the surface area of the cell monolayer; and C0 is the initial concentration of 

the test compound in the donor compartment.   

Importantly, the Caco-2 monolayer Transwell system can be used to assess the effect of 

transporters. The test compound can either be dosed from the apical compartment and the 

appearance of the test compound in the basolateral compartment is monitored, or it can be dosed 

in the basolateral side and the appearance in apical side is monitored. If the permeability of a test 

compound is significantly higher for basal to apical transport than for apical to basal transport, the 

compound (for example, taxol) could be a substrate for an efflux transporter, for example, P-

glycoprotein.   

Other important applications of Caco-2 cells monolayer have been described in the 

literature. Examples included constructing structure-activity relationships of carrier mediated 

drug transport, assessing potential drug interactions, elucidating pathways for drug transport, 

metabolism, and interactions, and determining optimal characteristics for drug permeation and 

drug formulation  (Gao et al, 2000; Sun et al., 2008).   
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The development of cell culture assays represents one of the most exciting advances in 

the pharmaceutical sciences (Borchardt, 1995; Artursson and Borchardt, 1997). The versatility of 

Caco-2 cells is demonstrated by the fact that, even to this day, they are serving as the basis for the 

creation of innovative new models that are contributing to our understanding of drug efflux 

transporters, such as P-glycoprotein (ABCB1) and breast cancer resistance protein (BCRP) 

(ABCG2). These types of systems, if properly used, can not only lead to an improved 

understanding of the biochemical basis of the barrier properties of the intestinal mucosa, but can 

also potentially expedite the process of drug discovery and development and thus improve the 

efficiency of the drug discovery/development process in the pharmaceutical industry. Meaningful 

refinements are made, such as inducing the expression of under-expressed transporters and 

enzymes to in vivo levels by cell biology methods, shortening culturing time, miniaturizing the 

cell culture apparatus, and automating the transport and metabolism experiments.    

To better predict in vivo profiles accurately and efficiently utilizing in vitro data, methods 

to translate findings from in vitro assays to in vivo systems are needed (Hunt et al., 2009). The 

translation of information obtained from the Caco-2 monolayer to in vivo necessitates more 

sophisticated modeling approaches (Sun et al., 2008). Selection of scale-up factors with 

recognition of expression differences in transporters and enzymes between systems and 

integration with physiologically-based modeling approach are two examples of current challenges.  

On the other hand, using novel, agent-based modeling and simulation methods may help provide 

better mechanistic insight for translation (Liu and Hunt, 2005). 

2.2.2. Isolated perfused rat liver 

Liver perfusion was first described by Claude Bernard as early as the 1850s (Gores et al., 

1986). An isolated perfused liver model with blood being the perfusate was used to identify roles 

of the liver in synthesis of plasma proteins (Miller et al., 1951). However, this technique was not 

extensively applied to drug metabolism and pharmacokinetics until the 1960s. Since then, the 
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isolated perfused rat liver (IPRL) has been extensively used as an intact organ model for 

determination of hepatic clearance and metabolism of drugs. The IPRL model can also be applied 

to determine physiologically based pharmacokinetics. An important advantage of using IPRL is 

that, in contrast to in vivo models, such as the bile fistula rat, the IPRL allows repeated sampling 

 

Figure 2.3 The schematic model for the isolated perfused rat liver. The liver is perfused with Krebs-

Henseleit buffer at 37°C and saturated with 95% O2 and 5% CO2 gas mixture. Liver perfusion can be 

performed in single pass or recirculating by switching the 3-way stoppers. Bile is collected during the 

period of perfusion. Cin and Cout stand for concentrations in the inflow and outflow of perfusate, 

respectively. During recirculating experiments, samples of the perfusate are repeatedly taken from the 

reservoir. 
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of the perfusate and permits easy exposure of the liver to different concentrations of test 

substances. In addition, since the IPRL model avoids neural and hormonal interferences and 

excludes influences from absorption processes and non-hepatic elimination routes, such as renal 

excretion and respiration, it provides a relatively clean hepatic system to study metabolism and 

pharmacokinetics. It is especially useful to model the hepatic uptake associated with plasma 

protein binding and transport.   

The basic perfusion system consists of a peristaltic pump, an oxgenator, and a perfusion 

block. The schematic diagram for an IPRL model is show in Fig 2.3.    

The procedure of setting up an IPRL can be summarized as follows. The animal is 

anesthetized, and surgery is performed to expose the liver. The bile duct, hepatic vein, and portal 

vein are cannulated, and the liver is removed from the animal. The removed liver is maintained at 

37 ºC. Perfusate, usually oxygenated Krebs-Henseleit buffer, is then pumped through the liver, 

entering from the portal vein and exiting from the hepatic vein. Bile flow and samples of the 

perfusate are collected during the perfusion for analyses (Liu et al., 2004). Key perfusion 

parameters are perfusate type, additives, and volume, perfusate oxygenation, perfusion flow and 

pressure, perfusion temperature, and perfusion duration (Wolkoff et al., 1987; Bessem et al., 

2006). 

Well-stirred and parallel-tube models are most commonly used to describe the 

elimination of drugs by the liver (Pang and Rowland, 1977). The equations are as follows:  
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where fu is the unbound fraction of drug in plasma; Clint is the intrinsic clearance of 

unbound drug; Q is the hepatic blood flow; and ClH is hepatic clearance of total drug. 

Analysis of data from IPRL studies using the above models allows for estimation of 

hepatic extraction ratio, hepatic clearance, the intrinsic hepatic clearance, and fraction unbound. 

In addition, IPRL experiments are also useful in studying hepatic metabolism (Xiong et al., 2002; 

Yamada et al., 2008), hepatotoxicity (Yoshihara, 2000), protein synthesis (Liao et al., 1995), 

hepatic heterogeneity (Kato et al., 2001; Schwab et al., 2003), hepatic drug disposition (Liu et al., 

2005), and influences of liver disease on drug disposition (Hung et al., 2005; Arab et al., 2007).   

It must be recognized that the isolated perfused liver is a dying organ that has a life-span 

of approximately 3-4 hours (Gores et al., 1986). Viability assessments must be made to ensure 

hepatic function liver is not deteriorating faster than expected. Common measures include 

assessment of gross appearance, perfusate flow and pressure, bile flow, pH, lactate 

dehydrogenase activity, oxygen concentration, and potassium concentration. However, it is 

unrealistic to expect parts of the perfused liver and hepatic functions to deteriorate at the same 

rate. This may lead to intrinsic spatial and temporal heterogeneity in hepatic activities during the 

perfusion experiment, the effect of which is largely unappreciated and undocumented.   

2.3. Traditional inductive pharmacokinetic models 

Developing and then comparing the output of a pharmacokinetic model simulation to 

observed pharmacokinetic data involves multiple models. How they relate to each other, 

including the assumptions embedded in each, impacts the future usefulness of the parameterized 

pharmacokinetic model. To specify the differences and similarities between traditional 

pharmacokinetic models and the new class of synthetic models, one must identify and clearly 

describe the modeling method along with the variety of models used by each. I will expand on the 

descriptions from chapter 1 and begin with details of the traditional pharmacokinetic modeling 

process, focusing on key features and principles of the process.   
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After cogitating over the shape and appearance of the accumulated PK time series data, in 

light of available knowledge and expectations, the experimenter settles on an abstract, 

mechanistic description of the processes that is thought to be responsible for the data. The 

description may be novel. More often, it is one of several available descriptions in the literature in 

the form of a diagram-supported description in prose of, for example, the extended, convection-

dispersion model or a tube model having equilibrating compartments. This model, induced from 

domain knowledge, is the induced (mechanistic) model being used to describe the data. There are 

aspects that the experimenter believes reflect influential events occurring within the biological 

tissue during the experiment. The left side of Fig. 2.1 illustrates that those ideas provide an 

abstract, conceptual mapping from the induced model to specific cellular dynamics. Because the 

mapping is from an intellectual concept (induced model) to real objects (parts of the liver and 

events within), the mapping cannot be made concrete (instantiated). Abstract, conceptual 

mappings require subjective interpretation and are difficult to falsify. (I argue in chapter 6 that 

hypothesis falsification, not validation, is a source of new knowledge.) To enable falsification, the 

hypothesis must be made concrete.   

Typically, a goal of the pharmacokinetic experiment is to fit a pharmacokinetic model to 

the data. When the induced model has been taken from the literature, a corresponding set of 

equations will be available that describe possible time-series features of the model. An abstract, 

conceptual mapping will exist in the mind of the researcher between the mathematics and the 

experimental data.   

The induced model cannot be executed directly. Execution following implementation 

requires that algorithms must be developed and coded. Implementation of the induced model, 

using a specific computer platform and compiler, generates an executable program. When 

executed, it is a working, concrete pharmacokinetic model thought to describe the experimental 

data. The aspect of the execution that is of interest to the experimenter is the measured states of 
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the model, i.e., the simulated profile. A concrete mapping exists between the simulated profile 

and the observed data. Consequently, a metric may be specified to measure the goodness of fit 

between the output of the implementation and the data. The parameter values assigned to the 

induced equation model are retained and reported.   

When the researcher is satisfied with the goodness of fit, s/he is positioned to use the 

parameterized form of the equation model for whatever use was originally intended. Some 

parameters of some traditional induced pharmacokinetic models have been assigned descriptive 

names, such as clearance, mean transit time, and apparent volume of distribution. Fitted 

parameter values have proven to be useful summary descriptors of features of the 

pharmacokinetic data, providing scientists with a useful metric to compare features of different 

sets of data.  However, there is no direct, concrete mapping between those valued parameters and 

particular features of the actual biological system during the experiment. Interpretations of those 

parameters are offered by a scientist. They draw and depend upon the scientist’s mental model 

about the biology, along with the conceptual mapping from features of the induced model to the 

biological mechanisms.   

In the following sections I present four types of frequently used equation-based 

pharmacokinetic models, from the most empirical sums of exponentials to the most mechanistic 

physiologically-based pharmacokinetic modeling.   

2.3.1. Sum of exponentials  

Linear pharmacokinetic data can be fitted to sums of exponential terms. For example, 

after an orally administered dose, a concentration-time profile with an absorption phase, an initial 

distribution phase, and a terminal elimination phase is observed as shown in Fig 2.4 below. One 

can fit a triexponential equation 

ttt eeetC γβα −−− Γ+Β+Α=)(  
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Here, C(t) in the concentration; Α, Β, Γ, α, β, and γ are parameters of the model and are 

selected to produce a best fit.   

Fitted empirically, the equation is a model of data; it is a description of the observed data.   

Fitting to the equation, or the lack of fit per se, does not lead to validation or falsification, for 

there is nothing to be falsified, nothing to be tested. This model of data has no value in an 

experiment of a different kind, either. A "model of data" has value only as a simulator of the 

observed data; that is, it describes the data but contributes nothing to understanding. Its 

parameters carry no physiological meaning (Rescigno and Beck, 1987; Rescigno, 2004). 

2.3.2. Compartmental models 

In pharmacokinetics, a compartmental analysis involves the development of a model in 

which an administered drug is, conceptually, thought to enter into, exit from, and transit between 
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Figure 2.4 A typical time-concentration profile from a pharmacokinetic study. The profile showed an 

upward slope, followed by a peak, and a two-phase decline. One may fit a tri-exponential equation; the 

dotted line shows the equation C(t) = 125*exp(-0.15t) + 60*exp(-0.01t) – 185*exp(-0.4t).    
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a finite number of homogeneous idealized “compartments;” this process gives rise to the 

observed time-course profile of the drug. Most commonly, a set of linear ordinary differential 

equations are used to describe specifically the input, exit, and transfer between compartments.  

The resulting pharmacokinetic model is a mathematical representation of the passage of the drug 

through the body and contains variables (e.g. dose, times of doses, and times at which blood 

samples are taken) and constants called parameters (e.g. clearance and volume of distribution) 

that quantify the drug disposition. In a pharmacokinetic model, the compartments may represent 

different sections of a body within which the concentration of a drug is assumed to be uniformly 

equal.   

The compartment represents a defined volume for which there is no actual anatomical 

counterpart. To improve the mapping from conceptual compartmental model to the equations 

requires making the following assumptions: a) instant, homogeneous distribution of materials 

(drug) within a "compartment"; b) the exchange rate of materials among the compartments is 

related to the densities (concentrations) of these compartments; c) materials do not undergo 

changes while inside, or transmitting among the compartments, when materials undergo chemical 

reactions, the resultant materials are modeled as different compartments; and d) the volumes of 

the compartments are assumed to be constant over time, although this may not be totally true in 

biological systems.   

The most common compartmental approach is to represent the whole body as a single 

homogenous compartment, which is termed the one-compartment model (Fig. 2.5A). Additional 

compartments may be added on in order to describe other patterns that may be seen in the 

observed concentration-time data. For example, a very slow elimination phase might be 

represented by a “deep tissue compartment,” which could map, conceptually, to adipose tissue. 

The resultant model is a two-compartment model. On the other hand, oral input of drugs requires 

an input compartment representing the gastrointestinal tract. The time-concentration profile, 
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shown in Fig. 2.4, may be modeled with the three-compartmental model shown in Fig. 2.5B. 

Most compartmental approaches of this nature seldom have more than three to five distinct 

compartments. Two subgroups of compartmental models are of particular interest. The 

mammillary model (Fig. 2.5C) contains a central compartment to represent blood (plasma). 

Samples are taken from the central compartment while peripheral compartments equilibrate with 

the central compartment. The catenary model (Fig 2.5D), in which compartments are arranged in 

a chain, is useful when metabolite kinetics are studied.    

The simplest one-compartmental model (Fig 2.5A) can be expressed as follows, 

Xk
dt
dX

×−=  

 
A.  One compartment model B.  Two compartment model with oral input 

 

C.  The mammillary model contains a central 
compartment to represent blood (plasma), and 
one or more peripheral compartments.   
 

D.  The catenary model, in which compartment 
are arranged in chain, is useful when metabolite 
kinetics are studied.    

Figure 2.5 Four commonly used compartmental models 
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where X(t) is the quantity of material present in the compartment at time t, k is the first-

order rate of elimination.   

Dividing the amount X by the volume of the compartment V (assuming V is constant) 

yields an equivalent form in terms of concentration C(t): 

CClCVk
dt
dX

×−=××−=  

 
where V (or Vd) is the volume of distribution and Cl = kVd is the clearance. Hence, 

volume of distribution Vd is a scaling factor between amount X and concentration C, and the 

clearance is the proportionality constant between rate of amount eliminated dX/dt and 

concentration C.   

The integral of the two differential equations are 
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A general n-compartment model usually takes the form a of set of n linear ordinary 

differential equations: 
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where Xi is the amount in the compartment i, kij is the transfer from compartment i to j, 

and ki0 is the elimination rate from compartment i.   

The integral solution to this set of differential equations is in general sums of 

exponentials: 
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where Lij and λij are constants and depend upon the initial conditions and the parameters 

kij of the model.   

For a general treatment of linear mammillary models, Benet (Benet, 1972; Nakashima 

and Benet, 1989) presented a general solution using general input and disposition functions, the 

methods of partial fractions in solving Laplace transforms and multiple dosing functions.   

Importantly, this approach does not necessarily convey physiological meaning to the 

compartments, for example, the compartments represented by a 2-compartment model may not 

necessarily reflect any physiologically distinct tissues (e.g. the blood and the heart), but rather, 

they are representative of lumped tissues (e.g. all fast perfusion tissues). 

The advantage of the mathematical pharmacokinetic models is that a compartmental or a 

physiologically-based pharmacokinetic model (below) has good descriptive, predictive, and 

prescriptive qualities (Rescigno, 2010). The models allow the concentration-time course to be 

described accurately in the subjects in the study. In addition, these approaches are generally 

independent of the size of the dose and dose interval, and therefore, concentration-time course in 

other individuals who may receive the drug in the future may be predicted. If the compartmental 

model contains mechanism-based parameters like clearance and bioavailability, and if its 

parameters can conceptually map to physiological variables, then most likely the concentration-

time profiles may be able to be predicted in patients with different disease conditions or different 

administrations of dose. For example, for reduced clearance in renal disease patients or 

intravenous versus oral dosing, therapy may be tailored to achieve desired clinical goals. 
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2.3.3. Noncompartmental models  

Noncompartmental analysis reduces the mapping assumptions that must be made in 

modeling concentration versus time data. An advantage of noncompartmental analysis is that it 

requires fewer assumptions than those necessary with compartmental analysis (DiStefano, 1982). 

While compartmental analysis requires knowledge (or assumptions) about the compartment into 

which the drug is inputted, the compartment from which the drug is eliminated, and the specific 

arrangement and transfer between compartments, noncompartmental analysis requires only that 

all measurement, sources, and sinks are from the one (central) pool. With that, there can be any 

number of recirculation or exchange between any numbers of pools, none of which has to be 

identified with any physiological structures, as illustrated in Fig. 2.6. It also avoids some of the 

common problems seen with compartmental analysis. For example, sometimes compartmental 

analysis would reveal the kinetics of the drug in some subjects is best described using a two-

compartment model, while it is best described with a three-compartment model in other subjects. 

Figure 2.6 The simple structure assumed in noncompartmental analysis.   
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Should the data for all subjects be “forced” into a single model? Or should every subject be 

modeled based upon the fit of their individual plasma concentration-time data? These and related 

questions pose real problems in the use of compartmental analysis – problems that are largely 

avoided with noncompartmental analysis. However, it is important to realize that 

noncompartmental analysis is not “model-independent:” it required a specific model structure as 

described above. There are still assumptions that are made with noncompartmental analysis; for 

example, all sources and sinks are equivalent, which may or may not be correct. Often, the 

available data does not allow one to definitively determine the accuracy of the assumptions. The 

number and implication of those assumptions are, however, less than that seen with 

compartmental analysis (DiStefano and Landaw, 1984).  

The most frequently derived quantities from noncompartmental analysis are the total 

clearance (Cl), mean residence time (MRT), and volume at steady state (Vss). Their respective 

equations are given below.   
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where D is the dose given, AUC is the area under the concentration-time curve, AUMC is 

the area under the first moment of concentration-time curve, and Kel
’ is the apparent elimination 

rate.  It should be noted that the MRT and Vss equations are only true for intravenous bolus dosing. 



 36 

2.3.4. Physiologically based pharmacokinetic models  

Physiologically-based pharmacokinetic (PBPK) modeling is a mathematical modeling 

technique for predicting the absorption, distribution, metabolism, and excretion of a compound in 

humans and other animal species. (Nestorov, 2003) PBPK modeling is frequently used in 

pharmaceutical research and development and in health risk assessment and toxicokinetics. 

PBPK models try to rely a priori on the anatomical and physiological structure of the 

body. These are usually also multi-compartment models, but the compartments correspond, 

Figure 2.7 Schematic of a typical physiologically-based pharmacokinetic model. It is important to note 

that flow between compartments reflects physiologic blood flow. F is bioavailability, DOSEpo is oral 

dose, DOSEiv is intravenous dose, Q’s represent blood flow, and Cl’s are the clearance of the respective 

organ.   
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conceptually, to predefined organs or tissues. The compartmental interconnections maps to 

movement of the compound of interest in physiologic blood (and lymph) flow. A system 

of differential equations is derived based on known anatomy and physiology, whereas its 

parameters represent blood flows, drug elimination (or absorption) rate at specific tissues, tissue 

volumes, and so on. Information for each of these parameters may be available in scientific 

publications. Often, the description of the body is simplified to strike a balance between model 

simplicity and the needed complexity sufficient for predefined model use. Besides the advantage 

of incorporating a priori information about parameter values, these models also facilitate inter-

species transpositions or extrapolation from one mode of administration to another (e.g., 

intravenous to oral).  

The PBPK models map the complex drug transport scheme onto a physiologically 

realistic compartmental structure (Fig. 2.7). The major structural elements of those models are 

physiologically realistic body tissues, fluids, organs, and/or systems. In this sense, the structure of 

a PBPK model is predetermined and is largely independent of a particular drug of interest. 

Therefore, in contrast to the conventional pharmacokinetic model, the structure of a PBPK model 

is derived from the anatomical and physiological structure of the organism studied and not from 

the available drug-related data. This can be considered as the major distinctive feature to 

discriminate between the two model classes. (Nestorov, 2003) 

The PBPK model is a special form of pharmacokinetic models that belongs to the more 

general set of the “compartmental” models. Similar to conventional compartmental 

pharmacokinetic models, PBPK models compartmentize the organism into a number of subunits, 

called compartments. Unlike conventional compartmental pharmacokinetic models, which are   

sometimes called “empirical” or “data based,” PBPK models are often stated to be “mechanism 

based,” meaning that they reflect aspects of our knowledge about the mechanisms of the 

underlying pharmacokinetic processes. In fact, neither type is purely empirical or mechanistic. 
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Even the simple one- and two-compartment models are based on mechanistic assumptions, e.g., 

that the drug is transported by the blood circulation system, eliminated from there or from a 

peripheral compartment, and so forth. Therefore, the distinction between the conventional and the 

PBPK models is made based on the relative predominance of mechanistic or empirical elements 

in the process when compartmentization is carried out. In PBPK models, the model structure is 

determined before the modeling process starts; in empirical compartmental models, it is 

determined based on the best fit to the experimental data.  

Emulating the structure of the living organism studied, the whole body PBPK model is a 

connection of tissues, fluids, organs, and systems; the link, effecting the compound distribution, is 

the blood circulation (Fig. 2.7). Therefore, at the first modeling step, the tissue connectivity 

within the blood circulation loop is specified. With small variations, the overall structural scheme 

usually follows the anatomical whole body circulation structure common to all mammalian 

species. The major model structure decision is to decide which body tissues, fluids, organs, and 

systems to include as components of the PBPK model.  (Nestorov, 2003) 

As usual, PBPK model specification should compromise between at least two conflicting 

driving forces: on one hand, the need to include tissues and organs that are essential for the 

pharmacokinetics and pharmacodynamics of the compound, for disease progression, as well as 

drug administration, and on the other hand, the need to avoid unnecessary complexity, 

computational intractability, and assumptions due to lack of data and information.   

Generally, the following body tissues, fluids, organs, and systems are included in a PBPK 

model: 

• Blood, subdivided between the venous and arterial pools. 

• Main eliminating organs, i.e., liver for metabolized drugs and kidney for excreted drugs. 

• Adipose tissue, for lipophilic compounds. 
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• Tissues that are expected to account for significant portion of the drug amount, e.g. 

muscle. 

• Other tissues of special interest, including 

o Site of drug administration, e.g. skin for subcutaneous administration. 

o Other eliminating tissues, such as lung and intestine. 

o Potential sites of drug action.  

For each of the tissues, in the majority of cases, the simplest perfusion rate-limited tissue 

model, which represents each tissue or organ by a single well-stirred compartment, is assumed. 

The underlying mechanistic assumption in this case is that the drug distributes instantly in the 

whole volume of the tissue from the incoming blood flow, and there are no drug concentration 

gradients within the particular tissue. In some cases, the more complex permeability rate-limited 

tissue model is assumed. Two particularly frequent models are 1) the vascular and extravascular 

compartments, in which permeation of capillary membrane is rate-limiting, or 2) the extracellular 

and intracellular compartments, in which permeation of cellular membrane is rate-limiting. 

Finally, one may need to assume that concentration gradients exist and a dispersion tissue model 

is used.   

Once the PBPK model equations are written, their parameters need to be specified and/or 

estimated. The PBPK models have two groups of parameters. Physiological parameters are the 

parameters characterizing the anatomical structure and physiological processes of the animal 

species researched. Examples include bodyweight, tissue volumes, and tissue blood flows. 

Because the physiological parameters most often are assumed to be independent of the compound 

administered, they are also known as “drug-independent parameters.” These parameters are 

commonly extracted from sources independent of the particular pharmacokinetic study and are 

considered to be fixed, meaning that they are not estimated. Compound-specific parameters, on 

the other hand, are parameters characterizing processes such as binding, partition, permeability, 
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and metabolism. Sometimes, part or all of those parameters are known from previous studies or 

other prior knowledge. Most often, however, the aim of the PBPK study is to obtain the values of 

some compound-specific parameters. In such cases, the latter are estimated from appropriate 

experimental data. 

However, one should keep in mind that the initial “drug-independent” PBPK model, 

using literature, organ size, and blood flow values as its parameter values, is a concrete 

hypothesis (or a collection of assumptions) about the referent anatomy and physiology that is 

rarely, if ever, challenged. The referent mammal will differ from this idealized PBPK model in 

several ways. Thus, the resultant “drug-specific” parameterizations from data-fitting procedures 

necessarily conflate two things: 1) the behavioral phenotype of the drug in the idealized PBPK 

model, and 2) the unknown differences between the referent organism's actual physiological 

features and those specified for that initial idealized PBPK model. 

PBPK modeling is thought to have an extended domain of applicability compared to that 

of classical empirical function-based, pharmacokinetic models, especially in pharmaceutical 

research and toxicity risk assessments. (Nestorov, 2003) However, there are important barriers to 

seeing PBPK modeling developed and implemented to its full potential. First, developing a PBPK 

model requires a large amount of information, both precise data and extensive knowledge, that is 

not always available, especially during the early drug development phase. Second, PBPK 

modeling requires complex and multidimensional model structures, and is thus methodologically, 

numerically, and computationally much more demanding compared with conventional empirical 

pharmacokinetic modeling. As a consequence, the successful development and implementation of 

a PBPK model is seen to require the investment of significant experience, effort, time, and 

resources.  
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2.4. Synthetic analogues as in silico pharmacokinetic systems  

I now summarize the key features and principles used in developing and instantiating a 

synthetic, mechanistic model of a referent pharmacokinetic system. Two detailed 

implementations, the recirculating in silico livers (RISL) and the in silico experimental Caco-2 

cell monolayers (ISECC), are presented in detail in the following chapters.   

The process of building synthetic analogues to referent pharmacokinetic systems is 

generalizable. The process is illustrated on the right side of Fig. 2.1. Because all models designed 

to have extended life cycles are usage oriented, an essential first step is to specify the planned 

uses of the model. That includes specifying a set of model-related capabilities that the analogue 

system would be expected to exhibit; Table 2.1 is one example. These capabilities are important 

because synthetic analogues will be used and refined iteratively. In addition, an initial set of 

targeted, phenotypic attributes is specified that the analogue is expected to exhibit and possibly 

mimic. Initially, that set may simply include having components that map qualitatively to specific 

anatomical features and measures of the simulation that map quantitatively to observed profile 

levels of a drug and its metabolite(s). The expectation is that the set of targeted attributes can be 

expanded and the analogue can be iteratively revised so that its new phenotype includes the 

expanded set of attributes.   

The next task is to specify an initial level of mechanistic resolution. It should be no more 

detailed than is needed to achieve the initially targeted attributes. An abstract mechanistic 

description of the system is created that is likely different from an inductive model such as a 

PBPK model. This initial inductive process is similar to that for traditional PBPK modeling, 

except that current knowledge about the experimental system and biological tissue and the 

available data play an even more prominent role in providing detailed specification of that 

mechanistic description.     
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Table 2.1 List of capabilities that synthetic analogues are expected to exhibit 

Analogue capabilities needed to bridge the gap in Fig 1.1 

As engineered devices, what characteristics must a gap-spanning synthetic analogue 

exhibit to achieve the vision presented in chapter 1? They must exhibit the eight capabilities 

listed below. The challenge is to design, build, and validate such analogues.   

1. Transparency: Simulation details, as they unfold, need to be visualizable, measurable, and 

comparable to those of referent wet-lab and animal systems.  

2. Experimental indistinguishability: Measurements of analogue attributes made during 

execution are, to wet-lab domain experts (at a comparable level of abstraction), 

indistinguishable experimentally from measurements made on a referent wet-lab model 

during experimentation.  

3. Mappings: Observables in silico, including components, are designed to be consistent 

with in vitro and in vivo observables. Doing so enables clear, iteratively concretizable 

mappings (Fig. 2.1; right side) between in vitro and in silico components and mechanisms. 

4. Local mechanisms: As in wet-lab systems, the simulated physiological behaviors and 

measurements that emerge during execution (Fig. 2.1, mapping A) are the consequences 

of local mechanisms—local component interactions. Components can be heterogeneous.  

5. Reusability: Analogue components can be made quasi-autonomous, when needed, and 

thus can be easily reconfigured to represent different mechanistic hypotheses, aspects of 

the referent wet-lab system, and experimental conditions.  

6. Flexibility: Because system aspects of interest will change, it must be relatively simple to 

increase or decrease the granularity of any analogue aspect in order to simulate an 

additional phenotypic attribute or change usage and assumptions, as new wet-lab 

observations become available or the space of targeted attributes expands.  

7. Adaptability: Analogous to how object-oriented programming makes software objects 

more adaptable, the components and the system itself should be constructed so that they 

can be adapted easily to function as components in other analogues.    

8. Components articulate: To study alternate mechanistic hypotheses and to better 

understand normal-to-disease transitions and differences between individuals, it must be 

easy to construct—to synthesize—alternative systems and transform them during 

simulations. Doing so requires that it be easy to join, disconnect, and replace components, 

both vertically and horizontally, without having to significantly reengineer the system.   
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Abstract software components, intended to represent the referent components at an 

appropriate level of granularity, are designed, coded, and verified, guided by the abstract 

mechanistic description. The product of the process is a collection of software components. A 

clear mapping is hypothesized to exist between these components and how they can be plugged 

together, and physiological and anatomical details in the referent. The relative similarity of those 

assembled components to wet-lab components and mechanisms is controlled in part by 

parameterizations. The stochastic nature of those parameterizations provides a built-in degree of 

uncertainty that can stand as a counterpart to the inherent uncertainty in repeated wet-lab 

experiments. The mapping from this assembly of components to the biological components and 

mechanisms is not conceptual; it can be made increasingly concrete by iterative refinements. 

The components are plugged together by the researcher within a software framework that 

is also capable of managing the conduct of automated experiments. Two examples are SWARM 

package (www.swarm.org) and the MASON Multiagent Simulation Toolkit 

(cs.gmu.edu/~eclab/projects/mason/). The resulting compiled source code will be both framework 

and designer dependent. One cannot directly compare an executable model to data. One must take 

measurements from the executing model just as one does during execution of a liver perfusion 

experiment. The two sets of measures may then be compared. The recordable events occurring 

during execution are caused by the autonomous operation of the components. Together, they 

comprise a working implementation. Because the abstract mechanistic description is not intended 

to be a perfectly consistent theoretical construct, in contrast to a system of equations, we refer to 

its implementation as an analogue in order to emphasize that we will learn about its behavior 

largely through experimentation rather than theoretical inference.   

The analogue is intended to represent the dynamics that are believed to occur within the 

liver during an experiment. Hypothesized mappings exist between analogue dynamics and the 

dynamics of hepatic components during a perfusion experiment. Additional mapping exists 
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between analogue dynamics and the unique dynamics and properties of the components 

representing drugs and metabolites, for example, which have been introduced during a simulated 

perfusion experiment.    

