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Abstract

Many-body electronic structure theory: method development and applications in

chemistry and materials

by

Guorong Weng

Quantum mechanical calculations have revolutionized the study of matter by providing

a powerful tool to access a wide range of material properties. In particular, gaining insight

into the electronic structure of functional materials is crucial for understanding their

work mechanisms in optoelectronic devices at the atomistic level, ultimately enabling

the targeted design of materials with desired optical and electrical properties. However,

achieving accurate first-principles predictions for direct comparison with photoelectron

or optical spectroscopy experiments is challenging. Multilevel and advanced quantum

theories are required to handle both ground and excited states accurately and efficiently.

Although the widely-used density functional theory offers excellent accuracy in solving

ground-state problems, it does not provide information on excited states, even in principle.

Many-body Green’s function theory is becoming increasingly popular in describing

single-particle excitations, i.e., electron and hole injections. Within this framework, the

GW approximation has demonstrated significant improvement over density functional

calculations in predicting the excited-state properties of molecules and solids. The recent

implementation of stochastic sampling has made linear-scaling GW calculations feasible

for nanoscale systems with tens of thousands of electrons.

This dissertation presents novel developments for solving electronic structure problems

in practically important systems, including polymer solids, donor-acceptor molecular

complexes, molecules in the liquid phase, and defects in a solid-state environment. Periodic
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boundary conditions are implemented in many-body Green’s function calculations for

systems of all dimensions. The highly-ordered domains in stacking polymers are modeled by

infinitely periodic systems, allowing detailed analysis of the quasiparticle band structures

and describing the correlation effects in charge transport. In treating localized excitations

of solvated molecules and defects in solids, localized orbitals are employed to precisely

reconstruct molecular states and efficiently define electronic subspaces. To lower the cost

of orbital localization, I introduce the ideas of fragmentation and sequential exhaustion

of single-particle orbital space. The resulting algorithm scales linearly in computational

cost, allowing efficient real-space and orbital-space partitioning. The established methods

significantly improve the predictions of ionization energies, electron affinities, and band

gaps for the investigated systems. Furthermore, the couplings between a molecule and its

environment are discussed in detail in the context of quasiparticle excitations.
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Chapter 1

Introduction

Since the discovery of electrons in 1897,[1] the atomic structure problem has captivated

scientists with two fundamental and critical questions: why is an atom stable despite

having oppositely charged subatomic particles, and why do atoms emit line spectra?

The models proposed by Thomson[2] and Rutherford[3] illustrated the positions of the

nucleus and electrons but failed to answer these two question quantitatively. Motivated by

Rutherford’s model and Nicholson’s work on quantized angular momentum,[4] Niels Bohr

proposed his “solar system” model, where electrons orbit the nucleus like planets orbiting

the sun.[5, 6, 7, 8] Each electron orbital has a definite radius and a corresponding orbital

energy characterized by a “quantum” number. These energy levels are discretized and

quantized, with the lowest-energy orbital defining the smallest radius for the electrons.

Bohr successfully explained the stability of atoms and recovered the Rydberg formula

to describe all spectral series of lines for the hydrogen atom. In Bohr’s model, the

electromagnetic radiation of atomic hydrogen is caused by electronic transition between

two orbitals, with the emitted photon energy being equal to the energy difference between

these two states. Although Bohr’s original model was later shown oversimplified for

electronic motion, the concepts of orbitals, energy levels, and electronic transition are
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Introduction Chapter 1

inspiring. Particularly, they created a huge and profound impact on the development

of electronic structure theory, which has become a powerful tool for gaining insights

into spectroscopic properties of matter, such as absorption, emission, and photoelectron

spectra. For systems beyond the hydrogen atom, where there are more than one electron,

the electronic structure problems must be solved with electrons interacting and coupled

to one another. The solution to these many-electron problems falls under the purview of

quantum mechanics.

In the first three decades of the 20th century, the formulation of quantum mechanics

has been completed by joint contributions from a group of brilliant theorists such as Werner

Heisenberg,[9, 10, 11] Erwin Schrödinger,[12] and Paul Dirac,[13, 14, 15]. Schrödinger’s

wave equation formulation provided a fundamental way to study many-particle problems

involving electrons and nuclei, which are the two common types of particles in chemistry.

The solution of the wavefunction to the Schrödinger equation represents the probability

amplitude of finding the system in a certain configuration at a certain time. Solving the

time-independent Schrödinger equation provides the total energy of a stationary eigenstate

representing the stability of a system. The lowest energy corresponds to the ground state

of a system. Because of the significant difference in energy and mass scales between

nuclei and electrons, the ground state of a system is largely determined by the ground

state of the electrons.[16] To simplify a many-particle problem and focus on electronic

properties, the Born-Oppenheimer approximation[17] is often used to reduce the problem

to a many-electron problem, where the electrons move in a static potential field provided

by a set of clamped nuclei.

Quantum mechanics provides a basic framework for description the behavior of nuclei

and electrons at the subatomic level. However, finding the exact solution to the Schrödinger

equation is almost impossible for systems with many electrons. Hence, approximations are

required for solving many-electron problems in realistic systems such as atoms, molecules,

2



Introduction Chapter 1

and solids. Focusing particularly on molecular electronic properties, quantum chemistry

emerged as a branch of quantum mechanics. Early pioneers of this field, Hartree, Fock,

and Slater[18, 19, 20, 21, 22], approximated the many-electron wavefunction with a single

determinant (later named after Slater) composed of single-particle orbitals. The Slater

determinant formulation results from enforcing the antisymmetry of the many-electron

wavefunction. With the introduction of the atomic orbital basis[23, 24] and self-consistent

field method,[19] the Hartree−Fock approximation became a systematic route to perform

wavefunction calculations on the ground-state properties of atoms and molecules with

no empirical parameter (also called first-principles or ab initio calculations). Typically,

the Hartree–Fock ground-state wavefunction provides a set of optimized single-particle

orbitals, each characterized by an eigenvalue. For a molecule with N electrons, the N

states with the lowest eigenvalues are considered occupied molecular orbitals, while the

rest are unoccupied/virtual. Such a diagram of orbitals characterized by energy resembled

Bohr’s model for the hydrogen atom and serves as the foundation of modern molecular

electronic structure theory.

Although the advancement from single atoms to polyatomic molecules was groundbreak-

ing, it was soon realized that the Hartree–Fock approach did not provide a quantitative

description for electronic properties and could be even qualitatively wrong. The root cause

of these failures is the lack of electron–electron correlation effects originating from the dy-

namically and instantaneously mutual influence of electrons on each other’s movement.[25]

One effective and common way to account for correlation effects is to correct/improve

the Hartree–Fock solution through configuration interaction (CI),[26, 27, 28, 29] couple-

cluster (CC),[30, 31, 32, 33, 34] and perturbation theory.[35, 36, 37, 38, 39, 40, 41] CI,

CC, and related methods are commonly known as wavefunction methods in which more

determinants are added to the Hartree–Fock wavefunction, and the correlation effects are

represented and captured by single-particle excitations from occupied to virtual states

3
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in the additional determinants. Wavefunction methods can significantly improve the

ground-state energy and wavefunction with excellent chemical accuracy. However, their

computational costs normally scale as high as O(eN), which hinders their applications

to large molecules such as DNA/RNA and proteins, and to nanoscale materials with

thousands of electrons.

The development in quantum mechanics also stimulated major progress in solid-state

physics. Sommerfeld[42] introduced the quantum mechanical principles to the classical

Drude model[43, 44] and improved the classical descriptions of charge carriers, thermal

conductivity, and heat capacity for metals. Other solid-state systems of interest include

semicondutors, insulators, and superconductors; they are mostly crystals with a regularly

repeating pattern of atoms or ions arranged in a three-dimensional lattice structure.

The field potential in a crystalline solid follows from the periodicity of the nuclei. To

solve the Schrödinger equation with a periodic potential, Bloch functions[45] provided a

suitable basis for the single-particle orbitals in crystalline solids. More importantly, the

representation of electrons using Bloch states leads to the well-known electronic energy

band theory, which became a crucial tool for understanding the electronic properties of

solids. However, solving the correlation problem of electrons was still challenging and

practically intractable by wavefunction methods. In fact, capturing the correlation effects

is even more important in solids to account for the dynamical screening among electrons.

Finding an accurate and efficient approach to solve many-electron problems for atoms,

molecules, and solids was in necessity.

In the 1940s, Feynman formulated quantum mechanics using the path integral approach,

where the interactions between elementary particles are represented by diagrams.[46, 47]

The Feynman diagrams provide intuitive insight into the structures of many-electron

interactions, including classical repulsion and quantum effects. In the 1960s, Hohenberg

and Kohn proved that the ground state of a quantum many-body system could be fully
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determined by its charge density, and the total energy of the system is a functional of

the charge density.[48] The Hohenberg–Kohn theorem established the density functional

approach as an exact theory to solve many-body problems. The Thomas–Fermi model[49,

50] and Slater’s exchange-hole[51] method can thus be viewed as particular approximations,

which however did not include the correlation effects. This fundamental problem was

further tackled by Kohn and Sham, leading to the Kohn–Sham (KS) approach to the density

functional theory (DFT).[52] In KS-DFT, the fully interacting many-electron problem of a

real system is mapped onto an auxiliary system with non-interacting particle – the particles

exist in a field that mimics the presence of other particles at the mean-field level. By

construction, only the ground-state density and energy are meaningful for interpretation,

while the particles are fictitious, i.e., they are not physical electrons; among these single-

particle states, only the energy of the highest occupied orbital corresponds to the binding

energy of an electron (discussed in the following as ionization energy).[53, 54, 55, 56, 57, 25]

By replacing the wavefunction with the charge density as the basic variable, KS-DFT

significantly reduced the computational complexity and cost, allowing efficient electronic

structure calculations for solid-state systems with periodic boundary conditions. In

practice, the exchange–correlation (XC) functional in KS-DFT governs the accuracy of

calculations and needs to be approximated, and the applications of KS-DFT to atoms and

molecules relied on the development of more sophisticated XC functionals than the local

density approximation (LDA).[58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69] The quality

of XC functionals is often evaluated by comparing the KS-DFT ground-state energy

and density with benchmarking results obtained from wavefunction methods. However,

recently developed XC functionals focused more on the energy agreement but overlooked

the density, causing the approximated functional to stray away from the exact one.[70]

The theoretical approaches described above primarily deal with the ground-state

properties of a system, such as equilibrium crystal or molecular structure, charge density,
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magnetic order, and static dielectric and magnetic susceptibilities. However, the electrical

and spectroscopic properties of matter involve both the ground and excited states. For

example, the atomic line spectra come from the electronic transition from an excited

state to the ground state. Another type of excited-state properties in spectroscopy is the

excitation spectra for adding or removing electrons, which is the focus of this dissertation.

The removal or addition of electrons can be observed through direct or inverse photoemis-

sion spectroscopy, and the measured energies correspond to the ionization potentials (IPs)

or the electron affinities (EAs). Knowledge of these spectroscopic properties provides

valuable insights into the electronic structure of matter of interests, and it is tempting

to outline the electronic structure through quantum mechanical calculations. While the

eigenvalues from Hartree–Fock calculations can be interpreted as IPs and EAs for charged

excitation energies based on the Koopmans’ theorem,[71] they generally overestimate IPs

and underestimate EAs compared to experimental measurements. Similarly, the eigenval-

ues from KS-DFT calculations have also been widely interpreted as excitation energies.[72]

However, these eigenvalues depend strongly on the choice of XC functionals that are in

principle not exact. Other related issues include overestimated EAs, underestimated IPs,

and too-small band gaps.

The failures of Hartree–Fock and KS-DFT above can be attributed to the nature

of ground-state approaches: the electron–electron interactions are highly averaged and

show little dependence on a specific single-particle state. This mean-field treatment

might be sufficient to describe the collective properties of electrons, e.g., the total energy,

but is inadequate to capture the nonlocal and dynamical interactions associated with a

single-electron excitation. Hence, excited-state properties should not be expected from

a ground-state calculation and should be treated by excited-state theories. Using the

Hartree–Fock ground state as a starting point, wavefunction methods such as CI and CC

can handle excited states to improve the results but suffer from steep scaling in cost.
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Many-body Green’s function theory is another alternative and ideal solution to

excitation energies involving hole or electron injections. In Green’s function theory, the

ground-state of a system is treated as a Fermi vacuum, and the electron removal or

addition corresponds to a particle (hole or electron) created in the Fermi vacuum. This

created particle perturbs the surrounding environment, and the responding environment

dresses the particle, leading to the formation of a quasiparticle. The dynamics of this

quasiparticle in the system is described by the single-particle Green’s function, associated

with a self-energy term accounting for all the many-body effects, including Coulomb

repulsion and exchange–correlation interactions. The Green’s function formalism provides

in principle single-quasiparticle energies corresponding exactly to ionization energies and

electron affinities measured in photoemission spectroscopy. However, analogous to the

XC functionals in KS-DFT, the exact XC self-energy is intractable and needs to be

approximated. On the other hand, the XC self-energy is nonlocal, dynamical and state-

specific, contrasting the local/semilocal and static XC functionals in KS-DFT. Within

this framework, the GW approximation, where G denotes the Green’s function and W

the screened Coulomb interactions, has been widely used to compute charge excitation

energies in solid-state and molecular systems,[73, 74, 75, 76, 77] and excellent agreements

with experiments have been achieved.

The traditional GW approach outperforms the wavefunction methods with a scaling of

N4. Additionally, it provides better accuracy than the wavefunction methods particularly

in tackling solid-state systems. However, the N4 cost scaling still limits its applications

to only small molecules and unit cells. By combining the stochastic sampling technique

with GW , the scaling has been significantly reduced to linear, enabling GW calculations

for systems with thousands of electrons.[78, 79, 80] The success of the stochastic GW

formalism promises accurate predictions of electronic structure for large-scale systems.

It also highlights the two rules of thumb in developing electronic structure methods:
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accuracy and efficiency. The former determines the reliability of simulations, while the

latter dictates the size of a system that can be handled. Both factors are essential for

one to use first-principles calculations in aiding materials design or elucidating the work

mechanism of functional materials.

Following the aforementioned rules of thumb, the methods developed in this dissertation

are to solve the interacting many-electron problem with high efficiency and accuracy

in electronic structure calculations. From investigating quasiparticle excitations and

dynamics, this dissertation is dedicated to answering questions including but not limited

to

(1) What are the effects of dynamically electronic couplings, e.g., van der Waals inter-

actions, on the electronic properties of functional molecules and polymers in the

condensed phase?

(2) What is the strategy for treating localized excitations of molecules or defects in an

arbitrary environment?

(3) How to effectively and efficiently separate the electronic subspace for a molecule of

interest from a multicomponent condensed system?

(4) How to quantify the environmental renormalization effects associated with single-

quasiparticle excitations?

(5) How to perform GW and beyond-GW calculations on systems of all dimensions?

To achieve these, multilevel theoretical approaches are employed to search for various

properties: equilibrium structures and geometries are generated by molecular dynamics

simulations; electronic ground states are computed by KS-DFT; quasiparticle energies

are obtained by the GW method and beyond. The remaining content of this dissertation
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Introduction Chapter 1

is organized as follows: Chapter 2 provides a detailed introduction to the theories

mentioned above, Chapter 3 demonstrates how to perform deterministic and stochastic

GW calculations to obtain quasiparticle energies in practice, Chapter 4 briefly introduces

the six research projects listed in the following Chapters (Chapter 5-Chapter 10), and

the motivation and background of each work can be found in each individual Chapter.

Finally, Chapter 11 summarizes the achievements and significance of this dissertation.
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Chapter 2

Theory

2.1 Many-electron problem

Quantum mechanics provides a theoretical framework for understanding the behavior

of atoms, molecules, and solids. In these systems, most chemical and physical phenomena,

such as chemical bonding, charge transport, and excitations in spectroscopy, involve the

positions and motions of subatomic quantum particles, i.e., nuclei and electrons. The

desired information of such a many-particle quantum system is encoded in a quantum

state |Ψ⟩, from which one can extract observables like total energy, particle densities,

forces, and many others. A stationary many-particle state |Ψ⟩ satisfies the following

time-independent Schrödinger equation

Ĥ |Ψ⟩ = E |Ψ⟩ , (2.1)

where Ĥ is the Hamiltonian specifying the mutual interactions within a many-particle

system , and E is the corresponding total energy. A seemingly concrete description of the

quantum state can be provided in real space, where |Ψ⟩ is projected onto a configuration
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state of the system

Ψ(x1,x2, . . . ,xN ,R1,R2, . . . ,RM) = ⟨x1,x2, . . . ,xN ;R1,R2, . . . ,RM |Ψ⟩ . (2.2)

Here, the configuration state |x1,x2, . . . ,xN ,R1,R2, . . . ,RM⟩ refers to a particular set of

coordinates of all the nuclei and electrons. Ψ(x1,x2, . . . ,xN ,R1,R2, . . . ,RM ) is commonly

known as a many-particle wavefunction. xi = (ri, σi) represents the spatial and spin

coordinates of the ith electron, with ri = (xi, yi, zi) and σi = ±1
2
. RA is the spatial

coordinates of the Ath nucleus.

The Hamiltonian Ĥ in Eq. (2.1) can also be expressed in real-space Cartesian coordi-

nates

Ĥ =−
N∑
i=1

ℏ2

2me

∇2
i −

M∑
A=1

ℏ2

2MA

∇2
A −

N∑
i=1

M∑
A=1

ZAe
2

4πϵ0riA

+
1

2

N∑
i ̸=j

N∑
j=1

e2

4πϵ0rij
+

1

2

M∑
A ̸=B

M∑
B=1

ZAZBe
2

4πϵ0RAB

.

(2.3)

In Eq. (2.3), ℏ denotes the reduced Planck constant (Planck constant divided by 2π), me

represents the mass of an electron, MA is the mass of nucleus A, e is the elementary charge,

and ZA is the atomic number of nucleus A. Additionally, riA represents the distance

between electron i and nucleus A, rij is the interelectronic distance, and RAB denotes

the internuclear distance. Each term on the right-hand side of Eq. (2.3) contributes to

the total energy of a system. The first term is the kinetic energy operator summing over

all N electrons, where the Laplace operator ∇2
i takes the divergence of the gradient of

the wavefunction with respect to electron i. Similarly, the second term is the kinetic

energy operator for all M nuclei. The third term represents the Coulomb attraction

between electrons and nuclei, while the last two terms are the Coulomb repulsion between

electrons and between nuclei, respectively. The factor 1/2 in these terms cancels the
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double-counting effects in the summation. The expression of Eq. (2.3) can be simplified

using the atomic units

Ĥ =−
N∑
i=1

1

2
∇2
i −

M∑
A=1

1

2M ′
A

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
1

2

N∑
i ̸=j

N∑
j=1

1

rij
+

1

2

M∑
A ̸=B

M∑
B=1

ZAZB
RAB

,

(2.4)

where M ′
A is defined as MA/me. Expressions are assumed in atomic units throughout the

rest of this dissertation unless otherwise stated.

For the main interest in electronic properties, it is desirable to disentangle the electronic

motion from the nuclei. Based on the fact that the nuclei are much heavier and thus move

much slower than the electrons, one can invoke the Born–Oppenheimer approximation[1]

to study the motion of electrons with the nuclei fixed in space. In this approximation, the

many-particle state collapses into states with well-defined nuclear positions. Assuming

that the many-particle wavefunction is separable,[2, 3, 4] one can factor out the nuclear

component and obtain the following product form of a wavefunction

Ψ(x1,x2, . . . ,xN ,R1,R2, . . . ,RM) = Ψelec(x1,x2, . . . ,xN ; {RA})Ψnucl({RA}). (2.5)

Here, Ψelec({xi}) denotes the many-electron wavefunction, in which the set of nuclear co-

ordinates {RA} serve as parameters (i.e., known values) instead of variables. Ψnucl({RA})

is the wavefunction that describes a state of well-defined positions of nuclei.

Upon the Born–Oppenheimer approximation and the separation of the wavefunction,

one can effectively treat a many-particle system as a combination of “classical” and

quantum particles. The nuclei are treated by classical mechanics, with the internuclear

interactions computed as Coulomb repulsion between point charges and the kinetic energy
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computed from particle velocity. Only the electrons are treated quantum mechanically by

the following electronic Hamiltonian

Ĥelec = −
N∑
i=1

1

2
∇2
i +

1

2

N∑
i ̸=j

N∑
j=1

1

rij
−

M∑
A=1

N∑
i=1

ZA
riA

= T̂ + V̂ee + V̂ext.

(2.6)

Here, the operators T̂ , V̂ee are the shorthand notations for the kinetic energy and the

electron interaction energy. V̂ext represents the interaction with an static external field,

which is provided by the fixed nuclei

V̂ext = −
N∑
i

M∑
A

ZA
|ri − RA|

=
N∑
i

vext(ri).

(2.7)

Here, the external potential is purely the classical Coulomb attraction that acts the same

on each electron

vext(r) = −
M∑
A

ZA
|r − RA|

. (2.8)

As a result, the electron-nucleus attraction Een can be written in terms of the electron

density n(r) interacting with the external field

Een = ⟨Ψelec|V̂ext|Ψelec⟩ =
∫
vext(r)n(r)dr. (2.9)

This expression will be used very often when it comes to the density functional theory in

Section 2.4. The electron density in Eq. (2.9) is given by

n(r) = N

∫
dσdx2dx3 . . . dxN |Ψelec(rσx2,x3, . . . ,xN)|2, (2.10)
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where N is the renormalization factor to the number of electrons as the electronic

wavefunction is normalized: ⟨Ψelec|Ψelec⟩ = 1. The many-particle problem is formally

reduced to a many-electron problem, where the many-electron state satisfies the following

Schrödinger equation

Ĥelec |Ψelec({RA})⟩ = Eelec({RA}) |Ψelec({RA})⟩ . (2.11)

Here, |Ψelec⟩ is subject to {RA}, and the corresponding electronic energy Eelec is a function

of {RA}. The total energy of a system is the sum of the electronic energy and the nuclear

repulsion

Etot({RA}) = Eelec({RA}) +
1

2

M∑
A ̸=B

M∑
B=1

ZAZB
RAB

. (2.12)

This total energy Etot is a function of {RA}, which is known as the adiabatic potential

energy surface appearing in the nuclear Hamiltonian to describe the motion of the

nuclei. The nuclear motion is responsible for the system’s rotational, vibrational, and

translational properties that can be coupled to the electronic properties. However, this

dissertation does not address these coupling effects and focuses only on the electronic

degrees of freedom, with the Born–Oppenheimer approximation applied to all the electronic

problems. Furthermore, the superscript “elec” used in this section is omitted for all the

wavefunctions, Hamiltonians, and energies for simplicity in the remaining content.

2.2 Mean-field solutions: an overview

The exact solution to Eq. (2.11) remains a perpetual challenge for systems beyond the

hydrogen atom, i.e., systems with more than one electron. The reasons for it being difficult

to solve are multiple. First of all, although the expression of the many-electron Hamiltonian

is known, information about the wavefunction, such as its form and dimension, is not given.
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Second, assuming that the electronic Hilbert space can be completely defined by M basis

functions, the number of possible configuration (introduced later as a single determinant)

for full interaction will be
(
M
N

)
, accompanied by a Hamiltonian matrix with a dimension

of
(
M
N

)2
. The computational cost scales exponentially with the number of electrons N .

For a nanoscale system, which is often the case in chemistry and materials, the required

computational time and memory for storage are expected to be astronomical. Third, the

completeness of basis is not guaranteed in practice, and the computational results usually

depend on the number and the type of basis functions. Given the intractability of the

exact answer, numerous efforts have been devoted to finding approximate solutions for

many-body problems in chemically important and materials systems.

Suppose that the system in question is a hydrogen atom for which an exact solution

to the Schrödinger equation exists. The resulting wavefunctions can be interpreted as

atomic orbitals that are characterized by a set of quantum numbers. These are orbitals

describing the spatial distribution (motion) of an electron. When two hydrogen atoms

are brought close together, they form an H2 molecule, and the “bond” connecting these

two atoms is indeed a pair of electrons whose motions are described by the so-called

molecular orbitals. Since electrons are fermions, the Pauli exclusion principle states that

an orbital can be occupied by two electrons if and only if they have opposite spins. For a

doubly-occupied molecular orbital, one can multiply it by a spin function, which is either

up (+1/2) or down (-1/2), to define a spin orbital for each electron. The relationship

between atomic orbitals and molecular spin orbitals will be discussed later. This example

alludes to the single-particle picture for solving a many-body problem, in which each

individual electron is characterized by a spin orbital. The many-body wavefunction can

then be expressed as a single or multiple determinants, which is constructed using N spin

orbitals. When solving the ground-state single-particle spin orbitals, the Hamiltonian

either uses explicitly or ends up with effective potentials, representing the average effects
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of the surrounding particles. Hence, these approaches are also called mean-field methods.

The following content of this section provides an overview for the ground-state mean-

field methods. Section 2.3 introduces the Hartree–Fock approximation, in which the

many-body wavefunction is approximated as a single determinant with partially correlated

electrons. Section 2.4 summarizes the principles in density functional theory and presents

the Kohn-Sham approach, where a fully interacting quantum many-body system is mapped

onto a non-interacting auxiliary system with fictitious particles moving in a mean field.

2.2.1 Search of ground state

The mean-field methods discussed in this section seek the solution to the ground state

for Eq. (2.11)

Ĥ |Ψ0⟩ = E0 |Ψ0⟩ , (2.13)

where |Ψ0⟩ denotes the non-degenerate ground state, and E0 is the exact ground-state

energy

E0 < ⟨Ψ|Ĥ|Ψ⟩ = E [Ψ] for |Ψ⟩ ≠ |Ψ0⟩ . (2.14)

In the mean-field formulation, the motion of an electron is represented by a single-particle

state, and the mean-field total energy E is often writtend in terms of integrals using the

set of orthonormal single-particle states

E = E [ψ1, ψ2, . . . , ψN ] (2.15)

The orthonormality follows the form of the Kronecker delta function

⟨ψi|ψj⟩ = δij, (2.16)
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where δij is defined as

δij =


1 if i = j,

0 if i ̸= j.

(2.17)

In Eq. (2.15), the set of ψi are trial single-particle states to be optimized. The energy

functional E [{ψi}] is assumed variational and differentiable with respect to {ψi}, and

the optimized E and {ψi} are obtained at the stationary point

δE [{ψi}]
δ{ψi}

= 0, (2.18)

The extremum of E is often found a minimum, which is denoted E0 as the mean-field

ground-state energy

E0 = min
{ψi}

E [{ψi}] . (2.19)

Note that the real ground-state energy E0 is usually unknow and provided by benchmarking

calculations, e.g., using wavefunction methods. The mean-field E0 is to approach E0,

and this correspondence can be exact. However, practical approximations are usually

empolyed, the quality of which is evaluated by comparing E0 to benchmarking E0. In cases

of large systems where a legitimate E0 is unavailable, the mean-field ground state is often

evaluated together with other properties such as the electron density and experimental

observables.

2.2.2 Single-particle eigenvalue equations

Note that the electronic Hamiltonian [Eq. (2.6)] in question is spin-independent, i.e.,

no operation is performed on the spin state. The spin-orbit coupling is not considered

either. As a result, a spin orbital ψi(x) can be written as a product of the spatial and the
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spin function

ψi(x) = ϕi(r)ξ(σ), (2.20)

where the function ξ has only two orthonormal states α and β, representing respectively

spin up and down

⟨ξ(σ)|ξ(σ′)⟩ = δσσ′ . (2.21)

With no dependence on spin in the Hamiltonian, the energy functional E in Eq. (2.18)

can be fully expressed in terms of the spatial functions.

Generally, the constrained minimization of E in Eq. (2.18) with respect to the set

of single-particle spatial functions leads to a set of eigenvalue equations of the following

canonical form

ĥmf |ϕi⟩ = εi |ϕi⟩ , (2.22)

where εi is the Lagrange multiplier used in the constrained search. ĥmf denotes the

mean-field single-particle Hamiltonian, which commonly reads

ĥmf = −∇2

2
+ v̂eff . (2.23)

Here, v̂eff is an effective potential acting on a single particle with a kinetic energy. v̂eff

accounts for the average particle–particle interaction effects, and it can be local or nonlocal,

depending on the actual construction.

Practical solutions to the spatial orbitals ϕi(r) in Eq. (2.22) employ basis functions

for expansion. For molecules, the set of ϕi(r) are often constructed as linear combinations

of atomic orbitals[5] (LCAO-MO)

ϕi(r) =
∑
µ

cµiχµ(r), (2.24)
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where χµ(r) is an atomic orbital with a definite form, and cµi is the corresponding complex

coefficient. ϕi(r) in this basis is called a molecular orbital.

The eigenvalue equations of the form in Eq. (2.22) are often non-linear since the

Hamiltonian depends also on the set of ϕi(r) (demonstrated later in Section 2.3). Hence,

these single-particle eigenvalue equations need to be solved self-consistently in practice.

And this iteration procedure is called the self-consistent-field (SCF) approach, details of

which are provided in Section 2.3.

2.2.3 Plane-wave expansion

For systems with periodic boundary conditions, such as three-dimensional solids or

two-dimensional surfaces, the single-particle solutions to Eq. (2.22) satisfy the Bloch’s

theorem,[6] where the state is characterized by an additional wave vector k

ϕik(r) = eikru(r). (2.25)

Here, ϕik(r) represents a Bloch state. k in the plane-wavefunction eikr determines its

periodicity/wavelength, and i denotes the eigenvalue level solved for a particular k. u(r)

is a periodic function appearing in each unit cell. This periodic function can also be

expanded in terms of plane waves leveraging the periodicity of the lattice

u(r) =
1√
Ω

∑
Gα

cαe
iGαr. (2.26)

Generally, a three-dimensional box is constructed in computation by the lattice vectors

a1, a2, and a3. Ω in Eq. (2.26) is the box volume computed from the lattice vectors

Ω = |a1 · (a2 × a3)| (2.27)
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Gα is a reciprocal lattice vector defined as

Gα = i · b1 + j · b2 + k · b3, (2.28)

where i, j, and k are integers, and α denotes a particular combination of (i, j, k). The

reciprocal lattice constants are given by

b1 = 2π a2×a3

Ω
,

b2 = 2π a3×a1

Ω
,

b3 = 2π a1×a2

Ω
.

(2.29)

cα in Eq. (2.26) is a complex coefficient similar to the one in LCAO.

By plugging Eq. (2.26) into Eq. (2.25), one obtains the expression of a single-particle

orbital in the plane-wave basis

ϕik(r) =
1√
Ω

∑
Gα

cαie
i(Gα+k)r. (2.30)

The exact plane-wave expansion of u(r) requires the summation of Gα to infinity. However,

in practical calculations, one would avoid this infinite summation by setting a cutoff

kinetic energy

Ecut =
|Gcut|2

2
. (2.31)

A large enough Ecut is often applicable to a vast variety of systems. To guarantee the

results are independent of Ecut, one will need to increase it at a certain step to perform

multiple calculations until the results do not vary. Finally, the optimization of {ϕik(r)}

also follows the self-consistent field approach as mentioned for molecular orbitals.

Solutions to {ϕi(r)} or {ϕik(r)} come with a set of eigenvalues {εi(k)}, which are

introduced as the Lagrange multipliers for constrained minimization (will be revisited
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later on). These eigenvalues are purely mathematical tools and do not have any physical

meaning in principle. However, due to the “Schrödinger-like” feature of Eq. (2.22), εi

is often interpreted as the orbital energy characterizing the electron occupying ϕi(r).

This interpretation, although risky, is straightforward, since the mean-field Hamiltonian

ĥmf includes effectively all the energy ingredients describing the motion a single particle.

Most importantly, the interpretation as single-particle energies contributes significantly

to modern electronic structure theory. This dissertation is centered on the discussion of

ϕi(r) and εi, and their relations with excited-state properties such as charged excitations.

Sections 2.3 and 2.4 review the formalism of the Hartree–Fock approximation and the

density functional theory.

2.3 Hartree–Fock approximation

Taking advantage of the known electronic Hamiltonian, Hartree, Fock, and Slater in

∼1930 [7, 8, 9] attempted to solve directly the Schrödinger equation by approximating

the many-body wavefunction for atoms and molecules. In principle, the true wavefunction

Ψ({xi}) for a system with N electrons should at least satisfy two conditions: antisymmetry

and normalization. For fermionic systems, the wavefunction changes its sign upon a

permutation operation

P̂ijΨ(x1,x2, . . . ,xi,xj, . . . ,xN) = −Ψ(x1,x2, . . . ,xj,xi, . . . ,xN), (2.32)

where P̂ij (i ̸= j) is the permutation operator that swaps the coordinates between the

electron i and the electron j. For |Ψ({xi})|2 being the probability density, Ψ must be

normalized ∫
dxN |Ψ(x1,x2, . . . ,xN)|2 = 1. (2.33)
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For any trial wavefunction Ψ̃({xi}) defined in a complete basis of Ψj({xi}), the following

variational principle is satisfied

E[Ψ̃] = ⟨Ψ̃|Ĥ|Ψ̃⟩ ≥ E0, (2.34)

where Ψ̃({xi}) is a linear combination of Ψj({xi})

Ψ̃({xi}) =
∑
j

αjΨj({xi}). (2.35)

Minimization of E[Ψ̃] with respect to Ψ̃({xi}) gives the solution to the ground-state

energy and wavefunction of the system.

2.3.1 Restricted Hartree–Fock

Suppose that the system in question is a closed-shell molecule with N electrons. In the

Hartree–Fock approximation, the trial wavefunction is constructed as a single determinant,

later named after Slater

Φ(x1,x2, . . . ,xN) = ⟨x1x2 . . .xN |ψ1ψ2 . . . ψa . . . ψN⟩

=
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) . . . ψa(bx1) . . . ψN(x1)

ψ1(x2) ψ2(x2) . . . ψa(x2) . . . ψN(x2)

ψ1(x3) ψ2(x3) . . . ψa(x3) . . . ψN(x3)

. . . . . . . . . . . . . . . . . .

ψ1(xN) ψ2(xN) . . . ψa(xN) . . . ψN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(2.36)

where {ψa} represent a set of orthonormal single-particle spin orbitals. Since the electronic

Hamiltonian does not act on spin, the spin orbital can be simply written as a product of
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the spatial orbital ϕ(r) and the spin function ζ(σ)

ψ(r, σ) = ϕ(r)ζ(σ), (2.37)

where the value of ζ(σ) can be either α or β.

The factor 1/
√
N ! along with the orthonormality of {ψa} above ensures that Φ({xi})

is normalized. Furthermore, the determinantal form of Φ({xi}) satisfies the permutation

symmetry, as interchanging any two rows of a determinant changes its sign.

With the explicit form of Φ({xi}) in Eq. (2.36), the total energy can now be expressed

in terms of the set of spin orbitals

E = ⟨Φ|Ĥ|Φ⟩

=
N∑
a=1

ha +
1

2

N∑
a=1

N∑
b=1

([aa|bb]− [ab|ba]) .
(2.38)

Here, the shorthand notation ha denotes the one-body integral consisting of the kinetic

energy and electron–nucleus attraction

ha = ⟨ψa|ĥ|ψa⟩

= ⟨ψa| −
∇2

2
+ v̂ext|ψa⟩ ,

(2.39)

where the external potential is simply a scalar potential given by all the nuclei

vext(r) = −
M∑
A

ZA
|RA − r|

. (2.40)

[aa|bb] in Eq. (2.38) is a two-body integral of the following form

[aa|bb] =
∫ ∫

ψ∗
a(x)ψa(x)ψ∗

b (x
′)ψb(x′)

|r − r′|
dxdx′. (2.41)
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Note that the electron density n(r) derived from Φ({xi}) is simply the sum over all N

singly-occupied orbital density

n(r) =
N∑
a

∑
σ

|ψa(rσ)|2. (2.42)

The summation of all [aa|bb] terms can then be written in terms of n(r)

EH =
1

2

N∑
a=1

N∑
b=1

[aa|bb]

=
1

2

∫ ∫
n(r)n(r′)
|r − r′|

drdr′.

(2.43)

This series of integrals add up to the classical electron density–density repulsion, which is

known as the Hartree energy EH .

The other two-body integral in Eq. (2.38), [ab|ba], shares the same form as [aa|bb]

[ab|ba] =
∫ ∫

ψ∗
a(x)ψb(x)ψ∗

b (x
′)ψa(x′)

|r − r′|
dxdx′. (2.44)

Analogous to n(r), one can define the one-body density matrix as follows

ρ(x,x′) =
N∑
a=1

ψa(x)ψ∗
a(x

′). (2.45)

The summation of all [ab|ba] terms can thus be expressed by ρ(x,x′)

EX = −1

2

N∑
a=1

N∑
b=1

[ab|ba]

= −1

2

∫ ∫
ρ(x,x′)ρ(x′,x)

|r − r′|
dxdx′.

(2.46)

These terms thus represent density matrix–matrix interaction, which is called the exchange
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energy EX stemming from the antisymmetry of the wavefunction.

The factor 1/2 above avoids double counting the classical Coulomb or exchange

interaction. Note that the exchange energy has an opposite sign to the Hartree term,

indicating that inclusion of exchange lowers the total energy and stabilizes the many-body

electron. Furthermore, the [aa|aa] term in EH represents the interactions of an electron

with itself, i.e., the self-interaction error. However, this error is eliminated by exactly

the same [aa|aa] term with an opposite sign in EX. That is to say, parts of the exchange

interactions are to cancel the self-interaction errors. This issue will be revisited in the

topic of density functional theory.

For closed-shell systems, one can apply a restriction that two electrons of opposite spins

form a pair and occupy the same spatial orbital, leading to the restricted Hartree–Fock

(RHF) approach

ΦR(x1,x2, . . . ,xN) = ⟨x1x2 . . .xN |ϕ1αϕ1β . . . ϕNoccαϕNoccβ⟩

=
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1)α ϕ1(r1)β . . . . . . ϕNocc(r1)α ϕNocc(r1)β

ϕ1(r2)α ϕ1(r2)β . . . . . . ϕNocc(r2)α ϕNocc(r2)β

ϕ1(r3)α ϕ1(r3)β . . . . . . ϕNocc(r3)α ϕNocc(r3)β

. . . . . . . . . . . . . . . . . .

ϕ1(rN)α ϕ1(rN)β . . . . . . ϕNocc(rN)α ϕNocc(rN)β

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.47)

Here, Nocc equals N/2 representing the number of doubly occupied spatial orbitals.

Invoking the double occupation restriction in Eq. (2.47), the one-body and two-body

integrals for the total energy in Eq. (2.38) can be written in terms of the spatial orbitals
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only

E = ⟨ΦR|Ĥ|ΦR⟩

=
Nocc∑
a=1

∑
σ

ha +
1

2

Nocc∑
a=1

Nocc∑
b=1

∑
σ

∑
σ′

([aa|bb]− [ab|ba])

= 2
Nocc∑
a=1

ha +
Nocc∑
a=1

Nocc∑
b=1

(2[aa|bb]− [ab|ba]) .

(2.48)

Here, indices a and b represent spatial orbitals ϕ(r) only. Note that the number of terms

in the exchange energy is half of that in the Hartree term. This is due to fact that the

classical Coulomb repulsion is allowed between any two particle densities disregarding

their spins. However, the exchange interactions exist only between two electrons of the

same spin. For opposite spins, α and β, the two-body integral vanishes due to spin

orthogonality

[ab|ba]αβ =

∫ ∫
ϕ∗
a(r)ϕb(r)ϕ∗

b(r
′)ϕa(r′)

|r − r′|
drdr′ ⟨α|β⟩ ⟨β|α⟩ = 0. (2.49)

For the systems of interest in this dissertation, doubly occupied orbitals and closed-

shell electronic configuration are assumed. In the following, the singlet Hartree–Fock

ground state is derived using the variational principle, and the extension to open-shell

systems will be briefly commented on.

2.3.2 Hartree–Fock equations

Given that the energy expression in the restricted form of Hartree–Fock approximation

(RHF) depends only on the spatial orbitals, the total energy E is then minimized with

respect to {ϕa}. Furthermore, the minimization is constrained through the following
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Lagrangian

LRHF = E [{ϕa}]− 2
Nocc∑
a=1

Nocc∑
b=1

εab (⟨ϕa|ϕb⟩ − δab) , (2.50)

where εab is a Lagrange multiplier to subject the minimization to the orthonormality of

{ϕa}. Through the variational, the RHF ground state is attained at the stationary point

of LRHF
δLRHF
δ{ϕ∗

c}
= 0, (2.51)

which results in a set of coupled eigenvalue equations known as the Hartree–Fock equations

ĥϕi(r) + 2
Nocc∑
b=1

∫
|ϕb(r′)|2

|r − r′|
dr′ϕi(r)−

Nocc∑
b=1

∫
ϕ∗
b(r

′)ϕi(r′)
|r − r′|

dr′ϕb(r) =
∑
j

εjiϕi(r). (2.52)

Here, i, j, k, . . . denote general orbitals that can be either occupied or unoccupied (ex-

plained later), while a, b, c, . . . refer to occupied orbitals only. ĥ is the operator for the

one-body term [Eq. (2.39)]. The second term in Eq. (2.52) stems from the classical

Coulomb repulsion, which can be represented by a Hartree potential operator as follows

v̂H = 2
Nocc∑
b=1

∫
|ϕb(r′)|2

|r − r′|
dr′

=

∫
n(r′)
|r − r′|

dr′,

(2.53)

Analogously, an exchange operator v̂x can be defined for the third term based on its effect

when operated on ϕi(r)

v̂xϕi(r) = −
Nocc∑
b=1

∫
ϕ∗
b(r

′)ϕi(r′)
|r − r′|

dr′ϕb(r) (2.54)
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In a more compact form, the Hartree–Fock equations [Eq. (2.52)] can then be written as

f̂ϕi(r) =
∑
j

εjiϕi(r), (2.55)

where f̂ is the Fock operator resembling the single-particle mean-field Hamiltonian

f̂ = ĥ+ v̂H + v̂x. (2.56)

Here, v̂H corresponds to a static local potential created by all the electrons. v̂x represents

the nonlocal exchange interactions between the electron occupying ϕi(r) and all the

same-spin electrons in the system. The total effective potential is the sum of the external

potential and the Hartree–Fock potential v̂HF

v̂eff = v̂ext + v̂H + v̂x

= v̂ext + v̂HF .

(2.57)

Solutions to {ϕi} give the RHF ground-state wavefunction Φ0 and the corresponding

RHF ground-state energy E0. Note that observables like E0 are invariant to any unitary

transformation of the spin orbital basis. This allows the freedom for one to choose the

set of orbitals that diagonalizes the Fock matrix (which is Hermitian due to imposed

symmetries mentioned below). The diagonalization leads to a set of eigenvalue equations

that are known as the canonical Hartree–Fock equations

f̂ϕi(r) = εiϕi(r), (2.58)

where εi can be interpreted as the energy associated with an electron occupying the orbital

ϕi(r) and moving in an effective field.
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The derivations above show that using a single Slater determinant as an approximation

to the many-body wavefunction, the search of the ground state is reduced to solving the

restricted Hartree–Fock equations. The restrcited form of the Slater determinant enforces

time-reversal and spin-rotation symmetries.[10, 11] As a result, the RHF ground-state Φ0

requires solutions to the spatial orbitals only.

Note that the v̂H and v̂x operators in Eq. (2.58) depend on the set of orbitals in

question, making the eigenvalue equations non-linear. The explicit form of ϕ(r) is still

unknown. As mentioned in Section 2.2, a single-particle orbital ϕa(r) can be expanded in

terms of basis functions χ, either atomic orbitals or plane waves, with a set of coefficients

{cµa}. The index µ sums over all Na basis functions, which in fact determine the dimension

of the electronic Hilbert space in question (Na > Nocc). In practice, the total energy E

needs to be converged with respect to Na.

The self-consistent iteration is initialized by a set of coefficients {c0µa} for the trial

occupied orbitals {ϕ0
a}, leading to an initial guess for the Hartree–Fock potential v̂0HF .

The initial Fock matrix element F 0
ab reads

F 0
ab = ⟨ϕa|f̂ 0|ϕb⟩

=
∑
µ

∑
ν

c∗µicνj ⟨χµ|f̂ 0|χν⟩

=
∑
µ

∑
ν

c∗µaf
0
µνcνb.

(2.59)

With spin-rotation and time-reversal symmetries imposed in derivation, the Fock matrix

is Hermitian by construction. Further, the Fock matrix F
∼
0 can be written as a matrix

product

F
∼
0 = C

∼
†F
∼

′0C
∼
, (2.60)

where F
∼

′0 is the Fock matrix in the atomic or plane-wave basis, and C
∼

denotes the
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coefficient matrix.

The right-hand side of Eq. (2.58) with a bra state ⟨ϕa| is derived as

⟨ϕa|εb|ϕb⟩ =
∑
µ

∑
ν

c∗µacνbεb ⟨χµ|χν⟩

=
∑
µ

∑
ν

c∗µaSµνcνbεb.

(2.61)

The equivalence of Eqs. (2.59) and (2.61) gives the matrix (product) form of the canonical

Hartree–Fock equations

F
∼

′0C
∼
= S

∼
C
∼
ε
∼
, (2.62)

where S
∼

represents the overlap matrix of the basis functions, and ε
∼

is a diagonal matrix

of the eigenvalues. With the expansion in atomic basis sets, the set of coupled equations

in Eq. (2.62) are also known as Roothaan equations,[12] providing a numerical solution

to molecular orbitals.

Note that, although only Nocc orbitals are being sought, solutions to Eq. (2.62) give

more than Nocc canonical orbitals, say Na, which conserves the dimension of the Hilbert

space. A simple example is the simultaneous formation of bonding and antibonding

orbitals from linear combinations of two atomic orbitals. There are also Na corresponding

εi that can be ranked in the following order

ε1 ≤ ε2 ≤ · · · ≤ εa ≤ · · · ≤ εN/2 < ε(N/2+1) ≤ · · · ≤ εr ≤ · · · ≤ εNa . (2.63)

From this ranking, the lowest Nocc orbitals are considered occupied, and the rest are

unoccupied or virtual orbitals (denoted by r, s, t, . . . ). For molecules, the N th
occ orbital

is denoted the highest occupied molecular orbital (HOMO), and the (Nocc + 1)th one is

called the lowest unoccupied molecular orbital (LUMO); the energy difference between
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these two states is the so-called HOMO/LUMO gap

Eg = εL − εH. (2.64)

The identified Nocc occupied orbitals above correspond to a new set of coefficients

{c1νi} and an updated v̂1HF , which enter Eq. (2.59) for the next iteration. This procedure

is called “self-consistent field” since the iteration ends when the potential field v̂HF reaches

self-consistence, i.e., the set of orbitals that creates v̂HF produces the same set of orbitals

after solving Eq. (2.62). In practice, the self-consistency can also be determined by

comparing the change of the energy (∆E = En − En−1) with a predefined convergence

threshold.

For open-shell systems where the number of α electrons different from that of β, the

Hartree–Fock equations are separated into two sets with orbitals of the same spin function

F
∼

′αC
∼
α = S

∼
C
∼
αε
∼
α, (2.65)

and

F
∼

′βC
∼
β = S

∼
C
∼
βε
∼
β. (2.66)

Here, the Fock operators f̂α and f̂β are spin-dependent because the exchange term v̂x

contains contributions from orbitals of the same spin only.

For the pairs of electrons with opposite spins in an open-shell system, they are still

allowed to have the same spatial orbital in construction. While for unpaired electrons with

the same spin, distinct spatial orbitals are required. This hybrid treatment of paired and

unpaired electrons lead to the restricted open-shell Hartree–Fock (ROHF) approach.[13]

However, two electrons with opposite spins do not necessarily occupy the same spatial

orbital, and the double occupation can thus be uplifted. This construction corresponds
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to the unrestricted Hartree–Fock (UHF) method[14] that applies in principle to both

closed-shell and open-shell systems.

To sum up, the Hartree–Fock approximation attempts to solve the many-body

Schrödinger equation by using a single Slater determinant as an approximation to the

many-body wavefunction, and the approximated solution is limited to the ground state

only depending on the nature of the variational principle. Ultimately, the many-body

problem is broken down to solving a set of Hartree–Fock equations for Nocc “optimal”

single-particle orbitals through, e.g., the SCF-LCAO-MO approach. The convoluted

electronic problems have been simplified to a huge extent, allowing practical applications

to atoms and, most importantly, polyatomic molecules. However, the Hartree–Fock

method suffers from the lack of dynamical electron–electron correlation effects, especially

for electrons of opposite spins.

The correlation among electronic motions is supposed to be captured by the many-body

wavefunction, which is however oversimplified as a single determinant in the Hartree–Fock

approach. Particularly, the electron–electron interactions derived from the Hartree–

Fock approximation differ from the classical Coulomb repulsion by simply the exchange

interactions, which stems from the antisymmetry of the Slater determinant. Although

the exchange interactions can be considered as a special type of “correlation” between

electrons of the same spin, a lot of other dynamical effects are still missing.

The deficiency of the Hartree–Fock approximation defines the correlation energy Ecorr

Ecorr = E0 − E0, (2.67)

where E0 is the exact ground-state energy, while E0 is instead the minimized energy in

Hartree–Fock. Quantitative description of Ecorr becomes a new pursuit for the community

following the wavefunction approximation. Post Hartree–Fock methods for solving the
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correlation problem mainly include configuration interaction (CI),[15, 16, 17, 18] coupled-

cluster (CC),[19, 20, 21, 22, 23] and Moller–Plesset related perturbation theory.[24, 25,

26, 27, 28, 29, 30] Readers with particular interest are recommended to consult the

references indicated above. However, this dissertation will not extend to the discussion of

these methods. Instead, Section 2.6 introduces an alternative formalism for capturing

correlation interactions in the context of single-particle excitations.

Section 2.4 discusses the reformulation of the many-electron problem in the framework

of density functional theory. Despite the change of topic, many equations derived in this

section are indeed universal and applicable in other mean-field approaches.

2.4 Density functional theory

The Hartree–Fock approximation introduced in Section 2.3 set up the basis for

wavefunction approaches. The idea is to solve the many-body wavefunction in the form of

determinants and obtain all the information and properties of a system. The wavefunction

methods are known for their accuracy but are practically limited to small systems, since

the size and dimension of the wavefunction scales rapidly (as high as eN ) with the system’s

size. Finding an alternative basic variable to replace the wavefunction in formulating

the many-body problem is in necessity for tackling systems where a massive number of

electrons are present.

2.4.1 Early density functional model

The electron density n(r), depending on three variables only, appears to be an

appropriate choice for reformulating properties such as the total electronic energy

E[n] =

∫
ϵ̄(r)n(r)dr, (2.68)
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where ϵ̄(r) denotes the average energy per electron within the unit volume dr. As

introduced in Section 2.1, the total energy in question should contain the kinetic energy,

electron–nucleus attraction, and electron–electron interaction. The expression for the

electron–nucleus term is straightforward upon the Born–Oppenheimer approximation

Een[n] =

∫
vext(r)n(r)dr. (2.69)

And the expression for the classical Coulomb repulsion, the Hartree energy, is also explicit

EH [n] =
1

2

∫ ∫
n(r)n(r′)
|r − r′|

drdr′. (2.70)

The kinetic part and the non-classical quantum effects are still missing to finalize the

expression for the full energy functional.

The exploration of kinetic energy functional for many-electron systems can date back

to 1920s by Thomas and Fermi,[31, 32] who assumed that the energy of the homogeneous

electron gas depends only on the distribution of electrons – the electron density. For

inhomogeneous electron gas such as atoms, the major problem tackled in the Thomas–

Fermi (TF) model was the kinetic energy functional, which reads

TTF [n] = CF

∫
n5/3(r)dr. (2.71)

Here, CF = 2.871 is a constant. This expression is derived based on the local density

approximation, which assumes that an inhomogeneous electron gas can be divided into

many small volume elements dr. In each dr, the electrons are distributed uniformly

and follow locally from the properties of a homogeneous electron gas. Neglecting the

quantum effects from electron–electron interactions, all the energy terms can now be
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written explicitly as a functional of n(r), leading to the TF energy functional

ETF [n] = CF

∫
n5/3(r)dr +

∫
vext(r)n(r)dr +

1

2

∫ ∫
n(r)n(r′)
|r − r′|

drdr′

= TTF [n] + Een[n] + EH [n].

(2.72)

To search for the ground state, one can construct a Lagrangian to minimize ETF with

the constraint of n(r) being integrated to the number of electrons N

LTF [n] = ETF [n]− µTF

(∫
n(r)dr −N

)
, (2.73)

where µTF is the Lagrangian multiplier. The variation of LTF with respect to n(r) at the

stationary point satisfies
δLTF [n]
δn(r)

= 0, (2.74)

which further leads to the Thomas–Fermi equation

µTF =
δETF [n]

δn(r)

=
5

3
CFn

2/3(r) + vext(r) +
∫

dr′
n(r′)
|r − r′|

.

(2.75)

The Thomas–Fermi ground-state density is obtained by solving Eq. (2.75) with the

constraint in Eq. (2.73), and the ground-state energy is calculated by inserting the

resulting density in Eq. (2.72).

The TF model remarkably reduced the computational complexity by formulating

the energy in terms of the density, and can be applied to atoms, molecules, and solids.

However, this model did not guarantee any accuracy for chemical properties. First, it was

not a fully quantum-mechanical model since it did not consider the electron quantum

effects, later known as the exchange and correlation interactions. Second, the kinetic
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energy functional is shown oversimplified by the local density approximation. Most

importantly, it was not proved whether the ground-state energy is truly a functional

of the density or not, although the construction of energy functional in Eq. (2.68) is

intuitive. This fundamental question was answered by Hohenberg and Kohn in 1964,[33]

establishing the modern density functional theory. Based on this theoretical foundation,

Kohn and Sham further proposed an exact mapping approach[34] to solve the ground

state in practice.

2.4.2 Hohenberg–Kohn theorems

In 1964, Hohenberg and Kohn (HK) addressed the concern about whether the ground-

state energy E0 can be expressed as a functional of the ground-state n0(r).[33] This is

proved in their first Hobenberg–Kohn theorem, which states that a quantum many-body

system is fully defined by its groun-state electron density.

In principle, all the information of a quantum many-body system can be obtained by

solving the Schrödinger equation, where the external potential V̂ext in the Hamiltonian

uniquely determines the system. Hohenberg and Kohn demonstrated that there exists

a one-to-one correspondence between V̂ext [equivalent to vext(r)] and the ground state

density n0(r). That is to say, n0(r) can be used as the basic variable to define a system,

since knowing n0(r) is equivalent to knowing V̂ext and then all the other properties (see

Figure 2.1), including the ground-state wavefunction Ψ0({xi}). One can immediately

show the E0 is functional of n0(r)

E0 = ⟨Ψ0[n0]|Ĥ|Ψ0[n0]⟩ = E[n0] (2.76)
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Figure 2.1: Schematic representation of the one-to-one correspondence between vext
and n0(r). The system is uniquely determined by vext (and N), with which one can
(in principle) solve the Schrödinger equation for all the many-body eigenstates. The
ground-state wavefunction Ψ0 gives the ground-state electron density n0(r). Hohenberg
and Kohn proved that the vext is uniquely determined by n0(r), which closes the loop.

The first HK theorem above justified the expression of ground-state energy as a

functional of the ground-state density. The second HK theorem then provided the

variational principle for finding the ground state energy and density through minimizing

the following energy functional

E0 = min
n
E[n], (2.77)

where the energy functional E[n] reads

E[n] = ⟨Ψ[n]|Ĥ|Ψ[n]⟩

= FHK [n] +

∫
vext(r)n(r)dr.

(2.78)
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Here, the HK functional FHK [n] is defined as

FHK [n] = ⟨Ψ[n]|T̂ + V̂ee|Ψ[n]⟩

= T [n] + Eee[n],

(2.79)

which is a functional for the kinetic energy T [n] and the electron interaction energy

Eee[n]. FHK [n] is a universal functional that applies to all systems, while the external

field functional in Eq. (2.78) is system-dependent.

For details about proving the two HK theorems above, please refer to Refs. 35, 36, 37.

Note that the HK functional FHK [n] is defined only for v-representable density n(r),

i.e., n(r) is not arbitrary and must be the ground-state density of some external potential

vext(r). In other words, the minimization of E[n] in Eq. (2.78) can be performed only

discretely on the set of v-representable n(r). This limitation causes troubles in processing

E[n] mathematically due to the constraint of v-representability for n(r). Such a set of

densities is not known a priori. Furthermore, for an arbitrary “well-behaved” n(r) – smooth

and non-negative, there is no clear criterium to determine whether it is v-representable or

not.

2.4.3 Levy–Lieb constrained search

The limitation of v-representability was uplifted by the work of Levy and Lieb

[38, 39, 40] around the year 1980. The input density is extended to all N -representable

n(r) following the normalization condition

∫
n(r)dr = N. (2.80)
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Here, n(r) is a non-negative density that integrate to the number of electrons N in the

system.

The extension to N -representability is rationalized by a two-step constrained search

for the ground-state energy, starting with the following

E0 = inf
Ψ

⟨Ψ|T̂ + V̂ee + V̂ext|Ψ⟩ , (2.81)

which searches over all antisymmetric and normalized many-body wavefunction Ψ({x}).

All these wavefunctions have a corresponding density generated from

n(r) = N

∫
dσdx2dx3 . . . dxN |Ψ(rσ,x2,x3, . . . ,xN)|2. (2.82)

Ψ({xi}) can be categorized by the density they produce, i.e., Ψ({xi}) that gives the same

n(r) is grouped together. For any given n(r), the search of the infimum is constrained to

the corresponding set of Ψ({xi})

E0 = inf
n

[
inf
Ψ→n

⟨Ψ|T̂ + V̂ee⟩+
∫
vext(r)n(r)dr

]
. (2.83)

The exhaustion of all possible n(r) then guarantees the constrained search leads to the

correct ground state, since such a two-step constrained search is equivalent to that in

Eq. (2.81). The LL universal functional is defined from Eq. (2.83) as

FLL[n] = inf
Ψ→n

⟨Ψ|T̂ + V̂ee|Ψ⟩ , (2.84)

in which the infimum is searched over all Ψ({xi}) that (i) are antisymmetric, (ii) integrate

to N electrons, (iii) and produce the same prescribed density n(r) (Ψ → n). The resulting
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Levy-Lieb energy functional reads

E[n] = FLL[n] +

∫
vext(r)n(r)dr. (2.85)

Here, the densities being searched over just need to be N -representable. For any v-

representable n(r) entering FLL, FLL will be the same as FHK . Therefore, the LL

universal functional is an extension of the HK universal functional.

In summary, the many-body problem has been reformulated by Hohenberg and Kohn

using the three-dimensional ground state electron density n(r) as the basic variable. The

ground state energy E0 of a quantum many-body system has been proven to be a functional

of n(r). E0 can be determined by minimizing the HK energy functional with respect to all

v-representable densities only. Levy and Lieb then solved the v-representability problem

and extended the search to all N -representable densities.

Although the theoretical foundation has been set up for using density functional theory

to find the exact ground state energy and density. However, the explicit form of the exact

FLL or FHK is not provided. Therefore, more information and even approximations are

needed in order to search for the ground state in practice. In addition, the Thomas–Fermi

model provides an explicit but crude approximation to the universal functional for solving

the problem, where the kinetic energy functional is approximated as TTF [n] using the

homogeneous electron gas model, and the electron interaction energy takes the classical

Coulomb repulsions EH [n] only. Although these approximations do not guarantee high

accuracy, they are informative for constructing explicit kinetic energy functionals and

electron–electron interaction functionals. A systematic way to improve the description for

the kinetic energy and the electron interaction energy was proposed by Kohn and Sham

in 1965.[34]
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2.4.4 Kohn–Sham approach to DFT

Kohn and Sham addressed the concerns about the universal functionals,[34] leading

to the Kohn–Sham approach in the density functional theory (KS-DFT). The novelty

distinguishing KS-DFT from the previous work[31, 32, 41] is the mapping of an interacting

many-electron system onto an auxiliary system with non-interacting fictitious particles.

The mapping offers the exact solution to the ground-state energy E0 and density n0(r)

by solving the ground state of this auxiliary KS system. The particles in this system

are non-interacting in the sense that they are moving independently in an effective field

mimicking the average effects created by real interacting electrons.

In a KS auxiliary system, each particle is represented by a single-particle orbital

ϕi(r). The system is assumed closed shell and ϕi(r) is doubly occupied. The following

Kohn–Sham eigenvalue equations are satisfied,

ĥksϕi(r) = εiϕi(r), (2.86)

where the KS Hamiltonian reads

ĥks = −∇2

2
+ vks(r). (2.87)

Here, vks(r) is the Kohn–Sham potential that depends on the system.

The N -particle Hamiltonian for the KS non-interacting system is simply given by the

sum of ĥks for each particle j

Ĥks =
N∑
j

ĥks(j)

=
N∑
j

T̂j +
N∑
j

vks(rj),

(2.88)
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where T̂j is the Laplace operator in Eq. (2.87). To enforce antisymmetry and the

normalization condition, the N -particle wavefunction Φ({ri}) is simply a single Slater

determinant constructed by {ϕi}. It can be shown that Φ({ri}) is the eigenstate of Ĥks

by construction. The particle density n(r) is given by the sum over all single-particle

states

n(r) = 2
Nocc∑
i

|ϕi(r)|2. (2.89)

In this auxiliary system, it can be shown that the first Hohenberg–Kohn theorem

applies to n(r), Ĥks and its eigenstate Φ0({ri}): the ground state KS density n0(r)

uniquely determines Ĥks and the ground state determinant Φ0({ri}). Noticing that Ĥks is

defined by vks(r), one can conclude that there exist a one-to-one correspondence between

n(r) and vks(r). The exact mapping for the ground state of the non-interacting system

onto that of the real many-body system depends on the choice of vks(r), which needs to

provide the exact ground state energy by construction.

To investigate the condition for the exact mapping, it is necessary to analyze the

energy functional of the KS auxiliary system. The ground state kinetic energy of the KS

system follows that

Tks[Φ0] = 2
N∑
i

⟨ϕi| −
∇2

2
|ϕi⟩ . (2.90)

Since Φ0({ri}) is uniquely determined by n0(r), Tks is thus an implicit functional of n0(r)

Tks[Φ0] = Tks[n0]. (2.91)

There exist an effective particle interaction energy for the KS non-interacting system

in order to complete the mapping. The particle interaction energy mimics the electron–

electron interactions in the real quantum many-body system, and the functional can be
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divided into two terms as

Eks
ee [n] = EH [n] + Exc[n]

=
1

2

∫ ∫
n(r)n(r′)
|r − r′|

+ Exc[n],
(2.92)

where the two contributions correspond to the Hartree energy EH [n] and the exchange–

correlation (XC) energy Exc[n]. The former is an explicit functional of n(r) accounting

for classical Coulomb repulsions. The latter is an functional of n(r) by construction, the

meaning of which is explained below.