Because most event details, as they unfold, are based on random number draws, 

simulation details are effectively nondeterministic, and can be viewed, recorded, and measured in 

a variety of ways. Measurements intended to mimic those carried out during the wet-lab 

experiment provide time series data. Analogous to measurements from experimental models, 

results from simulations are a filtrate of events that occurred within the hardware during 

execution of analogue. The expectation is that during validation, a subset of component 

parameterizations will be identified that lead to simulated aspects that are similar in measurable 

ways to the experiments. Metrics are then specified to measure the degree of similarity between 

simulated output and the wet-lab data. Those metrics provide a concrete mapping between them.   

Note that the synthetic model is a concretized (instantiated) mechanistic hypothesis.  

Execution shows that it either does or does not function as expected, or that it either does or does 

not cause the emergence of phenomena that fall within a pre-specified range of referent 

phenomena. If it failed to produce the targeted phenomena, the mechanistic hypothesis can be 

rejected; otherwise, it can be subjected to further validation or falsification.   

2.5. Summary 

The computational pharmacokinetic models reported in the literature, traditional 

inductive, or synthetic, string together several distinctly different yet equally important types of 

models. Ideally, the specifics of each of the models and the assumptions on which each is based 

are made clear in order to facilitate comparisons among pharmacokinetic models and the 

inferences enabled by their use. Figure 2.1 shows how approaches of inductive and synthetic 

pharmacokinetic modeling follow a somewhat different process and use different methods. The 

list of capabilities desired of synthetic pharmacokinetic models reflects the different intended uses 
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of that class of models and their components, which focuses in part on gaining deeper insight 

iteratively into the relevant causal mechanistic details underlying and accounting for the unique, 

individual-specific, pharmacokinetic and pharmacodynamic properties of different drugs.   
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3. Relational Analogues of Pharmacokinetic Systems 

3.1. Introduction 

In this chapter I detail my effort in using the synthetic modeling and simulation method 

to build In Silico Pharmacokinetic Systems that are analogues of biological components in 

common pharmacokinetic experiments.  The synthetic modeling and simulation method provides 

a means of developing a scientific, experimental approach to unraveling and understanding some 

of the complexities of pharmacokinetic phenomena observed in experiments.  I plugged together 

validated, quasi-autonomous software components to form abstract, but mechanistically realistic 

analogues of wet-lab experimental into which one could add objects representing drugs, alone or 

in combination.  It is noteworthy that when I started this work, there were no methods or 

protocols on how to proceed.  I was moving into uncharted scientific territory.  This chapter 

presents implementation details and logic, as well as evidence of verification and validation.  

They provide foundations on which the Recirculating In Silico Liver (RISL) and the In Silico 

Experimental Caco-2 Cell Monolayer Cultures (ISECC) are built.   
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To distinguish clearly in silico components and processes from corresponding biological 

components and processes, I use SMALL CAPS when referring to the former, and italics denote in 

silico analogues’ parameters, variables and internal states. 

It should be emphasized that I have not tried to describe how the specific, detailed events 

responsible, at multiple levels, for the pharmacokinetic data observed occurred within those 

referent experiments.  That cannot be done: the precise knowledge needed to do so is simply not 

available.  What I did is diagrammed on the right of Fig. 2.1 in chapter 2.  I built an abstract, 

analogue systems in software, using autonomous components, with the expectation that measures 

of their behaviors, following the referent experimental protocols, would be sufficiently similar to 

the referent data so that in silico mechanisms could stand as a plausible hypothesis for what may 

have occurred during those experiments.  Individual in silico mechanisms were not intended to be 

1:1 physical or chemical descriptions of referent events (again, I lack the detailed knowledge).  

Because the in silico pharmacokinetic system is abstract, so must be its mechanisms.  Rather, my 

intent has been that in silico mechanisms map logically and intuitively to referent events.  For 

example, if it is known that a drug had to cross at least one biological barrier to access metabolic 

enzymes in order to undergo metabolism, then I specified that the same must be true within the in 

silico pharmacokinetic system.  Logically, I also wanted to draw as extensively as possible from 

accepted knowledge and theory in building mechanisms, and I wanted my constructed objects to 

behave consistent with current knowledge and theory.  For example, if it is known that a referent 

compound in its ionized state cannot cross biological barriers at physiological pH, then I expected 

the same behavior from an in silico COMPOUND.  Initial component verification (the components 

works the way it has been designed to work) and face validation (component function based on 

performance during simulation is judged reasonable by domain experts) therefore consisted of 

providing evidence that the in silico component (and its mechanism) exhibit behavior consistent 

with current information and knowledge.  The efforts below built on earlier verification and 
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validation (against wet-lab data) experiments (Liu and Hunt, 2006), (Garmire et al., 2007), and I 

incorporate those results by reference.   

In addition, I make the case for building these analogues as internally relationally 

grounded.  So doing was a new undertaking.  The components of biological mechanisms are 

grounded to each other. The grounding of cellular components to each other and their 

environment is independent of any measures. From that fact, I can infer that analogues that bridge 

the gap in Fig 1.1 in chapter 1 will exhibit similar grounding. We measure wet-lab phenomena 

using metric devices. We cannot use those same devices to measure events during simulations. 

 A relationally-grounded model is one in which events, parameters and measurements are 

always relative to other components within the model; they are free of any referent system 

dimensions and independent of referent experimental data.  The components and processes in 

synthetic models need not have units assigned.   Instead, in relational grounding each constituent 

is grounded to a proper subset of other constituents. Relational grounding enables synthesizing 

flexible, easily adaptable analogues; it avoids the complications to combine metric space-

grounded components and models.   

However, a separate mapping model is needed to relate analogue to referent phenotypic 

attributes.  An in silico experimental protocol is devised to take measurements during simulations 

and to map them to referent experimental data.  A separate method is required to map in silico 

parameters to biological counterparts.  Different wet-lab experimental protocols require different 

in silico experimental protocol that can use the same relational analogue.  For verification and 

validation purposes, that requires that a separate scaling mapping to relate in silico events to 

referent events.  Doing so required the additional verification experiments detailed in this chapter.   
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3.2. Objective and approach 

My objective was to devise a fully relational analogue that would represent a single 

parameterized set of multi-level mechanisms that together would provide one plausible 

explanation for the observations in the two referent experiments (Lau et al., 2004) and (Mouly et 

al., 2004),  while achieving a stringent measure of similarity.  I sought an actual, relational and 

experiment-independent working mechanism—an analogue—comprised of quasi-autonomous 

processes and components, as well as local interactions between them.  When measured during 

execution, the analogue would give time course data similar to wet-lab data presented in referent 

experiments.   

Traditional PK modeling uses continuous macroscopic descriptions such as concentration 

and reaction rates.  I parameterized processes using unit-less, quantities such as fraction of dose 

and probabilities of events.  The following provides detailed description of model structure, each 

of its components, parameters, internal logic and implementation.  I highlight the relational 

features in my approach.  

During analogue design, a focus was also on simplicity.  I adopted a parsimonious 

standard modeling and simulation guideline: always prefer the simpler mechanism until evidence 

is obtained that falsifies the simpler mechanism.  Consequently, I thoroughly explored 

parameterizations for the simplest case before making the mechanism more complicated.   

Take the RISL as an example.  How simple or complex must a device be to represent the 

liver during recirculating perfusion experiments, when sampling times are several minutes apart?  

The answer depends on intended use and especially the referent data being simulated.  Hunt et al. 

(2006) and Yan et al. (2007; 2008) describe an In Silico Liver comprised of similarly constructed 

LOBULES.  Each LOBULE is comprised of several multi-level agents called Sinusoid Segments 

arranged into a network that forms three zones.  That level of detail (system granularity) was 

supported by the referent wet-lab data against which their simulations validated.  That data came 
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from single pass liver perfusion studies: outflow was collected and analyzed every few seconds.  

However, for experimental designs similar to the recalculating system used in the referent 

experiments of the RISL (Lau et al., 2004), more abstract, simplified representations have 

sufficed (Booth et al., 1996; Booth et al., 1998; Tirona and Pang, 1999; Matsuura et al., 2001), 

because rates of drug level change within lobular spaces are slowed when perfusate recalculates 

compared to single pass perfusions.  I therefore inferred that neither zonation nor different 

Sinusoid Segment types would be needed to achieve my objective.  Results of subsequent in 

silico experiments supported that inference.  The resulting analogue has several features in 

common with the In Silico Transwell Device (Liu and Hunt, 2006; Garmire et al., 2007).  The In 

Silico Liver cited above was designed to exhibit ten capabilities, similar to the ones listed in table 

2.1 in chapter 2.  The following five are especially relevant:  

• It must be easy to reconfigure and reuse an analogue to represent different histological, 

physiological, or experimental conditions.  

• In order to represent particular specifics of different experiments, it must be relatively 

simple to change analogue usage and assumptions, and increase or decrease detail, 

without requiring significant re-engineering.  

• To facilitate the two preceding capabilities, it must be easy to join, disconnect, and 

replace in silico components: the components articulate easily.  

• It must be straightforward to separately validate components, and that is facilitated by 

making simulation details visualizable and measurable.  Consequently, the analogues 

must be transparent.  

• The analogues must be usable for simulating the disposition, clearance, and metabolic 

properties of a wide variety of compounds, separately or in the same experiment. 
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3.3. Space and discretization  

To represent physical space, I specified intuitive, toroidal grids of ELEMENTS, and 

identified each with a (x,y) coordinate.  Each ELEMENT had eight neighboring ELEMENTS.  The 

grid structure defined the analogues’ relative spaces.   I did not specify the location, shape, 

capacity, dimension or physical volume of each ELEMENT.  Rather, they were all relative.  

Location of each ELEMENT was relative to its eight neighboring ELEMENTS, as well as stationery 

objects in the neighborhood.  Shape was indefinite.     

ELEMENTS can be made different from others within the same space, should the need 

arise. ELEMENTS can have different internal properties (e.g., simulating a more lipophilic or 

acidic region), enabling, for example, heterogeneous environment, such as the one implemented 

in ISECC.    

The potential of discretization decisions and specifications to create artifacts that damage 

the model’s ability to mimic the referent were taken into consideration during design and final 

specification of in silico components.  The following are illustrative.  The extracellular, intra-

sinusoidal region is an infinitely divisible, continuous space.  The same is true for the 

extracellular, apical compartment of a Transwell device.   The path of a compound within would 

appear smooth at any achievable level of resolution.  Within the corresponding in silico spaces, 

the spaces are represented using 2500 elements arranged in two-dimensional, toroidal grids 

having identical granularities: from one simulation cycle to the next, a COMPOUND’S location is 

fixed.  The number of grid spaces and the time interval to which a simulation cycle maps needed 

to be specified so that the discretized space and movement have been sufficiently smoothed to 

avoid artifacts; such discretization decisions can impact the ability of the analogue to mimic the 

referent.  Processes that are very fast (relative to the sampling interval), such partitioning and 

binding are treated as events, and so discretization of that process into an instantaneous event has 

no impact on the ability of the model to mimic the referent.  METABOLISM and TRANSPORT are 
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somewhat slower and are believed to involve several steps.  However, relative to the key events 

being simulated—the change in perfusate levels of COMPOUND and METABOLITE at intervals of 

minutes, they too can be treated as events, for which the detailed chemistry is ignored.  Such 

discretization does not create any artifacts that damage the analogues’ ability to mimic the 

referent.  Importantly, it is straightforward to increase granularity (detail) when that is needed.  

3.4. Selecting the number of Monte-Carlo simulations   

Each Monte Carlo run (analogue execution) is an experiment.  Early in the simulation 

exercise, I decided on the number needed to represent the mean analogue behavior for a given 

parameterization.  Here, I show the data supporting my decision to use at least six Monte-Carlo 

experiments.  

Using an early RISL, I ran 50 repeat experiments.  For each, I made measurements of 

PERFUSATE DIGOXIN and METABOLITE levels at simulation cycles 5, 10, and 20.  I then calculated 

their cumulative average.  Results are presented in Fig. 3.1.  They shows that the cumulative 

averages do not change significantly after n = 6.  
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Figure 3.1.  Cumulative averages of 50 experiments.  Cumulative average of up to 50 repeated runs.  A 

(from top): PERFUSATE DIGOXIN after 5, 10, and 20 simulation cycles, B (from bottom) PERFUSATE 

METABOLITE after 5, 10 and 20 simulation cycles.  X-axis, number of repeated runs included in the 

cumulative average; Y-axis, cumulative average of fraction of administered DOSE.  The graphs show that 

the average of only 6 runs (oversized data point) is an acceptable approximation of average of 50 runs.    



 53 

3.5. Probabilistic parameter values  

Most events, such as a COMPOUND binding to ENZYME, were probabilistic.  When an 

event option arose, a pseudo-random number (PRN) was drawn from a uniform 0–1distribution.  

The PRN was compared to that of the probability parameter to decide what action to take.  For 

example, if the PRN was less than the value assigned to assocProb, the event occurred.  Else, it 

did not.   

By drawing on the body of knowledge available for each event, I can select a likely initial 

range for each parameter value.  For example, if a drug is known to have an above average 

affinity for CYP3A4, then I can infer the following.  The probability of binding for any drug 

molecule that is in close proximity to CYP3A4 within a 10 second interval will likely be in the 

range 0.6–1.0.  Absent any other information, I can start with a value of 0.8, for example, and 

then adjust it to improve the degree to which simulated and referent observables match.  The 

width of the initially considered range contracts or expands based on prior knowledge or lack 

thereof.  Because of the networked nature of the many independent, probabilistic events (the 

outcome at the end of each simulation cycle emerges as a property of them all), precise values of 

each parameter are not as critical as is often required with traditional, inductive, equation based 

models.  A 5% change in the value of the key analogue probabilistic parameters did not typically 

produce a statistically significant change in a measured system level behavior, especially when 

the number of replicate simulations is kept small, six in this case (examples are provided in the 

section parameter sensitivities, and in Fig 3.6).  

If uncertainty about the parameter’s value is complete, I can simply assign a new random 

value for each event.  So doing marginally increases simulation variance, but it also provides an 

objective means of dealing with uncertainties, which is an advantage of this modeling and 

simulation approach.  By drawing on prior experience in validating similar analogues, several of 
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my initial parameter estimates proved adequate to achieve my objective.  Because the reference 

data were unique, I elected not to undertake parameter fine-tuning.  

By using a uniform distribution with variable frequency parameters throughout the 

simulation, I added uncertainty that maps to my ignorance about many of the details that are 

below my level of resolution. Assumptions about frequency values were separated from, and 

external to the analogues.  Although PRNs were drawn from uniform distribution, the 

probabilistic parameter values controlled the frequency of event occurrence that mapped to 

biological reaction rates and biases.   

3.6. Stationary objects: TRANSPORTERS, BINDERS, and ENZYMES   

I designed and used three classes of stationary, active, quasi-autonomous objects.  One 

mapped to subcellular processes responsible for transport.  The second, ENZYME (or CYP) mapped 

to subcellular processes (that include CYP3A) responsible for drug metabolism.  The third class 

was BINDERS; they mapped to anything within a cell or perfusate that might bind or sequester 

compounds.  However, the details of TRANSPORTERS, BINDERS, and ENZYMES operations were 

below the level of resolution and so do not map to biochemical counterparts.   

Each simulation cycle, each TRANSPORTER, BINDER, ENZYME follows specified logic to 

select the action or actions to take based on its local environment. Researchers have validated and 

used similar ENZYME and TRANSPORTER agents in different contexts (Liu and Hunt, 2006; Sheikh-

Bahaei and Hunt, 2006; Garmire et al., 2007; Yan et al., 2008; Garmire and Hunt, 2008).  CYPS 

can have multiple active and regulatory sites.  However, for simplicity, the analogues RISLs and 

ISECCs do not use the latter.  Each CYP scans each COMPOUND in its neighborhood to determine 

which have non-zero values of assocProb; for those that do, there is an opportunity during that 

same cycle for binding.  A CYP can bind any COMPOUND that has a non-zero assocProb, whether it 

is a substrate or not.  However, only substrates are METABOLIZED.  Each CYP may bind multiple 
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COMPOUNDS; the maximum number is controlled by the parameter maxSites.  Following that, each 

CYP has an opportunity to METABOLIZE a bound COMPOUND. 

The binding sites within a CYP are identical and independent.  However, details of CYP 

operations are below the level of mechanistic resolution and so do not map to biochemical 

counterparts.  At the start of a simulation, all CYPS are assigned randomly to elements within S3 

(intracellular space).  Each simulation cycle, each CYP steps through its assigned logic to 

determine what action to take.  The logic (diagrammed in Fig. 3.2B) and its use can be 

summarized as follows.  A CYP examines its adjacent neighborhood.  Neighborhood size is 

controlled by a parameter (sitesN).  The probability that a CYP-DRUG binding event will occur for 

any DRUG within a CYP’S neighborhood is governed by assocProb, the value of which maps to 

affinity.   

The logic used by TRANSPORTERS (PGP and OAT), diagrammed in Fig. 3.2A, can be 

summarized as follows.  Each cycle, they first scan for COMPOUNDS in their neighborhood.  

Binding is next.  A PGP or OAT, like CYP, can bind anything that has a non-zero assocProb.  A 

PRN is drawn from a uniform [0-1) distribution.  If its value is less than assocProb, the 

COMPOUND is bound.  That process repeats for the next unoccupied site, and so on. The 

maximum number of bound COMPOUND is specified by the parameter maxSites.  Then, they 

determine if each COMPOUND bound earlier will be released.  That probability is controlled by the 

parameter releaseProb.  For an inhibitor, that probability is small.  When it is decided to release 

the bound COMPOUND, the PGP (or OAT) can release it into the space of origin, such as S3 (S1 for 

OAT), or into the destination adjacent space, such as S5 in RISLs, and S1 in ISECCs (S3 for OAT).  

However, only substrates are TRANSPORTED (RELEASED) to the destination space.  The 

probability of releasing SUBSTRATE into the space of destination is controlled by (TRANSPORT) 

efficiencyProb.  
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Unlike traditional models, which parameterize binding and dissociation with affinity and 

Figure 3.2.  Internal logic used each cycle by TRANSPORTERS (A), ENZYMES (B), BINDERS (C) and 

COMPOUND (D).  The internal logic of TRANSPORTERS, ENZYMES and BINDERS is similar.  First, each 

decides whether it can bind A COMPOUND within its local neighborhood (neighborhood size is specified by 

siteN).  BINDING is probabilistic.  The value of assocProb maps to the compound’s affinity for its binding 

partner.  When a PRN < assocProb binding occurs.  When multiple COMPOUNDS are within a 

neighborhood, the process continues until all COMPOUNDS have had one opportunity to bind.  A: A 

TRANSPORTER first decides whether or not to release the bound COMPOUND.  If PRN < releaseProb, it 

selects a location to place the COMPOUND.  When the COMPOUND is a SUBSTRATE and PRN < 

efficiencyProb the COMPOUND is transported to a destination (across the barrier).  Otherwise, the 

COMPOUND is released to the space from which it was bound.  B: Each CYP first decides whether or not to 

METABOLIZE a bound COMPOUND.  When PRN < efficiencyProb it is METABOLIZED.  If PRN < releaseProb, 

the bound object may be released.  C: A binder’s internal logic is similar to that of a CYP, except there is no 

METABOLISM step.  D: The logic used by mobile objects to move about is divided into two phases: 1) lateral 

movement within the same space, which simulates dispersion, and 2) transition to a neighboring space, 

representing passive permeation.  A COMPOUND will use different transit rules depending on the space in 

which it is located.  A COMPOUND bound to stationery objects is not given an opportunity to relocate during 

that cycle (even when it gets released during that cycle).  In RISLs, COMPOUNDS that transition to BILE (S5) 

are not given an opportunity to return; they are REMOVED.  In ISECCs, COMPOUNDS follow additional 

movement rules when being in S3 (intracellular); the rules are detailed in chapter 5.    
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dissociation constants expressed in concentration terms, which are invariably macroscopic, I 

implemented a microscopic, relational view.  I held that molecular events were probabilistic, and 

molecules had no knowledge about the whole system.  Local concentration was replaced by 

(amount of) substrate, which was in (close enough to) the stationary objects’ local neighborhood, 

whose size (measured in ELEMENTS) was controlled by the parameter sitesN. Binding affinity 

mapped to probability of association (assocProb), the probability of having a binding event 

within the current time step when a COMPOUND was in the stationary object’s neighborhood.  

Dissociation constant mapped to probability of release (releaseProb), the probability of release of 

a bound COMPOUND from a stationary object within the current time step.  These two probability 

parameters governed BINDING and RELEASE: if PRN < assocProb (releaseProb), BINDING 

(RELEASE) event occurs, otherwise, there was no BINDING (RELEASE).    

Similarly, I used the dimensionless parameter efficiencyProb to represent a dimensioned 

rate of reaction.  The frequency at which METABOLISM occurred was controlled by this tunable 

parameter.  Only compounds that were flagged substrate (isaSubstrate) of the CYP were 

METABOLIZED.  If PRN < efficiencyProb, METABOLISM occurred, otherwise, there is no 

METABOLISM.  For TRANSPORTER, efficiencyProb controls the frequency of substrate released 

into the space of destination.  If PRN < efficiencyProb, the substrate is released to the destination 

space; otherwise it was returned to the original space.  When TRANSPORTER found and bound a 

non-substrate, such as an INHIBITOR, it was always released in a subsequent simulation cycle to 

the space from which it was bound.   

Although binding affinity and assocProb were related, a quantitative direct scaling 

between them, as well as between other analogous pairs, was outside the scope of this dissertation.   

3.7. Probability scaling 

Consider a probabilistic event X.  The probability of its occurrence during a simulation 

cycle is Pold(X) = 0.3.  Assume that one simulation cycle (the “old” cycle) maps to 1 second.  
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Suppose I desire to span more wet-lab time with one simulation cycle.  I want one new simulation 

cycle to map to 4 seconds: the process is to be scaled up by a factor (SF) of 4.  What is the new 

probability Pscaled(X) for the same event within the new simulation cycle?  

Increasing Pold(X) by SF yields an incorrect result:  

12.1)(P4)(P oldscaled >=×= XX  

Instead, I allow four trials of the probabilistic event within one, new cycle.  If the new 

simulation cycle maps to an event interval that is four times longer than with the original 

simulation cycle, then the original event is now being given four options to occur.  After four 

options, the probability of Pscaled(not X) is therefore 

( )4oldscaled )(P1)(~P XX −=  

So,  

( ) ( ) 76.03.011)(P11

)(~P1)(P
44

old

scaledscaled

=−−=−−=

−=

X

XX
 

It is easiest to understand when SF is a positive integer.  The same can be generalized to 

any positive number of scaling factor (SF).   

( )SFXX )(P11)(P oldscaled −−=  

For SF > 1, Pscaled(X) > Pold(X), so the process is sped up; for 0 < SF < 1, the Pscaled(X) < 

Pold(X), so the process is slowed down. 

The relationship is used to scale probabilities relative to the time to which a simulation 

cycle maps and other COMPOUND-PROTEIN interactions.  The parameter timestepfactor is the 

factor used to scale all transit probability initial estimates.  
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The same relationship was used for time-variant parameters when I required that the 

probabilistic event of interest needed to “speed up” or “slow down.”  In RISL presented in 

chapter 4, the time-variant parameters closeToInterface, which specifies fraction transitional, and 

CYP’S efficiencyProb are both time-dependent.  In the next chapter, fig. 4.4 shows them being 

scaled down from their initial value using the above relationship, with the value of SF decreasing.   

3.8. Mobile objects and their movement  

A COMPOUND (DRUG or METABOLITE) was a mobile, autonomous object that mapped to a 

small fraction of the drug added to perfusate (RISL) or dosing compartment (ISECC) at t = 0, or, 

in the case of METABOLITE, was generated during simulations. I included only objects that proved 

necessary to achieve my objective.  Unlike traditional PK models, new components can be added 

without interfering with the function of those already present.  As in previous reports (Hunt et al., 

2006; Yan et al., 2008a) one COMPOUND mapped to a large but unspecified number of actual 

referent molecules.  Amount of COMPOUND is expressed in terms of fraction of total COMPOUND 

used.  Doing so avoided specifying an amount scale.    

3.8.1. Passive dispersion 

Each COMPOUND had a chance during each simulation cycle to disperse passively within 

its current space.  In order to simplify implementation, within the same space, all ELEMENTS, each 

specified by a (x,y) coordinate, were treated as being identical, and having no particular shape, 

volume or absolute location.  I used toroidal spaces to eliminate edge effects: a COMPOUND going 

out of a space to the right (or top) reappeared on the left (or bottom) and vice versa.  During that 

simulation cycle, a COMPOUND in an ELEMENT has equal chance to moving to any one of its eight 

neighboring ELEMENTS, or to staying within its current ELEMENT.  Doing so has enabled us to 

track specific COMPOUNDS, should that be desired for later verification or face validation 

purposes.  
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During a simulation cycle, each COMPOUND generates an integer PRN between 1-9, 

inclusive.  A COMPOUND currently in ELEMENT (x, y) will move to the new location in the 

diagram below.  

Coordinate x – 1 x x + 1 

y – 1 PRN = 1 PRN = 2 PRN = 3 

y PRN = 4 PRN = 5 PRN = 6 

y + 1 PRN = 7 PRN = 8 PRN = 9 

An alternative implementation would have been to relocate each COMPOUND randomly 

during each simulation cycle.  The end-result is the same.  The disadvantage of the latter is that it 

would be more difficult to track a particular COMPOUND.  

COMPOUND relocations are independent events.  Each ELEMENT can hold any number of 

COMPOUNDS.  When moving within a space, a COMPOUND does not consider the number of 

COMPOUNDS in the target ELEMENT.  Because COMPOUNDS are placed randomly at the start of an 

experiment, there is no need for that additional complication.  

Movement, or relocation, within a grid was relative to the location of stationery objects 

and their respective neighborhood.  To adhere to the principle of local interactions, COMPOUND 

relocation depended upon local environment, and did not use global information, except for 

simulation time.  Hence, unlike many other model approaches, I did not use a specific diffusion 

algorithm.  Moreover, using a diffusion algorithm would attach a dimension scale to the spaces, 

and prevent them from being relationally grounded.   

3.8.2. Passive transition 

Each COMPOUND gets a chance to PARTITION passively into or out of a MEMBRANOUS 

space (S2 or S4) during each simulation cycle.  Although numerous models are available to 

characterize in vitro passive permeability, none have been validated in a complex in vivo system 

such as the recirculating isolated perfused rat liver.  Absent reliable values, and given the 



 61 

relational analogue design, I needed a method to arrive logically at initial rates of passive 

transition.  I formulated the following approach by adapting established physicochemical models.  

The following is a list of specifications made to enable arriving at initial estimates, which may or 

may not need to be adjusted subsequently during analogue tuning.  

• In the referent system, a compound must be sufficiently close to the aqueous-

membranous interface such that within the time interval corresponding to a simulation 

cycle the compound can reach the membrane (or aqueous space).  In the analogues, I 

labeled each compound with a state variable transitional, and used a parameter 

(closeToInterface) to specify whether the compound was sufficiently close to an interface.    

• Compound exists in multiple physicochemical states in aqueous media, some of which 

have greater intrinsic permeabilities.  Being charged compromises permeability. When 

estimating initial transit probabilities for the analogues, I take into account the referent 

compound’s expected differential permeability. 

• Chemical structure (functional groups), together with composition and properties of the 

resident medium, such as pH, ionic strength etc, affects the relative abundance of 

physicochemical states, thus influencing overall permeability.  In the analogues, I used 

parameter insilicoPH for the spaces as an analogous measure of the tendency of 

compound being less permeable (ionized) in that particular space.  Each compound also 

has in silico pKa’s that reflect the referent compound’s tendency to become less 

permeable (ionized) in particular media.   

• Compound size also influences rates of permeation: the larger the compound, the less 

permeable.  I used the referent compound’s molecular weight as a surrogate measure of 

size in affecting permeation in the RISL.   

• Within the time interval corresponding to a simulation cycle, compound within a small 

volume on either side of a permeable cell barrier will have equilibrated, all other factors 
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being held constant.  As a result, the ratio of concentrations within the two adjacent 

spaces relates directly to the probability of finding a molecule in each space by the end of 

the next simulation cycle, which in turn gives the probability of transit during the cycle.    

I use terms and methods such as the Henderson-Hasselbalch equation in order to draw as 

often as possible from established knowledge and accepted methods.  I fully appreciate that 

applicability of these models have not been validated within complex biological systems (such as 

recirculating isolated rat liver) and that many of the measures (such as pH within of the 

intracellular matrix) are not well-defined and cannot be measured or validated during a perfusion 

experiment.  Using these models and methods to make initial parameter estimates may handicap 

the analogues with unverifiable assumptions.  However, I accepted that risk because I believe that 

I can limit risk by drawing on established theory as the logical first step.  To date, the resulting 

initial estimates of transit probabilities have proven to be adequate for achieving my goal of 

implementing plausible mechanisms.  Multiple approaches are feasible, and as part of future 

projects, I intend to explore alternatives.  Garmire et al. (2007) presented an alternate approach, 

one that was designed not to be fully relational, yet it works well in the context of the model used.   

As presented, I estimated probabilities of transiting from one space to another 

(transitProb) from physicochemical models, not from extrapolation from literature values of 

experimental permeability, which are scaled and experiment-dependent.  An algorithm to adjust 

probabilities for time-step duration was implemented.  All probabilities were relative to time-step 

duration.  Here, using a relational movement design allowed us to change the model of estimating 

percolation and permeation probabilities independent of other analogue components.  They can 

be separately validated and modified as needed. This important flexibility allowed us to reuse the 

same validated components in a different referent system.   
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3.8.3. Initial estimates of transit probabilities 

The following is the physicochemical model used to obtain initial estimates of transit 

probabilities.  These transit probabilities govern the likelihood of passive transition from one 

space to another when the COMPOUND is in the transitional state (specified as being close to 

interface).  

Consider a multi-protic acidic compound A (HxA) in space S, having pH = pHS.  Define  
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Let PN be the partition coefficient of the neutral or most permeable specie, HxA. 

Define the distribution coefficient DS between a space containing a cell membrane M and 

aqueous space S,  

S space aqueousin A  drug of species all ofamount 

M space membranein A  drug of species all ofamount 
=SD  
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Assuming the partition coefficient of all ionized species to be kPN, k < 1. 
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Analogously, for COMPOUND A, the in silico analogue of real drug A, I have analogous in 

silico parameters, logP (a measure of PN), pKa, and insilicoPH.  Using these in silico parameters 

reflecting physicochemical properties, I calculate an in silico DS  for COMPOUND A. In the 

analogues, I used k = 0.001.   

Define transit probability (transitProb) from an AQUEOUS SPACE S (such as S1, S3, and 

S5 in Fig. 2) to a space M containing a MEMBRANE (such as S2 and S4 in Fig. 2), p(S→M), be the 

probability that COMPOUND A transitions from S to M within the current simulation cycle.  

Specify that the interval during which the referent transition would have actually 

occurred is smaller than a simulation cycle.  Also specify that the in silico effective size of 

COMPOUND A is inversely proportional to the square-root of the value of the molecular weight 

property assigned to COMPOUND A (MWA).  
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These initial transit probability values may be adjusted (scaled) for use with simulation 

cycles that map to different wet-lab times by the parameter timestepfactor, using the probability 

scaling method described above.  Within the RISL,  timestepfactor = 2 (3.3 in ISECC).   

ctortimestepfa
oldscaled PP )1(1 −−=  

 

3.8.4. Relationship between COMPOUND (physicochemical) 
properties and initial transit probability estimates   

I investigated the consequences of changing COMPOUND (physicochemical) property 

values on initial measures of transit probability to verify that transit probability estimates behaved 

consistent with theory.  I used DIGOXIN, RIFAMPICIN, QUINIDINE and DIGOXIN METABOLITE (these 

were used in the RISLs).  I adjusted one of their properties (for example, MW) over a range of 

values, while holding the others (logP, and insilicoph) constant.  When conducting the 

experiments, I removed all transporters and time-variant processes.  I measured initial 

permeability across a single barrier: the number of COMPOUNDS that reached S3 from S1 after 20 

simulation cycles.  The results presented in Fig. 3.3 are consistent with the above 

physicochemical models used to derive the initial transit probability estimates.   

3.8.5. Movements of compounds   

What is the probability that during a 10 second interval within a perfused liver, or within 

a Transwell system, that a compound will be close enough to an interface to transition (partition) 

passively from one space to another?  An answer can only be an approximation.  In the analogue, 

that probability is specified by the parameter closetoInterface.  If close, the probability of actually 

transiting is specified by transitProb.  After making several assumptions about microarchitectural 

details of cell monolayers, Garmire et al. (2007) used estimates of the relative size of cellular 

spaces and the known properties of compounds to estimate a compound’s relative intracellular 

location and likelihood to partition.  Doing so required making several assumptions.  I elected not 
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to make those assumptions for two reasons: I lacked knowledge about specific cellular and 

lobular microarchitectural details and I wanted to make all analogue mechanisms relational.  In 

addition, I have conflated numerous cellular and lobular microarchitectural features (that cannot 

be known with precision) and represented them using three abstract spaces.  ClosetoInterface and 

transitProb are tunable parameters, the values of which are constrained by the referent 

compound’s listed properties.  Initial estimates were obtained for each referent compound using 

values of molecular weight, logP, and pKa as described above, analogous to those used by 

Garmire et al. (2007). Thereafter, these parameters were tuned, along with the others, to improve 

similarity.   

The sequence in which each mobile object’s transit decision was made followed the same 

pattern for each space.  The process is described first for a COMPOUND in barrier space S4 and 

then for a compound in CELL interior space S3 that is close to an interface.  p[S4→S3] is the 

value of transitProb during a cycle for the transition from S4 to S3.  First, a PRN is drawn from 

[0–1).  If PRN < p[S4→S5]/(a(p[S4→S5] + p[S4→S3]), then the COMPOUND transits from S4 to 

S5; else, if PRN < 1/a (a ≥ 1), it transits from S4 to S3; else, it stays in S4.  Because the relative 

properties of S1, S3, and S5 in the analogues, as are the relative properties of S2 and S4, the logic 

is the same for S2.  Following exploration, I specified a = 1.2 for RISL and 1.05 for ISECC; that 

value is arbitrary; using a value slightly larger than 1.0 helped ensure that a COMPOUND would 

not still be found in S2 or S4 after more than three cycles.  Once it is determined that a 

COMPOUND in S3 is close to an interface (I do not specify which one), a PRN is generated: if 

PRN < p[S3→S4]/(1+ (p[S3→S4] + p[S3→S2])), the COMPOUND transits from S3 to S4; else, if 

PRN < (p[S3→S4] + p[S3→S2])/(1+ (p[S3→S4] + p[S3→S2])), it transits from S3 to S2; else, it 

stays in S3.  The logic would be similar for a COMPOUND in S5 transiting to S4.  
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Figure 3.3.  Relationship COMPOUND (physicochemical) properties and initial transit probability estimates.  

Each symbol is one RISL experiment.  Y-axis: number of COMPOUNDs in S3 after 20 simulation cycles 

when the initial dose is 1,000.  A: Graphed are relationships between MW (x-axis) and RISL measures of 

initial permeability.  Symbols: QUINIDINE (light blue), METABOLITE (yellow), DIGOXIN (red), RIFAMPICIN 

(purple). The curve is a fit of an inverse power relationship to the pooled data.  B: Graphed are 

relationships between logP (x-axis) and initial permeability (y-axis), as specified in A.  Symbol colors are 

the same as in A. The curve is a parabola fit to the pooled data; the peak occurs at about logP = 3.3.  C: 

Graphed are relationships between insilicoPH and initial permeability.  Symbols: DIGOXIN (red crosses), 

METABOLITE (yellow pluses), QUINIDINE (light blue diamonds), RIFAMPICIN (purple diamonds).  The two 

trend lines are for only the QUINIDINE and RIFAMPICIN data.  QUNIDINE behaves as would a weak basic 

having pKa = 8.6: PERMEABILITY increases with increasing insilicoPH.  RIFAMPICIN behaves as would an 

amphoteric compound having a weak acid group (pKa = 1.7) and a weak basic group (pKa = 7.9): 

PERMEABILITY decreases with increasing PH.  DIGOXIN and its METABOLITE behave as would compounds 

for which the fraction ionized does not change over the insilicoPH range.  
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3.8.6. Simulated perfusate flow (for RISL only) 

In perfusion experiments, perfusate is pumped through the organ by an experimental 

apparatus.  From the experimenter’s macroscopic perspective, perfusate, and content therein, 

moved.  However, the compound within the perfusate has no knowledge about the perfusion 

experiment.  From its perspective, its location is relative to objects inside or outside the liver.  

Consistent with that perspective, I assigned different states to each COMPOUND: 1) external (to the 

liver), 2) within extracellular hepatic spaces but not likely to transition across cell membranes 

within the time step (internal), and 3) within the liver and sufficiently close to cell membranes so 

that transition would be possible (transitional).  Since each ELEMENT represented a fraction of the 

perfusate, with no specified location, perfusate flow was not simulated using movement within 

the S1 space.  Instead, changing state simulated both perfusate flow and rapid equilibration 

between perfusate and hepatic spaces.  The parameter internalProb specified the probability that 

a COMPOUND in S1 would be designated internal within a simulation cycle.  The COMPOUNDS 

that were randomly assigned to S1 were simply specified as being in one of three states, external, 

internal, and transitional; and every COMPOUND in S1 had an opportunity to change its state each 

cycle.  Changing internalProb simulated a change in perfusate flow rate.  The parameter 

closeToInterface specified the probability that a COMPOUND in S1 would be transitional 

(available to transition to S2).  The balance of COMPOUNDS in S1 was external. 

I considered several other options to simulate flow other than the one described above.  

One option is to simulate flow within the space (e.g., S1) representing perfusate, analogous to 

how it was done in Hunt et al. (2006).  S1 could be made circular and much larger than the 

HEPATIC spaces.  COMPOUNDS could move around the circular space simulating flow.  

Transitioning into HEPATIC spaces would occur only in the portion of S1 that overlaps with the 

EXTRACELLULAR HEPATIC space.  If I had simultaneous wet-lab measures of concentrations 

entering and exiting the liver against which to validate extraction, such a design would merit 
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consideration, but I do not.  In fact, perfusate flow was sufficiently fast to make reliable measures 

of that type difficult.  Having a circular S1 containing circulating COMPOUNDS does match the 

reality of the referent system, but it is not an essential feature for inclusion in an abstract analogue.  

Another option would be to layer three spaces above S2.  Call them S1.1, S1.2, and S1.3, 

with S1.3 being adjacent to S2.  Only COMPOUND in S1.3 would have the option to transition to 

S2 within a simulation cycle.  COMPOUND in S1.1 would map to compound that is in perfusate 

external to the liver.  COMPOUND in S1.2 would map to compound that is internal, within rapidly 

equilibrating extracellular spaces.  Adjusting the exchange rate between S1.1 and S1.2 would map 

to perfusate flow.  For simplicity, I elected to conflate those three spaces: I represented the 

merged set using just one space, S1.   

3.8.7. Transporter-mediated transition and enzyme-
mediated metabolism 

 In Figs. 3.4A and B I present verification evidence demonstrating the linear 

relationship between TRANSPORT activity and number of TRANSPORTERS and the value of the 

SUBSTRATE’S assocProb (affinity).  I present data in Fig. 3.4C and D that show the consequences 

of active transport with concurrent passive transition.  Finally, in Fig. 3.5, the graphs show 

measures of CYP function are consistent with Michaelis-Menten kinetics.     

3.9. Parameter sensitivities 

A classical sensitivity analysis studies how output variation from a mathematical model 

can be apportioned, qualitatively or quantitatively, to different sources of variation in input.  Such 

an analysis investigates model robustness when the study includes some form of mathematical 

modeling.  The analogues are not classical mathematical models.  The goals and objectives are 

different.  Nevertheless, I did not want to include components that were not needed to achieve 

one or more attributes.  To that end, as part of verification exercises, I measured the consequences 

of inactivating components.  During the many tuning experiments, I also observed the 
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consequences of changing the values of most of the parameters.  In Fig. 3.6, I present data 

demonstrating the effect of a minor alteration of each of two key parameters: transitProb(S1→S2) 

and DIGOXIN’S assocProb to CYP.  I ran these experiments using the same conditions and 

parameter values used for the final RISL analogue to be presented in chapter 4, except that the 
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Figure 3.4.  TRANSPORTER verification and consistency with simple Michaelis-Menten kinetics. A: The 

data show a linear relationship between PERMEABILITY as fraction of dose (y-axis) and the number of 

TRANSPORTERS.  B: The data show a linear relationship between PERMEABILITY (y-axis) and the value of 

the COMPOUND’S assocProb (affinity; x-axis).  C: The graph shows the combined effects of active transport 

and passive transition on the permeation of COMPOUNDS that are substrates for the TRANSPORTER and can 

also undergo passive transition.  The graph shows the PERMEABILITY after 2000 simulation cycles. Being a 

TRANSPORTER substrate has a greater effect on less permeable (lower logP) COMPOUNDS.  Also, when 

TRANSPORTER assocProb is high, TRANSPORTER-mediated permeation dominates.  D: The graph shows the 

permeation time-profile (x-axis: simulation cycles) of the simulations in C The coloring scheme is the 

same.   
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value of each of the two parameters was increased 5%.  The results demonstrate that changes in 

parameter values of a few percent do not significantly alter simulated profiles.  

3.10. Software 

The analogues of in silico pharmacokinetic systems were assembled within the Swarm 

platform using its libraries (http://swarm.org).  I coded in Java Swarm.  Most experiments used a 

single processor and ran under Microsoft Windows XP (Redmond, WA) with Java Software 

Development Kit and Java 2 Runtime Environment installed (Sun Microsystems, Santa Clara, 

CA).  Source code was compiled with Java 2 Software Development Kit SE version 1.4.2_13 and 

executed with Java 2 Runtime Environment version 1.4.2_13 (www.java.com).    

All pseudo-random number generation used Swarm's Mersenne Twister algorithm; the 

initial seed was extracted from the machine's clock.  All PRNs were drawn from uniform 
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Figure 3.5.  ENZYME function consistency with simple Michaelis-Menten kinetics. The graphs show the 

rate of METABOLISM (y-axis: number of METABOLITES formed after 10 simulation cycles) when starting 

with different numbers of COMPOUNDS (x-axis).  The duration of each experiment was 10 simulation 

cycles.  All components were confined to S3; 50 CYP were used.  Graphs from top to bottom: 1) no 

inhibition; 2) competitive inhibition using 250 additional COMPOUNDS that are INHIBITORS; 3) competitive 

inhibition using 1,000 COMPOUNDS that are INHIBITORS; 4) noncompetitive inhibition caused by reducing 

efficiencyProb to 40% of it original value.  The data are consistent with simple Michaelis-Menten kinetics. 
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distributions.  Random integers were drawn from a uniform distribution between [min, max], 

inclusive.  Random floating-point numbers were always drawn from a uniform [0.0, 1.0)—

including 0.0, excluding 1.0. 

3.11. Discussion: thinking about relational grounding 

Given the variety of experimental conditions, protocols and apparatus that are commonly 

used in pharmacokinetic experiments, how can we enhance substantially our ability to integrate 

and reconcile results and conclusions across experiments?  While experimental systems differ 

between experiments, the biological mechanisms giving rise to them remain similar.  A model 
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Figure 3.6.  Influence of small changes in two of the more important parameters.  X-axis: time after adding 

DIGOXIN to PERFUSATE; y-axis: fraction of dose; closed symbols: results from final RISL analogue; open 

symbol: results from increasing parameter value by 5%; left:.  Top: Graphed are the results showing the 

effect of 5% increase in transitProb(S1→S2) on A: DIGOXIN and B: METABOLITE in PERFUSATE.  Bottom: 

Graphed are results showing the effect of 5% increase in DIGOXIN’S assocProb for CYP on C DIGOXIN and 

D: METABOLITE in PERFUSATE .  
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that describes not just the observations, but also the underlying mechanisms will help in 

understanding biology across different experiments.  Traditional, equation-based models are not 

suitable for this task because they are induced from the observables: they describe the data.   

 Relationally-grounded models shift the focus of modeling and simulation from achieving 

precise, quantitative predictions of experimental data to discovering and achieving an 

understanding of plausible mechanisms causing the referent phenomena.  The approach avoids 

offering precise predictions without physiological meaning or mechanistic understanding as is 

frequently presented by traditional equation-based modeling approaches (Rescigno, 2004).  The 

analogues described herein are representations of our current understanding of mechanisms 

across different experimental protocols while keeping assumptions about observations and 

experiments external.  As I will show in chapters 4 and 5, analogues may even be useful in 

translating to different experimental contexts that share (some of) the same biological 

mechanisms.  Such analogues facilitate integration and reconciliation between experiments, 

thereby providing a means for achieving deeper insight into the referent.  Using these analogues, I 

was able to discover new, plausible mechanistic details of hepatic drug interactions with RISLs in 

chapter 4 and evaluate the plausibility of mechanistic hypotheses with ISECCs in chapter 5.   

To make an analogue somewhat independent from experimental protocols, measurements, 

and observation perspectives, one must recognize that experimental protocols and systems of 

conventional units act as filters (as models).  Such filters are implicit in the investigator’s mind 

and reflect his/her knowledge, interpretation and assumptions about the biology and the 

experiments.  It is part of the experimental model I referred to in chapter 1. Biological 

consequences to be observed are selected by the protocol, and observations are filtered through 

the aspects on which we focus to become values with physical units attached, which are recorded 

as measurements.  This filtering process is a built-in feature of conventional wet-lab experiments 

because investigators must select certain aspects to be observed; and for those aspects, the 
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scientist cannot observe the microscopic events and interactions individually and therefore must 

take a macroscopic view of the system.  With that, ideas of how microscopic events aggregate to 

become macroscopic observations must be in place.  For example, assuming the drug is 

homogeneously mixed in the target medium, one may take a small aliquot of known volume and 

assay for amount of drug in that sample.  The resulting quantity, i.e. concentration, is then used. 

Systems of conventional units then come into play: for example, one cannot observe numbers of 

molecules (dimensionless), so a macroscopic concentration (dimensioned) is used; one cannot 

observe the likelihood of a microscopic biological reaction (dimensionless), so a reaction rate 

(dimensioned) is used etc.   

However, with this new class of model, the analogue—the part that describes biology—

can be made separate from the filter and from the part that describes observations.  Recognizing 

and separating this filter, relational model construction must follow these principles: 1) separate 

biological behavior from measured observations; 2) focus on representing biological behavior, 

not describing the data; 3) represent components, mechanisms and interactions from the local, 

individual, microscopic perspective, not from a systematic or macroscopic perspective; 4) avoid 

systems of conventional units and quantify relationships relative to each other.   

Although it is useless to attempt modeling every aspect and detail of the biology, the 

model can still became a useful analogue by following an iterative model building and 

validating/falsifying process, as demonstrated in chapters 4 and 5.  A level of abstraction was 

defined under which details were represented by objects, agents, and/or axioms.  A minimum set 

of components, mechanisms, and interactions, which were believed to be causing the biological 

behavior, was used to assemble a working analogue.  When the set became evidently inadequate, 

additional details (complexities) were evaluated iteratively, validated (or falsified) and 

incorporated (or rejected.)  Even though the analogues presented were relatively simple, they 
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became scientifically useful representations of the referent while having only a few concrete 1-to-

1 mappings between their attributes and mechanisms and those of the referent.   

Moreover, because dynamic mechanistic, anatomical, physiological, and molecular 

biology details are represented during execution, models of this class have the potential to evolve 

into an executable representation of what we know (or think we know) about biological systems: 

executable biological knowledge embodiments.  I expand on that idea in chapter 6.   

 

 



 

 76 

 

 

 

 

 

 

4. Discovering Plausible Mechanistic Details of Hepatic 
Drug Interactions  

4.1.  Introduction 

Given the variety of transporters and enzymes that can be involved, how can we enhance 

substantially our ability to confidently anticipate the consequences of hepatic drug-drug 

interactions in advance of costly wet-lab experiments?  To do so, we need improved knowledge 

of multi-level spatiotemporal mechanistic details.  We need new classes of models with 

capabilities beyond those of the current pharmacokinetic (PK) and pharmacodynamic variety, 

plus methods to more realistically represent critical spatiotemporal details, all within single model 

systems.  Finally, we must be able to explore realistic, concurrent, interaction consequences of 

two or more drugs when given key physicochemical properties, which is infeasible using current 

PK models.  An essential first step in realizing those needs is to demonstrate a fine-grained, 

computational analogue in which measures of simulated interactions of two drugs are 

experimentally indistinguishable from those of referent wet-lab experiments.  When the 

analogue’s assembled components map realistically to hepatic components, and the measured 

consequences of in silico and wet-lab mechanisms are indistinguishable, we can posit that the 
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responsible mechanisms of both systems are similar, as diagrammed in Fig. 4.1.  Achieving these 

important goals has been an objective of this project.  

The referent wet-lab experiments for this project used an ex vivo, perfused rat liver 

protocol to measure interactions between digoxin, rifampicin, and quinidine.  The mechanisms 

are relatively well understood (Lau et al., 2004).  Digoxin, a P-glycoprotein substrate (de Lannoy 

and Silverman, 1992), is transported basally in hepatocytes by Oatp2 (slc21a5) (Noe et al., 1997).  

Because rifampicin is an Oatp2 inhibitor and quinidine is a P-glycoprotein inhibitor, the 

disposition properties of digoxin are altered when it is co-administered with either.  

The synthetic method of modeling and simulation (Hunt et al., 2006; Yan et al., 2008a; 

Yan et al., 2008b), also called executable biology (Fisher and Henzinger, 2007; Hunt et al., 2008), 

offers advantages over traditional methods for exploring and testing hypotheses about 

mechanisms.  Traditional PK models formulate hypotheses about data, whereas the assembled 

components of a synthetic model are a testable mechanistic hypothesis about spatiotemporal 

details underlying that time course data.  Execution tests that hypothesis.  Measures of analogue 

attributes can overlap corresponding measures of referent attributes.  Measures of attribute 

similarity provide a quantitative means of accepting or rejecting the hypothesis.  

I used the synthetic method to construct and verify liver analogues suitable for simulating 

recirculating liver perfusion experiments.  They were similar to, but simpler than, the one used in 

(Yan et al., 2008a).  The result was the Recirculating In Silico Liver (RISL) diagrammed in Fig. 

4.2.  Objects representing Oatp2s and P-glycoproteins were included within separate (membrane) 

spaces.  Cell interiors and perfusate contained objects responsible for nonspecific drug binding.  

Different objects represented drug-metabolizing enzymes.  Spaces were designated to represent 

bile and perfusate.  Three different mobile objects carried information identifying each as 

representing digoxin, rifampicin, or quinidine (Lau et al., 2004).  RISL components used that 

information to distinguish between them.  
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Figure 4.1.  Relationships between wet-lab, perfused liver experiments, traditional PK models, and the 

RISLs.  Center: rat livers in an experimental context are the referent systems.  During experiments, 

lobular components interact with transiting drug molecules to cause changes in digoxin’s concentration-

time profile (and that of its primary metabolite).  The system’s behaviors during the experiment are 

reflected in the collected data.  Left: the researcher identifies patterns in the wet-lab data.  From those 

and prior PK knowledge, a mechanistic description of what is thought to have occurred during the 

experiment is induced, thus establishing an abstract, conceptual mappings from that description to 

hepatic mechanisms.  The researcher offers a set of PK equations believed capable of describing the 

time course patterns identified in the data.  A discretized, validated model of the equations in software 

is constructed and executed to simulate parameterized equation output.  Metrics specify the goodness of 

fit of the simulated output to the data, and that establishes a concrete mapping from simulated output to 

wet-lab data.  Right: The abstract mechanistic description (Fig. 4.2) is different from that on the left 

side.  Software components are designed, coded, verified, and assembled and connected guided by that 

mechanistic description.  The product of the process is a collection of mechanisms rendered in software. 

A clear mapping—C—is intended to exist between components and how they plug together, and hepatic 

physiological and microanatomical details.  Relative similarity is controlled in part by 

parameterizations.  Importantly, mapping C can be concretized iteratively.  Compilation and source 

code execution gives rise to a working analogue.  Its dynamics are intended to represent abstractly 

(mapping B) corresponding dynamics (believed to occur) within the liver during an experiment. 

Mapping B can also be concretized iteratively.  Measures of simulated dynamics provide time series 

data that are intended to mimic corresponding measures of wet-lab perfusion experiments.  Achieving 

SM-1, -2, and –3, enables mapping A to be made concrete. 
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Figure 4.2.  Illustration of the RISL and its components.  A: The RISL is represented as five concentric 

spaces (S1–S5) with S1 representing recirculating perfusate and rapidly equilibrating intrahepatic 

spaces.  Each space is a 50x50 toroidal square grid.  S2 represents barriers between S1 and S3.  S3 maps 

to intracellular spaces.  S4 represents barriers between S3 and S5.  S5 maps to bile.  ELEMENTS are 

containers for other objects.  One is located at each grid location.  Within a space, they have the same 

relative capacity, but capacity differs between spaces.  The grid spaces shaded differently illustrate that 

each element can contain different objects.  B: Shown are illustrations of four ELEMENTS, one each from 

S1-S4, with examples of the object they may contain.  Different ELEMENT sizes illustrated different 

capacities.  ELEMENTS can contain mobile and fixed objects.  The spheres represent mobile 

COMPOUNDS; the different shadings illustrate the different states in which they can exist.  A fixed OAT

object is shown in the S2 element, and a fixed PGP object is shown in the S4 element.  A stylized 

illustration of a multi-site CYP is shown in S3; one COMPOUND is shown bound.  A stylized illustration 

of a multi-site binder is shown in S1.   
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I started with a simple, time-invariant RISL having five spaces along with components 

representing digoxin, two inhibitors, CYP3A enzymes, Oatp2s, and P-gps.  RISL disposition 

profiles of rifampicin and quinidine were similar to the reported liver perfusion profiles.  

Disposition and metabolite formation profiles for digoxin, administered alone, were also 

acceptable matches to liver perfusion profiles, using a quantitative similarity measure.  However, 

corresponding profiles following a pre-dose of rifampicin or quinidine were completely dissimilar 

to referent values. Because implemented mechanisms were too simple, that initial RISL failed to 

simulate observed drug interactions.  Adjusting that RISL’s spatial, component, and interaction 

details, failed to uncover plausible explanations.  A protocol was followed for adding additional 

mechanistic complexity.  It used three, increasingly stringent measures of similarity.  Postulating 

time-dependent changes in specific details, including simulating hepatic injury, erosion in the 

quality of regional hepatic perfusion and increasing loss of hepatic viability dramatically 

improved the quality of match.  It took the combination of four different time-dependent changes 

for the RISL profiles to achieve the most stringent similarity measure, yet changes in hepatic 

physiology were not evident during wet-lab experiments.   

Because wet-lab model systems are artificial, measures are taken to minimize change, yet 

some may go undetected and can influence observables.  The methods used uncovered such 

changes thereby providing deeper insight into plausible drug-drug interaction mechanisms, even 

though the nature of some was unexpected.   

4.2.  Methods 

To distinguish clearly in silico components and processes from corresponding hepatic 

components and processes, I use SMALL CAPS when referring to the former, italics denote RISL 

parameters, variables and internal states.  In contrast to inductive models, which often focus on 

prediction, the RISL and its method have been designed for discovering and testing plausible, 
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detailed mechanistic explanations of hepatic drug disposition and interaction data.  A specific 

RISL instantiates a hypothesis (Fisher and Henzinger, 2007; Hunt et al., 2008).  Execution and 

comparison of results to referent counterparts tests the hypothesis.  

4.2.1. Objective and approach 

 My objective was to discover a single parameterized set of multi-level hepatic 

mechanisms that would provide one plausible explanation for the three pairs of the time series 

data in Fig. 4.3, while achieving a stringent measure of similarity as described below.  One pair of 

time series data describes the PK and metabolism of digoxin administered alone.  The other two 

are measures of the PK and metabolism of digoxin when the livers were predosed ten minutes 

earlier with rifampicin or quinidine.  I was not seeking a traditional, differential equation 

explanation of time course data.  Rather, I sought an actual, working mechanism—an analogue—

comprised of quasi-autonomous processes and parts, which when measured during execution 

would give time course data similar to wet-lab data in Fig. 4.3.  My technical approach used the 

synthetic modeling and simulation method (Hunt et al., 2006): I plugged together validated, 

quasi-autonomous software components to form an abstract, but mechanistically realistic 

analogue of a liver undergoing perfusion into which one could add, alone or in combination, 

objects representing the three different drugs: digoxin, rifampicin, and quinidine.  My 

experimental approach followed an iterative sequence: RISL synthesis, testing and evaluation, 

validation or falsification, assessment, cogitation, and system revision.  

Hunt et al. (2006) and Yan et al. (2008a and b) describe an In Silico Liver comprised of 

similarly constructed LOBULES.  Because perfusate was recycled in the wet-lab experiments, the 

data did not require that level of detail, so I designed, validated and used a simpler in silico liver.  

The rationale for doing so is explained in chapter 3.  During RISL design, my focus was on 

simplicity.  Parsimony is important.  Traditional PK modeling strives to avoid 

overparameterization.  By analogy, synthetic modeling strives to avoid overmechanization.  I 
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decided to abstract away the complex lobular architecture and interconnected sinusoidal networks 

and use only five separate spaces in the initial RISL.  One (S1) would represent perfusate and 

extracellular fluid.  A second (S2) would represent the barrier (not limited to just cell membranes) 

between perfusate and cell interiors that would be represented by a third space (S3).  A fourth 

(S4) was needed to represent the barrier between bile and cell interiors.  The fifth (S5) 

represented bile.  Although there was no referent bile data, S5 was needed as the location for 

COMPOUND elimination.  The temporal resolution of the data in Fig. 4.3 was insufficient to 

distinguish and validate separate representations of a layer of endothelial cells, the space of Disse, 

and hepatocytes.  Consequently, I conflated their representation.  The resulting five spaces can be 

viewed as a tube comprised of a layer of CELLS (S2, S3, and S4, representing primarily 

hepatocytes), flanked by PERFUSATE and rapidly equilibrating EXTRACELLULAR FLUID (S1) on 

the “basal” side and BILE (S5) on the “apical” side.  Together the five spaces function as a 

simplified analogue of a hepatic lobule, or a portion thereof.  As in Hunt et al. (2006), I pooled or 

averaged results from n Monte Carlo LOBULE variants to represent an entire RISL.  Drawing on 

results of early simulations, I decided that n ≥ 6 were adequate for the objective (experimental 

results supporting that choice are provided in chapter 3).  The referent wet-lab experiments used n 

= 6.  As in the above-cited In Silico Liver, I specified three categories of components: spaces, 

active objects and passive objects.  They are listed in Table 4.1.  Primary parameter values are 

listed in Table 4.2.  Additional information is provided in chapter 3.  
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Figure 4.3.  Simulated results using RISLs with the time-variant mechanisms graphed in Fig. 4.4. 

Symbols are values reported in Lau et al. (2004) of fraction of digoxin dose remaining in the perfusate 

for each of the three different sets of experiments (each set:  n = 6); the bars are ± 1 SD for the wet-lab 

data.  The curves are mean simulated values of 18 Monte Carlo executions of the RISL parameterized 

to exhibit time-variant mechanisms according to Tables 4.3–4.5.  Red  : rifampicin pre-dose; Blue

digoxin only, no predose, Green : quinidine pre-dose; Orange, both inhibitors pre-dose.  A: Shown is 

the mean DIGOXIN PERFUSATE levels.  In all three cases, simulated DIGOXIN values achieved SM-3; most 

were within a SD of referent values.  B: Shown are the mean METABOLITE PERFUSATE levels.  Again, 

most simulated values were within a SD of referent wet-lab data.  Consequently, all simulated 

METABOLITE values achieved SM-3.  Collectively, the six sets of simulated data in A and B also 

achieved SM-3.  The time-variant RISL differs in four ways from those simple, linear, time-invariant 

RISLs.  1) A METABOLITE-specific TRANSPORTER was added to S2 to increase the rate of return at early 

times of METABOLITE to PERFUSATE.  2) The accessibility of S2 to mobile DRUGS in PERFUSATE (S1 in 

Fig. 4.2) decreased with time (Fig. 4.4A), decreasing the rate of HEPATIC permeation by all three DRUGS. 

3) The efficiency of CYP decreased with time (Fig. 4.4D).  4) In addition, a portion of CYP, OAT, and PGP 

became inactive (Fig. 4.4C) in each simulation cycle.  A small number of less functional CYPs were 

added to S1 (perfusate) to mimic enzymes released from injured hepatocytes during system preparation.  
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4.2.2. Model structure and components   

S1–S5, sketched in Fig. 4.2, have been implemented as two-dimensional, toroidal grids 

having identical granularities.  Grid granularity (grid dimensions) is parameter controlled.  

Simulation run time is proportional to grid size, and measurement variance increases with 

decreasing grid size.  The exploratory nature of parameter tuning and iteratively revising 

analogues necessitates running many simulations.  Balancing these considerations, I settled on a 

50x50 grid size for all experiments.   