Combing the external field interaction term with Tks and Eks
ee gives the total energy

functional of the KS system,

Eks[n] = Tks[n] + EH [n] + Exc[n] +

∫
vext(r)n(r)dr. (2.93)

To have the following equality

Tks[n] + VH [n] + Exc[n] = FHK [n], (2.94)

the XC energy functional must be constructed in the following way

Exc[n] = FHK [n]− Tks[n]− EH [n]

= T [n]− Tks[n] + Eee[n]− EH [n].

(2.95)

In other words, the XC energy functional constructed in KS-DFT is to correct the

non-interacting kinetic energy and capture the non-classical quantum effects of electron–

electron interactions beyond the Hartree energy. Exc[n] is the key quantity that completes

the map of the ground state energy between the KS auxiliary system and the real

many-body quantum system.
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Assuming that Exc[n] is known at this point, the ground-state energy and density can

be determined by minimizing Eks[n] in Eq. (2.93) with respect to n(r)

Eks[n] = min
n

{
Tks[n] + EH [n] + Exc[n] +

∫
vext(r)n(r)dr

}
. (2.96)

Here, the N -representable n(r) suffices for minimization following from the Levy and Lieb’s

two-step constrained search. Given that the expression for Tks[n] is written explicitly

using the single-particle orbitals, it is more convenient to express the rest in terms of

{ϕi} via Eq. (2.89). And the variation of Eks[n] can then be done with respect to {ϕi}.

A constrained minimization of Eks[{ϕi}] is performed through constructing a Lagrangian

as described in Section 2.3, which ends up with the Kohn–Sham equations in Eq. (2.86)

shown at the beginning of this section.

The effective potential vks(r) in Eq. (2.87) is a mean-field potential consisting of the

following terms

vks(r) =
δEen[n]

δn(r)
+
δEH [n]

δn(r)
+
δExc[n]

δn(r)

= vext(r) +
∫

n(r′)
|r − r′|

dr′ + vxc(r)

= vext(r) + vH(r) + vxc(r).

(2.97)

Analogous to the Hartree–Fock equations, the Kohn–Sham equations are coupled and

non-linear, which need to be solved self-consistently with {ϕi} expanded in terms of basis

functions, either atomic orbitals for molecules or plane waves for periodic systems. The

XC potential vxc(r) is a key component that dictates the success of mapping. While the

exact XC functional is practically intractable, numerous efforts have been devoted to

approximating it, as briefly introduced below.
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2.4.5 Exchange–Correlation functionals

As mentioned above, Exc[n] governs the success in mapping a many-electron interacting

system onto a non-interacting fictitious system. Whether the exact ground state energy

and density can be reproduced or not depends on the choice of Exc[n]. Although an exact

and universal Exc should exist, approximations are inevitable. The accuracy of DFT

calculations depends strongly on the quality of the XC functional, as shown in the Jacob’s

ladder[42] in Figure 2.2. A brief explanation is provided for each level of the ladder below.

Detailed evaluations and references of different functionals can be found in Ref. 43, but

will not provided here in this topic.

The lowest level of the Jacob’s ladder is the Hartree approach, where only classical

Coulomb repulsion is included with no exchange or correlation interaction. In the

local (spin) density approximation (LDA), the exchange and correlation interactions are

introduced as a functional of the density only, and the XC potential vxc(r) are based on

the density at a space point r where the local density is assumed uniform. The density

gradient (∇n) is then added as a new variable together with n(r), leading to the generalized

gradient approximation (GGA). The DFT calculations done in this dissertation employ

the GGA functional, particularly the PBE functional. meta-GGA further includes the

second gradient of n(r) (∇2n) and the kinetic energy density as the functional variables.

In hyper/hybrid-GGA, the nonlocal exchange interaction, analogous to the exchange

operator defined in the Hartree–Fock approximation, is combined with local/semilocal

GGA functionals, leading to the so-called hybrid functionals. The nonlocal exchange

involves the one-body density matrix, which is beyond the density argument and leads

to a generalized Kohn–Sham approach in KS-DFT (GKS-DFT). Including the nonlocal

exchange can mitigate the self-interaction errors found in local/semilocal functionals,

improving significantly the prediction of energy gap. More importantly, the inclusion
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of nonlocal exchange provides a correct asymptotic behavior describing the decay of

electron–electron interactions. In most local/semilocal XC functionals, the tail of the

interacting potential decays nearly exponentially, which is too rapid. The introduction of

nonlocal exchange corrects the decaying behavior to 1/r in the long range. The highest

level in Figure 2.2 is the state-of-the-art method within the KS- and GKS-DFT framework.

The random phase approximation (RPA) is meant to evaluate the dynamical response of

the density to a perturbation. RPA is able to capture the screening effects as an important

class of electron correlation.

Figure 2.2: Evolution of density functionals toward the heaven of chemical accuracy.
The texts on the right denote the new variable introduced at the corresponding level
with respect to the lower one. This figure is adapted from Ref. 43.
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For more in-depth discussions in DFT, readers are recommended to Refs. 35 and

Refs. 36. In Section 2.5, I will discuss the interpretation of eigenvalues from mean-field

calculations and their failures in describing excited-state properties.

2.5 Excited-state properties: interpretation and failure

2.5.1 Photoemission and charged excitations

The explorations of electronic structure of atoms can be traced back to the discovery

of the photoelectric effect and the line spectrum of atomic emission. The latter has been

successfully rationalized by Niels Bohr, who postulated that the energy of an electron is

quantized into discrete levels, and the atomic line spectrum stems from the transitions

between energy levels. Despite the fact that Bohr’s explanations were incorrect, it paved

the way for the electron orbital treatment and the interpretation of orbital energy in

electronic structure calculations.

The photoelectric phenomenon has also evolved into photoemission spectroscopic

techniques for measuring the energetics associated with charged excitations, i.e., electron

and hole injections. For molecules, the energy required to remove an electron (inject a

hole) is called the ionization potential (IP); the addition of an electron to a bound state

causes stabilization in energy, and this change in energy is defined as the electron affinity

(EA). For solids, the measurements of hole and electron injections probe respectively the

valence and the conduction band structures. Photoemission spectroscopy has become a

powerful tool to explore single-particle energy levels, provdining insights into the electronic

structure of matter.

The direct and inverse photoemission spectroscopies (PES) for measuring the energetics

associated with hole or electron injections are schematically depicted in Figure 2.3. The
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density of states are plotted in terms of single-particle energy levels, where the Fermi energy

EF separates the occupied states (valence band) from the unoccupied ones (conduction

band). The vacuum level sets the border between bound and unbound states, beyond

which an electron becomes a free particle with a detectable kinetic energy Ekin.

In direct PES, a beam of photons with energy hν shines on the sample (which can be

gaseous atoms and molecules, liquid droplets, or solid-state materials) and ejects electrons,

whose kinetic energy is subsequently measured by the detector. In inverse PES, electrons

with a kinetic energy Ekin are first injected into the continuum states of the sample and

then jump to a bound state (if available) by emitting photons; the detector measures the

photon energy hν. The IP and EA can then be derived based on the collected Ekin or hν

IPa = hν − Ekin, (2.98)

EAr = Ekin − hν. (2.99)

Figure 2.3: Schematic representations of the direct photoemission spectroscopy (a) for
IP measurements and the inverse photoemission spectroscopy (b) for EA measurements.
This figure is adapted from Ref. 44.
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In Figure 2.3, the injected holes or electrons are described by single-particle energy

levels, where a hole can be injected into an available occupied state labeled by “a”, and

an electron can occupied a bound unoccupied state labeled by “r”. The measurability of

IPs and EAs from a continuum of states is particularly significant in angle-resolved PES

(ARPES) experiements for solid-state materials. Using the law of energy conservation,

the IPs and EAs of a N -electron system can also be expressed as the energy difference

between the positively/negatively charged system and the neutral one

IPa = EN−1
a − EN

0 , (2.100)

EAr = EN
0 − EN+1

r . (2.101)

Here, EN
0 refers to the ground-state energy of the neutral system. The energies of the

charged systems EN±1 in Eqs (2.100) and (2.101) account for the induced relaxation

effects of the system, i.e., electrons are attracted by the created hole or are repelled

by the additional electron, and these effects are also captured in the measured IPs and

EAs from PES. Furthermore, both the measurements of IPs and EAs measurements

involve energy flowing into the neutral system, i.e., the N -electron system is excited to

another higher-energy state from the ground state. Therefore, IPs and EAs belong to the

excited-state properties of a system.

The formulations of IPs and EAs above indicate two possible ways to simulate these

two processes (properties) using quantum mechanical methods: (1) compute the total

electronic energies of the neutral and charged systems, and then take the difference in

energies as shown in Eqs. (2.100) and (2.101); (2) use the one-particle approximation and

find the energy level which the electron is removed from or injected into. The energy-

difference approach requires total energy calculations, which mainly employ high-accuracy
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wavefunction methods such as truncated CI or CC. These methods suffer from steep

scaling in cost and are thus prohibitive for large-scale systems. Furthermore, this finite

difference approach is mostly limited to the first IP and the largest EA, corresponding to

the highest occupied state and the lowest unoccupied state. Such a limitation prevents

access from band structures of solid-state materials. On the other hand, the second

approach offers a more direct description for single-particle excitations, and is able to

access a continuum of energy levels in solids as well as discrete molecular energy levels.

2.5.2 Interpretation of orbital energy

In practice, it is very tempting and common to interpret the eigenvalues from mean-

field calculations as the energy levels for electron removal and addition. Recall the

Hartree–Fock equations [Eq. (2.58)] in Section 2.3

(
−∇2

2
+ v̂ext + v̂H + v̂x

)
|ϕi⟩ = εi |ϕi⟩ , (2.102)

and the Kohn–Sham equations [Eq. (2.86)] in Section 2.4

(
−∇2

2
+ v̂ext + v̂H + v̂xc

)
|ϕi⟩ = εi |ϕi⟩ . (2.103)

The first three terms between these two mean-field single-particle Hamiltonians have the

same form; the difference is embodied in the non-classical electron–electron interactions

terms: the Hartree–Fock approximation contains only exchange interaction that is nonlocal,

while the Kohn–Sham scheme includes both approximated exchange and correlation

interactions that can be local, semilocal, or hybrid. Given the Schrödinger-like form of

the Hamiltonian, the eigenvalue εi represents the single-particle energy level associated

with the electron moving in a mean field in the state ϕi(r).
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The first attempt to connect εi to IPs/EAs was done by Koopmans in 1933,[45] leading

to the well known Koopmans’ theorem within the Hartree–Fock approximation

IPa = EN−1
a − EN = −εa, (2.104)

EAr = EN − EN+1
r = −εr. (2.105)

The proof of the Koopmans’ theorem is straightforward, as one just needs to express the

total energies and eigenvalues in terms of the single-particle orbital basis. Readers who

are interested in the proof are recommended to Chapter 3 in Ref. 46. The Koopmans’

theorem applies to electron removal from any occupied state and electron addition to

any bound unoccupied (virtual) state, which promises a convenient way to predict IPs

and EAs. However, a critical approximation, namely the frozen orbital approximation, is

made to enable the equal signs in Eqs. (2.104) and (2.105). That is to say, the estimated

IPs and EAs by εi do not include the relaxation effects of the remaining/existing electrons,

which are against the experimental measurements. Although it has been proposed that

this error can be canceled out by the lack of correlation in εi, the Hartree–Fock eigenvalues

are commonly found to overestimate IPs and underestimate EAs.

In KS-DFT, the εi of the highest occupied state can be interpreted as the first IP. This

interpretation is supported by the Janak’s theorem,[47] which states that the eigenvalue

is the energy derivative with respect to the fractional particle number fi

εi =
∂E

∂fi
, (2.106)

where 0 ≤ fi ≤ 1. It can be shown that the highest occupied eigenvalue εN satisfies the

following equation

EN − EN−1 =

∫ 1

0

dfN
∂E

∂fN
= εN . (2.107)
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The Janak’s theorem is sometimes called the DFT Koopmans’ theorem. However, the

Janak’s theorem is much weaker since only the eigenvalue of the highest occupied (N th)

state in DFT is interpretable

IP(N) = −εN(N). (2.108)

Here, the N in parenthesis emphasizes that the eigenvalue is obtained from the DFT

calculation of the N -electron system. Analogously, the largest electron affinity of the

N -electron system corresponds to the highest occupied eigenvalue of the (N + 1)-electron

system

EA(N) = −εN+1(N + 1). (2.109)

Despite the caveat that only the highest occupied eigenvalue is physically meaningful,

KS-DFT has become the most popular and practical approach in electronic structure

calculations for molecules and solids. But inevitably, the inappropriate interpretations

caused problems including but not limited to (1) overestimated bandwidths for evaluating

band transport properties of charge carriers in metallic solids; (2) highly underestimated

bandgaps for semiconductors and fundamental gaps (HOMO/LUMO gaps) for molecules;

(3) disagreement on density of states with experiments; (4) strongly underestimated IPs

compared to experiments. The significant bandgap problems for a wide range of materials

are presented in Figure 2.4.
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Figure 2.4: Comparisons of the bandgaps for a wide range of materials. The bandgap
values are obtained from KS-DFT calculations (with LDA functional), many-body
perturbation calculations (the GW approximation), and experiments. This figure is
taken from Ref. 48.

The failures of KS-DFT mentioned above can be partly attributed to the density

functional approximation used in practical implementations and the self-interaction

error.[36] Even if the density functional reproduces exactly the same ground-state energy

and density, the derivative discontinuity[49, 35] still exists in the exchange–correlation

functional, causing fundamental problems in deriving IPs, EAs, and bandgaps from DFT

eigenvalues. Most importantly, the underlying reason is the overinterpretations of the

DFT eigenvalues. In principle, the optimized single-particle orbitals and eigenvalues in

mean-field methods, including the Hartree–Fock approximation and KS-DFT, represent

only the (approximated) ground state, while IPs, EAs, and energy gaps involved also

excited states. Ground-state mean-field calculations are thus inappropriate for evaluating

excited-state properties such as charged excitation energies. Although the generalized
59



Theory Chapter 2

KS-DFT with ad-hoc hybrid functionals are able to reproduce properties like the IP or

the bandgaps, these methods are still within the static and mean-field framework, which

does not account for the excited-state dynamics.

In Section 2.6, I will introduce the many-body perturbation theory based on the

Green’s function formalism. This class of theory, especially the GW approximation

(GWA), excels at describing single-particle excitations that correspond to the IP, EA, and

the resulting bandgaps (see Figure 2.4).

2.6 Many-body Green’s function theory

Although the mean-field approaches fail to access excited-state properties, it is still

tempting to describe charged excitations (i.e., IPs and EAs) using single-particle energy

levels. And the success in mapping εi onto IPs/EAs is dictated by the ability of capturing

the excited-state dynamics induced by electron removal/addition. A closer look at

the example of electron removal is depicted in the upper half of Figure 2.5. After

injecting a hole/electron, the (N ± 1)-electron system is in its excited state, and the

remaining/preexisting electrons react to the created hole/electron, constituting the excited-

state dynamics. In principle, one can find the ground states energies of both the neutral

and charged systems using wavefunction methods like truncated CI or CC, and then

compute the change in energy as the first IP or the largest EA. This approach accounts

for the dynamics of the (N ± 1)-system. However, this energy-difference method is limited

to small systems (tens of electrons) only because of the steep cost-scaling with respect to

N .

Many-body perturbation theory within the Green’s function formalism[50] offers a

reformulated picture to describe the ionization process (the lower half Figure 2.5): the

ground state is treated as a Fermi vacuum, where no effective particle is present; the
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ejection of an electron is equivalent to the injection of a hole to the Fermi vacuum, upon

which the electrons are perturbed and start interacting with the hole and each other; the

excited-state dynamics is downfolded from tracking (N − 1) electrons to tracking only

one hole “dressed” by surrounding electrons. This dressed hole is defined as a quasi-hole,

and the concept of single quasiparticle (QP) refers to either an injected hole or electron to

the Fermi vacuum. The following derivations are mainly based on References 51 and 52.

Figure 2.5: Schematic representations of the excited-state dynamics using the many–
electron picture (upper half) and the quasiparticle picture (lower half), exemplified on
the case where an electron is ejected from an N -electron system.

Mathematically, the dynamics of a single QP is described by the one-body equilibrium
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Green’s function (G) at 0K

iG(1, 2) = ⟨ΨN
0 |T̂

[
ψ̂(1)ψ̂†(2)

]
|ΨN

0 ⟩

=


⟨ΨN

0 |ψ̂(1)ψ̂†(2)|ΨN
0 ⟩ if t1 > t2

−⟨ΨN
0 |ψ̂†(2)ψ̂(1)|ΨN

0 ⟩ if t1 < t2

.
(2.110)

Here, shorthand notations are used for the space-time coordinates: 1 ≡ (r1, t1). ψ̂ is

the electron-annihilation operator while ψ̂† is the electron-creation operator. ΨN
0 is the

ground-state many-body wavefunction of the N -electron system. T̂ denotes the time-

ordering operator arranging ψ̂ and ψ̂† in the order of time: for t1 < t2, the Green’s function

represents the probability amplitude that a hole is created at (r1, t1) and then annihilated

at (r2, t2); for t1 > t2, the Green’s function represents instead the probability amplitude

that an electron is created at (r2, t2) and then annihilated at (r1, t1). In this definition,

the Green’s function is also called a propagator for the hole propagation (t1 < t2) or the

electron propagation (t1 > t2).

The Green’s function in Eq. (2.110) satisfies the following equation of motion

[
i
∂

∂t
− ĥ0

]
G(1, 2)−

∫
d3Σ(1, 3)G(3, 2) = δ(1− 2), (2.111)

where ĥ0 is the one-body interaction term containing the kinetic energy and the external

potential; Σ is the total self-energy, which only exists after a quasiparticle is introduced

to the Fermi vacuum. Therefore, Σ exists because of the QP itself and is thus called
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self-energy. The integral that involves Σ in Eq. (2.111) has the following form

∫
d3Σ(1, 3)G(3, 2) =

− i

∫
dr3ν(r1 − r3) ⟨ΨN

0 |T̂
[
ψ̂†(r3, t1)ψ̂(r3, t1)ψ̂(r1, t1)ψ̂†(r2, t2)

]
|ΨN

0 ⟩ ,

(2.112)

where the intricate term on the right-hand side is related to the two-body Green’s function

G2(12; 34) = (i)2 ⟨ΨN
0 |T̂

[
ψ̂†(4)ψ̂(2)ψ̂(1)ψ̂†(3)

]
|ΨN

0 ⟩ . (2.113)

Our discussion here does not extend to G2. However, it will be useful for the derivation

of Σ. The time-dependent density and density matrix can be expressed in terms of the

Green’s function

n(1) = −iG(1, 1+), (2.114)

ρ(1, 2+) = −iG(1, 2+), (2.115)

where the plus sign of 1+ or 2+ is infinitesimally after 1: t+1 = t1 + η (η is an infinitesimal

positive number).

The Green’s function G(1, 2) can be simplified as G(r1, r2; t) by setting t2 = 0 and

t = t1 − t2. For the N ± 1 charged system, one can assume that a complete basis of

many-body wavefunctions fully span the electronic space, leading to the following closure

relations

Î =
∑
a

|ΨN−1
a ⟩ ⟨ΨN−1

a | , (2.116)

Î =
∑
r

|ΨN+1
r ⟩ ⟨ΨN+1

r | . (2.117)
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Inserting Eq. (2.116) into the hole Green’s function (t < 0) in Eq. (2.110), one can obtain

iGh(r1, r2; t) = −
∑
a

⟨ΨN
0 |ψ̂†(r2) |ΨN−1

a ⟩ ⟨ΨN−1
a | ψ̂(r1, t)|ΨN

0 ⟩

= −
∑
a

⟨ψ̂(r2)ΨN
0 |ΨN−1

a ⟩ ⟨ΨN−1
a | ψ̂(r1, t)|ΨN

0 ⟩ .
(2.118)

To further simplify the equation above, one can define a time-dependent Dyson orbital

ϕha(r1, t) for a quasi-hole as

ϕha(r1, t) = ⟨ΨN−1
a |ψ̂(r1, t)|ΨN

0 ⟩ = e−iεhatϕha(r1), (2.119)

where εha is the quasiparticle energy associated with the state ϕha. The conjugated term in

Eq. (2.118) is given by

ϕha
∗
(r2) = ⟨ψ̂(r2)ΨN

0 |ΨN−1
a ⟩ = ϕha

∗
(r2), (2.120)

where εha is the QP energy associated with the state ϕha. Plugging Eqs. (2.119) and (2.120)

into Eq. (2.118), the hole Green’s function Gh can be written in terms of the Dyson

orbitals

iGh(r1, r2; t) = −
∑
a

ϕha(r1)ϕ
h
a

∗
(r2)e−iεhat. (2.121)

Following the same derivation of Gh, the electron Green’s function (t > 0) can also be

written in terms of the Dyson orbitals

iGe(r1, r2; t) =
∑
r

ϕer(r1)ϕ
e
r
∗(r2)e−iεert, (2.122)
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where ϕer for a quasi-electron is defined in a way similar to that for a quasi-hole

ϕer(r1, t) = ⟨ψ̂†(r1, t)ΨN
0 |ΨN+1

r ⟩ = e−iεertϕer(r1), (2.123)

ϕer
∗(r2) = ⟨ΨN+1

r |ψ̂†(r2)|ΨN
0 ⟩ . (2.124)

Using a step function, the combined Green’s function in terms of the Dyson orbital reads

iG(r1, r2; t) =−
∑
a

ϕha(r1)ϕ
h
a

∗
(r2)e−iεhatθ(−t)

+
∑
r

ϕer(r1)ϕ
e
r
∗(r2)e−iεertθ(t),

(2.125)

where the Heaviside step function θ is defined as

θ(t) =


0, for t < 0

1, for t > 0

. (2.126)

Note that one can perform a Laplace transformation on Eq. (2.125) to obtain the

expression of G in the frequency domain. It is more straightforward to analyze single-

quasiparticle excitation energies from the frequency-dependent Green’s function

G(r1, r2;ω) =
∑
a

ϕha(r1)ϕha
∗
(r2)

ω − εha − iη
+
∑
r

ϕer(r1)ϕer
∗(r2)

ω − εer + iη
. (2.127)

Here, η represents an infinitesimally small positive number. Eq. (2.127) indicates that

poles will be observed from G(r1, r2;ω) at ω = εha and ω = εer, and these frequencies

(energies) correspond exactly to the excitation energies from ΨN
0 to ΨN−1

a and ΨN+1
r ,

respectively. And hence, the poles of G(r1, r2;ω) represent the negative of IPs and EAs.
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Furthermore, the spectral function A(r1, r2;ω) can be obtained from G(r1, r2;ω)

A(r1, r2;ω) =
1

π
ImG(r1, r2;ω)sgn(εF − ω)

=
∑
j

ϕj(r1)ϕj∗(r2)
Pj

(ω − εj)2 + P 2
j

.
(2.128)

Here, εF is the Fermi energy separating the hole (occupied) and electron (unoccupied)

states; sgn is the sign function, assigning a “1” to the frequency domain below εF and

a “−1” to the domain beyond εF ; the absolute value of Pj is the width of the peak at

ω = εj. From the spectral function, one can determine the QP excitation energy as well

as extracting the QP lifetime, which is inversely proportional to |Pj|.

The single-quasiparticle orbitals in Eq. (2.128) are the solutions to the following

non-linear eigenvalue equations

ĥ0ϕj(r) +
∫

dr′Σ(r, r′;ω = εj)ϕj(r′) = εjϕj(r) (2.129)

Different from the eigenvalue equations in the mean-field approaches, the electron–electron

interaction term here is frequency (energy)-dependent. In fact, the Σ term in Eq. (2.129)

is a very critical and interesting quantity in the Green’s function theory, as all the many-

body effects are downfolded into this nonlocal and dynamical self-energy. In Section 2.7,

I will present the derivation of Σ and important approximations in practical applications.

2.7 Approximations to the self-energy: GW and beyond

The total self-energy Σ is central for quasiparticle excitation energies in the Green’s

function formalism.[51, 52, 53] Applying an inverse Green’s function G−1 to the definition
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of Σ in Eq. (2.112), one can extract the following expression for the exact total self-energy

Σ(1, 2) = −iν(1, 3̄+)G2(13̄; 4̄3̄
+)G−1(4̄, 2), (2.130)

Here, the two-body Green’s function G2 is defined in Eq. (2.113), and the bar over a

number represents integrating over that space-time coordinates: 3̄ =
∫ ∫

dr3dt3. ν(1, 3+)

denotes the instantaneous Coulomb kernel

ν(1, 3+) =
1

|r1 − r3|
δ(t1 − t3). (2.131)

To manipulate the two-body Green’s function in Eq. (2.130) for further processing, one

can introduce an external perturbing potential Uext such that[53]

G2(13; 43
+; [Uext])

∣∣
Uext=0

= G(1, 4)G(3, 3+)− δG(1, 4)

δUext(3)

∣∣∣∣
Uext=0

, (2.132)

where G2 is broken down into a product of two one-body Green’s functions plus the

functional derivative of G with respect to Uext. In the following, it is assumed that the

functional derivative takes the value at Uext = 0. Combining Eqs. (2.130) and (2.132),

the self-energy can be written as

Σ(1, 2) = −iν(1, 3̄+)G(1, 4̄)G−1(4̄, 2)G(3̄, 3̄+) + iν(1, 3̄+)
δG(1, 4̄)

δUext(3̄)
G−1(4̄, 2). (2.133)

Here, the first term on the right-hand side can be simplified as

ΣH(1, 2) = −iν(1, 3̄+)G(3̄, 3̄+)δ(1− 2)

= vH(1)δ(1− 2),

(2.134)
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given that

G(1, 4̄)G−1(4̄, 2) = δ(1− 2), (2.135)

and

n(3) = −iG(3, 3+). (2.136)

That is to say, the first term of Σ(1, 2) in Eq. (2.133) turns out to be the instantaneous

and local classical Coulomb repulsion stemming from the electron density. This term is

denoted as the Hartree self-energy ΣH . Conventionally, the second term in Eq. (2.133) is

defined as the exchange–correlation self-energy ΣXC

ΣXC(1, 2) = iν(1, 3̄+)
δG(1, 4̄)

δUext(3̄)
G−1(4̄, 2). (2.137)

Using the fact that

δ [G(1, 4̄)G−1(4̄, 2)]

δUext(3)
= G(1, 4̄)

δG−1(4̄, 2)

δUext(3)
+
δG(1, 4̄)

δUext(3)
G−1(4̄, 2) = 0, (2.138)

one can substitute the functional derivative in Eq. (2.137) and obtain

ΣXC(1, 2) = −iν(1, 3̄+)G(1, 4̄)
δG−1(4̄, 2)

δUext(3̄)
. (2.139)

The inverse Green’s function G−1 in the functional derivative of Eq. (2.139) is more

processable. Note that in perturbation theory, auxiliary calculations with approximations

are prerequisite. In practice, mean-field methods such as KS-DFT can serve as the starting

points for many-body perturbation theory calculations. The non-interacting Green’s

function G0 is associated with some mean-field Hamiltonian Ĥ0

Ĝ−1
0 = i

∂

∂t
− Ĥ0, (2.140)
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where Ĥ0 reads

Ĥ0 = T̂ + v̂ext + v̂H + v̂xc. (2.141)

Analogously, the interacting Green’s function G is associated with the fully interacting

Hamiltonian Ĥ

Ĝ−1 = i
∂

∂t
− Ĥ, (2.142)

with Ĥ written as

Ĥ = T̂ + v̂ext + Σ̂H + Σ̂XC. (2.143)

The only difference between Ĥ0 and Ĥ is the nonlocal and dynamical Σ̂XC versus the

local/semilocal and static v̂xc. Subtracting Eq. (2.142) from Eq. (2.140) gives rise to

Ĝ−1
0 − Ĝ−1 = ∆Σ̂XC, (2.144)

where ∆Σ̂XC = Σ̂XC−v̂xc. Eq. (2.144) is known as a form of the Dyson equation connecting

the non-interacting and interacting Green’s functions. The Dyson equation in the recurring

form can be obtained by simply rearranging the terms in Eq. (2.144)

Ĝ = Ĝ0 + Ĝ0∆Σ̂XCĜ. (2.145)

2.7.1 Hedin’s equations

Let us first proceed with the Hedin’s formulation for ΣXC. By introducing the following

classical potential Ucls

Ucls(1) = Uext(1) + vH(1), (2.146)
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the functional derivative in Eq. (2.139) can be rewritten using the chain rule

δG−1(4, 2)

δUext(3)
=
δG−1(4, 2)

δUcls(5̄)

δUcls(5̄)

δUext(3)
. (2.147)

The three-point function δG−1(4, 2)/δUcls(5) is defined as the vertex function Γ

Γ(4, 2, 5) := −δG
−1(4, 2)

δUcls(5)
. (2.148)

The inverse dielectric function is given by

ϵ−1(5, 3) =
δUcls(5)

δUext(3)
. (2.149)

ΣXC in Eq. (2.139) can be expressed in terms of Γ

ΣXC(1, 2) = iG(1, 4̄)W (1, 5̄)Γ(4̄, 2, 5̄), (2.150)

where the screened Coulomb potential W defined through ϵ−1

W (1, 5) = ϵ−1(5, 3̄)ν(1, 3̄+). (2.151)

Eq. (2.150) belongs to the set of coupled integral equations known as the Hedin’s

equations, which are summarized as the Hedin’s pentagon in Figure 2.6. The integral

form of the Dyson equation for the Green’s function reads

G(1, 2) = G0(1, 2) +G0(1, 3̄)∆ΣXC(3̄, 4̄)G(4̄, 2). (2.152)
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Figure 2.6: Hedin’s equations in a pentagonal self-consistent loop.

The expression for W can be also rewritten in an integral and recurring form. First,

the inverse dielectric function can be expanded as follows

ϵ−1(1, 2) =
δUcls(1)

δUext(2)

=
δUext(1)

δUext(2)
+

δvH(1)

δUext(2)

= δ(1− 2) + ν(1, 3̄)
δn(3̄)

δUext(2)

= δ(1− 2) + ν(1, 3̄)
δn(3̄)

δUcls(4̄)

δUcls(4̄)

δUext(2)
.

(2.153)
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Next, the response function R(1, 2) is defined as

R(1, 2) =
δn(1)

δUext(2)
, (2.154)

and the polarization function P (1, 2) reads

P (1, 2) =
δn(1)

δUcls(2)
. (2.155)

It can be shown that the ϵ, R, and P functions are inter-related by

ϵ−1(1, 2) = δ(1− 2) + ν(1, 3̄)R(3̄, 2), (2.156)

R(1, 2) = P (1, 2) + P (1, 3̄)ν(3̄, 4̄)R(4̄, 2). (2.157)

Finally, the Dyson form of the screened Coulomb potential W reads

W (1, 2) = ν(1, 2) + ν(1, 3̄)P (3̄, 4̄)W (4̄, 2). (2.158)

Given the relationship between the density n and the Green’s function G [Eq. (2.114)]

and GG−1 = δ, the polarization function P can be expanded as

P (1, 2) = −iG(1, 3̄)Γ(3̄, 4̄, 2)G(4̄, 1+). (2.159)

The last Dyson-like equation to find is for the vertex function Γ. Using the Dyson

equation for G−1 [Eq. (2.144)], Γ can be written as

Γ(1, 2, 3) = δ(1− 3)δ(2− 3) +
δΣHXC(1, 2)

δG(4̄, 5̄)
G(4̄, 6̄)G(7̄, 5̄)Γ(6̄, 7̄, 3), (2.160)
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where ΣHXC is the total self-energy equivalent to the Σ introduced before

ΣHXC(1, 2) = ΣH(1, 2) + ΣXC(1, 2). (2.161)

To sum up, the following five coupled integral equations constitute the renowned set

of Hedin’s equations

ΣXC(1, 2) = iG(1, 4̄)W (1, 5̄)Γ(4̄, 2, 5̄)

G(1, 2) = G0(1, 2) +G0(1, 3̄)∆ΣXC(3̄, 4̄)G(4̄, 2)

W (1, 2) = ν(1, 2) + ν(1, 3̄)P (3̄, 4̄)W (4̄, 2)

P (1, 2) = −iG(1, 3̄)Γ(3̄, 4̄, 2)G(4̄, 1+)

Γ(1, 2, 3) = δ(1− 3)δ(2− 3) + δΣHXC(1,2)
δG(4̄,5̄)

G(4̄, 6̄)G(7̄, 5̄)Γ(6̄, 7̄, 3)

In principle, the Hedin’s equations can be solved self-consistently starting from a given

approximation to ΣXC. Ref. 54 is recommended for readers interested in the self-consisent

solultion. However, it is exceptionally challenging to find the exact solutions, and the

applications to realistic systems (e.g., atoms and molecules) remain to be explore. In

practice, approximations are made, especially to the sophisticated vertex function Γ,

among which the GW approximation has become a widely-used approach for calculating

quasiparticle excitation energies of molecules and solids.[51, 52, 55, 56, 57]

In the GW approximation, the vertex function is truncated to the delta functions only

Γ(1, 2, 3) ≈ δ(1− 3)δ(2− 3). (2.162)

The exchange–correlation self-energy thus becomes

ΣXC(1, 2) ≈ iG(1, 2)W (1, 2), (2.163)
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which represents the so-called GW self-energy and is denoted ΣGW
XC in the following. The

polarization function is also simplified as

P (1, 2) ≈ −iG(1, 2)G(2, 1+). (2.164)

The product of two Green’s functions here indeed corresponds to the electron-hole pairs in

the “bubble” diagrams in the diagrammatic representation of the Green’s function. This

class of interactions is related to the induced charge density fluctuations. In this context,

the screened Coulomb potential W can be written as

W (1, 2) = ν(1, 2) + δn(1, 3̄)ν(3̄, 2), (2.165)

which represents the effective potential at (r2, t2) induced by a quasiparticle at (r1, t1). In

the GW approximation, the bare Coulomb potential ν(1, 2) is screened by the effective

positive charges stemming from the induced charge density fluctuations δn. In Chapter 3,

this concept will be revisited in practical QP energy calculations.

Within the GW framework, one can start from the one-shot GW (G0W0) approxi-

mation with G = G0. The W is one-shot in the sense that the polarization function, or

effectively the induced charge density fluctuations, is computed by the random phase

approximation (RPA) using the mean-field Hamiltonian Ĥ0. After the first shot, one can

update G and W and iterate the calculation until self-consistence, leading to the so-called

self-consistent GW (scGW ).[58, 59, 60, 61] scGW can be regarded as an improvement

or a correction to G0W0, to which I will not extend further in this dissertation. For the

corrections to G0W0, I will consider instead the effects from the leftover part in Γ, i.e.,

the second term on the right-hand side of Eq. (2.160). These effects are known as the

vertex corrections, which will be derived them in the following.
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2.7.2 Derivation of vertex corrections

Given that the vertex function Γ appears in both ΣXC and P , there are two types

of vertex corrections: referencing to the GW self-energy (ΣGW
XC ), one vertex correction

applies directly to the self-energy that is outside ΣGW
XC , the other one applying to P is

inside ΣGW
XC .

First of all, the outside vertex correction can be introduced to ΣGW
XC by reformulating

the expression for ΣXC. In Eq. (2.139), one can substitute the G−1 using Eq. (2.144) and

obtain

ΣXC(1, 2) = −iν(1, 3̄+)G(1, 4̄)
δG−1

0 (4̄, 2)

δUext(3̄)
+ iν(1, 3̄+)G(1, 4̄)

δ∆ΣXC(4̄, 2)

δUext(3̄)
. (2.166)

Furthermore, the vxc and ΣH terms can be separated from G−1
0 and combined with ΣXC

to reproduce the total self-energy ΣHXC (the same as Σ introduced before)

Ĝ−1
0 = i

∂

∂t
− ĥ0 − Σ̂H − v̂xc

= Ĝ′−1

0 − Σ̂H − v̂xc.

(2.167)

Plugging Eq. (2.167) into Eq. (2.166) leads to

ΣXC(1, 2) = −iν(1, 3̄+)G(1, 4̄)
δG′

0
−1(4̄, 2)

δUext(3̄)
+ iν(1, 3̄+)G(1, 4̄)

δΣHXC(4̄, 2)

δUext(3̄)
. (2.168)

Given the fact that
δG′

0
−1(4, 2)

δUext(3)
= −δ(2− 3)δ(4− 3), (2.169)
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the first term on the right-hand side of Eq. (2.168) becomes

ΣX(1, 2) = iν(1, 3̄+)G(1, 4̄)δ(2− 3̄)δ(4̄− 3̄)

= iν(1, 2+)G(1, 2).

(2.170)

This term, denoted ΣX, is similar to the nonlocal exchange interaction in the Hartree–Fock

approximation since ρ(1, 2+) = −iG(1, 2)δ(t1 − t2) [Eq. (2.115)].

With the identification of ΣX, the second term on the right-hand side of Eq. (2.168)

is thus defined as the correlation self-energy

ΣC = iν(1, 3̄+)G(1, 4̄)
δΣHXC(4̄, 2)

δUext(3̄)
. (2.171)

Through inserting a Green’s function and introducing a generalized polarizability, ΣC can

be rewritten using the chain rule

ΣC(1, 2) = −ν(1, 3̄+)G(1, 4̄)δΣHXC(4̄, 2)

δG(6̄, 5̄)
3χ(6̄, 5̄, 3̄), (2.172)

where the three-point generalized polarizability 3χ is defined as

3χ(6, 5, 3) := −i
δG(6, 5)

δUext(3)
. (2.173)

Given that ΣHXC = ΣH +ΣX +ΣC, the correlation self-energy ΣC appears on both

sides of Eq. (2.172) and needs to be solved self-consistently, which is equivalent to solving

the Hedin’s pentagon. However, there are two seemingly possible approximations to

make: (1) ΣHXC ≈ ΣH ; (2) ΣHXC ≈ ΣH + ΣX. In this following, I will show that the first

approximation is equivalent to the GW approximation, while the second approximation

is beyond GW and introduces the outside vertex correction.
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The truncation from ΣHXC to ΣH reads

ΣHXC(1, 2) ≈ ΣH(1)δ(1− 2). (2.174)

Inserting Eqs. (2.174) and (2.134) to Eq. (2.172), the functional derivative is approximated

as
δΣHXC(4, 2)

δG(6, 5)
≈ −iν(2, 5)δ(6− 5)δ(4− 2). (2.175)

With δ(6− 5), the three-point polarizability is simplified to a two point reducible polariz-

ability

δ(6̄− 5)3χ(6̄, 5, 3) = −i
δG(5, 5+)

δUext(3)

:= χ(5, 3),

(2.176)

which is indeed equivalent to the response function R in Eq. (2.154). Plugging Eqs. (2.175)

and (2.176) back into Eq. (2.172), the correlation self-energy is simplified as

ΣC(1, 2) = iG(1, 2)ν(2, 5̄)χ(5̄, 3̄)ν(3̄, 1). (2.177)

Combining Eq. (2.170) with Eq. (2.177) gives rise to

ΣXC(1, 2) = iν(1, 2+)G(1, 2) + iG(1, 2)ν(2, 5̄)χ(5̄, 3̄)ν(3̄, 1)

= iG(1, 2)
[
ν(1, 2+) + ν(2, 5̄)χ(5̄, 3̄)ν(3̄, 1)

]
,

(2.178)

where the sum in the square brackets is simply the screened Coulomb potential W (1, 2)

in Eq. (2.163). Therefore, the truncation of ΣHXC to ΣH is equivalent to the GW

approximation presented in the Hedin’s formulation.

Next, in order to introduce vertex correction to the GW correlation self-energy, ΣX is
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included in the approximation

ΣHXC(1, 2) ≈ ΣH(1)δ(1− 2) + ΣX(1, 2). (2.179)

Plugging the expression of ΣX in Eq. (2.170) into the functional derivative, one can

obtain[62]

δΣHXC(4, 2)

δG(6, 5)
≈ −iν(2, 5)δ(6− 5)δ(4− 2) + iν(4, 2)δ(5− 2)δ(6− 4). (2.180)

The main difference between the first and the second term on the right-hand side of

Eq. (2.180) is that the second term keeps the three-point polarizability. Therefore, the

corresponding correlation self-energy reads

ΣC(1, 2) = iG(1, 2)ν(2, 5̄)χ(5̄, 3̄)ν(3̄, 1)− iG(1, 4̄)ν(4̄, 2)3χ(4̄, 2, 3̄)ν(3̄, 1). (2.181)

Here, the additional term on the right-hand side with respect to Eq. (2.177) is the outside

vertex correction applying directly to the correlation self-energy. As it is derived from

the nonlocal exchange interaction ΣX, I denote this correction as ΓX, and the approach is

denoted G0W0ΓX.

Given the fact that ρ(4, 2+) = −iG(4, 2)δ(t4 − t2), this outside vertex correction

actually corresponds to the induced density matrix fluctuations δρ. Chapter 3 discusses

how to calculate δn and δρ by implementing real space-time representations in practice.

In summary, the correlation self-energy in Eq. (2.181) accounts for the particle-density

and particle-density matrix interactions in a quasiparticle excitation.

For the inside vertex correction, i.e., the correction to P in Eq. (2.164), the key step

is to go beyond the random phase approximation used in the G0W0 approximation. The

approach that includes both the inside and outside vertex corrections is denoted G0W
tc
0 ΓX,
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where the superscript “tc” stands for “test charge” used to probe the charge density response

as an external source. More details can be found in References 63, 64, 65, 66. and the

elaboration on this topic will not be provided here. One effective step to go beyond RPA

is to include the time-dependent density matrix in addition to the time-dependent density

when computing the induced charge density fluctuations using, for instance, real-time

propagation approaches. A practical implementation of the time-dependent density matrix

in real-time propagation is demonstrated in Chapter 10.
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Chapter 3

Methodology

3.1 Perturbative corrections to mean-field eigenvalues

Chapter 2 introduces the one-body Green’s function, which encapsulates information

about quasiparticles and QP excitation energies appearing in the Lehmann representation

G(r1, r2;ω) =
∑
j

ϕj(r1)ϕj∗(r2)
ω − εQP

j + iηsgn(εQP
j − µ)

, (3.1)

where µ denotes the chemical potential, and η is an infinitesimally small number. Depend-

ing on the sign of (εQP
j − µ), the sign function “sgn”, stemming from the transformation

of the Heaviside step function in Eq. (2.126), gives “1” for states above µ (electron) and

“-1” for states below µ (hole). The QP states ϕj (either quasi-hole or quasi-electron) in

the numerator above satisfy the following eigenvalue equation

[
−∇2

2
+ v̂ext + Σ̂H + Σ̂XC(ω = εQP

j )

]
|ϕj⟩ = εQP

j |ϕj⟩ , (3.2)
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where all quantum many-body effects are accounted in the nonlocal and dynamical

exchange–correlation self-energy Σ̂XC.

To access the QP excitation spectrum, one can solve the frequency-dependent Green’s

function directly with the many-body wavefunctions of the neutral (N -electron) and the

charged (N ± 1-electron) systems; Chapter 9 presents a collaborative work where the full

valence spectrum is obtained from the Green’s function solved by the adaptive-sampling

configuration interaction approach. The approach is equivalent to solving the ground-

and excited-state wavefunction using nearly full CI, which is limited to small molecules

due to steep scaling in computational cost.

An alternative and practical way to obtain quasiparticle energies is applying pertur-

bative corrections to the mean-field eigenvalues ε0 from an auxiliary starting point, e.g.,

Hartree–Fock or KS-DFT calculations. The issue plaguing the eigenvalues is attributed

to the insufficient mean-field description of electron–electron interactions embodied in the

local/semical exchange–correlation (XC) potential v̂xc. The corrections replace v̂xc in ε0j

with the nonlocal and dynamical XC self-energy operator Σ̂XC(ω), yielding the following

QP energy

εQP
j = ⟨ϕ0

j |ε0j − v̂xc + Σ̂XC(ω = εQP
j )|ϕ0

j⟩ . (3.3)

Here, the GW approximation (see Section 2.7 in Chapter 2) is employed to compute the

expectation value of Σ̂XC in the real-time domain

⟨ϕ0
j |Σ̂XC(t)|ϕ0

j⟩ = ⟨ϕ0
j |iĜ(t)Ŵ (t)|ϕ0

j⟩ , (3.4)

where the mean-field eigenstate ϕ0
j is a legitimate approximation to the real quasiparticle

Dyson orbital, and only the diagonal terms of the XC self-energy matrix are considered.

Note that in the Hedin’s pentagon (Figure 2.6), all the five quantities, including Σ̂XC,
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need to be solved self-consistently. However, this dissertation focuses on the one-shot

approximation (G0W0) only and does not consider self-consistency due to the non-linearity

of the problem.

Note that the time-dependent correlation self-energy Σ̂XC(t) above needs to be time-

ordered i.e., t spans both the negative and positive axes. This requires both Ĝ0(t) and

Ŵ0(t) to be time-ordered.

Similar to the fully interacting Green’s function in Eq. (2.125), the non-interacting

Green’s function Ĝ0 has the following form

G0(r1, r2; t) =


i
∑Nocc

a ϕ0
a(r1, t)ϕ0

a
∗
(r2) t < 0

−i
∑Nuno

r ϕ0
r(r1, t)ϕ0

r
∗
(r2) t > 0

, (3.5)

where ϕ0
k(r, t) = e−iε0ktϕ0

k(r). The time-ordering of Ĝ0(t) is simply done by flipping the

sign in the time-evolution operator for the Trotter propagation

|ϕ0
a(t− dt)⟩ = eiε

0
adt |ϕ0

a(t)⟩ , (3.6)

|ϕ0
r(t+ dt)⟩ = e−iε0rdt |ϕ0

r(t)⟩ . (3.7)

Here, the hole (occupied) states fill the negative time domain, while the electron (un-

occupied) states fill the positive time domain. This discrepancy follows simply the

time-ordering of the field operators in Eq. (2.110).

Ŵ0(t) denotes the screened Coulomb potential with the two-point polarizability χ0

computed at the random phase approximation (RPA) level

W0(r1, r2; t) = ν(r1, r2)δ(t) +
∫ ∫

ν(r1, r3)χ0(r4, r3; t)ν(r4, r2)dr3dr4. (3.8)
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Here, ν(r1, r2) is the bare Coulomb kernel. The convolution with Ĝ0(t) yields the

instantaneous and static exchange interaction

⟨ϕ0
j |Ĝ0(t)ν̂δ(t)|ϕ0

j⟩ = −
∫ ∫

ϕ0
j
∗
(r1)ρ(r1, r2)ϕ0

j(r2)
|r1 − r2|

dr1dr2, (3.9)

where ρ(r1, r2) is the non-interacting one-body density matrix

ρ(r1, r2) = ⟨r1|
Nocc∑
a

|ϕ0
a⟩ ⟨ϕ0

a|r2⟩ . (3.10)

The exchange interaction in Eq. (3.9) is equivalent to the nonlocal exchange in the Fock

operator in the Hartree–Fock approximation.

In the second term on the right-hand side of Eq. (3.8), χ0(r4, r3; t) is the time-ordered

non-interacting two-point polarizability resulting in the following time-ordered polarization

potential uP

uP(r1, t; k) =
∫ ∫ ∫

ν(r1, r3)χ0(r4, r3; t)ν(r4, r2)ϕ0
k
∗
(r2)ϕ0

j(r2)dr2dr3dr4, (3.11)

where ϕ0
k comes from the convolution with Ĝ0. The polarization potential here is induced

by an external charge (ϕ0
k
∗
ϕ0
j) at r2 and t = 0. In this dissertation, only the linear response

is considered in uP, and the time-ordered uP is obtained from a retarded potential uRP

uRP(r, t; k) =
vλH(r, t; k)− v0H(r)

λ
, (3.12)

where λ is a small real number representing the strength of perturbation induced by the

external charge at r2 and t = 0. The static and time-dependent Hartree potentials, v0H(r)
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and vλH(r, t; k) above, are given by

v0H(r) =
∫
ν(r, r′)n0(r′)dr′, (3.13)

and

vλH(r, t) =
∫
ν(r, r′)nλ(r′, t; k)dr′. (3.14)

Here, n0(r) is simply the ground-state charge density

n0(r) =
Nocc∑
a

ϕ0
a
∗
(r)ϕ0

a(r). (3.15)

The perturbed and time-evolved charge density nλ(r, t; k) is computed through the

following procedure

(1) at t = 0, the single-particle states are perturbed by the electron removal (or addition)

|ϕλj ⟩ = e−iλv̂pertδ(t) |ϕ0
j⟩ , (3.16)

where the perturbing potential is given by vpert(r) =
∫
ν(r, r′)ϕ0

k
∗
(r′)ϕ0

j(r′)dr′.

(2) the perturbed states are then propagated in time using a Trotter split-operator

technique

|ϕλj (t+ dt)⟩ = e−iĤ(t)dt |ϕλj (t)⟩ , (3.17)

where t starts from 0, and the Hamiltonian Ĥ is time-dependent (detailed in the

following).
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(3) analogous to n0(r), n(r, t) is derived from the time-evolved single-particle states

nλ(r, t; k) =
Nocc∑
a

|ϕλa(r, t)|2. (3.18)

Using Eqs. (3.13) and (3.14), the retarded polarization potential can be written as

uRP(r, t; k) =
∫
ν(r, r′)δn(r′, t; k)dr′, (3.19)

which in fact corresponds to the induced dipole–dipole interactions. δn(r′, t; k) is the

induced density fluctuations renormalized by λ

δn(r, t; k) =
1

λ

[
nλ(r, t; k)− n0(r)

]
. (3.20)

In the real-time propagation procedure shown above, the time-dependent Hamiltonian

Ĥ(t) in Eq. (3.17) plays a critical role in the dynamical response of the charge density

to the electron removal/addition. At the G0W0 level, Ĥ(t) contains a time-dependent

Hartree potential v̂H(t) [Eq. (3.14)] only

Ĥ(t) = T̂ + v̂ext + v̂H [n
λ(t), t] + v̂xc[n0], (3.21)

where v̂xc is simply the static mean-field exchange–correlation potential depending on

the ground-state density. This time-dependent Hartree approach is also known as RPA

mentioned in Chapter 2.

The retarded potential uRP(r, t; k) is only defined in the positive time domain. To

obtain the time-ordered polarization potential uP(r, t; k), a Fourier transformation is first
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performed on uRP(r, t; k)

uRP(r, ω; k) =
∫ ∞

0

e−
1
2
α2t2e−iωtuRP(r, t; k)dt. (3.22)

Next, the frequency-dependent non-retarded potential uP(r, ω; k) is given by

uP(r, ω; k) =


uRP(r, ω; k) ω ≥ 0

[uRP(r, ω; k)]∗ ω < 0

. (3.23)

Finally, uP(r, t; k) in the positive and negative time domain is obtained by Fourier

transforming uP(r, ω; k)

uP(r, t; k) =
1

2π

∫ ∞

−∞
eiωtuP(r, ω; k)dω. (3.24)

After uP is time-ordered, the time-dependent G0W0 correlation self-energy for a specific

state ϕ0
j reads

ΣC,j(t) =
∑
k

sgn(ε0k − µ)

∫
ϕ0
j(r)ϕ

0
k(r, t)uP(r, t; k)dr. (3.25)

In practice, ΣC,j(t) is Fourier transformed to the frequency domain for solving the QP

energy

ΣC,j(ω) =

∫ ∞

−∞
e−iωtΣC,j(t)dt. (3.26)

Next, the outside vertex correction ΣΓ
C,j(t) can be introduced to the G0W0 self-energy

in a similar way. The derivation of ΣΓ
C,j(t) is similar to that of ΣC,j(t), starting from a

bare nonlocal exchange

ΣX(r1, r2) = −ν(r1, r2)ρ(r1, r2). (3.27)
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ΣΓ
C,j(t) is given by the following equation

ΣΓ
C,j(t) =

∑
k

sgn(ε0k − µ) ⟨ϕ0
jϕ

0
k(t)|ν̂ 3χ̂(t)ν̂|ϕ0

kϕ
0
j⟩ , (3.28)

where 3χ̂(t) is the time-ordered three-point polarizability derived from the functional

derivative of ΣX with respect to G (see Section 2.7 in Chapter 2).

In the real space-time representation, the individual term in the sum of Eq. (3.28)

reads

ΣΓ
C,j(t; k) =

∫ ∫
ϕ0
j
∗
(r2)ϕ0

k(r1, t)uX(r1, r2, t; k)dr1dr2, (3.29)

where uX is the time-ordered induced-exchange potential given by

uX(r1, r2, t; k) =
∫ ∫

ν(r1, r3) 3χ(r4, r2, r3; t)ν(r4, r2)ϕ0
k
∗
(r4)ϕ0

j(r4)dr3dr4. (3.30)

Analogous to uP(r, t; k), uX(r1, r2, t; k) is obtained from a retarded potential in the linear

response regime

uRX(r1, r2, t; k) =
ρλ(r1, r2, t; k)− ρ0(r1, r2)

λ
ν(r1, r2), (3.31)

where ρ0(r1, r2) is the ground-state one-body density matrix [Eq. (3.10)]. The set of

perturbed and time-evolved single-particle states [Eqs. (3.16)-(3.18)] used in nλ(r, t; k)

also applies to the construction of the time-dependent density matrix

ρλ(r1, r2, t; k) =
Nocc∑
a

ϕλa(r1, t)ϕ
λ
a

∗
(r2, t), (3.32)

where ϕλa is a state perturbed by the external potential associated with ϕ0
k.

The time-ordered induced-exchange potential uX(r1, r2, t; k) is then generated by the
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procedure in Eqs. (3.22)-(3.24). The induced-exchange potential can also be written in

term of the renormalized induced density matrix fluctuation

uRX(r1, r2; t) = ν(r1, r2)δρ(r1, r2, t; k), (3.33)

where

δρ(r1, r2; t) =
ρλ(r1, r2, t; k)− ρ0(r1, r2)

λ
. (3.34)

Physically, δρ(r1, r2, t; k) can cancel the self-polarization error appearing in δn(r, t; k),

similar to the cancellation of self-interaction error in ΣH by ΣX.

Note that the outside vertex correction above can also be derived from other forms of

nonlocal exchange than the bare Hartree–Fock form, e.g, range-separated hybrid exchange

functionals.[1, 2, 3] In a general way, the exchange interaction is split into two parts by

1

r12
=

1− {α + β[1− erfc(γr12)]}
r12

+
α + β[1− erfc(γr12)]

r12

= να,β,γS (r1, r2) + να,β,γL (r1, r2).
(3.35)

Here, the Coulomb kernel 1/r12 = ν(r1, r2) is partitioned into the short-range part

να,β,γS (r1, r2) and the long-range part να,β,γL (r1, r2); α and β are empirical mixing parame-

ters that can be related to dielectric screening properties; erfc(x) is the complementary

error function that connect smoothly the long-range and short-range parts; γ denotes

the range separation parameter that is either constant or optimally tuned based on the

ionization potential (IP) theorem. The nonlocal exchange interaction appears only in

the long-range part, while the short-range part is treated with local/semilocal exchange

functionals. Hence, only the long-range nonlocal exchange contributes to the outside
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vertex correction, and the retarded induced-exchange potential is written as

uRLX(r1, r2; t) = να,β,γL (r1, r2)δρ(r1, r2; t). (3.36)

The inclusion of inside vertex correction to the GW correlation self-energy requires

evaluating the vertex function in the polarization function P (see Eq. (2.154) in Chapter 2),

leading to the GW tc approximation. In our real space-time approach, the GW tc approach

is equivalent to evaluating the time-dependent induced density fluctuation δn(r, t) beyond

the random phase approximation (RPA). As the evaluation of δn(r, t) hinges upon the

real-time propagation process, the time-dependent Hamiltonian contains only a time-

dependent Hartree term [see Eq. (3.21)] in the RPA approach. An effective way to

introduce vertex correction in the real-time formalism to δn(r, t) is to introduce a time-

dependent exchange term in the Hamiltonian. In practice, one can consider using the

time-dependent Hartree–Fock or the time-dependent generalized KS-DFT Hamiltonian

shown below

Ĥ(t) = T̂ + v̂ext + v̂H
[
nλ(t), t

]
+ Σ̂X

[
ρλ(t), t

]
, (3.37)

or

Ĥ(t) = T̂ + v̂ext + v̂H
[
nλ(t), t

]
+ Σ̂α,β,γ

X

[
ρλ(t), t

]
+ v̂α,β,γx [n0] + v̂c[n0]. (3.38)

In Eq. (3.37), the time-dependent exchange interaction is unscreened (bare). In Eq. (3.38),

the generalized Kohn–Sham DFT Hamiltonian employs a hybrid form of exchange function-

als where the exchange kernel is partitioned by Eq. (3.35). Only the long-range exchange

interaction is time-dependent, and it depends on the α and β parameters as introduced

above. Chapter 10 is recommended for readers who are interested in introducing both

inside and outside vertex corrections in the real-time formalism.

In summary, this section demonstrates how to obtain QP energies by adding the
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nonlocal and dynamical exchange–correlation self-energy as a perturbative correction to

a mean-field eigenvalue. Furthermore, the calculations of G0W0 correlation self-energy

and the inclusion of vertex corrections (both inside and outside) are presented using the

real space-time approach. In Section 3.2, I will introduce the stochastic GW and beyond

formalism as a linear-scaling method applying to systems with thousands of electrons.

3.2 Stochastic formalism of correlation self-energy

The GW method introduced in the previous section has been widely used in electronic

structure calculations, providing significantly improved results for ionization potentials,

electron affinities, and fundamental gaps. Although the GW approach scales less rapidly

as N4 than the comparable wavefunction approaches (N6 or higher), its applications are

still highly limited to simple solids and small molecules. The cost of GW can be analyzed

from the two following perspectives in the real space-time approach

(1) the sum of all states in the non-interacting Green’s function in Eq. (3.25). The

summation over k here spans the entire Hilbert space, including both occupied and

virtual states. The number of occupied states is definite, while the number of virtual

states is not. In pratice, the number of states constituting G0 needs to be converged

by setting an energy cutoff. In real-space implementations, the dimension of the

summation corresponds to the grid size, which can be over 10 million for nanoscale

systems.

(2) the stepwise time evolution of each single-particle state for the time-dependent

induced density fluctuation δn(r, t). This procedure involves the occupied states

only and depends on the number of discrete propagation steps and the length

of propagation time. The cost of propagation becomes much higher if the time-
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dependent exchange interaction is also included in the Hamiltonian.

Recent developments in high-performance computing[4, 5, 6] and algorithm optimization[7,

8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] have remarkably accelerated the GW calculations

and make GW more affordable for large molecules and realistic materials. In the following,

I review the linear-scaling stochastic formalism for computing GW correlation self-energy

and beyond.[19, 20, 21, 22, 23, 24, 25, 26, 27, 28] Particularly, the derivations focus on

the stochastic non-interacting Green’s function G0(t) and the induced density and density

matrix fluctuations δn(r, t) and δρ(r, r′; t).

In a real-space GW calculation, the grid size Ng is given by the following product

Ng = Nx ×Ny ×Nz, (3.39)

where Nx, Ny, and Nz represent the number of grid points in the three orthogonal

directions of a rectangular box, respectively. The unit volume is the product of the grid

spacing in each direction

dV = dx× dy × dz. (3.40)

The core step to perform a stochastic sampling is to generate a real-value random function

in the real-space grid of the following form

ζ̄(r) = ± 1√
dV

, (3.41)

where the ± sign embodies the randomness as each sign is of an equal probability, and
√
dV is the renormalization factor leading to

∫
|ζ̄(r)|2dV = Ng, (3.42)
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which corresponds to the dimension of the entire Hilbert space.

The random function ζ̄(r) can also be written in the following vector form

|ζ̄⟩ = 1√
dV

[±1,±1,±1, . . . ,±1]T , (3.43)

the dimension of which is Ng. Furthermore, the following random matrix can be generated

from such a random vector

|ζ̄⟩ ⟨ζ̄| = 1

dV



1 ±1 ±1 . . . ±1

±1 1 ±1 . . . ±1

±1 ±1 1 . . . ±1

. . . . . . . . . . . . . . .

±1 ±1 ±1 . . . 1


. (3.44)

In this matrix, the diagonal elements are definitely “1.” However, the off-diagonal elements

are indefinite, with an equal probability of being “1” or “−1” depending on the actual ζ̄.

Based on the distinct features between the diagonal and off-diagonal elements, it can be

deduced that the sum of infinitely many random matrices of this form reads

lim
Nζ̄→∞

Nζ̄∑
i=1

|ζ̄i⟩ ⟨ζ̄i| =
Nζ̄

dV



1 0 0 . . . 0

0 1 0 . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 1


. (3.45)

Eq. (3.45) can be expressed in a shorthand version

⟨r|
{
|ζ̄i⟩ ⟨ζ̄i|

}
|r′⟩ = 1

dV
δr,r′ , (3.46)
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where δr,r′ is a Kronecker delta function; the curly brackets {. . . } denote taking a statistical

average over Nζ̄ random matrices

{
|ζ̄i⟩ ⟨ζ̄i|

}
=

1

Nζ̄

lim
Nζ̄→∞

Nζ̄∑
i=1

|ζ̄i⟩ ⟨ζ̄i| . (3.47)

In short, the random vectors are constructed to satisfy the following stochastic

resolution of identity (neglecting the trivial prefactor dV )

Î =
{
|ζ̄i⟩ ⟨ζ̄i|

}
, (3.48)

where the dimension of the identity matrix is N2
g . The stochastic resolution of identity

here is a critical and useful expression derived from a set of random vectors, as Î can be

inserted in front of, in between, or after any operators without changing the operations.

First of all, the ground-state density can be recovered by a set of random vectors using Î

in Eq. (3.48) in the following procedure

(1) the ground-state density can be written in terms of the occupied space operator

n0(r) = ⟨r|P̂ occ|r⟩ . (3.49)

Using the idempotency of P̂ occ, it holds that

n0(r) = ⟨r|P̂ occP̂ occ|r⟩ . (3.50)

(2) the stochastic resolution of identity can be inserted in between the two P̂ occ operators

in Eq. (3.50)

n0(r) =
{
⟨r|P̂ occ |ζ̄i⟩ ⟨ζ̄i| P̂ occ|r⟩

}
. (3.51)
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(3) a random ket state projected onto the occupied space can then be defined based on

Eq. (3.51)

|ζi⟩ = P̂ occ |ζ̄i⟩ =
Nocc∑
a

⟨ϕ0
a|ζ̄i⟩ |ϕ0

a⟩ =
Nocc∑
a

βai |ϕ0
a⟩ . (3.52)

Similarly, the corresponding bra state is given by

⟨ζ̄i| P̂ occ =
Nocc∑
a

⟨ϕ0
a| ⟨ζ̄i|ϕ0

a⟩ =
Nocc∑
a

⟨ϕ0
a| β∗

ia = ⟨ζi| . (3.53)

(4) plugging Eqs. (3.52) and (3.53) into Eq. (3.51), the stochastic resolution of the

ground-state density reads

n0(r) = {⟨r|ζi⟩ ⟨ζi|r⟩} = {ζ∗i (r)ζi(r)} . (3.54)

The stochastic expression for n0(r) can be generalized to the perturbed and time-

evolved density

nλ(r, t) =
{
ζλi

∗
(r, t)ζλi (r, t)

}
, (3.55)

where the set of random functions ζi(r) is perturbed and propagated in time using

Eqs. (3.16) and (3.17). Note that the time-dependent Hamiltonian e.g., for RPA, is

constructed using the stochastic time-dependent density. Due to the stochastic nature,

the ground-state density also shows a time-dependency

n0(r, t) = {ζi∗(r, t)ζi(r, t)} , (3.56)

where the set of random functions are not perturbed and are directly evolved in time.