At each grid location, I placed an object that functions as a container for other objects.  I 

call it an ELEMENT (of that space).  Each of the 2,500 S3 ELEMENTS mapped to a portion of a 

Table 4.1.  Comparing the perfused liver with the RISL, its in silico analogue 

Biological Aspects; System Features Analogue Components and Features 

Form; space GRIDS; ELEMENTS that function as containers 

Function; mechanism Sequence of events; data transforms in object methods 
and behaviors 

Time Simulation cycles 

Drug (and inhibitor) molecules Mobile objects: DRUGS, COMPOUNDS 

Perfusate; experimental apparatus SPACE S1; COMPOUNDS are in one of three states  

Liver = many similar lobules A number of simulations, averaged 

Cell contents  ELEMENT objects assigned to SPACE S3 

Bile ELEMENT objects assigned to SPACE S5 

Cell content–sinusoid interface ELEMENT objects assigned to SPACE S2 

Cell content–bile interface ELEMENT objects assigned to SPACE S4 

Metabolic enzymes and transporters  Stationary objects: CYP, OAT, PGP, MT, BINDERS 

Mechanisms Sequence of events 

Passive dispersion  COMPOUNDS change location within SPACES 

Passive transport  COMPOUNDS move between SPACES 

Transport (active or facilitative) COMPOUNDS moved by TRANSPORTERS 

Metabolism COMPOUNDS converted to METABOLITES 

Binding  COMPOUNDS attaching to BINDERS  

Measures taken during experiments  Measures taken during experiments 

Hypothesis; hypothesis testing A specific analogue; a set of simulations 



 

 85 

lobule’s intracellular content.  ELEMENTS in S2 and S4 mapped primarily to portions of cell 

membranes, including hepatocyte apical and basal membranes, along with some of the adjacent 

material.  All TRANSPORTERS were placed randomly and uniformly within these two spaces.  S2 

also mapped to features of the sinusoidal endothelial layer and the adjacent space of Disse.  

However, such detail was below RISL resolution.  Each S5 ELEMENT mapped to a portion of bile, 

and an ELEMENT of S1 mapped to portion of perfusate plus the rapidly equilibrating extracellular 

spaces (hereafter referred to as PERFUSATE).  An ELEMENT can be identified and labeled with 

relevant chemical properties.  For example, each element of S1 can be assigned whatever referent 

properties are required for the experiments planned, such as pH, ionic strength, etc.  These 

properties can be made different for S5 (BILE).  

Table 4.2.  Primary parameters of the Recirculating In Silico Liver (RISL) system 

System Parameters Remarks Values 

systemSize Size of SPACES S1–S5  50 x 50 

numSolute Dose: number of SUBSTRATES: DIGOXINS  1,000 

numInhibitor Dose: number of INHIBITORS: RIFAMPCIINS or QUINIDINES 2,000 

adminTimeSolute Administration time of SUBSTRATE 60 

adminTimeInhibitor Administration time of INIHIBITOR  0 

insilicoPH In silico pH of SPACES  7.4 

numPgps Number of PGP 30 

numOats Number of OAT 100 

numCyps Number of CYP (ENZYMES) 30 

numBinders Number of BINDERS 75 

numMTransporters Number of METABOLITE TRANSPORTER (MT) 100 

timestepfactor a Scaling factor for passive permeation 2.0 

internalProb Flow rate: probability of a compound in S1 being internal to the 
liver; simulates flow from bulk perfusate into sinusoidal spaces 0.13 

maxSites Number of substrate binding sites per stationary object  2-10 

efficiencyProb b Efficiency parameter for CYP, PGP, and OAT  

sitesN b Size of neighborhood: number of adjacent ELEMENTS scanned each 
cycle by CYP, PGP, and OAT   

defunctProb b Probability of going defunct within the simulation cycle  
a See chapter 3 for a detailed explanation. 
b Denotes time-variant parameters: see Table 4.5   
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ELEMENTS can contain mobile and stationary objects.  I included only objects that proved 

necessary to achieve my objective.  Unlike with traditional physiologically based PK models, 

new components can be added without interfering with the function of those already present.  A 

COMPOUND (also called DRUG) was a mobile object that mapped to a small fraction of the drug 

added to perfusate at t = 0, or, in the case of METABOLITE, generated within hepatocytes.  As in 

previous reports (Hunt et al., 2006; Garmire et al., 2007; Yan et al., 2008a; Yan et al., 2008b), 

one COMPOUND mapped to a large but unspecified number of actual referent molecules.  A RISL 

used four types: DIGOXIN, METABOLITE (of DIGOXIN), RIFAMPICIN, and QUINIDINE.  Their RISL 

properties are listed in Table 4.3 along with referent’s properties.  To enable each RISL stationary 

object to distinguish different types of mobile objects, each COMPOUND carries identification; it 

could include values representing several of the referent compound’s properties.  RISL stationary 

objects were given logic (diagrammed in chapter 3 Fig. 3.2) that enabled them to use a 

COMPOUND’S properties to control how they interacted with COMPOUNDS.  For examples, see 

(Yan, et al., 2008b. Sheikh-Bahaei and Hunt, 2006).  Parameter values were tuned separately for 

each COMPOUND.  Each COMPOUND, selected randomly, has one opportunity to relocate during 

each simulation cycle.  Six simulation cycles mapped to one minute of wet-lab time.  A 

COMPOUND relocation event was subject to the COMPOUND’S local environment.  That process 

was a variation on those used previously and cited above.   

 

4.2.3. TRANSPORTERS, BINDERS, and CYP   

An RISL uses three classes of active, stationary objects.  One maps to transporters.  The 

second, CYP, maps to the enzymes responsible for digoxin metabolism, primarily CYP3A.  The 

third class is BINDERS; they map to anything within a lobule or perfusate that might bind or 

sequester compounds.  The logic used by each is diagrammed in chapter 3 Fig. 3.2 along with 

additional validation evidence.  I implemented initially two types of transporters: PGP and OAT.  

PGP maps to P-glycoprotein and any other transporters responsible for efflux of digoxin from 
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hepatocytes to bile.  OAT maps to Oatp2 and any other transporters that are responsible for the 

active cellular uptake of digoxin.  However, the details of PGP and OAT operations were below the 

level of resolution and so do not map to biochemical counterparts.   

CYP binding sites within a CYP are identical and independent.  As with PGP and OAT, 

details of CYP operations are below the level of resolution and so do not map to biochemical 

Table 4.3.  Compound specific parameters values 

Values COMPOUND 
Parameters Remarks 

DIGOXIN a RIFAMPICIN a QUINIDINE a METABOLITE b 

MW c molecular weight of the solute 781 822 324 601 

logP c 
logP - common logarithm of 

octanol/water partition 
coefficient 

1.14 3.60 2.53 1.60 

pKa c pKa closest to insilicoPH 13.5 6.9 8.6 13.5 

inihibitorType uptake inihibitor? True/False n/a TRUE FALSE n/a 

S1 --e 0.75 0.75 0.10 

S3 0.10 0.02 0.04 0.10 closeToInterface 

Fraction sufficiently 
close to interface 

such that it is 
transitional d S5 0.10 0.05 0.05 0.10 

S1→S2 0.066 0.069 0.102 0.078 

S2→S1 0.123 0.007 0.099 0.068 

S2→S3 0.123 0.007 0.088 0.068 

S3→S2 0.066 0.069 0.104 0.078 
S3→S4 0.066 0.069 0.104 0.078 
S4→S3 0.123 0.007 0.090 0.068 

S4→S5 0.123 0.008 0.060 0.068 

transitProb 

Initial estimates of 
trans-membrane 

transit probabilities, 
after scaling by 
timestepfactor 

S5→S4 0.066 0.069 0.106 0.078 
a Physicochemical properties reflect those of the referent drug. 
b Physicochemical properties reflect those of digoxigenin bis-digitoxoside. 
c Molecular weight, logP, and pKa are used in calculating the initial, passive transit probabilities, as described 

in chapter 3.  For pKa, only the value closest to 7.4 is listed.   
d The closeToInterface value for all solutes in S2 and S4 was always 1.  This reflects the fact that the referent 

barriers are sufficiently thin so that all solutes within them at the start of a 10 second interval (a simulation 

cycle) will have had an opportunity to transition by the end of that interval. For all spaces except S1, 

closeToInferace is the fraction transitional 
e CloseToInterface for S1 is a time-variant parameter.  It, together with internalProb, specifies the fraction 

transitional (Table 4.5).   
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counterparts.  CYP parameter values are listed in Tables 4.2, 4.4 and 4.5.  At the start of a 

simulation, all CYPS were assigned randomly and uniformly to elements within S3.  Each 

simulation cycle, each CYP steps through its assigned logic to determine what action to take.  It 

examines its adjacent neighborhood.  Neighborhood size is controlled by sitesN.  The probability 

that a CYP-DRUG binding event will occur for any DRUG within a CYP’S neighborhood is governed 

by assocProb (Table 4.4), the value of which maps to affinity.  A CYP can bind any COMPOUND 

that has a non-zero assocProb, whether it is a substrate or not.  However, only substrates are 

METABOLIZED.  The frequency at which METABOLISM occurs is controlled by the tunable 

METABOLIC parameter efficiencyProb.  After that, each CYP examines each bound COMPOUND; 

each is given an opportunity to be RELEASED within that same cycle.  That process is governed by 

Table 4.4.  Parameters for COMPOUND-PROTEIN interactions 

Values COMPOUND-PROTEIN Interaction 
Parameters DIGOXIN RIFAMPICIN QUINIDINE METABOLITE 

MT FALSE FALSE FALSE TRUE 

PGP TRUE FALSE FALSE TRUE 

OAT TRUE TRUE FALSE TRUE 

CYP TRUE FALSE FALSE FALSE 

isaSubstrate 
substrate of ? 

TRUE / FALSE 

BINDER FALSE FALSE FALSE FALSE 

MT 0 0 0 0.9 

PGP 0.4 0 0.9 0.4 

OAT 0.75 0.7 0 0.05 

CYP 0.5 0 0 0 

assocProb 
reflects binding 

affinity to protein 

BINDER 0.3 0 0 0.5 

MT 1.0a 1.0a 1.0a 0.9 

PGP 0.7 1.0a 0.04 0.7 

OAT 0.8 0.05 1.0a 0.9 

CYP 0.2 1.0a 1.0a 1.0 

releaseProb 
reflects dissociation 

from protein 

BINDER 0.1 1.0a 1.0a 0.01 
a Not used because assocProb = 0. 
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releaseProb (Table 4.4).  When the COMPOUND is a substrate, the released object may be a 

METABOLITE.  

Each PGP and OAT functions similar to CYP.  Table 4.4 shows that isaSubstrate, 

assocProb, and releaseProb are tuned to different values for PGP, OAT, and, CYP as well as for the 

different COMPOUNDS.  PGPS are assigned randomly and uniformly to S4.  They look for 

COMPOUNDS in S3.  When one is found and the value of assocProb is non-zero, it is given an 

opportunity to bind.  However, only substrates are TRANSPORTED to S5; the COMPOUND’S 

property list is checked to determine if isaSubstrate is true for PGP.  If so, it qualifies as a 

substrate and has an opportunity to be TRANSPORTED to S5.  Analogously, OATS were assigned 

randomly and uniformly to S2.  They look for COMPOUNDS in both S1 and S3.  When one is 

found and assocProb ≠ 0, it is given an opportunity to bind.  If isaSubstrate is true for OAT, it 

qualifies that COMPOUND as a substrate and it is given an opportunity to be TRANSPORTED.  

Table 4.5.  Time-variant parameters 

Time-variant parameter Initial value Terminal value 

Fraction transitional a in S1 0.13 0.052 

CYP 22 2 

PGP 9 4 

OAT 20 4 

Effective SURFACE AREA 
changes sitesN 

(neighborhood) 

MT 25 4 

CYP 0.95 0.03 

PGP 1 1 

OAT 0.65 0.65 
efficiencyProb a 

MT 1 1 

CYP 0.0042 0.018 

PGP 0.0003 0.001 

OAT 0.0017 0.0057 

METABOLIC and 
TRANSPORT activity 

changes 

defunctProb 

MT 0.0003 0.001 
a The method for changing fraction transitional and efficiencyProb  (Fig. 4.4A and 4.4D) is detailed in 

chapter 3.7, under Probability scaling.   
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Frequency of release into the space of destination is controlled by efficiencyProb.  When PGP and 

OAT find and bind a non-substrate, such as an inhibitor, it is always released in a subsequent 

simulation cycle to the space from which it was bound.   

A BINDER is an object that functions logically similar to CYP, except that it does not 

metabolize.  It simply binds and later releases the COMPOUND.  BINDERS can be added to any 

ELEMENT, but in these RISLs, they have been confined to S1 and S3.  Briefly, a BINDER searches 

its assigned neighborhood for a COMPOUND.  For each one found, its property list is scanned.  If 

the COMPOUND qualifies for binding, it is given an opportunity to bind.  If bound, it will be 

released in a later simulation cycle.  Binding and release events for each site are controlled by the 

BINDER and COMPOUND-specific values of assocProb and releaseProb listed in Table 4.4.     

4.2.4. Tunable parameter values and movements of 
COMPOUNDS   

Most events, such as a COMPOUND binding to CYP, are probabilistic and have values in 

the 0–1 range.  When an event option arises, a pseudo-random number (PRN) is drawn from a 

range such as 0–1.  Its value is compared to that of the parameter to decide what action to take.  

For example, if the PRN is less than the value assigned to assocProb, the event occurs.  

Otherwise, it does not.   

The percolation of compounds through lobular spaces during perfusion is simulated by 

individual movements of unbound COMPOUNDS.  The logic governing COMPOUND movement is 

adapted from the validated logic used previously and is diagrammed in chapter 3 Fig. 3.2, where 

additional details are also provided.  Briefly, in each cycle, unbound COMPOUNDS are given an 

opportunity to move.  Next, TRANSPORTERS, CYP, and BINDERS are given opportunities to bind 

and then release COMPOUNDS.  The order in which COMPOUNDS are updated is randomized within 

each cycle independent of the space in which they are located.  A COMPOUND first has an 

opportunity to relocate laterally or stay in its current ELEMENT.  The current and eight adjacent 
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ELEMENTS are each assigned one of nine integer values 1–9.  A PRN is drawn randomly from [1–

9]; the COMPOUND moves to the ELEMENT assigned the same integer value.  Following that, the 

COMPOUND has an opportunity to move into an adjacent space.  

To transit across a barrier, a compound must be sufficiently close to the interface.  To 

represent that, I use the probability parameter, closetoInterface.  The barriers to which S2 and S4 

map are represented as being very thin (less capacity) relative to S1, S3, and S5.  For simplicity, 

given the fact that a simulation cycle maps to 10 seconds, I specified closetoInterface = 1 for all 

compounds in S2 and S4.  For a compound in S1, S3, and S5, if a PRN < closetoInterface, the 

compound is given an opportunity to transition; else, it stays put.  The probability that a transition 

will actually occur, given the chance, is specified by another parameter transitProb.  As done 

with closetoInterface, I estimated an initial value using the compound’s properties (see chapter 3) 

for each transition; when needed, that estimate was tuned.  The values listed in Table 4.3 proved 

adequate for achieving targeted Similarity Measures.  The sequence in which each compound’s 

transit decision was made followed the same pattern for each space which is discussed in chapter 

3.  

4.2.5. Simulated perfusate flow 

  Perfusion experiments started with the dose being added to the reservoir.  Because the 

flow rate was 40 ml/min, a second or two later, drug-free perfusate entered the reservoir from the 

liver as drug-containing perfusate was entering the liver.  There was a short interval in which 

drug rapidly distributed into easily accessible extracellular spaces.  A few seconds later those 

spaces were mostly occupied by drug.  Thereafter, perfusate compound levels continued 

declining, but within a 10-second simulation cycle, the difference between entering and exiting 

drug levels rapidly shrank to within the range of wet-lab analytical sensitivity.  Following early 

exploratory simulations, I estimated that during that initial, rapid distribution phase, about 13% of 

the dose had been retained within hepatic spaces (was internal).  At that stage, drug that had not 
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already transitioned into cells was essentially in one of three states: 1) external (to the liver), 2) 

within extracellular hepatic spaces but not likely to transition across cell membranes within the 

next 10 seconds (internal), and 3) within the liver and sufficiently close to cell membranes so that 

transition within the next 10-second was possible (transitional).  

I considered several options to simulate the preceding scenario.  One option would be to 

simulate flow within the space (e.g., S1) representing perfusate, analogous to how it was done in 

Hunt et al. (2006).  S1 could be made circular and much larger than the HEPATIC spaces.  

COMPOUNDS could move around the circular space simulating flow.  To keep the RISL relatively 

simple, all that was needed was to distinguish the portion of the PERFUSATE that was external to 

the LIVER at each sampling time.  The COMPOUNDS that were randomly assigned to S1 were 

simply specified as being in one of three states, external, internal, and transitional; and every 

compound in S1 had an opportunity to change its state each cycle.  Changing state simulated both 

perfusate flow and rapid equilibration between perfusate and hepatic spaces.  The parameter 

internalProb specified the probability that a COMPOUND in S1 would be designated internal 

within a simulation cycle.  Changing internalProb simulated a change in perfusate flow rate.  The 

parameter closeToInterface specified the probability that a COMPOUND in S1 would be 

transitional (available to transition to S2).  The balance of COMPOUNDS in S1 was external.  For 

most of the RISL simulation results discussed below, internalProb = 0.13.  BINDERS were 

randomly assigned to S1 and so a small fraction of COMPOUNDS was bound and thus neither 

available to partition into S2 nor be taken up by an OAT.   

When an experiment called for pre-doses of either RIFAMPICIN or QUINIDINE interacting 

with DIGOXIN, the inhibitor was added to S1 first.  The simulation was then run for an additional 

60 simulation cycles (10 MINUTES), at which time the simulation was stopped, DIGOXIN was 

added, and the simulation was re-started.  
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4.2.6. Targeted attributes are objectives to be achieved 

  An early protocol task was to specify a target set of phenotypic attributes, and have in 

mind additional attributes that could be sequentially added to the target list (Hunt et al., 2006; 

Tang et al., 2007).  The goal was to find RISL parameterizations such that measures of simulation 

attributes, such as METABOLITE levels in PERFUSATE, would be similar to targeted wet-lab 

attributes in some specified way.  My initial set of four targeted attributes was simple (thus less 

demanding) and did not include the entire time-series profiles.  They were 1) the fraction of the 

digoxin dose remaining in perfusate after 60 minutes, 2) the corresponding perfusate level of 

metabolite, 3) the increase in 60-minute metabolite levels in the presence of quinidine (assuming 

significant inhibition of P-glycoprotein), and 4) the decrease in 60-minute metabolite levels in the 

presence of rifampicin (assuming significant inhibition of Oatp2).  A parameterized RISL that 

achieved those objectives was valid for the targeted attributes.  Next, my goal was to expand the 

attribute list by adding all time-series observations.  The final goal was to obtain one RISL, which 

when dosed with combinations of the three simulated drugs, would generate behaviors that were 

experimentally indistinguishable from the time series data in Fig. 4.3.  At first glance, the 

preceding four criteria seem lax.  That proved not to be the case.  Explanations are provided in the 

next section.  

4.2.7. Achieving similarity measures 

  Specifying a similarity measure (SM) is arbitrary.  Three were used.  They ranged from 

least stringent (SM-1) to most stringent (SM-3).  I started with SM-1.  Once that was achieved, I 

switched to SM-2, followed by SM-3.  Once a SM was achieved, I could state that the RISL had 

been validated against the available data using that SM criterion.  Of course, switching to a more 

stringent SM may have falsified that RISL.   

The targeted attributes coupled all three pairs of time course data.  That required one 

RISL be used to simulate outcomes of all three treatments.  If a parameter change was made to 
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improve, for example, the match to metabolite data following treatment with rifampicin, all of the 

other five trajectories were also altered.  The actual mechanisms responsible for the data in Fig. 

4.3 were complex, multilevel, and fine-grained (more so than the RISL).  Because the RISL is 

abstract and course-grained, it was not clear what level of mechanistic detail would be needed to 

achieve SM-3.  

The wet-lab experiments achieved average mass balances of 89 to 91%.  Consequently, a 

requirement of all SMs was that the simulation dose be within 10% of the stated, administered 

dose. Consequently, DOSE and other parameters were tuned within narrow ranges to achieve 

targets.  The reported coefficient of variation for wet-lab values averaged 6.8% for perfusate 

digoxin values and 13.2% for metabolite values.  To specify a target range, I assumed that 

repeated wet-lab measures would be normally distributed.  I wanted RISL values to be well 

within ± 2 SD, based on the reported variances stated above.  The target range for DIGOXIN was to 

be within 10% of mean, referent wet-lab values; and within 25% for METABOLITE.  SM-1 focused 

just on the wet-lab values at 60 MINUTES: qualitatively, all three pairs of simulated measures 

needed to exhibit all four target attributes listed above; and quantitatively, mean RISL PERFUSATE 

DIGOXIN values at 60-minute needed to fall within 10% of the corresponding mean wet-lab values 

and within 25% for the METABOLITE values.  

SM-2 required that SM-1 be met, and at least 46 of 51 (about 90%) of RISL values 

(DIGOXIN plus METABOLITE) must be within the target range.  This criterion could be achieved by 

obtaining a good match to all three sets of digoxin time course values and only one set of 

metabolite time course values.  SM-3 required that SM-2 be met, and that for each of the six time 

course profiles, no more than one measurement would be outside the above target ranges.  A 

simulation result that achieved SM-3 was deemed experimentally indistinguishable: it would have 

been statistically indistinguishable from the results of a repeat experiment adhering to the original 

wet-lab protocol under identical conditions.   
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4.2.8. Tuning and refinement 

  I started with 50 of each type of stationary object.  I divided BINDERS between S1 and 

S3 based on a ballpark estimate of the relative amount of protein in hepatic cells and in perfusate: 

I initially placed 95% in S3 and 5% in S1.  Most parameters having a 0–1 range were set initially 

to 0.5.  The inhibitors were initially given higher affinities (0.9 or 1.0) and low release 

probabilities (0.1 or 0.01).  Thereafter, a standard parameter-tuning protocol was followed 

iteratively: 1) simulate, 2) validate or falsify: if the specified SM was not met, then the RISL was 

falsified.  3) When falsified, diagnose (e.g., an observed mismatch between in silico and wet-lab 

results may have been caused by specific defects in RISL mechanisms), 4) hypothesis (e.g., the 

discrepancy will be reduced by specific RISL parameter adjustments or a change in the 

analogue’s structure), 5) testing (repeat steps 1 and 2: contrast new simulation results with those 

from the predecessor RISL and with wet-lab results), 6) return to step three, or when the SM is 

achieved and the RISL validates, stop.   

4.2.9. Time-dependent parameter changes 

  Despite intensive exploration of the RISL parameter space, I failed to find a time-

invariant parameter vector that would enable achieving SM-2.  To do so, the only obvious option 

was to increase RISL complexity, one alteration at a time, until first SM-2 and later SM-3 could 

be achieved.  That process is described in Results; it too followed the tuning and refinement 

protocol.  One new component was needed: it mapped to efflux transporters for the digoxin 

metabolite, and was called MT.  It resided in S2 and functioned identical to PGP; it moved only 

METABOLITES from S3 to S1.  In addition, I found it necessary to enable four parameter values to 

change unidirectionally with time.  Those changes required adding additional parameters to 

manage the time-dependent changes.  Selection of parameters to become time-dependent was 

done iteratively, one at a time.  Each change was preceded by a hypothesis: increasing (or 

decreasing this parameter over 60 MINUTES will measurably improve the degree of similarity 
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between simulated attributes and the wet-lab counterparts (sufficiently so that a statistical test was 

not needed to confirm that an apparent improvement was real).  The simulation results provided a 

test of that hypothesis.   

4.2.10. Software 

 The RISL was built from the Swarm platform and libraries (http://swarm.org).  I coded 

in Java Swarm.  Most experiments used a single processor and ran under Microsoft Windows XP 

with Java SDK and J2RE installed.  Source code was compiled with Java 2 Software 

Development Kit SE v1.4.2_13, and executed with Java 2 Runtime Environment v1.4.2_13, 

(www.java.com).  Output data files were processed, graphed and analyzed with Microsoft Excel 

and S-plus (Insightful).  I repeated simulations six or more times.  Results are reported as 

arithmetic mean values, unless otherwise noted.  I assumed that the central limit theorem held for 

all observations.   

4.3.  Results 

4.3.1. Overview 

  My plan was to proceed through three stages marked by achieving increasingly stringent 

SMs.  The stage one objective was to discover a RISL composition (numbers of RISL 

components and their location) and a parameterization that would produce simulated results at 60 

MINUTES that met SM-1.  The expectation was that once it was achieved, RISL alterations and 

reparameterizations could be found that would move RISL behaviors closer to SM-2 and, later, 

SM-3.  Prior to achieving a SM, the RISL was a hypothesis: average results of at least six Monte 

Carlo experiments will achieve the stated similarity criterion.  Simulation results stood as a test of 

that hypothesis, and a validated mechanism provided new knowledge.   

Because a RISL is abstract and relational, I do not require one-to-one correspondence of 

components or observables between it and the wet-lab system.  The goal was that relative, 
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measured RISL behaviors be similar to those of the referent with the expectation that the two 

mechanisms will have features in common, as illustrated in Fig. 4.1.  To facilitate that process, 

the original perfusate and metabolite data were transformed to fraction of the administered dose.  

Only one RISL was used.  The only difference between experiments was the nature of the 

inhibitor PREDOSE.  Changing a parameter value to improve the match to one time course always 

changed the other five.  That coupling shrank the region of parameter space that would enable 

meeting a SM.  It also dramatically limited the shapes of the simulated time course profiles.  For 

many RISLs, there was no region of its parameter space that would enable meeting SM-2 or SM-

3.   

The steps taken to achieve SM-3 are detailed below.  The results are graphed in Fig. 4.3.   

4.3.2. Separate disposition of RIFAMPICIN and QUINIDINE 
implemented 

  To mimic the wet-lab protocol for two of the three treatments, RIFAMPICIN and 

QUINIDINE were administered separately prior to DIGOXIN dosing.  I then tuned RISL’s drug-

specific parameter values until I obtained simulated PK time course data for each that was similar 

to reported data.  Time course data for RIFAMPICIN and QUINIDINE administered alone are 

provided in Supplement Fig. 4.6. Those profiles were strikingly similar to corresponding referent 

quinidine and rifampicin profiles (Lau et al., 2004) without having either undergo METABOLISM.  

That similarity indicates that RIFAMPICIN and QUINIDINE metabolism, if measurable, was very 

modest.  Consequently, to preserve simplicity, I elected not to complicate the analogue further by 

implementing a small degree of clearance for either RIFAMPICIN or QUINIDINE.  

A simpler way to represent interaction with DIGOXIN would have been to deactivate all 

OAT to simulate complete inhibition by RIFAMPICIN, and deactivate all PGP to simulate inhibition 

by QUINIDINE.  However, by so doing, I would have abstracted away (thereby making 
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assumptions about) potentially important drug interaction details.  Having the means to explore 

drug-drug interactions in some detail was a driving motivation for engineering the RISL as I did.  

4.3.3. A simple hypothesis fails 

I first explored a wide variety of time-invariant parameter settings and a range of relative 

ratios and amounts of OAT, PGP, and CYP.  No parameter vector was found that was able to 

provide adequate similarity at early times (and thus possibly achieve SM-2) while still meeting 

SM-1.   I refer to that RISL as the simple, linear hypothesis.  I present those results in supplement 

section 4.5.3   I concluded that a somewhat more complicated set of mechanisms would be 

needed.  Note that the RISL is capable of generating a wide variety of PK profiles (that could be 

fit using one, two, or more exponentials). The failure of the simple RISL to achieve SM-2 is 

because its mechanisms were too few and/or too course-grained.  I next considered a variety of 

mechanistic changes, extensions, and additions separately with the goal of improving the degree 

of match at early times, while still achieving SM-1.  None worked.  Nevertheless, I describe two 

that were thoroughly explored to provide background and a context for the changes that followed. 

4.3.4. Two mechanistic changes to improve RISL’s 
behaviors 

  First, I considered that metabolite might compete with digoxin for uptake transporters, 

slowing digoxin uptake as metabolites accumulate in the perfusate.  I implemented the 

mechanism, specifying a bidirectional OAT, with METABOLITE being an OAT substrate.  I explored 

the expanded parameter space (results not shown).  In the absence of an INHIBITOR PREDOSE (the 

control), early DIGOXIN levels did move closer to referent values.  However, in the case of 

EFFLUX inhibitor (QUINIDINE) PREDOSE, more METABOLITE formed (compared to no 

pretreatment), causing more inhibition of DIGOXIN uptake, which was inconsistent with the data.   

Might a different transporter facilitate rapid metabolite efflux from cells to perfusate 

causing early, rapid accumulation of metabolite in perfusate?  I created a METABOLITE 
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TRANSPORTER and called it MT, and added it to S2.  I explored a variety of parameterizations and 

found several that caused much higher, early PERFUSATE METABOLITE levels.  Adding this new 

mechanism moved me much closer to satisfying SM-2, but not close enough.  

In the above scenarios, RISL mechanisms were unchanged during execution.  I 

speculated that in the referent experiments that might not have been the case: mechanisms and 

component behaviors may have changed during the course of the experiments.  I selected the 

simple RISL from above, which included MT, that exhibited the properties closest to SM-2 and 

asked, what time-variant mechanistic changes might lead to achieving SM-2 (and even SM-3)?  

In the absence of a PREDOSE, more DIGOXIN accumulation in S3 would be needed and that would 

need to be coupled with more METABOLITE entering PERFUSATE.  I began exploring how to 

achieve those two attributes.  

4.3.5. Implementing mechanistic deterioration improved 
similarity 

  I pondered: ex situ, the liver might be deteriorating during the perfusion experiment, 

even though there was no reported evidence indicating so (Lau et al., 2004).  Ischemic 

deterioration alone could cause a variety of influential changes, including changes in flow paths, 

cellular volume, accessible sinusoidal surface area, homeostatic metabolism, and 

microarchitecture (Straatsburg and Frederiks, 1997; Bailey and Reinke, 2000).  Such change 

could go unobserved during the course of an experiment, and yet alter enzymatic and transport 

functions.  Plausible, yet unobserved, changes include transporter visibility to digoxin being 

reduced because fenestrae frequency and cross-connections between sinusoids could have been 

reduced.  Digoxin metabolism could decrease because some CYP450 (and/or cofactor) functions 

became defunct.   

I used the inductive method to first identify and then explore several mechanistic changes 

in line with the above ideas.  The following four were aggregated together and implemented.  
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Results following RISL implementation, refinement, and parameter tuning met SM-2 and later 

enabled achieving SM-3.  Results that achieved SM-2 are presented in Supplement Fig. 4.8.  