It is also trivial to extend the stochastic sampling to the first order density matrix for
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the inclusion of vertex corrections

ρ0(r, r′; t) = {ζi∗(r′, t)ζi(r, t)} , (3.57)

and

ρλ(r, r′; t) =
{
ζλi

∗
(r′, t)ζλi (r, t)

}
. (3.58)

The time-dependent Hamiltonian that introduces the inside vertex correction is con-

structed using both the stochastic time-dependent density and density matrix. Eqs. (3.55)

and (3.56) produce the time-dependent induced density fluctuation δn(r, t) that en-

ters Eq. (3.19) for the polarization potential; Eqs. (3.57) and (3.58) generate δρ(r, r′; t)

entering Eq. (3.33) for the induced-exchange potential.

Next, to avoid summing over the dimension of the entire Hilbert space, the non-

interacting Green’s function G0(t) can also be sampled by another set of random vectors

η̄. For t < 0, the expression of the hole Green’s function reads

Gh
0(r, r

′; t) = ⟨r|e−iĤ0tP̂ occ|r′⟩ , (3.59)

where Ĥ0 denotes the ground-state mean-field Hamiltonian for the single-particle eigenvalue

equations. Using the idempotency of P̂ occ and the stochastic resolution of identity, Gh
0

can also be written as

Gh
0(r, r

′; t) = ⟨r|e−iĤ0tP̂ occÎP̂ occ|r′⟩

=
{
⟨r|e−iĤ0tP̂ occ |η̄i⟩ ⟨η̄i| P̂ occ|r′⟩

}
= {⟨r|ηi(t)⟩ ⟨ηi|r′⟩} ,

(3.60)
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where the projected vectors are defined as

|ηi⟩ = P̂ occ |η̄i⟩ , (3.61)

and

|ηi(t)⟩ = e−iĤ0tP̂ occ |η̄i⟩ . (3.62)

For the electron Green’s function (t > 0), the derivation of the stochastic expression

is analogous, starting from

Ge
0(r, r

′; t) = ⟨r|e−iĤ0tP̂ uno|r′⟩ , (3.63)

where the unoccupied subspace operator is the complement of P̂ occ

Î = P̂ occ + P̂ uno. (3.64)

As P̂ uno is idempotent, the following expression holds

Gh
0(r, r

′; t) = ⟨r|e−iĤ0tP̂ unoÎP̂ uno|r′⟩

=
{
⟨r|e−iĤ0tP̂ uno |η̄i⟩ ⟨η̄i| P̂ uno|r′⟩

}
= {⟨r|η′i(t)⟩ ⟨η′i|r′⟩} ,

(3.65)

where the projected vectors are defined as

|η′i⟩ = P̂ uno |η̄i⟩ , (3.66)

and

|η′i(t)⟩ = e−iĤ0tP̂ uno |η̄i⟩ . (3.67)
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Note that |η̄i⟩ = |ηi⟩+ |η′i⟩, the total G0(t) can be written in a more compact form

G0(r, r′; t) = {ηi(r, t)η̄∗i (r′)} , (3.68)

where the time-evolved random function is given by

ηi(r, t) =


⟨r|e−iĤ0tP̂ occ|η̄i⟩ t < 0

⟨r|e−iĤ0t(Î − P̂ occ)|η̄i⟩ t > 0

. (3.69)

Through the procedure above, the stochastic Ĝ0(t) is time-ordered, and the time-

ordered polarization potential can also be prepared from δn(r, t) in the stochastic form.

Hence, the resulting stochastic G0W0 correlation self-energy for a specific state ϕ0
j reads

ΣC,j(t) =

{∫
ϕ0
j
∗
(r)ηi(r, t)u

ζ̄,η̄i
P (r, t)dr

}
. (3.70)

Here, the statistical average is performed on two different sets of random functions, ζ̄

and η̄; the time-dependent induced density fluctuation δn(r, t) that leads to uζ̄,η̄iP (r, t) is

sampled by the set of random vectors ζ [see Eqs. (3.55) and (3.56)], while η̄i appears in

the external potential that perturbs the ζ states

vη̄ipert(r) =
∫

dr′ν(r, r′)η̄∗i (r
′)ϕ0

j(r
′). (3.71)

The outside vertex correction to ΣC,j can also be written in the following stochastic form

ΣΓ
C,j(t) =

{∫ ∫
ϕ0
j
∗
(r′)ηi(r, t)u

ζ̄,η̄i
X (r, r′; t)drdr′

}
, (3.72)

where uζ̄,η̄iX (r, r′; t) is given by the stochastic δρ(r, r′; t) from Eqs. (3.57) and (3.58).
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This section finishes introducing the stochastic framework for the GW correlation

self-energy and the outside vertex correction, especially the application of the stochastic

resolution of identity. In case any readers are interested in more technical details, please

refer to References 19, 21, 23, 29.
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Chapter 4

Research overview

The previous two chapters summarize the fundamental knowledge in electronic structure

theories. The following chapters introduce the new development in my research projects

in an accumulative form. Applications of the developed methods focus on the electronic

structures of molecules and condensed-phase systems. All the six publications included in

this dissertation are peer-reviewed and available online. The default affiliation for the

authors in each chapter is Department of Chemistry and Biochemistry at UCSB unless

otherwise stated.

The first project (Chapter 5) investigates the quasiparticle band structures of a donor-

acceptor copolymer and its assembilies.[1] Periodic boundary conditions are implemented

to the stochastic GW source code, enabling calculations of low-dimensional (1D and 2D)

periodic systems. The semiconducting polymer itself is modeled by a 1D finitely periodic

strand, while the 2D single-layer system is built by strands stacking in the π–π direction.

Furthermore, the 3D polymer solids are constrcucted with stacking 2D layers in the

edge-on direction. All system geometries are optimized by DFT calculations with the PBE

functional and the van der Waals correction. The same density functional approxiamtion

is also used to obtain the electronic ground state of each optimized system, which is
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followed by many-body GW calculations for the quasiparticle energies of three signature

bands. Large supercells are employed in the real-space calculations, and the steep scaling

in cost is overcome by the stochastic formalism. The GW method provides significantly

improved results for the bandgaps and band structures of the investigated systems.

The quasiparticle excitation studied in my first work is assumed delocalized in highly-

ordered π-conjugated systems (modeled by periodic systems), where the electronic states

are represented by Bloch states. However, in disordered systems, e.g., molecules in the

liquid phase, localized molecular excitations are more intuitive. These solvated systems

are commonly separated into the solute and the solvent environment, and the environment

is considered to renormalize the molecular excitations, i.e., shifts the excitation energies

and changes the quasiparticle lifetimes. In practice, the solute–solvent separation utilizes

a localized orbital basis, which is often obtained by unitarily transforming the canonical

eigenstates. In the second project (Chapter 6), I developed a linear scaling orbital

localization method[2] based on the Pipek–Mezey localization scheme. This method excels

at generating directly regionally localized states on an arbitrary fragment (subsystem)

in a giant system. The fragmentation treatment disregards the localization outside the

chosen region and thus avoids the necessary cost overhead. The entire orbital space, which

can have a dimension of up to 5000 single-particle states, is transformed sequentially until

the cost function reaches the maximum for the fragment. This sequential exhaustion

technique is the key to reduce the cost scaling from hyperquadratic to linear. The resulting

localization method is first exemplified on the negatively charged nitrogen-vacancy (NV−)

center in diamond solids. Four daggling bonds are successfully obtained from orbital

localization and used as localized basis in Hubbard model calculations for the optical

transition energies of the NV− center. Excellent agreement is achieved with previously

reported results, and significant improvement of the localized basis is observed when using

the proposed sequential localization on the fragment (NV− center).
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Chapter 7 introduces the third project where the established regional orbital local-

ization approach is applied to study molecular ionization energies in the liquid phase.[3]

Three representative solute molecules, phenol, thymine, and phenyalanine, are chosen

with the solvent, water, for molecular dynamics simulations. Five uncorrelated snapshots

are extracted from the trajectory to sample the dynamics of each solvated system. Using

a set of occupied localized orbitals, the electronic subspace for the solute is then separated

from the solvent environment. The localized ionization states of the solute are then

reconstructed from the localized basis, for which there exists a one-to-one correspondence

between the solvated molecule and the isolated one. The isolated molecule, possessing

the same structure as the solvated one, serves as an auxiliary system for evaluating the

solvation electronic effects – the energy shifts of the molecular ionization potentials. For

phenol, the computed result agrees excellently with the experimental value. The same

agreement is achieved for the solvated thymine with a comparable computed value. The

proposed method is also able to generate the full valence spectrum of photoemission,

where consistent solvation effects are observed in shifting the quasiparticle energies and

shortening the lifetimes.

The fourth work extends the investigation of molecular excitations to various polariz-

able solvent environments,[4] including water, acetonitrile, dichloromethane, tetrahydro-

furan, and benzene. The computed IP shifts are further campared to the macroscopic

polarizability of the five solvents. These comparisons show that the explicit IP shifts

do not depend solely on the solvent polarizability but are also relatd to the decay of

solute–solvent interactions, at least at the density–density interacting (GW ) level. To

probe the distance-dependent solvation effects, the solvent environment is fragmented

into shells, followed by the decompostion of the correlation self-energy stemming from the

induced density fluctuation on each solvent shell. The fragment correlation energy at the

quasiparticle energy solution is then plotted as a function of the distance characterizing
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each solvent shell. As expected, the solute–solvent correlation decays with an increasing

distance and practically vanishes at about 9 Å. Surprisingly, the decaying pattern is

independent of the solvent type. The 9 Å distance appears to be the common cutoff

radius, within which the solvent molecules are considered effectively screening the interac-

tions. Hence, the number of effective solvent molecules is found another important factor

contributing to the explicit IP shifts. Finally, the averaged IP shift over the number of

effective solvent molecules is found proportional to the macroscopic solvent polarizability.

The previous four projects are based on the correlation method up to the GW

approximation, which captures the electrodynamical screening effects. However, in the

low-density or strong correlation limit, e.g., molecular or d-electron systems, the GW

method may fail to capture the electron–electron correlation sufficiently. One effective

way to improve the one-shot GW (G0W0) approach is to including the vertex corrections,

which capture higher-order electronic correlation such as particle–hole ladder diagrams and

density matrix interactions. Chapter 9 presents a collaborative work with a research group

from Berkeley on comparing and benchmarking the vertex-corrected G0W0 (vxG0W0)

results with respect to a nearlt full CI method – adaptive sampling configuration interaction

(ASCI).[5] The linearly scaling vxG0W0 approach agrees excellently with ACSI on the

shake-up satellites appearing in the spectral functions for the excitations of bottom valence

states. These secondary peaks, which are missing in the G0W0 spectra, correspond to

multi-quasiparticle interactions induced by the creation of a high-energy hole. Compared

to the steep scaling of ASCI, the vxG0W0 is more hopeful to tackle large-scale systems

and provide more accurate quasiparticle energies.

Chapter 10 introduces an embedding scheme to include vertex corrections in the

stochastic GW correlation self-energy.[6] First, an orbital subspace is defined by a projector

consisting of electron–hole states with low optical transition energy, e.g., the highest

occupied and lowest unoccupied states. Such an electronic subspace is denoted as the
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active space, which can also be constructed by the π and π∗ bonds of π-conjugated

systems. Using this active space projector, the embedding is then performed through

a “separation–propagation–recombination” procedure for the real-time proagation of

stochastic electronic states. An effective Hamiltonian with rescaled time-dependent

exchange interactions is determined specifically for each electron and hole state in the

active space. Only components within the active space are treated by this effective

time-dependent Hamiltonian, while the rest at the random phase approximation level.

Based on the resclaed exchange approximation to the correlation effects, a coefficient-self-

consistent circle is further proposed to update the rescaling factor and the vertex-corrected

self-energy. This methodology is exemplied on computing the frontier orbital energies of

practical donor–acceptor materials with up to 2500 electrons. The fundamental gaps of

these charge-transfer systems have been significantly improved upon the G0W0 results by

the embedded vertex corrections. This enhancement is found consistent among systems

of various dimensions.

The supporting information for each work is also provided as appendices. Technical

details and supplementary figures and tables indicated in the main text can be found

there.
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Chapter 5

Quasiparticles and Band Structures in

Organized Nanostructures of

Donor−Acceptor Copolymers
Guorong Weng, Vojtěch Vlček

ABSTRACT

The performance of organic semiconductor devices is linked to highly-ordered nanos-

tructures of self-assembled molecules and polymers. The many-body perturbation theory

is employed to study the excited states in bulk copolymers. The results show that accep-

tors in the polymer scaffold introduce a, hitherto unrecognized, conduction impurity band

that leads to electron localization. The donor states are responsible for the formation

of conjugated bands, which are only mildly perturbed by the presence of the acceptors.

Along the polymer axis, the nonlocal electronic correlations among copolymer strands

hinder efficient band transport, which is, however, strongly enhanced across individual
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chains. Holes are most effectively transported in the π−π stacking, while electrons in

the impurity band follow the edge-to-edge directions. The copolymers exhibit regions

with inverted transport polarity, in which electrons and holes are efficiently transported

in mutually orthogonal directions.

5.1 LETTER

Donor−acceptor (D−A) semiconducting copolymers represent arguably the most

variable class of semiconducting materials in organic electronics.[1, 2, 3, 4] The wide

range of possible donors and acceptors provides an unmatched tunability of the system’s

electronic and optical properties.[5, 6, 7] Rational device design is, however, hampered

by the complicated relationship between electronic properties and the arrangement of

the molecular chains in the condensed phase (e.g., in spin-coated thin films).[8, 9, 10, 11]

Experiments showed that highly ordered nanodomains, i.e., highly organized nanometer-

scale regions, are widely present in solution-processed thin films. The nanodomains

are composed of nanowires,[12] nanosheets,[13] and crystallites.[14, 15, 16, 17] Face-on
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(π−π) or edge-on stacking is the dominant arrangement of conjugated molecules leading

to high charge mobilities and excellent device performance.[12, 13, 14, 15, 16, 17] The

nanodomains exhibit quasiparticle bands observed by angle-resolved photoemission.[18]

Hence, the high hole mobilities are explained by band-like transport[19, 20] in the π−π

direction.[14, 16, 21] However, a detailed microscopic understanding of how the structure

and composition of the copolymers impact the electronic excitations is currently missing.

Answering these questions requires a theoretical investigation of the copolymers’

electronic structure in the condensed phase. In principle, such simulations need to

capture the nonlocal intermolecular interactions [22] of electrons delocalized along the

π-conjugated backbone.[18] The individual polymer chains are highly polarizable and held

together by van der Waals (vdW) forces. Even in the limit of ideally crystalline systems,

quantitative theoretical predictions of electronic excitations are prohibitive, and they have

been limited to crystals of small molecules.[23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] For

polymers, the computational efforts have considered only isolated oligomers [34, 35] or

one-dimensional (1D) periodic systems[36, 37, 38, 39, 40] treated by mean-field approaches,

which are less expensive but do not take into account the nonlocal electronic correlations

(governed by polarization effects). [41] Further, the geometries of the polymer strands

are typically forced to be planar, i.e., they disregard actual arrangements in the highly

organized domains.[35, 39] Finally, the mean-field methods do not, in principle, provide

access to quasiparticle (injected electron and hole) energies and tend to underestimate

excitation energies grossly.[42]

In this work, we overcome these limitations and apply state-of-the-art theoretical

approaches to explain the key features of the electronic structure of D−A copolymers.

Our calculations employ many-body perturbation theory[42] within the stochastic GW

approach[43, 44, 45, 46] (where G represents the Green’s function and W the screened

Coulomb interactions). The electron−electron interactions are computed for each excita-
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tion. In the GW approximation, the interaction term takes into account a selected classes

of Feynman diagrams describing the electrodynamic screening, i.e., the induced charge

density fluctuations. Electrons thus interact via a screened Coulomb interaction, which

is nonlocal and time-dependent. In practice, the GW method yields quasiparticle (QP)

excitation energies in excellent agreement with available experimental data.[47, 42, 44]

The electronic structure and QP energies of the condensed phase is determined by the

properties of the constituting moieties as well as by mutual interactions among individual

copolymer strands. While these contributions are nontrivial, relations among a few

key parameters govern the system’s overall behavior. To illustrate this, we consider a

prototypical example: “FBT” and related D−A copolymers[48, 49, 50] (see the Supporting

Information for details). Here, the fluorene moiety (F) acts as a “donor” (D), and

benzothiadiazole (BT) acts as an “acceptor” (A). The isolated molecules are illustrated in

the inset of Figure 5.1 and the Supporting Information. To focus only on the interactions

among the conjugated backbones and to relate to previous literature,[35, 38, 39] we

replaced the long alkyl chains of FBT with H atoms. The D units are the source of

delocalized electronic states. In contrast, acceptors are typically chosen so that they have

a higher electron affinity than donors,[51, 52] acting as strong potential wells for electrons

(see Figure A.2). Hence, the A unit is a source of localized electrons whose wave functions

have a limited spatial extent.
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Figure 5.1: Quasiparticle band structures and orbitals of selected states of a fluorene
(a, b) and FBT (c, d) strands. The monomer units are shown in the inset of panels b
and c. The electronic states that are delocalized over the entire polymer backbone are
denoted lower and upper conjugated bands (LCB and UCB), for the highest valence
and lowest conduction band. The band-edge states in fluorene (a) are formed by the
LCB and UCB illustrated for the Brillouin zone center, Γ, and its boundary, X. The
corresponding bands are highlighted in panel b. FBT is D−A copolymer, with the
individual subunits labeled in the inset of panel c. Due to the presence of A, the
bandstructure contains an acceptor impurity band (AIB) highlighted in red (c). Panel
d depicts the LCB, AIB, and UCB for two points in the Brillouin zone; the AIB is
strongly localized on the acceptor subunit. Red and blue colors distinguish the wave
function phase.

In a single copolymer strand (i.e., 1D periodic system with repeated D and A subunits),

the quantum confinement is reduced in the direction of the polymer axis. Consequently,

the fundamental gap of the infinite chain decreases with the polymerization length; for

an infinite system, it is 4.08± 0.04 eV, which is 1.48± 0.05 eV less than for an isolated

monomer (Figure A.3). In a condensed phase (either 2D slab or 3D bulk), the presence of

neighboring strands eliminates the quantum confinement in the directions orthogonal to

the polymer axis. Hence, the fundamental band gap further decreases (Figure A.3b).

For quantitative predictions of the band gaps in the condensed phase, many-body

methods turn out to be indispensable as dynamical electron−electron interactions are

responsible for the nonlocal (interchain) interactions. Indeed, the ionization potential for

the 2D slab computed with the sGW method is 5.48± 0.02 eV (Figure A.3a), in excellent

agreement with thin-film experiments that provide an estimate of 5.4−5.5 eV.[49] The
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fundamental band gaps of the surface and the bulk are 3.33 and 2.23 eV (Figure A.3b),

and the latter is in good agreement with the experimental value of 2.32−2.44 eV.[49]

The periodic copolymer arrangement supports the formation of band structures

(observed experimentally, as discussed above). To characterize the principal features of

the electronic states, we start with the 1D system shown in Figure 5.1c. The crystal

momentum is imprinted on the individual wave functions (Figure 5.1d), which, however,

retain much of their molecular character (Figure A.4). It is thus possible to separate the

contributions of D and A to the highest valence and lowest conduction bands that are

responsible for the charge transport.

The donor behavior dominates the highest valence state; it has conjugated character

and delocalized π orbitals (see more details in Figure A.5). The top valence band is

broad (its bandwidth is 0.86± 0.04 eV) with a parabolic dispersion near the extrema that

occur at the critical points of the Brillouin zone. The near-band-edge character, together

with the large bandwidth, translates to a low effective mass of ∼0.22 m∗
e. Such a low

value is consistent with experimental results for similar (semi)conducting copolymers.[18]

We denote the highest conduction band and the lower conjugated band (LCB). The

complementary “upper” conjugated band (UCB) is formed from π∗ orbitals, and it has

much higher energy (Figure 5.1d). Both the LCB and UCB are qualitatively analogous to

the band edge states in a pure fluorene chain (Figure 5.1a), i.e., the conjugated bands are

only mildly perturbed by the presence of acceptor subunits. The correspondence between

the electronic structures of D−A and pure donor polymers has not been noticed until

now.

In contrast, the lowest conduction band of the copolymer comprises states localized

only on the acceptors (Figure A.5). The acceptor band has significantly reduced width

(Figure 5.1c), and it appears between the LCB and UCB.

In calculations with distinct A molecules, we found that the exact energy separation
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between the conjugated and localized states depends only a little on the choice of acceptors

(see Figure A.6 for details). In FBT, the separation of the conduction states is 1.11 eV;

the oxygen- and selenium- substituted copolymers show slightly larger separations [1.38

eV and 1.16 eV, respectively (see Figure A.6)]. In all cases studied, the localized state

is characteristically inserted between the two conjugated bands. On the basis of the

conceptual analogy to charge-trapping “in-gap” states, we denote the lowest conduction

states as the acceptor impurity band (AIB). The formation of the localized and flat

impurity band has not been described previously. One of the key findings of this letter is

the recognition and distinction between the conjugated and impurity bands.

The LCB, AIB, and UCB are present in the same order in 1D and in the condensed

phases. While the van der Waals forces only weakly bond the individual copolymer

strands, the interchain interactions change the band structures significantly. Besides the

shift of the QP gaps (discussed above), the charge transport is critically influenced by

the changes in the bandwidth. The dispersion of LCB and AIB determines the charge

transport polarity. Further, the bandwidth is directly related to the charge carrier effective

mass. To investigate the physical origin of the of the band structure changes, we will

separate two main contributions: (i) the one-body electronic interactions[53] including the

(classical) density−density Coulomb repulsion (Table A.6), and (ii) the electron−electron

interactions, which represent highly nonlocal and dynamical (time-dependent) quantum

effects.

The first contribution derives from the local[54] properties of the copolymer. In this

case, the electronic structure and charge transport are related to the bond arrangement

between the donor and acceptor subunits.[37] The existence of a single bond between

adjacent donors and acceptors implies large rotational freedom. In practice, the mutual

orientation of the A and D units depends on the environment. The rotational angle varies

between 43◦ and 56◦ in the relaxed structures with 1D, 2D, or 3D topology (Figure A.9).
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Other structural variations are insignificant as the rest of the copolymer backbone is rigid,

and we disregard them in the analysis.

As noted above, the AIB is composed of localized states centered on the acceptor

subunits. The corresponding wave function does not extend to the D−A joint appreciably

(Figure 5.1d). Hence, the AIB is practically insensitive to the torsion angle. In contrast

to the AIB, rotation away from the ideally planar geometry leads to the narrowing of

conjugated states (Figure 5.2b). Since the torsion angle is larger in the condensed phase

than in a free-standing polymer, the hole effective mass in the LCB is thus increased in

bulk compared to a prediction from the 1D model.

The sensitivity of the LCB is directly related to the character of the wave function

near the D−A bond. Going from the low energy part of the LCB (near the X point of

the Brillouin zone) to the band edge, the wave function develops a nodal plane across

the D−A joint (Figure 5.2c). The presence of the nodes is associated with increased

QP kinetic energy. A close inspection of various torsion angles reveals that the nodes

across the D−A bond are suppressed when going from 1D to 3D conformation. The band

edge is kinetically stabilized (Figure 5.2a), while the bottom LCB is insensitive to the

rotation. As a result, the single-electron interactions promote bandwidth reduction in the

condensed phase.
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Figure 5.2: The effect of the characteristic torsion angles between D and A subunits
found in various condensed phases of FBT: (a) The QP energies of the LCB at the
Brillouin zone center, Γ, and its boundary, X as a function of the torsion angle. The
QP energy of LCB is more sensitive to torsion at Γ than that at X. (b) The QP valence
bandwidth linearly decreases with the torsion angle. (c) LCB wave function at the
donor (D) and the acceptor (A) joint for Γ and X points of the Brillouin zone. Red and
blue colors distinguish the wave function phase. At Γ, the torsion gradually destroys
a nodal plane between D and A, leading to kinetic stabilization of the QP energy.
Conversely, the “bridging character” of the LCB at the X point is little affected by the
increased torsion. The error bars in panels a and b represent the statistical error of the
stochastic many-body calculation.

While the local properties are clearly responsible for the electronic structure modifi-

cation, the nonlocal many-body effects are equally important and influence the excited
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states. These electron−electron interactions are decomposed into two principal contribu-

tions: (i) nonlocal exchange (due to the fermionic nature of the charge carriers), and (ii)

time-dependent correlations among electrons and holes (which include vdW interactions

responsible for the cohesive energy of the bulk). The significance of the many-body

treatment is illustrated by the fact that LCB and AIB widths increase by ∼25% and

∼46% if the nonlocal and dynamic description is used instead of the common mean-field

approach [e.g., in local and static density functional theory (see Table A.6)].

We first inspect the behavior of the conjugated states. While the exchange interaction

typically drives electron localization,[55] it surprisingly enhances the dispersion of the

delocalized bands along the polymer axis. The energies of states near the valence band

maximum are stabilized much less than at the Brillouin zone boundary, i.e., the X-point

(Figure A.7a). In the latter case, there is an increased spatial overlap with a large number

of occupied orbitals, leading to a QP energy decrease. The exchange-driven band widening

is a signature of the conjugated bands, and it is not observed otherwise (e.g., in AIB). To

document this, we provide complementary calculations for additional polymer strands

(polyacetylene and polyethylene, with and without conjugated bonds) in Table A.9.

In general, this effect is dramatic for copolymer systems. In the absence of electronic

correlation (which reduces the exchange through dynamical screening), the LCB would

widen by an additional 40%. This increase can be paralleled with a (spurious) infinite-range

response to hole localization observed for bare exchange interactions.[56]

The screening contribution, governed by the reducible polarizability related to charge

density fluctuations,[42] changes the picture qualitatively. These correlation effects are

dominated by optical (plasmon) excitation that shifts to lower energy as the crystal

momentum increases (Figure A.8). The states away from the band edge (i.e., closer to

the Brillouin zone boundary) have energies approaching the resonant frequency of the

collective charge density oscillations. For the corresponding quasiparticle excitations,
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exchange is strongly attenuated and becomes short range; the QP energies shift up, and

the LCB consequently narrows (Figure A.7b). The polarization effects thus reduce both

the conduction and valence bandwidths, indicating that charge carriers are stabilized

(localized) by the intra- and interchain charge density fluctuations.

In the condensed systems, the LCB and UCB remain delocalized only along the polymer,

not across the individual strands (illustrated in Figure 5.3c). As a result, the conjugated

bands further flatten. Along the edge-to-edge direction (Γ → Z Figure 5.3a), both the

LCB and UCB are extremely narrow and effectively “molecular” in nature. Neither

nonlocal exchange nor correlation effects contribute significantly to the quasiparticle

energies in this case. In practice, any band-transport of holes in LCB is significantly

hampered along the edge-to-edge stacking direction.

However, the localization does not imply that the conjugated bands behave like those

in an isolated strand. Here, the band dispersion is reduced by as much as 60% along the

polymer axis compared to a free-standing copolymer. The flattening is most prominent

in the 2D case (Table A.7). Nonlocal interchain correlations govern the decrease of the

LCB width; they are almost twice as big as the effect of torsion between the D and A

subunits. In slabs, the strong polarization effects lead to the formation of local maxima

in LCB and dispersion narrowing near the Γ point (Figure A.10b). This indicates that in

near-surface regions, the valence band edge may not be characterized by a single crystal

momentum vector, and the fundamental band gap is likely indirect.
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Figure 5.3: Quasiparticle band structure of FBT in a 3D crystalline domain with
relative contributions of electronic (a) exchange and (b) correlation energies for the
LCB and AIB. The contributions are given by the color code and are plotted relative
to the band average. The Γ → Y branch corresponds to the band in the π−π stacking
direction; the Γ → X and Γ → Z branches correspond to the intrachain and edge-on
stacking directions. The inverted polarity regime is in the Γ → Z, where the band
dispersion of AIB is much higher than for the conjugated bands. (c) Local wave function
character is of the selected states at two distinct points in the Brillouin zone along the
Γ → Z direction. The two molecules are depicted in the edge-on stacking. Both the
LCB and UCB remain localized on individual strands, but AIB bridges the polymer
chains. Red and blue colors distinguish the wave function phase.

In contrast, cooperative interchain interactions appear along the π−π stacking (Γ → Y

branch in Figure 5.3). As a result, the LCB dispersion is the largest along this face-

on direction (≤710 meV). The significant bandwidth suggests a high propensity for

efficient band-like transport of holes within LCB. The reason (despite the strong on-chain

localization) is twofold: first, the packing of chains in bulk is tighter; second, the high

efficient screening allows greater delocalization of the π (and π∗) orbitals above and below

the conjugated framework. Both effects enhance the interchain “communication,” which

leads to an enlarged bandwidth. In the 3D condensed phase, the LCB width is largest
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along the π−π stacking compared to any other direction (Figures 5.3a and 5.3b), and

indicates an efficient band transport of holes.

The lowest conduction band is very different. The impurity states are strongly localized

along the copolymer axis. As a result, local and nonlocal interactions are insensitive to

crystal momentum, and the band is narrow. Further, there are no increased interactions

along the π−π stacking, and the AIB electronic states thus appear to be molecule-like.

Hence, the acceptor band is flat along Γ → Y as well. There is a low likelihood of electron

band-transport in the face-on or polymer axis directions.

Unexpectedly, the AIB exhibits cooperative effects along the edge-to-edge stacking

(Figure 5.3c). For states near the band minimum (i.e., near Γ), the impurity wave function

delocalizes across individual copolymer chains. In contrast, a nodal plane appears between

every adjacent polymer for higher crystal momenta due to the increase of the kinetic

energy towards the Brillouin zone boundary (i.e., near Z). The associated QP energy

variation leads to a relatively wide[57] dispersion of ∼300 meV in the Γ → Z direction.

Besides the kinetic contribution, the band widening is also driven by a large variation of

the exchange energy. Along Γ → Z, the AIB thus behaves like the conjugated states in

the polymer axis. These properties indicate that the AIB can sustain electron transport

along the edge-to-edge stacking direction.

In summary, we investigated a prototypical example of D−A copolymers, FBT, and

explained its electronic structure and the propensity to band transport in the condensed

phase. Our many-body calculations are in excellent agreement with available experimental

data, and, for the first time, they provide insight into the quasiparticle (added hole and

electron) states of bulk copolymers. The results show that acceptors, which typically act

as strong potential wells for electrons, form a previously unrecognized “impurity” band.

In contrast, the donor groups are responsible for delocalized lower (valence) and upper

(conduction) conjugated bands. The delocalized states surround the acceptor band, but
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they only mildly affect each other.

The intrachain transport is negatively impacted by the condensed phase stacking,

which affects the rotation between the donor and acceptors. This is compensated by

electron delocalization across the copolymer strands, leading to the formation of wide

bands that likely support efficient transport. Electronic correlations (responsible for

the cohesive van der Waals forces) universally suppress band dispersion, but nonlocal

exchange interactions drive it in some directions.

The large width of valence bands along the π−π stacking indicates that hole transport

is possible in the face-on direction. Surprisingly, we observe a strong propensity for

electron transport along the edge-on stacking within the acceptor impurity band. Hence,

our calculations predict that D−A copolymers sustain an orthogonal ambipolar transport

network. So far, such transport behavior have been reported only in heterogeneous

mixtures of p-type polymer and a small n-type molecule.[58, 59] In contrast, our results

suggest that the transport of electrons and holes can be achieved in pure D−A copolymers

merely through molecular packing.

SUPPORTING INFORMATION

The Supporting Information provides additional texts, figures and tables listed below.

Texts: computational methods and details.

Figures: 1D, 2D, and 3D supercells in computations, QP energy diagrams of molecular

and periodic systems, hybridization of FBT frontier orbitals, selected orbitals of UCB,

AIB, and LCB in the 1D system, Comparison of band structures of D−A copolymers with

different acceptors, QP band structures with exchange and correlation energy as functions

of the momentum, graphical solutions to the QP and correlation energies, represnetaion

of the D−A torsion angle.
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Tables: parameters in DFT and MBPT calculations, measurements of geometrical

constants for different polymers, decomposition of the contribution to the valence band-

width, bandwidths of the LCB and AIB, exchange contribution to the valence bandwidth,

measurements of torsion angle for FBT strands, convergence of the IP, EA, and gap to

the supercell’s size.
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Chapter 6

Reduced Scaling of Optimal Regional

Orbital Localization via Sequential

Exhaustion of the Single-Particle Space
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Song,b Vojtěch Vlček

ABSTRACT

Wannier functions have become a powerful tool in the electronic structure calculations

of extended systems. The generalized Pipek−Mezey Wannier functions exhibit appealing

characteristics (e.g., reaching an optimal localization and the separation of the σ−π

orbitals) compared with other schemes. However, when applied to giant nanoscale systems,

the orbital localization suffers from a large computational cost overhead if one is interested

in localized states in a small fragment of the system. Herein we present a swift, efficient,
aMaterials Department, University of California, Santa Barbara, CA 93106, USA
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and robust approach for obtaining regionally localized orbitals of a subsystem within

the generalized Pipek−Mezey scheme. The proposed algorithm introduces a reduced

work space and sequentially exhausts the entire orbital space until the convergence of the

localization functional. It tackles systems with ∼10000 electrons within 0.5 h with no loss

in localization quality compared to the traditional approach. Regionally localized orbitals

with a higher extent of localization are obtained via judiciously extending the subsystem’s

size. Exemplifying on large bulk and a 4 nm wide slab of diamond with NV− center, we

demonstrate the methodology and discuss how the choice of the localization region affects

the excitation energy of the defect. Furthermore, we show how the sequential algorithm is

easily extended to stochastic methodologies that do not provide individual single-particle

eigenstates. It is thus a promising tool to obtain regionally localized states for solving the

electronic structure problems of a subsystem embedded in giant condensed systems.

6.1 INTRODUCTION

Localized orbitals are widely used in electronic structure computations for multiple

purposes: conceptually, they can provide valuable information about chemical bonding

and chemical properties of molecules and materials. More importantly, they allow the

evaluation of nonlocal two-body interaction integrals at a significantly reduced cost due

to the reduced spatial overlaps. Hence, they represent a powerful tool in mean-field and
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postmean-field electronic structure calculations such as hybrid functional calculations,[1,

2] density functional theory with the Hubbard correction term,[3, 4] or many-body

calculations.[5, 6] In the same vein, the maximally localized orbital descriptions are

optimal for treating correlation phenomena since (due to the locality) the number of

“inter-site” interactions is minimal, and the effective size of the problem is smaller. As a

result, optimally localized states are essential in the context of embedding and downfolding

for many-electron problems.[7, 8, 9, 10]

Orbital localization approaches can be categorized by whether a cost function is

optimized or not. The selected columns of the density matrix (SCDM)[11] method and

projection with a minimal atomic basis[12, 10] are representative localization schemes with-

out optimizing a cost function. Within the optimization techniques, several functionals

have been proposed: the Foster−Boys (FB) scheme[13, 14, 15] minimizes the spatial exten-

sion of the orbitals and leads to maximally localized Wannier functions (MLWF)[16, 17]

in periodic solids, while the Edmiston−Ruedenberg (ER) approach[18, 19, 15] maximizes

the self-repulsion energy. von Niessen[20] introduced another functional that maximizes

the charge-density overlap. Pipek−Mezey (PM)[21] proposed to minimize the mean

delocalization measure (defined later). Arguably, the most popular approaches are the

FB scheme for molecules and the MLWF for periodic solids due to their O(N3) scaling

(N is the number of electrons). But these schemes suffer from the mixture of σ−π bonds,

commonly known as “banana” orbitals.[21, 22] The ER approach provides more localized

orbitals than the FB and supports the σ−π separation. However, its computational cost

scales as steeply as O(N5), preventing it from practical applications in large systems.

Among these functional-optimization approaches, PM localization is the most appealing

approach. It can provide high spatial localization and the separation of σ−π characters

of chemical bonds compared with the FB counterpart. At the same time, the scaling of

PM localization is O(N3) only, i.e., significantly lower than the ER counterpart. Because
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of the mathematically ill-defined Mulliken charges[23] in the original scheme, the PM

localization has been generalized to various partial charge schemes.[24, 25] The generalized

PM approach is robust with respect to the choice of the partial charge.[25] Recently,

the PM localized molecular orbital formalism has been further expanded to periodic

systems.[22] This generalized Pipek−Mezey Wannier Functions (G-PMWF) approach

retains the advantages (particularly stronger localization) compared with MLWF.

The iterative optimization with O(N3) scaling per iteration, however, still translates

to a relatively high computational cost and requires that all single-particle states are

known. This becomes a bottleneck for giant systems: the overhead is substantial when one

is interested only in a small fraction of the system, such as maximally localized orbitals

associated with a point defect in solids, an adsorbate molecule on a surface, or molecular

states in a complex environment. Here, handling the entire problem is often necessary,

despite only a fraction of localized states being sought. Such nanoscale problems involve

thousands of electrons. To generate PMWFs or localized orbitals with comparable quality,

the prevalent strategy is to lower the number of iteration steps necessary to reach the

optimum, e.g., by a robust solver.[26, 27] Although the proposed scheme is either iteration-

free[26] or can effectively lower the iteration steps towards convergence,[27] an auxiliary set

of functions or atomic basis is still required in the localization process. The computational

scaling to the system’s size is not seen improved either. Further, for truly large systems

with thousands of electrons, one would employ techniques that avoid the use (or knowledge)

of all single-particle states.[28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]

Herein, we present a new and complementary top-down approach leading to a fast,

efficient, and robust orbital localization algorithm via sequentially exhausting the entire

orbital space. It is beneficial for obtaining regionally localized orbitals for a subsystem

within the G-PMWF scheme. In contrast to other methods, the problem’s dimensionality

is reduced from the outset by partitioning the orbital space. As our work space is effectively
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compressed, the dimensionality of the relevant matrices in the G-PMWF scheme is much

smaller and therefore, the time per iteration step is shortened by orders of magnitude. The

unitary transform is performed iteratively until convergence. The transformation starts

directly either with: (i) the canonical real-space delocalized orbitals without any external

or auxiliary atomic basis set;[46, 26, 27] or (ii) an initial guess of the subspace of localized

single-particle orbitals (which can be obtained by, e.g., by filtering[28, 30, 31, 33, 41, 43]).

The compression of dimensionality helps to reduce the scaling of the method with the

number of electrons to be linear. The completeness of sequentially exhausting the orbital

space is demonstrated by the converged localization functional. We test the quality

of the localized basis by constructing an effective Hubbard model for the negatively

charged nitrogen-vacancy (NV−) defect center in diamond and computing its optical

transition energies in bulk supercells and a large (4 nm thick) slab containing nearly

10,000 electrons. Excellent agreement between the sequential exhausting approach and

the full space approach is achieved for the computation of optical transition energies. The

accuracy of Hubbard model calculations is further improved by the Wannier function

basis obtained from the subsystem with an extended size. In the last section, we provide

a thorough discussion of how the choice of localization affects the excitation energies of

the embedded NV− center.

6.2 THEORY

6.2.1 Generalized Pipek−Mezey Wannier Functions

In this subsection, we briefly revisit the G-PMWF formalism[22] to clarify the motiva-

tion for this work. The G-PMWF seeks to minimize the mean delocalization measure D
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defined as[21]
1

D
=

1

Ns

Ns∑
i=1

NA∑
A=1

[QA
ii(U)]2 (6.1)

where i denotes the ith state, and Ns represents the number of states that spans a

particular orbital space. A is the Ath atom in the system, and NA is the number of

atoms in the system. Q is termed the atomic partial charge matrix (defined below). In

practice, QA
ii represents the partial charge on atom A contributed by state i. U is the

unitary matrix that transforms the orbitals. Minimizing D is equivalent to maximizing

the following functional P

P(U) =
Ns∑
i=1

NA∑
A=1

[QA
ii(U)]2 (6.2)

The stationary point of P corresponds to the unitary matrix U that transforms the

canonical states into Pipek−Mezey localized states

|ψPMj ⟩ =
Ns∑
k=1

Ujk |ϕk⟩ (6.3)

where |ϕk⟩ represents the canonical state.

Generally, the value of P is iteratively maximized until reaching convergence. In the

nth iteration step, the Q matrix can be calculated by

QA,n
ij =

∫
ψni

∗(r)wA(r)ψnj (r)dr (6.4)

Here ψni (r) represents either the transformed state (n > 0) or the canonical state (n = 0).

In the G-PMWF formalism, wA denotes the atomic weight function using real-space

partitioning,[25, 22] e.g., Gaussian weight.[47]
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For n ≥ 1, the Q matrix can also be transformed by

QA,n
ij =

Ns∑
k=1

Ns∑
l=1

(Un†)ikQ
A,n−1
kl Un

lj (6.5)

Note that in practice, the Q matrix has a dimensionality of NA ×N2
s . The number of

elements reaches 109 for a system with 103 atoms and 103 occupied states. Furthermore,

in our real-space implementation, the theoretical scaling of the method is Ng ×NA ×N2
s ,

where Ng denotes the number of grid points in real space. Our numerical results for the

defect center in diamond are close to this theoretical behavior, as discussed in the Results

and Discussion section.

6.2.2 Fragmentation and Sequential Variant of G-PMWF

This subsection presents an efficient algorithm to obtain a subset of PMWFs localized

on a specific set of atoms.

Fragmentation Treatment

Conventionally, one has to localize all Ns states and then identify Nrl states that are

regionally localized on the selected atoms. For instance, for a CH4 molecule surrounded

by other atoms/molecules, Nrl will be four if considering only the valence electrons and

doubly occupancy. When Nrl ≪ Ns, this approach suffers from a significant overhead.

This is quite limiting when nanoscale systems are considered: the dimensionality of

matrix Q and the computational scaling make it challenging to work with thousands of

electrons. Previously, we introduced a modified form of the PM functional to account

for N ′
A (N ′

A ≪ NA) selected atoms only and search for the Nrl states directly.[6] Such a

modification is equivalent to the search of a local maximum of P on the selected atoms,

and it reduces the dimensionality to N ′
A × N2

s . In this work, we further compress the
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N ′
A to simply 1 by creating a single fragment from the subset of atoms. Unlike the

“fragment” proposed in the FB scheme,[46] our definition of a fragment uses the atomic

weight function wA

wf (r) =
N ′

A∑
A=1

wA(r) (6.6)

where f denotes the fragment of interest. The localization functional thus becomes

P ′(U) =

Nrl∑
i=1

[Qf
ii(U)]2 (6.7)

where P ′ is the modified PM functional for the fragment.

Note that: (i) the unitary transform is still performed on all Ns states that need to be

known, and (ii) the Nrl states are identified from Ns by evaluating the partial charge on

the selected fragment. In this context, we define the measure of the locality of a specific

state on the fragment as

Lfi =

∫
ψi

∗(r)wf (r)ψi(r)dr (6.8)

Its value ranges from 0 (not localized) to 1 (most localized). Only the top Nrl states of

the Ns states in the decreasing order of Lfi are considered the regionally localized Wannier

functions on the fragment. In the following text, we denote this fragmentation variant of

G-PMWF as “F-PMWF.”

Next, the F-PMWF approach is broken into two steps: (1) maximize P ′ (eq 6.7) and

find the Nrl states that are localized on the fragment; (2) maximize the canonical P

defined as

P(U) =

Nrl∑
i=1

N ′
A∑

A=1

[QA
ii(U)]2

using the Nrl states from step 1 and obtain localized states on each individual atom of

the fragment.
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Essentially, the first step is a “folding” step where the electron density is effectively

localized on the fragment disregarding the individual atoms. The second step is instead

an “unfolding” step where the electronic states obtained from step 1 are unfolded onto

each individual atom in the fragment.

The Q matrix is reduced to N2
s in step 1 and to N ′

A ×N2
rl in step 2, respectively. The

second step is trivial in cost since Nrl is often much smaller than Ns. However, the first

step can still be expensive when working with thousands of electrons, and the knowledge

of Ns eigenstates is necessary.

Sequential Exhausting of the Full Orbital Space

To further compress the Ns in the maximization process and, in principle, avoid

the knowledge of Ns states altogether, we introduce a sequential variant of F-PMWF,

sF-PMWF. We first review the approach which assumes Ns states are available, and at

the end of this section, we extend it to a more generalized case when the eigenstates do

not need to be known a priori.

The sF-PMWF approach incorporates an additional iterative loop (“outer-loop”) to

maximize the functional P ′ successively. The idea is schematically presented in Figure 6.1a.

A generalized original (entire) space, either occupied or unoccupied, is spanned by Ns

orthonormal canonical states. The initial matrix that contains the canonical states is the

identity matrix, and each row of the matrix contains the coefficients of a single-particle

state in the canonical basis. The number of rows represents the number of states used in

the Q matrix. The black lines and arrows stand for the initialization of the localization

procedure. The outer-loop is guided by the blue lines and arrows, while the magenta lines

and arrows guide the inner-loop (maximizer). The red points denote the convergence

checkpoints.
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Figure 6.1: (a) Schematic illustration of the sF-PMWF method. Each row of the
matrix represents a single-particle state in the canonical |ϕj⟩ basis. Ns represents the
number of states that define the original space while Nw represents the number of
states in the actual work space. P ′ is the modified PM objective functional. The index
m denotes the iterative step of the outer-loop (blue). The index n denotes the iterative
step of the inner-loop (magenta). (b) sF-PMWF method exemplified on the NV−

center in diamond. The electron density represents the occupied space consisting of Ns

delocalized canonical orbitals. The fragment is built with four selected atoms. The core
space is first defined by Nc relatively localized canonical states and then sequentially
localized on the selected fragment. The rest space is represented by Ns−Nc delocalized
states over the whole system. The output is a set of regionally localized Wannier
functions on the selected fragment. The isosurface value is set at 0.1 for the electron
density and 0.05 for the single-paricle orbital.

Our goal is to find only Nrl states that are spatially localized on a selected fragment.
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We seek to minimize the cost of the calculation by neglecting the localization in the other

regions of the systems. The general procedure is as follows:

First, we assume that in practical calculations, it may be necessary to account for

a “buffer,” i.e., we search for Nc ≥ Nrl states (where Nc is typically similar to Nrl in

magnitude). We denote the Nc most localized orbitals chosen based on the value of Lfi

(eq 6.8) as “core states.” And the “core space” is spanned by such Nc states. The original

space is essentially split into two, the core and its complement (denoted “rest space”). The

states in the rest space are then reordered upon their locality (eq 6.8) for the next step.

Second, a work space is built with a dimensionality of Nw×Ns, where Nc < Nw ≪ Ns.

The first part of the work space is filled by the core states (the yellow region). On the

other hand, the rest space is partitioned into Nb blocks according to the value of Nr,

which is an arbitrary integer parameter (1≤ Nr ≤ Ns −Nc) that denotes the number of

states from the rest space. And note that the states in the rest space have been reordered

in the decreasing order of Lfi . The number of states in each block satisfies the following

equations

Nk
s = Nr if k < Nb (6.9)

and

Nk
s ≤ Nr if k = Nb (6.10)

Here Nk
s represents the actual number of states in the kth block. The rest space is

sequentially updated (explained in the next step) and can be reaccessed during the

localization process. The index m denotes the mth iteration step in the outer-loop and
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the m (m > 0) and k are connected by

k =


Nb if mod(m,Nb) = 0

mod(m,Nb) if mod(m,Nb) ̸= 0

(6.11)

Here we define one “macro-cycle” when the outer-loop exhausts all the blocks in the rest

space once, i.e., the full orbital space is transformed once.

Third, the initial (m = 0) objective functional value (eq 6.7) is calculated for the work

space and the change of the PM functional in the outer-loop is defined as

∆P ′(m) = P ′(m,0) − P ′(m−1,0) for m ≥ 1 (6.12)

The convergence checkpoint 1 in Figure 6.1a evaluates the ∆P ′(m) as well as the accumu-

lative step m. The iteration will exit the outer-loop if either

∆P ′(m) ≤ λ1 (6.13)

or

m = maximal outer-loop iterations (6.14)

is satisfied. Here λ1 is a convergence threshold. The λ1 value and the maximal outer-loop

iterations are carefully chosen to converge the localization (see the next section). If the

iteration does not exit the loop, the index m will become m+ 1, and the corresponding

kth (eq 6.11) block will fill the second part of the work space. The constructed work space

then enters the maximization solver (the inner-loop in magenta). The change of the PM
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functional in the inner-loop is defined as

∆P ′(n) = P ′(m,n) − P ′(m,n−1) for n ≥ 1 (6.15)

Here n denotes the iteration step (if iterative maximization is needed) in the inner-loop.

The convergence checkpoint 2 evaluates the ∆P ′(n) as well as the accumulative step n.

The iteration will exit the inner-loop if either

∆P ′(n) ≤ λ2 (6.16)

or

n = maximal inner-loop iterations (6.17)

is satisfied. Here λ2 is another convergence threshold. The λ2 value and the maximal

inner-loop iterations are carefully chosen to allow the work space to reach the maximum

smoothly (see the next section). Once exiting, the core space is identified from the

transformed work space, and the residues of work space replace the Nk
s states in the kth

block. This operation is denoted as “the update of the rest space” since both the core

and rest spaces are dynamic during the maximization. The index n is reset to 0, and the

∆P ′(m) arrives at the convergence checkpoint 1. If the iteration does not exit the loop,

the next block then fills the work space to re-enter the maximizer. With all the Nb blocks

exhausted and updated, the states in the rest space will be reordered again for the next

macro-cycle.

In Figure 6.1b, we provide a concrete example where the sF-PMWF algorithm is

applied to search for Nrl = 16 regionally localized Wannier functions on the NV− center

in diamond. The original space is the occupied space consisting of Ns = 432 delocalized

canonical orbitals, represented by the electron density. The fragment is built with the
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four atoms at the NV− center, and then Nc ≥ Nrl relatively localized (based on eq 6.8)

canonical states are identified from the original space to form the core space. The

complementary Ns −Nc states are reordered and form the rest space. The rest space is

then sequentially exhausted and updated at a step of Nr until convergence. The output is

Nrl Wannier functions that are regionally localized on the selected fragment (represented

by the electron density).

In practice, the outer-loop (identify the core space, construct the work space, max-

imization, and update the rest space) has to be iterated multiple times until the P ′ is

converged. In general, each iteration step in the outer-loop feeds the core space with

the ingredients to localize itself and sequentially exhaust the full orbital space until

convergence. However, the cost of the calculation depends primarily on the size of the

work space Nw. A small Nr might require extra outer-loop iterations, but the cost of each

maximization (“inner-loop”) should be orders of magnitude smaller than the traditional

full-space approach.

So far, we have assumed that a basis of individual single-particle states is known

(e.g., obtained by a deterministic DFT calculation). However, this procedure is trivially

extended even to other cases, e.g., when stochastic DFT is employed.[28, 29, 30, 31, 32, 33]

For simplicity (and without loss of generality), we assume the localization is performed

in the occupied subspace. Here, the sF-PMWF calculation is initialized by constructing

a guess of Nc random vectors |ζ⟩, which are projected onto the occupied subspace as

|ζc⟩ = P̂ o |ζ⟩. These Nc random states then enter the core space in Figure 6.1a. Here,

the projector P̂ o is a low-pass filter constructed from the Fermi operator leveraging the

knowledge of the chemical potential.[28, 29, 30, 31, 32, 33, 41, 43] Next, in each outer-loop

step, one creates a block of random vectors |ζmr ⟩, which have to be mutually orthogonal as

well as orthogonal to the Nc core states via, e.g., Gram−Schmidt process. Here r denotes

the rest space and m denotes the mth step in the outer-loop. This block of random states
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follows the procedure in Figure 6.1a to fill the work space. Note that this block of random

vectors represents the entire orthogonal complement to the core space.

Combined with the fragmentation treatment, the number of elements in Q is reduced

from NA ×N2
s to N2

w. And the unitary matrices are also reduced from N2
s to N2

w. Such

a reduction in dimensionality is expected to shorten the time spent on each iteration

step as long as Nw ≪ Ns. The cost of the stochastic method (which does not require the

knowledge of the Ns eigenstates) is higher due to the additional orthogonalization process.

In the Results and Discussion section, we show that the total wall time spent on a job

becomes much shorter, especially for large systems, at the expense of more inner-loop

steps. Most importantly, the localized states obtained from sF-PMWF are practically

identical to those obtained from the traditional F-PMWF approach.

6.3 COMPUTATIONAL DETAILS

6.3.1 F-PMWF and sF-PMWF

A shared memory approach is employed to parallelize the do-loops (via OpenMP).

Several real-space partitioning schemes[47, 48, 49, 50, 51] for the atomic weight function in

eq 6.4 have been tested within the PM localization framework.[25] It turns out the resulting

localized orbitals are insensitive[25, 22] to its choice. This robustness of the G-PMWF

approach allows choosing the weight function for computational convenience;[25, 22] in

this work, Hirshfeld partitioning[47] is used to calculate the Q matrix in eq 6.4. The

actual implementation can be found in ref 22. For simplicity, we employ the steepest

ascent (SA) algorithm[52, 53, 54] to maximize the PM functional P and P ′. Note that

other extremization procedures will likely further reduce the cost of the inner-loop, but

they do not have a decisive effect on the overall scaling. The ascending step is set at 5.0 in

148



Reduced Scaling of Optimal Regional Orbital Localization via Sequential Exhaustion of the
Single-Particle Space Chapter 6

the beginning and is divided by 1.1 each time the change of PM functional ∆P ′(n) appears

negative. In calculations using a stochastic basis, the random states are constructed using

Fortran random number generator. The random number generator employs seeds that

change in each outer-loop step. These random states are then orthogonalized by the

Gram−Schmidt process detailed in the Supporting Information (SI).

In F-PMWF calculations, the λ2 is set at 5× 10−7, and it has to be consecutively hit

three times to ensure smooth convergence. In sF-PMWF calculations, the λ2 is set at

1× 10−7 in the inner-loop, which also has to be hit three times consecutively. The λ1 is

set at 5× 10−7 for the outer-loop. The maximal iteration step is set at 2000 for n and

5000 for m.

To avoid the spurious convergence or local maximum issue, a special criterion is devised

for the sF-PMWF. The principle comes from the full-space F-PMWF. When the core

space reaches the maximum localization, the whole rest space should no longer increase the

P ′ by >λ1, and neither should a subspace in the rest space contribute further. And thus,

the ∆P ′(m) of each block in one complete macro-cycle are evaluated simultaneously. Only

the maximal ∆P ′(m) satisfies the criterion (<λ1) will the P ′(m) be considered converged.

This also means that once the 1st block re-enters the work space, all the blocks must

be exhausted to decide the convergence. This might lead to a slight increase in cost

but guarantees that the sF-PMWF reaches the convergence in the same manner as the

F-PMWF.

The sF-PMWF calculation can be easily restarted as long as one keeps the checkpoint

file at the mth step and sets the outer-loop to start with m+1. The source code is posted

on git-hub and available for download.
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6.3.2 Model Systems

As a test case, we investigate the NV− center in 3D periodic diamond supercells and

a 2D slab. The relaxed chemical structures of the investigated systems are provided in

Figure B.1. The atomic relaxations of the NV− defect center in 3D periodic diamond

supercells with 215, 511, and 999 atoms are performed using QuantumESPRESSO

package[55] employing the Tkatchenko-Scheffler’s total energy corrections.[56] For the

111 nitrogen terminated surface slab 2D periodic calculations, the surface relaxation also

employs the Effective Screening Medium correction.[57] The atom relaxation of the surface

terminated with nitrogen atoms is performed on a smaller slab with 24 atoms, which

corresponds to the 1× 1× 2 supercell. The relaxed top and bottom surfaces were then

substituted into a large 4× 4× 6 (1.5× 1.7× 4.7 nm) supercell containing 2303 atoms.

The 111 surface is set normal to the z-direction. The relaxed structure of the NV− center

is cut out from a 511-atom supercell in a way that the N–V axis is normal to the 111

surface. This supercell is then substituted in the middle of the 111 nitrogen terminated

surface 4× 4× 6 slab at the 2 nm depth from the surface.

The starting-point calculations for all systems are performed with a real-space DFT

implementation, employing regular grids, Troullier−Martins pseudopotentials,[58] and the

PBE[59] exchange−correlation functional. For 3D periodic structures, we use a kinetic

energy cutoff of 26 Hartree to converge the eigenvalue variation to <5 meV. The real-space

grids of 68× 68× 68; 92× 92× 92; and 112× 112× 112 with the spacing of 0.3 a0 are used

for 215-atom, 511-atom, and 999-atom supercells, respectively. The grid of 70× 82× 338

with the spacing of 0.4 a0 is used for 2303 atoms slab supercell. The generated canonical

Kohn−Sham eigenstates are used for the subsequent orbital localization.
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6.4 RESULTS AND DISCUSSION

The full-space F-PMWF and the proposed sF-PMWF methods are applied to obtain

regionally localized states on the NV− center in diamond. The NV− center is composed of

three carbon atoms and one nitrogen atom that are mutually nonbonded. The fragment

in the actual calculations is constructed with these four atoms (see Figure 6.1b) unless

stated otherwise. The number of regionally localized states, Nrl, is 16 on the constructed

fragment. Two types of systems, solids and slab, are studied. For the solids, three

supercells of different sizes are investigated. The number of occupied states, Ns, for each

system is 432, 1024, and 2000, respectively. For the slab, the regionally localized states

are identified from a supercell with 2303 atoms and 4656 occupied states.

6.4.1 Completeness of sF-PMWF

First, we investigate the completeness of the sequential exhausting approach, i.e.,

whether the sF-PMWF can reproduce the same results as the F-PMWF. To contrast the

sF-PMWF method, we perform F-PMWF localization on the 511-atom system using a

truncated orbital space. This is a common technique to lower the cost by filtering out a

portion of canonical states upon the eigenenergy (eigenvalue). Only eigenstates within a

specific energy range (termed as the “energy window”) are selected for localization. We

tested two energy windows (10 eV and 20 eV below the Fermi level, respectively) on

obtaining the localized Wannier function basis. Upon visual inspection, the results do not

look too different, but when applied to compute the optical transitions in the NV− center

(see “Excited states of the NV− center” in the SI), we see considerable differences in the

energies (Table B.1). The results from the truncated space are highly underestimated

compared with the results from the full space. The energy-windowing technique fails

since, to reach optimal localization, the maximum possible Bloch states are needed to be
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transformed, i.e., all the occupied states are necessary. To localize electronic states on a

selected fragment, choosing states with significant spatial distribution on the fragment

is more critical than the choice of the energy window for the F-PMWF technique. The

degree of localization critically depends on what fraction of states that overlap with the

selected fragment are included. Note that this is not necessarily related to the energy of

the corresponding canonical mean-field state or the size of the energy window, i.e., even

states energetically far from the defect state can be important and may plague the frozen

window approach. The proposed sF-PMWF method does not have this issue, and we

demonstrate its completeness below.

Figure 6.2: Convergence of the functional P ′ with respect to the outer-loop step m for
the NV− center of the 215-atom system. Each curve is labelled by the combination of
Nc and Nr.

We first illustrate the completeness in detail using the 215-atom system. To initialize

the sF-PMWF calculations, the Nc parameter takes 16 (minimum), i.e., we take no “buffer.”
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For convenience, we only consider combinations with Nr being an integer multiple of Nc

and vice versa. Several Nr ranging from 4 to 64 are tested. Figure 6.2 shows the maximized

P ′, which measures the degree of localization (eq 6.7) relative to the converged maximized

value using the full space (P ′/P ′
full), as a function of the accumulative outer-loop step

m. It can be clearly seen that 100% of the P ′
full is sequentially recovered regardless of

the (Nc, Nr) combination. The maximization of each curve presented in Figure 6.2 is not

smooth, i.e., spikes are observed at the step where the iteration enters a new macro-cycle.

In fact, at least 94% of the converged P ′ has been gained after the first macro-cycle (see

Table B.2). As the Nr increases, fewer and fewer iteration steps (N outer
it ) are required to

reach convergence (Figure 6.3a). And theoretically, the N outer
it should be reduced to two

(the second step is to exit the outer-loop) if one takes Nr = Ns −Nc to work directly in

the full space. However, the reduction in N outer
it does not necessarily lead to a shorter

job time. Note that the time per outer-loop iteration (touter) increases with a scaling

of O(N1.53
w ) (see Figure B.3) for the 215-atom system. Figure 6.3b shows the total wall

time of each job as a function of the Nw with Nc fixed at 16. The N outer
it dominates the

total wall time when Nw is small (<48). In this regime, reducing the number of iterations

lowers the total wall time effectively. When the Nw is larger, however, the touter becomes

the dominating factor and the total wall time increases even though the N outer
it decreases.

The trade-off between N outer
it and touter suggests there exists an optimal combination of

Nc and Nr for a specific system to minimize the total cost.
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Figure 6.3: Left: Investigation of different combinations ofNc andNr for the localization
on the NV− center of the 215-atom cell. Nc is fixed at 16. (a) Number of iteration
steps in the outer-loop as a function of the Nr. (b) Total wall time of the calculation
as a function of Nw. The dashed line indicates the total wall time from the F-PMWF
method using the full orbital space. Right: Investigation of different combinations of
Nc and Nr for the localization on the NV− center of the 215-atom cell. Nw is fixed at
48. (c) Number of iteration steps in the outer-loop as a function of the Nr/Nc ratio;
(d) The total wall time as a function of the Nr/Nc ratio.

We also test the sF-PMWF calculation employing a set of stochastic basis that

represents the rest space. The same parameter combination (16, 32) is used. The 16 core

states are taken directly from the canonical eigenstates based on the locality, while the 32

stochastic states are constructed in a three-step manner (see “Preparation of stochastic

basis” in the SI). Compared with the (16, 32) calculation using the deterministic basis, the

stochastic approach exhibits the same completeness in exhausting the full orbital space,

as seen from the converged P ′ and P . Nevertheless, more outer-loop iterations are needed

due to the randomized search. And the time per iteration also becomes longer (3.47

seconds versus 0.32 seconds) due to the Gram−Schmidt orthogonalization process. And

therefore, the total wall time increases to 729 seconds (see the last row in Table B.2). For

the evolution of the objective functional in comparison with the deterministic counterpart,

the stochastic approach converges more smoothly (see Figure 6.4). The stochastic basis
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search does not show competitive efficiency versus the full-space approach (308 seconds)

for such a small system. In the following section, we show the stochastic basis approach

becomes more efficient than the full-space counterpart for a larger system. However, we

emphasize that the advantage of sF-PMWF does not hinge on this stochastic extension

but enables it. In most of our results, we will focus on the fully deterministic approach in

which the knowledge of Ns states is assumed.

The behavior of the sF-PMWF method discussed above is also observed for the

511-atom system (Figure B.5 and Table B.3 in the SI), confirming the generality of the

completeness.

6.4.2 Optimization of Work Space

In the previous section, we observe a trade-off between N outer
it and touter, which implies

a possibly optimal parameter combination. To further understand the choices of Nc and

Nr, several other combinations with Nc > 16 are tested on the 215-atom system. The

maximal P ′ and P are secured regardless of the (Nc, Nr) combination, indicating that

the convergence of P ′ is insensitive to the choices of these two parameters. For Nc fixed

at 16, the time-to-solution reaches a minimum when Nw = 48, as shown in Figure 6.3b.

For Nw fixed at 48, different ratios of Nr/Nc are tested. The results suggest that the

larger the Nr, the smaller the N outer
it (Figure 6.3c). Note that the touter depends solely on

the Nw (Table B.2). And therefore, a smaller N outer
it translates directly to a shorter wall

time (Figure 6.3d). The numerical results are summarized in Table B.2. This behavior is

further observed in the 511-atom system (see Figure B.6).

155



Reduced Scaling of Optimal Regional Orbital Localization via Sequential Exhaustion of the
Single-Particle Space Chapter 6

Table 6.1: Timing data of orbital localization performed on the 215-atom system using
sF-PMWF.

(Nc, Nr) ttot (s) tmacro (s) nmacro

(16, 4) 47 9.07 5

(16, 8) 31 5.87 5

(16, 16) 29 4.65 6

(16, 32) 22 4.19 5

(16, 48) 28 4.51 6

(16, 64) 27 5.09 5

To further quantify our observations above, we examine the time per macro-cycle

(tmacro) and the number of macro-cycle (nmacro) shown in Table 6.1. The variation of the

total wall time (ttot) agrees well with the tmacro among different (Nc, Nr) combinations

since the nmacro in each trial does not differ too much from one another (nmacro = 5± 1).

The total wall time is essentially very close to nmacro × tmacro. The scaling of tmacro, in

our sF-PMWF algorithm, can be approximately expressed as

O(N2
w ∗ Ns −Nc

Nr

) = O
[
(
N2
c

Nr

+Nr + 2Nc)(Ns −Nc)

]
(6.18)

With Ns and Nc fixed, the right-hand side (RHS) of eq 6.18 is a function of Nr with a

theoretical minimum for some nonzero Nr. And thus, eq 6.18 explains the existence of

an optimal (Nc, Nr) combination as observed. We note that the RHS of eq 6.18 is also

crucial in explaining the scaling of our sF-PMWF method with respect to Ns as discussed

in the following section.

To conclude, the “buffer” seems to be unnecessary for the core space, i.e., Nc can be

set directly as Nrl for a specific fragment. The work space optimization then depends
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solely on the choice of Nr, and there exists an optimal Nr. Nevertheless, the cost of the

investigated sF-PMWF calculations without optimization is already absolutely lower than

that of F-PMWF regardless of the Nr (see Figure 6.3b and Figure B.5b). The protocol of

choosing Nc and Nr is suggested to be Nc = Nrl and Nr = 2Nc since it leads to a local

minimum in the total wall time.

This protocol is then applied to the 999-atom system and two additional combinations

of Nc and Nr are also tested. The (16, 32) combination still leads to a cost minimum

and is 85 times faster than the F-PMWF (see Table B.4). Further, we also test the

stochastic basis search with the 999-atom employing the (16, 32) combination. The

completeness of the stochastic exhausting is again confirmed by the converged P ′ and P .

Although the stochastic approach is still more costly than the deterministic sequential

counterpart, it is more efficient than F-PMWF (by roughly 50%) when applied to this

system with ∼4000 electrons (see the last row of Table B.4). Furthermore, ∼74% of the

cost in the stochastic search comes from the Gram-Schmidt process, which advanced

orthogonalization techniques can optimize. When combined with stochastic DFT, the

total cost of orbital localization is expected to be much lower than the deterministic

approach that requires the knowledge of the eigenstates in a system with tens of thousands

of electrons.

For the 2303-atom system, the (16, 32) combination successfully converges the P ′

and produces localized states. Note that the cost can be lowered by 10% if the (16, 48)

combination is used. And if one searches further for the optimal Nr (or Nw), it is possible

to lower the cost further. However, for a fair comparison between one system and another,

we use the timing from the (16, 32) combination for the slab, which is already 412 times

faster than the F-PMWF. The numerical results are provided in Table B.5.

We also compare the time spent on folding and the unfolding steps, respectively (see

Table B.6). In each system, the cost of the unfolding step is merely 1∼2% of the folding
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one since only Nrl states are transformed in the unfolding step. And thus, it is sufficient

to evaluate just the cost of the unfolding step as the total cost of the orbital localization.

Finally, we remark that the (16, 32) combination is stable and efficient for a given

fragment regardless of the precise environment. This indicates that sF-PMWF is robust.

Further, the consistent parameter combination clearly demonstrates the scaling of the

sF-PMWF calculation with respect to the Ns as discussed in the next section.

6.4.3 Scaling Analysis of sF-PMWF vs F-PMWF

To investigate the scaling of the sF-PMWF method, we normalize the timing data to

the largest grid by

tn =
Nmax
g

Ng

t (6.19)

where tn represents the normalized time, Nmax
g denotes the number of grid points of the

largest system (the 2303-atom system), and Ng is the grid of each investigated system.

The numeric data is summarized in Table 6.2. We report the results with a precision of 1

second for the total wall time and 0.01 second for the time per iteration/cycle. Here we

note that ttotn represents the normalized total wall time, tSAn and nSA denote the normalized

time per SA step and the number of SA steps in F-PMWF, toutern denotes the normalized

time per outer-loop in sF-PMWF, tmacron and nmacro represent the normalized time per

macro-cycle and number of macro-cycles in sF-PMWF.
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Table 6.2: Normalized timing data of orbtial localization performed on the four
investigated systems using F-PMWF and sF-PMWF, respectively

System
F-PMWF sF-PMWF

ttotn (s) tSAn (s) nSA ttotn (s) toutern (s) tmacron (s) nmacro

215-atom 1903 1.81 637 139 1.99 25.83 5

511-atom 18339 21.43 700 284 2.08 66.45 4

999-atom 58007 85.01 586 675 2.07 128.16 5

2303-atom 695370 1056.26 650 1683 1.89 266.02 6

In Figure 6.4a, the log of ttotn is plotted as a function of the log of Ns for the four

investigated systems. The scaling of the F-PMWF using the full orbital space is O(N2.43
s )

(black line and square points). This is a bit higher than the theoretical O(N2
s ) due to

the other O(Ns) do-loops, tasks related to parallelization, and practical executions (e.g.,

reading and writing of files). The sequential method, sF-PMWF, reduces the scaling from

O(N2.43
s ) to O(N1.07

s ) (red line and circle points). This linear scaling is observed when the

same protocol (16, 32) applies to the four systems. Such an order of magnitude reduction

in the scaling promises the efficiency of sF-PMWF when applied to much larger systems.

In our largest system with 4656 states, the total wall time is shortened from 8 days to

< 0.5 hours (Table 6.2, on a workstation with 2.5 GHz CPUs and parallelization on 60

cores).
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a b

Figure 6.4: (a) The log of the normalized total job time plotted as a function of the
log of Ns. (b) The log of the normalized time per macro-cycle plotted as a function of
the log of Ns. The black line and square points represent results obtained from the
F-PMWF method transforming the full orbital space at once. The red line and circle
points represent results obtained from the sF-PMWF method sequentially transforming
the orbital space. The scaling is derived from the slope of each fitting using the numeric
data in Table 6.2.

The reduced scaling of sF-PMWF is largely attributed to the reduction of dimension-

ality during the maximization process. The efficiency is reflected mainly in the time per

inner-loop iteration, tinner in sF-PMWF and tSA in F-PMWF. From 432 states to 4656

states, the tSAn of the F-PMWF approach scales rapidly from 1.81 seconds to 1056.26

seconds (Table 6.2). As shown in Figure 6.4b, the scaling of tSAn in F-PMWF is O(N2.63
s ).

Further, Table 6.2 shows that the numbers of inner-loop iterations N inner
it in F-PMWF

are reasonably large (600∼700) and translate to a total scaling of O(N2.43
s ) shown in

Figure 6.4a.

In sF-PMWF, however, the tinner remains constant and as low as ∼ 5× 10−4 seconds

regardless of the Ns (see Table B.9). Although more SA iteration steps are required

relative to the F-PMWF calculations (Figure B.8 and B.9), 1000 iterations now take as

low as 0.5 seconds. And therefore, in sF-PMWF, the time spent in the maximizer is no

more the dominating factor within an outer-loop step. It is more convenient to evaluate

160



Reduced Scaling of Optimal Regional Orbital Localization via Sequential Exhaustion of the
Single-Particle Space Chapter 6

the efficiency of sF-PMWF by toutern and tmacron . We first study the scaling of the time per

outer-loop step (toutern ) with respect to the Ns. It is shown that the toutern hardly scales

with respect to Ns when the same (Nc, Nr) combination is applied (see Figure B.10). In

addition, the N outer
it scales almost linearly with Ns and gives a total scaling of O(N1.07

s ).

A more direct derivation of linear-scaling is by evaluating the tmacron and nmacro

summarized in Table 6.2. Interestingly, the nmacro is very close between any two systems,

being 5± 1. The total wall time is approximately the product of tmacron and nmacro; hence,

it is sufficient to evaluate tmacron only. In the previous section, eq 6.18 actually suggests

that the scaling of tmacro depends linearly on Ns. The normalized time per macro-cycle

(tmacron , Table 6.2) is plotted as a function of Ns in Figure 6.4b. Note that the tmacron for

F-PMWF coincides with the tSAn since the full orbital space is transformed at once in a

single SA step. Here we can clearly see the linear dependence O(N0.98
s ) in sF-PMWF

versus the O(N2.63
s ) in F-PMWF. Although tmacron for a specific system in sF-PMWF can

be higher than that in F-PMWF, the evaluation of the number of macro-cycles, nmacro or

nSA, is ∼5 for sF-PMWF while ∼650 for the conventional F-PMWF. To conclude, eq 6.18

quantitatively explains the observed linear-scaling when the same (Nc, Nr) combination

is applied to systems of different sizes.

6.4.4 Localization Quality of sF-PMWF vs F-PMWF

Visualization of Localized Orbitals and Density

In the previous section, the completeness of sF-PMWF has been demonstrated for

the maximization of the modified PM functional P ′ (eq 6.7). These 16 resulting states

are localized on the fragment and serve as a subspace to further maximize the P , which

unfolds the states on each individual atom. The converged P ′ and P between F-PMWF

and sF-PMWF differ by no more than 0.0001 (<0.002%, see Tables B.11 and B.12) .

161



Reduced Scaling of Optimal Regional Orbital Localization via Sequential Exhaustion of the
Single-Particle Space Chapter 6

Graphically, the 16 regional Wannier functions correspond to 9 C−C bonds, 3 C−N bonds,

and 4 “p”-like states. The electron density constructed from these 16 localized states are

shown to be visually identical between the sF-PMWF and F-PMWF calculations (see

Figures B.11 to B.13). The same agreement is also seen for the four selected individual “p”-

like states (Figures B.14 to B.16) that are used in the following excited-state calculations.

Figure 6.5a highlights the NV− center in the slab using the regionally localized electron

density. The obtained electron density conserves the spatial symmetry across the C−C−C

plane and the C−C−N plane (Figure 6.5b). The left panels of Figure 6.5b show the

electron density constructed from the 16 most localized canonical states, while the right

panels present the maximized results from the sF-PMWF calculation. It can be clearly

seen that electron density distribution becomes much more concentrated on the selected

atoms, indicating the effectiveness of the localization.

To demonstrate that the sF-PMWF localization is subsystem-independent, an arbitrary

carbon atom is chosen from each investigated system, and four regionally localized states

are sought. The electron density around the selected C atom is successfully reproduced

for each system (see Figure B.17), confirming the generality of the sF-PMWF approach.
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Figure 6.5: (a) Electron density constructed from the 16 regionally localized states
around the NV− center. The isosurface value is set at 0.05. (b) density distribution
sliced through the C−C−C plane (upper panels) and the C−C−N plane (lower panels)
of the NV− center in the slab. The left panels are constructed from the 16 most
localized canonical states before the sF-PMWF calulation and the right panels are
constructed from the 16 regionally localized states after the sF-PMWF maximization.

Excited States of the NV− Center

To further demonstrate the practical application and quality of the sF-PMWF approach,

we investigate the optical transitions in the NV− center using the “p”-like Wannier functions

(see Figure 6.6) that form a minimal basis. To model the excited states of the NV− center,
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we solve the Hubbard Hamiltonian written as

Ĥ =
∑
iσ

εiĉ
†
iσ ĉiσ −

∑
i ̸=j,σ

tij ĉ
†
iσ ĉjσ+

+
∑
iσ

Un̂†
i↑n̂i↓ +

∑
i>j,σ,σ′

V n̂†
iσn̂jσ′

(6.20)

where ĉ†iσ and ĉi,σ are creation and annihilation operators in site i with spin σ and n̂†
iσ is

a particle number operator. The εi and tij are the on-site and hopping energies. U and

V represent the on-site and intersite Coulomb interaction, respectively. It is a minimal

model of the NV− center that is commonly used [60, 61, 62, 63] to describe its low-lying

excited states. Note, although including screening is important to capture the physics of

the system correctly and has been extensively studied,[61, 63, 64] only bare interactions

are considered in this work to focus on the sensitivity to the variations of the Wannier

basis. In this section, we will particularly comment on the selection of the fragment on

which the electronic states are localized. Note that the fragment size is independent of

the sF-PMWF methodology, but it represents an important parameter.
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Figure 6.6: “p”-like Wannier function basis used in the Hubbard model calculations.
Each row provides the fragment model, the corresponding set of PMWFs obtained
from this fragment, the electron density constructed from these four PMWFs, and the
total locality computed from eq 6.21. Here the {4, 4} fragment represents the minimal
model and the {16, 16} one is found the optimal fragment size. The isosurface value is
set at 0.02.

First, we focus on the results computed from the sF-PMWF Wannier basis of the

four-atom fragment shown in Figure 6.6. The three lowest energy transitions are given

in Table 6.3 in parentheses. For the 3D periodic systems, the two small cells slightly

underestimate the 3E – 3A2 transition energy and overestimate the 1A1 – 3A2 one.

Instead, the 1E – 3A2 transition converges well to the supercell size. The 3E – 3A2

and 1A1 – 1E transition energies are underestimated with respect to the experimental

values of 1.95 eV and 1.19 eV, respectively. However, these results agree well with other

theoretical calculations that employ PBE functionals to compute the bare Hubbard model

parameters.[65, 66, 67, 68, 69, 70] The 1E – 3A2 transition energy fluctuates mildly with

respect to the supercell size but maintains a comparable magnitude. The results computed

in bulk systems from the sF-PMWF basis agree perfectly with the F-PMWF ones (see the

F-PMWF results in Table B.15), confirming the equivalency of the two sets of localized
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orbitals. In contrast, the F-PMWF and sF-PMWF differ slightly more from each other for

the slab results. To investigate this difference in transition energies, we first examine the

equivalence of the two sets of “p”-like Wannier functions: the orbitals from sF-PMWF has

>99.99% overlap with their counterparts from F-PMWF, i.e., these two sets of states are

practically identical. The numerical results are provided in Table B.16. By subtracting

corresponding sF-PMWF and F-PMWF Wannier orbitals, we observe seemingly negligible

difference (slightly higher than the numerical noise), which however affects the Hubbard

model calculations. Comparing the Hamiltonian computed with the two basis sets, we

found that the discrepancy in transition energies stems only from the ionic part of the t

parameters (see the definition of t parameters in eq B.2 in the SI). In contrast, the kinetic

part, sensitive to the small variation of the Wannier functions, is practically identical,

confirming that both orbitals should be considered as equivalent. The small, ≪ 0.01%

difference, is distributed over the real-space grid and it becomes sizable enough for the

slab calculation because of the system size (which is significantly larger than the bulk

systems).

Furthermore, the slab results are strikingly different from the bulk, i.e., the transition

energies are up to 70%−80% lower than those in bulk. As we show below, this is due

to the selection of the fragment size and independent of the completeness of the orbital

space. To the best of our knowledge, we note that no calculations for shallow NV− centers

in slabs have been done previously. Hence it is not possible to compare our results with

any reference.
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Table 6.3: Excited-state transition energies of the NV− center in the four investigated
systems using the Wannier function basis obtained from sF-PMWF calculations. The
numbers with and without the parenthesis correspond to the {4, 4} and {16, 16}
fragment, respectively.

Transition

symmetry

Energy (eV)

215-atom cell 511-atom cell 999-atom cell slab

3E – 3A2 2.108 (1.560) 2.277 (1.695) 2.312 (1.710) 1.343 (0.363)

1A1 – 3A2 1.433 (1.325) 1.310 (1.270) 1.202 (1.193) 1.159 (0.292)

1E – 3A2 0.447 (0.378) 0.435 (0.381) 0.413 (0.368) 0.329 (0.091)

The situation is remedied when the fragment size effects are considered. As noted

earlier, the fragment studied in the previous sections is actually a minimal model, i.e., the

orbital localization is considered only on the 4 atoms where the “p”-like states are located,

and the total number of orbitals on these four atoms is 16. However, neglecting the

neighboring atoms might lead to a mixed character of “p”-like states and C−C (or N−C)

covalent bonds. To test this, we investigate four combinations of {N ′
A, N ′′

A} fragments:

for instance, {4, 16} represents the case where 4 atoms are considered in the folding step

while 16 atoms (including the bonded atoms) are considered in the unfolding step. A

detailed investigation of the various parameters is performed on the 215-atom system.

The corresponding fragments are presented in Figure B.2. The four Wannier functions

used for the Hubbard model are illustrated in Figure 6.6, where we compare the {4, 4}

fragment, the {16, 16} fragment, and the all-atom case.

For a better comparison among different sets of PMWFs (Figure B.18), we also provide

the spatial overlaps between the fragmentation approaches and the all-atom calculation,

|⟨ψi|ψj⟩|, in Table B.13. The all-atom calculation refers to orbital localization on all

atoms at once using G-PMWF. Numerically, the {4, 16} combination gives the closest

solutions to the all-atom ones. Note that in the all-atom case, the optimization does not
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preferentially localize single-electron states near the defect; rather, it seeks globally most

localized states. Such an approach is not guaranteed to generate transformed PMWFs

that are optimal for the mapping onto the Hubbard model. Indeed, we discuss this point

in detail below.

In contrast, the results for the {4, 4} combination represent the minimal fragment

where the optimization is performed for 16 orbitals on four atoms neighboring the defect

center. These PMWFs from the minimal model are shown in Figure 6.6 and display

over-localization of the “p”-like states in the NV− center, i.e., the orbitals are less centered

on the atoms and tend to merge at the geometric center. This is a purely numerical

artifact of a too-small optimization space which is alleviated (Figure B.18) when the 12

bonded atoms are included to compete with the geometric center for the electron density.

Due to this, we disregard the {4, 4} case further.

Upon visual inspection, the {16, 16} combination graphically gives the most localized

“p”-like orbitals (the second row in Figure 6.6). To provide a quantitative measure of

localization, we calculate the locality of each “p”-like state on the corresponding atom

plus its neighboring bonded atoms to account for the environment

Li =
4∑

A=1

⟨ψi|wA|ψi⟩ (6.21)

where i denote the ith “p”-like state and A sums over the 4 atoms (1 center atom + 3

bonded atoms). The value for each individual state is summarized in Table B.14, where

we use the sum,
∑4

i=1 Li, to represent the whole set of PMWFs. In agreement with the

visual analysis (Figure 6.6), the {16, 16} combination exhibits the strongest localization

attributed to the modification of the objective functional (eq 6.7). As commented by

Jónsson[22] et al., the solutions to “maximally localized Wannier functions” are actually not

unique and sometimes ambiguous since the resulting localized orbitals are determined by
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the objective functional. We emphasize that the traditional G-PMWF approach evaluates

the overall orbital localization on all the atoms, but it does not necessarily reach maximal

localization on a specific subsystem (fragment). Instead, the proposed fragmentation

treatment in this work leads to an objective functional for regionally localized orbitals.

We surmise that this approach is more beneficial for effective embedding and downfolding.

To further analyze the results, we use the four sets of PMWFs and compute the optical

transition energies for the 215-atom system (Table 6.4). We see that the 3E – 3A2 is the

most sensitive to the basis while the other two are less. The {4, 16} combination provides

results that are closest to the all-atom calculations. Compared with the most localized

case ({16, 16}), the other results are consistently underestimated by up to 0.55 eV. From

these results, it is clear that the extent of orbital localization affects various observables

differently. While some optical transitions for a given system are insensitive, others can

be highly dependent on the basis. The sensible strategy is to search for a fragment that

provides the maximal localization on each atom of interest and seek convergence of the

observables of interest.

Table 6.4: Excited-state transition energies of the NV− center in the 215-atom system
using the Wannier function basis obtained from different sizes of the fragment as well
as the all-atom calculation.

Transition

symmetry

Energy (eV)

{4, 4} {4, 16} {16, 16} {40, 40} all-atom

3E – 3A2 1.560 1.770 2.108 1.860 1.715

1A1 – 3A2 1.325 1.373 1.433 1.384 1.355

1E – 3A2 0.378 0.407 0.447 0.417 0.398∑4
i=1 Li 3.514 3.464 3.507 3.411 3.461
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In the rest of the paper, we employ the {16, 16} fragment to obtain the PMWF

basis. The parameter study of orbital localization using this fragment is provided in

Tables B.17−B.20. The excited-state transition energies are summarized in Table 6.3. For

the bulk systems with the new “p”-like basis, 3E – 3A2 transition gap is enlarged by up to

0.6 eV from the less localized basis, while the other two transition energies are relatively

less sensitive to the change of basis.

The effect of the fragment size is most pronounced for the slab. If the {16, 16}

fragment is used, the results are similar to those for the bulk systems. In detail: the 3E –

3A2 transition is predicted ∼1 eV lower than that in bulk, while the other two are only

slightly lower (by ∼0.1 eV) compared to the 999-atom cell. Here, the significant lowering

of the triplet−triplet transition energy in the slab can be attributed to the interplay with

the surface states of nitrogen-atom passivation layer. The surface states dive below the

conduction band minimum of the bulk states and are located inside the band gap and

affect the position of the in-gap defect states. Finally, we remark that these observations

underline the importance of fragment selection. However, they are completely independent

of the proposed sequential exhausting methodology. Indeed, the results obtained with the

sF-PMWF and F-PMWF methods agree excellently (Table B.15) in each case, while the

results depend on the fragment size.

6.5 CONCLUSIONS AND PERSPECTIVE

By introducing the fragmentation treatment and the sequential exhaustion of the

orbital space to the traditional F-PMWF method, we develop a swift, efficient, and robust

algorithm, sF-PMWF, to obtain a set of regionally localized states on a subsystem of

interest. The completeness and efficiency are insensitive to the choice of input parameters.

The core idea is to reduce the dimensionality of matrices during the maximization process.
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The resulting scaling is reduced from being hyper-quadratic to linear. For the applications

of localized basis to the Hubbard model, the excited-state calculations are sensitive to

the localized basis. While the Pipek-Mezey scheme is an ideal candidate to provide

localized states with optimal localization for the whole system, it does not necessarily

lead to “maximally” localized orbitals on a specific subsystem. But in our fragmentation

treatment, one can carefully select the atoms (the strategy is mentioned above) to reach

“maximally” localized orbitals on the subsystem and avoid the over-localization issue.

The resulting sF-PMWF method has five primary benefits: (1) largely shortens

the time per SA iteration and makes it easier to monitor the progress of localization;

(2) significantly lowers the total job time and scaling for systems with thousands of

electrons; (3) provides regionally localized orbitals with higher extent of localization; (4)

less demanding for computing resources, e.g., memory and CPUs; (5) can be performed

without the knowledge of canonical eigenstates if it is coupled with stochastic methods

(e.g., stochastic DFT). The stochastic basis search approach exhibits higher efficiency

than the traditional method for systems with over 4000 electrons.

Furthermore, we want to comment on the following prospective applications of the

sequential exhausting method: (1) this method can be generalized to obtain localized states

of the whole system. Given that the rest space can always be updated or reconstructed

by Gram−Schmidt orthogonalization, the sF-PMWF calculation can then be sequentially

applied to all the fragments in the entire system; (2) this method can be coupled with

other maximizers, e.g., conjugated gradient and BFGS approach, to further facilitate

the convergence of the PM functional; (3) the idea of sequentially exhausting the orbital

space can be also implemented in other localization schemes, e.g., Foster−Boys, for a

suitably defined fragment and an associated cost function.

We believe that the sF-PMWF method will find numerous applications in condensed

matter problems, either in chemistry, materials science, or computational materials
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physics.
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energy-windowing truncated space, comparison of F-PMWF and sF-PMWF calculations

with different Nc and Nr for the four investigated systems using the 4-atom fragment,

comparison of the time spent on the folding and unfolding steps; time per outer-loop

iteration and normalized time per outer-loop iteration in the sF-PMWF calculations of

the four investigated systems, time per macro-cycle iteration and normalized time per

macro-cycle iteration in the sF-PMWF calculations of the four investigated systems, total

wall time and normalized total wall time of F-PMWF and sF-PMWF calculations for the

four investigated systems, time per steep-ascent step in the F-PMWF and sF-PMWF

calculations, number of iterations required to reach convergence for the four investigated

systems, converged maximized PM functional values, spatial overlap between the Wannier

functions obtained from F-PMWF and sF-PMWF calculations for the 2303-atom slab,

spatial overlap between the Wannier functions obtained from the fragment approaches with

those obtained from the all-atom calculation, transition energies of the four investigated

systems using the Wannier functions basis obtained from the F-PMWF calculations,

comparison of F-PMWF and sF-PMWF calculations with different Nc and Nr for the

four investigated systems using the 16-atom fragment.
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Chapter 7

Efficient treatment of molecular

excitations in the liquid phase

environment via stochastic many-body

theory
Guorong Weng, Vojtěch Vlček

ABSTRACT

Accurate predictions of charge excitation energies of molecules in the disordered

condensed phase are central to the chemical reactivity, stability, and optoelectronic

properties of molecules and critically depend on the specific environment. Herein, we

develop a stochastic GW method for calculating these charge excitation energies. The

approach employs maximally localized electronic states to define the electronic subspace

of a molecule and the rest of the system, both of which are randomly sampled. We test
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the method on three solute−solvent systems: phenol, thymine, and phenylalanine in

water. The results are in excellent agreement with the previous high-level calculations

and available experimental data. The stochastic calculations for supercells containing up

to 1000 electrons representing the solvated systems are inexpensive and require ≤1000

central processing unit hrs. We find that the coupling with the environment accounts

for ∼40% of the total correlation energy. The solvent-to-solute feedback mechanism

incorporated in the molecular correlation term causes up to 0.6 eV destabilization of the

QP energy. Simulated photo-emission spectra exhibit red shifts, state-degeneracy lifting,

and lifetime shortening. Our method provides an efficient approach for an accurate study

of excitations of large molecules in realistic condensed phase environments.

7.1 INTRODUCTION

The charged excited states of molecules in the condensed phase are critical for under-

standing the molecular electronic structure under realistic conditions. Experimentally,

developments in photo-emission spectroscopy (PES) have enabled direct measurement of

ionization in the liquid[1, 2, 3, 4, 5, 6, 7] or the solid phase.[8, 9, 10, 11, 12, 13, 14] PES

characterizes individual quasiparticles (QP), i.e., holes and electrons that are “dressed” by

interactions with their surroundings and have finite (excitation) lifetimes. In principle, the

spectra thus provide a direct route to estimate how the environment affects the molecular

electronic structure. However, understanding the role of the environmental couplings

requires PES with a high energetic and spatio-temporal resolution to differentiate the

origin of individual QPs. In practice, the theory thus remains the primary route to

uncover the details of the couplings.

Multiple approaches have been proposed for the computational treatment of molecules

in realistic environments. The methodologies range from polarizable continuum models
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(PCM)[15, 16, 17, 18] to quantum embedding methods.[19, 20, 21, 22, 23, 24, 25] In either

of these, the condensed phase is not captured uniformly: the (small) system of interest is

typically treated by a high-level quantum mechanical (QM) theory, and the remainder, i.e.,

the surrounding environment, is represented by an affordable and approximate approach,

e.g., classical molecular mechanics. Embedding of the density functional theory (DFT) is

computationally inexpensive and, especially the emerging optimally tuned range-separation

hybrid (OT-RSH) approach,[26, 27, 28, 29, 30, 31] yields accurate frontier eigenvalues

corresponding to ionization potentials (IP) and electron affinities (EA). However, the

single-particle levels obtained by DFT do not correspond to QP energies and also contain

no information about excited-state lifetimes.[32] The state-of-the-art quantum chemistry

approaches, e.g., CCSD(T)[33, 34] and EOM-CC[35, 36, 37, 38, 39, 40, 41, 42] provide

accurate predictions for IP and EA. However, they do not capture QP lifetimes either and

suffer from a high computational cost. Hence, these methods are applied to either small

clusters or within an embedding scheme. Matching of multiple approaches is non-trivial

and may lead to artifacts, e.g., blue shifts of the ionization energies rather than red

shifts.[43]

Green’s function (GF) techniques[44] are becoming more widespread in chemistry and

provide an appealing alternative to other methods. In principle, the GF formalism fully

captures QPs and their lifetimes, and it is widely applied to condensed matter problems.[45,

46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60] Further, the methodology is open

for systematic improvements; embedding within the GF framework[21, 48, 49, 44, 55, 61]

is conceptually straightforward and “seamless.” Finally, recent developments of stochastic

GF methods[62, 63, 64, 65, 61] enabled calculations for giant systems with thousands of

electrons, practically treating large and inhomogeneous systems on equal footing.

In this work, we develop and implement a new computational technique that employs

the stochastic approach to many-body calculations combined with the decomposition of
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the electron−electron interaction terms. We demonstrate the first-principles QM approach

on a set of molecules in the liquid water environment. The method is applied to the entire

condensed phase; the description of the electronic states in the solute and the solvent

is thus consistent. We analyze the dynamical couplings and show that the interactions

between the molecule and environment are sensitive to the local molecular geometry and

orientation. The non-local correlations are responsible for state reordering; the feedback

from the solvent leads to significant changes in the simulated PES spectra of the solutes

compared to their isolated counterparts. The methodology captures the red shifts in

energy, lifting electronic state-degeneracy, and significant QP lifetime shortening. The

results are in excellent agreement with experimental data, and the approach thus provides

a unique tool to address the electronic properties in realistic environments.

7.2 METHODOLOGIES

7.2.1 Quasiparticle and decomposition of the self-energy

The GF formalism conveniently describes the dynamics of the QP excitation and

directly yields experimentally accessible observables.[66] In practice, the excitation energies

and lifetimes are identified from the spectral function A(ω) = ImG(ω), where G(ω) is

the GF (representing the time-ordered product of electron creation and annihilation

operators). Conceptually, the GF represents the probability amplitude associated with

addition or removal at two distinct space-time points; hence it captures the propagation

of the excitation through the system.

The maxima in A(ω), i.e., the excitation energies, correspond to the poles of G(ω) (on

real axis). The QP propagator G is “dressed” by many-body interactions and it is related to

a (mean-field) non-interacting GF, G0, via the Dyson equation: G−1 = G−1
0 −Σ, where the
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self-energy, Σ, emerges as the the central quantity representing all many-body effects. It

is a complex valued quantity whose real part captures the QP energy renormalization (i.e.,

energy shifts) and its imaginary part is proportional to the inverse of the QP lifetime.[67]

To uncover the role of the solvent environment on the QP excitations, we formally

decompose the self-energy into the the term stemming from interaction within the molecule

(e.g., solute) and outside (i.e., in the environment), denoted Σm and Σenv. In this ansatz,

the QP energy of the jth molecular state is

εj = ε0j + ⟨ϕj|Σm(ω = εj) + Σenv(ω = εj)− v̂xc |ϕj⟩ , (7.1)

where ε0j is the single particle energy containing all the single-electron and local effective

terms in the underlying mean-field Hamiltonian, including the Hartree term and the

exchange−correlation potential, vxc (e.g., formulated as a density functional). Hence ε0j

corresponds to the jth pole of G0. To facilitate the comparison between the excitation in

an isolated and solvated molecule, the mean-field result is taken from the calculations in

the absence of the surrounding solvent molecules. Hence ε0j accounts for the molecular

geometry effects, while the solute−solvent interactions are embodied in the remaining

terms. In practice, the self-energy is further split into the static and dynamical parts,

corresponding to the exchange and the correlation interactions. Here, Σ is constructed

using the GW approximation, presented in Secs. 7.2.3 and 7.2.3, and contributions of the

environment are analyzed in the results and discussion Sec. 7.3. We emphasize that the

decomposition of the self-energy is formal; we treat the environment and the molecule on

the same footing, i.e., no approximations beyond those in GW are applied in this work.

For simplicity, we here assume that the molecular states |ϕj⟩ already represent the

Dyson orbitals. This corresponds to the diagonal approximation to the self-energy, which

holds in common cases.[68, 69, 70] Our approach can be easily generalized and include also
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off-diagonal contributions, e.g., when self-consistent GW treatment is sought.[70] Further,

note that the set |ϕj⟩ does not generally correspond to the single particle eigenstates of

the underlying mean-field calculations in the condensed phase (see the end of Sec. 7.2.2).

In practice, we first reconstruct |ϕj⟩ using Wannier functions as detailed in Sec. 7.2.2 and

use them to define the occupied subspace that is sampled by the stochastic formalism

described later. This approach allows to consistently characterize the charged excitations

in the molecule and hence comparing the QPs in isolated and solvated systems.

7.2.2 Separation subspaces: Wannier functions

Our goal is to analyze the effect of the environment on the molecular states {|ϕj⟩}

via Eq. (7.1). Without loss of generality, we will first focus only on charge removal,

and |ϕj⟩ will thus represent an occupied electronic state. We first separate the space

spanned by single-particle states into molecular and environmental subspaces. Note that

the separation and its construction is rather arbitrary, but as long as there is a map

between the subspace of the isolated molecule and the molecule in the condensed phase,

we consider this decomposition as complete. Further, the stochastic approach (discussed

in Sec. 7.2.3) is applicable regardless of choice for the basis vectors; hence, the goal is to

provide a practical route to define the molecular subspace.

Here, we employ the maximally localized Pipek−Mezey Wannier (PMW) functions[71,

72, 73, 74], {|ψj⟩}, obtained from a unitary transformation of the canonical Kohn−Sham

(KS) occupied eigenstates. Let {|ψmj ⟩} correspond to states localized on the molecule (i.e.,

forming the molecular subspace) that are found via the procedure described below. The

occupied subspace of the environment is spanned by vectors {|ϕenv⟩} obtained through

projection:

|ϕenvj ⟩ =
(
Î − P̂m

)
P̂ occ |ϕcj⟩ . (7.2)
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Here Î is the identity and {|ϕcj⟩} are the canonical KS eigenstates of the entire system

(i.e., the molecule plus the environment). P̂ occ projects onto the occupied subspace, i.e.,

P̂ occ =
Nocc∑
i

|ϕci⟩ ⟨ϕci | . (7.3)

Here, Nocc is the number of occupied states per the simulation cell of the system (including

the target molecule). Further, the P̂m projector is defined using the PMW states:

P̂m ≡
N ′

occ∑
j=1

|ψmj ⟩ ⟨ψmj | , (7.4)

where N ′
occ is the number of occupied states on the molecule of interest.

The calculation of the PMW states is iterative and maximizes the following objective

function using the steepest descent algorithm[75, 76, 77] (see the supplementary material

for details):

P =
Nocc∑
i

NA∑
A

[QA
ii ]

2, (7.5)

where NA represents the number of atoms in the simulation cell. The Q matrix is defined

as

QA
ij = ⟨ψi|wA |ψj⟩ (7.6)

Here, wA represents the weight function for each atom type A:

wA(r) =
n̄A(r)∑NA′

A′ n̄A′(r)
, (7.7)

where n̄A(r) is the density function of atom type A using the simple Gaussian model
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density.[78] Finally, {|ψj⟩} in Eq. (7.6) are

|ψj⟩ =
Nocc∑
i

Wij |ϕci⟩ , (7.8)

where W is the unitary matrix defined as the exponential of an anti-Hermitian matrix (see

the supplementary material). The W matrix is iteratively updated, and PMW orbitals

correspond to the solutions {|ψj⟩} which maximize P .

In practice, we search only for states localized on the molecule of interest. The program

with “locally searching for localized states” feature is available on Github.[79] The sums

in Eq. (7.5) thus contain N ′
occ and N ′

A instead of Nocc and NA, where the first set of

quantities refer to the target molecule. Similarly, the objective function is

P ′ =

N ′
occ∑
i

N ′
A∑
A

[QA
ii ]

2. (7.9)

Note that the unitary transform is still performed on all (Nocc). However, in each iteration

step, N ′
occ states are identified by having the largest expectation value of the weight

function:

Lj =

NA′∑
A

⟨ψj|wA |ψj⟩ . (7.10)

The N ′
occ states with largest L values are used in Eq. (7.9). The resulting PMW states

localized on the target molecule and are denoted as {|ψmj }⟩.

Using the set of PMWs, we reconstruct the molecular state |ϕj⟩ in the condensed

phase. First, we make an auxiliary calculation for an isolated molecule and obtain its

N ′
occ PMWs, |ψisoj ⟩. The desired molecular state (corresponding to the KS eigenstate of
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an isolated system), |ϕisoj ⟩ is represented in the PMW basis:

|ϕisoj ⟩ =
N ′

occ∑
i

αij |ψisoi ⟩ . (7.11)

Next, we use the molecular PMW basis in the condensed phase, |ψml ⟩, to reconstruct the

molecular orbital:

|ϕj⟩ =
N ′

occ∑
k

N ′
occ∑
l

αijβli |ψml ⟩ , (7.12)

where αij are taken from the Eq. (7.11) and βjk ≡ ⟨ψmj |ψisok ⟩. The underlying assumption

is that the occupied molecular subspace in the isolated and solvated molecules are the

same. Note that for strongly interacting solvent−solute systems the molecular states may

be hybridized with the environment. However, if the occupied subspace remains similar,

one can establish a map between |ψmj ⟩ and |ψisoj ⟩. Consequently, Eq. (7.12) imposes that

the charged excitation is constrained to be within a particular state ϕj localized on the

molecule. In this way, we can directly compare the ionization of isolated and solvated

systems. Such a treatment is also readily applicable in the context of GF and self-energy

embedding.[80, 81, 82, 83, 84]

For the systems described in Sec. 7.3, we found one-to-one correspondence between

the PMW orbitals, i.e., βjk ≃ δjk, and Eq. (7.12) is considerably simplified. In all the

cases studied, the solute/solvent molecules do not strongly hybridize, and we reconstruct

individual molecular states, as presented in Sec. 7.3.1.

Finally, despite we focused on the occupied states, the methodology can be applied to

reconstruct the bound empty molecular orbitals. The critical part is the identification

of the bound unoccupied subspace first for the isolated molecule and then the molecule

in the condensed phase. Once done, the reconstruction follows the same steps explained

above.
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7.2.3 Stochastic calculation of the self-energy

For calculations of the QP energies, we employ the GW approximation in which the

non-local and dynamical Σ(ω) derives from charge density fluctuations (induced by particle

removal or addition) that screens the exchange interactions. This approach is typically in

good agreement with experiments.[85, 86, 44] Nevertheless, the GW correlation neglects

the quantum fluctuations, which may become important for high energy excitations

and/or for unoccupied states.[65, 87] The method of subspace separations is, however,

general and applicable to beyond-GW approaches; it will be explored in the future. Here,

a single-shot perturbative correction is computed within the random phase approximation

(RPA) on top of a density functional theory (DFT) starting point (see the supplementary

material for details).

To overcome the high cost of conventional implementations, we employ the recently

developed stochastic formalism, which can be applied to extremely large systems owing

to its linear scaling.[62, 63, 64, 57, 65, 59, 60, 61, 87] This approach to the one-shot

perturbative correction (typically denoted G0W0) seeks the QP energy by randomly

sampling the single-particle states and decomposing the operators in the real-time domain.

The stochastic formalism has been described in detail in previous work[62, 63, 64] and it is

briefly revisited in the supplementary material. In Subsections 7.2.3 and 7.2.3, we describe

the connection between random sampling and the decomposition of the correlation and

exchange self-energies.

Correlation contribution

As stated above, the correlation part of the GW self-energy, Σc, is governed by

the charge density fluctuations. Recently, we have formulated a stochastic approach to

decompose Σc (Ref. 61), which is also applied to the calculations of the Σm
c and Σenv

c in
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this work. Here, m and env denote the molecule and the environment.

Within the stochastic formalism, we employ random states ζ to decompose the GF.

The resulting expression for the correlation self-energy Σc(t) explicitly depends on the

induced charge density potential uζ̄(r, t)

⟨ϕj|Σc(t) |ϕj⟩ ≃
1

Nζ

∑
ζ

∫
ϕ(r)ζ(r, t)uζ̄(r, t)dr, (7.13)

where uζ̄(r, t) is in practice computed from the retarded response potential due to the

δn(t):

ũζ(r, t) =
∫
ν(r, r′)δn(r′, t)dr′. (7.14)

The definitions of uζ̄(r, t) and ũζ(r, t) are provided in the supplementary material.

Next, we separate the induced time-dependent charge density δn(r, t) = n(r, t)−n(r, 0)

into two terms: for the time-dependent density of the molecule, i.e., solute, and the

environment, i.e., solvent (distinguished by superscripts):

n(r, t) = nm(r, t) + nenv(r, t). (7.15)

Both densities are expressed via the linear combination of PMW states (Sec. 7.2.2). In

our stochastic approach, the time-dependent nm and nenv are sampled using a set of

random vectors {ηk} confined to the corresponding (and mutually orthogonal) subspaces

k (k = m, env):

nk(r, t) =
1

Nη

Nη∑
l

|ηkl (r, t)|2. (7.16)

Here, Nη represents the number of random vectors used in the sampling (we employ

Nη = 16; see the supplmentary material for details). The random vector is prepared by
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projections:

|ηk⟩ = P̂ kP̂ occ |η⟩ , (7.17)

where the case of P̂m is given by Eq. (7.4) and P̂ env = Î − P̂m. The projector P̂ occ is

defined by Eq. (7.3).

The time propagated random vector |ηk(t)⟩ in Eq. (7.16) is:

|ηk(t)⟩ = U0,t[n(t)] |ηk⟩ , (7.18)

where U0,t is the time evolution operator defined as

U0,t[n(t)] = e−iH0[nm,nenv ]t. (7.19)

Here, H0 is the mean-field Hamiltonian that is a functional of the total time-dependent

charge density (i.e., containing contributions of both subspaces). Propagation using the

full charge density ensures that the correlated dynamics between the two subsystems is

captured.

Exchange contribution

The exchange self-energy is clearly defined via the non-local integral involving the

density matrix, ρ, and the bare Coulomb interaction, ν:

Σx =

∫∫
φj

∗(r)ν(r, r′)ρ(r, r′)φj(r′)dr′dr, (7.20)

where φj is a single-particle state. The density matrix is

ρ(r, r′) =
N ′

occ∑
i

φi(r)φ∗
i (r

′). (7.21)

191



Efficient treatment of molecular excitations in the liquid phase environment via stochastic many-body
theory Chapter 7

In practice, we disentangle the contributions from various parts of the system similar

to the procedure applied to the correlation self-energy. Due to the orthogonality of the

molecular and environment states, the density matrix is simply decomposed into the

corresponding contributions ρm and ρenv. The former is analogous to the solution for

an isolated molecule. The contribution of the environment is employs states {|ϕenvj ⟩}

obtained by the projection in Eq. (7.2).

7.3 RESULTS AND DISCUSSIONS

We now demonstrate the methodology and investigate the role of solute−solvent

interactions on the PES of phenol, thymine, and phenylalanine in water. The molecules

are selected based on their relevance in chemistry and (variable) structural complexity.

Phenol in water is a ubiquitous motif in biological chromophores, and hence this system

has attracted interest in the past.[36, 6] Thymine and phenylalanine are studied in the

context of DNA molecules[88, 89, 2, 35, 40] and amino acids.[90, 91, 92, 41, 42] While

phenol is the simplest and represents a “rigid” system (only a hydroxyl group is attached

to the benzene ring), thymine has a methyl group attached to the ring, which can freely

rotate. Phenylalanine has a much longer amino-acid group attached to the benzene ring.

The molecular structures are provided in Figure C.1.

The system geometries are obtained using Molecular Dynamics simulations (see the sup-

plementary material). From the trajectory of the calculation, we extract five uncorrelated

solute−solvent structures and perform the stochastic many-body calculations. Ground

state DFT is used to obtain the starting point for GW : the calculations are performed on

a regular real-space grid with generalized gradient approximation to exchange and correla-

tion in combination with the Troullier Martins norm-conserving pseudopotentials.[93] The

computations for isolated molecules are denoted as iso henceforth; the full QP spectra
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are computed for the solvated systems (see the discussion below) captured by simulation

cells with the periodic boundary condition with up to 1056 electrons. The stochastic

calculations of QP energies are converged with respect to the number of stochastic samples

such that the errors are ≤0.07 eV for the frontier state. The random sampling is efficient –

to reach this level of statistical error, the simulation took only 438, 988, and 1315 central

processing unit (CPU) hrs for phenol, thymine, and phenylalanine on a cluster computer

equipped with CPUs with a clock speed of 2.40GHz.

In the rest of this section, we first discuss the orbital reconstruction, followed by

the analysis of the QP renormalization in the liquid phase. Finally, we show the full

theoretical PES.

7.3.1 One-to-one correspondence of occupied subspace

Following the ground state DFT calculations, we determine the PMW states for both

the isolated and solvated solute molecules. Figure 7.1, shows the typical PMW functions

for phenol molecule. In the rest of this paper, we consider only the occupied subspace; a

similar approach is, however, applicable to empty states as discussed in Sec. 7.2.2.

The PMW functions have highly localized spatial distribution, and it is appealing to

interpret them as bonding orbitals that characterize the entire occupied subspace. In

this (convenient) framework, one can expect that PMW functions of the isolated and

solvated systems are related. Indeed, our calculations indicate that we can directly map

the isolated and solvated system PMW functions onto each other in all the cases studied

(Figure C.3). The spatial overlap between the corresponding PMW functions is at least

99% for all the three molecules (Table C.3).
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Figure 7.1: Three typical PMW functions of isolated and solvated phenol molecule,
respectively (Middle). The PMW functions are labelled by chemical bonds due to their
spatial distribution. The eigenstate, e.g., HOMO, of the isolated molecule is expressed
as a linear combination of |ψisoj ⟩ (Left). Using the same set of coefficients, the molecular
state of the solvated molecule is constructed as a linear combination of |ψmj ⟩ (Right).

The correspondence between PMWs of isolated and embedded systems is likely common,

and PMWs can thus be leveraged to reconstruct the molecular orbitals. As discussed in

Sec. 7.2.2, it is not, however, necessary that there is a one-to-one map. Instead, the only

underlying assumption is that the selected subspace is the same for both the solvated and

isolated molecules. In particular, this is one of the advantages of the stochastic methods,

which merely require the knowledge of the molecular subspace (not the states).

Figure 7.1 shows the reconstructed highest occupied molecular orbital (HOMO) for

the phenol in water (the right panel) versus the counterpart of the isolated one (the left

panel). The reconstructed |ϕ⟩ enters Eq. (7.1), and it is used to evaluate the role of the

environmental effects.
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7.3.2 HOMO QP energies and energy shifts

The QP energies of frontier states are of primary interest in the charge transfer process

as they correspond to the negative of the first ionization/detachment energy. We employ

the reconstructed orbitals discussed above. The solvent affects the QP energy [Eq. (7.1)]

via (i) variation of the molecular (solute) geometry and (ii) changes in the total self-energy

and presence of the Σenv term for the solvated molecule.

We first quantify the effects of the solute structure as changes of the QP energy purely

due to the geometry variation in the absence of the environment. In practice, we compare

the average of the QP energies for isolated molecules (with geometries extracted from the

MD trajectory) against the results for the system in its ground state geometry in the gas

phase (see Table C.4). On average, the absolute differences between the two are merely

0.05, 0.22, and 0.15 eV for phenol, thymine, and phenylalanine, respectively. Surprisingly,

the GW values appear to be less sensitive to the structural changes than the underlying

DFT (Table C.6). More importantly, the GW method provides results that are in good

agreement with experimental gas-phase IP measurements (albeit with a systematic shift,

see Table C.4).

Although the HOMO QP energies do not deviate significantly from the gas-phase

values on average, they can markedly differ for a particular configuration (Figure C.4).

The standard deviations (σ) stemming from structural variations of isolated molecules are

0.08, 0.11, and 0.28 eV for phenol, thymine, and phenylalanine (Table C.4), respectively.

Clearly, the spread of the results (captured by σ) increases with the molecular complexity

(i.e., from phenol to phenylalanine). Furthermore, the structural changes are associated

with electronic state reordering, i.e., the QP energies associated with particular states

are (de)stabilizing various states differently and QP HOMO is not identical to the DFT

HOMO orbital. Hence, the non-local dynamical correlations in Σm are responsible for
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significant energy renormalization. For instance, the HOMO orbital is not the same as

predicted by DFT in the majority of the calculations for phenylalanine (see Table C.5 for

details).

Figure 7.2: HOMO QP energy shifts with respect to the snapshots along the MD trajec-
tory of the three solvated molecules. The red dashed lines represent the experimental
results for phenol[36] and quantum chemistry calculations for thymine[35].

In the remaining part, we focus on the QP energy renormalization stemming purely

from the electron−electron interactions due to the water solvent. Again, we quantify

them as QP energy shifts relative to the QP energy of isolated molecules. The results are

presented in Figure 7.2 (the dark green solid lines) and Table C.9, where the averaged

QP energy shifts over 5 snapshots are +0.92± 0.06, +0.88± 0.05, and +0.76± 0.08 eV

for phenol, thymine, and phenylalanine, respectively. The QP energies are significantly

destabilized, and the ionization potential thus decreases. Reference data from previous

studies are summarized in Table C.8. The predicted QP energy shift of phenol is in excellent

agreement with previous PES measurements[6] and OT-RSH-DFT calculations.[28] The

shift of thymine also agrees well with previous quantum chemistry calculations.[35] For

phenylalanine, the experimental IP in the gas phase ranges from 8.80 to 9.15 eV, which

depends on the molecular conformation.[94, 90] Our calculations for the five geometries of

isolated phenylalanine along the MD trajectory also reflect such conformational dependency
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(see Figure C.4). The available aqueous-phase measurements give the IP as 8.7/8.8 eV,[95]

resulting in an IP shift of 0-0.45 eV by experiments. These values, however, contrast

other commonly reported estimates of the solvent shifts (∼1 eV).[96] The uncertainty

of the experimental data can be interpreted at least in two ways: either by a strong

conformation-dependence of the IP (yet to be explored), or potential inconsistency between

the gas-phase and aqueous-phase measurements. For these reasons, we do not validate our

results for phenylalanine against experiments. Further, the only available calculations of

phenylalanine using DFT and non-equilibrium PCM method suggest a 1.06 eV shift in IP

between two phases,[92] which is higher than our value. Since DFT is a mean-field method,

we do not use it to validate the results computed using the many-body perturbation

theory.

The environment affects the QPs more than by just rigidly shifting the excitation

energies. Indeed, the QP energy variation for phenol and phenylalanine in water increases

by 75% and 18% (to 0.14 and 0.33 eV). In contrast, σ for thymine in water slightly

decreases by 11%. The numerical results are provided in Table C.7. This indicates that

the many-body interactions between the solute and solvent can strongly depend on the

actual molecular arrangements, and the effects are further analyzed in Subsection 7.3.3.

7.3.3 “Fully coupled” correlation vs. “partially coupled” correla-

tion

To understand the changes in the QP energies, we decompose the self-energy into

exchange and correlation terms stemming from the molecule and the environment. The

exchange interaction generally leads to the QP stabilization, and it is governed by solute

molecular states. The contribution of Σx due to the solvent is small (≤0.16 eV, Table C.10)

due to the limited spatial overlap between the the molecular orbitals and the remainder
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of the system (Figure 7.2, the dark orange dotted line and Table C.10). In practice, the

non-local and dynamical correlation self-energy thus captures the key aspects of mutual

coupling between the solute and solvent.

To understand the effect of the environment on Σc, we will, for simplicity, consider the

first ionization energies, i.e., HOMO states. First, we note that the relative contribution

of environment correlation Σenvc (i.e., the fraction of the total Σc) ranges between 30% and

47% (Table C.11) and the remaining portion, Σmc , is due to the dynamical interactions of

electrons localized in the molecule.

The environmental effects are, however, not represented solely by Σenv. In fact, the

charge removal from a molecular state, |ϕj⟩, leads to dynamical interactions with electrons

in the surrounding water molecules. Besides the “direct” effect (i.e., solute-to-solvent),

the induced charge density fluctuations in water also create a solvent-to-solute feedback

mechanism. Hence, the induced charge density in the environment leads to secondary

fluctuations in the molecule and so on. This coupling is inherently captured by the charge

density in each subsystem, nk(r, t), which is subject to the time evolution governed by

the total charge density [Eq. (7.19)]. In this case, the real-time formalism is particularly

appealing as it enables capturing strong (i.e., even non-linear) couplings.[97, 98, 99, 100]

We now compare the self-energies of the molecule in the environment, Σm
c , with an

isolated one, Σisoc , i.e., without the environmental feedback.[101] The comparison provides

an estimate of the solvent-to-solute coupling magnitude. The real parts of the HOMO

self-energy Σiso
c and Σm

c are shown in Figure 7.3 for one of the snapshots along the

MD trajectory. The observed shift with respect to each other is due to the solvent. In

practice, the spectral features are shifted closer to QP energy and generally enhance the

correlation energy contribution. The changes do not correspond merely to a rigid shift of

the self-energy and distinct, i.e., various maxima of the curve are affected differently.
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Figure 7.3: Comparisons of the real-part of the correlation self-energy with (solid line)
and without (dotted line) the solvent-to-solute feedback for the three molecules. When
the solute-to-solvent feedback is accounted, the self-energy curves derived from the
charge density fluctuations on the solvated molecules (δnm) are unanimously shifted to
lower frequency region with respect to that of the isolated molecules.

If we recompute the QP energy by combining Σenvc with Σisoc , the correlations contain

only screening stemming either from the molecule or the environment but the indirect

solvent-to-solute contributions are missing. To distinguish this result, we label this

QP energy as “partially-coupled.” Figure 7.2 shows that in this case the QP energy

shifts decrease by as much as 68% (to 0.33, 0.39, and 0.24 eV for phenol, thymine, and

phenylalanine, respectively, Table C.12). Hence, the induced interactions between the

charge densities represent a significant component of the QP renormalization. This

observation illustrates the need for a fully coupled description of the molecule and the

environment.

Note that the approach proposed here is distinct from the previous calculations

employing GW only for a molecular subsystem, and relied on the QM/MM embedding

approach,[48, 55] which was further combined with an electrostatic reaction field based on

the classical charge response model.[102] This embedding accounts for the environment

response in the screened Coulomb interaction term (W ) through the inclusion of the

solvent polarizability. In practice, the correlation term contains contributions from the
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induced charge density on the molecule and the environment, but their dynamical coupling

(i.e., secondary solvent-to-solute interaction) is neglected except for structural changes

of the solute molecule and its orbitals. In contrast, the approach proposed here treats

both subspaces consistently and fully coupled (within the GW approximation). Further,

the environmental effects are present in all the terms entering the self-energy evaluation,

i.e., not only W . This is particularly important for calculations that include higher-level

treatment beyond GW .[65, 87]

7.3.4 Simulated photo-emission spectra

Figure 7.4: Simulated photo-emission spectra of the three molecules depicted in the
insets. The spectral functions for an isolated molecule and its solvated counterpart are
distinguished by color.

In the final step, we turn to the prediction of the entire photo-emission spectra of

the solvated molecules represented by the spectral function A(ω) (Sec. 7.2.1). Here, the

total A(ω) curve is a sum over the imaginary components of the GFs from each valence

state.[103] Figure 7.4 shows a comparison between A(ω) for the isolated and solvated

molecules. The zero on the frequency (energy) axis is aligned with the HOMO QP energy

of the isolated system. The common feature is the destabilization of the molecular states,

i.e., shifts to higher energies.

For phenol, the profiles of the PES in two phases are similar, although the height

of the frontier state’s peak is significantly reduced and simultaneously broadened. This
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indicates a strong QP lifetime decrease due to the electron−electron interactions with

the water solvent. Note that for the spectra of isolated molecules, the peak width is

artificially widened by the finite time evolution employed when computing Σisoc ; since this

finite broadening affects the spectrum uniformly, we consider only the relative changes in

the peak width with respect to the HOMO state. Further, note that we consider only the

electron−electron scattering, but, in practice, additional broadening will be observed due

to vibrational couplings. The results presented in Figure C.6 clearly indicate that even if

only electronic degrees of freedom are considered, the QP lifetime shortening is significant

for all valence states and the spectral broadening progresses with the hole energy (i.e.,

the deep valence holes correspond to wide peaks).

For thymine, besides the energy shift, the overall spectrum is much smoother as

molecular distortions and solvent couplings lift the QP state degeneracy. In general, the

peak widths of the solvated systems are on average 50% increased (see also Table C.16).

These effects are most obvious in the PES of phenylalanine: the spectral function is

destabilized, the QP lifetime decreases, and we observe almost complete smearing of the

entire spectrum below the HOMO level. The QP lifetime of phenylalanine’s frontier state

is shortened most significantly, by as much as 90%, leading to a drastically reduced peak

height in Figure 7.4.

For completeness, we analyze the energy shifts ∆EQP of all valence states (see

Tables C.13−C.15). For phenol and phenylalanine, ∆EQP is practically constant (on

average 0.94 and 0.86 eV). For thymine, the bottom valence states are more destabilized

compared to the top valence region; yet the average shift for each state is comparable to

the other two molecules (0.87 eV). For a specific system configuration, the environmental

effect is consistent for all valence states.
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7.4 CONCLUSION

In summary, a fully ab-initio stochastic many-body method is established to calculate

QP energy for molecules in the condensed phase. Here, the separation between the

electronic states is general, and the methodology treats the entire system at the same

level of theory. We adopt the GW approximation to describe the QP excitations. The

approach combines the random sampling of operators in mutually orthogonal subspaces

corresponding to the molecule and the environment. We presented a practical route to

reconstruct the molecular subspace in liquid water via a linear combination of localized

PMW functions. Owing to the linear scaling of the stochastic methodology, realistic

calculations for systems with thousands of electrons are thus possible.

The approach is tested on three solute−solvent combinations. By separating the

interactions, we find that the environment correlation energy Σenv
c accounts for ∼40%

of the QP renormalization. Further, the solvent effects are responsible for dynamical

coupling to the correlations within the molecular subspace and contribute by up to 68% of

the overall energy shift. The simulated PES of solutes shows the following characteristic

features: destabilization (i.e., red shift) of the peaks, smearing of the entire spectrum,

and significant QP lifetime shortening.

The methodology is general and can be applied to liquid and solid phases. It provides

direct access to the charge excitation energies as well as the photo-emission spectra and

their changes due to the interactions with the environment. Thus, this approach provides

a new perspective on ionization and charge transfer processes. Our subspace approach can

be further applied in (real-time) TDDFT calculations to simulate photo-absorption spectra

accounting for the environmental effects on the embedded molecules. And ultimately,

our method will contribute to understanding the chemical reactivity and opto-electronic

properties of molecules in complex systems.
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SUPPLEMENTARY MATERIAL

The supplementary material provides the supporting information for the details

of DFT and GW calculations, Pipek−Mezey wannier functions, and spectral functions.

Supplementary tables and figures indicated in the texts are also provided in this document.
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Chapter 8

Spatial Decay and Limits of Quantum

Solute−Solvent Interactions
Guorong Weng, Amanda Pang,a Vojtěch Vlček

ABSTRACT

Molecular excitations in the liquid-phase environment are renormalized by the sur-

rounding solvent molecules. Herein, we employ the GW approximation to investigate

the solvation effects on the ionization energy of phenol in various solvent environments.

The electronic effects differ by up to 0.4 eV among the five investigated solvents. This

difference depends on both the macroscopic solvent polarizability and the spatial decay of

the solvation effects. The latter is probed by separating the electronic subspace and the

GW correlation self-energy into fragments. The fragment correlation energy decays with

increasing intermolecular distance and vanishes at ∼9 Å, and this pattern is independent

of the type of solvent environment. The 9 Å cutoff defines an effective interacting vol-

ume within which the ionization energy shift per solvent molecule is proportional to the
aPresent address: University of Pennsylvania, PA, 19104, USA
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macroscopic solvent polarizability. Finally, we propose a simple model for computing the

ionization energies of molecules in an arbitrary solvent environment.

8.1 LETTER

Liquid phase is the most practical environment for treating multicomponent chemical

systems. Applications in synthetic chemistry and material processing rely on the dissolv-

ing ability, primarily linked to the solvent’s permanent dipole, i.e., the polarity. In the

context of electronic excitations (e.g., in spectroscopy) or charge transport, the dynamical

electric polarizability represents another fundamental property characterizing the solvent

medium; it is related to the dynamically induced dipoles that screen the electron−electron

interactions. The charge carriers are “dressed” by mutual interactions, forming quasiparti-

cles (QP),[1, 2] and the electronic structure is renormalized. Specifically, the presence
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of solvent shifts the excitation energies of the solute molecule and leads to their finite

excitation lifetimes. The effects on molecular energy levels of chromophores are commonly

known as solvatochromic shifts.[3, 4] In experiments, these shifts can be measured by light

absorption and emission spectroscopy as well as photoelectron spectroscopy.

The detailed microscopic understanding of solvatochromic shifts requires efficient

and accurate first-principles simulations. State-of-the-art theoretical approaches for

simulating solute−solvent systems are mainly formulated within the embedding framework:

quantum mechanical approaches, including quantum chemistry methods[5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and time-dependent density functional theory

(TDDFT),[22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34] apply only to the “core

region,” which consists of the solute molecule and sometimes a small number of proximal

solvent molecules;[22, 5, 8, 29, 11, 14, 18, 20, 21] the solvent environment is treated most

often with either the polarizable continuum model[35, 36, 37, 38] (PCM) or classical

molecular mechanics.[39, 40] However, high-accuracy quantum chemistry approaches are

limited to small molecules due to the steep cost-scaling; TDDFT results from practical

implementations strongly depend on the choice of the exchange−correlation functional.