Alterations such as changes in digoxin-accessible sinusoidal surface area, reduced flow in some 

lobules, decreased fenestrae size or relative density, and/or altered sinusoid microarchitecture 

were conflated and represented together as a decrease in the effective surface area accessible to 

COMPOUNDS.  This change was implemented by decreasing the value of closeToInterface and 

thus the fraction of dose in S1 that was in the transitional state during a simulation.  It was 

reduced using a rapidly decreasing scaling factor.  I found it most effective (in achieving closer 

matches to earlier digoxin perfusate levels) to have most of the decline occur within the first five 

MINUTES.  Behavior of the version used to achieve SM-3 is graphed in Fig. 4.4A.   

Decreases in effective, accessible membrane surface area and cell volume were 

represented by changing COMPOUND visibility: the ability of OAT, PGP, and CYP to “see” and 

allow access to a COMPOUND in its local neighborhood, which was specified by the value of 

sitesN.  I did that by randomly shrinking the size of the local neighborhood (by one ELEMENT) 

from the initial value (ranging from 9 to 20 ELEMENTS) down to 2–4 ELEMENTS within the first 

ten MINUTES.  The average decrement was one ELEMENT every two simulation cycles.  The 

behavior of the version used to achieve SM-3 is graphed in Fig. 4.4B. 

Having COMPOUND visibility decrease in combination with the above time-dependent 

changes in HEPATIC accessibility improved similarity, but was insufficient to achieve SM-2.  Two 

further time-dependent changes were needed.  I enabled PGP, CYP, and OAT to “die” (or to become 

inaccessible) randomly.  I did that by assigning a probability, defunctProb, to each PGP, CYP, and 

OAT (but not a BINDER).  It specified the probability that the object would become defunct during 

any given simulation cycle.  When defunctProb = 0, each PGP, CYP, and OAT always functioned 

(as adjusted by efficiencyProb).  I initially set defunctProb to a near-zero value and then increased 

it gradually thereafter following a quadratic relationship: defunctProb(t) = initial_defunctProb • 
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(defunctRate + t)/(defunctRate – t), where initial_defunctProb and defunctRate are two tunable 

parameters.  The behavior of the version used to achieve SM-3 is graphed in Fig. 4.4C.  

The decline in the ability of hepatocytes to metabolize digoxin or transport a compound 

(into or out of the cell), for whatever reason, was represented by decreasing the efficiency with 

which a CYP carried out its function.  METABOLIC efficiency was specified by efficiencyProb; it 

controlled the probability that a CYP would function as intended.  Its value was set initially to 

efficiencyProb = 0.95.  I decreased efficiencyProb as the simulation progressed using an 

Figure 4.4.  Values of time-variant parameters.  Each graph shows time-dependent parameter values 

used to generate the results shown in Fig. 4.3.  A: The graph shows the time-variant values of the 

fraction of COMPOUNDS in S1 that were in the transitional state, which is defined in the text.  B: Show 

are mean, time-dependent values of sitesN for CYP averaged over 10 CYP; the pattern of change was the 

same for PGP and OAT.  Factors such as accessible hepatocyte surface area and effective cellular volume 

map to the ability of OAT, PGP, and CYP to “see,” and allow access to, a COMPOUND in its local 

neighborhood.  The initial values of sitesN for OAT, PGP, CYP, and MT were decremented randomly.  The 

average decrement was one every two simulation cycles.  The initial and minimum sitesN values were 

22 and 2 for CYP, 9 and 4 for PGP, and 20 and 4 for OAT.  C: Shows are time-dependent values of 

defunctProb for CYP.  The pattern of change was the same for PGP and OAT, and was specified using the 

quadratic relationship specified in the text.  Initial defunctProb values: 0.0042 (CYP), 0.00003 (PGP), 

and 0.0017 (OAT).  In each case, the defunctProb value at 60 minutes was about three to four times that 

of the initial value.  D: Shown are time-dependent values of METABOLIC efficiencyProb: initial = 0.95; 

minimum = 0.03.  An algorithm described in chapter 3 was used to adjust the final value along with the 

early and subsequent exponential rate of decline.  EfficiencyProb for PGP and OAT remained constant.   
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exponentially decreasing scaling factor to “slow” down the process.  I added an additional 

condition: the minimum value of efficiencyProb was specified arbitrarily to be 0.03.  The 

behavior of the version used to achieve SM-3 is graphed in Fig. 4.4D.    

These four time-variant mechanisms together helped me achieve SM-2, but not SM-3.  

My best result using these four time-variant parameters is graphed in Supplement Fig. 4.8.  In 

achieving SM-2, the RISL was able to produce two important features: rapid decline of digoxin 

level in the perfusate, and rapid accumulation of metabolite early in the experiment.   

4.3.6. Further refinement of the consequences of liver 
injury achieved the most stringent similarity measure   

After meeting SM-2, I strove to achieve SM-3.  However, after exhaustive exploration of 

that RISL’s parameter space, I failed to find a parameter vector that would move a METABOLITE 

profile closer to referent values without negatively affecting other profiles.  For example, when I 

added more ENZYMES to S3 in an attempt to move the RIFAMPICIN PREDOSE METABOLITE time 

course up, the METABOLITE curves for DIGOXIN alone and for the QUINIDINE PREDOSE moved 

further up and outside the target range.  Inspection of the original wet-lab data showed that, 

although the rate of digoxin uptake varied greatly due to uptake transporter inhibition by 

rifampicin, the amount of metabolite that formed early during perfusion was comparable.  There 

was no measurement for metabolite at time = 0.  In order to achieve SM-3 it was necessary to 

introduce further complexity to generate early levels of METABOLITE.  As would be expected, 

doing so necessitated re-tuning most of the other parameter values.   

What might have caused the early, high levels of metabolite in perfusate?  I arrived at 

three alternative theories.  1) During pre-dose perfusion, prior to addition of digoxin, mild liver 

damage caused some cell lysates, including metabolic enzymes, to be released into perfusate.  

Even if metabolic activity released into perfusate was short-lived, it could have been sufficient to 

cause some digoxin metabolism.  2) Some digoxin metabolite may have already been present in 
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the administered source material.  3) An endogenous factor (of hepatic origin) may have co-

eluted with the metabolite during assay or cross-reacted with assay reagent.  No evidence was 

available to rule out any of the three and detailed duplication of the same experiments was 

impracticable.  Assertion of any one theory was expected to enable achieving SM-3.  Because 

liver damage can release the contents of some hepatocytes into the perfusate, I elected to assert 

and explore that theory first.  As I show below, doing so enabled achieving SM-3.  Consequently, 

there was no reason to find parameterizations that would enable the other two theories to also 

achieve SM-3.  To explore the plausibility of the first theory, I added different numbers of 

differently parameterized ENZYMES to PERFUSATE prior to addition of DIGOXIN, and tested the 

consequences of a wide variety of parameterizations.  The following specifications contributed to 

achieving SM-3.  I added just four CYP to PERFUSATE, about 13% the total CYP in the S3.  To 

reflect the different environment of these ENZYMES, I arbitrarily specified different ENZYME 

parameter values that were lower than CELLULAR ENZYMES: METABOLIC efficiencyProb = 0.3 

(rather than 0.97) and sitesN = 12 (rather than 15).  I specified a much higher defunctProb (0.025 

rather than 0.0025).  With that small addition and re-tuning of other parameters, I achieved SM-3.  

The results are presented in Fig. 4.3.  The time-variant parameters are specified in Table 4.5; their 

values are graphed in Fig. 4.4.  

4.3.7. Significance of time-variant mechanisms 

  A crucial assumption when experimenting with perfused livers is that, absent perturbing 

events that are part of the experimental design, hepatic functions will remain effectively constant 

over the duration of the experiment.  By being forced to switch from time-invariant to time-

variant mechanisms, I was representing a perfused liver whose behavior was inconsistent with 

that assumption.  By turning off all injury-induced, time-variant mechanisms, and executing 

experiments, I observed plausible results for “normal” livers having constant function throughout 

the experiment.  Those results are graphed in Fig. 4.5.  In Supplement Figs. 4.10 and 4.11, I 
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present eight examples of the consequences of turning off different aspects of the time-variant 

mechanisms.  Together, these sets of RISL time-series data show how each time-variant 

mechanism contributes in distinctive ways to differences between Figs. 4.3 and 4.5. 

 

4.3.8. Two concurrent inhibitors   

To demonstrate the ability to do de novo in silico experimentation with the RISL, I 

executed the RISL with both inhibitors pre-administered.  I observed an anticipated profile of the 

interaction: the anticipated time-course lay between the no-predose and the rifampicin-predose 

curves.  I believe it is a reasonable prediction because interference with a more up-stream process 

(uptake) would produce a greater impact of disposition than that of a more down-stream process 

 

Figure 4.5.  Simulation results from an “ideal experimental liver.”  This RISL Shown are mean results 

(n = 12) for an RISL and experimental conditions that are the same as in Fig. 4.3, except that all time-

variant parameter changes in Fig. 4.4 were turned off and no ENZYME was added to PERFUSATE.  
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(efflux).  The result is presented in Fig. 4.3.  

Discovering the mechanisms used for Fig. 4.3 was an iterative and exploratory process that 

involved induction from both the referent data and—importantly—the structure and behavior of 

prior RISLs.  The result is an example of a hybrid inductive–synthetic model that used a middle-

out inductive strategy, appropriate for model usage.   

4.4.  Discussion 

I first discuss characteristics of the RISL class of models relative to traditional PK models 

and then conclude with observations on the results.  An objective of perfused liver experiments is 

to gain new knowledge regarding details of hepatic disposition and metabolism.  Hypotheses 

about those details are induced from the data.  Fitting inductive mathematical models to the data 

is often used as evidence in support of particular hypotheses.  To date, designing and conducting 

new wet-lab experiments has been the only practicable means to falsify experimentally those 

hypothesized mechanisms.  The methods presented provide an additional experimental means of 

discovering and testing the plausibility of drug interaction details even when the mechanistic 

details change during the course of experiments. 

A purpose in conducting experiments that provide time course data is often to shed light 

on prevailing mechanistic hypotheses about the dynamics.  The methods described here provide a 

means to leverage the investment in those experiments by constructing and studying mechanistic 

analogues contemporaneously with wet-lab experiments.  A traditional, inductive, PK model 

hypothesizes an explanation of patterns in PK data (Rescigno, 2001).  The mathematics of 

physiologically based PK models describe data features predicted to arise from conceptualized 

mechanisms, which are typically described in sketches and prose.  There is an unverifiable, 

conceptual mapping between equations and envisioned mechanisms, as illustrated on the left side 

of Fig. 4.1.  The RISLs and the methods used are different.  The synthetic modeling and 

simulation method (Hunt et al., 2006; Fisher and Henzinger, 2007; Hunt et al., 2008), enables one 
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to assemble software components into mechanisms as illustrated in Fig. 4.1.  They provide an 

independent, scientific means to challenge, explore, and better understand any inductive 

mechanism and, importantly, the assumptions on which it rests.   

Measures of RISL executions such as Fig. 4.3 provide a test of the mechanistic 

hypothesis instantiated in the RISL.  An acceptable similarity between in silico and wet-lab data, 

mapping A in Fig. 4.1, is evidence that mapping B may exist between the dynamics occurring 

during simulation and corresponding dynamics thought to occur within perfused livers, even 

though the actual events and processes in the two systems are different.  That mapping can be 

realistic, consistent with discretizations and the degree of abstraction.  To the extent that mapping 

B is realistic, I can posit that the implemented mechanisms may have also had biological 

counterparts: mapping C.   

RISL design features make it easy to reuse a mechanism in developing an explanation of 

other experimental details, past or future.  As additional data or knowledge becomes available, 

the components comprising the mechanisms on the right side of Fig. 4.1 can be reused, much as I 

have done here, to explore alternative mechanisms and improve realism.  Experimenting with 

RISLs enables the scientist to better understand the analogue mechanisms, with the expectation 

that that improved insight can translate to the referent system.  

RISLs are designed to be relational for maximum flexibility.  Their mechanisms are 

abstract analogues of their referents, not precise one-for-one renderings.  For mapping A in Fig. 1 

to be quantitative, as in Fig. 4.3, an additional model—a method of scaling—is needed to relate 

RISL observables directly to the wet-lab PK data.  To make mappings B and C semiquantitative, 

an additional translational model is needed for each.  By making the RISL relativistic, I can keep 

translational models separate from the RISL.  If I was to move any one of these scaling models 

into the RISL, I would immediately reduce the RISL’s flexibility, which is scientifically 

undesirable.  The levels of temporal, spatial, and mechanistic granularity (which control 
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resolution) are somewhat arbitrary: they need to be sufficiently fine so that the measured 

consequences of RISL execution meet a stringent SM.  Granularity can be easily increased or 

decreased when that is needed.  Because everything within the RISL is relativistic, an algorithm 

can be implemented when needed to automatically adjust parameter values to accommodate new 

levels of granularity so that the consequences of mechanisms can remain essentially the same.  

The synthetic method of modeling and simulation is not intended for making 

quantitatively precise predictions about observables.  Traditional, equation based PK models can 

already do that very well.  The synthetic method is best suited for studying the observable 

consequences of interacting components and testing hypotheses about mechanisms.  As 

demonstrated here, because any number of distinctly different compounds can be studied within 

the same experiment, RISLs and their methods are ideally suited for studying mechanisms of 

drug-drug interactions, and the results of this study have demonstrated their utility for doing that.  

From a simulation perspective, it is demanding to expect one RISL mechanisms to 

simulate time course data for DIGOXIN and its METABOLITE that closely matches observed data 

from three different treatments.  Because all of the mechanistic details are intertwined, a 

mechanistic change made to improve one profile automatically changes the others.  Even though 

the RISL was relatively (to traditional PK models) fine-grained and hierarchical, having an RISL 

with only time-invariant mechanisms was too simple: it achieved SM-1, but not SM-2.  

Explorations of more complicated mechanisms lead to adding a METABOLITE TRANSPORTER to 

S2, including ENZYMES in PERFUSATE, and making the four time-variant changes presented in 

Fig. 4.4.  1) Accessibility (transitional state) of RIFAMPICIN, QUINIDINE, and DIGOXIN to HEPATIC 

surfaces (S2) decreased.  2) CYP became less efficient.  3) The probability that an OAT, PGP, or 

CYP would remain active in the next simulation cycle declined; and 4) the relative size of the 

neighborhood in which RIFAMPICIN, QUINIDINE, and DIGOXIN were visible to OAT, PGP, and CYP 

shrank.  When implemented together within a RISL, I identified a parameterization that enabled 



 

 108 

successfully achieving SM-3 (Fig. 4.3).  I submit that analogous changes in hepatic mechanisms 

occurred during the referent experiments: the livers were dying and/or increasing portions were 

being poorly perfused.  Having the evidence presented influences how we think about and 

interpret the wet-lab results.  Comparable insight cannot be achieved from purely inductive PK 

models.  That is because components of traditional, physiological based PK model are concepts.  

As such, and as illustrated on the left side of Fig. 4.1, there can be no concrete mappings between 

model components, their parameterizations, and referent counterparts (Rescigno, 2004). 

An important underlying assumption when conducting liver perfusion experiments is that 

liver function remains relatively constant over the course of experiments.  An important 

observation is that it was necessary to posit time-variant mechanisms in order to account for the 

data in Fig. 4.3.  Together, the specific time-variant mechanisms in Fig. 4.4, in the context of the 

RISL analogue in Fig. 4.2, comprise the one abstract explanation for the referent data that I 

discovered.  Different variations on this same mechanistic theme may provide equally satisfactory 

explanations.  If I were to use a different liver analogue, the In Silico Liver in Yan et al. (2008a) 

for example, alternate, similarly plausible time-variant mechanisms may be discovered.  How 

mechanistic explanations may change between different models of the same system is an avenue 

for future research.  In addition, there may be several, somewhat different parameter vectors for 

the implemented mechanisms that do equally well at achieving SM-3, but my search did not 

locate them.  Taken together, the following five observations are circumstantial evidence that the 

mechanistic explanations offered are plausible.  A single, time-variant RISL produced: 1) 

simulated DIGOXIN and METABOLITE PERFUSATE levels that were quantitatively similar to 

referent data when digoxin was administered alone;  2) Simulated DIGOXIN and METABOLITE 

PERFUSATE levels following separate pretreatments with QUINIDINE and RIFAMPICIN achieved 

SM-3;  3) Measures of Monte Carlo variants of the RISL used for Fig. 4.3 had the same time 

course features observed in the wet-lab data.  However, because of the built-in stochastic 
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uncertainty, they lack the precision of traditional PK models;  4) Simulated QUINIDINE and 

RIFAMPICIN data were similar to referent time course data (see Supplement Fig. 4.6); 5) Modest 

changes in parameter vector values altered the relative positions of the six simulated perfusate 

profiles (not shown), but not their shapes.  The RISL can therefore stand as an abstract analogue 

of what may have occurred during the liver perfusion experiments. 
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4.5.  Supplement 

4.5.1. Fraction of administered dose calculations 

In wet-lab experiments, the investigator selects specific experiment features to measure 

because observing all potentially important aspects of the experiment is infeasible.  In the wet-lab 

experiments, the measure of the time course of relative abundance of administered drug was 

concentration, because only a tiny perfusate aliquot would be consumed.  It is not uncommon for 

a small portion of administered dose to be lost and not recovered in later measurements.  

An obvious advantage of RISL experiments is that the system is completely transparent.  

We can “see” where everything is and what each component is doing at the end of any simulation 

cycle.  We can measure the exact relative abundance of administered COMPOUNDS, as fraction of 

total administered DOSE.  

In order to compare referent and RISL PK profiles, we needed to either transform wet-lab 

concentration measurements into fraction of administered dose in perfusate, or transform RISL 

measurements to concentrations.  The latter would have been complicated.  I elected the former 

because it required only specifying a common denominator, in units of nanomolar, for all 

concentration measurement.  

There are several options in selecting that common denominator:  

• It was reported that 10 µg of digoxin was used, and that the volume of perfusate used was 

110 mL.  That gave 116 nM.   

• It was also reported that digoxin, dissolved in sufficient diluent, was added to the 

perfusate to give an initial concentration of about 110 nM. 

• Finally, it was reported that the initial, perfusate concentration without the rat liver was 

about 121.5 nM.   
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I elected to use 121.5 nM as the common denominator because it required making no 

assumptions about the actual volume being used.  Using a different common denominator would 

shift the values to which I am comparing my simulation results and, in turn, change the 

assessment of whether or not a given set of RISL results meets a SM.  

4.5.2. Inhibitor time-course profiles 

It was reported that each inhibitor was added (separately) to the perfusate of an already-

established, perfused liver 10 minutes prior to addition of digoxin.  Figure 3 in the Lau et al.  

(2004) shows the reported PK profiles for each inhibitor.  Presented in Fig. 4.6 are separate time-

course profiles for the two INHIBITORS during a typical simulation experiment.  They are 

qualitatively and quantitatively similar to the reported PK profiles.  I elected not to fine-tune these 

profiles further and not to include them in the set of targeted attributes, because doing so would 

not have provided additional insight into the referent data in Fig. 4.3.  I assert that the observed 

qualitative and quantitative similarities between the data in Fig. 4.6 and the referent data are 

adequate for the specified objectives.  
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Figure 4.6.  RISL PK profiles for RIFAMPICIN and QUINIDINE.  X-axis: time after addition of INHIBITOR; y-

axis: fraction of administered dose.  A: RIFAMPICIN, the uptake inhibitor; B: QUINIDINE, the efflux inhibitor. 

Each profile is similar to its referent in Fig. 3 of Lau et al. (2004).  DIGOXIN was administered 10 minutes 

after the INHIBITOR.   
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4.5.3. A simple hypothesis fails 

Fig. 4.7 shows results of the simple, linear RISL.  It satisfied the SM-1 criterion, but 

failed to satisfy SM-2; that RISL’s composition and time-invariant parameter values are given in 

Table 4.6.  It included OAT, PGP, and CYP.  All parameter settings and relative ratios and amounts 

of OAT, PGP, and CYP were time-invariant.  No parameter vector was found that was able to 

provide adequate similarity at early times (and thus possibly achieve SM-2) while still meeting 

SM-1.   

4.5.4. Metabolism in the simple time-invariant RISL 
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To achieve SM-2, I speculated that some level of metabolite may have been present in 

perfusate shortly after digoxin was added (t = 0).  One plausible cause was that hepatocytes were 

injured during earlier manipulations to establish the system, resulting in metabolic enzymes being 

released from hepatocytes into perfusate prior to the time digoxin was administered.  This 

mechanism was later implemented.  Other plausible causes are: 1) presence of analytically 

indistinguishable impurities; 2) digoxin hydrolysis produced measurable amounts of primary 

metabolite (formation of the metabolite from hydrolysis of digoxin is acid catalyzed); 3) a liver 

Figure 4.7.  Comparison of wet-lab experimental data to simulated results using the simple, linear RISL 

described in the text.  All graphed values are averages of six simulation experiments.  All RISL 

mechanistic events were time invariant and linear relative to amounts.  Key parameter values are listed 

in Table 4.6.  Those not shown are the same as in Table 4.2.  A: Solid symbols are values reported in 

Lau et al. (2004) converted to fraction of digoxin dose (0.4 to 1.0) remaining in the perfusate for each of 

the three treatments.  The three open symbols at 60 min., along with the gray curves, are mean results 

for each of the three indicated treatments, simulated using the simple RISL.  The simulated values at 60 

min. (but not at earlier times) achieved the first Similarity Measure (SM-1).  B: The closed symbols and 

treatments are the same as in A, but the values are the digoxin metabolite levels in perfusate, as fraction 

of reported dose (0.0 to 0.4).  As in A, the three open symbols at 60 min., along with the gray curves, 

are mean results for each of the three treatments simulated using the simple RISL.  The simulated 

values at 60 min. (but not at earlier times) achieved SM-1.  However, as described in the text, no time-

invariant parameterization of this RISL was found that enabled achieving SM-2.   
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derived contaminant co-elutes (HPLC) with the metabolite during assay.  In Fig. 4.7, I specified 

that 5% of the administered dose was metabolite at t = 0.  Consistent with that hypothesis, I 

decreased the initial concentration denominator from 121.5 nM to 115 nM.  That change explains 

why wet-lab values in Figs. 4.7, 4.8 and 4.3 differ slightly.  Figure 4.7 is the evidence that the 

preceding hypothesis helps improve similarity sufficiently so that SM-1 is achieved.  I noted, 

however, that the shapes of the profiles (RISL and wet-lab) were dissimilar, and so I began to 

explore time-variant mechanisms. 

   

 

Table 4.6.  Key parameter values for the simple time-invariant RISL in Fig. 4.7 

Parameters Remarks Values 

numPgps Number of PGP 25 

numOats Number of OAT 50 

numCyps Number of CYP (ENZYMES) 15 

numBinders Number of BINDERS 25 

timestepfactor Scaling factor for passive permeation 10 

CYP 0.15 

OAT 0.7 

PGP 0.5 
assocProb DIGOXIN’S association probability to  

BINDER 0.15 

CYP 0.2

OAT 1

PGP 1
releaseProb DIGOXIN’S dissociation probability  from  

BINDER 0.15

S1 0.01

S3 0.08closeToInterface Fraction sufficiently close to interface such that 
it is transitional for DIGOXIN 

S5 0.1

maxSites Number of substrate binding sites per stationary object  4 

efficiencyProb  Efficiency parameter for stationary objects 1 

sitesN  Size of neighborhood (number of ELEMENTS) scanned each cycle 
by a stationary object 4 
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4.5.5. Implementing mechanistic deterioration improved 
similarity   

Results following RISL implementation, refinement, and parameter tuning of four time-

variant changes achieved SM-2 are presented in Fig. 4.8. Time-variant RISLs differ in four ways 

from the time-invariant RISLs used to generate the simulation results in Fig. 4.7. A METABOLITE-

specific TRANSPORTER was added to S2 to increase the rate of return at early times of 

METABOLITE to PERFUSATE.  The accessibility of S2 to mobile objects in the PERFUSATE 

decreased with time as specified in section 4.3.5 and Tables 4.7–4.9, decreasing the rate of both 

passive and active HEPATIC permeation by all mobile objects (the three DRUGS).  The efficiency 

of CYP decreased with time as graphed in Fig. 4.9B.  Loss of efficiency suggests loss of viability 

or diminished perfusion or some combination.  In addition, a portion of those immobile objects 

became inactive (Fig. 4.9C) each cycle. All other parameters were readjusted to achieve SM-2.  

Figure 4.8.  Simulated results that achieved SM-2, but not SM-3, using RISLs with the time-variant 

mechanisms graphed in Fig. 4.9.  The symbols are the mean wet-lab data.  The curves are mean (n = 6) 

simulated values.    A: Shown is the mean DIGOXIN PERFUSATE levels for each of the three indicated 

treatments.  In all three cases, simulated values achieved SM-2; most were within 10% of referent 

values.  For the QUINIDINE PREDOSE case, DIGOXIN PERFUSATE levels, as fraction of DOSE, reached a 

minimum of about 0.4 at 30 minutes, and then began increasing slightly.  That was caused by DIGOXIN

returning primarily from S3 because of eroding TRANSPORT and METABOLIC functions.  B: Shown are 

the mean METABOLITE PERFUSATE levels corresponding to the three treatments in A.     
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The parameter values are presented in Tables 4.7, 4.8 and 4.9.   

I achieved an early decline in DIGOXIN levels along with rapid rise in METABOLITE level, 

both of which were not achieved using the time-invariant RISL (Fig. 4.7).  Even though 

METABOLITE levels for both the RIFAMPICIN and QUINIDINE PREDOSE cases are far from target 

values, the shapes of the METABOLITE time course profiles were similar to the shapes of the 

referent profiles.  Collectively, the six sets of simulated data in Fig 4.8 achieved SM-2.  Further 

improvement was infeasible without making the time-variant mechanism more complicated, 

which was done to achieve the RISL results in Fig. 4.3.  A change in parameterization that would 

bring the RIFAMPICIN-PREDOSE curve closer to referent values (open diamonds) would cause each 

of the other five profiles (and possibly the RIFAMPICIN alone and the QUINIDINE alone profiles) to 

also shift.  The net result of such an effort can be failure to achieve SM-2. 
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Table 4.7.  Compound specific parameters values for the RISL data in Fig. 4.8 

Values COMPOUND 
Parameters Remarks 

DIGOXIN a RIFAMPICIN a QUINIDINE a METABOLITE b

MW c molecular weight of the solute 781 822 324 601 

logP c 
logP - common logarithm of 

octanol/water partition 
coefficient 

1.14 3.60 2.53 1.60 

pKa c pKa closest to insilicoPH 13.5 7.9 8.6 13.5 

inihibitorType uptake inihibitor? True/False n/a TRUE FALSE n/a 

S1 -- e  0.750  0.750  0.030  

S3 0.125 0.040 0.040 0.060 closeToInterface 
Fraction sufficiently 

close to interface such 
that it is transitional d

S5 0.100 0.050 0.050 0.100 

S1→S2 0.11 0.11 0.16 0.13 

S2→S1 0.19 0.014 0.10 0.11 

S2→S3 0.19 0.012 0.14 0.11 

S3→S2 0.11 0.11 0.16 0.13 

S3→S4 0.11 0.11 0.16 0.13 

S4→S3 0.19 0.012 0.14 0.11 

S4→S5 0.19 0.012 0.16 0.11 

transitProb 

Initial estimates of 
trans-membrane transit 

probabilities, after 
scaling by 

timestepfactor 

S5→S4 0.11 0.11 0.16 0.13 
a  Physicochemical properties reflect those of the referent drug. 
b  Physicochemical properties reflect those of digoxigenin bis-digitoxoside. 
c  Molecular weight, logP, and pKa are used in calculating the initial, passive transit probabilities, as 

described earlier.  For pKa, only the value closest to 7.4 is listed.   
d  The closeToInterface value for all solutes in S2 and S4 was always 1.  This reflects the fact that the 

referent barriers are sufficiently thin so that all solutes within them at the start of a 10 second interval (a 
simulation cycle) will have had an opportunity to transition by the end of that interval.   

e  CloseToInterface is a time-variant parameter.  It, together with internalProb, specifies the fraction 
transitional (Table 4.9).   
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Table 4.8.  Parameters for compound-protein interactions for the RISL data in Fig. 4.8 

Values COMPOUND-PROTEIN 
Interaction Parameters DIGOXIN RIFAMPICIN QUINIDINE METABOLITE 

MT FALSE FALSE FALSE TRUE 

PGP TRUE FALSE FALSE TRUE 

OAT TRUE TRUE FALSE TRUE 

CYP TRUE FALSE FALSE FALSE 

isaSubstrate 
substrate of ? 

TRUE / FALSE 

BINDER FALSE FALSE FALSE FALSE 

MT 0 0 0 0.9 

PGP 0.4 0 0.99 0.4 

OAT 0.5 0.8 0 0.05 

CYP 0.5 0 0 0 

assocProb 
reflects binding 

affinity to protein 

BINDER 0.6 0 0 0.24 

MT 1.0a 1.0a 1.0a 0.9 

PGP 0.7 1.0a 0.05 0.7 

OAT 0.7 0.075 1.0a 0.9 

CYP 0.2 1.0a 1.0a 1.0 

releaseProb 
reflects dissociation 

from protein 

BINDER 0.3 1.0a 1.0a 0.04 

Table 4.9.  Time-variant parameters and their values, corresponding to Fig. 4.9 

Time-variant parameter Initial value Terminal value 

Fraction transitional a in S1 0.35 0.096 

CYP 15 2 

PGP 9 4 

OAT 20 4 

Effective SURFACE AREA 
changes sitesN 

(neighborhood) 

MT 35 4 

CYP 0.99 0.05 

PGP 1 1 

OAT 0.6 0.6 
efficiencyProb a 

MT 1 1 

CYP 0.0025 0.023 

PGP 0.00028 0.0026 

OAT 0.0035 0.032 

METABOLIC and 
TRANSPORT activity 

changes 

defunctProb 

MT 0.00028 0.0026 
a The method for changing fraction transitional and efficiencyProb  (Fig. 4.9A and 4.9B) is detailed in 
chapter 3, under Parameter scaling.   
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Figure 4.9.  Values of time-variant parameters for the RISL data in Fig. 4.8.  Each graph shows time-

dependent parameter values used to generate the experimental results shown in Fig. 4.8.  A: The graph 

shows the time-variant values of the fraction of COMPOUNDS in S1 that were in the transitional state.  

COMPOUNDS in S1 were in one of the three states discussed in the text: 1) external (to the LIVER), 2) 

internal (within EXTRACELLULAR HEPATIC SPACES but not given the option to transition within a simulation 

cycle, or 3) transitional (close enough to CELL MEMBRANES—S2—so that transition was an option within a 

simulation cycle).  The fraction external needed to be constant to simulate a constant perfusate flow rate.  