For the environment, the use of implicit solvent models (e.g., PCM) does not allow detailed

investigations, for instance, about the spatial decay of the solute−solvent interactions.

Furthermore, current studies[5, 6, 7, 9, 10, 13, 14, 17, 18, 20, 21, 22, 24, 25, 27, 28, 29,

30, 31, 33, 34, 41] focus mainly on the optical absorption and emission processes but

do not provide direct information about the absolute energies of electronic levels, i.e.,

ionization potential (IP) and electron affinity (EA). These levels represent the electron-

donating and accepting abilities of the solute molecule. The development of liquid

microjet photoelectron spectroscopy[42, 43, 44, 45] allows direct IP measurements for

solvated molecules. However, this technique applies mainly to aqueous solutions due to

the volatility of most organic solvents. An affordable and accurate theoretical approach is
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in demand for predicting the IP and EA of molecules in diverse liquid environments.

Many-body Green’s function methods[1, 2] provide direct access to single-quasiparticle

energies, provided that the system is weakly or moderately correlated. Indeed, the

GW approximation,[46, 47, 48, 49, 50] even at the lowest order expansion in which the

electronic correlation is described merely through charge density fluctuations, yields IPs

that agree with experiments for most molecular systems.[51, 52, 53] Recent developments

in efficient algorithms[54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65] and high-performance

computing,[66, 67, 68] especially the linear-scaling stochastic formalism,[69, 70, 71, 72, 73,

74, 75, 76, 77, 78] have enabled large-scale GW calculations for systems with thousands

of electrons. Within the stochastic GW framework,[69, 71, 72] our previous work[77]

established an efficient approach for computing the photoemission spectra (i.e., IPs) of

various solvated molecules, in which the solute and the solvent environment (containing

∼1000 electrons) are treated on the same footing. Excellent agreements with experiments

and other comparable methods have been achieved for molecules solvated by water.

In this work, we investigate the molecular ionization in various polarizable solvents

and the spatial decay of the solvation electronic effects on the ionization energy. We

use regionally-localized[79] Pipek−Mezey[80, 81, 82] orbitals to separate the electronic

subspaces and decompose the correlation contributions into fragments. The methodology

is exemplified on a phenol molecule in five different solvents, with geometric structures

generated from molecular dynamics (MD) simulations (details are provided in the sup-

porting information). The energy shifts of the phenol’s IP are computed and related

to the macroscopic solvent polarizability. The rapid convergence of the IP shifts with

respect to the number of surrounding solvent molecules indicates that the solute−solvent

interactions vanish at some distance, which is fairly uniform across vastly different types

of solvents. From the decay of the GW correlation self-energy, we identify an effective

interacting radius for the solute molecule to interact with the induced charge density from
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the environment. Within the effective interacting volume, we find that the IP shift per

solvent molecule is proportional to the polarizability volume calculated for each solvent.

Finally, a simple solvation model is proposed for computing the IP of molecules in an

arbitrary solvent environment.

In the Green’s function formalism,[1, 2] the electron−electron interactions are repre-

sented by the nonlocal and dynamical exchange−correlation self-energy, ΣX and ΣC. In

practice, we compute ΣX and ΣC as perturbative corrections to the mean-field eigenvalue

yielding the following QP energy

εQP
j = ⟨ϕj|ε0j − v̂xc + Σ̂X + Σ̂C(ω = εQP

j )|ϕj⟩ (8.1)

Here, ϕj is a reconstructed molecular state on the solute,[77] and ε0j comes from an auxiliary

density functional theory[83, 84] (DFT) calculation of the isolated solute;[77] v̂xc is the

PBE exchange−correlation potential,[85] and Σ̂X is the nonlocal exchange interaction

equivalent to the Fock operator;[2] Σ̂C(ω) is the frequency-dependent correlation self-

energy. This work employs the one-shot GW (G0W0) approach, in which the correlation

corresponds to the potential due to charge density fluctuations. In the following, we

use ΣC to denote the expectation value ⟨ϕj|Σ̂C|ϕj⟩, where the spatial coordinates are

integrated out.

We demonstrated the separation of ΣC into the molecular and the environmental

contributions in ref 77. In this work, we generalize this separation to multifragments in

the solute−solvent systems. The definition of a fragment is arbitrary and in the remainder

of this text, a fragment refers to a solvation shell consisting of one or multiple solvent

molecules. The electronic subspace of a fragment is represented by the following projector

P̂ k =
Ns∑
i

|ψki ⟩ ⟨ψki | (8.2)
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where ψk form a localized basis, and Ns includes all the valence electrons of the kth

fragment. The corresponding electronic subspace is sufficiently defined by the full set

of occupied states based on the “local density fluctuations” assumption: the perturbed

and time-evolved ψk stay localized on the kth fragment. In other words, we assume no

intermolecular charge transfer happens, and all the density fluctuations remain on the

fragment. This assumption is reasonable when no apparent donor−acceptor character is

found in a van der Waals-bound molecular system. It follows that the time-dependent

charge-density fluctuations δn(r, t) are decomposed into fragments

δn(r, t) =
Nfrag∑
k

δnk(r, t) (8.3)

where Nfrag denotes the number of fragments, and δnk(r, t) is the density fluctuations

contributed by the kth fragment.

Since the G0W0 correlation self-energy stems from the charge density−density interac-

tions (i.e., induced dipole interactions), the ΣC can be immediately written as

ΣC[δn(t), t] =

Nfrag∑
k

Σk
C[δn

k(r, t), t] (8.4)

In this work, we use the stochastic GW method[69, 71, 72] to compute the correlation

self-energy contributed from a specific fragment, e.g., a solvation shell at distance Rk,

and then study the decay of Σk
C as a function of Rk.

The construction of P̂ k, the decomposition of δn(r, t), and the calculation of Σk
C are

detailed in the Theory and Methodology section in the Supporting Information.

To practically investigate the energy shifts contributed by the solvent environment, we

explore the vertical ionization potential (corresponding to the negative of the HOMO QP

energy) of phenol in five different solvents: water (H2O), acetonitrile (ACN), dichloromethane
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(DCM), tetrahydrofuran (THF), and benzene (BEN). The solute−solvent systems are

constructed and propagated using a cubic cell with lateral dimensions of 18−21 Å in

MD simulations (see Figure D.2 and Table D.7). The solvent environment contributes to

the solute’s electronic structure in two ways: direct electron−electron interactions and

structural relaxations. The latter also involves direct electron/hole-vibrational couplings,

which are, however, not considered in this work. The structural effects are thus reduced to

conformational changes and the corresponding QP energies of the isolated phenol molecule

(εiso), with molecular structures extracted from snapshots (Figure D.1 and Figure D.2)

of the MD trajectories. Figure 8.1a shows the HOMO of an isolated phenol molecule,

which is obtained by simply removing all the solvent molecules (Figure 8.1b). The εiso

results do not differ too much among the five solvents (see Table D.2), i.e., the solvent-

induced structural changes of phenol are consistent regardless of the actual chemical

environment in the liquid phase. Note that flexible molecules, e.g., phenylalanine with a

chain group attached to the aromatic ring, will display a more pronounced dependence on

the structural variation (see our reported results in ref 77). Since we focus on the purely

electronic contributions stemming from the dynamical electronic interactions with the

solvent environment, phenol thus appears to be an appropriate choice as a test system.
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Figure 8.1: (a) HOMO of the isolated phenol molecule. (b) Reconstructed HOMO of
the phenol molecule surrounded by 64 ACN molecules in the simulation cell. (c) IP
shifts ∆ε plotted as a function of the mean polarizability volume: ∆ε0 represents the
first-principles results calculated as εsolv − εiso; ∆εm1 and ∆εm2 are derived from the
proposed solvation model, where ∆εm1 uses Neff derived from the solvent mass density,
while ∆εm2 uses the average Neff over five selected snapshots from the MD trajectory.

The solvation many-body effects on the IP of phenol correspond to the energy shifts,

∆ε, defined as the QP energy difference between the solvated and the isolated HOMO

(εsolv − εiso). For each solvent environment, we sample ∆ε using five snapshots and

obtain the average value (see Figure D.4). The standard deviation of ∆ε is lower than

that of εsolv, indicating that the sampling of ∆ε represents the average solvation effects

along the MD trajectory. A significant part of these effects is due to the dynamical

screening by the induced charge density fluctuations of the solvent environment.[77]

Hence, it stands to reason that ∆ε is related to the macroscopic solvent polarizability,

which is further related to the refractive index nr of the liquid by the Lorentz-Lorenz

equation, αm = 3(nr
2 − 1)/4π(nr

2 + 2). αm is the mean polarizability volume, and Nv

is the number of molecules per unit volume. The derivation of Nv takes the solvent’s

mass density at 293 K. Both nr and mass density data are readily accessible in the

CRC Handbook of Chemistry and Physics.[86] In Figure 8.1c, the ∆ε0 (blue circles,

first-principles values) averaged over five snapshots of each solvated system is plotted

with respect to the corresponding αm. While there is a general trend, the dependence is

not straightforward: most importantly, the DCM environment exhibits the largest ∆ε0
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(IP shifts), despite its polarizability volume being in the middle of the range. The results

in Figure 8.1c are then compared with simulations using a smaller cell and fewer solvent

molecules (see Figures D.1 and D.3). Even though the numbers of solvent molecules are

(nearly) doubled (Table D.7), the ∆ε0 are increased by at most 15% (see Figure D.5). It

implies that the solute−solvent many-body interactions are converging rapidly with an

increasing number of solvent molecules, at least at the GW level. In fact, we expect that

these intermolecular interactions decay with distance, and the decay is governed by the

polarizability of the solvent molecules.

Next, we investigate the distance (Rk)-dependence of the correlation self-energy

(Σk
C) contributed from the liquid environment. At the G0W0 level, this corresponds to

the polarization screening effects stemming from the induced time-dependent dipoles

on the solvent molecules. The solvent environment is fragmented into solvation shells

(Figure D.6), each of which is represented by a set of localized orbitals (eq 8.2). Note that

the shell in this work is constructed by a cluster of solvent molecules at a similar distance

(±0.2 Å). We set integer distances ranging from 3 to 10 Å for the fragment selection,

while the actual distance Rk is derived by averaging the distances of all molecules within

the same shell. In total, six shells are chosen from a typical snapshot of each solvated

system, and most of them contain more than one molecule in order to cancel out the

solvent orientation effects (Figure D.6).
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Figure 8.2: (a) A typical localized orbital on the fragment with 5 H2O molecules at ∼5
Å. (b) Localized electron density on the fragment with 5 H2O molecules at ∼5 Å. (c)
Real part of the normalized fragment correlation self-energy for each H2O shell. The
dashed line indicates the HOMO QP energy. (d) Normalized fragment polarization
energy plotted as a function of the shell distance for the three chosen valence states of
phenol.

First, we focus on the investigation of the H2O environment. Figure 8.2a shows one of

the localized orbitals on the H2O molecules at ∼5 Å. This is a hybridized state distributed

on five molecules that are spatially separated. The total charge density for this H2O shell

(Figure 8.2b) then enters the G0W0 calculation and leads to the fragment correlation

self-energy Σk
C. As Σk

C is computed for multiple solvent molecules, we divide it by the

number of solvent molecules in the shell and obtain a normalized fragment correlation
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self-energy Σ
k

C. The real part of Σk

C for each H2O shell is presented in Figure 8.2c. The

labels from 1 to 6 correspond to the actual distances from 4 to 9 Å. Around the peak of

Σ
k

C (the plasmon pole), the magnitude decays as the solvent molecules get further away.

The vertical dashed line indicates the frequency where ω = εj , i.e., the HOMO QP energy;

the vertical coordinate of each intersection represents the actual polarization contribution

from each shell to the QP energy. This derived polarization energy is denoted as Ek

pol. In

Figure 8.2d, the solid red squares are the plot of the Ek

pol induced by the HOMO (the

18th valence state of phenol) at each distance, and the red line is fitted to this data set.

The Ek

pol decreases with increasing Rk and practically vanishes at ∼9 Å.

Surprisingly, this is a very robust decaying pattern, as we observe a similar behavior

from the first or the ninth valence state of phenol (half-filled squares with fitted lines in

Figure 8.2d). All three Ek

pol vanish at ∼9 Å. The decaying pattern shows little dependence

on the state’s QP energy or its spatial distribution (Figure D.7) on the solute molecule.

We surmise that this pattern also applies to other small molecules similar to phenol, and

further explanations are provided after discussing the nonaqueous solvents.

The same fragmentation analysis is performed on the HOMO of the other four solvated

systems (Figure D.6), in which the decays of Σk

C of each individual solvent with respect to

Rk are consistent (Figure D.9). Further, we compare the Σ
k

C from the shell at the same

distance (∼5 Å) of each solvent, as shown in Figure 8.3a: around the solvent plasmon

pole (i.e., a polarizability resonance), the magnitude of Σk

C has its maximum. At the

same time, the pole shifts gradually to a higher frequency (indicated by the dashed arrow

line), which corresponds to a faster response sustained by a more polarizable solvent.

Further, the overall magnitude of Σk

C increases with the polarizability volume of the liquid

environment. In Figure 8.3b, the normalized polarization energy E
k

pol is plotted with

respect to Rk for each solvent. Within 7 Å, the magnitude of Ek

pol along the vertical axis

represents the strength of the interactions, which follows the order of αm in Figure 8.1c.
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However, the decay of Ek

pol along the horizontal axis does not differ too much among

various solvents: particularly, the 9 Å distance appears to be the common point at which

the Ek

pol for all the five solvents vanishes (Ek

pol < 10 meV).

Figure 8.3: (a) Real part of the normalized fragment correlation self-energy for the
shell at ∼5 Å of each solvent. The dashed arrow indicates the shift of the pole, and
the solid arrow denotes the order of αm. (b) Normalized fragment polarization energy
plotted as a function of the shell distance for the HOMO state of phenol in each solvent.
(c) Averaged IP shifts plotted as a function of the mean polarizability volume. The
straight line is fitted using the linear regression model, where the slope is 8.59 meV/Å3

with an intercept of −0.51 meV at αm = 0.

From the observations above, we find that the macroscopic solvent polarizability

dictates the temporal behavior (i.e., how fast the response is) and the strength of the

response (i.e., the magnitude of the nonlocal correlation self-energy). A common cutoff

distance, within which the solvent molecules are considered effective, is found at ∼9

Å away from the phenol solute. This effective interacting radius depends neither on

the ionization state nor the solvent type, and this phenomenon, as we believe, can be

attributed to the localized molecular excitation on phenol. In practice, electronic states

on the solvent molecules are only mildly perturbed by the excitation of the solute. For

solvent molecules at long distances, the perturbation is even weaker. Hence, the 9 Å

cutoff should be a consequence of the localized molecular excitation and applies likely to

other molecules of similar size to phenol.

Based on the effective interacting radius, we identify the number of effective solvent
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molecules Neff for each solvated system (see Table D.9). From H2O to BEN (as ordered

in Figure 8.1c), the Neff (averaged over five snapshots) are found to be 97, 32, 24, 19,

and 16. This will help to explain the apparent contradiction observed for the DCM

solvent (Figure 8.1c): although DCM is less polarizable than THF and BEN, it leads to

stronger energy shifts because of a larger Neff (i.e., more effective solvent molecules). The

difference in Neff originates from the molecular size and mass density difference among

various solvents. Moreover, we divide the QP energy shifts ∆ε by the number of effective

solvent molecules Neff and denote the result as ∆ε. The ∆ε represents the IP shift per

effective solvent molecule. In Figure 8.3c, the derived ∆ε is plotted as a function of

αm, with αm = ∆ε = 0 representing the solvent-free (i.e., solute placed in a vacuum)

case. This data set is fitted to the linear regression model, resulting in a determination

R2 > 0.99. The ∆ε is shown to depend linearly on αm with a slope of 8.59 meV/Å3 and

an interception of −0.51 meV at αm = 0.

The linear relationship between ∆ε and αm shown in Figure 8.3c can lead to a potential

solvation model for computing the QP excitation energies, corresponding to the ionization

potentials in this particular case, of molecules in an arbitrary solvent environment. The

current work presents a model parameterization for phenol, and its generalization to

different solutes is discussed below

εsolv = εiso +∆εm

= εiso +Neff∆ε
m

(8.5)

where εiso denotes the QP energy of the isolated molecule from first-principles calculations,

and ∆εm, derived as a product of Neff and ∆ε
m, is the QP energy shifts (i.e., the IP

shifts) induced by the solvent environment. Using the 9 Å cutoff radius, the number

of effective solvent molecules Neff can be determined by sampling snapshots from MD
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simulations (denoted N0
eff), or estimated by the solvent’s mass density and the solute’s

exclusion volume[87] (denoted Nm
eff). The ∆εm in eq 8.5 is obtained by inserting the solvent

polarizability volume αm (derived from nr) into the linear equation shown in Figure 8.3c.

The ∆εm in eq 8.5 can thus be derived from only classical solvent properties, which are

accessible for most of the common solvents. Although we hypothesize that the linear

equation shown in Figure 8.3c should be universal, the exact proportionality coefficient

would likely change for another solute molecule since the solute−solvent interactions are

coupled. For instance, a more polarizable solute might cause a stronger response from the

solvent environment, leading to a larger coefficient than the one found in Figure 8.3c.

We use the proposed solvation model to compute the IP shifts for phenol in the

five investigated solvents and compare them with the first-principles results. The αm

listed in Figure 8.1c are inserted into the linear equation in Figure 3c to derive ∆ε
m,

which show differences from the first-principles values (Figure D.11). For the number of

effective solvent molecules, we consider both Nm
eff and N0

eff (defined above). Numerical

details are provided in Table D.10. The computed results using the combination of Nm
eff

and ∆ε
m are plotted in Figure 8.1c (∆εm1 , red squares). For the first four solvents, the

derived trend agrees well with the first-principles one (blue circles), despite a common

overestimation of ∼0.1 eV. The deviation of ∆εm1 for BEN is more significant due to an

overestimated Nm
eff . By replacing Nm

eff with N0
eff (∆εm2 , orange diamonds), the derived

IP shifts for the BEN solvent become closer to the first-principles result. For the DCM

solvent, ∆εm2 underestimates the IP shifts due to a smaller ∆εm than the first-principles

∆ε
0 (Figure D.11). However, the agreement with the first-principles results is generally

improved when the Neff is estimated by MD simulations.

For further development and optimization of this simple solvation model, we note that

(1) the full parameterization relies on exploring multiple solute molecules to elucidate the

solute-dependence discussed above; (2) the linear equation in Figure 8.3c can be improved,
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e.g., by sampling more solvent cases and averaging over more MD snapshots.

In summary, this work introduces a generalized decomposition scheme of the GW corre-

lation self-energy based on the fragmentation of a multimolecule system. This methodology

is employed to investigate the energy shifts of single-(quasi)particle excitations in various

solvent environments. The fragmentation (decomposition) of the correlation self-energy is

formulated upon the assumption that the induced density fluctuations, represented by

Pipek−Mezey localized orbitals, are local on each fragment.

We sample molecular dynamics simulations using water and four other organic solvents

together with the phenol solute. The first observation is that the explicit IP shifts do

not follow the order of the mean polarizability volume computed for each solvent. To

investigate this disagreement, we apply the self-energy fragmentation scheme to explore

the solvation many-body effects in these systems. Specifically, we compute the fragment

correlation contributions for solvation shells at various distances away from the solute

molecule. The fragment correlation self-energy decays monotonically as a function of the

shell distance. At the distance of ∼9 Å, the correlation contribution practically vanishes.

This distance corresponds to an effective interacting radius for considering the solvent

response stemming from the induced dipole interactions. The 9 Å effective interacting

radius depends neither on the ionization state of the solute nor on the solvent type. This

phenomenon can be attributed to the localized feature of QP excitations on the solute.

Comparing the correlation self-energies among various environments, we find that

the macroscopic solvent polarizability is directly related to the temporal behavior and

the correlation strength. However, the apparent 9 Å cutoff radius is unaffected by the

polarizability of the solvent. This existing cutoff radius indicates that the explicit solvation

many-body effects on the ionization energy depend not only on the polarizability but also

on the number of effective solvent molecules. The latter can be extremely sensitive to

practical experimental conditions. Indeed, if both the polarizability and the number of
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solvent molecules within the effective volume are considered together, the average IP shift

is perfectly reflected by the mean polarizability volume and exhibits a linear dependence.

Based on this connection, we further propose a possible solvation model to compute the

QP energies of solvated molecules. This model requires only classical parameters that are

readily accessible.

Although further explorations are needed to confirm the universality of the effective

interacting radius and the solvation model, rich information about the solvation many-

body effects has been unveiled by the proposed self-energy fragmentation method. We

believe this approach will provide a powerful tool for understanding and analyzing the

interactions and couplings between specific fragments in composite condensed systems.

SUPPORTING INFORMATION

Texts: details of computations and methodologies; Tables: parameters in the DFT

and GW calculations, number of solvent molecules in the small and large simulation cells,

QP energies and IP shifts of each snapshot in each solvated system, number of effective

solvent molecules in each snapshot of each solvated system; Figures: extracted snapshots

from the MD trajectories, fluctuations of the QP energies and IP shifts with respect

to the MD snapshot, IP shifts as a function of the mean polarizability, solvation shells

at various distances, fragment correlation self-energy of different ionization states and

solvents, graphical solutions to the QP energy of the isolated and solvated phenol.
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Are multi-quasiparticle interactions

important in molecular ionization?
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ABSTRACT

Photo-emission spectroscopy directly probes individual electronic states, ranging

from single excitations to high-energy satellites, which simultaneously represent multiple

quasiparticles (QPs) and encode information about electronic correlation. First-principles

description of the spectra requires an efficient and accurate treatment of all many-body

effects. This is especially challenging for inner valence excitations where the single QP

picture breaks down. Here, we provide the full valence spectra of small closed-shell
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molecules, exploring the independent and interacting quasiparticle regimes, computed

with the fully-correlated adaptive sampling configuration interaction (ASCI) method. We

critically compare these results to calculations with the many-body perturbation theory,

based on the GW and vertex corrected GWΓ approaches. The latter explicitly accounts

for two-QP quantum interactions, which have been often neglected. We demonstrate that

for molecular systems, the vertex correction universally improves the theoretical spectra,

and it is crucial for accurate prediction of QPs as well as capturing the rich satellite

structures of high-energy excitations. GWΓ offers a unified description across all relevant

energy scales. Our results suggest that the multi-QP regime corresponds to dynamical

correlations, which can be described via perturbation theory.

9.1 COMMUNICATION

The quantitative understanding of electronic excitations in complex molecular extended

systems is one of the most fundamental open challenges in modern theoretical chemistry.

Perhaps the most direct experimental probe of the excited state manifold is given by

photo-emission spectra (PES), which directly access individual electronic states [1, 2, 3, 4]

and, in principle, access information on the single-particle orbitals [5, 6, 7]. Theoretical

approaches are meant to provide an interpretative connection between measured spectral

features and chemical concepts, thus helping design systems with tailored (opto)electronic

properties. An accurate realization of this ideal often requires a treatment beyond

effective one-body theories, such as Hartree−Fock or Kohn−Sham density-funcitonal

theory, to capture all interactions that renormalize single electron properties and lead to

the formation of quasiparticles (QPs).

Traditional gold-standard wave function approaches, such as the configuration inter-

action or coupled cluster methods, can yield highly accurate predictions, and they have
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been extensively applied to describe the outer valence and core electron spectra of small

molecules [8, 9, 10, 11, 12, 13], which fundamentally behave as individual QPs. However,

the description of the inner valence region is more complicated: multiple excitation

mechanisms are available, and ionization can be accompanied by simultaneous neutral

excitation of the system. At the energy scales associated with inner valence PES, the single

QP (SQP) picture breaks down, and the spectra exhibit a multitude of features [14, 15],

which we refer to as the multi-QP (MQP) regime. In analyzing PES, these are typically

referred to as shake-up satellites. Describing these ionized states requires accounting for

the nontrivial interactions among many excited states. The inner valence excitations in

the MQP regime thus represents an unambiguous measure of electron correlation [16].

This correlation may be dynamic or static in nature, and, depending of this distinction, it

may be captured by different approximations: dynamical correlation would correspond to

a frequency dependent potential on top of an effective one-body theory, and can (in prin-

ciple) be described by perturbation theory. On the other hand, static correlation requires

an intrinsically many-body description, i.e., it cannot be qualitatively approximated by a

single effective one-body hamiltonian and its perturbation.

Ab-initio wave function methods capture both types or correlations, they, in principle,

describe the high energy holes, but often require extensive exploration of the exponentially

large Hilbert space, limiting their application to small molecular systems. However, while

convenient from a computational perspective, the formulation of these methods in terms

of determinants makes a definite distinction between dynamic and static correlation

complicated in most cases. In particular, it is unclear whether MQP features in PES

belong to the former or latter class. On the one hand, they are intrinsically many-body

effects which cannot be captured by a single Slater determinant. On the other hand, they

often arise from neutral excitations weakly coupled to holes, which suggests they should

be amenable to perturbative description.
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In the pursuit of an accurate but scalable theoretical description of PES, many-

body perturbation theory (MBPT) has proven a viable alternative for computing QP

excitations. It offers a systematically improvable theoretical framework for capturing

dynamical correlations. MBPT relies on physically motivated concepts such as screening,

while retaining a polynomial computational scaling. In particular, the popular GW

approximation is extensively applied to treat molecules and solids, and it predicts outer

valence and core electron spectra with good accuracy [17, 18, 19, 20, 21, 22]. With

recent algorithmic developments, GW can be applied to systems with thousands of

electrons [23, 20, 24, 25, 26, 27, 28]. Unfortunately, the GW framework is fundamentally

limited to systems where classical electrodynamics dominates the electronic correlation.

Hence, the description of the MQP regime is beyond the GW capabilities [29, 30, 31, 32, 33,

34, 35, 36]. Within the MBPT framework, the missing higher-order quantum interactions

are represented by the vertex term Γ, which encodes dynamical two-particle correlations.

The inclusion of Γ leads to the GWΓ approach, which for molecular systems has been

studied only on first ionization energies and electron affinities[37, 38, 39, 40, 30, 31].

However, the role of Γ on the entire valence states and the MQP excitations has not been

explored up to now.

In this communication, we demonstrate that MBPT with vertex terms successfully

captures the correlations necessary for a qualitative the description of the MQP regime of

PES, suggesting them to be dynamic in nature. By comparison with explicitly correlated

and numerically exact methods, namely the adaptive sampling configuration interaction

(ASCI) approach [41, 42, 43, 44], we show that the GWΓ approach yields superior results

compared to GW throughout all energy scales. Moreover, we discover that the non-

local quantum interactions play a significant role for all valence electron excitations and

correctly captures the breakdown of the SQP picture, eliminating spurious artifacts of

GW in the shake-up region of PES. We choose as case study the PES of selected closed
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shell molecules (NH3, H2O, CH4, C2H2, and N2), which as we show present rich MQP

character in the inner valence region.

The spectral function A(ω) computed with ASCI and MBPT is the figure of merit.

This corresponds to the physical observable (i.e., PES ), and is given as the trace over the

imaginary part of the Green’s function (GF) Gi,j(ω) [32], i.e., A(ω) = 1
π
Tr |ImG(ω)|. The

i, j sub-indices correspond to a chosen single particle basis. The peaks in A(ω) correspond

to the poles of G [45] and for a particular hole component:

Gi,i(ω) =
∑
m

∣∣⟨ΨN−1
m |ci|ΨN

0 ⟩
∣∣2

ω + (EN−1
m − EN

0 )− iη
, (9.1)

where |ΨN
m⟩ is the m-th eigenstate of the N particle system, with energy EN

m . Further, ci

is the i-th annihilation operator and η is an integrating factor. In the mean-field and SQP

regimes, we expect only one non-vanishing overlap
∣∣⟨ΨN−1

m |ci|ΨN
0 ⟩

∣∣2 per single-particle

state i, corresponding to a dressed hole with energy EN−1
m −EN

0 . However, multiple states

|ΨN−1
m ⟩ with distinct EN−1

m exist in the MQP regime.

First, we evaluate Eq. (9.1) without further approximations via the ASCI algorithm [41,

42, 46, 43, 44], which captures both SQP and MQP regimes, regardless of the degree

of correlation of the excited states. ASCI provides accurate Green’s functions in model

systems [43, 47]; here, we compute Green’s functions of ab initio Hamiltonians using

ASCI for the first time. The spectral features calculated from Eq. (9.1) represent a

series of infinitely sharp peaks due to the use of finite atomic basis sets and a Hermitian

Hamiltonian. As a result, no scattering states are considered and the finite lifetimes of

individual excitations (arising due to the coupling to continuum) are neglected. While

the MBPT calculations also discretize the state space, this is performed in the converged

real space grid which enables the description of the continuum states as well (for the

details of the calculations see the supplementary material). To facilitate comparison with
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the MBPT results, which thus include lifetimes due to electron−electron scattering, the

ASCI-computed spectra have been artificially broadened using the η parameter in Eq. (9.1).

For the heuristics and technical details of ASCI, including basis set extrapolation, see the

supplementary material.

MBPT is based on the conceptually different approach of obtaining the QP energies

through the Dyson equation [32]. This relates the Green’s function of the fully interacting

QPs Gi,j(ω) and a reference (mean-field) Green’s function G0,i,j(ω), through the self-energy

Σi,j(ω). The latter, in principle, contains all many-body effects. The poles of Gi,j(ω) are

subject to the QP fixed point equation:

ϵj = ϵ0j +Re [Σj,j(ω = ϵj)] + Re [∆j(ω = ϵj)] . (9.2)

Here ϵ0j is a pole of G0 and ∆j(ω) comprises the coupling due to the off-diagonal elements

of Σi,j(ω). In this work, we adopt the common diagonal self-energy approximation, i.e.

we assume ∆j(ω) = 0 in Eq. (9.2). In the SQP regime, Σ(ω)i,j merely shifts the poles of

G with respect to G0, and Eq. (9.2) only has one solution per orbital. For MQPs, the

structure of the self-energy is necessarily more complex and, in principle, yields multiple

solutions to Eq. (9.2). To capture such correlated states, Σ(ω)i,j must account for the

interactions between the particle−hole pairs and ionized holes (or injected electrons) in

the system. It is often helpful to represent the solutions of Eq. (9.2) graphically as done

in the discussion below.

In this work, we base the perturbation expansion on top of the Hartree−Fock (HF)

Hamiltonian employing a one-step iteration in building the self-energy. In principle, the

correlation self-energy, Σc, is derived from the equation of motion of the QP Green’s

function and the non-interacting reference (i.e., HF in this case). The full (self-consistently
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renormalized) expression reads [32]:

Σc(1, 2) = −ν(1, 4̄)G(1, 3̄)δΣHxc(3̄, 2)

δG(6̄, 5̄)
3χ(6̄, 5̄, 4̄), (9.3)

where we employ a short-hand notation for space-time coordinates 1 ≡ (r1, t1) and bar

indicates a coordinate that is integrated over. Here, ΣHxc contains Hartree, exchange, and

correlation interactions, and ν(1, 2) = δ(t1 − t2)/|r1 − r2| is the bare Coulomb interaction.

Further, we introduce a generalized response function connecting the induced Green’s

function to a perturbing potential U(1) as 3χ(1, 2, 3) = −iδG(1, 2)/δU(3).[31] To lower the

computational cost, it is common to approximate δΣHxc/δG, the two-particle interaction

kernels [33, 32, 34, 35, 36]. In particular, taking δΣHxc/δG ≈ δΣH/δG leads to the popular

GW approximation [48, 49], which describes the correlations as induced time-dependent

density fluctuations. In contrast, GWΓ evaluates Eq. (9.3) in full and captures the

QP couplings. The additional terms (compared to GW ) stemming from δΣxc/δG are

referred to as vertex corrections, and they are responsible for mutual coupling of MQP

interactions [29, 30, 31, 32, 35]. In particular, it has been shown that including vertex

corrections is necessary for self-consistent renormalization[50] and to capture satellite

spectral features for simple models of core electrons [51]. While the computational cost of

Γ is large [52, 30], a recent stochastic formalism introduced a linear-scaling algorithm,

which we apply here [31] to study the effect of vertex corrections on the satellite features

in the valence spectrum.

In practice, we resort to the single step correction scheme for both GW and GWΓ. In

this approximation, the two-particle kernel derives from the mean-field Hamiltonian, i.e., it

becomes δΣH/δG for GW . For GWΓ, the kernel is δΣHx/δG, i.e., it also includes the HF

exchange term [31]. Thus, the GWΓ implementation contains, on top of induced Hartree

potentials, also the dynamical induced exchange interactions. The latter are introduced
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through an additional term in the self-energy (see the supplementary material for details)

that is responsible for additional oscillations in Σc(ω) and, hence, for additional solutions

to Eq. (9.2). Further, as common, we employ the random-phase approximation (RPA) in

GW ; however it is avoided in GWΓ, where the time evolution of states is governed by the

full Hamiltonian (by the time-dependent Hartree−Fock approximation in this particular

case). Hence, the propagated states incorporate excitonic effects through the dynamical

exchange potential[33]. Effectively, our GWΓ implementation corresponds to performing

one full iteration through Hedin’s pentagon. An alternative formulation based on the

T-matrix formalism allows to incorporate other channels of correlations[29, 32, 53], which

would be accounted for if the Hedin’s pentagon (with Σxc defined by Eq. (9.3)) was run

to self-consistency. The use of GW without RPA is possible, but it worsens the quality

of A(ω) [31]. Further, we deliberately choose HF as the starting point as it often lacks

spurious multiple solutions to Eq. (9.3) [54] and HF single-particle states are close to true

Dyson orbitals.[55]

The computed spectral functions with the different theoretical approaches are illus-

trated in the top panel of Figure 9.1 for the CH4, NH3, and H2O molecules. The frontier

orbitals appear at the lowest absolute frequencies, an thus we henceforth refer to the

orbitals with energy close to zero frequency as low energy, or outer valence, and those

with energy far away from zero as high energy, or inner valence. The distinction between

the SQP and MQP regimes is evident: the highest occupied molecular orbitals (HOMO)

and states energetically close to these are composed of a single sharp peak per orbital,

consistent with the SQP picture. In contrast, excitations far away from the HOMO

exhibit broader peaks; their spectral intensity is often redistributed to multiple satellite

features. This is a signature of the MQP regime. These results alone however do not

indicate whether the satellites represent a weak coupling of, in principle, distinguishable

QPs, and to what extent the MQP couplings can be captured perturbatively using single
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particle states forming only one Slater determininant.

Figure 9.1: Upper panels: Spectral functions for CH4, NH3 and H2O as computed with
ASCI (filled curve), G0W0 (dot-dashed line) and G0W0Γ (solid line). Note that the
inset in the central panel is in log scale. We mark the SQP and MQP regimes explicitly
for H2O. Lower panels: Corresponding real part of the diagonal self-energy terms from
G0W0 and G0W0Γ, one curve per orbital numbered starting with I for the HOMO,
shifted by corresponding Hartree−Fock QP energy ϵ0i . Symmetry induced degeneracies
reduce the number of peaks and self-energy curves in CH4 and NH3. The former has
a three-fold degenerate HOMO at ∼ −14 eV, and the latter a two-fold degenerate at
∼ −17 eV. The vertical dashed lines mark the position of the ASCI QP energies, and
the blue dashed line corresponds to the frequency line y(ω) = ω. The intercepts of the
self-energy curves with the blue dashed line correspond to graphical solutions of the
QP equation (9.2). The arrows point at the features in the G0W0 highest energy curve
which create maxima in the spectral function, see text for discussion.

To answer this, we compare the ASCI and MBPT calculations. We show the QP

energies for all valence excitations and all methods in Figure 9.2. As expected [33, 52,

30, 31, 34, 35, 36], GWΓ is closest to ASCI results (compared to HF and GW ) and we

find the best agreement for the holes of the HOMO states, which are in the SQP regime.

For HOMO, the self-energy is merely responsible for shifting the poles of the Green’s

function, but the presence of the vertex corrections is important, as illustrated in the

inset of Figure 9.2. The one-shot GW approach performs only slightly better than HF;

the mean absolute deviation (MAD) with respect to ASCI is 1.0 eV and 0.8 eV for HF
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and GW , respectively. Upon inclusion of vertex terms, however, the MAD decreases to

0.3 eV. The presence of Γ is responsible for the excitonic effects in W , and these are likely

non-negligible in small systems, where electrons and holes have large spatial overlaps.

Further, the vertex correction cancels, at least partially, the spurious self-polarization in

GW [56, 57]. The latter is possibly the major driving force of the improvement, because

the electron−hole interactions in the screening tend to have little or (surprisingly) negative

impact on the QP energy predictions [30, 58, 31].
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Figure 9.2: Quasiparticle energies (QPE) for the different molecular systems computed
from ASCI vs the QPEs computed with the many-body pertubation theory. The
symbols correspond to: Hartree−Fock (HF, empty), G0W0 (half-filled), and the vertex
corrected G0W0Γ (solid). The energy region where the excitations present MQP
character is shaded yellow. The number of QPEs per molecule is given in the legend.
The inset shows the mean average deviation (MAD) between the ASCI results and the
three perturbative approaches.

Unlike previous studies, we go beyond the HOMO and also examine higher energy

excitations, which exhibit MQP behavior. Due to the lack of correlation, the HF ionization
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potentials deviate significantly from the ASCI QP energies (MAD ∼ 2 eV), as illustrated in

Figure 9.2. Even here, the ASCI spectral function retains a dominant peak (in Figure 9.1

at −23 eV for CH4, −27 eV for NH3 and −33 eV for H2O); yet, a fraction of the spectral

weight is redistributed to satellite features. This departure from the SQP regime progresses

with the increasing excitation energy. For the highest energy valence states of H2O and

N2 (at −33 eV and −39 eV respectively), A(ω) shows multitude of sizeable satellites

located > 10 eV away from the main peak. Unsurprisingly, the MBPT QPEs deviate more

strongly from ASCI in this regime, see inset of Figure 9.2. Nevertheless, for these higher

energy states the vertex correction again significantly improves the QPEs of the most

prominent peaks, bringing the MAD below 0.5 eV. Considering the main QP signatures

alone, the vertex corrections seem necessary for an accurate description throughout all

studied energy scales, suggesting that MQP effects are important even for the simple

orbital ionization energies.

We now turn to address the satellites in the MQP regime. Processes at this energy

scale are characterized by the presence of neutral (e.g. optical) excitations interacting

with the ionized hole. However, the strength of their mutual “hybridization” (i.e., the

degree of entanglement in Eq. (9.1)) is not encoded in A(ω). The spectral function only

provides information about the probability of the given (SQP or MQP) excitation, as

given by the overlaps ⟨ΨN−1
m |ci|ΨN

0 ⟩ in Eq. (9.1). In the rest of this paper, we explore how

the MBPT methods may offer some clarification by investigating the properties of Σ(ω),

since the poles of A(ω) are related to Σ(ω) through Eq. (9.2).

A graphical solution to Eq. (9.2) is illustrated in the lower panels of Figure 9.1 for

each orbital explicitly. We realize that the distinction between SQP and MQP regime

made in the upper panels is evident in the lower panels as well. Indeed, for the HOMO

and two subsequent orbitals (labeled I, II and III), the self-energy crosses the y = ω line

exactly once, while for the inner valence orbital (IV) there may be multiple crossings,
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giving rise to satellite features. The GW A(ω) in the MQP regime shows a common

simple structure: besides the main peak, there are two other smaller peaks accompanying

it (see the arrows in the inset of Figure 9.1). This three-peak feature corresponds to the

self-energy with only a single true pole (middle arrow in lower central panel of Figure 9.1),

but having two nearby frequencies where Eq. (9.2) is approximately fulfilled (left and

right arrows). In almost all of the molecules, the main maximum corresponds one of

these two “pseudo-poles” (rightmost arrow). This same three-peak structure has been

discussed in the context of solids as an artifact of GW . [59, 60, 61]. Note that due to the

finite real-time propagation employed in our stochastic implementation [23, 20, 25, 24, 31],

some of the GW “pseudo-poles” may correspond to actual poles. Only for N2, does

Eq. (9.2) have two solutions (i.e., two poles). Here the resulting A(ω) features only a

single prominent peak associated with the low-energy QP; see the supplementary material.

In general, neither the main QP peaks nor the “secondary” solutions in GW appear at

the correct energy and the overall spectrum is on average shifted to too high energies.

To summarize, ASCI shows a complex satellite structure, whereas GW only presents a

regular three-peak spectra for the bottom valence states.

Clearly, GW can provide multiple solutions, in principle, though they do not match

the fully correlated results.[62, 32, 61] The QPs predicted by GW in closed shell systems

is consistent with a surmised “plasmaron,” representing a resonantly bound hole and a

collective neutral excitation. In solids, this was interpreted as an electron−plasmon state.

However this was eventually identified as an artifact of GW [63]. In practice, the GW

approximation spuriously substitutes the multiple satellites with a single secondary QP that

does not correspond to a physical excited state. Nevertheless, for weakly interacting MQPs,

the absence of satellites can be remedied by reconstructing the Green’s function [and A(ω)]

via the cumulant expansion technique [25, 61]. This method reproduces MQP structures,

but in its common linear order formulation assumes the presence of a distinguishable
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neutral excitation, which corresponds to a pole in the (classical) polarizability, which

describes the charge density fluctuations. This in turn implies that |ΨN−1
m ⟩ in Eq. (9.1)

has a direct product state of an ionized hole and excited state determinant; the total

energy of such a state is merely the sum of the ionization potential and the neutral

excitation energy. If true, the A(ω) would exhibit a regular satellite structure, in which

peaks appear at energies corresponding to the multiples of the “plasmon” energy. In

other words, the n-th satellite maximum represents the energy of a single hole plus n

excited plasmons. The weak coupling regime is justified for localized holes in the presence

of delocalized neutral excitations [63]. However, this separation is hard to conceive in

small finite systems and cannot be readily justified for molecules. Furthermore, the fully

correlated ASCI results do not exhibit a regular pattern of satellite peaks, suggesting that

the MQP regime comprises at least some entangled |ΨN−1
m ⟩ states. A recent extension of

the cumulant approximation [64, 65] includes non-linear contributions and it is not limited

to the regular satellite structure (important, e.g., for molecular core spectra). Unlike core

holes, the energy scale of inner valence holes is comparable to that of the valence neutral

excitations. As a result a high degree of “hybridization” between the two QPs is expected,

requiring an explicitly inclusion of MQP interactions through the vertex Γ.

The two particle interactions present in GWΓ enable mutual couplings between holes

and neutral excitations. Hence, if the MQP regime stems from the dynamical correlation,

the frequency dependence of the self-energy should capture it. Indeed, the GWΓ yields

multiple peaks in A(ω), recovering the same kind of rich satellite structure present in the

ASCI spectra. In general, the maxima in A(ω) are close to the excitations predicted from

ASCI. From the current results it appears that there is no common tendency to shift the

spectrum (toward neither higher nor lower frequency). To understand the origin of the

multi-peak structure, we illustrate GWΓ self-energy in Figure 9.1 for CH4, NH3 and H2O.

By inspecting the results closely, we see that the distant satellites appear either: (i) due

250



Are multi-quasiparticle interactions important in molecular ionization? Chapter 9

to the small denominator in Eq. (9.1),[66] or (ii) because Eq. (9.2) is satisfied at multiple

frequencies.

Regardless of the system, the vertex correction is responsible for new features in Σ,

especially in the inner-most valence energy regions. For NH3, the double peak in the

∼ −30 eV region is accompanied by small satellites at lower energies stemming from the

rapid variation of Σ. The oscillatory behavior increases with the energy of the excited

holes. This is clearly seen for the bottom valence region in H2O and N2: their inner

valence states are at lower energies than NH3 and the self-energy indeed exhibits stronger

oscillations leading to a plethora of poles (more than ten) with energies almost 30 eV

below the main QP peak (see Figure 9.1 and the supplementary material).[67] Further,

we observe that the vertex corrections introduce “pseudo-poles” in the self-energy of the

highest energy hole states that are resonant with the QP peaks of the lower energy holes;

c.f. the “pseudo-pole” at −11 eV in the highest energy hole state (IV) of NH3, resonant

with the HOMO (I) QPE. This seems to underline the inter-orbital couplings arising

from the vertex correction, which may be further related to a mixed orbital character

that appears in the ASCI treatment, see the supplementary material. As of now, it is

not possible to verify the nature of the GWΓ poles as true poles or pseudo-poles, since

as mentioned above the ASCI Green’s functions are artificially broadened. A reliable

classification of satellites in this regard would provide valuable information on the strength

of the multi-quasiparticle interactions generating them.

In this communication, we theoretically investigated the electronic correlation which

affects valence ionization energies and is directly linked to photoemission experiments. We

provided virtually-exact ab-initio valence spectra for small molecular systems and explored

whether and how many-body perturbation theory captures the various excitations. Namely,

we compared the spectral functions computed with one-shot GW and single-iteration

GWΓ to adaptive-sampling CI. For the first time, we provide such a comparison for the
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entire range of valence excitations, i.e., the outer and inner valence holes and shake-up

satellites.

We show that the neglect of explicit two-particle interactions inGW leads to substantial

errors. In contrast, GWΓ results are close to the fully correlated calculations and exhibit

a rich structure of multi-quasiparticle excitations stemming from the coupling between

holes and optically excited states. While GW yields spurious solutions, the presence of

vertex terms removes the artifacts and correctly reproduces the peak structure in A(ω).

The high-energy regime is typically associated with the breakdown of the quasiparticle

picture. However, our results clearly show that the shake-up satellite features arise due

to dynamical correlations. In other words, they can be described perturbatively using

single-particle states of only one Slater determinant. Our findings should encourage the

further development of perturbative methods that explicitly account for mutual multi-

quasiparticle excitations via vertex terms. Beyond small molecular systems, this will have

a decisive effect on the path towards a first-principles understanding of excited states,

photoactivated chemical reactions, and quantum materials.

SUPPLEMENTARY MATERIAL

See supplementary material for a detailed description of the ASCI, G0W0 and G0W0Γ

implementation, completed with a convergence discussion. We further provide tables with

the QPE’s for all main peaks of the valence orbitals, and details of the extrapolation to

the complete basis set limit.
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Chapter 10

Embedding vertex corrections in GW

self-energy: Theory, implementation,

and outlook
Guorong Weng, Rushil Mallarapu,a Vojtěch Vlček

ABSTRACT

The vertex function (Γ) within the Green’s function formalism encapsulates information

about all higher-order electron−electron interaction beyond those mediated by density fluc-

tuations. Herein, we present an efficient approach that embeds vertex corrections in the one-

shot GW correlation self-energy for isolated and periodic systems. The vertex-corrected

self-energy is constructed through the proposed separation−propagation−recombination

procedure: the electronic Hilbert space is separated into an active space and its orthogonal

complement denoted as the “rest;” the active component is propagated by a space-specific

effective Hamiltonian different from the rest. The vertex corrections are introduced by
aCurrent address: Harvard University, Cambridge, MA, 02138, USA
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a rescaled time-dependent nonlocal exchange interaction. The direct Γ correction to

the self-energy is further updated by adjusting the rescaling factor in a self-consistent

post-processing cycle. Our embedding method is tested mainly on donor−acceptor charge-

transfer systems. The embedded vertex effects consistently and significantly correct the

quasiparticle energies of the gap-edge states. The fundamental gap is generally improved

by 1−3 eV upon the one-shot GW approximation. Furthermore, we provide an outlook

for applications of (embedded) vertex corrections in calculations of extended solids.

10.1 INTRODUCTION

Predicting optoelectronic properties of functional materials hinges upon the availability

of accurate and efficient first-principles methods.[1, 2, 3, 4, 5, 6, 7, 8, 9] Particularly,

excitation energies obtained from electron structure calculations are directly related to

the charge-transfer processes and optical transitions in practical materials. This requires

the ability to capture excited-state properties, especially the nonlocal and dynamical

electron−electron interactions. Many-body perturbation theory (MBPT) within the

Green’s function formalism[10, 11] provide a powerful tool for solving electron correlation

problems. The GW approximation[12, 13, 14, 15, 16] assumes that the many-body

interactions (nonlocal and dynamical electron−electron exchange and correlation) are

represented by the exchange−correlation self-energy: ΣXC = iGW , which is a convolution

of the single-particle excitation propagator, i.e., Green’s function (G), and the screened

Coulomb interaction (W ). In practice, the correlation stems from nonlocal and time-

dependent charge density−density interactions. The GW method provides direct access

to quasiparticle (QP) energies and has been widely applied to molecular and condensed

systems.[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37] The

emerging stochastic GW approach[38, 39, 40] further enables its application to systems
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with up to thousands of electrons.[41, 42, 43, 44, 45, 46] In these approaches, the QP energy

is obtained by applying the ΣXC as a perturbative correction to the mean-field eigenvalue,

typically computed using Kohn−Sham density functional theory (KS-DFT).[47, 48]

Although significant improvement upon the mean-field results has been achieved, the

GW approximation suffers from large errors in predicting QP energies of unoccupied

states[32] and fails to capture the satellite peaks in the photoemission spectra.[49, 50]

These failures can be attributed (at least in part) to the self-polarization error.[51, 52]

They are remedied by the inclusion of the vertex correction, which is completely neglected

by the GW approximation. Only recently, vertex-corrected methods have started to

emerge in practical calculations.[53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,

68, 69, 70, 71, 72, 73, 74] The vertex corrections are applied to two places of ΣXC: one

enters the irreducible polarizability in the W term and the other is a term explicitly

included in the expression of ΣXC. Within the random phase approximation (RPA), the

W term is computed using the independent particle picture, where P = −iGG (P denotes

the polarizability). P computed by RPA neglects electron−hole ladder diagrams and

higher-order interactions for the W term. The vertex correction, Γ, to the polarizability

amounts to P = −iGGΓ, which is in principle an exact formulation for P . This leads

to the so-called GW tc approximation.[53, 75, 76] The vertex function Γ entering ΣXC

leads to ΣXC = iGW tcΓ. Due to the intractability of the full vertex function, low-

order[77, 53, 78, 57, 60, 64, 63, 69, 71] and local vertex[76, 54, 55, 79, 80, 62, 65, 67, 81]

approximations are often employed. The vertex correction to the W term is shown to

minimally improve theGW results for molecular ionization potentials (IPs).[69] In contrast,

electron affinity (EA) predictions are enhanced in several cases.[64, 65, 68] Fundamentally,

the inclusion of vertex in the self-energy (i.e., the GW tcΓ approach) successfully captures

multi-quasiparticle interactions and satellite peaks in molecular photoemission spectra of

all valence electrons,[72, 82] agreeing excellently with the adaptive sampling (nearly full)
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configuration interaction approach.[83, 84, 85, 86]

Despite the success of GW tcΓ in molecules, extending it to condensed systems, e.g.,

solids or low-dimensional materials, is still challenging. The polarizability evaluated

with electron−hole ladders can be paralleled with employing a Hamiltonian with a

nonlocal exchange interaction in the time-dependent density functional theory (TDDFT)

calculation. The spatial nonlocality of the electron−electron interactions is (to the lowest

order) analogous to the Hartree−Fock (HF) approximation or the generalized Kohn−Sham

(GKS) DFT. Furthermore, this nonlocal exchange should be screened corresponding to the

nonlocal correlation, which is especially critical for semiconducting systems. A practical

approach is to use a statically screened exchange interaction in parallel with the optimally

tuned GKS functionals.[87, 88, 89, 90, 91, 92, 93, 94, 95, 96] This approach has been

successfully used as the GW starting points for molecules,[29, 33, 32, 64, 97, 35, 98] and

the optimized GKS Hamiltonian often yields excellent optical spectra.[99, 91, 92, 95]

However, the optimal tuning of the range−separation parameter is non-trivial for extended

(periodic) systems.[100, 101, 102, 103] In addition, the optimally tuning process based on

the Koopman’s[104] or Janak’s[105] theorem involves only frontier states. The resulting

parametrization is not necessarily “optimal” for other electronic states (e.g., in the bottom

valence region). For the nonlocal vertex in extended systems, several attempts have been

explored to compute the exchange−correlation kernel, including the use of ad hoc[56, 59]

(e.g., Heyd−Scuseria−Ernzerhof hybrid functional) or dielectric-dependent[70] hybrid

functionals and the approximate bootstrap iteration.[61]

To tackle the computational cost of including the nonlocal vertex in large extended

systems, we propose an efficient embedding method that includes vertex corrections in

the G0W0 correlation self-energy (here computed using stochastic sampling). We use an

active space projector[44, 45] to separate electronic states into two components: the active

part and its orthogonal complement denoted as the “rest.” The active space projector is
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composed of either canonical KS states or localized orbitals that are energetically favored

in optical transitions. In this scheme, the electron−hole interactions are selectively “turned

on” for the active space. A space-specific effective Hamiltonian is constructed with a

stochastically sampled and rescaled time-dependent nonlocal exchange interaction. The

active space component is specifically propagated using this effective Hamiltonian, while

the evolution of the rest is treated by a mean-field one. The recombination of these

two components produces the embedded states that enter the correlation self-energy.

Furthermore, we propose a simple self-consistent post-processing cycle for rescaling the

vertex contribution.

The proposed embedding method is mainly tested on π-conjugated donor−acceptor

systems with significant electron−hole interactions. The investigated systems include

isolated small molecules and donor−acceptor dimers, one-dimensional (1D) charge-transfer

copolymer, and two-dimensional (2D) donor−acceptor double layers. Different sizes and

representations of the active space are also explored. The embedded vertex corrections

show consistent and non-trivial effects on the computed QP energies. We find that the

vertex correction to the polarizability is critical to avoid overbound unoccupied states.

The fundamental gaps are 1−3 eV greater than the G0W0 ones, hence improving upon

the G0W0 results. More importantly and in contrast with previous findings, the vertex

corrections significantly affect the QP energies of the occupied gap-edge states.

The following content contains three major parts: Section 10.2 focuses on the theory

and methodology; Section 10.3 presents the computed charge excitation energies and the

fundamental gaps of various systems; Section 10.4 summarizes the findings and comments

on possible further improvement.
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10.2 THEORY AND METHODOLOGY

In this section, the concept of QP self-energy is revisited and various forms of vertex-

corrected self-energy are introduced. Second, we demonstrate the definition and construc-

tion of an active space. Finally, the vertex-embedding scheme is presented.

10.2.1 Quasiparticle self-energy

The QP Hamiltonian is written as

ĤQP = T̂ + V̂ext + Σ̂H + Σ̂XC(ω), (10.1)

where T̂ , V̂ext, and Σ̂H represent the kinetic energy operator, external field potential, and

classical Coulomb repulsion, respectively. All nonlocal and dynamical particle interactions

are included in the frequency-dependent exchange−correlation self-energy Σ̂XC. Next, we

separate the exchange and correlation interactions into two individual terms and focus on

the correlation part. The perturbatively-corrected QP energy reads

εQPj = ⟨ϕj|ε0j − v̂xc + Σ̂X + Σ̂C(ω = εQPj )|ϕj⟩ . (10.2)

Here, ϕj is an eigenstate of the KS-DFT Hamiltonian with the corresponding eigenvalue

ε0j and exchange−correlation potential v̂xc. As a starting point, our DFT calculations

employ the PBE functional.[106] Other starting points are also applicable but out of the

scope of this work since we focus on demonstrating the embedding scheme. The nonlocal

exchange Σ̂X is equivalent to the Fock operator in the Hartree−Fock approximation.[11]

The frequency-dependent correlation self-energy Σ̂C(ω) is obtained from the Fourier-

transformed time-dependent Σ̂C(t), which is approximated and computed by the stochastic

methods.[38, 40, 68] Only diagonal terms of the self-energy are considered.
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In the GW tcΓ formalism, the temporally and spatially nonlocal correlation self-energy

(ΣC) is derived from the derivative of the total self-energy (ΣT) with respect to the Green’s

function (G).[68, 72, 82] The total self-energy reads

ΣT = ΣH + ΣX + ΣC. (10.3)

Since the right-hand side (RHS) of Eq. (10.3) also contains the ΣC term, the correlation

self-energy thus needs to be solved self-consistently. Here, we expand the simplified

approach presented in previous work[66, 68], where the variation of ΣC is neglected. We

derive the vertex (Γ) from a statically rescaled nonlocal exchange interaction. Hence, the

exchange and correlation terms in Eq. (10.3) are combined as

ΣX + ΣC ≈ βΣX, (10.4)

where β is simply a prefactor multiplied by the nonlocal exchange interaction. The

rescaling factor β, derived in Sec. 10.2.4, is similar to the state-dependent screened

exchange constant used in previous work.[97]

Based on the approximation above [Eq. (10.4)], the vertex is introduced in a greatly

simplified way that preserves the spatial nonlocality of Γ (full derivation is provided in the

supplementary material). In the time-dependent formalism, it is convenient to decompose

the correlation self-energy into two terms:

Σ
G0W tc

0 Γβ

C (t) = Σ
G0W tc

0
C [δn(t), t] + Σ

Γβ

C [δρ(t), t]. (10.5)

The first term on the RHS of Eq. (10.5) comes from the derivative of the Hartree term

(ΣH) with respect to the Green’s function (G), and it is a functional of the induced

density δn. This is nothing else but the G0W
tc
0 self-energy representing the correlation
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stemming from density−density interactions. Here, the vertex correction is introduced to

W by applying a Hamiltonian with a time-dependent nonlocal exchange interaction in

the propagation process (see Sec. 10.2.3). The second contribution, ΣΓβ

C , comes from the

derivative of the rescaled nonlocal exchange (βΣX) with respect to the Green’s function

(G). In practice, the correlation due to density matrix fluctuations is thus a functional of

the induced density matrix (δρ). Since β is simply a prefactor, we extract it from the

derivative and have

Σ
Γβ

C [δρ(t), t] = βΣΓX
C [δρ(t), t], (10.6)

where ΣΓX
C is derived from a bare ΣX in this work. In the remainder of this article, we

use ΓW to denote the vertex correction to the W term (i.e., the polarizability) and the

direct vertex correction to the self-energy is denoted as either ΓX or Γβ depending on the

precise definition detailed below.

10.2.2 Electronic active space

In the real-time G0W0 formalism, the induced density is computed by the time-

dependent Hartree (TDH) approximation, which corresponds to RPA. The TDH Hamil-

tonian does not couple the electron−hole pairs. Upon excitation, electron and hole

states at low excitation energies are preferably populated and are expected to contribute

predominantly to the polarizability. The gap-edge states, i.e., the highest occupied mole-

cular orbital (HOMO) and the lowest occupied molecular orbital (LUMO), are mostly

responsible for electron−hole pair formation captured by the ladders in vertex-corrected

polarizability (detailed in Sec. 10.2.3). For π-conjugated molecules, the π−π∗ transition

is considered the governing element in the optical absorption spectrum. π and π∗ bonds

thus represent another type of highly-populated electron−hole states.

Here, we first identify the low-energy states (e.g., HOMO/LUMO or π/π∗). An
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electronic active space is then formed by these states based on their population (occupation)

during excitation, and we denote its orthogonal complement as the “rest.” The active

space is then treated differently from the rest (see Sec. 10.2.3).

Mathematically, the active space is defined by

P̂A =
Nact∑
i

|ψi⟩ ⟨ψi| , (10.7)

where P̂A is a projector onto the active space, and Nact represents the number of projector

states ψ.

This work explores two different representations of ψ: canonical KS eigenstates and

localized orbitals. The first representation straightforwardly chooses canonical eigenstates,

e.g., the HOMO and the LUMO, based on their mean-field eigenvalues. In contrast, the

localized basis allows the selection of a specific type of chemical bonds, especially the π

and π∗ bonds mentioned above. We employ Pipek−Mezey (PM) localized orbitals[107]

because they easily separate the σ and π characters.[107, 108] Analogously, for periodic

systems, the top valence band (TVB) and the bottom conduction band (BCB) provide the

gap-edge states, which can be represented by either Bloch states (canonical eigenstates)

or combinations of Wannier functions. The regionally localized orbitals for molecular

systems are obtained using the sequential PM localization on the chosen molecules.[109].

In Sec. 10.2.3, we demonstrate the embedding of vertex corrections using the defined

active space.

10.2.3 Embedded vertex corrections

This section demonstrates the embedded vertex corrections in the correlation self-

energy [Eq. (10.5)]. In the GW approximation, the polarizability computed by RPA

includes only the electron−hole “bubble” diagrams but neglects higher-order interac-
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tions. In the following, we go beyond the GW approximation and selectively turn on

electron−hole interactions (vertex in the polarizability) for the active space by applying a

space-specific effective Hamiltonian, which governs the real-time dynamics mimicking the

time-dependent solution to the Bethe−Salpeter equation[110]

Ĥeff(t) = T̂ + V̂ext + Σ̂H[n(t)] + αΣ̂X[ρ(t)]. (10.8)

The rest of the electronic Hilbert space is instead treated by

Ĥ0(t) = T̂ + V̂ext + v̂xc + Σ̂H[n(t)]. (10.9)

Compared to Ĥ0, Ĥeff contains a rescaled time-dependent nonlocal exchange interaction,

constituting the lowest-order vertex correction to the polarizability. The coefficient α is

another rescaling factor analogous to the screening factor. Similar to β defined above, it

is derived from the expectation values of the underlying self-energy (see Sec. 10.2.4). The

α factor represents the averaged rescaling behavior for the entire active space, while β is

used for a specific state.

In practice, the Hamiltonian separation is employed in the real-time evolution of

electronic states yielding the time-dependent induced density δn(t) and density matrix

δρ(t) in Eq. (10.5). To make this approach efficient even for large systems, we employ

the stochastic approach that samples these two quantities using a set of random vectors

instead of the deterministic single-particle states. Technical details of the stochastic

formalism are provided in the supplementary material. Here, we only emphasize the

quantities that are directly related to the embedding.

The time-dependent density n(t) and density matrix ρ(t) are sampled by a set of
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random states η [defined in Eqs. (F.28) and (F.34)]

n(r, t) = {η∗(r, t)η(r, t)}, (10.10)

and

ρ(r1, r2, t) = {η∗(r2, t)η(r1, t)}. (10.11)

Here, the brackets {. . . } denote an average over the whole set of random functions. The

time-evolution of η gives n(t) and ρ(t), which produce δn(t) and δρ(t) for Eq. (10.5).

The core procedure of vertex-embedding is to prepare ηemb by the following separa-

tion−propagation−recombination (SPR) treatment (Fig. 10.1).

Figure 10.1: Schematic representation of the separation−propagation−recombination
technique for the embedded time-evolved random vectors. The separation and recombi-
nation steps are colored in blue and the propagation step is colored in red.

At t = 0, the random vector η is projected onto the occupied subspace. The electron

removal/addition rotates η to the full Hilbert space, i.e., it also represents electrons excited

into the unoccupied subspace. The component in the active space, ηA, of the perturbed η

is obtained by projection following Eq. (10.7),

|ηA⟩ = P̂A |η⟩ =
Nact∑
i

⟨ψi|η⟩ |ψi⟩ . (10.12)
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The rest component ηR is then given by

|ηR⟩ = |η⟩ − |ηA⟩ . (10.13)

The two separated components are propagated using two different operators

|ηA(t)⟩ = ÛA(t) |ηA⟩ , (10.14)

and

|ηR(t)⟩ = ÛR(t) |ηR⟩ . (10.15)

The two time-evolution operators above correspond to the two forms of Hamiltonian in

Eqs. (10.8) and (10.9), which (adiabatically) depend on the density (and density matrix)

at time t,

ÛA(t) = e−iĤeff(t)t, (10.16)

and

ÛR(t) = e−iĤ0(t)t. (10.17)

Finally, the embedded time-evolved random vector ηemb(t) is given by recombining the

two components

|ηemb(t)⟩ = |ηA(t)⟩+ |ηR(t)⟩ . (10.18)

The SPR scheme above is demonstrated in a two-component case, and the extension

to three or more components is trivial. The three-component case, in which the active

space is further divided into the occupied and unoccupied parts, is applied in this work

as shown below. In practice, the propagation in time is discretized. In each time step,

the separation treatment is repeated to ensure that ηA(t) and ηR(t) are orthogonal before

271



Embedding vertex corrections in GW self-energy: Theory, implementation, and outlook Chapter 10

they are propagated. Refer to Eqs. (F.55)-(F.57) in the supplementary material for more

details.

The embedded vector ηemb(t) generates the embedded density nemb(t) via Eq. (10.10)

and density matrix ρemb(t) via Eq. (10.11). Finally, nemb(t) and ρemb(t) lead to the

embedded self-energy [Eq. (10.5)]. The time-evolution behavior of η is modified, but the

total number of electronic states sampled is conserved. Therefore, there is no double-

counting error in this embedding scheme.

The SPR procedure also applies to the random vectors that sample the Green’s

function G0. In this case, the time evolution is simplified as G0 is the non-interacting

propagator depending on a static form of the Hamiltonian. More details are provided in

the “Embedded Vertex Correction” section of the supplementary material.

10.2.4 Rescaling factors

In the following, we comment on the working definition of the two rescaling factors:

β in Eq. (10.4) and α in Eq. (10.8). In practice, they are derived simply as a frac-

tion of the nonlocal exchange interaction that mimics the expectation value of the full

exchange−correlation self-energy. In particular, we first derive them from the G0W0 ap-

proximation though; as we show below, they can be generalized to a simple self-consistent

post-processing approach.

For a QP state ϕj, the initial rescaling factor β0
j is given by

β0
j =

ΣX,j + Σ0
C(ω = εQPj )

ΣX,j

, (10.19)

where ΣX,j = ⟨ϕj|Σ̂X|ϕj⟩, and the correlation self-energy Σ0
C is an expectation value

computed at the G0W0 level. Note that due to the definition of ΣX in Eq. (10.2), the value

of ΣX,j is always negative throughout this work. The computed ΣC, as shown in Sec. 10.3,
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can have either the same or an opposite sign with/against ΣX,j. In the same-sign case,

the derived βj from Eq. (10.19) is greater than 1, and we define this effect as correlation

stabilization. The opposite-sign case gives βj < 1, which is instead defined as correlation

destabilization.

For the rescaling factor α [Eq. (10.8)] that represents the entire active space, we first

compute β0
i of each state ψi in Eq. (10.7) via Eq. (10.19). α for the entire active space

takes the average value of β0
i s,

α =
1

Nact

Nact∑
i=1

β0
i . (10.20)

As shown in Sec. 10.3, the states ψi within one active space have very similar character and

consistent rescaling behavior. It is thus sufficient to use a single averaged α to describe the

entire active space. From the correlation self-energy perspective, the parameters α and β

play two different roles: α representing an active space enters the effective Hamiltonian

in Eq. (10.8) that governs the time evolution and determines the electron−hole coupling

strength; βj of a state ϕj in Eq. (10.2) rescales ΣX and thus the ΣΓX
C term in Eq. (10.6).

With α and β0
j computed by G0W0, we solve the vertex-corrected self-energy in

Eq. (10.5). βj acts as a factor only in front of the ΣΓX
C [see Eq. (10.6)]. We thus compute

ΣΓX
C (t) only once and use it to update βj through the self-consistent cycle in Fig. 10.2,

βnj =
ΣX,j + Σn−1

C [βn−1
j ](ω = εQPj )

ΣX,j

, (10.21)

where Σn−1
C is the vertex-corrected correlation self-energy using the prefactor βn−1

j in

Eq. (10.5). Note that this self-consistency comes at a negligible computational cost as

βj only rescales one (additive) component of the self-energy. In principle, the factor α

can also be updated self-consistently, but this instead requires re-evaluating the time

evolution. We avoid this step for simplicity here.
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Figure 10.2: Schematic representation of the self-consistent α-G0W
tc
0 Γβ correlation

self-energy. The self-consistent cycle is colored in blue.

In the remainder of this work, α-G0W
tc
0 denotes the correlation self-energy with only

ΓW correction; α-G0W
tc
0 Γβ0 and α-G0W

tc
0 Γβsc represent the correlation self-energy with

both ΓW and Γβ corrections, and the latter includes self-consistency in βj.

10.3 RESULTS AND DISCUSSION

In the Secs. 10.3.1−10.3.3, we demonstrate and test the performance of the proposed

methodology on selected practically important materials. Specifically, we focus on

calculating QP energies of the gap-edge states for molecules and band-edge states for

periodic systems. We choose to study isolated and low-dimensional (1D and 2D) periodic
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systems so that for each case we can determine the absolute QP energy with respect to

vacuum (in contrast, for 3D periodic systems only QP energy differences are meaningful).

Investigated systems include tetracyanoethylene (TCNE) and tetracyanoquinodimethane

(TCNQ) acceptors, 1,4-benzenediamine-TCNE (B−T) dimer, tetracene-C60 (Tc−C) dimer,

poly-fluorene-benzothiadiazole (p-FBT) polymer, and tetracene-C60 (Tc−C) double layers.

The structures of the isolated molecules, molecular dimers, and polymers are prepared or

taken from Refs. 111, 43, 112. The double-layer system is constructed by using the dimer

geometry with the periodic boundary conditions of the C60 crystal.

For isolated systems, the active space is constructed by either canonical frontier

orbitals, i.e., the HOMO and LUMO, or π/π∗ bonds. For periodic systems, the active

space is represented by either Bloch states or Wannier functions. The stochastic G0W0

and α-G0W
tc
0 results are reported with <0.05 eV statistical errors. The statistical erros

for the α-G0W
tc
0 Γβ results are slightly larger (<0.07 eV) due to additional fluctuations in

sampling the induced density matrix. All the numeric results in this work are supported by

the graphical solutions on the self-energy curves (see Figs. F.7-F.12 in the supplementary

material).

10.3.1 Single acceptor molecules

TCNE and TCNQ are ideal molecules to benchmark EA predictions due to their

strongly bound LUMO.[60, 64, 113] To test the performance of our method on these two

acceptors, we use the π+π∗ active space. For TCNE, nine π bonds and nine π∗ bonds are

identified from the PM localized orbitals (Fig. F.1). The computed rescaling factors α

and the representative orbitals for the active occupied and unoccupied spaces are listed

in Fig. 10.3. The ratio ΣXC/ΣX (α) is smaller than 1 for the π bonds but greater than

1 for the π∗ bonds, i.e., the value of ΣC is positive for occupied states but negative for
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unoccupied states. This illustrates the role of the correlation self-energy component,

which attenuates the nonlocal exchange and destabilizes occupied states but leads to

the energetic stabilization of unoccupied states. The latter corresponds to the apparent

“strengthening” of the nonlocal exchange interaction, and the α is counterintuitively

greater than 1. These rescaling factors α are used in the time evolution [Eq. (10.8)] for the

active space component. Note that this approach attempts to include the correlation via

rescaling the exchange interaction ΣX so that the QP energies are reproduced. Such an

approach is undoubtedly a crude simplification, yet it enables an efficient proof of principle

calculations described here; we comment on the shortcomings of this implementation in

the following.

Figure 10.3: Representative π and π∗ bonds of the TCNE and TCNQ molecules. The
rescaling factor is averaged over 9 and 12 states for the TCNE and TCNQ, respectively,
with the standard deviations provided in parentheses.

The computed HOMO/LUMO energies and fundamental gaps are summarized in

Table 10.1. Our G0W0 QP energies agree perfectly with previously reported results,[60, 64]

and the corresponding HOMO/LUMO gap increases to 7.38 eV. When the ΓW is applied,

the gap is further corrected by α-G0W
tc
0 : the HOMO energy is shifted down by ∼0.6 eV,

and the LUMO energy is shifted up by ∼1 eV. These corrections to IP and EA are more
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significant than the comparable G0W0+SOSEX[60, 64] approach (see Tables F.7 and F.8).

The corrected results agree better with experiments,[114, 115] especially with the electron

affinity. We note that the 2.30-eV result in Table 10.1 cited from Ref. 115 represents the

vertical EA,[113] while the adiabatic EA from experiments is ∼3.16 eV.[116, 113, 117, 60]

Our results are compared with the former since the QP energies correspond to vertical

charge excitations. The G0W0 result highly overestimates the EA by ∼1.5 eV, and

the inclusion of ΓW improves it by ∼1 eV. In other words, the vertex correction to

the polarizability is providing a significant improvement. This contrasts some previous

observations,[69, 68] indicating that the effect of ΓW is not universal.

Table 10.1: HOMO/LUMO energies and fundamental gaps of the single TCNE and
TCNQ molecules computed by various methods. All energy values are in eV unit.

TCNE TCNQ

DFT G0W0 α-G0W
tc
0 α-G0W

tc
0 Γβ Exp.1 DFT G0W0 α-G0W

tc
0 α-G0W

tc
0 Γβ Exp.a

HOMO −8.63 −11.15 −11.82 −12.91b/−13.02c −11.79 −7.78 −9.63 −9.46 −10.70b/−10.71c −9.61

LUMO −5.85 −3.77 −2.73 −0.45d −2.30 −6.27 −4.96 −3.59 −1.47d −2.80

Gap 2.76 7.38 9.09 10.18e/10.29f 9.49 1.51 4.66 5.86 7.11e/7.12f 6.81

a experimental results are reported as −IP and −EA and are taken from Refs. 114, 115, 118, 119

b ΣΓX
C term is rescaled by β0

c ΣΓX
C term is rescaled by βsc

d ΣΓX
C term is rescaled by 1

e gap is calculated by the HOMO with β0 and the LUMO taken from α-G0W
tc
0

f gap is calculated by the HOMO with βsc and the LUMO taken from α-G0W
tc
0

When Γβ is added, the HOMO level is stabilized by ∼1 eV, and the β-self-consistency

contributes another ∼0.1 eV. Furthermore, the inclusion of Γβ shifts the LUMO level up

to a higher energy. However, the quantitative effect appears too strong when using the

rescaled nonlocal exchange approach: when Γβ is applied with β = 1, i.e., ΓX, the LUMO
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energy is strongly destabilized to −0.45 eV. The result worsens with β > 1, as suggested

by the oversimplified approach based on the ratio of the self-energy expectation values.

The nearly unbound value is incorrect and is against the acceptor nature of TCNE and

the experiment. The derived Γβ from a simple rescaled exchange interaction fails for the

LUMO.

To further understand the Γβ contribution, we neglect the rescaling effect by setting

β = 1 and examine the real part of frequency-dependent ΣΓX
C . By varying the components

of the active space, we obtain several ΣΓX
C presented in Fig. 10.4, from which we discuss

the qualitative ΓX effect on the QP energy. We emphasize that this self-energy represents

the vertex correction part to the self-energy only (ΣG0W tc
0 ΓX

C − Σ
G0W tc

0
C ). The total self-

energy curves (Fig. F.6) show dΣω
dω

≤ 0 at the QP energy, as indicated by the QP

renormalization.[10, 11]. However, the individual components of the self-energy may not

satisfy this inequality.

In Fig. 10.4a, the dashed line indicates the α-G0W
tc
0 QP energy, which crosses the

blue curve at a negative vertical coordinate. This means the value of ΣΓX
C around the

QP energy is negative. Given that β is positive, the negative ΣΓX
C corresponds to the

stabilization effect on the HOMO energy of TCNE shown in Table 10.1. When the π

bonds are excluded from the active space, this stabilization effect disappears as the dashed

line crosses the red curve at a positive vertical coordinate. Furthermore, we assume that

the states in the full Hilbert space can be propagated by the effective Hamiltonian with

α = 1, i.e., no active space is constructed and the exchange interaction is unscreened.

As indicated by the black curve in Fig. 10.4a, the stabilization effect is restored. The

difference among the three ΣΓX
C suggests that the occupied states are required in the

active space to cause the stabilization effect on the QP energy.
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Figure 10.4: Real parts of the ΣΓX
C calculated for the (a) HOMO and the (b) LUMO

using different active spaces. The black curve represents the full Hilbert space, the red
curve denotes the π or π∗ only space, and the blue curve is the π + π∗ active space.
The dashed line indicates the QP energy from the α-G0W

tc
0 results.

Analogously, the crossing between the blue curve and the dashed line in Fig. 10.4b

indicates a positive value of ΣΓX
C , corresponding to the destabilization effect of ΓX on

the LUMO energy. However, when the π∗ bonds are excluded (the red curve) from the
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active space, this destabilization effect vanishes. The expansion to the full Hilbert space

(equivalent to having no active space) recovers this destabilization effect (black curve in

Fig. 10.4b). In contrast with the HOMO case, the unoccupied states are necessary in the

active space for destabilizing the LUMO energy.

The observations above imply that the ΓX effect on the HOMO energy depends mainly

on the occupied (hole) states that are “turned on” in the active space. On the other

hand, ΓX for the LUMO stems primarily from the unoccupied (electron) states included

in the active space. This delivers an important message for the failure of simple rescaled

ΓX correction to the LUMO QP energy. The static exchange ΣX is calculated using

only the occupied (hole) states, while the LUMO state (corresponding to an injected

electron) interacts mainly with the states above the Fermi level. The derived ΓX should

be dynamically screened, and its fraction cannot be trivially estimated based on the

nonlocal exchange. In fact, to reproduce the experimental value of −2.30 eV,[115] one

would need to set β = 0.2, which implies a substantial “exchange reduction” compared

to its bare strength. Nevertheless, electrodynamic screening is apparently not delivering

that. We surmise that the culprit is in the restriction to only density and density matrix

interactions: it is likely that in small-scale systems with relatively low electron density,

other types of explicit QP−QP interactions (i.e., classes of explicit two-body scatterings

that are neglected here) become more important.[82] This direction will be explored in

the future.

For the TCNQ molecule, 12 π and 12 π∗ bonds constitute the active space. The

representative orbitals are shown in Fig. 10.3, and the entire set of basis is provided in

Fig. F.1. The computed rescaling factors for the occupied and unoccupied states are

consistent with the TCNE case. Compared to the G0W0 result, the inclusion of ΓW

(α-G0W
tc
0 ) slightly shifts the HOMO energy up, while the rescaled ΣΓX

C pulls the energy

down by ∼1 eV. Similar to the TCNE case, the G0W0 approach overestimates the EA
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by more than 2 eV (Table 10.1). The ΓW correction in α-G0W
tc
0 improves it by ∼1.4 eV,

and the remaining part is attributed to the ΓX term. However, the fraction of ΓX is still

not quantitatively determined through the simple rescaling approach. The LUMO energy

becomes −1.47 eV with β = 1, which underestimates the EA by >1 eV. When using

β = 0.2, the value (−3.22 eV) differs from the experiment[119] (−2.80 eV), indicating the

uniqueness of β in each system.

Given the challenge of determining the fraction of ΓX for the LUMO state, we do not

seek to describe its effect on the LUMO QP energy quantitatively. When referring to the

fundamental gaps estimated with α-G0W
tc
0 Γβ, we consider the HOMO value from the

α-G0W
tc
0 Γβ results and the LUMO energy from the α-G0W

tc
0 ones. Even though further

exploration on the type of explicit QP−QP couplings is warranted, the fundamental gaps

of the two test systems are already improved by more than 2 eV upon the G0W0 ones

and agree well with the experiments, indicating the importance of the embedded vertex

corrections.

10.3.2 Donor−acceptor dimers

In the next step, we explore systems containing two weakly bound donor−acceptor

molecules, in which the active space needs to account for the charge-transfer excita-

tion. Acene compounds and tetracyanoethylene (TCNE) derivatives have been used

in computations as charge-transfer dimer models.[120, 99, 112] In practice, acenes and

C60 are popular donor−acceptor materials used in electronic devices.[121, 122, 123, 124]

This section reports computational results for two donor−acceptor combinations: 1,4-

benzenediamine-TCNE (B−T) dimer and tetracene-C60 (Tc−C) dimer. Electron and hole

states participating in the charge-transfer process are chosen for the active space. The

simplest choice for the charge-transfer active space is the construction from the HOMO
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and LUMO states, constituting the minimal charge-transfer active space. The orbitals

and their rescaling factors are shown in Fig. 10.5a. The nonlocal exchange is only slightly

attenuated for the HOMO, while significant exchange-strengthening is observed for the

LUMO state. The results are sensitive to the precise amount of exchange rescaling: a

10% change in the nonlocal exchange interaction corresponds to about 1 eV change in

energy due to the magnitude of ΣX. Therefore, the correlation contribution is especially

significant for the unoccupied states.

To define an active space based on localized orbitals, we use the regional orbital

localization[109] on the donor and acceptor for the occupied and unoccupied subspaces.

Fig. 10.5b presents one π bond on the donor and one π∗ bond on the acceptor. In total,

five π bonds and nine π∗ bonds constitute the charge-transfer active space (Fig. F.2).

This new construction includes all π components on the donor and π∗ components on the

acceptor, which can be considered an “augmented ” active space compared to the minimal

one. The π and π∗ bonds (Fig. 10.5b) are visually more localized than the canonical

orbitals (Fig. 10.5a), and these bonds are fundamentally equivalent in terms of their

atomic-orbital components. Indeed, the factor α is averaged over the π or π∗ bonds, and

the standard deviations are negligible. The values are also very close to the ones in the

minimal space (<0.05 difference).
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Figure 10.5: Computational results of the B−T dimer: (a) HOMO (lower) and LUMO
(upper) states constructing the minimal active space and their rescaling factors, (b)
representative π (lower) and π∗ (upper) bonds constructing the augmented active space,
and their average rescaling factors with standard deviations in parentheses, and (c)
HOMO/LUMO energies and fundamental gaps computed by different methods. The
yellow and blue regions denote the two different active spaces.

The resulting HOMO/LUMO energies and fundamental gaps are listed in Fig. 10.5c.

The DFT (PBE) method, as expected, highly underestimates the gap. The G0W0 gap

increases notably from 0.68 to 4.84 eV, as the HOMO and LUMO energies are shifted

respectively down and up in energy. The yellow region in Fig. 10.5c highlights the results

using the minimal active space. Compared to G0W0, a slight energy destabilization is

caused by the ΓW effect on the HOMO level. In contrast, the inclusion of Γβ strongly

stabilizes the HOMO level by ∼1.4 eV. The self-consistency in β makes a slight difference.

The LUMO energy changes more than the HOMO level upon the inclusion of ΓW ; it is

shifted up by ∼0.4 eV. The ΓX contributes further destabilization (Fig. F.9b), which is

consistent with our observations in the TCNE and TCNQ cases. The resulting fundamental

gap from α-G0W
tc
0 Γβ is ∼1.8 eV greater than the G0W0 one.

When the active space is augmented (the cyan region), a larger portion of the single-
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particle space is treated by the effective Hamiltonian. The changes caused by ΓW to the

QP energies become much more noticeable. The HOMO energy with ΓW is increased

by ∼1.2 eV compared to G0W0. Note that when the minimal active space is used, the

change is merely 0.07 eV. The following Γβ counters this contribution and stabilizes the

HOMO energy to −8.44 eV (with β0) and −8.64 eV (with βsc). The energy change from

−7.17 eV (G0W0) to −8.64 eV (α-G0W
tc
0 Γβ) agrees excellently with the self-consistent

field localized orbital scaling correction (SCF-LOSC) approach[112] for this dimer system.

The LUMO energy with ΓW is also shifted up to −1.53 eV, rendering a 2-eV larger gap

(the red and purple bars in Fig. 10.5c) than the G0W0 one.

Next, we apply the same active space construction strategy to the Tc−C dimer. Similar

to the B−T dimer, the minimal active space consists of the HOMO and LUMO states

(Fig. 10.6a), which are localized respectively on the donor and the acceptor. The rescaling

factors for these two states are both greater than 1. Unlike the previous cases, the HOMO

state exhibits correlation stabilization, i.e., the QP energy decreases due to both exchange

and correlation interactions. However, this picture depends strongly on the active space

definition: when the space size is expanded to all π components, a more common situation

arises, in which the nonlocal exchange decreases the QP energy while the correlation

counterbalances that. The factor α averaged over five π bonds becomes smaller than 1

with a negligible standard deviation. For C60, the averaged α is sampled by six π∗ bonds

using the geometric symmetry. The standard deviation is merely 0.01, and the average

value (1.15) is thus sufficient to represent the entire set of 30 π∗ bonds (see Fig. F.3 in

the supplementary material).

The computed energies of the Tc−C dimer are summarized in Fig. 10.6c. When using

the minimal active space (the yellow region) in α-G0W
tc
0 , the HOMO energy is hardly

affected by ΓW and the LUMO level is shifted up by 0.09 eV only. The Γβ effect is found

the same as in the B−T dimer: the HOMO state is profoundly stabilized, resulting in a
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gap 1.5-eV larger than the G0W0 one; the self-consistency in β mildly affects the gap by

<0.2 eV.

Figure 10.6: Computational results of the Tc−C dimer: (a) HOMO (lower) and LUMO
(upper) states constructing the minimal active space and their rescaling factors, (b)
representative π (lower) and π∗ (upper) bonds constructing the augmented active space,
and their average rescaling factors with standard deviations in parentheses, and (c)
HOMO/LUMO energies and fundamental gaps computed by different methods. The
yellow and blue regions denote the two different active spaces.

The cyan region in Fig. 10.6c highlights the results using the π+π∗ active space.

The Tc−C dimer behaves consistently with the B−T dimer when changing from the

minimal active space to the augmented one: the HOMO energy predicted by α-G0W
tc
0 is

significantly elevated by ∼1.6 eV from G0W0 due to ΓW ; the LUMO energy increases by

∼0.8 eV. The α-G0W
tc
0 gap (the green bar in Fig. 10.6c) is thus ∼0.8 eV smaller than the

G0W0 one. However, Γβ contributes oppositely to the gap by shifting the HOMO level

down to −8.03 and −8.43 eV (with self-consistent β). The ΓX effect on the LUMO energy

behaves consistently with the previous systems (Fig. F.10b). In total, the fundamental

gap of the Tc−C dimer is increased by ∼2.5 eV from the G0W0 one.

To conclude from the donor−acceptor dimer studies, the embedded vertex shows
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a clear and non-trivial dependence on the active space size, significantly affecting the

fundamental gap; yet some important generalizations can be already deduced. For the

HOMO state, the minimal active space implementation of ΓW makes little difference

(compared to G0W0), while the augmented space notably corrects the QP energies. The

Γβ contribution is critical to generate quantitative predictions for the HOMO QP energy.

Compared to HOMO, the LUMO QP energy exhibits a more pronounced dependence on

the active space size. In general, the vertex-corrected fundamental gaps are more than 2

eV larger than the G0W0 ones. Most importantly, the results of the B−T dimer show a

remarkable agreement between the HOMO QP energies obtained with α-G0W
tc
0 Γβ for the

two very distinct definitions of the active space. Based on this, it seems that when the

vertex corrections are applied consistently to both the W term and the self-energy, the

dependence on the active space definition diminishes. Further investigation is necessary

to clarify if this is a universal feature of the α-G0W
tc
0 Γβ approach.

10.3.3 p-FBT polymer and Tc−C double layers

The embedded vertex corrections consistently and significantly change the QP energies

of the small molecules and molecular dimers investigated above. The embedding approach

with two distinct active space selections is further applied to periodic systems, particularly

1D and 2D materials. Poly-fluorene-benzothiadiazole (p-FBT) is a typical donor−acceptor

copolymer widely used in organic electronics.[125, 126, 127] Charge excitation energies and

fundamental gaps of these functional materials are crucial parameters in understanding

their opto-electronic properties. Furthermore, we extend the Tc−C dimer in Sec. 10.3.2

to a 2D double-layer model, which is closer to the solid-state thin-film environment and

represents a minimal surface model of an organic heterojunction. For fair comparisons,

the inter-layer distance takes the same value as that of the Tc−C dimer. Unlike isolated
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molecules, the states form band structures, and the active space is represented by energy

bands. Note that for these two periodic systems, we consider only the top valence band

(TVB) and bottom conduction band (BCB) for simplicity when constructing the active

space. Due to our real-space implementation, the TVB or BCB is represented by a set of

(more than one) orbitals, which is equivalent to the k-point sampling in the reciprocal

space. We illustrate the methodology with two distinct representations: Bloch states

and PM Wannier functions. The latter is obtained by unitary transforming the former.

The orbital space is thus identical in dimensions, but the rescaling factors α, in principle,

differ and lead to distinct effective Hamiltonians [Eq. (10.8)].

First, we exemplify the embedding scheme with the p-FBT system. Fig. 10.7a shows a

fraction of the polymer supercell, and in fact, eight repeated units are used for converging

the real-space calculations. On the plot of density-of-states (Fig. 10.7a), the highlighted

regions correspond to the TVB (red) and BCB (blue) in the band structure. Due to

the supercell size, eight canonical KS states are found in each band with distinct crystal

momentum within the first Brillouin zone, forming the Bloch representation. Orbital

localization generates eight Wannier functions.
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Figure 10.7: Computational results of the p-FBT polymer: (a) density of states with
the top valence band colored in red and the bottom conduction band colored in blue.
Active spaces are represented by either Bloch states or Wannier functions with the
corresponding (averaged) rescaling factors and standard deviations in parentheses. (b)
Valence band maximum/conduction band minimum energies and fundamental gaps
computed by different methods. The yellow and blue regions denote the two different
representations of the active space.

Typical Bloch and Wannier states are shown in Fig. 10.7a, and the entire set of orbitals

is provided in Fig. F.4. In the Bloch representation, the TVB states are delocalized along

the π-conjugated backbone, while the BCB states are localized on the acceptor units.

The factor α is averaged over eight states with negligible standard deviations (0.01). For

the TVB, α is slightly greater than 1, while the BCB one is much larger. These results

agree with the calculations for molecules in Secs. 10.3.1 and 10.3.2. In the Wannier

basis, the functions are localized in each unit cell. Within the cell, the TVB Wannier

function is delocalized, while the BCB one is mainly localized on the acceptor. Due to the

translational symmetry, only one Wannier function is needed to represent a band when

computing the factor α. Yet, all the eight Wannier functions are needed for the active

space projector [Eq. (10.7)]. α of Wannier representation is very close to the Bloch one

for the TVB (1.00 vs. 1.02) but not for the BCB (1.08 vs 1.26). In the Wannier basis,

the degree of exchange rescaling is less dependent on the particular orbital type.
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Fig. 10.7b summarizes the computed results for the valence band maximum (VBM)

and conduction band minimum (CBM) states of the p-FBT system. In the Bloch

representation (the yellow region), the VBM remains nearly unchanged by ΓW (α-G0W
tc
0 ),

while the CBM is shifted up by ∼0.5 eV. Consistent with the previous results, the Γβ

term corrects the VBM energy by ∼1 to −7.44 eV, and the self-consistency does not

make a sizable difference (<0.1 eV). The results in the Wannier representation (the cyan

region) show explicit α-dependence: the VBM energy does not differ too much from the

Bloch one, while the CBM becomes lower in energy due to a smaller α being used for the

unoccupied active space. The fundamental gap computed with α-G0W
tc
0 Γβ (the red and

purple bars in the cyan region of Fig. 10.7b) is predicted to be 1.2−1.6 eV larger than the

one obtained from the G0W0 calculation.

Similar rescaling results to the p-FBT are observed for the Tc−C double layers: the

exchange interaction of the TVB is hardly rescaled in either representation; the averaged

α of the BCB over eight Bloch states (Fig. F.5) is greater than that using the Wannier

function. However, the differences in α do not markedly affect the energy diagram, i.e.,

the computed results do not depend on the representation or the rescaling factors. We

thus focus only on the yellow region in Fig. 10.8b. The VBM energies given by α-G0W
tc
0

and G0W0 are statistically the same. Moreover, the CBM of this system is also hardly

affected by ΓW . The Γβ correction then stabilizes the VBM by ∼1 eV, resulting in a ∼4.6

eV gap (the red and purple bars in Fig. 10.8b) that is ∼1.2 eV greater than the G0W0

one. The self-consistency in β slightly shifts the energy further down. Compared with

the Tc−C dimer, the solid-state renormalization of the gap is predicted to be ∼0.4 eV

by G0W0 and ∼2 eV by α-G0W
tc
0 Γβ. This difference suggests that the G0W0 approach

underestimates the gap renormalization in condensed systems.
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Figure 10.8: Computational results of Tc−C double layers: (a) density of states with the
top valence band colored in red and the bottom conduction band colored in blue. Active
spaces are represented by either Bloch states (left two states) or Wannier functions
(right two states) with the corresponding (averaged) rescaling factors and standard
deviations in parentheses. (b) Valence band maximum and conduction band minimum
energies and fundamental gaps computed by different methods. The yellow and blue
regions denote the two different representations of the active space.

The optical absorption spectrum of the tetracene-C60 blended thin film indicates a ∼3

eV optical gap,[122] which is similar to the G0W0 gap but deviates from the 4.6 eV result

obtained from the α-G0W
tc
0 Γβ approach. However, the optical and fundamental gaps

cannot be directly compared since several intrinsic and critical factors are not included.

First of all, the exciton-binding energy significantly decreases the optical gap compared

to the fundamental gap. For charge-transfer excitation in donor−acceptor systems, the

exciton-binding energy follows the 1/R asymptotic behavior[128, 99, 129] (R is the distance

between two separated charges). To estimate the exciton-binding energy, we approximate

R by the distance between two respective geometric centers of the donor and acceptor

layers; the bare Coulomb attraction is ∼2 eV between two integer charges separated by

∼12 bohrs. If this estimated energy is subtracted from the 4.6 eV result, the computed

gap (∼2.6 eV) becomes much closer to the measured optical gap. Second, the neglected

electron−phonon couplings in the solid-state thin-film environment also make non-trivial
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contributions to the gap renormalization, in which the fundamental gap often becomes

smaller.[130, 131, 132, 133] To limit the scope of this work, we do not seek to quantify

the contributions above; but this rudimentary analysis demonstrates a straightforward

fact that the computed fundamental gap should be significantly larger than the measured

optical gap. For the double-layer system, we can compare our predictions to the scanning

tunneling microscopic (STM) measurement of C60 nanochains on bilayer pentacene.[134]

A ∼4 eV charge-transfer fundamental gap can be inferred from the spectra, which is

also over 2 eV larger than the corresponding optical gap.[123] It is thus suggestive that

the embedded vertex corrections improve the fundamental gap for this tetracene-C60

double-layer system.

10.4 CONCLUSIONS AND PERSPECTIVE

This work demonstrates a real-time approach to embed vertex corrections in the

G0W0 correlation self-energy. The key procedure of the proposed methodology is to

perform the separation−propagation−recombination treatment on the random vectors

that sample the correlation self-energy. The separation step uses an electronic active

space projector to divide electron states into two components: the active part and the

rest. Fundamentally, the approach is applicable to any arbitrarily chosen active space

definition, as demonstrated in this work; in particular, we construct the subspace with

either canonical frontier orbitals (bands) or localized orbitals concerning the electron−hole

pair formation. In the propagation step, the active space component is treated by a

space-specific effective Hamiltonian, while the rest is treated at the RPA level. We employ

a rescaled time-dependent nonlocal exchange interaction in the effective Hamiltonian,

which approximates the correlation contribution and emulates the QP Hamiltonian.

The use of effective Hamiltonian in time evolution introduces nonlocal vertex to the
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polarizability. The last step recombines the two separately time-evolved components to

generate embedded vertex-corrected states that lead to correlation self-energy with vertex

corrections. The effective Hamiltonian constructed in the propagation step is a crude

simplification but represents a convenient and efficient way to perform the embedding.

The extension of this framework is straightforward and will be explored in the near future.

In the current setup, the method is successfully applied to systems ranging from small

molecules to large-scale extended systems, here exemplified on 2D double layers with up

to 2500 electrons.

The vertex corrections to the polarizability (i.e., the inclusion of excitonic effects in

the screening) and to the entire self-energy (including optical couplings and mitigating

self-polarization errors) are discussed separately as ΓW and Γβ. Upon the G0W0 results,

ΓW is found to destabilize both the HOMO and LUMO energies in most investigated

molecules. The change in QP energy exhibits strong dependence on the active space size:

results from the minimal active space differ slightly from G0W0, especially for the HOMO;

the destabilization effect is strongly enhanced when the active space is augmented. In the

periodic systems, the frontier bands are represented by either Bloch states or Wannier

functions; the latter allows an efficient evaluation of the rescaling factor for an energy band.

The changes of active space representation and the corresponding exchange rescaling show

contrasting influences: the CBM energy of p-FBT exhibits a clear dependence on the

rescaling magnitude between two representations, while the results of the double-layer

system are hardly affected.

Γβ, in contrast, enters the self-energy and is also derived from the rescaled nonlocal

exchange approximation. An appealing advantage of the scheme proposed here is the

possibility to update the rescaling factor in Γβ in a self-consistent post-processing step,

which incurs no increase of the computational cost. In general, the inclusion of Γβ stabilizes

the HOMO energy but destabilizes the LUMO level. For the former, the Γβ correction
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reaches a quantitative agreement with the previous work on the B−T dimer.[112] The

self-consistency in β leads to additional stabilization of the QP energy.

For the LUMO state, the simplistic approach based on the rescaled nonlocal exchange

interaction fails to reach a quantitative description. Further investigations on the compo-

nents of the active space imply that the unoccupied (electron) states play a dominating role

in the ΣΓX
C self-energy for the LUMO. However, the rescaling approximation involves only

occupied (hole) states when calculating the exchange interaction, which is the surmised

culprit. Further exploration is needed to approximate the correlation contribution for

deriving the vertex function. Generally, the fundamental gaps of the investigated systems

are increased by 1−3 eV. This improvement is especially significant in our donor−acceptor

double-layer system, as the results agree excellently with the related experiments.

Finally, we note that if the vertex corrections are used internally and consistently in

both the W term and the self-energy, the results exhibit a much weaker dependence on the

choice of the active space. Ref. 82 points out that the vertex corrections arise naturally as

a consequence of functional self-consistency, in which new classes of interactions (embodies

by the vertex term) appear by evaluating the functional derivatives of the self-energy in

both terms, i.e., W and ΣC. This observation warrants further exploration to determine

if indeed the inclusion of both ΓW and Γβ help to mitigate the active space selection

conundrum.

In summary, our proposed methodology combines the concepts of stochastic sampling,

Pipek−Mezey localized orbitals, space-specific Hamiltonian, and separation–propagation–

recombination treatment. It provides an efficient and direct way to include nonlocal vertex

corrections to the GW self-energy. We believe that this work on embedding methods

within the Green’s function framework will stimulate more attempts to handle vertex

corrections in large condensed matter systems.
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SUPPLEMENTARY MATERIAL

The supplementary material provides the details of theory and computation, as well

as supplementary tables and figures indicated in the texts.
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Chapter 11

Conclusions

This dissertation is dedicated to developing efficient and accurate electronic structure

methods for large-scale simulations of functional materials and realistic chemical systems.

Chapter 1 states the background and motivations, followed by the relevant theories

for electronic problems in Chapter 2. Chapter 3 introduces the perturbative approach

to calculate quasiparticle energies in practice and the linear-scaling stochastic method

for GW and beyond. Chapters 5–10 present my research work as six peer-reviewed

publications, with individual conclusion section provided in each chapter.

For all the systems of interest, multiscale theoretical approaches are employed to

treat the ground-state and excited-state properties. The investigation normally starts

with preparing the molecular equilibrium structures or sampling the system geometries

through molecular dynamics. For finite molecular systems, the structures are optimized by

DFT calculations using the NWChem package.[1] The geometries of solid-state systems,

e.g., diamond solids or polymeric assemblies, are relaxed with van der Waals corrections

to DFT using the Quantum Espresso package.[2, 3] For molecules in the liquid phase,

molecular dynamics simulations are performed to equilibrate and sample the system

geometries with the Gromacs package.[4] The second step is to perform the ground-state
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calculation for a system with fixed nuclei. Mean-field methods, especially KS-DFT

with the PBE functional,[5, 6, 7] are used to determine the electronic ground state and

obtain the single-particle eigenstates. Finally, many-body Green’s function calculations

within the stochastic formalism[8, 9, 10] utilize the eigenstates and the information of the

ground-state Hamiltonian to compute quasiparticle energies that correspond to ionization

potentials and electron affinities.

The multiscale approach described above is first applied to model the highly-ordered

nanodomains of a donor–acceptor copolymer (Chapter 5). Three signature bands near

the Fermi level are identified for this particular class of materials with alternating donor

and acceptor units. Ambipolar charge transport is found possible in the crystalline

domains. Furthermore, the dynamical screening effects from the highly polarizable solid-

state environment are resolved on the band structures: the transport gap is found to be

renormalized by ∼3 eV; the nonlocal polarization effects lead to bandwidth reduction and

thus hinder the charge transport.

Chapter 6 introduces a powerful linear-scaling orbital localization approach for re-

gionally localized states. This approach applies further to almost all my following work.

Based on the generalized Pipek–Mezey scheme,[11, 12] individual atoms of interest are

identified from a complex and giant system to form a fragment, leading to a modified

cost function for obtaining localized orbitals on the fragment only. To further lower the

cost-scaling of the iterative unitary transformations, the total orbital space is divided into

blocks that are sequentially exhausted. When exemplified on the nitrogen-vacancy (NV)

center in diamond solids, the maximum speedup observed is from eights days to half an

hour. The resulting approach is applied to partition a wide range of systems either in the

real space or in the orbital space. For the NV− center, localized basis is used to isolate

the defect from the bulk host environment, which is follwoed by the downfolding in the

Hubbard model Hamiltonian. The downfolding approach with localized electronic states
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and dynamically screening agrees excellently with experiments on the optical transition

energies of the NV center in diamond solids.[13]

In Chapter 7, localized molecular orbitals, i.e., chemical bonds, are utilized to describe

molecular ionizations in the liquid phase. The utilization is two-fold: (1) the localized

orbitals of a solvated molecule resemble those of the isolated counterpart, providing a

way to reconstruct molculear ionization states like the HOMO and LUMO of the isolated

molecule; (2) the correlation self-energy of a quasiparticle excitation is decomposed and

evaluated as two contributions, the molecular part and the environmental part. Three

representative small molecules, including phenol, thymine, and phenyalanine, are chosen

as solutes and solvated by water. The geometries of these solvated systems are sampled

by snapshots extracted from molecular dynamics simulations. Significant and consistent

destabilization effects due to solvation are observed for all investigated molecules, and the

shifts in ionization potentials show quantitative agreements with reference data. Upon the

decomposition of the self-energy, ∼40% of the polarization effects come from the solvent

environment. The molecular part accounts for ∼60% due to a shorter distance to the

localized excitation. Furthermore, the full valence spectrum is also accessible through the

orbital reconstruction scheme for an arbitrary molecule in the liquid phase.

Chapter 8 continues on the solvated systems and focuses more on the environment.

The energy shifts of molecular ionization potential do not depend only on the polarizable

solvent environment but also on the spatial decay of the solute–solvent interactions.

Using localized molecular orbitals, the solvent environment fragments into multiple

solvation shells characterized by their distance away from the solute molecule. The

fragment correlation self-energy is then computed for each solvation shell and plotted as

a function of the distance. At the GW level, the density–density interactions between

solute and solvent represent the direct screening effects from the solvent environment.

These dynamical and nonlocal interactions are found to vanish at ∼9 Å, and the decaying
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pattern is insensitive to the change of solvent. The 9 Å cutoff distance is interpreted as

an effective interacting radius, within which the average energy shift per solvent molecule

is found proportional to the macroscopic solvent polarizability.

In solid-state or consensed-phase systems, dynamical screening accounts for a large

portion of electron–electron correlation. However, in molecular systems with low charge

density, higher order couplings than density–density interactions can be essential to

describe quasiparticle excitations. Chapter 9 benchmarks the established G0W
tc
0 ΓX[10]

approach with respect to a nearly full CI method on the molecular photoemssion spectra.

Going beyond GW to density matrix interactions, the vertex corrections are introduced

to successfully capture multiquasiparticle interactions induced by a high-energy molecular

ionization. These effects are shown as shake-up satellites in the bottom valence region of

the spectra. Chapter 10 presents another vertex-corrected approach that is generalized

to one-dimensional and two-dimensional periodic systems. The vertex corrections are

embedded in the GW correlation self-energy through an electronic active space. This

active space consists of single-particle states describing low-energy optical transition for

electron–hole pairs. For π-conjugated systems, localized occupied and virtual orbitals,

especially π and π∗ bonds, are chosen to form the active space. In principle, the active

space constructed by π and π∗ bonds can be considered complete in dimension due to a

finite number of these chemical bonds. Such a completeness is not guaranteed if canonical

orbital basis is used. Remarkable and consistent vertex effects are observed on correcting

the G0W0 gaps of a wide range of donor–acceptor systems. The problem of underesmating

the fundamental gap is alleviated by introducing the embedded vertex corrections.

In summary, the research projects completed in this dissertation have extended the

application of highly accurate many-body Green’s function approach to intriguing systems

in chemistry and materials. New ideas have been proposed to treat localized excitations

in an arbitrary complex environment, which are supported by partioning the system
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with localized orbitals. Developing low-scaling algorithm further facilitates my research

progress and enables an ecosystem for simulations, where multi-level methods share the

same or a simliar scaling in cost. I believe the physical insight provided in this dissertation

is informative and valuable for the community interested in how an environment affect the

quasiparticle excitations. I am also confident that the established methods and algorithms

will benefit the further development in electronic structure theory.
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Appendix A

Supporting information for

“Quasiparticles and Band Structures in

Organized Nanostructures of

Donor−Acceptor Copolymers”
Guorong Weng, Vojtěch Vlček

A.1 Computational details

A.1.1 Geometries

Each polymer is considered to be straight and infinitely periodic. For D-A copolymers,

the conventional alkyl groups attached to the fluorene unit are replaced with hydrogen

atoms for computational convenience. The geometry and lattice constans of each periodic

system are fully relaxed by employing Quantum-Espresso package [1, 2] with Kohn-Sham

density functional theory (DFT) within the generalized gradient approximation (GGA)
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[3] combined with Tkachenko-Scheffler treatment of the van der Waals interactions.[4]

The lattice parameters of rectangular cells used throughout this study are summarized in

Table A.1 together with the k–point meshes used to sample the Brillouin zones. In the

optimization, π-π stacking without displacement is energetically the most favorable; the

structures are illustrated in Figure A.1.

system
lattice constants k-point

mesha [Å] b [Å] c [Å]

1D FBT 12.774 - - 4×1×1

2D FBT 12.759 3.836 - 1×4×1

3D FBT 12.759 3.802 7.109 4×4×4

1D FB-Ox 12.774 - - 4×1×1

1D FB-Se 12.774 - - 4×1×1

Table A.1: Lattice constants of various systems of interest and the k-point meshes for
geometry optimization used in the Quantum-Espresso package.

A.1.2 Electronic structure and excitation energies

The many-body calculations are performed on polymer geometries obtained from

first-principles structural optimizations with 0D, 1D, 2D, and 3D periodic boundary

conditions.[5] The details of the structural relaxation are provided the previous section.

The QP energies are obtained from perturbation theory using the Kohn-Sham density

functional theory (DFT) with generalized gradient approximation as a starting point.

The DFT step was performed using supercells that correspond to the k-point meshes

in Table A.1; the supercells are illustrated in Figure A.1. The parameters of our DFT

calculations are in Table A.2&A.3. From the DFT step, we obtain a set of eigenvalues
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εKS

}
and corresponding eigenstates {ϕ}. The quasiparticle energies are computed as

ε = εKS +
〈
ϕ
∣∣∣Σ̂(ω = ε)− v̂xc

∣∣∣ϕ〉 (A.1)

where vxc is the mean-field exchange-correlation potential and Σ(ω) is the dynamical and

non-local self-energy operator. In the space-time domain (represented by coordinates

1 ≡ (r1, t1), the self-energy is approximated as [6]

Σ(1, 2) = iG0(1, 2)W0(1, 2
+) (A.2)

where G is the KS Green’s function, W is the screened Coulomb interaction computed

within the random-phase approximation, and 2+ is infinitesimally later than 2.[7] The total

self-energy is further decomposed to the static exchange and frequency-dependent correla-

tion contribution. The evaluation of the self-energy employs the stochastic approach in

which the expectation value of the self-energy is computed through a randomized sampling

of wave functions and stochastic decomposition of quantum mechanical operators.[8, 9, 10]

The parameters of the stochastic G0W0 calculations are in Table A.4.

For periodic systems, Brillouin-zone unfolding [11, 12, 13, 14, 15] is performed to

generate the band structure. Then many-body calculations are performed on LCB, AIB

and UCB at the k-points accessible by the choice of the supercell to give QP energies

that form QP bands. The exchange and correlation energies are extracted from our GW

calculations. The bands structures are interpolated by cubic splines.
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System Grid
Gridpoint Spacing

(bohr)

Cutoff

(hartree)

1D 482×76×76
dx=0.400664

dy=dz=0.4
26

2D 74×144×480

dx=0.4

dy=0.402778

dz=0.401852

26

3D 244×72×136

dx=0.395264

dy=0.399167

dz=0.395112

26

single molecule

76×76×50 (F)

80×50×56 (BT)

56×90×96 (FBT)

0.4 28

Table A.2: Setups in the DFT calculations of all systems containing F and BT. Note:
The system is periodic in x direction in 1D calculations but in y and z directions in 2D
calculations.
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System Grid
Grid Spacing

(bohr)

Cutoff

(hartree)

1D fluorene 320×76×76
dx=0.397250

dy=dz=0.4
26

O-substituted

1D strand
482×74×74

dx=0.400664

dy=dz=0.4
26

Se-substituted

1D strand
482×74×74

dx=0.400664

dy=dz=0.4
26

1D polyacetylene 126×100×100
dx=0.298107

dx=dz=0.3
26

1D polyethylene 130×100×100
dx=0.297060

dy=dz=0.3
26

Table A.3: Setups in the DFT calculations of the other systems.
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Parameter Value

plane wave cut-off (hartree) 26/28 (same in DFT calculations)

number of random vectors used for sparse

stochastic compression

20000

number of random vectors characterizing the

screened Coulomb interaction (per each vec-

tor sampling the Green’s function)

15

number of vectors sampling the Green’s func-

tion

1000

maximum time for real-time propagation of

the dynamical self-energy

50 a.u.

Table A.4: Setups in the GW calculations of all systems.
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A.2 Supplementary figures and tables

Figure A.1: The supercells of periodic systems in our DFT and GW calculations. (a)
A supercell of the 1D system containing 8 repeated units in the periodic direction,
the polymer axis which is defined as the X direction. (b) An 8×8 supercell of the 2D
system that is periodic in two directions. The X direction is defined as in 1D and the
Y axis denotes the polymer π-π stacking direction. (c) A 4×4×4 supercell of the 3D
system that is periodic in three directions. The X and Y directions are defined as in
2D. The Z direction the edge-to-edge stacking direction.
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Figure A.2: Charge excitation energies, the highest occupied molecular orbitals
(HOMO), and lowest unoccupied orbitals (LUMO) of the fluorene unit and the benzoth-
iadiazole unit, respectively. Red and blue colors distinguish the wave function phase.
The computed results are from the GW MB calculations, while the experimental results
are available from the NIST database as indicated by the red dots on the energy axis.
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Figure A.3: Calculated QP energies and fundamental gaps of different systems. (a)
Ionization potentials and electron affinities computed from GW for the FBT monomer,
1D FBT strand, and 2D FBT surface. The plotted frontier orbitals show that in the
periodic systems, the valence band maximum state inherits the delocalized characteristic
from the HOMO of the monomer and the conduction minimum state inherits the
localized feature from the LUMO. Red and blue colors distinguish the wave function
phase. (b) The fundamental gap as a function of the dimensionality of the system.
Both the DFT gap and QP gap collapse as the system evolves from 0D (monomer) to
3D, while the QP gap shows a much more responsive contraction with respects to the
system’s topology. The red dots on the axes are available experimental results.[16]
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Figure A.4: Formations of molecular orbitals of the FBT monomers from the donor
and the acceptor units. Red and blue colors distinguish the wave function phase. The
FBT HOMO retains the delocalized feature of the fluorene and the benzothiadiazole
HOMO, which represents the signature of the lower conjugated band (LCB). The FBT
LUMO, however, retain the acceptor LUMO only being highly localized on the acceptor
unit, which is responsible for the formation of the acceptor impurity band (AIB) in the
periodic system. The LUMO+1 behaves similarly to the HOMO, accounting for the
formation of the upper conjugated band (UCB).
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Figure A.5: Selected orbitals from the bands of interest in the 1D FBT system. The
periodicity of the orbital correspond to the crystal momentum of the state. Red and
blue colors distinguish the wave function phase. The lower block presents 5 states from
the LCB and they feature delocalized orbitals along the backbone. The middle block
presents 5 states from AIB where the orbitals are highly localized on the acceptor unit
regardless the change in periodicity. The upper block presents 5 states from the UCB,
which are qualitatively similar to those from LCB (the lower block).
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Figure A.6: Band structures of three D-A copolymers that have different heteratoms
on the acceptor unit obtained from the Quantum-Espresso package. These three
copolymers share very similar geometries (Table A.5). The highlighted bands from the
bottom to the top correspond to LCB, AIB, and UCB, which shows the presence of
AIB regardless of the chemical modifications (highlighted in the chemical structures)
on the acceptor.[17]

system
torsion angle (◦) C-to-C distance (Å)

ϕ1 ϕ2 d1 d2

FBOX 41.80 43.05 1.467 1.466

FBT 42.37 43.92 1.470 1.471

FBSE 41.68 42.75 1.471 1.471

Table A.5: Torsion angles and C-to-C distances between the fluorene unit and three
different acceptor units.
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Decomposition Contribution (meV)

single-electron interactions -249

classical Coulomb interactions 1227

exchange-correlation -292 (mean-field) -120 (non-local)

total bandwidth 686 (DFT) 858 (GW)

Table A.6: Individual contribution to the LCB width of 1D FBT.

system
VBW GW/DFT (meV)

x y z

1D

chain
858±(38)/686 - -

2D

surface
363±(26)/393 626±(24)/625 -

3D

solid
588±(33)/533 711±(32)/661 43±(32)/23

Table A.7: Valence bandwidths (VBW) of different FBT systems in each periodic
direction by DFT and GW.
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system
CBW GW/DFT (meV)

x y z

1D

chain
265±(46)/182 - -

2D

surface
142±(29)/111 115±(32)/55 -

3D

solid
164±(34)/143 123±(35)/132 302±(33)/256

Table A.8: Conduction bandwidths (CBW) of different FBT systems in each periodic
direction by DFT and GW.
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Figure A.7: Band structures with exchange and correlation energies of the 1D FBT
system. Exchange and correlation energies are plotted relative to the band average.
The Γ to X portion stands for the transport in the polymer direction. (a) The QP
energy and exchange energy are plotted as a function of the crystal momentum for the
highlighted lower and middle bands (colored). UCB is plotted in black. In LCB, the
exchange grows more and more negative going from the Γ point to the X point due to
the increase in orbital overlaps, which indicates the exchange interactions broaden the
valence bandwidth in the conjugated direction. In AIB, however, the exchange energy
is almost insensitive to the change in states due to the fact that all the orbitals are
highly localized. (b) The QP energy and correlation energy are plotted as a function
of the crystal momentum for the highlighted lower and middle bands (colored). UCB
is plotted in black. In both LCB and AIB, the correlation energy suppresses the
bandwidth due to the fact that the higher the QP energy, the more negative the
correlation energy (Figure A.8).
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system
Exchange energy (eV)

Difference (meV)
Center state Boundary state

1D PAE -14.59 -16.65 2069

1D PEE -19.77 -19.41 -363

Table A.9: The exchange energies of the states at the Brillouin center and boundary of
the highest valence bands for 1D polyacetylene and polyethylene systems.

Figure A.8: Correlation energy plotted as a function of the QP energy of the Γ state
(black) and the X state (blue) for systems: (a) 1D FBT strand, (b) 1D trans-polyacety-
lene, and (c) 1D polyethylene. The intersection between the curve and the straight line
of the same color represents both the QP energy (x-coordinate) and the correlation
energy (y-coordinate). All systems show the same rule that the correlation energy
increases as the QP energy decreases.
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Figure A.9: Molecular geometries of FBT single strands optimized in periodic systems
with different dimensionalities. (a) The donor subunit and the acceptor subunit retain
a rigid planar structure with unaltered bond lengths and bond angles in three systems.
The main geometrical difference among the single strands is the torsion angles, ϕ1 and
ϕ2, between the donor and the acceptor, which are slightly different from each other
(Table A.10). (b) The average torsion angle (ϕ1+ϕ2)/2 of the single strands from the
optimized 1D, 3D, and 2D system in the order of the magnitude being 43◦, 49◦, and
56◦.

system
torsion angle (◦)

ϕ1 ϕ2 average

strand of 1D chain 42.37 43.92 43

strand from 3D solid 49.79 49.36 49

strand from 2D surface 55.67 56.16 56

Table A.10: Torsion angles between the fluorene unit and the benzothiadiazole unit in
three FBT systems.
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Figure A.10: Band structures with exchange and correlation energies of the 2D FBT
system. Exchange and correlation energies are plotted relative to the band average.
The Γ to Y portion stands for the transport in the polymer π-π stacking direction while
the Γ to X portion stands for the transport along the polymer backbone. (a) The QP
energy and exchange energy are plotted as a function of the crystal momentum for the
highlighted lower and middle bands (colored). UCB is plotted in black. In the polymer
direction, the exchange causes the same effects as found in the 1D system, while in the
π-π stacking direction, the exchange behave oppositely. The exchange suppresses the
both AIB and LCB widths. (b) The QP energy and correlation energy are plotted as a
function of the crystal momentum for the highlighted lower and middle bands (colored).
UCB is plotted in black.In both AIB and LCB and both directions, the correlation
suppresses the widths due to the fact that the correlation energy increases as the QP
energy decreases (Figure A.8).
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supercell size
HOMO (eV) Transport gap (eV)

DFT GW DFT GW

2×2×1 -4.51 -5.12±(0.03) 1.52 3.02±(0.05)

4×4×1 -4.53 -5.52±(0.03) 1.52 3.34±(0.04)

6×6×1 -4.54 -5.45±(0.02) 1.45 3.31±(0.04)

interactions 8×8×1 -4.54 -5.48±(0.02) 1.52 3.33±(0.03)

Table A.11: Convergence of HOMO energy levels and transport gaps to the supercell
size in 2D calculations.
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of the Single-Particle Space”
Guorong Weng, Mariya Romanova, Arsineh Apelian,a Hanbin
Song,b Vojtěch Vlček

B.1 Downfolded effective Hamiltonian

In large systems with a certain anisotropy (defects in semiconductors, molecules in

solvent environments) all physical phenomena can be attributed to a small active space

embedded in a host environment. Thus, it is common to map the problem onto the
aDepartment of Materials, University of California, Santa Barbara, CA 93106, USA
bCurrent institution: University of California, Berkeley, Berkeley, CA 94720, USA
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effective Hamiltonian, defined within an active space.

Ĥ =
∑
iσ

εiĉ
†
iσ ĉiσ −

∑
i ̸=j,σ

tij ĉ
†
iσ ĉjσ

+
∑
iσ

Un̂†
i↑n̂i↓ +

∑
i>j,σ,σ′

V n̂†
iσn̂jσ′

(B.1)

where ĉ†iσ and ĉi,σ are creation and annihilation operators in site i with spin σ and n̂†
iσ is

a particle number operator. The εi, tij are the on-site and hopping energies.

We extract the Hamiltonian parameters ε, t Ui and Vij from the first-principles

calculations employing large supercells. To compute the onsite and hopping parameters

we calculate the integral containing kinetic and ionic potential terms:

εi =

∫
φ∗
i (r)[−

1

2
∇2 + V ion]φi(r)dr

tij,i̸=j =

∫
φ∗
i (r)[−

1

2
∇2 + V ion]φj(r)dr

(B.2)

The Ui represents Coulomb on-site interactions of electrons with a different spin, while

Vij is the Coulomb inter-site interaction, which we compute as:

Ui =

∫
φ∗
i (r)φi(r)V (r, r′)φ∗

i (r
′)φi(r′)drdr′

Vij =

∫
φ∗
i (r)φi(r)V (r, r′)φ∗

j(r
′)φj(r′)drdr′

(B.3)

where, the V (r, r′) is the bare Coulomb interaction.

336



Supporting information for “Reduced Scaling of Optimal Regional Orbital Localization via Sequential
Exhaustion of the Single-Particle Space” Chapter B

Table B.1: Comparison of the excited-state transition energies of the NV− center in
the 511-atom system with various truncated orbital space for the localization.

Symmetry 10 eV 20 eV full space
3E – 3A2 0.121 1.003 1.556
1A1 – 3A2 0.156 0.947 1.324
1E – 3A2 0.039 0.259 0.378

P ′ (%) 49.5 86.6 100

B.2 Excited states of the NV− center

Table B.1 shows the excited states of the NV− center computed in the basis of the

Wannier functions that were obtained with different energy windows. The full space

energy window is ∼ 24 eV below the Fermi energy. One can see that even 20 eV window

results in an extremely underestimated result, while for 10 eV window the order of states

is reversed. As a measure of the localization we report the value of the objective functional

P ′ (see main text). The P ′ is set to 100% for case where the full space is used in the

energy window.

B.3 Preparation of stochastic basis using deterministic

eigenstates

The stochastic basis representing the complement (rest) space in our sF-PMWF

calculations is prepared in a three-step manner. First, a random vector is constructed in

the full space

|ζmi ⟩ =
Ns∑
j=1

αmij |ϕj⟩ (B.4)

where m denotes the mth iteration in the outer-loop and |ϕj⟩ is the eigenstate in the full

space. The set of random coefficients {αmij} are associated with the outer-loop step m,
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i.e., a different m corresponds to a different set of coefficients.

The second step is to perform Gram-Schmidt orthogonalization such that the stochastic

basis is orthogonal to the core space

|ζmi ⟩ = |ζmi ⟩ −
Nc∑
k=1

⟨ψck|ζmi ⟩
⟨ψck|ψck⟩

|ψck⟩ (B.5)

where |ψck⟩ represents the state in the core space. The stochastic basis is then made

mutually orthogonal

|ζmi ⟩ = |ζmi ⟩ −
i−1∑
j=1

⟨ζmj |ζmi ⟩
⟨ζmj |ζmj ⟩

|ζmj ⟩ i ≥ 2 (B.6)

The last step is to normalize the stochastic basis such that

⟨ζmi |ζmj ⟩ = δij (B.7)

and

⟨ψci |ζmj ⟩ = 0. (B.8)

After these three steps, the construction of stochastic basis for the mth step is completed

and it is ready to enter the work space.
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B.4 Supplementary Tables and Figures

Figure B.1: Chemical structures of the four investigated diamond with NV− center
systems: (a) 215-atom supercell; (b) 511-atom supercell; (c) 999-atom supercell; (d)
2303-atom slab.

Figure B.2: Composition of the three fragments as well as the all-atom system: (a)
4-atom fragment; (b) 16-atom fragment; (c) 40-atom fragment; (d) all-atom system.
The fragments are exemplified using the 215-atom cell while each fragment is found
extremely similar around the NV− center in the other investigated systems.
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Table B.2: Comparison of sF-PMWF and F-PMWF with different combinations of Nc

and Nr for orbital localization on the 215-atom system
Method Nc Nr Nw Nb N outer

it Converged P ′ Converged P
P ′ after 1st cycle

(percentage gained)
touter (s) tmacro (s) nmacro Total wall time (s)

F-PMWF - - - - 1 4.9345 4.6656 - - - - 308

sF-PMWF 16 4 20 104 520 4.9436 4.6656 4.7882 (97%) 0.09 9.07 5 47

sF-PMWF 16 8 24 42 260 4.9436 4.6656 4.8366 (98%) 0.11 5.87 5 31

sF-PMWF 16 16 32 26 156 4.9435 4.6655 4.6533 (94%) 0.17 4.65 6 29

sF-PMWF 16 32 48 13 65 4.9436 4.6656 4.7039 (95%) 0.32 4.19 5 22

sF-PMWF 16 48 64 9 54 4.9436 4.6656 4.6888 (95%) 0.50 4.51 6 28

sF-PMWF 16 64 80 7 35 4.9436 4.6656 4.7348 (96%) 0.73 5.09 5 27

sF-PMWF 24 24 48 17 68 4.9346 4.6656 4.7523 (96%) 0.37 6.31 4 26

sF-PMWF 32 16 48 25 100 4.9346 4.6657 4.8425 (98%) 0.29 7.21 4 30

sF-PMWF 40 8 48 49 245 4.9346 4.6657 4.8868 (99%) 0.29 14.06 5 72

sF-PMWF (stochastic) 16 32 48 - 216 4.9346 4.6656 - 3.47 - - 729

Figure B.3: The log of the time per outer-loop iteration (touter) as a function of the
log of the number of states in the work space (Nw). The scaling of touter with Nw is
derived from the slope of the linear fitting.
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Figure B.4: Convergence of the functional P ′ with respect to the outer-loop step
m for the NV− center of the 215-atom system. Blue curve: localization performed
with deterministic basis in the rest space. Orange curve: localization performed
with stochastic basis in the rest space. The (16,32) combination is employed in both
calculations.
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Table B.3: Comparison of sF-PMWF and F-PMWF with different combinations of Nc

and Nr for orbital localization on the 511-atom system
Method Nc Nr Nw Nb N outer

it Converged P ′ Converged P
P ′ after 1st cycle

(percentage gained)
touter (s) tmacro (s) nmacro Total wall time (s)

F-PMWF - - - - 1 4.9222 4.6498 - - - - 7360

sF-PMWF 16 4 20 252 1512 4.9223 4.6498 4.6254 (94%) 0.26 64.97 6 397

sF-PMWF 16 8 24 126 630 4.9223 4.6498 4.6392 (94%) 0.35 44.65 5 230

sF-PMWF 16 16 32 63 315 4.9223 4.6498 4.6074 (94%) 0.53 34.44 5 175

sF-PMWF 16 32 48 21 128 4.9223 4.6498 4.634 (94%) 0.83 26.67 4 114

sF-PMWF 16 48 64 21 126 4.9223 4.6498 4.7189 (96%) 1.12 23.52 6 148

sF-PMWF 24 24 48 42 252 4.9223 4.6498 4.8208 (98%) 0.86 36.75 6 224

sF-PMWF 32 16 48 62 310 4.9223 4.6498 4.8476 (98%) 0.83 51.56 5 265

sF-PMWF 40 8 48 123 738 4.9223 4.6498 4.8791 (99%) 0.83 102.13 6 621
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a

b

Figure B.5: Investigation of different combinations of Nc and Nr for the localization on
the NV− center of the 511-atom cell. Nc is fixed at 16. (a) Total number of iteration
steps in the outer-loop as a function of the Nr. (b) Total wall time of the calculation as
a function of Nw. Dashed line indicates the total wall time from the F-PMWF method
using the full orbital space.