During tuning, an algorithm was used to adjust the final value and the rate of decline.  The values for 

fraction internal were automatically adjusted.  The initial value of fraction transitional was 0.35; the value 

at 60 minutes was 0.096.  B: The graph shows the time-dependent values of (METABOLIC) efficiencyProb.  

The frequency at which METABOLISM occurs for a COMPOUND bound to CYP is controlled by the parameter 

(METABOLIC) efficiencyProb.  The graph shows the decrease in its value (initially 0.99) to a minimum value 

of 0.05.  During tuning, an algorithm was used to adjust the final value along with the early and subsequent 

exponential rate of decline.  EfficiencyProb = 1 for PGP, and it did not decrease with time; efficiencyProb = 

0.6 for OAT, and it too remained constant.  C: The graph shows the time-dependent values of defunctProb 

for CYP; the pattern of change was the same for PGP and OAT. During tuning, I used the following quadratic 

relationship.  The initial values used were defunctProb = 0.0025 (CYP), 0.00028 (PGP), and 0.0035 (OAT).  

In each case, the defunctProb value at 60 minutes was about 10 times that of the initial value.  Quadratic 

relationship: defunctProb(t) = initial_defunctProb • (defunctRate + t)/(defunctRate – t), for t ≤ 60 

MINUTES, defunctRate=500.  D: The graph shows the mean time-dependent values of sitesN for CYP 

averaged over 10 CYP; the pattern of change was the same for PGP and OAT.  Factors such as accessible 

hepatocyte surface area and effective cellular volume were simulated as described in section 4.3.5.  The 

initial value each object’s (OAT, PGP, CYP, and MT) sitesN was decremented randomly.  The average 

decrement was one ELEMENT every three simulation cycles.  The initial and minimum sitesN values were 

15 and 2 for CYP, 9 and 4 for PGP, and 20 and 4 for OAT.  Table 4.9 shows the values for each of the time-

variant parameters. 
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4.5.6. Consequences of selectively turning off 
mechanistic features 

I focus on four conditions, corresponding to the answer to four questions.  E) Enzymes: 

are ENZYMES in S1 beginning at t = 0?  S) Surface area: are COMPOUND accessible HEPATIC 

surface areas and access to CYP, PGP, and OAT shrinking as in Fig. 4.4 A and B?  D) Dysfunction: 

are ENZYMES and TRANSPORTERS becoming less efficient and defunct as in Fig. 4.4C and D?  B) 

Binders: are BINDERS present?  The key function of BINDERS is to retain METABOLITE within 

CELLS (within S3), a process that is inhibited by RIFAMPICIN in the RISL.   

In Figs. 4.10 and 4.11, the consequences of eight of 16 possible combinations are shown.  

The combinations are coded as follows.  When the answer to all four questions in the above order 

(ESDB) is yes, then that RISL is identified as 1111.  That corresponds to the RISL used for Fig. 

4.3.  The “healthy” RISL in Fig. 4.5 is identified as 0001.  All RISLs in Figs. 4.10 and 4.11 

should be compared to these extremes as well as to each other.    
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Figure 4.10.  Perfusate profiles for four different RISLs.  A: ESDB = 0111.  Shown are the consequences 

of not having ENZYMES in S1.  There was always too much parent DRUG, and too little METABOLITE.  

ENZYMES in S1 convert some DIGOXIN to METABOLITE early on.  B: ESDB = 1101.  Shown are the 

consequences of keeping S1 and S3 ENZYMES active for the duration of the experiment.  METABOLITE 

formation does not level off, because ENZYMES are not dying out.  However, their neighborhood (siteN) still 

shrinks.  C: ESDB = 1011.  Shown are the consequences of ENZYMES and TRANSPORTERS becoming less 

efficient and defunct, but their neighborhoods do not shrink.  The initial drop of  DIGOXIN become much 

less drastic, and correspondingly fewer METABOLITE return to perfusate at early time D: ESDB = 1110.  

Shown are the consequences of having no BINDERS.  DIGOXIN PERFUSATE levels were very much the same, 

but without BINDERS, more METABOLITE entered PERFUSATE in DIGOXIN-only and QUINIDINE-only groups.  
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Figure 4.11.  Perfusate profiles for another four different RISLs.  A: ESDB = 1001.  The most dramatic 

change was when ENZYMES and TRANSPORTERS stayed active and their access along with accessible 

HEPATIC surface areas does not shrink.  Note that BINDERS were present, so the RIFAMPICIN treatment group 

had the highest PERFUSATE METABOLITE levels. B: ESDB = 0101.  Shown are the consequences of keeping 

ENZYME and TRANSPORTER activities and numbers constant.  C: ESDB = 0011.  Shown are the 

consequences of keeping constant COMPOUND accessible HEPATIC surface areas and access to CYP, PGP, and 

OAT.  D: ESDB = 0110.  Shown are the consequences of removing the S1 enzymes and BINDERS.   
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5. Mechanistic Insight from In Silico Pharmacokinetic 
Experiments: Roles of P-glycoprotein, Cyp3A4 
Enzymes, and Microenvironments 

5.1 Introduction 

Mouly et al. (2004) reported paradoxical observations following a vectorial study of 

saquinavir transport across a monolayer of modified, p-glycoprotein (P-gp) and Cyp3A4-

expressing Caco-2 cells: there were higher intracellular levels of saquinavir, yet less metabolite 

formation after apical compared to basal dosing.  The data clearly indicated that the intracellular 

mechanisms during transport were more complicated than anticipated.  The authors suggested 

mechanistic explanations, but no established experimental wet-lab methods were available to test 

them.   

Recent advances in discrete event modeling and simulation (M&S) of complex systems 

(Hunt et al., 2009) enables implementing in silico methods to test the plausibility of mechanistic 

hypotheses.  I used the synthetic modeling method (Liu and Hunt 2006; Hunt et al., 2006; 

Garmire et al., 2007; Yan et al., 2008a; Lam and Hunt., 2009; Park et al, 2009) illustrated in Fig. 

5.1 to implement an in silico analogue of the wet-lab system, and then used it to explore the 
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plausibility of the above explanations.  The approach was straightforward: drawing on prior 

efforts and reusing validated components, I built an in silico analogue of the confluent, 

asymmetric, cell monolayer system used by Mouly et al.  It is designed for experimentation and 

hypothesis generation and falsification (Hunt et al., 2008; Lam and Hunt, 2009).  I call it ISECC 

for In Silico Experimental Caco-2 (cell monolayer) Culture.  Concrete, working versions of 

hypothesized spatial mechanisms were implemented within.  In silico experiments used the same 

design as the referent wet-lab experiments.  Simulation following component tuning tested each 

mechanistic hypothesis.  Similarity Measures (SMs) with respect to referent experimental 

observations were used to set expectations.  When results did not meet expectations, the 

mechanistic hypothesis was falsified; when results did meet expectations, a degree of validation 

was achieved.   

The simple mechanisms hypothesized by Mouly et al. (2004) as implemented were 

falsified: when instantiated in the ISECC they failed to validate.  That was unexpected. Although 

the proposed mechanisms alone were insufficient, it turned out that they were necessary parts of a 

more complicated explanation.  To discover an ISECC mechanism that would validate, I 

implemented and followed the iterative ISECC refinement protocol in Fig. 5.2.  It targeted wet-

lab results from an expanding subset of 16 experimental conditions.  I progressed through four 

stages.  By discovering a set of mechanisms that would validate (achieve the prespecified SMs) 

for two of the 16 conditions, I achieved Stage 1 (Lam and Hunt, 2008).  Stage 4 targeted results 

of all 16 wet-lab conditions coupled with more stringent SMs.  In between were many 

falsification, re-validation processes.  The following illustrates.  A specific ISECC mechanism is 

discovered that validates for six targeted conditions using a prespecified SM.  The targeted 

attribute list is then expanded to include transport results for two additional conditions.  The 

current ISECC is falsified because, for the specified SM, experimental results using it over the 

eight conditions fail to match referent results.  I then readjust the current ISECC and/or add in 
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new components such that the new ISECC validates again.  Following the parsimony guideline, 

validation is achieved by discovering a plausible, marginally more complicated mechanistic 

hypothesis that survives the experimental challenge.  The iterative refinement protocol enabled 

and facilitated discovery of plausible, new mechanistic details through exercise of abductive 

scientific reasoning, a primary means of knowledge creation and creative cognition (Hunt et al., 

2009).  The M&S method also facilitated that discovery by making it relatively easy to implement 

and explore multiple mechanistic hypotheses.   

The ISECC that survived the most stringent SM challenge at Stage 4 produced transport 

measures that were statistically indistinguishable from referent wet-lab observations.  It required 

a 7:1 ratio of apical transporters to metabolizing enzymes, a 97% reduction of efflux activity by 

an inhibitor, a biased distribution of metabolizing enzymes, heterogeneous intracellular spaces, 

and restrictions on drug movement within some of those intracellular spaces.   

A purpose of conducting wet-lab experiments like those cited is to gain new knowledge 

regarding mechanistic details of directional transport and metabolism.  As done in the cited work, 

hypotheses about those details are induced from the data (Rescigno 2004; Hunt et al., 2008).  To 

date, all hypothesized mechanistic explanations for the data have been conceptual and thus 

difficult to falsify.  Designing and conducting new wet-lab experiments has been the only 

practicable means to experimentally falsify those hypothesized, conceptual mechanisms.  Even 

when inductive mathematical models have been fit to the data, the mechanisms remained 

conceptual.  Experimenting on synthetic analogues like ISECC provides a heretofore-unavailable 

means of discovering new mechanistic details and testing their plausibility.  This approach 

provides a powerful new expansion of the scientific method: an independent, scientific means to 

challenge, explore, better understand, and improve any inductive mechanism and, importantly, 

the assumptions on which it rests (Hunt et al., 2009).   
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Figure 5.1. Relationships between in vitro, transport experiments, conventional induced transport models, 

and ISECC experiments.  A, center: cell monolayers in an experimental context such as a Transwell device 

are the referent wet-lab systems.  During experiments, cellular components interact with transiting drug 

molecules to cause changes in amount transported and metabolized within specified intervals.  Influential 

mechanistic details are reflected in the collected data.  Left: the researcher identifies patterns in the wet-lab 

transport data.  From those and prior transport knowledge, a mechanistic description of what is thought to 

have occurred is induced, thus establishing an abstract, conceptual mappings from that description to 

transport mechanisms.  In some cases, the researcher goes further and offers a set of transport equations 

believed capable of describing the data.  An algorithmic representation the equations in software is 

constructed and executed to simulate parameterized equation output.  Metrics specify the goodness of fit of 

the simulated output to the data.  Right: the abstract mechanistic description may be different from that on 

the left side.  Software components are designed, specified, coded, verified, and assembled and connected 

guided by that mechanistic description.  The product of the process is a collection of abstract mechanisms 

rendered in software.  A clear mapping—C—is intended to exist between ISECC components and how 

they plug together, and cell monolayer and intracellular details.  Relative similarity is controlled in part by 

parameterizations.  Importantly, mapping C can be concretized iteratively.  Compilation and source code 

execution gives rise to a working analogue.  Its dynamics are intended to represent abstractly (mapping B) 

corresponding dynamics (believed to occur) within the monolayer cultures during an experiment.  Mapping 

B can also be concretized iteratively.  Measures of simulated dynamics provide time series DATA that are 

intended to mimic corresponding measures of wet-lab transport experiments.  Achieving increasingly 

stringent similarity measures enable mapping A to be made concrete.  B, Conditions supportive of all three 

reasoning methods are sketched (see Appendix for brief descriptions).  Obviously, scientists engaged in 

drug transport research would like knowledge about all cell monolayer and subcellular characteristics to be 

rich and detailed, and for uncertainties to be limited.  Such conditions (toward the far right side), which are 

common in non-biological, physical systems, favor developing inductive models that are increasingly 

precise and predictive.  However, for the system and experiments described in Mouly et al. (2004) we are 

on the left side, where frequent abduction is needed and synthetic M&S methods can be most useful.  
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Figure 5.2.  The iterative protocol 

used to refine and improve the ISECC.  

At the beginning, the set of attributes 

to be targeted are specified.  In this 

case, that set included results from 

sixteen different experimental 

conditions.  Similarity goals to be 

achieved are specified.  Abductive 

reasoning may be required at steps 4-8.  

Induction and deduction occur during 

steps 5-7.  The final ISECC described 

herein was preceded by seventeen less 

complicated ISECC (described in the 

Fig 5.9).  Each in sequence was 

falsified at step eight.  Bottom: a 

graph illustrating the relationship 

between the parameter space for a 

specific ISECC that validates and the 

number of attributes targeted.  

Indicated is an ISECC that validates 

by achieving the Stage 3 but not Stage 

4 SMs.  Its parameter space is small.  

However, because parameter 

influences are all networked and the 

variability in outcomes between 

simulation runs is non-trivial, there are 

many similar mechanism and 

parameter vectors within that space 

that can produce essentially the same 

measured simulation phenomena.   

If the number of attributes targeted is reduced, then for the same ISECC the size of the space that 

contains parameter vectors that can validate increases.  However, if the number of attributes targeted is 

increased at step eight in the protocol, that same ISECC is falsified because the parameter space that 

enables validation shrinks to zero.  Adding a component or feature to that ISECC makes a new, more 

complicated ISECC that has its own curve; it may be shifted up so that, again, there is a region of 

parameter space that contains mechanisms and parameter vectors that can validate.  The relationship is 

shown linear for illustration purposes. 
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5.2 Methods 

In silico experiments were conducted beginning with a basic structure of the ISECC 

similar to that detailed in Liu and Hunt (2006) and Garmire et al. (2007).  The second generation 

ISECCs used herein map to a monolayer of epithelial cells separating apical from basal media- or 

fluid-filled compartments.  The 3D nature of the in vitro system is simulated using a stack of five 

two-dimension toroidal grids.  To distinguish clearly in silico components and processes from 

corresponding in vitro tissue culture counterparts, I use SMALL CAPS when referring to the former; 

italics denote ISECC parameters, variables and internal states.   

In contrast to inductive models, which often focus on precise prediction, the ISECC and 

the synthetic modeling and simulation (M&S) methods used are designed for discovering and 

testing plausible, mechanistic explanations (Hunt et al., 2009) of the referent drug transport data 

(Mouly et al., 2004).  The approach is ideal for discovery and understanding of transport 

phenomena produced by a system of interacting components.  A specific ISECC instantiates (is 

represented by a concrete instance of) a mechanistic hypothesis (Fisher and Henzinger 2007; 

Hunt et al., 2008; Hunt et al., 2009).  Execution and comparison of results to referent data tests 

the hypothesis.  A protocol was followed that facilitated generating multiple mechanistic 

hypotheses.  I eliminated the least plausible using in silico experimentation.   

5.2.1 Summary of wet-lab methods   

Using modified, Cyp3A4 and P-glycoprotein (P-gp) expressing Caco-2 monolayers 

(Schmiedlin-Ren et al., 1997) cultured in Transwell™ devices, Mouly et al. (2004) studied the 

role of Cyp3A4-mediated metabolism (Fitzsimmons et al., 1997; Eagling et al., 2002; Parker and 

Houston 2008) and P-gp-mediated efflux (Kim et al., 1998; Wacher et al., 1998) in saquinavir 

metabolism and disposition (Su et al., 2004).  In control conditions, saquinavir was added to 

either apical or basal compartment at the start of the experiment to achieve concentrations of 5, 

10, 20 or 40 µM.  For the P-gp inhibited conditions, an apical dose of the P-gp inhibitor 
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LY335979 (zosuquidar trihydrochloride; simply inhibitor hereafter) (0.5 µM) (Dantzig et al., 

1999) was co-administered with saquinavir.  The cells were incubated at 37º C for up to four 

hours, at which time the apical and basal media, along with the cell monolayer were collected and 

analyzed for saquinavir and its major metabolite M7.   

5.2.2 Objective and approach   

My objective was to discover a single set of components and micromechanisms, which 

when parameterized would provide a cohesive, concrete, plausible explanation for the results of 

sixteen different, experimental conditions presented in Fig. 1 of Mouly et al. (2004), including the 

paradoxical observations.  I was not seeking a traditional, differential equation explanation of 

transport.  Rather, I sought an actual, working mechanism—an analogue—comprised of quasi-

autonomous biomimetic processes and parts, which when measured during execution would give 

TRANSPORT DATA similar to the referent wet-lab data.  There are likely many equally plausible 

mechanisms that differ in some details, yet give rise to essentially the same phenomena.  For this 

project, the goal was simply to discover one.  I used the synthetic modeling and simulation 

method (Hunt et al., 2006; Lam and Hunt, 2009) illustrated in Fig. 5.1.  I started with the ISECC 

from Lam and Hunt (2008), which plugged together validated, quasi-autonomous software 

components to form an abstract yet mechanistically realistic analogue of transport through a 

monolayer of cells into which one could add, alone or in combination, objects representing 

different compounds.  

My experimental approach followed the iterative refinement protocol in Fig. 5.2: cycles 

of ISECC synthesis, testing and evaluation, validation or falsification, assessment, cogitation, and 

system revision until one satisfied predetermined similarity criteria.  Other researchers and I have 

used the protocol successfully (Hunt et al., 2006; Tang et al., 2007; Engelberg et al., 2008; Kim et 

al., 2009; Lam and Hunt, 2009).  It strives to adhere to the guideline of parsimony, which is 

important when building agent-oriented analogues that are expected to become increasingly 
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complex.  I began by instantiating the conceptual mechanism described in Mouly et al. (2004).  

Even after multiple rounds of iterative refinement, it failed to mimic wet-lab results.  Failure of 

that best-at-the-time mechanistic explanation demonstrated that conceptual mechanistic 

descriptions can be flawed in ways that are not readily apparent.  Flaws, when they exist, begin 

becoming obvious after I implement and begin testing the mechanism synthetically. (Lam and 

Hunt, 2009; Hunt et al., 2009)  

5.2.3 ISECC structure and components   

I specified that ISECC components and their assembly be consistent with a Transwell 

device having a confluent monolayer of polarized epithelial cells exhibiting the following 

characteristics.  There are at least five distinct spaces: two dosing compartments (apical and 

basal), and an intracellular space between a pair of asymmetric membrane barriers (apical and 

basal).  Added compounds can move within and between spaces consistent with their 

physicochemical properties (PCPs).  Efflux transporters (P-glycoprotein, etc.) located only on the 

apical membrane enable facilitated translocation of some compounds across that membrane.  An 

added compound in the intracellular space, upon encountering a subcellular component (a 

cytochrome P450, for example) can be metabolized; however, those subcellular components are 

not uniformly distributed within the intracellular space.  There are regions of intracellular 

heterogeneity.  Examples include, lysosomes, the nucleus, mitochondria, and endoplasmic 

reticulum (Khoo et al., 2002; Vernochet et al., 2005).  

Cells are complicated 3-dimemsional (3D) structures.  For the sake of visualization, it is 

tempting to use a 3D grid to represent cell spaces and place different objects within that map to 

subcellular features.  However, the available detailed knowledge is insufficient to validate.  Even 

with considerably more knowledge, to complete a 3D representation, I would accumulate a long 

list of weak assumptions.  The approach taken strives to avoid unnecessary assumptions while 

specifically taking into consideration uncertainty and ignorance.   
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An ISECC uses five identically sized spaces, S1–S5.  The mappings are as follows: S1 → 

apical compartment; S2 → apical membrane; S3 → intracellular space; S4 → basal membrane; 

and S5 → basal compartment.  S1–S5 are two-dimension grids.  In this study, each space is 

arbitrarily subdivided using a 50x50 square grid.  Using more coarse-grained spaces increases the 

variance of measures requiring averaging more simulation runs.  Using more fine-grained spaces 

will decrease variances but run times are increased.  Objects called ELEMENTS are placed at each 

grid location.  The S2–S4 elements are containers for CELLULAR components and for 

COMPOUNDS moving around within and between spaces.  S1 and S5 elements are simply 

containers for COMPOUNDS.  Each S3 element, for example, maps to a small fraction of total 

intracellular space from apical to basal membranes.  A small fraction of S1 and S5 elements map 

to spaces between cells including tight junctions (TJ) (Liu and Hunt 2006; Garmire et al., 2007).  

Elements can have different properties relative to mobile COMPOUNDS.  For example, the 

SOLUBILITY of a COMPOUND in one element type can be specified to be different than in another 

element.  Elements are given properties so that the COMPOUND’s entry and exit from a particular 

element can be differentiated based on those properties and the COMPOUND’s PCPs.  For example, 

a LIPID-LIKE element can restrict entry of highly POLAR or CHARGED COMPOUNDS, whereas 

highly HYDROPHOBIC COMPOUNDS can accumulate (Khoo et al., 2002; Vernochet et al., 2005).  

An ELEMENT’s internal logic is a placeholder for more fine-grained mechanistic detail that can be 

added when that is needed and the information is available to do so.  Within S1, S2, S4, and S5, 

the elements at each grid location are identical.   

It was apparent from the original wet-lab data (Mouly et al., 2004) and from my group’s 

early work (Yan et al., 2008b; Hunt et al., 2008; Lam and Hunt, 2009) that an ISECC would need 

to simulate some intracellular heterogeneity.  I did so by specifying that the space within a S3 

element can be heterogeneous.  Because an element is the limit of ISECC resolution, the details 

of within-element heterogeneity are left unresolved.  To facilitate conceptualization, I describe an 
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S3 element as being subdivided VERTICALLY into SUBCELLULAR microenvironments called zones 

(Lam and Hunt, 2008).  Technically, I simply specify that objects within an ELEMENT can be in 

different states, and behavior is state-dependent.  Elements in S1, S2, S4 and S5 behave as if the 

contents are homogeneous and well mixed.  To iteratively improve ISECC validation, it was 

necessary to increase the number and alter the properties of S3 zones.  The following paragraph 

provides a generalized description applicable to all ISECCs.   

The zones of each S3 ELEMENTS are designated Zi, i = 0 to n.  The parameter maxZ 

specifies n, and for the various ISECCs studied, 2 ≤ n ≤ 6.  Zones map to intracellular gradients 

and microenvironments.  A zone could, for example, map to a compound transport pathway 

(Weisiger 1996; Weisiger 2002; Weisiger 2007), nucleus (Tran et al., 2003), mitochondria (Khoo 

et al., 2002), a portion of the endoplasmic reticulum, etc.  Being below the level of resolution, 

their shape is indeterminate.  Z0 is always adjacent to S2 and Zn is always adjacent to S4.  All 

other zones can be conceptualized as being layered between those two.  I encountered a need for 

some zones, specifically those “close” to a MEMBRANE—Z0 and Zn—to behave as if they were 

less aqueous, more hydrophobic (Khoo et al., 2002; Vernochet et al., 2005).  Consequently, a 

parameter (HMspace) controlled fraction of Z0 and Zn zones was designated a HYDROPHOBIC 

MICROENVIROMENT (HME).  The fraction was tuned for each ISECC.  For the final ISECC 

described herein, Z0 in 15% of elements were specified as being HME.  In addition, in one-fifth of 

the elements containing a HME Z0, their Z6 were also specified as being HME.  

5.2.4 Mobile and stationary objects  

A COMPOUND (or DRUG) is a mobile object that maps to an unspecified number of 

xenobiotic molecules (Liu and Hunt 2006; Garmire et al., 2007; Yan et al., 2008a; Lam and Hunt, 

2009).  I use three types: SAQ, M7 and M1.  They map to saquinavir and its two metabolites 

(Eagling et al., 2002).  Each COMPOUND is assigned a set of PCPs; they map to physicochemical 
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properties of the referent compound.  Different, stationery objects are assigned and confined to 

subsets of S2 and S3 elements.  I use two types: CYP and PGP.  They are discussed below.   

During each simulation cycle, each COMPOUND, selected pseudo-randomly (randomly 

hereafter), has one opportunity to 1) move laterally to a neighboring element, 2) transit to a 

neighboring space, and 3) if in S3, to relocate to a different zone in the same element.  

COMPOUND transition within and between spaces is parameter specified and uses validated 

algorithms described in chapter 3, (Lam and Hunt, 2008; Lam and Hunt, 2009), with one 

exception: movement into and out of HME zones.  Given a lateral movement opportunity, a 

COMPOUND selects randomly one of its eight neighboring elements and moves there, except 

special rules apply when the COMPOUND is attempting to move into or out of an element 

containing HME zone(s).  In the final ISECC, the option to move into and out of a HME zone is 

governed by the value of an in silico distribution constant (value 689.5), which is calculated as 

described in the chapter 3 using the DRUG’s logP, pKa and insilicopH, scaled by relative time-

step duration.  Because SAQ has a large logP, once it is in a HME zone, the probability of each 

simulation cycle favors staying there: a SAQ in an HME has 1/(1 + 689.5) chance to move from 

HME Z0 to a neighboring non-HME element.  

For a COMPOUND to transit between spaces, it must be sufficiently close to a MEMBRANE 

interface to transit into that space.  The probability of being so located is governed by 

closeToInterface.  Because S2 and S4 elements map to volumes that are very small relative to S1, 

S3, and S5, and because a simulation cycle maps to minutes of wet-lab time, closeToInterface for 

COMPOUNDS in S2 and S4 is always 1.  From S3, in addition to being sufficiently close to 

interface, a COMPOUND must be in Z0 to transit to S2; it must be in Zn to transit to S4.  All 

COMPOUNDS transitioning from S2 to S3 are placed in Z0.  Similarly, all COMPOUNDS 

transitioning from S4 to S3 are placed in Zn.  Depending on PCPs as in Garmire et al. (2007), 
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brief transcellular transport around TJs from S1 to S5 and vice versa, within a single simulation 

cycle, does occur, but with very low frequency.   

COMPOUND probabilistic movement between zones within a S3 element follows rules.  

Those rules are different for a COMPOUND that is currently in a HME zone and one that is in some 

other zone.  Relocation for a COMPOUND not in a HME zone is controlled by disperseProb in 

Table 5.1; the values are tuned.  The number of zones and movements between zones evolved as 

part of the iterative refinement process (Fig. 5.2).  There can be up to eight different inter-zone 

movements, depending on project stage (discussed below) and ISECC specifications.  Three 

general guidelines emerged during ISECC evolution.  To enable sufficient COMPOUND to quickly 

reach S1 or S5, there must be a direct route from Zn to Z0.  There is a bias towards Z0.  

Relocation between S3 zones in LY-treated-CULTURES (hereafter called LY-CULTURES) is slower 

than in CONTROL-CULTURES.  Additional detailed observations about COMPOUND movement are 

in the following paragraph.   

A COMPOUND in Z0 or Zn is in one of two states: it either is or is not currently in a HME 

zone.  During a simulation cycle, a COMPOUND that is currently not in a HME zone will be given 

an opportunity to transition to another zone.  In CONTROL CULTURES a COMPOUND may move to 

one of four nearest zones: Z(i+1), Z(i+2), Z(i–1), or Z(i–2), where i+2 ≤ n and i–2 ≥ 0.  

Corresponding COMPOUND relocation options in ISECC that map to LY-CULTURES are to move to 

one of two nearest zones: Z(i+1), or Z(i–1), where i+1 ≤ n and i–1 ≥ 0.   

An element can contain one (Z0) or two (Z0 and Z6) HME zones.  In the first case a 

COMPOUND currently in the HME zone is not given an option to change zones within that element; 

it stays in Z0.  It may, however, like all COMPOUNDS in non-HME zones, relocate to a 

corresponding zone in an adjacent element, following the special rules above.  In the second case 

a COMPOUND in either HME zone is given an option switch between HME zones: it moves to Z0 

with a probability of 0.8 or to Zn with a probability of 0.2.   
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I also found it necessary to modulate SAQ mobility between non-HME zones within the 

same element.  This trait could map to nonspecific binding, or exceeding a solubility limit, etc.  I 

elected to name the parameter controlling this trait solubility.  During each simulation cycle, a 

SAQ “queries” the total number of SAQS in S3.  It will have an opportunity to move to a new zone 

only if a pseudo-random number (PRN) is less than [solubility/(SAQS in S3·(1 ± 0.2·error)], 

where error is randomly generated and has value between 0 and 1.  Solubility (limit) is tuned; the 

value used for Fig. 5.3 is 250.  This would be the first ISECC property revisited if I were to add a 

more stringent SM (SM-4) that required a higher degree of ISECC similarity with wet-lab results 

at the low and high doses.   

5.2.5 Enzymes, transporters   

The logic used by each CYP and PGP along with their function verification was reported in 

(Lam and Hunt, 2008).  I have used, reused, verified, and validated several variations of CYP and 

PGP (Garmire and Hunt 2008; Lam and Hunt, 2009).  Different model uses and different referent 

data can call for different capabilities.  The ones used here are the simplest.  Their logic diagrams  

are presented in chapter 3, Fig 3.2.  A stationary CYP maps to an unspecified number of the 

cytochrome P450 enzymes that metabolize saquinavir and its primary metabolite.  A stationary 

PGP, assigned randomly only to S2 elements, maps to an unspecified number of apical membrane 

components and processes, including P-gp transporters, that are responsible for facilitated efflux 

of saquinavir and its metabolite from intracellular space to the apical dosing compartment.  

Stationary means that the object is assigned randomly to and remains in one element for the 

duration of the simulation.  A PGP can export COMPOUNDS from Z0 (either normal or HME) to S1.  

Based on results from Stage 1 ISECC experiments (discussed below), I specified that SAQ can be 

METABOLIZED by CYP to M7, which in turn can be METABOLIZED by CYP to M1.  Further, M7 and 

M1 are both substrates of CYP and thus are competitive inhibitors of SAQ metabolism.  I specified 

that SAQ, M7 and M1 are substrates of PGP.  I also specified that M7 and M1 are less hydrophobic 
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than SAQ.  BINDING to and RELEASE from CYP and PGP are governed by assocProb and 

releaseProb.  CYP has an additional step: METABOLIZE, which is governed by efficiencyProb 

(efficiencyProb of PGP is 1).  For this study, the specifications and internal logic of CYP and PGP 

validated in chapter 3 and in Lam and Hunt (2008) were expanded as follows.  The CYP and PGP 

randomly selected their binding neighborhoods at the start of their assigned logic in each 

simulation cycle.  CYPs are assigned only to two specific zones.  For the finalized Stage 4 ISECC 

(Fig. 5.3), the Z5/Z4 assignment ratio is 3/2. 

5.2.6 Probabilistic parameters and event scheduling   

Most events, such as binding to CYP, are probabilistic and have probability parameter 

values in the 0 to 1 range.  When an event option arises, a participating component draws a 

pseudo-random number (PRN) from the designated range.  Its value is compared with that of a 

parameter to decide what action to take.  For example, if the PRN is less than the value assigned 

to assocProb, then the event occurs.  Otherwise, it does not.  By using a uniform distribution with 

variable frequency parameters throughout the simulation, I added uncertainty that maps to our 

ignorance about many of the details that are below my level of resolution.  Assumptions about 

frequency values were separated from, and external to the ISECC.   