343



Supporting information for “Reduced Scaling of Optimal Regional Orbital Localization via Sequential
Exhaustion of the Single-Particle Space” Chapter B

a

b

Figure B.6: Investigation of different combinations of Nc and Nr for the localization on
the NV− center of the 511-atom cell. Nw is fixed at 48. (a) Total number of iteration
steps in the outer-loop as a function of the Nr/Nc ratio; (b) The total wall time as a
function of the Nr/Nc ratio.

Table B.4: Comparison of sF-PMWF and F-PMWF with different combinations of Nc

and Nr for orbital localization on the 999-atom system
Method Nc Nr Nw Nb N outer

it Converged P ′ Converged P
P ′ after 1st cycle

(percentage gained)
touter (s) tmacro (s) nmacro Total wall time (s)

F-PMWF - - - - 1 4.9194 4.6447 - - - - 42006

sF-PMWF 16 16 32 124 620 4.9194 4.6446 4.6175 (94%) 0.89 109.89 5 575

sF-PMWF 16 32 48 62 310 4.9194 4.6446 4.6089 (94%) 1.50 92.81 5 489

sF-PMWF 16 48 64 42 210 4.9195 4.6446 4.0349 (82%) 2.22 93.47 5 493

sF-PMWF (stochastic) 16 32 48 - 999 4.9194 4.6446 - 23.78 - - 24172
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Table B.5: Comparison of sF-PMWF and F-PMWF with different combinations of Nc

and Nr for orbital localization on the 2303-atom slab system
Method Nc Nr Nw Nb N outer

it Converged P ′ Converged P
P ′ after 1st cycle

(percentage gained)
touter (s) tmacro (s) nmacro Total wall time (s)

F-PMWF - - - - 1 4.9414 4.6731 - - - - 695370

sF-PMWF 16 16 32 290 1740 4.9414 4.6731 3.7145 (75%) 1.11 333.03 6 2644

sF-PMWF 16 32 48 145 870 4.9414 4.6731 3.6976 (75%) 1.84 266.02 6 1683

sF-PMWF 16 48 64 97 582 4.9414 4.6731 3.8859 (79%) 2.50 241.98 6 1538

Table B.6: Time spent on the folding and unfolding steps of the four investigated
systems. The unfolding step of each calculation employs the (16,32) combination.

System
Time (s)

Folding step Unfolding step

215-atom cell 22 0.52

511-atom cell 114 1.85

999-atom cell 489 6.90

slab 1683 17.79

Table B.7: Information of the four investigated systems as well as the time and
normalized time per outer-loop iteration and per macro-cycle.

System Ne Ns Ng touter (s) toutern (s) tmacro (s) tmacron (s) nmacro

215-atom cell 864 432 314432 0.32 1.99 4.19 25.83 5

511-atom cell 2048 1024 778688 0.83 2.08 26.67 66.45 4

999-atom cell 4000 2000 1404928 1.50 2.07 92.81 128.16 5

slab 9312 4656 1940120 1.89 1.89 266.02 266.02 6
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Figure B.7: Total wall time of orbital localization on each system with respect to the
number of occupied states Ns. Blue bar: F-PMWF using the full orbital space. Orange
Bar: sF-PMWF using the work space.

Table B.8: Total wall time and normalized total wall time of four investigated systems.

System
Total wall time (s) Normalized total wall time (s)

F-PMWF sF-PMWF F-PMWF sF-PMWF

215-atom cell 308 22 1903 139

511-atom cell 7360 114 18339 284

999-atom cell 42006 489 58007 675

slab 695370 1683 695370 1683
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Table B.9: Time per SA iteration step in F-PMWF and sF-PMWF calculations for the
four investigated systems

System
Time per SA iteration (s)

F-PMWF sF-PMWF

215-atom cell 0.29 5.28×10−4

511-atom cell 8.62 5.11×10−4

999-atom cell 61.80 5.13×10−4

slab 1056.26 4.94×10−4

Figure B.8: Number of total SA iteration steps in sF-PMWF calculation relative to
the number of total SA iteration steps in the F-PMWF calcuation for the 215-atom
system using different Nr. The Nc is fixed at 16.
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Figure B.9: Number of total SA iteration steps in sF-PMWF calculation relative to
the number of total SA iteration steps in the F-PMWF calculation for the 511-atom
system using different Nr. The Nc is fixed at 16.
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Figure B.10: The log of the normalized time per iteration plotted as a function of the
log of number of occupied states Ns for the four investigated systems. The black line
and square points represent the normalized tSA obtained from the F-PMWF method
using the full orbital space. The red line and circle points represent the normalized
touter obtained from the sF-PMWF method using the constructed work space. The
time per iteration is normalized to the largest grid (2303-atom system). The scaling is
derived from the slope of each fitting.
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Table B.10: Number of iterations required to reach convergence in F-PMWF and
sF-PMWF calculations.

System NSA
it in F-PMWF N outer

it in sF-PMWF

215-atom cell 637 65

511-atom cell 700 128

999-atom cell 586 310

slab 650 870

Table B.11: Converged maximized P ′ from F-PMWF and sF-PMWF calculations. The
(16,32) combination is used in the sF-PMWF calculations.

system
Converged P ′

F-PMWF sF-PMWF

215-atom cell 4.9345 4.9346

511-atom cell 4.9222 4.9223

999-atom cell 4.9194 4.9195

slab 4.9414 4.9414

Table B.12: Converged maximized P from F-PMWF and sF-PMWF calculations.

system
Converged P

F-PMWF sF-PMWF

215-atom cell 4.6656 4.6656

511-atom cell 4.6498 4.6498

999-atom cell 4.6447 4.6446

slab 4.6731 4.6731
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Figure B.11: Electron density constructed from the 16 regionally localized states on
the NV− center of the 215-atom system: (a) F-PMWF; (b) sF-PMWF. The isosurface
value is set at 0.05 for all the plots.

Figure B.12: Electron density constructed from the 16 regionally localized states on
the NV− center of the 511-atom system: (a) F-PMWF; (b) sF-PMWF. The isosurface
value is set 0.05 for all the plots.
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Figure B.13: Electron density constructed from the 16 regionally localized states on
the NV− center of the 999-atom system: (a) F-PMWF; (b) sF-PMWF. The isosurface
value is set at 0.05 for all the plots.

Figure B.14: The 4 regionally localized “p”-like states around the NV− center of the
215-atom system. The left 4 states are obtained from F-PMWF and the right 4 are
obtained from sF-PMWF. The yellow and blue colors represent the phases of the
single-particle wavefunction. The isosurface value is set 0.05 for all the plots.
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Figure B.15: The 4 regionally localized “p”-like states around the NV− center of the
511-atom system. The left 4 states are obtained from F-PMWF and the right 4 are
obtained from sF-PMWF. The yellow and blue colors represent the phases of the
single-particle wavefunction. The isosurface value is set at 0.05 for all the plots.

Figure B.16: The 4 regionally localized “p”-like states around the NV− center of the
999-atom system. The left 4 states are obtained from F-PMWF and the right 4 are
obtained from sF-PMWF. The yellow and blue colors represent the phases of the
single-particle wavefunction. The isosurface value is set at 0.05 for all the plots.
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Figure B.17: Electron density constructed from the 4 regionally localized states on an
arbitrary carbon of the four investigated systems: (a) 215-atom system; (b) 511-atom
system; (c) 999-atom system; (d) 2303-atom system. The isosurface value is set at 0.01
for all the plots.
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Figure B.18: The 4 regionally localized “p”-like states around the NV− center of the
215-atom system using different sizes of the fragment or using all the atoms. The last
column shows the electron density constructed from these 4 states in each calculation.
The isosurface value is set at 0.02 for all the plots.

Table B.13: The spatial overlap between the set of Wannier basis from the fragment
approaches and the set from the all-atom calculation.

Entry state 1 state 2 state 3 state 4

{4, 4} 0.981877 0.978799 0.978799 0.978799

{4, 16} 0.999874 0.999704 0.999704 0.999704

{16, 16} 0.991859 0.985258 0.985259 0.985259

{40, 40} 0.997118 0.993832 0.993832 0.993789
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Table B.14: The locality of each set of Wannier function basis on the corresponding
atom plus the neighoring bonded atoms.

Entry state 1 state 2 state 3 state 4
∑
Li

{4, 4} 0.925726 0.862677 0.862680 0.862677 3.513760

{4, 16} 0.915932 0.849211 0.849211 0.849209 3.463562

{16, 16} 0.922626 0.861534 0.861534 0.861534 3.507228

{40, 40} 0.908731 0.834126 0.833826 0.834018 3.410700

all-atom 0.915629 0.848489 0.848488 0.848488 3.461094

Table B.15: Excited-state transition energies of the NV− center in the four investigated
systems using the Wannier function basis obtained from F-PMWF calculations. The
numbers with and without the parenthesis correspond to the {4, 4} and {16, 16}
fragment, respectively.

Transition

symmetry

Energy (eV)

215-atom cell 511-atom cell 999-atom cell slab

3E – 3A2 2.108 (1.560) 2.279 (1.695) 2.312 (1.710) 1.343 (0.399)

1A1 – 3A2 1.433 (1.325) 1.310 (1.270) 1.202 (1.193) 1.159 (0.324)

1E – 3A2 0.447 (0.378) 0.435 (0.381) 0.413 (0.368) 0.329 (0.101)

Table B.16: The spatial overlap between the two sets of “p-like” Wannier functions
obtained from the sF-PMWF (ψs) method and the F-PMWF (ψ) method for the
2303-atom system.

ψs1 ψs2 ψs3 ψs4

ψ1 0.9999798 1.11×10−3 2.68×10−4 7.89×10−4

ψ2 1.11×10−3 0.9999992 9.19×10−6 1.33×10−6

ψ3 2.64×10−4 9.33×10−6 0.9999997 7.12×10−6

ψ4 7.93×10−4 2.65×10−6 6.89×10−6 0.9999995
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Table B.17: Comparison of sF-PMWF and F-PMWF with different combinations of Nc

and Nr for orbital localization on the 215-atom system with 16 atoms in the fragment

Method Nc Nr Nw Nb N outer
it Converged P ′ Converged P

P ′ after 1st access

(percentage gained)
touter (s) Total wall time (s)

F-PMWF - - - - 1 13.9402 6.7472 - - 356

sF-PMWF 16 4 20 104 1664 13.9403 6.7472 12.3286 (88%) 0.10 170

sF-PMWF 16 8 24 42 676 13.9398 6.7471 12.3630 (87%) 0.14 96

sF-PMWF 16 16 32 26 182 13.9381 6.7466 11.9140 (85%) 0.23 43

sF-PMWF 16 32 48 13 104 13.9361 6.7463 11.9952 (86%) 0.43 46

sF-PMWF 16 48 64 9 81 13.9398 6.7471 12.5275 (90%) 0.58 48

sF-PMWF 16 64 80 7 42 13.9400 6.7471 12.9316 (93%) 1.02 44

sF-PMWF 16 80 96 6 36 13.9402 6.7471 13.5550 (97%) 1.36 51

sF-PMWF 32 48 80 9 90 13.9403 6.7472 13.6312 (98%) 0.72 66

sF-PMWF 48 32 80 12 108 13.9403 6.7472 13.9004 (99%) 0.75 82

sF-PMWF 64 16 80 23 184 13.9403 6.7472 13.9268 (99%) 0.71 132

Table B.18: Comparison of sF-PMWF and F-PMWF with different combinations of Nc

and Nr for orbital localization on the 511-atom system with 16 atoms in the fragment

Method Nc Nr Nw Nb N outer
it Converged P ′ Converged P

P ′ after 1st access

(percentage gained)
touter (s) Total wall time (s)

F-PMWF - - - - 1 13.9227 6.7261 - - 10631

sF-PMWF 16 8 24 126 2142 13.9227 6.7260 11.2259 (81%) 0.34 732

sF-PMWF 16 16 32 63 882 13.9226 6.7261 11.1987 (80%) 0.46 416

sF-PMWF 16 32 48 32 352 13.9225 6.7260 11.3184 (81%) 0.74 269

sF-PMWF 16 48 64 21 210 13.9216 6.7258 12.3472 (89%) 1.21 263

sF-PMWF 16 64 80 16 160 13.9222 6.7260 11.5273 (83%) 1.57 259

sF-PMWF 16 80 96 13 104 13.9225 6.7260 12.0496 (86%) 2.13 230

sF-PMWF 16 96 112 11 77 13.9226 6.7261 12.6309 (91%) 3.00 240

sF-PMWF 16 112 128 9 90 13.9225 6.7260 13.2126 (95%) 4.06 374

sF-PMWF 32 48 80 21 252 13.9226 6.7260 13.6220 (98%) 1.54 398

sF-PMWF 48 32 80 31 186 13.9226 6.7260 13.8586 (99%) 1.47 283

sF-PMWF 64 16 80 60 300 13.9227 6.7260 13.8899 (99%) 1.42 434
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Table B.19: Comparison of sF-PMWF and F-PMWF with different combinations of Nc

and Nr for orbital localization on the 999-atom system with 16 atoms in the fragment

Method Nc Nr Nw Nb N outer
it Converged P ′ Converged P

P ′ after 1st access

(percentage gained)
touter (s) Total wall time (s)

F-PMWF - - - - 1 13.9167 6.7200 - - 58937

sF-PMWF 16 32 48 62 1178 13.9169 6.7198 11.0295 (79%) 1.53 1832

sF-PMWF 16 48 64 42 672 13.9172 6.7199 11.1849 (80%) 2.09 1435

sF-PMWF 16 64 80 31 310 13.9159 6.7195 11.3795 (82%) 3.06 978

sF-PMWF 16 80 96 25 200 13.9161 6.7195 11.6643 (84%) 4.06 840

sF-PMWF 16 96 112 21 189 13.9160 6.7195 12.1530(87%) 5.52 1074

sF-PMWF 16 128 144 16 128 1.9169 6.7198 12.2390 (88%) 8.74 1148

Table B.20: Comparison of sF-PMWF and F-PMWF with different combinations of Nc

and Nr for orbital localization on the 2303-atom system with 16 atoms in the fragment

Method Nc Nr Nw Nb N outer
it Converged P ′ Converged P

P ′ after 1st access

(percentage gained)
touter (s) Total wall time (s)

F-PMWF - - - - 1 13.9451 6.7539 - - 761005

sF-PMWF 16 32 48 145 1595 13.9451 6.7539 12.2360 (88%) 1.75 2888

sF-PMWF 16 48 64 97 970 13.9451 6.7539 12.3156 (88%) 2.44 2454

sF-PMWF 16 64 80 73 730 13.9450 6.7540 12.2248 (88%) 3.66 2761

sF-PMWF 16 80 96 58 580 13.9451 6.7539 12.0172 (86%) 4.73 2837
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the liquid phase environment via

stochastic many-body theory”
Guorong Weng, Vojtěch Vlček

C.1 Computational Details

C.1.1 Geometry Preparation

The molecular structures of the three molecules studied in this work are shown in

Fig. C.1. To obtain the ground-state geometries of these molecule in the gas phase, we

perform energy optimization at the MP2/cc-pVDZ level using the NWChem package.[1]

The relaxed molecule is place at the center of a simulation box, which is then filled by

water molecules. The resulting homogeneous aqueous solution has a concentration of
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0.4 ∼ 0.5 mmol/g. The system geometries are then prepared by molecular dynamics

simulations using Gromacs 5 package.[2] A generalized amber force field[3] is employed

in the simulations with charge method AM1-bcc for the solute molecule and TIP4P

for the water molecules.[4] The system is treated periodically in x, y, and z directions.

An energy minimization step is performed to relax the structures, which is followed by

the NVT equilibration, NPT equilibration, and MD simulation at 300K. The dynamics

run 10,000,000 relaxation steps with a time interval 0.0005 ps, resulting in 5,000 ps

in total. Then 5 snapshots are extracted from the 10,000,000 steps every 1,000 ps as

representative configurations of the system for the following DFT calculations and many-

body calculations. Fig. C.2 shows one of the snapshots for each system. The geometries

of the isolated molecules are taken directly from these snapshots by simply removing all

the water molecules.

Figure C.1: Molecular structures of the three molecules studied in this work: (a) phenol;
(b) thymine; (c) phenylalanine.
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Figure C.2: Selected snapshots from MD simulations of three systems: (a) phenol; (b)
thymine; (c) phenylalanine.

C.1.2 Pipek-Mezey Wannier Functions

The objective function P that evaluates the orbital localization is implicitly a functional

of the unitary matrix W . The unitary matrix W transforms the original set of Kohn-Sham

(KS) eigenstates into another set of states that lead to a larger value of P . Steepest descent

(ascent) algorithm is employed to maximize the value of P and find the corresponding

unitary matrix W . The objective function is expressed as

P(W ) =
Nocc∑
i

NA∑
A

[QA
ii (W )]2 (C.1)

Here, the matrix Q is given by

QA
ij = ⟨ψi|wA |ψj⟩ , (C.2)

where ψi is an unitary-transformed state defined as

|ψk⟩ =
∑
j

Wjk |ϕj⟩ . (C.3)

Here, W is the unitary matrix that is iteratively updated.

361



Supplementary material for “Efficient treatment of molecular excitations in the liquid phase
environment via stochastic many-body theory” Chapter C

wA in Eq. (C.2) represents the weight function for each atom type A:

wA(r) =
n̄A(r)∑NA′

A′ n̄A′(r)
, (C.4)

where n̄A(r) is the density function of atom type A using the simple Gaussian model

density

n̄A(r) =
Nel,A

γA
√
2π
e
{− (r−RA)2

2γ2A
}
. (C.5)

Here, the parameter γA is set 0.5 bohr in our calculation. RA is the spatial coordinates

of atom A.

In practice, the P is maximized iteratively. In the zeroth step (represented by the

superscript 0), the Q matrix is constructed using the KS eigenstates

QA,0
ij = ⟨ϕi|wA |ϕj⟩ . (C.6)

In the first and following iteration step n, the Q matrix is given by the unitary matrix W

QA,n = (W n†)QA,n−1(W n), (C.7)

where the unitary matrix W is defined as the exponential of the anti-Hermitian matrix A

W n = eA
n

. (C.8)

Here, the anti-Hermitian matrix A is generated by the functional derivative of the objective

function P

An = ∆t(
dP
dA

)(n−1), (C.9)

where ∆t is the “time-ste” parameter and the derivative (dP
dA

)(n−1) is in fact a matrix whose
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element is given by

(
dP
dA

)
(n−1)

ij
=

∑
A

[QA,n−1
ij (QA,n−1

ii

∗ −QA,n−1
jj

∗
)−QA,n−1

ij

∗
(QA,n−1

jj −QA,n−1
ii )]. (C.10)

Once the P is maximized, the set {ψ} corresponds to the localized PMW functions.

C.1.3 Stochastic GW Approach

Ground state DFT calculations with periodic boundary conditions at the PBE level

serve as the starting point for the subsequent many-body calculations. 3-dimensional

periodic boundary condition is employed with a cubic cell for the solute-solvent systems

and 0-dimensional periodic boundary condition is employed for the single molecule systems.

Trouller-Martins pseudopotentials and real space grids are adopted in our calculations

with a kinetic energy cutoff of 28 hartrees. The cell parameters of each solute-solvent

systems are listed in Table C.1.

system grid spacing [bohr]

phenol 72*72*72 0.40621

thymine 76*76*76 0.40756

phenylalanine 76*76*76 0.40347

Table C.1: Cell parameters in DFT calculations

Using the KS-DFT (PBE) starting point, the quasiparticle energies are computed as

εi = εKS
i +

〈
ϕi

∣∣∣Σ̂− vxc

∣∣∣ϕi〉 , (C.11)

where εKS
i is the Kohn-Sham eigenvalue and vxc is the mean-field exchange-correlation

potential calculated with generalized gradient approximation. The self energy Σ is
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further split into exchange (Σx) and correlation (Σc). The exchange term is treated with

Hartree-Fock exchange, while the Σc is approximated by the GW method.

For the particular eigenstate |ϕi⟩ of a mean-field Hamiltonian H0, the correlation self

energy within GW approximation is expressed as

⟨ϕi|Σc(t) |ϕi⟩ = ⟨ϕi| iG0(t)WP (t) |ϕi⟩ , (C.12)

where WP is the time-ordered polarization potential expressed using a two-point polariz-

ability χ and the bare Coulomb kernel ν

WP (r,r′, t) =∫ ∫
ν(r, r′′)χ(r′′r′′′, t)ν(r′′′, r′)dr′′dr′′′

(C.13)

G0 is the non-interacting Green’s function. In the stochastic formalism, G0 is sampled

using a set of random vectors ζ

G0(r, r′, t) =
1

Nζ

Nζ∑
l

ζl(r, t)ζ̄l(r′), (C.14)

where Nζ denotes the number of random vectors and the vector ζ̄ spans the entire Hilbert

space. The vector ζ is either in the occupied or unoccupied subspace depending on the

time argument

|ζ(t)⟩ =


e−iH0tP̂ occ |ζ̄⟩ t < 0,

e−iH0t(I − P̂ occ) |ζ̄⟩ t > 0.

(C.15)

Here, Negative time argument denotes hole propagation while positive denotes electron

propagation. P̂ occ is the projection operator projecting on the occupied subspace and I is
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the identity operator. And hence the perturbative correction becomes

⟨ϕ|Σc(t) |ϕ⟩ ≃
1

Nζ

∑
ζ

∫
ϕ(r)ζ(r, t)uζ̄(r, t)dr (C.16)

Here, uζ̄(r, t) is the induced charge density potential defined as

uζ̄(r, t) =
∫
WP (r, r′, t)ζ̄(r′)ϕ(r′)dr′ (C.17)

Practically uζ̄(r, t) is computed from the retarded response potential

ũζ̄(r, t) =
∫
W̃P (r, r′, t)ζ̄(r′)ϕ(r′)dr′, (C.18)

The retarded response potential can be further written in terms of the induced charge

density fluctuation δn

ũζ(r, t) =
∫ ∫ ∫

ν(r, r′′)χ(r′′, r′′′, t)δv(r′′′, r′)dr′dr′′dr′′′

=

∫
ν(r, r′)δn(r′, t)dr′ (C.19)

Here, we define a perturbing potential

δv(r, r′) = ν(r, r′)ζ̄(r′)ϕ(r′). (C.20)

The time-dependent retarded response potential ũζ(r, t) is Fourier transformed into

the frequency domain and expanded for the whole frequency domain

uζ(r, ω) =


ũζ(r, ω), ω ≥ 0

(ũζ(r, ω))∗, ω < 0

. (C.21)
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The parameters of the stochastic many-body calculations are listed in Table. C.2.

Parameters value

plane wave cut-off (hartree) 28

number of random vectors used for sparse

stochastic compression

20000

number of random vectors characterizing the

screened Coulomb interaction (per each vec-

tor sampling the Green’s function)

16

number of vectors sampling the Green’s func-

tion

1000

maximum time for real-time propagation of

the dynamical self-energy (a.u.)

50

Table C.2: Parameters in the GW calculations of all systems.
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C.2 Supplementary tables and figures

Figure C.3: PMW functions of the solvated and isolated phenol molecule. There exits
a one-to-one correspondence between these two sets of PMW functions labelled by
chemical bonds or lone pair electrons.
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Figure C.4: HOMO QP energies with respect to the system snapshots along the MD
trajectory of the three molecules. Here, “isolated molecule” means the QP energies are
calculated for the HOMO of the molecules without the solvent, while the others are
calculated for the reconstructed HOMO with the solvent.

Figure C.5: Correlation energy contribution from the solvated molecule (Σmc ) compared
with the isolated one (Σisoc ) at the QP energy solution.

Figure C.6: Spectral functions of each individual QP excitation for the three molecules.
The color distinguishes the solvated molecule from its isolated counterpart.
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ψm1 ψm2 ψm3 ψm4 ψm5 ψm6 ψm7 ψm8 ψm9 ψm10 ψm11 ψm12 ψm13 ψm14 ψm15 ψm16 ψm17 ψm18

ψiso1 0.0004 0.9997 0.0002 0.0002 0.0010 0.0001 0.0006 0.0001 0.0002 0.0008 0.0013 0.0002 0.0015 0.0058 0.0005 0.0011 0.0013 0.0002

ψiso2 0.0002 0.0007 0.0004 0.0000 0.0006 0.0000 0.9995 0.0003 0.0001 0.0053 0.0006 0.0021 0.0006 0.0011 0.0003 0.0000 0.0063 0.0002

ψiso3 0.0038 0.0008 0.0009 0.0001 0.0000 0.0001 0.0001 0.0001 0.0005 0.0003 0.0002 0.0005 0.9984 0.0002 0.0033 0.0000 0.0016 0.0002

ψiso4 0.0002 0.0000 0.0013 0.0004 0.0000 0.9997 0.0001 0.0039 0.0065 0.0002 0.0003 0.0001 0.0003 0.0004 0.0007 0.0007 0.0004 0.0022

ψiso5 0.0006 0.0048 0.0003 0.0004 0.0043 0.0002 0.0001 0.0000 0.0005 0.0024 0.0002 0.0003 0.0000 0.9975 0.0002 0.0049 0.0001 0.0001

ψiso6 0.0002 0.0001 0.0001 0.0000 0.0001 0.0000 0.0048 0.0001 0.0002 0.9971 0.0002 0.0027 0.0004 0.0003 0.0003 0.0004 0.0125 0.0003

ψiso7 0.0001 0.0011 0.0001 0.0011 0.9995 0.0002 0.0001 0.0002 0.0020 0.0009 0.0064 0.0001 0.0001 0.0057 0.0001 0.0018 0.0007 0.0004

ψiso8 0.0002 0.0001 0.0011 0.0074 0.0015 0.0060 0.0001 0.0002 0.9983 0.0000 0.0009 0.0000 0.0000 0.0003 0.0001 0.0001 0.0006 0.0022

ψiso9 0.9997 0.0008 0.0006 0.0001 0.0002 0.0003 0.0000 0.0007 0.0003 0.0014 0.0000 0.0001 0.0045 0.0018 0.0009 0.0008 0.0003 0.0003

ψiso10 0.0000 0.0004 0.0002 0.0000 0.0001 0.0001 0.0021 0.0003 0.0001 0.0032 0.0001 0.9988 0.0006 0.0001 0.0027 0.0031 0.0023 0.0033

ψiso11 0.0006 0.0001 0.9998 0.0002 0.0000 0.0015 0.0000 0.0029 0.0015 0.0001 0.0003 0.0002 0.0015 0.0001 0.0003 0.0002 0.0010 0.0002

ψiso12 0.0001 0.0009 0.0001 0.0021 0.0055 0.0002 0.0004 0.0002 0.0006 0.0002 0.9986 0.0001 0.0001 0.0002 0.0013 0.0019 0.0001 0.0024

ψiso13 0.0006 0.0001 0.0027 0.0006 0.0001 0.0036 0.0002 0.9993 0.0000 0.0002 0.0001 0.0002 0.0003 0.0001 0.0004 0.0005 0.0002 0.0009

ψiso14 0.0001 0.0000 0.0000 0.9997 0.0006 0.0004 0.0002 0.0008 0.0083 0.0007 0.0023 0.0000 0.0001 0.0012 0.0001 0.0002 0.0002 0.0009

ψiso15 0.0003 0.0001 0.0009 0.0009 0.0005 0.0024 0.0002 0.0010 0.0032 0.0000 0.0032 0.0029 0.0000 0.0003 0.0094 0.0004 0.0003 0.9976

ψiso16 0.0001 0.0004 0.0005 0.0001 0.0003 0.0001 0.0051 0.0001 0.0004 0.0097 0.0005 0.0021 0.0001 0.0000 0.0005 0.0002 0.9977 0.0003

ψiso17 0.0007 0.0005 0.0000 0.0001 0.0003 0.0011 0.0004 0.0005 0.0002 0.0001 0.0019 0.0024 0.0032 0.0002 0.9981 0.0040 0.0007 0.0095

ψiso18 0.0005 0.0009 0.0002 0.0005 0.0024 0.0008 0.0002 0.0005 0.0000 0.0001 0.0026 0.0030 0.0000 0.0064 0.0057 0.9979 0.0000 0.0008

Table C.3: Spatial overlaps |⟨ψgi |ψmj ⟩| between two sets of PMW functions of phenol molecule.

Phenol Thymine Phenylalanine

snapshot 1 −8.31± 0.06 −8.65± 0.06 −8.70± 0.06

snapshot 2 −8.19± 0.06 −8.77± 0.06 −8.67± 0.06

snapshot 3 −8.19± 0.06 −8.70± 0.07 −9.05± 0.06

snapshot 4 −8.38± 0.06 −8.47± 0.06 −8.35± 0.06

snapshot 5 −8.26± 0.06 −8.70± 0.06 −9.00± 0.05

average -8.27 -8.66 -8.75

standard

deviation
0.08 0.11 0.28

relaxed

geometry
-8.21 -8.88 -8.60

exp. -8.51[5] -9.18[6] -8.82[7]

Table C.4: HOMO QP energies of five selected snapshots for the three isolated molecules.
The average values and standard deviations over the five snapshots are provided for
comparisons with the gas-phase relaxed geometry and the experimental values. Unit:
eV
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state 30 state 31 state 32

snapshot 1 -8.37±0.09 -8.02±0.06 -8.17±0.10

snapshot 2 -7.84±0.07 -7.91±0.08 -8.11±0.07

snapshot 3 -8.38±0.06 -8.43±0.08 -8.61±0.10

snapshot 4 -8.44±0.10 -7.81±0.09 -7.52±0.06

snapshot 5 -8.95±0.12 -8.27±0.10 -8.21±0.05

Table C.5: QP energies of five selected snapshots for the first three highest occupied
states of solvated phenyalalanine. The state number represents the order of PBE
eigenstates. Numbers in bold stand for the reordered HOMO QP energies. Unit: eV

Phenol Thymine Phenylalanine

snapshot 1 -5.65 -6.00 -5.87

snapshot 2 -5.53 -6.05 -5.77

snapshot 3 -5.51 -6.14 -6.17

snapshot 4 -5.75 -5.87 -5.96

snapshot 5 -5.60 -6.04 -6.37

average -5.61 -6.02 -6.03

standard

deviation
0.10 0.10 0.24

relaxed

geometry
-5.75 -6.25 -5.78

Table C.6: PBE HOMO eigenvalues of five selected snapshots for the three isolated
molecules. The average values and standard deviations over the five snapshots are
provided for comparisons with the gas-phase relaxed geometry. Unit: eV
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Phenol Thymine Phenylalanine

snapshot 1 −7.44± 0.06 −7.80± 0.07 −8.02± 0.06

snapshot 2 −7.23± 0.06 −7.91± 0.07 −7.84± 0.07

snapshot 3 −7.20± 0.07 −7.78± 0.07 −8.38± 0.06

snapshot 4 −7.53± 0.06 −7.64± 0.07 −7.52± 0.06

snapshot 5 −7.30± 0.07 −7.76± 0.07 −8.21± 0.05

average -7.34 -7.78 -7.99

standard

deviation
0.14 0.10 0.33

Table C.7: HOMO QP energies of five selected snapshots for the three solvated molecules.
The energies are computed with the fully-coupled correlation. The standard deviations
over the five snapshots are provided for comparisons with the QP energy shifts. Unit:
eV

molecule Phenol Thymine Phenylalanine

phase gas aqueous gas aqueous gas aqueous

experimenta 8.508± 0.001[5] 7.6± 0.1[8] 9.18[6] 8.50[9] 8.80 to 9.15[10, 7] 8.70[11]

calculationb 8.55[12] 7.90[12] 9.20[13] 8.30[13] 9.16[14]/8.72[14] 7.66[14]

this workc 8.27± 0.08 7.34± 0.14 8.66± 0.11 7.78± 0.10 8.75± 0.28 7.99± 0.33

this workd 8.21± 0.05 - 8.88± 0.05 - 8.60± 0.05 -

Table C.8: Comparisons of our computed IPs for the three molecules with available
experimental and computational references. Unit: eV
a experimental data are obtained by pump-probe photoionization threshold,[5] UV
photoelectron spectroscopy,[6] resonant two-photon ionization,[10] liquid-microjet pho-
toelectron spectroscopy,[8, 11] and electron impact ionization.[9]
b computational data are obtained by EOM-IP-CCSD/EFP method[12, 13], electron
propagator in the partial third-order (P3) approximation,[14] and DFT/NEPCM
method.[14]
c these IPs values are averaged over 5 system snapshots.
d these IPs values are obtained for the relaxed molecular geometry in the gas phase.
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Phenol Thymine Phenylalanine

snapshot 1 0.87 0.85 0.68

snapshot 2 0.96 0.86 0.82

snapshot 3 0.99 0.92 0.67

snapshot 4 0.85 0.83 0.83

snapshot 5 0.96 0.94 0.79

average 0.93 0.88 0.76

standard

deviation
0.06 0.05 0.08

reference

value
0.91[12] 0.90[13] -

Table C.9: HOMO QP energy shifts of five selected snapshots for the three solvated
molecules. The energies are computed with the fully-coupled correlation. The average
values and standard deviations over the five snapshots are provided for comparisons
with the references and the QP energy, respectively. Unit: eV
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Phenol Thymine Phenylalanine

snapshot 1 -0.09 -0.04 -0.13

snapshot 2 -0.03 -0.12 -0.10

snapshot 3 -0.07 -0.08 -0.12

snapshot 4 -0.09 -0.07 -0.06

snapshot 5 -0.05 -0.05 -0.16

average -0.07 -0.07 -0.12

standard

deviation
0.03 0.03 0.04

Table C.10: The environment subspace exchange energy Σenvx of the five selected snap-
shots for the three solvated molecules. The values are extracted from the calculations
of the HOMO QP energies. Unit: eV

Phenol Thymine Phenylalanine

snapshot 1 43 38 47

snapshot 2 37 35 36

snapshot 3 43 30 37

snapshot 4 34 40 44

snapshot 5 38 39 33

average 39 36 39

standard

deviation
4 4 6

Table C.11: The ratio of the environment subspace correlation energy Σenvc to the total
correlation energy Σc of the five selected snapshots for the three solvated molecules.
The values are extracted from the calculations of the HOMO QP energies. Unit: %
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Phenol Thymine Phenylalanine

snapshot 1 0.34 0.35 0.27

snapshot 2 0.30 0.40 0.31

snapshot 3 0.38 0.43 0.10

snapshot 4 0.27 0.40 0.30

snapshot 5 0.36 0.39 0.24

avaerage 0.33 0.39 0.24

standard

deviation
0.04 0.03 0.08

Table C.12: HOMO QP energy shifts of five selected snapshots for the three solvated
molecules without the solute-to-solvent feedback mechanism. Unit: eV
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state number isolated [eV] solvated [eV] QP energy shift [eV]

1 −30.78± 0.29 −29.85± 0.31 0.93± 0.43

2 −24.57± 0.14 −23.89± 0.16 0.68± 0.22

3 −22.03± 0.14 −20.94± 0.15 1.09± 0.20

4 −22.00± 0.13 −20.78± 0.13 1.22± 0.19

5 −19.06± 0.11 −18.01± 0.13 1.05± 0.17

6 −18.59± 0.11 −17.40± 0.13 1.19± 0.17

7 −17.00± 0.11 −16.02± 0.13 0.98± 0.17

8 −16.02± 0.11 −15.05± 0.12 0.97± 0.16

9 −14.74± 0.11 −13.73± 0.12 1.01± 0.16

10 −14.22± 0.09 −13.18± 0.10 1.04± 0.14

11 −13.60± 0.10 −12.64± 0.11 0.96± 0.15

12 −13.09± 0.13 −12.65± 0.14 0.44± 0.20

13 −12.85± 0.13 −11.92± 0.14 0.93± 0.18

14 −11.91± 0.09 −10.88± 0.10 1.03± 0.14

15 −11.43± 0.09 −10.61± 0.10 0.82± 0.14

16 −11.02± 0.10 −10.28± 0.11 0.74± 0.16

17 −8.94± 0.09 −8.00± 0.09 0.94± 0.13

18 −8.26± 0.06 −7.30± 0.07 0.96± 0.09

average - - 0.94

standard deviation - - 0.18

Table C.13: QP energies and QP energy shifts of all valence states of isolated and
solvated phenol molecule. Unit: eV
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state number isolated [eV] solvated [eV] QP energy shift [eV]

1 −30.97± 0.21 −30.27± 0.22 0.70± 0.31

2 −30.65± 0.20 −29.79± 0.22 0.86± 0.30

3 −28.49± 0.18 −27.28± 0.20 1.21± 0.27

4 −27.38± 0.17 −26.15± 0.19 1.23± 0.26

5 −24.21± 0.15 −23.26± 0.15 0.95± 0.21

6 −21.44± 0.12 −20.47± 0.13 0.97± 0.18

7 −20.69± 0.11 −19.70± 0.12 0.99± 0.16

8 −20.12± 0.14 −19.13± 0.16 0.99± 0.21

9 −17.65± 0.10 −16.67± 0.12 0.98± 0.16

10 −17.63± 0.10 −16.65± 0.11 0.98± 0.15

11 −16.52± 0.12 −15.55± 0.13 0.97± 0.17

12 −14.98± 0.11 −14.43± 0.12 0.55± 0.16

13 −15.09± 0.12 −14.30± 0.13 0.79± 0.18

14 −14.27± 0.10 −13.55± 0.11 0.72± 0.14

15 −13.97± 0.15 −13.22± 0.18 0.75± 0.23

16 −13.46± 0.21 −12.87± 0.23 0.59± 0.32

17 −13.28± 0.11 −12.43± 0.12 0.85± 0.16

18 −13.17± 0.10 −12.37± 0.11 0.80± 0.15

19 −12.91± 0.11 −11.96± 0.13 0.95± 0.17

20 −11.60± 0.11 −10.89± 0.12 0.71± 0.16

21 −9.60± 0.14 −8.74± 0.15 0.86± 0.20

22 −9.52± 0.15 −8.79± 0.16 0.73± 0.22

23 −8.97± 0.15 −8.17± 0.16 0.80± 0.22

24 −8.65± 0.06 −7.80± 0.07 0.85± 0.09

average - - 0.87

standard deviation - - 0.17

Table C.14: QP energies and QP energy shifts of all valence states of isolated and
solvated thymine molecule. Unit: eV 376
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state number isolated [eV] solvated [eV] QP energy shift [eV]

1 −33.29± 0.24 −32.34± 0.26 0.95± 0.35

2 −30.52± 0.22 −29.29± 0.25 1.23± 0.33

3 −26.17± 0.19 −25.19± 0.20 0.98± 0.28

4 −24.48± 0.15 −24.18± 0.15 0.30± 0.21

5 −22.94± 0.12 −21.98± 0.13 0.96± 0.17

6 −21.69± 0.14 −20.73± 0.15 0.96± 0.21

7 −21.72± 0.11 −20.73± 0.12 0.99± 0.16

8 −20.42± 0.11 −19.38± 0.12 1.04± 0.16

9 −18.59± 0.10 −17.44± 0.12 1.15± 0.16

10 −18.48± 0.11 −17.48± 0.13 1.00± 0.17

11 −17.64± 0.09 −16.67± 0.10 0.97± 0.13

12 −16.21± 0.10 −15.41± 0.12 0.80± 0.16

13 −16.00± 0.10 −15.19± 0.13 0.81± 0.14

14 −15.75± 0.09 −15.03± 0.10 0.72± 0.13

15 −15.66± 0.15 −14.90± 0.17 0.76± 0.22

16 −14.75± 0.11 −14.03± 0.12 0.72± 0.16

17 −14.36± 0.09 −13.54± 0.09 0.82± 0.13

18 −14.55± 0.09 −13.74± 0.10 0.81± 0.13

19 −13.68± 0.09 −12.81± 0.10 0.87± 0.13

20 −13.43± 0.08 −12.64± 0.09 0.79± 0.12

21 −13.25± 0.09 −12.34± 0.10 0.91± 0.14

22 −12.74± 0.08 −12.09± 0.09 0.65± 0.12

23 −12.64± 0.08 −11.85± 0.09 0.79± 0.12

24 −12.54± 0.09 −11.65± 0.10 0.89± 0.13

25 −11.68± 0.08 −11.27± 0.09 0.41± 0.12

26 −11.40± 0.07 −10.50± 0.08 0.90± 0.11

27 −11.25± 0.13 −10.30± 0.14 0.95± 0.19

28 −11.15± 0.08 −10.31± 0.08 0.84± 0.12

29 −10.73± 0.15 −9.82± 0.16 0.91± 0.22

30 −8.67± 0.10 −7.84± 0.07 0.88± 0.14

31 −8.75± 0.08 −7.91± 0.08 0.84± 0.12

32 −8.90± 0.09 −8.11± 0.10 0.79± 0.13

average - - 0.86

standard deviation - - 0.18

Table C.15: QP energies and QP energy shifts of all valence states of isolated and
solvated phenylalanine molecule
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state number QP energy (solvated) [eV] ImΣc ImΣiso
c ImΣiso

c /ImΣc

1 −32.34± 0.26 4.09 2.80 0.68

2 −29.29± 0.25 3.10 2.27 0.73

3 −25.19± 0.20 2.85 1.81 0.64

4 −24.18± 0.15 3.77 3.1 0.82

5 −21.98± 0.13 2.56 1.75 0.68

6 −20.73± 0.15 2.83 2.11 0.75

7 −20.73± 0.12 2.17 1.41 0.65

8 −19.38± 0.12 1.87 1.08 0.58

9 −17.44± 0.12 1.59 0.90 0.57

10 −17.48± 0.13 1.74 1.32 0.76

11 −16.67± 0.10 1.60 1.01 0.63

12 −15.41± 0.12 1.34 0.60 0.45

13 −15.19± 0.13 1.50 0.85 0.57

14 −15.03± 0.10 1.55 1.01 0.65

15 −14.90± 0.17 1.48 0.65 0.44

16 −14.03± 0.12 1.46 0.70 0.48

17 −13.54± 0.09 1.09 0.62 0.57

18 −13.74± 0.10 1.23 0.75 0.61

19 −12.81± 0.10 1.01 0.40 0.40

20 −12.64± 0.09 1.04 0.49 0.47

21 −12.34± 0.10 1.01 0.44 0.44

22 −12.09± 0.09 1.10 0.66 0.60

23 −11.85± 0.09 1.04 0.48 0.46

24 −11.65± 0.10 0.86 0.29 0.34

25 −11.27± 0.09 1.37 0.93 0.68

26 −10.50± 0.08 0.74 0.21 0.28

27 −10.30± 0.14 0.87 0.20 0.23

28 −10.31± 0.08 0.58 0.15 0.26

29 −9.82± 0.16 0.86 0.30 0.35

30 −7.84± 0.07 0.46 0.05 0.11

31 −7.91± 0.08 0.43 0.05 0.12

32 −8.11± 0.10 0.56 0.17 0.30

Average - - - 0.51

Table C.16: Imaginary parts of the self energy at the QP energy of all valence states for
solvated (ImΣc) and isolated (ImΣisoc ) phenyalanine and the ratio between these two.
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Appendix D

Supporting information for “Spatial

Decay and Limits of Quantum

Solute−Solvent Interactions”
Guorong Weng, Amanda Pang,a Vojtěch Vlček

D.1 Theory and Methodology

This section summarizes the theories involved in the main text and the corresponding

computational details. Technical information about the stochastic GW approach can be

found in refs 1, 2, 3. For the fragment-Pipek-Mezey localization, please refer to ref 4 for

more details.
aCurrent institution: University of Pennsylvania, PA, 19104, USA
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D.1.1 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations are employed to generate snapshots for each

solvated systems. Throughout this work, we use the Gromacs 5 package[5] with the

generalized Amber force field, AM1-bcc charge method, and three-dimensional (3D)

periodic boundary conditions for all MD calculations. The solute molecule, phenol, is

structurally relaxed at the MP2/cc-pVDZ using the NWchem package. For the H2O case,

we employ the TIP4P water model.[6] For the other four organic solvents, we first build the

solvent-only systems using their mass-density at room temperature under 1 atmosphere.

These systems are then equilibrated using the NVT ensemble. Finally, these solvents with

equilibrated geometries are used to solvate the phenol molecule. The solvated systems are

treated with the following: energy minimization, NVT equilibrium, NPT equilibrium, and

MD simulations at 300 K. All the MD simulations run 10,000,000 relaxation steps with a

time interval of 0.0005 ps, resulting in a total simulation time of 5,000 ps. From the MD

trajectory of each solvated system, we extract a snapshot every 1,000 ps and obtain five

representative system geometries. These five extracted snapshots are further used in the

Density Functional Theory (DFT) calculations and many-body calculations.

D.1.2 Density Functional Theory Calculations

DFT calculations in this work employ a real-space implementation with 3D peri-

odic boundary conditions (for the solvated systems), the PBE exchange-correlation

functional,[7] and Troullier-Martines pseudopotentials.[8] The resulting canonical eigen-

states are used in the following orbital localization and many-body calculations. Parame-

ters of the DFT calculations are provided in Table D.1-D.5. For all the calculations, the

plane-wave kinetic energy cut-off is set at 26 Eh.
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D.1.3 Fragment-Pipek-Mezey Localization

Pipek-Mezey (PM) orbital localization is performed on the set of occupied canonical

orbitals to obtain the localized electronic subspace. The original PM cost function P

reads

P(U) =
Ns∑
i=1

NA∑
A=1

[QA
ii(U)]2 (D.1)

where U is the unitary matrix that transforms the basis, Ns is the number of states

considered in the transformation, NA denotes the number of atoms involved in the

transformation, and Q is the atomic partial charge matrix. When P is maximized, the

corresponding U yields the PM localized orbitals. The Q matrix is computed by

QA,n
ij =

∫
ψni

∗(r)wA(r)ψnj (r)dr (D.2)

where ψni represents the transformed states at the nth iteration step of maximization.

wA(r) in eq (D.2) denotes the atomic weight function, for which we employ the real-space

partitioning scheme with the Gaussian form.

If all the atoms are included in eqs. (D.1) and (D.2), the P will reach a global

maximum, and localized orbitals will be obtained for the whole system. However, the cost

of localization depends linearly on the NA, and this will suffer from a cost overhead if

one is interested only in a single fragment of the system. Herein, we employ the modified

P, as introduced in ref 4, for orbital localization of a selected fragment. The fragment

weight function is defined as

F k(r) =
Nk

A∑
i

wki (r) (D.3)

Here, F k(r) is the weight function of the kth fragment, Nk
A is the number of atoms

constituting the kth fragment, and wki (r) is the atomic weight function of each atom
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belonging to the kth fragment. The Q matrix for the selected fragment is thus written as

Qk,n
ij =

∫
ψni

∗(r)F k(r)ψnj (r)dr (D.4)

which is in fact a fragment partial charge matrix. The modified PM cost function with

the fragment partial charge matrix reads

P ′(U) =

N ′
s∑

i=1

[Qk
ii(U)]2 (D.5)

where N ′
s denotes the number of localized states that are being sought on the kth fragment.

Note that maximization of P ′ leads to only N ′
s states that are localized on the fragment

but not maximally-localized on each atom of the fragment. Yet, these N ′
s states are

sufficient to define the electronic subspace for the kth fragment. If one is interested in the

real PM localized orbitals on each atom of the fragment, these N ′
s can be used as input

states to maximize the original cost function P in eq (D.1).

D.1.4 Stochastic G0W0 Calculations

In this work, quasiparticle (QP) energies are computed by applying the non-local and

dynamical self-energy as a perturbative correction to the DFT eigenvalue. The QP energy

reads

εQPj = ε0j + ⟨ϕj|Σ̂X + Σ̂C(ω = εQPj )− v̂xc|ϕj⟩ (D.6)

Here, ε0j represents the eigenvalue of the eigenstate ϕj using the mean-field exchange

functional v̂xc. The non-local exchange interaction Σ̂X is equivalent to the Fock operator.

The frequency-dependent correlation self-energy Σ̂C is obtained by fourier transforming

the time-dependent counterpart.
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In the stochastic G0W0 formalism, the Green’s function (G0) is sampled by a set of

random vectors

G0(r, r′; t) = −i{ζ(r; t)ζ̄(r′)} (D.7)

where the brackets {. . . } denote averaging over the number of random vectors used in

sampling. The random function ζ̄(r) is given by

ζ̄(r) = ± 1

dV
(D.8)

Here, dV is the unit volume of the real-space grid, and the plus-minus sign represents the

randomness. The time-evolved projected random function ζ(r; t) is written as

ζ(r; t) =


⟨r|e−iĤ0tP̂ occ|ζ̄⟩ t < 0

⟨r|e−iĤ0t(Î − P̂ occ)|ζ̄⟩ t > 0

(D.9)

In eq (D.9), Ĥ0 is the static mean-field Hamiltonian used in DFT calculations, P̂ occ is the

projector composed of all the occupied states, and Î is the identity.

The stochastic form of the G0W0 correlation self-energy reads

⟨ϕj|Σ̂C(t)|ϕj⟩ = {
∫
ϕj(r)ζ(r; t)u(r; t)dr} (D.10)

Here, u(r; t) is the time-dependent potential due to the induced charge density. It is

derived from the following retarded potential ũ(r; t)

ũ(r; t) =
∫
ν(r, r′)δn(r′; t)dr′ (D.11)

where ν(r, r′) = 1
|r−r′| is the Coulomb kernel, and the time-dependent induced charge
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density fluctuations (δn(r; t)) is also sampled by another set of random vectors. Further

details of deriving the δn(r; t) are provided in the next section.

D.1.5 Generalized Decomposition of GW Correlation Self-energy

D.1.6 Fragment Electronic Subspace

For solute-solvent systems, localized orbitals provide a straightforward and convenient

way to separate the solute from the environment. As mentioned above, the set of regionally

PM localized orbitals on a specific molecule can be obtained directly by constructing a

fragment. Moreover, the localization can be done by sequentially exhausting the orbital

space.[4] Here, we first demonstrate the construction of an electronic subspace for the

solute molecule, and then generalize it to any fragment in the system.

For the solute molecule, the fragment is defined by the following weight function

Fmol(r) =
Nmol

A∑
i

wi(r) (D.12)

where Nmol
A represents the number of atoms of the molecule and wi(r) is the atomic weight

function of each atom using the real-space partitioning. This fragment weight function

is used in the orbital localization (see eqs. (D.4) and (D.5)), which leads to regionally

localized orbitals. The localization is essentially broken into two steps: (1) search for Ns

localized states on the molecule; (2) localize these Ns states on each atom of the molecule.

This work focuses on the occupied subspace, and Ns includes all the valence electrons of

the molecule. Note that only the second step provides the PM localized orbitals. However,

the first step is sufficient to separate the solute from the environment. Mathematically,
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the molecular electronic subspace is defined by the following projector

P̂mol =
Ns∑
i

|ψmoli ⟩ ⟨ψmoli | (D.13)

where ψmoli represents a localized orbital on the solute molecule. This set of localized

basis is also used to reconstruct the molecular state ϕRj

|ϕRj ⟩ =
Ns∑
i

αji |ψmoli ⟩ (D.14)

Here, αji is the coefficient obtained from decomposing the ϕisoj of the isolated molecule in

its localized basis. There is a one-to-one correspondence between the localized basis of

the solvated molecule and that of the isolated molecule. The full recipe can be found in

our previous work.[9] The superscript “R” in eq (D.14) is omitted for clarity in this work.

Analogously, we can define a weight function of any fragment in the system for the

orbital localization

F k(r) =
Nk

A∑
i

wki (r) (D.15)

Here, Nk
A denotes the number of atoms that constitute the kth fragment. In a multi-

molecule system, a fragment can be a single molecule or a cluster of molecules. The

corresponding electronic subspace is then given by

P̂ k =

N ′
s∑
i

|ψki ⟩ ⟨ψki | (D.16)

where ψki is a localized orbital and N ′
s represents the number of localized occupied orbitals

on the kth fragment.

In our solute-solvent systems, we first separate the solute molecule from the solvent

environment, and then fragment the environment into multiple solvent shells. The solvent
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molecules within the same shell are (ideally) of the same distance away from the solute.

The shell weight function F k
s has the following form

F k
s (r;R

k) =

Nk
A∑
i

wki (r) (D.17)

Here, the kth shell is characterized by the distance Rk. The shell weight function sums

over all the Nk
A atoms in the kth shell. Accordingly, the electronic subspace of the kth

shell is defined by the projector in eq D.16.

D.1.7 Fragment Correlation Self-energy

The frequency-dependent correlation self-energy Σ̂C(ω) in eq (D.6) is practically

obtained from the Fourier transformation of the time-dependent counterpart Σ̂C(t)

(eq (D.10)). In the GW approximation, the ΣC(t) (expectation value) stems from the

time-dependent charge density fluctuations δn(t) (see eqs. (D.10) and (D.11)) induced by

the electron removal/addition

ΣC(t) = ΣC [δn(t), t] (D.18)

In a real-time and real-space implementation, δn(t) is computed by

δn(r, t) = n(r, t)− n0(r) (D.19)

where n(r, t) is computed from the time-evolved single-particle states and n0(r) denotes

the ground-state (GS) density. The deterministic n0(r) is usually obtained from all the
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Nocc occupied canonical KS orbitals

n0(r) =
Nocc∑
i

ϕ∗
i (r)ϕi(r) (D.20)

Alternatively, the GS density can also be expressed by a set of unitary transformed states,

e.g., localized orbitals

n0(r) =
Nocc∑
i

ψ∗
i (r)ψi(r) (D.21)

where ψi represents a localized orbital. Upon the fragmentation of a system, the GS

density can be further written as

n0(r) =
Nfrag∑
k

Nk
occ∑
i

ψki
∗
(r)ψki (r) =

Nfrag∑
k

nk0(r) (D.22)

Here, Nk
occ is the number of occupied states on the kth fragment. ψki and nk0(r) denote an

orbital and the density localized on the kth fragment, respectively.

In contrast to n0(r), the time-dependent density n(r, t) is calculated by a set of

time-evolved states that are perturbed by the electron addition/removal at t = 0. In

order to express n(r, t) in the same form of eq (D.22), we make the following assumption

in this work: the perturbed and time-evolved ψk stay localized on the kth fragment. In

other words, we assume no intermolecular charge transfer happens and all the density

fluctuations remain on the fragment. This “local density fluctations” assumption is

reasonable when there is no apparent donor-acceptor character found in a van-der Waals

bound molecular system. Upon this assumption, n(r, t) is written as

n(r, t) =
Nfrag∑
k

Nk
occ∑
i

ψki
∗
(r, t)ψki (r, t) =

Nfrag∑
k

nk(r, t) (D.23)

where ψki represents a time-evolved localized orbital on the kth fragment, and nk(r, t) is
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the time-evolved density localized on the kth fragment.

Plugging eqs. (D.22) and (D.23) in Eq (D.19), the induced density fluctuation δn(r, t)

is thus fragmented

δn(r, t) =
Nfrag∑
k

nk(r, t)−
Nfrag∑
k

nk0(r) =
Nfrag∑
k

δnk(r, t) (D.24)

where δnk(r, t) denotes the local density fluctuation on the kth fragment. The fragmented

δn(r, t) further leads to the fragment correlation energy ΣC

ΣC[δn(t), t] =

Nfrag∑
k

Σk
C

[
δnk(r, t), t

]
(D.25)

For a specific molecular state ϕj , the fragmentation of ΣC in the frequency domains reads

ΣC(ω = εQPj ) =

Nfrag∑
k

Σk
C(ω = εQPj ) (D.26)

In this work, we do not aim to prove the equivalence shown in eq (D.26). Instead, we

first compute the correlation energy contributed from a specific fragment, e.g., a solvation

shell at distance Rk, and then study the decay of Σk
C as a function of Rk.

In our stochastic GW formalism, both n(r, t) and n0(r) are stochastically sampled by

a set of random functions, and n0(r) also becomes time-dependent due to its stochastic

nature

n(r, t) = {η∗(r, t)η(r, t)} (D.27)

At t = 0, η(r) is a random vector projected onto the occupied subspace

η(r) = ⟨r|P̂ occ|η̄⟩ (D.28)
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where η̄ is a random function in real space: η̄(r) = ± 1
dV

(dV is the unit volume). The

stochastic resolution of identity is satisfied by the constructed η̄.[1, 2] The projector P̂ occ

consists of all the occupied states. Similar to the deterministic case, η(r) is perturbed

at t = 0 by the electron addition/removal and then time-evolved, which gives n(r, t)

equivalent to the one in eq (D.19). Without perturbation, the time-evolved η instead leads

to n0(r, t). And the induced density fluctuation δn(r, t) is then generated via eq (D.19)

using the stochastic n(r, t) and n0(r, t)

δn(r, t) = n(r, t)− n0(r, t) (D.29)

In the previous section, we introduce the electronic subspace for the kth solvation

shell. The stochastic sampling of δnk(r, t) in eq (D.24) can be achieved by replacing the

operator P̂ occ in eq D.28 with P̂ k (eq D.16)

ηk(r) = ⟨r|P̂ k|η⟩ (D.30)

Here, ηk(r) represents a localized random function on the kth solvation shell. δnk(r, t)

can then be readily calculated by using ηk(r) in eqs. (D.27) and (D.29). Finally, the

correlation energy contributed from the kth solvation shell is computed by the δnk(r, t).

Again, the stochastic implementation can easily treat any fragment with up to thousands

of electrons. In the Results and Discussion section of the main text, we demonstrate the

Rk-dependence of ΣC.
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D.2 Supplementary Tables and Figures

Table D.1: Parameters of the simulation box used in DFT calculations for the H2O
solvated system. All lengths are provided in Bohr unit.

snapshot
small cell large cell

lattice constant grid spacing grid size lattice constant grid spacing grid size

1 29.663 0.3903 763 38.360 0.3996 963

2 30.366 0.3996 763 38.868 0.4049 963

3 29.646 0.3901 763 38.503 0.4011 963

4 29.982 0.3945 763 38.700 0.4031 963

5 29.525 0.3885 763 38.915 0.4054 963

Table D.2: Parameters of the simulation box used in DFT calculations for the ACN
solvated system. All lengths are provided in Bohr unit.

snapshot
small cell large cell

lattice constant grid spacing grid size lattice constant grid spacing grid size

1 26.946 0.3963 683 33.991 0.3952 863

2 26.473 0.3893 683 34.047 0.3959 863

3 26.742 0.3933 683 34.215 0.3979 863

4 27.159 0.3994 683 34.824 0.4049 863

5 26.566 0.3907 683 34.157 0.3972 863
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Table D.3: Parameters of the simulation box used in DFT calculations for the DCM
solvated system. All lengths are provided in Bohr unit.

snapshot
small cell large cell

lattice constant grid spacing grid size lattice constant grid spacing grid size

1 29.126 0.3936 743 39.257 0.4006 983

2 29.196 0.3945 743 38.857 0.3965 983

3 29.051 0.3926 743 38.208 0.3899 983

4 29.680 0.4011 743 38.460 0.3924 983

5 29.170 0.3942 743 38.845 0.3954 983

Table D.4: Parameters of the simulation box used in DFT calculations for the THF
solvated system. All lengths are provided in Bohr unit.

snapshot
small cell large cell

lattice constant grid spacing grid size lattice constant grid spacing grid size

1 30.547 0.3916 783 37.740 0.3931 963

2 31.103 0.3988 783 37.899 0.3948 963

3 30.449 0.3904 783 38.129 0.3972 963

4 30.665 0.3931 783 37.744 0.3932 963

5 31.124 0.3990 783 37.626 0.3919 963

Table D.5: Parameters of the simulation box used in DFT calculations for the BEN
solvated system. All lengths are provided in Bohr unit.

snapshot
small cell large cell

lattice constant grid spacing grid size lattice constant grid spacing grid size

1 31.868 0.3984 803 40.264 0.3947 1023

2 32.167 0.4021 803 40.822 0.4002 1023

3 31.918 0.3990 803 41.221 0.4041 1023

4 32.386 0.4048 803 40.979 0.4018 1023

5 31.353 0.3919 803 40.452 0.3966 1023
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Parameters value

plane wave cut-off (hartree) 26

number of random vectors used for sparse stochastic compression 20000

number of random vectors characterizing the screened Coulomb interac-

tion (per each vector sampling the Green’s function)

16

number of vectors sampling the Green’s function 2000

maximum time for real-time propagation of the dynamical self-energy

(a.u.)