Upon initiation of a simulation, spaces and element objects are created, zones are 

specified, and all objects (COMPOUND, CYP, and PGP) are assigned to elements and added 

randomly to a list.  During each simulation each object in the order listed is given an opportunity 

to execute its assigned logic.  Execution order is shuffled randomly at the start of each simulation 

cycle.  The number of COMPOUNDS in each space is recorded every five simulation cycles and 

written to external files for later analysis.   
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Table 5.1 Parameters and values for the ISECC in Fig. 5.3 that validated for Stage 4. 

Parameter 
Group Parameters Remarks 

CONTROL

CULTURE
LY-  

CULTURE

systemSize Size of SPACE S1–S5 50x50 50x50 

maxZ Number of intracellular ZONES 7 7 

TJspace Fraction of ELEMENTS that are TJ 0.15 0.15 

HMspace Fraction of ELEMENTS that are HME 0.15 0.15 

 numPgps ††  Number of PGP †† 500 15 

numCyps Number of CYP 70 70 

ISECC  
System 

Parameters 

insilicoPH In silico pH 7.4 7.4 

MW In silico molecular weight 670 670 

logP In silico logP 3.025 3.025 

pKa In silico pKa closest to in silico pH 7.13 7.13 

solubility In silico intracellular solubility 250 250 

S1 0.8 0.8 
closeToInterface Fraction sufficiently close to 

membrane interface S5 0.04 0.04 

S1→S2 0.218 0.218 

S1→S5 0.002 0.002 

S2→S1 0.476 0.476 

S2→S3 0.476 0.476 

S3→S2 0.086 0.086 

S3→S4 0.086 0.086 

S4→S3 0.476 0.476 

S4→S5 0.476 0.476 

S5→S1 0.333 0.333 

transitProb 

Trans-membrane transit 
probability between SPACES 

For DRUGS in S3, DRUGS must 
also be in the respective ZONE 
to transit; For DRUGS in S1 and 
S5, DRUGS must be sufficiently 
close to membrane interface to 

transit 

S5→S4 0.019 0.019 

Zi→Z0 †† 0.235 0.222 

Zi→Z(i–2) †† 0.059 0 

 Zi→Z(i–1) †† 0.176 0.222 

 Zi→Z(i+1) †† 0.176 0.111 

 Zi→Z(i+2) †† 0.059 0 

Dispersion 
probability across intracellular 
ZONES for DRUGS not in HME 

 Zi→Zn †† 0.118 0.111 

Z0→Zn 0.2 0.2 

DRUG†  
parameters 

 disperseProb †† 

for DRUGS in HME present in 
both Z0 and Zn Zn→Z0 0.8 0.8 
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† Parameters for M7 and M1 are the same as those of SAQ except for the following: 

Lower logP, lower MW, lower assocProb to CYP and PGP, and lower releaseProb from CYP and PGP 
†† Parameter values different between control and inhibitor-treated experiments 

 

5.2.7 Experimental condition   

I simulated 16 different experimental conditions: four treatments at four dosing 

conditions.  The four treatments were: APICAL (S1) SAQ dosing of CONTROL and LY-CULTURES, 

and BASAL (S5) SAQ dosing of CONTROL and LY-CULTURES.  Four SAQ amounts were used: 1,000, 

2,000, 4,000 and 8,000.  They mapped to 7.5, 15, 30 and 60 nanomoles and 5, 10, 20, 40 µM, 

respectively.  The number of CYP used ranged from 20 to 70, depending on Stage (described 

below).  The number of PGP used for experiments CONTROL CULTURES was one of the following: 

250, 400, 500, or 600.  The number of PGP used for experiments LY-CULTURES was one of the 

following: 10, 15, 20, or 25 (early ISECCs that used 0 were falsified).  To complete one 

experiment, I averaged results from ten (selected for convenience) repeated simulations.  All 

simulation ran for 120 simulation cycles.   

CYP true true 
isaSubstrate Substrate of protein 

PGP true true 

CYP 0.35 0.35 
assocProb Binding probability to protein

PGP 0.975 0.975 

CYP 0.1 0.1 

DRUG†  
parameters 

releaseProb Dissociation probability from 
protein PGP 1.0 1.0 

CYP 30 30 
sitesN Neighborhood size 

PGP 60 60 

CYP 1 1 
maxSites Maximum capacity 

PGP 10 10 

CYP 0.7 0.7 

ENZYME 
and 

TRANSPORTER 
parameters 

efficiencyProb 
 

efficiency parameter for CYP 
and PGP PGP 1.0 1.0 

randomizeOrder Randomize order of activation true 

a2bDirection Dosing compartment: S1 = apical, S5 = basal S1 or S5 

numSolute Dose: number of SAQS (*1000) 1, 2, 4, 8 
Experiment 
parameters 

simulationStep Number of cycles to run 120 
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5.2.8 Groundings   

The units, dimensions, and/or objects to which a variable or model constituent refers 

establish groundings.  Inductive ordinary differential equation models are typically grounded to 

metric spaces.  So doing provides simple, interpretive mappings between output and parameter 

values and DATA.  However, metric grounding creates issues that must be addressed each time 

one needs to expand the model to include additional phenomena.  Adding a term to an equation, 

for example, requires defining its variables and premises to be quantitatively commensurate with 

everything else in the model.  Such expansions can be challenging and even infeasible when 

knowledge is limited and uncertainty is high, which is the situation that I faced.  Iterative model 

refinement as described in Fig. 5.2 becomes slow and complex when the model is grounded to 

metric space.  To discover plausible concrete mechanistic explanations for the targeted data, I 

needed the ability to simultaneously explore different regions of plausible mechanism space at 

different levels of detail, and relate results to wet-lab observations.  To facilitate that process it 

must be easy to change mechanistic or component details at any level without having to invest 

significant time in analogue reengineering.  I have discovered that the best way to achieve those 

objectives is to remove metric grounding from the ISECC and confine it to quantitative feature-

to-feature and phenomena-to-phenomena mappings (Lam et al., 2009), and that is what I did.   

The mechanisms responsible for generation of the TRANSPORT DATA do not interact 

according to any external measurement methods.  They are independent of any measures used by 

an outside observer.  From that fact, I inferred that the ISECCs needed to achieve my objectives 

must employ similar internal organization, which in modeling terms, means each component is 

grounded to other components rather than to a metric imposed by an outside observer, and that is 

the course I have followed.   

During iterative ISECC refinement several different groundings were used.  For the final 

ISECC and the experimental results reported herein, the quantitative groundings were as follows: 
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1,000 SAQ → 7.5 nanomoles, 75 simulation cycles → three hours (during Stage 1 it was 60 

simulation cycles → three hours), and one ISECC experiment → one wet-lab experiment.  The 

SAQ grounding took into consideration the lower limit of analytical detection in referent 

experiments (Mouly et al., 2004), which was < 0.012 nanomoles, equivalent to 1.6 SAQ objects.   

5.2.9 Similarity measures   

The ultimate goal was to have ISECCs such that simulation results intended to match a 

specific TRANSPORT experiment would be statistically indistinguishable from a repeat of that 

targeted wet-lab experiment.  Taking into consideration the variability between wet-lab 

experiments within and between conditions, I specified that my goal would be met by achieving 

the Stage 4 objectives stated below.  The most stringent Similarity Measure (SM), SM-3, was that 

no more than one of a selected subset of conditions is outside the range of 66.7%–150% of 

referent values.  Meeting SM-3 would imply statistical indistinguishability to wet-lab observation.  

To enable adhering to the parsimony guideline and progress through many ISECC refinement 

cycles, two less stringent SM targets were used.  For SM-1 (least stringent), simulation results of 

no more than three of the targeted conditions are outside 50%–200% of referent values.  For SM-

2, simulation results of no more than three of the targeted conditions are outside target range of 

66.7%–150% of referent value, or no more than one is outside range of 50%–200% of referent 

values.   

5.2.10 Achieving targeted attributes  

The goal of discovering one ISECC with one set of plausible micromechanisms was 

approached in stages following the protocol in Fig. 5.2.  Early in the process, results from only 

two of 16 experimental conditions were targeted using SM-1.  At Stage 4 the targeted attribute 

list was expanded to all 16 experimental conditions using a combination of SM-3 and SM-1.   
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Robustness to minor parameter change (e.g., ~10% for one parameter and ~5% for 2–4 

parameters) was an additional targeted attribute.  I illustrate with an example.  Having an ISECC 

that achieved Stage 2, I sought component changes and additions that would enable achieving 

Stage 3.  Several changes that helped, but failed, I kept.  Consider a predecessor to the ISECC 

that achieved Stage 3.  It is possible that there is a small region (maybe more than one) of that 

ISECC’s component and parameter space that could have achieved Stage 3, but I failed to locate 

it.  However, had I found it, I would have observed that small changes in several parameters 

caused the ISECC to fall short of the SM target.  I encountered several such instances in route to 

the ISECC in Table 5.1.  I decided that in order to validate, an ISECC must tolerate small changes 

(in the 5-10% range) in parameters while still achieving targeted SMs.  This specification is 

currently arbitrary and qualitative.  However, it can be made more precise and quantitative when 

there is a need to do so.   

Stage 0:  meets design specifications 

Stage 1: target one dose, under control (no inhibitor) condition only 

Qualitative: paradoxical observation: apical dosing produces higher intracellular SAQ levels, 

but less M7 metabolite (Mouly et al., 2004) 

Stage 2: target the two middle doses, control conditions only 

Qualitative: large difference in receiving compartment after apical versus basal dosing 

Quantitative: simulation results meet SM-1 

Stage 3: target the two middle doses for control and inhibitor treatment  

Qualitative: for inhibitor treatment relative to control: more SAQ in cells, more total M7  

Quantitative: results from CONTROL CULTURES meet SM-2; those from LY-CULTURES meet 

SM-1 
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Stage 4: target all four doses for control and inhibitor treatment 

Qualitative: evidence of metabolism saturation at larger doses (Parker and Houston 2008); 

similar M7 per intracellular SAQ ratio 

Quantitative: results for two middle doses meet SM-3 whereas those from lowest and 

highest dose meet SM-1 

While progressing from early Stage 1 to Stage 4 validation, I followed somewhat 

standardized parameter sweeping methods to discover a specific ISECC parameterization that 

would enable achieving the targeted attributes and SM for that ISECC.  I explored four types 

ISECC characteristic change.  1) Change spatial properties: I changed S3 element properties by 

subdividing the space within into different numbers and types (HME) of zones.  2) Change 

mechanistic components: for a given set of elements and properties, I changed the ratios and 

numbers of CYP and PGP.  3) Change logic used by components.  4) For specific valuations of the 

three preceding sets of characteristics, I tuned the values of remaining parameters.  I began by 

randomly probing regions of property and parameter space and running experiments.  I selected 

the two or three locations that moved me closest to validation, and randomly sampled nearby 

parameterizations.  That process was repeated until a decision was made to fix the first three 

ISECC characteristic types.  Focus then shifted to tuning just a few of the remaining parameters 

to improve results even further.   

5.2.11 Software and simulation time   

I reused validated components from previous projects (Liu and Hunt 2006; Garmire et al., 

2007; Lam and Hunt, 2008; Lam and Hunt, 2009).  ISECCs were assembled within the Swarm 

platform using its libraries (http://swarm.org).  I coded in Java Swarm.  Most experiments used a 

single processor and ran under Microsoft Windows XP (Redmond, WA) with Java Software 

Development Kit and Java 2 Runtime Environment installed (Sun Microsystems, Santa Clara, 

CA).  Source code was compiled with Java 2 Software Development Kit SE version 1.4.2_13 and 
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executed with Java 2 Runtime Environment version 1.4.2_13 (www.java.com).  Output DATA 

files were processed, graphed, and analyzed using Microsoft Excel.  A complete set of ISECC for 

all 16 conditions averaged about one hour when using one processor; analysis of results often 

took longer.   

5.3 Results 

5.3.1 Summary of wet-lab results   

Mouly et al. (2004) reported that saquinavir’s apparent permeability is always higher for 

basal-to-apical transport, compared to that of apical-to-basal.  Because saquinavir is a P-gp 

substrate, that result was expected.  As predicted, inhibition of P-gp by inhibitor increased apical-

to-basal while decreasing measured basal-to-apical permeability.  In addition, inhibitor treatment 

significantly increased the intracellular level of saquinavir, and formation of saquinavir 

metabolite at the end of the three-hour experiments.  However, despite the lower intracellular 

saquinavir level after basal compared to apical dosing, basal dosing consistently, and 

paradoxically, produced more metabolite M7 in both control and inhibitor-treated cultures, and 

for the four doses studied.  Such a paradox had not been reported previously, and its cause could 

not be isolated based on experimental observations.  The investigators offered two potential 

explanations: 1) a saquinavir concentration gradient exists intracellularly, and the parent drug 

presented at a higher concentration at the enzymes’ microenvironment after basal dosing; and 2) 

secondary metabolism of M7 was greater after apical dosing.  Variances in results for repeat 

experiments were typical of in vitro transport studies.  Coefficients of variation of the various 

measures ranged from 16 to 80% and averaged 35% for experiments on five matched cultures.   

5.3.2 Summary of ISECC experiments   

The ISECC, which validated against the Stage 1 attributes and SM, was described in 

(Lam and Hunt, 2008).  From there, I cycled through the iterative refinement protocol several 
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hundred times before discovering an ISECC that validated by successfully achieving the 

attributes and SM specified by the Stage 4 criteria.  All had the same five spaces and all included 

Figure 5.3.  Illustration of spatial heterogeneity for the ISECC that achieved Stage 4 validation.  Illustrated 

is the ISECC resulting from Table 5.1 parameterizations that gave the DATA in Figs. 5.4–5.6.  A: Five 

identically sized spaces are used: S1–S5, as described in the text.  The element at the interface of two CELLS 

(which maps to tight junction spaces between cells, and other cell-cell attachments) is called a TJ.  Each of 

the 2,500 elements comprising S3 is subdivided into seven zones, Z0–Z6.  Because an element is the lowest 

level of spatial resolution, the actual shapes and locations of Z0–Z6 are not specified, although aspects of 

their relative arrangement are specified.  Z0 and Z6 map to large portions of intracellular space adjacent to 

each of the membranes.  Z1–Z5 are located more centrally, they represent a series of heterogeneous 

subcellular microenvironments of indefinite shape and volume; they may map to subcellular structures such 

as nucleus, endoplasmic reticulum or mitochondria. The Z0 in 15% of S3 elements are specified to map to 

subcellular, lipid-like, hydrophobic microenvironments called HME (a SAQ has a high affinity for these 

spaces).  Some (20%) S3 elements that contain a HME-Z0 also contain a HME-Z6.  B: Illustrated are the 

three types of mobile objects (SAQ, M7, and M1) and the two types of immobile objects (PGP and CYP).  At 

the initiation of a simulation, objects mapping to Cyp3A4 enzymes (CYP) and P-gp transporters (PGP) are 

created and placed randomly in S3 (zones Z4 and Z5 only) and S2, respectively.  Objects representing 

saquinavir (SAQ) are placed either in the APICAL (S1) or BASAL compartment (S5).  Those SAQ map to the 

apical dose and basal dose, respectively.  In each simulation cycle, each mobile object gets an opportunity 

to move between elements in adjacent spaces, and between elements within the same space.  It can also 

move between zones within a S3 element.  PGP and CYP are confined to assigned elements.  CYP 

probabilistically METABOLIZE SAQ in Z4 and Z5 to M7, and further METABOLIZE M7 to M1.  PGP is 

responsible for the active EFFLUX of SAQ and its METABOLITES from Z0 to S1.  Other properties of mobile 

and immobile objects are as detailed in the text.  
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CYP in S3 and PGP in S2.  The results presented in Figs. 5.4–5.8 summarize TRANSPORT results 

for the validated ISECC described in Fig. 5.3.  Figures 5.4–5.6 correspond to Fig. 1A–C in Mouly 

et al. (2004). An overview of seventeen ISECCs that were thoroughly explored and eventually 

falsified before achieving the targeted Stage 4 validation criteria is provided as Fig. 5.9.   

5.3.3 Plausible explanations for paradoxical results   

The two potential mechanisms offered by Mouly et al. (2004) as plausible explanations 

proved necessary but not sufficient to cause comparable results within the ISECC context.  They 

suggested that an intracellular gradient might exist from dosing to receiving compartment.  I 

implemented that mechanism in a Stage 1 ISECC.  I achieved SM-1 for two doses for both 

control and inhibitor-treated cultures but were unable to achieve SM-2.  The accumulation of 

relatively large amounts of SAQ in the receiving compartment could not be achieved while also 

keeping the amount of (all) metabolite formed small.  The results demonstrated that within the 

ISECC a gradient effect alone was not sufficient.  Thereafter, I discarded the specification that the 

INTRACELLULAR space behaves as a well-stirred space.  Later experiments demonstrated that 

allowing S3 to be heterogeneous and contain pockets (HME) having different SAQ affinities was 

necessary to achieve SM-2 and later SM-3.   

Mouly et al. (2004) also suggested secondary metabolism (to M1) as an explanatory 

mechanism, and that formation of M1 from M7 was greater after apical dosing.  That mechanism 

would require M7 disposition to be different following apical and basal dosing.  However, within 

the validated ISECC, secondary METABOLISM caused competitive inhibition of SAQ METABOLISM, 

and that accounted for why a large fraction of the SAQ dose passed through the CELL while only a 

tiny fraction was present as M7.  Furthermore, METABOLISM saturation began influencing results 

at higher doses.   
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5.3.4 P-gp activity, inhibitor-treated cultures, and temporal 
mapping   

All parameterization decisions were interconnected.  I narrowed options by specification 

early of the number of SAQ to be used per simulation: 1,000–8,000.  Exploratory simulations 

showed that an appropriate number of PGP for that range of SAQ would be 250–600.  For 

simplicity, I simulated inhibition by deactivating all but a few PGP.  Results from exploratory 

simulations indicated that the number of fully active PGP in LY-CULTURES needed to be > 0 and 

Figure 5.4.  Apparent permeabilities.  

Graphed are apparent permeabilities 

for saquinavir and SAQ.  The former 

values correspond to Fig. 1A in 

Mouly et al. (2004); the vertical bars 

show ± 1 SD.  The heavy vertical bars 

with ISECC DATA show Stage 4 

target ranges.  For the ISECC experi-

ments, apparent PERMEABILITY = 

(amount of SAQ in receiving 

compartment after 75 simulation 

cycles [maps to three hours]) ÷ (SAQ 

dose).  The results are means for ten 

ISECC simulations parameterized 

using Table 5.1 values. 
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that an appropriate range might be 10–25 PGP.  Thereafter, when seeking a parameterization that 

would validate, experiments of LY-CULTURES used 10, 15, 20, or 25 PGP to see which was best.  

The validated ISECC in Table 5.1 used 500 PGP for CONTROL and 15 PGP for LY-CULTURES for 

the four dose conditions.  A quantitative mapping of the results in Figs. 5.4–5.6 to wet-lab means 

that inhibitor treatment reduced P-gp activity by about 97%.   

Each event occurring within a simulation cycle during an ISECC simulation contributes 

in a small way to overall outcomes.  That means that it is possible for a small change in one or a 

Figure 5.5.  In vitro and simulated 

intracellular sequinavir accumulation.  

The results are for the same 

experiments as in Fig. 5.4.  Graphed 

are the 1) amounts of saquinavir that 

were intracellular after three hours; 

they correspond to Fig. 1B in Mouly 

et al. (2004), and 2) amounts of SAQ 

that were INTRACELLULAR (S2 + S3 + 

S4) after 75 simulation cycles along 

with target ranges (heavy bars).  
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few micro-mechanisms to be offset by other changes, such as changing how a simulation cycle 

maps to wet-lab time.  With that realization in mind, during each iterative refinement cycle 

alternative ISECC-to-wet-lab temporal mappings were explored to see if an adjustment in that 

mapping could improve SM outcomes.  Once the amount ranges for dose, PGP, and CYP were 

fixed, it quickly became apparent that ISECC TRANSPORT results at 60–90 simulation cycles 

mapped best to the wet-lab three-hour transport data.  The choice does not influence any of the 

ISECC premises.  For the ISECC represented by Table 5.1, the ISECC TRANSPORT results at 75 

simulation cycles provided the best match to referent data.  For that mapping, one simulation 

cycle maps to ~2.4 minutes.   

 

5.3.5 Components and features of the ISECC that validated   

Each ISECC for which simulation results matched a prespecified set of targeted attributes 

and a prespecified SM achieved a degree of validation.  Improving mapping A in Fig. 5.1 while 

also increasing the attributes targeted, increases confidence that there is some validity to mapping 

B in Fig. 5.1.  The reported measure of transport for each experimental condition is a phenotypic 

attribute of the in vitro system.  If the five-space representation is acceptable for a monolayer of 

essentially identical cells, then those 16 attributes, taken together, place serious constraints on the 

space of mechanisms that will validate, especially when the variety and properties of stationary 

component types allowed is limited to two: CYP and PGP.  I argue that an ISECC that validates at 

Stage 4 should be taken more seriously (as having plausible biological counterparts) than an 

ISECC that can only validate at Stage 2.  Further, any ISECC that validates at or above Stage 1 

should be taken more seriously than any descriptive conceptual mechanism.  What follows is a 

description of the features of the ISECC specified by Table 5.1.   
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The INTRACELLULAR environment (S3) is subdivided into seven ZONES, with Z0 adjacent 

to S2, and Z6 adjacent to S4.  Z0 in 15% of elements are specified as being HME.  In addition, in 

one-fifth of the elements containing a HME Z0, the Z6 in that element is also specified as being 

HME.  COMPOUND movement into and out of HME is governed by an in silico distribution.  SAQ is 

highly hydrophobic.  Once it enters a HME it preferentially stays in HME.  The net result is that a 

large portion of INTRACELLULAR SAQ gets sequestered in HME and is unable to reach METABOLIC 

ENZYMES.  Further, that portion is larger after APICAL dosing.  I suggest S3 zones in ISECC map 

to heterogeneous microenvironment within the cell monolayer.   

During INTRACELLULAR COMPOUND movement, there is a bias towards Z0.  A 

Figure 5.6.  In vitro and simulated 

total metabolite.  The results are for 

the same experiments as in Figs. 5.4 

and 5.5.  Graphed are 1) the dose 

fraction present as M7 after three 

hours; the values correspond to Fig. 

1C in Mouly et al. (2004), and 2) the 

fraction of DOSE present as M7 

within all ISECC spaces after 75 

simulation cycles along with target 

ranges (heavy bars).  For each dose, 

the lower limit of M7 detection is 

indicated.   

 



 151 

COMPOUND within an element may move to the APICAL (Z0) and BASAL (Z6) zones, or to one of 

the four nearest adjacent zones (Zi + 1, Zi + 2, Zi – 1, or Zi – 2).  In LY-CULTURES, COMPOUND 

movement is slowed (less displacement over time).  A COMPOUND within LY-CULTURE S3 

element may move to the APICAL (Z0) and BASAL (Z6) zones, or to one of the two nearest 

adjacent zones (Zi + 1, or Zi – 1).  These movements, including the effective shortcut from Z0 to 

Z6, may map to any of a variety of yet unidentified micromechanisms.  Plausible examples 

include saquinavir binding (somewhat preferentially) to a saturable component of a transcellular 

transport system, for example, fatty acid intracellular transport system described by Weisiger 

(1996; 2002; 2007), or becoming associated (somewhat preferentially) with a nonequilibrium, 

apically directed intracellular flux of the type described by Kurakin (2009). 

Assume that the above saturable, transcellular saquinavir transport hypothesis is valid.  In 

LY-CULTURES, INTRACELLULAR SAQ movement is slowed. That may map to the inhibitor also 

competitively inhibiting saquinavir movement. Assume that too is valid.  I should then see 

decreasing apparent permeability (Papp) when the saquinavir dose increases in control cultures, 

and I should see increasing Papp when saquinavir dose is increased in inhibitor-treated cultures. 

Both predictions are consistent with wet-lab observations.  However, because I had no evidence-

based insight into actual mechanisms, the ISECC used abstract SAQ movement rules as 

placeholders for all plausible, fine-grained mechanisms.  By so doing, I preserved ignorance.  No 

component based carrier micromechanism was actually implemented.  Consequently, there were 

no ISECC apparent permeability observations analogous to the above-cited wet-lab data.  

Exploring that scenario is an option for a future ISECC study. 

To achieve Stage 4 validation I found it effective to impose a limit on the amount of SAQ 

that could be within S3 during a simulation cycle.  I did that by specifying SOLUBILITY in S3 to 

be 250.  I suggest that there may be an effective counterpart within the Transwell cells.   
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The TRANSPORT properties of each explored ISECC type moved closer to validation 

when CYPS were sequestered within a portion of S3.  For the final ISECC, CYPS were assigned 

40% to Z4 and 60% to Z5; a 50/50 assignment resulted in failure to achieve the Stage 4 SMs.  

Those assignments meant that a SAQ was more likely to encounter a CYP when coming from S5 

(BASAL dosing) rather than S1 (APICAL dosing).  These CYP assignments within the ISECC map 

to a non-uniform, intracellular distribution of saquinavir metabolizing enzymes.  Because 

Figure 5.7.  Robustness of ISECC to 

changes in PGP numbers.  Separate 

sets of experiments using the ISECC 

in Table 5.1 were completed using the 

indicated number of PGP.  Everything 

else was unchanged.  Bar heights are 

ratios of ISECC-to-wet-lab results of 

the type in Figs. 5.4–5.6 at matched 

intervals (75 simulation cycles and 

three hours) after APICAL (A, C) and 

BASAL (B, D) dosing.  A and B: 

control conditions: the results are for 

PGP = 250–600; results for 500 and 

600 meet SM-3; all results meet SM-

2.  C and D: Inhibitor treatments: 

results are for 10–25 active PGP 

remaining after inhibitor treatment; 

the DATA for 10 and 15 PGP meet SM-

3; all results meet SM-2.  Note that 

coefficients of variation of the wet-lab 

measures ranged from 16 to 80% and 

averaged 35%.  Comparable 

adjustments of other parameters and 

components caused the same gradual 

change in ISECC TRANSPORT DATA.  
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movement within S3 was slower in LY-CULTURES, proportionally less SAQ reached Z4 and Z5, 

and that caused less M7 formation.  I suggest that these events may have counterparts within 

Transwell cells treated with inhibitor.   

Because SAQ was assigned a large MW (670) there was very little PARACELLULAR 

TRANSPORT.  If I lower MW, PARACELLULAR TRANSPORT increases.  That is because 15% of S1 

and S5 elements are marked TJ.  The TJ map to all cell-cell attachments and to any spaces between 

cells.  The probability to transit to S1 from S5 when in a TJ element (0.25) was specified to be 

much greater than probability to transit to S5 from S1 via a TJ element (0.001).  

 

5.3.6 ISECC robustness to parameter change   

Upon achieving Stage 4 (or an earlier stage) goals, ISECC robustness to parameter 

change for a variety of parameters was measured.  Observing that a small change (5–15%) in one 

parameter caused the ISECC to invalidate was considered abiotic; a search for a different region 

of parameter space was initiated.  To illustrate the process for the ISECC in Table 5.1 for both 

CONTROL and LY-CULTURES, the effects of parameter change on the three TRANSPORT measures 

are provided in Figs. 5.7 and 5.8 for the influential parameter PGP levels and for choice of 

temporal mapping.  The values graphed in both figures are the ratio of ISECC-to-wet-lab 

transport measures.  The number of PGP in Table 5.1 was 500 for control and 15 for LY-

CULTURES.  Figure 5.7 presents TRANSPORT results for 250–600 for control and 10–25 for LY-

CULTURES.  The temporal mapping for Figs. 5.4–5.6 is 75 simulation cycles → three hours.  Fig. 

5.8 presents TRANSPORT results for eleven additional temporal mappings: 30–120 simulation 

cycles → three hours.  Results of these and other robustness explorations (not shown) showed 

that many other parameter vectors close to the one in Table 5.1 can also produce ISECC that 

validate.   
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5.4 Discussion 

An implication of the ISECC validation evidence is that the mechanisms depicted in Fig. 

5.3 have counterparts during saquinavir transport through Caco-2 cells.  The simulation results 

provide concrete, scientific evidence that interactions with heterogeneous intracellular 

microenvironments, coupled with intricate, intracellular saquinavir movements, some possibly 

carrier-mediated, provide a plausible explanation of the cited paradoxical observations.  All 

compounds will encounter such heterogeneity, but the influence may not be evident from 

traditional assessments of transport data.  It seems unlikely that such microenvironment 

heterogeneity will be confined to Caco-2 cells.  Microenvironment differences within and 

between cell types as a function of health and disease may influence therapeutic availability to 

target sites.  Future therapeutics may exploit heterogeneous intracellular disposition to enhance 

efficacy and minimize toxicity.  The heterogeneities may also contribute to intra- and 

interindividual variability in disposition and response.  Wet-lab technologies and experiments 

designed to detect the influence of microenvironment heterogeneities are needed to help 

determine their importance.   

 
 

The degree of similarity between the ISECC and wet-lab data in Figs. 5.4–5.6 gives 

strength to the hypothesis that the mechanisms depicted in Fig. 5.3 have counterparts during 

saquinavir transport through Caco-2 cells.  However, as abstract models, ISECC mechanisms are 

flawed. Nevertheless, I seek to minimize discrepancies by exploring multiple mechanistic 

explanations using the iterative refinements protocol in Fig. 5.2, and only exploring those that are 

not abiotic. 

Even though the final ISECC mechanisms are far less complex than what I already know 

about epithelial cells, a logical initial reaction upon reading the Fig. 5.3 explanation would be to 

muse about simpler mechanistic explanations: are there no simpler explanations?  There may be, 

but I have not yet found one.  The iterative refinement protocol in Fig. 5.2, coupled with the 



 155 

parsimony guideline, has proven to be an effective tool in resisting making ISECCs unnecessarily 

complicated.  Following that protocol created a mechanism exploration path (shown in Fig. 5.9) 

for which the next added mechanistic detail (or complication) depended on predecessor 

mechanisms.  Ideally, I would prefer to explore many branches of many parallel paths.  I cannot 

rule out the existence of alternative paths that lead to somewhat simpler explanations.  Some have 

not been fully explored, in part because my objective was to find one plausible set of 

micromechanisms to achieve a prespecified SM for all 16 experimental conditions.  Below, I 

present four of several mechanistic exploration paths that may merit future attention, wet-lab as 

well as in silico.   

Path 1: for the path followed, Path 0, I specified that an ISECC represents a monolayer 

comprised of essentially identical cells.  Reality may be more complicated.  There may be 

differences in saquinavir transport within and through different subsets of cells.  For example, 

cells may be classifiable into at least two types for which the intracellular micromechanisms are 

simpler than those in Fig. 5.3, but together they achieve the same Stage 4 SMs.  I explored this 

option but failed to come close to the targeted SMs.  Wet-lab experiments, possibly using new 

imaging technologies, could help confirm or rule out such differences and thus indicate the 

relative importance of exploring this path.   