50

Table D.6: Parameters in the GW calculations of all systems.

solvent small cell large cell

H2O 118 273

ACN 33 64

DCM 31 73

THF 31 59

BEN 30 62

Table D.7: Number of solvent molecules in the two simulation cells of each solvated system.
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solvent
small cell large cell

αm (Å3)
εiso (σ) εsolv (σ) ∆ε (σ) εiso (σ) εsolv (σ) ∆ε (σ)

H2O -8.26 (0.08) -7.34 (0.14) 0.92 (0.06) -8.16 (0.16) -7.11 (0.17) 1.05 (0.06) 1.48

ACN -8.21 (0.07) -7.15 (0.08) 1.06 (0.05) -8.21 (0.15) -7.11 (0.14) 1.10 (0.05) 4.41

DCM -8.42 (0.23) -7.14 (0.27) 1.28 (0.06) -8.18 (0.15) -6.75 (0.14) 1.43 (0.08) 6.50

THF -8.16 (0.09) -7.02 (0.04) 1.14 (0.08) -8.16 (0.07) -6.83 (0.10) 1.33 (0.07) 7.93

BEN -8.18 (0.07) -6.98 (0.07) 1.20 (0.06) -8.22 (0.10) -6.83 (0.14) 1.39 (0.05) 10.38

Table D.8: HOMO QP energies of isolated and solvated phenol and the ionization
potential (IP) shifts. All energy values are averaged over five snapshots and reported in
eV unit. Standard deviations (σ) are provided in parenthesis. The mean polarizability
(αm) of each solvent is provided for comparing the solvation many-body effects.

solvent snapshot1 snapshot2 snapshot3 snapshot4 snapshot5 average

H2O 99 98 99 90 97 97

ACN 31 32 31 32 34 32

DCM 20 25 23 27 24 24

THF 21 18 18 19 20 19

BEN 18 19 15 15 14 16

Table D.9: Number of effective solvent molecules in each snapshot of each solvated
system. The results are obtained from the large simulation cells.
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solvent N0
eff ∆ε0 Nm

eff ∆ε
m

Nm
eff ×∆ε

m
N0

eff ×∆ε
m

H2O 97 1.05 96 0.0122 1.16 1.17

ACN 32 1.10 33 0.0374 1.23 1.20

DCM 24 1.43 27 0.0553 1.49 1.32

THF 19 1.33 21 0.0676 1.43 1.30

BEN 16 1.39 19 0.0887 1.73 1.44

Table D.10: Number of effective solvent molecules and average energy shift per solvent
molecule derived from the proposed solvation model. The resulting QP energy shifts
are compared with the first-principle results labelled by the superscript 0.
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Figure D.1: Five extracted snapshots from the MD trajectories of each solvated system
using the small simulation cell.
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Figure D.2: Five extracted snapshots from the MD trajectories of each solvated system
using the large simulation cell.
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Figure D.3: Computational results for each solvated system using the small simulation
cell: representative solvated HOMO (upper part), HOMO QP energies of each selected
snapshot (middle part), and QP energy shifts between the isolated and solvated HOMO
of each selected snapshot (lower part). The blue color represents the solvated HOMO
while the red color represents the isolated counterpart. The dashed line indicates
the average value over the five snapshots with the standard deviation provided in
parenthesis.
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Figure D.4: Computational results for each solvated system using the large simulation
cell: representative solvated HOMO (upper part), HOMO QP energies of each selected
snapshot (middle part), and QP energy shifts between the isolated and solvated HOMO
of each selected snapshot (lower part). The blue color represents the solvated HOMO
while the red color represents the isolated counterpart. The dashed line indicates
the average value over the five snapshots with the standard deviation provided in
parenthesis.
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Figure D.5: IP shifts ∆ε plotted as a function of the mean polarizability; the two colors
denote the two simulation cells with different number of solvent molecules.
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Figure D.6: Solvation shells represented by the electron density at six different distances
for each solvated system.
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Figure D.7: Computational results for phenol in H2O using the large simulation cell:
the 1st, 9th, and 18th ionization states (upper part), real part of the fragment correlation
self-energy (before normalization) induced by the corresponding ionization state (middle
part), and real part of the fragment correlation self-energy (after normalization) induced
by the corresponding ionization state (lower part). The dashed line indicates the QP
energy.

Figure D.8: Real part of the fragment correlation self-energy (before normalization)
contributed from the six solvation shells of each solvated system. The dashed line
indicates the QP energy.
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Figure D.9: Real part of the fragment correlation self-energy (after normalization)
contributed from the six solvation shells of each solvated system. The dashed line
indicates the QP energy.

Figure D.10: Solvation shells represented by the electron density at ∼5 Å of each
solvated system.

Figure D.11: Comparisons between the derived ∆ε (red) using the straight line and
the first-principle ones (blue).
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Figure D.12: Graphical solutions to the QP energy for phenol in H2O using the
small simulation cell: the red curve represents the isolated HOMO and the blue curve
represents the solvated HOMO. The intersection between each curve and the straight
black line indicates the QP energy. Snapshots 1-5 are provided from left to right.

Figure D.13: Graphical solutions to the QP energy for phenol in H2O using the
large simulation cell: the red curve represents the isolated HOMO and the blue curve
represents the solvated HOMO. The intersection between each curve and the straight
black line indicates the QP energy. Snapshots 1-5 are provided from left to right.
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Figure D.14: Graphical solutions to the QP energy for phenol in ACN using the
small simulation cell: the red curve represents the isolated HOMO and the blue curve
represents the solvated HOMO. The intersection between each curve and the straight
black line indicates the QP energy. Snapshots 1-5 are provided from left to right.

Figure D.15: Graphical solutions to the QP energy for phenol in ACN using the
large simulation cell: the red curve represents the isolated HOMO and the blue curve
represents the solvated HOMO. The intersection between each curve and the straight
black line indicates the QP energy. Snapshots 1-5 are provided from left to right.

Figure D.16: Graphical solutions to the QP energy for phenol in DCM using the
small simulation cell: the red curve represents the isolated HOMO and the blue curve
represents the solvated HOMO. The intersection between each curve and the straight
black line indicates the QP energy. Snapshots 1-5 are provided from left to right.

Figure D.17: Graphical solutions to the QP energy for phenol in DCM using the
large simulation cell: the red curve represents the isolated HOMO and the blue curve
represents the solvated HOMO. The intersection between each curve and the straight
black line indicates the QP energy. Snapshots 1-5 are provided from left to right.
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Figure D.18: Graphical solutions to the QP energy for phenol in THF using the
small simulation cell: the red curve represents the isolated HOMO and the blue curve
represents the solvated HOMO. The intersection between each curve and the straight
black line indicates the QP energy. Snapshots 1-5 are provided from left to right.

Figure D.19: Graphical solutions to the QP energy for phenol in THF using the
large simulation cell: the red curve represents the isolated HOMO and the blue curve
represents the solvated HOMO. The intersection between each curve and the straight
black line indicates the QP energy. Snapshots 1-5 are provided from left to right.

Figure D.20: Graphical solutions to the QP energy for phenol in BEN using the
small simulation cell: the red curve represents the isolated HOMO and the blue curve
represents the solvated HOMO. The intersection between each curve and the straight
black line indicates the QP energy. Snapshots 1-5 are provided from left to right.

Figure D.21: Graphical solutions to the QP energy for phenol in BEN using the
large simulation cell: the red curve represents the isolated HOMO and the blue curve
represents the solvated HOMO. The intersection between each curve and the straight
black line indicates the QP energy. Snapshots 1-5 are provided from left to right.
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Appendix E

Supplementary material for “Are

multi-quasiparticle interactions

important in molecular ionization?”
Carlos Mejuto-Zaera,a Guorong Weng, Mariya Romanova,
Stephen J. Cotton,b,c K. Birgitta Whaley,1 Norm M. Tubman,d

Vojtěch Vlček

E.1 Methodological details

E.1.1 ASCI - Ground State

The idea behind the ASCI algorithm is to find an optimal truncation T N of a given size∣∣T N
∣∣ of the full Hilbert space, in order to accurately describe the ground state of a many-
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bQuantum Artificial Intelligence Laboratory (QuAIL), Exploration Technology Directorate, NASA

Ames Research Center, Moffett Field, California 94035, USA
cKBR, 601 Jefferson St., Houson, Texas 77002, USA
dQuantum Artificial Intelligence Laboratory (QuAIL), Exploration Technology Directorate, NASA

Ames Research Center, Moffett Field, California 94035, USA
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body Hamiltonian. ASCI has previously been shown to be able to successfully identify

optimal truncations for a wide variety of systems across the fields quantum chemistry

and condensed matter physics, including several molecular systems, the uniform electron

gas, the two-dimensional square lattice Hubbard model and Hubbard-Anderson impurity

models of the sort typically found in dynamical mean-field theory calculations [1, 2].

Effectively, we specify as input the size
∣∣T N

∣∣ of the truncation that we can afford, i.e.,

a number of Slater determinants into which the full Hilbert space is truncated, as well

as the Hamiltonian of interest H in some single-particle basis. The ASCI algorithm

returns the most important
∣∣T N

∣∣ many-body Slater determinants for the description of

the ground state wave function |Ψ0⟩ of H. We can then project the Hamiltonian H onto

that truncation space, and compute the approximate ground state wave function |ψ0⟩ and

the approximate ground state energy E0.

The key element in the ASCI algorithm is the introduction of a ranking criterion,

which given two determinants allows to estimate which one is more important for the

ground state wave function. Using this ranking criterion, the identification of the optimal

truncation space is performed iteratively, exploring regions of the Hilbert space connected

through H to a given reference truncation T N . After the exploration staga, all new

determinants together with the determinants in T N are ranked. Finally, we build a new

truncation T ′N by keeping only the
∣∣T N

∣∣ most important determinants in the ranking.

The Hamiltonian is then diagonalized in the new truncation T ′N , getting new ground

state energy and wave function estimates. The process is repeated until the ground state

energy E0 converges to the desired accuracy.

The ASCI algorithm performs best for systems with (a) a high Hamiltonian connectivity,

which accelerates the search, and (b) a true ground state that is well described by a few

states in some one-body basis. Both of these conditions are usually fulfilled in molecular

systems. The dense two-body term in the molecular Hamiltonian in typical quantum
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chemistry basis-sets accounts for point (a). An optimal one-body basis, in the sense

described by condition (b), can be found by introducing rotation to natural orbitals

through the ASCI calculation. These rotations are usually performed in the first few

iterations and are crucial to achieving a compact truncation, i.e. an accurate truncation

that is a small as possible. For more detailed on the ASCI algorithm, see [1, 3, 4].

E.1.2 ASCI - Green’s Function

Having determined the optimal truncation T N and the corresponding ground state

wave function |ψ0⟩ and energy E0, one can compute the Green’s function by evaluating

eq 1. In [5] we showed that the fast convergence of the ground state energy with the size∣∣T N
∣∣ of T N is inherited by the Green’s function, which also converges rapidly with the

number of determinants in the truncated space. The particle and hole components of the

Green’s function are computed separately using the Lanczos algorithm [6, 7]. The Green’s

function evaluation can be conceptually split into two steps: identifying a truncated basis

in the particle (hole) sector and evaluation of the ref in that truncated basis.

We want to build the truncated basis in the particle (hole) sector T N+1 (T N−1) on

top of the truncated space in the N particle sector T N , that is returned by ASCI. Unlike

in previous studies [5], where a different basis was built for each Green’s function matrix

element, here we build a single basis in the particle (hole) sector that is common to all

elements of the Green’s function. For this, we build a partial basis T N±1
i for each orbital

i, and then form the total basis as the union of these partial bases, i.e.

T N±1 = ∪i T N±1
i . (E.1)

In order to form T N±1
i , we build an initial “naive” truncated space T N+1,0

i by applying

the corresponding creation (annihilation) operator c†i (ci) to all determinants in T N . The
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union of these naive spaces, which will be at most p times as large as T N , where p is

the number of orbitals, would be enough to compute matrix elements like ⟨ψ0|ciHc†j|ψ0⟩

within ASCI accuracy. However, the Green’s function requires inverting the Hamiltonian

and thus more determinants are needed in general. We expand the naive truncations by

adding “layers” of single and double excitations of the determinants in T N+1,0
i . If we apply

m layers, we add new determinants that are 1, 2, . . . ,m single or double excitations away

form the determinants in T N+1,0
i . In general, we do not add these layers of excitations on

top of all the determinants in a given naive space, but only on top of those generated from

determinants in T N that possess a ground state wave function coefficient above some

threshold. For the computations presented in this work, we choose this threshold to be

10−3. In [5] we showed that for the typical impurity models found in dynamical mean-field

theory calculations on the Hubbard model, two layers of excitations were sufficient to

converge the spectral functions along the real frequency axis. In the small molecular

examples in this work, one layer was enough. Furthermore, in these layers we add only

single excitations and no doubles.

Using only a small number of layers is fundamental, since the size of the truncated

spaces increases exponentially with the number of applied layers. To further reduce the

size of each T N+1
i without compromising accuracy, we exploit the active space structure

of the orbital space {ci}, identifying those orbitals with occupation close to 2 or 0 as

inactive, and the rest as active. When adding layers of excitations, we then only consider

excitations from and to active orbitals. This can significantly reduce the size of T N+1
i .

We consider an orbitals as “active” if it’s average occupation in the ground state wave

function ⟨ni⟩0 fufills 10−4 ≤ ⟨ni⟩0 ≤ 2− 10−4. The natural orbital rotations introduced in

the ground state calculation optimize this active space, since they tend to maximize the

number of inactive orbitals.

We note that due to the way in which the naive truncations T N+1
i (T N−1

i ) are built,
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using the corresponding creation (annihilation) operators, the final truncation spaces

for different orbitals will in general be different. In the exact diagonalization limit (the

full configuration interaction limit), i.e., when the ASCI truncation T N is equal to the

full Hilbert space in the N particle sector, then all the partial truncations T N+1
i for

all orbitals become equal and identical to the full Hilbert space in the (N + 1) particle

sector. It is then unnecessary to build more than one of the ”partial” truncations in this

limit. Moreover, it is only necessary to apply one layer of excitations on top of the naive

truncation space to recover the full Hilbert space.

For a given orbital i, the sizes of the particle and hole truncations,
∣∣T N+1
i

∣∣ and
∣∣T N−1
i

∣∣,
can be very different. In particular, an orbital that is full, or mostly full, in the ground

state will have a much smaller
∣∣T N+1
i

∣∣ than
∣∣T N−1
i

∣∣. This is because most important

determinants in the ground state wave function will likely have that orbital occupied,

such that when applying c†i these determinants do not contribute to T N+1
i . Conversely, an

orbital that is empty or mostly empty will have a much smaller
∣∣T N−1
i

∣∣ than
∣∣T N+1
i

∣∣. For

partially occupied orbitals, i.e. orbitals with an average occupation in the ground state

⟨ni⟩0 close to 1, both spaces will be of comparable size. As a result of these differences,

for the small molecular systems studied in this work and also when using a large basis

set,
∣∣T N+1
i

∣∣ will be much larger than
∣∣T N−1
i

∣∣, because there are far more orbitals than

electrons. Since the systems studied here are not particularly strongly correlated, there

are at most of the order of 30-40 active orbitals in the ground state of any of the five

systems. Of those, only nel/2 spatial orbitals are substantially occupied, where nel is the

number of electrons. Consequently, the full hole truncated bases T N−1 built as explained

above only have relevant contributions of nel/2 orbitals (in this work between 5-7), while

T N+1 has relevant contributions from all unoccupied virtual orbitals. The number of

the latter in an augmented quadruple zeta basis is of the order of 100, so T N+1 will be

about two orders of magnitude larger than T N−1. This makes computing the particle
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component of the Green’s function much more computationally demanding than the hole

component. In this work we have concentrated on the negative frequency part of the

spectral function A(ω). This simplifies the calculations, since, for any many-body system,

the particle component of the ground state Green’s function has all diagonal elements

equal to zero for ω < 0. Thus, to compute the spectral function A(ω), we do not need

the particle Green’s function. Once the full truncated basis T N+1 (or T N−1 for the hole

component) has been determined, we evaluate the particle component of eq 1 using the

Lanczos algorithm [6, 7]. In our previous work [5] we used the simple one-band Lanczos

method [6] to compute all elements of the Green’s function one at a time. This strategy,

amenable to trivial parallelization, is ideal if one is interested in the different elements

of the Green’s function independently, for example when one only wants to determine

the spectral function A(ω) = − 1
π
ℑG(ω). In these cases, it is sufficient to find for each

Green’s function element the optimal truncations T N±1, which as noted above will be in

general different for each element G(ω)pi,j.

This can become an issue when using a truncated Hilbert space, as is the case in ASCI,

for systems in which different orbitals show a significant degree of coupling. This was the

case for the molecules studied in this work, since as discussed in the main paper the orbital

resolved spectral function A(ω)i = − 1
π
ℑ [G(ω)i,i] for orbital i showed satellites resonant

with the main quasiparticle energies of another orbital j. In order to capture these features

accurately, we used a common basis for all elements of the Green’s function, by building

the union of the partial truncations corresponding to each orbital. Instead of computing

each Green’s function element in parallel, we employed the band Lanczos algorithm [7] to

determine all at the same time, reducing the computational time significantly. Using band

Lanczos, and a common truncation basis for all Green’s function elements, ensured an

accurate description of inter-orbital resonant features with modest sized truncations. The

price for the time saving using band Lanczos is in memory, since it requires storing more
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vectors simultaneously than the two that are formally needed in the one-band formulation.

Thanks to the compactness of the T N±1 spaces, we could afford the memory demands,

since each vector had at most ∼7 million elements (in the case of N2 in the aug-cc-pvqz

basis). The band Lanczos method has received relative little attention in the many-body

literature, and thus we briefly summarize the main idea and properties of the method

here, following the presentation of [7].

The band Lanczos method is a natural generalization of the common Lanczos algorithm,

which uses several linearly independent initial vectors instead of only one. In n band

Lanczos, one starts thus with an orthonormal set of vectors
{
ψ̃i

}n
i=1

.e Then, one builds

a Krylov space formed by actions of the Hamiltonian H on this starting set. In each

iteration, one acts with H on a vector in the Krylov space, and makes it orthogonal to the

previous ones using a recursion relation. Unlike in one-band Lanczos, where the recursion

relation involves only three vectors at a time, this band Lanczos verison involves 2n+ 1

vectors. Thus, one needs to store in memory the last 2n vectors in the Krylov space,

resulting in the higher memory demand of the band Lanczos method compared to simple

Lanczos. During the iterative process, the Hamiltonian matrix in the Krylov basis is

evaluated. While in one-band Lanczos the Hamiltonian is tridiagonal in the Krylov basis,

in n band Lanczos the Hamiltonian is band-diagonal, with n non-vanishing upper- and

lower-diagonals. After j iterations, during which one has gone over the span of each of the

original
{
ψ̃i

}n
i=1

vectors J = ⌊ j
n
⌋ times, one has formed the Hamiltonian H(j). Similarly

to one-band Lanczos, this Krylov Hamiltonian fulfills the following relations with respect

to the set
{
ψ̃i

}n
i=1

[7]:

eFor the Green’s function calculation, e.g. in the particle sector, n equals the number of orbitals and
the starting vectors are orthonormalized linear combinations of

{
c†i |ψ0⟩

}n

i=1
. This orthonormalization is

performed by QR factorization.
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(
H(j)

)k |ψ̃i⟩ = Hk |ψ̃i⟩ , for 1 ≤ i ≤ n, (E.2)

for 0 ≤ k ≤ J − 1

⟨ψ̃i|
(
H(j)

)k |ψ̃h⟩ = ⟨ψ̃i|Hk|ψ̃h⟩ , for 1 ≤ i, h ≤ n, (E.3)

for 0 ≤ k ≤ 2J − 1, k odd

for 0 ≤ k ≤ 2J − 2, k even.

Thus the first 2J − 2 powers of the Krylov Hamiltonian have the exact same matrix

elements with the initial set
{
ψ̃i

}n
i=1

as does the full Hamiltonian. This equivalence of

Hamiltonian powers provides a fast convergence of the Green’s function with the number

of Lanczos iterations, which can also be understood in terms of the moments of the

spectral function [6].

It should be noted that for the same number of iterations j, the one-band Lanczos

method equates more expectation values than n band Lanczos, since J = ⌊ j
n
⌋.

If necessary, the same number of powers can be recovered in the band Lanczos method

by increasing the number of iteration by a factor linear with the number of orbitals,

although this is rarely necessary. For the calculations presented in this work, due to the

weakly correlated ground state structure of the closed-shell molecules considered here, we

only need to consider the nel/2 lowest orbitals when determining the Green’s function.

Effectively, we only computed an at most 7× 7 block of the full Green’s function matrix.

Thus, a standard number of 4000 band Lanczos iterations was sufficient to obtain reliable

Green’s functions.

416



Supplementary material for “Are multi-quasiparticle interactions important in molecular ionization?”
Chapter E

E.1.3 ASCI - Simulation Parameters

For the small closed-shell molecular systems studied in this work, we performed an

ASCI ground state calculation with
∣∣T N

∣∣ = 5 · 105 determinants using cc-pvXz and aug-

cc-pvXz basis sets, where X = D,T,Q. For CH4, we were not able to use the aug-cc-pvQz

basis set, so we only report results for the other five basis sets. To determine the spectral

function A(ω) for ω < 0, we subsequently constructed the hole truncated space T N−1. We

proceed as described above, using one layer of single excitations and a frequency spacing

of 0.05 eV.

E.1.4 ASCI - A(ω) convergence with the truncation space size

Fig. E.1 shows the hole component of the spectral function A(ω) for select systems and

different basis sets. We see that the main quasiparticle energies show excellent convergence

with the number of states, with no appreciable change over a wide range of values of∣∣T N
∣∣.
While different systems and basis sets show slightly different convergence behavior, in

general the position of the QPEs could be always be converged within 0.15 eV, in the

sense that results shown in the main paper would change by no more than 0.15 eV on

increasing the truncation space size by a factor of 5. The satellite features also show a

satisfactory qualitative convergence with respect to the size of the target space.
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(a) H2O. (b) CH4.

(c) C2H2. (d) N2.

Figure E.1: Hole component of the spectral function for the occupied orbitals of the
molecules studied with aug-cc-pvqz basis sets and different ASCI truncations. We use
a broadening factor of 0.5 eV.

E.1.5 ASCI - A(ω) convergence with basis set

Fig. E.2 shows the convergence of the hole component of spectral function as a function

of the basis set for all five molecular systems presented in the main paper. We extrapolated

the quasiparticle energies to the complete basis set limit following the prescription in [8].

Here as well, the qualitative convergence of the satellite features is satisfactory.
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(a) H2O. (b) NH3.

(c) CH4. (d) C2H2.

(e) N2.

Figure E.2: Hole component of the spectral function for the molecules studied with
different augmented, correlation consistent basis sets and an ASCI truncation of 105

determinants. We use a broadening factor of ∼ 0.5 eV.
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E.1.6 ASCI - quasiparticle Energies

In Table E.1 we report the quasiparticle energies for all valence orbitals and all

molecules studied in the main paper with different basis sets. We also show the results

with basis set extrapolation using the prescription in [8]. These results are computed with

ASCI using a truncated space of 5 ·105 states, using a broadening of 0.50 eV. For the lowest

lying valence orbital of N2 we report only the position of the highest peak. The apparent

jumps in the QP energies for this lowest lying orbital in N2 when going from double

to triple zeta basis are due to weight redistribution among these peaks, which changes

the identity of the largest contribution. As discussed above, the quasiparticle energy

convergence with the size of the truncated space appears to be reached within a confidence

interval of ±0.15 eV. The extrapolated quasiparticle energies from the augmented and

non-augmented basis sets are in good agreement with each other.

We note that, similar to the inter-orbital resonances in the GWΓ self-energies discussed

in the main paper, the orbital resolved ASCI spectral functions also present resonances.

Fig. E.3 shows the orbital resolved spectral functions A(ω)i for all molecules. With the

exception of CH4, all show small resonant peaks between the orbital furthest from the

HOMO and at least one of the other orbitals. The A(ω)i for the orbital furthest from

the HOMO is emphasized with an arrow. However, this resonances appear in the ASCI

spectral functions due to the mixed character of the natural orbital basis in which they are

computed. Rotating the ASCI Green’s functions to the HF basis eliminates the resonances.

This leaves the question whether the resonances observed in the GWΓ self-energies have a

similar “artificial” origin, i.e. related to a physically inconsequential orbital basis rotation.

While all MBPT calculations where performed in the HF basis, which would thus suggest

a different origin, we must consider the fact that using a space grid instead of a Gaussian

basis set (see below) may induce some degree of orbital mixing, akin to the one obtained
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from natural orbital rotations. Thus, it is unclear whether the self-energy resonances have

an actual physical, or in contrast purely computational origin.

orbital cc-pvdz cc-pvtz cc-pvqz cc-extrapol. aug-cc-pvdz aug-cc-pvtz aug-cc-pvqz aug-extrapol.

H2O-1 -32.57 -32.67 -32.87 -33.05 -32.57 -32.72 -32.87 -32.99

H2O-2 -18.51 -18.86 -19.01 -19.15 -19.01 -19.01 -19.06 -19.10

H2O-3 -14.26 -14.71 -14.86 -14.95 -14.81 -14.91 -14.91 -14.90

H2O-4 -11.96 -12.46 -12.66 -12.79 -12.56 -12.66 -12.71 -12.75

NH3-1 -27.51 -27.31 -27.36 -27.48 -27.36 -27.31 -27.31 -27.36

NH3-2 -16.21 -16.46 -16.56 -16.61 -16.51 -16.56 -16.51 -16.51

NH3-3 -16.21 -16.46 -16.56 -16.63 -16.51 -16.56 -16.51 -16.51

NH3-4 -10.31 -10.71 -10.86 -10.95 -10.76 -10.86 -10.81 -10.81

CH4-1 -23.06 -23.16 -23.21 -23.25 -23.06 -23.16

CH4-2 -14.21 -14.36 -14.36 -14.35 -14.26 -14.36

CH4-3 -14.21 -14.36 -14.36 -14.35 -14.26 -14.36

CH4-4 -14.21 -14.36 -14.36 -14.35 -14.26 -14.36

C2H2-1 -23.66 -23.81 -24.01 -24.14 -23.66 -23.86 -24.01 -24.13

C2H2-2 -18.71 -18.91 -19.01 -19.08 -18.86 -18.96 -19.01 -19.05

C2H2-3 -16.86 -17.01 -17.11 -17.18 -16.96 -17.06 -17.11 -17.15

C2H2-4 -11.21 -11.31 -11.41 -11.48 -11.31 -11.36 -11.41 -11.45

C2H2-5 -11.21 -11.31 -11.41 -11.48 -11.31 -11.36 -11.41 -11.45

N2-1 -38.12 -38.02 -38.27 -38.47 -38.12 -37.97 -38.27 -38.56

N2-2 -18.26 -18.56 -18.71 -18.82 -18.46 -18.61 -18.76 -18.88

N2-3 -16.66 -16.91 -17.01 -17.08 -16.86 -16.96 -17.01 -17.05

N2-4 -16.66 -16.91 -17.01 -17.08 -16.86 -16.96 -17.01 -17.05

N2-5 -15.06 -15.36 -15.51 -15.64 -15.31 -15.46 -15.51 -15.54

Table E.1: QPE’s of the valence orbitals for H2O, NH3, CH4, C2H2 and N2 in different
basis sets. The QPE’s correspond to the maxima of the negative part of the imaginary
hole component Green’s function for the valence orbitals. These were computed with
ASCI using 105 states.

421



Supplementary material for “Are multi-quasiparticle interactions important in molecular ionization?”
Chapter E

(a) H2O. Resonance between or-

tbial 4 and 2.

(b) NH3. Resonance between

orbital 4 and 1.

(c) CH4. No appreciable reso-

nance.

(d) C2H2. Resonance between

orbital 5 and 3.

(e) N2. Resonance between or-

bital 5 and 4.

Figure E.3: Hole component of the spectral function for the molecules studied, orbital
resolved, using the largest basis set. We use a broadening factor of ∼ 0.5 eV. All
molecules except for CH4 show small resonances between the orbital furthest away
from the HOMO (shown with an arrow) and another orbital.
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E.1.7 Quasiparticle energies and spectra for all methods

In Table E.2 we summarize the quasiparticle energies obtained from all methods used

in the paper (HF, GW , GWΓ and ASCI) that are presented in Fig. (2) of the main

paper. The ASCI results correspond to the values obtained by basis set extrapolation

in the augmented basis set for all molecules except for CH4, where the non-augmented

basis set was used for the extrapolation. In Fig. E.4 we show the spectral functions and

self-energies for H2O, CH4, C2H2 and N2.
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H2O HF GW GWΓ ASCI NH3 HF GW GWΓ ASCI

orb 1 -36.82 -35.06 -32.02 -32.99 orb 1 -31.08 -29.22 -27.58 -27.36

orb 2 -19.51 -19.62 -19.20 -19.10 orb 2 -17.12 -17.11 -16.70 -16.51

orb 3 -15.92 -15.44 -15.03 -14.90 orb 3 -17.12 -17.11 -16.70 -16.51

orb 4 -13.88 -13.36 -12.94 -12.75 orb 4 -11.70 -11.69 -10.85 -10.81

CH4 HF GW GWΓ ASCI

orb 1 -25.69 -24.21 -22.74 -23.25

orb 2 -14.83 -15.03 -14.61 -14.35

orb 3 -14.83 -15.03 -14.61 -14.35

orb 4 -14.83 -15.03 -14.61 -14.35

C2H2 HF GW GWΓ ASCI N2 HF GW GWΓ ASCI

orb 1 -28.06 -25.88 -24.31 -24.13 orb 1 -40.19 -37.57 -39.12 -38.56

orb 2 -20.90 -20.04 -19.62 -19.05 orb 2 -21.14 -20.04 -19.62 -18.88

orb 3 -18.53 -18.37 -17.95 -17.15 orb 3 -16.82 -17.53 -17.11 -17.05

orb 4 -11.18 -12.11 -11.27 -11.45 orb 4 -16.82 -17.53 -17.11 -17.05

orb 5 -11.18 -12.11 -11.27 -11.45 orb 5 -17.28 -16.96 -16.28 -15.54

Table E.2: QPE’s of the valence orbitals for all molecules and the different methods
presented in Fig. 2 in the main paper.
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(a) CH4. (b) C2H2.

(c) H2O. (d) N2.

Figure E.4: Upper panels: Spectral functions for several molecules as computed with
ASCI (filled curve), G0W0 (dot-dashed line) and G0W0Γ (solid line). Lower panels:
Corresponding real part of the diagonal self-energy terms, with graphical solution of
the QP equation (2) of the main paper.

E.1.8 Stochastic Many-body Perturbation Theory Calculations

The starting point calculations for the MBPT ground state calculations are performed

with a real-space Hartree-Fock (HF) implementation. The formalism and implementations

of the real-space and real-time stochastic many-body calculations are provided in Refs [9,

10]. We employ Troullier-Martins pseudopotentials [11] and a kinetic energy cutoff of

28 Eh. The real-space grid parameters adopted in our calculations for each molecule are

listed in Table E.3.
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system grid grid spacing (a0)

H2O 72×60×70 0.30

NH3 66×66×60 0.30

CH4 72×72×72 0.30

C2H2 72×72×90 0.30

N2 50×50×60 0.35

Table E.3: Parameters of the HF calculations.

The quasipariticle energies are computed as

εQP = εHF +
〈
ϕ
∣∣∣Σ̂(ω = εQP)

∣∣∣ϕ〉 (E.4)

where εHF and |ϕ⟩ are the HF eigenvalue and the eigenstate. The Σ is the self-energy

term, yielding the electron correlation. Our MBPT calculations avoid the self-consistent

renormalization [12]. Instead, we employ a one-shot correction on top of a HF starting

point, whose single-electron orbitals are close to the true Dyson orbitals [13]. The Green’s

function in the HF basis is thus nearly diagonal (see the description of ASCI results). Most

importantly, HF prevents the appearance of spurious MQP peaks in GW [14, 15, 16]. Note,

however, that the one-shot treatment translates to an unscreened vertex term [17, 18, 10],

potentially overestimating the MQP couplings.

The self energies are computed via the one-shot G0W0 and the vertex-corrected G0W0Γ

method. In G0W0, the self-energy is expressed as

Σ(1, 2) = iν(1, 4̄)G(1, 2)ν(2, 5̄)χ(5̄, 4̄) (E.5)

where χ(1, 2) represents the two-point polarizability and ν the Coulomb kernel. The bar

over the number means integrating over the space and time. In G0W0Γ, the expression
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reads

Σ(1, 2) = iν(1, 4̄)G(1, 2)ν(2, 5̄)χ(5̄, 4̄)− iν(1, 4̄)G(1, 3̄)ν(3̄, 2)3χ(3̄, 2, 4̄) (E.6)

Compared to G0W0, the extra term involving the three-point polarizability 3χ(1, 2, 3) in

the expression accounts for higher order electron correlation. See Refs. [19, 10] for full

discussion of the meaning of the higher order effects.

In the stochastic formalism, the Green’s function is sampled by selecting random

vectors ζ, which sample the occupied and unoccupied subspace (propagated backward and

forward in time). To make the expression for the self-energy separable, we use the sparse

stochastic compression technique with additional set of sparse random vectors ξ[20, 9].

The random vectors spanning the entire Hilbert space are constructed as ±dV −1/2 (with

uniform distribution on each real space grid point). Here, dV is the volume element of

the grid. Occupied subspace sampling is achieved by projecting the random vectors on all

occupied states of the underlying mean-field calculation [9]. The unoccupied subspace

represents the complementary part of the random vector. For all systems we used a

number of random vectors Nζ = 1000 and Nξ = 20000. No other stochastic sampling is

employed (unlike in calculations for large systems).

The real-time propagation limits the frequency resolution of the self-energy. In

practice, we employ 50 a.u. maximum propagation time for excitations in the SQP regime.

This value is consistent with our previous work for molecules and solids.[21, 9, 22, 10]

Resolution of the spectral features in the MQP regime requires (at least) three times

larger propagation time (150 a.u.). Longer time evolution is subject to a large stochastic

fluctuation and sampling bias. The longest simulations reported are thus based on the

150 a.u. propagation time. The convergence of the spectral features is illustrated in

Fig. E.6.
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(a) CH4. (b) N2.

Figure E.5: Upper panels: Spectral functions for several molecules as computed with
ASCI (filled curve), G0W0 (dot-dashed line) and G0W0Γ (solid line). Lower panels:
Corresponding real part of the diagonal self-energy terms, with graphical solution of
the QP equation (2) of the main paper.

Figure E.6: Diagonal self energy components for the valence orbital furthest away
from the HOMO for N2 and CH4 computed with vertex corrected G0W0Γ. Results are
shown for different propagation times. The dashed line corresponds to the frequency
line y(ω) = ω. See text for discussion.
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Appendix F

Supplementary material for “Embedding

vertex corrections in GW self-energy:

Theory, implementation, and outlook”
Guorong Weng, Rushil Mallarapu,a Vojtěch Vlček

F.1 Theory and Computation

The stochastic GW and vertex-corrected GW formalism are formulated in detail in our

previous work.[1, 2] The Pipek-Mezey localizaed orbitals and Wannier functions, especially

the unoccupied states, are generated by our recent development,[3] where technical details

are provided.
aCurrent institution: Harvard University, Cambridge, MA, 02138, USA
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F.1.1 Green’s Function and Self-Energy

The single-particle Green’s Function is defined as

G(1, 2) = −i ⟨Ψ|T̂ ψ̂(1)ψ̂†(2)|Ψ⟩ , (F.1)

where Ψ represents the ground-state many-body wavefunction of a N-electron system, T̂

is the time-ordering operator, and ψ̂ and ψ̂† denote the electron annihilation and creation

operators. In this material, we use a short-hand notation for space-time coordinates:

(r1, t1) ≡ 1. Throughout this material, we introduce a bar symbol above these short-hand

notations, e.g. 1̄, where the space-time coordinates are integrated.

The total self-energy, ΣT , contains all the electron-electron interactions and is written

as

ΣT(1, 2) = ΣH(1)δ(1, 2) + ΣXC(1, 2). (F.2)

The ΣH on the right-hand-side (RHS) is the Hartree self-energy while the ΣXC denotes

the exchange-correlation self-energy. The delta function represents the locality in space

and instantaneity in time: δ(1, 2) = δ(r1 − r2)δ(t1 − t2). The ΣH in the Green’s function

formalism is expressed as

ΣH(1) = −iν(1, 2̄)G(2̄, 2̄+). (F.3)

Here, ν is the instantaneous Coulomb interaction written as

ν(1, 2) =
1

|r1 − r2|
δ(t1 − t2). (F.4)

The equal-time Green’s function G(2, 2+) is directly related to the electron density

n(r2) = −iG(2, 2+), (F.5)
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where 2+ represents a time argument t+2 that is infinitesimal after t2.

The exchange-correlation self-energy contains all the nonlocal and dynamical electron-

electron interactions

ΣXC(1, 2) = −iν(1, 4̄)G(1, 3̄)δG
−1(3̄, 2)

δU(4̄)
, (F.6)

where U is an external potential. The solution to Eq. (F.6) includes a three-point

irreducible vertex function Γ that needs to be approximated.

F.1.2 Exchange-Correlation Self-Energy

The exchange-correlation self-energy in the total self-energy is the most important

and challenging term to tackle. To simplify the expression of ΣXC , the Green’s function

G can be expressed by the Dyson equation

G−1(1, 2) = G−1
0 (1, 2)− ΣT(1, 2), (F.7)

where G0 is the Green’s function derived from the Hamiltonian (ĥ) with single-particle

terms (kinetic energy and external field) only. Inserting Eq. (F.7) to Eq. (F.6), the

expression of ΣXC becomes

ΣXC(1, 2) = −iν(1, 4̄)G(1, 3̄)δG
−1
0 (3̄, 2)

δU(4̄)
+ iν(1, 4̄)G(1, 3̄)

δΣT(3̄, 2)

δU(4̄)
. (F.8)

Note that δG−1
0 (3,2)

δU(4)
= −δ(3, 2)δ(3, 4). The first term on the left-hand-side (LHS) of

Eq. (F.8) is further written as

ΣX(1, 2) = iν(1, 2)G(1, 2). (F.9)
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Notice that iG(1, 2)δ(t1−t2) = −ρ(r1, r2; t1), the first term on LHS of Eq. (F.8) ultimately

recovers the instantaneous nonlocal exchange ΣX, which is equivalent to the Fock operator

in the Hartree-Fock approximation. The second term on the LHS of Eq. (F.8) is instead

denoted ΣC

ΣC(1, 2) = iν(1, 4̄)G(1, 3̄)
δΣT(3̄, 2)

δU(4̄)
. (F.10)

By introducing a generalized three-point reducible polarizability 3χ(6, 5, 4) := −i δG(6,5)
δU(4)

,

the final expression of ΣC reads

ΣC(1, 2) = −ν(1, 4̄)G(1, 3̄)δΣT(3̄, 2)

δG(6̄, 5̄)
3χ(6̄, 5̄, 4̄). (F.11)

F.1.3 GW Approximation

Due to the functional derivative of the total self-energy ΣT in Eq. (F.10), the correlation

energy ΣC needs to be solved self-consistently. Given that the exact solution is nearly

intractable, several approximations have been proposed for the functional derivative of

ΣT. The GW approximation takes

ΣT(3, 2) ≈ ΣH(3)δ(3, 2). (F.12)

Inserting Eqs. (F.12) and (F.3) to Eq. (F.11), the functional derivative becomes

δΣT(3̄, 2)

δG(6̄, 5̄)
≈ −iν(2, 5)δ(6, 5)δ(3, 2) (F.13)

The three-point polarizability is also reduced to a two-point one

χ(5, 4) := −iδG(5, 5
+)

δU(4)
=
δn(5)

δU(4)
. (F.14)
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Plugging Eqs. (F.13) and (F.14) into Eq. (F.11), the correlation energy essentially becomes

the GW polarization energy

ΣGW
C (1, 2) = iν(1, 4̄)G(1, 2)ν(2, 5̄)χ(5̄, 4̄). (F.15)

Adding Eq. (F.9) to Eq. (F.15), the GW exchange-correlation self-energy reads

ΣGW
XC (1, 2) = iG(1, 2)W (1, 2), (F.16)

where W is the screened Coulomb interaction defined as

W (1, 2) = ν(1, 2) + ν(1, 3̄)χ(3̄, 4̄)ν(4̄, 2). (F.17)

F.1.4 GWΓX Approximation with Bare Exchange

Beyond the GW approximation, one can consider both the ΣH and ΣX in Eq. (F.11)

while neglect completely the ΣC. This leads to a vertex correction term to the GW self-

energy, where the vertex comes from the derivative of the nonlocal exchange interaction.

For convenience, the derived vertex (Γ) is denoted ΓX. Assuming the bare exchange

interaction is used, the total self-energy is approximated as

ΣT(3, 2) ≈ ΣH(3)δ(3, 2) + ΣX(3, 2). (F.18)

The functional derivative in Eq. (F.11) thus becomes

δΣT(3̄, 2)

δG(6̄, 5̄)
≈ −iν(2, 5)δ(6, 5)δ(3, 2) + iν(3, 2)δ(5, 2)δ(6, 3). (F.19)
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Apparently, the first term on the RHS of Eq. (F.19) leads to the GW correlation energy

associated with a two-point polarizability. The second term is a correction to GW known

as the vertex. The resulting GWΓX correlation energy is written as

ΣGWΓX
C (1, 2) = iν(1, 4̄)G(1, 2)ν(2, 5̄)χ(5̄, 4̄)− iν(1, 4̄)G(1, 3̄)ν(3̄, 2)3χ(3̄, 2, 4̄)

= ΣGW
C + ΣΓX

C .

(F.20)

For convenience, the ΓX correction to the correlation self-energy is denoted ΣΓ
C, which

involves an irreducible three-point polarizability. In practice, the two-point polarizability

in ΣGWC yields the time-dependent induced density, while the three-point polarizability in

ΣΓ
C yields the time-dependent induced density matrix. Both induced density and density

matrix fluctuations are computed using real-time propagation.

F.1.5 GWΓX with Rescaled Exchange

A simple coefficient-self-consistency scheme can be introduced to the GWΓX approxi-

mation. The coefficient acts a pre-factor that rescales the nonlocal exchange interaction

to approximate the correlation effect. The rescaling factor is denoted β and this approach

is denoted GWΓβ approximation. The total self-energy approximated by the rescaled

exchange is written as

ΣT(3, 2) ≈ ΣH(3)δ(3, 2) + βΣX(3, 2), (F.21)

where βΣX ≈ ΣX+ΣC. In principle, the ΣC functional has to be solved self-consistently. By

introducing a factor β, the problem is reduced to solving the coefficient β self-consistently.
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The initial guess of β comes from the GW approximation

β0 =
ΣX + Σ0

C

ΣX

. (F.22)

Here, Σ0
C denotes the GW self-energy. All the self-energies on the right-hand side of

Eq. (F.22) are the expectation values for a specific quasiparticle state. The same notations

apply to the following derivation. The GWΓβ0 correlation self-energy reads

Σ
GWΓβ0

C = ΣGW
C + β0ΣΓX

C (F.23)

Note that the frequency-dependent ΣGW
C and ΣΓ

C are computed one time only, but the

value of them are solved self-consistently based on the value of β. The value of β is

iteratively updated until self-consistence

βn =
ΣX + Σn−1

C

ΣX

, (F.24)

where Σn−1
C is the GWΓβ correlation energy using βn−1 in Eq. (F.23). The self-consistent

correlation energy is written as

Σ
GWΓβsc

C = ΣGW
C + βscΣΓX

C , (F.25)

where βsc is the self-consistent rescaling factor.

In this work, we starts with the one-shot GW (G0W0) correlation self-energy and

apply vertex corrections on top. Only the diagonal terms of the self-energy matrix are

evaluated. The QP energy is obtained by

εQPi = ε0i + ⟨ϕi|Σ̂XC − v̂xc|ϕi⟩ , (F.26)
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where ε0i is the eigenvalue of eigenstate ϕi from the starting-point calculation using the

following Kohn-Sham (KS) DFT Hamiltonian

Ĥ0 = ĥ+ Σ̂H + v̂xc. (F.27)

Here, ĥ is the single-particle term containing the kinetic energy and the electron-nuclear

attraction. vxc (as in Eq .(F.26)) represents the local or semi-local exchange-correlation

potential. In this work, the vxc is approximated by the PBE functional.

F.1.6 Stochastic Formalism of ΣC

As introduced above, the exchange self-energy is computed by the Hatree-Fock form,

while the correlation part requires calculating the time-dependent induced density fluctu-

ation (δn) and time-dependent induced density-matrix fluctuation (δρ). In the stochastic

formalism, the Green’s function G, δn, and δρ are all sampled by random functions. On

a real space grid, a random function is prepared as follows

ζ̄(r) = ± 1√
dV

, (F.28)

where dV is the unit volume of each grid point. The sign of the value at each grid point

is randomly chosen between “+" and “-", which gives rise to the stochastic resolution of

identity

Î = {|ζ̄⟩ ⟨ζ̄|}. (F.29)

The brackets {. . . } denote an average over the whole set of random functions, which are

used in the following texts. The stochastic form of the KS Green’s function reads

G0(r1, r2, t1 − t2) = {ζ(r1, t1)ζ̄(r2, t2)}. (F.30)
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Note that the Green’s function depends only on the difference between t1 and t2 and thus

we set t2 = 0. The vector ζ is a projected vector from ζ̄ by the projector P̂ or Î − P̂ .

The projector P̂ depneds on the chemical potential and the Hamiltonian Ĥ0, representing

the occupied subspace for “hole" states. Its complement Î − P̂ represents the unoccupied

subspace for “electron" states. The time-evolved projected random vectors are prepared

by

ζ(r, t) =


⟨r|e−iĤ0tP̂ |ζ̄⟩ t < 0

⟨r|e−iĤ0t(Î − P̂ )|ζ̄⟩ t > 0

. (F.31)

In practice, the time propagation is discretized. Using the projected random functions,

the density and density matrix are constructed by

n(r) = {η∗(r)η(r)}, (F.32)

and

ρ(r1, r2) = {η∗(r2)η(r1)}. (F.33)

Here, η is a projected random vector in the occupied subspace

|η⟩ = P̂ |ζ̄⟩ . (F.34)

The stochastic G0W0 correlation self-energy is written as

ΣG0W0
C (t) = {ϕi(r̄)ζ(r̄, t)WP(r̄, t)}, (F.35)

where WP(t) = ν̂χ̂(t)ν̂ |ζ̄ϕi⟩ is a time-ordered polarization potential obtained from a

retarded potential W r
P. The retarded potential is computed by the induced density
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fluctuation

W r
P(r, t) = ν(r, r̄2)δn(r̄2, t). (F.36)

The time-dependent induced density fluctuation has the following form

δn(r, t) = χ(r, r̄2, t)ν(r̄2, r̄3)ζ̄(r̄3)ϕi(r̄3). (F.37)

In the G0W0ΓX approximation, we first assume the nonlocal exchange functional is bare.

The stochastic ΓX term in the self-energy is expressed as

ΣΓX
C (t) = {ϕi(r̄1)ζ(r̄2, t)WX(r̄1, r̄2, t)}. (F.38)

Due to the linearity relation, the screened ΓX contribution to the self-energy is simply

written as

Σ
Γβ

C (t) = β{ϕi(r̄1)ζ(r̄2, t)WX(r̄1, r̄2, t)} = βΣΓX
C (t). (F.39)

And therefore, one can always first compute ΣΓX
C (t) and then multiply it by β.

In Eq. (F.38), WX(t) = ν̂3χ̂(t)ν̂ |ζ̄ϕi⟩ and is a time-ordered exchange potential obtained

from a retarded potential W r
X. The retarded potential is computed by the induced density

matrix fluctuation

W r
X(r1, r2, t) = ν(r, r2)δρ(r2, r2, t), (F.40)

where the induced density matrix fluctuation is

δρ(r1, r2, t) = 3χ(r1, r2, r̄3, t)ν(r̄3, r̄4)ζ̄(r̄4)ϕi(r̄4). (F.41)

In practice, both the induced density and density matrix fluctuations are computed

by taking the difference between the perturbed and unperturbed system at a certain time
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t. In the following derivation, we focus on the time-dependent induced density matrix

fluctuation, which can be trivially generalized to the density one. At t = 0, the random

vectors η within the occupied subspace are perturbed

|ηλ⟩ = eiv̂λ |η⟩ , (F.42)

where vλ is a perturbing potential due to the addition/removal of an electron

vλ(r1) = λν(r1, r̄2)ζ̄(r̄2)ϕi(r̄2). (F.43)

Here, λ controls the strength of the perturbation and we take λ = 10−4E−1
h . These

perturbed states are then evolved in time

ηλ(r, t) = ⟨r|e−iĤ(t)t|ηλ⟩ . (F.44)

The Hamiltonian here is a generic one. If one takes Ĥ(t) = Ĥ0(t), i.e., KS-DFT Hamilton-

ian, the only time-dependent term in Ĥ0(t) is the Hartree term and the resulting G0W0

correlation energy is computed at the random phase approximation (RPA) level. Vertex

correction to the polarizability requires a time-dependent nonlocal exchange term in Ĥ(t)

and the corresponding correlation energy is known as the G0W
tc
0 approximation. In the

next section, we demonstrate the construction of an effective QP Hamiltonian with a

rescaled time-dependent nonlocal exchange. With the time-evolved random vectors, the

time-dependent density matrix is constructed as

ρλ(r1, r2, t) = {η∗λ(r2, t)ηλ(r1, t)}, (F.45)
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and the induced density matrix fluctuation is computed as

δρ(r1, r2, t1) =
ρλ(r1, r2, t1)− ρ0(r1, r2, t1)

λ
, (F.46)

where ρ0 is the unperturbed density matrix exhibiting time-dependence due to the

stochastic nature of η.

F.1.7 Embedded Vertex Correction

Vertex correction applies to the polarizability and directly to the correlation self-energy

(ΣΓX
C ). THis works aims to handle the vertex corrections within an electronic active space

through the proposed separation-propagation-recombination (SPR) process.

The separation step utilizes an active space projector that is performed on the random

vectors. Regarding the electron-hole pair formation in an charge-excitation process, we

select the energetically active states to form the active space. The projector is given by

P̂A =
Nact∑
i=1

|ψAi ⟩ ⟨ψAi | . (F.47)

Here, Nact denotes the number of active states and ψA represent a projector state in the

active state. The projector states can be gap-edge states, e.g., HOMO and LUMO. They

can also be π and π∗ bonds when using the localized basis. We use P̂R = Î − P̂A to

represent the complement of the active space (Î is the identity). At t = 0, the random

vector η, either perturbed or not, is separated by into the active component and the rest

|ηA⟩ = P̂A |η⟩ , (F.48)
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and

|ηR⟩ = P̂R |η⟩ . (F.49)

These two components are then time-evolved by two different operators in the descretized

propagation step

|ηA′
(dt)⟩ = e−iĤ

eff(0)dt |ηA⟩ , (F.50)

and

|ηR′
(dt)⟩ = e−iĤ

0(0)dt |ηR⟩ , (F.51)

where dt is the time interval in each discrete propagation step. The Ĥeff in Eq. (F.50) is a

space-specific effective QP Hamiltonian with a rescaled time-dependent nonlocal exchange

Ĥeff(t) = ĥ+ Σ̂H(t) + αΣ̂X(t), (F.52)

where the rescaling factor α is similar to the β mentioned above. The α represents the

entire active space, i.e., a set of projector states, and is thus derived as the average of βi

for each ψAi in Eq. (F.47)

α =
1

Nact

Nact∑
i

βi, (F.53)

where βi is computed by Eq. (F.22) at the G0W0 level. In contrast to Ĥeff , the Ĥ0 in

Eq (F.51) is simply the mean-field Hamiltonian with only the time-dependent Hartree

Ĥ0(t) = ĥ+ Σ̂H(t) (F.54)

The treatment of the active component introduces vertex correction through the time-

dependent nonlocal exchange, while the treatment of the rest component is equivalent to

RPA. Note that the time-evolution may cause leakage of the ηA′ to the rest space. To
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recover the “real” active component at t = dt, the following operations are required

|ηA(dt)⟩ = P̂A |ηA′
(dt)⟩+ P̂A |ηR′

(dt)⟩ , (F.55)

and

|ηR(dt)⟩ = P̂R |ηA′
(dt)⟩+ P̂R |ηR′

(dt)⟩ . (F.56)

These two operations are performed in each propagation step.

After obtaining ηA(dt) and ηR(dt), the last step of the SPR process is to recombine

these two components and give the time-evolved embedded vector

|ηemb(dt)⟩ = |ηA(dt)⟩+ |ηR(dt)⟩ . (F.57)

The set of ηemb(t) then leads to nemb(t) and ρemb(t) through Eqs. (F.32) and (F.33), and

also δnemb(t) and δρemb(t) through Eq. (F.46). Finally, the G0W
tc
0 Γβ correlation energy

with embedded vertex corrections is computed from the δnemb(t) and δρemb(t).

The same SPR treatment applies also to the random vectors ζ for the time propagation

of the Green’s function.
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F.2 Supplementary figures and tables

Figure F.1: The full set of basis orbitals that defines the active occupied (upper half)
and unoccupied (lower half) spaces of the TCNE and TCNQ molecules.

Figure F.2: The full set of basis orbitals that defines the active occupied (upper
half) and unoccupied (lower half) spaces of the B-T dimer: Kohn-Sham eigenstates
representation (left) and π and π∗ bonds representation (right).
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Figure F.3: The full set of basis orbitals that defines the active occupied (upper
half) and unoccupied (lower half) spaces of the D-T dimer: Kohn-Sham eigenstates
representation (left) and π and π∗ bonds representation (right).
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Figure F.4: The full set of basis orbitals that defines the active occupied (left) and
unoccupied (right) spaces of the p-FBT polymer: Bloch states representation (upper
half) and Wannier functions representation (lower half).
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Figure F.5: The full set of basis orbitals that defines the active occupied (left) and
unoccupied (right) spaces of the Tc-C double layers: Bloch states representation (upper
half) and Wannier functions representation (lower half).

Figure F.6: Graphical solutions to the QP energies for the (a) HOMO and the (b)
LUMO of the TCNE molecule. The magenta curve represents the self-energy computed
using the π and π∗ active space without the Γ term. The blue curve denotes the
self-energy computed using the π and π∗ active space with the Γ term. The red and
black curves represent the Γ term computed using the π (or π∗) active space and the
full electronic space, respectively. The intersections between the straight line and the
curves denote the QP energy.
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Figure F.7: Graphical solutions to the QP energies of the TCNE molecule: (a) the
HOMO QP energy solutions using the augmented active space where β0 = 0.998 and
βsc = 1.103; (b) the LUMO QP energy solutions using the augmented active space
where Γ is derived from bare ΣX. The intersections between the straight line and the
curves denote the QP energy.
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Figure F.8: Graphical solutions to the QP energies of the TCNQ molecule: (a) the
HOMO QP energy solutions using the augmented active space where β0 = 1.029 and
βsc = 1.096; (b) the LUMO QP energy solutions using the augmented active space
where Γ is derived from bare ΣX. The intersections between the straight line and the
curves denote the QP energy.
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Figure F.9: Graphical solutions to the QP energies of the B-T dimer: (a) the HOMO
QP energy solutions using the minimal active space where β0 = 0.996 and βsc = 1.097;
(b) the LUMO QP energy solutions using the minimal active space where Γ is derived
from bare ΣX; (c) the HOMO QP energy solutions using the augmented active space
where β0 = 0.996 and βsc = 1.082; (d) the LUMO QP energy solutions using the
augmented active space where Γ is derived from bare ΣX. The intersections between
the straight line and the curves denote the QP energy.
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Figure F.10: Graphical solutions to the QP energies of the Tc-C dimer: (a) the HOMO
QP energy solutions using the minimal active space where β0 = 1.039 and βsc = 1.142;
(b) the LUMO QP energy solutions using the minimal active space where Γ is derived
from bare ΣX; (c) the HOMO QP energy solutions using the augmented active space
where β0 = 1.039 and βsc = 1.183; (d) the LUMO QP energy solutions using the
augmented active space where Γ is derived from bare ΣX. The intersections between
the straight line and the curves denote the QP energy.
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Figure F.11: Graphical solutions to the QP energies of the p-FBT polymer: (a) the
VBM QP energy solutions using the Bloch representation where β0 = 1.025 and
βsc = 1.098; (b) the CBM QP energy solutions using the Bloch representation where
Γ is derived from bare ΣX; (c) the VBM QP energy solutions using the Wannier
representation where β0 = 1.025 and βsc = 1.096; (d) the CBM QP energy solutions
using the Wannier representation where Γ is derived from bare ΣX. The intersections
between the straight line and the curves denote the QP energy.
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Figure F.12: Graphical solutions to the QP energies of the Tc-C double layers: (a)
the VBM QP energy solutions using the Bloch representation where β0 = 1.033 and
βsc = 1.116; (b) the CBM QP energy solutions using the Bloch representation where
Γ is derived from bare ΣX; (c) the VBM QP energy solutions using the Wannier
representation where β0 = 1.033 and βsc = 1.114; (d) the CBM QP energy solutions
using the Wannier representation where Γ is derived from bare ΣX. The intersections
between the straight line and the curves denote the QP energy.
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system grid spacing [bohr]

TCNE 88*88*76 0.35

TCNQ 86*68*46 0.35

B-T Dimer 86*98*80 0.35

Tc-C Dimer 136*112*96 0.35

p-FBT 480*76*76 0.4023333

Tc-C double layers 136*150*150 0.353774

Table F.1: Cell parameters in DFT calculations

Parameters value

plane wave cut-off (hartree) 28

number of random vectors used for sparse stochastic compression 20000

number of random vectors characterizing the screened Coulomb interac-

tion (per each vector sampling the Green’s function)

16

number of vectors sampling the Green’s function 2000

maximum time for real-time propagation of the dynamical self-energy

(a.u.)

50

Table F.2: Parameters in the GW calculations of all systems.

Table F.3: Screening factors α of the active space defined for the single TCNE molecule.
All values are in arbitrary unit.

Basis Type
α

occ. unocc.

π and π∗ Bonds 0.979 (0.004) 1.176 (0.006)
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Table F.4: HOMO/LUMO energies and fundamental gaps of the single TCNE molecule
computed by different methods. All energy values are in eV unit.

System Method HOMO/LUMO/Gap

TCNE

DFT -8.61/-5.85/2.76

G0W0 -11.15/-3.77/7.38

α1-G0W
tc
0 -11.82/-2.73/9.09

α1-G0W
tc
0 Γβ0

j
-12.91/-2.73∗/10.18

α1-G0W
tc
0 Γβsc

j
-13.02/-2.73∗/10.29

1 Screening factor computed from the localized or-

bitals basis

* The LUMO energy is taken from the G0W
tc
0 result

Table F.5: Screening factors α of the active space defined for the single TCNE molecule.
All values are in arbitrary unit.

Basis Type
α

occ. unocc.

π and π∗ Bonds 0.983 (0.006) 1.158 (0.010)
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Table F.6: HOMO/LUMO energies and fundamental gaps of the single TCNQ molecule
computed by different methods. All energy values are in eV unit.

System Method HOMO/LUMO/Gap

TCNQ

DFT -7.78/-6.27/1.51

G0W0 -9.63/-4.96/4.66

α1-G0W
tc
0 -9.46/-3.59/5.86

α1-G0W
tc
0 Γβ0

j
-10.70/-3.59∗/7.11

α1-G0W
tc
0 Γβsc

j
-10.71/-3.59∗/7.12

1 Screening factor computed from the localized or-

bitals basis

* The LUMO energy is taken from the G0W
tc
0 result

Table F.7: Comparisons of the computed IP of TCNE between references (60 and 64
in the main text) and this work. The references of the experimental data are also from
the main text.

IP (eV) G0W0@PBE G0W0+SOSEX α-G0W
tc
0 α-G0W

tc
0 Γβ Exp. (vertical)

Ref. 60 11.1 11.3 NA NA

11.77-11.79114,118Ref. 64 11.19 11.32 NA NA

This work 11.15 NA 11.82 12.91/13.02

Table F.8: Comparisons of the computed EA of TCNE between references (60 and 64
in the main text) and this work. The references of the experimental data are also from
the main text.

EA (eV) G0W0@PBE G0W0+SOSEX α-G0W
tc
0 α-G0W

tc
0 Γβ Exp. (vertical/adiabatic)

Ref. 60 3.8 3.3 NA NA

2.30115/3.16116,117Ref. 64 3.78 3.22 NA NA

This work 3.77 NA 2.73 0.45 (β = 1)
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Table F.9: Screening factors α of the active space defined for the DAB-TCNE dimer
system. All values are in arbitrary unit.

Basis Type
α

occ. unocc.

KS Eigenstates 0.996 1.100

π and π∗ Bonds 0.975 (0.012) 1.135 (0.025)

Table F.10: Screening factors α of the active space defined for the Tc-C dimer system.
All values are in arbitrary unit.

Basis Type
α

occ. unocc.

KS Eigenstates 1.039 1.214

π and π∗ Bonds 0.980 (0.004) 1.154 (0.010)
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Table F.11: HOMO/LUMO energies and fundamental gaps of the donor-acceptor
complexes computed by different methods. All energy values are in eV unit.

System Method HOMO/LUMO/Gap

B-T dimer

DFT -5.45/-4.77/0.68

G0W0 -7.17/-2.33/4.84

α1-G0W
tc
0 -7.10/-1.91/5.19

α1-G0W
tc
0 Γβ0

j
-8.45/-1.91∗/6.54

α1-G0W
tc
0 Γβsc

j
-8.57/-1.91∗/6.66

α2-G0W
tc
0 -5.92/-1.51/4.41

α2-G0W
tc
0 Γβ0

j
-8.44/-1.51∗/6.93

α2-G0W
tc
0 Γβsc

j
-8.64/-1.51∗/7.13

Tc-C dimer

DFT -4.65/-4.10/0.55

G0W0 -6.34/-2.54/3.79

α1-G0W
tc
0 -6.36/-2.35/4.01

α1-G0W
tc
0 Γβ0

j
-7.70/-2.35∗/5.35

α1-G0W
tc
0 Γβsc

j
-7.84/-2.35∗/5.49

α2-G0W
tc
0 -4.80/-1.79/3.01

α2-G0W
tc
0 Γβ0

j
-8.03/-1.79∗/6.24

α2-G0W
tc
0 Γβsc

j
-8.43/-1.79∗/6.64

1 Screening factor computed from the KS eigenstates

basis

2 Screening factor computed from the localized orbitals

basis

* The LUMO energy is taken from the G0W
tc
0 result
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Table F.12: Screening factors α of the active space defined for the 1D p-FBT system.
All values are in arbitrary unit.

Basis Type
α

TVB BCB

Bloch States 1.016 (0.010) 1.260 (0.009)

Wannier Functions 1.002 1.082

Table F.13: Screening factors α of the active space defined for the 2D Tc-C double-layer
system. All values are in arbitrary unit.

Basis Type α
TVB BCB

Bloch States 1.034 (0.000) 1.193 (0.005)
Wannier Functions 1.010 1.061
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Table F.14: VBM/CBM energies and fundamental gaps of the 1D p-FBT and 2D Tc-C
double layers computed by different methods. All energy values are in eV unit.

System Method VBM/CBM/Gap

p-FBT

DFT -4.97/-3.35/1.62

G0W0 -6.42/-2.09/4.33

α1-G0W
tc
0 -6.39/-1.52/4.86

α1-G0W
tc
0 Γβ0

j
-7.44/-1.52∗/5.92

α1-G0W
tc
0 Γβsc

j
-7.52/-1.52∗/6.00

α2-G0W
tc
0 -6.38/-1.86/4.52

α2-G0W
tc
0 Γβ0

j
-7.41/-1.86∗/5.55

α2-G0W
tc
0 Γβsc

j
-7.49/-1.86∗/5.63

Tc-C Double Layers

DFT -4.97/-4.27/0.70

G0W0 -6.04/-2.60/3.44

α1-G0W
tc
0 -6.09/-2.53/3.56

α1-G0W
tc
0 Γβ0

j
-7.11/-2.53∗/4.58

α1-G0W
tc
0 Γβsc

j
-7.20/-2.53∗/4.67

α2-G0W
tc
0 -6.09/-2.53/3.56

α2-G0W
tc
0 Γβ0

j
-7.09/-2.53∗/4.56

α2-G0W
tc
0 Γβsc

j
-7.17/-2.53∗/4.64

1 Screening factor computed from the KS eigenstates basis

2 Screening factor computed from the localized orbitals basis

* The LUMO energy is taken from the G0W
tc
0 result
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