 

Path 2: for Path 0, I specified that INTRACELLULAR micromechanisms be invariant.  That 

was not the case in Lam and Hunt (2009).  Interactions of cells with saquinavir (and the inhibitor) 

may initiate time-dependent mechanism changes.  I did not explore this path to any appreciable 

extent, but based on my earlier work, I can be confident that this path could lead to mechanisms 

that achieve the Stage 4 SMs.  However, it would be debatable whether or not successful time-

variant mechanisms would be simpler; but they would be different.  Again, coupling in silico with 

wet-lab experiments could indicate the relative importance of exploring this path. 
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Figure 5.8.  Robustness of ISECC to 

changes in temporal mapping.  

Temporal mapping is established by 

selecting the number of simulation 

cycles that map to three hours of wet-

lab time.  Y-values are ratios (as in 

Fig. 5.7) of ISECC-to-wet-lab results 

of the type in Figs. 5.4–5.6.  X-values 

are time in simulation cycles.  A and 

C: results from apical dosing.  B and 

D: results from basal dosing.  A and 

B: control conditions; C and D: 

Inhibitor treatments.  Diamonds : 

amount of SAQ in receiving 

compartment; squares : amount of 

SAQ in cell; circles : total amount of 

M7.  All results for time = 60-120 

meet SM-2.  The box shows the target 

range for SM-3.  Results within the 

box for time = 70-90 also meet SM-3.  

Comparable adjustments of other 

parameters and components caused 

the same gradual change in ISECC 

transport data for temporal mappings. 
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Path 3: Kurakin (2009) argues persuasively for abandoning the conventional biological 

paradigm rooted in classical mechanics and equilibrium thermodynamics in favor of one in which 

all cell subsystems are viewed as dynamic, adaptive, nonequilibrium systems that are part of their 

environment.  The synthetic M&S method enables building such analogues, but it is not clear that 

they can be mechanistically simpler than the one in Fig. 5.3.   

Path 4 (not yet explored): given the abstract simplicity of ISECC components, it may be 

unrealistic to insist on a linear mapping between amount of SAQ used and wet-lab dose. 

Figure 5.9.  Overview of eighteen ISECCs that were thoroughly explored and eventually falsified before 

achieving the targeted Stage 4 validation criteria.  A series of 18 ISECCs were assembled and tested. 

Analogues meeting the specification of the Stages are noted.  At each step, the parameter space was 

extensively explored until an observable improvement in similarity was achieved.  Key parameter 

adjustments, rule changes and/or component added are noted for each steps.  Branching occurred when 

changes initially improved similarity but later failed to validate with additional modifications.   
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Because all ISECCs are simplifications of reality, they are mechanistically depleted and 

thus flawed in specific ways.  Nevertheless, some can be very useful.  There are many referent 

system attributes such that when one is added to the targeted attribute list, the Fig. 5.3 ISECC will 

be falsified.  I had no evidence indicating that any of the above four mechanistic exploration 

paths should be preferred over Path 0.  Nevertheless, along Path 0 there may be mechanistic 

branches that did not occur to me yet may contain simpler systems.   

One solution to the above mechanism generation and selection issues is, when feasible, to 

use simulations to identify phenomena that suggest new wet-lab experiments that in turn could 

rule in or out exploration of a mechanistic branch.  Doing so would require timely coordination of 

wet-lab and simulation experiments at steps 8a and 8b in Fig. 5.2.   

Another strategy for addressing the mechanism generation and selection issues is to seek 

ensembles of different explanatory analogues spanning an acceptable variety of mechanistic 

options, and allow them to compete in offering plausible explanations of an increasingly rich set 

of targeted phenotypic attributes.  The cost of implementing such a solution can be kept 

reasonable by developing automated modeling methods capable of discovering mechanistically 

different analogues.  The information provided in Fig. 5.9 documents that I built, tested, and 

falsified many ISECCs before discovering the one that validated.  The process requires extensive 

human effort and time.  The technology can be developed to use software agents within the 

existing computational framework to manage the process of changing a falsified ISECC by 

adjusting the parameter vector and/or the mix of components with the objective of achieving a 

prespecified SM.   

There are several features of the ISECC in Fig. 5.3 that merit discussion.  Saquinavir is 

known to preferentially bind to mitochondria and the nucleus (Khoo et al., 2002).  The HME may 

map in part to these subcellular structures.  I suggest that the movement logic used by SAQ to 

change zones, especially movement between Z0 and Z6, may map to saquinavir binding to 
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mobile components of one or more intracellular transport system, such as the fatty acid transport 

system (Weisiger 2007).  If future evidence supports that mapping, then the ISECC TRANSPORT 

results can be taken as predictions that the carrier mechanism(s) will be saturated at higher 

saquinavir doses.  The mechanistic changes in LY-CULTURES may map to the inhibitor reducing 

saquinavir interaction with the carrier system(s), possibly through competitive binding.  The 

preceding conjecture is consistent with wet-lab (but not ISECC) observations that apparent 

saquinavir permeability is decreased with increasing saquinavir dose in control cultures but is 

increased with increasing saquinavir dose in inhibitor-treated cultures.  Comparable ISECC 

results were not observed because, as explained in Results, SAQ movement rules functioned as 

placeholders for all plausible, fine-grained, componentized mechanisms.  Well-designed wet-lab 

experiments may help clarify the biological implications of this conjecture.    

Introducing the idea of a SAQ SOLUBILITY limit within S3 elements enabled improving 

high and low DOSE ISECC results sufficiently to achieve Stage 4 validation.  However, should I 

set a new Stage 5 goal that includes a more stringent SM for high- and low-DOSES, the current 

ISECC would be falsified (invalidated).  To achieve the new Stage 5 I would need to explore 

alternative micromechanistic features including improvements to the current SOLUBILITY 

algorithm.  Given those considerations, it is premature to seek Caco-2 counterparts to which the 

current SAQ SOLUBILITY micromechanism may map.   

Early during the iterative ISECC refinement process, it became clear that the pace of 

refinement and mechanistic exploration was accelerated by specifying mappings, including 

temporal mapping (simulation cycles to wet-lab minutes), the final adjustments in the process.  So 

doing seemed counterintuitive initially, because most inductive transport models nail down 

temporal mappings at the start by equating some parameter of the induced model with some 

independent wet-lab measure with which it is identified.  Doing the same in ISECCs limits one to 

a small set of refinement paths, while making mechanistic refinement increasingly difficult.  I 
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noted that different PGP numbers and temporal mappings were equally acceptable.  Because 

methods of measurement are external to both wet-lab models and ISECCs, I now argue that when 

feasible, establishing interpretive mappings should be among the last adjustments made within a 

refinement protocol cycle (Lam et al., 2009).  It is noteworthy that moving mapping finalization 

to the end of the protocol takes advantage of the ignorance- and uncertainty-preserving 

characteristics of the synthetic method (Hunt et al., 2009). 

The extent of P-gp inhibition by the inhibitor amounts used during wet-lab experiments 

was unknown and so needed to be factored into grounding decisions.  Consequently, for every 

cycle of the protocol, I used four PGP levels in each CONTROL and LY-CULTURE.  I then selected 

the pair (one for each) that moved me closer to validation.  

Figure 5.2B illustrates the following.  An ISECC that is marginally just complicated 

enough to validate will be fragile to changes in targeted attributes (its phenotype): add any one of 

a number of wet-lab attributes to the targeted set and the ISECC is at risk of being falsified.  The 

advantage of such an ISECC is that the portion of mechanism and parameterization space that 

enables validation is small.  However, by being fragile to attribute change, it is less biomimetic.  I 

argue that a scientifically more interesting ISECC will be one that has some degree of robustness 

to changes in phenotype, and that requires having a larger mechanism and parameterization space 

that validates: many somewhat different mechanisms, each having a number of satisfactory 

parameterization vectors, a process called multi-modeling (Hunt et al., 2009).  For multi-

modeling to be successful, it must become methodologically scientific.  Scientific M&S will 

accelerate scientific progress by facilitating fast-paced cycles of hypothesis (about mechanisms) 

generation, selection, and falsification.  Each cycle requires synthetic M&S coupled with 

inductive and deductive methods; during such a cycle, abduction drives the creation of 

mechanistic hypotheses.  Those mechanistic hypotheses that meet criteria are selected for in silico 

experimentation designed to ensure that only those with explanatory, heuristic value survive 
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falsification.  The cyclic process exercises, leverages, and enriches the mental models of domain 

experts in new ways.  Multi-modeling that can be semi-automated is the M&S frontier.  

Nevertheless, during analogue refinement, parsimony remains an important guideline.   

A purpose of conducting wet-lab experiments like those cited is to gain new knowledge 

regarding mechanistic details.  Experimenting on synthetic analogues like ISECCs, provides a 

heretofore unavailable means of discovering new, plausible mechanistic details, especially when 

relevant wet-lab experiments are highly complicated, costly or impossible.  I have demonstrated a 

new means of achieving deeper insight into the generative mechanisms responsible for phenotype.  

The approach extends the scientific method to M&S while enabling achieving deeper 

understandings of pharmacological and therapeutic causal linkages.   
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6. Conclusion and perspectives 

6.1. It is not real 

All models are wrong; some are useful.   

With that in mind, undoubtedly any and all in silico analogues are flawed, incomplete and, 

in short, not real.  Skeptics are correct that no matter how detailed, thorough, or complicated the 

mechanisms can be, they are abstractions rendered in software, which may or may not correlate 

with reality.  An unvalidated, ill-informed or poorly constructed analogue could be perfect in 

performance, but makes poor predictions in reality.  In silico simulations, no matter how 

sophisticated, can never replace wet-lab experiments using real biological parts.  No 

computational model can fully represent the complexity inherent within biological systems and, 

thus, models cannot be entirely correct. 

However, it should be noted that a model – any model – is always an abstraction, a 

representation, or a description of the referent.  In most cases, a model is a reduction from the 

referent.  Only the (small) part of the referent, relevant to answering the scientific question, is 

preserved, whereas the remained are abstracted away, and replaced by, placeholders or 
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experimental apparatus.  Thus, the intent of using a model is not to replicate the referent or to 

make perfect predictions or even to be correct.  Models are used for some specific purpose, i.e., to 

answer specific research questions, to test hypotheses, etc.  It follows that the model’s value is not 

to be measured in terms of realism, or truism, but rather in its usefulness: whether it serves the 

purpose, or purposes, of the defined specific use.   The advance of science depends on 

discovering better and more useful models, not “correct” ones. 

In this dissertation I present a novel, synthetic approach to model and simulate 

pharmacokinetic processes.  The goal is to provide mechanistic insights into the referent 

biological system.  Specifically, the focus is on improving understanding into biological systems 

and pharmacokinetic properties, and not on providing precise prediction of pharmacokinetic 

quantities. I believe that the presented analogues meet my specific aims.   

6.2. Limitations 

As with all scientific endeavors, the analogues and the methods presented invariably have 

limitations.  In this section, I outline some of them and offer my comments.   

The analogues were validated by a small subset of experimental observations. It is 

entirely possible that the analogues may not validate on similarly conducted experiments. 

Because the presented analogues were optimized for the reported observations from a specific set 

of experiments, it is likely that, when tested on different observations from somewhat different 

experiments, simulated results would present significant discrepancies.  How those discrepancies 

that are to be resolved remain open to questioning, and may require re-parameterizations, specific 

modifications of rules and assembly, or even complete reengineering.   Undeniably, if the 

analogues were constructed with respect to a larger data set from standardized experiments and 

protocols, the confidence about the validity and robustness of the model, its rules, assembly, and 

structure would be much higher.  As a result, the conclusion could be made stronger had such a 

larger data set been available.   
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The analogues incorporated new, unexpected yet biomimetic in silico mechanisms, and 

hence I asserted that these in silico mechanisms may have their biological counterparts.  Although 

peripheral evidences have been cited to support the hypothesized mechanisms, those insights 

remain to be tested, in the future, with carefully designed experiments.  Modeling and simulation 

can never create reality; wet-lab experimentations are needed to confirm the findings.  

Unfortunately, it was not possible to identify an equally plausible competing mechanism for each 

of the analogues.   

When the analogues are used as an experimental apparatus for new investigations, the 

simulated results stand as qualitative and quantitative predictions of experimental results.  For 

example, with regard to RISL, I presented predictions of digoxin’s pharmacokinetic and 

metabolic profile when both uptake and efflux inhibitors are pre-administered.  However, I did 

not present validation of those predictions.  While I am confident that the simulated results are 

qualitatively accurate, I do not have the opportunity to quantitatively assess how good the 

predictions were.  Doing so would require replicating the original experiment, including, but not 

limited to, using the same batch of reagent, the same group of rats, the same apparatus, the same 

bioanalytical methods, and the same personnel with their surgery and manipulating techniques.  I 

found it to be implausible that one could carry out that replicating experiment. Similarly, from 

ISECC, I hypothesized that heterogeneous intracellular microenvironments existed and 

sequestered saquinavir inside Caco-2 cells, making the drug unavailable for metabolism.  I did 

not have direct, wet-lab experimental evidence to support that hypothesis.  In order to obtain 

direct evidence, advanced intracellular imaging technology may be required.  Unfortunately, I 

lacked such technology and its related resources.   

While the truthfulness of the conclusions inferred from the analogues cannot be 

ascertained from simulations alone and while the hypothesized mechanisms may, or may not, 

play a role in the emergence of the observed phenomena and those predictions may, or may not, 
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be accurate, one thing is certain:  experimenting on synthetic analogues, like the ones presented, 

provides a heretofore unavailable means of discovering new, plausible mechanistic details.  A 

validated, hypothetical generator in the form of biomimetic mechanisms constructed from object-

oriented software components would replace vague, unverified concepts with a concrete instance 

of a plausible mechanism, although we are just as ignorant of the wet-lab system, now, as we 

were before. The collection of mechanisms, rules, assembly and interactions of components can 

be subjected to testing and falsification, and, in the absence of other competing theories, stand as 

the current best explanation for the phenomena.   

6.3. Knowledge discovery and embodiment 

The value of the analogues does not solely lie in the (correctness of) the predictions 

(predicted mechanisms); rather, its value lies in  the ability to quickly generate mechanistic 

hypotheses, and test their plausibility with respect to available data, and in the potential to 

identify competing mechanistic explanations.  Given simulation results, one can prioritize which 

explanation may merit further targeted experimental exploration.  As we have demonstrated, 

simulations bring mechanism to life: from abstract subjective intangible concepts to concrete, 

objective, extant instances.  Simulations make hypotheses testing, selection, and falsification 

possible.  These cannot be done with conceptual mechanisms.   

Often, discrepancies between model expectations and experimental realities are seen as 

failures of the model to generate useful predictions.  The inaccurate predictions lead to 

discrediting the model and its methods, and to loss of interests in, and value, of the model.  The 

notion that the sole purpose of modeling is to produce useful (accurate) predictions is a result of a 

simplistic, myopic, and narrow-minded view of the use of modeling in biomedical research.  

Models are tremendously useful above and beyond generating predictions and testing hypotheses.   

As I have demonstrated, building a model about a referent biological system is a primary 

means to achieving a deeper understanding of the referent.  Although unsettling, discrepancies 
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between model expectations and experimental realities present important opportunities to identify 

gaps in current knowledge.  As scientists, we deal more with what we do not know or do not 

understand than with what we do know or understand. Science does not advance when 

experiments merely confirm the current theory.  Our knowledge evolves more swiftly when our 

model predictions are proven inadequate, when our system information is proven incomplete, and 

when we are surprised by unexpected experimental observations.  When a well-constructed, 

verified model is (unexpectedly) invalidated by experimental findings, it is evidence that the 

current best knowledge is lacking.  Scientists may then explore why the current best model failed, 

and how it could be improved.  When a revised model with new mechanistic details is validated, 

it represents hypotheses that are previously overlooked or newly discovered.    As such, a 

synthetic analogue concretely organizes our ignorance, if not knowledge, about the referent 

system: it tells us what we (think we) know and what we do not know.  Science is about capturing, 

refining, and ultimately reducing our ignorance of a given system, or in other words, building 

better models.  One has to know where the model is lacking before building better ones.  Hence, a 

model that reveals our ignorance is as equally valuable, scientifically, as models that just describe 

what we already know.   

In synthetic analogues, such as the RISLs and ISECCs, components and their interactions 

represent micro-mechanistic features, including anatomical, physiological, and molecular details 

at different levels during execution.  Because of such multi-level similarities, following rounds of 

improvement, testing, and validation, descendant analogues of this class have the potential to 

evolve into executable biological knowledge embodiments. While such embodiments are needed, 

they are beyond the scope of current pharmacokinetic, pharmacodynamic, and related modeling 

methods. Knowledge embodiment is made feasible because synthetic analogues provide concrete 

instances of that knowledge, rather than computational descriptions of conceptual representations. 
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When an analogue is executed, it demonstrates the consequences of our instantiated mechanistic 

hypotheses, and whether or not they match with details of the referent system.  

The envisioned synthetic analogues can facilitate the merger of knowledge and expertise, 

contributed across organizational domains into executable and, therefore, observable and 

falsifiable systems of plausible mechanisms and hypotheses.  Together, they will represent the 

current, best theory for aspects of system function. It will be possible to observe different aspects 

of knowledge in action and to do so from different perspectives, as we do with wet-lab systems. 

As these analogues become more mature and are validated over a larger range of referent 

experiments, adjusting (tuning) an analogue to represent heterogeneous systems, and systems 

under different conditions, will be feasible.  For example, one may use an analogue to represent a 

normal rat liver in one in silico experiment, and use an appropriately adjusted analogue, or a set 

of heterogeneous analogues, for diseased rat liver in another experiment.  One may modify a rat 

liver analogue to represent a mouse liver or a human liver.  These modifications and adjustments 

are possible because uncertainty can be preserved and cross-validation of component functions 

can specify which features to change. It will be possible to take copies of the same analogue and 

tune each separately to reflect differences in measured, patient-specific attributes. The collective 

knowledge, coupled with collective uncertainty, can be made specific for groups of patients and 

even for individual patients. 

6.4. Scientific modeling and simulation 

A vision motivating research on synthetic analogues is to account for the causal basis of 

the observed data and to shed light on prevailing mechanistic hypotheses about drug dynamics, 

specifically to gain new knowledge regarding mechanistic details of disposition and metabolism.   

To systematically leverage synthetic analogues to achieve that vision, we must follow the 

scientific method for investigation, the objective of which is knowledge discovery (or questioning 

and integrating prior knowledge). The method begins with pharmacokinetic phenomena in need 
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of explanation or investigation. We pose hypotheses and then strive to falsify their predictions 

through experimentation.  One may conduct wet-lab experiments; alternatively, as demonstrated 

in the previous chapters, we conducted in silico experiments.   

Scientific research involving computational analogues — scientific modeling and 

simulation — is characterized by testing multiple, similarly plausible models, just as abduction 

requires testing multiple hypotheses and induction requires multiple observations. Note that 

abduction and induction occur at a level above the computational analogues. The described 

framework for the scientific use of computational models requires designing and conducting 

multiple experiments on the analogue, and constructing multiple analogues that merit being 

objects of experimentation.    

The stages in scientific modeling and simulation are illustrated on the right side of Fig 2.1.  

The assembly of micro-mechanisms in RISLs and ISECCs were hypotheses. Each execution was 

an in silico experiment. Measures of phenomena during execution provided data. When that data 

failed to achieve a pre-specified measure of similarity with referent wet-lab data, the mechanism 

was rejected as a plausible representation of its wet-lab counterpart.  The collection of initial 

hypotheses was then refined iteratively through rational analysis, including experimentation and 

deduction, in both the minds of the researchers as well as in computer simulations. The iterative 

model refinement protocol guided cycles of abductive, mechanism-focused, exploratory modeling.  

Many mechanisms were tested and rejected en route to the mechanisms discussed in the 

conclusions. Multiple rounds of iterative refinement, followed by mechanistic failure, illustrated 

the fact that complex conceptual mechanisms can be flawed in ways that were not readily 

apparent to the researchers. The flaws only became obvious after we actually invested in the 

effort to implement and test the mechanism synthetically.  Those that survived can be further 

refined in the face of data from newly conducted wet-lab experiments or new inductive models. 
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At the end of this iterative process, the most robust explanatory and predictive hypotheses can be 

integrated into larger bodies of theory. 

New knowledge comes about by seeking and confronting contrast, anomaly, and 

surprising or unexpected observations. Studying and explaining the discrepancies between 

simulation and reality requires abductive reasoning, which is primarily how new theories and 

hypotheses are first conceived.  As I have demonstrated, synthetic modeling and simulation 

method, coupled with the iterative refinement protocol, facilitate this abduction step in the 

scientific cycle.   

Synthetic analogues are ideal for discovering plausible mechanisms, relations between 

components, and mechanism-phenotype relationships. They are good at explanation.  

Experimenting on synthetic analogues provides a powerful new means of discovering and testing 

the plausibility of mechanistic details.  They provide an independent, scientific means to 

challenge, explore, better understand, and improve any inductive mechanism and, importantly, 

the assumptions on which it rests. 

6.5. Perspective: towards a virtual patient 

Few would disagree that medicine should be personalized.  To practice the ideal 

personalized medicine is to answer this question: what is the optimized treatment for a patient 

who has never before been treated? Currently there are two possible approaches.  One is based on 

domain experts making subjective, empirical recommendations taking into account the unique 

characteristics of the current patient.  Another is using the proven optimal treatment for the group 

of patients that is sufficiently similar, in measurable attributes, to the current patient, such as age, 

sex, and genetic markers.  An exciting, scientifically rigorous third approach is possible by using 

a validated virtual patient analogue, capable of exploring the predicted outcomes from available 

drug treatment options, given the current patient’s individual demographics and disease 

progression, and by selecting the ones that most likely will provide the desired therapeutic 
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outcome, with the highest probability of success coupled with reduced, characterized risk of 

adverse events. Advances in proteomics, metabolomics and pharmacogenomics are moving the 

current practice of medicine to stratified evidence-based medicine.  Results from genomic-wide 

association studies, or epidemiological studies with large cohort, may correlate gene mutations 

(or markers) to clinically significant outcomes.  Predictions about treatment efficacy and toxicity 

may be made based on results from genetic tests.  Patients may be categorized into strata based on 

genetic makeup and demographics.  Treatment options for a defined stratum may be clinically 

compared, evaluated, and selected.   

However,  the advances in the -omics technologies generated massive amounts of data of 

low information value, but little actionable interpretations of any heuristic value, not to mention 

mechanistic understanding.  Translation from genomic information to personalized prescriptions 

requires concrete, explorable, and traceable genotype-phenotype linkage, and an understanding of 

how pharmacological and toxicological response are generated from interactions of genes and 

environment through the hierarchy of mechanisms.    

The massive amount of data, especially data in genetic mutations and biomarkers 

expression, can be used to help develop synthetic, biomimetic tissue, organ and even patient 

analogues.  Using the synthetic modeling and simulation methods, domain experts may organize 

their theory and uncertainty by building computational analogues.  These analogues are validated 

against the available data.  Those that survive falsifications are representation of current best 

knowledge.  New studies can be conducted to fill the gaps in knowledge.  The capabilities of the 

synthetic analogues, listed in Table 2.1, guarantee relatively easy revision, modification, 

accumulation, and integration of knowledge.  Components – knowledge – can be shared between 

analogues.  Validated analogues can be linked and organized into models for biological pathways, 

tissues, and organs and stand as dynamic, mechanistic models of physiology and disease 

progression.   Semi-automation can greatly increase the efficiency of this process.  Finally, the 
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analogues can be tuned to reflect relevant characteristics of a particular patient, and, in fact, 

become the personalized analogue of the unique patient.  Treatments can be given to this unique 

patient analogue and the outcomes can be compared.  Needless to say, these virtual patients are 

too simple and not real.  However, they would be useful as an informative laboratory to support 

clinical decision- making.   

That’s the future.  The synthetic modeling and simulation method, and the idea of 

iterative, scientific modeling and simulation are two enabling steps on the path towards 

developing virtual patient analogues.   

The question is not if a virtual patient is going to be developed, but when, and how.   
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7. Appendix 

7.1. Induction 

Conditions supportive of all three reasoning methods are sketched in Fig. 5.1B.  

Induction is arrival at a conjecture (universal conclusion) based on a pattern observed in many 

particular cases.  Induction begins with the measurement of a collection of objects.  It is 

fundamentally and foremost a method for studying phenomena, not mechanism.  The data from 

which a pattern is induced act as a statement solely about the phenomena for which the measure 

was designed. Hence, every data set, and subsequently every inductive model, has embedded in it 

the aspects or usage protocols plus premises commensurate with the measures used to obtain the 

data.  In general, a model induced from large sets of the same type of data will be more precise, 

more specific, and more suitable for prediction.  On the other hand, a model induced from lots of 

variant data (measures of different phenotypic attributes) will be less precise but more resilient 

and more general; its predictions will reflect greater uncertainty.  In the former context, one has to 

worry most about over-fitting data, which makes the model too specific to a single data set to be 

useful.  At the same time, one has to worry about inducing a model that is too general and misses 

crucial patterns in the data.  
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Often, the modeler is also interested in the generative mechanisms responsible for the 

data.  In those cases, features of idealized, conceptual constructs (a feedback circuit, a two-

compartment model, etc.) can provide mechanistic insight.  This is particularly true when the 

mathematical description of an idealized measure of a construct feature (given a set of premises) 

is known to have a form that is the same (or nearly the same) as the induced mathematical 

description (a sum of exponentials, for example).  How well the parameterized features of the 

conceptual construct map to components and features of the referent, along with the acceptability 

of the premises, are separate issues outside the current scope.  The initially induced mathematical 

description is prosaically expanded to include the conceptual features, but remains a hypothesis 

about patterns in the data.  

7.2. Deduction 

Deduction is automatic and/or mechanical transformation of a set of statements.  It is the 

purely mechanical (syntactic) transformation of the premises to a conclusion.  As such, no 

meaning (semantics) need exist for deductive systems.  All executing computer programs (absent 

human or real-world interactions) are deductive systems.  Likewise, mathematical 

transformations are also deductive systems.  The most fundamental element of deduction is the 

engine that actually makes the transformation.  In the case of a computer program, the instruction 

pointer provides the impetus for transformation.  In mathematics, the engine is the human 

manipulating the symbols.  A simulation is an operating, deductive system designed to mimic the 

behavior of some referent.  Its alphabet and grammar are specified in part by the language in 

which the program is written and in part by the constructs the programmer creates.  The premises 

are statements about the initial conditions of the program.  The conclusions are statements about 

the final conditions of the program.  The conclusions (of interest) become the outputs or 

“behaviors” of the simulation, but no new knowledge can be created.  Any meaning applied to the 
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premises, grammar, or conclusions are inferred by those examining the program and simulation, 

and so remain conceptual and hypothetical.  

7.3. Abduction 

Abduction is arrival at a conjecture based on a pattern observed in one or a few particular 

cases.  Abduction is conceptualizing (multiple) mechanisms: explanations that, if true, could 

account for or generate a similar anomalous, interesting, or surprising observation.  Abductive 

inference involves hypothesis generation and selection, and is an important occurrence during 

wet-lab research.  Abduction is most likely and appropriate for ambiguous systems (the left side 

of Fig. 5.1B).  The task of resolving the ambiguity is best approached through multiple aspects 

and with multiple mechanistic hypotheses measured with multiple measures.   

To illustrate abductive inference, consider the following situation: measurements of an 

experimental treatment group exhibit unexpected values when compared to those of control 

groups and data from past experiments.  Further, the results do not fit well with known categories 

of similar phenomena.  In such a situation, researchers offer many speculative, candidate 

explanations: were this condition or circumstance true, it could explain the anomalous or new 

observations.  Some explanations may focus on material used in the experiment (a possible bad 

batch of reagent, etc.).  Other explanations may focus on the conduct of the experiment (the 

samples may have been mishandled, etc.).  Others are ideas about mechanistic explanations.  

Generation of varied explanatory hypotheses, some highly speculative, following the observation 

of the anomalous behavior is part of abduction.  The next phase involves a process that narrows 

the competing ideas to those deemed most plausible.  Following abduction, the consequences of 

these hypotheses are logically or experimentally deduced, and then evaluated using induction.  

After testing, when the set of plausible hypotheses is dramatically reduced, those remaining 

represent the current best explanation(s) until some new observation falsifies one or more of them.  

At that stage, the entire scientific reasoning cycle may repeat itself.   
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The above cycle (Fig. 5.2) occurs frequently when engineering and refining a synthetic 

analogue, like ISECCs.  The behaviors of the first implementation often fall short, frequently far 

short of expectations, even though it is the modeler’s best hypothesis about how components 

should plug together to obtain the targeted phenomena.  That shortfall falsifies the best hypothesis.  

The modeler has learned that the selected region of mechanism space is too abiotic.  The modeler 

must rethink plausible micro-mechanisms.  The solution is to jump to another region of 

mechanism space and experiment to determine if the new micro-mechanisms produce phenomena 

that are more similar to targeted phenomena.  So doing exercises creativity.  When improvements 

are seen, the modeler can conjecture that the new micro-mechanisms are more biotic.  Each failed 

cycle exercises thinking creatively about plausible mechanisms.  Each improvement in the 

similarity of the analogue’s behavior to that of the referent adds new knowledge and improves 

insight into referent mechanisms.  Both failed and fruitful cycles are often characterized by 

abductive reasoning.   

Like induction, abduction starts with a measure selected by the researcher.  As such, the 

hypothetical mechanisms inferred (current beliefs) are inherently and irrevocably dependent upon 

the measure through which the phenomena are defined and revealed.  They are aspect and 

perspective dependent.  Change aspect and/or perspective and the hypothetical mechanisms 

inferred may change.  Unlike induction, however, abduction does not necessarily produce (overly) 

precise or (overly) general mechanistic explanations.  More often, as with ISECCs, they are 

specific to the observation or experiment and its context.  That is because the focus of abduction 

is on the current few interesting cases.  The hypotheses (explanatory models) must be elaborated 

through deduction followed by validation through induction in order to learn how precise or 

general each hypothetical mechanism actually is.  For that reason, abduction preserves ignorance, 

in contrast to the truth preservation of deduction.  The researcher is just as ignorant after abducing 

an explanation as before.   
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Abduction references: Yu CH (1994) Abduction? Deduction? Induction?  Is there a logic 

of exploratory data analysis?  http://www.creative-wisdom.com/pub/Peirce/Logic_of_EDA.html 

(accessed 8/19/09).  Magnani L (2000) Abduction, reason and science – processes of discovery 

and explanation. Kluwer Academic/Plenum Publishers, NY, NY.  Gabbay DM and Woods J 

(2005) A practical logic of cognitive systems, Volume 2: The reach of abduction: insight and trial. 

Elsevier.   
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